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Preface

On October 12-14,2011, the Biostatistics and Risk Assessment Center (BRAC) and
the Department of Epidemiology and Biostatistics of the University of Maryland
hosted an international conference entitled “Risk Assessment and Evaluation of
Predictions.” The conference was held in Silver Spring, Maryland.

In assembling this volume, we invited conference participants to contribute
their articles. All papers were peer-reviewed, by anonymous reviewers, and
revised before final editing and acceptance. Although this process was quite time-
consuming, we believe that it greatly improved the volume as a whole, making
this book a valuable contribution to the field of research in risk assessment and
evaluation of predictions.

This volume presents a broad spectrum of articles presented at the conference. It
includes 21 chapters organized into three parts:

Part I: Risk Assessment in Lifetime Data Analysis,
Part II: Evaluation of Predictions, and
Part III: Applications.

Part T includes different methods for risk assessment in survival analysis such
as accelerated failure time models; threshold regression models; residual survival
models; competing risks; Neyman, Markov processes and survival analysis; and
nonparametric inference. Part II covers many important issues related to evaluation
of risk predictions as well as recent advances in the development of receiver-
operating characteristic (ROC) curves. Part III presents a variety of applications
from genetics, competing risk models and breast cancer, product life cycle eval-
uation, environmental exposure biomarkers, extreme wind speed, and consumer
services.
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We hope that this volume will serve as a valuable reference for researchers in
these important areas.

Maryland, USA Mei-Ling Ting Lee
Bethesda, MD, USA Mitchell Gail
Bethesda, MD, USA Ruth Pfeiffer
Atlanta, GA, USA Glen Satten
Boston, MA, USA Tianxi Cai

London, UK Axel Gandy
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Non-proportionality of Hazards
in the Competing Risks Framework

Alvaro Muiioz, Alison G. Abraham, Matthew Matheson, and Nikolas Wada

Abstract The simplest means of determining the effect of an exposure on the
frequency and timing of two competing events is to contrast the cumulative
incidences between the exposed and unexposed groups for each event type. Methods
and software are widely available to semi-parametrically model the sub-hazards of
the cumulative incidences as proportional and to test whether the constant relative
sub-hazards (a; and a,) are different from 1. In this chapter, we show that a; and
ay are tethered by a strong relationship which is independent of the timing of the
competing events; the relationship is fully determined by the overall frequencies
of events, and a; and a, must be on opposite sides of 1. When violations of
proportionality occur, separate analyses for the two competing events often yield an
inadmissible result in which the estimates of a; and a, are on the same side of 1, and
may even exhibit statistical significance. We further characterize the compatibility
of concurrent proportionality of cause-specific hazards and sub-hazards, and show
that strong tethering also occurs among these quantities; and that, of the sub-hazards
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and cause-specific hazards, at most two of the four can be proportional, but without
restriction on which two. Because proportionality rarely holds in practice, the
default analytical approach should allow the relative hazards to depend on time,
which can be easily carried out with widely available software. However, the
statistical power of this approach is limited in the case of large numbers of event-
free observations. An application using data from a North American cohort study of
children with kidney disease is presented.

Introduction

The problem of competing risks has been addressed in the literature in several
ways [1]. The most common approach, that of cause-specific hazards, partitions
the hazard of the composite event (instantaneous probability of failing from any
event among survivors of all events) as the sum of mutually exclusive cause-
specific hazards (instantaneous probability of failing from a specific cause among
survivors of all events). This approach allows for estimation and testing of relative
cause-specific hazards by treating the times to one event as censored observations
for the other. The cause-specific hazards approach has been well developed in
the literature [1-7] and, under the assumption of proportionality of the cause-
specific hazards, can be carried out using standard software for proportional hazards.
However, interpretative challenges arise because effects of exposures on cause-
specific hazards may not mirror effects on cumulative incidences [1].

A second approach, centered on the sub-hazards of the cause-specific cumulative
incidences (often referred to as subdistribution hazards), is to consider those who
experience the competing event as immune to the event of interest. For example,
those who died of a cardiovascular cause persist in the analysis of renal failure death
as part of the risk set, but of course cannot experience renal death for the remainder
of the study. The appeal of such a strategy is that it reflects the reality of events in
the study population, in which some will have the event of interest and others never
will as a result of competing events. Within this framework, cumulative incidence
functions in the case of two event types, /;(f) and I,(¢), are directly estimated, and
comparisons between groups are made via the associated sub-hazards A(¢) and
Aa(2) [8-10].

The most widely-used model for the effect of an exposure on the sub-hazards
assumes proportional sub-hazards, as described by Fine and Gray [8]. This method
distributes the information from censored times to competing events using a
weighting procedure. Software to carry out this method is widely available and
simple to use (e.g., stcrreg of Stata). However, proportionality of sub-hazards rarely
holds. Indeed, in their seminal paper, Fine and Gray had the foresight to warn
that “In applications, we anticipate time X covariate interactions” [8]. Furthermore,
since the total cumulative incidence must sum to 1 at # = oo, any exposure-induced
increase in the cumulative incidence of one event type must be offset by a decrease
in the cumulative incidence of the other event type. This induces interdependence, or
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tethering, of the relative sub-hazards with important consequences if proportionality
is assumed for both events. To circumvent this tethering, Beyersmann et al. [11]
recommend assuming proportionality for only one of the events. However, in many
epidemiological studies [12-16], determination of the effect of exposures on all
event types is of primary interest.

In the “Methods and Models” section of this chapter, we characterize the
tethering of relative sub-hazards under the assumption of simultaneous proportion-
ality for both events, and we extend results about the compatibility of concurrent
proportionality of cause-specific and sub-hazards for the two event types by proving
that at most two of the four measures can be proportional, but without restriction on
which two. In the “Simulation” section we illustrate the consequences of tethering
of relative sub-hazards using data simulated from a mixture of the conditional
distributions of the times of the competing events [17-19]. In the “Application”
section, data from a North American cohort study of children with chronic kidney
disease are used to illustrate a case congruent with proportionality of sub-hazards
and a case with strong time dependency of the relative sub-hazards. Limitations
posed by data with heavy censoring are included in the discussion.

Methods and Models

Sub-hazards

The one-sample survival analysis problem for two competing events (E=1 and
E =2) wherein only one event is observed per subject can be fully described
by a mixture of two distributions determined by (1) the mixture parameter
n=P(E=1)=1—-P(E=2), which describes the overall frequency of each
event; and (2) the conditional distribution functions, F;(#)=P(T <t|E=1) and
F>(f) = P(T < t|E =2), which govern the timing of the events, with T representing
the time for the composite event. Hereafter, for simplicity, we drop the notation “(¢)”
from functions except in cases where necessary for clarity. The cumulative incidence
functions (/; and ;) for the two events follow from weighting the conditional
distributions by the mixture parameter © as: I} =nF| and I =(1 — m)F,. Thus,
as t— oo, I} approaches m and I approaches 1 — m. The sub-hazards A; and
Ay that correspond to the cumulative incidences are )L,‘ZI,'I/(l — 1), where Ii/
is the derivative of I; for i=1,2. This representation of the sub-hazards can be
re-expressed as

A — P(T € dt,E =i) B P(T €dt,E =1i)
)= P(T>t)+P(T<t,E#i) P(T>t,E=i)+P(E#1).

Thus, the sub-hazard is estimated by the number of individuals who experienced
the event of interest at time #, divided by all those who remained free of any event
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at 7 plus those who had experienced the competing event prior to #; or equivalently,
divided by those who experienced the event of interest after 7 plus all those who
ever experienced the competing event. From the second representation in the above
equation, it is easily seen that the sub-hazards are smaller than the conditional
hazards defined by P(T € dt, E = i)/P(T > 1, E =i) = F; ()/(1 — Fi(1)).

If A1 and A, are known (hereafter using [} 4; to represent J;A;(x)dx), the cumu-
lative incidences and the mixture parameter can be recovered by I;(f) = 1 — e foki
fori=1,2;andt=1-— e IM ==l h, Therefore,1 —m=1— el = o=l M
Hence, A; and A, must satisfy

exp(—/om/h) +exp(—/0mkg) =1. (D

Relative Sub-hazards in the Two-Sample Setting and the Case
of Proportional Sub-hazards

The two-sample problem (unexposed vs. exposed) expands on the previously
described relationships. In general, an exposure (functions and parameters of the
exposed group are identified hereafter with *) may result in a change of the mixture
parameter (from 7 to 7*) and/or the timing of one or both events (from F; to F ).
Let A;(r) = A;" (1)/Ai(¢) denote the relative sub-hazards for event i for i = 1, 2. Since
the sub-hazards in the exposed group must also fulfill Eq. 1, it follows that A; and
A, must satisfy exp (— [y A1 (1)A1(2)dt) +exp (— [y Aa(r) A2(t)dr) = 1.

This relationship is fairly flexible as long as A;(¢) and A»(¢) remain functions of
time. However, if proportionality is assumed such that A;(f) =a; and A>(¢) = a»,
then 1 —I7(t) = exp (—a; [y Ai) = (1 —Ii(¢))* for i =1,2. Evaluating these equa-
tions as t— o yields 1 —7* = (1 —x)*" and n* = 7%. Hence, it follows that
the constant relative sub-hazards a; and a, are fully determined by the mixture
parameters as a; =log(1 — n*)/log(1 — m) and a, =log(m*)/log(m). Therefore, if
the sub-hazards are proportional, the relative sub-hazards do not depend on the
timing of the events, but simply depend on the overall frequencies of each event
type in the exposed and unexposed groups. Furthermore, except for the null setting,
the constant relative sub-hazards must lie on opposite sides of 1 (i.e., if #* > 7w
then a; > 1 and a» < 1; and if #* <m then a; <1 and a, > 1). Intuitively, any
exposure-induced increase in the cumulative incidence of one event type must be
offset by a decrease in the cumulative incidence of the other event type because
the total cumulative incidences for the unexposed and the exposed groups must
sum to 1 at  =-eo. This tethering of the two relative sub-hazards means that there
is effectively only one relative sub-hazard, since the other is then completely
determined [11].
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Compatibility of Proportionality of One Sub-hazard and One
Cause-Specific Hazard

The tethered relationship between the relative sub-hazards highlighted in the
previous section is one example of the strong interdependences that exist among
the sub-hazards and cause-specific hazards when proportionality is assumed. These
relationships have been explored to some extent in the literature. Beyersmann
et al. [11] described methods to simulate data from cause-specific hazards models
that are consistent with proportional sub-hazards for the event of interest. These
methods provide a general approach centered on data generation for probing
the bounds of consistency between proportional cause-specific hazards and sub-
hazards. In the sections “Compatibility of Proportionality of Sub-hazards and
of Cause-Specific Hazards for the Same Event Type” and “Compatibility of
Proportionality of Sub-hazards for One Event Type and Cause-Specific Hazards
for the Other Event Type” we fully characterize the tethering relationships that
arise from proportionality shared between the cause-specific hazards and sub-
hazards, and we also provide explicit expressions for the cumulative incidences,
which in turn simplify procedures for data simulation. Further, in the sections
“Incompatibility of Proportional Sub-hazards for One Event Type and Proportional
Cause-Specific Hazards for Both Event Types” and “Incompatibility of Proportional
Sub-hazards for Both Event Types and Proportional Cause-Specific Hazards for
One Event Type”, we show that no combination of three of the four hazards can
be simultaneously proportional. An immediate consequence of this result is that
proportionality of the two cause-specific hazards and of the two sub-hazards cannot
simultaneously occur, confirming previous reports [20-22].

The cause-specific hazards u; of the unexposed group corresponding to the
proportions of individuals experiencing event type i among those remaining free
of any event are defined by u; :Ii//(l —I1— D) for i=1,2. A similar definition
follows for the cause-specific hazards u;" of the exposed group, and we denote
the relative cause-specific hazards by B;(#) = 1 i*(t)//.t i(®). Throughout, we let &, F,
and F, define the mixture of the competing events for the reference group, and
use lowercase letters a; and b; to denote constant relative sub-hazards and constant
relative cause-specific hazards, respectively.

Compatibility of Proportionality of Sub-hazards and of Cause-Specific
Hazards for the Same Event Type

If we allow the sub-hazards of event type 1 (without loss of generality) to be
proportional, then from the section “Relative Sub-hazards in the Two-Sample
Setting and the Case of Proportional Sub-hazards™ we have I} = 1 — (1 —1;)"

and thus I}/ = al(l—ll)““ll{. If we further allow B (t)=b;, then b; =
a(1-1)""'(1-5n-5)/(1 — I —I5), which, letting r — 0, yields by =a; and
thus 1 —If —I; = (1—1)" ' (1 -1, — I). Therefore, I} = (1 —1)*""'I,. The
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right-hand side of this equation is 0 at =0 and converges to (1 — )" as t— 0.
However, for it to be increasing (i.e., its derivative to be positive), a; must be
<1+ minimum[(1 — 11)12//(11/12)]. This upper bound is always a finite number > 1.

Hence, in this case of the relative sub-hazards and relative cause-specific hazards
for the same event type being constant, the tethering between the two constant
relative hazards is the strongest, as they must be equal and the common constant
has an upper bound > 1 which is a function of /; and I,. For a; in the allowable
range, the cumulative incidences for the exposed group are explicitly determined by
F=1—(1—I)"and; =(1—-1)""'L.

Compatibility of Proportionality of Sub-hazards for One Event Type
and Cause-Specific Hazards for the Other Event Type

In this case, A|"/A; =a; # 1 and u," /iy = by # 1. From the former it follows that
L*=1-(1—-1)"andl}' =a;(1— 11)“‘7111, and we need to determine I, to fulfill
the latter. From the equations

ui(1-I-n)=1r' 2

and

= | uitu f/u* f/u* f/u* fb/u
1—11*—15‘—6/1 e e ST = S e ) 3)

we can solve for ;" and I,". Namely, substituting Eq. 3 into Eq. 2 yields
v / uy by / M2 ) ) o
Uie =e I, and the left-hand side of this equation is equal to the

— ,J*
derivative of —e / " Thus, integrating both sides from O to ¢ yields

1 t x
exp(—/()ufs):l—/o eXp(bz./O Mz)lf/(x) dx. S

For the right-hand side of this equation to remain positive, b must remain
beneath an upper bound which depends on 7, Fj, F> and a;; and, specifically, is
inversely related to a;. Thus, the two constants are tethered, though in a weaker
fashion than in the case of the two sub-hazards being proportional (section “Relative
Sub-hazards in the Two-Sample Setting and the Case of Proportional Sub-hazards”)
or the case of the sub-hazards and cause-specific hazards of the same event type
being proportional (section “Compatibility of Proportionality of Sub-hazards and of
Cause-Specific Hazards for the Same Event Type”).
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Substituting from Eq. 4 into Eq. 3 allows us to express I, as

B() =1~ L) —exp (—bz [ I~tz> [1 ~[ew (bz | xuz)ll*'(X) dx}

which fulfills the properties of a cumulative incidence, with everything on the right-
hand side being a known quantity determined by 7, F|, F»,a; and b;.

Incompatibility of Proportional Sub-hazards for One Event Type
and Proportional Cause-Specific Hazards for Both Event Types

As shown in the section “Compatibility of Proportionality of Sub-hazards and of
Cause-Specific Hazards for the Same Event Type”, if the cause-specific hazards and
the sub-hazards are both proportional for event type 1, then the relative sub-hazard
aj in the allowable range must be equal to the relative cause-specific hazard by, and

B=0-0)""h 5)
and
- -L=0-1)""(1-5-h) (©6)
From Eq. 5, it follows that
lim I3 /1o = lim(1 — )" ' = 1. ()

If we further assume that the cause-specific hazards for type 2 events are propor-

1 :u_;—li/lfllfb _Q/ 1 kI __ _ ay—1lyr,
tional, then by = 72 = TR = 1 [T SO that I3 = by (1 — 1)1 ' I}; and

from this equation it follows that

lim I3’ /1 = 1im by(1 — 1) ™" = bs. (8)
t—0 t—0

But, by ’Hopital’s rule, lin})lg/lz = lin%)lg//l’; hence, from Eqs. 7 and 8 we
t— t—

would obtain b, = 1. Since ul* =ail and /.Lz* = U2, then

aj alfl
" " */111 */Hz */111
I-L-L=|e e =(1-NL-h)|e - )
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aj—1
Hence, from Eqgs. 6 and 9, it follows that (e’f”l) g (1—-n) ! =

. a;—1
(e’”l) 1 ; therefore, tt; = A1, which is impossible because for any event type
the cause-specific hazard is by definition greater than the sub-hazard.

Incompatibility of Proportional Sub-hazards for Both Event Types
and Proportional Cause-Specific Hazards for One Event Type

We assume the type 1 event is the one for which both the cause-specific hazards and
the sub-hazards are proportional. Therefore, a; = by, and I = (1 — 1 )M 7112 with a;
in the allowable range. If we further assume proportional sub-hazards for event type
2 (A2"IAs =ar # 1), then I; =1—(1—1)". Equating the two expressions for L
gives (1 —1))" 'L =1—(1—15)®. Hence, (1— 1)) ' = # for all > 0.
Taking the limit as # approaches 0 and applying I’Hopital’s rule, we obtain the result
apy =1, which is inadmissible since a; and a, must be on the opposite sides of 1,
and a; # 1.

Methods to Simulate Data Fulfilling Proportionality of Hazards

A byproduct of the characterizations presented in the sections “Compatibility of
Proportionality of Sub-hazards and of Cause-Specific Hazards for the Same Event
Type” and “Compatibility of Proportionality of Sub-hazards for One Event Type and
Cause-Specific Hazards for the Other Event Type” is that, for simulating data with
proportional sub-hazards for event type 1 and proportional cause-specific hazards
for either event type, they provide a simple alternative approach to the general
methods presented by Beyersmann et al. [20].

If the two cumulative incidence functions for a group are known, the sim-
ulation of competing risks data is straightforward. Specifically, to generate n
observations from the unexposed group with given cumulative incidences /; and
I, sampling from a binomial (n,/i(e)) yielding k will result in the need to
generate k times from F| =1j/[|(e) and (n—k) times from F, = I>/I5(). For
the exposed group, the sections “Relative Sub-hazards in the Two-Sample Setting
and the Case of Proportional Sub-hazards” and “Compatibility of Proportionality
of Sub-hazards and of Cause-Specific Hazards for the Same Event Type” provide
explicit expressions for the cumulative incidences based on fixing a; when the two
sub-hazards are proportional and when the sub-hazards and cause-specific hazards
of the same type are proportional. The section “Compatibility of Proportionality
of Sub-hazards for One Event Type and Cause-Specific Hazards for the Other
Event Type” provides explicit expressions for the cumulative incidences based
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on fixing a; and b, when sub-hazards of type 1 and cause-specific hazards of
type 2 are proportional. The simulation of data for two relative cause-specific
hazards being constant (i.e., = b; and = b,, respectively) follows from the well-
known fact that the cumulative incidences for the exposed group are determined by
IF = b; [uzeJ(P1#1+0212) for j— 1,2, Censoring times can be generated by standard
procedures.

In summary, in this section we have shown that at most two of the four
hazards (i.e., sub-hazards and cause-specific hazards of event types 1 and 2) can be
proportional, but without restriction on which two. Furthermore, except for the case
of proportionality of the two cause-specific hazards, the constant relative hazards
are tethered, which in turn provides explicit and simple approaches to simulate data
subjected to various forms of allowable proportionalities.

Simulation

A drawback of classical competing risks analysis via the method of Fine and Gray
is that estimating the relative sub-hazards independently (i.e., untethered) can lead
to results where both estimates are on the same side of 1. It is important to note that
these undesirable results are not simply due to the incomplete information provided
by censored observations. Even in situations in which all event times are observed,
traditional analysis that incorrectly assumes proportional sub-hazards may lead to
results that are theoretically inconsistent.

Consequences of incorrectly assuming proportionality of sub-hazards can be
illustrated using a simulated example in which non-proportionality of sub-hazards
holds. We restricted our example to the case of complete observation of event
times to illustrate the drawbacks of the proportionality assumption even in the
absence of censoring. Table 1 describes the components of the model used to
simulate the data. Specifically, the mixture parameter was set to 7 =0.55 in the
unexposed group and 7*=0.50 in the exposed group. The times of the two
events in the unexposed group were drawn from the same exponential distribution
with median =20 (i.e., Fi(f) = F»(f) =1 —exp(—0.035¢1)), and the times of the
two events in the exposed group were shorter by a factor of 4 (i.e., median=35,
Fi'()=F,"()=1- exp(—0.140¢)). In this setting, the cause-specific hazards are
constant and thus proportional, and their ratios for the exposed to unexposed groups
are 3.64 =0.50 x 0.140/(0.55 x 0.035) and 4.44 =0.50 x 0.140/(0.45 x 0.035) for
type 1 and 2 events, respectively. In order to contrast the inferences drawn from
different approaches, we generated 1,000 observations for each group.

Panels a and b of Fig. 1 display the sub-hazard functions for each event type
among the exposed (continuous lines) and unexposed (dashed lines) groups. The
four sub-hazards (fully described in Table 1) are decreasing, with those of the
exposed group being steeper and crossing those of the unexposed group at times
15.5 and 18.0 for type 1 and type 2 events, respectively.
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Fig. 1 Sub-hazards (panels a and b) and relative sub-hazards (panels ¢ and d) for the competing
risks setting defined by the true model in Table 1. Thick dashed and continuous lines correspond
to the unexposed and exposed groups, respectively. Panels ¢ and d, with a common legend shown
in panel ¢, show results of three different approaches (non-proportional sub-hazards (in green),
proportional sub-hazards (in red), and proportional sub-hazards with tethering (in blue)) for the
analysis of 1000 simulated observations for each group

The logarithms of the relative sub-hazards for each event type are shown at the
bottom of Table 1. Both are dominated by downward linear trends with equal slope
(0.105) corresponding to the difference between the two hazards of the exponential
distributions (= 0.140—0.035). The thick continuous lines in panels ¢ and d of Fig. 1
depict the highly time-dependent true relative sub-hazards for each event type, with
a dashed thick line at 1 for the unexposed (reference) group.

The first analytical approach for the simulated data was the traditional Fine and
Gray method. In this case with no censored observations, the analysis reduces to
a standard Cox regression where times for one event type are treated as censored
observations past the largest observed time for the other event. The results of this
analysis are presented in the first row of Table 2 and depicted as red horizontal
lines in panels ¢ and d of Fig. 1. Here, we found the theoretically inconsistent result
of both constant relative sub-hazards estimates being above 1 (1.10=exp(0.099)
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Table 2 Results (logarithm of relative sub-hazards) of fitting models to 1000
unexposed and 1000 exposed observations from true models in Table 1

Log relative sub-hazard =+ standard error

Model Type 1 event Type 2 event
Proportional sub-hazards 0.099 £+ 0.062 0.346 4+ 0.065
Proportional sub-hazards, tethered ~ —0.142 +0.063 0.148 +0.066
Non-proportional sub-hazards®
Intercept 1.591+0.116 1.671+£0.117
Time —0.108 £ 0.008 —0.098 £ 0.008

4Stata code for type 1 event: stset time, failure(event==1)
stcrreg exposure, compete(event==2) tvc(exposure) texp(_t) noshr

for type 1 and 1.41 = exp(0.346) for type 2), with p-values of 0.110 and <0.001 for
event types 1 and 2, respectively. In this example, the analysis under the proportional
sub-hazards assumption results in an estimate which provides a very poor summary
of the impact of exposure on the risk of the two events.

The second analytical approach avoids both constant relative sub-hazards being
on the same side of 1 by using a; =log(1 — n*)/log(1 — &) and a = log(m*)/1og(r).
In the case of no censored data, estimates of w and m* are simply the observed
proportions of the event of interest in the unexposed (7 = 0.55) and exposed
groups (7Tx = 0.50), respectively. The delta method was used to calculate the
standard errors. The results of this analysis are presented in the second row of
Table 2 and depicted as blue horizontal lines in panels ¢ and d of Fig. 1. Although
they indeed provide estimates of the relative sub-hazards on opposite sides of 1
(0.87 =exp(—0.142) for type 1 events and 1.16 =exp(0.148) for type 2 events;
p < 0.05 for both), the result is still a poor summary in comparison to the true time-
varying relative sub-hazards (Fig. 1, Panels ¢ and d).

An improvement to the summary of the relative sub-hazards can be achieved
by including in the model an additional time-dependent term such that the total
effect of exposure is a linear function of a fixed intercept and a time interaction,
thus relaxing the rigid relationship enforced by the proportionality assumption.
This single additional term, which introduces a linear time dependency, yields
the flexibility to better summarize non-proportional sub-hazards, avoids theoretical
inconsistency, and is easily implementable with standard software packages (e.g.,
by simply using the tvc and texp options of stcrreg in Stata as shown in the footnote
of Table 2). The results of this analysis are presented at the bottom of Table 2
and indicate a highly significant downward trend of the relative sub-hazards. The
improved fit to the data using time-dependent relative sub-hazards as a linear trend
with time is apparent in Fig. 1, panels ¢ and d (green lines).
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Application

Study Population, Outcomes, Exposures and Analytical
Approaches

To explore the use of different approaches from the sub-hazards perspective, we
analyzed data from the Chronic Kidney Disease in Children cohort study (CKiD),
a North American study of chronic kidney disease in children [23]. Data at baseline
were collected on 586 children between the ages of 1 and 16 with kidney function
measured by glomerular filtration rate between 30 and 90 ml/min|1.73 m?, and they
were followed up at annual visits. For our analyses, the event of interest was end-
stage renal disease (ESRD), defined as dialysis or a glomerular filtration rate less
than 15 ml/min|1.73 m?; the competing event was kidney transplantation. There
were 578 (99%) patients with adequate follow-up and event data. The time scale
for our analysis was years since baseline visit, with a median of 3.1 years (upper
quartile: 4.0 years). Patients with no event as of their most recent follow-up visit
were censored at the last date seen, with a median follow-up of 3.3 years.

To illustrate the analytical approaches we selected two binary exposures. The first
is a broad measure of socioeconomic status: household annual income greater than
$36,000. The second is a well-known biological predictor of progression of chronic
kidney disease: nephrotic proteinuria, defined as a urine protein to creatinine ratio
> 2. Information on proteinuria was available for the full cohort, while household
income was available for 97.6% of the subjects. We used two semi-parametric
approaches: the Fine and Gray model assuming proportional sub-hazards, and an
extension of this model to allow linear time dependency in the logarithm of the
relative sub-hazards.

Results

The top part of Table 3 provides the number of observed events among the 233 and
the 331 children with annual household income less than or equal to $36,000 and
greater than $36,000, respectively. The non-parametric cumulative incidences for
ESRD and transplant are shown in Fig. 2, panels a and b, respectively. Traditional
Fine and Gray regression yielded a constant relative sub-hazard estimate for ESRD,
comparing those with household income greater than $36,000 per year to those with
less, of 0.5 (= exp(—0.656), 95% CI: 0.3, 0.8), as shown in Table 3. Allowing for a
linear departure from proportionality, there was no indication of time interaction, as
the coefficient for time shown at the bottom of Table 3 was only 0.006 and far from
being statistically significant. In turn, the constant relative sub-hazard estimate for
transplant was 1.7 (= exp(0.512) in Table 3) with 95% CI from 0.9 to 3.2. Similarly
to ESRD, there was no departure from proportionality in the relative sub-hazard for
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Table 3 Number of observed events and relative sub-hazards (logarithmic scale) of ESRD and
transplant for household annual income in children with CKD

Event type
ESRD Transplant
Household annual income Number of observed events
<$36,000 (N = 233, reference) 36 13
>$36,000 (N =331) 29 32
Model Log relative sub-hazard + standard error
Proportional sub-hazards —0.656 £0.248 0.512+0.329
Non-proportional sub-hazards
Intercept —0.665 £0.428 0.328 +0.876
Time 0.074 £0.331
0.006 £0.210
a b
30+ === |ncome < $36k/yr, N=233 (reference) 04 === |ncome < $3Bkiyr, N=233 (reference)
a — |ncome > $36kiyr, N=331 E = |ncome > $36kiyr, N=331
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Fig. 2 Effect of annual income below/above $36,000 on the competing events of end-stage renal
disease (ESRD) and renal transplantation in the CKiD study. Panels a and b show estimates of
cumulative incidences using non-parametric methods. Panels ¢ and d depict relative sub-hazards
under proportionality (in red) and linear departure from proportionality (in green)
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Table 4 Number of observed events and relative sub-hazards (logarithmic scale) of ESRD and
transplant for nephrotic proteinuria in children with CKD

Event type
ESRD Transplant
Nephrotic proteinuria Number of observed events
No (N =501, 30 31
reference)
Yes (N=77) 38 16
Model Log relative sub-hazard =+ standard error
Proportional 2.408 £ 0.246 1.206 +0.304
sub-hazards
Non-proportional
sub-hazards
Intercept 3.609 £0.479 1.408 +0.707
Time —0.721 £0.254 —0.079 £0.250

transplant (see lower right-hand entry in Table 3). In this example, the relative sub-
hazards appear to fulfill the proportionality assumption and the estimates were on
opposite sides of 1. The relative sub-hazard estimates with 95% confidence intervals
for ESRD and transplant are shown in Fig. 2, panels ¢ and d, respectively. All
estimates were consistent with constant relative sub-hazards of 0.5 for ESRD and
1.7 for transplant when comparing households with an income above $36,000 to
those below.

The top part of Table 4 provides the number of observed events among the 501
and the 77 children without and with nephrotic proteinuria at baseline, respectively.
The non-parametric cuamulative incidences for ESRD and transplant are shown in
Fig. 3, panels a and b, respectively. Traditional Fine and Gray regression yielded
a constant relative sub-hazard estimate for ESRD, comparing those with nephrotic
proteinuria to those without, of 11.1 (= exp(2.408), 95% CI: 6.9, 18.0), as shown
in Table 4. Allowing for linear departure from proportionality (i.e., modeling the
logarithm of the relative sub-hazards as a linear function of time), the relative sub-
hazard for ESRD showed a steep and strongly significant downward trend (see last
row of Table 4) moving from 37 (= exp(3.609)) to nearly 1 in the four and a half
years after baseline (see green line in Fig. 3, panel c). In turn, the constant relative
sub-hazard estimate for transplant was 3.3 (= exp(1.206) in Table 4) with a 95%
CI from 1.8 to 6.1, providing a case of the undesirable circumstance in which both
estimates of constant relative sub-hazards are above 1 and statistically significant.
Allowing for a linear departure from proportionality, the relative sub-hazards for
transplant showed a mild and non-significant downward trend as shown in the last
row of Table 4. The relative sub-hazard estimates with 95% confidence intervals for
ESRD and transplant are shown in Fig. 3, panels c and d, respectively. Although the
relative sub-hazards were both above 1 during the first four and a half years, there
was a strong indication of a downward trend for ESRD.
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Fig. 3 Effect of nephrotic proteinuria (uP/C >2) on the competing events of end-stage renal
disease (ESRD) and renal transplantation in the CKiD study. Panels a and b show estimates of
cumulative incidences using non-parametric methods. Panels ¢ and d depict relative sub-hazards
under proportionality (in red) and linear departure from proportionality (in green)

Discussion

In this chapter, we have shown that constant relative sub-hazards for two competing
events are tethered by a strong relationship which is independent of the timing of
the competing events, are fully determined by the overall frequencies of events, and
must be on opposite sides of 1. When violations of proportionality occur, separate
analyses under proportionality assumptions for the two competing events often
yield results in which the estimates are on the same side of 1 [12—15, 21, 24, 25],
and lead to misleading inferences unless explicit limitations about the time frame
are included. In addition, we showed that of the sub-hazards and cause-specific
hazards for two event types, at most two of the four can be proportional but without
restriction on which two. Furthermore, we fully characterized the compatibility of
concurrent proportionality of cause-specific hazards and sub-hazards and showed
that strong tethering also occurs in those cases, except when the two cause-specific
hazards are proportional.
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Because proportionality rarely holds in practice, one may choose the inclusion
of a time dependency of relative sub-hazards as the default analytical approach [8];
both tabular and graphical depictions of the time trends of relative sub-hazards
are straightforward [26]. However, this does not assure correct interpretations in
all cases since power may be limited to detect the true change in the relative sub-
hazards over time, particularly when follow-up time is relatively short.

The relative sub-hazard has appealing properties as an estimator of the effect
of an exposure on an event of interest in the presence of a competing event,
and the Fine and Gray weighting procedure is easily implemented using standard
software. However, care must be taken that ease of implementation does not lead to
a cavalier assumption of proportionality in the sub-hazards. In this chapter, we have
demonstrated the coarseness of the summary statistic as well as the inconsistency
produced by assuming proportionality of sub-hazards when proportionality does
not hold. Proportionality of the cause-specific hazards does not provide protection;
rather, as we have illustrated here, it implies violation of the proportionality of the
sub-hazards. Our simulated data set with non-proportional sub-hazards described
in Table 1 highlights a case in which the relative cause-specific hazards are indeed
constant (3.64 and 4.44 for type 1 and 2 events, respectively), but the sub-hazards
are extremely non-proportional.

Given the tethered relationships caused by proportionality of sub-hazards, several
authors have proposed approaches based on modeling the cumulative incidences
directly. Klein [27] has argued that linear additive models are more natural because
they intrinsically incorporate the fact that the sum of the cumulative incidences
fulfills the requirement of being the cumulative incidence of the composite event.
Others have suggested alternative summary measures including time-dependent
ratios of the cumulative incidences themselves [17, 28]. We offer, for practical
consideration, the incorporation of a simple time dependency in the model and also
suggest limiting inferences to a finite interval [29], particularly when limited follow-
up is available and nonlinear trends in relative sub-hazards may be hard to detect.
Reporting relative sub-hazard results on the same side of 1 during a limited period is
an acceptable summary; but, in point of fact, when estimates of relative sub-hazards
are on the same side of 1, such a result should immediately alert the analyst to the
presence of non-proportional sub-hazards over the full time span.

In cases where there is a substantial degree of right-censoring in the observed
data, additional caution should be taken when analyzing competing risks data. First
of all, mixtures of fully parametric distributions can yield very imprecise estimates
of m and m* [29, 30]. Second, power to detect departures from proportionality
may be limited. A case in point is provided by the income data in our application
because the apparent proportionality of the sub-hazards implies that the cause-
specific hazards were time-dependent. However, the data limited to the first four
and a half years of follow-up did not indicate departures from proportionality of
the cause-specific hazards. This provides a case study in the need for restricting the
analyses and inferences only up to a “time point located inside the support of the
observed time variable” [29]. Hence, a more appropriate summary of the analysis
would be that the data up to four and a half years from baseline are consistent
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with the sub-hazards being proportional in that annual income greater than $36,000
halves the risk of ESRD and increases the likelihood of transplantation by two
thirds. In contrast, even in the case of heavy censoring, strong trends of relative
sub-hazards can be detectable, as illustrated by the effect of proteinuria on ESRD in
our application.

Although it is attractive to reduce inferences to one number corresponding to
proportionality of measures of disease frequency, biological processes are often
much more complex, and we have shown that in the setting of competing risks,
the assumptions of proportionalities induce tethering of the relative hazards. If sum-
maries based only on a single measure are desired, it is safer to rely on proportional
cause-specific hazards as they are not subjected to tethering relationships, as argued
and implemented by Wada et al. [16]. Another approach is to frame summaries as
estimating least false parameters [31] or time-averaged effects [32].

It should be noted that when sub-hazards are truly proportional, simulation
studies (data not shown) indicated that results from methods incorporating the
tethering of the sub-hazards and those from the traditional Fine and Gray method
yielded unbiased and equally efficient estimators. This is not a surprising result as
the relative sub-hazards under proportionality are fully determined by the frequency
of the two types of events and not by their timing.

In this chapter, we have restricted our discussion to the case of two compet-
ing events (i.e., K=2). For the case of K >2, the assumption of proportional
sub-hazards will result in the relative sub-hazard of the type 1 event being
unbounded, K — 2 of them having upper bounds determined by the overall frequen-
cies, and the last one being tethered in a similar manner as the case of K =2 (i.e.,
ag =log(Ti— X 1w HNog(Xi— 1K~ 7).

In summary, although the sub-hazards approach has the appeal that covariate
effects on the sub-hazard functions are consistent with the effects on the correspond-
ing cumulative incidence functions, care should be taken to assure that violations of
the proportionality assumption do not result in misleading or incorrect conclusions.
Because proportionality rarely holds in practice, the default analytical approach
should be to allow for the relative hazards to depend on time, though statistical
power is limited in the case of large numbers of event-free observations. Restricting
inferences to a finite period may also provide protection from reporting theoretically
inconsistent results.
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Semiparametric Inference on the Absolute Risk
Reduction and the Restricted Mean
Survival Difference

Song Yang

Abstract For time-to-event data, when the hazards may be non-proportional, in
addition to the hazard ratio, the absolute risk reduction and the restricted mean
survival difference can be used to describe the time-dependent treatment effect. The
absolute risk reduction measures the direct impact of the treatment on event rate or
survival, and the restricted mean survival difference provides a way to evaluate
the cumulative treatment effect. However, in the literature, available methods are
limited for flexibly estimating these measures and making inference on them. In this
article, point estimates, pointwise confidence intervals and simultaneous confidence
bands of the absolute risk reduction and the restricted mean survival difference
are established under a semiparametric model that can be used in a sufficiently
wide range of applications. These methods are motivated by and illustrated for data
from the Women’s Health Initiative estrogen plus progestin clinical trial.

Introduction

Comparison of two groups of survival data has wide applications in life testing,
reliability studies, and clinical trials. Often the two sample proportional hazards
model of Cox [4] is assumed and a single value of the hazard ratio is used to
describe the group difference. When the hazard ratio is possibly time-dependent,
a conventional approach is to give a hazard ratio estimate over each of a few
time periods, by fitting a piece-wise proportional hazards model. Alternatively, a
“defined” time-varying covariate can be used in a Cox regression model, resulting
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in a parametric form for the hazard ratio function (e.g. [6], Chap. 6). With these
approaches, it may not be easy to pre-specify the partition of the time axis or the
parametric form of the hazard ratio function.

In Yang and Prentice [22], a short-term and long-term hazards model was
proposed. Assume absolutely continuous failure times and label the two groups
control and treatment, with hazard functions A¢(z) and Ar(¢), respectively. Then
the short-term and long-term hazards model postulates that

1
T e B4 (e*ﬁl — e*ﬁZ)SC(t)

Ar(t) Ac(t), t <, (D

where B, P, are scalar parameters, S¢ is the survivor function of the control
group, and

70 = sup{x: ./(;xlc(t)dt < oo}, 2)

Under this model, lim o A7(t)/Ac(t) = e, limsq Ar(r)/Ac(t) = eP>. Thus
various patterns of the hazard ratio can be realized, including proportional hazards,
no initial effect, disappearing effect, and crossing hazards. In particular, model (1)
includes the proportional hazards model and the proportional odds model as special
cases. There is no need to specify a partition of the time axis or a parametric form of
the hazard ratio function. For this model, Yang and Prentice [22] proposed a pseudo-
likelihood method for estimating the parameters, and Yang and Prentice [23] studied
inference procedures on the hazard ratio function. Extension of model (1) to the
regression setting was also studied for current status data in Tong et al. [20].

In situations with non-proportional hazards, the hazard ratio is useful for
assessing temporal trend of the treatment effect, but it may not directly translate
to the survival experience. For example, the hazard ratio may be less than 1 in
a region where there is no improvement in the survival probability. Also, there
is no simple nonparametric estimator as a reference when comparing different
estimators of the hazard ratio function. In the Women’s Health Initiative estrogen
plus progestin clinical trial [10, 21], the hazard ratio function was decidedly non-
proportional for the outcomes of coronary heart disease, venous thromboembolism,
and stroke. While the estimated hazard ratios from Prentice et al. [16] and Yang
and Prentice [23] are in good agreement with each other for the outcomes of
coronary heart disease and venous thromboembolism, they indicate somewhat
different hazard ratio shapes for stroke. Under the piece-wise Cox model with the
partition of 0-2, 2-5, and 5+ years (the partition used in [16]), the hazard ratio has
an upside down U-shape. On the other hand, under the piece-wise Cox model using
the partition of 0-3, 3-6, and 6+ years (a plausible partition since the maximum
follow-up time was almost 9 years), the hazard ratio has a U-shape. The result
from Yang and Prentice [23] shows a hazard ratio that is slightly decreasing over
time. Thus for stroke, the temporal trend of the hazard ratio is portrayed somewhat
differently under these models. These hazard ratio estimates are displayed in Fig. 1.
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Fig. 1 Estimated hazard ratio for the WHI clinical trial stroke data: Solid line—Model (1); Dashed
line—Piece-wise Cox model with cut points at 2 and 5 years; Dash-dotted lines—Piece-wise Cox
model with cut points at 3 and 6 years

To help compare these different results, one can consider the absolute risk
reduction by the treatment. Figure 2 displays various estimators of the absolute
risk reduction. From Fig. 2, several observations can be made. Between the two
piece-wise Cox models with different partitions, the partition with cut points 2 and
5 years results in a better agreement with the Kaplan-Meier [7] based estimator for
the early to middle portion of the data range. The other partition results in a better
agreement with the Kaplan-Meier based estimator for the range beyond 6 years.
The estimator based on model (1) is a good compromise between the results from
the two partitions. One more comparison of these models can be made through the
restricted mean survival difference, displayed in Fig. 3. The different estimators are
closer to each other and are also smoother. For the piece-wise Cox models, the
partition with cut points 2 and 5 years results in an estimator that is closer to the
Kaplan-Meier estimator for early part of the data range, but has a more noticeable
deviation near the end. Again the estimator based on model (1) results in a good
compromise between the two partitions.

In this article, we consider making semiparametric inference on the absolute
risk reduction and the restricted mean survival difference for two sample time-to-
event data, under model (1). The absolute risk reduction is directly related to the
survival experience, and is a commonly used measure in epidemiological studies.
The restricted mean survival time has been used as a summary measure in various
works when the hazards are non-proportional. The restricted mean survival time
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Fig. 2 Estimated absolute risk reduction for the WHI clinical trial stroke data: Solid line—Model
(1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points at 2 and 5
years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years
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Fig. 3 Estimated mean restricted survival difference for the WHI clinical trial stroke data: Solid
line—Model (1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points
at 2 and 5 years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years
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up to ¢ can be thought of as the ‘z-year life expectancy’, and it approaches the
unrestricted mean survival time as ¢ approaches infinity. In clinical trials where the
trial often ends after a pre-specified follow-up period, the restricted mean survival
time is a more appropriate measure than the unrestricted mean survival time. In
the subsequent development, the estimates, point-wise confidence intervals and
simultaneous confidence bands of the absolute risk reduction and the restricted
mean survival difference will be established under model (1). Such semiparametric
inference procedures are sufficiently flexible for many applications, due to the
various properties of model (1) mentioned before. These confidence intervals and
confidence bands can be used to capture and graphically present the treatment effect.
We illustrate these visual tools through applications to the clinical trial data from the
Women’s Health Initiative.

There have be