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Preface

On October 12–14, 2011, the Biostatistics and Risk Assessment Center (BRAC) and
the Department of Epidemiology and Biostatistics of the University of Maryland
hosted an international conference entitled “Risk Assessment and Evaluation of
Predictions.” The conference was held in Silver Spring, Maryland.

In assembling this volume, we invited conference participants to contribute
their articles. All papers were peer-reviewed, by anonymous reviewers, and
revised before final editing and acceptance. Although this process was quite time-
consuming, we believe that it greatly improved the volume as a whole, making
this book a valuable contribution to the field of research in risk assessment and
evaluation of predictions.

This volume presents a broad spectrum of articles presented at the conference. It
includes 21 chapters organized into three parts:

Part I: Risk Assessment in Lifetime Data Analysis,
Part II: Evaluation of Predictions, and
Part III: Applications.

Part I includes different methods for risk assessment in survival analysis such
as accelerated failure time models; threshold regression models; residual survival
models; competing risks; Neyman, Markov processes and survival analysis; and
nonparametric inference. Part II covers many important issues related to evaluation
of risk predictions as well as recent advances in the development of receiver-
operating characteristic (ROC) curves. Part III presents a variety of applications
from genetics, competing risk models and breast cancer, product life cycle eval-
uation, environmental exposure biomarkers, extreme wind speed, and consumer
services.

v



vi Preface

We hope that this volume will serve as a valuable reference for researchers in
these important areas.

Maryland, USA Mei-Ling Ting Lee
Bethesda, MD, USA Mitchell Gail
Bethesda, MD, USA Ruth Pfeiffer
Atlanta, GA, USA Glen Satten
Boston, MA, USA Tianxi Cai
London, UK Axel Gandy
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Non-proportionality of Hazards
in the Competing Risks Framework

Alvaro Muñoz, Alison G. Abraham, Matthew Matheson, and Nikolas Wada

Abstract The simplest means of determining the effect of an exposure on the
frequency and timing of two competing events is to contrast the cumulative
incidences between the exposed and unexposed groups for each event type. Methods
and software are widely available to semi-parametrically model the sub-hazards of
the cumulative incidences as proportional and to test whether the constant relative
sub-hazards (a1 and a2) are different from 1. In this chapter, we show that a1 and
a2 are tethered by a strong relationship which is independent of the timing of the
competing events; the relationship is fully determined by the overall frequencies
of events, and a1 and a2 must be on opposite sides of 1. When violations of
proportionality occur, separate analyses for the two competing events often yield an
inadmissible result in which the estimates of a1 and a2 are on the same side of 1, and
may even exhibit statistical significance. We further characterize the compatibility
of concurrent proportionality of cause-specific hazards and sub-hazards, and show
that strong tethering also occurs among these quantities; and that, of the sub-hazards
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and cause-specific hazards, at most two of the four can be proportional, but without
restriction on which two. Because proportionality rarely holds in practice, the
default analytical approach should allow the relative hazards to depend on time,
which can be easily carried out with widely available software. However, the
statistical power of this approach is limited in the case of large numbers of event-
free observations. An application using data from a North American cohort study of
children with kidney disease is presented.

Introduction

The problem of competing risks has been addressed in the literature in several
ways [1]. The most common approach, that of cause-specific hazards, partitions
the hazard of the composite event (instantaneous probability of failing from any
event among survivors of all events) as the sum of mutually exclusive cause-
specific hazards (instantaneous probability of failing from a specific cause among
survivors of all events). This approach allows for estimation and testing of relative
cause-specific hazards by treating the times to one event as censored observations
for the other. The cause-specific hazards approach has been well developed in
the literature [1–7] and, under the assumption of proportionality of the cause-
specific hazards, can be carried out using standard software for proportional hazards.
However, interpretative challenges arise because effects of exposures on cause-
specific hazards may not mirror effects on cumulative incidences [1].

A second approach, centered on the sub-hazards of the cause-specific cumulative
incidences (often referred to as subdistribution hazards), is to consider those who
experience the competing event as immune to the event of interest. For example,
those who died of a cardiovascular cause persist in the analysis of renal failure death
as part of the risk set, but of course cannot experience renal death for the remainder
of the study. The appeal of such a strategy is that it reflects the reality of events in
the study population, in which some will have the event of interest and others never
will as a result of competing events. Within this framework, cumulative incidence
functions in the case of two event types, I1(t) and I2(t), are directly estimated, and
comparisons between groups are made via the associated sub-hazards λ 1(t) and
λ 2(t) [8–10].

The most widely-used model for the effect of an exposure on the sub-hazards
assumes proportional sub-hazards, as described by Fine and Gray [8]. This method
distributes the information from censored times to competing events using a
weighting procedure. Software to carry out this method is widely available and
simple to use (e.g., stcrreg of Stata). However, proportionality of sub-hazards rarely
holds. Indeed, in their seminal paper, Fine and Gray had the foresight to warn
that “In applications, we anticipate time × covariate interactions” [8]. Furthermore,
since the total cumulative incidence must sum to 1 at t=∞, any exposure-induced
increase in the cumulative incidence of one event type must be offset by a decrease
in the cumulative incidence of the other event type. This induces interdependence, or
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tethering, of the relative sub-hazards with important consequences if proportionality
is assumed for both events. To circumvent this tethering, Beyersmann et al. [11]
recommend assuming proportionality for only one of the events. However, in many
epidemiological studies [12–16], determination of the effect of exposures on all
event types is of primary interest.

In the “Methods and Models” section of this chapter, we characterize the
tethering of relative sub-hazards under the assumption of simultaneous proportion-
ality for both events, and we extend results about the compatibility of concurrent
proportionality of cause-specific and sub-hazards for the two event types by proving
that at most two of the four measures can be proportional, but without restriction on
which two. In the “Simulation” section we illustrate the consequences of tethering
of relative sub-hazards using data simulated from a mixture of the conditional
distributions of the times of the competing events [17–19]. In the “Application”
section, data from a North American cohort study of children with chronic kidney
disease are used to illustrate a case congruent with proportionality of sub-hazards
and a case with strong time dependency of the relative sub-hazards. Limitations
posed by data with heavy censoring are included in the discussion.

Methods and Models

Sub-hazards

The one-sample survival analysis problem for two competing events (E= 1 and
E= 2) wherein only one event is observed per subject can be fully described
by a mixture of two distributions determined by (1) the mixture parameter
π =P(E= 1)= 1−P(E= 2), which describes the overall frequency of each
event; and (2) the conditional distribution functions, F1(t)=P(T ≤ t|E = 1) and
F2(t)=P(T ≤ t|E = 2), which govern the timing of the events, with T representing
the time for the composite event. Hereafter, for simplicity, we drop the notation “(t)”
from functions except in cases where necessary for clarity. The cumulative incidence
functions (I1 and I2) for the two events follow from weighting the conditional
distributions by the mixture parameter π as: I1 =πF1 and I2 = (1− π)F2. Thus,
as t→∞, I1 approaches π and I2 approaches 1−π . The sub-hazards λ 1 and
λ 2 that correspond to the cumulative incidences are λ i = Ii

′
/(1− Ii), where Ii

′

is the derivative of Ii for i= 1, 2. This representation of the sub-hazards can be
re-expressed as

λi(t) =
P(T ∈ dt,E = i)

P(T > t)+P(T ≤ t,E �= i)
=

P(T ∈ dt,E = i)
P(T > t,E = i)+P(E �= i) .

Thus, the sub-hazard is estimated by the number of individuals who experienced
the event of interest at time t, divided by all those who remained free of any event
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at t plus those who had experienced the competing event prior to t; or equivalently,
divided by those who experienced the event of interest after t plus all those who
ever experienced the competing event. From the second representation in the above
equation, it is easily seen that the sub-hazards are smaller than the conditional
hazards defined by P(T ∈ dt, E = i)/P(T > t, E= i)=Fi

′
(t)/(1−Fi(t)).

If λ 1 and λ 2 are known (hereafter using
∫ t

0λi to represent
∫ t

0λi(x)dx), the cumu-

lative incidences and the mixture parameter can be recovered by Ii(t) = 1− e−
∫ t
0λi

for i= 1, 2; and π = 1− e−
∫∞

0 λ1 = e−
∫ ∞

0 λ2 . Therefore, 1−π = 1− e−
∫∞
0 λ2 = e−

∫∞
0 λ1 .

Hence, λ 1 and λ 2 must satisfy

exp

(

−
∫ ∞

0
λ1

)

+ exp

(

−
∫ ∞

0
λ2

)

= 1. (1)

Relative Sub-hazards in the Two-Sample Setting and the Case
of Proportional Sub-hazards

The two-sample problem (unexposed vs. exposed) expands on the previously
described relationships. In general, an exposure (functions and parameters of the
exposed group are identified hereafter with *) may result in a change of the mixture
parameter (from π to π*) and/or the timing of one or both events (from Fi to Fi

*).
Let Ai(t)=λ i

*(t)/λ i(t) denote the relative sub-hazards for event i for i= 1, 2. Since
the sub-hazards in the exposed group must also fulfill Eq. 1, it follows that A1 and
A2 must satisfy exp (−∫ ∞0 A1(t)λ1(t)dt)+ exp (−∫ ∞0 A2(t) λ2(t)dt) = 1.

This relationship is fairly flexible as long as A1(t) and A2(t) remain functions of
time. However, if proportionality is assumed such that A1(t)≡ a1 and A2(t)≡ a2,
then 1− I∗i (t) = exp

(−ai
∫ t

0 λi
)
= (1− Ii(t))

ai for i= 1, 2. Evaluating these equa-
tions as t →∞ yields 1 − π∗ = (1−π)a1 and π∗ = πa2 . Hence, it follows that
the constant relative sub-hazards a1 and a2 are fully determined by the mixture
parameters as a1 = log(1− π*)/log(1− π) and a2 = log(π*)/log(π). Therefore, if
the sub-hazards are proportional, the relative sub-hazards do not depend on the
timing of the events, but simply depend on the overall frequencies of each event
type in the exposed and unexposed groups. Furthermore, except for the null setting,
the constant relative sub-hazards must lie on opposite sides of 1 (i.e., if π*>π
then a1 > 1 and a2 < 1; and if π*<π then a1 < 1 and a2 > 1). Intuitively, any
exposure-induced increase in the cumulative incidence of one event type must be
offset by a decrease in the cumulative incidence of the other event type because
the total cumulative incidences for the unexposed and the exposed groups must
sum to 1 at t=∞. This tethering of the two relative sub-hazards means that there
is effectively only one relative sub-hazard, since the other is then completely
determined [11].
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Compatibility of Proportionality of One Sub-hazard and One
Cause-Specific Hazard

The tethered relationship between the relative sub-hazards highlighted in the
previous section is one example of the strong interdependences that exist among
the sub-hazards and cause-specific hazards when proportionality is assumed. These
relationships have been explored to some extent in the literature. Beyersmann
et al. [11] described methods to simulate data from cause-specific hazards models
that are consistent with proportional sub-hazards for the event of interest. These
methods provide a general approach centered on data generation for probing
the bounds of consistency between proportional cause-specific hazards and sub-
hazards. In the sections “Compatibility of Proportionality of Sub-hazards and
of Cause-Specific Hazards for the Same Event Type” and “Compatibility of
Proportionality of Sub-hazards for One Event Type and Cause-Specific Hazards
for the Other Event Type” we fully characterize the tethering relationships that
arise from proportionality shared between the cause-specific hazards and sub-
hazards, and we also provide explicit expressions for the cumulative incidences,
which in turn simplify procedures for data simulation. Further, in the sections
“Incompatibility of Proportional Sub-hazards for One Event Type and Proportional
Cause-Specific Hazards for Both Event Types” and “Incompatibility of Proportional
Sub-hazards for Both Event Types and Proportional Cause-Specific Hazards for
One Event Type”, we show that no combination of three of the four hazards can
be simultaneously proportional. An immediate consequence of this result is that
proportionality of the two cause-specific hazards and of the two sub-hazards cannot
simultaneously occur, confirming previous reports [20–22].

The cause-specific hazards μ i of the unexposed group corresponding to the
proportions of individuals experiencing event type i among those remaining free
of any event are defined by μ i = Ii

′
/(1− I1 − I2) for i= 1, 2. A similar definition

follows for the cause-specific hazards μ i
* of the exposed group, and we denote

the relative cause-specific hazards by Bi(t)= μ i
*(t)/μ i(t). Throughout, we let π , F1,

and F2 define the mixture of the competing events for the reference group, and
use lowercase letters ai and bi to denote constant relative sub-hazards and constant
relative cause-specific hazards, respectively.

Compatibility of Proportionality of Sub-hazards and of Cause-Specific
Hazards for the Same Event Type

If we allow the sub-hazards of event type 1 (without loss of generality) to be
proportional, then from the section “Relative Sub-hazards in the Two-Sample
Setting and the Case of Proportional Sub-hazards” we have I∗1 = 1 − (1− I1)

a1

and thus I∗′1 = a1(1− I1)
a1−1I′1. If we further allow B1(t)≡ b1, then b1 ≡

a1(1− I1)
a1−1 (1− I1− I2)/(1− I∗1 − I∗2), which, letting t→ 0, yields b1 = a1 and

thus 1 − I∗1 − I∗2 = (1− I1)
a1−1 (1− I1 − I2). Therefore, I∗2 = (1− I1)

a1−1I2. The
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right-hand side of this equation is 0 at t = 0 and converges to (1−π)a1 as t →∞.
However, for it to be increasing (i.e., its derivative to be positive), a1 must be
≤1+minimum[(1− I1)I2

′
/(I1

′
I2)]. This upper bound is always a finite number ≥ 1.

Hence, in this case of the relative sub-hazards and relative cause-specific hazards
for the same event type being constant, the tethering between the two constant
relative hazards is the strongest, as they must be equal and the common constant
has an upper bound ≥ 1 which is a function of I1 and I2. For a1 in the allowable
range, the cumulative incidences for the exposed group are explicitly determined by
I∗1 = 1− (1− I1)

a1 and I∗2 = (1− I1)
a1−1I2.

Compatibility of Proportionality of Sub-hazards for One Event Type
and Cause-Specific Hazards for the Other Event Type

In this case, λ 1
*/λ 1 ≡ a1 �= 1 and μ2

*/μ2 ≡ b2 �= 1. From the former it follows that
I1
∗ = 1−(1− I1)

a1 and I∗1
′ = a1(1− I1)

a1−1I′1, and we need to determine I2
* to fulfill

the latter. From the equations

μ∗
1 (1− I∗1 − I∗2) = I∗1

′ (2)

and

1− I∗1 − I∗2 = e
−
∫

μ∗1+μ
∗
2
= e

−
∫

μ∗1
e
−
∫

μ∗2
= e

−
∫

μ∗1
e
−b2

∫

μ2
(3)

we can solve for μ1
* and I2

*. Namely, substituting Eq. 3 into Eq. 2 yields

μ∗
1 e

−
∫

μ∗1
= e

b2

∫

μ2
I∗1

′, and the left-hand side of this equation is equal to the

derivative of −e
−
∫

μ∗1
. Thus, integrating both sides from 0 to t yields

exp

(

−
∫ t

0
μ∗

1

)

= 1−
∫ t

0
exp

(

b2

∫ x

0
μ2

)

I∗1
′(x) dx. (4)

For the right-hand side of this equation to remain positive, b2 must remain
beneath an upper bound which depends on π , F1, F2 and a1; and, specifically, is
inversely related to a1. Thus, the two constants are tethered, though in a weaker
fashion than in the case of the two sub-hazards being proportional (section “Relative
Sub-hazards in the Two-Sample Setting and the Case of Proportional Sub-hazards”)
or the case of the sub-hazards and cause-specific hazards of the same event type
being proportional (section “Compatibility of Proportionality of Sub-hazards and of
Cause-Specific Hazards for the Same Event Type”).
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Substituting from Eq. 4 into Eq. 3 allows us to express I2
* as

I∗2 (t) = 1− I∗1(t)− exp

(

−b2

∫ t

0
μ2

)[

1−
∫ t

0
exp

(

b2

∫ x

0
μ2

)

I∗1
′(x) dx

]

which fulfills the properties of a cumulative incidence, with everything on the right-
hand side being a known quantity determined by π , F1, F2, a1 and b2.

Incompatibility of Proportional Sub-hazards for One Event Type
and Proportional Cause-Specific Hazards for Both Event Types

As shown in the section “Compatibility of Proportionality of Sub-hazards and of
Cause-Specific Hazards for the Same Event Type”, if the cause-specific hazards and
the sub-hazards are both proportional for event type 1, then the relative sub-hazard
a1 in the allowable range must be equal to the relative cause-specific hazard b1, and

I∗2 = (1− I1)
a1−1I2 (5)

and

1− I∗1 − I∗2 = (1− I1)
a1−1 (1− I1 − I2) (6)

From Eq. 5, it follows that

lim
t→0

I∗2/I2 = lim
t→0

(1− I1)
a1−1 = 1. (7)

If we further assume that the cause-specific hazards for type 2 events are propor-

tional, then b2 ≡ μ∗2
μ2

=
I∗2 ′
I′2

1−I1−I2
1−I∗1−I∗2

=
I∗2 ′
I′2

1
(1−I1)

a1−1 so that I∗2
′ = b2(1− I1)

a1−1I′2; and

from this equation it follows that

lim
t→0

I∗2
′/I′2 = lim

t→0
b2(1− I1)

a1−1 = b2. (8)

But, by l’Hôpital’s rule, lim
t→0

I∗2/I2 = lim
t→0

I∗2
′/I′2; hence, from Eqs. 7 and 8 we

would obtain b2 = 1. Since μ1
* = a1μ1 and μ2

* = μ2, then

1− I∗1 − I∗2 =

⎛

⎝e
−
∫

μ1

⎞

⎠

a1

e
−
∫

μ2
= (1− I1− I2)

⎛

⎝e
−
∫

μ1

⎞

⎠

a1−1

(9)
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Hence, from Eqs. 6 and 9, it follows that
(

e−
∫
μ1

)a1−1
= (1− I1)

a1−1 =
(

e−
∫
λ1

)a1−1
; therefore, μ1 = λ 1, which is impossible because for any event type

the cause-specific hazard is by definition greater than the sub-hazard.

Incompatibility of Proportional Sub-hazards for Both Event Types
and Proportional Cause-Specific Hazards for One Event Type

We assume the type 1 event is the one for which both the cause-specific hazards and
the sub-hazards are proportional. Therefore, a1 = b1, and I∗2 = (1− I1)

a1−1I2 with a1

in the allowable range. If we further assume proportional sub-hazards for event type
2 (λ 2

*/λ 2 ≡ a2 �= 1), then I∗2 = 1− (1− I2)
a2 . Equating the two expressions for I2

*

gives (1− I1)
a1−1I2 = 1− (1− I2)

a2 . Hence, (1− I1)
a1−1 = 1−(1−I2)

a2

I2
for all t> 0.

Taking the limit as t approaches 0 and applying l’Hôpital’s rule, we obtain the result
a2 = 1, which is inadmissible since a1 and a2 must be on the opposite sides of 1,
and a1 �= 1.

Methods to Simulate Data Fulfilling Proportionality of Hazards

A byproduct of the characterizations presented in the sections “Compatibility of
Proportionality of Sub-hazards and of Cause-Specific Hazards for the Same Event
Type” and “Compatibility of Proportionality of Sub-hazards for One Event Type and
Cause-Specific Hazards for the Other Event Type” is that, for simulating data with
proportional sub-hazards for event type 1 and proportional cause-specific hazards
for either event type, they provide a simple alternative approach to the general
methods presented by Beyersmann et al. [20].

If the two cumulative incidence functions for a group are known, the sim-
ulation of competing risks data is straightforward. Specifically, to generate n
observations from the unexposed group with given cumulative incidences I1 and
I2, sampling from a binomial (n, I1(∞)) yielding k will result in the need to
generate k times from F1 = I1/I1(∞) and (n− k) times from F2 = I2/I2(∞). For
the exposed group, the sections “Relative Sub-hazards in the Two-Sample Setting
and the Case of Proportional Sub-hazards” and “Compatibility of Proportionality
of Sub-hazards and of Cause-Specific Hazards for the Same Event Type” provide
explicit expressions for the cumulative incidences based on fixing a1 when the two
sub-hazards are proportional and when the sub-hazards and cause-specific hazards
of the same type are proportional. The section “Compatibility of Proportionality
of Sub-hazards for One Event Type and Cause-Specific Hazards for the Other
Event Type” provides explicit expressions for the cumulative incidences based
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on fixing a1 and b2 when sub-hazards of type 1 and cause-specific hazards of
type 2 are proportional. The simulation of data for two relative cause-specific
hazards being constant (i.e., ≡ b1 and ≡ b2, respectively) follows from the well-
known fact that the cumulative incidences for the exposed group are determined by
I∗i = bi

∫
μie−

∫
(b1μ1+b2μ2) for i= 1, 2. Censoring times can be generated by standard

procedures.
In summary, in this section we have shown that at most two of the four

hazards (i.e., sub-hazards and cause-specific hazards of event types 1 and 2) can be
proportional, but without restriction on which two. Furthermore, except for the case
of proportionality of the two cause-specific hazards, the constant relative hazards
are tethered, which in turn provides explicit and simple approaches to simulate data
subjected to various forms of allowable proportionalities.

Simulation

A drawback of classical competing risks analysis via the method of Fine and Gray
is that estimating the relative sub-hazards independently (i.e., untethered) can lead
to results where both estimates are on the same side of 1. It is important to note that
these undesirable results are not simply due to the incomplete information provided
by censored observations. Even in situations in which all event times are observed,
traditional analysis that incorrectly assumes proportional sub-hazards may lead to
results that are theoretically inconsistent.

Consequences of incorrectly assuming proportionality of sub-hazards can be
illustrated using a simulated example in which non-proportionality of sub-hazards
holds. We restricted our example to the case of complete observation of event
times to illustrate the drawbacks of the proportionality assumption even in the
absence of censoring. Table 1 describes the components of the model used to
simulate the data. Specifically, the mixture parameter was set to π = 0.55 in the
unexposed group and π*= 0.50 in the exposed group. The times of the two
events in the unexposed group were drawn from the same exponential distribution
with median= 20 (i.e., F1(t)=F2(t)= 1− exp(−0.035t)), and the times of the
two events in the exposed group were shorter by a factor of 4 (i.e., median= 5,
F1

*(t)=F2
*(t)= 1− exp(−0.140t)). In this setting, the cause-specific hazards are

constant and thus proportional, and their ratios for the exposed to unexposed groups
are 3.64= 0.50× 0.140/(0.55× 0.035) and 4.44= 0.50× 0.140/(0.45× 0.035) for
type 1 and 2 events, respectively. In order to contrast the inferences drawn from
different approaches, we generated 1,000 observations for each group.

Panels a and b of Fig. 1 display the sub-hazard functions for each event type
among the exposed (continuous lines) and unexposed (dashed lines) groups. The
four sub-hazards (fully described in Table 1) are decreasing, with those of the
exposed group being steeper and crossing those of the unexposed group at times
15.5 and 18.0 for type 1 and type 2 events, respectively.
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Fig. 1 Sub-hazards (panels a and b) and relative sub-hazards (panels c and d) for the competing
risks setting defined by the true model in Table 1. Thick dashed and continuous lines correspond
to the unexposed and exposed groups, respectively. Panels c and d, with a common legend shown
in panel c, show results of three different approaches (non-proportional sub-hazards (in green),
proportional sub-hazards (in red), and proportional sub-hazards with tethering (in blue)) for the
analysis of 1000 simulated observations for each group

The logarithms of the relative sub-hazards for each event type are shown at the
bottom of Table 1. Both are dominated by downward linear trends with equal slope
(0.105) corresponding to the difference between the two hazards of the exponential
distributions (= 0.140−0.035). The thick continuous lines in panels c and d of Fig. 1
depict the highly time-dependent true relative sub-hazards for each event type, with
a dashed thick line at 1 for the unexposed (reference) group.

The first analytical approach for the simulated data was the traditional Fine and
Gray method. In this case with no censored observations, the analysis reduces to
a standard Cox regression where times for one event type are treated as censored
observations past the largest observed time for the other event. The results of this
analysis are presented in the first row of Table 2 and depicted as red horizontal
lines in panels c and d of Fig. 1. Here, we found the theoretically inconsistent result
of both constant relative sub-hazards estimates being above 1 (1.10= exp(0.099)
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Table 2 Results (logarithm of relative sub-hazards) of fitting models to 1000
unexposed and 1000 exposed observations from true models in Table 1

Log relative sub-hazard ± standard error

Model Type 1 event Type 2 event

Proportional sub-hazards 0.099± 0.062 0.346± 0.065
Proportional sub-hazards, tethered −0.142± 0.063 0.148± 0.066
Non-proportional sub-hazardsa

Intercept 1.591± 0.116 1.671± 0.117
Time −0.108± 0.008 −0.098± 0.008

aStata code for type 1 event: stset time, failure(event==1)
stcrreg exposure, compete(event==2) tvc(exposure) texp(_t) noshr

for type 1 and 1.41= exp(0.346) for type 2), with p-values of 0.110 and <0.001 for
event types 1 and 2, respectively. In this example, the analysis under the proportional
sub-hazards assumption results in an estimate which provides a very poor summary
of the impact of exposure on the risk of the two events.

The second analytical approach avoids both constant relative sub-hazards being
on the same side of 1 by using a1 = log(1−π*)/log(1−π) and a2 = log(π*)/log(π).
In the case of no censored data, estimates of π and π* are simply the observed
proportions of the event of interest in the unexposed (π̂ = 0.55) and exposed
groups (π̂∗ = 0.50), respectively. The delta method was used to calculate the
standard errors. The results of this analysis are presented in the second row of
Table 2 and depicted as blue horizontal lines in panels c and d of Fig. 1. Although
they indeed provide estimates of the relative sub-hazards on opposite sides of 1
(0.87= exp(−0.142) for type 1 events and 1.16= exp(0.148) for type 2 events;
p< 0.05 for both), the result is still a poor summary in comparison to the true time-
varying relative sub-hazards (Fig. 1, Panels c and d).

An improvement to the summary of the relative sub-hazards can be achieved
by including in the model an additional time-dependent term such that the total
effect of exposure is a linear function of a fixed intercept and a time interaction,
thus relaxing the rigid relationship enforced by the proportionality assumption.
This single additional term, which introduces a linear time dependency, yields
the flexibility to better summarize non-proportional sub-hazards, avoids theoretical
inconsistency, and is easily implementable with standard software packages (e.g.,
by simply using the tvc and texp options of stcrreg in Stata as shown in the footnote
of Table 2). The results of this analysis are presented at the bottom of Table 2
and indicate a highly significant downward trend of the relative sub-hazards. The
improved fit to the data using time-dependent relative sub-hazards as a linear trend
with time is apparent in Fig. 1, panels c and d (green lines).
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Application

Study Population, Outcomes, Exposures and Analytical
Approaches

To explore the use of different approaches from the sub-hazards perspective, we
analyzed data from the Chronic Kidney Disease in Children cohort study (CKiD),
a North American study of chronic kidney disease in children [23]. Data at baseline
were collected on 586 children between the ages of 1 and 16 with kidney function
measured by glomerular filtration rate between 30 and 90 ml/min|1.73 m2, and they
were followed up at annual visits. For our analyses, the event of interest was end-
stage renal disease (ESRD), defined as dialysis or a glomerular filtration rate less
than 15 ml/min|1.73 m2; the competing event was kidney transplantation. There
were 578 (99%) patients with adequate follow-up and event data. The time scale
for our analysis was years since baseline visit, with a median of 3.1 years (upper
quartile: 4.0 years). Patients with no event as of their most recent follow-up visit
were censored at the last date seen, with a median follow-up of 3.3 years.

To illustrate the analytical approaches we selected two binary exposures. The first
is a broad measure of socioeconomic status: household annual income greater than
$36,000. The second is a well-known biological predictor of progression of chronic
kidney disease: nephrotic proteinuria, defined as a urine protein to creatinine ratio
> 2. Information on proteinuria was available for the full cohort, while household
income was available for 97.6% of the subjects. We used two semi-parametric
approaches: the Fine and Gray model assuming proportional sub-hazards, and an
extension of this model to allow linear time dependency in the logarithm of the
relative sub-hazards.

Results

The top part of Table 3 provides the number of observed events among the 233 and
the 331 children with annual household income less than or equal to $36,000 and
greater than $36,000, respectively. The non-parametric cumulative incidences for
ESRD and transplant are shown in Fig. 2, panels a and b, respectively. Traditional
Fine and Gray regression yielded a constant relative sub-hazard estimate for ESRD,
comparing those with household income greater than $36,000 per year to those with
less, of 0.5 (= exp(−0.656), 95% CI: 0.3, 0.8), as shown in Table 3. Allowing for a
linear departure from proportionality, there was no indication of time interaction, as
the coefficient for time shown at the bottom of Table 3 was only 0.006 and far from
being statistically significant. In turn, the constant relative sub-hazard estimate for
transplant was 1.7 (= exp(0.512) in Table 3) with 95% CI from 0.9 to 3.2. Similarly
to ESRD, there was no departure from proportionality in the relative sub-hazard for
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Table 3 Number of observed events and relative sub-hazards (logarithmic scale) of ESRD and
transplant for household annual income in children with CKD

Event type

ESRD Transplant

Household annual income Number of observed events
≤$36,000 (N= 233, reference) 36 13
>$36,000 (N= 331) 29 32

Model Log relative sub-hazard ± standard error
Proportional sub-hazards −0.656± 0.248 0.512± 0.329
Non-proportional sub-hazards

Intercept −0.665± 0.428 0.328± 0.876
Time

0.006± 0.210
0.074± 0.331

Fig. 2 Effect of annual income below/above $36,000 on the competing events of end-stage renal
disease (ESRD) and renal transplantation in the CKiD study. Panels a and b show estimates of
cumulative incidences using non-parametric methods. Panels c and d depict relative sub-hazards
under proportionality (in red) and linear departure from proportionality (in green)
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Table 4 Number of observed events and relative sub-hazards (logarithmic scale) of ESRD and
transplant for nephrotic proteinuria in children with CKD

Event type

ESRD Transplant

Nephrotic proteinuria Number of observed events
No (N= 501,
reference)

30 31

Yes (N= 77) 38 16
Model Log relative sub-hazard ± standard error
Proportional

sub-hazards
2.408± 0.246 1.206± 0.304

Non-proportional
sub-hazards

Intercept 3.609± 0.479 1.408± 0.707
Time −0.721± 0.254 −0.079± 0.250

transplant (see lower right-hand entry in Table 3). In this example, the relative sub-
hazards appear to fulfill the proportionality assumption and the estimates were on
opposite sides of 1. The relative sub-hazard estimates with 95% confidence intervals
for ESRD and transplant are shown in Fig. 2, panels c and d, respectively. All
estimates were consistent with constant relative sub-hazards of 0.5 for ESRD and
1.7 for transplant when comparing households with an income above $36,000 to
those below.

The top part of Table 4 provides the number of observed events among the 501
and the 77 children without and with nephrotic proteinuria at baseline, respectively.
The non-parametric cumulative incidences for ESRD and transplant are shown in
Fig. 3, panels a and b, respectively. Traditional Fine and Gray regression yielded
a constant relative sub-hazard estimate for ESRD, comparing those with nephrotic
proteinuria to those without, of 11.1 (= exp(2.408), 95% CI: 6.9, 18.0), as shown
in Table 4. Allowing for linear departure from proportionality (i.e., modeling the
logarithm of the relative sub-hazards as a linear function of time), the relative sub-
hazard for ESRD showed a steep and strongly significant downward trend (see last
row of Table 4) moving from 37 (= exp(3.609)) to nearly 1 in the four and a half
years after baseline (see green line in Fig. 3, panel c). In turn, the constant relative
sub-hazard estimate for transplant was 3.3 (= exp(1.206) in Table 4) with a 95%
CI from 1.8 to 6.1, providing a case of the undesirable circumstance in which both
estimates of constant relative sub-hazards are above 1 and statistically significant.
Allowing for a linear departure from proportionality, the relative sub-hazards for
transplant showed a mild and non-significant downward trend as shown in the last
row of Table 4. The relative sub-hazard estimates with 95% confidence intervals for
ESRD and transplant are shown in Fig. 3, panels c and d, respectively. Although the
relative sub-hazards were both above 1 during the first four and a half years, there
was a strong indication of a downward trend for ESRD.
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Fig. 3 Effect of nephrotic proteinuria (uP/C> 2) on the competing events of end-stage renal
disease (ESRD) and renal transplantation in the CKiD study. Panels a and b show estimates of
cumulative incidences using non-parametric methods. Panels c and d depict relative sub-hazards
under proportionality (in red) and linear departure from proportionality (in green)

Discussion

In this chapter, we have shown that constant relative sub-hazards for two competing
events are tethered by a strong relationship which is independent of the timing of
the competing events, are fully determined by the overall frequencies of events, and
must be on opposite sides of 1. When violations of proportionality occur, separate
analyses under proportionality assumptions for the two competing events often
yield results in which the estimates are on the same side of 1 [12–15, 21, 24, 25],
and lead to misleading inferences unless explicit limitations about the time frame
are included. In addition, we showed that of the sub-hazards and cause-specific
hazards for two event types, at most two of the four can be proportional but without
restriction on which two. Furthermore, we fully characterized the compatibility of
concurrent proportionality of cause-specific hazards and sub-hazards and showed
that strong tethering also occurs in those cases, except when the two cause-specific
hazards are proportional.
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Because proportionality rarely holds in practice, one may choose the inclusion
of a time dependency of relative sub-hazards as the default analytical approach [8];
both tabular and graphical depictions of the time trends of relative sub-hazards
are straightforward [26]. However, this does not assure correct interpretations in
all cases since power may be limited to detect the true change in the relative sub-
hazards over time, particularly when follow-up time is relatively short.

The relative sub-hazard has appealing properties as an estimator of the effect
of an exposure on an event of interest in the presence of a competing event,
and the Fine and Gray weighting procedure is easily implemented using standard
software. However, care must be taken that ease of implementation does not lead to
a cavalier assumption of proportionality in the sub-hazards. In this chapter, we have
demonstrated the coarseness of the summary statistic as well as the inconsistency
produced by assuming proportionality of sub-hazards when proportionality does
not hold. Proportionality of the cause-specific hazards does not provide protection;
rather, as we have illustrated here, it implies violation of the proportionality of the
sub-hazards. Our simulated data set with non-proportional sub-hazards described
in Table 1 highlights a case in which the relative cause-specific hazards are indeed
constant (3.64 and 4.44 for type 1 and 2 events, respectively), but the sub-hazards
are extremely non-proportional.

Given the tethered relationships caused by proportionality of sub-hazards, several
authors have proposed approaches based on modeling the cumulative incidences
directly. Klein [27] has argued that linear additive models are more natural because
they intrinsically incorporate the fact that the sum of the cumulative incidences
fulfills the requirement of being the cumulative incidence of the composite event.
Others have suggested alternative summary measures including time-dependent
ratios of the cumulative incidences themselves [17, 28]. We offer, for practical
consideration, the incorporation of a simple time dependency in the model and also
suggest limiting inferences to a finite interval [29], particularly when limited follow-
up is available and nonlinear trends in relative sub-hazards may be hard to detect.
Reporting relative sub-hazard results on the same side of 1 during a limited period is
an acceptable summary; but, in point of fact, when estimates of relative sub-hazards
are on the same side of 1, such a result should immediately alert the analyst to the
presence of non-proportional sub-hazards over the full time span.

In cases where there is a substantial degree of right-censoring in the observed
data, additional caution should be taken when analyzing competing risks data. First
of all, mixtures of fully parametric distributions can yield very imprecise estimates
of π and π* [29, 30]. Second, power to detect departures from proportionality
may be limited. A case in point is provided by the income data in our application
because the apparent proportionality of the sub-hazards implies that the cause-
specific hazards were time-dependent. However, the data limited to the first four
and a half years of follow-up did not indicate departures from proportionality of
the cause-specific hazards. This provides a case study in the need for restricting the
analyses and inferences only up to a “time point located inside the support of the
observed time variable” [29]. Hence, a more appropriate summary of the analysis
would be that the data up to four and a half years from baseline are consistent
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with the sub-hazards being proportional in that annual income greater than $36,000
halves the risk of ESRD and increases the likelihood of transplantation by two
thirds. In contrast, even in the case of heavy censoring, strong trends of relative
sub-hazards can be detectable, as illustrated by the effect of proteinuria on ESRD in
our application.

Although it is attractive to reduce inferences to one number corresponding to
proportionality of measures of disease frequency, biological processes are often
much more complex, and we have shown that in the setting of competing risks,
the assumptions of proportionalities induce tethering of the relative hazards. If sum-
maries based only on a single measure are desired, it is safer to rely on proportional
cause-specific hazards as they are not subjected to tethering relationships, as argued
and implemented by Wada et al. [16]. Another approach is to frame summaries as
estimating least false parameters [31] or time-averaged effects [32].

It should be noted that when sub-hazards are truly proportional, simulation
studies (data not shown) indicated that results from methods incorporating the
tethering of the sub-hazards and those from the traditional Fine and Gray method
yielded unbiased and equally efficient estimators. This is not a surprising result as
the relative sub-hazards under proportionality are fully determined by the frequency
of the two types of events and not by their timing.

In this chapter, we have restricted our discussion to the case of two compet-
ing events (i.e., K = 2). For the case of K > 2, the assumption of proportional
sub-hazards will result in the relative sub-hazard of the type 1 event being
unbounded, K − 2 of them having upper bounds determined by the overall frequen-
cies, and the last one being tethered in a similar manner as the case of K = 2 (i.e.,
aK = log(∑i= 1

K − 1π i
*)/log(∑i= 1

K − 1π i)).
In summary, although the sub-hazards approach has the appeal that covariate

effects on the sub-hazard functions are consistent with the effects on the correspond-
ing cumulative incidence functions, care should be taken to assure that violations of
the proportionality assumption do not result in misleading or incorrect conclusions.
Because proportionality rarely holds in practice, the default analytical approach
should be to allow for the relative hazards to depend on time, though statistical
power is limited in the case of large numbers of event-free observations. Restricting
inferences to a finite period may also provide protection from reporting theoretically
inconsistent results.
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Semiparametric Inference on the Absolute Risk
Reduction and the Restricted Mean
Survival Difference

Song Yang

Abstract For time-to-event data, when the hazards may be non-proportional, in
addition to the hazard ratio, the absolute risk reduction and the restricted mean
survival difference can be used to describe the time-dependent treatment effect. The
absolute risk reduction measures the direct impact of the treatment on event rate or
survival, and the restricted mean survival difference provides a way to evaluate
the cumulative treatment effect. However, in the literature, available methods are
limited for flexibly estimating these measures and making inference on them. In this
article, point estimates, pointwise confidence intervals and simultaneous confidence
bands of the absolute risk reduction and the restricted mean survival difference
are established under a semiparametric model that can be used in a sufficiently
wide range of applications. These methods are motivated by and illustrated for data
from the Women’s Health Initiative estrogen plus progestin clinical trial.

Introduction

Comparison of two groups of survival data has wide applications in life testing,
reliability studies, and clinical trials. Often the two sample proportional hazards
model of Cox [4] is assumed and a single value of the hazard ratio is used to
describe the group difference. When the hazard ratio is possibly time-dependent,
a conventional approach is to give a hazard ratio estimate over each of a few
time periods, by fitting a piece-wise proportional hazards model. Alternatively, a
“defined” time-varying covariate can be used in a Cox regression model, resulting
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in a parametric form for the hazard ratio function (e.g. [6], Chap. 6). With these
approaches, it may not be easy to pre-specify the partition of the time axis or the
parametric form of the hazard ratio function.

In Yang and Prentice [22], a short-term and long-term hazards model was
proposed. Assume absolutely continuous failure times and label the two groups
control and treatment, with hazard functions λC(t) and λT (t), respectively. Then
the short-term and long-term hazards model postulates that

λT (t) =
1

e−β2 +(e−β1 − e−β2)SC(t)
λC(t), t < τ0, (1)

where β1, β2 are scalar parameters, SC is the survivor function of the control
group, and

τ0 = sup{x :
∫ x

0
λC(t)dt < ∞}. (2)

Under this model, limt↓0λT (t)/λC(t) = eβ1 , limt↑τ0 λT (t)/λC(t) = eβ2 . Thus
various patterns of the hazard ratio can be realized, including proportional hazards,
no initial effect, disappearing effect, and crossing hazards. In particular, model (1)
includes the proportional hazards model and the proportional odds model as special
cases. There is no need to specify a partition of the time axis or a parametric form of
the hazard ratio function. For this model, Yang and Prentice [22] proposed a pseudo-
likelihood method for estimating the parameters, and Yang and Prentice [23] studied
inference procedures on the hazard ratio function. Extension of model (1) to the
regression setting was also studied for current status data in Tong et al. [20].

In situations with non-proportional hazards, the hazard ratio is useful for
assessing temporal trend of the treatment effect, but it may not directly translate
to the survival experience. For example, the hazard ratio may be less than 1 in
a region where there is no improvement in the survival probability. Also, there
is no simple nonparametric estimator as a reference when comparing different
estimators of the hazard ratio function. In the Women’s Health Initiative estrogen
plus progestin clinical trial [10, 21], the hazard ratio function was decidedly non-
proportional for the outcomes of coronary heart disease, venous thromboembolism,
and stroke. While the estimated hazard ratios from Prentice et al. [16] and Yang
and Prentice [23] are in good agreement with each other for the outcomes of
coronary heart disease and venous thromboembolism, they indicate somewhat
different hazard ratio shapes for stroke. Under the piece-wise Cox model with the
partition of 0–2, 2–5, and 5+ years (the partition used in [16]), the hazard ratio has
an upside down U-shape. On the other hand, under the piece-wise Cox model using
the partition of 0–3, 3–6, and 6+ years (a plausible partition since the maximum
follow-up time was almost 9 years), the hazard ratio has a U-shape. The result
from Yang and Prentice [23] shows a hazard ratio that is slightly decreasing over
time. Thus for stroke, the temporal trend of the hazard ratio is portrayed somewhat
differently under these models. These hazard ratio estimates are displayed in Fig. 1.
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Fig. 1 Estimated hazard ratio for the WHI clinical trial stroke data: Solid line—Model (1); Dashed
line—Piece-wise Cox model with cut points at 2 and 5 years; Dash-dotted lines—Piece-wise Cox
model with cut points at 3 and 6 years

To help compare these different results, one can consider the absolute risk
reduction by the treatment. Figure 2 displays various estimators of the absolute
risk reduction. From Fig. 2, several observations can be made. Between the two
piece-wise Cox models with different partitions, the partition with cut points 2 and
5 years results in a better agreement with the Kaplan-Meier [7] based estimator for
the early to middle portion of the data range. The other partition results in a better
agreement with the Kaplan-Meier based estimator for the range beyond 6 years.
The estimator based on model (1) is a good compromise between the results from
the two partitions. One more comparison of these models can be made through the
restricted mean survival difference, displayed in Fig. 3. The different estimators are
closer to each other and are also smoother. For the piece-wise Cox models, the
partition with cut points 2 and 5 years results in an estimator that is closer to the
Kaplan-Meier estimator for early part of the data range, but has a more noticeable
deviation near the end. Again the estimator based on model (1) results in a good
compromise between the two partitions.

In this article, we consider making semiparametric inference on the absolute
risk reduction and the restricted mean survival difference for two sample time-to-
event data, under model (1). The absolute risk reduction is directly related to the
survival experience, and is a commonly used measure in epidemiological studies.
The restricted mean survival time has been used as a summary measure in various
works when the hazards are non-proportional. The restricted mean survival time
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Fig. 2 Estimated absolute risk reduction for the WHI clinical trial stroke data: Solid line—Model
(1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points at 2 and 5
years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years
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Fig. 3 Estimated mean restricted survival difference for the WHI clinical trial stroke data: Solid
line—Model (1); Dotted line: Kaplan-Meier; Dashed line—Piece-wise Cox model with cut points
at 2 and 5 years; Dash-dotted lines—Piece-wise Cox model with cut points at 3 and 6 years
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up to t can be thought of as the ‘t-year life expectancy’, and it approaches the
unrestricted mean survival time as t approaches infinity. In clinical trials where the
trial often ends after a pre-specified follow-up period, the restricted mean survival
time is a more appropriate measure than the unrestricted mean survival time. In
the subsequent development, the estimates, point-wise confidence intervals and
simultaneous confidence bands of the absolute risk reduction and the restricted
mean survival difference will be established under model (1). Such semiparametric
inference procedures are sufficiently flexible for many applications, due to the
various properties of model (1) mentioned before. These confidence intervals and
confidence bands can be used to capture and graphically present the treatment effect.
We illustrate these visual tools through applications to the clinical trial data from the
Women’s Health Initiative.

There have been various works in the literature that are related to the problems
considered here. Recently Schaubel and Wei [18] considered the restricted mean
survival difference and other measures under dependent censoring. Royston and
Parmar [17] considered inference on the restricted mean survival time by extending
standard survival models to accommodate a wide range of baseline distributions.
In both works, point-wise confidence intervals are constructed. In earlier works,
Dabrowska et al. [5] introduced a relative change function defined in terms of
cumulative hazards and found simultaneous bands for this function under the
assumption of proportional hazards. Parzen et al. [13] constructed nonparametric
simultaneous confidence bands for the survival probability difference. Cheng
et al. [3] proposed pointwise and simultaneous confidence interval procedures for
the survival probability under semiparametric transformation models. Zucker [24]
and Chen and Tsiatis [2] compared the restricted mean survival time between two
groups using Cox proportional hazards models. McKeague and Zhao [11] proposed
simultaneous confidence bands for ratios of survival functions via the empirical
likelihood method.

The article is organized as follows. In section “The Estimators and Their
Asymptotic Properties” the short-term and long-term hazard ratio model and the
parameter estimator are described. Pointwise confidence intervals are established
for the absolute risk reduction and the restricted mean survival difference under
the model. In section “Simultaneous Confidence Bands”, simultaneous confidence
bands are developed for the absolute risk reduction and the restricted mean sur-
vival difference. Simulation results are presented in section “Simulation Studies”.
Application to the stroke data from the Women’s Health Initiative trial is given in
section “Application”. Some discussions are given in section “Discussion”.

The Estimators and Their Asymptotic Properties

Let T1, · · · ,Tn be the pooled lifetimes of the two groups, with T1, · · · ,Tn1 , n1 < n,
constituting the control group having the survivor function SC. Let C1, · · · ,Cn

be the censoring variables, and Zi = I(i > n1), i = 1, · · · ,n, where I(·) is the
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indicator function. The available data consist of the independent triplets (Xi,δi,Zi),
i = 1, . . . ,n, where Xi = min(Ti,Ci) and δi = I(Ti ≤ Ci). We assume that Ti, Ci

are independent given Zi. The censoring variables (Ci’s) need not be identically
distributed, and in particular the two groups may have different censoring patterns.
For t < τ0 with τ0 defined in (2), let R(t) be the odds function 1/SC(t)− 1 of the
control group. The model of Yang and Prentice [22] can be expressed as

λi(t) =
1

e−β1Zi + e−β2ZiR(t)

dR(t)
dt

, i = 1, . . . ,n, t < τ0,

where λi(t) is the hazard function for Ti given Zi.
Let ST be the survivor function of the treatment group. Then the absolute risk

reduction is

Φ(t) = ST (t)− SC(t).

This function is positive if the treatment reduces the event rate and negative if the
treatment increases the event rate. Under model (1),Φ(t) depends on the parameter
β = (β1,β2)

T and the baseline function R(t), where “T ” denotes transpose. Yang
and Prentice [22] studied a pseudo likelihood estimator β̂ of β which we describe
below.

Let τ < τ0 be such that

lim
n

n

∑
i=1

I(Xi ≥ τ)> 0, (3)

with probability 1. For t ≤ τ , define

P̂(t;b) =∏
s≤t

(1− ∑n
i=1 δie−b2Zi I(Xi = s)

∑n
i=1 I(Xi ≥ s)

),

R̂(t;b) =
1

P̂(t;b)

∫ t

0

P̂−(s;b)
∑n

i=1 I(Xi ≥ s)
d(

n

∑
i=1
δie

−b1Zi I(Xi ≤ s)),

where P̂−(s;b) denotes the left continuous (in s) version of P̂(s;b).
Let L(β ,R) be the likelihood function of β under model (1) when the function

R(t) is known, with the corresponding score vector S(β ,R) = ∂ lnL(β ,R)/∂β .
Define Q(b) = S(b,R)|R(t)=R̂n(t;b). Then the pseudo maximum likelihood estimator

β̂ = (β̂1, β̂2)
T of β is the zero of Q(b).

Once β̂ is obtained, R(t) can be estimated by R̂(t; β̂ ). Thus under model (1), the
absolute risk reduction Φ(t) can be estimated by

Φ̂(t) = {1+ e−β̂2+β̂1 R̂(t; β̂ )}−eβ̂2 − 1

1+ R̂(t; β̂ )
. (4)

In Appendix 1, we show that Φ̂(t) is strongly consistent for Φ(t) under model (1).
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To study the distributional properties of Φ̂(t), let

Un(t) =
√

n(Φ̂(t)−Φ(t)), t ≤ τ.

Let ξ0(t) = 1 + R(t),ξ (t) = e−β1 + e−β2R(t), ξ̂0(t) = 1 + R̂(t;β ), ξ̂ (t) = e−β1 +
e−β2R̂(t;β ), and define

K1(t) = ∑
i≤n1

I(Xi ≥ t), K2(t) = ∑
i>n1

I(Xi ≥ t),

A(t) =
1

ξ̂ (t)
(e−β1 ,e−β2 R̂(t;β))T ,

B(t) =
∫ τ

t

A(s)K1(s)K2(s)

ξ̂ (s)P̂(s;β )
(

e−β2

ξ (s)
− 1
ξ0(s)

)dR(s).

In Appendix 1, it will be shown that, with probability 1,

Q(β ) = ∑
i≤n1

∫ τ

0
{μ1(t)+ o(1)}dMi(t)+ ∑

i>n1

∫ τ

0
{μ2(t)+ o(1)}dMi(t), (5)

uniformly in t ≤ τ and i ≤ n, where

μ1(t) = − ξ̂0(t)A(t)K2(t)

ξ̂ (t)K(t)
+
ξ̂0(t)P̂−(t;β )

K
B(t),

μ2(t) = A(t)
K1(t)
K(t)

+
ξ̂ (t)P̂−(t;β )

K(t)
B(t), (6)

Mi(t) = δiI(Xi ≤ t)−
∫ t

0
I(Xi ≥ s)

dR(s)

e−β1Zi + e−β2ZiR(s)
, i = 1, . . . ,n.

By Lemma A3 of Yang and Prentice [22],

√
n(R̂(t;β )−R(t)) =

1√
nP̂(t;β )

(∑
i≤n1

∫ t

0
ν1dMi + ∑

i>n1

∫ t

0
ν2dMi) (7)

where

ν1(t) =
nξ0(t)P̂−(t;β )

K(t)
, ν2(t) =

nξ (t)P̂−(t;β )
K(t)

.
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Let ΛT be the cumulative hazard function of the treatment group and define

C(t) =
1

P̂(t;β )
(

1

ξ 2
0 (t)

− ST (t)
ξ (t)

), Ω = {−1
n
∂Q(β )
∂β

}−1,

D(t) = C(t)P̂(t;β )
∂ R̂(t;β)
∂β

− ST (t)(
R(t)
ξ (t)

,ΛT (t)− R(t)
ξ (t)

)T .

For t ≤ τ , define the process

Ũn(t) =
DT (t)Ω√

n
(∑

i≤n1

∫ τ

0
μ1dMi + ∑

i>n1

∫ τ

0
μ2dMi)

+
C(t)√

n
(∑

i≤n1

∫ t

0
ν1dMi + ∑

i>n1

∫ t

0
ν2dMi). (8)

With the representations for Q(β ) and
√

n(R̂(t;β )− R(t)), in Appendix 2 it
will be shown that Un is asymptotically equivalent to Ũn which converges weakly
to a zero-mean Gaussian process U∗. The weak convergence of Un thus follows.
The limiting covariance function σΦ(s, t) of U∗ involves the derivative vector
∂ R̂(t;β )/∂β and the derivative matrix in Ω . Although analytic forms of these
derivatives are available, they are quite complicated and cumbersome. Here we
approximate them by numerical derivatives. For the functions C(t), D(t), μ1(t),
μ2(t), ν1(t), ν2(t), define corresponding Ĉ(t), D̂(t), . . . by replacing β with β̂ , R(t)
with R̂(t; β̂ ), ST (t) and Λ(t) with model based estimators, and ∂ R̂(t;β )/∂β with
the numerical derivatives. Similarly, let Ω̂ be the numerical approximation of Ω .
Simulation studies show that the results are fairly stable with respect to the choice
of the jump size in the numerical derivatives, and that the choice of n−1/2 works
well. With these approximations, the covariation process σΦ(s, t), s ≤ t ≤ τ , can be
estimated by

σ̂Φ(s, t) = D̂T (s)Ω̂ (

∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂(w; β̂ )

n(1+ R̂(w; β̂ ))

+

∫ τ

0

μ̂2(w)μ̂T
2 (w)K2(w)dR̂(w; β̂ )

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))
)Ω̂T D̂(t)

+Ĉ(s)Ĉ(t)(
∫ s

0

ν̂2
1 (w)K1(w)dR̂(w; β̂ )

n(1+ R̂(w; β̂ ))

+
∫ s

0

ν̂2
2 (w)K2(w)dR̂(w; β̂ )

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))
)

+Ĉ(t)D̂T (s)Ω̂ (

∫ t

0

μ̂1(w)ν̂1(w)K1(w)dR̂(w, β̂ )
n(1+ R̂(w; β̂ ))
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+

∫ t

0

μ̂2(w)ν̂2(w)K2(w)dR̂(w, β̂ )
n(e−β̂1 + e−β̂2 R̂(w; β̂ ))

)

+Ĉ(s)D̂T (t)Ω̂(
∫ s

0

μ̂1(w)ν̂1(w)K1(w)dR̂(w, β̂ )
n(1+ R̂(w; β̂ ))

+
∫ s

0

μ̂2(w)ν̂2(w)K2(w)dR̂(w, β̂ )
n(e−β̂1 + e−β̂2 R̂(w; β̂ ))

). (9)

For a fixed t0 ≤ τ , from the above results, an asymptotic 100(1−α)% confidence
interval for Φ(t0) is Φ̂(t0)∓ zα/2

√
σ̂Φ(t0, t0)/n, where zα/2 is the 100(1−α/2)%

percentile of the standard normal distribution.
Now let us look at the restricted mean survival difference

Ψ(t) =
∫ t

0
ST (s)ds−

∫ t

0
SC(s)ds.

Under model (1),Ψ(t) is estimated by

Ψ̂(t) =
∫ t

0
Φ̂(s)ds,

for Φ̂(t) in (4). In Appendix 1, it will be shown that Ψ̂(t) is a strongly consistent
estimator forΨ(t).

For t ≤ τ define

Vn(t) =
√

n(Ψ̂ (t)−Ψ(t)),

and

Ṽn(t) =
∫ t

0
Ũn(s)ds,

for Ũn in (8). Exchanging the order of integration yields

Ṽn(t) =

∫ t
0 DT (x)dxΩ√

n
(∑

i≤n1

∫ τ

0
μ1(w)dMi(w)+ ∑

i>n1

∫ τ

0
μ2(w)dMi(w))

+
1√
n ∑i≤n1

∫ t

0
ν1(w)

∫ t

w
C(x)dxdMi(w)

+
1√
n ∑i>n1

∫ t

0
ν2(w)

∫ t

w
C(x)dxdMi(w). (10)

In Appendix 2, it will be shown that the process Vn(t) is asymptotically equivalent
to the process Ṽn(t) which converges weakly to the zero-mean Gaussian process



32 S. Yang

V ∗(t) =
∫ t

0 U∗(s)ds. Thus Vn(t) also converges weakly to V ∗(t). The covariation
process σΨ (s, t) of V ∗(t) can be consistently estimated by

σ̂Ψ (s, t) =
∫ s

0
D̂T (x)dxΩ̂(

∫ τ

0

μ̂1(w)μ̂T
1 (w)K1(w)dR̂(w; β̂ )

n(1+ R̂(w; β̂ ))

+
∫ τ

0

μ̂2(w)μ̂T
2 (w)K2(w)dR̂(w; β̂ )

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))
)Ω̂T

∫ t

0
D̂T (x)dx

+

∫ s

0

ν̂2
1 (w)K1(w)

n(1+ R̂(w; β̂ ))
(

∫ s

w
C(x)dx)2dR̂(w; β̂ )

+

∫ s

0

ν̂2(w)2K2(w)

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))
(

∫ s

w
C(x)dx)2dR̂(w; β̂ )

+
∫ s

0
D̂T (x)dxΩ̂

∫ t

0

μ̂1(w)ν̂1(w)K1(w)

n(1+ R̂(w; β̂ ))

∫ t

w
C(x)dxdR̂(w, β̂ )

+

∫ s

0
D̂T (x)dxΩ̂

∫ t

0

μ̂2(w)ν̂2(w)K2(w)

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))

∫ t

w
C(x)dxdR̂(w, β̂ )

+

∫ t

0
D̂T (x)dxΩ̂

∫ s

0

μ̂1(w)ν̂1(w)K1(w)

n(1+ R̂(w; β̂ ))

∫ s

w
C(x)dxdR̂(w, β̂ )

+
∫ t

0
D̂T (x)dxΩ̂

∫ s

0

μ̂2(w)ν̂2(w)K2(w)

n(e−β̂1 + e−β̂2 R̂(w; β̂ ))

∫ s

w
C(x)dxdR̂(w, β̂ ) (11)

From these results, an asymptotic 100(1−α)% confidence interval forΨ(t0) can
be obtained as Ψ̂(t0)∓ zα/2

√
σ̂Ψ (t0, t0)/n.

Simultaneous Confidence Bands

To make simultaneous inference on Φ(t) over a time interval I = [a,b] ⊂ [0,τ],
let wn(t) be a data-dependent function that converges in probability to a bounded
function w∗(t) > 0, uniformly in t over I. Then Un/wn converges weakly U∗/w∗.
If cα is the upper αth percentile of supt∈I |U∗/w∗|, an asymptotic 100(1−α)%
simultaneous confidence band for Φ(t), t ∈ I, can be obtained as

(Φ̂(t)− cαwn(t)√
n

,Φ̂(t)+
cαwn(t)√

n
).

It is difficult to obtain cα analytically. One obvious alternative would be the
bootstrapping method. However, it is very time-consuming. More discussion on this
will be given later on the application to data from the Women’s Health Initiative
estrogen plus progestin clinical trial. Here a normal resampling approximation
will be used. Lin et al. [8] used the normal resampling approximation to simulate
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the asymptotic distribution of sums of martingale residuals for checking the Cox
regression model. This approach reduces computing time significantly, and has been
used in many works, including Lin et al. [9], Cheng et al. [3], Tian et al. [19], and
Peng and Huang [14].

For t ≤ τ , let Ni(t) = δiI(Xi ≤ t), i = 1, · · · ,n, and define the process

Ûn(t) =
D̂T (t)Ω̂√

n
(∑

i≤n1

∫ τ

0
μ̂1d(εiNi)+ ∑

i>n1

∫ τ

0
μ̂2d(εiNi))

+
Ĉ(t)√

n
(∑

i≤n1

∫ t

0
ν̂1d(εiNi)+ ∑

i>n1

∫ t

0
ν̂2d(εiNi))

=
D̂T (t)Ω̂√

n
(∑

i≤n1

εiδiμ̂1(Xi)I(Xi ≤ τ)+ ∑
i>n1

εiδiμ̂2(Xi)I(Xi ≤ τ))

+
Ĉ(t)√

n
(∑

i≤n1

εiδiν̂1(Xi)I(Xi ≤ t)+ ∑
i>n1

εiδiν̂2(Xi)I(Xi ≤ t)), (12)

where εi, i = 1, . . . ,n, are independent standard normal variables that are also
independent of the data.

Conditional on (Xi,δi,Zi), i = 1, . . . ,n, Ûn is a sum of n independent variables at
each time point. In Appendix 2, it will be shown that Ûn given the data converges
weakly to U∗. It follows that supt∈I |Ûn(t)/wn(t)| given the data converges in
distribution to supt∈I |U∗(t)/w∗(t)|. Therefore, cα can be estimated empirically
from a large number of realizations of the conditional distribution of supt∈I |Û/w|
given the data.

Motivated from recommendations in the literature for confidence bands of the
survivor function and the cumulative hazard function in the one sample case, several
choices of the weight wn can be considered. The choice wn(t) =

√
σ̂Φ (t, t) results

in equal precision bands [12], which differ from pointwise confidence intervals in
that cα replaces zα/2. The choice wn(t) = 1+ σ̂Φ(t, t) results in the Hall-Wellner
type bands recommended by Bie et al. [1], which often have narrower widths in
the middle of data range and wider widths near the extremes of data range [8].
One could also consider the unweighted version with wn(t)≡ 1. Compared with the
previous two choices, this choice does not require σ̂Φ(t, t), and hence is easier to
implement.

To obtain simultaneous confidence bands forΨ(t), again consider the weighted
process Vn(t)/wn(t) which converges weakly to the limiting process V ∗/w∗. If c̃α is
the upper αth percentile of supt∈I |V ∗/w∗|, an asymptotic 100(1−α)% simultane-
ous confidence band forΨ(t), t ∈ I, can be obtained as

(Ψ̂(t)− c̃αwn(t)√
n

,Ψ̂ (t)+
c̃αwn(t)√

n
).
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To approximate the critical value c̃α , for t ≤ τ , define the process

V̂n(t) =

∫ t
0 D̂T (s)dsΩ̂√

n
(∑

i≤n1

∫ τ

0
μ̂1d(εiNi)+ ∑

i>n1

∫ τ

0
μ̂2d(εiNi))

+
1√
n ∑i≤n1

∫ t

0
ν̂1(w)

∫ t

w
Ĉ(x)dxd(εiNi(w))

+
1√
n ∑i>n1

∫ t

0
ν̂2(w)

∫ t

w
Ĉ(x)dxd(εiNi(w))

=
D̂T (t)Ω̂√

n
(∑

i≤n1

εiδiμ̂1(Xi)I(Xi ≤ τ)+ ∑
i>n1

εiδiμ̂2(Xi)I(Xi ≤ τ))

+
1√
n ∑i≤n1

εiδiν̂1(Xi)I(Xi ≤ t)
∫ t

Xi

Ĉ(x)dx

+
1√
n ∑i>n1

εiδiν̂2(Xi)I(Xi ≤ t)
∫ t

Xi

Ĉ(x)dx, (13)

where εi, i = 1, . . . ,n, are independent standard normal variables that are also
independent of the data. In Appendix 2, the process V̂n(t) given the data is shown
to converge weakly to V ∗(t). Thus c̃α can be approximated empirically from a large
number of realizations of the conditional distribution of supt∈[a,b] |V̂ (t)/wn| given

the data. Similarly to the case for Ûn, the weight function wn can be chosen to yield
equal precision, Hall-Wellner type, and unweighted confidence bands.

Simulation Studies

For stable moderate sample behavior, the range of the simultaneous confidence
bands for both Φ(t) andΨ(t) needs to be restricted. Through a series of simulation
studies, a data-dependent range was found to result in good performance for
moderate samples. The range is obtained by truncating at the 25th percentile of
the uncensored data at the lower end, and truncating at the 5th largest uncensored
observation at the upper end. By this truncation, the confidence bands are given in
a range where a reasonable amount of data are available. Also, in the estimating
procedures, the function P̂(t;b) is replaced by an asymptotically equivalent form

exp(−
∫ t

0

1

∑n
i=1 I(Xi ≥ s)

d{
n

∑
i=1
δie

−b2Zi I(Xi ≤ s)}).

For simulation studies reported here and for the real data application in sec-
tion “Application”, τ was set to include all data in calculating β̂ . All numerical
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Table 1 Empirical coverage probabilities of the three types of simultaneous confidence bands
HW, EP, and UW, for the absolute risk reduction Φ and the restricted mean survival difference Ψ ,
under model (1), based on 1,000 repetitions

Φ Ψ
Hazard ratio Censoring (%) n HW EP UW HW EP UW

0.9 ↑ 1.2 10 100 0.968 0.963 0.974 0.964 0.974 0.955
30 0.968 0.963 0.974 0.956 0.972 0.946
50 0.950 0.949 0.953 0.957 0.977 0.956

10 200 0.961 0.964 0.958 0.951 0.965 0.944
30 0.954 0.955 0.966 0.949 0.963 0.944
50 0.940 0.942 0.945 0.940 0.962 0.937

10 400 0.954 0.958 0.962 0.952 0.964 0.950
30 0.961 0.961 0.967 0.951 0.969 0.946
50 0.949 0.945 0.954 0.949 0.962 0.945

1.2 ↓ 0.8 10 100 0.951 0.946 0.962 0.953 0.964 0.938
30 0.951 0.947 0.969 0.959 0.979 0.956
50 0.930 0.930 0.949 0.962 0.973 0.960

10 200 0.956 0.956 0.955 0.952 0.969 0.947
30 0.960 0.957 0.962 0.953 0.972 0.949
50 0.942 0.933 0.947 0.943 0.960 0.940

10 400 0.958 0.952 0.958 0.955 0.968 0.944
30 0.954 0.955 0.954 0.949 0.966 0.951
50 0.951 0.950 0.956 0.948 0.961 0.947

computations were done in Matlab. Some representative results are given in
Table 1, where lifetime variables were generated with R(t) chosen to yield the
standard exponential distribution for the control group. The values of β were
(log(0.9), log(1.2)) and (log(1.2), log(0.8)), representing 1/3 increase or decrease
over time from the initial hazard ratio, respectively. The censoring variables were
independent and identically distributed with the log-normal distribution, where the
normal distribution had mean c and standard deviation 0.5, with c chosen to achieve
various censoring rates. The data were split into the treatment and control groups
by a 1:1 ratio. The empirical coverage probabilities were obtained from 1,000
repetitions, and for each repetition, the critical values cα and c̃α were calculated
empirically from 1,000 realizations of relevant conditional distributions. For both
Φ(t) andΨ (t), the equal precision bands, Hall-Wellner type bands and unweighted
bands are denoted by EP, HW and UW respectively.

Note that with 1,000 repetitions and 1.96
√

0.95 ·0.05/1,000 = 0.0135, we
expect the empirical coverage probabilities to be mostly greater than 0.9365. In
Table 1, the empirical coverage probabilities are greater than 0.9365 for all but three
cases. Those three cases occurred for Φ(t), with 50% censoring and smaller sample
sizes. The phenomenon disappeared when n = 400. Various additional simulation
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Table 2 Empirical coverage probabilities of the three types of simultaneous confidence bands
HW, EP, and UW, for the absolute risk reduction Φ and the restricted mean survival difference Ψ ,
under a monotone hazard ratio model, based on 1,000 repetitions

Φ Ψ
Hazard ratio Censoring (%) n HW EP UW HW EP UW

0.9 ↑ 1.2 10 100 0.973 0.977 0.975 0.964 0.975 0.955
30 0.983 0.983 0.987 0.971 0.984 0.963
50 0.969 0.973 0.971 0.967 0.986 0.965

10 200 0.967 0.951 0.961 0.955 0.967 0.937
30 0.966 0.965 0.975 0.956 0.971 0.950
50 0.956 0.964 0.962 0.966 0.978 0.965

10 400 0.956 0.916 0.978 0.963 0.965 0.948
30 0.967 0.962 0.975 0.961 0.972 0.956
50 0.984 0.982 0.979 0.970 0.984 0.969

1.2 ↓ 0.8 10 100 0.974 0.970 0.979 0.964 0.975 0.953
30 0.971 0.964 0.980 0.965 0.983 0.964
50 0.966 0.971 0.978 0.976 0.989 0.974

10 200 0.959 0.930 0.965 0.945 0.962 0.944
30 0.971 0.972 0.971 0.947 0.967 0.937
50 0.960 0.957 0.969 0.963 0.986 0.961

10 400 0.935 0.872 0.975 0.960 0.968 0.953
30 0.962 0.959 0.976 0.953 0.971 0.952
50 0.966 0.958 0.982 0.961 0.974 0.958

studies indicated that the proposed procedures performed well for sample size close
to 100 and up, with moderate censoring. Under heavy censoring, the results were
still good with uncensored observations close to 50 and up in each treatment group.

To check how robust the procedures are against violation of model assumptions,
various monotone hazard ratio models were also considered alternative to the
model (1). The results indicated that the proposed procedures continued to perform
well. For example, in Table 2, the control group lifetime variables were standard
exponential. The hazard ratio was linear from 0 to the 90th percentile of the standard
exponential, and continuous and constant afterwards. The initial and end hazard
ratios again were (0.9, 1.2) and (1.2, 0.8) respectively, and the censoring variables
were the same as before. It can be seen from Table 2 that the confidence bands
performed satisfactorily.

To compare efficiency against the non-parametric alternatives based on the
Kaplan-Meier estimators, for estimating Φ(t) andΨ(t) at various time points, the
mean squared errors of the model based estimators and the Kaplan-Meier estimators
were examined under model (1) in various simulation studies. Typically the model
based estimators have smaller mean squared errors, more so for Φ(t) than forΨ(t).
Also, the efficiency is higher under heavy censoring and for time points closer to the
upper tail region. This is because the Kaplan-Meier becomes increasingly unstable



Semiparametric Inference on the Absolute Risk Reduction. . . 37

Table 3 Ratio of mean squared errors of the model based estimators over the Kaplan-meier
estimators, for Φ(t) and Ψ(t) under model (1), at t = 0.5,1,1.5 respectively, based on 1,000
repetitions

Φ Ψ
Hazard ratio Censoring (%) n 0.5 1 1.5 0.5 1 1.5

0.9 ↑ 1.2 10 100 0.6019 0.6731 0.6286 0.6341 0.7978 0.8470
30 0.5527 0.6025 0.5248 0.5960 0.7303 0.7717
50 0.4676 0.4008 0.2447 0.5232 0.6149 0.5872

10 200 0.6438 0.7090 0.6865 0.6795 0.8436 0.9099
30 0.5920 0.6436 0.5513 0.6368 0.7763 0.8407
50 0.5150 0.4403 0.2672 0.5802 0.6744 0.6682

10 400 0.6831 0.7191 0.6800 0.6975 0.9000 0.9530
30 0.6321 0.6357 0.5425 0.6747 0.8271 0.8563
50 0.5523 0.4222 0.2789 0.6255 0.7205 0.6777

1.2 ↓ 0.8 10 100 0.6251 0.6509 0.6203 0.7195 0.8275 0.8349
30 0.5897 0.6278 0.5613 0.6850 0.7825 0.8037
50 0.4778 0.4180 0.2631 0.5662 0.6434 0.6182

10 200 0.6650 0.7035 0.6902 0.7324 0.8535 0.8930
30 0.6322 0.6648 0.5816 0.6982 0.8088 0.8467
50 0.5434 0.4837 0.2893 0.6099 0.6992 0.7015

10 400 0.7085 0.7081 0.6992 0.7432 0.8973 0.9289
30 0.6753 0.6742 0.6079 0.7226 0.8560 0.8794
50 0.6015 0.4661 0.3010 0.6458 0.7595 0.7256

near upper tail region and under heavy censoring. Some representative results are
given in Table 3, in terms of the ratio of the mean squared errors of the model based
estimators over the Kaplan-Meier estimators, under configurations the same as those
for Table 1.

Application

For the Women’s Health Initiative (WHI) randomized controlled trial of combined
(estrogen plus progestin) postmenopausal hormone therapy, an elevated coronary
heart disease risk was reported, with overall unfavorable health benefits versus risks
over an average of 5.6 year study period [10, 21]. Few research reports have stim-
ulated as much public response, since preceding observational research literature
suggested a 40–50% reduction in coronary heart disease incidence among women
taking postmenopausal hormone therapy. Analysis of the WHI observational study
shows a similar discrepancy with the WHI clinical trial for coronary heart disease,
stroke, and venous thromboembolism, even after adjusting for confounding factors
in the observational study. Following control for time from estrogen-plus-progestin
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Fig. 4 Simultaneous 95% confidence bands of the absolute risk reduction for the WHI clinical
trial stroke data: Solid line—equal precision confidence band; Dashed line—Hall-Wellner type
confidence band; Dash-dotted lines—unweighted confidence band; Dotted line: Estimated absolute
risk reduction

initiation and confounding, hazard ratio estimates were rather similar between
the clinical trial and observational study components of WHI, although there was
evidence of some remaining difference for stroke [16].

In the introduction, it was mentioned that for stroke, the estimated absolute risk
reduction based on model (1) provides a good compromise between the results from
the two partitioning approaches under the piece-wise Cox model. Let us illustrate
the methods developed in the previous sections with the stroke data from the
WHI clinical trial. Among the 16,608 postmenopausal women (n1 = 8,102), there
were 151 and 107 events observed in the treatment and control group respectively,
implying about 98% censoring, primarily by the trial stopping time. Fitting model
(1) to this data set, we get β̂ = (0.32,−1.69)T . Plots of the model based survival
curves and the Kaplan-Meier curves for the two groups show that the model is
reasonable. The residual plot as mentioned in Yang and Prentice [23] also indicates
a good model fit. These plots are not displayed here to save space. The three 95%
simultaneous confidence bands for the absolute risk reduction are given in Fig. 4.
From Fig. 4, it can be seen that both the Hall-Wellner type band and the unweighted
band maintain a roughly constant width through the data range considered. In
comparison, the equal precision band has width gradually increasing as the standard
error of the estimated absolute risk reduction increases over time. Also, the width of
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Fig. 5 95% equal precision confidence band and pointwise 95% confidence intervals of the
absolute risk reduction for the WHI clinical trial stroke data: Solid line—equal precision confidence
band; Dashed line—pointwise 95% confidence intervals; Dotted line: Model based estimator of the
absolute risk reduction; Dash-dotted lines—Kaplan-Meier estimator of the absolute risk reduction

the equal precision band is narrower that those of the Hall-Wellner type band and the
unweighted band through most of the range. Similar phenomena are often present
in other applications not reported here. Thus it is recommended that the equal
precision band be used in making inference on the absolute risk reduction under
model (1). Note that the simple bootstrap method for approximating cα when wn ≡ 1
is already much more computationally intensive than the the normal resampling
approximation. With wn(t) =

√
σ̂Φ (t), the bootstrap method would require one

more level of bootstrapping samples, thus further increasing the computational
burden. In comparison, once σ̂Φ(t) is obtained with the martingale structure, the
normal resampling approximation only needs a small additional computation and
programming cost. Similar remarks are also applicable to the case with the restricted
mean survival difference.

To compare the point-wise confidence intervals and the simultaneous confidence
band, Fig. 5 displays 95% point-wise confidence intervals and the simultaneous
confidence band for the stroke data. The simultaneous confidence band is slightly
wider than the point-wise confidence intervals and maintains the same rate of
inflation in width throughout the range. The confidence intervals and confidence
band indicate some evidence that the absolute risk reduction is negative in the
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Fig. 6 95% equal precision confidence band and pointwise 95% confidence intervals of the mean
restricted survival difference for the WHI clinical trial stroke data: Solid line—equal precision
confidence band; Dashed line—pointwise 95% confidence intervals; Dotted line: Model based
estimator of the mean restricted survival difference; Dash-dotted lines—Kaplan-Meier estimator
of the mean restricted survival difference

range of 4–7 years, but the evidence is not very strong. Figure 5 also includes the
Kaplan-Meier estimator. Between the semiparametric and nonparametric estima-
tors, The model based estimator is smoother, the Kaplan-Meier estimator is more
volatile and oscillates around the model based estimator. The model based estimator
captures the general decreasing trend in the absolute risk reduction, and averages out
the deviations from that trend, particularly in the range of 3.5 to 7 years.

For the restricted mean survival difference, Fig. 6 displays the estimator under
model (1), the 95% point-wise confidence intervals and simultaneous equal pre-
cision confidence band for the stroke data. Since the restricted mean survival
difference is a summary measure, the estimators are smoother compared with
those for the absolute risk reduction. Also, the semiparametric and nonparametric
estimators show a better agreement compared with the case for the absolute risk
reduction. Furthermore, the inflation of width by the band over the point-wise
confidence intervals is smaller compared with the situation in Fig. 5. This is possibly
because the restricted mean survival difference, a summary measure, may have
higher correlation at different time points compared with the absolute risk reduction
at those same time points. From Fig. 6, there is some evidence that the restricted
mean survival difference is negative towards the end of the data range.



Semiparametric Inference on the Absolute Risk Reduction. . . 41

Discussion

We have studied the asymptotic properties of the estimators for the absolute
risk reduction and the restricted mean survival difference under the short-term
and long-term hazards model. Point-wise confidence intervals and simultaneous
confidence bands are developed for these measures. These procedures can have
a sufficiently wide range of applications because of the flexibility of the model.
In simulation studies, the confidence bands have good performance for moderate
samples. Among the versions with different weights, the equal precision confidence
band is recommended. It has width that is proportional to the standard error at each
time point and often results in narrower width in most of the data range. It also
demonstrates the inflation of the confidence interval width needed for simultaneous
inference. For the restricted mean survival difference, often the measure at a fixed
time, say t0 years, with t0 close to the maximum follow-up period of the clinical trial,
is of interest. In those situations, the point-wise confidence intervals may suffice.

Compared with the nonparametric methods based on the Kaplan-Meier estimator,
the semiparametric approach developed here produces more smooth estimators and
more stable behaviors, especially near the end of the data range. Thus it provides a
good alternative to the nonparametric approach should the model be appropriate.
The model also permits inference on the hazard ratio function, as described in
Yang and Prentice [23], where the nonparametric approach could result in wide
confidence intervals at the tail regions. When the model provides good fit to the
data, together the confidence intervals and bands on the hazard ratio, the absolute
risk reduction and the restricted mean survival difference, present good visual tools
for assessing the temporal pattern and cumulative effect of the treatment. It is also
of interest to extend the results here to epidemiological studies by considering the
regression setting and adjusting for covariate. These and other problems are worthy
of further exploration.

Acknowledgements The original version of this article has previously been published in Lifetime
Data Analysis in 2013.

Appendix 1: Consistency

Throughout the Appendices, we assume the following regularity conditions, which
is a little weaker than the conditions used in Yang and Prentice [22].

Condition 1. lim n1
n = ρ ∈ (0,1).

Condition 2. The survivor function Gi of Ci given Zi is continuous and satisfies

1
n ∑i≤n1

Gi(t)→ Γ1,
1
n ∑i>n1

Gi(t)→ Γ2,

uniformly for t ≤ τ , for some Γ1, Γ2, and τ < τ0 such that Γj(τ)> 0, j = 1,2.
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Condition 3. The survivor functions SC and ST are absolutely continuous and
SC(τ)> 0.

Under these conditions, the strong law of large numbers implies that (3) is satisfied.
For t ≤ τ, define

L(t) = Γ1SC +Γ2ST ,

Uj(t;b) =
∫ t

0
Γ1dFC + exp(−b j)

∫ t

0
Γ2dFT , j = 1,2,

Λ j(t;b) =
∫ t

0

dUj(s;b)
L(s)

, j = 1,2,

P(t;b) = exp{−Λ2(t;b)}, R(t;b) =
1

P(t;b)

∫ t

0
P(s;b)dΛ1(s;b),

f 0
j (t;b) =

exp(−b j)R j−1(t;b)
exp(−b1)+ exp(−b2)R(t;b)

, j = 1,2,

m j(b) = {
∫ τ

0
f 0

j Γ2(t)dFT (t)−
∫ τ

0

f 0
j Γ2(t)ST (t)dR(t;b)

exp(−b1)+ exp(−b2)R(t;b)
}, j = 1,2,

and m(b) = (m1(b),m2(b))′. We will also assume

Condition 4. The function m(b) is non-zero for b∈B−{β}, where B is a compact
neighborhood of β .

Theorem 1. Suppose that Conditions 1–4 hold. Then, (i) the zero β̂ of Q(b) in B
is strongly consistent for β ; (ii) Φ̂(t) is strongly consistent for Φ(t), uniformly for
t ∈ [0,τ], and Ψ̂(t) is strongly consistent for Ψ(t), uniformly on t ∈ [0,τ]; (iii) Ω̂
converges almost surely to a limiting matrix Ω ∗.

Proof. Under Conditions 1–3, the limit of ∑n
i=1 I(Xi ≥ t)/n is bounded away from

zero on t ∈ [0,τ]. Thus, with probability 1,

∑n
i=1 δie−b jZi I(Xi = t)

∑n
i=1 δiI(Xi ≥ t)

→ 0, j = 1,2, (14)

uniformly for t ∈ [0,τ] and b ∈ B. From this, one also has, with probability 1,

|Δ P̂(t;b)| → 0, |Δ R̂(t;b)| → 0, (15)

uniformly for t ∈ [0,τ] and b ∈ B, where Δ indicates the jump of the function in t.
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Define the martingale residuals

M̂i(t;b) = δiI(Xi ≤ t)−
∫ t

0
I(Xi ≥ s)

R̂(ds;b)
e−b1Zi + e−b2Zi R̂(s;b)

, 1 ≤ i ≤ n.

From (12) and (13), and the fundamental theorem of calculus, it follows that, with
probability 1,

Q(b) =
n

∑
i=1

∫ τ

0
{ fi(t;b)+ o(1)}M̂i(dt;b), (16)

uniformly in t ≤ τ , b ∈ B and i ≤ n, where fi = ( f1i, f2i)
T , with

f1i(t;b) =
Zie−b1Zi

e−b1Zi + e−b2Zi R̂(t;b)
, f2i(t;b) =

Zie−b2Zi R̂(t;b)
e−b1Zi + e−b2Zi R̂(t;b)

.

From the strong law of large numbers ([15], p. 41) and repeated use of Lemma A1
of Yang and Prentice [22], one obtain, with probability 1,

P̂(t;b)→ P̂(t;b), R̂(t;b)→ R(t;b), Q(b)/n → m(b), (17)

uniformly in t ≤ τ and b ∈ B. From these results and Condition 4, one obtains the
strong consistency of β̂ , Φ̂(t) and Ψ̂ (t), and almost sure convergence of Ω̂ .

Appendix 2: Weak Convergence

For C(t), D(t), μ1(t),μ2(t),ν1(t), ν2(t), let C∗(t), D∗(t), etc. be their almost sure
limit. In addition, let Lj be the almost sure limit of Kj/n, j = 1,2. For 0≤ s, t < τ, let

σΦ (s, t)

= D∗T (s)Ω ∗(
∫ τ

0

μ∗
1μ∗T

1

1+R
L1dR+

∫ τ

0

μ∗
2μ∗T

2

e−β1 + e−β2R
L2dR)Ω ∗T D∗(t)

+C∗(s)C∗(t)(
∫ s

0

ν∗2
1

1+R
L1dR+

∫ s

0

ν∗2
2

e−β1 + e−β2R
L2dR)

+C∗(t)D∗T (s)Ω ∗(
∫ t

0

μ∗
1ν

∗
1

1+R
L1dR+

∫ t

0

μ∗
2ν

∗
2

e−β1 + e−β2R
L2dR)

+C∗(s)D∗T (t)Ω ∗(
∫ s

0

μ∗
1ν∗1

1+R
L1dR+

∫ s

0

μ∗
2ν∗2

e−β1 + e−β2R
L2dR), (18)
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and

σΨ (s, t)

=

∫ s

0
D∗T (x)dxΩ ∗(

∫ τ

0

μ∗
1 (w)μ

∗T
1 (w)

1+R(w)
L1(w)dR(w)

+

∫ τ

0

μ∗
2 (w)μ∗T

2 (w)

e−β1 + e−β2R(w)
L2(w)dR(w))Ω ∗T

∫ t

0
D∗T (x)dx

+

∫ s

0

ν∗2
1 (w)

1+R(w)
(

∫ s

w
C∗(x)dx)2L1(w)dR(w)

+

∫ s

0

ν∗2
2 (w)

e−β1 + e−β2R(w)
(

∫ s

w
C∗(x)dx)2L2(w)dR(w)

+

∫ s

0
D∗T (x)dxΩ ∗

∫ t

0

μ∗
1 (w)ν

∗
1 (w)

1+R(w)
(

∫ t

w
C∗(x)dx)L1(w)dR(w)

+

∫ s

0
D∗T (x)dxΩ ∗

∫ t

0

μ∗
2 (w)ν∗2 (w)

e−β1 + e−β2R(w)
(

∫ t

w
C∗(x)dx)L2dR(w)

+

∫ t

0
D∗T (x)dxΩ ∗

∫ s

0

μ∗
1 (w)ν

∗
1 (w)

1+R(w)
(

∫ s

w
C∗(x)dx)L1(w)dR(w)

+

∫ t

0
D∗T (x)dxΩ ∗

∫ s

0

μ∗
2 (w)ν∗2 (w)

e−β1 + e−β2R(w)
(

∫ s

w
C∗(x)dx)L2(w)dR(w). (19)

Theorem 2. Suppose that Conditions 1–4 hold and that the matrix Ω ∗ is non-
singular. Then, (i) Un is asymptotically equivalent to the process Ũn in (8) which
converges weakly to a zero-mean Gaussian process U∗ on [0,τ], with covariance
function σΦ(s, t) in (18). In addition, Ûn(s) given the data converges weakly to the
same limiting process U∗. (ii) Vn(t) is asymptotically equivalent to the process Ṽn

in (11) which converges weakly to the zero-mean Gaussian process
∫ t

0 U∗(s)ds on
t ∈ [0,τ], with covariance function σΨ (s, t) in (19). The process

∫ t
0 V̂n(s)ds given the

data also converges weakly to the same limiting process
∫ t

0 U∗(s)ds.

Proof. (i) As in the proof for Theorem A2 (ii) in Yang and Prentice [22], from the
strong embedding theorem and (16), Q(β )/

√
n can be shown to be asymptotically

normal. Now Taylor series expansion of Q(b) around β and the non-singularity of
Ω ∗ imply that

√
n(β̂ − β ) is asymptotically normal. From the

√
n- boundedness

of β̂ ,

√
n(R̂(t; β̂)− R̂(t;β )) =

∂R(t;β )
∂β

√
n(β̂ −β)+ op(1),

uniformly in t ≤ τ. These results, some algebra and Taylor series expansion together
show that Un is asymptotically equivalent to Ũn. Similarly to the proof of the
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asymptotic normality of Q(β )/
√

n, one can show that Ũn converges weakly to
a zero-mean Gaussian process. Denote the limiting process by U∗. From the
martingale integral representation of Ũn, it follows that the covariation process of
U∗ is given by σ(s, t) in (18), which can be consistently estimated by σ̂(s, t) in (9).
By checking the tightness condition and the convergence of the finite-dimensional
distributions, it can be shown that Ûn(s) given the data also converges weakly to U∗.

(ii) From the results in (i), the assertions on Vn and Ṽn follow.
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Connecting Threshold Regression
and Accelerated Failure Time Models

Xin He and G.A. Whitmore

Abstract The accelerated failure time model is one of the most commonly used
alternative methods to the Cox proportional hazards model when the proportional
hazards assumption is violated. Threshold regression is a relatively new alternative
model for analyzing time-to-event data with non-proportional hazards. It is based
on first-hitting-time models, where the time-to-event data can be modeled as the
time at which the stochastic process of interest first hits a boundary or threshold
state. This paper compares threshold regression and accelerated failure time models
and demonstrates the situations when the accelerated failure time model becomes
a special case of the threshold regression model. Three illustrative examples from
clinical studies are provided.

Introduction

Statistical models for analyzing time-to-event or survival data are important in
diverse fields of scientific enquiry. Two broad classes of such models are the Cox
proportional hazards (PH) model and the accelerated failure time (AFT) model.
Threshold regression (TR) is a relatively new model for analyzing time-to-event
data. See Lee and Whitmore [20] for an overview of TR. Lee and Whitmore [21]
undertook a study of the connection between TR and PH models. In this paper, we
study how and to what extent AFT models are embedded within the TR family.
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Our study reveals much about both types of models and integrates previously
unconnected findings. Our discussion of the relation between TR and AFT will
focus on the fields of medicine and health. The reader will see, however, that
the theoretical ideas and results extend immediately to other disciplines that are
concerned with duration data, such as engineering and economics. Several case
examples from clinical studies are provided to illustrate many of the results.

Accelerated Failure Time (AFT) Model

The main idea of an accelerated failure time model is that characteristics of an
individual or the individual’s environment, as described by an individual covariate
vector z, tend to accelerate or decelerate the progress of the individual toward a
medical endpoint, such as death, initiation of a cancer, and the like. AFT is a topic
covered by most reference books that deal with survival data and event history
analysis [1,14,15,18]. Let T denote the failure time, then a common formulation of
the AFT model is as a log-linear regression model of the following form:

ln(T ) = z′γ+U , (1)

where z is a vector of covariates, γ is the vector of corresponding regression
coefficients, and U is a baseline random term that does not depend on z. For
different individuals, the random terms U are typically assumed to be independent
and identically distributed random variables. When the distribution of the baseline
random term is known or specified, the AFT model is a parametric model. A number
of conventional survival distributions, such as the Weibull, gamma, log-logistic and
log-normal distribution families, are mathematically tractable under this logarithmic
transformation.

An equivalent formulation to (1) postulates the existence of a baseline survival
function S0(r) and an acceleration multiplier A > 0 for the survival time T of each
individual such that random variable R=T/A follows the baseline survival function;
in other words,

Pr(T > t|A) = S(t|A) = S0(t/A). (2)

The effect of the multiplier A is to amplify or shrink the time scale, according
to whether A is greater or less than 1. Subsequently, we refer to t as calendar or
clock time and refer to the transformed time r = t/A as analytical, operational or
running time.

The acceleration multiplier A is usually taken to be some regression function
of the covariate vector z. A common choice is the log-linear form ln(A) = z′γ or,
equivalently, A = exp(z′γ). If z = 0 then A = 1 and we have the reference case
in which time progresses at the rate dictated by the baseline survival distribution.
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The log-linear form ln(A) = z′γ immediately links the alternative AFT formulations
in (1) and (2) because the survival function in (2) can be re-expressed as follows:

S0(t/A) = S0
[
exp{ln(t)− z′γ}]= Pr

(
U > ln(t)− z′γ

)
.

Thus, the baseline random term U in the log-linear formulation and the running time
variable R, with the survival function S0(r), are related by the identity ln(R)≡U .

Threshold Regression (TR) Model

Threshold regression refers to a family of survival models in which the survival
time or time to event is the first hitting time of a boundary (or threshold) by
a stochastic process. Parameters of the stochastic process and boundary can be
linked to covariates using regression functions that are suited to the application
at hand. Hence, the word “regression” is used in the name. Following Lee and
Whitmore [20], the first-hitting-time (FHT) model has two basic components,
namely, (1) a parent stochastic process {Y (t), t ∈ T ,y ∈ Y } with initial value
Y (0) = y0, where T is the time space and Y is the state space of the process;
and (2) a boundary set B, where B ⊂ Y . The initial value of the process y0 is
assumed to lie outside the boundary set B. The first hitting time of B is the random
variable T = inf{t : Y (t) ∈ B}, which is the time when the stochastic process first
encounters set B. The unknown parameters in the parent stochastic process {Y (t)}
and the boundary set B may be connected to linear combinations of covariates
using suitable regression link functions. For instance, a variance parameter σ2 may
employ a logarithmic link function, such as ln(σ2) = z′β , where z is the vector of
covariates and β is the vector of corresponding regression coefficients.

In many TR applications, the natural time scale of the parent stochastic process
is not calendar or clock time t but rather some alternative time scale r, where r(t)
is a non-decreasing transformation of calendar time t, with r(0) = 0. As with the
AFT model, we refer to r as the running time. With this transformation, the parent
process is defined in terms of running time r as {Y (r)} and the subordinated process
{Y [r(t)]} defines the original process in terms of calendar time t.

Connecting TR and AFT Models

The preceding overview of the AFT and TR models contains the connection between
the two types of models. The connection lies in the running time transformation
r(t|z). We extend the traditional notion of an AFT model by allowing the following
more general formulation:

Pr(T > t|z) = S(t|z) = S0 [r(t|z)] . (3)
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Here again S0(r) is a baseline survival function and r(t|z) is a non-decreasing
function of calendar time t that is dependent on the covariate vector z. We require
r(0|z) = 0 for all z. The transformation r(t|z) encapsulates what we mean by the
acceleration and deceleration of time.

The generalized AFT model in (3) is also a TR model if S0(r) is a first-hitting-
time distribution for some baseline process {Y0(r)}, baseline boundary set B0 and
running time r(t|z). The AFT model will not be a TR model if S0(r) is not of the
FHT variety. From our experience, it is difficult to conceive of an AFT model that
is scientifically meaningful which lies outside the TR family. On the other hand, the
AFT model in (3) is a proper subset of the TR family. TR models extend the AFT
model (3) whenever the parameters of the baseline survival function S0(t) are made
to depend on the covariate vector z. In this extension, we show this dependence by
the notation S0(t|z).

A large variety of practical AFT models are created by appropriate choices for the
baseline survival function S0(r) and the running time r(t|z). The following examples
of TR models that are also AFT models illustrate the range of possibilities:

1. Poisson process. Consider a Poisson process {N0(r)} with a baseline hazard rate
λ0 > 0. The time until occurrence of the first event in the baseline process has
survival function S0(r) = exp(−λ0r). Under the simplest acceleration multiplier
A = exp(z′γ), the running time function becomes r(t|z) = t/A and then the
survival function of the AFT model takes the form:

S(t|z) = S0 [t/A] = exp
[−tλ0 exp(−z′γ)

]
.

Observe that the baseline hazard rate λ0 may be viewed as the intercept term
in the covariate regression function through the correspondence λ0 = exp(γ0).
Conventional methods of statistical inference for survival data can be used to
estimate the vector of regression coefficients γ and the baseline hazard rate
λ0. It is noteworthy that this AFT model is also a proportional hazards model
with a family of constant hazard functions λ0 exp(−z′γ). If the time to, say,
the kth event in the Poisson process is of scientific interest, then the baseline
survival function S0(r) is an Erlang distribution of order k with scale parameter
λ0 (a special gamma distribution). Substituting r(t|z) = t exp(−z′γ) for r in the
baseline survival function produces an AFT family with a gamma error structure.

2. Wiener process. Consider the FHT for a Wiener diffusion process {Y (r)}
starting at Y (0) = y0 > 0 and having a boundary at zero. Let the baseline case
be defined by the mean parameter μ0 < 0 and a unit variance parameter. The
baseline survival function S0(r) has an inverse Gaussian form that depends on
parameters y0 and μ0. Again, for simplicity, if the running time function r(t|z) is
taken as t exp(−z′γ), then the survival function of the corresponding AFT model
is given by

S(t) = S0
[
t exp(−z′γ)

]
.
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In this scenario, the running time function r(t|z) characterizes the same AFT and
TR model. If, however, the boundary of the process were made to depend on the
covariate vector z then the TR model becomes broader than an AFT model. Our
discussion of practical issues and specific case illustrations later will draw out
this important distinction.

The general AFT model in (3) is not new. There is a large literature dealing with
survival models having collapsible, composite, and alternative time scales that are
essentially of the form shown in (3). See, for example, Oakes [26], Kordonsky and
Gertsbakh [16], Duchesne and Lawless [5], and Duchesne and Rosenthal [6]. What
is new in our development is the placement of this general class of AFT models
within the context of threshold regression and the elucidation of some practical
variants of the model that may be valuable in medical applications.

Variants of AFT Model

To give a flavor of the variety of running time transformations that are available for
AFT model (3), we present a few illustrations next.

1. Multiplier AFT model. The multiplier version of the AFT model in (2) is a
special case of the general formation in (3) as may be seen if we define r(t|z) =
t/exp(z′γ). The multiplier version is simple in that it postulates a constant rate
of progression of illness or disease, with the rate varying with z.

2. Change-point AFT model. An important variant of the preceding model is one
in which acceleration engages at a point in time or change-point c. A simple
version of this model is:

r(t|z) =
{

t if t ≤ c(z),
c(z)+ [t − c(z)]exp(z′γ) if t > c(z).

(4)

This version makes the change point c a function of the covariate vector z and is
a special case of the exposure AFT model that follows.

3. Exposure AFT model. In many applications, an individual is exposed during
different intervals to toxins or other harmful influences, in varying intensities,
that can accelerate the onset of a medical endpoint. The following exposure
version of AFT model (3) is useful in this context:

r(t|z) =
J

∑
j=1
α j(z)t j, where t = ∑J

j=1 t j, α j(z)≥ 0, and α1(z) = 1. (5)

Here t j is the time an individual is exposed to toxin j during calendar interval
(0, t). Toxin 1 is taken as the reference exposure type. The reference type
might be, for instance, a non-toxic environment. Coefficients α j(z) determine the
accelerator or decelerator effect associated with exposure to toxin j, relative to
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the reference type. Covariates z modify the α j parameters. The equation t =∑ j t j

is an accounting equation that ensures that every moment of calendar time t is
spent in one of the J exposure types. See Lee et al. [22, 23] for an example of
(5) in the context of the exposure of railroad workers to diesel exhaust and the
onset of lung cancer. This exposure model is an extension of the simple multiplier
model (2) because α j(z)t j allows for a different multiplier (α j) for each type of
exposure (and each vector z).

4. Stochastic AFT model. Running time in some applications will proceed like
a stochastic process {R(t)} that has non-decreasing sample paths. The function
r(t|z) in (3) would then be such a sample path. Refer to Lawless and Crowder [19]
for an application to crack propagation in which the gamma process serves as a
running time (and degradation process).

Further Adaptations of AFT Model

1. Cure rate. A cure rate version of the AFT model in (3) allows for the possibility
that an individual will be cured of the disease that would bring on the medical
endpoint or be immune to it. A cure rate is accommodated in the AFT model
if the baseline survival function is given a probability mass p at infinity, with
0 < p < 1, as follows:

S0(r) = p+(1− p)S∗(r). (6)

Here S∗(r) denotes the baseline survival function of those individuals that are
susceptible to the medical endpoint. A careful look at this AFT formulation,
however, shows that it may have limited practical application. As acceleration
(or deceleration) of time affects only the running time r, formula (6) shows that
all individuals in this formulation must have the same cure rate p. The basic issue
is that acceleration, pure and simple, only modifies the time scale and an immune
or cured individual would not be influenced by its effect. In contrast, TR models
in general do not have this restriction. Thus, the cure-rate case is one type that
distinguishes the AFT model from more general TR models.

2. Initial disease progression. In some investigations, individuals do not enter
the study at the same stage of disease progression in the sense that each
individual has already experienced some “wear and tear” at the outset. This initial
progression may be interpreted as an initial running time r0(z), which varies with
the covariate vector z. In this case, general AFT model (3) takes the form of the
following conditional survival function:

Pr(T > t|z) = S(t|z) = S0 [r0(z)+ r(t|z)]
S0 [r0(z)]

. (7)

The conditioning in this model is necessary because the individual has experi-
enced running time r0(z) without yet experiencing the medical endpoint (i.e., the
survival distribution S0(·) is left truncated at r0).
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Illustrative Examples

In this section, we illustrate the comparison between TR and AFT models using
three previously published datasets. In each of these datasets, there is a single binary
group indicator z. Let Y (r) denote the health status of a patient, which first hits 0
at the event time. Assume that Y (r) can be described by a Wiener diffusion process
with the variance parameter σ2 = 1 and that ln(y0) and μ have the following forms

ln(y0) = α0 +α1z , μ = β0 +β1z ,

where α0 and β0 denote the mean logarithm of the initial health status and the mean
change of health status for patients in the reference group (z = 0), and α1 and β1

represent the group effects on the initial health status and the mean change of health
status, respectively.

Kidney Dialysis Dataset

In a clinical study conducted by The Ohio State University from January 1988
to May 1990, the time to first cutaneous exit site infection (in months) was
recorded for patients with renal insufficiency, where the cutaneous exit site infection
was defined as a painful cutaneous exit site and positive cultures, or peritonitis,
defined as the presence of clinical symptoms, elevated peritoneal dialytic fluid white
blood cell count (100 white blood cells/μL with >50% neutrophils), and positive
peritoneal dialytic fluid cultures [25]. Following Klein and Moeschberger [15], we
restrict our attention to 43 patients who utilized a surgically placed catheter and 76
patients who utilized a percutaneous placement of their catheter.

To analyze the data, define z to be equal to 1 if the patient utilized a percutaneous
placed catheter and 0 otherwise. An application of the TR model gave the results
in Table 1. These results suggest that patients in the percutaneous group had a
significantly worse initial health status than those in the surgical group and that
the two groups seemed to have a significant difference in the drift of the health
status. In particular, the health status for patients who utilized a surgically placed
catheter tended to decline, but it improved over time for those who utilized a
percutaneous placed catheter. Figure 1 displays the estimated survival functions of
the time to first cutaneous exit site infection for the two groups. It can be seen that the
obtained results are close to the Kaplan-Meier survival function estimates in Fig. 2
and indicate that the Wiener diffusion process assumption seems to be appropriate.

Table 1 Estimation results
of the TR model for the
kidney dialysis data

Parameter Estimate Standard error p-value

α0 1.4113 0.1435 <0.001
α1 −1.0731 0.1891 <0.001
β0 −0.0959 0.0765 0.210
β1 0.6377 0.1280 <0.001
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Fig. 1 Estimated survival functions by the TR model for the kidney dialysis data
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Fig. 2 Kaplan-Meier survival function estimates for the kidney dialysis data
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Table 2 Estimation results
of the TR model for the
ovarian cancer data

Parameter Estimate Standard error p-value

α0 2.5252 0.2328 <0.001
α1 0.4689 0.2916 0.108
β0 0.0277 0.0193 0.151
β1 −0.0725 0.0257 0.005

For comparison, AFT models with generalized gamma and log-logistic dis-
tributions were used to analyze the dataset. Note that the family of generalized
gamma distributions includes exponential, Weibull, log-normal and gamma as its
special cases and has considerable flexibility to characterize the shape of the
underlying survival distribution [32]. The results suggest that none of the AFT
models detected a significant group effect. Moreover, compared to the TR model,
the AFT models cannot capture the cross-over pattern of the Kaplan-Meier survival
function estimates.

Ovarian Cancer Dataset

In a study performed at the Mayo Clinic, a total of 35 patients with limited Stage II
or IIIA ovarian carcinoma were divided into two groups based on grade of disease
[3,7,9,10]. Fifteen patients had low-grade or well-differentiated cancer, and 20 had
high-grade or undifferentiated cancer. For each patient, the time to progression of
disease (in days) was recorded. The main goal was to determine whether or not
grade of disease was associated with time to progression of disease.

For the TR and AFT models, define z to be equal to 1 for patients with high-grade
tumors and 0 for those with low-grade tumors. An application of the TR model gave
the results in Table 2. These results suggest that patients with low-grade and high-
grade tumors had a similar initial health status, but the health status for patients with
high-grade tumors tended to decline more quickly than that for patients with low-
grade tumors. The estimated survival functions based on the TR model, as shown
in Fig. 3, indicate their close agreement with the Kaplan-Meier survival function
estimates in Fig. 4. Although the AFT model with generalized gamma distribution
gives a similar conclusion with respect to the significance of the group effect, none
of the AFT models provide a good fit to the early crossing of survival curves.

Bile Duct Cancer Dataset

In a clinical trial performed at the Mayo Clinic, 47 patients with bile duct cancer
were followed to determine whether a combination of radiation treatment (RöRx)
and the drug 5-fluorouracil (5-FU) significantly prolonged patients’ survival [3, 7,
10, 18]. The survival times (in days) were given for a group of 22 patients with the
radiation-drug therapy and for a control group of 25 patients.
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Fig. 3 Estimated survival functions by the TR model for the ovarian cancer data
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Fig. 4 Kaplan-Meier survival function estimates for the ovarian cancer data



Connecting Threshold Regression and Accelerated Failure Time Models 57

Table 3 Estimation results
of the TR model for the bile
duct cancer data

Parameter Estimate Standard error p-value

α0 2.7219 0.1414 <0.001
α1 0.2391 0.2106 0.256
β0 −0.0415 0.0120 0.001
β1 −0.0255 0.0215 0.235
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Fig. 5 Estimated survival functions by the TR model for the bile duct cancer data

To analyze the data, let z be 1 for treated and 0 for control patients. An application
of the TR model gave the results in Table 3. These results suggest that there was no
significant difference between treated and control patients in terms of the initial
health status and its drift. A similar conclusion is given by fitting the corresponding
AFT models with generalized gamma and log-logistic distributions. As shown
in Fig. 5, the TR model successfully illustrates the crossing of the Kaplan-Meier
estimated survival curves (Fig. 6). However, this pattern is not detected by any of
the AFT models.

Discussion

In the preceding sections, we compared threshold regression and accelerated failure
time models with respect to the underlying distribution of failure time. We showed
that a large variety of AFT models can be derived from TR models by specifying
appropriate baseline survival functions and running times.
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Fig. 6 Kaplan-Meier survival function estimates for the bile duct cancer data

In this article, we only focused on the comparison between threshold regression
and accelerated failure time models in the parametric setting. The AFT model has
been studied extensively in the literature for right censored data when the error
distribution is completely unspecified. In general, there are two most commonly
used semiparametric estimation procedures. One approach is the least squares based
estimator [4, 11, 13, 17, 27], and the other is the rank based estimator [8, 12, 30,
31, 33]. Recently, some other approaches have been proposed for estimation and
inference for the AFT model for current status and interval censored data [2, 24,
28, 29]. However, semiparametric extensions remain an open research issue for TR
models.
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Residuals and Functional Form in Accelerated
Life Regression Models

Stein Aaserud, Jan Terje Kvaløy, and Bo Henry Lindqvist

Abstract We study residuals of parametric accelerated failure time (AFT) models
for censored data, with the main aim of inferring the correct functional form of
possibly misspecified covariates.

Introduction

The accelerated failure time (AFT) regression model can be written

logT = f (X)+σW, (1)

where T is the event time; X = (X1, . . . ,Xp) is a vector of covariates; f (·) is some
function determining the influence of the covariates; while σW is an “error” term.
The parameter σ is here considered as a scale parameter, while W is assumed
to have a fully specified ‘standardized’ distribution, such as the standard normal
distribution; the standard Gumbel distribution for the smallest extreme (in which
case T is Weibull-distributed); or the standard logistic distribution (see, e.g.,
Collett [2]).

The present short paper displays some main points from the preprint [5] and
the master thesis [1], concerning the use of residuals to check model fit and to
suggest functional form for covariates in AFT models. By the presented approach,
this may alternatively be viewed as a search for a “best possible” additive model
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of the form logT = f1(X1)+ · · ·+ fp(Xp)+σW for functions f j(·), j = 1, . . . , p, in
the following called covariate functions. We hence seek to complement results and
methods for the semiparametric Cox-model as earlier presented in Therneau et al.
[6] and Grambsch et al. [3].

Residuals in AFT Models

Standardized residuals in AFT models are based on solving Eq. (1) for W . For given
data (ti,δi,xi), i = 1, . . . ,n, where the δi are censoring indicators, we shall therefore
define the standardized residuals by (ŝi,δi), i = 1, . . . ,n, where

ŝi =
logti − f̂ (xi)

σ̂
, (2)

with f̂ (·), σ̂ being appropriate estimators of the underlying f and σ , respec-
tively. The Cox-Snell residuals are based on the fact that if T is a lifetime and
G(t) = P(T > t), then − logG(T ) is unit exponentially distributed. Since for the
AFT model, P(T > t|X = x) = 1−Φ((log t − f (x))/σ), the Cox-Snell residuals
are given as (r̂i,δi), i = 1, . . . ,n, with

r̂i =− log(1−Φ(ŝi)), (3)

where Φ(·) is the distribution function of W . If the model is correctly specified,
then the set of (r̂i,δi) is expected to behave similar to a censored sample of unit
exponentially distributed variables.

When there are censored observations, a frequently used approach is to adjust the
censored residuals by adding the expected residual “life” to the censored residuals
and then proceed as if one has a complete set of uncensored observations. For Cox-
Snell residuals one thus adds 1 to the censored residuals (see e.g. [2]), while for
standardized residuals, adjusted residuals are obtained similarly by computations
involving the distribution Φ (see [5]).

Let now X be a specific component of the covariate vector. One may want to
plot the residuals versus this covariate. For censored survival data, such plots may,
however, be misleading, and a possible remedy here is the use of the adjusted
residuals which may work well when there are not too many censored values.

An alternative method which does not require the adjustment of censored resid-
uals, is based on exponential regression smoothing, valid for continuous covariates.
The idea is to consider a synthetic data set given as (r̂1,δ1,x1), . . . ,(r̂n,δn,xn),
where x1, . . . ,xn are the values of the specific covariate X for the n observation
units, respectively, where we impose the model for these data that r̂ given X = x
is exponentially distributed with hazard rate λ (x). Then we use nonparametric
exponential regression to estimate the function λ (·). Specific methods for nonpara-
metric exponential regression are considered in, e.g., [4]. These include the so called
covariate order method and local likelihood methods.
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A residual plot versus X is now a plot of the points (xi, log λ̂ (xi)), i = 1, . . . ,n.
The idea is that if the assumed model is correct, then the λ̂ (xi) should be close to 1,
so log(λ̂ (xi)) should fluctuate around 0.

Functional Form for a Covariate

Suppose we want to conclude whether a specific covariate X is appropriately
represented in our model. Assume that the correct model for the lifetime T is

logT = β0 +β ′Z+ f (X)+σW. (4)

Based on data {(ti,δi,zi,xi); i = 1, . . . ,n} we want to derive the appropriate form for
f (X) for the specific covariate X .

Suppose we fit by maximum likelihood the simpler linear model where f (x) =
γx. From this possibly misspecified model we use (2) to compute the standardized
residuals

ŝi =
logti − β̂0 − β̂ ′

zi − γ̂xi

σ̂
. (5)

and (3) to obtain the corresponding Cox-Snell residuals r̂i. In the following we show
how these residuals can be used to infer the true form of f (X).

From White [7] it follows that there are parameter values (β ∗
0 ,β

∗,γ∗,σ∗) of the
fitted model which are the limits (a.s.) of the estimators (β̂0, β̂ , γ̂, σ̂ ) as n→∞. In the
model defined by (β ∗

0 ,β ∗,γ∗,σ∗) we would compute the “theoretical” standardized
residual as S∗ = (logT −β ∗

0 −β ∗′Z− γ∗X)/σ∗, which by inserting the true model
(4) can be written

S∗ =
σ
σ∗W +

(β0 −β ∗
0 )+ (β −β ∗)′Z+ f (X)− γ∗X

σ∗ . (6)

Solving (6) for f (X), taking the conditional expectation given X = x, and assuming
that Z and X are independent, gives that f (x) is of the form

f (x) = constant+ γ∗x+σ∗E(S∗|X = x).

Thus, modulo an unknown additive constant, we can estimate f (x) by f̂ (x) = γ̂x+
σ̂Ĥ(x), where Ĥ(x) is an estimate of H(x)≡ E(S∗|X = x).

If there are no censorings, we can use the standardized residuals ŝi from (5) and
estimate the function H(x) by smoothing the points (xi, ŝi); i = 1, . . . ,n. This can
also be done with censored data if we adjust the residuals corresponding to censored
observations in the way explained in section “Residuals in AFT Models”.
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Fig. 1 Simulated Weibull distributed data. Circles are (xi, γ̂xi + σ̂ ŝi) using the adjusted residuals;
solid line is loess smooth from these points; squares are from censored exponential regression and

the use of ˆ̂H(x); dash-dot line is the true quadratic function

Alternatively, we may use the Cox-Snell residuals r̂i to obtain smoothed esti-
mates λ̂ (x) as in section “Residuals in AFT Models”, in order to estimate the
function H(x). Note that by (3) we have ŝi = Φ−1(1− e−r̂i), where the Cox-Snell
residuals r̂i are supposed to behave like exponentials with expected value 1/λ̂(xi).

Thus we may estimate H(x) by ˆ̂H(x) = Φ−1(1− exp(−1/λ̂(x))). This avoids the
use of adjusted residuals for censored observations.

Example (Simulated data from Weibull-distribution). We simulated n = 100 obser-
vations from the Weibull-distribution using the model

logTi = β0 +β1Zi1 +β2Zi2 + f (Xi)+σWi; i = 1, . . . ,100,

where β0 = 0, β1 = 5, β2 = 0.2, f (x) = x2, σ = 2; the Wi were drawn from the Gum-
bel distribution of the smallest extreme, while the Zi1,Zi2,Xi were independently
drawn from standard normal distributions. We imposed two different censoring
scenarios by drawing independent censoring times Ci giving approximately 20 and
50 % censoring, respectively.

Figure 1 shows the resulting estimates of the covariate function f (x) = x2, using
both a loess smoothing on the adjusted residuals, and a censored nonparametric
exponential regression using the nonadjusted residuals. A possible conclusion from
this and similar datasets is that there are no large differences in the estimates of
the covariate function f (X) for low censoring, while for more heavy censoring the
nonparametric exponential regression method seemingly performs slightly better.
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Introduction

J. Neyman used stochastic processes in his applied work extensively, particularly
Markov processes since the late forties. Examples include the use of birth and death
processes to study tumour growth, Markov branching processes to study radiation
effects on single cells, a discrete time branching process with a disperse function
to model an epidemic, and others. When doing applied work, Neyman typically
would first construct stochastic models for the data and then develop inference
procedures for data analysis. In this presentation, we shall revisit the Fix-Neyman
(F-N) competing risks model which was introduced in a joint publication of Fix and
Neyman [11] titled A simple stochastic model of recovery, relapse, death and loss
of patients. The paper models the disease development of a patient in a clinical trial
using a Markov process. The model is constructed for comparing survival times
and quality of life of patients who have undergone different treatments of breast
cancer. We shall compare the calculation of a patient’s survival probability in the
F-N competing risks model with that of the Kaplan-Meier (K-M) formulation [16].
By way of comparison, it is seen that the F-N competing risks model offers a very
general mathematical model system for tackling many of the problems that arise in
survival analysis. An example of the analysis of sero-epidemiology survey data or
current status data will be presented. Markov models, of course, have been used in
various contexts in survival analysis, for example the popular multiple decrement
model of competing risks. What distinguishes the F-N model is the introduction of
the relapse and recovery of a breast cancer patient in the calculation of her survival
probability. Fix and Neyman used a system of Kolmogorov equations of transition
probabilities as the basic tool. This presentation is focused on the F-N model and its
extension. Except for citing a few references in the concluding section, no attempt
is made to review the current work on recurrent events in survival analysis.

The Fix-Neyman Competing Risks Model

The F-N model is a 4-state Markov process {ξt : t ≥ 0}, where ξt describes the status
of a patient at time t, and the four states are S0 (original state of the patient being
under treatment for cancer), S1 apparent recovery from cancer, S2 death from the
treatment of cancer, and S3 lost to follow-up. It is worth noting that in applications,
the original state S0 may be variously defined according to the way a clinical trial is
analyzed. It could be the state of the time of diagnosis of cancer or time of entering
the clinical trial or others. Clearly the selection of the initial state, S0, is important.
It will affect the interpretation of other states. Over time (t), a patient moves back
and forth between the states of recovery (S1) and relapse (S0) until she is either lost
to follow-up or enters the absorbing state of death (Fig. 1).
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Fig. 1 The Fix-Neyman
model with transition paths

For ease of notation, we shall denote the states S0, S1, S2, S3 by 0, 1, 2, 3
respectively. An individual who is in state i at time s and will be in state j at time t
for s < t is governed by the transition probabilities

Pi j(s, t) = P[ξt = j|ξs = i], for 0 ≤ s < t, i, j = 0,1,2,3

and it is assumed that as t → s, Pi j(s, t)→ 1 if i = j and Pi j(s,s)→ 0 if i �= j.
The transition probabilities in the F-N model are generated by the matrix Qa of

constant risks qi j, where qii =−∑ j �=i qi j, for i, j = 0, · · · ,3.
In Qa there are two transient states 0,1 and two absorbing states 2, 3. Regarding

the selection of the initial state 0, ([11], p. 210) states “initial state with some
specific definition as visualized by Berkson, for example, the state of being under
treatment for cancer”. Throughout their paper, Fix and Neyman acknowledged the
consultations with Joe Berkson on medical questions and the acquisition of some of
their clinical trial data. Berkson was then the Chief of the Division of Biometry and
Medical Statistics of the Mayo Clinic. According to Berkson, there was very little
loss of patients from state 0 (the state of being under treatment for cancer). Fix and
Neyman therefore set the transition rates q03 = 0 and also q12 = 0. Mathematically,
there is no difficulty in deducing a patient’s survival probability if q03 and q12

were positive because the F-N model is a homogeneous Markov process. Further
discussion of the transition probabilities is in section “Extension of the Fix-Neyman
Competing Risks Model”.

Note that we have interchanged the labels of the states 1 and 2 in the F-N
paper for convenience of matrix presentation. That is, our states 1 and 2 correspond
respectively to states 2 and 1 in the F-N paper.

A distinct feature of the F-N model is the inclusion of the possibility of recovery
and relapse of patients in the calculation of a patient’s survival probability. Fix
and Neyman used breast cancer data from some clinical trials to estimate the risks
in the 4-state Markov process. To emphasize the presence of all these competing
risks in Qa, Fix and Neyman called anything that has to do with this model
crude. Therefore the transition probabilities Pi j(s, t) derived from Qa are crude
probabilities. Likewise, a patient’s survival probability or its estimate calculated
directly under model Qa is crude.

Fix and Neyman were after the net survival probability of a patient when the risk
of loss to follow-up (q13) is eliminated. This will be discussed in the next section.
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Comparison of the Fix-Neyman Model with the Kaplan-Meier
Formulation

Kaplan and Meier did not use Markov processes to compute patient’s survival
probability, but their underlying model can be described as a three-state Markov
process generated by the risk matrix Qc(t) in Fig. 2. The matrix Qc(t) can be
obtained by eliminating State 1 (no recovery) from Qa and assuming that the
transition intensities depend on t.

Risk matrix Qc(t) has two absorbing states; death and loss to follow-up or other
causes. There are no risks of recovery and relapse in model Qc(t). In this case, the
state of an individual at any time t, ξt , will be in one of the three states {0,1,2}.

Throughout the article we shall denote the state of an individual at time t by ξt

and her/his lifetime by X . The probability distributions of ξt and X change with the
underlying model. We shall denote the survival probability of X calculated from
model Qa by Pa[X > t], similarly a subscript indicating a specific model employed
is attached to all other probability calculations. However, to reduce cumbersome
notations, we shall not attach the model symbol to each component of a risk matrix.
What risks we are referring to will be made clear in the context of the discussion.
For example, indication of model Qc in the following Eq. (2) suffices.

Model Qc(t) is identical to the usual Kaplan-Meier formulation in that the
survival time of a patient, X , is subject to right censoring by an independent
positive random variable, C. The observation on a patient is a pair (Z,δ ) where
Z = min(X ,C), δ = I[X ≤ C]. Suppose that X has hazard rate q02(t) and C has
hazard rate q03(t). To be precise, we shall assume q02(t) and q03(t) are continuous
functions in t and satisfy the hazard function requirement of

∫ ∞
0 q02(t)dt = ∞ and

same for q03(t).
Under the K-M formulation the joint distribution of Z and δ is given by

P[Z ≤ t,δ = 1] = P[X ≤ t,X ≤C] =
∫ t

0
q02(u)e

−∫ u
0 (q02(v)+q03(v))dvdu (1)

where P[Z ≤ t,δ = 0] is similarly calculated.
The probability in (1) is exactly the following transition probability calculated

from model Qc(t),

P02,c(0, t) = Pc[ξt = 2|ξ0 = 0] =
∫ t

0
q02(u)e

−∫ u
0 (q02(v)+q03(v))dvdu (2)

Fig. 2 The Kaplan-Meier
model with transition paths
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where the initial state ξ0 = 0 at time 0 must match with that of the K-M formulation
under which the survival time X in (1) is measured. For example, if the problem is
to study the survival times of a group of patients after surgical removal of tumours,
we can set state 0 as the state of post-surgery of a living patient and the initial time
0 is the instance immediately after the surgery. The meaning of states 2 and 3 are
indicated in the path diagram in Fig. 2.

From either model Qc(t) or the distribution (1), the survival probability of X can
be derived. We can also use matrix Qd(t) which is obtained by eliminating state 3
from Qc(t) (See Fig. 4). For the purpose of comparison, it is convenient to call Qc(t)
the K-M model. Then the survival probability of the K-M model is

Pd [X > t] = Pd[ξt = 0 | ξ0 = 0] = P00,d(0, t) = e−
∫ t

0 q02(v)dv. (3)

This appears to be a roundabout way of doing things. However, due to right
censoring, the distribution of X cannot be modelled directly by Qc(t). Deleting the
risk of loss to follow-up, q03(t), provides an easier way to calculate the survival
probability especially when the number of states in the Markov model gets larger as
we shall see in the F-N model.

It is important to remember that when eliminating a state from a risk matrix, the
values on the diagonal of the new matrix change so that each row sum of the new
risk matrix remains to be zero. For example, in Qc(t), q00(t) = −(q02(t)+ q03(t)).
But in Qd(t), q00(t) =−q02(t).

The F-N model is a 4-state homogeneous Markov process in which the risks,
qi j, are independent of time, and q03 and q12 are assumed to be zero. The K-M
formulation, on the other hand, corresponds to a 3-state nonhomogeneous Markov
process with unspecified time-dependent risks qi j(t). The K-M formulation is a
special case of the multiple decrement model with two competing risks. With respect
to statistical inference, the F-N model is used in parametric analyses while the K-M
estimator is for nonparametric analyses.

Both Fix and Neyman and Kaplan and Meier were after the elimination of the
loss to follow up or other causes in the estimation of a patient’s survival probability.
Without elimination, the estimated survival probability would be biased and the
treatment comparisons would be inappropriate because patterns of loss to follow-up
may vary from one clinical trial to another.

Then if state 3 (loss to follow up) is eliminated, the F-N model Qa reduces to
Qb in Fig. 3 and the K-M model Qc(t) reduces to Qd(t) in Fig. 4. While Kaplan
and Meier used the pair (Qc(t),Qd(t)), Neyman and Fix used the pair (Qa,Qb) to
deduce and estimate the survival probability.

The (net) survival probability in the F-N model is given by

Pb[X > t] = 1−Pb[ξt = 2 | ξ0 = 0] = 1−P02,b(0, t), (4)

where to be definitive, we assume that the initial state is 0.
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Fig. 3 Elimination of loss to follow up in the Fix-Neyman model

Fig. 4 Elimination of loss to
follow up in the
Kaplan-Meier model

This is parallel to the survival probability (3) computed from Qd(t).
Although one can calculate the net survival probability directly from Qb, the

estimation of the net survival probability, (4), requires the estimation of q01,q02

and q10 in Qb which cannot be done directly. Their estimates are taken to be the
corresponding estimates of qi j in Qa.

Fix and Neyman deduced an explicit formula for the survival probability (4) by
way of calculating the transition probability P02,a(0, t) in Qa. It is given by

P02,a(0, t) = q02

(

α1 +
q10 + q13

λ1λ2

[

1−
(

1
2

)

(q01 +q02+q10 +q13)α1 −α2

])

(5)

where −λ1 and −λ2 are the two non zero eigenvalues of the matrix Qa,

λ1 =
1
2

(

q01 +q02+ q10 + q13 −
√
(q01 + q02−q10 −q13)2 +4q01q10

)

,

λ2 =
1
2

(

q01 +q02+ q10 + q13 +
√
(q01 + q02−q10 −q13)2 +4q01q10

)

and

α1 =
e−λ1t − e−λ2t

λ2 −λ1
, α2 =

1
2

(
e−λ1t + e−λ2t

)
.

The eigenvalues (−λ1,b, −λ2,b) of Qb can be obtained by setting q13 = 0 in
λ1, and λ2, likewise in α1 and α2. They are denoted by λ1,b, λ2,b, α1,b and α2,b

respectively. Setting q13 = 0 in (5) and replacing λ1, λ2, α1 andα2 by λ1,b, λ2,b, α1,b
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and α2,b respectively, an explicit formula for the probability P02,b(0, t) in (4) is
obtained, and hence the (net) survival probability,

Pb[X > t] = 1−P02,b(0, t)

= 1−q02

(

α1,b+
q10

λ1,bλ2,b

[

1−
(

1
2

)

(q01+q02+q10)α1,b−α2,b

])

. (6)

Neyman’s RBAN (regular best asymptotic normal) estimates (1949) were used
for estimating the risks in Qa with the breast cancer data. This will be discussed in
section “Neyman’s Method of Minimum Modified χ2”.

In complete parallel, Kaplan and Meier estimated Qc(t) with a sample of n
independent right-censored survival times, where a right-censored survival time
is defined previously (above Eq. (1)). The estimate of q02(t), q̂02(t) obtained in
the Qc(t) model is employed to construct an estimate of the survival probability
in (3). One estimator could be exp(−∫ t

0 q̂02(v)dv). Another is the K-M product-limit
estimator.

In the Kaplan-Meier formulation the failure rate q02(t) is unspecified. If q02(t) =
λ0(t)eβ z, then the Cox-regression (or proportional hazard rates) model with right
censoring is a 3-state Markov chain with two absorbing states as specified by Qc(t).

There is no particular advantage of using the Markov model to obtain the K-M
estimator of the survival probability, because Qc(t) and Qd(t) are very simple risk
matrices. Reformulating the Kaplan-Meier model as a Markov process is to show
that one could extend in the direction of the popular K-M model to include relapses
and recovery events as in the Fix-Neyman model Qa, but with some time-dependent
qi j(t). As the number of states increases and recurrences are allowed, the theory
of Markov processes provides important analytical tools for survival analysis. For
many diseases, recovery and relapse could be significant occurrences in the course
of disease development and treatment. Breast cancer is one example as studied
by Fix and Neyman. Other examples abound. A leukemia patient might recover
from a bone marrow transplant and later experience a relapse leading to the need
for further transplants. A patient with aplastic anemia (an auto-immune disease) is
usually treated with an immune-suppressant (IST). Some patients will respond to
IST and relapse several months later. The same patient may receive a 2nd IST and
so on and so forth until death or loss to follow up. It is likely that a patient’s survival
time could be affected by such recurring recovery – relapse events. It is desirable to
include the available data on recovery and relapse in the survival analysis.

Extension of the Fix-Neyman Competing Risks Model

The F-N model assumes constant risks for qi j. While the assumption leads to
a closed-form solution for the survival probability, it would be more realistic to
include some time-dependent risks, qi j(t), as pointed out by Fix and Neyman.
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However that could pose mathematical challenges in solving a finite system of
Kolmogorov equations of transition probabilities given below:

dPi j(s, t)

dt
=∑

l �= j

Pil(s, t)ql, j(t)+Pi j(s, t)q j, j(t), for all states i, j (7)

with initial conditions Pi j(s, t) = 1 if i = j, 0 otherwise.
The derivation can be found in Feller ([10], Vol. I, Chap. 17, 2nd edn.) under the

conditions that for 0 ≤ s < t, (i) Pii(s, t)→ 1 as t → s; (ii) for each j, there is a non
negative continuous function −q j j(t) such that

lim
h→0

1−Pj j(t, t + h)

h
=−q j j(t);

(iii) for each pair of i, j with i �= j there is a non negative continuous function qi j(t)
such that

lim
h→0

Pi j(t, t + h)

h
= qi j(t).

Only special cases of (7) have been solved explicitly. Otherwise, we rely on
numerical solutions. This is a system of forward equations. We shall not dwell on
the details of the Eq. (7) and refer the reader to a standard reference, Feller ([10],
Vol. I, 2nd edn.), and Feller [9] for the existence and uniqueness of the solution.

If qi j are independent of t, the transition probabilities Pi j(s, t) simplify to Pi j(t) =
P[ξt = j | ξ0 = i] with s setting equal to 0. The solution is given by

P(t) = eQt , for t ≥ 0. (8)

where P(t) is a matrix with components Pi j(t) and initial condition P(0) = I, an
identity matrix, and Q is the corresponding risk matrix with components qi j.

Several of Neyman’s students continued the work in this direction. In particular,
B. Altshuler [3] and C. L. Chiang [8]. Altshuler considered time-dependent qi j(t)
in the multiple decrement model and obtained nonparametric estimates of survival
probabilities which were later studied by Aalen in a seminal paper [1] based on
his PhD thesis (1975). Aalen used an entirely different approach based on counting
processes and Le Cam’s LAN theory. Chiang (Sect. 7 of Chap. 11, [8]) proposed
a staging (or illness-death) model for analyzing survival times of a patient with a
chronic disease. It is assumed that the disease progresses from a mild stage S0 to a
severe stage through intermediate stages {S1, · · · ,Sk−1} and the patient may enter
the death state Sk from each of these stages as shown in the transition paths in Fig. 5.
The transition rates from Si to S j are given in the matrix Qg.

This staging model has been used for studying HIV and other chronic diseases.
Chang et al. [7] developed a statistical test of goodness of fit for a 3-state
(k = 2) staging models. These authors formulated the problem in terms of counting
processes and developed an asymptotic test of a Markov staging model versus a
semi-Markov model with power calculations.
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Fig. 5 Chiang’s staging model

In Chiang’s staging model the transition rates of the transient states are constant
and one-directional where qi j = 0 if i > j. Thus the components of Qg below
the diagonal are zero. This special feature permits a closed-form solution to the
corresponding Kolmogorov equations (7) with time-dependent qi j(t). There are
no risks of recovery and relapses in the model. At the request of a reviewer,
we shall provide the solution for the nonhomogeneous Qg. We shall assume that
for j = 0, · · · ,k − 1, q j, j+1(t) > 0 and q jk(t) > 0. Also

∫ ∞
0 q j, j+1(v)dv = ∞ and∫ ∞

0 q jk(v)dv = ∞ as required of a hazard function of a random variable.
We shall set the initial time s = 0 and assume the initial state of a patient at time 0

is ξ (0)= 0. We write the transition rates as qi j(t) to state explicitly their dependence
on time. The Kolmogorov equations (7) for model Qg are

dP0 j,g(0, t)
dt

= P0, j−1,g(0, t)q j−1, j(t)+P0 j,g(0, t)q j j(t)

for 0 ≤ j ≤ k− 1. (9)

with initial conditions

P0 j,g(0,0) = 1 if j = 0

= 0 if j �= 0,

and q j j(t) =−(q j, j+1(t)+ q jk(t)
)

for j = 0, · · ·k−1.
For consistency we use in (9) the symbol Pi j,g(0, t) to denote the transition

probability under model Qg.
A patient can enter the death state k from any one of the states {0,1, · · · ,k−1}.

Therefore the survival time X of a patient is

X = inf{t > 0 : ξ (t) = k}. (10)

The patients survival probability is given by

Pg[X > t] = Pg[ξ (t) ∈ {0,1, · · ·k−1} | ξ (0) = 0]

=
k−1

∑
j=0

P0 j,g(0, t) for t > 0. (11)
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Use Eq. (9) to solve for P0 j,g(0, t). Starting with P00,g(0, t), P0 j,g(0, t) can be solved
recursively for j = 0,1, · · ·k− 1. For j = 0,

P00,g(0, t) = e
∫ t

0 q00(u)du (12)

In what follows we put

μ j(t) = e−
∫ t

0 q j j(u)du, for j = 0,1, · · ·k−1.

The equation for P01,g(0, t) is a first order linear equation,

dP01,g(0, t)
dt

= P00,g(0, t)q01(t)+P01,g(0, t)q11(t). (13)

The solution of P01,g(0, t) is given by

P01,g(0, t) =

∫ t
0 μ1(v)P00,g(v)q01(v)dv

μ1(t)
. (14)

Substituting (12) for P00,g(0,v) in (14), we obtain an explicit solution for P01,g(0, t).
By the same token, for j = 1, · · · ,k− 1, the solution of P0 j,g(0, t) is given by

P0 j,g(0, t) =

∫ t
0 μ j(v)P0, j−1,g(0,v)q j−1, j(v)dv

μ j(t)
, (15)

with the initial conditions stated in (9).
Chiang ([8], Chap. 11.7) derives the survival probability for constant qi j. The

above is a generalization to the nonhomogeneous case.
A different line of attack is to use product integrals. Aalen and Johansen [2]

express the transition probabilities for finite nonhomogeneous Markov processes
in terms of product integrals. Andersen et al. ([4], p. 312) is one of the very few
publications that put recovery – relapse of a disease in a nonhomogeneous Markov
model. A three-state nonhomogeneous Markov model is used to study survival time
of patients with liver cirrhosis where loss to follow up is not considered in the model
(which may not be needed for this particular study). An individual is at any time t
in one of the three states: having normal prothrombin level (0), having abnormal
prothrombin level (1) and death (2). The transition rates q01(t), q10(t), q12(t),
and q02(t) are assumed to be positive where q21(t) and q20(t) are of course zero.
The product integral representation facilitates the estimation of transition rates
nonparametrically but the estimation requires the data on the exact time of the
direct transition of each patient from one state to another. Many of these direct
transitions are difficult to observe if possible at all. To overcome the data problem,
Andersen et al. defined changes of states to take place at the time when patients
are examined at follow-up visits to the hospital and obtained the estimates q̂i j(t)
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of qi j(t). These estimates are used to estimate the survival probability P[X > t]
of a patient which in their notation is equal to 1−P02(0, t). No explicit analytical
solution for P02(0, t) is provided. Andersen et al. used numerical solutions to obtain
an estimate P̂02(0, t), known as the Aalen-Johansen (A-J) estimate. Figures IV.4.15
and IV.4.16 on pages 315–316 [4] show discrepancies in the estimated survival
curves and standard deviations between the A-J estimate and the K-M estimate.
In our interpretation, the discrepancies could be attributed to the fact that these
probabilities were estimated using two different models. Although both are Markov
models, the K-M model Qc(t) allows no recovery – relapse while the model for A-J
estimate does. It is interesting to note that in the treated group, the A-J estimate
of the survival curve is larger up to the 4th year, then the K-M estimate is larger.
For the placebo group, the A-J estimate appears to be uniformly worse than that
of the K-M estimate. The estimated standard deviations of the A-J estimates of
the survival probabilities are nearly always smaller than that of the K-M estimates.
The recovery rate q10(t) seems to have played a role in the treatment effect. The
statistical significance of the result is not known.

Yang and Chang [21] used recurrent events in a parametric analysis to study
prevalence of hepatitis A antibodies. This will be discussed in the next section.

An Example of a Nonhomogeneous Competing Risks Model
with Application to Cross-Sectional Surveys of Hepatitis
A Antibody

Cross-sectional surveys are conducted in many areas of science, including epidemi-
ology, demography and construction of current life tables. The sampling design of
such surveys is to collect current status data of individuals at a fixed point in time (in
actual practice, the collection is often carried out in a very short period in time). Thus
the exact time of a direct transition of a sampled subject from one state to another
is not observable. In our case of using a Markov process {ξt , t ≥ 0} to model the
status of an individual over time, survey data are severely censored. Current status
data appear in a variety of forms depending on applications and models employed.
A brief comparison of survey data with case 2 interval-censored data studied in the
literature will be made at the end of the section after the discussion of the hepatitis
A example.

Our example is taken from sero-epidemiology surveys in populations for study-
ing age-specific prevalence of antibody to hepatitis A virus (anti-HAV) [19]. This
information is useful for understanding the spread of infection like infection rate
and age-dependent characteristics in a population. Parametric models such as
logistic distributions were used but did not fit the age-specific prevalence data
of anti-HAV [19]. Yang and Chang [21] used a 3-state nonhomogeneous Markov
competing risks model to derive and estimate the age-specific prevalence of anit-
HAV. The model offers an explanation of a well-known phenomenon of the decline
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Fig. 6 Age-specific prevalence model with loss and regain of immunity

in anti-HAV in older ages of individuals. The model successfully isolated the
confounding factors of mortality and diminished immunity of individuals. Without
elimination of the competing risks of death and diminished immunity, the estimates
of the prevalence of HAV infection would be biased.

The 3-state nonhomogeneous Markov process {ξt , t ≥ 0} describes the process
of an individual acquiring and loss of antibody of hepatitis A over his or her lifetime,
where ξt represents the status of an individual at age t. This is a conceptual model
in that the exact age (t) of transitions are not observable. The process {ξt , t ≥ 0}
however is partially observable from the survey data which amounts to taking a
snapshot of the process at some fixed t. The precise connection between the survey
data and the underlying Markov model will be given below. For the purpose of
model building, imaging that an individual can be monitored from birth to death and
the age at which he acquires anit-HAV could be recorded if he ever acquires it in his
lifetime. With respect to detectability of antibodies, an individual, ξt , at any age t is
in one of the three possible states {0,1,2}, where 0 = alive with no detectable anti-
HAV, 1 = alive with anti-HAV, 2 = deceased. Transitions with recurrences between
state 0 and 1 in the model allow the possibility that an individual acquires the
antibody, then at a later age the titer falls below a detectable level, and subsequently
through reinfection or boost, the titer rises above a detectable level prior to his death.
The risk matrix of the process {ξt , t ≥ 0} is given in Fig. 6.

Model Qe(t) is similar to Qb but with different interpretations of the competing
risks.

Cross-sectional sampling is to sample from a living population. The age-specific
prevalence θ (t) of an individual at age t is therefore the conditional probability
that ξt = 1 given that he is alive at age t. (The death of an individual censors the
observation of prevalence!)

Under model Qe with recurrences of loss and regain immunity, the age-specific
prevalence at age t is given by

θ (t) = P[ξt = 1 | ξt = 0 or 1] =
P01,e(0, t)

P00,e(0, t)+P01,e(0, t)
. (16)

To obtain an explicit expression for θ (t) one must first solve the differential
equation (7) for the transition probabilities Pi j,e(s, t) = P[ξt = j | ξs = i] for i, j =
0,1,2, assuming risk matrix to be Qe.
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Equations in (7) corresponding to Qe are second-order differential equations with
variable coefficients qi j(t). Under a mild condition specific to the characteristics of
HAV, analytical solutions for P01,e(s, t) and P00,e(s, t) can be obtained and are given
by

P01,e(s, t) = exp

(∫ t

s
[q11(v)− q01(v)]dv

)

×
∫ t

s
q01(v)exp

(∫ v

s
[q10(y)+ q01(y)]dy

)

dv, (17)

P00,e(s, t) = exp

(∫ t

s
[q00(v)+ q01(v)]dv

)

− exp

(∫ t

s
[q11(v)−q01(v)]dv

)

×
∫ t

s
q01(v)exp

(∫ v

s
[q10(y)+ q01(y)]dy

)

dv. (18)

Substituting the solutions of P01,e(s, t) and P00,e(s, t) in θ (t) in (16), the age-
specific prevalence at any age t can be calculated explicitly.
θ (t) is used to fit the age-specific prevalence survey data from seven European

countries.
The age-specific prevalence model θ (t) has several interesting features.

1. If there is no decline in antibody, i.e., q10(t) = 0, then the model θ (t) in (16)
reduces to a distribution function F(t),

θ (t) = F(t) = 1− exp(−
∫ t

0
q01(v)dv).

Then whatever be the chosen model for the risk q01(t), the age-specific
prevalence model F(t) will always be nondecreasing and will not produce
ups and downs as in the observed prevalence data. In particular, the logistic
model, i.e.,

q01(t) =
1

1+ exp(α+β t)

would not fit the observed prevalence data.
2. Examining θ (t) shows that Qe(t) cannot be a homogeneous Markov process,

for it will result in an increasing function for θ (t) in t. An increasing θ (t) is
inconsistent with the observed prevalence curves. This rules out constant values
for competing risks qi j. Or at least either q01 or q10 should be age-dependent in
some manner.

3. The survey data (shown in Fig. 7 as proportions) were taken from Frösner
et al. [12]. The survey was conducted by cross-sectional sampling of healthy
individuals (that is free of liver disease) in the population some time in 1976
which is set equal to zero in the calculation for Fig. 7. Serum specimens collected
from selected individual were tested for the presence of HAV antibody. The data
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Fig. 7 Age-specific prevalence model with loss and regain of immunity. Symbols in the figure are
explained in item 3 (The author thanks Mathematical Biosciences for the permission to reproduce
the figure from Yang and Chang [21])

were grouped into K age intervals with varying width. The available data are
proportions yk

nk
of individuals that are anti-HAV positive in the age interval k.

Each age interval spans a number of years and the mid-point of each age interval,
tk, represents (approximates) the age of individuals in the kth interval. So yk is the
number of anti-HAV positives in a sample of size nk taken from the subpopulation
of age tk. With this simplification, yk is a binomial random variable B(nk,θk)
where θk, computed from θ (t) in (16) as

θk =
P01,e(−tk,0)

P00,e(−tk,0)+P01,e(−tk,0)
. (19)

A shift of t in the above formula is necessary because the time of the survey in
1976 is set equal to zero. To evaluate θk, Yang and Chang [21] use the logistic
model specified in item 1 for q01(t) with two unknown parameters α and β , and
q10(t) is modelled by a constant risk starting at age 40 which is known to be
about the time when an individual begins to lose immunity. Therefore,

q10(t) = λ for t ≥ 40− tk
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= 0 for t < 40− tk

where λ is an unknown parameter which is denoted by ξ in Eq. (3.4) of Yang
and Chang [21]. The maximum likelihood estimates of the three parameters, α ,
β and λ were obtained by using the likelihood function:

L =
K

∏
k=1

θ (tk)yk [1−θ (tk)]nk−yk . (20)

(Note that the yk were sampled from subpopulations of age tk and hence are
independent.)

Replacing the unknown parameters in θ (t) by their respective maximum like-
lihood estimates computed from (20) yields a predicted age-specific prevalence
curve as shown in Fig. 7, computed for each of the three countries. The observed
proportions are denoted respectively by the squares, crosses and diamonds for
Greece, Holland and Norway. The goodness of fit of the model was measured
by the chi-squared values on the right margin. The estimated values of the
parameters and their covariances matrices are given in Table 1 of Yang and
Chang [21].

4. Allowing the recurrences of regain and diminishing immunity (i.e. q10(t) > 0)
into the model greatly increases the complexity of the model θ (t). However, the
complexity is unavoidable for producing a more realistic model.

5. It is important to obtain explicit analytical solution for θ (t). Otherwise, it would
be difficult to see how different risks are affecting the age-specific prevalence in
a global manner as noted in (1), (2), and (3).

6. Remark on interval censoring and current status data: An important problem in
survival analysis is to determine the time to a specific event. A typical example
is the time, Y , of a patient with a progressive chronic disease to enter a particular
state, say α . The information on Y is collected at a patient’s checkup times say,
τ1 < τ2, · · · . From such information one cannot determine the exact value of Y
except for knowing that it will be either in a time interval (τi,τi+1], for some
i= 1,2, · · · or before τ1 or after the last checkup time. Such interval-censored data
on Y are referred to as current status data. In particular Y is called case 2 interval-
censored if there are only two checkup times τ1 < τ2 (observable and possibly
random). Markov multistate models have been widely employed in the analysis
of interval-censored data, see, e.g., Andersen and Keiding [5], Banerjee [6], and
books by Kalbfleish and Prentice [15] and Sun [20]. The cross-sectional data in
the hepatitis example are collected only at one point in time which corresponds
to τ1 and the sampling is conditioned on individuals being alive at the time of
survey. Let b denote the birth time (calendar time) of an individual whose lifetime
is X . Suppose that the survey time is τ1 (a calendar time). Then the current age
and the residual lifetime of this individual at time τ1 are respectively τ1 −b and
b+X − τ1. An individual will be included in the population for survey if and
only if
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− (b− τ1)≤ 0 ≤ b+X − τ1. (21)

This is equivalent to the event [ξτ1−b = 0, 1], where the current age τ1 −b is the
age of an individual at the time of survey, see (16). Because of recurrences in
model Qe, an individual can be in and out of state 1 a random number of times.
Let U be the last time (calendar time) before τ1 that an individual enters into state
1 and ν be his sojourn time in state 1 since U . We then have ξτ1−b = 1 if and only
if (21) holds and τ1 is contained in the random interval

U ≤ τ1 ≤ min(U +ν, b+X)

where U,τ1 and b are measured in calendar time. Or equivalently

U − τ1 ≤ 0 ≤ min(U +ν− τ1, b+X − τ1).

We set U = ∞ if this individual is not infected at the survey time. In this sense,
we might say that U is conditionally interval-censored but it is not exactly the
case 2 (discussed above). Here U is neither a stopping time nor observable.
Furthermore, U is age-dependent. The conditioning event [−(b − τ1) ≤ 0 ≤
b+X − τ1] reminds us of the random truncation model.

Neyman’s Method of Minimum Modified χ2

Fix and Neyman provided a method of parameter estimation and some qualitative
discussion of the data, but did not carry out the actual data analysis in the paper.
Neyman’s RBAN (regular best asymptotic normal) estimates were proposed for the
risks in Qa. The RBAN estimation was introduced by Neyman as BAN estimation
for multinomial distributions in a paper presented at the first Berkeley Symposium in
1945 and appeared in the Proceedings of the Symposium in 1949. The paper shows
that under certain restrictions, estimates obtained by methods such as minimum χ2,
modified minimum χ2 and maximum likelihood are all RBAN. Having a rather
sparse data set, Fix and Neyman felt that the method of minimum modified χ2 (23)
appears to be the only feasible one for their estimation of risks qi j for all i and j.
Several sections of the F-N paper are devoted to the discussion of RBAN estimates
which we shall outline below.

Fix and Neyman considered two estimation problems. One is a patient’s (net)
survival probability in (4) and the other is the expected length of time a patient lives
a normal life (in state 2) under model Qb. The expected length of normal life during
an observation period [0,T ] is defined by

e01 =
∫ T

0
P01,b(0,u)du (22)
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where P01,b(0,u) is defined in (4) and computed in (6). Here for illustration we
arbitrarily choose the initial state of a patient to be state 0.

For both estimation problems it is necessary to estimate the four transition rates
qi j, for i �= j, in the model Qa. The authors considered two different approaches:
(i) the development of an estimation method with the follow-up data they have, and
(ii) the development of an estimation method with the follow-up data they would
like but do not have. The authors knew it is impracticable to collect the ideal data
on the exact time of direct transitions between any pair of states. What they would
like to have is “the information about the duration of some specified phases in the
fate of at least a part of the individuals considered”. For instance the number of
individuals originally in state 0 who at the conclusion of the period of observation
are still in state 0 without having had any period of normal life. Approach (ii) serves
as a suggestion for designing future follow-up studies. Both (i) and (ii) are about
finding RBAN estimates. But the computation in (ii) is considerably more complex.
We shall use approach (i) to convey the general idea of their estimation method.

Fix and Neyman ([11], pp. 230–231) organized their follow-up data as follows.
Suppose that the clinical trial started at time, say 0 and the period of the observation
is of length T . Initially, there are N0 persons in state 0 and N1 persons in state 1. The
available data are N0,N1 and the number Ni j of individuals who initially are in state i
and are found in state j at time T , for i = 0,1 and j = 0,1,2,3. Let φi j =Ni j/Ni. The
model counter part of the relative frequency φi j in (23) is the transition probability
Pi j,a(0,T ). The RBAN estimates of the four risks q01,q10,q13, and q02 in Qa are
obtained by minimizing the modified χ2 as given by

χ2 = N0

3

∑
j=0

(P0 j(0,T )−φ0 j)
2

φ0 j
+N1

3

∑
j=0

(P1 j(0,T )−φ1 j)
2

φ1 j
(23)

under appropriate side conditions.
Note that φi j is not the relative frequency of the number of direct transitions

from i to j as nowadays often used in nonparametric survival analysis. In Fix and
Neyman’s data, the direct transitions between any pair of distinct states i and j are
not available.

To emphasize the importance of a patient living a normal life, Fix and Neyman
produced a numerical example (p. 222 of the F-N paper) showing that a larger
survival probability results in a shorter duration of a patient living a normal life.
This example illustrates that not only the survival probability but also the duration
of living a normal life should be considered together for evaluation of a clinical trial.

A question arises as to why Neyman introduced the notion of RBAN when
the MLE is believed to be asymptotically efficient without any restrictions. Many
authors tried to prove this property but succeeded for restricted classes of estimates
only, and Neyman proved it for the RBAN class. Around 1950, the issue was settled
by the counterexamples produced by J. Hodges (unpublished), which by now are
well-known. The reader is referred to Le Cam [17] for an interesting historical note
on the development of the asymptotic theory of estimation in that period.
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In choosing the method of minimum modified χ2, Fix and Neyman reworded the
definition of the RBAN in the context of their competing risks model. It is easier
for us to define the RBAN estimates by a brief sketch of Hodges’s counterexample
first as given in the F-N paper. Let p̂n be the relative frequency of the number of
successes in n iid Bernoulli trials. We know that p̂n is the MLE of the probability of
success, p, in one trial, and that for any 0< p< 1 the sequence,

√
n(p̂n− p), tends to

the normal distribution N(0,σ2(p) = p(1− p)) as n tends to infinity. By modifying
the sequence p̂n for some values of n, Hodges constructed a competing sequence
of estimates p̃n of p such that

√
n(p̃n − p) converges to a normal distribution

N(0,τ2(p)), where the asymptotic variance τ2(p) is strictly smaller than p(1− p)
for some p, otherwise equals to p(1− p). Therefore, contrary to popular beliefs,
the sequence of MLE p̂n is not asymptotic efficient. In keeping with the usual
definition of asymptotic efficiency, the estimating sequence such as p̃n is called a
super efficient estimating sequence.

Neyman’s conditions for RBAN estimates are stated in two parts. Consider a
class C of estimates that are functions of the observed relative frequencies φi j for all
i, j having the following properties:

(i) (Exclusion of super efficient estimates) every estimate in C does not explicitly
depend on the sample size n; (Hodges’ example makes it clear.)

(ii) (Linearity) every estimate in C (as a function of φi j) has continuous partial
derivatives of the first order with respect to φi j for all i, j;

(iii) (Consistency) as n tends to infinity, every estimate in C converges in probabil-
ity to the true parameter for which it estimates.

Under conditions (i), (ii) and (iii), the following property (iv) holds:

(iv) (Asymptotic normality) every estimate θ̂ of parameter in class C has asymp-
totic normal distribution, i.e.

√
n(θ̂ −θ ) converges in distribution to N(0,σ2),

for some variance σ2.

Neyman called the estimates in class C “regular asymptotic normal estimates”
(RAN). A “best regular asymptotic normal estimate” (RBAN) is an estimate whose
asymptotic variance does not exceed any other RAN estimate in class C. Conditions
for existence of RBAN estimates are given in Neyman [18]. The asymptotic
properties of RBAN estimates are the same and can be obtained by several
methods including the MLE, minimum χ2 and minimum modified χ2. Finding
MLE becomes increasingly challenging when the model gets more complex. Fix
and Neyman felt the minimum modified χ2 is the only feasible method of finding
RBAN estimates with their limited data. It would be interesting in survival analysis
to compare properties of different estimation methods for finite samples.
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Concluding Remarks

We have revisited the Fix-Neyman competing risks model from the perspective of
the Kaplan-Meier estimator with a focus on recovery and relapses of a disease.
We made no attempt to review the literature on recurrences in survival analysis
except for a brief remark and citing a few publications. Many of the early
publications assume that recurrent events are not terminated by death or failure. This
assumption is different from that of the F-N model. Effort has been made in more
recent years to include death in modelling recurrent events. For instance, Y. Huang
and Wang [13] and C-Y Huang and Wang [14] introduced various bivariate models
to analyze the number of recurrent events up to the time of failure. The problems
studied by these authors seem different from that of Fix and Neyman. Fix and
Neyman investigated how a patient’s survival probability is affected by relapses and
recoveries. The interested reader is referred to Y. Huang and Wang [13], C-Y Huang
and Wang [14] and references therein.

The F-N framework offers a unified and general model system for analyzing
survival data in parametric as well as nonparametric analysis. The F-N model itself
needs to be extended to include time-dependent risks and thereby it generalizes the
fundamental K-M estimator to include recoveries and relapses in the calculation of
a patient’s survival probability. One such extension exists in the product-integral
representation of Aalen and Johansen [2] of the transition probabilities. However
the application of the product-integral representation requires the data on the exact
times of direct transitions between states which are not always available, as seen
in the example by Andersen et al. discussed in section “Extension of the Fix-
Neyman Competing Risks Model”. The Fix and Neyman approach of solving a
system of Kolmogorov equations can accommodate the situation when the the data
are relatively sparse and not as informative as the direct transition counts. Clinical
trial data are often of this kind and so are the survey data. The extension we have
in mind is to follow Fix and Neyman’s approach to develop parametric methods.
Many clinical trials have data on recovery and relapses. Account for these data
in the survival analysis would hopefully strengthen the findings in the treatment
comparisons in clinical trials.

Finding an explicit form of the survival probability (or the probability of first
passage time to death) requires solving a system of Kolmogorov equation (7)
for nonhomogeneous Markov processes. In general closed-form solutions are not
available except in special cases. For more complicated patterns of competing risks,
numerical solutions offer a viable method for investigating the problem.
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Quantiles of Residual Survival

Christopher Cox, Michael F. Schneider, and Alvaro Muñoz

Abstract In reliability theory, the lifetime remaining in a network of components
after an initial run-in period is an important property of the system. Similarly,
for medical interventions residual survival characterizes the subsequent experience
of patients who survive beyond the beginning of follow-up. Here we show how
quantiles of the residual survival distribution can be used to provide such a
characterization. We first discuss properties of the residual quantile function and
its close relationship to the hazard function. We then consider parametric estimation
of the residual quantile function, focusing on the generalized gamma distribution.
Finally, we describe an application of quantiles of residual survival to help describe
the effects at the population level of the introduction and sustained use of highly
active antiretroviral therapy for the treatment of HIV/AIDS.

Introduction

In many applications, the comparison of two survival distributions is summarized
by the estimation of a single relative hazard, under the standard proportional
hazards assumption. We have previously argued [4], along with others, that this
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assumption is frequently violated, and that estimation of selected quantiles of the
two distributions and their comparison by relative times (relative quantiles) can be
not only more appropriate but also more informative.

Patients returning for a follow-up visit after an initial diagnosis or treatment
often want to know what to expect in the future. This information, contained in
the conditional distribution of residual survival times, is an important metric for
evaluating the long term effects of interventions. In reliability theory, mean residual
life has been extensively studied, and is sometimes used instead of the hazard
function to characterize families of survival distributions. Here, we argue that the
use of quantiles of the residual survival distribution is a useful alternative.

We first discuss properties of the residual quantile function, including its close
relationship to the hazard function. We show that, like mean residual life, the
residual quantile function has the opposite shape from the hazard. More importantly,
the residual quantiles provide useful information about residual survival that is not
apparent in the behavior of the hazard. An advantage of the residual quantiles is
that they are expressed in units of time, which is the natural metric of survival.
Using the generalized gamma (GG) family, which we have previously advocated
as a platform for parametric survival analysis [4], we then discuss estimation of the
residual quantile function from the parametric perspective. In this case, estimation of
the residual quantile function for selected quantiles such as the median and quartiles
is relatively straightforward, and can be accomplished using standard statistical
software. Finally, using data from two multicenter cohort studies, we consider an
application in which absolute and relative residual twenty-fifth percentiles are used
to assess the effect at the population level of the introduction and continued use of
highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS.

Residual Survival

Basic Properties

Consider a random lifetime T with survival function S(t), distribution function F(t),
density f (t) and hazard h(t). For simplicity we assume that the survival function
is strictly decreasing and always positive, so that it has a well-defined inverse
with percentile function t(p)=F− 1(p)= S− 1(1− p). Residual life is the lifetime
remaining given survival to the present, i.e., to a particular time w> 0. The residual
survival distribution is most naturally defined by its survival function.

S
(

t
∣
∣
∣w
)
= P
(

T −w > t
∣
∣
∣T > w

)
=

S (w+ t)
S(w)

t ≥ 0 (1)

The residual hazard function can be simply described in terms of the original
hazard, h(t|w)= h(w+ t).
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The mean residual life function, whose properties have been extensively studied,
is the integral of S(t|w).

m(w) =
∫ ∞

0

S (w+ t)
S(w)

dt =
1

S(w)

∫ ∞

w
S(t)dt = E

(
T −w

∣
∣
∣T > w

)
(2)

Its derivative is related to the hazard function by m′(w)= h(w)m(w)− 1, and m(w)
therefore determines the underlying survival distribution ([14], Section 1.B.g). It
also follows that m′(w)≥− 1, i.e., the function m(w)+w is increasing.

Since survival times are typically right-skewed, the mean is perhaps not the
most useful summary measure. Instead, quantiles such as the median have been
considered more relevant for understanding the distribution of survival times. The
pth quantile of the residual survival distribution is

t (p,w) = S−1 [(1− p)S(w)]−w = t [p+(1− p)F(w)]−w = t [1− (1− p)S(w)]−w
(3)

This relationship is illustrated in Fig. 1, which shows how the residual quan-
tiles are determined by the 1− S(w)+ pS(w) quantiles of the underlying survival
distribution. In particular t(p,0)= t(p) is the pth quantile of this distribution, and
for any fixed w> 0, t(p,w) is a strictly increasing function of p with t(0,w)= 0 and
t(1−,w)=∞. It follows that the function t(w|p)+w is also increasing. As with mean
residual life, we consider t(p,w) as a function of w≥ 0, in this case for fixed values of
p, and we therefore denote the residual pth quantile function by t(w|p), for example,
t(w|0.5) is the residual median function.

The residual pth quantile function, particularly the residual median, has been
the subject of a number of studies. It is well known for example that for any
given 0< p< 1, t(w|p) determines S(w) only up to a periodic function with period
− log(1− p) [10]. In addition a number of papers have focused on nonparametric
estimation of t(w|p) [1, 5, 7, 9, 12].

The behavior of the residual quantile function can be characterized by computing
its derivative. Using the well-known result that the derivative of the pth quantile
function is the reciprocal of the density evaluated at the pth quantile, it follows that

t ′
(

w
∣
∣
∣p
)
=

(1− p) f (w)
f {t [1− (1− p)S(w)]} −1 =

h(w)
h{t [1− (1− p)S(w)]} −1 =

h(w)

h
[
t
(

w
∣
∣
∣p
)
+w
] −1

(4)

Thus, as with mean residual life, the derivative of the residual quantile function
is closely related to the underlying hazard. Equation 4 characterizes the reciprocity
of t(w|p) and h(w). Specifically, if the hazard function is increasing (respectively,
decreasing) then the residual quantile function is decreasing (increasing). These
results were derived for the residual median by Lillo [13] but they clearly hold for
any 0< p< 1.
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w

1 - S(w)

1

0

pS(w)

t[1-S(w)+pS(w)]
t(w|p)w= t[1-S(w)]

S:survival function with percentile t(q)=S-1(1-q)

t(w|p)= time subsequent to w that p% of the
 survivors at w take to fail

= t[1-S(w)+pS(w)] - w

Fig. 1 Definition of the residual pth percentile after w in terms of the percentile function of
the underlying distribution. Following the flow determined by the arrows starts at w and ends
at t(w|p)+w= t[1− S(w)+ pS(w)]

In addition, in the appendix we show that for arch-shaped hazards, the residual
quantile function either has a bathtub shape or is always increasing (Lemma 4).
Similarly, for bathtub-shaped hazards the residual quantile function either has an
arch shape or is always decreasing. In particular, for arch-shaped hazards satisfying
h(0)= 0 the residual quantile function always has a bathtub shape, while for a
bathtub-shaped hazard satisfying h(0)=∞, the residual quantile function must
have an arch shape. These two conditions are satisfied by the parametric families
discussed in the next section. Of course if the hazard has multiple local extreme
points then the situation may be more complicated; our interest is in parametric
families where this does not occur. It is worth noting that the mean residual life
also reflects the behavior of the hazard in a similar way as the residual quantiles
[8, 15, 17].

Another interesting property of the residual pth quantile function involves the
comparison of two distributions. We have t0(w|p)≥ t1(w|p) for all w≥ 0 and
0≤ p< 1 if and only if S0(t|w)≥ S1(t|w) for all t ≥ 0 and w≥ 0 if and only if
S0(w)/S1(w) is increasing if and only if h1(w)≥ h0(w) for all w≥ 0 ([14], Section
2.A), which is a stronger condition than simply S0(w)≥ S1(w). Conversely if the
two hazard functions cross, then the residual quantile functions must cross as well,
for at least some quantiles.

Differentiating both sides of Eq. 4 shows that the sign of t′′(w|p) is also
determined by the hazard, through the function h′(w)/h2(w), so that when this
function is increasing (decreasing), we have t′′(w|p)< 0 (> 0) and the residual
quantile function is concave (convex).
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Examples: Parametric Survival Distributions

A very flexible family of parametric models is provided by the generalized
gamma (GG) distribution. As discussed in Cox et al. [4], this is a three-parameter
(β ,σ > 0,κ) distribution with survival function

SGG(t) = 1−Γ (κ−2 exp{κ [log(t)−β ]/σ} ;κ−2)= 1−Γ
[

κ−2
(

e−β t
)κ/σ

;κ−2
]

if κ > 0

SGG(t) = Γ
[

κ−2
(

e−β t
)κ/σ

;κ−2
]

if κ < 0

where Γ(t;γ)=
∫ t

0 xγ − 1e− xdx/Γ(γ) is the cumulative distribution function for the
gamma distribution with mean and variance equal to γ > 0. Since the incomplete
gamma function is supplied in standard statistical software packages, the GG
survival distribution effectively has a closed form representation, so that compu-
tation of either the density or the survival function is straightforward. The limiting
case κ = 0 is the log normal distribution, and κ = 1 is the Weibull. In addition,
the hazard functions of the GG family include all four of the basic shapes [4]:
(1) increasing hazard for 0<σ < 1 and σ ≤ κ ≤ 1/σ ; (2) decreasing hazard for
σ > 1 and 1/σ ≤κ ≤σ ; (3) bathtub hazard for κ >max(σ , 1/σ ); and (4) arch-
shaped hazard for κ <min(σ , 1/σ ).

The GG family also has the property that h(0)= 0 for arch-shaped hazards,
and h(0)=∞ when the hazard has a bathtub shape [4]. Therefore the shape
of the residual pth quantile function is determined by the shape of the hazard
function: (1) decreasing for 0<σ < 1 and σ ≤κ ≤ 1/σ ; (2) increasing for σ > 1
and 1/σ ≤ κ ≤σ ; (3) arch-shaped for κ >max(σ , 1/σ ); (4) bathtub-shaped for
κ <min(σ , 1/σ ).

For example, the residual pth quantile function for the Weibull distribution
(κ = 1) is increasing if σ > 1, and decreasing if σ < 1. The particular case of the
exponential distribution (κ =σ = 1) has t(w|p)≡ t(p). The log normal distribution
always has a bathtub-shaped residual quantile function since κ = 0<min(σ , 1/σ ).

The GG quantile function is given by [4]

log
[
tGG(β ,σ ,κ)(p)

]
= β +σ log

[
tGG(0,1,κ)(p)

]
= β +

σ
κ

log
[
κ2Γ−1 (p;κ−2)] if κ > 0

log
[
tGG(β ,σ ,κ)(p)

]
= β +σ log

[
tGG(0,1,κ)(p)

]
= β +

σ
κ

log
[
κ2Γ−1 (1− p;κ−2)] if κ < 0

The quantile function can be combined with the survival function to obtain the
residual quantile function for GG(β ,σ ,κ).

log
[
t
(

w
∣
∣
∣p
)
+w
]
= β +

σ
κ

log

(

κ2Γ−1
[

1−(1− p)

(

1−Γ
[

κ−2
(
e−βw

)κ/σ
;κ−2

])

;κ−2
])

κ > 0

log
[
t
(

w
∣
∣
∣p
)
+w
]
= β +

σ
κ

log

[

κ2Γ−1
(

(1− p)Γ
[

κ−2
(

e−βw
)κ/σ

;κ−2
]

;κ−2
)]

κ < 0
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Fig. 2 Hazard [h(w)], residual 25th percentile [t(w|0.25)], residual 50th percentile [t(w|0.50)],
residual 75th percentile [t(w|0.75)], and mean residual life [m(w)] functions for GG
(β ,σ ,κ)= (0,0.5,0) (left panel) and GG (β ,σ ,κ)= (0, 4/3, 3) (right panel) distributions. For display
purposes the hazard function was multiplied by 100

Note that in this expression e− β appears as a scale factor for w and eβ is a scale
factor for t(w|p). Therefore, with this parameterization the shape of the hazard is
independent of the location parameter β , and so the shape of the residual quantile
function is independent of β as well.

Examples of residual quantile functions for two different GG distributions are
shown in Fig. 2, illustrating the reciprocal tendencies of the hazard and residual
quantile functions. The left hand panel shows the arch-shaped hazard for the log
normal distribution GG (0,0.5,0). The figure also shows the bathtub-shaped residual
quantile functions for p= 0.25, 0.5, 0.75. For comparison we have included the
mean residual life, m(w), computed using numerical integration. In the right hand
panel of Fig. 2 we have GG (0, 4/3, 3), which is an example of a bathtub-shaped
hazard since κ >max(σ , 1/σ ). The three residual quantile functions each have the
required arch shape, as does the mean residual life.

Programs to estimate the parameters of GG regression models by maximum
likelihood, allowing right censoring and in some cases late entry, are available
in standard statistical software packages such as SAS, Stata and R. (For sample
programs see http://www.statepi.jhsph.edu/software/generalgamma/generalgamma.
html.) As described in Cox et al. [4], the residual quantile function can be estimated
for the GG family using a general purpose program for maximum likelihood

http://www.statepi.jhsph.edu/software/generalgamma/generalgamma.html
http://www.statepi.jhsph.edu/software/generalgamma/generalgamma.html
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estimation, also available in standard statistical packages. We used SAS PROC
NLMIXED, which has the additional capability of estimating nonlinear functions
of the (estimated) parameters and data, with standard errors computed by the
delta method. This feature was used to compute the residual quantiles for a series of
different time points (w> 0) for plotting. As described in the next section, bootstrap
methods were used to calculate standard errors.

Application

Study Goals and Design

HIV therapy has evolved over time, and it is possible to define sequential calendar
periods corresponding to distinct therapeutic eras. Our current analysis includes
four calendar periods: an initial period of no therapy or only monotherapy (July
1984–December 1989), followed by a second period of monotherapy or combina-
tion therapy (January 1990–December 1994), then by the introduction of highly
active antiretroviral therapy (HAART) in the third period (January 1995–December
1999), and finally the era of stable HAART (January 2000–June 2009) in the fourth.
The goal of the analysis was to study the effect of HAART on residual survival at
the population level.

Our analysis used data from two large, multicenter cohort studies. The first is
the Multicenter AIDS Cohort Study (MACS), an ongoing study of homosexual and
bisexual men begun in 1983 [11]. The second is the Women’s Interagency HIV
Study (WIHS), a multicenter cohort study in women begun in 1994 [2]. Both studies
have used similar methods and the same data coordinating center. Both studies
conduct semi-annual interviews, which include detailed questions about the use
of antiretroviral therapy. Data from both cohorts show that a high percentage of
participants with clinical AIDS were actually using the indicated therapy during
the corresponding period [16]. Deaths are ascertained using both active and passive
methods, including abstraction of death certificates and searches of national death
registries.

The analysis included 2216 individuals, 1559 (70%) men and 657 (30%) women
with follow-up after an incident diagnosis of clinical AIDS, defined using the
1993 CDC surveillance criteria [3] based on clinical conditions (i.e., excluding
the laboratory criterion of low CD4 count). MACS men with an incident AIDS
diagnosis in either of the first two calendar periods who survived to the end of the
period were treated as censored at the end of the period in which the diagnosis
occurred, and did not contribute time to subsequent periods. This was done to ensure
comparability between the men and women in the final two periods [16], since the
WIHS began in 1994, approximately 11 years after the MACS. Individuals with
an incident AIDS diagnosis in the third period who were alive at the end of the
period were censored at that point and treated as late entries in the fourth period.
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Furthermore, for WIHS participants, the date of the AIDS diagnosis could only be
determined as the midpoint between two consecutive visits, so half the length of this
interval was included in the analysis as left truncation.

If an individual enters observation in a given period at v years after an AIDS
diagnosis at age a (with v= 0 if the individual develops AIDS within the given
period), the status at the end of the follow-up within the period at t > v years from
the AIDS diagnosis could be either deceased or alive. If SGG(t) denotes the survival
function of the GG distribution that describes the time to death in a given period and
fGG(t) denotes the corresponding density function, the contributions to the likelihood
of those observed to die in the period were fGG(t)/SGG(v). Since essentially all
individuals are expected to die by age 100 years (i.e., t + a< 100), and in order
to impart an anticipated degree of realism into the analysis [18], those alive at
the end of follow-up were handled as interval censored observations so that their
contributions to the likelihood were [SGG(t)− SGG(100− a)]/SGG(v).

Given the dramatically improved survival among individuals with AIDS after
the introduction of HAART, subsequent prognosis given survival to the present is
of great relevance for treated patients. We describe the subsequent experience of
individuals who survived for various amounts of time after an initial AIDS diagno-
sis, using parametric GG models to estimate the residual 25th percentile function,
t(w|0.25), in each of the four therapy eras. Since relative times (percentiles) are
a useful metric for the comparison of two survival distributions, we also estimated
relative (to period one) residual 25th percentiles for selected survival times (w= 0.5,
1.5, 3 and 4 years), together with appropriate measures of precision.

For estimation of the precision of the residual percentiles, the delta method
performed well in periods one and two, allowing the construction of confidence
bands for the residual survival function. For example, for period one, the standard
errors of the logs of the residual 25th percentiles for w= 0.5, 1.5, 3, and 4 years
from the delta method were 0.058, 0.067, 0.148, 0.210 and for the bootstrap 0.052,
0.073, 0.172, 0.243, indicating reasonably good agreement between the large sample
and resampling approaches, with slightly less agreement at later times when less
data were available. However, in periods three and four the standard errors were
clearly inappropriate. We believe this is because, first, compared to the first two
periods, in periods three and four many of the participants remained alive at the
end of the period; and second, the assumption of interval censoring introduced
nonlinear constraints on the three parameters. While this did not affect estimation of
the parameters themselves, it did cause problems for estimation of standard errors.
We therefore used bootstrap resampling with 500 samples to obtain information
concerning the variability of parameter estimates and both absolute and relative
residual quantiles estimated from the data. Bootstrap samples were selected at
the individual level, sampling individuals and then including all observations for
each individual selected for a given sample. This approach has the additional
advantage of addressing the finite sample properties of the estimates. The bootstrap
distributions of the relative residual 25th percentiles for w= 0.5, 1.5, 3, and 4 years
are summarized using box-percentile plots [6]; the ends of the box are at the 5th and
95th percentiles so that the box can be interpreted as an approximate 90% bootstrap
confidence interval based on the percentile method.
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Finally, in the fourth period we estimated the residual 50th and 95th
percentiles of residual life, after adjusting for each 10-year increase in age
at AIDS diagnosis, with a separate adjustment for age at AIDS greater
than 40 years. We first modeled T ∼ SGG[β 0 + β 1(age at AIDS− 40)/10
+β 2(age at AIDS− 40)I(age at AIDS> 40)/10, σ0 +σ1I(age at AIDS> 40),
κ0 +κ1I(age at AIDS> 40)], where I(·) is the indicator function. Because σ1 and
κ1 were not significantly different from zero, we used a conventional GG regression
model (i.e., the reduced model with σ1 =κ1 = 0), including the linear spline with a
change point at 40 years.

Results

Descriptive statistics for the four therapy eras are provided in Table 1. The data
show a dramatic decline in mortality from greater than 50% in period 1 before the
introduction of HAART to 11% with the introduction in period 3 and to 5% with
sustained use of HAART in the fourth period. The table also includes the parameter
estimates and bootstrap-based standard errors for the GG models fit separately for
each period. In each of the last two periods the estimates of the location parameter
β are much larger than for the first two periods, indicating considerably improved
survival after the introduction of HAART, as also shown by the medians and 95th
percentiles at the bottom of Table 1. The 5th percentiles, however, show that the
improvement in survival was not uniform. In addition, differences in the shape (κ)
parameters are indicative of very different hazard behavior in the pre-HAART and
post-HAART eras.

The estimated GG survival functions for each period are shown in the left-
hand panel of Fig. 3, with selected percentiles of each distribution marked on the
curves. The corresponding Kaplan-Meier curves are included to show goodness of
fit, and indicate that the GG models fit the data well. The survival functions clearly
illustrate the dramatic effect of HAART in the last two periods compared to the pre-
HAART eras. For example, the 25th percentile increased from 0.58 and 0.73 years
in periods one and two to 2.14 and 3.68 in periods three and four, respectively. The
corresponding hazard functions are shown in the right-hand panel of Fig. 3, and also
reflect improved survival in the HAART eras. The shapes of the hazards for the first
two periods are in marked contrast to those of the two periods after the introduction
of HAART. HAART induces a decreasing hazard in the first 10 years after an AIDS
diagnosis before age becomes dominant and produces a steep increase in the hazard
after 60 years of age, which corresponds to 20 years in the x-scale of the figure,
as the median age at AIDS diagnosis was 40 years (see Table 1). It is clear that the
period of stable use of more potent HAART was associated with a lower hazard than
in the era when HAART was introduced.

Figure 4 shows the residual 25th percentile functions tGG(w|0.25)= tGG

(1− 0.75S(w))−w for the four periods based on the four GG models. Consistent
with the bathtub-shaped hazard functions in periods three and four shown in
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Fig. 3 Survival after a diagnosis of AIDS. Survival functions and appropriateness of the GG
model with separate parameters for each of the four therapy eras, as judged by Kaplan-Meier

curves (left panel); corresponding hazards of death (right panel). Parameter estimates
(
β̂ , σ̂ , κ̂

)

for each period are given in Table 1. The symbols Δ, ◦, and ∇ correspond to the 25th percentile,
50th percentile, and 75th percentile, respectively, of each distribution

Fig. 3, the residual 25th percentile functions for periods three and four are both
arch-shaped. In the final two periods, we estimate that 75% of participants who
survive for five years after a diagnosis of AIDS will survive for more than 3.9 and
5.7 additional years, respectively.

To more directly compare the residual survival times in the four periods we turn
to relative residual times, that is, to ratios of residual quantiles from periods 2, 3 and
4 to period one. For periods 2–4, Fig. 5 displays relative residual 25th percentiles
with box-percentile plots based on 500 bootstrap samples at four different points in
time after a diagnosis of AIDS (w= 0.5, 1.5, 3 and 4 years). In addition, for each
period we have indicated the percentage of participants surviving to each of these
times at the top of the figure. The graph shows a slight improvement in residual
survival in period two relative to period one, in particular the 90% confidence
interval for the relative residual 25th percentile excludes one for w= 3, 4 years. The
relative residual quantiles increase in the later periods, indicating better residual
survival with increasing time survived (w) in periods three and four compared to
period one. For w= 0.5 and 1.5 years there is virtually no overlap between the
bootstrap distributions of relative 25th percentiles for periods three and four, but
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each period are given in Table 1

by w= 4 years there is substantial overlap. This reflects the time required before
HAART was used universally in the two cohorts. As one would expect the precision
of the estimates decreases with the time survived (w), since only 14% and 6% of
participants in period one survive to 3.0 and 4.0 years after an AIDS diagnosis,
respectively.

The parameter estimates (SEboot) for the linear spline model for period 4
{SGG[β 0 +β 1(age at AIDS− 40)/10+ β 2(age at AIDS− 40)I(age at AIDS> 40)/
10,σ0, κ0]} were β̂0 = 3.492 (0.075), β̂1 =−0.119 (0.144), β̂2 =−0.301 (0.189),
σ̂0 = 0.520 (0.022), κ̂0 = 3.220 (0.121). Figure 6 shows the residual 50th per-
centiles (left panel) and residual 95th percentiles (right panel) for each of six
different ages at AIDS diagnosis (30, 35, 40, 45, 50, and 55 years) in period four,
based on the conventional GG model. The arch-shaped residual 50th percentile
functions for ages 30, 35, and 40 are similar; the curves only start to separate for ages
greater than 40. In contrast, for each age group the residual 95th percentile functions
are almost entirely monotonically decreasing after a very slight initial increase.

The left panel of the figure shows that, at the time of AIDS diagnosis (w= 0),
50% of those who were 30 years of age when they developed AIDS will live
an additional 16 years. Interestingly, 50% of individuals who were 30 years of
age when they developed AIDS and survived an additional 15 years also lived an
additional 16 years. This is in contrast to what is observed for those who were 55
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Fig. 5 Relative residual 25th percentile of survival for w= 0.5, 1.5, 3, and 4 years after AIDS
diagnosis in periods 2, 3 and 4 compared to period one. Box-percentile plots based on 500
bootstrap samples; the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of each distribution of
relative residual percentiles are depicted. Thus each box corresponds to a 90% bootstrap confidence
interval. Residual 25th percentiles (SEboot) at 0.5, 1.5, 3 and 4 years for period one were 0.53 (0.03),
0.43 (0.03), 0.33 (0.06), and 0.29 (0.07). At the top are proportions surviving to each value of w
for each period

years of age when they developed AIDS; the residual 50th percentile at w= 0 is
7.5 years, compared to the residual 50th percentile of 4.5 years at w= 15 years.
These results are logical; t(0|0.50)≈ t(15|0.50) among individuals who develop
AIDS at age 30 because we are comparing relatively young 30 and 45 year-olds
but, t(0|0.50)> t(15|0.50) among individuals who develop AIDS at age 55 because
we are now comparing 55 to 70 year olds.

Discussion

Here we have shown that residual survival is useful for the evaluation of interven-
tions from both the patient and scientific perspectives. Residual survival provides
additional information concerning longer term effects, which should be considered
as part of any assessment of the effect of an intervention on a time-to-event
outcome. The conditional metric is appropriate for the point(s) at which these
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Fig. 6 Residual 50th percentile functions (left panel) and residual 95th percentile functions (right
panel) for survival after AIDS in period 4 (January 2000 through June 2009) for different ages at
time of AIDS diagnosis, based on a conventional GG regression model with a linear spline for age
at AIDS diagnosis greater than 40

effects become most relevant. We have previously emphasized the importance of
the quantile function and the use of relative times in addition to relative hazards,
proportional or not, for providing a more complete comparison of the underlying
survival distributions. These ideas work equally well in the context of residual
survival.

The application considered four different periods of therapy for HIV infected
individuals with a diagnosis of AIDS. Our results provide additional information
concerning the beneficial effects of HAART. In particular we saw that, in the final
two periods, 75% of those who survived for five years after an initial AIDS diagnosis
were estimated to survive an additional 3.9 and 5.7 years. In this application,
residual survival provided useful information about the longer term effects of
HAART at the population level.

As recently reported by Wada and colleagues [18], when a substantial proportion
of individuals in the study population remain alive at the end of follow-up, handling
the observations as censored in the interval with upper bound determined by 100
years of age complements the observed data and imparts an anticipated degree of
realism to the analysis. Indeed, for the study population of period four with 40 years
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as the median age at AIDS diagnosis, 99.9% of them are expected to die by age 90.5
years (= 40+ 99.9th percentile of GG(3.297, 0.549, 3.031)). In contrast, if those
remaining alive in period four were treated as right censored observations, 18%
(= survival of GG(2.854, 1.730, 0.517) at 60) would be expected to survive more
than 60 years after the diagnosis of AIDS at the median age of 40 years, which is an
unrealistic estimate.

The GG family has again provided a useful platform for parametric survival
analysis. Using these models, it was straightforward to obtain expressions for the
residual quantile functions that were easily implemented using standard statistical
software [4]. Although the delta method did not consistently provide useful
estimates of variation, the bootstrap was not difficult to implement and worked quite
well. We believe that the parametric GG approach has been shown to be very useful
once again and deserves to be more widely employed.
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Appendix

Quantiles of Residual Survival

We derive the shape of the residual quantile function for continuous, arch-shaped
hazards satisfying h(w)> 0 for w> 0. Statements and proofs for bathtub-shaped
hazards are similar; the condition corresponding to h(0)= 0 in Lemma 4 is h(0)=∞.

Lemma 1. Suppose h(w) is continuous and decreasing on the interval (wm,∞). Then
t′(w|p)> 0 for w>wm and therefore t(w|p) is increasing on (wm,∞).

The proof is immediate from Eq. 4.
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Lemma 2. Assume that h(w) is arch-shaped, increasing on the interval (0,wm), and
decreasing on (wm,∞), with a maximum at wm. Suppose that for some wp <wm

we have h(wp)≤ h[t(wp|p)+wp]. Then h(w)< h[t(w|p)+w] for every w<wp, and
therefore t(w|p) is decreasing on (0,wp).

Since h(w) is increasing on (0,wm) and t(w|p)+w is increasing, the proof is
immediate if t(wp|p)+wp ≤wm, since in this case, t(w|p)+w< t(wp|p)+wp ≤wm

for w<wp and therefore h(w)< h[t(w|p)+w]. Alternatively, if wm < t(wp|p)+wp

then for w<wp, either t(w|p)+w≤wm, which implies h(w)< h[t(w|p)+w]; or
wm < t(w|p)+w< t(wp|p)+wp, which implies h(w)< h(wp)≤ h[t(wp|p)+wp]
< h[t(w|p)+w] since h(w) is decreasing on (wm,∞).

Lemma 3. Assume that h(w) is arch-shaped as in Lemma 2. For a given
0< p< 1, suppose that for some wp > 0, we have t′(wp|p)= 0; equivalently,
h(wp)= h[t(wp|p)+wp]. Then wp <wm and t(w|p) is decreasing on (0,wp) and
increasing on (wp,∞), and therefore has a bathtub shape with a minimum at wp. If
there is no such value wp then t(w|p) is increasing for all w> 0.

Since h(w) is arch-shaped we must have wp <wm < t(wp|p)+wp. By the
first lemma, t(w|p) is increasing on (wm,∞), and by the second lemma, t(w|p)
is decreasing on (0,wp). For wp <w<wm, we must have h(w)> h(wp)=
h[t(wp|p)+wp]> h[t(w|p)+w] since wm < t(wp|p)+wp < t(w|p)+w. Therefore
t(w|p) is increasing on (wp,wm). The second statement follows from Lemma 1 and
the fact that t(w|p) has no critical point.

Lemma 4. Suppose that h(w) is arch-shaped as in Lemma 2. If h(0)< h(w) for all
w> 0, in particular if h(0)= 0, then t(w|p) has a bathtub shape for all 0< p< 1.
If h(0)> 0 and h(0)> h(w∗) for some 0<w∗ , then there is a percentile 0< p∗ < 1,
such that t(w|p) is increasing for all p∗ < p< 1.

Since h(w) is decreasing on (wm,∞), we have h(w)> h[t(w|p)+w] for
wm <w and all 0< p< 1. If h(0)< h(w) for w> 0, then for 0<w<wm

sufficiently small we must have h(w)< h[t(w|p)+w] by continuity and
h(0)< h[t(p)]= h[t(0|p)+ 0]. Since h(t) is continuous, there is a point 0<wp < wm

such that h(wp)= h[t(wp|p)+wp]. By Lemma 3, the residual quantile function has
a bathtub shape, with a minimum at wp. Now suppose h(0)> 0 and h(0)> h(w∗).
Then wm <w∗ , and therefore h(w) is decreasing on (w∗ ,∞) and h(w)> h(w∗) for
w<w∗ . By Lemma 1, t(w|p) is increasing on (wm,∞) for all 0< p< 1. Now choose
0< p∗ < 1 large enough that w∗ < t(p∗) and therefore h(w∗)> h[t(p∗)]. Then for all
p∗ < p and w<wm it follows that h(w)> h(w∗)> h{t(w|p)+w}. Therefore t(w|p) is
also increasing on (0,wm).

Note, however, that t(w|p) cannot be increasing for all 0< p< 1. For
either an arch-shaped or bathtub-shaped hazard, there must be at least one
pair of values 0<w∗ <w∗∗ such that h(w∗)= h(w∗∗), and then t′(w∗ |p∗)= 0
for p∗ = 1− S(w∗∗)/S(w∗) since t(w∗ |p∗)+w∗ =w∗ ∗ . An example of an arch-
shaped hazard satisfying h(0)> 0 and h(0)> h(w∗) for some 0<w∗ is given by
h(t)= (2+ t− t2)10≤ t≤ 1 + {1+ exp[−(t− 1)]} 11≤ t. It is not difficult to verify
graphically that t(w|p) is increasing for p≥ 0.90.
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Methods for Evaluating Prediction Performance
of Biomarkers and Tests

Margaret Pepe and Holly Janes

Abstract This chapter covers material presented in a short course at the 2011 Inter-
national Conference on Risk Assessment and Evaluation of Predictions. Methods for
evaluating the performance of markers to predict risk of a current or future clinical
outcome are reviewed. Specifically, we discuss criteria for evaluating a risk model
including: calibration, accurate classification and benefit for decision making using
the model. Measures for making comparisons between models are described. The
role of risk reclassification techniques is discussed. We present a detailed example.

Introduction

Background

Predicting an individual’s risk of a particular outcome of interest is a key component
of medical decision making. For example, the Framingham Risk Calculator (www.
framinghamheartstudy.org) provides 10 year risks of cardiovascular event outcomes
such as coronary heart disease and myocardial infarction events as functions of
risk factors [6]. Risk factors for hard coronary heart disease (HCHD), defined as
myocardial infarction or coronary death, include age, smoking status, treatment
for hypertension and levels of total cholesterol, high density lipoproteins and
systolic blood pressure. If the 10-year risk exceeds 20 %, long term treatment
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with cholesterol lowering drug therapy is recommended. Another risk calculator
routinely used in clinical practice is the Breast Cancer Risk Assessment Tool
(BCRAT) [32]. The predicted outcome may be a future event such as a cardio-
vascular event for the Framingham Risk Calculator or breast cancer diagnosis for
BCRAT. However, a current condition can also constitute the predicted outcome.
For example, presence of acute kidney injury is the outcome predicted in Parikh
et al. [16] and presence of critical illness requiring hospitalization is the outcome
predicted by Seymour et al. [26]. New molecular biology techniques for measuring
biomarkers and new imaging technologies portend the availability of excellent
predictors of risk in the future. Moreover, easy dissemination of risk calculators over
the internet will increase the impact of risk prediction models on clinical practice.

In this chapter we discuss methods for evaluating risk prediction models. Since
the goal is to use risk calculators in medical decision making, our perspective is that
the crucial evaluations are about determining whether or not good decisions can be
made with use of the risk prediction model. For much of the chapter we define a
good decision rule as one that recommends treatment for people who would get the
outcome of interest in the absence of treatment (called cases here) and does not
recommend treatment for those who would not have the outcome (called controls
here). The rationale is that the cases could possibly benefit from treatment while the
controls would not benefit but would be subjected to toxicities, expenses and other
costs associated with treatment. Therefore, we consider that a prediction model
is good if it leads to a large proportion of cases being classified into a treatment
category and a large proportion of controls into a no-treatment category. However,
prediction models are not just classifiers. A prediction model is an algorithm that
people use to calculate their risk and as such it has real meaning and interpretation
for individuals. This must be accounted for in evaluating a prediction model and
sets it apart from evaluations of other classifiers such as diagnostic tests where a
numerical score itself may not have meaning.

Notation and Assumptions

We write D for the outcome of interest. Without loss of generality we assume that
D is a negative outcome and we refer to it as the “bad outcome”. We assume that
the outcome is binary, D = 1 for a case and D = 0 for a control. If the outcome
is an event occurring within a specific time period, for example a cardiovascular
event within 10 years, the cases may be called events and the controls may be called
nonevents. The prevalence or event rate in the population is denoted by ρ :

ρ = P(D = 1).

The predictors are denoted by X and Y , both of which may be multidimensional.
In section “Measuring Prediction Performance of a Single Model”, we consider a
single risk model and use X for the predictors in the model. In section “Comparing



Methods for Evaluating Prediction Performance of Biomarkers and Tests 109

Two Risk Models”, we consider two nested risk models, one with the baseline
predictors denoted by X and one expanded model that includes the predictors Y
in addition to X .

To focus the presentation we assume that in the absence of predictor information
subjects do not receive treatment. The purpose of the risk model is to identify sub-
jects for treatment. One may be interested in the opposite scenario in some settings.
That is, standard of practice may be to receive treatment and the purpose of the
model is to identify subjects at low risk who may forego treatment. This setting can
be dealt with using methods analogous to those we describe here and is mentioned
later, but for the most part, and to keep the discussion focused, we consider the
default no-treatment scenario.

We assume that data are available for a cohort of N independent untreated
subjects. We write the data as {(Di,Yi,Xi); i = 1, . . . ,N}. Most of this chapter con-
cerns conceptual formulations of measures to quantify and compare the prediction
performance of risk models. As such, sampling variability and statistical inference
is not a major focus, at least in sections “Measuring Prediction Performance of a
Single Model” and “Comparing Two Risk Models”. In other words we assume N is
very large.

Illustrative Data

For illustrative purposes we use a simulated data set. The simulated data are
available on the DABS website (http://labs.fhcrc.org/pepe/dabs/index.html) and
were previously used in a publication [19]. The data reflect the prevalence and risk
ranges that have been reported for cohort studies of cardiovascular disease. A total
of 10,000 observations are included, of which 1017 are case subjects and 8983 are
control subjects. Predictors X and Y are one-dimensional and continuous. In practice
the predictors X and/or Y may be scores derived from multiple risk factors or
biomedical measurements such as blood levels of lipids or C-reactive protein.
In section “Measuring Prediction Performance of a Single Model” we focus on the
predictor X only, while in section “Comparing Two Risk Models” we consider X
and Y together as predictors. Figure 1 shows the joint and marginal distributor of X
and Y among cases and controls. Table 1 shows fitted logistic regression models for
the baseline risk model including X only and the expanded risk model including X
and Y .

Chapter Outline

In section “Validity of the Risk Calculator” we discuss the concept of risk
and validity of a risk model. The performance of a risk model is discussed in
section “Measuring Prediction Performance of a Single Model”. A plethora of

http://labs.fhcrc.org/pepe/dabs/index.html
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Fig. 1 Joint and marginal distributions of X and Y among cases and controls

Table 1 Estimated
coefficients for baseline and
expanded risk models

Baseline model Expanded model

Factor Coefficient SE Coefficient SE

Intercept −3.67 0.07 −4.23 0.09
X 1.72 0.05 1.77 0.05
Y 1.01 0.05

performance measures are used to assess prediction performance and we describe
the main ones. Insights and relationships amongst the measures are provided.
In section “Comparing Two Risk Models” we consider the comparison of two risk
prediction models focusing especially on the comparison of two nested models. This
is a somewhat controversial area of statistical methodology where public debate
and discourse is needed. We hope that this chapter will add constructively to the
discourse.
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Validity of the Risk Calculator

What Is risk(X)?

The function risk(x) = P(D = 1|X = x) is the frequency of events among subjects
with predictor values X = x. It is important to remember that statistical analysis
delivers information about population level entities, such as averages and fre-
quencies and distributions. We emphasize this point because the term ‘individual
level risk’ is often used in this era of ‘personalized medicine’. But the risk value
calculated from the risk calculator for a subject with predictors X = x, risk(x), is not
the probability of a random event for that subject. Rather it is the frequency of events
in the group of subjects with the same predictors as that subject.

To make the distinction concrete, suppose that risk(x) = 0.20 and consider the
(large) group of subjects with predictors X = x. The following scenarios are all
consistent with risk(x) = 0.20: (i) 20% of the subjects are destined to have the event
with probability 1 while 80% are destined not to have the event; (ii) for each subject
i there is a stochastic mechanism giving rise to an event D = 1 with individual level
probability πi = 0.20; (iii) 10% of subjects are destined to have the event (πi = 1.00
for them), 50% are destined not to have the event (πi = 0.00 for them) and for 40%
of subjects the outcome is stochastic with πi = 0.25. Gail and Pfeiffer [7] discuss
the distinction between the unobservable individual level probabilities denoted by
πi and risk(x) = P(D = 1|X = x). They note the equality: risk(x) = E{πi|Xi = x}.
A simulated example that illustrates the distinction can be found in Pepe [19].

Unless repeated observations of the outcome were available for an individual, one
cannot make inference about individual level risks. In this sense, the individual level
risks, i.e. the πi’s, are not observable. It is not clear that they are even well defined
when a subject can only experience one event. We regard the concept of individual
level risk π as a distraction. Individualized risk will not be discussed further in this
chapter.

Risk is a function of the predictors modeled. It is important to remember that
an individual with two sets of non-overlapping predictors X = x and Y = y has at
least three risk values, risk(x) = P(D = 1|X = x), risk(y) = P(D = 1|Y = y) and
risk(x,y) = P(D = 1|X = x,Y = y). Each is his ‘true risk’. Each is a frequency of
events but calculated amongst different groups of subjects: those with X = x, those
with Y = y and those with X = x and Y = y, respectively.

The Meaning of Calibration

The traditional definition of calibration is that a well calibrated risk calculator
risk∗(·), is one for which the frequency of events among subjects with X = x is
equal to risk∗(x) : P(D = 1|X = x) = risk∗(x). When X is multidimensional it can
be difficult to assess calibration defined in this strong sense. A weaker definition of
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calibration is typically used in practice: the criterion is that P(D= 1|risk∗(X) = r)≈
r for all r. In words, if the frequency of events is r among subjects whose calculated
risks are equal to r, then the model risk∗(·) is considered well calibrated in the weak
sense. This level of validity seems like a minimal requirement to justify use of the
risk model in practice.

We note that strong calibration implies weak calibration because under strong
calibration, where P(D = 1|X = x) = risk∗(x) we have P(D = 1|risk∗(X) = r) =
E{P(D = 1|X = x)|risk∗(X) = r}= E{risk∗(X)|risk∗(X) = r}= r. However, weak
calibration does not imply strong calibration and must not be interpreted as such.

Calibration is an attribute that may not transport from one population to another.
For example, if there are predictors (known or unknown) that are not included in the
model and that have different distributions in two populations, the true risk models
in the two populations will likely be different, P(D = 1|X ,populationA) �= P(D =
1|X ,populationB). Strong calibration may not transport for this reason. However,
if all relevant predictors are included in the model, strong calibration will not be
affected by a change in the distribution of those predictors. On the other hand, a
model that is weakly calibrated but not strongly calibrated may not transport its
weak calibration to other populations where distributions of modeled covariates
differ.

Assessing Calibration

To evaluate calibration one compares the observed event rates within subgroups
of subjects defined by the modeled predictors to the average estimated risk values
among those subjects. The subgroups are usually selected as having estimated risks
in a narrow range. A visual aid to this comparison is the predictiveness curve [22].
The plot orders subjects from lowest to highest estimated risk, plotting each risk
value vs its quantile, i.e. the proportion of subjects with risks less than or equal
to that value. The x-axis allows one to identify subgroups similar in regards to
estimated risk. For example, groups may be defined by decile of estimated risk.
The observed event rate in each subgroup is superimposed on the plot using circles
as shown in Fig. 2. If the circles follow the predictiveness curve, we conclude that
estimated risks are close to observed risks and the model is well calibrated (in the
weak sense) in the dataset. The predictiveness curve in Fig. 2 shows that the fitted
model is extremely well calibrated. An alternative but related visual display is the
calibration plot (Fig. 3) [26]. This also uses intervals of estimated risk (e.g. deciles)
but plots observed event rates versus average estimated risk producing points that
should lie along the 45◦ line if the model is well calibrated. A disadvantage of the
calibration plot versus the predictiveness curve is that points can be more clumped.
Moreover the variability in estimated risk within an interval risk category is not
evident from the calibration plot. If substantial variation exists in a category one
might choose to use smaller subdivisions of that category in comparing observed
event rates with estimated rates.
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Fig. 2 Visual assessment of calibration with the predictiveness curve
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Fig. 3 Calibration assessed using the calibration plot. The model is well calibrated if points lie on
the 45◦ line shown

The Hosmer-Lemeshow test is often reported as a test for calibration [15]. It also
uses subsets defined by estimated risk, typically deciles, and calculates

H ≡
10

∑
k=1

Nk
(Ok − r̂k(X))2

r̂k(X)(1− r̂k(X))
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where Nk = the number of subjects in the kth group, Ok = the observed event rate
and r̂k(X) is the average estimated risk. Under the null hypothesis of good model
calibration, the statistic H has a chi-squared distribution with degrees of freedom
equal to the number of groups minus 2. The statistic corresponds closely with the
predictiveness and calibration plots in that it compares 0k and r̂k. However, the
statistic has been criticized for many reasons including that it is highly dependent
on sample size (almost certainly significant if N is large enough and non-significant
if N is small enough). In of itself, it does not convey the extent to which the
model is well calibrated to the data. But it can serve as a descriptive adjunct to the
visual display of calibration manifested in the predictiveness or calibration plots.
Although deciles of risk are typically used for the predictiveness plot, calibration
plot and Hosmer-Lemeshow statistic, as mentioned above there is no reason that
other subgroupings could not be used.

Achieving a Well Calibrated Model

This chapter does not cover procedures to estimate risk(X). We refer to textbooks
that cover the topic in depth [9, 27]. When only a few predictors are included,
the task of fitting a model that is well calibrated to the data and not over-fit
is relatively straightforward. Although sampling variability in the fitted model
remains, assuming good study design practices have been followed and in the
absence of additional data, one will propose the fitted model for use in practice.
The next task will be to evaluate its performance for prediction.

Sometimes an externally fitted model will be proposed for validation on a new
dataset. If the model is not found to be well calibrated on the new dataset, it must be
regarded as not having been validated. Nevertheless, some investigators proceed
to evaluate its classification performance. In our opinion this is inappropriate.
Individuals will want to use the prediction model not just as an aid in classification
but to calculate their risk as a function of predictors. A poorly calibrated model is
known to be invalid for this purpose and should be abandoned.

A better strategy perhaps is to derive a revised risk prediction model with the
new dataset. This may be done by using the original estimated risk value as a sole
predictor and fitting a model with that single predictor to the data. This is called
recalibration [27]. Because only one predictor is involved it should be easy to arrive
at a revised model that is well calibrated to the new dataset and therefore worthy of
evaluation for its predictive performance.

Another strategy is to begin anew and fit a model with each predictor in the
original model included as a candidate predictor for the new model. If many
predictors are involved, issues pertaining to overfitting arise and one will need to
use techniques such as ‘shrinkage’ in order to arrive at a believable model [9, 28].
Fruitfully applying such techniques requires considerable skill and experience.
An advantage of starting over with the new dataset is that a combination of
predictors that is closer to optimal for application in the target population may be
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arrived at. Recalibrating an existing model is easer and subject to less sampling
variability, but one maintains the same predictor combination of the original model
that may be suboptimal if it was derived from a population that is not the one of
interest.

Why might an externally derived model fail to be well calibrated? Certainly
if it was derived in a different population with different predictor effects (or
distributions, see section “The Meaning of Calibration”) it may not be valid for
use in the target population. Another common cause is overfitting the model in the
original population.

For the remainder of this chapter we assume that a model that is well calibrated
is to be evaluated for its performance.

Measuring Prediction Performance of a Single Model

Context

The focus of this section is on describing conceptual approaches to evaluating a
risk prediction model. We suppose that we have an extremely large population and
the true risk function, risk(X) = P(D = 1|X), is available. How do we measure the
performance of this risk function for use in the population?

It is important to remember that the purpose of calculating risk(X) is to affect
medical decisions. Recall that we assume that in the absence of knowledge of
risk(X) no treatment will be offered, but that if risk(X) is found to be large enough,
treatment will be offered. Implicitly we assume that treatment must have associated
with it some costs, e.g. toxicity, monetary costs, inconvenience. Otherwise all
subjects, regardless of their risk value, could be treated even if the benefit was
minimal.

Case and Control Risk Distributions

All metrics to gauge the performance of a risk model are derived from the
distribution of risk(X) in cases and in controls. Having a visual display of the
distributions is often helpful. Although probability density functions (pdfs) (Fig. 4)
give a sense of the separation between case and control distributions, cumulative
distribution functions (cdfs), or 1 minus cdfs shown in Fig. 5 and denoted by
HRD(r) = P(risk(X) > r|D = 1) and HRD̄(r) ≡ P(risk(X) > r|D = 0), are more
useful because they explicitly show the proportions of cases and controls above
any threshold value used to define ‘high risk.’ Gauging this using the pdfs in
Fig. 4 is difficult. Since decisions to opt for treatment will be based on ‘high risk’
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Fig. 4 Case and control risk
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Fig. 5 Case and control distributions of risk shown with 1 minus cdfs, HRD(t) = P(risk(X)
> t|D = 1) and HRD̄(t) = P(risk(X) > t|D = 0)

designation, it is of interest and can be seen directly from the cdfs how many cases
and controls are recommended for treatment using the risk model. Note that HRD(r)
is the true positive rate (TPR) or sensitivity and HRD̄(r) is the false positive rate
(FPR) or 1 minus specificity of the risk model using risk threshold r. True and false
positive rates are common measures of the accuracy of general classification rules.
We prefer to use the HR notation to emphasize what the classification rule is in this
setting – it represents high risk designation.

Gail and Pfeiffer [7] make the point that the cdf of risk in the population as a
whole, cases and controls together, is sufficient to calculate performance measures.
This is true because the case distribution and the control distribution can both be
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Fig. 6 The predictiveness curve that shows the quantiles of risk(X) in the population. The
predictiveness curve for the ideal model where all cases have risk= 1 and all controls have risk= 0,
is shown as a dashed step function

calculated from the overall population distribution of risk. Using f (risk(X) = r) to
denote the pdf for the true risk(X) at r, this follows because

f (risk(X) = r|D = 1) =
P(D = 1|risk(X) = r)

P(D = 1)
f (risk(X) = r)

=
r f (risk(X) = r)

P(D = 1)

f (risk(X) = r|D = 0) =
(1− r) f (risk(X) = r)

P(D = 0)

The overall cdf of risk(X) in the population as a whole is shown by the predictive-
ness curve that displays quantiles of risk in the population (Fig. 6). However we find
the case- and control-specific cdfs shown in Fig. 5 to be a more informative display.

The receiver operating characteristic (ROC) curve that plots HRD(r) versus
HRD̄(r) (Fig. 7) is another popular visual display to assess performance. When the
case and control distributions are well separated, the ROC curve

ROC( f ) = HRD(HR−1
D̄
( f ))

lies close to the upper left hand corner of the [0,1]× [0,1] quadrant; in contrast a
useless risk model has an ROC curve that follows the diagonal 45◦ line. Huang and
Pepe [11] show that the ROC curve and prevalence, ρ = P[D = 1], together can be
used to calculate the predictiveness curve, again assuming weak calibration of the
risk model. And, since the predictiveness curve can be used to calculate the case and
control distributions of risk, it follows that (ROC( f ), f ∈ (0,1) ; ρ) contain all the
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information available in the case and control distributions of risk(X). However, the
risk thresholds r corresponding to the points on the ROC curve, (HRD̄(r),HRD(r)),
are not visible from the ROC curve detracting from its interpretation. When plotting
a single ROC curve it is possible to add the risk thresholds to the axes of the
ROC plot as shown in Fig. 7. However, with two or more ROC curves this is not
possible. Moreover since ROC curves do not align models according to the same
risk thresholds and do not display risk thresholds they are less useful for evaluating
prediction models than they are for evaluating diagnostic tests whose numeric scales
are often irrelevant in data displays.

Risk Thresholds

How should one choose the risk threshold for designating a patient as at sufficiently
high risk to warrant treatment? Intuitively the costs and benefits associated with
treatment dictate the choice. If the treatment is very costly in terms of toxicities,
monetary expense or inconvenience, a high threshold may be warranted. If the
treatment is very likely to be effective at preventing a bad outcome, this might lower
the threshold for treatment. In the extreme, an ineffective treatment or a prohibitively
costly treatment, such as mastectomy for breast cancer prevention, dictates use of
a risk threshold close to 1 corresponding to few people being treated. At the other
extreme, a highly effective inexpensive treatment with few toxicities, such as statins
for cardiovascular disease prevention, dictates that many people should be treated,
i.e., use of a low risk threshold.
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An explicit relationship is given in the next result between the risk threshold for
treatment, rH , and the net costs and benefits of treatment. Write the net benefit of
treatment to a subject who would have an event in the absence of treatment as B.
For example, if treatment reduces the risk of an event by 50 %, the benefit might
be 0.5×{valueofanevent} and the net benefit is the benefit less the costs associated
with treatment for a subject who would otherwise have an event. Note that these
costs must be put on the same scale as the benefit, i.e. {value of an event} in our
example. A subject who would not have an event in the absence of treatment suffers
only costs and no benefit from being treated. We use C to denote the corresponding
cost for such a subject.

Result 1. The risk threshold for treatment that should be employed to ensure
subjects with risk values risk(X) benefit on average is

rH =C/(C+B).

The threshold does not depend on the model or on the predictors in the model,
assuming the model is weakly calibrated.

Proof. The expected net benefit for subjects with risk(X) = r is

B ·P(D = 1|risk(X) = r)−C ·P(D = 0|risk(X) = r) = B · r −C · (1− r)

which is positive if

r
1− r

>
C
B

In other words, to ensure a positive average benefit for subjects with risk values
r they should opt for treatment if r/(1− r)>C/B and should not opt for treatment
if r/(1− r)<C/B. That is the treatment risk threshold is C/(C+B). ��

The result agrees with the intuition that high costs and/or low benefits should be
correspond to high values of the risk threshold for opting for treatment.

Example. Suppose treatment reduces the risk of breast cancer within 5 years
by 50% but it can cause other bad outcomes such as other cancers, cardio-
vascular events and hip fractures that are considered equally bad. Assume
other adverse outcomes, A, occur with a frequency of x in the absence of
treatment but with a frequency of z in the presence of treatment regardless of
whether D = 1 or 0. Let D(0),D(1),A(0),A(1) denote the potential outcomes
with and without treatment. A woman who would not develop breast cancer
absent treatment suffers the increased risk of other bad events; her net cost of
treatment is

P(D = 1 or A = 1|T = 1,D(0) = 0)−P(D = 1 or A = 1|T = 0,D(0) = 0)

= P(A = 1|T = 1,D(0) = 0)−P(A = 1|T = 0,D(0) = 0)

= P(A = 1|T = 1)−P(A = 1|T = 0) = z− x,
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where the second line uses the assumption that treatment cannot cause disease,
i.e. D(0)= 0 implies D(1)= 0. The net benefit of treating a subject who would
get breast cancer absent treatment is the reduction in her event probability,

P(D = 1 or A = 1|T = 0,D(0) = 1)−P(D = 1 or A = 1|T = 1,D(0) = 1)

= 1− [P(D = 1|T = 1,D(0) = 1)+P(D = 0 and A = 1|T = 1,D(0) = 1)]

= 1− [0.5+(1− 0.5) ·P(A= 1|T = 1)] = 0.5+0.5z

The treatment risk threshold is therefore z−x
z−x+0.5(1+z) .

In practice it is often difficult to specify costs and benefits associated with
treatment. It can be especially difficult to specify them on a common scale when
they are qualitatively different entities. On the other hand a treatment threshold
for risk is often easier to specify. For example, the ATP guidelines recommend
that subjects with risks above 20 % consider longterm treatment with cholesterol
lowering therapy to reduce risk of cardiovascular events. Individuals make decisions
such as whether or not to have genetic testing of their fetus based on their risk
of having a child with genetic abnormalities. Their chosen risk threshold is often
derived intuitively from their knowledge of the qualitative costs and benefits of
amniocentesis. Similarly we make decisions about procuring insurance using our
tolerance for risk. Result 1 tells us the explicit relationship between the risk
threshold and the perceived cost-benefit ratio. For example, by choosing a risk
threshold equal to 20 % for cholesterol lowering therapy, we are implicitly stating
that the net benefit of therapy for a would-be case is 4 times the net cost of therapy
for a would-be control because rH

1−rH
= .2/(1− .2) = 1/4.

Summary Statistics when a Risk Threshold Is Available

In this section we consider settings where a risk threshold, rH , exists that defines
high risk status with possible recommendation for treatments or, perhaps, for
entry into a clinical trial. The context is then essentially reduced to a binary
classification rule, high risk or not high risk, and measures commonly used to
summarize performance of binary classifiers are appropriate. We already defined
the proportions of cases and controls classified as high risk as

HRD(rH) = P(risk(X)> rH |D = 1)

HRD̄(rH) = P(risk(X)> rH |D = 0).

A perfect model classifies all cases and no controls as high risk, HRD(rH) = 1
and HRD̄(rH) = 0. A good model classifies a large proportion of cases as high risk
and a low proportion of controls as high risk.
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The HRD(rH) is a good attribute of a prediction model while HRD̄(rH) is a
negative attribute. The expected population net benefit of using the model with risk
threshold rH , NB(rH), combines the two into an overall population measure that
balances the positive and negative attributes:

NB(rH) = P(risk(X)> rH){B ·P(D = 1|risk(X)> rH)−C ·P(D = 0|risk(X)> rH)}
= B ·P(risk(X)> rH |D = 1)P(D = 1)−C ·P(risk(X)> rH |D = 0) P(D = 0)

= B ·HRD(rH)ρ−C ·HRD̄(rH)(1−ρ).

Observe that NB(rH) is an expectation over the entire population and assumes
treatment is offered if risk(X)> rH . In contrast the expected net benefit in the proof
of Result 1 concerns only subjects with risk(X) = r and considers their net benefit
if they receive treatment.

Recall that Result 1 tells us that use of the risk threshold rH implies C/B =
rH/(1− rH). Substituting into the above gives us an expression for expected net
benefit that depends only on model performance parameters (HRD(rH),HRD̄(rH))
and the constants (ρ ,rH).

NB(rH) = {ρHRD(rH)− rH

1− rH
(1−ρ)HRD̄(rH)}B

Vickers and Elkin [29] propose measuring net benefit in units that assign B a
value 1. In those units NB(rH) = ρHRD(rH)− rH

1−rH
(1−ρ)HRD̄(rH). The inverse

of NB(rH) can be interpreted as the number of X measurements required to yield
the benefit corresponding to detecting one true positive and no false positives. Baker
and Kramer [2] call this the number needed to test (NNT).

A standardized version of NB(rH) is found by dividing NB(rH) by the maximum
possible value that can be achieved, namely ρB, corresponding to a perfect model
with HRD(rH) = 1 and HRD̄(rH) = 0. Baker et al. used the term ‘relative utility’ but
we prefer the more descriptive term ‘standardized net benefit’ and use notation that
corresponds:

sNB(rH) = NB(rH)/max(NB(rH)) = NB(rH)/ρB

= HRD(rH)− rH

(1− rH)

(1−ρ)
ρ

HRD̄(rH).

An advantage of standardizing net benefit is that it no longer depends on the
measurement unit B, an entity that is sometimes difficult to digest. sNB(rH) is a
unit-less numerical summary in the range (0,1).

Another interpretation for sNB(rH) is that it discounts the true positive rate
HRD(rH) using the scaled false positive rate HRD̄(t) to yield a discounted true
positive rate. The FPR is scaled so that the units are on the same scale as the TPR.
sNB(rH) can therefore be interpreted as the true positive rate of a prediction model
that has no false positives but equal benefit.
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Fig. 8 Proportions of cases and controls above risk threshold r and corresponding standardized
net benefit

In our opinion a reasonably complete reporting of a prediction model’s perfor-
mance is given by HRD(rH), HRD̄(rH) and sNB(rH). One also needs to keep in
mind the prevalence, ρ , and the risk threshold, rH , in order to interpret sNB(rH) and
its components (HRD(rH), HRD̄(rH)).

Example. Figure 8 shows HRD(rH), HRD̄(rH) and their weighted average sNB(rH)
for various choices of risk threshold, rH . For example, at rH = 0.2 we have that
65.2% of cases and 8.9% of controls are classified as high risk. This corresponds to a
benefit that is 45.6% of the maximum possible benefit, where the maximum possible
benefit would be achieved by classifying all 10.17% cases and no controls as high
risk. Alternatively we can consider that the observed true positive rate of 65.2% is
discounted to 45.6% by the 8.9% of controls that are designated as high risk.

The plot in Fig. 8 allows one to view the performance achieved with different
choices of risk threshold. Observe that the net benefit curve is plotted only for
rH > ρ . This is because the assumed default action is to not treat subjects. In the
absence of predictors, all subjects are assigned risk values ρ . Therefore a risk
value of ρ must correspond to the ‘no treatment’ rule. To be consistent and rational
we still assign no treatment if risk(X)< ρ when predictors are available. Therefore
risk thresholds for treatment below ρ are not relevant. If one were to instead assign
treatment as the default decision and use the model for decisions to forego treatment,
then the expected net benefit and its standardized version would be calculated
differently: sNB(rL) = (1−HRD̄(rL))− ρ

(1−ρ)
(1−rL)

rL
(1−HRD(rL)), where rL is the

low risk threshold below which subjects would not receive treatment. Moreover this
version of sNB(rL) would only be calculated for rL < ρ . See Baker [1] for details.

In many circumstances a fixed risk threshold for assigning treatment does not
exist. It can be useful to consider a variety of thresholds. Consider that a prediction
model is often developed to determine eligibility criteria for a clinical trial of a
new treatment. For example, new treatments for acute kidney injury are under
development and prediction models are sought to identify high risk subjects for
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Table 2 Proportions of
subjects in each of 3 risk
categories. Risk refers to
10-year probability of a
cardiovascular event

Risk category Cases Controls

Low (<5%) .112 .657
Medium (5–20%) .236 .253
High (>20%) .652 .089

upcoming clinical trials. Potentially toxic or expensive treatments will require
higher risk thresholds than less toxic, inexpensive treatments. Having displays that
show performance across a range of risk thresholds will allow researchers to enter-
tain use of risk prediction models for designing trials of different types of treatment.

Another important reason to display performance as a function of risk threshold
is that it allows individuals with different tolerances to assess the value of
ascertaining predictor information for them. If the distribution of risk thresholds
among individuals in the population were known, those could be overlaid on the
plots. One could summarize the information by integrating over the distribution of
risk thresholds: HRD̄ = E(HRD̄(rH)) = the overall proportions of controls that do
not receive treatment; HRD = E(HRD(rH)) = the overall proportion of cases who
receive treatment; and E(NB(rH)) = expected net benefit.

Although we emphasize HRD(rH), HRD̄(rH) and sNB(rH) as the key measures
of prediction performance for settings where a risk threshold reduces the model
to a binary decision rule, other measures of performance for binary classifiers
could also be reported. Classic measures include: the misclassification rate,
(1− HRD(rH))ρ +HRD̄(rH)(1 − ρ); Youden’s index, HRD(rH)−HRD̄(rH); and
the Brier score, E(D− risk(X))2. These measures, like sNB(rH), are functions of
HRD(rH) and HRD̄(rH) but seem to lack its compelling interpretation and practical
relevance. Therefore we do not endorse them for evaluating risk prediction models.

Multiple Risk Categories

For prevention of cardiovascular events two possible treatment strategies are rec-
ommended. Long-term treatment with cholesterol lowering drugs is recommended
for high risk subjects while an inexpensive, non-toxic intervention, namely healthy
lifestyle changes, is recommended for subjects at moderately elevated risk. Three
risk categories are therefore of interest in this clinical setting: low risk (risk ≤ 5%),
moderate risk (5–20%) and high risk (≥20%). The parameters HRD and HRD̄
are easily generalized to the setting of multiple risk categories. One reports the
proportions of cases in each category and the proportions of controls in each
category. These fractions can be read off of the distribution function displays in
Fig. 8. Values are shown in Table 2.

The standardized net benefit function can also be generalized to accommodate
more than two categories of risk, but it requires specifying some relative costs and
benefits explicitly in addition to the cost-benefit ratios that are implied by the risk
threshold values that define the risk categories.
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As an example, suppose there are 3 categories of risk with treatment recommen-
dations being none for the low risk category (risk ≤ rlow), intermediate treatment
for the medium risk category (rlow ≤ risk < rhigh) and intense treatment for the high
risk category (risk > rhigh). Suppose that in the absence of a predictive model all
subjects are recommended intermediate treatment. We use the following notation for
costs and benefits: Bhigh = net benefit of intense treatment to a subject who would
be a case; Chigh = net cost of intense treatment to a would-be control; Blow = net
benefit of no treatment to a would-be control and Clow = net cost of no treatment to
a would-be case. All of these quantities are relative to the intermediate treatment and
as always, cases (controls) are those who would (would not) get the bad outcome in
the absence of treatment. The expected net benefit in the population associated with
use of the risk model is:

ρ{−ClowLRD +BhighHRD}+(1−ρ){BlowLRD̄ −ChighHRD̄}

where LR and HR are probabilities of being in the low and high risk categories and
the subscripts D and D̄ indicate cases and controls as usual. Let rL and rH denote
the risk thresholds that separate low from medium risk and medium from high risk,
respectively. The arguments of Result 1 implies that (rL/1− rL) = Blow/Clow and
(rH/1− rH) = Chigh/Bhigh. Let λ = Bhigh/Clow be the ratio of the net benefit of
intense treatment to the net cost of no treatment for a subject that would be a case.
The population net benefit of using the model with these risk categories can then be
written as

Bhigh

{

ρ{− 1
λ

LRD +HRD}+(1−ρ){ rL

(1− rL)λ
LRD̄ − rH

1− rH
HRD̄

}

.

This can be standardized by the maximum possible benefit that is achieved with
a perfect prediction model, Bhigh{ρ+(1−ρ) rL

(1−rL)λ
}, yielding the standardized net

benefit function

sNB(rM,rH) =
ρ{HRD −LRD/λ}+(1−ρ){ rL

(1−rL)λ
LRD̄ − rH

(1−rH)
HRD̄}

ρ+(1−ρ) rL
(1−rL)λ

This expression is a function of the risk thresholds, prevalence, and case and
control risk distributions, and it requires specifying another parameter, namely λ .
If we assume the net benefit of cholesterol lowering treatment relative to healthy
lifestyle is 10 times as large as the net cost of no treatment relative to healthy
lifestyle intervention to a would-be case, then the standardized net benefit associated
with the fitted model risk(X) is

0.1017{0.652− 0.112/10}−0.8983{ 0.05
0.95

0.657
10 − 0.20

0.80 ×0.089}
0.1017+ 0.8983× 0.05

0.95×10

= 77.1%
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This example demonstrates that calculation of net benefit associated with a risk
model becomes quite complicated with three treatment categories compared with
the calculation when only two treatment categories exist.

Implicit Use of Risk Thresholds

In some circumstances a risk threshold for treatment that maximizes expected
benefit cannot be adopted. Policy makers may require that alternative criteria are
met. For example, Pfeiffer and Gail [24] consider using a risk threshold that results
in a proportion v of the population recommended for treatment. Allocation of
financial resources might determine such a policy. The risk threshold is written as

rH(v) : v = P(risk(X)> rH(v)).

Having fixed v, they propose the proportion of cases that meet the treatment
threshold as a measure of model performance:

PCF(v) = P(risk(X)> rH(v)|D = 1),

with larger values indicating better performance. Observe that in our previous
notation we can write

PCF(v) = HRD(rH(v)).

Another policy based criterion might require that a fixed proportion of the cases
are recommended for treatment. In this case the treatment threshold is

rH(w) : w = P(risk(X)> rH(w)|D = 1)

and the prediction model performance measure proposed by Pfeiffer and Gail is the
corresponding proportion of the population needed to follow, i.e., testing positive,

PNF(w) = P(risk(X)> rH(w)).

Smaller values of PNF(w) are more desirable.
These measures are closely related to the ROC curve that plots the true

positive rate ROC( f ) = P(risk(X) > rH |D = 1) versus the false positive rate f =
P(risk(X)> rH |D = 0) for all possible thresholds rH ∈ (0,1). In fact a little algebra
shows that

PNF(w) = ρw+(1−ρ)ROC−1(w)
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Fig. 9 Density of risk among cases and controls and the ROC curve for risk. For the risk threshold
that yields 70% of cases at high risk, 11.5% of controls are also designated high risk

and

PCF(v) = ROC( f (v))

where f (v) is found by solving v = ρROC( f )+ (1−ρ) f .
One can also directly use ROC curve points to characterize performance and it

follows from arguments above that this approach is essentially equivalent to Pfeiffer
and Gail’s approach. In ROC analysis one fixes the proportion of cases deemed at
high risk, derives the corresponding threshold rH(w) defined above, and evaluates
the corresponding proportion of controls classified as high risk,

ROC−1(w) = P(risk(X)> rH(w)|D = 0).

Alternatively, one can fix the proportion of controls classified as high risk at f ,
derive the corresponding threshold

rH( f ) : f = P(risk(X)> rH( f )|D = 0)

and use as the performance measure the corresponding proportion of cases classified
as high risk

ROC( f ) = P(risk(X)> rH( f )|D = 1).

Example. Using our dataset, suppose we require that w = 70% of cases go forward
for treatment. We calculate that the corresponding risk threshold will be rH(w) =
0.167 and that 11.5% of controls will exceed this threshold with use of the model
(see Fig. 9 ). Since the prevalence is 10.17%, the overall proportion of the population
that will undergo treatment is 17.5%. Using our notation:

w = 70%, rH(w) = 0.167, ROC−1(w) = .115, PNF(w) = .175
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Measures Independent of Risk Thresholds

When a risk threshold for decision making is not forthcoming, a descriptive sum-
mary of the risk distributions in cases and controls may be of interest. In particular,
one can describe the separation between the case and control distributions of risk.
For example, we could report: the average risk in cases, 0.391 in our example; the
average risk in controls, 0.069 in our example, and the difference that we write as
MRD, the mean risk difference:

MRD = E(risk(X)|D = 1)−E(risk(X)|D = 0)

which is 0.322 in our example.
The MRD statistic is also called Yates’ slope. It is closely related to the integrated

discrimination improvement (IDI) statistic proposed by Pencina et al. [17] for
comparing nested risk prediction models. Specifically, if we consider the baseline
model as the null model without predictors, so all subjects have estimated risk equal
to ρ , then the IDI for comparing the model, risk(X), with the null model is the MRD.
It has also been shown [21] that the MRD can be interpreted as the proportion of
explained variation or coefficient of determination, R2 = var{E(D|X)}/var(D).

Another way to summarize the distance between the case and control risk
distributions is with the above average risk difference, AARD:

AARD ≡ P(risk(X)> ρ |D = 1)−P(risk(X)> ρ |D = 0).

Noting that the average risk in the population is ρ , this measure compares the
proportion of cases with risks exceeding ρ , HRD(ρ) = 0.797 in our example, with
the corresponding proportion of controls, HRD̄(ρ) = 0.198, in our example, and
calculates the difference, AARD= 0.797− 0.198= 0.599.

The AARD has several additional noteworthy interpretations. First, Youden’s
index for a dichotomous diagnostic test is defined as the true positive rate minus the
false positive rate. We see that AARD is Youden’s index for the rule that classifies
subjects as positive when risk(X) > ρ . Second, we see that AARD= sNB(ρ), the
standardized net benefit defined earlier, for the decision rule that uses ρ as the high
risk threshold. Third, the AARD is closely related to the net reclassification index
(NRI) that will be defined in section “The Net Reclassification Index”. The NRI is
currently a very popular measure for comparing nested models. It can be shown that
for comparing the model with predictors X , risk(X), to the null model that assigns
all subjects a risk of ρ , AARD = NRI/2 and AARD = cNRI(ρ)/2 where NRI is
known as the continuous NRI and cNRI(ρ) is the categorical NRI with two risk
categories defined by the risk threshold ρ .

Interestingly, it can be shown that the difference, HRD(r)−HRD̄(r), is maxi-
mized at r = ρ (see proof of Theorem A.1 [23]). Therefore, the AARD can also
be interpreted as a Kolmogorov-Smirnov distance between the case and control risk
distributions. Finally, Huang and Pepe [11] and Gu and Pepe [8] showed that the
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standardized total gain statistic proposed by Bura and Gastwirth [3] as a measure of
predictive capacity of a model risk(X), sT G =

∫ |risk(X)−ρ |dF(X)/2ρ(1−ρ) is
equal to the AARD.

Another nonparametric measure of distance between the case and control risk
distributions is the area under the ROC curve (AUC):

AUC = P(risk(Xi)≥ risk(Xj)|Di = 1,D j = 0)

where Xi and Xj are predictors for randomly drawn independent subjects from
the case and control distributions, respectively. This is also known as the Mann-
Whitney U-statistic and is calculated as AUC = 0.884 for our data. The AUC has a
long history of use in evaluating diagnostic tests and other classifiers including risk
models. It is still the most popular metric in use. However, its use in evaluating risk
models has been criticized [4, 20]. One of the criticisms leveled against the AUC is
that the measure has no practical relevance. Certainly this is true. If subjects were
presented in case-control pairs to the physician for deciphering which one is the
case, the measure P(risk(Xi) > risk(Xj)|Di = 1,D j = 0) would be of interest. But
this is not the usual clinical task. Another criticism of the AUC is that the measure
may be dominated by differences in risk distributions that are clinically irrelevant.
In particular in a low prevalence or incidence setting, the AUC is dominated
by the low end of the risk range where most of the population’s risks lie. Yet
small differences in the distributions over that range are of no clinical relevance.
Consequently the AUC may not be sensitive to differences in risk distributions over
more clinically relevant ranges.

These two criticisms, practical irrelevance and insensitivity to clinically impor-
tant differences in distributions, however, apply not only to the AUC, but also apply
to other measures of distance between case and control risk distributions such as the
MRD and AARD. We see no particular advantage to MRD or AARD or the related
reclassification measures (IDI and NRI) that will be described later. We caution
against using any of these measures as a sole focus for evaluating and comparing
models. Rather they may be more suitable to assessing if a model is at one extreme
or the other in terms of prediction performance. As such, their use may be justified in
algorithms to sift through many models in order to select some that have predictive
performance worthy of more thorough evaluation, i.e., discovery research.

Recommendations

For evaluating a single risk prediction model we have the following
recommendations:

(i) Assess the model for its calibration in the population of interest and if
necessary recalibrate the model.

(ii) Plot the case and control risk distributions, possibly providing a summary index
of distance between the distributions as a descriptive adjunct.
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(iii) In collaboration with clinical and health policy colleagues, elicit a risk thresh-
old or several thresholds that could be used for making treatment decisions.
Evaluate the model in terms of corresponding case and control classification
rates and in terms of net benefit of using the model.

Comparing Two Risk Models

In this section we consider the comparison of two risk models for their prediction
performance. In a nutshell we recommend that (i) each model be evaluated for
its calibration; (ii) plots of risk distributions and net benefit be prepared for each
model; (iii) having chosen a clinically relevant risk threshold for treatment (or
several), compare the corresponding case and control categorized risk distributions
for the two models and (iv) compare the corresponding net benefits associated
with the two models. An illustrative example is provided in section “Example”.
This approach applies when the two models are nested (where one model has
predictors X and the other has additional predictors Y ) and when the models are
not nested. Several methods have been proposed in recent years for the specific
problem of comparing nested models, notably risk reclassification methods. We
describe those risk reclassification methods in section “Risk Reclassification to
Compare Two Models”. Finally, we provide a result concerning the equivalence
of null hypotheses about improvement in prediction performance gained by adding
Y to a set of baseline predictors X and the classic null hypothesis about Y as a risk
factor after controlling for X .

Example

We compare the logistic models, risk(X) and risk(X ,Y ), fit to our illustrative data, as
described in section “Illustrative Data”. Predictiveness curves for the fitted models
superimposed with observed event rates in each decile of fitted risk are shown in
Fig. 10. Both models are well calibrated. The risk distributions in cases and controls
are shown in the left panel of Fig. 11 using 1 minus cdfs. That is, for each risk
threshold r we show the proportions of cases and controls above that threshold.
We see that at all thresholds more cases and fewer controls have risks above the
threshold when using the model risk(X ,Y ) than with model risk(X). Consequently
the case and control risk distributions are more separated by the model risk(X ,Y )
than by the model risk(X). The measures of separation, AUC, MRD, and AARD,
are presented in Table 3, and confirm that greater separation is achieved with the
model including Y as a predictor.
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Fig. 10 Event rates for subjects in each decile of estimated risk align well with the risk values for
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Fig. 11 Plots showing high risk classification for cases (D) and controls (D̄) under the baseline
model risk(X) and the expanded model risk(X,Y ). A comparison of standardized net benefit is also
shown

Table 3 Summary measures
of performance for baseline
and expanded models

risk(X) risk(X,Y ) Difference

AUC 0.884 0.920 0.036
MRD 0.322 0.416 0.094a

AARD 0.599 0.673 0.074
HRD(0.20) 0.652 0.735 0.084
HRD̄(0.20) 0.089 0.084 −0.005
sNB(0.20) 0.455 0.550 0.095
PNF(0.70) 0.174 0.134 −0.040
aDifference in MRDs is called the IDI [17]
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The right hand side of Fig. 11 shows that, regardless of which risk threshold
is employed for recommending treatment, the standardized net benefit is larger
when Y is included in the risk model. This is not surprising since the change in
the standardized net benefit is a weighted sum of the increase in the value HRD(r)
plus the decrease in the value of HRD̄(r), both of which are positive, i.e.,

sNB(X ,Y )(r)− sNBX (r) = {HR(X ,Y )
D (r)−HRX

D(r)}+
(1−ρ)
ρ

r
(1− r)

×{HRX
D̄(r)−HR(X ,Y )

D̄
(r)},

where X and X ,Y superscripts denote measures of performance for risk(X) and
risk(X ,Y ) models, respectively.

Suppose that subjects with risks above 20% are recommended for treatment
because the net benefit of treatment to a (would-be) case is considered 4 times
the net cost of treatment to a (would be) control. The model that includes Y
recommends 8.4% more cases and .5% fewer controls for treatment. Relative to
a perfect prediction model, the model with X only achieves 45.5% of maximum
benefit while that including Y as well as X achieves 55.0% of maximum benefit.
That is, the standardized net benefit or discounted true positive rate is improved
by 9.5%.

We also consider performance when certain criteria are set by policy makers.
Suppose that a treatment risk threshold will be employed that will guarantee
w = 70% of cases are treated. Using the model with X only will require treating
PNF(w) = 17.4% of the population (and correspondingly ROC−1(w) = 0.114 of
controls) since the largest risk threshold exceeded by 70% of cases is rX

H(w) = 0.167.

On the other hand, a higher risk threshold r(X ,Y )
H (w) = 0.231, can be employed

with the model risk(X ,Y ) as the case risk distribution is higher. Consequently only
PNF(w) = 13.4% of the population (and only ROC−1(w) = 0.07 of controls) will
be treated if risk(X ,Y ) is used for assigning treatment.

In this example, better performance is achieved by including Y in the risk model
regardless of how performance is measured.

Risk Reclassification Within Subpopulations Defined by risk(X)

In addition to determining whether or not use of the model risk(X ,Y ) is better
than use of risk(X) in the population as a whole, one might ask if the additional
information provided by knowledge of Y is useful in subsets of the population.
Specifically, one might consider subsets of the population determined to be at low
(or high or intermediate) risk according to risk(X) and evaluate use of the expanded
model risk(X ,Y ) in that subpopulation. This is one motivation for constructing the
risk reclassification table illustrated in Table 4.
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Table 4 Event and nonevent
risk reclassification tables Events

risk(X,Y )

r(X) <5% 5–20% ≥20% Total

≤5% 72 38 4 114 (11.2%)
5–20% 21 105 114 240 (23.6%)
≥20% 0 33 630 663 (65.2%)
Total 93 176 748 1017

(9.1%) (17.3%) (73.5%)
Nonevents

risk(X,Y )

r(X) <5% 5–20% ≥20% Total

≤5% 5486 399 21 5906 (65.8%)
5–20% 1015 990 272 2277 (25.3%)
≥20% 40 296 464 800 (8.9%)
Total 6541 1685 757 8983

(72.8%) (18.8%) (8.4%)

Table 5 Performance of r(X,Y ) within strata defined by r(X)

ρ(X) Cases Controls % of max benefit
Population Event rate (%) HRD(0.20) HRD̄(0.20) sNB(0.20)

Low risk r(X) 1.89 0.035 0.004 −1.7
Med risk r(X) 9.54 0.475 0.119 19.3
High risk r(X) 45.32 0.950 0.580 25.4

Table 4 shows risk reclassification tables for cases in the ‘Events’ panel of
the table and for controls in the ‘Nonevents’ panel of the table. In cardiovascular
disease the tables are often constructed using 3 categories corresponding to the 3
treatment recommendations. Here we focus on the most important reclassifications
to or from the high risk category that corresponds to cholesterol lowering treatment,
and ignore reclassification between the medium and low risk categories that are
less consequential. Table 5 summarizes the performance of the expanded model
risk(X ,Y ) within each of the subpopulations determined to be at low (<5%),
medium(5–20%) and high(>20%) risk according to the baseline model, risk(X).

In the low risk population, where the event rate ρ = 1.89%, only 3.5% of cases
are reclassified by Y to the high risk category and almost no controls (0.4%) are
reclassified. The maximum possible benefit is to reclassify all cases (18.9 per 1000
subjects) and no controls. Consequently, the standardized net benefit of using the
model is negligible. (The negative value,−1.7%, must be due to sampling variability
as the net benefit cannot be negative if the risk(X) and risk(X ,Y ) models are correct,
which is true for our simulated data.) It appears that use of Y in the low risk
population is not beneficial.

In the medium risk population, 47.5% of the cases are favorably reclassified to
the high risk group while only 11.9% of the controls are. The maximum possible
benefit is that achieved if all 95.4/1000 cases were moved to the high risk category
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without moving any of the 904.6/1000 controls. With use of Y it appears that
sNB(0.2) = 19.3% of this maximum possible benefit is achieved. In other words
the benefit reached by measuring Y in the medium risk population is the same as
that achieved by a model that moved about 193/1000 cases to treatment with statins
without moving any controls into that high risk category.

In the high risk group, benefit can be obtained by moving controls down
to a lower risk category but at the possible cost of moving cases down. The
reclassification tables show however that with use of Y only 5% of the cases
are moved down while 42% of controls move down. The maximum benefit in a
population of 1000 subjects would be that achieved by moving none of the 453
cases but all of the 547 controls down. With use of Y , we are able to move 230
controls off treatment at the expense of moving 23 cases off treatment. Is this a net
benefit? Arguments similar to those in section “Summary Statistics When a Risk
Threshold is Available” can be used to show the standardized net benefit of a rule
that denies treatment when the risk < rH in a population with prevalence ρ is

sNB(rH) = {1−HRD̄}−
ρ

1−ρ
1− rH

rH
{1−HRD(rH)}.

We calculate that sNB(rH) = 25.4% of maximum benefit is achieved with use of
Y in the population deemed at high risk according to risk(X). This is equivalent to
moving .254×547= 140 controls down without moving any cases down in a set of
1000 subjects. This benefit seems substantial.

We find risk reclassification tables useful for evaluating an expanded model
risk(X ,Y ) within subpopulations defined by risk levels calculated according to
the baseline model risk(X), as illustrated above. One might also choose to plot
risk distributions and calculate other statistics for evaluating a risk model within
each subpopulation using techniques described in section “Measuring Prediction
Performance of a Single Model”. However, there are other analyses of risk
reclassification tables that have been proposed for purposes beyond evaluation use of
risk(X ,Y ) within subpopulations defined by risk(X). In particular, analyses intended
to compare the two models in the entire population have been proposed. In the next
section we describe the two main approaches and point out problems encountered
when using these approaches to compare risk models.

Risk Reclassification to Compare Two Models

The Cook and Ridker Analysis Method

Cook and Ridker [5] combine the event and nonevent reclassification tables in a
single table with the elements shown in Table 6.
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Table 6 Risk reclassification
tables showing numbers of
subjects and event rates (%)
in each cell

risk(X,Y )

r(X) ≤5% 5–20% >20 % Total

≤5 % 5558 437 25 6020
1.30 8.71 16.00 1.89

5–20 % 1036 1095 386 2517
2.03 9.59 29.53 9.54

>20 % 40 329 1094 1463
0.00 10.03 57.59 45.32

Total 6634 1861 1505 10,000
1.40 9.46 49.70 10.17

They calculate the following entities that are explained below:

(i) The overall reclassification rate = RC
(ii) The percent correctly reclassified = RC-correct

(iii) The baseline model reclassification calibration statistic: RCCX and its p-value
(iv) The expanded model reclassification calibration statistic: RCC(X ,Y ) and its

p-value

The RC is the proportion of subjects in the off-diagonal cells of the table, 22.5%
in our example. This is a descriptive statistic that is not useful for comparing
risk models. A small RC value indicates that treatment recommendations will be
changed for few subjects by measuring Y in addition to X , and a large value indicates
that many subjects will have different treatment recommendations when Y is added
to X .

The RC-correct is defined to be the proportion of subjects in off-diagonal cells
where the observed event rate is within the risk(X ,Y ) category label and not within
the risk(X) category label. In our data RC-correct = 100%. If the RC-correct value
is large, this is taken as evidence that prediction performance with the model that
includes Y is better than prediction performance with the baseline model risk(X).
However, it has been shown that by definition, when models are well calibrated
in the standard sense, RC-correct ≈100% in large samples. This follows because
for observations in an off-diagonal cell where risk(X) ∈ A and risk(X ,Y ) ∈ B the
expected event rate

P(D = 1|risk(X) ∈ A, risk(X ,Y ) ∈ B)

=E(D|risk(X) ∈ A, risk(X ,Y ) ∈ B)

=E(E(D|X ,Y )|risk(X) ∈ A, risk(X ,Y ) ∈ B)

=E(risk(X ,Y )|risk(X) ∈ A, risk(X ,Y ) ∈ B).

This average risk is in the interval B because for all subjects in the off-diagonal cell,
risk(X ,Y ) ∈ B. Moreover, the average risk is not in the interval A because, being an
off-diagonal cell, the interval A lies outside of interval B. It follows that for each
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off-diagonal cell, in large samples the event rate is in the interval defined by the
expanded model. That is, we expect that RC-correct = 100%. Any deviation from
100% that occurs must be due to sampling variability. Therefore, RC-correct cannot
be used to compare the performances of the two risk models, and we see no purpose
in calculating a statistic that is ≈100% by definition.

The reclassification calibration statistics are:

RCCX =
K

∑
k=1

(p̂k − ave(risk(X))k)
2

ave(risk(X))k(1− ave(risk(X))k)/nk

and

RCC(X ,Y ) =
K

∑
k=1

(p̂k − ave(risk(X ,Y ))k)
2

ave(risk(X ,Y ))k(1− ave(risk(X))k)/nk)

where the summation is over the K interior cells of the table with sample sizes
nk ≥ 20, ave(risk( ))k is the average estimated risk for subjects in cell k and p̂k is
the observed event rate in that cell. Cook and Ridker compare the reclassification
calibration statistics to chi-squared distributions with K −2 degrees of freedom for
calculating p-values.

The arguments above show that in large samples the observed event rates in off-
diagonal cells converge to ave(risk(X ,Y ))k but not to ave(risk(X))k. Therefore the
implicit null hypothesis for the statistic RCC(X ,Y ) is satisfied. That is, the expanded
model will not be rejected at a rate above the nominal significance level in large
samples. On the other hand the implicit null hypothesis for the baseline model will
be rejected in large samples assuming that Y is a risk factor that moves even a small
proportion of subjects to off-diagonal cells. In other words, if there are subjects
in off-diagonal cells, there is no point in performing the RCC (X ,Y ) statistical
test since the result is predetermined in large samples. If there are no subjects
in off-diagonal cells the setting is degenerate and there is obviously no point in
performing the test either. We implemented the RCC tests on our illustrative data and
in agreement with our arguments above, the baseline model was rejected, p < .001,
while the expanded model was not, p = 0.29.

In conclusion, we regard the risk-reclassification table proposed by Cook and
Ridker [5] as a useful descriptive device. However, the analysis strategy based on
the table is not informative for comparing risk models.

The Net Reclassification Index

Pencina et al. [17,18] introduced the Net Reclassification Index (NRI) as a measure
to compare the prediction performance of nested risk models. The statistic is
calculated as the sum of two components, NRID, calculated among events or cases,
and NRID̄, calculated among nonevents or controls. When risk categories exist,
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Table 7 Example where cNRI > 0 but there is no performance improvement

r(X,Y )

Events Low Med High

r(X) Low 10 10 0 20
Med 5 20 10 35
High 5 5 35 45

20 35 45 100

r(X,Y )

Non-Events Low Med High

Low 500 100 0 600
Med 100 200 0 300
High 0 0 100 100

600 300 100 1000

the data are summarized in reclassification tables of the form shown in Table 4
and the corresponding NRI statistics are

cNRID = P[riskc(X ,Y )> riskc(X)|D = 1]−P[riskc(X ,Y )< riskc(X)|D = 1]

cNRID̄ = P[riskc(X ,Y )< riskc(X)|D = 0]−P[riskc(X ,Y )> riskc(X)|D = 0]

cNRI = cNRID + cNRID̄

where riskc(X ,Y ) is the risk category in which the subject’s value for risk(X ,Y )
falls, riskc(X) is that in which his value of risk(X) falls, and cNRI stands for
categorical NRI. In words, cNRID is the proportion of cases above the diagonal
of the event reclassification table minus the proportion below the diagonal. The
counterpart, cNRID̄ is the proportion of controls below the diagonal minus the
proportion of controls above the diagonal. Their sum, cNRI, takes values between
0 and 2. For our data with 3 risk-categories, cNRID = 0.100, cNRID̄ = 0.073 and
cNRI=0.174.

The cNRI statistic provides a descriptive summary of the reclassification tables.
However, it is not well-suited to the purpose of comparing the prediction perfor-
mance of the models risk(X) and risk(X ,Y ) because, in general, it does not represent
a comparison of the performance of risk(X ,Y ) with that of risk(X). To see this,
consider that the performance of the model risk(X) must be derived from the case
and control distributions of risk(X). These distributions are contained in the vertical
margins of the event and nonevent reclassification tables, respectively. Similarly the
performance of the model risk(X ,Y ) must be derived from the horizontal margins
of the reclassification tables. However, the cNRI statistic is a function that depends
on the interior cells of the tables, not just their margins. This is illustrated in Table 7
that shows an example where the margins of the reclassification tables are equal but
cNRI > 0.
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Table 8 Notation for entries
in the risk reclassification
tables with two risk
categories

r(X,Y )

Events Low High

Low a b
High c d

r(X,Y )

Non-Events Low High

Low e f
High g h

That is, in Table 7, prediction performance for the model risk(X ,Y ) is the
same as that for the model risk(X) since the vertical and horizontal margins are
equal. However, the cNRI statistic = (20 − 15)/100 = 0.05 > 0, indicating that
performance has improved.

Although the cNRI statistic was originally proposed for use with 3 or more risk
categories, it is interesting to consider it in the simpler and more common setting
where only two risk categories exist that are separated at a treatment risk threshold
rH . Using the notation in Table 8, it is easy to see that with two categories

cNRID = b− c = b+ d− (c+ d) = HR(X ,Y )
D (rH)−HRX

D(rH)

cNRID̄ = f − g = f + h− (g+ h)= HRX
D̄(rH)−HR(X ,Y )

D̄ (rH)

cNRI = {HR(X ,Y )
D (rH)−HRX

D(rH)}−{HR(X ,Y )
D̄ (rH)−HRX

D̄(rH)}.

That is, cNRID is the increase in the proportion of cases classified as high risk
and cNRID̄ is the decrease in the proportion of controls classified as high risk. The
simple summation that is cNRI however, does not weight the relative contributions
appropriately unless rH = ρ . To see this, recall that the change in the standardized
net benefit does weight the contributions appropriately and is written as

sNB(X ,Y)(rH)− sNBX (rH ) = {HR(X ,Y )
D (rH)−HRX

D(rH)}− 1−ρ
ρ

rH

(1− rH)
{HR(X ,Y)

D̄ (rH)−HRX
D̄(rH)}.

Only when rH = ρ does cNRI correspond to the appropriately weighted combina-
tion, the change in sNB(rH). Interestingly a weighted version of the two-category
NRI statistic has recently been proposed to correspond with the form of change in
sNB(rH), by weighting cNRID̄ by (1−ρ)

ρ
rH

(1−rH) [18]. However, weighted versions of
the cNRI statistic have not been proposed to correspond with change in standardized
net benefit when more than two categories are involved.

A continuous version of the NRI statistic has been proposed for use when no
clinically relevant risk categories exist:

NRID = P(risk(X ,Y )> risk(X)|D = 1)−P(risk(X ,Y )< risk(X)|D = 1)

= 2P(risk(X ,Y )> risk(X)|D = 1)− 1
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NRID̄ = P(risk(X ,Y )< risk(X)|D = 0)−P(risk(X ,Y )> risk(X)|D = 0)

= 1−2 P(risk(X ,Y )> risk(X)|D = 0)

NRI = 2{P(risk(X ,Y )> risk(X)|D = 1)−P(risk(X ,Y )> risk(X)|D = 0)}.

The statistic NRI is also denoted by NRI(> 0). Again, since it is not a function
of the marginal case and control risk distributions, NRI does not seem well-suited
to quantifying the improvement in prediction performance of risk(X ,Y ) versus
risk(X). It is not composed as a difference between a measure of the performance
of risk(X ,Y ) and a measure of the performance of risk(X). However it is an
interesting easily understood descriptive statistic about the joint distributions of
(risk(X), risk(X ,Y )) based on the comparison of risk(X ,Y ) and risk(X) within
individuals. In our data we calculate that for 69.4% of cases their calculated risks
increased with addition of Y and for 29.5% of controls their risks increased with
addition of Y . Consequently NRID = 0.388, NRID̄ = 0.411 and NRI = 0.799.

Hypothesis Testing for Nested Models

When evaluating if a model that includes predictor Y in addition to X improves
performance over the baseline model that includes X only, it is common practice to
do several hypothesis tests. One will typically test the hypothesis H1

0 : risk(X ,Y ) =
risk(X), using, for example, likelihood techniques based on regression models. If H1

0
is rejected, one may test if the prediction performance of risk(X ,Y ) is equal to
that of risk(X) using one or more statistics, such as the difference in the AUCs
or the IDI statistic, which is the difference in MRDs, amongst others. The following
result indicates that the null hypotheses concerning many measures of performance
improvement are identical to H1

0 : risk(X ,Y ) = risk(X).

Result 2. The following conditions are equivalent

H1
0 : risk(X ,Y ) = risk(X)

H2
0 : ROC(X ,Y )( f ) = ROCX ( f ) ∀ f

H3
0 : AUC(X ,Y ) = AUCX

H4
0 : MRD(X ,Y ) = MRDX

H5
0 : AARD(X ,Y ) = AARDX

H6
0 : NRI(> 0) = 0

��
For a proof of Result 2 and additional related results see Pepe [23].
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The practical implication of this result is that if H1
0 is rejected, one can conclude

that the other hypotheses listed in Result 2 are also rejected. Testing any one of
hypotheses H2

0 − H6
0 is equivalent to testing H1

0 . We recommend using standard
well-studied methods from regression modeling to test the hypothesis formulated
as H1

0 . Corresponding statistical techniques are well-developed and they are often
efficient. In contrast techniques based on estimates of the performance measures in
H2

0 −H6
0 are likely to be less efficient and have in some cases been shown to have

bizarre distributions under the null hypothesis of no change in performance [14].
This is an active area of research.

Concluding Remarks

We now recap some of the main points made in this chapter. First, a necessary
condition for a useful risk prediction model is that it be well-calibrated. Whereas the
scale of a marker used for classifying individuals according to disease status is not in
and of itself of interest, risks calculated using a prediction model are used to advise
patients and to make medical decisions. The scale of the risk model predictions is
therefore a fundamental aspect of the model’s utility. Good calibration is essential.

The distributions of risk predicted by the model, for cases and for controls,
are the building blocks for evaluating model performance. Summary measures
are functions of these distributions. A variety of summary measures have been
described here which rely on specification of a high risk threshold (or multiple risk
thresholds) for classifying subjects. Our preferred measures are the proportions of
cases and controls classified as high risk (or classified into each risk category) and
the standardized net benefit of using the model. Performance measures that do not
rely on risk thresholds can be useful for screening many models in order to select a
subset for further evaluation.

The choice of the risk threshold(s) should be based on an assessment of costs and
benefits associated with a high risk (or each risk category) designation. These costs
and benefits are also used in calculating the scaled net benefit of the model.

When comparing models, our recommendation is to compare measures of
marginal performance. This is in contrast to basing comparisons on statistics that
summarize the cross-classification of the two models. Assessing cross-classification
is useful for descriptive analysis but cannot be used as the basis for forming
conclusions regarding the relative performance of the two models.

When testing the incremental value of a new predictor added to a risk model,
standard likelihood methods should be used. Tests based on contrasts of perfor-
mance measures between the baseline and expanded risk models are testing the same
null hypothesis. These tests have, in some cases, been shown to poorly control the
type-I error rate and to be less powerful than likelihood-based inference [14,23,31].
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This chapter has focused on conceptual approaches to evaluation assuming a
very large sample size. In practice, where sample sizes are finite, all measures of
model performance should be accompanied by confidence intervals to characterize
the level of uncertainty. This practice is much more informative than reporting
p-values based on hypothesis tests; moreover in some instances as mentioned above,
tests based on model performance measures have poor properties. Bootstrapping is a
simple and flexible technique that can be used to construct confidence intervals. The
bootstrapping should reflect the actual data analysis that was performed; if the risk
model was fit using the data (versus using a separate dataset), the model should be
re-fit and performance estimated in each bootstrap sample. Bootstrapping is flexible
in that unique attributes of the original study design can be accommodated, such as
repeated measures or case-control sampling.

When a risk model is fit and evaluated using the same data, the apparent
performance will tend to be over-optimistic. This is particularly true if an intensive
model-selection procedure was employed. Standard approaches to dealing with
this problem include separating the data into “training” and “test” portions, and
more efficient methods such as cross-validation [9, 10]. The disadvantage of the
latter approach is the requirement for a prespecified and automated model selection
procedure. If either approach is used, it should be reflected in the bootstrapping
described above. Specifically, in each bootstrap sample the complete model selec-
tion procedure should be performed.

In many contexts there are covariates that need to be taken into account when
predicting risk and evaluating risk model performance. We distinguish between
covariates (Z) that predict risk of bad outcome, e.g. age, and covariates that modify
the performance of a risk calculator (risk(X)), e.g., the laboratory in which a
biomarker X is assayed. Of course some coviarates, such as disease comorbidities,
may have both types of effects. For covariates that predict risk only, the approach is
to simply include these as predictors in the risk model, i.e. to model P(D= 1|X ,Z)=
risk(X ,Z). In this way, the covariates Z are treated as additional predictors and the
methods described in this chapter apply directly. On the other hand, covariates that
modify the distribution of risk(X) will have an impact on the performance of the
model. Evaluating how the performance of risk(X) varies with Z will generally
require modeling X as a function of Z and we refer the reader to Huang [12]
for details. Covariates that both predict risk and modify performance can be
accommodated using the same methods where risk(X ,Z) is the risk calculator and
the joint distribution of (X ,Z) is estimated as a function of Z.

Our discussion of the choice of risk threshold(s) assumed implicitly that the cost
and benefit of being treated are constant across individuals, and in particular are
independent of the predictor X . Predictors (X ) that predict the benefit or cost of
treatment have greater potential net benefit [13,25,30]. However evaluating whether
this is so requires data from a randomized trial where the predictor X is measured at
baseline, in order to assess the cost and benefit of treatment as a function of X .
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Estimating Improvement in Prediction
with Matched Case-Control Designs

Aasthaa Bansal and Margaret Sullivan Pepe

Abstract When an existing risk prediction model is not sufficiently predictive,
additional variables are sought for inclusion in the model. This paper addresses
study designs to evaluate the improvement in prediction performance that is gained
by adding a new predictor to a risk prediction model. We consider studies that
measure the new predictor in a case-control subset of the study cohort, a practice that
is common in biomarker research. We ask if matching controls to cases in regards
to baseline predictors improves efficiency. A variety of measures of prediction
performance are studied. We find through simulation studies that matching improves
the efficiency with which most measures are estimated, but can reduce efficiency
for some. Efficiency gains are less when more controls per case are included in the
study. A method that models the distribution of the new predictor in controls appears
to improve estimation efficiency considerably.

Introduction

Medical decisions are often based on an individual’s calculated risk of having or
developing a condition. For example, decisions to prescribe long-term cholesterol
lowering statin therapy are often made with use of the Framingham risk of a
cardiovascular event [1, 12, 21, 34] that uses as input information the individual’s
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sex, age, blood pressure, total cholesterol, low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol, smoking behavior and diabetes status. The Breast
Cancer Risk Assessment Tool (BCRAT) is used to calculate 10 year risk of breast
cancer for individuals, using information on age, personal medical history (number
of previous breast biopsies and the presence of atypical hyperplasia in any previous
breast biopsy specimen), reproductive history (age at the start of menstruation and
age at the first live birth of a child) and family history of breast cancer. If a woman’s
risk exceeds an age-specific threshold, she may be recommended for hormone
therapy that reduces the risk at least in some women. Risk prediction models can
also be used to determine if a person’s risk is low enough to forgo certain unpleasant
or costly medical interventions [10, 11].

Our ability to predict risk with currently available clinical predictors is often very
poor. For example the BCRAT model has a very modest capacity to discriminate
women who develop breast cancer within 10 years from those who do not. The
area under the age-specific receiver operating characteristic curve is approximately
0.56 [24]. Therefore new predictors are sought for their capacity to improve upon
its prediction performance. Recent advances in and wider availability of molecular
and imaging biotechnologies offer the potential for new powerful predictors. Recent
studies have examined the use of data on genetic polymorphisms and breast density
to improve the performance of BCRAT.

This paper concerns study designs to estimate the improvement in prediction
performance that is gained by adding a new predictor Y to a set of baseline predictors
X , to predict the risk of an outcome D (D= 1 for a bad outcome and D= 0 for a good
outcome). When resources are limited and Y is difficult to ascertain, it may not be
feasible to measure it on all subjects in a study cohort. Consider, for example, if the
new predictor is a biomarker measured on biological samples obtained and stored
while women were healthy at enrollment in the Women’s Health Initiative. The
preciousness of such biological samples dictates that they be used with maximum
efficiency. Typically therefore a case-control study design is employed wherein Y is
measured on a random subset of cases (denoted by D = 1) and a selected subset of
controls (D = 0).

Our specific interest concerns whether or not the controls on whom Y is measured
should be selected to frequency match the cases with regard to the baseline
predictors X . Matching is in fact routinely done in practice in order to avoid
observing associations between Y and D that are solely due to associations of X
with both Y and D. However, the effect of this practice on estimation of performance
improvement is not fully understood. We have raised concerns about matching with
regards to bias, emphasizing that naïve analyses typically employed are misleading,
as they underestimate performance [30]. The effect of matching on the estimation of
incremental value with regards to efficiency has not been examined. Nevertheless,
the practice is entrenched in the field of biomarker research. Here, we propose a two-
stage estimator that accounts for matching to produce unbiased estimates. Using
this estimator, we look to address the question of whether matching can improve
the efficiency of estimating the increment in performance. This is an important
question given that matching also necessitates a somewhat more complicated
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analysis algorithm than is required for an unmatched study. We ask whether there
is a large enough (or any) efficiency gain that justifies the common practice of
matching and a more complicated analysis.

Matching is known to improve efficiency for estimating the odds ratio for Y in a
risk model that includes X [4]. However, the odds ratio, P(D=1|X ,Y=y+1)/P(D=0|X ,Y=y+1)

P(D=1|X ,Y=y)/P(D=0|X ,Y=y) ,
does not characterize prediction performance or improvement in prediction
performance gained by including Y in the risk model over and above use of X
alone. The distribution of (X ,Y ) in the population is an additional component that
enters into the calculation of prediction performance. Janes and Pepe [19] showed
that matching on X is also optimal for estimating the covariate adjusted ROC curve,
which is a measure of prediction performance. However, Janes and Pepe [18] show
that the covariate adjusted ROC curve that characterizes the ROC performance of Y
within populations where X is fixed, does not quantify the improvement in the ROC
curve gained by including Y in the risk model. It is currently unknown if matching
leads to gains in efficiency for estimating performance improvement.

There are many metrics available for gauging improvement in prediction perfor-
mance, and there is much confusion in the field about which metrics are most worthy
for reporting. In section “Measures of Improvement in Prediction Performance”,
we review the most popular measures, providing some novel insights about their
interpretations and inter-relationships. We provide rationale for the measures we
selected to study here. In section “Estimation from Matched and Unmatched
Designs”, we describe how these measures can be estimated from matched and
unmatched studies. Simulation studies that were performed to evaluate the prop-
erties of the estimators and the efficiencies of matched designs are described in
section “Simulation Studies” using a simulated dataset and a real dataset concerning
the prediction of renal artery stenosis. In section “Bootstrap Method for Inference”,
we propose a bootstrap approach for inference and demonstrate its validity through
simulation studies. In section “Illustration with Renal Artery Stenosis Study”, we
illustrate our methodology in the context of renal artery stenosis. We close with
some recommendations and suggestions for further research.

Measures of Improvement in Prediction Performance

We first consider the most popular measures used to quantify improvement in
prediction performance. Table 1 presents definitions for these measures. In this
section, we review the measures in more detail.

Notation

Recall our use of D for the outcome variable, D = 1 denoting a case with a
bad outcome and D = 0 denoting a control with a good outcome. We use X for
predictors in the baseline risk function, risk(X) = P(D = 1|X), Y for the novel
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predictors to be added and we write risk(X ,Y ) = P(D = 1|X ,Y). All measures of
prediction performance involve the distributions of risk(X) and risk(X ,Y ) in cases
and controls. We write these distributions as:

FD
X (r) = P(risk(X)≤ r|D = 1)

FD̄
X (r) = P(risk(X)≤ r|D = 0)

FD
X ,Y (r) = P(risk(X ,Y )≤ r|D = 1)

FD̄
X ,Y (r) = P(risk(X ,Y )≤ r|D = 0)

The joint distributions of (risk(X), risk(X ,Y )) in cases and controls will be denoted
by FD(r,r′) and FD̄(r,r′) respectively.

Proportions at High Risk and Net Benefit

In some settings a threshold exists for high risk classification and patients designated
as ‘high risk’ receive an intervention. For example, patients whose 10-year risk
of a cardiovascular event exceeds 20 % are recommended for cholesterol lowering
therapy [8]. A risk model performs well, in the sense of treating people who would
have an event in the absence of therapy, i.e. the cases, if a large proportion of those
subjects are placed in the high risk category by the model, i.e. if HRD(r)≡ P[risk >
r|D = 1] is large. Conversely, one must consider to what extent subjects that would
not have an event in the absence of intervention, i.e. the controls, are inappropriately
given intervention. A good model will place few of the controls in the high risk
category, i.e. HRD̄(r) ≡ P[risk > r|D = 0] is small. The changes in HRD(r) and
HRD̄(r) that are gained by adding Y to the risk model are therefore key entities
for quantifying improvement in model performance for decision making when a
therapeutic threshold for risk exists:

ΔHRD(r) ≡ P[risk(X ,Y )> r|D = 1]−P[risk(X)> r|D = 1]

ΔHRD̄(r) ≡ P[risk(X)> r|D = 0]−P[risk(X ,Y )> r|D = 0].

These measures are also called changes in the true and false positive rates. Note that
our goal is to increase HRD(r) and reduce HRD̄(r) by adding Y to the baseline risk
model. Therefore positive values of ΔHRD and ΔHRD̄ are desirable.

There is a net expected benefit (B) associated with designating a case as high
risk and a net expected cost (C) associated with designating a control as high risk.
It has been noted that a rational choice of risk threshold is r = C/(C+B) [25, 35]
and that the expected population net benefit associated with use of a risk model
and threshold r to assign treatment is NB(r) = {ρHRD(r)− (1−ρ) r

(1−r)HRD̄(r)}B

where ρ is the population prevalence, P[D = 1]. Baker [5] suggests standardizing



148 A. Bansal and M.S. Pepe

NB(r) by the maximum possible benefit, ρB, achieved when all cases and no
controls are designated as high risk. This standardized measure B(r) ≡ HRD(r)−
(1−ρ)
ρ

r
(1−r)HRD̄(r), the proportion of maximum benefit, can also be viewed as

the true positive rate HRD(r) discounted (appropriately) for the false positive rate
HRD̄(r). The change in B(r) that is achieved by adding Y to the risk model is an
appropriate summary of its components ΔHRD(r) and ΔHRD̄(r):

ΔB(r) = ΔHRD(r)+
1−ρ
ρ

r
1− r

ΔHRD̄(r).

In some settings all subjects receive treatment by default and use of a prediction
model is to identify low risk subjects that can forego treatment. Parameters
analogous to ΔHRD(r), ΔHRD̄(r) and ΔB(r) can be defined but we do not focus
on those here.

Performance Measures Related to Fixed Points
on the ROC Curve

When risk thresholds or costs and benefits are not available, other approaches to
summarizing prediction performance have been proposed. Points on the ROC curve
or on its inverse are commonly used in practice because of their use in evaluating
diagnostic tests and classifiers. We define

ΔROC(pD̄) = ROC(X ,Y )(pD̄)−ROCX(pD̄)

where ROC(pD̄) is the proportion of cases with risks above the threshold r(pD̄) that
allows the fraction pD̄ of controls to be classified as high risk. Analogously,

ΔROC−1(pD) = ROC−1
X (pD)−ROC−1

(X ,Y )(pD)

where ROC−1(pD) is the proportion of controls with risks above the threshold r(pD)
that is exceeded by the fraction pD of cases.

Interestingly, the ROC points are closely related to measures proposed by Pfeiffer
and Gail [32] for quantifying prediction performance. They argue for choosing a
high risk threshold r(pD) so that a specified proportion of cases (pD) are designated
as high risk and define the proportion needed to follow, PNF(pD) = P[risk> r(pD)],
as a performance metric. In words, PNF(pD) is the proportion of the population
designated as high risk in order that pD of the cases are classified as high risk.
A little algebra shows that PNF(pD) = ρ pD +(1− ρ)ROC−1(pD). The reduction
in the proportion of the population needed to follow in order to identify pD of the
cases (ΔPNF) that is gained by adding Y to the model is

ΔPNF(pD) = (1−ρ)ΔROC−1(pD).
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We choose to study ΔROC−1(pD) here as it does not depend on the prevalence.
Pfeiffer and Gail [32] also define a performance metric that is the proportion of
cases followed, PCF(p), when a fixed proportion p of the population is designated
as highest risk. This measure relates directly to the ROC:

PCF(p) = ROC(pD̄)

where pD̄ is the point on the x-axis of the ROC plot such that p = ρROC(pD̄)+(1−
ρ)pD̄. We study ΔROC(pD̄) rather than ΔPCF(p) here because of its widespread
use and its independence from the prevalence.

Global Performance Measures that Do Not Specify a Risk
Threshold

The above measures require explicit or implicit choices for risk thresholds. Mea-
sures that average over all risk thresholds in some sense are popular in part because
they avoid the need to choose a risk threshold. The change in the area under the
ROC curve by adding Y to the model, denoted ΔAUC, is the most commonly used
measure in practice. The AUC is often written as

AUC = P(riski > risk j|Di = 1,D j = 0)

and

ΔAUC = AUC(X ,Y )−AUCX .

A more recently proposed measure, called the integrated discrimination improve-
ment (IDI) index, is the change in the difference in mean risks between cases and
controls:

IDI = ΔMRD = MRD(X ,Y )−MRDX

where

MRD = E(risk|D = 1)−E(risk|D = 0).

Both the AUC and the MRD are measures of distance between the case and control
distributions of modeled risks. Another measure of distance between distributions
is the above average risk difference:

AARD = P(risk > ρ |D = 1)−P(risk > ρ |D = 0),

the name deriving from the fact that E(risk) = ρ regardless of the risk model.
We study the AARD because it is related to several other measures of prediction
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performance. We note in particular that AARD=B(ρ). Youden’s index is a measure
of diagnostic performance for binary tests and we write YI(r) = HRD(r)−HRD̄(r).
We note that AARD = YI(ρ). Moreover, theory from Gu and Pepe [13] implies
that YI(ρ) = max(ROC(ρ)−ρ) = max(YI(r)). Therefore, AARD = max(YI(r)).
This is also known as the Kolmogorov-Smirnov measure of distance between
the case and control risk distributions. Finally, Gu and Pepe [13] also showed
that this statistic is equal to the standardized total gain statistic [6], a measure
derived from the population distribution of risk. The measure of improvement in
prediction performance that we consider is the difference in measures calculated
with risk(X ,Y ) compared with when calculated with risk(X):

ΔAARD = AARD(X ,Y )−AARDX .

Risk Reclassification Performance Measures

Reclassification measures of performance compare risk(X ,Y ) with risk(X) within
individuals and summarize across subjects. The most popular measure is the
net reclassification improvement (NRI) index [26]. We focus on the continuous
NRI [27], written NRI(> 0):

NRI(> 0) ≡ P(risk(X ,Y )> risk(X)|D = 1)−P(risk(X ,Y )< risk(X)|D = 1)

+P(risk(X ,Y )< risk(X)|D = 0)−P(risk(X ,Y )> risk(X)|D = 0)

= 2{P(risk(X ,Y )> risk(X)|D = 1)−P(risk(X ,Y )> risk(X)|D = 0)}

It is interesting to consider the NRI(> 0) statistic when the baseline model contains
no covariates, i.e. when all subjects are assigned risk = ρ . In this setting it is related
to measures mentioned previously:

NRI = 2{HRD(ρ)−HRD̄(ρ)}= 2AARD(ρ) = 2YI(ρ) = 2B(ρ).

Originally the NRI was proposed for categories of risk and was defined as the net
proportion of cases that moved to a higher risk category plus the net proportion of
controls that moved to a lower risk category. When there are two categories, above
or below the risk threshold r, the NRI = ΔHRD(r)+ΔHRD̄(r) = ΔYI(r). Similar
to ΔB(r), it is a weighted summary of improvements in true and false positive rates
but unfortunately it uses inappropriate weights.

Another risk reclassification measure is the integrated discrimination improve-
ment (IDI), also defined as:

IDI = E{risk(X ,Y )− risk(X)|D = 1}+E{risk(X)− risk(X ,Y )|D = 0}.
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Interestingly, because of the linearity, this measure of individual changes in risk due
to adding Y to the model can also be interpreted as a difference of two population
performance measures. That is, as noted earlier

ΔMRD = MRD(X ,Y )−MRDX = IDI.

Estimation from Matched and Unmatched Designs

We now consider how the measures defined above can be estimated from a cohort
study within which a case-control study of a new predictor is nested.

Data

We assume that data on the outcome and baseline covariates are available on
a simple random sample of N independent identically distributed observations:
(Dk,Xk), k = 1 . . . ,N. We select a simple random sample of nD cases from the
cohort to ascertain Y : Yi, i = 1, . . . ,nD. The controls on whom Y is ascertained
{Yj, j = 1, . . . ,nD̄} may be obtained as a simple random sample in an unmatched
design. Alternatively, in a matched design, a categorical variable W is defined as
a function of X ,W = W (X), and the number of controls within each level of W is
chosen to equal a constant K times the number of cases with that value for W .

As shown in Table 1, all performance improvement measures are defined as
functions of the risk distributions (notation in section “Notation”). We estimate
risk(X) and risk(X ,Y ) first, then estimate their distributions in cases and controls
and substitute the estimated distributions into expressions for the performance
improvement measures.

Estimating Risk Functions

For the baseline model, we fit a regression model to the cohort data {(Dk,Xk),k =

1, . . . ,N} and calculate predicted risks, r̂isk(X), for each individual in the cohort.
For the expanded model, risk(X ,Y ), we consider two approaches.

Case-control with adjustment We fit a model to data from the case-control subset,
yielding fitted values r̂isk

cc
(X ,Y ), and then adjust the intercept to the prevalence in

the cohort

logit r̂isk
ad j

(X ,Y ) = logit r̂isk
cc
(X ,Y )− logit

(nD

n

)
+ logit

(
ND

N

)

,
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where n= nD+nD̄ and ND is the number of cases in the cohort. This is a well-known
and standard approach to estimation of absolute risk for epidemiologic case-control
studies [2]. It draws upon the results of Prentice and Pyke [33], which suggested
that a prospective logistic model can be fit to retrospective data from a case-control
study with a slight modification that adds an offset term to the logistic model. The
approach maximizes the pseudo- (or conditional-) likelihood that an observation in
the case-control sample is a case or a control [3, 9].

However this approach does not account for matching. Pencina et al. [27]
presented a similar approach that used intercept adjustment to estimate NRI(>0)
in the context of simple case-control studies.

Two-Stage Two-stage methods acknowledge that selection of subjects for whom Y
is measured, i.e. the second stage of sampling, may depend on their values of (D,X)
found in the first stage. In particular, they account for matching. We generalize
the intercept adjustment idea presented above to account for matching on X . This
requires using the cohort to adjust the odds ratio associated with X . The odds ratio
associated with Y is correctly estimated using standard logistic regression applied
to the case-control dataset. We use the corresponding fitted values but adjust them
using fitted values from the baseline model fit to the cohort and to the case-control

datasets. Specifically, if we let r̂isk
cohort

(X) and r̂isk
cc
(X) denote the fitted values

for the baseline models, then the two-stage estimator of the absolute risk is:

logit r̂isk
2−stage

(X ,Y ) = logit r̂isk
cc
(X ,Y )− logit r̂isk

cc
(X)+ logit r̂isk

cohort
(X)

Using ‘cohort’ and ‘cc’ to denote sampling in the cohort or in the case-control

subset, rationale for r̂isk
2−stage

(X ,Y ) derives from the facts that

logit P(D = 1|X ,Y,cohort) = logit P(D = 1|X ,cohort)+ log DLRX(Y )

and

logit P(D = 1|X ,Y,cc) = logit P(D = 1|X ,cc)+ log DLRX (Y )

where the covariate-specific diagnostic likelihood ratio

DLRX(Y ) = P(Y |X ,D = 1)/P(Y |X ,D = 0)

is the same in the (matched or unmatched) case-control and cohort populations.
The equations are a simple application of Bayes’ theorem [14]. Substituting the
expression for log DLRX (Y ) derived from the case-control equation into that for

the cohort equation gives the expression above for logit r̂isk
2−stage

(X ,Y ).
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Estimating Distributions of Risk

To estimate the risk distributions, we draw upon previously proposed methods
for the estimation of risk distributions in simple case-control studies [14, 16, 17].
Here, we propose methodology for estimation with matched nested case-control
data, which has not been previously considered. We estimate the baseline risk
distributions, FD

X and FD̄
X , using the empirical distributions of r̂isk(X) in the cohort

data. Since the cases in the case-control set are drawn as a simple random sample
from the cases in the cohort, we use the empirical distribution of r̂isk(X ,Y ) in the
cases as the estimator of FD

X ,Y . For estimation of the distribution of r̂isk(X ,Y ) in
the controls, we propose nonparametric and semiparametric approaches.

Nonparametric Estimation In unmatched case-controls studies we can also use
the empirical distribution of r̂isk(X ,Y ) among the controls to estimate FD̄

X ,Y .
However in matched designs the controls are not a simple random sample and
the distribution of r̂isk(X ,Y ) must be reweighted to reflect the distribution in the
population. Specifically, letting c = 1, . . . ,C represent the distinct levels of the
matching variable we can write

FD̄
X ,Y (r) = P{risk(X ,Y )≤ r|D = 0}

=
C

∑
c=1

P{risk(X ,Y )≤ r|D = 0,W = c}P(W = c|D = 0). (1)

A nonparametric estimator substitutes the observed proportions in the cohort
for P(W = c|D = 0) and the observed empirical stratum specific distributions of
r̂isk(X ,Y ) for P{risk(X ,Y )|D = 0,W = c}. We also consider a semiparametric esti-
mator that substitutes semiparametric stratum specific estimates for P{risk(X ,Y )≤
r|D = 0,W = c}.

Semiparametric Estimation Observe that

P{risk(X ,Y )≤ r|D = 0,W = c}= E{P(risk(X ,Y )≤ r|D = 0,X)|D = 0,W = c}. (2)

A semiparametric location-scale model for the distribution of Y conditional on
(D = 0,X) is written

Y = μ D̄(X)+σ D̄(X)ε

where the distribution of ε is unspecified, ε ∼ F0, and μ D̄(X), and σ D̄(X) are
parametric functions of X [15]. After fitting the regression functions μ D̄(X) and
σ D̄(X), the empirical distribution of the residuals ε̂ j = (Yj − μ̂ D̄(Xj))/σ̂ D̄(Xj),
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j = 1, . . . ,nD, yields an estimator F̂0. The semiparametric estimate of the distribution
of Y is then

P̂(Y ≤ y|D = 0,X) = P̂

{
Y − μ̂ D̄(X)

σ̂ D̄(X)
≤ y− μ̂ D̄(X)

σ̂ D̄(X)

∣
∣
∣
∣D = 0,X

}

= P̂

{

ε̂ ≤ y− μ̂ D̄(X)

σ̂ D̄(X)

∣
∣
∣
∣D = 0,X

}

= F̂0

{
y− μ̂ D̄(X)

σ̂ D̄(X)

}

, (3)

which in turn yields P̂{risk(X ,Y ) ≤ r|D = 0,X}. For example, if we use a logistic
model for risk(X ,Y ) and write logit r̂isk(X ,Y ) = θ̂0+ θ̂1X + θ̂2Y where θ̂2 > 0, then

P̂{risk(X ,Y )≤ r|D = 0,X} = P̂{logit r̂isk(X ,Y )≤ logit(r)|D = 0,X}
= P̂{θ̂0 + θ̂1X + θ̂2Y ≤ logit(r)|D = 0,X}

= P̂

{

Y ≤ logit(r)− θ̂0 − θ̂1X

θ̂2

∣
∣
∣
∣D = 0,X

}

= F̂0

⎧
⎨

⎩

logit(r)−θ̂0−θ̂1X
θ̂2

− μ̂ D̄(X)

σ̂ D̄(X)

⎫
⎬

⎭
,

by substituting into (3). In turn, we estimate (2) as

P̂{risk(X ,Y)≤ r|D = 0,W = c}= ∑N
j=1 P̂{risk(Xj,Y )≤ r|D j = 0,Xj} I{W (Xj) = c,D j = 0}

Nc
D̄

where Nc
D̄ is the number of controls in the cohort with matching covariate value

W = c. This estimator is then substituted into (1) to get F̂ D̄
X ,Y (r). As noted above,

a nonparametric estimator substitutes the observed proportions in the cohort for

P(W = c|D = 0), so that P̂(W = c|D = 0) =
Nc

D̄
ND̄

. The semiparametric estimator then
simplifies to

F̂D̄
X ,Y (r) = P̂{risk(X ,Y )≤ r|D = 0}= ∑N

j=1 P̂{risk(Xj,Y )≤ r|D j = 0,Xj} I{D j = 0}
ND̄

for both matched and unmatched studies.
Both nonparametric and semiparametric estimators of FD̄

X ,Y are accompanied by
a nonparametric estimator of FD

X ,Y .
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Estimates of Performance Improvement Measures

In Table 1, we presented the definitions of all performance improvement measures
being studied here. Observe that estimates of ΔHRD(r), ΔHRD̄(r), ΔB(r) and
ΔAARD(r) follow directly from the estimators described above for the cumulative
distributions of risk(X) and risk(X ,Y ) in cases and in controls. Note that since
ΔHRD(r) relies only on FD

X ,Y , what we refer to as nonparametric and semipara-
metric estimates of ΔHRD(r) are in fact the same empirical estimate.

The pointwise ROC measures are also calculated directly, after noting that
ROC(pD̄) = 1 − FD(r(pD̄)) where r(pD̄) is such that 1 − FD̄(r(pD̄)) = pD̄ and
ROC−1(pD) = 1−FD̄(r(pD)) where r(pD) is such that 1−FD(r(pD)) = pD.

For ΔAUC, we use the usual simple empirical estimator with cohort data for the
baseline value AUCX , while we use

̂AUC(X ,Y ) =
1

nD

nD

∑
i=1

F̂ D̄
X ,Y{r̂isk(Xi,Yi)},

where the summation is over cases, for the enhanced model. Note that this is equal
to the usual empirical estimator in an unmatched study but that it also yields an
estimate of P{risk(Xj,Yj) ≤ risk(Xi,Yi)|Di = 1,D j = 0} in the matched design
setting.

The baseline MRD is calculated empirically from the cohort values of r̂isk(X)
while the enhanced model MRD is calculated as

MRD(X ,Y ) =
1

nD

nD

∑
i=1

r̂isk(Xi,Yi)−
C

∑
c=1

Ê{r̂isk(X ,Y )|D = 0,W = c}P(W = c|D = 0).

Here Ê{r̂isk(X ,Y )|D = 0,W = c} are the stratum specific sample averages of
r̂isk(X ,Y ) for controls in the case-control study for the nonparametric estimator.
For the semiparametric estimator Ê{r̂isk(X ,Y )|D = 0,W = c} is calculated as the
average of

∫
r̂isk(Xi,y)dF̂0

{
y− μ D̄(Xi)

σ̂ D̄(Xi)

}

=
1

nD̄

nD̄

∑
j=1

r̂isk

{

Xi,
Yj − μ̂ D̄(Xj)

σ̂ D̄(Xj)
σ̂ D̄(Xi)+ μ̂ D̄(Xi)

}

over the controls in the cohort stratum with W = c.
The NRI(> 0) statistic uses the observed proportion of cases with r̂isk(X ,Y ) >

r̂isk(X) in the case-control study for the event NRI component, which requires
estimation of P{risk(X ,Y ) > risk(X)|D = 1}. The non-event NRI component
requires P{risk(X ,Y ) < risk(X)|D = 0}, which is estimated as a weighted average
of the stratum specific observed proportions for the nonparametric estimator and as

1
ND̄
∑ND̄

i=1 P̂{r̂isk(Xi,Y )< r̂isk(Xi)|Di = 0,Xi} for the semiparametric estimator.
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Further details of the performance measure estimators obtained in each scenario
are presented in the Appendix, Tables 8–10.

Summary of Estimation Approaches

In Table 1, we showed that all performance improvement measures are functions of
the risk distributions. Therefore, regardless of which measure is used, estimation of
performance improvement is a two-fold task that requires estimating: (1) the risk
functions risk(X) and risk(X ,Y ), and (2) the distributions of the risk functions in
cases and in controls. We then substitute the estimated distributions into expressions
for the performance improvement measures.

We estimated both risk functions parametrically using simple logistic models
with linear terms. Other more flexible forms may be used in practice. In sec-
tion “Estimating Risk Functions”, we presented two different modeling approaches
for estimating risk(X ,Y ) under the logistic regression framework. The first method
(Mad j) is a commonly used approach which utilizes only the data in the case-control
subset and is valid only for an unmatched design. The second method (M2−stage) is
a two-stage estimator which utilizes additional data from the cohort and is valid
for both matched and unmatched designs. By comparing these two approaches
to modeling the risk function, we aim to demonstrate that matching invalidates
commonly used naïve analysis. Additionally, we investigate whether utilizing the
parent cohort data for X improves the efficiency of risk function estimation.

In section “Estimating Distributions of Risk”, we turned our attention to the
estimation of the risk distributions in cases and in controls. We estimated the
distributions of risk(X) using the empirical distributions estimated from the cohort.
We also estimated the distribution of risk(X ,Y ) in cases empirically. For the
estimation of the risk distribution in controls, we proposed nonparametric and
semiparametric approaches for matched and unmatched case-control designs. The
nonparametric approach has the advantage of making no modeling assumptions for
the distribution of Y given X in controls. On the other hand, the semiparametric
approach does make modeling assumptions and borrows information across strata
of controls, and is therefore expected to be more efficient. One would therefore use
the nonparametric approach in situations where there was uncertainty about how to
model the distribution of Y given X in controls. The semiparametric approach would
be preferable in situations with sparse controls. Using these two approaches for
estimating the risk distribution, we aim to compare the efficiency of semiparametric
estimation to that of nonparametric estimation.

Finally, using the above methods, we aim to answer the question of whether
matching in the nested case-control subset improves efficiency in the estimation of
performance improvement measures.
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Simulation Studies

We investigated the performances of the estimators and the merits of matched study
designs using two small simulation studies – in the first study, we generated the data
from a bivariate binormal model and in the second study, we used a real dataset.

Simulation Study 1: Bivariate Binormal Data

Data Generation

We generated bivariate binormal cohort data of size N = 5,000 for cases (D = 1)
and controls (D = 0) with population prevalence ρ = P(D = 1) = 0.10, so that the
cohort contained ND = 500 cases and ND̄ = 4,500 controls:

(
X
Y

)

∼ BVN

((
μX (D)

μY (D)

)

,

(
1 corr(X ,Y |D)

corr(X ,Y |D) 1

))

where μX(0) = μY (0) = 0 and μX(1) = μY (1) = 0.742. The corresponding AUC
values associated with X and Y alone are AUCX = AUCY = Φ(0.742/

√
2) =

0.7. Data for N = 5,000 subjects were generated, so that {(Di,Xi), i = 1, . . .N}
constitutes the study cohort data. A random sample of nD = 250 cases were selected
from the cohort and their Y values added to the dataset. For the unmatched design,
Y values for a random sample of nD̄ = 500 controls were also added to the dataset.
For the matched design, we generated the matching variable W using quartiles of X
in the control population and selected two controls randomly for each case in each
of the four W strata.

Results

Using the notation M for a generic performance improvement measure, Table 2
shows mean values for estimates derived from 5,000 simulations. Estimates calcu-
lated using the adjusted case-control modeling approach for risk(X ,Y ) are denoted
by Mad j, while estimates calculated using the two-stage modeling approach are
denoted by M2−stage. Bias estimates are calculated by subtracting the mean values
from the true value for each measure. We see that the Mad j estimators are valid
in unmatched designs, in the sense that mean values are close to the true values.
However, Mad j estimators are biased in matched designs because they do not
account for matching. Note that the direction and size of the bias is such that
performance appears to decrease rather than increase with addition of Y to the
model. In contrast the M2−stage estimators provide estimates that are centered around
the true values in matched and unmatched designs.
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Table 3 Efficiency of M2−stage in matched and unmatched designs relative to the nonparametric
Mad j estimator from the unmatched design. Shown are the ratios of the standard deviations
of estimates found in simulation studies divided by reference standard deviations (Mad j-NP;
unmatched), so smaller values show more efficiency. NP and SP represent nonparametric and
semiparametric estimation, respectively, of the distribution of risk(X,Y ) in controls

Unmatched design Matched design

Measure M2−stage-NP (%) M2−stage-SP (%) M2−stage-NP (%) M2−stage-SP (%)

ΔHRD(0.20) 75.3 75.3 74.3 74.3
ΔHRD̄(0.20) 109.1 53.4 74.0 47.5
ΔB(0.20) 99.4 77.8 82.8 75.1
ΔROC−1(0.80) 99.8 87.0 95.7 88.5
ΔROC(0.10) 98.9 77.7 83.1 75.3
ΔAUC 100.0 84.1 86.1 84.0
ΔMRD = IDI 71.1 69.3 65.3 64.7
ΔAARD 99.5 83.4 91.2 83.7
NRI(> 0) 61.6 61.3 62.5 59.3

The relative efficiencies of estimators are considered in Table 3 using ratios of
standard deviations, with the standard deviation of the nonparametric Mad j estimator
in the unmatched studies as the reference.

In the unmatched design, we found that the nonparametric M2−stage estimator
is more efficient than Mad j for estimating ΔHRD(0.20), ΔMRD and NRI(> 0).
Interestingly, M2−stage performs slightly worse than Mad j for ΔHRD̄(0.20), but has
similar performance to Mad j for all other performance measures.

To evaluate the impact of matching on efficiency we only consider M2−stage

because Mad j estimators are biased. Comparing M2−stage in matched versus
unmatched designs, we see that matching improves precision with which
performance improvement is estimated for most measures. For example, with
nonparametric estimation of the ROC related measures, the standard deviations in
matched studies are 80–90 % the size of those in unmatched studies.

Interestingly, the improvement observed from matching can often be achieved
in unmatched data by using the semiparametric estimator. In fact, for many of
the measures, the efficiency is improved more by modeling P(Y |X ,D = 0) in an
unmatched study than by matching controls to cases in the design and using the
nonparametric estimator. For example, the standard deviation of the nonparametric
estimate of ΔHRD̄(0.20) in matched studies is 74.0% of the reference, while the
semiparametric estimate in unmatched studies has a standard deviation that is
53.4% of the reference. Some intuition for this result is provided by the fact that
semiparametric estimation borrows information across strata of controls. While
matching enriches strata with larger numbers of cases, it also makes those strata
with fewer cases more sparse with respect to the number of controls. Therefore,
both matched and unmatched data are prone to sparseness of controls in certain
strata and nonparametric estimation suffers in such scenarios. The semiparametric
approach, however, is less affected as it borrows information across strata.



Estimating Improvement in Prediction with Matched Case-Control Designs 161

Simulation Study 2: Renal Artery Stenosis Data

Study Description

The kidneys play several major regulatory roles in the human body, including
regulation of blood pressure. The renal arteries aid in the proper functioning of the
kidneys by supplying them with blood. Narrowing of the renal arteries is a condition
termed renal artery stenosis (RAS); it inhibits blood flow to the kidneys and can lead
to treatment-resistant hypertension.

The gold standard diagnostic test for RAS is an invasive and expensive procedure
called renal angiography. In order to avoid unnecessarily performing angiography
on individuals with a low likelihood of having disease, a clinical decision rule was
developed to predict RAS based on patient characteristics and thus identify high-risk
patients as candidates for the procedure [23].

We illustrate the proposed methodology using data from a RAS study [20].
For 426 patients, information is available on disease diagnosis from angiography,
as well as age (10-year units), BMI, gender, recent onset of hypertension, pres-
ence of atherosclerotic vascular disease and serum creatinine (SCr) concentration.
We model baseline risk using the first five characteristics and look to estimate the
incremental value gained from adding SCr concentration to the model. Age and
BMI were mean-centered. SCr concentration was log-transformed and standardized
to have mean 0 and standard deviation 1. The study cohort includes 98 cases and
328 controls.

Methods

We simulated nested case-control studies using this dataset. Specifically, we
resampled 426 observations with replacement from the cohort, selected all the
cases and twice the number of controls, and disregarded SCr concentration data
for patients who were not in the selected case-control subset. In one set of analyses
the controls were selected unmatched as a simple random sample from all controls.
In a second set of analyses the controls were selected to match the cases in regards to
estimated baseline risk category. In particular, we created a three-level risk category
variable, W , defined as: low if r̂isk(X) < 0.10, medium if 0.10 < r̂isk(X) < 0.20
and high if r̂isk(X) > 0.20. We selected two controls per case at random without
replacement within each baseline risk category for the matched controls datasets.
We also evaluated settings with 1:1 case-control ratios.

Results from Renal Artery Stenosis Dataset

Tables 4 and 5 summarize results of 1,000 nested case-control studies based on
the renal artery stenosis dataset. We see that the Mad j estimators are only valid in
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unmatched case-control studies. Interestingly, the bias in Mad j in matched studies is
such that prediction performance appears to disimprove considerably with addition
of Y when the IDI, NRI(> 0) or ΔHRD performance measures are employed. This
is very similar to results in Table 2 for the simulated bivariate normal distributions.
Also as in Table 2, we see that M2−stage is valid in matched and unmatched designs.

Comparing the efficiency of M2−stage to Mad j in unmatched designs where both
are valid, we see trends in the top panel of Table 5 that are similar to those observed
in Table 3. For a case-control ratio of 1:1, M2−stage-NP is more efficient than Mad j-
NP, but only for ΔHRD, ΔMRD and NRI(> 0). For a larger number of controls
(case-control ratio = 1:2), M2−stage loses some of its efficiency advantage. As before,
M2−stage has worse performance than Mad j for the estimation of ΔHRD̄, although
again, this effect is lessened with the larger case-control ratio of 1:2.

Turning to the main question concerning efficiency due to matching, we again
see some trends in the top panel of Table 5 that are similar to observations made for
the bivariate binormal simulations in Table 3. Comparing M2−stage-NP in matched
versus unmatched designs, matching appears to improve the efficiency with which
ΔHRD̄ is estimated. However, ΔHRD is not affected by matching and estimation of
NRI(> 0) may be worse in matched studies. With larger numbers of controls, we
see in the bottom panel of Table 5 that there is no gain from matching with regards
to efficiency of M2−stage-NP.

Semiparametric estimation improves efficiency much more than matching does
in these simulations. Again, this is consistent with the earlier simulation results.

Bootstrap Method for Inference

Performance improvement estimates obtained from nested case-control data incor-
porate variability from both the cohort and the nested case-control subset. However,
simple bootstrap resampling from observed data cannot be implemented in this
setting, as data on Y are observed only for subjects selected in the original case-
control subset. Below we discuss our proposed strategy for bootstrapping with
nested case-control data.

Proposed Approach

We propose a parametric bootstrap method that combines resampling observations
in the cohort and resampling residuals in the case-control subset [7]. To begin, we
have the original study cohort for which X and disease status are available and a
nested case-control subsample on which Y is measured. We first bootstrap a cohort
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(say, cohort∗) from the original cohort and proceed to generate the matching variable
W ∗ based on quartiles of X∗ in the bootstrapped cohort∗. A matched or unmatched
case-control subsample∗ is then constructed in the same fashion as before. However,
note that in this bootstrapped case-control subsample∗, the only subjects that have
Y data are those who were selected to be in the original case-control subsample.
We generate Y ∗ values for all subjects in the bootstrapped case-control subsample∗
using a parametric bootstrap method combined with residual resampling.

Specifically, we use the original case-control subsample to model Y |X ,D = 0
semiparametrically as in section “Estimating Distributions of Risk”,

Y D̄ = μ(XD̄)+σε.

Fitting this model on the original case-control subsample gives us estimated values
μ̂ , σ̂ and residuals ε̂1, . . . , ε̂nD̄

. Then, for each control∗ in the bootstrapped case-
control subsample∗, we use that subject’s covariate values, X∗, and sample with
replacement a residual from among ε̂1, . . . , ε̂nD̄

to generate a Y ∗ value using μ̂
and σ̂ :

Y ∗
i = μ̂(X∗

i )+ σ̂ ε̂∗i , i = 1, . . . ,n∗̄D.

We fit a separate model for Y |X ,D = 1 in the original case-control subsample and
take a similar approach to generate Y ∗

1 , . . . ,Y
∗
nD∗ for cases in the bootstrapped case-

control subsample∗.

Simulation Study

We assessed the performance of the proposed bootstrap method with a simulation
study using bivariate binormal data generated as in section “Data Generation”. We
carried out 1,000 simulations, each time generating a new study cohort of size
N = 5,000 and from this study cohort, selecting a nested case-control subsample
of size 250 cases and 500 controls. We used both the matched and unmatched
designs. Within each simulation, we carried out 200 bootstrap repetitions using
the procedure described above. For each performance measure estimate obtained in
that simulation, we estimated its standard error as the standard deviation across the
200 bootstrap repetitions and used it to calculate normality-based 95 % confidence
intervals. Coverage was averaged over all 1,000 simulations.

Results are presented in Table 6. Not surprisingly, Mad j estimators, which are
biased in matched designs, also generate confidence intervals with poor coverage.
For all other settings, coverage of the 95 % bootstrap confidence intervals is good.
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Illustration with Renal Artery Stenosis Study

We illustrate our methodology on the renal artery stenosis dataset by simulating a
single nested case-control dataset using the unmatched design and a single dataset
using the matched design with a 1:2 case-control ratio. We include bootstrap
standard errors and normality-based 95% confidence intervals (CIs), obtained
from 500 bootstrap repetitions following the approach described in section “Boot-
strap Method for Inference”. Instead of repeating numerous simulations as in
section “Simulation Study 2: Renal Artery Stenosis Data”, we have a single study
cohort and a single two-phase dataset here that we bootstrap from.

Results are presented in Table 7. We see that the two-phase estimates are
quite different from the full-data estimates. We used only a single two-phase
sample here to mimic a real-life two-phase dataset. Repeating the sampling 100
times and averaging estimates across repetitions showed that the estimates are
unbiased (data not shown). The observed inconsistency is a result of sampling
variability. As before, we see that a standard adjusted analysis (Mad j) underestimates
performance improvement in a matched design. M2−stage produces valid estimates.
Conclusions regarding the incremental value of SCr concentration are similar using
any of the valid estimation methods in this setting. We use estimates from M2−stage

with semiparametric estimation and a matched design to draw conclusions in the
following paragraph.

The incremental value of SCr concentration appears to be significant using
ΔMRD and NRI as the measures of interest. Values of 0 for both measures would
indicate no improvement from SCr concentration. ̂ΔMRD is 0.069 {95 % CI (0.013,
0.124)}, indicating that the change in the difference in mean risks between cases and
controls is approximately 0.069. N̂RI is 0.547 {95 % CI (0.259,0.836)}; given that
NRI has a range of (−2,2), this seems like a moderate level of improvement in risk
reclassification. Small improvements that are not statistically significant are seen
using all other measures.

Discussion

Matching controls to cases on baseline risk factors is a common practice in
epidemiologic studies of risk. It has also become common practice in biomarker
research [29]. It allows one to evaluate from simple two-way analyses of Y and D
if there is any association between Y and D and to be assured that the association is
not explained by the matching factors. Matching also allows for efficient estimation
of the relative risk associated with Y controlling for baseline predictors X in a risk
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Table 7 Results from a matched and an unmatched two-phase study simulated from the renal
artery stenosis dataset. 95 % bootstrap confidence intervals were obtained from 500 bootstrap
repetitions, using M2−stage and Mad j for estimation of risk(X,Y ) and (a) nonparametric and
(b) semiparametric estimation of the distribution of risk(X,Y ) in controls

(a) Nonparametric estimates

M2−stage Mad j

Measure
Full data
estimate Estimate Std err 95 % CI Estimate Std err 95 % CI

Unmatched study design
ΔHRD(0.20) −0.010 −0.020 0.058 (−0.135, 0.094) −0.020 0.057 (−0.131, 0.091)
ΔHRD̄(0.20) 0.043 0.082 0.063 (−0.042, 0.206) 0.077 0.062 (−0.045, 0.199)
ΔB(0.20) 0.026 0.048 0.082 (−0.113, 0.210) 0.044 0.081 (−0.114, 0.203)
ΔROC−1(0.80) 0.027 0.067 0.098 (−0.124, 0.258) 0.057 0.097 (−0.134, 0.248)
ΔROC(0.10) 0.081 0.071 0.089 (−0.103, 0.245) 0.081 0.089 (−0.094, 0.256)
ΔAUC 0.027 0.037 0.034 (−0.029, 0.103) 0.039 0.034 (−0.027, 0.105)
ΔMRD = IDI 0.069 0.081 0.026 (0.031, 0.132) 0.087 0.030 (0.028, 0.146)
ΔAARD −0.032 0.006 0.048 (−0.089, 0.101) 0.037 0.047 (−0.055, 0.129)
NRI(> 0) 0.501 0.531 0.155 (0.226, 0.835) 0.510 0.195 (0.129, 0.892)

Matched study design
ΔHRD(0.20) −0.010 −0.020 0.034 (−0.087, 0.046) −0.112 0.049 (−0.209, −0.015)
ΔHRD̄(0.20) 0.043 0.043 0.038 (−0.031, 0.117) 0.108 0.040 (0.030, 0.185)
ΔB(0.20) 0.026 0.016 0.048 (−0.078, 0.109) −0.022 0.059 (−0.137, 0.093)
ΔROC−1(0.80) 0.027 0.028 0.063 (−0.095, 0.150) 0.018 0.073 (−0.125, 0.161)
ΔROC(0.10) 0.081 0.051 0.067 (−0.081, 0.183) 0.020 0.079 (−0.134, 0.174)
ΔAUC 0.027 0.030 0.015 (0.001, 0.060) 0.021 0.019 (−0.016, 0.059)
ΔMRD = IDI 0.069 0.069 0.027 (0.015, 0.122) −0.041 0.036 (−0.112, 0.029)
ΔAARD −0.032 −0.024 0.052 (−0.126, 0.078) −0.046 0.063 (−0.169, 0.077)
NRI(> 0) 0.501 0.596 0.181 (0.241, 0.951) −0.359 0.226 (−0.801, 0.084)

(b) Semiparametric estimates

M2−stage Mad j

Measure
Full data
estimate Estimate Std err 95 % CI Estimate Std err 95 % CI

Unmatched study design
ΔHRD(0.20) −0.010 −0.020 0.058 (−0.135, 0.094) −0.020 0.057 (−0.131, 0.091)
ΔHRD̄(0.20) 0.043 0.059 0.063 (−0.066, 0.183) 0.051 0.064 (−0.074, 0.176)
ΔB(0.20) 0.026 0.029 0.080 (−0.129, 0.186) 0.022 0.080 (−0.134, 0.178)
ΔROC−1(0.80) 0.027 0.039 0.101 (−0.159, 0.236) 0.015 0.101 (−0.183, 0.212)
ΔROC(0.10) 0.081 0.102 0.087 (−0.068, 0.272) 0.112 0.087 (−0.059, 0.283)
ΔAUC 0.027 0.034 0.034 (−0.032, 0.100) 0.033 0.034 (−0.033, 0.099)
ΔMRD = IDI 0.069 0.077 0.028 (0.023, 0.131) 0.080 0.029 (0.022, 0.138)
ΔAARD −0.032 0.000 0.043 (−0.084, 0.084) 0.023 0.041 (−0.058, 0.103)
NRI(> 0) 0.501 0.532 0.150 (0.237, 0.826) 0.463 0.187 (0.095, 0.830)

Matched study design
ΔHRD(0.20) −0.010 −0.020 0.034 (−0.087, 0.046) −0.112 0.049 (−0.209, −0.015)
ΔHRD̄(0.20) 0.043 0.035 0.027 (−0.017, 0.087) 0.080 0.034 (0.013, 0.148)
ΔB(0.20) 0.026 0.009 0.042 (−0.074, 0.091) −0.045 0.055 (−0.152, 0.062)
ΔROC−1(0.80) 0.027 0.013 0.059 (−0.102, 0.128) −0.046 0.069 (−0.181, 0.089)

(continued)
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Table 7 (continued)

(b) Semiparametric estimates

M2−stage Mad j

Measure
Full data
estimate Estimate Std err 95 % CI Estimate Std err 95 % CI

ΔROC(0.10) 0.081 0.081 0.062 (−0.041, 0.203) 0.010 0.070 (−0.127, 0.147)
ΔAUC 0.027 0.027 0.015 (−0.002, 0.057) 0.009 0.019 (−0.027, 0.046)
ΔMRD = IDI 0.069 0.069 0.028 (0.013, 0.124) −0.044 0.038 (−0.118, 0.030)
ΔAARD −0.032 −0.014 0.046 (−0.104, 0.076) −0.044 0.058 (−0.159, 0.071)
NRI(> 0) 0.501 0.547 0.147 (0.259, 0.836) −0.232 0.210 (−0.643, 0.179)

model for risk(X ,Y ). However, the impact of matching on estimates of prediction
performance measures has not been explored previously.

We demonstrated the intuitive result that matching invalidates standard estimates
of performance improvement. Our estimators that simply adjust for population
prevalence but not for matching, Mad j, substantially underestimated the perfor-
mance of the risk model risk(X ,Y ) and therefore underestimated the increment in
performance gained by adding Y to the set of baseline predictors X . Intuitively, this
underestimation can be attributed to the fact that matching causes the distribution
of X to be more similar to cases in study controls than in population controls and
therefore the distribution of risk(X ,Y ) is also more similar to cases in study controls
than in population controls.

We derived two-stage estimators that are valid in matched or unmatched nested
case-control studies. We were unable to derive analytic expressions for the variances
of these estimates. Therefore we investigated efficiency in two simple simulation
studies. Our results suggest that the impact of two-stage estimation and of matching
varies with the performance measure in question. In our simulations two-stage
estimation in unmatched studies had little impact on efficiencies of ROC measures
but was advantageous for estimating the reclassification measures NRI(> 0) and
IDI=ΔMRD. On the other hand, matching improved efficiency of estimates of ROC
related measures but did little to improve estimation of reclassification measures.

Our preferred measures of performance increment are neither ROC measures
nor risk reclassification measures. We argue for use of the changes in high risk
proportions of cases, ΔHRD(r), high risk proportion of controls, ΔHRD̄(r), and the
linear combination ΔB(r). These measures are favored due to their practical value
for quantifying effects on improved medical decisions [28].

In our simulations we found that two-stage estimation improved efficiency of
ΔHRD but that matching had little to no further impact. Note that matching only
affects the two-stage estimator for ΔHRD through the influence of controls on
the estimator of risk(X ,Y ). That is, given estimates of risk(X ,Y ), the empirical
estimator ofΔHRD is employed in both matched and unmatched designs as the cases
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are a simple random sample from the cohort. We conclude that the improvement
in estimating risk(X ,Y ) that is gained with matched data does not carry over to
substantially impact on estimation of the distribution of risk(X ,Y ) in cases. On the
other hand, matching improved estimation of ΔHRD̄(r), at least with smaller control
to case ratio.

We implemented a semiparametric method that modeled the distribution of Y
given X among controls. This had a profound positive influence on efficiency with
which most measures were estimated, especially in unmatched designs. If one is
comfortable with making necessary assumptions to model Y given X in controls, it
seems that little additional efficiency is gained by using a matched design.

We recognize that the simulation scenarios we studied are limited and our
conclusions may not apply to other scenarios. There are a number of factors to
consider with respect to study design and estimation and changing one of these
factors could affect results. In fact, we see this happen in our two simulation studies.
For example, in our second simulation study, changing the case-control ratio from
1:1 to 1:2 alone lessens the advantage of matching on results. Moreover, the effect
of matching is different on different performance measures. More work is needed
to derive analytic results that could generalize our observations. In the meantime
our practical suggestion is to use simulation studies based on the application of
interest in order to guide decisions about matching and other aspects of study design.
Simulation studies may be based on hypothesized joint distributions for biomarkers,
as in our first simulation study (section “Simulation Study 1: Bivariate Binormal
Data”). If pilot data are available one could base simulation studies on that, as we
did with the renal artery stenosis data (section “Simulation Study 2: Renal Artery
Stenosis Data”). Simulation studies can be used to guide the design of another larger
study, by simulating both matched and unmatched nested case-control studies by
varying factors related to study design and estimation approach and investigating
which approaches would maximize efficiency for the performance improvement
measures of interest.

Another consideration in the decision to match is that inference is complicated by
matching. Asymptotic distribution theory is not available for two-stage estimators
of performance measures. The difficulty in deriving analytic expressions comes
from the fact that there are multiple sources of variability that must be accounted
for, given the complicated analytic approach and study design. Simple bootstrap
resampling cannot be implemented in this setting because the nested case-control
design implies that Y is only available for the study controls. We proposed
a parametric bootstrap approach that generates Y for all cohort subjects using
semiparametric models for Y given X fit to the original data. We showed that this
method was valid with good coverage in simulation studies. We recommend this
approach with the caveat that near the null, estimates tend to be skewed and in turn,
inference tends to be problematic near the null for all measures of performance
improvement. We and others have noted severe problems with bootstrap methods
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and inference in general for estimates of performance improvement even in cohort
studies and especially with weakly predictive markers [22, 31, 36]. In practice, we
recommend doing simulations similar to those suggested above to determine if valid
inference is possible with the given data and study design or if the performance
improvement is too close to the null. Continued effort is needed to develop methods
for inference about performance improvement measures in cohort studies and then
to extend them to nested case-control designs.

Acknowledgements Support for this research was provided by RO1-GM-54438 and PO1-CA-
053996. The authors thank Mr. Jing Fan for his contribution to the simulation studies.

Appendix

Table 8 Estimators of performance measures: Nonparametric estimators using the baseline risk
model and cohort data

Name Estimator

HRD
X (r)

1
ND
ΣN

i=1I{r̂isk(Xi)> r, Di = 1}

HRD̄
X (r)

1
ND̄
ΣN

i=1I{r̂isk(Xi)> r, Di = 0}

BX (r)
1

ND
ΣN

i=1I{r̂isk(Xi)> r, Di = 1}− ND̄
ND

r
(1−r)

1
ND̄
ΣN

i=1I{r̂isk(Xi)> r, Di = 0}

ROCX (pD̄) 1
ND
ΣN

i=1I{r̂isk(Xi)> r(pD̄), Di = 1},

where r(pD̄) s.t. 1
ND̄
ΣN

i=1I{r̂isk(Xi)> r(pD̄), Di = 0}= pD̄

ROC−1
X (pD) 1

ND̄
ΣN

i=1I{r̂isk(Xi)> r(pD), Di = 0},

where r(pD) s.t. 1
ND
ΣN

i=1I{r̂isk(Xi)> r(pD), Di = 1}= pD

AUCX
1

ND
ΣN

i=1
1

ND̄
ΣN

j=1I{r̂isk(Xj)≤ r̂isk(Xi), Di = 1, D j = 0}

MRDX
1

ND
ΣN

i=1r̂isk(Xi) I(Di = 1)− 1
ND̄
ΣN

i=1r̂isk(Xi) I(Di = 0)

AARDX
1

ND
ΣN

i=1I{r̂isk(Xi)>
ND
N , Di = 1}− 1

ND̄
ΣN

i=1I{r̂isk(Xi) >
ND
N , Di = 0}

NRI(> 0) N/A
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ROC Analysis for Multiple Markers with
Tree-Based Classification

Mei-Cheng Wang and Shanshan Li

Abstract Multiple biomarkers are frequently observed or collected for detecting
or understanding a disease. The research interest of this paper is to extend tools
of ROC analysis from univariate marker setting to multivariate marker setting for
evaluating predictive accuracy of biomarkers using a tree-based classification rule.
Using an arbitrarily combined and-or classifier, an ROC function together with a
weighted ROC function (WROC) and their conjugate counterparts are introduced
for examining the performance of multivariate markers. Specific features of the ROC
and WROC functions and other related statistics are discussed in comparison with
those familiar properties for univariate marker. Nonparametric methods are devel-
oped for estimating the ROC and WROC functions, and area under curve (AUC)
and concordance probability. With emphasis on population average performance of
markers, the proposed procedures and inferential results are useful for evaluating
marker predictability based on multivariate marker measurements with different
choices of markers, and for evaluating different and-or combinations in classifiers.

Introduction

The Receiver Operating Characteristic (ROC) analysis has been widely used as tools
for assessing the discriminant performance for biomarkers. Based on a univariate or
combined-to-univariatemarker, the ROC curve is known as a plot of the true positive
rate versus the false positive rate for each possible cut point, for summarizing
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sensitivity and specificity of a binary classifier system when marker measurements
are continuous. In nonparametric, semiparametric or parametric models, the ROC
curve and its associated measures such as area under curve (AUC) or partial area
under curve (pAUC) have been used as useful indices for evaluating the predictive
accuracy of markers or diagnostic tests [17]. In statistical literature, different
measures have been developed to summarize and compare the predictive accuracy
of biomarkers ([2, 8] among others).

This paper considers situations when multiple markers (M1,M2, . . . ,Mk) are
available for classification of disease state. The research interest is to establish
criterion and tools for assessing predictive accuracy based on multivariate markers
or multivariate test measurements, (M1,M2, . . . ,Mk), from observed data or a
training data set. The proposed work includes at least two types of applications:
(i) to quantify the result of dual or multiple readings from a single diagnostic test, or
readings from multiple tests; (ii) to evaluate the predictability of combined multiple
markers for a disease, where each marker characterizes a specific biological function
for the disease. For the first type of applications, (i), multiple reading is employed
for either reducing uncertainty of test classification or comparison of multiple
diagnostic modalities [9, 15]. Applications of the second type, (ii), are important
when multivariate markers are used as prognostic measurements for predicting or
understanding the disease.

To analyze multiple marker data, several approaches have been developed to
handle the correlation structure of marker measurements for different research goals.
The most common approach is perhaps to combine multiple markers into a single
composite score using logistic regression model, and evaluate the predictability
of markers by the one-dimensional composite score [14]. For high-dimensional
markers, or when markers come from different biological sources, it may not be
analytically appropriate to combine the markers into a composite score and, in such
situations, the tree-based regression model could serve as a good alternative for
identifying a classification rule. The tree-based classification method is sometimes
referred to as recursive partitioning, which is frequently used in data mining,
machine learning and clinical practice as a predictive model [3, 22]. For example,
Baker [1] and Etzioni et al. [6] considered discretized markers by keeping the marker
values in multi-dimensional settings and proposed new definitions for ROC curves.

When markers are continuous, Jin and Lu [13] considered bivariate markers and
proposed to use the area under the upper boundary of ROC region to evaluate
diagnostic utilities. Jin and Lu’s work can be viewed as an extension of Baker’s
approach [1] from discrete markers to continuous markers. Wang and Li [21] defined
an ROC function for bivariate continuous markers via generalized inverse set of the
quantile function FP, where the ROC function possesses a conditional expectation
expression. In this paper, we generalize Wang and Li’s results from bivariate marker
to multivariate marker setting, and develop methods and inference for ROC analysis.

Assume a k-dimensional marker vector (M1,M2, . . . ,Mk) is available and the
disease state is determined by a sequence of arbitrarily combined and-or classifier
with positivity specified in either direction of marker values; for example, I((M1 ≥
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m1 or M2 <m2) and (M3 <m3 or M4 ≥m4)). This extension links to potential appli-
cations related to classification tree with binary decision diagrams. The research
interest is to establish criterion and tools for assessing predictive accuracy based on
multivariate markers, (M1,M2, . . . ,Mk). Specifically, the ROC function is extended
from univariate case to multivariate case, and a weighted ROC (WROC) function
is introduced for examining the performance of predictive accuracy with arbitrarily
combined and-or classifiers.

Let (Ml1,Ml2, . . . ,Mlk), l = 0,1, be the marker vector for a non-diseased or
diseased subject. Let the arbitrarily combined and-or classifier be expressed as
I{(Ml1,Ml2, . . . ,Mlk) ∈ D(m1,m2, . . . ,mk)} with D(m1,m2, . . . ,mk) ⊆ Rk defined
as the region for marker-based positivity. To simplify notation and formulation,
hereafter we shall use bold face m to represent the vector (m1,m2, . . . ,mk), and let
ml and Ml, l = 0,1, represent the vectors (ml1,ml2, . . . ,mlk) and (Ml1,Ml2, . . . ,Mlk).
Define the false and true positive rates respectively as

FP(m) = P{M0 ∈ D(m)} , TP(m) = P{M1 ∈ D(m)}

The research interest is to extend rules and tools from univariate marker to
multivariate marker setting for assessment of predictive accuracy of markers.

Using the US Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set as an
example, the biomarkers of interest include measurements from different biological
systems related to neuroimaging, genetics, CSF (Cerebrospinal fluid) and cognition.
As the k markers are identified from different biological sources, it may not be
appropriate to combine them using, say, a linear combination of the measurements.
The and-or classifier also signifies the importance of interaction between markers.
For example, using an Alzheimer’s Disease study that the authors are currently
involved (the BIOCARD study at Johns Hopkins School of Medicine), decreases
in CSF Amyloid beta-42 and/or increases in total tau or phosphorylated-tau (p-tau)
are hypothesized as strong predictors for AD or AD-related symptoms. It would be
interesting to keep the k markers in multivariate setting and explore their respective
roles and interaction nonparametrically.

The paper is organized as follows. Section “Univariate Marker Case” briefly
reviews some of the fundamental definitions and properties for univariate ROC
analysis, where emphasis is placed on those which will be extended to multivariate
setting. In sections “Multivariate Markers: ROC, WROC and AUC” and “Other
Types of ROC and WROC Functions”, a set of ROC and ROC-related functions
are introduced with discussion focused on contrasting features between univariate
and multivariate cases. Section “Nonparametric Estimation” considers nonpara-
metric estimators for ROC-related functions, AUC and concordance probabilities.
Simulation and a real data analysis are presented in section “Simulation and Data
Example” to illustrate the applicability of the proposed procedures. Section “Dis-
cussion” concludes the paper with a brief discussion.
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Univariate Marker Case

In the section we consider the univariate marker case, k = 1. Suppose the disease
outcome D takes binary values 0 or 1, and M is a continuous marker variable. Let
M0 and M1 respectively represent the marker variable from non-diseased (D = 0)
and diseased (D = 1) group. Define TP(m) = P(M1 > m) = P(M > m|D = 1) as the
true positive rate (sensitivity), and FP(m)=P(M0>m) = P(M>m|D = 0) the false
positive rate (1− specificity). Assume M0 and M1 are independent. Define F0(m) =
1 − FP(m) and F1(m) = 1 − TP(m) respectively as the cumulative distribution
function of M0 and M1.

There are multiple ways to define the ROC function for a univariate marker. A
mathematically simple definition ROC(q) = TP[FP−1(q)], q ∈ [0,1], evaluates the
magnitude of true positive rate at controlled false positive rate through inverse func-
tional mapping between FP and TP. The comparison of two ROC functions from
different markers should thus be interpreted as the comparison of TP values with
the same FP rate. The partial area under ROC curve for false positive rate less
than p, 0 ≤ p ≤ 1, is defined as AUC(p) =

∫
I(0 ≤ q ≤ p)ROC(q) dq. The area

under ROC curve is defined as the total area with the FP rate ranging from 0 to 1,
that is, AUC(1). Define the partial concordance probability as CON(p) = P(M1 >
M0,FP(M0)≤ p). For univariate marker model, the quantile variable Q0 = FP(M0)
is Uniform[0,1] distributed and thus CON(p) can be calculated using probability
measure on (M1,Q0) and is simplified to

CON(p) = P(M1 > FP−1(Q0),Q0 ≤ p) =
∫ p

0

∫

I(m1 > FP−1(q)) dF1(m1) dq

=

∫ p

0
ROC(q)dq = AUC(p)

Thus, an alternative way to define ROC(p) is to obtain it as the derivative of the
partial concordance probability with respect to p, namely ROC(p) = CON ′(p). By
definition, CON(p) can also be expressed as

CON(p) =
∫ ∫

I(m1 > m0)I(FP(m0)≤ p) dF1(m1)dF0(m0) (1)

The equivalence between CON(p) and AUC(p) has led to development of non-
parametric approaches for estimating AUC(p) using the formula in (1). Dodd
and Pepe [4] showed that the partial area under curve possesses a concordance
probability expression: Let p∗0 = FP(TP−1(p0)) and assume p∗0 < p1, then
∫

I(p∗0 ≤ q < p1)ROC(q)dq = P(M1 > M0 ,FP−1(p1)< M0 ≤ TP−1(p0)) (2)

Thus, the partial concordance probability coincides with the partial AUC restricted
to the interval that false positive rate less than p1 and true positive rate greater
than p0. As proposed by Dodd and Pepe [4], by plugging the empirical distributions
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of M0 and M1 into (1) and (2), the partial area-under-curve can be estimated by
nonparametric U-statistics. The above properties will be extended to multivariate
marker case for further analytical developments.

An alternative approach can be adopted by reversing the roles of true and false
positive rates to define a function similar to the ROC function:

ROC ∗(q) = FP[TP−1(q)], q ∈ (0,1) (3)

By property of composite function, it is seen that

ROC ∗(q) = ROC −1(q) (4)

Clearly, since the mapping ROC(q) is one-to-one, the function ROC ∗(q) consists
the same amount of information as that of ROC(q). Graphically, ROC(q) and
ROC ∗(q) are symmetric with respect to the diagonal line which connects points
(0,0) and (1,1). Thus, ROC(q)+ROC ∗(1−q) = 1 and the sum of area under ROC
curve and area under ROC ∗ curve equals 1. In section “Other Types of ROC and
WROC Functions”, for multivariate marker model, a function parallel to ROC ∗(q)
will be introduced and some interesting relationships similar to or different from
those of univariate maker case will be explored.

Multivariate Markers: ROC, WROC and AUC

Now consider continuous markers and classification rule in multivariate setting.
Suppose M0 and M1 are independent k-dimensional marker vectors from non-
diseased group (D = 0) and diseased group (D = 1) respectively. Define

FP(m) = P{M0 ∈ D(m)} ,

TP(m) = P{M1 ∈ D(m)} .

Let F0(m) = P(M01 ≤ m1,M02 ≤ m2, . . . ,M0k ≤ mk) be the cumulative distri-
bution function for non-diseased population, and F1(m) = P(M11 ≤ m1,M12 ≤
m2, . . . ,M1k ≤ mk) the cumulative distribution function for diseased population.
Define the quantile variable Q0 = FP(M0) and denote by H0 the distribution
function of Q0. As an important feature of multivariate markers, in general Q0 is
not uniformly distributed. The distribution of Q0 depends on the classifier as well as
the probability structure of M0, and therefore varies from marker vector to marker
vector.
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Definition of ROC Function

When marker measurements are multivariate, the function FP(M0) is not a one-
to-one transformation, which implies that the ROC function for univariate marker,
TP(FP−1(q)), can not be used for multivariate marker case. Wang and Li [21]
considered bivariate marker models and defined an ROC function via generalized
inverse set of the quantile function FP, where the ROC function possesses a
conditional expectation expression. For multivariate markers, instead of using the
generalized inverse set to conceptualize the ROC function, the ROC function is
defined as the average of the true positive rate conditioning on the set of marker
values with false positive rate q, where the conditional average is calculated subject
to the non-diseased population:

ROC(q) = E[TP(M0) | FP(M0) = q ] (5)

There are a few characteristics of ROC(q) in (5), which may or may not be similar
to characteristics of the ROC function for univariate marker:

• The value of the ROC function in (5) is bounded between 0 and 1.
• The function ROC(q) may not be an increasing function in q, 0 ≤ q ≤ 1.
• If the distributions of M0 and M1 are the same (i.e., the marker vector is

non-predictive for disease), then for each Borel set D(m1,m2, . . . ,mk), one has
TP(m1,m2, . . . ,mk) = FP(m1,m2, . . . ,mk). This implies TP(M0) = FP(M0) with
probability one and

E[TP(M0) | FP(M0) = q ] = q.

Thus, if the markers are non-predictive for disease, the ROC function coincides
with the diagonal line which connects points (0,0) and (1,1), which is similar to
the ROC function for univariate marker.

• When the markers are predictive subject to the classifier D(m1,m2, . . . ,mk), it
means that TP(m1,m2, . . . ,mk)≥ FP(m1,m2, . . . ,mk) for each (m1,m2, . . . ,mk)∈
Rk, and this implies TP(M0)≥ FP(M0) with probability one and

ROC(q) = E[TP(M0) | FP(M0) = q ]≥ E[FP(M0) | FP(M0) = q ] = q,

for 0 ≤ q ≤ 1, Thus, the ROC function is above the diagonal line if the markers
are predictive for disease.

WROC and AUC

In use of the ROC function, a question of interest is whether the function in
(5) can be used for comparisons of markers’ predictive accuracy at population
level. To address the question, we recall that for univariate marker the area
under ROC curve is calculated with uniform distribution on q-axis (i.e., FP-axis).
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For multivariate markers, the ROC function defined in (5) can be used to compare
the performance of true positive rate locally by conditioning on FP(M0) = q.
To evaluate multivariate markers’ predictability unconditionally, the evaluation
should take into account the distribution of Q0 besides the use of the conditionally
defined ROC function.

Using the probability distribution of Q0, the AUC can be naturally defined as the
area under ROC curve subject to Lebesgue integration with measure H0 on q-axis,
namely AUC =

∫
ROC(q)dH0(q), or equivalently,

AUC =

∫ 1

0
ROC(q) ·h0(q) dq (6)

where h0(q) is the derivative of H0(q), which is assumed to exist. Define

WROC(q) = ROC(q) ·h0(q)

as the weighted ROC (WROC) function. Note that WROC(q) is the unconditional
average of the true positive rate with fixed false positive rate q:

WROC(q) = E[TP(M0)I(FP(M0) = q)] . (7)

It is seen that AUC is interpreted as area under WROC curve with uniform
measure over the unit interval [0,1]. Subsequently, the partial area under WROC
curve can be defined as

AUC(p) =
∫ p

0
WROC(q)dq , (8)

which can be used for comparison of markers in terms of their population-average
predictability.

The concordance probability is naturally defined as CON = P(M1 ∈ D(M0)).
Next we prove the equivalence between the concordance probability and the area
under WROC curve, which is an extension of a property for univariate marker [4]:

CON = P(M1 ∈ D(M0)) =

∫ ∫

I(m1 ∈ D(m0)) dF1(m1)dF0(m0)

=

∫

TP(m0) dF0(m0) =

∫ 1

0
E[TP(M0) | Q0 = q] ·h0(q)dq

=

∫ 1

0
WROC(q)dq = AUC (9)

With an additional constraint on the false positive rate p, 0 ≤ p ≤ 1, the partial
concordance probability can be expressed as

CON(p) = P(M1 ∈ D(M0),FP(M0)≤ p) ,
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where the full concordance probability corresponds to the special case p = 1.
The partial concordance probability is

CON(p) = P(M1 ∈ D(M0),FP(M0)≤ p)

=

∫ ∫

I(m1 ∈ D(m0))I(FP(m0)≤ p) dF1(m1)dF0(m0)

=

∫

TP(m0)I(FP(m0)≤ p) dF0(m0)=

∫ p

0
E[TP(M0) | Q0 = q] ·h0(q)dq

=

∫ p

0
WROC(q)dq = AUC(p) (10)

The equivalence between CON(p) and AUC(p) is again an extension of the result
from univariate marker model to multivariate marker model. Further, with the
restrictions that the false positive rate is less than or equal to p and that the true
positive rate is greater than q, the formula in (10) can be extended to

CON(p,q) = P(M1 ∈ D(M0),FP(M0)≤ p,TP(M1)> q)

=
∫ ∫

I(m1 ∈ D(m0))I(FP(m0)≤ p,TP(m1)> q) dF1(m1)dF0(m0) ,

which is a useful formula for constructing a U-statistic in estimation of the
concordance probability with two-sided constraints. It is also clear that CON(p,0)=
AUC(p).

Nonparametric Estimation

Suppose the observations include independent samples of iid copies of M0 and
iid copies of M1, where marker vectors are represented by {Mi,0 : i = 1, . . . ,n0}
and {Mj,1 : j = 1, . . . ,n1}, and realization values by {mi,0 : i = 1, . . . ,n0} and
{mj,1 : j = 1, . . . ,n1}, respectively from non-diseased and diseased populations. In
this section we consider nonparametric approaches for estimation of ROC, WROC,
AUC and CON. Denote by T̂P, F̂P, F̂1 and F̂0 respectively the empirical distribution
of the corresponding function. For those p with FP(mi,0) = p, initially one can
use a crude empirical estimate TP(mi,0) to estimate ROC(p). Or, alternatively, we
can consider the ROC function in its form as a conditional expectation in (5),
ROC(q) = E[TP(M0)|FP(M0) = q], and construct a kernel average estimate, which
can be thought of as a smoothed version of the crude empirical estimate, to estimate
ROC(q):

R̂OC(p) =

∫
T̂P(m0) · k( p−F̂P(m0)

b ) dF̂0(m0)
∫

k( p−F̂P(m0)
b ) dF̂0(m0)

=
∑n0

i=1 T̂P(mi,0) · k( p−F̂P(mi,0)

b )

∑n0
i=1 k(

p−F̂P(mi,0)

b )
,

where the kernel k(·) is a mean zero density function and b is a bandwidth [7].
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Note that the ROC function in (5) is defined as the average of true positive
rate given a fixed value of the false positive rate, where the calculation of the
conditional expectation is through the two one-dimensional variables TP(M0) and
FP(M0). Thus, the ‘curse of dimensionality’ does not occur when the ROC function
is estimated nonparametrically. A nonparametric estimator of WROC(p) can be
constructed by estimating the derivative of CON(p) in (10) using kernel estimation
technique:

̂WROC(p) =
1
b

∫
T̂P(m0) · k( p− F̂P(m0)

b
)dF̂0(m0) =

1
n0b

n0

∑
i=1

T̂P(mi,0) · k(
p− F̂P(mi,0)

b
)

which is seen to be the same as the product of R̂OC(p) and the kernel estimate
of h(p),

1
b

∫

k(
p− F̂P(m0)

b
)dF̂0(m0) .

Based on the equivalence between AUC(p) and CON(p), a nonparametric
estimator of AUC(p) can be obtained:

ÂUC(p) =
∫ ∫

I(m1 ∈ D(m0))I(F̂P(m0)≤ p) dF̂1(m1)dF̂0(m0) (11)

With the restriction that the false positive rate is less than or equal to p and the true
positive rate greater than q, the formula in (11) can be extended to

̂CON(p,q) =
∫

I(m1 ∈ D(m0)) · I(F̂P(m0)≤ p, T̂P(m1)> q) dF̂1(m1)dF̂0(m0)

=
1

n0n1

n0

∑
i=1

n1

∑
j=1

I(mj,1 ∈ D(mi,0)) · I(F̂P(mi,0)≤ p, T̂P(mj,1)> q) ,

where the estimator has the form of a U-statistic [12].

Theorem 1. Let N = n0 + n1. Assume 0 < limN→∞ n0/N = λ < 1. Then, for

p,q ∈ [0,1], (i) ̂CON(p,q) converges to CON(p,q) in probability as N → ∞, and

(ii)
√

N{̂CON(p,q)−CON(p,q)} d→ Normal(0,σ2), where σ2 is specified in the
Appendix.

The asymptotic results require that N be large and 0 < n0/N = λ < 1. This
condition is generally satisfied with random sampling while disease status D
could be either random or fixed, which is respectively relevant in prospective and
retrospective (case-control) study. In the case D is random, N corresponds to the
total sample size and n0/N converges to P(D = 0) = λ , 0 < λ < 1, with probability
1 and the asymptotic normality holds with the usual interpretation.
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Other Types of ROC and WROC Functions

Similar to considerations of using (3) in univariate marker case, for multivariate
markers we may want to consider a function with the roles of true and false
positive rates reversed. Define Q1 = TP(M1), and let H1 and h1 respectively be the
distribution function and density function of Q1. Then, similar to the structure of
ROC(q), where ROC(q) = E[TP(M0) | FP(M0) = q ], for multivariate markers we
may define

ROC ∗(q) = E[FP(M1) | TP(M1) = q ] .

In general, as a part of the main features which distinguish the univariate and
multivariate ROC inferences, the functional transformation ROC ∗(q) is not one-
to-one and therefore does not have the inverse functional relationship with ROC(q).
Further define

ROC(q) =E[FN(M0) | TN(M0) = q ] and ROC
∗
(q) =E[TN(M1) | FN(M1) = q ]

where FN(m) = P(M1 /∈ D(m)) is the false negative rate and TN(m) = P(M0 /∈
D(m)) is the true negative rate. The weighted functions corresponding to ROC ∗,
ROC(q) and ROC

∗
(q) can be defined in such ways similar to the WROC function:

for 0 < q < 1,

WROC(q) = ROC(q) ·h0(q); WROC ∗(q) = ROC ∗(q) ·h1(q)

WROC(q) = ROC(q) ·h0(1− q); WROC
∗
(q) = ROC

∗
(q) ·h1(1−q)

These weighted ROC functions serve to study the performance of predictive accu-
racy for multivariate markers from different perspectives. For example, WROC ∗(p)
serves to study the performance of false positive rate with true positive rate
controlled at value p. It is shown in the appendix that

ROC(q)+ROC(1− q) = 1; ROC ∗(q)+ROC
∗
(1−q) = 1

WROC(q)+WROC(1− q) = h0(q); WROC ∗(q)+WROC
∗
(1−q) = h1(q)

Thus, the function ROC provides the same amount of information as ROC,
and similarly ROC ∗ is as informative as ROC

∗
. Also, with knowledge of h(q),

WROC(q) provides the same amount of information as WROC for predictive
accuracy, and similar argument applies to the relationship between WROC ∗ and
WROC

∗
. Essentially, the pair-wise relationship can be thought of as the conjugate

partnership.
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For evaluation based on partial area under curve, subject to either smaller FP
(FP ≤ p) or larger TP (TP > q), choices of these weighted ROC functions should
be WROC and WROC

∗
so that maximization of area under curve would make

sense. These two weighted ROC functions together with their corresponding ROC
functions are used in our simulation to study the performance of the proposed
criterions and methods for multivariate markers. Note that the partial concordance
probability for true negativity is CON

∗
(p) = P(M0 /∈ D(M1), FN(M1) ≤ p).

By similar technique employed in section “WROC and AUC”, it can be proved
that this concordance probability coinsides with the area under WROC

∗
(p) function,

CON
∗
(p) = AUC

∗
(p), and therefore a U-statistic ̂CON

∗
(p) can be constructed to

estimate CON
∗
(p).

In case of requiring both FP ≤ p and TP > q, these ROC or WROC functions
cannot be used for evaluation, but CON(p,q) can be used and estimated by the
technique described in section “Multivariate Markers: ROC, WROC and AUC”.
For estimation of ROC

∗
, WROC

∗
and CON

∗
(p,q), nonparametric estimates can

be constructed using methods similar to those for the functions ROC, WROC and

CON(p,q). Also, a property similar to Theorem 1 can be established for ̂CON
∗
(p)

by the same technique.

Remark. By setting Ml1 = Ml2 = . . . = Mlk, l = 0,1, univariate marker model can
be viewed as a degenerated case of multivariate markers. For this degenerated case,
the quantile variable Q0 = FP(M0) and Q1 = TP(M1) both follow Uniform[0,1]
distribution, and ROC(q) = FN(TN−1(q)) and ROC

∗
(q) = TN(FN−1(q)). In this

case, each of the WROC functions coincides with their counterpart of ROC func-
tions. Further, besides the relationship ROC(q)+ROC(1−q) = 1 and ROC ∗(q)+
ROC

∗
(1−q) = 1, it is seen that ROC ∗(q) = ROC −1(q), which implies that each of

the four ROC functions provides the same amount of information as the other three
functions for predictive accuracy of the marker.

Simulation and Data Example

Simulation

To show the performance of predictive accuracy for multivariate markers, we
conduct simulation studies under different scenarios. We compare ROC and WROC
curves for multivariate markers under each scenario, along with the weight function
h0(q). We also compare univariate and multivariate marker cases to evaluate the
gain and loss by using multiple markers.

Since this paper is a generalization of the bivariate ROC analysis of Wang and
Li [21], we take k ≥ 3 markers for evaluation. For simplicity, we take k = 3.
Consider the simulation model where (M01,M02,M03) and (M11,M12,M13) follow
a multivariate normal distribution. By convention we assume higher marker value



190 M.-C. Wang and S. Li

Fig. 1 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 0

indicates presence of disease. Let N1 = 200 be the number of diseased individuals
and N2 = 200 be the number of non-diseased individuals. We generate data so that
(M01,M02,M03) have mean (0, 0, 0) and unit deviations. We generate data so that
(M11,M12,M13) have mean (1, 1, 1) and unit deviations. Let ρl = (ρl12,ρl23,ρl13),
l = 0,1, where ρli j denote the correlation between Mli and Ml j . We consider
different scenarios according to different correlations ρl . The ROC analysis for
univariate marker is based on data generated from the distributions of Ml1, bivariate
ROC analysis is based on data generated from the distribution of (Ml1,Ml2), and
multivariate ROC analysis is based on data generated from the distribution of
(Ml1,Ml2,Ml3).

Figures 1–3 exhibit simulation results when ρ0 = ρ1 = 0, 0.5 and 1 respectively.
As discussed in section “Other Types of ROC and WROC Functions”, WROC is
the conjugate partner of WROC and WROC∗ is the conjugate partner of WROC

∗
,

and with the knowledge of h0(q) and h1(q), each of paired-partners provides the
same amount of information for prediction as its partner. Choices of these weighted
ROC functions should include only WROC and WROC

∗
so that maximization of

area under curve makes sense.
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Fig. 2 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 0.5

When ρ0 = ρ1 = 0, the three markers are mutually independent, so the use
of all three markers is expected to be more informative than one marker or two
markers alone. Figure 1 shows a clear pattern of gain and loss as the number of
markers increases. The gain in WROC(q) for small values of q, when compared to
univariate ROC curve, is substantial for multivariate ROC curve but only moderate
for bivariate ROC curve. Similarly, the loss in WROC(q) for large values of q is
substantial for bivariate ROC curve but only moderate for bivariate ROC curve.
This phenomenon can partly be explained by the right skewness of the weight
function h0(q): the distribution of FP is uniform in univariate case, but it distributes
more probability toward smaller values for bivariate marker case, and the inclusion
of the third marker makes the weight function more skewed. By the equivalence
between partial concordance probability and partial area under WROC curve, we
find that multivariate markers outperform univariate marker and bivariate marker
for the region with small FP. The function WROC

∗
for multivariate markers shows

the opposite direction of gain and loss, compared to univariate or bivariate marker
case. There is loss in WROC

∗
(q) for small values of q (FP) and gain for large values

of q, which is due to the left skewness of the weight function h1(1−q).
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Fig. 3 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 1

When ρ0 = ρ1 = 0.5, the three markers are moderately correlated, similar to the
case ρ0 = ρ1 = 0, the distribution of Q0 and Q1 still distribute more probability to
small values, so we can observe the same pattern of tradeoff between gain at small
FP and loss at large FP.

When ρ0 = ρ1 = 1, the three markers are identical and they provide the same
information as one marker case (or two marker case). The ROC (WROC) functions
for multivariate case coincides with the ROC function for univariate case (Fig. 3).
The univariate case can thus be viewed as a degenerated case of multivariate
markers.

A Data Example

We apply the proposed methods to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data for multivariate ROC analysis. The ADNI study is a research project
with research focus on

changes of cognition, function, brain structure and function, and biomarkers in elderly
controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease
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(quoted from http://adni.loni.ucla.edu/). The study is supported by the NIH, private
pharmaceutical companies, and nonprofit organizations. Enrollment target was 800
participants – 200 normal controls, 400 patients with amnestic MCI, and 200
patients with mild AD – at 58 sites in the United States and Canada. Participants
were enrolled on a rolling basis, and evaluated every six months. One of the
major goals of the ADNI study is to identify biomarkers that are associated with
progression from MCI to AD, and determine which biomarker measures (alone
or in combination) are the best predictors of disease progression. Sensitivity and
specificity for both cross-sectional and longitudinal diagnostic classification were
considered important statistical techniques for assessing biomarkers in disease
progression [18].

Investigations of the risk of progressing from MCI to AD dementia have largely
focused on measures from the following categories: demographics, cognition,
apolipoprotein E (APOE), magnetic resonance imaging (MRI), and cerebrospinal
fluid (CSF) data. Demographic variables include age, education and gender. Cog-
nitive measures represent five domains respectively: memory, language, executive
function, spatial ability, and attention. Neuroimaging measures include brain vol-
ume, ventricular volume, and bilateral hippocampal volumes. The CSF variables
include T-tau, Aβ42, p-tau181, the ratio of the first two variables, and the ratio of
the last two variables.

For this section, we selected three markers, hippocampus volume, memory
score and executive function for illustration. To account for censoring, we used
a reduced sample data set to create time-independent binary disease outcomes
(D = 0,1). We chose the 24th month as the cut-off time to define disease state.
Of the 274 subjects who had complete data for the three markers, 49 subjects
were loss to follow up before 24 months, so we focused on the 225 subjects who
have had follow-up time longer than 24 months: there were 89 failures (D = 1)
and 136 survivors (D = 0) at the 24th month. Let M1 be hippocampus volume,
M2 be executive function score, and M3 be memory score. Figure 4 compares the
diagnostic performance of three markers (M1,M2,M3), bivariate markers (M1,M2),
and univariate marker M1. If the classifier is I(M1 > m1, M2 > m2, M3 > m3), there
is gain for small values of FP and loss for large values of FP. The partial AUC plot
indicates that multivariate markers produce higher partial concordance summary
than univariate marker when q < 0.6, and multivariate markers produce higher
partial concordance summary than bivariate marker when q < 0.3. In diagnostic
testing, it is crucial to maintain the false positive rate to be low to avoid unnecessary
monetary costs. Thus, if the prognostic capacity is evaluated in terms of partial AUC,
the multivariate marker hippocampus volume, executive function and memory score
together would be considered performing much better than hippocampus volume
alone.

Without restriction on the false positive rate, the AUC under the multivariate
WROC curve is 0.358 (SE: 0.022) and the AUC under the multivariate WROC

∗
is

0.964 (SE: 0.024); the AUC under the bivariate WROC curve is 0.437 (SE: 0.030)

http://adni.loni.ucla.edu/
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Fig. 4 (M1,M2,M3)= (hippocampus, executive function, memory), with classifier I(M1 > m1,
M2 > m2, M3 > m3)

and the AUC under the bivariate WROC
∗

is 0.906 (SE: 0.030); the AUC under the
univariate ROC curve is 0.658 (SE: 0.040). The bootstrap method was adopted to
calculate the standard errors for estimation of AUC.

Discussion

Existing ROC methods to incorporate multiple markers typically consider a com-
posite score based on combined markers by modeling the relationship between
the marker vector M and the binary outcome D [14], where P(Y = 1|M) = p(M)
is used as the optimal score to identify the combination of multiple markers for
classifying the disease outcome. In general, by the Neyman-Pearson lemma, the
optimality of p(M) is a very general property which holds without dimensionality
constraint on M. In the case that the linear logistic regression model assumption
holds, the optimal classification rule, p(M), becomes equivalent to the regression
function βM under the logit link. Thus, the optimality property of a one-dimensional
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classification score heavily relies on the assumption of logistic regression model.
In this paper, we extend tools from univariate marker to multivariate markers for
evaluating predictive accuracy of markers under a nonparametric setting based on
tree-based classification rules.

The proposed ROC and WROC functions together with the AUC are intended to
measure the average performance of and-or classifier among all possible combina-
tions of true positive rate for a given false positive rate for evaluating predictability
of markers and comparing curves, and they may not reflect the optimized use of
markers for clinical decisions. Although the proposed approach is not designed
to achieve optimality as a decision rule such as the one proposed by Jin and
Lu [13], our methods and inferential results are much more structural, accessible
and workable. The proposed ROC and WROC functions enjoy the advantage of
preserving the distributional structures of markers, and the associated summary
measures such as AUC or partial AUC serve as very appropriate summary measures
to evaluate the performance of and-or classifier among all possible combinations
of marker values – this is a feature similar to the univariate marker case. These
summary measures are useful in applications, since many biomarker studies (such
as the ADNI study and two other Alzheimer’s Disease studies that the authors are
currently involved) have research emphasis largely focused on the understanding
of predictability of biomarkers in target population, and less emphasis toward
optimization of clinical decision rules.

The evaluation takes into account the distributions of quantile variables Q0 and
Q1 in the diseased and non-diseased populations, which leads to the result of
equivalence between AUC and CON, a property similar to the case of univariate
marker. We also provide estimation procedures using nonparametric smoothing
estimators for the ROC and WROC function, and U-statistic for the AUC. For
applications of the proposed analysis, as the ‘curse of dimensionality’ is not a
concern for nonparametric estimation of ROC, WROC and other related properties,
the usual random split into training sample (for model fitting) and test sample (for
creating ROC curve and calculating AUC) would be as proper as it is for univariate
marker case, and therefore is advisable.

For future and further research, similar to the considerations for univariate
ROC analysis [16, 20], it would be interesting to consider methodology to adjust
for covariates such as age, sex or other demographical factors for bivariate or
multivariate markers.

Also, given that the disease outcomes typically change with time, it would be
interesting to extend the ROC analysis for high-dimensional markers to accommo-
date time-to-disease information using the ‘survival-tree methodology’ [22], along
the lines of extending ROC techniques from binary disease outcome model to right-
censored survival data model in univariate marker settings [5, 10, 11, 19].
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Appendix

Proof of Theorem 1. Define the kernel function of the U-statistic [12] as

h(M0i,M1j;FP,TP) = I(M1j ∈ D(M0i)) · I(FP(M0i)≤ p,TP(M1j)> q).

Note that

ÂUC(p,q) =
1

n0n1

n0

∑
i=1

n1

∑
j=1

h(M0i,M1j; F̂P, T̂P) =
1

n0n1

n0

∑
i=1

n1

∑
j=1

h(M0i,M1j;FP,TP)

+
1

n0n1

n0

∑
i=1

n1

∑
j=1

{h(M0i,M1j; F̂P, T̂P)−h(M0i,M1j;FP,TP)}

= I+ II

The kernel function in Term I satisfies E[h2] < ∞ and by two-sample U-statistics
theory, I converges to AUC(p,q) in probability. Term II can be expressed as

II =
1

n0n1

n0

∑
i=1

n1

∑
j=1

I(M1j ∈ D(M0i)){I(F̂P(M0i)≤ p, T̂P(M1j)> q)−FP(M0i)≤ p,TP(M1j)> q)}

Note that

|II| ≤ 1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(F̂P(M0i)≤ p, T̂P(M1j)> q)− I(FP(M0i)≤ p,TP(M1j)> q)

∣
∣
∣

≤ 1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(F̂P(M0i)≤ p)− I(FP(M0i)≤ p)

∣
∣
∣+

1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(T̂P(M1j)> q)− I(TP(M1j)> q)

∣
∣
∣

=
1
n0

n0

∑
i=1

∣
∣
∣I(F̂P(M0i)≤ p)− I(FP(M0i)≤ p)

∣
∣
∣+

1
n1

n1

∑
j=1

∣
∣
∣I(T̂P(M1j)> q)− I(TP(M1j)> q)

∣
∣
∣

= op(n
−1/2
0 )+op(n

−1/2
1 ) = op(N

−1/2)

The consistency result, (i), in Theorem 1 follows by viewing the fact that term
II converges to 0 in probability. To prove (ii), first note that Term I converges in

distribution to a normal distribution by U-statistics theory:
√

N{I −AUC(p,q)} d→
Normal(0,σ2), where σ2 = λ−1τ1,0 +(1−λ )−1τ0,1 with

τ1,0 = COV[h(M01,M11),h(M01,M12)]

and

τ0,1 = COV[h(M01,M11),h(M02,M11)] .



ROC Analysis for Multiple Markers with Tree-Based Classification 197

Also,

√
N{ÂUC(p,q)−AUC(p,q)} =

√
N{I−AUC(p,q)}+

√
N · II

=
√

N{I−AUC(p,q)}+op(1)
d→ Normal(0,σ2)

Property in section “Other Types of ROC and WROC Functions”.

(i) ROC(q)+ROC(1− q) = 1, and WROC(q)+WROC(1−q) = h0(q)

(ii) ROC ∗(q)+ROC
∗
(1− q) = 1, and WROC ∗(q)+WROC

∗
(1−q) = h1(q)

Proof. Note that

ROC(q)+ROC(1− q) = E[TP(M0)|FP(M0) = q]+E[FN(M0)|FP(M0) = q]

= E[TP(M0)+FN(M0)|FP(M0) = q]

= E[ 1 |FP(M0) = q] = 1 ,

and it follows WROC(q)+WROC(1− q) = ROC(q) · h0(q)+ROC(1− q)h0(q) =
h0(q), which proved (i). Similar argument can be used to prove (ii).
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Assessing Discrimination of Risk Prediction
Rules in a Clustered Data Setting

Bernard Rosner, Weiliang Qiu, and Mei-Ling Ting Lee

Abstract The AUC (area under ROC curve) is a commonly used metric to assess
discrimination of risk prediction rules; however, standard errors of AUC are usually
based on the Mann-Whitney U test that assumes independence of sampling units.
For ophthalmologic applications, it is desirable to assess risk prediction rules based
on eye-specific outcome variables which are generally highly, but not perfectly
correlated in fellow eyes [e.g. progression of individual eyes to age-related macular
degeneration (AMD)]. In this article, we use the extended Mann-Whitney U test
(Rosner and Glynn, Biometrics 65:188–197, 2009) for the case where subunits
within a cluster may have different progression status and assess discrimination of
different prediction rules in this setting. Both data analyses based on progression
of AMD and simulation studies show reasonable accuracy of this extended Mann-
Whitney U test to assess discrimination of eye-specific risk prediction rules.

Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible visual
impairment and blindness in the United States and other developed countries
throughout the world [5]. Evidence is accumulating regarding modifiable fac-
tors that may decrease the risk of progression to the advanced forms of AMD.
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The Progression of Age-Related Macular Degeneration Study is a longitudinal
study designed to measure multiple risk factors for the onset and progression of
AMD. A total of 261 individuals were included in the analyses. Details about
the study are provided in Seddon et al. [12].The average age of the subjects was
72.3 years (sd = 6.1, range = [60,87]). Approximately 61% were female. Subjects
were followed for 4–6 years. We are interested in assessing whether the prediction
of progression to the advanced form of AMD would be improved if we include total
fat intake in the prediction model in addition to other AMD risk factors.

A common criterion for assessing discrimination of risk prediction rules is the
improvement in the area under the receiver-operating-characteristic curve (AUC)
[6, 14]. By using the equivalence between the Mann-Whitney U statistic and AUC
[1], one can assess discrimination of risk prediction rules via the Mann-Whitney U
test, which is commonly used in nonparametric two-group comparisons when the
normality of the underlying distribution is questionable. However, an assumption
of the Mann-Whitney U test is that sampling units (e.g. eyes) are independent. For
the AMD data set, progression status for the right and left eyes for a subject are
correlated.

Moreover, previous works on non-parametric two-sample comparisons mainly
focus on the shift alternative in the original data space [2, 3]. However, (a) the
meaning of the shift might be different for each underlying null distribution, and (b)
the underlying null distribution is usually unknown. Rosner and Glynn [9] proposed
a shift alternative in a transformed data space based on the probit transformation and
applied their method to assess and compare discrimination of risk prediction rules
for a case-control AMD dataset where a subject is a case if either eye has AMD and
a control if neither eye has AMD. However, their work requires the assumption that
the observations are independent, which is not applicable to clustered data, where
the eye is the unit of analysis.

Rosner et al. [10] extended the Wilcoxon rank sum test, which is equivalent to the
Mann-Whitney U test, for clustered data for two group comparisons where group
membership is defined at the subunit level. In our example, there may be patients
where one eye has progressed, while the fellow eye has not progressed.

In this article, we define the extended Mann-Whitney U statistic, which is
equivalent to Rosner et al.’s [10] extended Wilcoxon rank sum statistic, and derive
its variance under the transformed shift alternative to assess discrimination of risk
prediction rules in a clustered data setting with group membership defined at the
subunit level. We also derive the variance of the difference of two extended Mann-
Whitney U statistics to compare discrimination of different risk prediction rules
when applied to the same data set.

The structure of the remaining parts of this article is as follows. In sec-
tion “Extended Mann-Whitney U Statistic for Clustered Data”, we define the
extended Mann-Whitney U statistic and derive its variance. In section “Variance
of the Difference of Two Extended Mann-Whitney U Statistics Applied to the
Same Data Set”, we derive the variance of the difference of two extended Mann-
Whitney U statistics for two prediction rules when applied to the same data
set. In section “Multiple Imputation” approaches are described to incorporate
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uncertainty in the estimation of regression coefficients used in the prediction
rule. In section “Example”, we apply the extended Mann-Whitney U statistic
to the AMD data set described in section “Introduction” to assess and compare
discrimination of different risk prediction models for a prospective study of age-
related macular degeneration (AMD), an important eye disease among the elderly
resulting in substantial losses of vision. In section “A Simulation Study”, we conduct
a simulation study to evaluate the performance of the extended Mann-Whitney
U statistic in terms of bias of the estimator and its variance estimate, coverage
probability and power. Section “Discussion” is a discussion. Technique details are
shown in the Appendices.

Extended Mann-Whitney U Statistic for Clustered Data

Suppose that there are N independent clusters, where the subunit is the unit of
analysis and the i-th cluster has gi subunits, i = 1, . . . ,N. We can use the following
generalized estimating equations (GEE) model with an exchangeable correlation
structure to fit the AMD data since each eye has a progression score and these two
scores for a subject are correlated:

ln

(
pi j

1− pi j

)

= β0 +β1xi j1 + · · ·+βkxi jk, i = 1, . . . ,N, j = 1,2, (1)

where xi j� is the value of the �-th risk factor for the j-th eye of the i-th subject,
�= 1, . . . ,k, pi j = Pr( progression for the j-th eye of the i-th subject |xi j1, . . ., xi jk),
N is the number of subjects, and k is the number of risk factors. In our example,
the initial AMD grade is an eye-specific risk factor, while other risk factors are
person-specific.

Denote Zi j as the prediction score for the j-th subunit of the i-th cluster based on
the GEE Model (1) given by

Zi j = β̂0 + β̂1xi j1 + · · ·+ β̂kxi jk,

where β̂0, β̂1, . . ., β̂k are estimated via GEE Model (1). We are interested in testing
if the distribution of prediction scores among subunits that progress is the same as
that among subunits that do not progress.

To incorporate the information that subunits within a cluster are highly corre-
lated, and that subunits within a cluster might have different progression status, we
propose the following extended Mann-Whitney U statistic:

η̂c =
∑N

i=1∑
gi
j=1∑

N
k=1∑

gk
�=1U (Zi j −Zk�)(1− δi j)δk�

∑N
i=1∑

gi
j=1∑

N
k=1∑

gk
�=1(1− δi j)δk�

, (2)
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where U (Zi j −Zk�) = 1 if Zi j < Zk�, = 1/2 if Zi j = Zk�, and = 0 otherwise, for i �= k,
or j �= �, and δi j = 1 if the j-th subunit of the i-th cluster has progressed, = 0 if it
has not progressed.

The statistic η̂c is the proportion of pairs of subunits where the subunit that did
not progress has a lower score than the subunit that did progress. If the proportion is
equal to 1/2, then there is no difference between the location parameter for subunits
that progress versus subunits that do not progress. If the proportion is much greater
than or smaller than 1/2, then there exist evidence that the location parameters for
the two groups of subunits are different.

We assume that (1) clusters are independent of each other; (2) δi j are fixed;
(3) Pr(Zi j = Zk�) = 0 for i �= k or j �= �. Furthermore, by definition the probit
transformation H = Φ−1 will transform the response variable to a normal distri-
bution. Let

Hi j ≡ H (F(Zi j)) , (3)

where F is the cumulative distribution of Zi j. In data analysis, F will be estimated
by the empirical cumulative distribution F̂n. We assume that

Hi j ∼
{

N(0,1) if δi j = 0,
N(μ ,1),μ �= 0 if δi j = 1,

and that after the transformation H, the bivariate random vector

(
Hi1 j1 −Hk1�1

Hi2 j2 −Hk2�2

)

is bivariate normally distributed for any i1, k1, i2, k2, j1, �1, j2, and �2, with
covariance matrix

Cov

(
Hi j

Hi�

)

=

(
1 ρ
ρ 1

)

, j �= �,andCov

(
Hi j

Hk�

)

=

(
1 0
0 1

)

, i �= k.

We are interested in testing the hypotheses:

H0 :H(X) = H(Y ) = H(Yc) versus

Ha :H(Y ) = H(Yc)+ μ , μ �= 0,

where X is the prediction score of a randomly selected non-progressing subunit,
Y is the prediction score of a randomly selected progressing subunit, and Yc is
the counterfactual random variable obtained if each subunit that had progressed
actually had not progressed. We refer to Ha as a probit-shift alternative. The probit-
shift alternative is useful in calculating Var(η̂c) under Ha in closed-form, which we
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will need to (a) obtain confidence limits for ηc; (b) compare ηc between two risk
prediction rules assessed on the same subjects; and (c) compute power for future
studies.

We can obtain the expected value of the extended Mann-Whitney U statistic η̂c

under the alternative hypothesis:

E(η̂c|Ha) =
θc∑N

i=1 cidi +θ
[
C ·D−∑N

i=1 cidi
]

C ·D , (4)

where

θc =Φ

(
μ

√
2(1−ρ)

)

,θ =Φ
(
μ√
2

)

,

and ck = ∑gk
�=1 δk� is the number of progressing subunits for the k-th subject, di =

∑gi
j=1(1− δi j) is the number of non-progressing subunits for the i-th subject, C =

∑N
k=1 ck, D =∑N

i=1 di. Note that for clustered data, there are two θ ’s, whereas in non-
clustered data there is only a single θ . θc is used for comparison of nonprogressing
and progressing subunits (e.g. eyes) within the same cluster (e.g. subject), and θ
for comparison of nonprogressing and progressing subunits (e.g. eyes) in different
clusters (e.g. different subjects). Under the null hypothesis, i.e., μ = 0, θc = θ = 1/2,
and E(η̂c|H0) = 1/2.

To derive the variance of η̂c, we rewrite η̂c as

η̂c =
A+B
C ·D (5)

where

A =
N

∑
i=1

gi

∑
j=1

gi

∑
�=1

U (Zi j −Zi�) (1− δi j)δi�

B =
N

∑
i=1

N

∑
k=1,k �=i

gi

∑
j=1

gk

∑
�=1

U (Zi j −Zk�)(1− δi j)δk�

Then

Var(η̂c|Ha) =
1

C2 ·D2 [Var(A|Ha)+Var(B|Ha)+ 2Cov(A,B|Ha)] . (6)

We can use second order moments of the bivariate normal distribution to derive
a closed-form expression for Var(η̂c|Ha). The complete derivation of Var(η̂c|Ha) is
given in Appendix 1.



204 B. Rosner et al.

Variance of the Difference of Two Extended Mann-Whitney
U Statistics Applied to the Same Data Set

Suppose we have two prediction rules (indexed by t = 1,2) applied to the same data
set. We can compare the area under ROC curves (AUCs) of two prediction rules by

testing the hypothesis H0 : η(1)
c = η(2)

c versus Ha : η(1)
c �= η(2)

c , where η(t)
c = AUC

for the t-th prediction rule, t = 1,2. We estimate η(t)
c by:

η̂(t)
c =

A(t) +B(t)

C ·D , t = 1,2,

and

A(t) =
N

∑
i=k=1

gi

∑
j=1

gi

∑
�=1

(1− δi j)δi�U
(

Z(t)
i j −Z(t)

i�

)

and

B(t) =
N

∑
i=1

N

∑
k=1,k �=i

gi

∑
j=1

gk

∑
�=1

(1− δi j)δk�U
(

Z(t)
i j −Z(t)

k�

)
.

Since the two prediction rules are applied to the same data set, the two extended
Mann-Whitney U statistics are correlated. To calculate the variance of η̂c1 − η̂c2, we
assume the following correlation structure:

ρ =Cov
(

H(1)
i j ,H(2)

i j

)
= Corr

(
H(1)

i j ,H(2)
i j

)
,

ρ11 =Cov
(

H(1)
i j1

,H(1)
i j2

)
= Corr

(
H(1)

i j1
,H(1)

i j2

)
,

ρ22 =Cov
(

H(2)
i j1

,H(2)
i j2

)
= Corr

(
H(2)

i j1
,H(2)

i j2

)
,

ρ12 =Cov
(

H(1)
i j1

,H(2)
i j2

)
= Corr

(
H(1)

i j1
,H(2)

i j2

)
.

We denote

θct =Φ

(
μt√

2(1−ρtt)

)

,θt =Φ
(
μt√

2

)

, t = 1,2.

We wish to calculate

Var
(
η̂(1)

c − η̂(2)
c

)
= Var

(
η̂(1)

c

)
+Var

(
η̂(2)

c

)
−2Cov

(
η̂(1)

c , η̂(2)
c

)
. (7)
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We already derived the formula for Var
(
η̂(t)

c

)
in Eq. 6. Hence, we only need to

derive Cov
(
η̂(1)

c , η̂(2)
c

)
. We can decompose it into 4 parts:

Cov
(
η̂(1)

c , η̂(2)
c

)
=

1
C2D2

[
Cov
(

A(1),A(2)
)
+Cov

(
A(1),B(2)

)

+ Cov
(

B(1),A(2)
)
+Cov

(
B(1),B(2)

)]

The derivation of Var
(
η̂(1)

c − η̂(2)
c |Ha

)
in Eq. 7 is given in Appendix 2.

Hence, a large sample test statistic to test the hypotheses H0 : η(1)
c = η(2)

c versus

Ha : η(1)
c �= η(2)

c is given by Z12 =
(
η̂(1)

c − η̂(2)
c

)
/
[
V̂ar
(
η̂(1)

c − η̂(2)
c

)]1/2 ∼ N(0,1)

under H0.
Finally, we can calculate the power of the test H0 : �= 0 vs Ha : �=�0, where

�0 = η(1)
c −η(2)

c using the formula

Power = 1−Φ
(σ0Zα/2 −�0

σ1

)

+Φ
(−σ0Zα/2 −�0

σ1

)

(8)

where Zα/2 is the upper 100α/2% percentile of the standard normal distribution

N(0,1), σ0 =
√

Var
(�̂|H0

)
and σ1 =

√
Var
(�̂|Ha

)
.

Multiple Imputation

When constructing scores, we used estimated regression coefficients from GEE.
Hence, we did not account for the variation of these estimates in the calculation of
the variance of η̂c.

One remedy is to use multiple imputation. Specifically, we randomly generate m

random vectors β from the multivariate normal distribution N
(
β̂ , Σ̂
)

, where β̂ and

Σ̂ are the estimated regression coefficients and their variance-covariance matrix.
Then we obtain m estimates of ηc. Denote these as η̂c,i, i = 1, . . . ,m. We then use

η̂∗
c =

1
m

m

∑
i=1

η̂c,i

as a final estimate of ηc, which will reflect both between- and within-imputation
variance.
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We next calculate the variance Var(η̂∗
c )by the following formula [11]

Var(η̂∗
c ) =

1
m

m

∑
i=1

Var(η̂c,i)+

(
1+ 1

m

m− 1

)
m

∑
i=1

(η̂c,i − η̂∗
c )

2 ,

where Var(η̂c,i) is calculated using Eq. 6.
We will calculate the p-value for a parameter estimate based on multiple

imputation by using the method mentioned in Rubin [11] (cf. Appendix 3).

We can obtain the adjusted estimate η̂(1)
c − η̂(2)

c and its variance and confidence
interval using the same approach.

Example

In this section, we apply the proposed method to the AMD data set (with n = 261
subjects) mentioned in section “Introduction”. The data set is from the prospective
longitudinal study of AMD: the Progression of Age-Related Macular Degeneration
Study designed to measure multiple risk factors for the onset and progression of
AMD. One modifiable factor is dietary total fat intake. The results of Seddon
et al. [12] show that higher total fat intake is associated with an increased risk
of progression to the advanced forms of AMD, with an odds ratio (OR) of 2.90
(95% confidence interval, 1.15–7.32) for the highest fat-intake quartile relative to
the lowest fat-intake quartile, after controlling for other factors (P trend = 0.01).

The increased risk of the complications of AMD are indicated by drusen, which
are yellow deposits under the retina [5]. According to Seddon et al. [12], eyes with
extensive small drusen (≥15 drusen; with size of drusen <63μm), nonextensive
intermediate drusen (<20 drusen; with size of drusen ≥63μm but <125μm), or
pigment abnormalities associated with AMD were assigned a grade of 2. Eyes with
extensive intermediate or large drusen (size of drusen ≥125μm) were assigned a
grade of 3. Eyes with geographic atrophy received a grade of 4. If there was evidence
of retinal pigment epithelial detachment or choroidal neovascular membrane, a
grade of 5 was assigned. Eyes received a grade of 1 if none of these signs was
present. All eyes in our analysis had a grade of ≥2 and ≤4 at baseline. Each subject
contributed two eyes to the analysis. Advanced AMD is defined as grades 4 or 5.

Progression to advanced AMD in an eye over 4–6 years was defined either as
progression from a grade of less than 4 at baseline to grades 4 or 5 at any follow-up
visit, or progression from grade 4 at baseline to grade 5 at any follow-up visit.

If a set of risk factors has no predictive ability to distinguish progressing versus
non-progressing eyes, the value of the extended Mann-Whitney U statistic

η̂c =
∑N

i=1∑
gi
j=1∑

N
k=1∑

gk
�=1U (Zi j −Zk�)(1− δi j)δk�

∑N
i=1∑

gi
j=1∑

N
k=1∑

gk
�=1(1− δi j)δk�

,
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will be close to the expected null value E(η̂c|H0) = 1/2. In general, we will use η̂c

to assess and compare the discrimination of different risk prediction rules.
If we use the same dataset to both construct a prediction rule and calculate

prediction accuracy, the prediction accuracy might be over-estimated. Hence, we
randomly split the 261 subjects into two groups. One group with 131 subjects is
used as the training set to obtain the estimated regression coefficients β̂ in the
GEE model. The other group with 130 subjects is used as the testing set to obtain

the estimates η̂(1)
c , η̂(2)

c , and related estimates and p-values. When constructing
prediction scores for subjects in the testing set, we used the regression coefficients
estimated from the training set. To account for the variability of these estimated
regression coefficients, we used the multiple imputation approach mentioned in
section “Multiple Imputation”. Hence, for each imputation, we obtain different
estimates of ηc in the testing set and use multiple imputation approaches to obtain
an overall estimate of ηc that reflects both between and within imputation variation.

Table 1 shows the parameter estimates of two prediction rules based on risk
factors: BMI, age, gender, cardiovascular disease (cvd), systolic blood pressure
(sbp), current and past smoking (smkcur and smkpst), ln (caloric intake) (lncalor),
beta carotene intake (adjbcaro), alcohol intake (alco), initial eye grade (inieye3 and
inieye4), protein intake (rprot2, rprot3, and rprot4), and total fat intake (rtotfat2,
rtotfat3, and rtotfat4).

The regression coefficients and their standard errors, p-values, and 95% confi-
dence intervals (CIs) were based on the training set (with n = 131 subjects). The

estimates η̂(1)
c and η̂(2)

c and their standard errors and p-values were estimated based
on the testing set (with n = 130 subjects).

In the training set, there are 131 subjects (262 eyes). The number of eyes that
progressed was 51. There are 9 subjects where both eyes progressed, 17 subjects
where the right eye progressed and the left eye did not progress, 16 subjects where
the right eye did not progress and the left eye progressed, and 89 subjects where
both eyes did not progress. The odds ratio for progression between fellow eyes is
9 ∗ 89/(17 ∗ 16) = 2.94. The correlation between risk scores for fellow eyes was
0.53 in the training set and 0.51 in the testing set.

Table 1 shows that there were significant effects of total fat intake in model 1.
The odds ratios and 95% CIs of rtotfat2 (second quartile), rtotfat3 (third
quartile), and rtotfat4 (fourth quartile) relative to rtotfat1 (first quartile)
are 1.7 (95% CI: [0.4,6.7], p-value = 0.48), 4.3 (95% CI: [0.9,20.1], p-value
= 0.06), and 22.4 (95% CI: [4.2,118.6], p-value < 0.01). However, there was no
significant difference between the AUCs for the two prediction rules (multiple-

imputation-based estimates: μ̂ (1) = 0.406, μ̂ (2) = 0.381, θ̂ (1) = 0.613, θ̂ (1)
c = 0.718,

θ̂ (2) = 0.606, θ̂ (2)
c = 0.650, AUC1 = 0.677 versus AUC2 = 0.672, p-value= 0.93).
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Table 1 Comparison of the two prediction rules for the AMD data set based on GEE (number of
subjects = 131, number of eyes = 262, number of eyes which progressed = 51)

Prediction rule 1 Prediction rule 2
(model with total fat intake) (model without total fat intake)Training set

variable Estimate SE pval OR [95% CI] Estimate SE pval

(Intercept) −7.95 1.58 −6.15 1.42
bmi2529 1.72 0.65 0.01 1.72 0.55 0.00
bmi30+ 1.86 0.69 0.01 1.43 0.59 0.02
male6069 −0.61 0.80 0.44 −0.15 0.82 0.86
male7079 1.42 0.86 0.10 1.41 0.79 0.07
male80+ 0.64 1.18 0.59 0.50 1.22 0.68
feml7079 1.74 0.86 0.04 1.21 0.77 0.11
feml80+ 0.82 1.16 0.48 0.27 0.97 0.78
cvd 0.97 0.54 0.07 0.73 0.48 0.13
sysbpc −0.02 0.01 0.15 −0.02 0.01 0.14
smkcur 1.58 0.77 0.04 1.46 0.69 0.04
smkpst 0.14 0.50 0.78 0.13 0.50 0.79
lncalorc −3.95 1.18 0.00 −1.37 1.00 0.17
adjbcaroc 0.43 0.27 0.11 0.28 0.31 0.37
alcoc 0.01 0.01 0.42 0.00 0.02 0.92
inieye3 3.15 0.67 0.00 3.19 0.64 0.00
inieye4 2.06 0.67 0.00 2.27 0.73 0.00
rprot2 0.33 0.51 0.52 0.12 0.51 0.81
rprot3 0.53 0.75 0.48 0.54 0.78 0.49
rprot4 −0.51 1.01 0.61 −0.50 0.92 0.58
rtotfat2 0.51 0.71 0.48 1.7 [0.4, 6.7]
rtotfat3 1.47 0.78 0.06 4.3 [0.9, 20.1]
rtotfat4 3.11 0.85 0.00 22.4 [4.2, 118.6]

Testing set η̂ (1)
c = 0.677(sd = 0.050,d f = 48.14) η̂ (2)

c = 0.672(sd = 0.049,d f = 38.13)

η̂ (1)
c − η̂ (2)

c = 0.005(sd = 0.057,d f = 7.57), p-value= 0.93
corr(Zi1,Zi2)

a 0.53 0.51

bmi2529 = BMI between 25 and 29.9; bmi30+= BMI greater or equal to 30; male6069 = male
aged between 60 and 69; male7079 = male aged between 70 and 79; male80+= male aged greater
than or equal to 80; feml7079 = female aged between 70 and 79; feml80+= female aged greater
than or equal to 80; cvd = cardiovascular disease; sysbpc = mean-centered systolic blood pressure
(mean = 140.17); smkcur = current smoker; smkpast = past smoker; lncalorc = mean-centered
log caloric intake (mean = 7.25); adjbcaroc = mean-centered calorie-adjusted beta carotene intake
(μg/d, values are expressed as geometric mean after sex-specific energy adjustment) (mean =
8.11); alcoc = mean-centered alcohol intake (g/d), (mean = 6.77); inieye3 = 1 if initial eye grade
= 3, = 0 otherwise; inieye4 = 1 if initial eye grade = 4, = 0 otherwise; rprot2 = protein intake
(second quartile); rprot3 = protein intake (third quartile); rprot4 = protein intake (fourth quartile);
rtotfat2 = total fat intake (second quartile); rtotfat3 = total fat intake (third quartile); rtotfat4 =
total fat intake (fourth quartile). The quartiles of protein and total fat intake are sex-specific.
aEstimated correlation between the scores of the two eyes for the same subject after adjusting for
the above covariates. based on training set
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A Simulation Study

We conducted a simulation study to evaluate the performance of the extended Mann-
Whitney U statistic on comparing two prediction rules. The values of the model
parameters were set to be the estimated parameters for the AMD data set (see
section “Example”). We assume that all subjects have two subunits (g = 2).

Denote

Hi =
(

H(1)
i1 , . . . ,H(1)

ig ,H(2)
i1 , . . . ,H(2)

ig

)T
, i = 1, . . . ,N,

as the transformed values for the g subunits of the i-th cluster obtained from two
prediction rules, where (H(t)

i1 , . . ., H(t)
ig ) are from the t-th prediction rule. We assume

Hi ∼ N(μki,Σ), where

μki =

(
μki1

μki2

)

,Σ=

(
Σ11 Σ12

ΣT
12 Σ22

)

and μki j = μkδi j is the mean probit for the j-th subunit in the i-th cluster for the k-th
prediction rule, k = 1,2, i = 1, . . . ,N, j = 1,2,

Σ11 =

⎛

⎜
⎝

1 ρ11
. . .

ρ11 1

⎞

⎟
⎠ ,Σ22 =

⎛

⎜
⎝

1 ρ22
. . .

ρ22 1

⎞

⎟
⎠ ,Σ12 =

⎛

⎜
⎝

ρ ρ12
. . .

ρ12 ρ

⎞

⎟
⎠ .

where δi j = 1 if the j-th eye ( j = 1 means left eye; j = 2 means right eye) of the
i-th subject has progressed, and = 0 if it has not progressed.

To simulate the data, we set μ1 = 0.80, ρ = 0.93, ρ11 = 0.59, ρ22 = 0.56, and
ρ12 = 0.52, as were estimated using the whole AMD data set (n = 261 subjects).
We considered 4 sample sizes: N = 50, 100, 200, and 500.

We generated 4,000 simulated data sets for each scenario. Since δi j is assumed
to be fixed (cf. Assumption 2 in section “Extended Mann-Whitney U Statistic for
Clustered Data”), for each of 4,000 simulated data sets in a scenario, we used the
same set of δi j, i = 1, . . . ,N, j = 1,2, where δi1 (indicating left eye’s progression
status) and δi2 (indicating right eye’s progression status), i = 1, . . ., N, are generated
from multinomial distributions with parameters p11 = 0.115 (proportion where both
eyes progressed), p10 = 0.142 (proportion where only the left eye progressed), p01 =
0.130 (proportion where only the right eye progressed), and p00 = 0.613 (proportion
where both eyes did not progress), respectively, where

p11 = Pr(δi1 = 1 & δi2 = 1),

p10 = Pr(δi1 = 1 & δi2 = 0),

p01 = Pr(δi1 = 0 & δi2 = 1),

p00 = Pr(δi1 = 0 & δi2 = 0),

1 = p11 + p10 + p01 + p00.



210 B. Rosner et al.

We are interested in testing the null hypothesis H0 : �= 0 versus the alternative
hypothesis Ha : �=�0, where

�= η(1)
c −η(2)

c , (9)

and

η(t)
c =

{

θ (t)
c

N

∑
i=1

cidi +θ (t)

[

C ·D−
N

∑
i=1

cidi

]}

/(C ·D), t = 1,2.

We consider three values (0, 0.025, and 0.05) for �0. We can obtain μ2 by
solving Eq. 9 using numerical methods, given μ1, ρ11, ρ22, �, and δi j, since there is
no explicit closed-form expression to express μ2 as a function of these variables.

We evaluate the performance of the extended Mann-Whitney U statistic in terms
of percent bias (100∑B

b=1

(�̂b −�)/�) where � �= 0, for the b-th simulation and

V-statistic (1/(B− 1) ∑B
b=1

(
�̂b − ¯̂�

)2
/Var(�̂|Ha)) of parameter estimates �̂b,

and coverage of the confidence interval [�̂L,b,�̂U,b] of the parameter �, Type I
error rate and power of the hypothesis test H0 : �= 0 versus Ha : �=�0.

The power of the test is computed using Eq. 8 and the Type I error rate is
calculated by setting �0 = 0.

The simulation results are shown in Table 2. We can see that the estimate �̂ is
unbiased as the percent bias is close to zero. The sample variance tends to be slightly
smaller than the theoretical variance when nSub j = 50 as the V-statistic is smaller
than one. The coverage is close to the nominal level 95%, except when nSub j =
50 where the procedure slightly over-covers (consistent with the V-statistic). The
theoretical and empirical powers are also in close agreement.

Discussion

In this article, we provide methods for assessing discrimination of risk prediction
rules for disease progression as characterized by AUC, where the unit of analysis is
the subunit (e.g. the eye) within a cluster (e.g., the person) and there is correlation
between risk scores for multiple subunits (eyes) in the same cluster (person).
The methods are applicable to both balanced (equal cluster size) and unbalanced
(unequal cluster size) clustered data. The data analysis and the simulation study
show that the proposed test performs well in assessing AUC of risk prediction rules
and comparing AUC of competing risk prediction rules estimated from the same
subjects.

We assumed that after probit transformation the bivariate random vector [Hi1 j1 −
Hk1�1 ,Hi2 j2 −Hk2�2 ] is bivariate normally distributed. For the AMD data set, we
tested the bivariate normality of (Hi j,Hk�) using the Shapiro-Wilk test for the
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Table 2 Simulation results (ρ = 0.93, ρ11 = 0.59, ρ22 = 0.56, ρ12 = 0.52)

�= 0
nSubj pBias Coverage V-stat Type I error rate Emp. type I error rate

50 – 96.1 0.84 0.05 0.04
100 – 95.8 0.91 0.05 0.04
200 – 95.1 0.93 0.05 0.05
500 – 94.9 0.98 0.05 0.05

�= 0.025
nSubj pBias Coverage V-stat Power Emp. power

50 2.23 96.4 0.85 0.15 0.13
100 0.62 95.6 0.95 0.21 0.20
200 0.05 94.9 0.98 0.45 0.43
500 0.21 95.2 0.99 0.84 0.84

�= 0.05
nSubj pBias Coverage V-stat Power Emp. power

50 −0.05 96.4 0.87 0.46 0.45
100 0.27 95.0 1.01 0.72 0.72
200 −0.31 94.9 0.97 0.94 0.94
500 0.42 94.6 1.01 1.00 1.00

pBias the percent bias (100∑B
b=1

(�̂b −�)/�) where � �= 0 and B is the total number of
simulated data sets. V-stat the ratio of the empirical variance to the average theoretical variance.
emp. Type I error rate empirical Type I error rate = the proportion of simulated data sets for which
the test statistic Z = |�̂|/sd

(�̂|H0
)

is greater than the critical value Zα/2 given � = 0, where
Zα/2 is the upper 100(α/2)% percentile of a standard normal distribution. power theoretical power
from Eq. 8. emp. power empirical power = the proportion of simulated data sets for which the test
statistic Z = |�̂|/sd

(�̂|H0
)

is greater than the critical value Zα/2 given �> 0

training set and the p-value = 0.22 indicates we do not reject the bivariate normality
assumption. It will be a future research topic to check the robustness of our method
to the violation of the bivariate normality assumption.

Another assumption of the extended Mann-Whitney U test is that replicates
within a cluster are exchangeable. This is appropriate for the AMD data in which the
progression status of the left eye and right eye for a subject are ascertained at one
point in time. An interesting extension would be to consider a non-exchangeable
within-cluster correlation structure, as might be applicable for longitudinal data.

Obuchowski and McClish [7] have also considered nonparametric analysis of
clustered ROC curve data. Inference is based on the statistic θ̂c which is equivalent
to η̂c in Eq. 2. A U statistic approach is used to calculate Var

(
θ̂c
)

based on the
quantities

V10 (Zi j) =
1
D

N

∑
k=1

dk

∑
�=1

U (Zk�−Zi j)δi j (1− δk�) ,

V01 (Zk�) =
1
C

N

∑
i=1

ci

∑
j=1

U (Zk�−Zi j)δi j (1− δk�) .
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An inherent assumption of this approach is that under Ha, E [U (Zi j −Zk�)] is the
same when i = k or when i �= k. Under the probit shift alternative in the current
paper, there are two distinct parameters θc and θ when i = k or when i �= k (see
Eq. 4). Hence, variances and covariances need to be computed separately for the
components A and B corresponding to θc and θ , respectively. Obuchowski and
McClish [7] also provide upper bounds on sample size estimates based on variance
components in the observed data. In the current manuscript, we provide an explicit
power formula (see Eq. 8) as a function of μ , the location parameter of the probit
shift under Ha, and ρ = Corr(Hi1,Hi2) = correlation between probit scores between
two subunits in the same cluster. This power formula has been shown to be accurate
in our simulation studies. An advantage of this approach is that power calculations
can be performed for various levels of μ and ρ , whereas in Obuchowski and
McClish [7] they are based on a specific dataset. An interesting design question is
for a fixed total number of subunits =C+D, what is the optimal allocation between
having many clusters with small cluster size vs having fewer clusters with large

cluster size so as to minimize Var(η̂c) or Var
[
η̂(1)

c − η̂(2)
c

]
.

Li and Zhou [4] provide a unified approach to nonparametric comparison of ROC
curves for clustered data. The asymptotic joint distribution of ROC curves defined
by two different markers accounting for both between marker and within-cluster
(subject) variation is provided. The difference between AUC’s corresponding to �
is estimated from

∫ 1
0 D(p)d p, where

D(p) =ROC(1)(p)−ROC(2)(p)

ROC(v)(p) =1−G(v)
{(

F (v)
)−1

(1− p)

}

F (v) and G(v) are the cumulative distribution function of the risk score Z(v) for
cases (progressors) and controls (non-progressors), respectively. Unfortunately,
there is in general no closed-form expression available for Var

(
D̂(p)

)
and Monte-

Carlo simulation and numerical integration is used instead. A nice feature of
this approach is the avoidance of nonparametric density estimation, which can be
computationally challenging in this setting. However, in the current paper, we use
the rank-preserving property of the probit transformation to obtain a closed-form

expression for Var
[
η̂(1)

c − η̂(2)
c

]
in Eq. 7 which can be used for any continuous or

ordinal scale.
Furthermore, another distinction between our paper and Obuchowski and

McClish [7] and Li and Zhou [4] is that our scores are derived from a regression
model as a function of one or more risk factors rather than based on a single
diagnostic marker as is common in the ROC literature. Since the scores are based
on estimated regression coefficients, the variability in estimation needs to be take
into account which we accomplished using multiple imputation methods.

Toledano and Gatsonis [13] propose an ordinal regression model to estimate
effects of covariates on the area under the ROC, and compare AUC between
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competing risk prediction rules, where parameters in the marginal ordinal regression
model are estimated using GEE approaches. Our example is based on a continuous
risk score, where there are few patients with exactly the same risk score. It is an
open question how the Toledano and Gatsonis’s [13] approach would work with a
sparse number of subjects in individual risk categories.

Recently, new measures of performance of prediction models have been pro-
posed, such as net reclassification improvement (NRI) and integrated discrimination
improvement (IDI) proposed by Pencina et al. [8]. These new measures offer
incremental information over the AUC. Pencina et al. [8] pointed out in their
Discussion that they still believe that improvement in the AUC should remain the
first criterion, while NRI and IDI should also be taken into consideration. To our
knowledge, these new measures have not been extended to handle clustered data
yet. Hence, one possible future research area is to extend these new measures for
clustered data.

The program that implements the methods in this paper was written in the R
language and is available from the authors upon request.
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Appendix

Appendix 1 Calculating Var(η̂c|Ha)

We can use second order moments of the bivariate normal distribution to derive a
closed-form expression for Var(η̂c|Ha). Specifically,

Var(A|Ha) = θc(1−θc)
N

∑
i=1

cidi

+

[

Φ2

(

Φ−1 (θc) ,Φ−1 (θc) ,
1
2

)

−θ 2
c

]

·
[

N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −2

N

∑
i=1

cidi

]

,

where Φ2(a,b,ρ) is the cumulative distribution function of the bivariate normal

distribution = Pr

(

Z1 ≤ a,Z2 ≤ b|(Z1,Z2)∼ N

((
0
0

)

,

(
1 ρ
ρ 1

)))

. For example,

the first term in Var(A) is

N

∑
i=1

gi

∑
j=1

gi

∑
�=1

Var [U (Zi j −Zi�)] ,
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while the second term represents

N

∑
i=1

gi

∑
j=1

gi

∑
�1 �= j

gi

∑
�2 �=�1 �= j

Cov
[
U
(
Zi j −Zi�1

)
,U
(
Zi j −Zi�2

)]
.

Similarly,

Var(B|Ha) =
5

∑
i=1

�Bi ,

Cov(A,B|Ha) =
2

∑
i=1

�ABi ,

where

�B1 = θ (1−θ )
[

C ·D−
N

∑
i=1

cidi

]

+

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1+ρ

2

)

−θ 2
]

·
[

D∑
k

c2
k +C∑

i
d2

i − 2 ·C ·D−
(

∑
i

c2
i di +∑

i
cid

2
i −2∑

i
cidi

)]

+
[
Φ2
(
Φ−1 (θ ) ,Φ−1 (θ ) ,ρ

)−θ 2]

·
[

∑
i

di(di − 1)∑
k

ck(ck − 1)−∑
i

di(di −1)ci(ci −1)

]

,

�B2 =

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1
2

)

−θ 2
]

·
[

C2D−D∑
i

c2
i − 2

(

C∑
i

cidi −∑
i

c2
i di

)]

+
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,

ρ
2

)
−θ 2

]
·
[(

∑
i

d2
i −D

)(

C2 −∑
i

c2
i

)

−2

(

C ·∑
i

cid
2
i −C ·∑

i

cidi −∑
i

c2
i d2

i +∑
i

c2
i di

)]

,
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�B3 =

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1
2

)

−θ 2
]

·
[

C

(

D2 −∑
i

d2
i

)

− 2

(

D∑
i

cidi −∑
i

cid
2
i

)]

+
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,

ρ
2

)
−θ 2

]
[(

∑
i

c2
i −C

)(

D2 −∑
i

d2
i

)

−2

(

D

(

∑
i

c2
i di −∑

i
cidi

)

−∑
i

c2
i d2

i +∑
i

cid
2
i

)]

,

�B4 =
[
Φ2
(
Φ−1 (θ ) ,Φ−1 (θ ) ,−ρ)−θ 2]

⎡

⎣

(

∑
i

cidi

)2

−∑
i

c2
i d2

i

⎤

⎦ ,

�B5 =2
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,−ρ

2

)
−θ 2

]

·
⎡

⎣CD∑
i

cidi −C∑
i

cid
2
i −D∑

i
c2

i di +2∑
i

c2
i d2

i −
(

∑
i

cidi

)2
⎤

⎦ ,

�AB1 =

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θc) ,

√
1−ρ
2

)

−θ 2
][

C∑
i

cidi −∑
i

c2
i di

]

,

�AB2 =

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θc) ,

√
1−ρ
2

)

−θ 2
][

D∑
i

cidi −∑
i

cid
2
i

]

.

Calculating Var(A)

Note that

(1− δi j)δi j = 0
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and that

E
{
[U (Zi j −Zk�)] (1− δi j)δk�

}
= Pr [U (Zi j −Zk�) = 1] (1− δi j)δk�

= Pr [Zi j < Zk�] (1− δi j)δk�

= Pr [H(Zi j)< H(Zk�)] (1− δi j)δk�

= Pr [H(Zi j)−H(Zk�)< 0] (1− δi j)δk�

=

⎧
⎪⎨

⎪⎩

Φ
(

μ√
2(1−ρ)

)

= θc if i = k

Φ
(

μ√
2

)
= θ if i �= k

We can get

Var(A) = Var

(
N

∑
i=1

gi

∑
j=1

gi

∑
�=1

U (Zi j −Zi�)(1− δi j)δi�

)

=
N

∑
i1=1

gi

∑
j1=1

gi

∑
�1=1

gi

∑
j2=1

gi

∑
�2=1

(1− δi1 j1)δi1�1(1− δi1 j2)δi1�2

Cov
(
U
(
Zi1 j1 −Zi1�1

)
,U
(
Zi1 j2 −Zi1�2

))

=
N

∑
i1=1

gi

∑
j1= j2

gi

∑
�1=�2

(1− δi1 j1)δi1�1(1− δi1 j1)δi1�1

Cov
(
U
(
Zi1 j1 −Zi1�1

)
,U
(
Zi1 j1 −Zi1�1

))

+
N

∑
i1=1

gi

∑
j1 �= j2

gi

∑
�1=�2

(1− δi1 j1)δi1�1(1− δi1 j2)δi1�1

Cov
(
U
(
Zi1 j1 −Zi1�1

)
,U
(
Zi1 j2 −Zi1�1

))

+
N

∑
i1=1

gi

∑
j1= j2

gi

∑
�1 �=�2

(1− δi1 j1)δi1�1(1− δi1 j1)δi1�2

Cov
(
U
(
Zi1 j1 −Zi1�1

)
,U
(
Zi1 j1 −Zi1�2

))

+
N

∑
i1=1

gi

∑
j1 �= j2

gi

∑
�1 �=�2

(1− δi1 j1)δi1�1(1− δi1 j2)δi1�2

Cov
(
U
(
Zi1 j1 −Zi1�1

)
,U
(
Zi1 j2 −Zi1�2

))

= θc(1−θc)∑
i1

ci1di1
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+

[

Φ2

(

Φ−1 (θc) ,Φ−1 (θc) ,
1
2

)

−θ 2
c

]

∑
i1

ci1 di1(di1 −1)

+

[

Φ2

(

Φ−1 (θc) ,Φ−1 (θc) ,
1
2

)

−θ 2
c

]

∑
i1

di1ci1(ci1 −1)

+ 0.

Calculating Var(B)

Var(B) =Var

(
N

∑
i=1

N

∑
k=1,k �=i

gi

∑
j=1

gk

∑
�=1

U (Zi j −Zk�)(1− δi j)δk�

)

=
5

∑
i=1

�Bi

Calculation �B1

�B1 = ∑
i1=i2,i1 �=k1

∑
k1=k2 ,i2 �=k2

gi1

∑
j1=1

gi1

∑
j2=1

gk1

∑
�1=1

gk1

∑
�2=1

(1−δi1 j1)δk1�1(1−δi1 j2)δk1�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j2 −Zk1�2

))

= ∑
i1 �=k1

∑
j1= j2

∑
�1=�2

(1−δi1 j1)δk1�1(1−δi1 j1)δk1�1 Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j1 −Zk1�1

))

+ ∑
i1 �=k1

∑
j1 �= j2

∑
�1=�2

(1−δi1 j1)δk1�1(1−δi1 j2)δk1�1 Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j2 −Zk1�1

))

+ ∑
i1 �=k1

∑
j1= j2

∑
�1 �=�2

(1−δi1 j1)δk1�1(1−δi1 j1)δk1�2 Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j1 −Zk1�2

))

+ ∑
i1 �=k1

∑
j1 �= j2

∑
�1 �=�2

(1−δi1 j1)δk1�1(1−δi1 j2)δk1�2 Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j2 −Zk1�2

))

=θ (1−θ ) ∑
i1 �=k1

di1 ck1

+

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1+ρ

2

)

−θ 2
]

∑
i1 �=k1

di1(di1 −1)ck1

+

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1+ρ

2

)

−θ 2
]

∑
i1 �=k1

di1 ck1 (ck1 −1)

+
[
Φ2
(
Φ−1 (θ ) ,Φ−1 (θ ) ,ρ

)−θ 2] ∑
i1 �=k1

di1(di1 −1)ck1 (ck1 −1)
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Calculation �B2

�B2 = ∑
i1=i2,i1 �=k1

∑
k1 �=k2,i2 �=k2

gi1

∑
j1=1

gi1

∑
j2=1

gk1

∑
�1=1

gk2

∑
�2=1

(1−δi1 j1)δk1�1(1−δi1 j2)δk2�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j2 −Zk2�2

))

= ∑
i1 �=k1,i1 �=k2,k1 �=k2

∑
j1= j2

∑
�1

∑
�2

(1−δi1 j1)δk1�1(1−δi1 j1)δk2�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j1 −Zk2�2

))

+ ∑
i1 �=k1,i1 �=k2,k1 �=k2

∑
j1 �= j2

∑
�1

∑
�2

(1−δi1 j1)δk1�1(1−δi1 j2)δk2�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi1 j2 −Zk2�2

))

=

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1
2

)

−θ 2
]

∑
i1 �=k1,i1 �=k2 ,k1 �=k2

di1 ck1 ck2

+
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,

ρ
2

)
−θ 2

]
∑

i1 �=k1,i1 �=k2,k1 �=k2

di1 (di1 −1)ck1 ck2

Calculation �B3

�B3 = ∑
i1 �=i2,i1 �=k1

∑
k1=k2,i2 �=k2

gi1

∑
j1=1

gi2

∑
j2=1

gk1

∑
�1=1

gk2

∑
�2=1

(1−δi1 j1)δk1�1(1−δi2 j2)δk1�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi2 j2 −Zk1�2

))

= ∑
i1 �=k1,i1 �=i2,k1 �=i2

∑
j1
∑
j2
∑

�1=�2

(1−δi1 j1)δk1�1(1−δi2 j2)δk1�1

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi2 j2 −Zk1�1

))

+ ∑
i1 �=k1,i1 �=i2,k1 �=i2

∑
j1
∑
j2
∑

�1 �=�2

(1−δi1 j1)δk1�1(1−δi2 j2)δk1�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi2 j2 −Zk1�2

))

=

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θ ) ,
1
2

)

−θ 2
]

∑
i1 �=k1,i1 �=i2,k1 �=i2

di1 di2 ck1

+
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,

ρ
2

)
−θ 2

]
∑

i1 �=k1 ,i1 �=i2,k1 �=i2

di1 di2 ck1 (ck1−1)
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Calculation �B4

�B4 = ∑
i1=k2,i1 �=k1

∑
k1 �=i2,i2 �=k2

gi1

∑
j1=1

gk1

∑
j2=1

gk1

∑
�1=1

gi1

∑
�2=1

(1−δi1 j1)δk1�1(1−δk1 j2)δi1�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zk1 j2 −Zi1�2

))

=
[
Φ2
(
Φ−1 (θ ) ,Φ−1 (θ ) ,−ρ)−θ 2] ∑

i1 �=k1

di1 ci1 dk1 ck1

Calculation �B5

�B5 =2 ∑
i1=k2,i1 �=k1

∑
k1 �=i2,i2 �=k2

gi1

∑
j1=1

gi2

∑
j2=1

gk1

∑
�1=1

gi1

∑
�2=1

(1−δi1 j1)δk1�1(1−δi2 j2)δi1�2

Cov
(
U
(
Zi1 j1 −Zk1�1

)
,U
(
Zi2 j2 −Zi1�2

))

=2
[
Φ2

(
Φ−1 (θ ) ,Φ−1 (θ ) ,−ρ

2

)
−θ 2

]
∑

i1 �=k1,i1 �=i2,k1 �=i2

di1 ci1 ck1 di2

Calculating Cov(A,B)

Cov(A,B) =Cov

(
N

∑
i1=1

gi1

∑
j1=1

gi1

∑
�1=1

U
(
Zi1 j1 −Zi1�1

)
(1− δi1 j1)δi1�1 ,

N

∑
i2=1

N

∑
k2=1,k2 �=i2

gi2

∑
j2=1

gk2

∑
�2=1

U
(
Zi2 j2 −Zk2�2

)
(1− δi2 j2)δk2�2

)

=
2

∑
i=1

�ABi

Calculating �AB1

�AB1 = ∑
i1=i2,i2 �=k2

gi1

∑
j1=1

gi1

∑
�1=1

gi1

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δi1�1(1− δi1 j2)δk2�2

Cov
(
U
(
Zi1 j1 −Zi1�

)
, U
(
Zi1 j2 −Zk2�2

))

= ∑
i1 �=k2

∑
j1= j2

∑
�1

∑
�2

(1− δi1 j1)δi1�1(1− δi1 j1)δk2�2

Cov
(
U
(
Zi1 j1 −Zi1�

)
, U
(
Zi1 j1 −Zk2�2

))

=

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θc) ,

√
1−ρ
2

)

−θ 2
]

∑
i1 �=k2

di1ci1 ck2
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Calculating �AB2

�AB2 = ∑
i1=k2,i1 �=i2,i2 �=k2

gi1

∑
j1=1

gi1

∑
�1=1

gi2

∑
j2=1

gi1

∑
�2=1

(1− δi1 j1)δi1�1(1− δi2 j2)δi1�2

Cov
(
U
(
Zi1 j1 −Zi1�1

)
, U
(
Zi2 j2 −Zi1�2

))

= ∑
i1 �=i2
∑
j1
∑
j2
∑

�1=�2

(1− δi1 j1)δi1�1(1− δi2 j2)δi1�1

Cov
(
U
(
Zi1 j1 −Zi1�1

)
, U
(
Zi2 j2 −Zi1�1

))

=

[

Φ2

(

Φ−1 (θ ) ,Φ−1 (θc) ,

√
1−ρ
2

)

−θ 2
]

∑
i1 �=i2

di1ci1di2

Appendix 2 Calculating Cov
(
η̂(1)

c , η̂(2)
c

)

We can obtain

Cov
(

A(1),A(2)
)
=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12√
(1−ρ11)(1−ρ22)

)

−θc1θc2

]
N

∑
i=1

cidi

+

[

Φ2

(

Φ−1 (θc1 ) ,Φ
−1 (θc2 ) ,

ρ−ρ12

2
√

(1−ρ11)(1−ρ22)

)

−θc1θc2

]

·
[

N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −2

N

∑
i=1

cidi

]

,

Cov
(

A(1),B(2)
)
=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√

(1−ρ11)

)

−θc1θ2

]

·
[

(C+D)
N

∑
i=1

cidi −
N

∑
i=1

c2
i di −

N

∑
i=1

cid
2
i

]

,

Cov
(

B(1),A(2)
)
=

[

Φ2

(

Φ−1 (θ1) ,Φ−1 (θc2 ) ,
ρ−ρ12

2
√

(1−ρ22)

)

−θ1θc2

]

·
[

(C+D)
N

∑
i=1

cidi −
N

∑
i=1

c2
i di −

N

∑
i=1

cid
2
i

]

,

Cov
(

B(1),B(2)
)
=

9

∑
t=1

st ,
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where

s1 =
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ

)−θ1θ2
]
[

C ·D−
N

∑
i=1

cidi

]

s2 =

[

Φ2

(

Φ−1 (θ1) ,Φ−1 (θ2) ,
ρ+ρ12

2

)

−θ1θ2

]

·
[

2
N

∑
i=1

cidi +C
N

∑
i=1

d2
i +D

N

∑
i=1

c2
i −

N

∑
i=1

cid
2
i −

N

∑
i=1

c2
i di −2CD

]

s3 =
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ12

)−θ1θ2
]
{[

N

∑
i=1

c2
i

][
N

∑
i=1

d2
i

]

−C
N

∑
i=1

d2
i −D

N

∑
i=1

c2
i +CD−

N

∑
i=1

c2
i d2

i +
N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −

N

∑
i=1

cidi

}

s4 =
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
·
{

C

[

D2 −
N

∑
i=1

d2
i

]

−2

[

D
N

∑
i=1

cidi −
N

∑
i=1

cid
2
i

]}

s5 =
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
·
{(

∑
i

c2
i −C

)(

D2 −∑
i

d2
i

)

−2

[

D

(

∑
i

c2
i di −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

cid
2
i

]}

s6 =
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
{

D

[

C2 −
N

∑
i=1

c2
i

]

−2

[

C
N

∑
i=1

cidi −
N

∑
i=1

c2
i di

]}

s7 =
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
{(

∑
i

d2
i −D

)(

C2 −∑
i

c2
i

)

−2

[

C

(

∑
i

cid
2
i −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

c2
i di

]}

s8 =
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

)−θ1θ2
]
⎡

⎣

(
N

∑
i=1

cidi

)2

−
N

∑
i=1

c2
i d2

i

⎤

⎦

s9 =2
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

2

)
−θ1θ2

]

·
⎡

⎣CD
N

∑
i=1

cidi −C
N

∑
i=1

cid
2
i −D

N

∑
i=1

c2
i di −

(
N

∑
i=1

cidi

)2

+2
N

∑
i=1

c2
i d2

i

⎤

⎦
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Calculating Cov
(

A(1),A(2)
)

Cov
(

A(1),A(2)
)

=Cov

[
N

∑
i1=1

gi1

∑
j1

gi1

∑
�1

(1−δi1 j1)δi1�1U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,

N

∑
i2=1

gi2

∑
j2

gi2

∑
�2

(1−δi2 j2)δi2�2U
(

Z(2)
i2 j2

−Z(2)
i2�2

)
]

Denote

�A1A2,1 = ∑
i1=i2

gi

∑
j1=1

gi

∑
�1=1

gi

∑
j2=1

gi

∑
�2=1

(1−δi j1)δi�1(1−δi j2)δi�2 Cov
(

U
(

Z(1)
i j1

−Z(1)
i�1

)
,U
(

Z(2)
i j2

−Z(2)
i�2

))

and

�A1A2,2 = ∑
i1 �=i2

gi1

∑
j1=1

gi1

∑
�1=1

gi2

∑
j2=1

gi2

∑
�2=1

(1− δi1 j1)δi1�1(1− δi2 j2)δi2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i2�2

))

Then

Cov
(

A(1),A(2)
)
=�A1A2,1 +�A1A2,2.

We can get

�A1A2,2 = 0

since i1 and i2 are two different subjects and hence are independent.
Now we calculate �A1A2,1.

�A1A2,1

=∑
i
∑

j1= j2= j
∑

�1=�2=�

(1−δi j)δi�Cov
(

U
(

Z(1)
i j −Z(1)

i�

)
, U
(

Z(2)
i j −Z(2)

i�

))

+∑
i
∑

j1 �= j2
∑

�1=�2=�

(1−δi j1)(1−δi j2)δi�Cov
(

U
(

Z(1)
i j1

−Z(1)
i�

)
, U
(

Z(2)
i j2

−Z(2)
i�

))

+∑
i
∑

j1= j2= j
∑

�1 �=�2

(1−δi j)δi�1δi�2Cov
(

U
(

Z(1)
i j −Z(1)

i�1

)
, U
(

Z(2)
i j −Z(2)

i�2

))

+∑
i
∑

j1 �= j2
∑

�1 �=�2

(1−δi j1)(1−δi j2)δi�1δi�2 Cov
(

U
(

Z(1)
i j1

−Z(1)
i�1

)
, U
(

Z(2)
i j2

−Z(2)
i�2

))
.
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Note that

Cov
(

U
(

Z(1)
i j −Z(1)

i�

)
, U
(

Z(2)
i j −Z(2)

i�

))

=E
[
U
(

Z(1)
i j1

−Z(1)
i�1

)
U
(

Z(2)
i j2

−Z(2)
i�2

)]
−E
[
U
(

Z(1)
i j1

−Z(1)
i�1

)]
E
[
U
(

Z(2)
i j2

−Z(2)
i�2

)]

=Pr
(

H(1)
i j −H(1)

i� < 0&H(2)
i j −H(2)

i� < 0
)
−Pr

(
H(1)

i j −H(1)
i� < 0

)
Pr
(

H(2)
i j −H(2)

i� < 0
)

and
(

H(1)
i j −H(1)

i�

H(2)
i j −H(2)

i�

)

∼ N

((−μ1

−μ2

)

,

(
2(1−ρ11) σ12

σ12 2(1−ρ22)

))

where

σ12 =Cov
(

H(1)
i j −H(1)

i� , H(2)
i j −H(2)

i�

)

=Cov
(

H(1)
i j , H(2)

i j

)
−Cov

(
H(1)

i j , H(2)
i�

)
−Cov

(
H(1)

i� , H(2)
i j

)
−Cov

(
H(1)

i� , H(2)
i�

)

=ρ−ρ12 −ρ12 +ρ

=2(ρ−ρ12)

Hence we can get

Cov
(

U
(

Z(1)
i j −Z(1)

i�

)
, U
(

Z(2)
i j −Z(2)

i�

))

= Φ2

(
μ1√

2(1−ρ11)
,

μ2√
2(1−ρ22)

,
ρ−ρ12√

(1−ρ11)(1−ρ22)

)

−Φ
(

μ1√
2(1−ρ11)

)

Φ

(
μ2√

2(1−ρ22)

)

= Φ2

(

θ−1
c1

,θ−1
c2

,
ρ−ρ12√

(1−ρ11)(1−ρ22)

)

−θc1θc2 .

Similarly, we can get

Cov
(

U
(

Z(1)
i j1

−Z(1)
i�

)
, U
(

Z(2)
i j2

−Z(2)
i�

))

=Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12

2
√
(1−ρ11)(1−ρ22)

)

−θc1θc2
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and

Cov
(

U
(

Z(1)
i j −Z(1)

i�1

)
, U
(

Z(2)
i j −Z(2)

i�2

))

=Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12

2
√
(1−ρ11)(1−ρ22)

)

−θc1θc2

and

Cov
(

U
(

Z(1)
i j1

−Z(1)
i�1

)
, U
(

Z(2)
i j2

−Z(2)
i�2

))
= 0.

Hence, we can get

�A1A2,1 =

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12√
(1−ρ11)(1−ρ22)

)

−θc1θc2

]
N

∑
i=1

cidi

+

[

Φ2

(

Φ−1 (θc1 ) ,Φ
−1 (θc2 ) ,

ρ−ρ12

2
√

(1−ρ11)(1−ρ22)

)

−θc1θc2

]

[
N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −2

N

∑
i=1

cidi

]

Therefore

Cov
(

A(1),A(2)
)

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12√
(1−ρ11)(1−ρ22)

)

−θc1θc2

]
N

∑
i=1

cidi

+

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θc2) ,

ρ−ρ12

2
√
(1−ρ11)(1−ρ22)

)

−θc1θc2

]

[
N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i − 2

N

∑
i=1

cidi

]

(10)

Calculating Cov
(

A(1),B(2)
)

Cov
(

A(1),B(2)
)

=Cov

[
N

∑
i1=1

gi1

∑
j1

gi1

∑
�1

(1− δi1 j1)δi1�1U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,

N

∑
i2=1

N

∑
k2=1,k2 �=i2

gi2

∑
j2

gk2

∑
�2=1

(1− δi2 j2)δk2�2U
(

Z(2)
i2 j2

−Z(2)
k2�2

)
]
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Denote

�A1B2,1

= ∑
i1 �=i2,i1 �=k2

gi1

∑
j1=1

gi1

∑
�1=1

gi2

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δi1�1(1− δi2 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k2�2

))

and

�A1B2,2

= ∑
i1=i2,i1 �=k2

gi1

∑
j1=1

gi1

∑
�1=1

gi1

∑
j2

gk2

∑
�2=1

(1− δi1 j1)δi1�1(1− δi1 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i1 j2

−Z(2)
k2�2

))

and

�A1B2,3

= ∑
i1 �=i2,i1=k2

gi1

∑
j1=1

gi1

∑
�1=1

i2

∑
j2=1

gi1

∑
�2=1

(1− δi1 j1)δi1�1(1− δi2 j2)δi1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�2

))

Then

Cov
(

A(1),B(2)
)
=�A1B2,1 +�A1B2,2 +�A1B2,3.

We can easily get

�A1B2,1 = 0

since subjects i1, i2, and k2 are different subjects and hence are independent.
We can get

�A1B2,2

=∑
i�=k

∑
j1= j2= j

gi

∑
�1=1

gk

∑
�2=1

(1− δi j)δi�1δk�2Cov
(

U
(

Z(1)
i j −Z(1)

i�1

)
,U
(

Z(2)
i j −Z(2)

k�2

))

+∑
i�=k
∑

j1 �= j2

gi

∑
�1=1

gk

∑
�2=1

(1− δi j1)(1− δi j2)δi�1δk�2

Cov
(

U
(

Z(1)
i j1

−Z(1)
i�1

)
,U
(

Z(2)
i j2

−Z(2)
k�2

))



226 B. Rosner et al.

We can get

Cov
(

U
(

Z(1)
i j −Z(1)

i�1

)
,U
(

Z(2)
i j −Z(2)

k�2

))

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

]

and

Cov
(

U
(

Z(1)
i j1

−Z(1)
i�1

)
,U
(

Z(2)
i j2

−Z(2)
k�2

))
= 0

Hence

�A1B2,2

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

]

∑
i�=k

cidick

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

][

C ·
N

∑
i=1

cidi −
N

∑
i=1

c2
i di

]

Now we calculate �A1B2,3.

�A1B2,3

= ∑
i1 �=i2

gi1

∑
j1=1

gi2

∑
j2=1

gi1

∑
�1=�2=�

(1− δi1 j1)δi1�(1− δi2 j2)

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�

))

+ ∑
i1 �=i2

gi1

∑
j1=1

gi2

∑
j2=1

gi1

∑
�1 �=�2

(1− δi1 j1)δi1�1(1− δi2 j2)δi1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�2

))

We can get

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�

))

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

]
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and

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
i1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�2

))
= 0

Hence

�A1B2,3

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

]

∑
i1 �=i2

ci1di1di2

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

][

D ·
N

∑
i=1

cidi −
N

∑
i=1

cid
2
i

]

Therefore

Cov
(

A(1),B(2)
)

=

[

Φ2

(

Φ−1 (θc1) ,Φ
−1 (θ2) ,

ρ−ρ12

2
√
(1−ρ11)

)

−θc1θ2

]

·
[

(C+D)
N

∑
i=1

cidi −
N

∑
i=1

c2
i di −

N

∑
i=1

cid
2
i

]
(11)

Calculating Cov
(

B(1),A(2)
)

By symmetry to Cov
(

A(1),B(2)
)

, we can get

Cov
(

B(1),A(2)
)

=

[

Φ2

(

Φ−1 (θ1) ,Φ−1 (θc2) ,
ρ−ρ12

2
√
(1−ρ22)

)

−θ1θc2

]

·
[

(C+D)
N

∑
i=1

cidi −
N

∑
i=1

c2
i di −

N

∑
i=1

cid
2
i

]

.

(12)
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Calculating Cov
(

B(1),B(2)
)

Cov
(

B(1),B(2)
)

=Cov

[
N

∑
i1=1

N

∑
k1=1,k1 �=i1

gi1

∑
j1

gk1

∑
�1

(1− δi1 j1)δk1�1U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,

N

∑
i2=1

N

∑
k2=1,k2 �=i2

gi2

∑
j2

gk2

∑
�2

(1− δi2 j2)δk2�2U
(

Z(2)
i2 j2

−Z(2)
k2�2

)
]

Denote

�B1B2,0

=∑
S

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k2�2

))

where S is the set that i1, k1, i2, k2 are all not equal, and

�B1B2,1

= ∑
i1 �=k1,i2 �=k2

i1=i2,k1=k2

gi1

∑
j1=1

gk1

∑
�1=1

gi1

∑
j2=1

gk1

∑
�2=1

(1− δi1 j1)δk1�1(1− δi1 j2)δk1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i1 j2

−Z(2)
k1�2

))

and

�B1B2,2

= ∑
i1 �=k1,i2 �=k2

i1 �=i2,k1=k2

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gk1

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δk1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k1�2

))

and

�B1B2,3

= ∑
i1 �=k1,i2 �=k2

i1=i2,k1 �=k2

gi1

∑
j1=1

gk1

∑
�1=1

gi1

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δi1 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i1 j2

−Z(2)
k2�2

))
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and

�B1B2,4

= ∑
i1 �=k1,i2 �=k2

i1 �=i2,k1 �=k2

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k2�2

))

and

�B1B2,5

= ∑
i1 �=k1,i2 �=k2

i1=k2,k1=i2

gk1

∑
j1=1

gk1

∑
�1=1

gk1

∑
j2=1

gi1

∑
�2=1

(1− δi1 j1)δk1�1(1− δk1 j2)δi1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
k1 j2

−Z(2)
i1�2

))

and

�B1B2,6

= ∑
i1 �=k1,i2 �=k2

i1 �=k2,k1=i2

gi1

∑
j1=1

gk1

∑
�1=1

gk1

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δk1 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
k1 j2

−Z(2)
k2�2

))

and

�B1B2,7

= ∑
i1 �=k1,i2 �=k2

i1=k2,k1 �=i2

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gi1

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δi1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�2

))

and

�B1B2,8

= ∑
i1 �=k1,i2 �=k2

i1 �=k2,k1 �=i2

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k2�2

))
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Then

Cov
(

B(1),B(2)
)
=

8

∑
t=0

�B1B2,t .

We can easily to get

�B1B2,0 =�B1B2,4 =�B1B2,8 = 0.

Now we calculate �B1B2,1.

�B1B2,1

=∑
i�=k

gi1

∑
j1= j2= j

gk1

∑
�1=�2=�

(1− δi j)δk�Cov
(

U
(

Z(1)
i j −Z(1)

k�

)
,U
(

Z(2)
i j −Z(2)

k�

))

+∑
i�=k

gi1

∑
j1 �= j2

gk1

∑
�1=�2=�

(1− δi j1)(1− δi j2)δk�Cov
(

U
(

Z(1)
i j1

−Z(1)
k�

)
,U
(

Z(2)
i j2

−Z(2)
k�

))

+∑
i�=k

gi1

∑
j1= j2= j

gk1

∑
�1 �=�2

(1− δi j)δk�1δk�2Cov
(

U
(

Z(1)
i j −Z(1)

k�1

)
,U
(

Z(2)
i j −Z(2)

k�2

))

+∑
i�=k

gi1

∑
j1 �= j2

gk1

∑
�1 �=�2

(1− δi j1)(1− δi j2)δk�1δk�2Cov
(
U
(

Z(1)
i j1

−Z(1)
k�1

)
,U
(

Z(2)
i j2

−Z(2)
k�2

))

We can get

Cov
(

U
(

Z(1)
i j −Z(1)

k�

)
,U
(

Z(2)
i j −Z(2)

k�

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ

)−θ1θ2

and

Cov
(
U
(
Z(1)

i j1
−Z(1)

k�

)
,U
(

Z(2)
i j2

−Z(2)
k�

))
=Φ2

(

Φ−1 (θ1) ,Φ−1 (θ2) ,
ρ+ρ12

2

)

−θ1θ2

and

Cov
(
U
(
Z(1)

i j −Z(1)
k�1

)
,U
(
Z(2)

i j −Z(2)
k�2

))
=Φ2

(

Φ−1 (θ1) ,Φ−1(θ2) ,
ρ+ρ12

2

)

−θ1θ2
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and

Cov
(

U
(

Z(1)
i j1

−Z(1)
k�1

)
,U
(

Z(2)
i j2

−Z(2)
k�2

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ12

)−θ1θ2

Note that

∑
i�=k

gk1

∑
�=1

δk�

gi1

∑
j1 �= j2

(1− δi j1)(1− δi j2)

=∑
i�=k

ck
[
d2

i − di
]

=
N

∑
i=1

N

∑
k=1

ck
[
d2

i − di
]−

N

∑
i=k=1

ci
[
d2

i −di
]

=C

[
N

∑
i=1

d2
i −D

]

−
N

∑
i=1

cid
2
i +

N

∑
i=1

cidi

Similarly, we can get

∑
i�=k

gi1

∑
j=1

(1− δi j)

gk1

∑
�1 �=�2

δk�1δk�2

=D

[
N

∑
i=1

c2
i −C

]

−
N

∑
i=1

c2
i di +

N

∑
i=1

cidi

and

∑
i�=k

gi1

∑
j1 �= j2

(1− δi j1)(1− δi j2)

gk1

∑
�1 �=�2

δk�1δk�2

=∑
i

di(di − 1)∑
k

ck(ck − 1)−∑
i

cidi(ci −1)(di−1)

and

∑
i�=k

gi1

∑
j=1

gk1

∑
�=1

(1− δi j)δk� =CD−∑
i

cidi
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Hence

�B1B2 ,1

=
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ

)−θ1θ2
]
[

C ·D−
N

∑
i=1

cidi

]

+

[

Φ2

(

Φ−1 (θ1) ,Φ−1 (θ2) ,
ρ+ρ12

2

)

−θ1θ2

][

2
N

∑
i=1

cidi +C
N

∑
i=1

d2
i +D

N

∑
i=1

c2
i −

N

∑
i=1

cid
2
i −

N

∑
i=1

c2
i di −2CD

]

+
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ12

)−θ1θ2
]
{[

N

∑
i=1

c2
i

][
N

∑
i=1

d2
i

]

−C
N

∑
i=1

d2
i −D

N

∑
i=1

c2
i +CD−

N

∑
i=1

c2
i d2

i

+
N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −

N

∑
i=1

cidi

}

Now we calculate �B1B2,2.

�B1B2,2

= ∑
i1 �=k1 �=i2

gi1

∑
j1=1

gi2

∑
j2=1

gk1

∑
�1=�2=�

(1−δi1 j1)δk1�(1−δi2 j2)δk1�Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�

)
,U
(

Z(2)
i2 j2

−Z(2)
k1�

))

+ ∑
i1 �=k1 �=i2

gi1

∑
j1=1

gi2

∑
j2=1

gk1

∑
�1 �=�2

(1−δi1 j1)δk1�1 (1−δi2 j2)δk1�2 Cov
(
U
(
Z(1)

i1 j1
−Z(1)

k1�1

)
,U
(
Z(2)

i2 j2
−Z(2)

k1�2

))

We can get

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�

)
,U
(

Z(2)
i2 j2

−Z(2)
k1�

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

and

Cov
(
U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
k1�2

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

Hence

�B1B2,2

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
∑

i1 �=i2 �=k1

ck1 di1di2

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
∑

i1 �=i2 �=k1

di1di2

(
c2

k1
− ck1

)
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Note that

∑
i1 �=i2 �=k1

ck1di1di2

= ∑
i1 �=i2

di1di2

[

∑
k1

ck1 − ci1 − ci2

]

=C ∑
i1 �=i2

di1di2 − ∑
i1 �=i2

di1ci1di2 − ∑
i1 �=i2

di1di2ci2

=C

[

D2 −
N

∑
i=1

d2
i

]

− 2

[

D
N

∑
i=1

cidi −
N

∑
i=1

cid
2
i

]

and

∑
i1 �=i2 �=k1

di1di2

(
c2

k1
− ck1

)

= ∑
i1 �=i2

di1di2

[

∑
k1

ck1(ck1 − 1)− ci1(ci1 − 1)− ci2(ci2 −1)

]

=

(

∑
i

c2
i −C

)(

D2 −∑
i

d2
i

)

− 2

[

D

(

∑
i

c2
i di −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

cid
2
i

]

Hence

�B1B2,2

=
[
Φ2

(
Φ−1 (θ1),Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
{

C

[

D2 −
N

∑
i=1

d2
i

]

−2

[

D
N

∑
i=1

cidi −
N

∑
i=1

cid
2
i

]}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
{(

∑
i

c2
i −C

)(

D2 −∑
i

d2
i

)

−2

[

D

(

∑
i

c2
i di −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

cid
2
i

]}
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Now we calculate �B1B2,3.

�B1B2,3

= ∑
i1 �=k1 �=k2

gi1

∑
j1= j2= j

gk1

∑
�1=1

gk2

∑
�2=1

(1− δi1 j)δk1�1δk2�2

Cov
(

U
(

Z(1)
i1 j −Z(1)

k1�1

)
,U
(

Z(2)
i1 j −Z(2)

k2�2

))

+ ∑
i1 �=k1 �=k2

gi1

∑
j1 �= j2

gk1

∑
�1=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δi1 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i1 j2

−Z(2)
k2�2

))

We can get

Cov
(

U
(

Z(1)
i1 j −Z(1)

k1�1

)
,U
(

Z(2)
i1 j −Z(2)

k2�2

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

and

Cov
(
U
(
Z(1)

i1 j1
−Z(1)

k1�1

)
,U
(
Z(2)

i1 j2
−Z(2)

k2�2

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

Hence

�B1B2,3

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
∑

i1 �=k1 �=k2

di1ck1 ck2

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
∑

i1 �=k1 �=k2

ck1 ck2

(
d2

i1 −di1

)

Note that

∑
i1 �=k1 �=k2

di1ck1 ck2

= ∑
k1 �=k2

ck1ck2

[

∑
i1

di1 − dk1 − dk2

]

=D ∑
k1 �=k2

ck1ck2 − ∑
k1 �=k2

ck1ck2dk1 − ∑
k1 �=k2

ck1ck2dk2

=D

[

C2 −
N

∑
i=1

c2
i

]

− 2

[

C
N

∑
i=1

cidi −
N

∑
i=1

c2
i di

]
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and

∑
k1 �=k2 �=i1

ck1ck2

(
d2

i1 − di1

)

= ∑
k1 �=k2

ck1ck2

[

∑
i1

di1(di1 − 1)− dk1(dk1 − 1)− dk2(dk2 −1)

]

=

(

∑
i

d2
i −D

)(

C2 −∑
i

c2
i

)

− 2

[

C

(

∑
i

cid
2
i −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

c2
i di

]

Hence

�B1B2,3

=
[
Φ2

(
Φ−1(θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
{

D

[

C2 −
N

∑
i=1

c2
i

]

−2

[

C
N

∑
i=1

cidi −
N

∑
i=1

c2
i di

]}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
{(

∑
i

d2
i −D

)(

C2 −∑
i

c2
i

)

−2

[

C

(

∑
i

cid
2
i −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

c2
i di

]}

Now we calculate �B1B2,5.

�B1B2,5

=
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

)−θ1θ2
]
∑

i1 �=k1

ci1di1ck1dk1

=
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

)−θ1θ2
]
⎡

⎣

(
N

∑
i=1

cidi

)2

−
N

∑
i=1

c2
i d2

i

⎤

⎦ .

Now we calculate �B1B2,6.

�B1B2,6

= ∑
i1 �=k1 �=k2

gi1

∑
j1=1

gk1

∑
�1=1

gk1

∑
j2=1

gk2

∑
�2=1

(1− δi1 j1)δk1�1(1− δk1 j2)δk2�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
k1 j2

−Z(2)
k2�2

))
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We can get

Cov
(
U
(
Z(1)

i1 j1
−Z(1)

k1�1

)
,U
(
Z(2)

k1 j2
−Z(2)

k2�2

))
=Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

2

)
−θ1θ2

Hence

�B1B2 ,6

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,− ρ12

2

)
−θ1θ2

]
∑

i1 �=k1 �=k2

di1 ck1 dk1 ck2

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,− ρ12

2

)
−θ1θ2

]
⎡

⎣CD
N

∑
i=1

cidi −C
N

∑
i=1

cid
2
i −D

N

∑
i=1

c2
i di −

(
N

∑
i=1

cidi

)2

+2
N

∑
i=1

c2
i d2

i

⎤

⎦ .

Now we calculate �B1B2,7.

�B1B2,7

= ∑
i1 �=k1 �=i2

gi1

∑
j1=1

gk1

∑
�1=1

gi2

∑
j2=1

gi1

∑
�2=1

(1− δi1 j1)δk1�1(1− δi2 j2)δi1�2

Cov
(

U
(

Z(1)
i1 j1

−Z(1)
k1�1

)
,U
(

Z(2)
i2 j2

−Z(2)
i1�2

))
.

We can get

Cov
(
U
(
Z(1)

i1 j1
−Z(1)

k1�1

)
,U
(
Z(2)

i2 j2
−Z(2)

i1�2

))
=Φ2

(
Φ−1(θ1) ,Φ−1 (θ2) ,−ρ12

2

)
−θ1θ2

Hence

�B1B2 ,7

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,− ρ12

2

)
−θ1θ2

]
∑

i1 �=k1 �=i2

di1 ck1 di2 ci1

=
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,− ρ12

2

)
−θ1θ2

]
⎡

⎣CD
N

∑
i=1

cidi −C
N

∑
i=1

cid
2
i −D

N

∑
i=1

c2
i d2

i −
(

N

∑
i=1

cidi

)2

+2
N

∑
i=1

c2
i d2

i

⎤

⎦

Therefore, we can get

Cov
(

B(1),B(2)
)

=
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ

)−θ1θ2
]
[

C ·D−
N

∑
i=1

cidi

]

+

[

Φ2

(

Φ−1 (θ1) ,Φ−1 (θ2) ,
ρ+ρ12

2

)

−θ1θ2

][

2
N

∑
i=1

cidi +C
N

∑
i=1

d2
i +D

N

∑
i=1

c2
i −

N

∑
i=1

cid
2
i −

N

∑
i=1

c2
i di −2CD

]

+
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,ρ12

)−θ1θ2
]
{[

N

∑
i=1

c2
i

][
N

∑
i=1

d2
i

]
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−C
N

∑
i=1

d2
i −D

N

∑
i=1

c2
i +CD−

N

∑
i=1

c2
i d2

i

+
N

∑
i=1

c2
i di +

N

∑
i=1

cid
2
i −

N

∑
i=1

cidi

}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
{

C

[

D2 −
N

∑
i=1

d2
i

]

−2

[

D
N

∑
i=1

cidi −
N

∑
i=1

cid
2
i

]}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
{(

∑
i

c2
i −C

)(

D2 −∑
i

d2
i

)

−2

[

D

(

∑
i

c2
i di −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

cid
2
i

]}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ
2

)
−θ1θ2

]
{

D

[

C2 −
N

∑
i=1

c2
i

]

−2

[

C
N

∑
i=1

cidi −
N

∑
i=1

c2
i di

]}

+
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,

ρ12

2

)
−θ1θ2

]
{(

∑
i

d2
i −D

)(

C2 −∑
i

c2
i

)

−2

[

C

(

∑
i

cid
2
i −∑

i

cidi

)

−∑
i

c2
i d2

i +∑
i

c2
i di

]}

+
[
Φ2
(
Φ−1 (θ1) ,Φ−1 (θ2) ,−ρ12

)−θ1θ2
]
⎡

⎣

(
N

∑
i=1

cidi

)2

−
N

∑
i=1

c2
i d2

i

⎤

⎦

+2
[
Φ2

(
Φ−1 (θ1) ,Φ−1 (θ2) ,− ρ12

2

)
−θ1θ2

]
⎡

⎣CD
N

∑
i=1

cidi −C
N

∑
i=1

cid
2
i −D

N

∑
i=1

c2
i di −

(
N

∑
i=1

cidi

)2

+2
N

∑
i=1

c2
i d2

i

⎤

⎦

(13)

Appendix 3 Calculating p-Value Based on Mulitple Imputation

Rubin [11] mentioned that the p-value for a parameter estimate η̂ obtained by using
multiple imputation with m imputations is obtained by using t-statistic η̂/

√
Var(η̂)

with degrees of freedom

d f = (m− 1)

[

1+
mW

(m+ 1)B

]2

,

where

W =
1
m

m

∑
i=1

Var(η̂i)

B =

(

1+
1
m

)
1

(m− 1)

m

∑
i=1

(η̂i − η̂)2

η̂ =
1
m

m

∑
i=1

η̂i.
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and

Var(η̂) =W +B.

η̂i is the parameter estimated based on the i-th imputation.
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Time-Dependent AUC with Right-Censored
Data: A Survey

Paul Blanche, Aurélien Latouche, and Vivian Viallon

Abstract The ROC curve and the corresponding AUC are popular tools for the
evaluation of diagnostic tests. They have been recently extended to assess prognostic
markers and predictive models. However, due to the many particularities of time-
to-event outcomes, various definitions and estimators have been proposed in the
literature. This review article aims at presenting the ones that accommodate to right-
censoring, which is common when evaluating such prognostic markers.

Introduction

In the medical literature, a variety of general criteria have been used to assess
diagnostic tests [14, 24]. Among them, the ROC curve and the area under it
– the AUC – are popular tools, originally aimed at evaluating the discriminant
power of continuous diagnostic tests. In this simple situation, the outcome status
D is a binary variable (typically, D = 1 for cases and D = 0 for controls) and
the ROC curve for a continuous diagnostic test X plots the true positive rate, or
sensitivity, TPR(c) = P(X > c|D = 1) against the false positive rate, or one minus
the specificity, FPR(c) = P(X > c|D = 0), when making threshold c vary. The
AUC, which is the area under this curve, is a commonly used summary measure
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of the information contained in the sequences (TPR)c∈IR and (FPR)c∈IR. As such, it
inherits some of the properties of true and false positive rates. In particular, it is not
affected by the disease prevalence (unlike positive and negative predictive values)
and it can be evaluated from random samples of cases and controls. It also has a
nice interpretation since it corresponds to the probability that the marker value of a
randomly selected case exceeds that of a randomly selected control.

The extension of the AUC (and other evaluation criteria) to the setting of
prognostic markers has raised several issues. In particular, when evaluating such
markers, the outcome status typically changes over time: in a cohort study for
instance, patients are diseased-free when entering the study and may develop the
disease during the study. This leads to three major differences with the evaluation of
diagnostic tests. First, this time-dependent outcome status (which may be defined in
several ways, as will be seen in section “Time-Dependent AUCs in the Standard
Setting”) naturally implies that sensitivity, specificity, ROC curves, their AUC
values and, more generally, any extension of the criteria used in the diagnostic
setting, are functions of time as well. Second, the time-to-event, i.e. the time
between the entry in the study and the disease onset, is usually censored and not
fully observed, requiring dedicated inference. Third, the time lag between the entry
in the study and the disease onset also leads to two further refinements: (i) the
marker can be repeatedly measured over time and (ii) competing events (in addition
to censoring) may be observed between the entry and the putative disease onset.

These particularities has led to the development of numerous methods aimed
at estimating the time-dependent AUC for prognostic markers. In this paper, we
review those that accommodate to right-censoring. Some notations are introduced
in the following section “Notations”. Then, in section “Time-Dependent AUCs
in the Standard Setting” we will present several definitions and estimators of the
time-dependent AUC in the “standard” setting of a baseline marker and univariate
survival data. Section “Time-Dependent ROC Curve and AUCs with Longitudinal
Marker” will cover the case of longitudinal markers which corresponds to the
marker being repeatedly measured over time, while we will discuss the competing
events setting in section “Time-Dependent AUC and Competing Risks”. Finally,
concluding remarks will be given in section “Discussion”.

Notations

Let Ti and Ci denote survival and censoring times for subject i, i = 1, . . . ,n. We
further let Zi = min(Ti,Ci) and δi = 1(Ti ≤ Ci) denote the observed time and the
status indicator respectively. We will denote by Di(t) the time-dependent outcome
status for subject i at time t, t ≥ 0. Several definitions for Di(t) will be given
hereafter, but we will always have Di(t) = 1 if subject i is considered as a case
at time t and Di(t) = 0 if subject i is considered as a control at time t.
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We will denote by X the marker under study, which can be a single biological
marker or several biological markers combined into a predictive model (in this case,
it is assumed throughout this article that the predictive model has been constructed
on an independent data set; otherwise sub-sampling techniques are needed [21]).
Without loss of generality, we will suppose that larger values of X are associated
with greater risks (otherwise, X can be recoded to achieve this). We will denote by
g and G−1 the probability density function and the quantile function of marker X . In
section “Time-Dependent AUCs in the Standard Setting”, we assume that marker X
is measured once at t = 0, and we will denote by Xi the marker value for subject i.
In section “Time-Dependent ROC Curve and AUCs with Longitudinal Marker”,
which treats the longitudinal setting, the marker is measured repeatedly over time,
and we will denote by Xi(s) the marker value at time s for subject i.

Time-Dependent AUCs in the Standard Setting

Definitions of time-dependent ROC curves, ROC(t), follow from definitions of
usual ROC curves and thus rely on first defining time-dependent true and false
positive rates. For any threshold c, these two functions of time are defined as
TPR(c, t) = P(X > c|D(t) = 1) and FPR(c, t) = P(X > c|D(t) = 0). ROC(t)
then simply plots TPR(c, t) against FPR(c, t) making threshold c vary. The time-
dependent AUC at time t is then defined as the area under this curve,

AUC(t) =
∫ ∞

−∞
TPR(c, t)

∣
∣
∣
∣
∂FPR(c, t)

∂c

∣
∣
∣
∣dc. (1)

As a matter of fact, these definitions deeply rely on that of the outcome status
at time t, D(t). Heagerty and Zheng [17] described several definitions of cases
and controls in this survival outcome setting. According to Heagerty and Zheng’s
terminology and still denoting by Ti survival time for subject i, cases are said to
be incident if Ti = t is used to define cases at time t, and cumulative if Ti ≤ t
is used instead. Similarly, depending on whether Ti > τ for a large time τ > t or
Ti > t is used for defining controls at time t, they are said to be static or dynamic
controls. Depending on the definition retained for cases and controls at time t, four
definitions of the time-dependent AUC value may be put forward. In the following
paragraphs, we will present formulas and estimators for the most commonly used
ones and will discuss their respective interests.

The Cumulative Dynamic AUC: AUCC,D(t)

The setting of cumulative cases and dynamic controls may be regarded as the most
natural choice for planning enrollment criteria in clinical trials or when specific
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evaluation times are of particular interest. It simply corresponds to defining cases at
time t as subjects who experienced the event prior to time t, and controls at time t as
patients who were still event-free at time t. In other words, it corresponds to setting
Di(t) = 1I(Ti ≤ t). Cumulative true positive rates and dynamic false positive rates
are then respectively defined as

TPRC(c, t) = P(X > c|T ≤ t) and FPRD(c, t) = P(X > c|T > t). (2)

The cumulative/dynamic AUC at time t is then obtained by using these definitions
of true and false positive rates in (1). Usually, however, 1I(T ≤ t) is not observed for
all subjects due to the presence of censoring before time t and simple contingency
tables can therefore not be used to return estimates of TPRC(c, t), FPRD(c, t)
and AUCC,D(t). To handle censoring, Bayes’ theorem can be used to rewrite
AUCC,D(t) as a function of the conditional survival function P(T > t|X = x) (see
section “Methods Based on Primary Estimates of P(T > t|X = x)” below). Other
approaches rely on so-called Inverse Probability of Censoring Weighted (IPCW)
estimates (see section “Methods Based on IPCW Estimators” below). Before
describing these two approaches in more details below, we shall add that Chambless
and Diao [5] developed an alternative method – which will not be described here
– based on an idea similar to the one used to derive the Kaplan-Meier estimator of
the cumulative distribution function in the presence of censoring. Among all these
methods, only those relying on primary estimates of P(T > t|X = x) (and a recent
extension of IPCW estimates proposed in [2]) may account for the dependence
between censoring and the marker (since they basically only assume that T and C
are independent given X and not that T and C are independent). We refer the reader
to [2, 19, 37] for empirical comparisons and illustrations of these various methods.

Methods Based on Primary Estimates of P(T > t|X = x)

Bayes’ theorem yields the following expressions for TPRC(c, t) and FPRD(c, t)

TPRC(c, t)=

∫ ∞
c P(T ≤ t|X = x)g(x)dx

P(T ≤ t)
, FPRD(c, t)=

∫ ∞
c P(T > t|X = x)g(x)dx

P(T > t)
·

From (1), it readily follows that

AUCC,D(t) =
∫ ∞

−∞

∫ ∞

c

P(T ≤ t|X = x)P(T > t|X = c)
P(T ≤ t)P(T > t)

g(x)g(c)dxdc. (3)

Since P(T > t) =
∫ ∞
−∞P(T > t|X = x)g(x)dx, any estimator Ŝn(t|x) of the condi-

tional survival function P(T > t|X = x) yields an estimator of AUCC,D(t):

̂AUC
C,D

(t) =
∑n

i=1∑
n
j=1 Ŝn(t|Xj)[1− Ŝn(t|Xi)]1I(Xi > Xj)

∑n
i=1∑

n
j=1 Ŝn(t|Xj)[1− Ŝn(t|Xi)]

.
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In [5], the authors suggested to use a Cox model to derive estimates Ŝn(t|x), while
one of the methods described in Heagerty et al. [18] reduces to using the conditional
Kaplan-Meier estimator as in [1]. Some theoretical results for these two methods can
be found in [32] and [4, 7, 20] respectively.

We shall add that Viallon and Latouche [37] related AUCC,D(t) to the quantity
P(T ≤ t|X = G−1(q)) – a time-dependent version of the predictiveness curve:

AUCC,D(t) =

∫ 1
0 qP(T ≤ t|X = G−1(q))dq− [P(T ≤ t)]2/2

P(T > t)P(T ≤ t)
·

This confirms that most standard statistical summaries of predictability and discrim-
ination can be derived from the predictiveness curve, as pointed out in [14, 15].

Methods Based on IPCW Estimators

In [19] and [36], the authors independently suggested to use IPCW-type estimates:

T̂PR
C

(c, t) =
∑n

i=1 1I(Xi > c,Zi ≤ t) δi
nŜC(Zi)

∑n
i=1 1I(Zi ≤ t) δi

nŜC(Zi)

, F̂PR
D

(c, t) =
∑n

i=1 1I(Xi > c,Zi > t)

∑n
i=1 1I(Zi > t)

,

where ŜC(·) is the Kaplan-Meier estimator of the survival function of the censoring
time C. The expression of the false positive rate estimator is more compact because
weights all equal 1/(nŜC(t)) under the assumption of independence between C and

X , and then vanish. F̂PR
D

(c, t) corresponds to 1 minus the empirical distribution
function of X among individuals for whom Zi > t. In the absence of censoring before

time t, T̂PR
C

(c, t) also reduces to the usual empirical version of TPRC(c, t), i.e., 1
minus the empirical distribution function of X among individuals for whom Ti ≤ t.

It can be shown (see [19, 30]) that an estimator of AUCC,D(t) is then given by

̂AUC
C,D

(t) =
∑n

i=1∑
n
j=1 1I(Zi ≤ t)1I(Zj > t)1I(Xi > Xj)

δi
ŜC(Zi)ŜC(t)

n2Ŝ(t)[1− Ŝ(t)]
,

where Ŝ(t) is the Kaplan-Meier estimator of P(T > t).
Theoretical guarantees for these estimators can be found in [19] and [36]. These

estimators are in a sense more flexible than those presented in section “Methods
Based on Primary Estimates of P(T > t|X = x)” above: they are model-free and
they do not rely on any bandwidth selection (unlike the estimator of Heagerty et al.
[18] for instance, which is based on a local version of the Kaplan-Meier estimator).
However, when censoring may depend on marker X , quantities like the conditional
survival function of C given the marker X , SC(·|X), have to be estimated [2], which
implies either to work under some (semi-)parametric model or the selection of some
parameter if nonparametric estimation is prefered.
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The Incident Static AUC: AUCI,S(t)

Using the dynamic definition of controls, the control group varies with time, and so
does the x-axis of the corresponding ROC curves: in situations where trends over
time are of particular interest, this renders their interpretation more difficult (since
such trends may be partly due to changing control groups). Moreover, the group of
static controls is interesting in that it tries to mimic the group of individuals who
never develop the disease, which can be seen as an ideal control group in some
situations. In particular, patients with preclinical diseases are eliminated from the
control group as far as possible, if τ is large enough.

Regarding cases, the incident definition has several advantages over the dynamic
definition [25]. The cumulative TPR does not distinguish between events that occur
early versus late, and it shows redundant information over time (since early events
are also included in the cumulative TPR for late evaluation times). Moreover, as
pointed out by Cai et al. [3], the cumulative TPR can be computed from the incident
TPR when the distribution of the event time is known.

Putting all this together, several authors have proposed estimators of the time-
dependent ROC curve relying on the incident definition of cases and static definition
of controls. Standard numerical integration techniques are then used to compute an
estimate for AUCI,S(t) from the estimators of the ROC curve.

Incident true positive rates and static false positive rates are defined as

TPRI(c, t) = P(X > c|T = t) and FPRS

τ (c) = P(X > c|T > τ). (4)

Applying Bayes’ theorem, they can further be rewritten (see, e.g., [32]) as

TPRI(c, t) =

∫ ∞
c f (t|x)g(x)dx
∫ ∞
−∞ f (t|x)g(x)dx

and FPRS

τ (c) =

∫ ∞
c P(T > τ|X = x)g(x)dx
∫ ∞
−∞P(T > τ|X = x)g(x)dx

,

where f (t|x) = ∂P(T ≤ t|X = x)/∂ t is the conditional density function of T given
X = x.

Under a standard Cox model of the form λ (t;X) = λ0(t)exp(βX) – here λ (t;X)
stands for the conditional hazard rate of T given X while λ0 is the unspecified
baseline hazard rate – Song and Zhou [32] deduced that

TPRI(c, t) =

∫ ∞
c exp(βx)exp{−Λ0(t)exp(βx)}g(x)dx
∫ ∞
−∞ exp(βx)exp{−Λ0(t)exp(βx)}g(x)dx

FPRS

τ (c) =

∫ ∞
c exp{−Λ0(τ)exp(βx)}g(x)dx
∫ ∞
−∞ exp{−Λ0(τ)exp(βx)}g(x)dx

,

where Λ0(t) =
∫ t
−∞λ0(u)du is the cumulative baseline hazard function. Estimation

of TPRI(c, t) and FPRS

τ (c) can then be achieved by plug-in methods. We shall
add that Song and Zhou actually considered a slightly more general set-up where
additional covariates can be accounted for.



Time-Dependent AUC with Right-Censored Data: A Survey 245

In [17], Heagerty and Zheng adopted a slightly different approach. To estimate
TPRI(c, t), they used a (possibly time-varying-coefficients) Cox model of the form
λ (t;X) = λ0(t)exp(β (t)X) in combination with the fact that the distribution of X ·
exp(βX) for subjects in the risk set at time t is equal to the conditional distribution
of X given T = t (see, e.g., [38]). Setting R(t) = {i : Zi ≥ t}, this leads to

T̂PR
I

(c, t) =
∑i∈R(t) 1I(Xi > c)exp{β (t)Xi}

∑i∈R(t) exp{β (t)Xi} .

As for the estimation of FPRS

τ (c), they proposed a model-free approach using the
empirical distribution function for marker values among the control set Sτ := {i :
Zi > τ}. Namely, denoting by nτ the cardinality of Sτ , they proposed

F̂PR
S

τ (c) =
1
nτ
∑

i∈Sτ

1I(Xi > c),

which is F̂PR
D

(c, t) of section “Methods Based on IPCW Estimators”, except τ is
used instead of t.

Cai et al. [3] proposed another approach in the context of longitudinal markers;
it will be described in more details in section “Time-Dependent ROC Curve and
AUCs with Longitudinal Marker”. In addition, two non parametric approaches were
recently proposed (see [33] and [29]).

Note also that estimators for the time-dependant incident/dynamic AUC,

AUCI,D(t), can be obtained by simply replacing τ by t in the definitions of F̂PR
S

τ (c)
above [17]. A global accuracy measure has further been derived from the definition
of AUCI,D(t), which is particularly appealing when no a priori time t is identified
and/or when trends over time are not of interest [17].

Time-Dependent ROC Curve and AUCs
with Longitudinal Marker

In this section, we review extensions of the above estimators for longitudinally
collected subject measurements. For instance some authors would assess the
discrimination performance of CD4 counts repeatedly measured every week on
time from seroconvertion to progression to AIDS [41]. Therefore, time-dependent
sensitivities and specificities have been extended to deal with the fact that (i) the
time at which marker X is measured can vary and (ii) marker can be repeatedly
measured on the same subject. Let s denote the timing of marker measurement
and X(s) the marker value at time s. For t ≥ s, Zheng and Heagerty [41] extended
cumulative/dynamic definitions

TPRC(c,s, t) = P(X(s)> c|T ∈ [s, t]), FPRD(c,s, t) = P(X(s)> c|T > t).
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For a fixed time τ ≥ s, Zheng and Heagerty [39] extended incident/static definitions:

TPRI(c,s, t) = P(X(s)> c|T = t) and FPRS(c,s,τ) = P(X(s)> c|T > τ).

Although other approaches have been proposed to estimate these quantities, we only
review estimators that deal with censored data here. We should also mention that
in this longitudinal context, estimators of the AUC are obtained by numerically
integrating estimators of the ROC curve.

Cumulative Dynamic Estimators with Longitudinal Marker

Rizopoulos [27] recently proposed a joint modeling approach. The marker trajectory
is modeled by usual linear mixed model for longitudinal data, and a parametric
proportional hazard is used to model the time-to-event given the marker trajectory.
The two submodels are linked with shared random effects to capture the intra-
subject correlation. Standard maximum likelihood estimation is used to fit the joint
model. Then, TPRC and FPRD are computed from the estimated parameters and
Monte Carlo simulations are used to make inference. As this approach is fully
parametric, its main advantage is its efficiency. This approach also allows censoring
to depend on the marker [35]. The counterpart is that the parametric model must be
carefully chosen, and checking model fit is not straightforward.

A more flexible methodology was proposed in [41], with fewer parametric
assumptions. Setting T ∗ = T − s, the “residual failure time”, and t∗ = t − s, they
rewrote

TPRC(c,s, t∗) =
1−FX |s(c)− S(c, t∗|s)

1− S(t∗|s) , FPRD(c,s, t∗) = 1− S(c, t∗|s)
S(t∗|s) ,

with FX |s(c) = P(X(s) < c|s,T ∗ > 0) the conditional distribution of marker given
measurement time, S(t∗|s) = P(T ∗ > t∗|s,T ∗ > 0) the survival probability for
individuals who survived beyond s and S(c, t∗|s) = P(X(s) > c,T ∗ > t∗|s,T ∗ > 0).
They proposed to estimate FX |s(c) with the semiparametric estimator proposed by
Heagerty and Pepe [16]. Therefore, only the location and scale of the conditional
distribution of marker given measurement time are parametrized. To estimate the
survival terms S(c, t∗|s) and S(t∗|s), they proposed the use of a “partly conditional”
hazard function to model the residual failure time T ∗ = T − s. For subject i at
measurement time sik, this function is modeled by

λik(t
∗|Xi(sik),0 ≤ sik ≤ Ti) = λ0(t

∗)exp
[
β (t∗)Xi(sik)+αT f (sik)

]

where f (s) are vectors of spline basis functions evaluated at measurement time
s, and λ0(t∗) is left unspecified. Estimators of β (·) and α have been previously
proposed [40]. As this approach is semiparametric, its main advantage is its
flexibility. However, by contrast to the approach of Rizopoulos [27], this one is
less efficient and does not allow marker-dependent censoring.
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Incident Static Estimators with Longitudinal Marker

Several authors consider the incident/static definition of AUC [3, 12, 31, 34].
However, censored data are only accounted for by Cai et al. [3] who proposed to
model

TPRI(c,s, t) = gD (ηα(t,s)+ h(c)) , t ≤ τ

FPRS(c,s,τ) = gτ (ξa(s)+ d(c))

where gD and gτ are specified inverse link functions and h(·) and d(·) are unspecified
baseline functions of threshold c. The dependence in time is parametrically modeled
by ηα(t,s) = αTη(t,s) and ξa(s) = aTξ (s) where η(t,s) and ξ (s) are vectors
of polynomial or spline basis functions. These models are semiparametric with
respect to the marker distribution in cases and nonparametric in regards to controls.
As pointed out in [25], this model is very flexible as it does not specify any
distributional form for the distribution of the marker given the event-time, but
only model the effect of time-to-event on the marker distribution with a parametric
form. Model estimation is performed by solving some estimating equations and
large sample theory was established allowing a resampling method to construct
confidence bands and make inference [3]. Interestingly, the authors of [3] also
showed that covariates can easily be included in TPRI and FPRS, enabling to directly
quantify how performances of the marker vary with these covariates.

Time-Dependent AUC and Competing Risks

We now consider the setting where a subject might experience multiple type of
failures: in this section, we review extensions of time-dependent AUCs to competing
risks. For example, we may want to assess the discrimination of a given score on
death from prostate cancer with death from other causes acting as a competing event.

For the sake of simplicity, we will assume there are only two competing events,
and we let δi = j denote that subject i experienced the competing event of type j
( j = 1,2, with j = 1 for the event of interest). The observed data consists of a failure
time and a failure type (Zi,δi) with δi = 0 denoting a censored observation.

In their review paper [25], Pepet et al. sketched most potential extensions and
introduced event-specific sensitivity and specificity. They also highlighted that the
crucial point was to determine whether patients experimenting a competing event
should be treated as a control when evaluating the discrimination of the marker
under study with respect to the event of interest. More precisely, two settings can be
considered.

First, if marker X is potentially discriminatory for both the event of interest
and the competing event, then both event specific AUCs should be considered
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simultaneously [13, 28]. For illustration, in the cumulative/dynamic setting, cases
at time t can be stratified according to the event type, Case1 = {i : Ti ≤ t,δi = 1} and
Case2 = {i : Ti ≤ t,δi = 2}, and controls at time t are the event-free group at time t,
Control={i : Ti > t}. Following these lines Saha and Heargerty [28] proposed event
specific versions of (2)

TPRC

j (c, t) = P(X > c|T ≤ t,δ = j), FPRD(c, t) =P(X > c|T > t,δ ∈ {1,2}). (5)

Estimation follows from [18], using the conditional cumulative incidence associated
to competing event j, P(T ≤ t,δ = j|X), instead of the conditional survival function
of P(T ≤ t|X). In the context of renal transplantation, Foucher et al. [13] considered
a slight modification of definitions (5), where controls can also be “event specific”.
In addition, an extension of the incident/dynamic AUC to the competing events
setting was proposed by Saha and Heargerty [28].

The other option is to consider both event-free patients and patients with the
competing event [21, 42] as controls. For instance, dynamic controls at time t can
be defined as the group {i : Ti > t}∪{i : Ti ≤ i,δi = 2}. This leads to the estimation
of only one ROC curve, for the event of interest. In [42], Zheng et al. based their
approach on initial estimates of the conditional cumulative incidence function for
the event of interest. Their initial method provides consistent estimators if the
proportional hazard assumption holds for each cause specific hazard. To relax this
assumption a smooth estimator was also proposed. Another approach was described
in [21], which follows the lines of DeLong et al. [9]. However, the suitability of this
method to deal with censored data is not established.

We shall add that, as pointed out in [28,42], employing a direct regression model
for the conditional cumulative incidence would lead to a simpler estimation of
the cumulative/dynamic AUC and a less convoluted interpretation of the marker
effect. However, the extension to the setting of a longitudinal marker [8] as well as
the evaluation of a risk score (which is usually built with a cause-specific hazard
approach) would not be straightforward.

Discussion

While the AUC is uniquely defined in the context of the evaluation of diagnostic
tests, its extension to prognostic markers has led to the development of a variety
of definitions: these definitions vary according to the underlying definitions of
cases (incident or cumulative) and controls (static or dynamic), and also depend
on the study characteristics (the marker can be measured only once or repeatedly
and competing events may be considered, or not). Regarding the choice of the
retained definition for cases and controls, no clear guidance has really emerged in
the literature. It seems however that the cumulative/dynamic definition may be more
appropriate for clinical decisions making (enrollment in clinical trials for instance)
while the incident/static definition may be more appropriate for “pure” evaluation
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of the marker (if interpretation of trends of AUC values over time is of particular
interest for instance). Once this definition has been chosen, appropriate estimators
are available, depending on various assumptions (independence of the marker and
censoring, proportional hazards, . . . ), and we presented most of them in this review
article.

For the sake of brevity, we were not able to cover some interesting extensions of
time-dependent AUCs. In particular, covariate specific time-dependent ROC curves
and AUCs have been studied in order to adjust the discrimination of a marker for
external covariates (age, gender, . . . ). We refer the reader to [19,32] for the standard
setting, [3] for the longitudinal setting and [42] for the competing events setting. In
addition, some authors advocate that not the entire ROC curve is of interest and the
area under only a portion of it should be computed, leading to the so-called partial
AUC [11]. In the context of prognostic markers, Hung and Chiang [20] proposed a
nonparametric estimator of the cumulative/dynamic time-dependent version of the
partial AUC. Other interesting extensions include diverse censoring patterns [22]
(only right-censoring was considered in this review) and the combination of results
from multiple studies [4] which is particularly useful in genomic studies.

Another closely related topic is the evaluation of the added predictive ability of
a new marker: for instance, we may wonder how better a risk score would be if we
added some biological markers (SNPs, genes, . . . ). We refer the reader to the works
in [6, 10, 23, 26] for some insights, noticing though that most of these works do not
cover the right-censored setting considered in our review.
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Subgroup Specific Incremental Value of New
Markers for Risk Prediction

Q. Zhou, Y. Zheng, and T. Cai

Abstract In many clinical applications, understanding when measurement of new
markers is necessary to provide added accuracy to existing prediction tools could
lead to more cost effective disease management. Many statistical tools for evaluating
the incremental value of the novel markers over the routine clinical risk factors
have been developed in recent years. However, most existing literature focuses
primarily on global assessment. Since the incremental values of new markers
often vary across subgroups, it would be of great interest to identify subgroups
for which the new markers are most/least useful in improving risk prediction. In
this paper we provide novel statistical procedures for systematically identifying
potential traditional-marker based subgroups in whom it might be beneficial to
apply a new model with measurements of both the novel and traditional markers.
We consider various conditional time-dependent accuracy parameters for censored
failure time outcome to assess the subgroup-specific incremental values. We
provide nonparametric kernel-based estimation procedures to calculate the proposed
parameters. Simultaneous interval estimation procedures are provided to account
for sampling variation and adjust for multiple testing. Simulation studies suggest
that our proposed procedures work well in finite samples. The proposed procedures
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are applied to the Framingham Offspring Study to examine the added value of an
inflammation marker, C-reactive protein, on top of the traditional Framingham Risk
Score for predicting 10-year risk of cardiovascular disease.

Introduction

Risk models have been applied in medical practice for prediction of long-term
incidence or progression of many chronic diseases such as cardiovascular disease
(CVD) and cancer. With the advancement in science and technology, a wide range
of biological and genomic markers have now become available to assist in risk
prediction. However, due to the potential financial and medical costs associated
with measuring these markers, their ability in improving the prediction of disease
outcomes and treatment response over existing risk models needs to be rigorously
accessed.

Effective statistical tools for evaluating the incremental value (IncV) of the
novel markers over the routine clinical risk factors are crucial in the field of
outcome prediction. Many of newly discovered markers, while promising and
strongly associated with clinical outcomes, may have limited capacity in improving
risk prediction over and above routine clinical variables [43, 48]. For example, on
top of traditional risk variables from the Framingham risk score (FRS) [52], the
inflammation biomarker, C-Reactive Protein (CRP), was shown to provide modest
prognostic information [3, 9, 37] while a genetic risk score consisting of 101 single
nucleotide polymorphisms was reported as not useful [31]. In a recent paper, Wang
et al. [50] concluded that almost all new contemporary biomarkers for prevention
of coronary heart disease (CHD) added rather moderate overall predictive values to
the FRS.

One possible explanation for the minimal improvement at the population average
level is that the new markers may only be useful for certain subpopulations. For
example, while much debate about the clinical utility of CRP remains, there is
empirical evidence that CRP may substantially improve the prediction for subjects
at intermediate risk [36]. Such finding, if valid, would be extremely useful in clinical
practice, since identifying the subgroups where markers can provide valuable
improvement in prediction will not only lead to more informed clinical decisions
but also reduced cost and effort compared to measuring novel markers on the entire
population. However, to ensure the validity of such claims and more precisely
pinpoint such specific subgroups, rigorous and systematic analytical tools for IncV
evaluation are needed.

To quantify the global IncV of new markers for risk prediction, various
approaches have been advocated. For example with the most popular one being
focused on a comparison of summary measures of accuracy under a conventional
and new models respectively [4, 23, 44]. Excellent discussions on the choices of
different accuracy measures can be found in Gail and Pfeiffer [20]. However,
these measures quantify the overall IncV of new markers averaged over the
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entire study population and do not provide information on how the IncV may
vary across different groups of subjects. If there are pre-defined subgroups, these
measures could be estimated for each of the subgroups. However, in practice, it
is often unclear how to optimally select subgroups for comparisons and ad-hoc
subgroup analyses without careful planning and execution may lead to invalid
results [35, 39, 51]. Furthermore, it is vitally important to adjust for multiple
comparisons when conducting any subgroup analysis. Thus, an important question
is how to systematically identify the potential subgroups who would benefit
from the additional markers properly adjusting for multiple comparisons. There
is a paucity of statistical literature on approaches for identifying such subgroups
[14]. Tian et al. [41] proposed an inference procedure to estimate the incremental
values in absolute prediction error of new markers in various subgroups of patients
classified by the conventional markers. However, their method does not incorporate
censoring. In addition, the subgroups in their paper were defined as groups of
subjects whose conventional risk scores lie in different pre-assigned intervals.
However, how to determine the length of intervals could be an issue. Uno et al. [46]
proposed estimation procedures for the conditional quantiles of the improvement
in the predicted risk separately for the cases and the controls. However, they did
not provide procedures for determining which subgroups should be recommended
to have the new markers measured. Furthermore, no procedures were provided
to account for the sampling variation or control overall type I error which is
particularly important in subgroup analysis.

In this paper, we propose systematic approaches to analyzing censored event
time data for identifying subgroups of patients for whom the new markers have the
most or least IncV. We consider two common accuracy measures, the partial area
under the ROC curve (pAUC) and the integrated discrimination improvement (IDI)
index. Compared with the standard C-statistic, for many applications, the pAUC
is often advocated as a better summary measure [5, 15, 17], since clinical interests
often lie only in a specific range of the false positive rates (FPRs) or true positive
rates (TPRs). For example, the region with low FPR is of more concern for disease
screening [1]; while the region with high TPR is of more concern for the prognosis
of serious disease [24]. However, the ROC curve does not capture certain aspects
of the predicted absolute risk, since it is scale invariant. Many model performance
measures, including the reclassification table [8], Net Reclassification Improvement
(NRI) and Integrated Discrimination Improvement (IDI) [33], Proportion of case
followed (PCF) and Proportion needed to follow-up (PNF) [34], have been proposed
recently to overcome the limitation of the ROC curve method. Many of these
measures, such as the reclassification table, NRI, PCF and PNF, rely on pre-specified
clinically meaningful risk or quantile threshold values which may not be available
for most diseases. For illustration purposes, we focus primarily on pAUC and IDI
in this paper but note that our procedures can be easily extended to accommodate
other accuracy measures.

The rest of paper is organized as follows. In section “Methods”, we present
our proposed non-parametric estimation procedure for subgroup-specific IncV of
new markers and along with their corresponding interval estimation procedures.
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In particular, resampling based simultaneous interval estimation procedures are
provided as convenient and effective tools to control for multiple comparisons. We
describe results from our simulation studies in section “Simulation Studies” and
the analyses of the Framingham Offspring Study using our proposed procedures
in section “Example: The Framingham Offspring Study”. Concluding remarks are
given in section “Concluding Remarks”. All the technical details are included in the
appendices.

Methods

Risk Modeling with and Without New Markers

Let X denote a set of conventional markers and let Z denote a set of new markers.
Due to censoring, for the event time T †, one can only observe T = min(T †,C),
Δ = I(T † ≤C), where C is the censoring time, which is assumed to be independent
of T † conditional on (X ,Z). See below for more discussions about censoring
assumptions. Furthermore, define Y † = I(T † ≤ t0), where t0 is the prediction time
of clinical interest, and Y = I(T ≤ t0). Let P1(X) = pr(Y † = 1|X) and P2(X ,Z) =
pr(Y † = 1|X ,Z) be the true conditional risk of developing the event by time t0
conditional on X only and (X ,Z), respectively. Suppose a data set for analysis
consists of n independent realizations of (T,Δ ,X ,Z), {(Ti,Δi,Xi,Zi)}. Although Y †

and the conditional risk functions depend on t0, we suppress t0 from the notation
throughout for the ease of presentation. From the Neyman-Pearson Lemma and
similar arguments as given in McIntosh and Pepe [28], it is not difficult to show
that P1(X) achieves the optimal ROC curve for predicting Y † based on X only.
Similarly, P2(X ,Z) is the optimal score for prediction Y † given (X ,Z).

To estimate P1(X) and P2(X ,Z), one may consider a fully non-parametrical
approach [27]. However, in practice, such nonparametric estimates may perform
poorly when the dimension of X or Z is not small due to the curse of dimensionality
[38]. An alternative feasible way is approximate P1(·) and P2(·) by imposing
simple working models

pr(Y † = 1 | X) = g1(β ′V ), pr(Y † = 1 | X ,Z) = g2(γ ′W ), (1)

where V , a p×1 vector, is a function of X , W , a q×1 vector, is a function of X and
Z, β and γ are vectors of unknown regression parameters, and g1 and g2 are known,
smooth, increasing functions. An estimator of β and γ can be obtained respectively
by solving the following inverse probability weighted (IPW) estimating equations
as given in Uno et al. [44]:

n

∑
i=1
ω̂iVi

{
Yi − g1(β ′Vi)

}
= 0,

n

∑
i=1
ω̂iWi

{
Yi −g2(γ ′Wi)

}
= 0. (2)
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where ω̂i = ΔiI(Ti ≤ t0)/ĜXi,Zi(Ti)+ I(Ti > t0)/ĜXi,Zi(t0), and ĜX ,Z(t) is a root-n
consistent estimator of GX ,Z(t) = pr(C ≥ t|X ,Z). This IPW estimator may be
justified heuristically using the argument that E{ω̂iI(Yi = y)|T †

i ,Xi,Zi} ≈ E{I(Y †
i =

y)|T †
i ,Xi,Zi}, for y = 0,1. Let β̂ and γ̂ be the resulting estimator of β and γ ,

respectively. For a subject with X = x, Z = z whose V = v and W = w, the risk is
estimated by p̂1(x) = g1(β̂ ′v) based on X alone and by p̂2(x,z) = g2(γ̂ ′w) based
on X and Z. It has been previously shown in Uno et al. [44] that regardless of
the adequacy of the working model (1), θ̂ = (β̂ ′, γ̂ ′)′ converges in probability to a
deterministic vector θ0 = (β ′

0,γ
′
0)

′ as n → ∞. Let p̄1(x) = g1(β ′
0v) and p̄2(x,z) =

g2(γ ′0w). When the models in (1) are correctly specified, p̄1(x) = P1(x) and
p̄2(x,z) = P2(x,z). To obtain a valid estimator ĜX ,Z(·), one may impose a semi-
parametric model, such as the proportional hazards (PH) model [10], for GX ,Z(t) and
obtain ĜX ,Z(t) as exp{−Λ̂0(t)exp(γ̂ ′cWc)}, where Wc is a function of (X ,Z), γ̂c is the
maximum partial likelihood estimator and Λ̂0(t) is the Breslow’s estimator. When
the censoring is independent of both T and (X ,Z), one may obtain ĜX ,Z(·) simply as
the Kaplan-Meier estimator. It is important to note that if the models in (1) only hold
for a given t0 and the dimension of (X ,Z) is not small, root-n consistent estimators
of β and γ may not exist without imposing additional modeling assumptions about
GX ,Z(t) due to the curse of dimensionality [38].

Subgroup Specific Incremental Values

For illustration purposes, we consider two accuracy measures, the pAUC and
the IDI index. We first define both concepts in the context of evaluating a risk
score/model. Suppose that we use p̄2(X ,Z) as a risk score for classifying the event
status Y †, and without loss of generality, we assume that a higher value of p̄2(X ,Z)
is associated with a higher risk and refer to the two states, Y † = 1 and Y † = 0,
as “diseased” and “disease-free” or “cases” and “controls”. The discrimination
capacity of p̄2(X ,Z) can be quantified based on the ROC curve, which is a plot
of the true positive rate (TPR) function, S1(c)≡ pr

{
p̄2(X ,Z)≥ c|Y † = 1

}
, against

the false positive rate (FPR) function, S0(c)≡ pr
{

p̄2(X ,Z)≥ c|Y † = 0
}

. The ROC
curve, ROC(u) = S1{S −1

0 (u)}, describes the inherent capacity of distinguishing
“cases” from “controls”. The pAUC with a restricted region of FPR, say FPR ≤ f ,
is given by pAUC f =

∫ f
0 ROC(u)du, for f ∈ [0,1]. The IDI index, is simply IDI =

∫ 1
0 S1(c)dc− ∫ 1

0 S0(c)dc.
To evaluate how the IncV of Z may vary across subgroups defined by X , we

define new conditional pAUC and IDI index. We propose to use p̄1(x) as a scoring
system for grouping subjects with potentially similar initial risk estimates and create
subgroups �s = {X : p̄1(X) = s}. Then we evaluate the IncV of Z for each �s

based on how well p̄2(X ,Z) can further discriminate subjects within �s with Y † = 1
from those with Y † = 0. Suppose p̄2(X ,Z) is used to classify Y † for subjects in �s.
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The TPR and FPR of the classification rule p̄2(X ,Z) ≥ c given �s are S1(c;s) and
S0(c;s), respectively, where

Sy(c;s) = pr
{

p̄2(X ,Z)≥ c|Y † = y, p̄1(X) = s
}
, and c ∈ (0,1),y = 0,1.

Conditional on p̄1(X) = s, the ROC curve of p̄2(X ,Z) is ROC(u;s) =
S1{S −1

0 (u;s);s}, for u ∈ [0,1]. The conditional pAUC is given by pAUC f (s) =
∫ f

0 ROC(u;s)du, f ∈ [0,1]. Note that f = 1 yields the conditional AUC(s). If Z is
non-informative for �s, the corresponding ROC curve would be a diagonal line,
and we expect that pAUCs = f 2/2, which is the area under a diagonal line. Thus,
the subgroup �s specific IncV of Z with respect to (w.r.t.) the pAUC is given by
pAUC f (s)− f 2/2. The IDI index conditional on p̄1(X) = s is given by

IDI(s) =
∫ 1

0
S1(c;s)dc−

∫ 1

0
S0(c;s)dc

= E
{

p̄2(X ,Z)|Y † = 1, p̄1(X) = s
}−E

{
p̄2(X ,Z)|Y † = 0, p̄1(X) = s

}
.
(3)

If Z is non-informative for this subgroup �s, the conditional IDI index would be
0, and therefore, the subgroup �s specific IncV of Z w.r.t. the IDI index is IDI(s).
Based on these subgroup-specific IncVs, we are able to identify the set of s such
that Z is useful to improve the prediction accuracy for �s, which is referred to as the
effective subpopulation �∗ in our paper. Specifically, the effective subpopulation
w.r.t. pAUC is defined as �∗ = {X : pAUC f (p̄1(X))− f 2/2 > c1}; the effective
subpopulation w.r.t. IDI index are defined as �∗ = {X : IDI(p̄1(X)) > c2}, where
c1 and c2 are some possibly data dependent threshold values. For the subjects in
the effective subpopulation, measurement of new markers would provide added
accuracy to the conventional risk model.

Inference About Subgroup-Specific Incremental Values

We first discuss the estimation for the conditional TPR and FPR functions {Sy(c;s),
y = 0,1} since both pAUC f (s) and IDI(s) are simple functionals of these two

functions. Let p̂1i = p̂1(Xi) = g1(β̂ ′Vi) and p̂2i = p̂2(Xi,Zi) = g2(γ̂ ′Wi). To obtain
a consistent estimator of Sy(c;s), since Sy(c;s) is between 0 and 1, we consider a
non-parametric local likelihood estimation method [42] along with IPW accounting
for censoring. Specifically, we obtain {ây,hy(c;s), b̂y,hy(c;s)} as the solution to the
following IPW local likelihood score equation,

∑
i:Yi=y

ω̂i

[
1

h−1
y Ê1i(s)

]

Khy

{
Ê1i(s)

}[
I(p̂2i ≥ c)−g

{
a+bÊ1i(s)

}]
= 0, (4)
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where Ê1i(s) = φ(p̂1i)−φ(s), g(x) = exp(x)/{1+exp(x)}, Kh(x) =K(x/h)/h, K(·)
is a known smooth symmetric kernel density function with a bounded support, and
the bandwidth hy > 0 is assumed to be O(nν), for 1/5 < ν < 1/2, and φ(·) is a
known, non-decreasing transformation function that can potentially be helpful in
improving the performance of the smoothed estimator [30, 49]. Then, Sy(c;s) can
be estimated by Ŝy,hy(c;s) = g{ây,hy(c;s)} for y = 0,1. In the section “Asymptotic

Expansions for Ŝy(c;s)” in Appendix 1, we show that Ŝy,hy(c;s)−Sy(c;s)→ 0 in
probability as n →∞, uniformly in c ∈ [0,1] and s ∈Ihy ≡ [φ−1(ρl +hy),φ−1(ρu −
hy)], where [ρl ,ρu] is a subset of the support of φ{g1(β ′

0V )} and β0 is the limit of β̂ .
As a special case, by setting b in (4) to 0, one may obtain a local constant estimator,

Ŝy,hy(c;s) =
∑n

i=1 ω̂iI(Yi = y)Khy{Ê1i(s)}I(p̂2i ≥ c)

∑n
i=1 ω̂iI(Yi = y)Khy{Ê1i(s)}

,y = 0,1.

Inference procedures for pAUC f (s) Based on Ŝy,hy(c;s), pAUC f (s) can be
estimated as

̂pAUC f (s) =
∫ f

0
̂ROC(u;s)du =

∫ ∞

Ŝ−1
0,h0

( f ;s)
Ŝ1,h1(c;s)d

{
1− Ŝ0,h0(c;s)

}
.

where ̂ROC(u;s) = Ŝ1,h1{Ŝ −1
0,h0

(u;s);s} and (h0,h1) is the pair of optimal band-
widths for estimating S0(c;s) and S1(c;s), respectively. In the section “Uniform
Consistency of ̂pAUC f (s)” in Appendix 1, we show that ̂pAUC f (s) is uniformly
consistent for pAUC f (s).

As a special case, when both X and Z are univariate, the ROC curve of p̄2(X ,Z)
conditional on p̄1(X) is equivalent to the ROC curve of Z conditional on X since the
ROC curve is scale invariant. A simple local constant IPW estimator of Sy(z;x) is
given by

Ŝy,hy(z;x) =
∑n

i=1 ω̂iI(Yi = y)Khy(Xi − x)I(Zi ≥ z)

∑n
i=1 ω̂iI(Yi = y)Khy(Xi − x)

.

The resulting estimator of pAUC f (x) is

̂pAUC f (x) =
∫ f

0
Ŝ1,h1

{
Ŝ −1

0,h0
(u;x);x

}
du

=
∑n

i=1 ω̂iYiKh1(Xi − x)Ui(x; f ,h0)

∑n
i=1 ω̂iYiKh1(Xi − x)

,

where Ui(x; f ,h0) = f −min{ f ,Ŝ0,h0(Zi;x)} is the estimated truncated placement
value proposed by Cai and Dodd [5].



260 Q. Zhou et al.

It is difficult to directly estimate the variance of ŴpAUC f (s) =
√

nh1{̂pAUC f (s)−
pAUC f (s)} since it involves unknown derivative functions. We propose a per-

turbation resampling method to approximate the distribution of ŴpAUC f (s). This
method has been widely used in survival analyses (see for example, [6, 25, 29]).
To be specific, let Ξ= {ξi, i = 1, · · · ,n} be n independent positive random variables
following a known distribution with mean 1 and variance 1, and Ξ is independent of
the data. For each set of Ξ, we first obtain β ∗ and γ∗, as the respective solutions to

n

∑
i=1
ω∗

i Vi
{

Yi −g1(β ′Vi)
}
ξi = 0, and

n

∑
i=1
ω∗

i Wi
{

Yi −g2(γ ′Wi)
}
ξi = 0,

where ω∗
i = ΔiI(Ti ≤ t0)/G∗

Xi,Zi
(Ti)+ I(Ti > t0)/G∗

Xi,Zi
(t0) and G∗

X ,Z is the perturbed
estimator of GX ,Z(·) with Ξ being the weights. Let p∗1i = g1(β ∗′Vi), E ∗

1i(s) =
φ(p∗1i)− φ(s), p∗2i = g2(γ∗′Wi), and M∗

i (c) = I(p∗2i ≥ c). Subsequently, we obtain
the perturbed counterpart of Sy(c;s) as S ∗

y,hy
(c;s) = g{a∗y,hy

(c;s)}, where a∗y,hy
(c;s)

is the solution to the perturbed score equation

n

∑
i=1

ω∗
i I(Yi = y)

[
1

h−1
y E ∗

1i(s)

]

Khy {E ∗
1i(s)} [M∗

i (c)−g{a+bE ∗
1i(s)}]ξi = 0.

Then, the perturbed pAUC is given by, pAUC∗
f (s) =

∫ f
0 ROC∗(u;s)du, where

ROC∗(u;s) = S ∗
1,h1

{
S ∗−1

0,h0
(u;s);s

}
.

In the section “Asymptotic Distribution of ŴpAUC f (s)” in Appendix 1, we show that

the unconditional distribution of ŴpAUC f (s) can be approximated by the conditional
distribution of

W ∗
pAUC f

(s) =
√

nh1

{
pAUC∗

f (s)− ̂pAUC f (s)
}
, (5)

given the data. With the above resampling method, for any fixed s ∈ Ih1 , one may
obtain a variance estimator of ŴpAUC f (s), σ̂

2
f (s), based on the empirical variance of

B realizations from (5). For any fixed s ∈ Ih1 and α ∈ (0,1), a pointwise 100(1−
α)% confidence interval (CI) for pAUC f (s) can be constructed via ̂pAUC f (s)±
(nh1)

−1/2cασ̂ f (s), where cα is the 100(1−α)th percentile of the standard normal
distribution.

Inference for IDI(s) Based on Ŝy,hy(c;s), we may obtain plug-in estimators for

IS(s) =
∫ 1

0 S1(c;s)dc and IP(s) =
∫ 1

0 S0(c;s)dc respectively as

ÎS(s) =
∫ 1

0
Ŝ1,h1(c;s)dc, and ÎP(s) =

∫ 1

0
Ŝ0,h0(c;s)dc.
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Thus, IDI(s) can be estimated by ÎDI(s) = ÎS(s)− ÎP(s). Similar to the derivations

given in the Appendix 1 for ̂pAUC f (s), the asymptotic results for Ŝy,hy(c;s) can be

directly used to establish the consistency and asymptotic normality for ÎDI(s). In
addition, the unconditional distribution of ŴIDI(s) =

√
nh1{ÎDI(s)− IDI(s)} can be

approximated by the conditional distribution of W ∗
IDI(s) =

√
nh1{IDI∗(s)− ÎDI(s)},

given the data, where IDI∗(s) =
∫ 1

0 S ∗
1,h1

(c;s)dc−∫ 1
0 S ∗

0,h0
(c;s)dc and S ∗

y,hy
(c;s) is

the perturbed counterpart of Ŝy,hy(c;s), y = 0,1. The pointwise confidence intervals
for any fixed s∈Ih1 are constructed in a similar way as the inference for pAUC f (s).
As a special case, a kernel local constant estimator of IDI(s) is given by

ÎDI(s) =
∑n

i=1 ω̂iYiKh1{Ê1i(s)} p̂2i

∑n
i=1 ω̂iYiKh1{Ê1i(s)}

− ∑n
i=1 ω̂i(1−Yi)Kh0{Ê1i(s)} p̂2i

∑n
i=1 ω̂i(1−Yi)Kh0{Ê1i(s)}

,

with the perturbed counterpart given by

IDI∗(s) = ∑n
i=1ω∗

i YiKh1{E ∗
1i(s)}p∗2iξi

∑n
i=1ω∗

i YiKh1{E ∗
1i(s)}ξi

− ∑n
i=1ω∗

i (1−Yi)Kh0{E ∗
1i(s)}p∗2iξi

∑n
i=1ω∗

i (1−Yi)Kh0{E ∗
1i(s)}ξi

.

Selection of the optimal bandwidths for pAUC f (s) and IDI(s) is illustrated in the
Appendix 2.

Identifying the effective subpopulation To identify the effective subpopulation,
one may simultaneously assess the subgroup-specific IncV w.r.t. a certain accuracy
measure, denoted by A(s), for example pAUC f (s)− f 2/2 or IDI(s), over a range
of s values by constructing simultaneous CI for {A(s),s ∈ Ih1}. Unfortunately,
the distribution of ŴA (s) does not converge as a process in s, as n → ∞. Thus,
we cannot apply the standard large sample theory for stochastic processes to
approximate the distribution of ŴA (s). Nevertheless, by the strong approximation
argument and extreme value limit theorem [2], we show in the section “Asymptotic
distribution of ŴpAUC f (s)” in Appendix 1 that a standardized version of the sup-

statistic Γ = sups∈Ih1
|ŴA (s)/σ̂A (s)| converges in distribution to a proper random

variable, where σ̂2
A denotes the variance estimator of ŴA (s). In practice, for

large n, one can approximate the distribution of Γ based on realizations of
Γ ∗ = sups∈Ih1

|W ∗
A (s)/σ̂A (s)|, where W ∗

A is the perturbed counterpart of ŴA .

Therefore, a 100(1−α)% simultaneous CI for A(s) can be obtained as Â(s)±
(nh1)

−1/2dασ̂A (s), where dα is the empirical 100(1−α)th quantile of Γ ∗. Thus, to
account for sampling variation and multiple testing, the effective subpopulation is
chosen as {X : Â(p̂1(X))> (nh1)

−1/2dασ̂A (p̂1(X))} in real data analyses.

Test for heterogeneous IncV Another question of interest is whether the
subgroup-specific IncV A(s), for example pAUC f (s), is constant across different
values of s over a certain interval [sl ,su]. We define the average IncV over [sl ,su] as

A[sl ,su ] =

∫ su
sl
A(s)dF (s)

[F (su)−F (sl)]
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where F (s) = pr{ p̄1(X) ≤ s}, and we define the relative subgroup-specific IncV
over [sl ,su] as DA [sl ,su]

(s) = A(s)−A[sl ,su]. The point estimate of DA [sl ,su]
(s) is

given by

D̂A [sl ,su]
(s) = Â(s)− Â[sl ,su], Â[sl ,su] =

n−1∑n
i=1 Â(p̂1i)I(p̂1i ∈ [sl ,su])

F̂ (su)− F̂ (sl)

where F̂ (s) = n−1∑n
i=1 I{ p̂1i ≤ s}. In addition, the unconditional distribution of

ŴD(s) =
√

nh1{D̂A [sl ,su]
(s)−DA [sl ,su ]

(s)} can be approximated by the conditional

distribution of W ∗
D(s) =

√
nh1{D∗

A [sl ,su]
(s)− D̂A [sl ,su]

(s)} given the data, where

D∗
A [sl ,su ]

(s) = A∗(s)−A∗
[sl ,su] with A∗(s) as the perturbed counterpart of Â(s) and

A∗
[sl ,su ]

= n−1∑n
i=1A

∗(p̂1i)I(p̂1i ∈ [sl ,su])/[F̂ (su)− F̂ (sl)]. The variance estimator

σ̂2
D of ŴD(s) can be obtained from realizations of W ∗

D(s).
If the subgroup-specific IncV of Z is constant over [sl ,su], i.e., A(s) ≡ c0 for

s ∈ [sl ,su], A[sl ,su] = c0 and DA [sl ,su ]
(s) = 0 for s ∈ [sl ,su]. Testing whether the

subgroup specific IncV is constant over [sl ,su] is equivalent to testing the null
hypothesis H0 : DA [sl ,su]

(s) = 0 for s ∈ [sl ,su]. To adjust for multiple testing, we

consider the standard version of the sup-statistic ΓD = sups∈[sl ,su] |Ŵ
(0)
D (s)/σ̂D (s)|,

where Ŵ
(0)
D (s) =

√
nh1D̂A [sl ,su]

(s) is the statistic ŴD(s) under the null hypothesis
H0. One may approximate the distribution of ΓD based on realizations of Γ ∗

D =
sups∈[sl ,su] |W ∗

D(s)/σ̂D (s)|. The empirical p-value for testing the null hypothesis

H0 can be obtained by B−1∑B
b=1 I{Γ ∗

D
(b) > ΓD}, where {Γ ∗

D
(b),b = 1, · · · ,B} are

B realizations of Γ ∗
D .

Simulation Studies

To examine the finite sample properties of the proposed estimation procedure, we
conduct a simulation study where the conventional marker X and the new marker Z
are both univariate and jointly generated from a bivariate normal distribution

(
X
Z

)

∼ BVN

([
μX

μZ

]

,

[
σ2

X σXσZρXZ

σXσZρXZ σ2
Z

])

.

In this simulation study, μX = μZ = 0, σX = 2 and σZ = 0.5, and ρXZ = 0.01. The
failure time T , given the markers X and Z, is generated from an accelerated failure
time model with a log-normal distribution for T , i.e., logT = h(X ,Z)+ ε , where ε
is a normal random variable with mean 0 and standard deviation σT = 1.5. In this
simulation study, h(X ,Z) is a linear model, i.e., h(X ,Z) = −βX X −βZZ −βXZXZ.
We consider a practical situation where the new marker Z may make a major
contribution to the underlying mechanism in contrast with the conventional marker
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X , although it may not be measured routinely. Thus, in this simulation study, we set
βX = 0.01 and βZ = βXZ = 1. The censoring time C is generated from an exponential
distribution with rate c−1

0 . A value of c0 ≈ 20 is chosen such that roughly 80% of
the failure time is censored. A time point t0 ≈ 0.2 is set such that the proportion of
the “cases” in the sample is approximately 20%.

We investigate the kernel local constant estimator for the conditional pAUC f with
f = 0.1 representing a low FPR region and f = 1 representing the standard AUC.
Since Z and logT are jointly normal conditional on X = x, it is straightforward
to calculate the true values of pAUC f (x). We consider a relatively smaller sample
size 1000, a moderate sample size of 5000 and a relatively larger sample size of
10000. Both of the pAUC with FPR ≤ 0.1, i.e., pAUC0.1(x) and the full AUC are
estimated at a sequence of values of X . For ease of computation, the pair of the
bandwidths (h0,h1) for constructing the nonparametric estimate was fixed at (i) for
the full AUC, (2.531, 2.102) for n = 1000, (1.905, 1.534) for n = 5000, and (1.640,
1.380) for n = 10000; (ii) for the pAUC0.1, (2.377,2.432) for n = 1000, (1.843,
2.361) for n = 5000, and (1.507, 2.085) for n = 10000. Here, (hopt

0 ,hopt

1 ) were chosen
as the average of the bandwidths selected from 10 independent simulated datasets
using the two-stage of five-fold cross-validation method described in the Appendix 2
and n−0.1 was multiplied to hopt

y to yield the final bandwidths used for simulation. In
addition, the kernel function K(·) was chosen as the Epanechnikov kernel. Here,
since we assume that the censoring time C is independent of both T and (X ,Z),
GX ,Z(t) = G(t) is estimated by a Kaplan-Meier estimator.

The performance of the point estimates and pointwise 95% confidence intervals
obtained by the resampling method was assessed from 1000 independent replicates.
For all of these scenarios, the nonparametric estimators have substantially small
biases, the estimated standard errors are close to their empirical counterparts, and
empirical coverage levels are close to the nominal level. In Fig. 1, we summarize
the performance of the point and interval estimates for pAUC0.1 with sample size
10000. For this scenario, the empirical coverage probabilities of the 95% pointwise
confidence intervals range from 92.9 to 95.4%. The empirical coverage levels of the
95% simultaneous confidence bands for the standard AUC are 93.2% for n = 1000,
93.3% for n = 5000, and 94.5% for n = 10000; the empirical coverage levels of
the 95% simultaneous confidence bands for the pAUC0.1 are 93.3% for n = 1000,
93.4% for n = 5000, and 92.5% for n = 10000.

Example: The Framingham Offspring Study

The Framingham Offspring Study was established in 1971 with 5124 participants
who were monitored prospectively on epidemiological and genetic risk factors of
CVD. Here, we use data from 1687 female participants of which 261 have either
died or experienced a CVD event by the end of follow-up period, and the 10-year
event rate is 6%. The Framingham risk model, based on several clinical risk factors
including age, systolic blood pressure (SBP), diastolic blood pressure (DBP), total
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Fig. 1 Performance of the point estimates, the standard error estimates and pointwise confidence
intervals for pAUC0.1 with sample size 10000: (a) the true pAUC0.1(x) (solid) and the average
point estimates (dashed) over 1000 replicates; (b) the empirical standard error estimates (solid)
and the average of the estimated errors (dashed) based on the resampling procedure; and (c) the
empirical coverage levels of the pointwise 95% confidence intervals obtained from the resampling
procedures

cholesterol(TC), high-density lipoprotein (HDL) cholesterol, current smoking status
and diabetes, is widely used in clinical settings but only with moderate accuracy for
predicting the 10-year risk of CVD [9]. The Framing risk score (FRS) is constructed
as the weighted average of the risk factors in the Framingham risk model using
β -coefficients given in Table 6 of [52]. The risk estimates are obtained from the
FRS through the transformation 1− exp{−exp(·)}. The density plot of the risk
estimates obtained from the FRS is shown in Fig. 2a. The overall gain in C-statistic
by adding the CRP on top of FRS is 0.002 (from 0.776 to 0.778, with 95% CI
(−0.005,0.01)). Note that a log transformation is applied on the CRP throughout the
analysis. According to the Framingham risk model [52] and the risk threshold values
employed by the Adult Treatment Panel III (ATP III) of the National Cholesterol
Eduction Program [18], these 1687 female participants may be classified into three
risk groups: 1462 as low risk (<10%); 193 as intermediate risk (between 10 and
20%); 32 as high risk (>20%). The IncVs w.r.t. C-statistic are 0.00057 (with 95% CI
(−0.012,0.013)) for the low risk group; 0.037 (with 95% CI (−0.054,0.13)) for the
intermediate risk group; 0.034 (with 95% CI (−0.097,0.16)) for the high risk group.
Note that the low risk group consists of about 87% of the entire cohort. Now we
further classify the 1462 patients of the low risk group into 10 finer subgroups with
the length of the risk interval for each subgroup being 0.01, for example, 0–0.01,
0.01–0.02, and etc. The IncVs w.r.t. C-statistics for these 10 subgroups of low risk
as well as the intermediate and high risk groups with their 95% CIs are shown in
Fig. 2b. This suggests that adding CRP on top of FRS may be most useful for the
risk groups around 5%, which is also referred to as the intermedium low risk group
in some literature.
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Fig. 2 (a) The density estimates of the 10-year event risk calculated from the Framingham risk
score. (b) The IncVs w.r.t. C-statistics for the 10 subgroups of low risk as well as the intermediate
and high risk groups with their 95% CIs

First, we investigate the IncV of the CRP over the FRS w.r.t. AUC, pAUC0.1
and IDI in predicting the 10-year risk of CVD events among subgroups defined by
the FRS. For the purpose of kernel smoothing, the transformation function φ(·) in

the local likelihood score equation (4) is φ(x) = Φ
(

x−μX
σX

)
, where μX = −3.74

is the sample mean of the FRS and σX = 1.35 is the sample standard deviation
of the FRS, and Φ(x) is the cumulative distribution function of a standard normal
distribution. Here we use local kernel constant estimates with Epanechnikov kernel.
The optimal bandwidths (hopt

0 ,hopt
1 ) in φ -scale are chosen via a 10-fold cross

validation procedure: (0.117, 0.393) for the standard AUC, (0.264, 0.721) for
pAUC0.1, and (0.018, 0.273) for IDI. The point estimates along with the 95%
pointwise and simultaneous confidence intervals for the subgroup-specific IncV
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Fig. 3 The point estimates (solid line), and its 95% pointwise confidence intervals (dashed lines)
and the 95% simultaneous confidence bands (dark shaded region) for (a) the subgroup-specific
IncV with respect to AUC, AUC(x)−1/2; (b) the subgroup-specific IncV with respect to pAUC0.1,
pAUC0.1(x)−0.12/2; (c) the subgroup-specific IncV with respect to IDI. The two vertical dotted
lines represent the risk category cut-offs, 10% and 20%, from left to right

w.r.t. AUC, pAUC0.1 and IDI are shown in Fig. 3. The point estimate for IDI is
obtained via a cross-validation procedure to correct for biases due to overfitting.
Based on the pointwise CIs of the subgroup-specific IncV w.r.t. AUC, the addition
of CRP appears to improve risk prediction for subjects with the FRS risk ranging
from 0.028 to 0.096. The corresponding range is 0.008–0.148 when based on the
CIs for the subgroup-specific IncV w.r.t. pAUC0.1; 0.004–0.102 when based on the
CIs for the subgroup-specific IncV w.r.t. IDI. After controlling for the overall type I
error, inclusion of CRP may significantly improve discrimination for subjects with
the RS risk ranging from 0.034 to 0.070 based on AUC; from 0.010 to 0.078 based
on pAUC0.1; from 0.032 to 0.068 based on IDI. The IDI findings and the pAUC
findings agree with each other. These results suggest that CPR might be useful to
improve risk prediction among patients regarded as having low to moderate risk
according to the FRS.

It is worth to note that the bandwidth selection procedure is not sensitive towards
the choice of the number of folds in cross-validation. Using a five-fold cross-
validation, the optimal bandwidths (hopt

0 ,hopt
1 ) are (0.121, 0.394) for the standard

AUC, (0.238,0.614) for pAUC0.1, and (0.016,0.272) for IDI. The resulting point
estimates and CIs are almost the same as the results with the bandwidths selected
via a 10-fold cross validation procedure. In addition, for calculating the weights ω̂i,
the survival function G(·) of the censoring time C is estimated by a Kaplan-Meier
estimator since in the study C is likely to be independent of both T and X ,Z. In
section “Risk Modeling with and Without New Markers”, we commented that if this
independence assumption does not hold, we could still provide a correct estimate of
G(·) via a semi-parametric model, for example a Cox PH model. Here, we also
obtained the estimates of G(t0) via a Cox PH model, i.e., exp{−Λ̂0(t0)exp(γ̂cWc)}
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Fig. 4 The point estimates (solid line), and its 95% pointwise confidence intervals (dashed lines)
and the 95% simultaneous confidence bands (dark shaded region) for the subgroup-specific IncV
with respect to AUC and pAUC0.1 as well as IDI. The results are based on the weights ω̂i with
GX ,Z(t) estimated via a Cox PH model. (a) AUC. (b) Partial AUC with FPR <= 0.1. (c) IDI

where Wc consists of the FRS and the CRP. Based on the resulting weights ω̂i, we
obtained the point estimates and CIs for the subgroup-specific IncV w.r.t. AUC,
pAUC0.1 and IDI, which is presented in Fig. 4. The results are very similar to
the results using Kaplan-Meier estimator of G(·), and therefore it implies that the
independence assumption about the censoring time C is reasonable.

We are also interested in testing whether the subgroup-specific IncV of the CRP
over the FRS is constant over the values [0,0.4] of the risk estimates obtained from
the FRS. The p-values of testing for constant subgroup-specific IncV are 0.028 for
AUC, 0.108 for pAUC0.1 and 0.002 for IDI. These results agree with Fig. 5, which
shows the point estimates and simultaneous 95% CIs for the relative subgroup-
specific IncV w.r.t. AUC, pAUC0.1 and IDI. It shows that the subgroup-specific
IncVs w.r.t. AUC and IDI are not constant over the interval [0, 0.4]; on the other
hand,the subgroup-specific IncV w.r.t. pAUC0.1 is constant over this interval. It is
worth to note that the asymptotic variance of D̂A [sl ,su]

(s) is larger than that of Â(s),
and therefore, the power of testing whether the subgroup-specific IncV is constant
over a certain interval is not as strong as the power of testing whether the subgroup-
specific IncV is above zero over the interval.

Concluding Remarks

In this paper, we propose a nonparametric procedure to estimate the incremental
values of new markers in prediction accuracy across different subgroups defined by
the conventional scoring system. We also provide the pointwise and simultaneous
interval estimates via perturbation resampling. In addition, with proper adjustment
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Fig. 5 The point estimates (solid line), and its 95% simultaneous confidence bands (dark shaded
region) for the relative subgroup-specific IncVs, which are used to test for heterogeneous IncVs,
with respect to AUC and pAUC0.1 as well as IDI over the interval [0, 0.4] of the risk estimates
obtained from the FRS. (a) AUC. (b) Partial AUC with FPR <= 0.1. (c) IDI

for multiple subgroups comparison, our approach is able to systematically identify
the subgroups which would benefit from adding new markers. Unlike global
measures which do not provide information on how the IncV may vary across
subgroups, our methods enables the identification of subgroups for which the new
markers may or may not be useful. Existing procedures often assess subgroup-
specific IncVs empirically. We provide more rigorous and systematic analytical
tools to ensure the validity of such claims and more precisely pinpoint such specific
subgroups.

Appropriate choice of prediction accuracy summaries is of great importance to
capture the usefulness of new markers. It is also motivated by primary research
interests. Discrimination is one of the major components in assessing the accuracy
of prediction models. The AUC is the most popular summary index which depicts
inherent discrimination capacity. However, it is unable to capture how well the
predicted risks agree with the actual observed risks [20]. In some cases, alternative
summary measures should be also considered, for example, NRI, PCF and PNF. Our
approach can be naturally extended to other metrics that maybe more appropriate for
particular clinical applications.

The subgroup-specific TPR S1(c;s, t) = pr
{

p̄2(X ,Z)≥ c|T † ≤ t, p̄1(X) = s
}

and the subgroup-specific FPR S0(c;s, t) = pr
{

p̄2(X ,Z)≥ c|T † > t, p̄1(X) = s
}

both depend on the time point t, which is usually pre-determined. In some appli-
cations, new biomarkers might produce relatively better long-term performance in
prediction accuracy than short-term. It is straightforward to extend our procedure
to different time points over an arbitrary time interval since the nonparametric
estimates of the TPR and FPR, Ŝy(c;s, t), converge to a Gaussian process in
time t. We could estimate the overall improvement of new markers over a certain
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time interval by integrating the subgroup-specific partial AUC and the subgroup-
specific IDI index w.r.t. time t. Furthermore, with properly adjusting for multiple
comparison, it is possible to identify the time interval where new markers have the
most incremental values for different subgroups.

Instead of focusing on the prediction of t-year survival for a fixed time point,
we might be also interested in a global assessment of a fitted prediction model for
the continuous event time. One example of such global measure is the C-statistic of
the prediction score P2(X ,Z), pr{ p̄2(Xi,Zi) > p̄2(Xi′ ,Zi′) | T †

i′ > T †
i } [22, 26, 32].

When the event time T † is subject to right censoring which may have finite support
[0,τ], one may consider a truncated C-statistic,

Cτ = pr
{

p̄2(Xi,Zi)> p̄2(Xi′ ,Zi′) | T †
i′ > T †

i ,T
†

i < τ
}
,

as considered in Heagerty and Zheng [23] and Uno et al. [45]. It is straightforward
to extend Cτ to our subgroup-specific C-statistic

Cτ(s) = pr
{

p̄2(Xi,Zi)> p̄2(Xi′ ,Zi′) | T †
i′ > T †

i ,T
†

i < τ, p̄1(Xi) = p̄1(Xi′) = s
}

and construct an IPW kernel estimator for Cτ (s) as for other accuracy measures.
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Appendix 1

Let Pn and P denote expectation with respect to (w.r.t.) the empirical probability
measure of {(Ti,Δi,Xi,Zi), i = 1, · · · ,n} and the probability measure of (T,Δ ,X ,Z),
respectively, and Gn =

√
n(Pn −P). We use Ḟ (x) to denote dF (x)/dx for any

function F , � to denote equivalence up to op(1), and � to denote being bounded
above up to a universal constant. Let β0 and γ0 denote the solution to

E
[
Vi

{
Y †

i − g1(β ′Vi)
}]

= 0

and E
[
Wi

{
Y †

i −g2(γ ′Wi)
}]

= 0, respectively. Let p̄1i = g1(β ′
0Vi), and p̄2i =

g2(γ ′0Wi). Let ω = Δ I(T ≤ t0)/GX ,Z(T )+ I(T > t0)/GX ,Z(t0), M̂i(c) = I(p̂2i ≥ c)
and M̄i(c) = I(p̄2i ≥ c). For y = 0,1, let fy(c;s) denote the conditional density of p̄2i
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given Y †
i = y and p̄1i = s and we assumed that fy(c;s) is continuous and bounded

away from zero uniformly in c and s. This assumption implies that ROC(u;s) has
continuous and bounded derivative ˙ROC(u;s) = ∂ROC(u;s)/∂u. We assume that V
and W are bounded, and τ(y;s) = ∂ pr[φ{ p̄1(X)} ≤ s,Y † = y]/∂ s, is continuously
differentiable with bounded derivatives and bounded away from zero. Throughout,
the bandwidths are assumed to be of order n−ν with ν ∈ (1/5,1/2). For ease of
presentation and without loss of generality, we assume that h1 = h0, denoted by
h, and suppress h from the notations. Without loss of generality, we assume that
supt,x,z |n

1
2 {ĜX ,Z(t)−GX ,Z(t)}|= Op(1). When C is assumed to be independent of

both T and (X ,Z), the simple Kaplan-Meier estimator satisfies this condition. When
C depends on (X ,Z), ĜX ,Z obtained under the Cox model also satisfies this condition
provided that Wc is bounded. The kernel function K is assumed to be symmetric,
smooth with a bounded support on [−1,1] and we let m2 =

∫
K(x)2dx.

Asymptotic Expansions for Ŝy(c;s)

Uniform Convergence Rate for Ŝy(c;s) We first establish the following uniform
convergence rate of Ŝy(c;s) = g{ây(c;s)}:

sup
s∈Ih,c

|Ŝy(c;s)−Sy(c;s)|= Op{(nh)−
1
2 log(n)}= op(1). (6)

To this end, we note that for any given c and s,

ζ̂ y(c;s) =

[
ζ̂ay(c;s)
ζ̂by(c;s)

]

=

[
ây(c;s)−ay(c;s)
b̂y(c;s)−by(c;s)

]

is the solution to the estimating equation Ψ̂ y(ζ y,c,s) = 0, where ζ y = (ζay ,ζby)
′ and

Ψ̂ y(ζ y;c,s) =

[
Ψ̂y1(ζ y,c,s)
Ψ̂y2(ζ y,c,s)

]

= n−1 ∑
i:Yi=y

ŵi

[
1

h−1Êi1(s)

]

Kh

{
Êi1(s)

}[
M̂i(c)−G {ζ y,c,s;φ(p̂1i),h}

]
,

ay(c;s) = g−1{Sy(c;s)}, by(c;s) = ∂g−1
{
Sy(c;s)

}
/∂ s and

G (ζ y,c,s;e,h) = g[ay(c;s)+ by(c;s){e−φ(s)}+ ζay + ζbyh
−1{e−φ(s)}].

We next establish the convergence rate for supζ y,c,s
|Ψ̂ y(ζ y;c,s)−Ψ y(ζ y;c,s)|,

where
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Ψ y(ζ y;c,s)=

[
Ψy1(ζ y,c,s)
Ψy2(ζ y;c,s)

]

= τ(y;s)

[
Sy(c;s)− ∫ K(t)g{ay(c;s)+ ζay + ζbyt}dt

−∫ tK(t)g{ay(c;s)+ ζay + ζbyt}dt

]

.

We first show that

sup
s∈Ih,c

∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y
ω̂iKh{Êi1(s)}M̂i(c)− τ(y;s)Sy(c;s)

∣
∣
∣
∣
∣

and

sup
ζ y,s∈Ih,c

∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y
ω̂iKh{Êi1(s)}G {ζ y,c,s;φ(p̂1i),h}

−τ(y;s)
∫

K(t)g{ay(c;s)+ ζay + ζbyt}dt

∣
∣
∣
∣

are both Op{(nh)−
1
2 log(n)} where Ih = [φ−1(ρl +h),φ−1(ρu−h)] and [ρl ,ρu] is a

subset of the support of φ{g1(β T
0 V )}. To this end, we note that since supu |ĜX ,Z(u)−

GX ,Z(u)|= Op(n−
1
2 ) and |β̂ −β0|= Op(n−

1
2 ),

∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y
(ω̂i −ωi)Kh{Êi1(s)}G {ζ y,c,s;φ(p̂1i),h}

∣
∣
∣
∣
∣

≤ n−1 ∑
i:Yi=y

|ω̂i −ωi|Kh{Êi1(s)} = Op(n
− 1

2 ).

This implies that
∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y

ω̂iKh{Êi1(s)}G {ζ y,c, s;φ (p̂1i),h}− τ(y; s)
∫

K(t)g{ay(c; s)+ζay +ζbyt}dt

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣n

− 1
2

∫
Kh{e−φ (s)}G {ζ y,c, s;φ (p̂1i),h}dGn [ωI{φ (p̂i1)≤ e}−ωI{φ (p̄i1)≤ e}]

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Kh{e−φ (s)}G {ζ y,c, s;φ (p̂1i),h}dP [ωI{φ (p̄i1)≤ e}]

−τ(y; s)
∫

K(t)g{ay(c; s)+ζay +ζbyt}dt

∣
∣
∣
∣

+

∣
∣
∣
∣n

− 1
2

∫

Kh{e−φ (s)}dP
[
ωG {ζ y,c, s;φ (p̂1i),h}I{φ (p̄i1)≤ e}]

∣
∣
∣
∣+Op(n

− 1
2 )

�n−
1
2 h−1‖Gn‖Hδ +

∣
∣
∣
∣n

− 1
2

∫
Kh{e−φ (s)}dP

[
ωG {ζ y,c, s;φ (p̂1i),h}I{φ (p̄i1)≤ e}]

∣
∣
∣
∣

+Op(n
− 1

2 +h2),
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where Hδ = {ωI [φ{g1(β ′v)} ≤ e]−ωI [φ{g1(β ′
0v)} ≤ e] : |β − β0| ≤ δ ,e} is a

class of functions indexed by β and e. By the maximum inequality of Van der vaart
and Wellner [47], we have

E‖Gn‖Hδ � δ
1
2 {| log(δ )|+ | log(h)|}

[

1+
δ

1
2 {| log(δ )|+ | log(h)|}

δn
1
2

]

Together with the fact that |β̂ − β0| = Op(n−
1
2 ) from Uno et al. [44], it implies

that n−
1
2 h−1‖Gn‖Hδ = Op{(nh)−

1
2 (nh2)−

1
4 log(n)}. In addition, with the standard

arguments used in Bickel and Rosenblatt [2], it can be shown that
∣
∣
∣
∣n

− 1
2

∫

Kh{e−φ(s)}dP
[
ωG {ζ y,c,s;φ(p̂1i),h}I{φ(p̄i1)≤ e}]

∣
∣
∣
∣

=Op{(nh)−
1
2 log(n)}.

Therefore, for h = n−ν , 1/5 < ν < 1/2,

sup
ζ y,s∈Ih,c

∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y
ω̂iKh{Êi1(s)}G {ζ y,c,s;φ(p̂1i),h}

−τ(y;s)
∫

K(t)g{ay(c;s)+ ζay + ζbyt}dt

∣
∣
∣
∣

is Op{(nh)−
1
2 log(n)}. Following with similar arguments as given above, coupled

with the fact that |γ̂− γ0|= Op(n−
1
2 ), we have

sup
s∈Ih,c∈[0,1]

∣
∣
∣
∣
∣
n−1 ∑

i:Yi=y

ω̂iKh{Êi1(s)}M̂i(c)− τ(y;s)Sy(c;s)

∣
∣
∣
∣
∣
= Op{(nh)−

1
2 log(n)}.

Thus, supζ y,c,s
|Ψ̂y1(ζ y;c,s)−Ψy1(ζ y;c,s)|=Op{(nh)−

1
2 log(n)}= op(1). It follows

from the same arguments as given above that

sup
ζ y,c,s

|Ψ̂y2(ζ y;c,s)−Ψy2(ζ y;c,s)|= Op{(nh)−
1
2 log(n)+ h}= op(1).

Therefore, supζ y,c,s
|Ψ̂ y(ζ y;c,s)−Ψ y(ζ y;c,s)| = op(1). In addition, we note that

0 is the unique solution to the equation Ψ y(ζ y;c,s) = 0 w.r.t. ζ y. It suggests that

sups,c |ζ̂ ay
(c;s)| = Op{(nh)−

1
2 log(n)} = op(1), which implies the consistency of

Sy(c;s),

sup
s∈Ih,c∈[0,1]

|Ŝy(c;s)−Sy(c;s)| = Op{(nh)−
1
2 log(n)}= op(1).
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Asymptotic Expansion for Ŝy(c;s) Let d̂y(c;s) =
√

nh{ây(c;s) − ay(c;s)}. It
follows from a Taylor series expansion and the convergence rate of ζ y(c;s) that

d̂y(c;s) =

√
nhPn

(
ω̂I(Y = y)Kh{Ê1(s)}

[
M̂(c)−G 0

y {c,s;φ(p̂1)}
])

τ{y;φ(s)}ġ{ay(c;s)} +op(1), (7)

where G 0
y (c,s;e) = g [ay(c;s)+ by(c;s){e−φ(s)}]. Furthermore,

d̂y(c;s) =

√
nhPn

(
ωI(Y = y)Kh{Ê1(s)}

[
M̂(c)−G 0

y {c,s;φ(p̂1)}
])

τ{y;φ(s)}ġ{ay(c;s)} +op(1),

since supt≤t0

∣
∣ĜX ,Z(t)−GX ,Z(t)

∣
∣= Op(n−1/2). We next show that d̂y(c;s) is asymp-

totically equivalent to

d̃y(c;s) =

√
nhPn

(
ωI(Y = y)Kh{Ē1(s)}

[
M̄(c)−G 0

y {c,s;φ(p̄1)}
])

τ{y;φ(s)}ġ{ay(c;s)} , (8)

where Ē1(s) = φ(p̄1)−φ(s). From (7), (8), and the fact that τ{y;φ(s)} is bounded
away from 0 uniformly in s, we have

|d̂y(s)− d̃y(s)|

� h
1
2

∣
∣
∣
∣

∫

Kh{e−φ(s)}dGn
(
I(Y = y)ω

[
M̂(c)I{φ(p̂1)≤ e}

−M̄(c)I{φ(p̄1)≤ e}])|

+ h
1
2

∣
∣
∣
∣

∫

Kh{e−φ(s)}Gy(c,s;e)dGn (I(Y = y) [ωI{φ(p̂1)≤ e}

−ωI{φ(p̄1)≤ e}])|

+

∣
∣
∣
∣
√

nh
∫

Kh{e−φ(s)}dP
(
I(Y = y)

[
ωM̂(c)I{φ(p̂1)≤ e}

−ωM̄(c)I{φ(p̄1)≤ e}])|

+

∣
∣
∣
∣
√

nh
∫

Kh{e−φ(s)}dP(I(Y = y) [ωGy{c,s;φ(p̂1)}I{φ(p̂1)≤ e}

− ωGy{c,s;φ(p̄1)}I{φ(p̄1)≤ e}])∣∣

� h
1
2 ‖Gn‖Fδ

+ h
1
2 ‖Gn‖Hδ

+Op{(nh)1/2|β̂ −β0|+ |γ̂− γ0|+h2},
where

Fδ =
{
ωI{g2(γ ′w)≥ c}I

[
φ{g1(β ′v)} ≤ e

]

−ωI{g2(γ ′0w)≥ c}I
[
φ{g1(β ′

0v)} ≤ e
]

: |γ− γ0|+ |β −β0| ≤ δ ,e
}
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is the class of functions indexed by γ , β and e. By the maximum inequality of
Van der vaart and Wellner [47] and the fact that |β̂ − β0|+ |γ̂ − γ0| = Op(n−

1
2 )

from Uno et al. [44], we have h
1
2 ‖Gn‖Fδ

= Op{h−
1
2 n−

1
4 log(n)} and h

1
2 ‖Gn‖Hδ

= Op{h−
1
2 n−

1
4 log(n)}. It follows that sups |d̂y(s)− d̃y(s)|= op(1). Then, by a delta

method,

ŴSy(c;s) =
√

nh{Ŝy(c;s)−Sy(c;s)} �
√

nh Pn
[
Kh{Ē1(s)}DSy(c;s)

]

(9)

where DSy(c;s) = τ{y;φ(s)}−1ωI(Y = y)
{

M̄(c)−Sy(c;s)
}

(10)

Using the same arguments as for establishing the uniform convergence rate of
conditional Kaplan-Meier estimators [12,16], we obtain (6). Furthermore, following
similar arguments as given in Dabrowska [11, 13], we have ŴSy(c;s) converges
weakly to a Gaussian process in c for all s. Note that as for all kernel estimators,
ŴSy(c;s) does not converge as a process in s.

Uniform Consistency of ̂pAUCf (s)

Next we establish the uniform convergence rate for ̂ROC(u;s). To this end, we write

̂ROC(u;s)−ROC(u;s) = ε̂1(u;s)+ ε̂0(u;s),

where ε̂1(u;s) = Ŝ1{Ŝ −1
0 (u;s);s} − S1{Ŝ −1

0 (u;s);s} and ε̂0(u;s) = S1{Ŝ −1
0

(u;s);s} − S1{S −1
0 (u;s);s}. It follows from (6) that supu;s |ε̂1(u;s)| ≤

supc;s |Ŝ1(c;s) − S1(c;s)|. Let Î (u;s) = S0{Ŝ −1
0 (u;s);s}. Then ε̂0(u;s) =

ROC{Î (u;s);s} − ROC(u;s). Noting that supu |Î (u;s) − u| = supu |Î (u;s) −
Ŝ0{Ŝ −1

0 (u;s);s}|+ n−1 ≤ supc |S0(c;s)− Ŝ0(c;s)|+ n−1 = Op{(nh)−1/2 logn},
we have ε̂0(u;s) = Op{(nh)−1/2 logn} by the continuity and boundedness of

˙ROC(u;s). Therefore,

sup
u,s

|̂ROC(u;s)−ROC(u;s)|= Op{(nh)−1/2 logn}

which implies

sup
s∈Ih

∣
∣
∣̂pAUC f (s)− pAUC f (s)

∣
∣
∣

� sup
s∈Ih

∫ f

0

∣
∣
∣̂ROC(u;s)−ROC(u;s)

∣
∣
∣du = Op{(nh)−

1
2 logn}.

and hence the uniform consistency of ̂pAUC f (s).
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Asymptotic Distribution of ŴpAUC f (s)

To derive the asymptotic distribution for ŴpAUC f (s), we first derive asymptotic expan-

sions for ŴROC(u;s) =
√

nh{̂ROC(u;s)−ROC(u;s)}=√
nh ε̂1(u;s)+

√
nh ε̂0(u;s).

From the weak convergence of ŴSy(c;s) in c, the approximation in (9), and the

consistency of Ŝ −1
0 (c;s) given in the section “Uniform Consistency of ̂pAUC f (s)”

in Appendix 1, we have

√
nh ε̂1(u;s)�

√
nh
[
Ŝ1{S −1

0 (u;s);s}−ROC(u;s)
]

�
√

nhPn
[
Kh{Ē1(s)}DS1{S −1

0 (u;s);s}]

On the other hand, from the uniform convergence of Î0(u;s) → u and the weak
convergence of D̂0(c;s) in c, we have

√
nh
{

u− Î (u;s)
}
�
√

nh
[
Î −1

{
Î (u;s);s

}
− Î (u;s)

]
�
√

nh
{

Î −1(u;s)−u
}

�
√

nh
[
Ŝ0{S −1

0 (u;s);s}− u
]

This, together with a Taylor series expansion and the expansion given (9),
implies that

√
nh ε̂0(u;s)�− ˙ROC(u;s)Pn

[
Kh{Ē1(s)}DS0

{
S −1

0 (u;s);s
}]

It follows that

ŴpAUC f (s)�
√

nhPn

[
Kh{Ē1(s)}DpAUC f (s)

]
(11)

where DpAUC f (s) =
∫ f

0

[
DS1

{
S −1

0 (u;s);s
}− ˙ROC(u;s)DS0

{
S −1

0 (u;s);s
}]

du.

(12)

It then follows from a central limit theorem that for any fixed s, ŴpAUC f (s) converges
to a normal with mean 0 and variance

σ2
pAUC f

(s) = m2
[
τ{1;φ(s)}Ḟφ( p̄1)(s)

]−1σ2
1 (s)+m2

[
τ{0;φ(s)}Ḟφ( p̄1)(s)

]−1σ2
0 (s),

where Ḟφ( p̄1)(s) is the density function of φ(p̄1),

σ2
1 (s) = E

(

G(T †)−1
[∫ f

0
M̄{S −1

0 (u;s)}du− pAUC f (s)

]2
∣
∣
∣
∣
∣

p̄1 = s,Y † = 1

)

, and
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σ2
0 (s) = E

(

G(t0)
−1
[∫ f

0
M̄{S −1

0 (u;s)}dROC(u;s)

−
∫ f

0
udROC(u;s)

]2

| p̄1 = s,Y † = 0

)

.

Justification for the Resampling Methods

To justify the resampling method, we first note that

|β ∗ − β̂ |+ |γ∗− γ̂|+ sup
t≤t0

|G∗
X ,Z(t)− ĜX ,Z(t)|= Op(n

− 1
2 ).

It follows from similar arguments given in the Appendix 1 and Appendix 1 of
[7] that W ∗

Sy
(c;s) =

√
nh{S ∗

y (c;s)− Ŝy(c;s)} � n
1
2 h−1/2∑n

i=1 D̂Syi(c;s)ξi, where

D̂Syi(c;s) is obtained by replacing all theoretical quantities in DSy(c;s) given in
(10) with the estimated counterparts for the ith subject. This, together with similar
arguments as given above for the expansion of ŴROC(u;s), implies that

W ∗
pAUC f

(s) =
∫ f

0

√
nh{ROC∗(u;s)−̂ROC(u;s)}du

� n−
1
2 h−1/2

n

∑
i=1

Kh{Ê1(s)}D̂pAUC f (s)ξi,

where D̂pAUC f (s) =
∫ f

0 [D̂S1i{Ŝ −1
0 (u;s);s} − ˙ROC(u;s)D̂S0i{Ŝ −1

0 (u;s);s}]du.
Conditional on the data, W ∗

pAUC f
(s) is approximately normally distributed with

mean 0 and variance

σ̂2
pAUC f

(s) = h−1
n

∑
i=1

Kh{Ê1(s)}2D̂pAUC f (s)
2.

Using the consistency of the proposed estimators along with similar arguments as
given above, it is not difficult to show that the above variance converges to σ2

pAUC f
(s)

as n → ∞. Therefore, the empirical distribution obtained from the perturbed sample
can be used to approximate the distribution of ŴpAUC f (s).

We now show that after proper standardization, the supermum type statistics Γ
converges weakly. To this end, we first note that, similar arguments as given in the
Appendix 1 can be used to show that sups∈Ih

|σ̂2
pAUC f

(s)−σ2
pAUC f

(s)|= op(n−δ ) and

Γ = sup
s∈Ih

∣
∣
∣
∣
∣
∣

√
nhPn

[
Kh{Ē1(s)}DpAUC f (s)

]

σpAUC f (s)

∣
∣
∣
∣
∣
∣
+op(n

−δ ),
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for some small positive constant δ . Using similar arguments in Bickel and Rosen-
blatt [2], we have

pr{an (Γ − dn)< x}→ e−2e−x
,

where an = [2log{(ρu −ρl)/h}] 1
2 and dn = an+a−1

n log
{∫

K̇(t)2dt/(4m2π)
}

. Now
to justify the resampling procedure for constructing the confidence interval, we
note that

W ∗
pAUC f

(s) = n−
1
2 h

1
2

n

∑
i=1

Kh{Ê1i(s)}D̂pAUC f (s)(ξi −1)+ ε∗(s).

where pr{sups∈Ω(h) |nδ ε∗(s)| ≥ e | data}→ 0 in probability. Therefore,

Γ ∗ = sup
s∈Ih

∣
∣
∣
∣
∣

n−
1
2 h

1
2 ∑n

i=1 Kh{Ê1i(s)}D̂pAUC f (s)(ξi −1)

σpAUC f (s)

∣
∣
∣
∣
∣
+ |ε∗sup|.

where pr{|nδ ε∗sup| ≥ e|data} → 0. It follows from similar arguments as given in
Tian et al. [40] and Zhao et al. [53] that

sup
∣
∣
∣pr{an(Γ ∗ − dn)< x|data}− e−2e−x

∣
∣
∣→ 0,

in probability as n → ∞. Thus, the conditional distribution of an(Γ ∗ − dn) can be
used to approximate the unconditional distribution of an(Γ − dn). When h0 = h1,
in general, the standardized Γ does not converge to the extreme value distribution.
However, when h0 = h1 = k ∈ (0,∞), the distribution of the suitable standardized
version of Γ still can be approximated by that of the corresponding standardizedΓ ∗
conditional on the data [21].

Appendix 2

Bandwidth Selection for pAUC f (s)

The choice of the bandwidths h0 and h1 is important for making inference about
Sy(c;s) and consequently pAUC f (s). Here we propose a two-stage K-fold cross-

validation procedure to obtain the optimal bandwidth for Ŝ −1
0,h0

(u;s) and Ŝ1,h1(c;s)
sequentially. Specifically, we randomly split the data into K disjoint subsets of about
equal sizes denoted by {Jk,k = 1, · · · ,K}. The two-stage procedure is described as
follows:



278 Q. Zhou et al.

(I) Motivated by the fact that S −1
0 (u;s) is essentially the (1− u)-th quantile of

the conditional distribution of p̄2(X ,Z) given Y † = 0 and p̄1(X) = s, for each
k, we use all the observations not in Jk to estimate q0,1−u(s) = S −1

0 (u;s) by
obtaining {α̂0(s;h), α̂1(s;h)}, the minimizer of

∑
j∈Jl ,l �=k

I(Yj = 0)ŵ jKh{Ê1 j(s)}ρ1−u

[
p̂2 j −g{α0 +α1Ê1 j(s)}

]

w.r.t. (α0,α1), where ρτ(e) is a check function defined as ρτ(e) = τe, if e ≥
0; = (τ − 1)e, otherwise. Let q̂(−k)

0,1−u(s;h) = g{α̂0(s;h)} denote the resulting
estimator of q0,1−u(s). With observations in Jk, we obtain

Err(q0)
k (h) = ∑

i∈Jk

(1−Yi)ŵi

∫ f

0
ρ1−u

[
p̂2i − q̂(−k)

0,1−u(p̂1i;h)
]

du.

Then, we let hopt

0 = argminh∑K
k=1 Err(q0)

k (h).
(II) Next, to find an optimal h1 for Ŝ1,h1(·;s), we choose an error function

that directly relates to pAUC f (s) =−∫ ∞
S−1

0 ( f ;s)S1(c;s)dS0(c;s). Specifically,

noting the fact that

E

(∫ ∞

S −1
0 ( f ;s)

[
I
{

g2(γ ′Wi)≥ c
}−S1(c; s)

]
dS0(c; s)

∣
∣
∣
∣Y

†
i = 1,g1(β ′Xi) = s

)

= 0,

we use the corresponding mean integrated squared error for I{g2(γ ′Wi)≥ c}−
S1(c;s) as the error function. For each k, we use all the observations which are

not in Jk to obtain the estimate of S1(c;s), denoted by Ŝ
(−k)

1,h (c;s) via (4).
Then, with the observations in Jk, we calculate the prediction error

Err(S1)
k (h) = − ∑

i∈Jk,Yi=1
ŵi

∫ ∞

Ŝ−1
0,h0

( f ; p̂1i)

{
I (p̂2i ≥ c)− Ŝ

(−k)
1,h (c; p̂1i)

}2
dŜ0,h0(c; p̂1i).

We let hopt

1 = argminh∑K
k=1 Err(S1)

k (h).

Since the order of hopt
y is expected to be n−1/5 [19], the bandwidth we use for

estimation is hy = hopt
y × n−d0 with 0 < d0 < 3/10 such that hy = n−ν with 1/5 <

ν < 1/2. This ensures that the resulting functional estimator Sy,hy(c;s) with the
data-dependent smooth parameter has the above desirable large sample properties.
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Bandwidth Selection for IDI(s)

Same as bandwidth selection for pAUC, we also propose a K-fold cross validation
procedure to choose the optimal bandwidth h1 for IS(s) =

∫ 1
0 S1(c;s)dc and h0

for IP(s) =
∫ 1

0 S0(c;s)dc separately. The procedure is described as follows: we
randomly split the data into K disjoint subsets of about equal sizes denoted by
{Jk,k = 1, · · · ,K}. Motivated by the fact (3), for each k, we use all the observations

not in Jk to estimate
∫ 1

0 Sy(c,s)dc by obtaining {ϕ̂(y)
0 (s;h), ϕ̂(y)

1 (s;h)} for y = 0,1,
which is the solution to the estimating equation

∑
j∈Jl ,l �=k

I(Yj = y)ω̂ jKh{Ê1 j(s)}
[

p̂2 j − g{ϕ(y)
0 +ϕ(y)

1 Ê1 j(s)}
]
= 0,

w.r.t. (ϕ(y)
0 ,ϕ(y)

1 ). Let ÎS
(−k)

(s;h) = g{ϕ̂(1)
0 (s;h)} and ÎP

(−k)
(s;h) = g{ϕ̂(0)

0 (s;h)}.
With observations in Jk, we obtain

Err(IS)
k (h) = ∑

i∈Jk

Yiω̂i

{
p̂2i − ÎS

(−k)
(p̂1i;h)

}2
,

or

Err(IP)
k (h) = ∑

i∈Jk

(1−Yi)ω̂i

{
p̂2i − ÎP

(−k)
(p̂1i;h)

}2
.

Then, we let hopt
1 = argminh∑K

k=1 Err(IS)
k (h) and hopt

0 = argminh∑K
k=1 Err(IP)

k (h).

Appendix 3

R codes for application will be available from the corresponding author upon
request.
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Assessing the Effects of Imprinting
and Maternal Genotypes on Complex
Genetic Traits

Shili Lin

Abstract A susceptibility variant may affect a trait not only through sequence
variation, but also through parental origin, and even through combination with
the maternal genotype. Although associations have been established for more than
one thousand five hundred Single Nucleotide Polymorphisms (SNPs) and over
two hundred diseases through genome-wide association studies, imprinting and
maternal genotype effects (collectively referred to as parent-of-origin effects) have
largely not been taken into account. The ignorance of parent-of-origin effects
may have adversely contributed to “missing heritability”; thus, attempts have been
made to incorporate these two epigenetic factors when assessing the effect of a
genetic variant on a complex trait. In this review, we will discuss the difference
between retrospective and prospective studies in genetic analysis and indicate how
this difference may influence the choice of methods for assessing parent-of-origin
effects on the risk of complex genetic traits. We will provide expositions on several
specific study designs and their associated analysis methods, including the case-
parent triad design and designs that include control samples, such as the case-parent
triads/control-parent triads design. Most available methods are for retrospective
studies, but a handful of methods applicable to extended pedigrees from prospective
studies also exist. Although log-linear or logistic models are frequently used to
factor in parent-of-origin effects, we review non-parametric approaches as well for
detecting imprinting effects. We further discuss implications of various assumptions
made in the modeling to avoid overparameterization. In summary, a model factoring
in epigenetically modulated gene variant effects is expected to be of greater value
in risk assessment and prediction if such epigenetic factors indeed play a role in the
etiology of the disease.
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Introduction

In the past decade Genome-wide association studies (GWAS) have led to the
identification of many common SNPs that are believed to be associated with
complex diseases. A total of 1617 published GWAS discoveries (P-value ≤ 5×
10−8) for 249 traits had been reported by the third quarter of 2011 [23]. However, the
associated genes tend to have small effects on diseases, odds ratios of about 1.1–1.5.
Moreover, the variations explain only 5–10 % of the disease burden in the population
[32, 34]. These revelations set off a vigorous debate and raised the question of
where to find the “missing heritability” [15, 24, 31, 34]. This has led to a watershed
moment. Researchers now contend that the search for the genetic burden of complex
diseases should focus not only on common, but also on rare variants. Further, since
DNA sequence polymorphism is not the only factor that contributes to phenotypic
variation, incorporating other mechanisms such as epigenetic modification and
transcriptional/translational regulation would provide a more systematic view of
genomic effects on complex traits [20, 24].

Genomic imprinting and maternal genotype effects are two epigenetic factors that
modulate the genetic variants’ effects and have been explored increasingly for their
role in the etiology of complex traits [30]. Such investigations should be viewed
as an integral part of association studies, not supplementary to them, as a maternal
effect may be disguised as an association effect in typical case-control studies [4].
Genomic imprinting, maternal or paternal, is an effect of the epigenetic process
involving methylation and histone modifications in order to silence the expression
of a gene inherited from a particular parent (mother or father) without altering
the genetic sequence. This process leads to unequal expression of a heterozygous
genotype depending on whether the imprinted variant is inherited from the mother
(maternal imprinting) or from the father (paternal imprinting), which plays a key
role in normal mammalian growth and development [13].

A maternal genotype effect, on the other hand, is a situation wherein the
phenotype of an individual is influenced by the genotype of the mother. Maternal
effects usually occur due to the additional mRNAs or proteins passed from the
mother to the fetus during pregnancy. This may result in an individual showing the
phenotype due to the genotype of the mother regardless of one’s own genotype,
a main effect in statistical modeling. There is a more specific kind of maternal
genotype effect, which is usually known as maternal-fetal genotype incompatibility
[7, 42]. This kind of incompatibility arises due to interactions between the gene
products of the mother and the fetus [36] and is typically modeled as interaction
effects as opposed to main effects.

The first imprinted gene in humans was found 20 years ago [14]. Since then,
a variety of traits (e.g. brain development [16]) and diseases (e.g. Angelman
Syndrome and Prader-Willi Syndrome [5, 12, 46]) have been found to be associated
with imprinting. Although it has been estimated that about 1 % of all mammalian
genes are imprinted [35], only a limited number have been identified thus far. With
the availability of next generation sequencing (NGS) technology, scientists are now
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able to carry out direct studies of imprinting genomewide in the mouse efficiently
[16, 49]. Nevertheless, the controlled mating setup that was successful in mouse
studies is not feasible in humans. Thus, robust and powerful statistical methods
for detecting and assessing imprinting effects on complex genetic traits are still
indispensable.

Biological research increasingly reveals the presence and importance of maternal
genotype effects in birth defects and in many diseases such as childhood cancer
[18, 19, 29]. There are also well-known examples of different maternal-fetal geno-
type incompatibility mechanisms. One such example is the RhD-induced hemolytic
disease [44] due to genotype incompatibility, or “mismatch”, which occurs when
the immune system of a mother with two null alleles mounts an immune response
when it detects “foreign” proteins produced by a fetus carrying a copy of the antigen
coding allele. Another example represents a mechanism known as NIMA (non-
inherited maternal antigen) as it occurs in rheumatoid arthritis [21], in which a
mother’s genotype with a copy of the allele coding for an antigen at the HLA-DRB1
locus will increase the risk of her offspring when the child does not carry such an
allele. Although imprinting and maternal effects arise from two different biological
processes, they could give rise to “maternal lineage” of the same trait [17,54]. Thus,
it is important that these two confounding factors be studied jointly to evaluate their
risk effects.

In this review, we will discuss statistical methods for assessing the effects
of maternal genotype and/or imprinting on complex diseases considering several
aspects of the study design (retrospective vs. prospective, nuclear family vs.
extended family, affected family only vs. case-control families), data availability
(complete data vs. missing father/missing a large number of individuals in a
pedigree), and population genetic assumptions (no assumption vs. Hardy-Weinberg
equilibrium (HWE)/mating symmetry). The focus will be on methods for binary
disease traits, although methods for quantitative traits have also been proposed for
assessing parent-of-origin effects.

The completion of the Human Genome Project and advances in biotechnology,
including the microarray and NGS, coupled with successful identifications of
genetic risk variants, have made it a reality to use the identified genetic markers for
risk prediction [28, 31]. Several commercial companies even offer “risk tests” for
specific diseases by marketing directly to consumers [9, 33]. However, genetically
based risk assessment, with currently known variants may not be of much predictive
value clinically due to their limited contributions to trait variability. Rare variants
may be a key to increasing the value of genetic risk prediction [31,33,34]. Epigenetic
factors, such as imprinting and maternal genotype effects, may also contribute
significantly to genetic-based risk assessment and prediction [20, 24]. For instance,
if a genetic trait is influenced by a maternally imprinted gene, then risk prediction
will not only depend on whether an individual carries a copy of the risk allele but,
more importantly, on whether the risk allele is inherited from the mother or from the
father. Inheriting the risk allele from the father will lead to a higher risk of getting
the disease, whereas inheriting the risk allele from the mother will not increase, or
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will at least moderate, the risk. Most of the methods discussed in this review are
model based; they can be utilized to predict an individual’s risk for a disease that is
influenced by genetic variants whose effects are modulated epigenetically.

Study Design

Population data do not contain information on parental transmission and therefore
studies of imprinting and maternal genotype effects are family based. Nevertheless,
control families or even unrelated controls may be used to help inferring population
parameters [1, 11, 48, 52]. Both prospective and retrospective study designs can be
utilized, although the predominant design currently is a retrospective study based
on nuclear families. Retrospective family-based association studies recruit families
with children affected by a certain disease. Thus the familial genotypes should be
viewed as data conditional on the affected children, the probands. On the other
hand, prospective studies do not specifically recruit families with a certain disease.
Instead, families in prospective studies are recruited and followed over time, and
therefore such studies tend to include extended families, and family members can
be affected or unaffected with any disease at a given time. Data from such a design
can then be used to uncover genetic associations with various complex disorders
rather than just one disease as in a retrospective study [57].

Retrospective Studies

There are several frequently used study designs for retrospective studies. The
earliest was the case-parent triads design, in which the genotype of an affected child
(proband), together with the genotypes of both parents, are obtained and analyzed
[50, 51, 53]. There are 15 possible combinations of triad genotypes (Table 1, top
segment). Log-linear and logistic models have been proposed to analyze data of
this kind [1]. Such models are usually parameterized in terms of the effects of
the child’s genotype (up to 3 parameters including the phenocopy rate), imprinting
effects (up to 2 parameters), maternal genotype effects (up to 2 parameters), and
interaction effects (up to 6 parameters including those signifying maternal-fetal
incompatibility). In addition to these risk assessment parameters, there are also
mating type probabilities (up to 9 parameters), the nuisance parameters. Table 1
(Columns 5 and 6) shows the joint probability of a child’s affection status and
the triad genotypes based on a log-linear risk model. Apparently, the full model
is not practicable; not all parameters are identifiable since the number exceeds the
number of data categories. Supplementary data are then often used to expand the
capability of such models. This type of expansions leads to several other designs,
which include
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Table 1 Joint probabilities of disease status and triad genotypesa

Type M F C P(D = 1,M,F,C) P(D = 0,M,F,C)

1 0 0 0 μ00 ·1 ·δ μ00 ·1 · [1−δ ]
2 0 1 0 μ01 · 1

2 ·δ μ01 · 1
2 · [1−δ ]

3 0 1 1 μ01 · 1
2 ·δR1γ01 μ01 · 1

2 · [1−δR1γ01]

4 0 2 1 μ02 ·1 ·δR1γ01 μ02 ·1 · [1−δR1γ01]

5 1 0 0 μ10 · 1
2 ·δS1γ10 μ10 · 1

2 · [1−δS1γ10]

6 1 0 1 μ10 · 1
2 ·δS1R1Rimγ11 μ10 · 1

2 · [1−δS1R1Rimγ11]

7 1 1 0 μ11 · 1
4 ·δS1γ10 μ11 · 1

4 · [1−δS1γ10]

8 1 1 1 μ11 · 1
4 ·δS1R1(1+Rim)γ11 μ11 · 1

4 · [2−δS1R1(1+Rim)γ11]

9 1 1 2 μ11 · 1
4 ·δS1R2γ12 μ11 · 1

4 · [1−δS1R2γ12]

10 1 2 1 μ12 · 1
2 ·δS1R1γ11 μ12 · 1

2 · [1−δS1R1γ11]

11 1 2 2 μ12 · 1
2 ·δS1R2γ12 μ12 · 1

2 · [1−δS1R2γ12]

12 2 0 1 μ20 ·1 ·δS2R1Rimγ21 μ20 ·1 · [1−δS2R1Rimγ21]

13 2 1 1 μ21 · 1
2 ·δS2R1Rimγ21 μ21 · 1

2 · [1−δS2R1Rimγ21]

14 2 1 2 μ21 · 1
2 ·δS2R2γ22 μ21 · 1

2 · [1−δS2R2γ22]

15 2 2 2 μ22 ·1 ·δS2R2γ22 μ22 ·1 · [1−δS2R2γ22]

P(D = 1,M,C) P(D = 0,M,C)

1, 2 0 − 0 (μ00 +
1
2μ01) · δ (μ00 +

1
2μ01) · [1−δ ]

3, 4 0 − 1 ( 1
2μ01 +μ02) · δR1γ01 ( 1

2μ01 +μ02) · [1−δR1γ01]

5, 7 1 − 0 ( 1
2μ10 +

1
4μ11) · δS1γ10 ( 1

2μ10 +
1
4μ11) · [1−δS1γ10]

6, 8, 10 1 − 1 1
2μ10 ·δS1R1Rimγ11

1
2μ10 · [1−δS1R1Rimγ11]

+ 1
4μ11 ·δS1R1(1+Rim)γ11 + 1

4μ11 · [2−δS1R1(1+Rim)γ11]

+ 1
2μ12 ·δS1R1γ11 + 1

2μ12 · [1−δS1R1γ11]

9, 11 1 − 2 ( 1
4μ11 +

1
2μ12) · δS1R2γ12 ( 1

4μ11 +
1
2μ12) · [1−δS1R2γ12]

12, 13 2 − 1 (μ20 +
1
2μ21) · δS2R1Rimγ21 (μ20 +

1
2μ21) · [1−δS2R1Rimγ21]

14, 15 2 − 2 ( 1
2μ21 +μ22) · δS2R2γ22 ( 1

2μ21 +μ22) · [1−δS2R2γ22]
aM, F , and C are the number of variant allele(s) carried by the mother, the father and the child in
a family, which are equal to 0, 1 or 2; F = − indicates that paternal genotype is missing in case-
mother and control-mother pairs; μm f denotes the mating type probability of (M,F) = (m, f ), that
is, probability of parental pairs in which the mothers carry m copies and the fathers f copies of
the variant allele; δ is the phenocopy rate of the disease in the population; R1 and R2 are relative
risks due to 1 and 2 copies of the variant allele carried by the offspring, respectively; Rim is the
relative risk due to the single copy of the variant allele being inherited from the mother (another
imprinting parameter may also be introduced, see [1]); S1 and S2 are the maternal effect of 1 and
2 copies of the variant allele carried by the mother, respectively; the γm,c’s are the interaction
effects between the mother’s genotype m and the child’s genotype c, where γ01 is measuring the
“mismatch” incompatibility and γ10 is measuring the NIMA effect
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data that can be useful for estimating mating type probabilities1 [1]. Such designs
include case-parent triads + controls [11], case-parent triads + control parents [52],
case-parent triads + control-parent triads [1, 55], case-parent triads + control-mother
pairs [48]. The last design reflects the concern that fathers of controls are typically
much more difficult to recruit than mothers of controls. The same concern also
arises in recruiting case families, and thus designs that do away with fathers or
allow for missing fathers have also been considered: case-mother pairs + control-
mother pairs [41], case-parent/control-parent triads + case-mother/control-mother
pairs [1,55,58]. With the additional data, more parameters are identifiable and can be
estimated. Regardless, the full model (even without the parameters for interactions)
is still overparameterized with a full likelihood approach, and, as such, various
assumptions are made to reduce the parameter space. A partial likelihood solution,
on the other hand, is able to overcome the problem by circumventing the need to
estimate the nuisance parameters [58]. Other extensions to the retrospective design
are mainly for the purpose of more fully utilizing the available data, including
nuclear families with multiple affected children [42] and, further, allowing for one of
the parents to be missing [60]. Extended pedigrees have also been considered [7,62],
although such data maybe more appropriately analyzed using alternative methods
if they come from a prospective family design, so that unaffected individuals in the
pedigree can also contribute to the parameter estimation and hypothesis testing [57].

Prospective Studies

Although retrospective designs are popular for assessing the role of imprinting
and maternal genotype on disease risk, there are numerous prospective family-
based association studies. Well-known family-based epidemiology projects that
are prospective in nature include studies of genetic isolates such as the Hutterite
[3, 45] and the Amish populations [10]. Other large studies include the deCODE
project [37], the Busselton Health Study [26], and the Framingham Heart Study
(FHS) [43]. There is little doubt that genotype profiles of large families from
such prospective cohort studies will become more and more available [27, 39] as
genotyping technique advances and cost reduces. Such data could lead to uncovering
genetic association with various complex diseases, including consideration of
pleiotropy, rather than just the one disease ascertained in a retrospective study. Data
from prospective studies have been analyzed using methods devised for data from
retrospective studies [7, 56, 62]. In such analyses, unaffected siblings are typically
ignored or used only for aiding the estimation of population parameters. A more
appropriate alternative is to model the joint likelihood of genotypes and disease
status, and use both affected and unaffected children through a generalized linear
model [56, 57]. By utilizing the data more fully and appropriately, one can obtain a
higher power for detecting imprinting and maternal genotype effects [57].

1Although such data are typically only used to help estimating mating type probabilities, they can
contribute to the estimation of risk parameters under certain formulations [57].
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Statistical Methods

We first discuss methods that can be used to detect imprinting at an associated
locus assuming there is no maternal genotype effect. Such methods are usually
very simple and powerful if there is indeed no maternal effect. However, when the
assumption is violated, there can be severely inflated type I error rate or reduced
power [57]. We then turn our attention to methods that are designed to detect only
maternal genotype effects assuming there is absence of imprinting. Such methods
may also suffer from large biases in the parameter estimates and inflated type I
error rates should the assumption be violated [57]. Due to the confounding between
imprinting and maternal genotype effects [17], it is important that both effects
be accounted for simultaneously in a statistical test of parent-of-origin effects.
If, however, there is a priori and unequivocal information that either imprinting or
maternal effect is indeed absent, then a method that assumes the null effect of such
factor would indeed be more powerful and appropriate.

Detection of Imprinting Assuming No Maternal Effect

Based on the assumption that there is association between the trait and the genetic
variant of interest but no maternal genotype effect, the parental-asymmetry test
(PAT) [50, 60, 62] is a simple but powerful method for testing imprinting effect. It
basically measures whether there is an imbalance between the number of the variant
allele inherited from the mother and that from the father among affected children.
The original study design considered by PAT is case-parent triads in retrospective
studies. Due to familial aggregation of genetic diseases, it is likely that an affected
child may have affected siblings. Therefore, the original PAT has been extended to
nuclear families with an arbitrary number of affected children [60]. For a family
(the ith family) with ni children, we denote the genotype scores (the number of the
variant allele carried by an individual) of the mother, father and affected child j by
Mi,Fi and Ci j ,1 ≤ j ≤ ni, respectively, which take values in {0,1,2}. To measure
the imbalance, we consider the statistic

ni

∑
j=1

[I(Fi > Mi,Ci j = 1)− I(Fi < Mi,Ci j = 1)],

where Fi > Mi,Ci j = 1 (Fi < Mi,Ci j = 1) represents the event that child j’s only
variant allele is inherited from the father (mother), and I is the usual indicator
function that takes the value of 1 if the event inside the parentheses is true and
0 otherwise. Since the contributions from multiple siblings within a family are
correlated, such correlations need to be taken into account in computing the variance
of the statistic. Assuming the availability of n nuclear families with independent
contributions and assuming mating symmetry in the population lead to the following
test statistic that is distributed as N(0,1) asymptotically [60]:
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PAT =

n
∑

i=1

ni

∑
j=1

[I(Fi > Mi,Ci j = 1)− I(Fi < Mi,Ci j = 1)]

√
n
∑

i=1

[ ni

∑
j=1

I(Fi �= Mi,Ci j = 1)+ 2 ∑
j<k

I(Fi �= Mi,Ci j = 1,Cik = 1)
] .

PAT’s further extension, the pedigree parental-asymmetry test (PPAT) and the
Monte Carlo pedigree parental-asymmetry test (MCPPAT), can accommodate
extended families and missing genotypes [62]. These model-free tests have been
implemented in software packages and are powerful tools for detecting imprinting
effects. Nevertheless, caution needs to be exercised when applying these methods.
As we mentioned earlier, the assumption of no maternal genotype effect should not
be taken lightly. Due to confounding, an unaccounted maternal effect may magnify
paternal imprinting while canceling out maternal imprinting. For analysis that utilize
family data, it would be a good idea to ascertain whether the data were collected
prospectively or retrospectively since PAT type tests are designed for retrospective
designs.

Detection of Maternal Genotype Effect Assuming No Imprinting

For retrospective study designs that recruit child-mother pairs only, there is little
information contained in such data about imprinting, and therefore, the focus is
typically on studying the maternal genotype main effect assuming the absence of
imprinting [41]. Such an assumption is also due to practical reason, as the log-linear
or logistic models will otherwise be overparameterized. The models and methods in
such scenarios are special cases of those discussed in section “Joint Consideration of
Imprinting and Maternal Effects: Retrospective Studies” and will not be discussed
separately.

There are also specialty tests for detecting interaction effects between the geno-
types of mother and child, the maternal-fetal genotype incompatibility test (MFG)
[42]. Under the case-parent triad design, a number of scenarios are considered,
corresponding to different parametrizations of the log-linear model for connecting
the disease phenotype to the case-parent triad genotypes depending on different
hypotheses of biological interactions. The method for case-parent design has been
extended to nuclear families or child-mother pairs data [6, 8]. The log-linear
approach in the MFG test may also be viewed as a special case of those discussed
in section “Joint Consideration of Imprinting and Maternal Effects: Retrospective
Studies”.

A more recent extension, the extended-MFG test [7], considers extended families
with arbitrary pedigree structures. For a pedigree with complete genotype vector G
and trait phenotype vector D, its contribution to the likelihood is the conditional
probability
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P(G|D) =
P(G,D)

P(D)
=

P(D|G)P(G)

∑G P(D|G)P(G)
.

The penetrance contained in P(D|G) can be modeled as log-linear. Under the
assumption of random mating, the probability of the pedigree genotype P(G) can
be factored into the products of founder probabilities and Mendelian transmission
probabilities assuming HWE. Discussion on how to relax this assumption is given
at the end of section “Joint Consideration of Imprinting and Maternal Effects:
Prospective Studies”. If there is missing data, the probability will sum over all
possible genotypes that are compatible with the observed ones.

Joint Consideration of Imprinting and Maternal Effects:
Retrospective Studies

The most frequently used model for connecting the underlying family triad geno-
types with disease risk for the child are either log-linear or logistic. These
two models would provide equivalent inferences unless additional constraints are
imposed in the log-linear formulation [41]. As in section “Detection of Imprinting
Assuming No Maternal Effect”, we denote the genotype scores of the mother, father
and child in a triad by M, F and C, respectively, which take values in {0,1,2}.
The disease status D = 1 indicates that the child is affected, D = 0 otherwise.
Let η = E[D|M,F,C] = P(D = 1|M,F,C). Then the log-linear/logic model can be
expressed as:

g(η) = δRI(C=1)
1 RI(C=2)

2 RI(C=1&origin=M)
im SI(M=1)

1 SI(M=2)
2

γ I(M=0,C=1)
01 γ I(M=1,C=0)

10 γ I(M=1,C=1)
11 γ I(M=1,C=2)

12 γ I(M=2,C=1)
21 γ I(M=2,C=2)

22 , (1)

where g, the link function, is η/(1−η) for the logit model or the identity function
for the log-linear model. For the parameters in the model, δ is the phenocopy rate
of the disease; R1 and R2 are the variant allele effect of 1 and 2 copies carried by the
child, respectively; Rim is the effect when the single copy of the variant allele carried
by the child is inherited from the mother; S1 and S2 are the maternal effect when the
mother carries 1 and 2 copies of the variant allele, respectively; the γ parameters
denote the interaction effects; I(·) is the usual indicator function that is equal to 1 or
0 depending on whether the condition within the parentheses is met or not. A similar
model can be written down for child-mother pairs (Table 1, bottom segment). Based
on the parametrization, Rim = 1 signifies no imprinting effect; S1 = S2 = 1 indicates
no maternal genotype (main) effects, whereas γ01 = γ10 = γ11 = γ12 = γ21 = γ22 = 1
indicates no interaction effects between the mother and the child’s genotypes. We
further note that a model with only interaction effect γ01 or γ10 codes for the RhD
type “mismatch” or NIMA.



294 S. Lin

Taking the log-linear model as an example, one can write down the contribution
of a case-parent triad to the likelihood:

P(M,F,C|D = 1) = P(D = 1|M,F,C)P(M,F,C)/P(D = 1)

= ημMF P(C|M,F)/P(D = 1),

where η is as defined in Eq. (1) with g taken to be the identity function; μMF =
P(M,F) is the mating type probability; P(C|M,F) is the Mendelian transmission
probability; P(D = 1) is the disease prevalence. There are 9 possible mating types
for a SNP, but the total probabilities need to sum to 1, so there are 8 independent
nuisance parameters. Given the large number of parameters, assumptions about
genotype risks (e.g., only main effects are considered) and mating type probabilities
(e.g., mating symmetry or HWE) are typically made to avoid overparameterization
in a full likelihood approach [1].

A partial likelihood approach using the case-parent triads/control-parent triads
design but allowing for missing fathers in both cases and controls circumvents the
need to estimate the mating type probabilities [58]. The key is the recruitment
of control families of the same structure as case families, thus creating “internal
matches” stratified by the familial genotypes. A partial likelihood component
can then be extracted from the full likelihood of the retrospective design. This
partial likelihood can be thought of as the products of likelihoods from stratified
prospective designs according to the triad/pair genotypes. Through conditional on
the familial genotypes, the partial likelihood is free of the nuisance parameters
with respect to the population mating type probabilities. Therefore, it is no longer
necessary to make any assumption about mating type probabilities. This makes
the partial likelihood approach more robust and more efficient by reducing the
parameter space. However, there is a trade-off. The data in which both the mother
and the child are heterozygous while the father’s genotype is missing cannot be used
in the procedure, which may lead to reduction in power in some situations.

Joint Consideration of Imprinting and Maternal Effects:
Prospective Studies

For prospective studies, the familial genotypes and the disease data need to
be modeled jointly. Since such studies usually involve extended pedigrees, it is
rather common that some of the genotypes are missing in a family. Let G =
(G1, · · · ,Gc, · · · ,Gn) denote the genotype scores of all n members of a family, with
the c non founders preceding the founders. Since some of the genotype scores may
be unavailable, we further divide G into Go, the observed scores, and Gm, the
missing scores. We let D = (D1,D2, · · · ,Dc) denote the binary disease status of all c
non founders. Further, Fk and Mk denote the genotype score of the father and mother
of non founder k in the pedigree. Assuming that the disease status of the nonfounders
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are conditionally independent given the familial genotypes, the contribution of this
family to the likelihood is the joint probability of all observed genotypes and disease
status:

P(Go,D) = ∑
Gm

P(Go,Gm,D) =∑
Gm

P(Go,Gm)
c

∏
k=1

P(Dk|Mk,Fk,Gk).

The penetrance P(Dk|Mk,Fk,Gk) can be modeled as before using Eq. (1). To com-
pute the probability of the familial genotypes, P(Go,Gm), one can factor it into the
products of the probabilities of founders and each nonfounder conditioning on the
parental genotypes. The latter, the conditional probabilities, are simply transmission
probabilities under Mendel’s law of segregation. Although random mating and
HWE are usually assumed when computing founder genotype probabilities, as in
section “Detection of Maternal Genotype Effect Assuming No Imprinting”, these
assumptions are strong and likely to be violated in reality. A solution to avoid such
strong assumption is to model each founder couple jointly and to model a married-in
founder conditional on the spouse’s genotypes [57].

Missing genotypes have long been a concern in family-based association studies.
A widely employed strategy for handling missing data is to recover missing infor-
mation based on what have been observed. For pedigrees with a moderate number
of missing genotypes, it is feasible to enumerate all possible unobserved genotypes
that are compatible with the observed genotypes of other family members [57]. This
practice can be very fruitful, as the power can be much higher than simply excluding
individuals with missing genotypes from the analysis. However, for large pedigrees
with a lot of missing genotypes, enumeration may become impracticable. Thus,
computational methods such as reverse peeling [38] may be considered.

Assumptions and Their Effects

Mating Type Probabilities and Population Stratification

Hardy Weinberg equilibrium is the strongest assumption that portraits random
mating. This assumption is needed for parameter identifiability with limited data,
especially in the case-mother design [1]. A less stringent assumption is mating
symmetry, which is almost universally assumed to avoid overparameterization [1],
with only a few exceptions [48, 58]. However, if there is gender-specific assortative
mating, then the assumption of mating symmetry does not hold anymore. It has
been shown that some of the methods in the literature are not robust to departure
from the mating symmetry assumption [42,58], and can lead to greatly inflated type
I errors. The partial likelihood approach discussed in section “Joint Consideration
of Imprinting and Maternal Effects: Retrospective Studies” deviates from the rest by
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circumventing the need to estimate the mating type probabilities, and thus is robust
to violation of the underlying population mating type probability assumptions.

For study designs that recruit both case and control families, the effect of
population stratification is of concern. The degree of influence of stratification
depends on the assumptions about mating type probabilities. For a population
consisting of two subpopulations each in HWE, the population as a whole is no
longer in HWE. Thus, population stratification will have a profound effect on any
method that assumes HWE. On the other hand, although mating symmetry, or even
parental allelic exchangeability (a stronger condition than mating symmetry [41]),
continues to hold in the whole population if the assumption is true in each of the
subpopulation, there can still be considerable biases in parameter estimates and
inflated type I error rates for methods that require estimation of the mating type
probabilities [58]. This is in part due to other hidden assumptions, as discussed
in the following subsection. In contrast, for a method that circumvents the need
to estimate such probabilities, the effect is much smaller, even when the disease
prevalence is different in the subpopulations [58].

Disease Rarity

The assumption that the probabilities of child-mother pair genotype combinations
in the controls are approximately the same as in the general population is sometimes
made in the literature. It is typically argued that rare disease is a sufficient condition
for the assumption to hold [1,41]. Although the rationale seems plausible, analytical
as well as simulation results indicate that the rare disease assumption is only a
necessary, not a sufficient, condition, for the frequencies to be roughly equal. It is
the interplay of allele frequency and the underlying genetic model, not the rare
disease assumption alone, that determines whether the pair frequencies are roughly
equal [58]. The rarity assumption has driven other assumptions about population
frequency relationships [41], which is a hidden factor contributing to the biases and
inflated type I errors seen in methods that make such an assumption [58].

Multiple SNPs and Haplotypes

The methods discussed in this review are all single-SNP based, in that each SNP
is examined one at a time for its association with a trait, although SNPs are
available genomewide in the order of hundreds of thousands or even millions.
A common approach to utilize multiple SNPs is through haplotype analysis, which
can be more powerful for detecting association in complex diseases, especially when
(1) the causative variant is not investigated directly, or (2) when there are multiple
disease-causing alleles, or (3) when there are several mutations within the same
gene in cis formation [25,59]. Nevertheless, availability of haplotype-based methods
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is limited compared to SNPs-based ones, partially due to computational intensity.
Among methods for haplotype association studies, there are only a handful that
account for imprinting and/or maternal effects [2, 8, 61]. A rather interesting use of
haplotype is to aid deduction of parental origin for imprinting analysis at a test locus
using data from distant relatives [30]. This approach effectively borrows information
from neighboring markers to enhance one’s chance of identifying the parental origin
of an individual’s genes when information on both parents are missing and the
individual is otherwise not informative for imprinting analysis without bringing in
extra information.

Environmental Covariates and Quantitative Traits

Environmental factors, especially gene-environment interactions, are believed to be
another type of major contributors to the “missing heritability”. Although the log-
linear or logistic regression models discussed in this review can, in theory, easily
accommodate such factors, there are practical limitations. Even without parameters
representing environmental covariate effects, the models are already overparameter-
ized for studying binary traits. It would likely be more promising to consider the
main and interacting effects of environmental factors for traits that are measured
quantitatively. Several methods have been proposed for assessing imprinting effects
for quantitative traits [22, 40, 47], but investigation on environmental covariates is
limited. In [22], the environmental covariate effect was first regressed out before
carrying out an analysis to study imprinting effects. It was shown that there was a
gain in power after taking into account the covariate, although gene-environment
interactions cannot be investigated in this two-step approach.

Concluding Remarks

Since epigenetic factors such as imprinting and maternal genotype effects may
contribute to the explanation of “missing heritability”, there is an increasing interest
in factoring in such effects in studies that assess the effects of genetic variants, with
the goal of achieving a better understanding of the underlying genetic mechanism.
Most of the methods in the literature are for qualitative traits with a retrospective
study design. However, there are large epidemiologic studies that are prospective in
nature with extended pedigrees, and thus methods that can fully utilize such data
are clearly needed. Overparametrization is a major concern; assumptions needed
to avoid such a problems are difficult to check and likely to be unrealistic. The
partial likelihood approach is a step in the direction of reducing the parameter
space without commonly made assumptions, leading to a more robust and efficient
procedure. Environmental factors, especially their interacting effects with genetic
variants, are hypothesized to contribute significantly to missing heritability as well.
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Thus, more research in this direction, especially for quantitative traits, is warranted.
Genetic variants whose effects are modulated epigenetically through imprinting or
maternal genotypes can be of greater value in disease risk assessment and prediction
by including such epigenetic factors.
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Abstract In this paper, we present a brief overview of the methods which are
commonly used for statistical analysis of data in competing risks settings. Moreover,
we review 37 recent published clinical papers on breast cancer which consider an
event of interest, such as breast cancer incident, while they also take into account
the competing events, such as death due to other causes. The papers are selected
based on the number of citations and publication year.

Introduction

In breast cancer follow-up studies, the risk of developing breast cancer or breast
cancer mortality may be affected by deaths due to other causes. Ignoring competing
events can change the probability of the event of interest and overestimate it.
Appropriate statistical methods such as cause-specific hazard model or hazard of
subdistribution should be used for proper regression modeling of an event in the
presence of competing risks. In this paper, we first present a brief overview of the
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statistical methods which are commonly used to analyze the data in competing risks
settings. We then review the literature for recent clinical papers on breast cancer
which have been interested in a particular event, such as breast cancer incident or
death from breast cancer following a breast cancer diagnosis, while they have also
considered the competing events.

Competing Risks Models

Cause-Specific Hazard and Cumulative Incidence Function

When there are K competing causes of death, the cause-specific hazard of survival
time T, which is defined as the instantaneous probability of failing from cause k in
presence of covariates Z is

λk

(
t
∣
∣
∣Z
)
= lim

Δ t→0

1
Δ t

P
(

t < T ≤ t +Δ t,C = k
∣
∣
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)
. (1)
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)
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. In this model, a subject who
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It should be noted that in this context, Sk
*(t|Z) cannot be interpreted as the marginal

probability that a person with covariates Z and subject only to risk from cause k
will survive to time t. In the context of independent latent failures [1], Sk

*(t|Z)
is interpreted as the marginal survival function of cause k, and 1− Sk

*(t|Z) is
the cumulative “pure” risk. The cumulative incidence function of cause k is the
probability of failing from cause k by time t and is equal to

Ik
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This quantity is sometimes called the “absolute risk” or “crude” risk.
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Methods to Estimate Cause-Specific Hazard

A Kaplan-Meier estimate for cause-specific hazard is given by Kalbfleisch and
Prentice [2]. Cause-specific hazard can be also estimated using semi-parametric
models such as Cox proportional hazards model (PHM) which models the effect
of covariates. The cause-specific hazard of cause k for a subject with covariate Z is

λk

(
t
∣
∣
∣Z
)
= λk,0(t)exp

(
β T

k Z
)
, (3)

where λ k,0(t) is the baseline cause-specific hazard for cause k, and vector β k is the
covariate effect on cause k [3]. The cumulative incidence function of cause k is then
obtained from Eq. 2.

A “naïve” (biased) formula for the cumulative incidence function of cause k is
obtained if we replace S(s|Z) in Eq. 2 with Sk

*(s|Z):
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)
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∣
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)

ds. (4)

Hazard of Subdistribution and Cumulative Incidence Function

Fine and Gray [4] propose to use Cox PHM as a model for so-called hazard of
subdistribution, to perform regression directly on cumulative incidence function.
This model keeps in the risk sets the subjects who fail from the competing causes,
but uses an estimate of the survivor function of the censoring distribution to reweight
their contributions to the risk sets. The hazard of subdistribution is defined as

λ k

(
t
∣
∣
∣Z
)
= lim

Δ t→0

1
Δ t

P
(

t < T ≤ t +Δ t,C = k
∣
∣
∣T ≥ t or C �= k,Z

)
. (5)

The hazard of subdistribution can be modeled using Cox proportional hazards
model as

λ k

(
t
∣
∣
∣Z
)
= λ k,0(t)exp

(
β T

k Z
)
, (6)

where λ k,0(t) is the baseline subdistribution hazard of cause k.
The cumulative incidence function of cause k is then calculated by
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Equation 7 unlike Eq. 2 uses only the hazard of subdistribution to obtain the
cumulative incidence function of cause k, so when using Eq. 6 it is easier to interpret
the effect of the vector of covariates Z on the cumulative incidence function.

Conditional Probability Function

Pepe and Mori [5] describe the conditional probability function as the probability of
failure due to cause k by time t given that the subject has not failed from any other
causes by this time. The conditional probability function is the proportion of the
events of interest after removing observations that have experienced a competing
event up to time t.

CPk(t) =
P(failure from cause k by time t)

1−P(non-failure from cause k by time t)
=

Ik

(
t
∣
∣
∣Z
)

1− Iother

(
t
∣
∣
∣Z
) , (8)

where Iother(t|Z) is the cumulative incidence function for all causes other than k.
Pepe and Mori [5] warn against using Eq. 4, as it requires the optimistic assumption
that incidence of an event completely eliminates occurrence of other competing
events.

Type of Data Required for Competing Risks Models

Cause-specific hazard model or conditional probability function can be used for
competing risks analysis of data from different types of clinical studies, such as
full cohort, case–control, nested case–control, and case-cohort. However, estima-
tion of cumulative incidence based on subdistribution hazard model requires full
cohort data.

Competing Events in Breast Cancer Publications

In many breast cancer clinical studies, follow-up of a woman is terminated as soon
as she experiences an event, either the event of interest or a competing event. We
reviewed the literature for more recent clinical journal publications on breast cancer,
which have considered the competing risk settings of their studies and employed one
or more of the statistical methods described in section “Competing Risks Models”
to address it. The papers are selected based on two criteria: number of citations and
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publication year. 37 papers published after 2002 were reviewed. We classified the
papers based on the main event of interest which they considered, or for which they
developed a prediction model. The events include “breast cancer incidence”, “breast
cancer mortality”, “breast cancer recurrence”, and “occurrence of a second cancer,
other diseases, or metastasis following breast cancer”, shown in Tables 1, 2, 3, and
4. In each table, we present the main event of interest, the competing events, and
the competing risks method which was used for analysis. Some of the papers have
employed more than one method. In the following subsections, a summary of the
reviewed papers in each category are presented.

Articles with Breast Cancer Incidence as the Outcome

This subsection provides a summary of the articles listed in Table 1, which consider
breast cancer incidence as the outcome.

Travis et al. [6] use population breast cancer incidence rates and competing
causes of death to estimate cumulative absolute breast cancer risk for women
treated for Hodgkin lymphoma at age 30 years or younger. Degnim et al. [7]
stratified the risk of breast cancer in women with atypia. Hwang et al. [8] estimate
ductal carcinoma in situ prevalence and incidence in known BRCA-positive and
BRCA-negative women who were undergoing genetic testing for a BRCA mutation.
Kerlikowske et al. [9] identify characteristics of women who have been diagnosed
with ductal carcinoma in situ (DCIS) and have a high or low risk of subsequent
invasive cancer. These women were older than 40 years at diagnosis and treated
by lumpectomy alone. Kurian et al. [10] estimate subtype-specific lifetime breast
cancer risks.

Yi et al. [11] identify the factors that may affect a decision to undergo
contralateral prophylactic mastectomy for patients with unilateral breast cancer
who underwent breast-conserving surgery and/or mastectomy. Biggar et al. [12]
examine the association of using digoxin with risk of breast cancer. Luo et al. [13]
investigate the effect of smoking on the risk of developing invasive breast cancer
among postmenopausal women aged 50–79 years.

Petracci et al. [14] estimate the effects of changes in modifiable risk factors
on the absolute risk of breast cancer for women aged 23–74 years with breast
cancer. Warner et al. [15] compare the incidence of advanced-stage breast cancers
in women undergoing MRI screening with those undergoing conventional screening
for women with a BRCA1 or BRCA2 mutation. Taghipour et al. [16] consider 39
risk factors collected at the time of enrolment in the Canadian National Breast
Screening Study (CNBSS), and predict age-specific cumulative risk of invasive
breast cancer using data from the CNBSS.
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Table 2 Articles with breast cancer mortality as the outcome

Authora Main event of interest Competing events Hazard model

Schairer [17] Breast cancer mortality Death from other causes CP
Dalton [18] Breast cancer mortality Death from other causes CS
Hanrahan [19] Breast cancer mortality Death from other causes CS, CP
Chapman [20] Breast cancer mortality Deaths from other malignancies

and/or other causes
CS

Newcomb [21] Breast cancer mortality Death from other causes CP
Kalinsky [22] Breast cancer mortality Death from other causes CS, S
Komenaka [23] Breast cancer mortality Death from other causes S
Vinh-Hung [24] Breast cancer mortality Deaths from other causes CS

CS cause-specific hazard model, S subdistribution hazard model, CP conditional probability
function
aAll papers have more than two authors and we represent a paper by its first author

Articles with Breast Cancer Mortality as the Outcome

In this subsection, a summary of the articles listed in Table 2 are given, which
consider breast cancer mortality as the main event of interest.

Schairer et al. [17] estimate probabilities of death from breast cancer and other
causes for white and black women with breast cancer. Dalton et al. [18] study
the importance of a range of socioeconomic factors and comorbid disorders on
survival after breast cancer surgery for women with a primary invasive breast cancer
who were less than 70 years of age at the time of diagnosis. Hanrahan et al. [19]
investigate the impact of prognostic factors on breast cancer-specific and non-breast
cancer related mortality for T1a,bN0M0 breast cancer cases.

Chapman et al. [20] examine factors associated with cause-specific death in
disease free breast cancer patients after adjuvant tamoxifen treatment. Newcomb
et al. [21] evaluate the influence of prediagnostic use of hormone therapy on breast
cancer mortality for women over 50 with invasive breast cancer. Kalinsky et al. [22]
investigate the association of PIK3CA mutation with breast cancer for women who
underwent surgery for primary breast cancer.

Komenaka et al. [23] compare the breast cancer outcomes of underinsured
African American and non-Hispanic white women. Vinh-Hung et al. [24] examine
the relationship between age and lymph node ratio and determine their effects
on breast cancer and overall mortality for women over 50 with a unilateral
histologically confirmed T1-T2 node positive surgically treated primary breast
carcinoma.

Articles with Breast Cancer Recurrence as the Outcome

This subsection describes the articles which consider breast cancer recurrence as the
outcome (listed in Table 3).
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Fisher et al. [25] investigate the need for breast irradiation after lumpectomy
for node-negative women with invasive breast cancers of less than one centimeter.
The effects of obesity and race on prognosis in lymph node-negative, estrogen
receptor-negative breast cancer women are investigated by Dignam et al. [26].
Nottage et al. [27] establish the incidence of ipsilateral breast tumour recurrence
in a community treatment setting for women with node negative breast cancer who
diagnosed between ages 18–75 years.

Nguyen et al. [28] determine whether breast cancer subtype is associated with
outcome after breast-conserving therapy for women with invasive breast cancer.
Schaapveld et al. [29] also investigate the impact of age and adjuvant therapy on
contralateral breast cancer for surgically treated stage I–IIIA patients. Yerushalmi
et al. [30] compare the incidence of contralateral breast cancer between the
multifocal/multicentric and unifocal groups for women diagnosed with stage I–III
breast cancer.

Mell et al. [31] identify predictors of competing mortality in women with stage I
to II invasive breast cancer. Galimberti et al. [32] analyze the outcomes in single
micrometastatic sentinel node patients who did not receive axillary dissection.
Nsouli-Maktabi et al. [33] describe the cumulative incidence function of second
primary breast in first primary breast cancer black and white female survivors.

Articles with a Second Cancer, Other Diseases, or Metastasis
Following Breast Cancer as the Outcome

In this subsection, a summary of the articles listed in Table 4 are given, whose main
event of interest is a second cancer, other diseases, or metastasis following breast
cancer.

Crump et al. [34] estimate the risk of secondary acute leukemia following
epirubicin-containing chemotherapy regimens for women who received adjuvant
or neoadjuvant chemotherapy. Ryberg et al. [35] consider patients treated with
epirubicin-based chemotherapy and identify predictive factors for central nervous
system metastasis. Pestalozzi et al. [36] determine whether a high-risk group could
be defined among patients with operable breast cancer in whom a search of occult
central nervous system metastases was justified. They consider women with early
breast cancer as their study population.

Brown et al. [37] consider women diagnosed with breast cancer as a first primary
cancer who survived at least one year, and examine the absolute risk of second
cancer risk thirty or more years after diagnosis. Howard et al. [38] quantify long-
term temporal trends in the excess absolute risk of secondary leukemia among
women diagnosed with a first primary breast cancer who survived one or more years.

Marees et al. [39] estimate the risk of second malignancies in the survivors of
retinoblastoma. Ryberg et al. [40] identify the risk factors for cardiotoxicity and
overall mortality for anthracycline-naive patients treated for metastatic breast cancer
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with epirubicin. The risk of secondary non-breast cancers is assessed by Schaapveld
et al. [41] for patients diagnosed with invasive breast cancer. Kennecke et al. [42]
investigate metastatic behavior of breast cancer subtypes for patients with early-
stage of breast cancer.

Discussion

In this paper we briefly reviewed several recent clinical publications on breast
cancer which considered two or more competing events in their studies. We were
particularly interested to identify in each paper the main event of interest and the
other competing events and investigate the statistical method which was used. The
main event of interest in the majority of papers is either breast cancer incidence or
mortality, and death due to causes other than breast cancer is the competing event.
Some studies were interested in more than one event, such as incidence of both
ductal carcinoma in situ and invasive breast cancer. In some studies, more than one
event was competing with the main event, for example death and second breast
cancers were the competing events with secondary non-breast cancer as the main
event of interest. Most papers used cause-specific hazard model as an approach
for analyzing their competing risks data. More recent papers have opted for the
hazard of subdistribution as the statistical method for addressing competing events,
probably due to availability of more recently developed statistical tools, such as
package cmprsk in R [43].

There are other review articles on competing risk models and their uses for
breast cancer. Gail [44, 45] defines absolute and pure risks, and describes some
applications of absolute risk in breast cancer counseling and prevention.

Competing risks are relevant for medical research and their ignorance has
significant clinical consequences [46]. A review of clinical studies performed by
Koller et al. [46] reveals competing risks issues in 70 % of articles. Statistical
methods developed for competing risks data should be used to properly model and
estimate an event in the presence of other competing events.
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Quantifying Relative Potency
in Dose-Response Studies

Gregg E. Dinse and David M. Umbach

Abstract Relative potency is an important concept in the comparative evaluation
of chemicals via dose-response studies. For example, toxicologists use relative
potency estimates to rank chemicals with respect to a given response endpoint,
to convert doses of one chemical to equivalent doses of another chemical, and to
combine information across studies and endpoints when calculating toxic equiva-
lency factors. The conventional definition of relative potency, arising historically
from dilution assays, is a ratio of equi-effective doses, that is, those doses that
produce the same mean response. Specifically, the ratio is the dose of a reference
chemical divided by the dose of a test chemical. In an analytical dilution assay,
relative potency is constant regardless of the mean response used to select equi-
effective doses. Nevertheless, researchers often observed data that were inconsistent
with constant relative potency and desired ways to characterize non-constant relative
potency. This article reviews various approaches for quantifying relative potency
when it cannot be regarded as constant, including modifications to the usual
definition. In particular, we focus on recent proposals that describe the relative
potency of two chemicals as functions of dose or of response.

Introduction

Relative potency plays a critical role in toxicology. For example, toxicologists
estimate relative potency to rank chemicals with respect to a toxicity endpoint of
interest (e.g., [1]), to convert a dose of one chemical to an equivalent dose of another
chemical (e.g., [2]), and to combine information across studies and endpoints when
calculating a chemical’s toxic equivalency factor (e.g., [3]). Relative potency is
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typically derived from the parameters in a mathematical (dose-response) model that
expresses a toxicity response as a function of a chemical dose.

Consider a dose-response function that relates the mean response for a particular
endpoint to the dose of a given chemical. Let f (d;θ ) be a model that specifies
mean response in terms of dose d and parameter vector θ . We focus on models
for which f is a monotone increasing function of d, though the same methods can
be modified easily to handle monotone decreasing dose-response functions. Early
methods for comparative bioassays often assumed a linear model for f, possibly
after transforming dose, response, or both. Often, linearity is reasonable over
some restricted dose-response region only. A linear dose-response model specifies
f (d;θ ) = α +βd*, where θ = (α , β ), α is an intercept, β is a slope, and d* is a
dose metric (typically either dose itself or log dose). Other assays, especially those
for binary endpoints, frequently employed a sigmoid model with lower and upper
response asymptotes and expressed generally as:

f (d;θ ) = L+(U −L)g(d;φ ) , (1)

where L is the lower response limit, U is the upper response limit, and the dose-
quantile function g is a monotone increasing function of d that ranges from 0 (at
d= 0) to 1 (at d =∞) and depends on a parameter vector φ , with θ = (L, U, φ ). If
mean response decreases as dose increases, we associate U with d = 0 and L with
d=∞ and require g to be monotone decreasing in dose. In either case, the elements
of φ typically govern the location and shape of the dose-response curve.

Now consider multiple chemicals. Without loss of generality, we focus on two
chemicals: a reference chemical, C0, and a test chemical, C1. Rooted in ideas from
dilution assays, relative potency, denoted ρ , is classically defined as the ratio of
equi-effective doses (reference divided by test), i.e., doses of the two chemicals
that elicit the same response. Ideally, in dilution assays, this ratio does not change
with the response level chosen. Faced with examples where the ratio did vary with
response level, investigators had to grapple with ways to characterize non-constant
relative potency.

This article reviews approaches that have been proposed for assessing non-
constant relative potency. Some of these retain the classical definition of relative
potency as a ratio of equi-effective doses but abandon the notion that a single
numerical constant suffices to compare potency of two chemicals. Others retain the
simplicity of a single constant to compare potency between chemicals but abandon
or modify the classical definition. The most recent developments describe non-
constant relative potency using the notation of mathematical functions.

Constant Relative Potency in Bioassay

The classical concept of relative potency arises from analytical dilution assays,
where each test preparation is constructed as a dilution of a reference preparation
[4]. In this context, relative potency as the ratio of equi-effective doses is a
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Fig. 1 Dose-response curves producing constant relative potency. Panels: (a) diverging lines with
equal intercepts, where mean response is linear in dose; (b) parallel lines with equal slopes, where
mean response is linear in log dose; and (c) similar sigmoid curves, generated by Hill functions
with equal response limits and shapes. In all three panels, the ratio of any equi-effective doses for
reference chemical C0 and test chemical C1 is constant and equals the relative potency. In panels
(b) and (c), the length of each horizontal arrow from C1 to C0 is constant and equals the log relative
potency. In panel (b), the vertical dotted lines illustrate that a given arrow (or relative potency) can
be indexed by the dose of either chemical, as well as by mean response

constant, ρ , regardless of the response level considered. When relative potency is
constant, ranking chemicals is straightforward: simply rank them by the relative
potencies. Dose conversion is also simple: the dose of chemical C0 that is equivalent
to dose d1 of chemical C1 is d0 = d1ρ , and the dose of C1 that is equivalent to dose d0

of C0 is d1 = d0/ρ . Furthermore, because the ratio of equi-effective doses is constant,
the difference between the logs of those doses is also constant. Thus, as often noted,
relative potency is constant if and only if the dose-response functions are identical
except for a horizontal shift when plotted against log dose (though this graphical
definition can be inconvenient when zero doses are involved). When the relative
potency of two chemicals is constant, their dose-response curves are referred to as
similar.

Slope Ratio Assays

A slope ratio assay is based on dose-response curves that are linear functions of dose
with a common intercept (usually the origin) but possibly distinct slopes [4]. Thus,
the dose-response function for Ci is f (d;θ i) = α +β id, where β i > 0 and θ i = (α ,
β i) for i= 0,1 (Fig. 1a). Denoting the dose of Ci that produces mean response μ by
di(μ), the corresponding inverse function for Ci is di(μ) = f− 1(μ ;θ i) = (μ −α)/β i

and relative potency is a constant ratio of the slopes: d0(μ)/d1(μ) = β 1/β 0 for all
values of μ .
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Parallel Line Assays

A parallel line assay is based on dose-response curves that are linear functions
of log dose with a common slope but possibly distinct intercepts [4]. Thus,
the dose-response function for Ci is f (d;θ i) = α i +β log(d), where β > 0 and
θ i = (α i, β ) for i= 0,1 (Fig. 1b). The corresponding inverse function is di(μ) =
f− 1(μ ;θ i) = exp[(μ−α i)/β ] and relative potency is again constant: d0(μ)/d1(μ) =
exp[(α1 −α0)/β ] for all values of μ .

Assays Involving Similar Sigmoid Curves

Consider chemicals that have sigmoid dose-response functions of the form given
in Eq. 1. Suppose L and U are the same for both chemicals and that the vector
φ is the same for both chemicals up to a location parameter for log dose. Then,
the dose-response curves are similar, and the chemicals have constant relative
potency. The Hill [5] model is an example. It is obtained by setting g(d;φ ) =
dS/(dS +MS), where S is a shape parameter and M is the median effective dose
(ED50), which is the dose producing a mean response halfway between L and U.
Similar Hill curves have identical response limits and shapes; only their ED50s
differ (Fig. 1c). The corresponding inverse function for Ci is di(μ) = f− 1(μ ;θ i)
= Mi[(μ − L)/(U − μ)]1/S and relative potency is a constant equal to the ED50 ratio:
d0(μ)/d1(μ) = M0/M1 for all values of μ between L and U. The Hill model can
be rewritten in its log logistic form by setting g(d;φ ) = 1/[1+ exp(−X)] with X =
S[log(d)− log(M)]. Here, g(d;φ) is a logistic distribution function for log(d) with
location parameter log(M) and scale parameter 1/S [6]. Analogously, the probit
model takes the dose-quantile function g(d;φ) as the standard normal distribution
function evaluated at X [6]. Other distribution functions, such as the Weibull [7], can
be used for g(d;φ ), and φ can contain more than two parameters [8]. In any of these
cases, similar sigmoid curves (and thus constant relative potencies) are obtained by
constraining the dose-response models for C0 and C1 to be identical except for the
location parameter.

Non-constant Relative Potency

In many situations, the notion of constant relative potency is inconsistent with
observed data, and investigators face a dilemma. One strategy is to retain the
simplicity of a single constant as a descriptor of relative potency, even though
treating relative potency as fixed when it is not can generate misleading conclusions
[9]. This strategy can involve modifying or abandoning the classical definition of
relative potency based on a ratio of equi-effective doses. An alternate strategy is
to adopt a descriptor of relative potency that involves more than a single constant,
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but this alternative has the undesirable side effect of making dose conversion or
chemical ranking problematic. Despite an awareness that many pairs of chemicals
have non-constant relative potency, few general approaches for handling non-
constant relative potencies were developed until recently.

Defining Relative Potency as the Ratio of ED50s

Because similar sigmoid dose-response functions have constant relative potency
given by the ratio of their ED50s, some authors have simply employed that ratio as
a measure of relative potency even for data where dose-response curves in log dose
may differ by more than a constant horizontal shift (e.g., [10]). Others have pointed
out that this approach is simple and convenient but less than ideal theoretically
[11]. The convenience arises because an estimate of the ED50 is usually output by
software for fitting dose-response models. On the other hand, because this approach
treats relative potency as constant despite evidence to the contrary, it can lead to
flawed conclusions when ranking chemicals [9] and would certainly distort dose
conversions.

A more subtle issue also arises. When two sigmoid curves have the same upper
and lower response limits, the ED50 values for each curve correspond to the same
value of mean response for both curves. In that case, the ratio of ED50s meets the
classical definition of relative potency, at least at the single chosen response level.
On the other hand, when the two curves differ in their upper and/or lower response
limits, the ED50 values for each curve typically correspond to distinct values of mean
response for each curve and the classical definition of relative potency is lost. The
doses are no longer equi-effective in the sense of having the same mean response;
the doses instead mark the same proportional change in mean response between the
respective lower and upper limits for each chemical.

Deforming the Log-Dose and Response Axes to Achieve
Similarity via Splines

Guardabasso et al. [12] proposed to fit the reference chemical’s dose-response curve
using a cubic spline function of log dose and then obtain the test chemical’s dose-
response curve by horizontally shifting and stretching the reference chemical’s
spline by constant amounts along the log dose axis – essentially deforming the log
dose axis with a two-parameter transformation. They assumed that both chemicals
had the same response limits and equated log relative potency with the constant
shift parameter, even if the stretch (i.e., scale) parameter differed from 1. Thus,
even though they reported a constant value that they called ‘relative potency’, they
invoked an unconventional definition by allowing the dose-response curves to differ
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by more than a constant horizontal shift along the log dose axis. Later, Guardabasso
et al. [13] extended this approach to accommodate chemicals with different response
limits by also allowing vertical shifting and stretching of the reference spline along
the response axis. Their methods retained the simplicity of characterizing relative
potency by a single parameter at the expense of redefining relative potency in a way
that no longer matched the classical definition. Although the construction is a clever
one, the utility of this approach for the traditional uses of relative potency, such as
chemical ranking or dose conversion, seems questionable.

Evaluating Relative Potency at Multiple ED100π Values

We have already mentioned the common approach of using the ratio of ED50s to
assess relative potency even if the dose-response curves are not similar. Of course,
with non-constant relative potency, the ED50 ratio can differ greatly from the ED10

ratio, the ED75 ratio, or any other ratio of ED100π values (for any 0< π < 1). One
slight improvement on estimating non-constant relative potency by a single ED100π
ratio would be to report several ratios [14] or the range between two effective doses,
such as the ED20 and the ED80 [15]. Insofar as these proposals rely on ED100π
values, as mentioned earlier, they entail a modification of the classical definition of
relative potency when the two chemicals differ in their lower and/or upper response
limits.

Relative Potency Functions

From evaluating relative potency at a finite list of equi-effective dose levels, it is
a short step to evaluating relative potency at every relevant dose level, that is, to
defining a relative potency function.

Parallel Line Assays Where Similarity Fails

Cornfield [16] derived a relative potency function under separate linear log-
dose-response models. Assume that the mean response to dose di of Ci is
f (di;θ i) = α i +β ilog(di) and θ i = (α i, β i) for i= 0,1 (for similarity, the slopes
would be equal). The corresponding inverse function is di(μ) = f− 1(μ ;θ i) =
exp[(μ−α i)/β i], which allowed Cornfield to express log relative potency as a
linear function of mean response μ :

λμ (μ) = log
[
ρμ (μ)

]
= log

(
d0 (μ)
d1 (μ)

)

=

(
α1

β1
− α0

β0

)

+

(
1
β0

− 1
β1

)

μ . (2)
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Here, the notation ρμ (μ) denotes a relative potency function that maps μ to the
relative potency at response level μ . Cornfield noted that relative potency also
can be indexed by the dose of either chemical (Fig. 1b) and derived formulae
for ρd1(d1) and ρd0(d0) that express relative potency as functions of the doses of
the test and reference chemicals, respectively. All three relative potency functions
reduce to the constant obtained under the parallel line model if β 0 =β 1 =β .
Cornfield’s approach, which assumes a separate linear model in log dose for each
dose-response curve, produces relative potency functions that are log-linear either in
mean response or in log dose. His approach would be effective whenever a suitable
transformation of the response yields a pair of dose-response models that are linear
in log dose.

Specifying a Relative Potency Function a Priori

DeVito et al. [17] addressed the problem of estimating relative potency when data
on the reference chemical are adequate to fit a non-linear (i.e., Hill) dose-response
model, but data on the test chemical are not. For example, when fitting a sigmoid,
if responses at the highest tested doses do not level out, estimation of the upper
response limit (and thus the ED50) becomes problematic. DeVito et al. [17] proposed
the following ad hoc solution: (i) fit a Hill model to the reference chemical data;
(ii) invert this Hill model to express dose as a function of mean response; (iii) for
each (dose-specific) sample mean response in the test group, apply the inverse model
to predict an equivalent dose of the reference chemical (say d̂0); and (iv) fit a linear
model for equivalent reference dose in terms of actual test dose (say d1) to give:
d̂0 = α + βd1. If the dose-response curves are similar, α is zero and the relative
potency equals the constant β . However, if α is nonzero, relative potency is linear
in the reciprocal of test dose, namely: ρd1(d1) = d̂0/d1 = β +α/d1. Later, facing
data where the simple linear regression of d̂0 on d1 seemed inadequate, DeVito et al.
[18] extended their procedure to give a relative potency function that was constant
up to a threshold and then linear in the reciprocal of test dose.

This approach differs in a fundamental way from Cornfield’s approach. Cornfield
specified two dose-response models and deduced the appropriate relative potency
function. DeVito et al. specified a dose-response model for the reference chemical
but not for the test chemical. Instead, by assuming a simple linear regression of
d̂0 on d1, their procedure in effect specifies a relative potency function and uses
that function together with the dose-response model for the reference chemical
to implicitly induce a dose-response model for the test chemical. With such a
procedure, the induced dose-response model for the test chemical may not have
the same functional form as the dose-response model for the reference chemical.
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Sigmoid Dose-Response Models

Ritz et al. [19] derived a general formula for relative potency as a function of
mean response for dose-response model (1). If f (d;θ ) is monotone, one can invert
μ = f (d;θ ) to express dose as a function of mean response: d = f− 1(μ ;θ ).
Suppose d0(μ) and d1(μ) are doses of C0 and C1 that both produce the same mean
response μ . Dividing d0(μ) by d1(μ) expresses relative potency as a function of
mean response μ :

ρμ (μ) = f−1 (μ ;θ 0)/ f−1 (μ ;θ 1) , (3)

where θ 0 and θ 1 are the parameter vectors in the dose-response models for
chemicals C0 and C1. If Li and Ui are the lower and upper response limits for Ci

(i= 0, 1), ρμ(μ) is positive and finite for any μ in the intersection of the response
ranges: max(L0, L1)< μ <min(U0, U1). Conversely, ρμ(μ) is undefined for any
μ <min(L0, L1) or μ >max(U0, U1); and if μ lies between two distinct lower (or
upper) response limits, ρμ (μ) is either 0 or ∞.

Dinse and Umbach [9] extended these ideas by expressing relative potency as
functions of reference dose, of test dose, and of response quantile. Recall that similar
sigmoid curves are identical up to a constant shift along the log dose axis (Fig. 1c).
In fact, if we draw a horizontal arrow from the dose-response curve for C1 to the
dose-response curve for C0, the length and direction of the arrow correspond to the
magnitude and sign of the log relative potency (with left being negative). For similar
dose-response curves, any horizontal arrow will have the same length and direction
(Fig. 1c). For non-similar curves, each length can be distinct and the direction may
change. Nevertheless, each arrow, and thus each log relative potency (or relative
potency), can be indexed by mean response, reference dose, and test dose (Fig. 2).
Indexing by response quantile is somewhat different, and we will return to it later.

Consider expressing relative potency as a function of dose. Substituting f (d0;θ 0)
for μ in Eq. 3 and noting that f− 1(f (d0;θ 0);θ 0) = d0, one may express relative
potency as a function of reference dose d0:

ρd0 (d0) = d0/ f−1 ( f (d0;θ 0) ;θ 1) . (4)

Substituting f (d1;θ 1) instead, one may express relative potency as a function of test
dose d1:

ρd1 (d1) = f−1 ( f (d1;θ 1) ;θ 0)/d1. (5)

These relative potency functions are defined or undefined according to where the
corresponding mean responses, f (d0;θ 0) and f (d1;θ 1), fall with respect to the
bounds for ρμ (μ).

Relative potency also can be indexed by response quantile (denoted by π), which
is the fraction of the distance between the lower and upper response limits (i.e.,
mean response standardized to the unit interval). As mean response μ varies from L
to U, the corresponding quantile π = (μ – L)/(U – L) varies from 0 to 1. Let ED100π
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be the dose producing a mean response 100π% of the way from L to U (e.g., π = 0.5
gives the ED50). If C0 and C1 have the same upper and same lower response limits,
each value of π corresponds to the same value of μ for both chemicals (Fig. 2). On
the other hand, if the chemicals differ in one or both response limits, each value of
π will correspond to a distinct value of μ for each chemical (Fig. 3).

Consider the ratio of ED100π values for C0 and C1 as an alternative definition
of relative potency [9]. If C0 and C1 have the same response limits, the log of the
ED100π ratio is the horizontal distance between their dose-response curves on a log
dose axis (Fig. 2). Thus, when chemicals have equal response limits, a definition
based on the ED100π ratio corresponds exactly to the classical concept of relative
potency. If the limits differ, however, the ED100π ratio is no longer the ratio of doses
producing the same mean response. Instead, the log ED100π ratio is the horizontal
component of the non-horizontal line segment connecting the dose-response curves
at responses 100π% of the way from Li to Ui (i= 0, 1) (Fig. 3). Thus, when C0

and C1 have unequal limits, a definition based on the ED100π ratio embodies a
modified concept of relative potency. For a given quantile π , the mean response
to Ci is μ i =Li + (Ui −Li)π . Dividing dose f− 1(μ0;θ 0) by dose f− 1(μ1;θ 1), Dinse
and Umbach [9] obtained:

ρ∗
π (π) = f−1 (L0 +(U0 −L0)π ;θ0)/ f−1 (L1 +(U1 −L1)π ;θ1) ;

and, under the sigmoid model in Eq. 1, they showed that ρπ*(π) reduces to:

ρ∗
π (π) = g−1 (π ;φ0)/g−1 (π ;φ 1) . (6)
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These equations express relative potency as a function of response quantile π for
any 0<π < 1. We use the modified notation ρ* to emphasize that this particular
relative potency function does not, in general, embody the classical definition of
relative potency.

Also, because one can index the log ED100π ratio by either the dose of the
reference or test chemicals (Fig. 3), the modified definition of relative potency
admits two other relative potency functions. Substituting the dose-quantile function
g(d0;φ 0) for π in Eq. 6 and noting that g− 1(g(d0;φ 0);φ 0) = d0, one may express the
modified definition of relative potency as a function of reference dose d0:

ρ∗
d0 (d0) = d0/g−1 (g(d0;φ 0) ;φ 1) . (7)

Substituting g(d1;φ 1) instead, the modified relative potency becomes a function of
test dose d1:

ρ∗
d1 (d1) = g−1 (g(d1;φ 1) ;φ0)/d1. (8)
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Equations 6, 7 and 8 express the modified relative potency as functions of response
quantile π , reference dose d0, and test dose d1, respectively, for all π ∈ (0,1), d0 > 0,
and d1 > 0.

Consideration of the modified definition of relative potency embodied in the ρ*
functions arose for two reasons. First, as mentioned in sections “Defining Relative
Potency as the Ratio of ED50s” and “Evaluating Relative Potency at Multiple ED100π
Values”, earlier authors have suggested using the ratio of ED50s or of ED100πs
to measure relative potency. The ρ* functions are a natural extension of those
earlier approaches so examining the implications of this modified definition seemed
worthwhile. Second, before fitting dose-response models to compare chemicals,
toxicologists sometimes re-express measured responses as a percent of a control
mean for each chemical (e.g., perhaps a zero dose is expected to give a maximal
response) or rescale them to a range set by mean responses to both positive and
negative control treatments (e.g., normalized percent of activation) [20]. These
transformations seem designed to remove extraneous variability from the data under
a belief that rescaling makes sense when comparing chemicals (a point we return to
later). Thus, consideration of the ρ* functions also represented an effort to reflect
common toxicologic practice, though without transforming measured responses.

Solving Eq. 5 for f (d1;θ 1) yields f (d1;θ 1)= f (d1ρd1(d1); θ 0); that is, the dose-
response function for C1 can be expressed as the dose-response function for C0

evaluated at dose d1ρd1(d1). Similarly, Eq. 8 implies g(d1;φ 1)= g(d1ρd1
*(d1); φ0).

Consequently, specifying a dose-response (or dose-quantile) model and a relative
potency model together is equivalent to specifying a pair of dose-response (or dose-
quantile) models, a fact implicitly used by DeVito et al. [17, 18]. Recently, Dinse and
Umbach [21] described conditions where modeling ρd1(d1) (or ρd1

*(d1)) as a power
function, eηd1

ψ , guaranteed that, for a wide range of popular dose-response models,
the dose-response (or, respectively, dose-quantile) models for both chemicals would
have the same functional form. They also pointed out that directly modeling ρ or
ρ* can sometimes facilitate inferences about relative potency functions.

Selecting Among Various Relative Potency Functions

The primary question is whether to use {ρμ(μ), ρd0(d0), ρd1(d1)}, the functions
that embody the classical concept of relative potency, or {ρπ*(π), ρd0

*(d0), ρd1
*(d1)},

the functions that embody the modified concept. If the dose-response curves have
identical response limits, both sets of functions are direct generalizations of the
usual definition of relative potency as a ratio of equi-effective doses. Graphically
these six relative potency functions convey essentially the same information because
they all plot the same dose ratio as the ordinate, though each against a distinct
abscissa, so the curves are differentially stretched horizontally (Fig. 4a–d).

If the response limits are not equal, however, {ρπ*(π), ρd0
*(d0), ρd1

*(d1)}, in
using a modified definition of relative potency, can give a different impression
than the other three relative potency functions based on the classical definition
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Umbach [9])

(Fig. 4e–h). When the response limits differ, the choice between these definitions
depends on whether those differences are intrinsic or extrinsic to the chemicals [9].
For example, suppose two pesticides are compared with respect to the percentage
of pests killed and a subset of the population is immune to one pesticide; thus,
the upper response limit would be 100% for one pesticide and less than 100%
for the other. These differences are intrinsic to the chemicals and should be taken
into account by using {ρμ(μ), ρd0(d0), ρd1(d1)}. The convenient choice is to use
ρμ(μ) for ranking chemicals and ρd0(d0) or ρd1(d1) for dose conversion. On the
other hand, suppose each chemical’s dose-response study is performed in a different
laboratory. Differences in response limits would be considered extrinsic if they were
idiosyncratic to the specific laboratories rather than a property of the chemicals
themselves. If response-limit differences are extrinsic, ρπ*(π) should be used for
ranking chemicals because it rescales the dose-response curves to the same response
range. Likewise, ρd0

*(d0) and ρd1
*(d1) would be used to calculate equivalent doses

of one chemical in terms of the other on a standardized response scale. Use of
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{ρπ*(π),ρd0
*(d0),ρd1

*(d1)} is in accord with the toxicologic practice of rescaling
responses as a percent of control mean response and is preferable to rescaling the
data, which can introduce correlations that are not accounted for by most standard
analyses.

Example

We analyzed data from U.S. National Toxicology Program (NTP) bioas-
says evaluating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-
pentachlorodibenzofuran (PeCDF) [22, 23]. We focused on cytochrome P450
1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) activity measured in liver
tissue of female Harlan Sprague–Dawley rats treated by oral gavage for 14 weeks.
Both studies involved 10 rats in each of 6 dose groups (control plus 5 exposure
levels). Our estimates of relative potency functions were derived from parameters
estimated by fitting dose-response models using the relationships described earlier.

We analyzed log-transformed enzyme activity via least squares. We used Proc
GLM in SAS (version 9.3, SAS Institute Inc., Cary, NC, USA) to fit a saturated
analysis-of-variance model that estimates a mean response for each dose level of
each chemical and Proc NLIN to fit nonlinear regression models. All analyses
assumed a common residual variance across dose levels and chemicals. Dose-
response models were Hill models based on Eq. 1 with g(d;φ) = dS/(dS +MS).
We compared the fit of nested models with F tests [24] based on residual sums
of squares and constructed simultaneous confidence bands for relative potency
functions using Scheffe’s method [24].

An 8-parameter model based on two separate Hill models (Table 1) showed
no lack of fit (Fig. 5a, b) compared to a saturated analysis-of-variance model
with 12 parameters (F4,108 = 0.06, p= 0.99). However, a 6-parameter model with
common response limits for TCDD and PeCDF did not fit as well as the 8-parameter
model (F2,112 = 14.44, p< 0.0001). We conclude that the chemicals have different
response limits. Consider ρd1 as an example. If one regarded these response-
limit differences as intrinsic to the chemicals, estimation of ρd1 as a function of
PeCDF dose should use Eq. 5. The differences in response limits guarantee that
ρd1 is non-constant. The estimated ρd1 is below one for most of the dose range
but exceeds one at either edge of that range (Fig. 5c), suggesting that PeCDF is
generally less toxic than TCDD. On the other hand, if one regarded the response-
limit differences as extrinsic to the chemicals, estimation of ρd1

* as a function of
PeCDF dose should use Eq. 8. Relative potency modeled as a power function of
PeCDF dose, ρd1

*(d1)= eηd1
ψ , a straight line in log-log plots (Fig. 5d), fit no better

than ρd1
*(d1)= eη for these data (F1,112 = 0.24, p= 0.63) (Table 1). This conclusion

is consistent with the horizontal line at 0.06 (= e− 2.76), the estimate of modified
relative potency as constant, remaining within the 95% confidence band for the
power-function estimate (Fig. 5d). We do not know enough about the details of
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Fig. 5 Dose-response and relative potency for TCDD and PeCDF for liver EROD activity (pmol
of resorufin formed per min per mg of microsomal protein) in rats after 14-week exposure via oral
gavage. Dose units are ng per kg of body weight per day. Panels (a) TCDD and (b) PeCDF show
observed activity for each rat (◦), dose-specific means (♦), and estimated dose-response curves
(solid, 8-parameter model with a separate Hill function for each chemical; dashed, 6-parameter
model honoring a constraint that both chemicals have same response limits; dotted, 7-parameter
model honoring a constraint that ρd1

*(d1) is constant). Panel (c) shows an estimate of ρd1(d1).
Panel (d) shows estimates of ρd1

*(d1) (solid, as a power-function; dashed, its 95% simultaneous
confidence band; dotted, as a constant)

the experiments and the biology to decide whether the response-limit differences
should be regarded as intrinsic or extrinsic to these chemicals. Regardless of that
judgment, however, these data support a conclusion that PeCDF is less potent than
TCDD.
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Summary

The idea that relative potency should be constant is rooted historically in analytical
dilution assays. It simplifies chemical ranking and dose conversion. If relative
potency is a constant equal to ρ , the dose of chemical C0 that is equivalent to dose
d1 of chemical C1 is d0 = d1ρ , and the dose of C1 that is equivalent to dose d0 of C0

is d1 = d0/ρ . Chemical ranking is even easier: order each chemical by its value of ρ .
Toxicologists, however, have long been faced with data from comparative assays

that indicate that relative potency is not generally constant. Over the years, various
investigators have suggested ways to cope with non-constant relative potency.
Extending the concept that relative potency is the ratio of equi-effective doses,
Cornfield [16] showed that linear dose-response models in log dose induce relative
potency functions that are log-linear in log dose or response. In fact, a wide variety
of monotone dose-response models can be inverted to express relative potency
as a function of reference dose, test dose, or mean response. Analogously, using
a modified concept of relative potency as the ratio of ED100πs, one can express
(modified) relative potency as a function of reference dose, test dose, or response
quantile. If the chemicals have the same response limits, the classical and modified
definitions of relative potency coincide. Relative potency functions allow chemicals
to be ranked with respect to toxicity, though that ranking may change for different
dose or response levels. For dose conversion, the dose of C0 that is equivalent to
dose d1 of C1 is d0 = d1ρd1(d1) and the dose of C1 that is equivalent to dose d0

of C0 is d1 = d0/ρd0(d0). The choice between {ρπ*(π), ρd0
*(d0), ρd1

*(d1)}, based on
the modified concept of relative potency, and {ρμ(μ), ρd0(d0), ρd1(d1)}, based on
the classical definition, depends on whether response limits differ for extrinsic or
intrinsic reasons. Relative potency functions appear to be a promising avenue for
characterizing non-constant relative potency.
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Development and Validation of Exposure
Biomarkers to Dietary Contaminants
Mycotoxins: A Case for Aflatoxin
and Impaired Child Growth

Paul Craig Turner and Barbara Zappe Pasturel

Abstract Mycotoxins are toxic secondary metabolites that globally contaminate an
estimated 25% of cereal crops and thus exposure is frequent in many populations.
The heterogeneous distribution of mycotoxins in food restricts the usefulness of
food sampling and intake estimates for epidemiological studies; instead exposure
biomarkers provide better tools for informing epidemiological investigations. Afla-
toxins, fumonisins and deoxynivalenol are amongst those mycotoxins of particular
concern from a human health perspective. Validated exposure biomarkers for afla-
toxin (urinary aflatoxin M1, aflatoxin-N7-guanine, serum aflatoxin-albumin) were
important in confirming aflatoxins as ‘Group 1’ liver carcinogens. For fumonisins
and deoxynivalenol these steps for exposure biomarker development and validation
have significantly advanced in recent years. Such biomarkers should better inform
epidemiological studies and thus improve our understanding of their potential risk to
human health. In West Africa it has been suggested that growth faltering in children
is not fully explained by poor nutrition and infection. This review highlights some of
the recently emerging epidemiology that strongly implicates a role for aflatoxins in
this growth faltering, and suggests potential mechanisms. The use of aflatoxin expo-
sure biomarkers were essential in understanding the observational data reviewed,
and will likely be critically monitors of the effectiveness of interventions to restrict
aflatoxin exposure.

Introduction to Mycotoxins

Fungi are important sources of dietary nutrition (mushrooms, cheeses) and
medicines (penicillin, statins), but can also produce toxic secondary metabolites
known as mycotoxins. These potent dietary toxins are estimated to contaminate 25%
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of the world’s cereal crops [1] making exposure frequent among many populations.
Among the hundreds of mycotoxins identified, those of major public health concern
include aflatoxins (AF) produced from Aspergillus, and both fumonisins (FB),
and trichothecenes (deoxynivalenol (DON), nivalenol, T2-toxin) from Fusarium.
AF and FB are more frequent contaminants of crops in hot and humid climates
as in Central America, tropical Asia and sub-Saharan Africa where staple foods
such as maize and groundnuts (peanuts) are often contaminated. For AF both field
growth and long-term storage contribute to the burden of contamination, whilst
FB is predominantly a field toxin of maize [2], Trichothecenes e.g. DON are more
prevalent in temperate climates, and also tend to accumulate in the field to a greater
extent than during dry storage. They occur in a variety of grains, though wheat and
maize are the predominantly contaminated cereal [3]. Mycotoxins’ resistance to
processing, and their stability during cooking, also contribute to dietary exposure
[2]. Particularly vulnerable populations are those with limited dietary variation
and a heavy reliance on one or two high risk dietary staples. For this reason those
individuals at greatest risk are often from some of the poorest countries, with
inadequate or absent regulations and limited food choices.

With the exception of the aflatoxins, mycotoxins as a group of contaminants
remain a mostly poorly examined global health issue, despite the known frequency
of exposure and the demonstrated animal toxicities [4]. Aflatoxins are potent
humans carcinogens, suspected human growth modulators, and in animals cause
cancer and effect growth and immune function; fumonisins are suspected human
carcinogens, and recently postulated growth modulators, and in animals cause
diverse toxicity including cancer, neural tube defects, equine leukoencephalomala-
cia and porcine pulmonary edema; whilst deoxynivalenol has effects on the GI tract
and immune system of animals, and is suspected to cause growth faltering [4]. The
heterogeneous distribution of mycotoxins in the diet has restricted more classical
epidemiological approaches partly because these struggle to clearly define expo-
sure. However the development, validation and use of exposure biomarkers offer
improved exposure assessment. This short review highlights the development and
use of mycotoxin exposure biomarkers, and focuses on the emerging relationship
between early life exposures to and growth faltering in West African infants and
young children.

Mycotoxin Exposure Biomarkers

Biomarkers for Aflatoxin

Among the naturally occurring aflatoxins, aflatoxin B1 (AFB1) occurs most fre-
quently and is the most toxic and carcinogenic. AFB1 is metabolized by a
number of cytochrome P450 enzymes [5, 6] generating hydroxy-metabolites (e.g.
AFM1, AFQ1 and AFP1) and two reactive epoxide species, aflatoxin B1 exo-8,9-
epoxide and endo-8,9-epoxide. The epoxides can cause cellular and macromolecule
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damage by binding to proteins and nucleic acids [7–10]. Aflatoxin B1 exo-epoxide
preferentially binds to guanine residues in DNA, and following depurination of
this adduct, aflatoxin-N7-guanine (AF-N7-Gua) is detected in urine, in addition
to the hydroxyl metabolites, and the un-metabolized parent toxins [7, 11] AFB1-
N7-Gua and AFM1 in urine are both strongly correlated with aflatoxin intake in
chronically exposed individuals, (r= 0.80, p< 0.0001 and r= 0.82, p< 0.0001 for
AFB1-N7-Gua, and AFM1) [12–15]. These quantitative relationships for urinary
aflatoxins provide confidence in the use of these measures as exposure assessment
tools (Fig. 1).

Hydrolysis of both epoxides allows protein adduction and toxicity, and the
formation of aflatoxin-albumin, which can readily be observed in the sera of exposed
animals and humans [16–41]. The concentration of aflatoxin-albumin in dietary
exposed individuals strongly correlates with aflatoxin intake (r= 0.69, p< 0.0001);
providing an additional exposure biomarker that based on the half-life of albumin
represents an integrated assessment of exposure over a period of two to three months
[18, 22]. Aflatoxin-albumin adduct levels were additionally demonstrated to be
linear with dose in rodents across a dosing range from 0.16 ng/kg body weight (bw)
to 12,300 ng/kg bw (r2 = 0.98), and importantly, typical human exposures within
low, moderate and high risk communities all fall within this experimental range
[41]. Neither AFB1 nor other AFB1 metabolites in urine have been demonstrated
to be correlated with the dose [12]. For this reason, urinary AFB1 is informative to
some extent that exposure occurred, but does not provide a useful indicator of the
amount of that exposure.

In high risk regions of the world, greater than 95% of those individuals tested are
positive for aflatoxin-albumin over a 3 log range, from approximately 3–5 pg/mg
albumin to >1,000 pg/mg [16–38], while more developed regions rarely have
detectable levels of the biomarker [23, 42].

Biomarkers for Fumonisin

Fumonisins do not appear to undergo significant metabolism [43–49], thus
biomarker development has not followed the metabolite profile approach used for
aflatoxin. Fumonisins inhibit sphingolipid metabolism by competing with ceramide
synthase [43, 50, 51]. Their capacity to alter levels of sphingoid bases, as observed
in experimental animals [50–53], is plausibly linked to their suggested mechanism
of toxicity [43, 52–54] including cancer and neural tube defects. Animal studies
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Fig. 2 Chemical structure of
the major naturally occurring
fumonisin – fumonisin B1

indicate that the transfer of fumonisins to urine was around 0.4–2.0% of that
ingested [44–49], though typically these percentages refer to total transfer over
several days, and often at doses higher than would be observed in humans.

One human study examined tortilla consumption in Mexican women and found
that urinary FB1 was detected more frequently in the group with high consumption
(96%) compared to medium (80%) and low (45%) consumption [55]. The geometric
mean urinary FB concentrations were also associated (p< 0.001) with consumption
of tortillas (geometric means and 95th percentile were 147 pg/ml (88, 248 pg/ml),
63 pg/ml (37, 108 pg/ml) and 35 pg/ml (19, 65 pg/ml), respectively). In a separate
study the concentration of urinary FB1 was measured in Chinese adults. Comparison
between two counties with similar frequency of FB1 detection revealed mean
concentrations of 13,630 pg/mg creatinine (range nd – 256,000 pg/mg; median
3,910 pg/mg) in Huaian county as compared to 720 pg/mg (range nd – 3,720 pg/mg;
median 390 pg/mg) in Fusui county [56], though no significant correlation between
urinary FB1 and estimated intake was found. This lack of correlation may reflect
the fact that food frequency questionnaires (FFQ) measured typical intake over
weeks while urinary measures more typically reflect more recent intake, though the
toxicokinetics of urinary FB are not clearly defined as yet. Their data suggested that
FB intakes were at least threefold higher in Huaian County and that about 1–2% of
the ingested FB was transferred to urine. A study in South Africa attempted to better
assess the relationship between urinary FB1 and FB1 ingestion using measures from
plate ready food (a maize porridge). A moderate correlation (r2 = 0.31, p< 0.001)
was observed between estimated FB1 intake/kg bw/day and urinary FB1 adjusted
for creatinine. In that study the transfer of ingested FB1 to urine was estimated to be
0.075%. Fumonisin disruption of sphingolipid metabolism and the associated levels
of sphingoid bases e.g. sphinganine-1-phosphate is another area being investigated
for the development of fumonisin exposure biomarkers [57, Riley et al. 2012,
manuscript in preparation] (Fig. 2).

Biomarkers for DON

DON, is a type B trichothecene mycotoxin predominantly associated with crop
contaminations such as Fusarium head blight in wheat and Gibberella ear rot
in maize [1]. Also known as vomitoxin due to its potent gastrointestinal effects,
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DON can be detoxified by gut microbiota to DOM-1, a de-epoxy metabolite, or
metabolized in the liver to a glucuronide. Meky and colleagues [58] suggested
the combined measure of un-metabolized DON or ‘free’ DON (fD) and DON-
glucuronide (DG) as a putative urinary exposure biomarker [59]. In a survey of
UK adults, urinary fD+DG from a single 24 hour void was detected in 98.7% of
individuals (geometric mean 8.9 ng/mg; 95%CI: 8.2, 9.7; range nd to 48.2 ng/mg)
[60] and a modest, but significant, positive association was observed between the
urinary measure and cereal consumption (p< 0.001, R2 = 0.23). A survey over
six days confirmed this relationship between cereal intake and the urinary bio-
measure (p< 0.001, R2 = 0.23) [61]. In addition, a four-day survey assessing DON
intake revealed that on a daily basis, urinary fD+DG was strongly correlated with
DON intake (p< 0.001, R2 = 0.56, 0.49, 0.54, 0.64, for each day respectively), and
an integrated assessment of the four days combined revealed a highly significant
correlation, which remained after adjustment for age, sex and BMI (p< 0.001,
R2 = 0.83).

Based on the strong quantitative relationship between exposure and the bio-
measure, and the stability in both ambient room temperature in short term (24 hour)
and cryo-preservation in the long term (years), urinary fD+DG is now regarded as
useful exposure biomarker [59–63]. DOM-1 is an important detoxification product
of DON in many species, but to date it is either absent or rarely detected in human
urine from DON exposed individuals, suggestive that humans may be one of the
more sensitive species to DON toxicity. Approximately 73% of the ingested DON is
transferred to urine as fD+DG [61]. To date DON is enriched from urine samples
prior to being quantified by LC/MS. The relatively high levels of DON that are
typically being observed in urine provides’ an opportunity to explore more rapid
methods as suggested by colleagues in Austria [64] (Fig. 3).

Summary of Biomarker Approaches

Table 1 summarizes the mycotoxin biomarker approaches discussed here. There are
significant differences in the urinary assays for aflatoxin, fumonisin and deoxyni-
valenol as analytic sensitivity depends on the sensitivity of exposure assessment
as well as the transfer kinetics of each toxin. For this reason, similar levels of
urinary bio-measures do not necessarily represent similar levels of exposure. Of
course similar levels of exposure do not necessarily reflect similar risk of concern;
for example aflatoxin is significantly more toxic than both fumonisin and DON.

Aflatoxins and Chronic Disease

Aflatoxins are proven hepatocarcinogens, classified by the International Agency for
Research on Cancer (IARC) as Group 1 human carcinogens [9, 65]. The role of
aflatoxin in the etiology of liver cancer is widely recognized. This role has been
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Fig. 3 Chemical structure of the major naturally occurring trichothecenes including DON

systematically demonstrated through animal models and molecular epidemiology
approaches involving the use of biomarkers of exposure and effect. A synergistic
interaction between aflatoxin exposure and hepatitis B virus carriage is well
documented [65], however the mechanism remains unclear, and worthy of further
investigation [8, 30, 34]. More recently, however, AF exposure biomarkers have
begun to reveal additional health concerns, namely growth faltering, immune
suppression.

Aflatoxin Exposure and Impaired Growth

Chronic aflatoxin exposure in many regions of Sub-Saharan is endemic, and two
decades of biomarker-driven research demonstrate that exposure occurs in utero,
during early life and childhood and continues into adulthood [4]. In early childhood
(<5 years) growth faltering in many sub-Saharan Africa is common, in excess
of 30% are stunted (height for age Z-score (HAZ)<−2) or extremely stunted
(HAZ<−3) [66], but in the Gambia at least it was revealed that the stunting
was not sufficiently explained by either lack of nutrition or by infectious episodes
[67–69]. In separate studies inverse relationships between growth and aflatoxin
exposure are being revealed [27, 28, 31, 33]. Infants are typically weaned using fam-
ily foods, which are frequently contaminated by aflatoxins. Significant transitions
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in the mean aflatoxin biomarker levels are apparent as infants are first introduced to
weaning foods [31] and when they transition from receiving a mixture of weaning
foods and breast milk to family foods [70].

One Gambian study in which aflatoxin biomarkers were assessed in maternal
(during pregnancy), cord blood, week 16 infant and week 52, aflatoxin-albumin
adduct positivity was 100% (range 5–400 pg aflatoxin-lysine/mg albumin), 49%
(range nd-50 pg/mg), 11% (nd – 50 pg/mg) and 92% (nd – 390 pg/mg) respectively
[31, 32]. The cord blood data indicates both in utero exposure, and, the requisite
metabolic capacity to activate the toxin to reactive epoxides. Maternal and week
16 aflatoxin-albumin combined were significantly negatively correlated (p< 0.001)
with growth velocity of the infant in the first year of life [31]. These data
suggested that reduction in maternal aflatoxin-albumin adduct during pregnancy
from 110 pg/mg to 10 pg/mg would improve linear growth in the first year of life by
2 cm and weight by 0.8 kg.

In Benin HAZ and weight for age Z-scores (WAZ) in children aged 9 months to 5
years were inversely associated with the aflatoxin exposure biomarker, indicative of
a relationship between aflatoxin and both stunting and being underweight, p< 0.001
for both; data supported by a subsequent longitudinal study in Beninese children
aged around 2–3 years from regional villages [28]. Data from this latter study was
suggestive that a 100 pg/mg difference in exposure approximates to about a 1 cm
reduction in height over an 8-month period in this age group.

A cross sectional study of slightly older Gambian children (aged six to nine
years) revealed a less significant relationship between aflatoxin exposure and
growth [33]. This observation could be suggestive of more significant effect of
younger children, which is plausible given the more rapid growth in younger
children, perhaps providing a greater opportunity for a toxic insult to have an
observable effect. However, it is also worth noting that despite both the Beninese
with Gambian cross-sectional studies having chronic aflatoxin exposure, there were
some differences. In the former 99% of the children were positive (geometric mean
32.8 pg/mg: range 5–1064 pg/mg) [27], whilst in the latter 93% of the children
were positive (geometric mean 22.3 pg/mg; range 5–456 pg/mg), [33]. Perhaps most
importantly in the former study the percentage of children exceeding a biomarker
concentration of 100 pg/mg (16%) was more than twice that of the latter (7%). Thus
it remains unclear whether age or precise exposure burden was the stronger driver
for these observational data; to date no threshold has been established for aflatoxin
and growth.

One important aspect of all these data is that to date no single study has
followed exposure through pregnancy and into the first 3–5 years of life. This
could be valuable in terms of clearly establishing critical windows of exposure,
understanding mechanisms of effect, and opportunities and timing of intervention.
One important public health message could simply be the reinforcement of the
prolonging of breastfeeding in these populations. Whilst aflatoxins are transferred
to breast milk, the levels are modest compared to that in weaning foods [9, 65] and
through the weaning process aflatoxin biomarker levels follow a pattern from low
to high as you move from exclusive breast fed< partial breast fed< fully weaned
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[31, 70]. Other intervention strategies that either reduce aflatoxin contamination [30]
or effect uptake or metabolism [8] will also be important to protect maternal and post
weaning phases of exposure. The development of sustainable targeted interventions
should be a priority given the clear burden of exposure.

Aflatoxin and Gastrointestinal Toxicity

The mechanism(s) by which aflatoxin may affect child growth remain unclear,
but possibilities include immune suppression, altered growth factor expression or
intestinal toxicity [71, 72]. Each of these could contribute to growth faltering at
different stages of child development, especially during the period of dynamic
changes to nutritional intake in early life when the shift from breast milk to
solid food exposes a child to dietary contaminants that could affect immunity and
gastrointestinal tract integrity. Since the CYP3A enzymes that bio-activate AFB1
are also expressed in human intestinal epithelial cells, the GI tract is a primary
target for aflatoxin-induced damage, particularly in the tight junctions that regulate
paracellular permeability. Aflatoxin appears to modulate paracellular transport in
confluent Caco-2 monolayers, making the barrier more ‘leaky’ [73]. Since one of the
key toxic effects of aflatoxin is disruption of phosphorylation patterns of structural
and enzymic proteins [74], it is plausible that ‘leaky’ tight junctions reflect aflatoxin-
induced disruption of intercellular functional protein complexes that form tight
junctions. Indeed, West African studies have indicated such intestinal membrane
permeability in young children and this ‘leakiness’ aka intestinal enteropathy is
strongly associated with the degree of growth faltering [68, 75, 76]. The observed
villous shortening, crypt hyperplasia and lymphocyte infiltration [68, 75–77] which
lead to a decrease in intestinal surface area, elevated inflammatory markers and
subsequent decreased absorption of sugars, may stem from recurrent exposure to
infectious agents and to damage caused by aflatoxin. This latter hypothesis requires
further supportive mechanistic data.

Aflatoxin and Immune Suppression

Aflatoxins have potent effects on the immune system and host suppression and
increased susceptibility to infections are clearly demonstrated in animals, whilst the
effects in humans’ remains poorly examined. In one study of Gambian children the
concentration of salivary sIgA, which binds to bacterial and viral surface antigens as
part of the mucosal barrier, were significantly reduced in aflatoxin-exposed children
[33]. Alterations in cellular immunity have also been observed in Ghanaian adults
[78]. Intestinal reduction of sIgA may be a contributing factor to decreased bacterial
resistance and to increased epithelial inflammation.
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Aflatoxin, Zinc and Insulin-Like Growth Factor

Dietary zinc deficiency, whose human symptoms include growth retardation, skin
abnormalities and mental lethargy [79], has been recognized as a health concern
for about 50 years and poses a particular problem in developing countries where
studies support supplementation of children aged <5 years in order to improve
linear growth and reduce stunting [80]. In a study investigating the effects of
aflatoxin exposure during pregnancy in swine, the offspring from dosed sows
showed significant reduced growth, an effect related to a reduced capacity to
properly utilize zinc, despite the diet being zinc sufficient [81]. It was notable that
this study involved relatively low levels of aflatoxin. Measures of zinc- both free and
carried by thymulin- would be valuable in aflatoxin-exposed children, in relation to
anthropometry.

Another potential link between aflatoxin exposure and growth concerns the
liver-derived insulin-like growth factor IGF1, which affects linear bone growth.
Microarray data revealed down-regulation of genes responsible for, among other
things, IGF1 in aflatoxin-treated chicks [82]. One study in Gabon examined
nutritional status (kwashiorkor and marasmus) in children less than 30 months
and found reduced IGF1 levels in malnourished subjects [83], though aflatoxins
were not measured. Additional research is required to understand the potential
mechanism(s) of aflatoxin induced growth faltering. It will be important to consider
other mycotoxins, as co-exposure to multiple mycotoxins will be the norm rather
than the exception. With the recent development of exposure assessment tools for
some Fusarium mycotoxins as described above, this need can now to some extent be
met. Intervention studies to restrict exposure may be invaluable in clearly defining
the role and mechanism of aflatoxins and infant growth.

Conclusion

When one considers that, worldwide, 40% of the 11 million deaths in children aged
less than 5 years old occur in sub-Saharan Africa [66] and that approximately half
of the deaths linked to infectious diseases in sub-Saharan African children point
to under-nutrition and slowed growth as an underlying cause, the urgent need for
immediate interventions and further research into the effect of food contaminants on
public health becomes self-evident. Since mycotoxin-contaminated foods constitute
a large portion of daily dietary intake for many of the world’s developing nations,
assessments of mycotoxin exposure are essential, and the need for clarification of
the biological mechanisms involved. Such understanding of the health risks may
lead to targeted, affordable and sustainable methods being established to restrict
such exposures among those at highest risk and to reduce the overall burden of
mycotoxin-driven chronic disease.
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Introduction

The goal of this article is to provide a perspective on the role of statistical prediction
in several aspects of pharmaceutical development, product evaluation and regulatory
decision making. In particular, the benefits as well as the risks associated with
pharmaceutical products are now evaluated across a product life cycle continuum,
and prediction of which patients are likely to benefit with minimum risk is
increasingly important. The continuum includes the time during which evidence
for the efficacy and safety of a pharmaceutical is developed to support its approval
and marketing, sometimes called the pre-approval or pre-marketing time; and the
time when the pharmaceutical is on the market, called post-marketing time, during
which the evidence for its safety as well as its efficacy is further developed, often
encompassing its expanded use for many different diseases, for different indications
or claims, and for different subpopulations of patients. The benefits and the risks
observed across this broad spectrum of patient conditions of use may very well
be different depending upon the patient subpopulation characteristics, thus setting
the stage for the importance of understanding predictive factors associated with
differential treatment response.

There are many new demands and challenges for the modern pharmaceutical
development and regulatory evaluation process, and we will describe those which
have an impact on risk evaluation and prediction and on the identification of factors
that maximize the benefits and minimize the risk of pharmaceuticals. This latter
effort emphasizes the individual patient predictive and prognostic factors that might
allow such a goal to be achieved. We will focus on three major themes in the current
regulatory/public health arena that are associated with prediction and risk: the first
is that of personalized medicine or targeted therapy for individual patients, where
the use of biomarker information to predict who might respond to therapy is being
investigated; the second is risk assessment and prediction in the evaluation of the
safety of pharmaceuticals, an area receiving increased public attention and scrutiny,
especially when maximizing benefit and minimizing risk is a goal; and finally the
role of prediction in assuring there is reproducibility and replication of research
results that can robustly support the safety and efficacy decisions made during the
product life cycle evaluation.

In section “Personalized Medicine or Targeted Therapy”, we describe what we
mean by personalized or individualized medicine. In section “Statistical Approaches
to Modeling Prognostic Factors”, we discuss the difference between a prognostic
and a predictive classifier as it relates to demonstration of differential treatment
response, providing a brief summary of the considerable statistical history in
evaluating prognostic factors. In section “Some Clinical Trial Designs or Strategies
Proposed to Evaluate Predictive Treatment Effects: Sometimes Called Enrichment
or Targeted Therapy Designs”, we discuss some of the recent clinical trial strategies
that have been developed to demonstrate that a marker is predictive of a treat-
ment effect or an enhanced treatment effect. In section “Predictive Clinical Trial
Approaches Helping to Manage Risk of New Drugs by Identifying and Screening
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Patients” we focus on how predictive markers are being used to minimize exposure
of patients to serious life threatening adverse reactions, reinforcing some of the
major messages in a recent Institute of Medicines report [1] on the future of drug
safety in the United States in which the report urged FDA to enhance the nation’s
ability to manage the safety of new drugs. Section “Predicting Whether Research
Results Can Be Replicated: Concern for Reproducible Study Findings – A Theme
Connecting Predictions to True Findings” considers emerging controversies on
the importance of replication of research findings and the limitations of statistical
methods to assure that occurs. Section “Two Examples of a Framework to Evaluate
the Performance Characteristics of Replicable Research Findings” provides two
examples where a consortium of scientists was convened to establish principles and
practices to evaluate the performance of predictive models for microarray based
prediction of clinical and pre-clinical outcomes and to propose best practices that
might improve replicability. We conclude in section “Concluding Remarks” with
summary remarks.

Personalized Medicine or Targeted Therapy

With the advent of the genomic revolution and the advances in understanding the
differential pathways to disease progression and the use of biomarkers or other
classifiers to evaluate the magnitude of patient level response to targeted therapies,
there has been increased interest in and demands on clinical trials to provide the
evidence to support decisions for therapies that are more tailored to and specific
to a patient’s likelihood to respond to a treatment. Concurrent with this interest
has been the interest in the development and evaluation of biomarkers of treatment
response, especially in the area of oncology [2, 3] and for the use of various patient
enrichment strategies in the design of clinical trials. A way to portray personalized
medicine in the context of the selection of a pharmaceutical for a given patient is
to consider the following situations. If a patient cannot metabolize a drug because
his or her genetic makeup lacks a gene to do so, despite taking the drug, they will
not experience its intended pharmacological beneficial effect, yet may share the risk
of side effects because of such exposure. If a patient’s genetic makeup is such that
they are either a slow, intermediate or fast metabolizer of a drug, that patient may
need a different dose of the drug to experience a comparable beneficial effect or to
reduce the chances of a serious side effect due to overdosing. If in any given patient,
the organ specific target of a drug is resistant or non-responsive to the therapy, then
the intended therapeutic effect is neutralized or minimized, as in some cancers (e.g.
breast, colorectal). So, if there is an identifiable marker, and a patient possesses
that marker, the goal is to demonstrate that such a patient should expect a better
treatment response in contrast to a patient without the marker. Thus, the prediction
of which patients will benefit from any drug may depend upon their genetic make
up or whether they possess certain markers that have been identified as predictive of
treatment response.
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The establishment of a marker that can be used either to select patients for
treatment, or perhaps to evaluate a particular treatment in a controlled clinical
trial, depends upon the type of evidence needed for that marker’s ability to predict
an outcome. There is a confusion in the literature as well as in general practice
regarding the use of terms to describe prediction of an outcome, or prediction
of a treatment effect. Within the regulatory area of biomarker identification and
qualification, two terms are used to distinguish between markers that are prognostic
of clinical outcome, and markers that are predictive of treatment effect or optimal
treatment effect. It is possible that a marker can be both prognostic and predictive at
the same time but in order to demonstrate that a marker meets the criteria for each
one of these marker types requires certain study designs, usually with prospectively
planned criteria. It is important to understand the differences in use of these terms
because the evidence needed to support their use and to qualify them as being
prognostic or predictive is different.

We define these marker or biomarker terms as follows. A prognostic biomarker
is a baseline patient or disease characteristic that categorizes patients by degree of
risk for disease occurrence or progression. A prognostic biomarker informs about
the natural history of the disorder in that particular patient in the absence of a
therapeutic intervention. A predictive biomarker is a baseline characteristic that
categorizes patients by their likelihood for response to a particular treatment. A
predictive biomarker is used to identify whether a given patient is likely to respond
to a treatment intervention in a particular way. The marker may predict a favorable
response or an unfavorable response (i.e., adverse event). In general, characterizing a
biomarker as predictive of treatment effect requires a randomized trial with a control
group in which the subpopulations identified by the marker can be evaluated for the
marker specific treatment effects, and for the relationship of the marker to a clinical
outcome in the control group only, thereby separating the prognostic nature of the
marker to ‘predict’ a clinical outcome regardless of treatment, and the predictive
nature of the maker to ‘predict’ a treatment effect that is better in those with the
marker than without the marker. In a sense, the former is a single cohort problem,
and the latter is a two sample comparative problem.

Prediction of treatment effect on an individual patient level that yields a yes/no
answer is a more challenging problem than prediction of treatment effect for an
identifiable patient subpopulation. A diagnostic agent that is used to give a yes/no
answer as to whether an individual does or does not have a disease is held to a
different standard of evidence than is a probabilistic prediction based upon a model.
The predictive concept being used in this paper is more probabilistic in nature,
essentially quantifying the probability of treatment response and or treatment effect
being greater in a subject with the marker in contrast to a subject without the
marker. When a diagnostic agent (e.g. PSA screen) is the marker that classifies
a subject as eligible for treatment and more likely to benefit, and it is important
that that diagnosis be correct, it is then necessary to characterize the performance
characteristics of the marker in terms of its misclassification rates, its sensitivity
and specificity and the positive predictive value of a patient positively responding
to treatment. This subject matter become complex and is not the purpose of this
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article, nor can we discuss the issues fully here. However, the efficiency of a
clinical trial that employs a patient enrichment strategy using a marker that is poorly
characterized is likely to be negatively impacted because of the misclassification,
and not likely to be a useful approach.

Statistical Approaches to Modeling Prognostic Factors

Over the last 30–40 years, there is an extensive statistical literature developed for
modeling and methods to identify factors associated with an individual’s probability
of having a clinical outcome, defined here as prognostic factors. This literature has
been developed within the context of long-term single cohort follow-up studies and
within the context of randomized clinical trials that evaluate differential subgroup
responses. Armitage and Gehan [4] in 1974 proposed statistical methods for the
identification and use of prognostic factors; in 1980 Byar and Green [5] and Byar
and Corle [6] proposed methods to choose treatment for cancer patients based on
covariate information, an approach that might be considered predictive, but which
is not how the problem is being dealt with today. The Cox proportional hazard model
substantially changed how clinical trials of time to event outcomes are designed and
analyzed and how covariates and their interactions with treatment assignment are
evaluated. In 1989, Gail et al. [7] proposed a model for projecting individualized
probabilities of developing breast cancer for white females who are being examined
annually, an approach that was eventually used as entrance criteria for clinical trials
and eligibility for treatment. In 2003, Pepe et al. [8] considered the limitations
of the odds ratio metric in gauging the performance of a diagnostic, prognostic,
or screening marker. In 2006, Ware [9] reinforced this concept by discussing the
limitations of risk factors as prognostic tools in a comment on Wang et al. [10] who
considered whether multiple biomarkers for the prediction (note: term prognostic
should have been used) of first major cardiovascular events and death might be an
improvement over single biomarkers. For the most part, most all of these approaches
and strategies relate a patient’s outcomes to a function of that patient’s covariates,
usually at a baseline untreated status, or at initiation of patient follow-up as in the
Framingham study, and are prognostic in the sense we have defined them.

Treatment by covariate interactions that are intended to evaluate the statistical
differences in the magnitude of treatment effects as a function of patient baseline
covariates, could be considered predictive factors in the sense we have defined
them here. In fact statistical models that include covariates and their interaction
with treatment are frequently used to evaluated differential treatment effects in
clinical trials. But the consideration of treatment by baseline patient covariates
interactions alone (i.e., differential treatment effect that is sometimes called effect
modification in epidemiology) is not sufficient for the current purpose, though as
an exploratory approach it may be useful. The recent interest in evaluating whether
a marker is predictive of better treatment effects focuses on evaluating treatment
effects in patient subgroups identified by a marker that is pre-specified and that has
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a type 1 error allocated to it at the study planning stage. This approach is used in
order to control for the multiplicity of treatment comparison hypotheses created by
the several marker subgroup evaluations, an approach that has not been routinely
considered in the past literature on evaluation of treatment by covariate interactions.

Some Clinical Trial Designs or Strategies Proposed
to Evaluate Predictive Treatment Effects: Sometimes
Called Enrichment or Targeted Therapy Designs

Clinical trial study designs now exist that can prospectively address the marker
predictive hypothesis, but the statistical focus seems to have changed from a
regression and interaction evaluation approach to a type 1 error spending hypothesis
testing approach which, in some versions, may have a gate-keeper or a sequential
testing order pre-specified. In the past, the general strategy in clinical trials was to
plan for an overall treatment effect size in the entire trial population, and then if that
result was statistically positive and persuasive to proceed to examine pre-specified
subgroups. Such examination might consist of evaluation of the marker negative
or positive subgroups separately, to examine evidence for equal or comparable
treatment effects in each subgroup, or to evaluate whether some subgroups have
greater treatment effects than others, assuming all subgroups shared a common
minimum treatment effect size. Generally, if no statistically significant treatment
effect was observed for the primary endpoint (hypothesis) no further hypothesis
testing of a confirmatory nature would be entertained, and any other analyses would
be considered exploratory and hypothesis generating. Some of the newer designs for
marker subgroups change the goal from an overall statistical test in the all comers
population to a subset of patients identified by the marker, or to either possibility
being acceptable.

Simon [11–15] and his co-authors proposed several approaches to identify and
test for a marker or classifier to target subgroups more likely to respond to treatment.
Mandreker and Sargent [16] have provided a useful overview of the many of
the currently proposed designs including a discussion of the challenges faced in
deciding which design to choose from. As the challenges to such designs include
dealing at the protocol sample size stage with the unknown population prevalence
of the marker and a lack of any real information on the anticipated treatment
effect in the marker subgroups, adaptive designs have been proposed as a way to
accommodate what is learned during the course of the trial [17, 18]. It is not the
intention in this article to exhaustively catalogue the different available study design
choice and strategies, but rather to describe some of the current proposals which
have yet to have much experience associated with them.

The key challenges in the choice of these designs are around the decision to
include all comers or only a selected marker positive subgroup at the protocol stage,
or to adapt later on in the trial to other information on response to treatment in the
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various marker groups. A particular concern is what has been called a retrospective
versus prospective approach to subgroup identification and analysis of differential
treatment effects within those subgroups. The concept of retrospective evaluation
comes about as a result of a strategy to assess baseline biomarker status on all
subjects randomized into a trial, but with no prospective plan for which markers
are associated with benefit. One then uses a post randomization treatment analysis
strategy to evaluate the treatment differential effects according to marker status, the
knowledge for which did not exist prior to conducting the trial. A variation of this
strategy that has been used in some studies, but not recommended, is to only have
a subset of the initial full randomized study population assessed for the marker,
possibly a convenience sample. Recently, the evaluation of two cancer therapies
for metastatic colorectal cancer and the relationship of treatment benefit to KRAS
status, a marker for response to treatment, was evaluated in this retrospective manner
[2]. If the performance of a predictive marker to correctly identify the marker
positive and negative subgroups is of equal importance, then co-development of
both the classifier and the drug simultaneously in the same clinical trial is a more
complex challenging task.

An interesting clinical trial design of the anti-viral drug Abacavir, called
‘PREDICT 1’ [19] evaluated whether individualized screening of patients prior to
therapy would successfully reduce the incidence of a very serious life threatening
hypersensitivity adverse reaction that made the drug not one of first choice.
This successful trial randomized all subjects entered to the active marketed drug
Abacavir, but the randomized arms differed by whether the screening strategy for
the hypersensitivity gene was used, the idea being that patients screened and found
positive would be excluded from treatment. This trial of 1956 patients from 19
countries successfully confirmed that screening will reduce severe hypersensitivity
reactions, and at the same time provided estimates of the sensitivity, specificity and
positive predictive value of the screening diagnostic. This study design confirmed
the predictive nature of a screening tool to manage the safety profile of a drug
that otherwise would not have been used as widely in the anti-viral area, thereby
demonstrating the value to predictive clinical trial approaches.

Predictive Clinical Trial Approaches Helping to Manage Risk
of New Drugs by Identifying and Screening Patients

The ‘PREDICT 1’ Abacavir trial described above is an example of how predictive
tools can benefit the optimal use of new pharmaceutical therapies that have
potentially great benefit but which may also have high toxicity that goes along with
its use and exposure, and thereby limits its use. The recent interest by the Institute
of Medicine [1] in improving the approach to evaluating and managing the safety
risks of new pharmaceuticals highlights the potential value of predictive tools and
innovative study designs to maximize benefit and minimize risk to patients. The
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KRAS story [2] described above also illustrates the interest in minimizing exposure
of patients to potent anti-cancer therapies when it appears that patients will not
benefit yet will still be subject to the adverse effects of such therapies. As targeted
therapies are increasingly developed with this philosophy in mind the importance
of good statistical predictive tools and diagnostic classifiers with good predictive
capabilities will become more evident.

Predicting Whether Research Results Can Be Replicated:
Concern for Reproducible Study Findings – A Theme
Connecting Predictions to True Findings

Recently, there have been several publications [20–22] that have challenged whether
published research, medical or otherwise, is credible in the sense that it can be
repeated and demonstrate reproducible findings. Statistics has long had a role
in assuring that study conclusions are not likely due to chance, but the recent
interest goes beyond that concern into the area of the statistics of replication which
has received less attention, yet to this author seems a fertile part of statistical
prediction. Ioannidis [23] in a highly cited article on the topic of ‘Why most
published research findings are false’ described a framework for evaluating whether
true positive and true negative research findings can be distinguished and whether
the statistical framework of hypothesis testing from a frequentist perspective can
help one understand the limitations of the predictability properties of published
research. The subject matter areas that have received attention in this regard are
SNP evaluations in genome wide association studies [23] and observational studies
[24, 25], where concern has been raised that research results are not replicable and
thus the credibility of conclusions based upon such research might be in question.
It is not a new concept, as Ottenbacher [26], Lee and Zelen [27] and Goodman [28–
30] raised these concerns within the context of frequentist and Bayesian testing of
hypotheses and interpretation of whether a statistically significant study finding in a
single study can inform about whether that finding is a true positive. More recently,
some editors [20, 21] have criticized the use of frequentist based statistics for
fostering false research, although qualified statisticians have responded and made
the case that it is the misuse and misunderstanding of the statistical approaches
that cause the confusion. To remedy the overemphasis of p-values research findings
and to promote a better understanding of its limitations, several authors [31–
33] have proposed new approaches to provide a more realistic way to interpret
the predictiveness of p-values, were one interested in considering the p-value as
predictive of future successful studies of the same type.
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Two Examples of a Framework to Evaluate the Performance
Characteristics of Replicable Research Findings

The MicroArray Quality Control II Study (MACQ-II) [34] is a consortium that
was conceived with the primary goal of examining various aspects of model
development practices for generating binary classifiers in pre-clinical and clinical
data sets based upon gene expression data from microarrays. The motivation for
this effort was the recognition that much microarray research which purports to
predict outcomes based upon gene expression links is not replicable and especially
predictive models that purport to functionally express the predictive nature of
microarray expression signatures. To set some standards in place, a mechanism was
set up to archive all appropriate data sets that link gene expression and certain
clinical and pre-clinical outcomes, and then 36 independent teams analyzed six
microarray data sets where the analysis teams were asked to submit models from
two stages of analysis. For the first stage, each team built prediction models for up
to 13 different coded endpoints using six training data sets. Models were then tested
on blinded validation data sets not available to the analysis teams during training.
Teams were then allowed to repeat the model building and validation process by
using the training models on the original training data set. Extensive performance
characteristics of the teams, the models, and the data sets were published [34]
that provided metrics on the predictability of the various models. This extensive
collaborative effort of government, academic and industry scientists was intended
to improve the infrastructure for assuring that prediction models for clinical and
preclinical outcomes based upon microarray profiles were in some sense performed
as reported and claimed and could be considered credible with a reasonable chance
of replication. The conclusions drawn from this study with regard to best practices
should be useful to readers, but it is not the goal of this paper to go into detail
about them.

The second example is an extensive collaborative project with similar goals,
namely to evaluate the performance characteristics of a variety of signaling methods
intended to identify drug adverse event associations in electronic health care records
and medical claims records. The Observational Medical Outcomes Partnership
(OMOP) [35] was established to inform the appropriate use of observational
healthcare data bases for active surveillance of adverse reaction/drug exposure pairs.
This project, information for which is available at the website www.omop.fnih is a
collaboration of FDA, NIH, the pharmaceutical industry and academia in order to
better understand the reproducibility characteristics of different signaling methods
to inform the large national effort of the Sentinel project mandated by the congress.
Many different statistical signaling methods are available and they are applied to
different data bases for surveillance signaling purposes. Using a common data
model, the OMOP characterized the performance characteristics of different avail-
able methods by using simulated and real data sets and candidate signal methods
and produced metrics of performance, such as sensitivity and specificity and positive
predictive value of different signaling methods. The evaluation considered different

www.omop.fnih
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circumstances of the data models in an attempt to characterize true positive and true
negative signals from each other, a systematic attempt that is currently undergoing
review.

One interesting example provided by OMOP was that of two studies, one
published in the Journal of the American Medical Association [36] and the other
in the British Medical Journal [37] on the topic of oral bisphosphonates and the
risk of esophageal cancer. Each published study addressed the same question, used
different observational study designs but used virtually the same health claims data
base with patient records over approximately the same chronological time frame.
Each study came to different conclusions and so the question of why they did so
was of key interest as well as the additional concern of lack of reproducibility of
observational research that it raised. Of course even at times randomized clinical
trials do not confirm results. But the topic of replicable research is receiving con-
siderable scrutiny especially within the area of comparative effectiveness research
(CER) that uses observational data.

Concluding Remarks

The goal of this article is to tie together three themes that relate to risk prediction
and regulatory decision making. The first theme is the role of prediction in
individualized or personalized medicine and drug development, especially using
biomarkers as classifiers to help attain that goal. The second is the development and
use of predictive biomarkers to support study enrichment strategies and to manage
the safety and risk profiles of new drugs. And the third is the role of prediction in
characterizing whether research findings are replicable, an area of recent concern,
especially in observational research. Statistical concepts are obviously critical to
linking these themes together, and it is the contributions of statistical thinking that
has helped clarify the strengths and limitations of prediction in these areas.
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A Multiple Imputation Approach
for the Evaluation of Surrogate Markers
in the Principal Stratification Causal
Inference Framework

Xiaopeng Miao, Xiaoming Li, Peter B. Gilbert, and Ivan S.F. Chan

Abstract The concept of principal surrogate developed in the causal inference
framework (Frangakis and Rubin (Biometrics 58:21–29, 2002); Gilbert and Hud-
gens (Biometrics 64:1146–1154, 2008)) has drawn much attention in the field of
biomarker research. Principal surrogates are defined based on the causal treatment
effects in principal strata, which are constructed based on the joint distribution
of the potential surrogate markers when a patient receives either the placebo or
the treatment. The challenge of evaluating principal surrogates lies in the fact
that half of these potential surrogate markers cannot be observed in most clinical
trials. Therefore assessing the principal surrogacy of biomarkers is essentially a
missing data problem. In this article, we propose a multiple imputation approach
to evaluate candidate principal surrogate markers. The proposed method employs
baseline variables to impute the missing potential surrogate markers. The stratum-
specific causal treatment effects on the clinical endpoint are then estimated for each
imputed dataset and the inference for surrogacy of a biomarker is based on the
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combined results over multiple imputations. Simulation studies are performed to
evaluate the performance of the proposed method and the implementation of the
method is illustrated using a vaccine study.

Introduction

The enormous benefits of substituting the clinical endpoints with surrogate markers
(also referred to as “surrogate endpoints” or “surrogate outcomes”) that can be mea-
sured before the realization of the clinical endpoints have led to increasing efforts in
searching for surrogate markers. Assessing the surrogate value of biomarkers would
not only help identify more cost-effective outcome measurements for future clinical
trials, but also shed light on the mechanism through which the treatment works. For
example, in vaccine research, an important goal is to understand the causative role of
vaccine-induced immune responses in reducing the risk of diseases (Halloran [26]).
Surrogate markers (sometimes called “correlates of protection” in vaccine research)
are extremely useful in appraising the consistency of vaccine manufacturing and in
predicting long-term effectiveness of vaccines [1].

In the past two decades, there has been extensive literature on statistical methods
for surrogacy evaluation. Joffe and Greene [2] reviewed the strengths and limitations
of four major mathematical frameworks for evaluating surrogate markers, based
on conditional independence (also known as the Prentice framework), direct and
indirect effects, meta-analysis and principal stratification. Here we focus on the
principal stratification framework, using the concept that a good surrogate marker is
a biomarker that provides accurate prediction of the treatment effect on the clinical
endpoint based on the treatment effect on the biomarker. Such a predictive surrogate
may or may not be a mechanistic cause of the clinical treatment effect, and may or
may not mediate the clinical treatment effect. Assessment of mediation is a separate
concept that may be best addressed using natural indirect effect estimands [3–5],
which are not considered here. The relationship between the principal stratification
framework and other major mathematical frameworks are discussed in Joffe and
Greene [2]. Validity and implementation of the Prentice framework requires that all
subject characteristics predictive of both the surrogate marker and clinical endpoint
are correctly controlled for in the regression model used to assess conditional
independence, and that there is a large degree of overlap in the support of the
surrogate marker distribution across the treatment groups. In contrast, the principal
stratification framework can be used without requiring either of these conditions;
however, it faces a different challenge for validity, that the causal estimands of
interest are only partially identified, necessitating the use of additional identifiability
assumptions.

The novel “principal surrogate” definition was developed in the principal strat-
ification framework by Frangakis and Rubin (henceforth FR) [6]. FR proposed
constructing principal strata based on the joint distribution of potential surrogate
markers and assessing the surrogate value of biomarkers via the stratum-specific
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causal treatment effects. Following this approach, several methods have been
proposed for the evaluation of candidate principal surrogate markers. For example,
Gilbert and Hudgens (henceforth GH) [7] proposed to evaluate principal surrogate
markers via the causal effect predictiveness surface for binary clinical endpoints.
Qin et al. [8] employed Follmann’s [9] augmented trial designs and likelihood-based
approaches to validate principal surrogates for discrete failure time endpoints. Li,
Taylor and Elliott [10] developed a Bayesian approach to evaluate a binary surrogate
for a binary clinical endpoint. Huang and Gilbert [11] proposed a graphical approach
to compare the principal surrogate values of different continuous biomarkers for
binary clinical endpoints. While these methods provide feasible approaches to
assess the principal surrogate value of biomarkers, their applications are limited
to certain types of clinical endpoints (e.g., binary) or to certain simplified contexts
such as the case of “constant biomarkers” in HIV vaccine trials [7, 8, 11]. A constant
biomarker, as defined by GH [7], refers to a biomarker that has a constant value for
all subjects who receive placebo.

This article is directly motivated by a phase III trial of ZOSTAVAX conducted by
Merck Research Laboratories [12]. ZOSTAVAX is a single dose vaccine that helps
prevent herpes zoster in the older adult population. It protects subjects from herpes
zoster by boosting the immune system. One of the objectives of the trial is to assess
whether the vaccine-induced reduction in the disease incidence rate is associated
with the vaccine-induced elevation in immunogenicity. One of the clinical endpoints
in this trial is the time from vaccination to disease development, and a candidate
surrogate marker is an immune response measured at 6 weeks post-vaccination.
In this article, we develop a multiple imputation approach to evaluate candidate
principal surrogate markers by incorporating baseline covariates to predict potential
surrogate markers. The proposed method can accommodate various types of clinical
endpoints, including continuous, discrete and time-to-event measurements. It is also
applicable to a general setting including the scenarios with constant biomarkers and
scenarios with the biomarkers having arbitrary variability in the placebo group.
In addition, the inference for the surrogacy of biomarkers based on the proposed
method accounts for the uncertainty due to the unobserved potential surrogate
markers. Simulation studies are conducted to examine the performance of the
proposed method and it is applied to the motivating the herpes zoster vaccine trial.

The article is organized as follows. In section “Methods”, we first present a
general framework of potential surrogate markers and introduce the concept of
principal surrogacy. We then discuss the non-identifiablility issues inherent in
the evaluation of principal surrogates and propose a multiple imputation-based
approach that incorporates baseline biomarkers. In section “Misclassification in
Principal Strata Membership and the Estimation of Average Causal Treatment
Effects”, we investigate the impact of misclassification in principal strata member-
ship on the estimation of causal treatment effects. Results of the simulation studies
to assess the performance of the proposed MI method are summarized in section
“Simulation Study”. In section “Application to a Herpes Zoster Vaccine Trial”, we
apply the proposed method to evaluate an immunological marker as a principal
surrogate using data from the motivating herpes zoster vaccine trial. Finally a
summary of the findings and some discussions are given in section “Discussion”.
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Methods

Potential Outcomes and Principal Surrogate Endpoints

We consider a two-arm vaccine trial with N subjects (i= 1, . . . ,N) randomly
assigned to placebo (Z= 0) or vaccine (Z= 1). For subject i, Si denotes the post-
baseline immune response, which is a candidate surrogate marker measured at
a fixed time t0 after randomization; Bi denotes the baseline immune response
that may correlate with the candidate surrogate marker Si; Ti denotes the time
from randomization to disease development, which is the clinical endpoint; Ci

denotes the censoring time; Yi defined as min(Ti, Ci), denotes the observed time
to disease development or censoring, whichever happens first; δ i, defined as I
(Ti <Ci), is an indicator of whether a patient had disease (δ i = 1) or not (δ i = 0).
We assume the post-baseline immune response Si is measured prior to disease
(Ti > t0). This assumption approximately holds in vaccine trials where the immune
response is measured shortly (e.g., a few weeks) after vaccination and is well before
disease development. Let Ti(Z) denote the potential clinical endpoint if subject i is
assigned to treatment Z (Z= 0 or Z= 1). Similarly, let Si(Z) denote the potential
surrogate marker if subject i is assigned to treatment Z (Z= 0 or Z= 1). The
observed surrogate marker for subject i is a function of the two potential outcomes:
Si = ZiSi(1)+ (1−Zi)Si(0). FR [6] proposed partitioning all subjects into principal
strata based on the joint values of their potential surrogate markers, Si(0) and Si(1),
such that all subjects within each stratum have the same value of {Si(0), Si(1)}.
The principal stratification approach essentially assesses how the vaccine effect on
T varies with subgroups defined by fixed levels of {Si(0), Si(1)}.

The vaccine effects on T may be measured by contrasting survival curves or by
contrasting hazard functions; we focus on the latter approach. Define

hazard(1) (s1,s0) = h
(

T = t
∣
∣
∣Z = 1,S(1) = s1,S(0) = s0

)
(1)

hazard(0) (s1,s0) = h
(

T = t
∣
∣
∣Z = 0,S(1) = s1,S(0) = s0

)
(2)

where hazard(1)(s1,s0) is the hazard of disease at time t for vaccine recipients in the
stratum with S(1)= s1 and S(0)= s0; and hazard(0)(s1,s0) is for placebo recipients
in the same stratum. The ratio of these hazards measures the clinical treatment
effect in the subgroup with {S(1)= s1, S(0)= s0}. This hazard ratio is not com-
pletely a causal estimand, because hazard(1)(s1,s0) and hazard(0)(s1,s0) condition on
different sets ({T(1)> t, S(1)= s1, S(0)= s0} and {T(0)> t, S(1)= s1, S(0)= s0}),
respectively [8, 13]. However, for rare disease outcomes the sets may tend to be
similar, and the critical feature holds that the biomarker levels {S(1)= s1, S(0)= s0}
are the same for both hazards, such that the principal strata are independent of
the treatment assignment [6]. An alternative approach would focus on a contrast
of completely causal survival functions in subgroups defined by {Si(0), Si(1)},
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for which very similar statistical methods could be used. In particular, the Cox
model proposed below can be fit using the methods in the article, and fitted
values used to estimate a causal conditional vaccine efficacy parameter defined
as one minus the ratio of the cumulative probability of T(1) below t versus the
cumulative probability of T(0) below t, with both terms conditional on the subgroup
with{S(1)= s1, S(0)= s0}.

A principal surrogate marker may be defined based on the comparison of
hazard(1)(s1,s0) and hazard(0)(s1,s0) according to the following two criteria:

1. Average Causal Necessity (ACN) [6]
hazard(1)(s1,s0)= hazard(0)(s1,s0) for all s1 = s0.

2. Average Causal Sufficiency (ACS) [7]
hazard(1)(s1,s0) �= hazard(0)(s1,s0) for all s1 − s0 >C for some constant C ≥ 0.

ACN states that within the principal strata where the vaccine induces no
change in the surrogate marker (s1 = s0), there is no vaccine-induced reduction
in the hazard of disease. ACS states that within the principal strata where the
vaccine induces a sufficient change in the surrogate marker (s1 − s0 >C), there
are corresponding vaccine-induced changes on the hazard of disease. We refer
to the strata with S(1)= S(0) as the “causal necessity” strata and the strata with
S(1)> S(0) as the “causal sufficiency” strata. According to FR [6], the average
treatment effect within the “causal necessity” strata is called the “Average Causal
Dissociative Effect (ACDE)”, and the average treatment effect within the “causal
sufficiency” strata is called the “Average Causal Associative Effect (ACAE)”. Note
that the ACDE is equivalent to the “average principal strata indirect effect” and
the ACAE is equivalent to the “average principal strata direct effect” as defined in
VanderWeele [14]. The criteria ACN and ACS are not the only criteria for judging
the predictive value of a surrogate marker; another useful criterion is examination
of how the point and confidence interval estimates of vaccine efficacy vary across
subgroups {S(1)= s1, S(0)= s0}, with the most useful surrogate markers having
widely varying efficacy across the subgroups.

Following the existing literature on principal stratification, we make the follow-
ing three assumptions throughout the article:

(A1) the stable unit treatment value assumption (SUTVA; Rubin [27, 28]) that one
subject’s treatment assignment does not affect another subject’s outcomes, and
consistency, that the observed outcomes equal the potential outcomes under the
assignment received;

(A2) the ignorable treatment assignment assumption that Zi is independent of the
potential surrogate markers and the potential clinical outcomes;

(A3) there is no population-level treatment effect on the clinical endpoint in the
strata with negative effect on the surrogate marker (S(1)<S(0)).

As discussed in Wolfson and Gilbert [15], (A1) is plausible in trials where
subjects do not interact with one another and (A2) is valid in randomized clinical
trials. In addition, (A2) may be relaxed to the assumption that the treatment or
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vaccine has no causal effect on the clinical outcome for any individual before
the marker is measured, and this is reasonable given that some time is needed
for protective immunity to develop. (A3) is a simplifying assumption for practical
purposes. Theoretically, (A3) may be violated as a treatment effect can exist in
the S(1)< S(0) subgroup if the candidate surrogate is poor. In practice, however,
very few subjects are expected to fall into this category for a reasonable candidate
surrogate (as in the ZOSTAVAX example to be discussed in section “Application
to a Herpes Zoster Vaccine Trial”), and thus the impact on the inference is likely
small. In most vaccine applications, for example, the only reason why the immune
response to vaccine would be lower than the immune response to placebo is noise
in the immunological assay. In this scenario, the principal stratum with S(1)< S(0)
may be expected to have the same vaccine efficacy as the principal stratum with
S(1)=S(0); and if one wishes to account for this, (A3) can be relaxed to the more
realistic assumption that the population-level vaccine efficacy for the subgroup with
S(1)<S(0) equals that for the subgroup with S(1)=S(0).

Under the above assumptions, we define the ACDE for the stratum with
{S(1)= s1, S(0)= s0 | s1 = s0} in a log hazard ratio scale as

ACDE (s1,s0) = log

⎛

⎝
hazard(1)

(
s1,s0

∣
∣
∣s1 = s0

)

hazard(0)
(

s1,s0

∣
∣
∣s1 = s0

)

⎞

⎠ , (3)

and the ACAE for the stratum with {S(1)= s1, S(0)= s0 | s1 > s0} as

ACAE (s1,s0) = log

⎛

⎝
hazard(1)

(
s1,s0

∣
∣
∣s1 > s0

)

hazard(0)
(

s1,s0

∣
∣
∣s1 > s0

)

⎞

⎠ . (4)

A biomarker with ACDE(s1,s0)= 0 and ACAE(s1,s0) �= 0 satisfies both ACN
and 1-sided ACS, which indicates that subjects with no vaccine-induced immune
response are not protected and subjects with a positive vaccine-induced immune
response receive some protection. While ACN and ACS provide some information
about the utility of a biomarker for predicting vaccine efficacy, much more
information is gained by estimating ACDE(s1,s0) and ACAE(s1,s0) over the support
of {Si(0), Si(1)}, where the most useful biomarkers will have ACDE(s1,s0) near zero,
and large variability in ACAE(s1,s0) implying that some subgroups receive a large
amount of protection.

The Causal Model

Let P0 = {Pk
0}k= 1, . . . ,q denote the collection of q possible principal strata con-

structed based on S(0) and S(1), with subjects sharing the same combination of S(0)
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and S(1) within each distinct stratum. The total number of possible principal strata
(q) depends on the levels of the surrogate marker (S). For example, if S is a binary
measurement, then q is 22 = 4; if S has four levels, then q is 42 = 16. Assuming
the hazard if assigned placebo is constant across principal strata (after adjusting for
baseline covariates that can explain the difference in baseline hazard), we consider
a Cox proportional hazard model for estimating ACDE(s1, s0) and ACAE(s1, s0):

hazard(z)
(

P0
k

)
= hazard

(0)

(
P0

1

)
exp

(
q

∑
k=1

γk ×Z×Pk

)

(5)

where hazard(z)(Pk
0) is the hazard of disease for subjects assigned Z= z in stratum

Pk
0 for k= 1, . . . ,q; Pk is a dummy variable indicating whether the subject is in

stratum Pk
0. The average (almost) causal treatment effect (ACE in the form of a log

hazard ratio) in stratum Pk
0 is given by

ACE
(
P0

k

)
= γk. (6)

If the stratum Pk
0 is the “causal necessity stratum”, then ACE(Pk

0) measures
ACDE. Similarly, if stratum Pk

0 is the “causal sufficiency stratum”, then ACE(Pk
0)

measures ACAE. As we will show in Section “Application to a Herpes Zoster
Vaccine Trial”, there could be multiple causal necessity strata as well as multiple
causal sufficiency strata depending on the number of levels of the surrogate marker.
Note that, in practice, some principal strata are more frequently observed than
others. In such cases, restrictions on model parameters can be imposed in model
estimation. We will elaborate on this in Section “Application to a Herpes Zoster
Vaccine Trial” where we provide an empirical implementation of our method.

Identifiability of the Causal Model and Imputation of Missing
Potential Surrogate Markers

The principal strata are constructed based on potential surrogate markers. However,
in most clinical trials the two potential surrogate outcomes Si(0) and Si(1) for subject
i cannot be observed simultaneously. In Table 1, we present the observable and
unobservable potential surrogate markers in a standard clinical trial. It can be seen
that in the placebo arm (Z= 0), S(1) cannot be observed for any subjects; while in
the vaccine arm (Z= 1), S(0) are missing for all subjects. Assuming the surrogate
marker (Si) is measured for every subject in the study, then every subject would
have one missing potential surrogate marker and the observed surrogate marker for
subject i is Si = ZiSi(1)+ (1−Zi)Si(0).

Given the unobserved potential surrogate markers, the causal model defined in
Eq. 5 and the related estimands for the ACEs as specified in Eq. 6 are not identifiable
based on the observed data. As Rubin [16] noted, “all problems of causal inference
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Table 1 The observed and missing potential surrogate markers in
a standard clinical trial

Potential surrogate

Treatment Subject index S(0) S(1)

1 S1
obs(0) Missing

Z=0 2 S2
obs(0) Missing

(Placebo) … … …

g Sl
obs(0) Missing

g+1 Missing Sg+1
obs(0)

Z=1 g+2 Missing Sg+2
obs(0)

(Vaccine) … … …

n Missing Sn
obs(0)

should be viewed as a problem of missing data”, thus the evaluation of principal
surrogates can be cast as a problem of missing potential surrogate markers.

We propose to impute the missing potential surrogate markers using the baseline
surrogate marker measure (B). For biomarkers that are normally distributed, the
relationships between the potential surrogate outcomes and the baseline biomarker
can be described by two normal models as follows:

Si(0) = α0 +α1Bi + ε0, where ε0 ∼ Normal
(
0,σ2

0

)
, (7)

Si(1) = β0 +β1Bi + ε1, where ε1 ∼ Normal
(
0,σ2

1

)
. (8)

Model (7) can be estimated from subjects in the placebo group, and the missing
value of S(0) for subjects in the vaccine group can be subsequently imputed based
on the fitted models. If the surrogate marker is a binary measurement, then logistic
regression or probit model can be employed to impute the missing values. Similarly,
log-linear models can be used to impute the missing multinomial data. We can
use the model fitted from the placebo group to predict the missing S(0) in the
vaccine group because randomization makes the two groups equivalent and the
potential surrogate marker S(0) is independent of the treatment assignment. Or, in
other words, S(0)|B, Z = 0 D

=
S(0)|B, Z = 1, where D

=
denotes equality in distribution.

Similarly, missing values of S(1) for subjects in the placebo group can be imputed
from the fitted Model (8) using subjects in the vaccine group.

With the imputed potential surrogate markers S(0) and S(1), the causal model (5)
can be identified and the surrogate value of a biomarker can be assessed based on
the estimated treatment effects as defined in Eq. 6. The validity and precision of the
inferences will depend on the accuracy of the imputed values. To account for the
uncertainty associated with the imputed values, we use a multiple imputation (MI)
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approach [17], which substitutes the missing values with a set of plausible values
of the potential surrogate markers. As illustrated in Table 1, the potential surrogate
markers are missing at random (MAR), as the probability that a potential surrogate
marker is missing depends only on the observed treatment assignment. This is very
important because the validity of the multiple imputation technique relies on the
MAR assumption. The MI procedure consists of three stages: imputation stage,
analysis stage and repeated-inference stage. In the imputation stage, the missing
potential surrogate markers are filled in m times to generate m “complete” datasets
in which both S(0) and S(1) are available for all subjects. Assuming the baseline
immune response (B) is measured for every subject in the study cohort, the potential
surrogate markers have a monotone missing pattern, and we adopt a Bayesian
imputation procedure [17] to impute the missing potential outcomes. In the analysis
stage, the imputed completed datasets are analyzed using the standard methods.
Specifically, in each complete dataset, potential surrogate markers are categorized
based on pre-specified thresholds. Then subjects are partitioned into principal strata
according to their categorical potential surrogate markers. The ACE(Pk

0) within
each stratum is estimated by fitting Model (5) using the complete data. In the
repeated-inference stage, the results from the analysis of the m multiply-imputed
datasets are combined using Rubin’s rule [17] to obtain an overall inference about
the ACE(Pk

0).

Misclassification in Principal Strata Membership
and the Estimation of Average Causal Treatment Effects

A caveat of the MI method described in the previous section is that subjects could
potentially be misclassified into wrong principal strata based on the imputed data.
Due to the uncertainty in the missing potential surrogate markers, the misclassi-
fication in principal strata membership is inevitable. In this section, we examine
the unique pattern of the misclassification in principal strata (PS) membership, and
investigate how such misclassification affects the estimation of the stratum-specific
ACEs. We focus on two situations: one is the so called “constant biomarker” case
and the other is a more general case.

Consider a dichotomous surrogate marker with two levels (0= low immuno-
genicity and 1= high immunogenicity). A constant biomarker means that S(0) can
only take the value of 0 while S(1) can take the values of 0 or 1. As a result, there
are a total of 2 possible principal strata based on the possible values of {S(0), S(1)},
denoted as {00} and {01}. Stratum {00} consists of subjects who have no change
in immunogenicity if vaccinated, and stratum {01} contains subjects who have
increased immunogenicity if vaccinated. In the case of constant biomarker, S(0)
is known for all subjects whereas S(1) are observed only for subjects in the vaccine
group. For vaccine recipients, the observed principal strata are constructed based
on the observed S(0) and S(1); while for placebo recipients, the observed principal
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Table 2 The observed versus the true principal strata in the general case

Observed principal strata based on imputed data

True principal
strata

{00} {11} {01} {10} Total

{00} 0 ntrue

{11} 0 truen11

{01} 0 truen01

{10} 0 truen10

Total obsn00
obsn11

obsn01
obsn10

n00_00
Correctly
classified

n11_11
Correctly
classified

n01_01
Correctly
classified

n10_10
Correctly
classified

n01_00
Placebo

recipients from 
01

n10_11
Placebo

recipients from 
10

n00_01
Placebo

recipients from 
00

n11_10
Placebo

recipients from 
11

n10_00
Vaccine 

recipients from 
10

n01_11
Vaccine 

recipients from 
10

n11_01
Vaccine 

recipients from 
11

n00_10
Vaccine 

recipients from 
00

00

strata are constructed based on the observed S(0) and the imputed S(1). Therefore
misclassification in PS membership may take place only among placebo recipients
due to the uncertainty in the imputed S(1).

In the general scenario, S(0) is no longer a constant and it can take the value of
either 0 or 1. Similarly S(1) can take the value of either 0 or 1. Therefore there
are four possible principal strata corresponding to the possible combinations of
S(0) and S(1); {00} and {11} are the strata in which subjects have no change
in immunogenicity if vaccinated; {01} is the stratum in which subjects have
increased immunogenicity if vaccinated; and stratum {10} contains subjects who
have decreased immunogenicity if vaccinated. For placebo recipients, the observed
principal strata are constructed based on the known S(0) and the imputed S(1); while
for vaccine recipients, the observed principal strata are constructed based on the
known S(1) and the imputed S(0). In Table 2, we list the number of subjects in the
true PS membership vs. the number of subjects in the observed PS membership
based on imputed potential surrogate markers. Note that the first two digits in n’s
subscript indicate the true stratum to which the subjects belong and the trailing two
digits specify the stratum to which the subjects are classified. It can be seen that
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every observed principal stratum consists of correctly classified subjects, misclassi-
fied placebo recipients from one stratum and misclassified vaccine recipients from
another stratum.

Under the assumptions of (A1) to (A3) and the causal model (5), the observed
ACE in a specific stratum is essentially a weighted average of the true ACE in this
specific stratum and the true ACE in the stratum to which the misclassified vaccine
recipients originally belong. Of note the misclassified placebo recipients have no
effect on the estimation of ACEs because the baseline hazard is constant across
principal strata in model (5). More specifically,

ACEobs
00 = p10_00ACEtrue

10 +(1− p10_00)ACEtrue
00 = (1− p10_00)ACEtrue

00 (9)

ACEobs
11 = p01_11ACEtrue

01 +(1− p01_11)ACEtrue
11 , (10)

ACEobs
01 = p11_01ACEtrue

11 +(1− p11_01)ACEtrue
01 , (11)

ACEobs
10 = p00_10ACEtrue

00 +(1− p00_10)ACEtrue
10 = p00_10ACEtrue

00 , (12)

where ACE00
true, ACE11

true, ACE01
true and ACE10

true denote the true ACEs in
strata {00}, {11}, {01} and {10}, respectively. Note ACE10

true = 0 as a result
of assumption (A3). The weight is the proportion of misclassified vaccine
recipients in the stratum. The first two digits in p’s subscript indicate the true
stratum to which the subjects belong and the trailing two digits specify the
stratum to which subjects are misclassified. Equations 9, 10, 11, and 12 show
that the estimated ACEs in the observed strata may be biased in the presence
of misclassification in PS membership. However, the direction of bias can be
determined from Eqs. 9, 10, 11, and 12 and the effect of misclassification
in PS membership on the estimation of the causal treatment effects can be
assessed. For example, if a biomarker is a good surrogate that satisfies both
ACN and ACS, then ACE00

true = 0, ACE11
true = 0 and ACE01

true < 0 (assuming
the vaccine has a protective effect on the hazard of disease). From Eqs. 9, 10,
and 11, we can see that ACE00

obs = 0; ACE11
obs = p01 _ 11ACE01

true < 0; and
ACE01

obs = (1− p11 _ 01)ACE01
true. Hence misclassification of PS membership

may result in an underestimation of the surrogate value of a good surrogate
marker. If a biomarker has no surrogate value, then ACE01

true = 0 and
(ACE00

true < 0 and/or ACE11
true < 0. An inspection of Eqs. 9, 10, and 11 shows

that ACE00
obs = (1− p10 _ 00)ACE00

true; ACE11
obs = (1− p01 _ 11)ACE11

true; and
ACE01

obs = p11 _ 01ACE11
true . Hence misclassification in PS membership may result

in an overestimation of the surrogate value for a biomarker that has completely no
surrogate value. If there are similar ACEs in strata {00}, {11} and {01} (i.e., a
biomarker with partial surrogate value), then the misclassification in PS membership
has little effect on the estimation of the ACEs in these strata.
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Simulation Study

Data Generation and Simulation Design

We evaluated the performance of the proposed MI approach through simulation
studies. We considered a continuous surrogate marker that can be dichotomized
into two levels: low (S= 0) and high (S= 1). The data were generated to mimic
the structure of a placebo-controlled vaccine trial, which motivated our proposed
method and will be discuss more in section “Application to a Herpes Zoster Vaccine
Trial”. The clinical endpoint is the time from vaccination to disease development.
The candidate surrogate marker is an immune response at 6 weeks post-vaccination
and is measured as the natural logarithm of the antibody fold rise from baseline. We
examined the performance of the proposed method in (a) the constant biomarker
case with S(0)= 0; and (b) the general case in which S(0) has arbitrary variability.

Data were generated for N subjects (i= 1, . . . ,N) with 1:1 randomization
to placebo (Z = 0) or vaccine (Z = 1). The baseline immune response (B) was
measured for every subject and was randomly drawn from Bi ∼Normal(5.56,1.00).
For the general case, the potential post-baseline immune responses P(0) and P(1)
were generated as functions of B by two linear models: Pi(0)= 0.30+ 0.93Bi + ε0i,
where ε0i ∼Normal(0,0.342); and Pi(1)= 3.60+ 0.56Bi + ε1i, where ε1i ∼Normal
(0,0.682). The potential surrogate markers were the changes in the immune response
from baseline, i.e., Si(0)=Pi(0)−Bi, Si(1)=Pi(1)−Bi. The principal strata were
constructed by dichotomizing the potential surrogate markers at a pre-specified
threshold value c: P00i = I(Si(0)< c, Si(1)< c), P01i = I(Si(0)< c, Si(1)≥ c),
P11i = I(Si(0)≥ c, Si(1)≥ c) and P10i = I(Si(0)≥ c, Si(1)< c). We considered
c= 0.36 in the simulation. The true survival time was generated from an
exponential-Cox model (Bender et al. [29]) with proportional hazards as follows:

Ti =− log(Ui)

8× 10−4 × exp(Zi × (γ00P00i + γ01P01i + γ11P11i+ γ10P10i))
,

where Ui ∼Uniform(0,1). The censoring time was Ci = 365+Uniform(0,1)× 183.
The observed survival or censoring time was Yi =min(Ti,Ci) and the indicator of
whether the subject had the event was δ i = I(Ti <Ci). The average cumulative
probability of disease in the placebo group is 29% and the overall censoring
percentage during the study is about 75%. For the case of constant biomarker, we
set Pi(0)=Bi in the above data generating process such that Si(0)=Pi(0)−Bi = 0
for subject i= 1, . . . ,N. The true ACDE in the causal necessity strata {00} and {11}
were γ00 and γ11, respectively. The true ACAE in the causal sufficiency stratum
{01} was γ01. We set γ10 to 0 such that there was no vaccine effect in stratum {10}
[consistent with (A3)].

In the generated data, S(1) for subjects with Z = 0 were set to missing in the
constant biomarker case; and S(0) for subjects with Z = 1 and S(1) for subjects
with Z = 0 were set to missing in the general case. The MI approach was applied
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to fill in the missing values. The imputed S(0) for subjects with Z = 1 was drawn
from its predictive distribution obtained from the estimated model of Eq. 7 using
subjects in the placebo group. Similarly, the imputed S(1) for subjects with Z = 0
was drawn from its predictive distribution based on the model of Eq. 8 estimated
using subjects in the vaccine group. For every simulation setting, we considered
1,000 replications. In each replication, we considered a trial of N = 2500 subjects
(1:1 allocation). For every trial, we conducted m= 10 imputations for the potential
surrogate markers. The parameters in the data generating process were selected
such that there were significant overall vaccine effects on T in all the generated
data. The performance of the proposed MI approach was evaluated by different
metrics, including (i) the probability of rejecting the hypothesis that the ACE in
a stratum equaling zero (i.e., the type I error rate when the true ACE is zero and
the power when the true ACE not equal to zero); (ii) the absolute bias of the ACE
estimate in terms of log hazard ratios; and (iii) the coverage rate of the 95% CIs
for the ACEs. We varied the parameters γ00, γ11 and γ01 to generate data with the
candidate surrogate marker having different surrogate values. Three scenarios were
considered where the biomarker has (a) no surrogate value (ACAE= 0, ACDE �= 0);
(b) moderate surrogate value (ACAE �= 0, ACDE �= 0); and (c) high surrogate value
(ACAE �= 0, ACDE= 0 such that ACN and ACS hold).

Simulation Results for the Case of Constant Biomarker

Table 3 presents, for each principal stratum, the average number of subjects, the
absolute bias, the standard error, the coverage probability of the 95% CI of the
estimated ACE, the empirical type I error rate under the null hypothesis of no ACE,
and the power to reject the null when the true ACE is not equal to 0. We present
both the results based on fully observed S(1) (as an unattainable benchmark) and the
results based on multiply imputed S(1). In the analysis based on fully observed S(1),
we assume the potential surrogate marker S(1) was observed for all subjects such
that there was no misclassification in the PS membership. In the analysis based on
multiply imputed S(1), we set the S(1) in the placebo group to missing and applied
the MI approach. Compared with the analysis based on the fully observed S(1), the
bias of the MI method appeared to be negligible. The coverage probabilities were
close to but slightly above the target level. Furthermore, the test for the principal
stratum treatment effect is conservative in terms of type I error rate, which was
consistent with findings reported in other MI-based approaches (e.g., [18, 19]). The
simulation results show that the proposed MI approach is a valid approach for the
evaluation of principal surrogacy of constant biomarkers. As we discussed in section
“Misclassification in Principal Strata Membership and the Estimation of Average
Causal Treatment Effects”, in the constant biomarker case, only placebo recipients
can be misclassified, the simulation results also showed that misclassification of
placebo recipients has negligible effect on the estimation of the causal treatment
effects.
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We also conducted simulation studies to evaluate other factors that might affect
the performance of the proposed method. For example, we found that the results
are similar across different numbers of imputations (m= 10 and 100). But in small
studies (N= 600) there was slight improvement as m increases in the method in
terms of test power and coverage probability. Therefore we recommend using a large
number of imputations if the computational time is not a concern. We compared
the performance of the Bayesian imputation model and the Frequentist imputation
model as described in Lu et al. [18]. The results from the two imputation procedures
are very similar, with slightly better performance for the Bayesian imputation.
Detailed results are not included here for brevity.

Simulation Results for the General Case

As discussed in section “Misclassification in Principal Strata Membership and
the Estimation of Average Causal Treatment Effects”, the PS membership can be
misclassified based on the imputed data and the estimated ACEs may be biased
in the general case. The simulation study conducted in the general setting aims
to investigate the direction of the bias and the effect of misclassification on the
estimation of the principal surrogate value. In the general case, we have four possible
principal strata: {00}, {11}, {01} and {10}. There are very few subjects falling
into the stratum {10} in our simulation study, therefore we focused on the strata
{00}, {11} and {01}. Table 4 presents, for each principal stratum, the average
number of subjects, the absolute bias, the standard errors, the coverage probability
of the 95% CI of the estimated ACE, the empirical type I error rate under the null
hypothesis of no ACE, and the power to reject the null when there is principal
stratum specific ACE. In general, the proposed method provides reasonable power
to detect average causal effects when they exist. However, the MI estimates were
biased in some scenarios. The bias is caused by the misplacement of vaccine
recipients into wrong principal strata and the direction of the bias is consistent with
our previous conjecture as described in section “Misclassification in Principal Strata
Membership and the Estimation of Average Causal Treatment Effects”. Note that the
type I error rates of the tests for no ACE in some strata are high mainly because of
the biased estimates of ACEs in these strata. As shown in the simulation study, we
find that the misclassification of PS membership results in an underestimation of
the surrogate value for good surrogates and overestimation of the surrogate value
for poor surrogates.

Summary of Simulation Studies

To summarize, our simulation studies showed that misclassification of placebo
recipients has little effect on the estimation of the treatment effects and the proposed
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MI approach provides valid assessment of principal surrogacy in the case of constant
biomarker. In the general case, the estimated treatment effects may be biased
in some strata. However, the proposed method provides insightful assessment on
surrogate value of biomarkers given the fact that the direction of the bias is known.
Specifically, if the results based on the proposed MI approach show the biomarker
has a high surrogate value, then the true surrogate value should be even higher
given a likely downward bias in surrogacy estimation caused by misclassification of
vaccine recipients. In contrast, an estimate of low surrogate value from the proposed
method would suggest that the true surrogate value is actually even lower given a
likely upward bias caused by misclassification of vaccine recipients.

Application to a Herpes Zoster Vaccine Trial

We applied the proposed MI method to evaluate an immunological marker using
data from a phase III herpes zoster vaccine trial conducted by Merck Research Labo-
ratories. The trial was a multicenter, double-blinded, placebo-controlled randomized
study to examine the effectiveness of ZOSTAVAX in the prevention of herpes zoster
among 50–59 years old individuals [12]. The clinical endpoint of interest is the time
from randomization to herpes zoster development and the candidate surrogate is
the antibody response at 6 weeks post-vaccination measured by the glycoprotein
enzyme-linked immunosorbent assay (gpELISA). The study used a case-cohort
design [20] where the antibody responses at baseline and 6 weeks were measured
in the case-cohort population (all the herpes zoster cases occurred during the course
of study plus a prospectively selected, random subset of 10% study participants).
A Kaplan-Meier plot of herpes zoster events in subjects randomized in the herpes
zoster vaccine trial is presented in Fig. 1.

The objective of the analysis was to examine whether the vaccine-induced
reduction in the rate of herpes zoster is caused by the vaccine-induced elevation
in antibody titers as measured by gpELISA at 6 weeks post-vaccination. For this
purpose, 13 of the 22,439 (0.06%) trial participants who experienced the herpes
zoster event prior to the antibody response measurement at 6 weeks postvaccination
were excluded from the analysis. In previous analysis (not published), we found
that a categorical combined score of fold rise and titer captures about 65% of the
treatment effect on protection of herpes zoster using Freedman’s method [21]. Based
on a preliminary assessment that suggests a noticeable threshold effect of both 6-
week antibody titer and fold rise on the hazard of herpes zoster, antibody titer and
fold-rise from baseline were both dichotomized into “low” and “high” levels in this
analysis. Therefore, for both S(0) and S(1), we have four ordered categories, denoted
as 1, 2, 3 and 4, where 1 denotes “low titer and low fold rise”; 2 denotes “high titer
and low fold rise”; 3 denotes “low titer and high fold rise”; and 4 denotes “high
titer and high fold rise”. The order of the number corresponds to the relative level
of immunogenicity, with 4 indicating the highest level of immunogenicity.
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Fig. 1 Kaplan-Meier plot of herpes zoster (HZ) events in subjects randomized in the herpes zoster
vaccine trial (Intention-to-treat population)

We cross-classified the subjects in the “complete” data set according to the
combination of S(0) and S(1) to form 16 distinct principal strata. We found that
some principal strata were more common than others. For example, Table 5 presents
the number of subjects and the corresponding potential surrogate markers in each
distinct principal stratum based on the single deterministic imputation (the imputed
value is exactly the predicted value based on the Bayesian imputation model and the
predictive uncertainty is ignored). Since this study was a multi-center randomized
trial and only 1 out of the 2,276 subject included in the case-cohort analysis
was classified into the negative surrogate effect stratum S(0)> S(1) (Table 5), the
assumptions (A1), (A2), and (A3) needed for the causal analysis appear reasonable
and practical for this application.

Table 6 presents the estimated stratum-specific ACEs based on 100 random
imputations for the three major principal strata as well as the combined causal
necessity and causal sufficiency strata. The estimated ACEs in stratum {22} suggest
that no significant vaccine effect is observed on the hazard of herpes zoster when
there is no vaccine effect on the surrogate marker. The estimated ACEs in strata
{24} and {14} show that when the vaccine elevates immunogenicity, there is a
corresponding vaccine effect on the hazard of herpes zoster, and this effect becomes
more pronounced as the vaccine effect on the surrogate markers increases. These
results show that the vaccine effect on the immune response measured by gpELISA
antibody clearly predicts the vaccine effect to protect against herpes zoster, with
greater vaccine-induced immunogenicity associated with greater protection. Fur-
thermore, the estimated ACE based on subjects from all causal necessity strata
(e.g., stratum {11},{22},{33} and{44}) and the estimated ACE based on subjects
from all causal sufficiency strata (e.g., ({12},{13},{14},{23},{24},{34}) show
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Table 5 Herpes zoster vaccine trial: name, number of subjects and the corresponding potential
surrogate markers for each principal stratum based on a single deterministic imputation

Potential surrogate
markers

Name of principal
stratum

Number of
subjects S(0) S(1)

Causal necessity strata {11} 5 1 1
{22} 569 2 2

S(0)= S(1) {33} 5 3 3
(N= 579) {44} 0 4 4

Causal sufficiency strata {12} 3 1 2
{13} 28 1 3

S(0)< S(1) {14} 355 1 4
{23} 0 2 3

(N= 1696) {24} 1,310 2 4
{34} 0 3 4

Negative surrogate effect strata {21} 1 2 1
{31} 0 3 1

S(0)> S(1) {32} 0 3 2
{41} 0 4 1

(N= 1) {42} 0 4 2
{43} 0 4 3

that the antibody response satisfies both ACN and ACS. Therefore, the 6-week
antibody response as measured by gpELISA may be used as a principal surrogate
for protection of herpes zoster in trials of ZOSTAVAX.

Discussion

The validation of principal surrogate markers is based on the estimation of the
average causal treatment effects in the principal strata of interest. However, given the
fact that every subject has one missing potential surrogate marker, it is challenging
to assess the principal surrogacy of biomarkers. In this article, we proposed a
multiple imputation approach for the evaluation of principal surrogate markers
by incorporating a baseline predictor. The proposed method provides remarkable
advantages as it is applicable to various types of clinical endpoints and to general
settings in which S(0) has arbitrary variability.

To our knowledge, this paper is the first to investigate the unique pattern of
misclassification in the PS membership and its impact on the assessment of a
biomarker’s surrogate value. Simulation studies showed that the proposed MI
approach provides valid inference about principal surrogacy in the case of constant
biomarker. In the general case, although the MI approach may generate biased
ACE estimates in some principal strata due to misclassification in PS membership,
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Table 6 Herpes zoster vaccine trial: results of the estimated stratum-specific causal treatment
effects for the three major strata, the combined causal necessity strata and the combined causal
sufficiency strata (m= 100 imputations)

Principal stratum

The estimated causal
treatment effects in
hazard ratio (HR)

95% CI
for HR p-value

Causal necessity
strata

{22} 0.72 0.28, 1.86 0.499

All causal necessity
strata

0.64 0.27, 1.54 0.323

Causal sufficiency
strata

{24} 0.17 0.05, 0.53 0.003

{14}a 0.04 0.01, 0.27 0.001
0.00 0.00, 0.00 <0.001

All causal
sufficiency
strata

0.12 0.05, 0.31 <0.001

aTwo estimates for the average causal treatment effect (ACE) in stratum {14} are presented because
the distribution of the estimated ACE from the 100 multiply imputed datasets has two modes. This
is due to the fact that the vaccine is very effective in stratum {14}, and in some of the imputed
datasets, no subjects in the vaccine group had the event in this stratum. Hence we use Rubin’s rule
to combine the results for each distribution and present two estimates, both suggesting there was a
strong vaccine effect in {14}

the direction of the bias can be predicted based on the correlations between the
baseline predictor and the surrogate markers, and the estimated surrogate value.
Unfortunately, the inference can only be made if the estimated surrogate value is
low or high. It would be difficult to infer the direction of the bias when the estimated
surrogate value is moderate. A further extension of the proposed method is to correct
the bias in the MI approach for the general case, and further research in this area is
ongoing.

In this paper, we focused on continuous biomarkers and employed parametric
models for the imputation of potential surrogate outcomes (models (7) and (8)).
Misspecification of the imputation model may lead to bias or reduced precision
in the estimation of the analysis model; hence it is important to check the model
assumptions. Remedies include transforming the data (i.e., taking logarithm of
heavily skewed variables) or using some less parametric imputation approaches.
Simulation studies have shown that the less parametric approaches (e.g., the
predictive mean matching method [22]) are more robust to model misspecification
[23]. For the analysis model, we employed Cox proportional hazard model (model
(5)) to estimate the average causal treatment effects. The key assumptions for the
Cox model are the proportional hazard assumption and no omission of relevant
covariates. Consequences of model misspecifications and techniques to handle
model misspecification have been extensively studies by Lin and Wei [24] and many
others.
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Almost all of the literature on statistical methods for assessing principal surro-
gates has assumed that the treatment/vaccine has no effect on the clinical endpoint
before the surrogate marker is measured. The proposed method utilizes the same
assumption by requiring that the post-baseline immune response is measured prior
to the development of the clinical endpoint. This simplifying assumption makes the
methodology development relatively simple and implementable. If this assumption
is violated, then the proposed method may be biased and may provide overly-
precise inferences [15]. For the ZOSTAVAX application, only a very small fraction
(0.06%) of trial participants experienced the clinical endpoint within 6 weeks
post-vaccination, and any vaccine protection conferred during this early period is
expected to be small. As a result, any potential violation of the assumption would
only have a small impact on the overall result.

The proposed method provides a general framework that accommodates various
types of clinical endpoints. However, its application is limited to categorical
surrogate markers or continuous surrogate markers that can be categorized in order
to construct principal strata. For direct evaluation of continuous surrogate markers,
GH [7] proposed the causal effect predictiveness (CEP) surface for the assessment
of candidate principal surrogates. They provided likelihood-based approaches to
estimate the CEP surface for constant biomarkers, but not for the general case. Our
proposed MI approach can be employed to estimate the CEP surface for continuous
markers in both the constant biomarker case and the general case.

The surrogacy of a biomarker defined by principal surrogacy is a treatment-
specific concept. As Pearl [25] pointed out, a biomarker may be a good principal
surrogate when a certain treatment is used but fails to be a good surrogate under
new conditions. One of the biggest challenges of surrogate markers evaluation using
data from a single trial is that there is always risk associated with extrapolating the
information gathered from one study to a new setting. The evaluation of surrogacy of
biomarkers should be a process of collecting consistent evidences across treatments,
populations and even disease stages.
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Mapping Return Values of Extreme
Wind Speeds

Adam L. Pintar and Franklin T. Lombardo

Abstract Structures subjected to wind loads must be designed to perform
adequately from the points of view of stress and serviceability. Wind loading
specified for design is based in part on the wind speeds affecting the site of interest.
A particular quantity of interest in design is the N-year extreme wind speed,
regardless of its direction, at a location of interest, defined by its longitude and
latitude. Wind maps consisting of isotachs for N-year extreme wind speeds defined
in building codes and standards are therefore required for structural design purposes.
Alternatively, numerical versions of maps can be developed wherein automatic
interpolations are performed that yield the N-year speeds at points defined by
longitude and latitude. The raw data to be analyzed to develop the map are irregular
time series of wind speeds above a specified threshold at multiple wind reporting
stations. This work presents a two-stage approach to creating the map. The first
stage involves the estimation of the parameters of an extreme value distribution at
each station. In the second stage an interpolant based on the estimated parameters is
created so that the N-year extreme wind speeds may be estimated at the geographical
coordinates of interest. Standard errors and confidence bounds for the estimates are
calculated using a non-parametric bootstrap algorithm. Results are presented for a
region within Kansas, and those results are compared to the ASCE 7-10 Standard
over the same region.
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Introduction

An important consideration in designing structures is determining the effects
induced by wind on that structure and its components. Those effects are functions of
the wind speed, at or near the structure’s location, that will be exceeded with some
probability, p, in any one year. In building codes and standards these probabilities
are expressed in terms of mean recurrence intervals (or mean return periods) N =
1/p in years. Wind speeds with mean return period N are referred to in this chapter
as N-year return values. Maps of estimates of N-year return values are typically used
in codes and standards, including [16]. In this chapter, an algorithm for creating such
maps will be described, and the algorithm will be applied to a region within Kansas.
The map from [16], which covers the entire United States, is compared, over the
appropriate region in Kansas, to the map developed in this work.

The algorithm described here attempts to address some potential limitations of
the map in [16]. The map in [16] employs the Gumbel distribution which fixes
the so called tail length parameter at zero. In addition, a single set of Gumbel
parameters is assumed to describe the extreme wind climate of Kansas and the
rest of the non-hurricane regions of the US. This assumption leaves the N-year
return values displayed in [16] uniform over most of these non-hurricane regions,
including Kansas. In this chapter, a different extreme value model is employed, but
most importantly, the tail length parameter of that model is not fixed but estimated
from the data. The algorithm in general also allows for the inclusion of non-uniform
(i.e., regional) climatology. Finally, the map in [16] treats all extreme wind events
the same. This chapter recognizes and takes into account that extreme winds can
arise from different sources (e.g., thunderstorms).

Estimating return values of extreme wind speeds (at a single observing station)
is an application of extreme value theory, and since their accurate estimation is
important for building safety, the subject has received substantial attention. For
example, [10] compares two estimation methods based on the generalized Pareto
distribution (GPD). In [24], an argument in favor of the reverse Weibull distribution
over the Gumbel distribution for describing extreme winds is presented, and [8]
makes a similar assertion specifically for hurricane generated winds. More recently,
[29] presents a new procedure for the estimation of the extreme-value index of
the GPD, and then applies the procedure to data from stations in Belgium. This
introduction does not present a complete review of the literature on applying
extreme value theory to the estimation of extreme wind speeds. A novel feature
of the work presented in this chapter is an algorithm for interpolating estimates of
N-year return values to geographical coordinates of interest where data have not
been observed, that is, an algorithm for creating maps.

The raw data are irregular time series of wind speeds (nominally 3 s gusts) above
some threshold at 26 observation stations in Kansas. The time series are irregular
because an observation is recorded only when the wind speed crosses a threshold,
not at regular intervals such as daily, weekly or monthly. The time series range in
number of observations from 4,161 to 29,825 and in time span from approximately
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Fig. 1 A random sample of the raw data for observing station 724650 in western Kansas separated
by thunderstorm and non-thunderstorm winds

7 years (Nov. 2003–Oct. 2010) to approximately 31 years (Jan. 1980–Dec. 2010).
Note that the shortest time span does not correspond to smallest number of observed
wind speeds. Also, the dataset used here is a subset of a larger dataset. The subset
was chosen such that within a station the threshold used in data collection was
constant over time. The details for how the larger dataset was obtained can be
found in [13]. An example of the raw data for a single station in western Kansas,
number 724650, is shown in Fig. 1. For presentation purposes, Fig. 1 actually shows
a random sample of about 10% of the observations from station 724650 so that
individual observations of wind speed may be distinguished. Observed wind speeds
due to thunderstorms are separated from other observed wind speeds in Fig. 1
because a distinction is drawn between the two types of winds in the remainder
of this chapter.

In this chapter, the wind speeds described as non-thunderstorm may also be
described as synoptic because they do not include observations from tornadoes,
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tropical storms, or hurricanes. It is with this understanding that the term non-
thunderstorm is used. The observed wind speeds are separated in this way because
thunderstorm and non-thunderstorm winds arise from different underlying envi-
ronmental conditions. Due to this fact, perhaps not surprisingly, the distribution
of extreme thunderstorm wind speeds may exhibit different properties than the
distribution of extreme non-thunderstorm wind speeds. This was the case in, for
example, [13]. Another important point is that not all of the raw time series will
be used to estimate the N-year return value at a given observing station. Only wind
speeds above a threshold higher than that used in the data collection process will
be considered. The reasons for this as well as a procedure for choosing the high
threshold are described in the next section.

The remainder of the chapter proceeds as follows. The section “Estimating
N-Year Return Values” describes a procedure for creating maps of estimated N-
year return values. The section “Bootstrap for Estimating Uncertainty” presents a
bootstrap algorithm for assessing the uncertainty in those estimates. The section
“Results” shows the results of applying the estimation and uncertainty assessment
procedures to data from 26 observing stations in Kansas. The last section revisits
key points from the chapter.

Estimating N-Year Return Values

The procedure described in this chapter for estimating N-year return values of
extreme wind speeds proceeds in two stages. In the first stage, a two-dimensional
non-homogeneous Poisson process is fitted to extreme wind speeds, for each station
separately, using maximum likelihood (ML). This statistical technique for analyzing
extreme values was first used in [26] and further considered in [27]; although, as
noted in [27] the mathematical foundations for this technique can be found in [9]
and [22]. In the second stage, the fitted values of the Poisson process parameters
are spatially smoothed using local polynomial regression (also known as LOESS or
LOWESS) [3,4]. Lambert conformal conic projections of longitude and latitude (see
page 104 of [28]) are the covariates in the regression, which allows interpolation to
longitudes and latitudes where data have not been observed. A separate regression is
fitted to each parameter. Once the Poisson process parameters are estimated at each
longitude and latitude of interest, N-year return values can be calculated and maps
drawn. To assess the uncertainty in the estimated N-year return values, point-wise
bootstrap [6] confidence intervals are constructed for the estimated N-year return
values. Note that [27] also used a two stage analysis to evaluate whether or not
extreme rainfall events are becoming more prevalent. The first stage of that analysis
is similar to the one presented here, but the second stage spatial analysis is different.

Before continuing note that in the first stage of the procedure, when a non-
homogeneous Poisson process model is fitted to each station separately, not all
of the raw data from an observing station is used. Instead, only a declustered and
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thresholded subset of the raw data is used. The details of how the declustering and
thresholding are carried out are found in the sections “Clusters of Extreme Wind
Speeds” and “Choice of Thresholds”, respectively.

Poisson Process

Consider the irregular time-series of wind speeds above some threshold, u, at
one station. Denote the time-series by {(Ti,Yi)}I

i=1 where Ti is the time of the
threshold exceedance, Yi is the wind speed, and I is the number of observations.
In [26] it is proposed that {(Ti,Yi)}I

i=1 can be modeled as a two-dimensional non-
homogeneous Poisson process (henceforth referred to simply as a Poisson process)
on D1 = [mT ,MT ]× [u,∞) with intensity function

λ1(t,y) =
1
σ

(

1+ ζ
y− μ
σ

)−1/ζ−1

+

(1)

when u is suitably large. The notation mT and MT refers to the minimum and
maximum observed times, respectively. The notation (·)+ is defined as

(·)+ =

{ · if ·> 0
0 if · ≤ 0.

The model parameters, μ and σ do not have nicely self contained interpretations,
but the third model parameter ζ can be interpreted as the tail length. For ζ ≥ 0, the
intensity function has an infinitely long tail (in the wind speed or y direction), and
for ζ < 0, the intensity function has a finite tail. Notice also that the right hand side
of (1) is free of t, which means that the intensity function is constant in the time
or t direction. The justification for this approach lies in convergence theorems, and
more details can be found in [26]. Section 2.4 of [18] describes the simplest case of
a Poisson process, the one dimensional homogeneous Poisson process, and Chap. 4
of [23] and [21] give general expositions on point processes, of which the Poisson
process is one.

To visualize the Poisson process model, consider Fig. 2, which is similar to the
figure on page 14 of [27]. In Fig. 2, wind speed is represented by the vertical axis,
and time (or date) is represented by the horizontal axis. As previously mentioned,
the space on which the Poisson process is defined is D1 = [mT ,MT ]× [u,∞). The
Poisson process model assumes that the number of, (Ti,Yi) data pairs, that fall within
the shaded region in Fig. 2 is Poisson distributed with expected value

Λ1 = (t2 − t1)
∫ y2

y1

1
σ

(

1+ ζ
y− μ
σ

)−1/ζ−1

+

dy

which is the amount of volume trapped by the intensity function over the region
(t1, t2)× (y1,y2).
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Fig. 2 Graphical
representation of D1 on
which the Poisson process
corresponding to λ1 is
defined. The expected number
of points that will fall in the
shaded box within D1 is Λ1

One problem with the current formulation of the Poisson process model (as it
relates to our data) is that it does not allow the possibility of accounting for the
difference between thunderstorm and non-thunderstorm winds. To account for the
two types of winds, λ1(t,y) is modified so that the parameters, μ , σ , and ζ are
allowed to vary with time. Specifically,

λ2(t,y) =
1
σt

(

1+ ζt
y− μt

σt

)−1/ζt−1

+

. (2)

Note that the right hand side of (2) relies on t through the parameters, so it is
not constant in the time or t direction. While the intensity function in (2) is very
general, in this application, it can be simplified because we are only interested in
two different types of winds, thunderstorm and non-thunderstorm. Thus, when t
is in a thunderstorm period of time, (μt ,σt ,ζt) = (μs,σs,ζs), the thunderstorm set
of parameters, and when t is in a non-thunderstorm period of time, (μt ,σt ,ζt) =
(μns,σns,ζns), the non-thunderstorm set of parameters. Thus we have

λ2(t,y) =

⎧
⎪⎨

⎪⎩

1
σs

(
1+ ζs

y−μs
σs

)−1/ζs−1

+
for t in a thunderstorm period

1
σns

(
1+ ζns

y−μns
σns

)−1/ζns−1

+
for t in a non-thunderstorm period

(3)

The subscripts s and ns stand for storm and non-storm, respectively. Figure 3 helps
to visualize this more general Poisson process model. Figure 3 is similar to Fig. 2;
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however, it adds the complication of a thunderstorm time period within the shaded
region. That is, t1 to t2 represents a non-thunderstorm time period, t2 to t3 represents
a thunderstorm time period, and t3 to t4 represents a non-thunderstorm time
period again. Note from Fig. 3 that thunderstorm and non-thunderstorm time periods
are also allowed different thresholds. Since thunderstorm and non-thunderstorm
winds are allowed different thresholds, the space on which the Poisson process is
defined is a union of two disjoint regions, and it is referred to as D2 = D2,s ∪D2,ns.
As before, the Poisson process model assumes that the number of (Ti,Yi) data pairs
that fall within the shaded region in Fig. 3 follows a Poisson distribution, but that
the expected value of the Poisson distribution is now

Λ2 = (t2 − t1)
∫ y2

y1

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dy

+(t3 − t2)
∫ y2

y1

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dy

+(t4 − t3)
∫ y2

y1

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dy.

Note that Λ2 is calculated by summing the amount of volume trapped by λ2(t,y)
over the disjoint regions (t1, t2)× (y1,y2), (t2, t3)× (y1,y2), and (t3, t4)× (y1,y2).
The Poisson process model that accounts for both thunderstorm and non-
thunderstorm winds is used throughout the remainder of this chapter.
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The Likelihood

The Poisson process model described in the section “Poisson Process” provides the
means to estimate N-year return values for each station at which data were collected;
however, the parameters of the Poisson process must first be estimated, and the
method of maximum likelihood (ML) will be used for that task (see for example
[2], pp. 315–323).

To use the method of ML, a likelihood, which is typically the joint probability
density of the observed data conditional on the parameters of interest, must first be
constructed. To do so, note that conditional on observing I points in D2 and on the
parameters of interest, the I points are independently and identically distributed with
the following density function (page 342 of [23]):

f (t,y|μs,σs,ζs,μns,σns,ζns) =
λ2(t,y)∫∫

D2

λ2(t,y)dtdy
=

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
σs (1+ζs

y−μs
σs )

−1/ζs−1

+
∫∫

D2,s

1
σs (1+ζs

y−μs
σs )

−1/ζs−1

+
dydt+

∫∫

D2,ns

1
σns (1+ζns

y−μns
σns )

−1/ζns−1

+
dydt

thunder t

1
σns (1+ζns

y−μns
σns )

−1/ζns−1

+
∫∫

D2,s

1
σs (1+ζs

y−μs
σs )

−1/ζs−1

+
dydt+

∫∫

D2,ns

1
σns (1+ζns

y−μns
σns )

−1/ζns−1

+
dydt

non-thunder t.

(4)

Then, since I follows a Poisson distribution, the joint probability density of the I
observations is

(
I

∏
i=1

f (Ti,Yi|μs,σs,ζs,μns,σns,ζns)

)

×exp

⎧
⎪⎨

⎪⎩
−
∫∫

D2,s

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dydt

−
∫∫

D2,ns

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dydt

⎫
⎪⎬

⎪⎭
(5)

×

⎛

⎜
⎝

⎡

⎢
⎣
∫∫

D2,s

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dydt

+

∫∫

D2,ns

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dydt

⎤

⎥
⎦

I⎞

⎟
⎠×

(
1
I!

)
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However, (5) is proportional to

L(μns,σns,ζnt ,μs,σs,ks) =

(
I

∏
i=1
λ2(Ti,Yi)

)

×exp

⎧
⎪⎨

⎪⎩
−
∫∫

D2,s

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dydt (6)

−
∫∫

D2,ns

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dydt

⎫
⎪⎬

⎪⎭

which is used as the likelihood. Recall that

λ2(t,y) =

⎧
⎪⎨

⎪⎩

1
σs

(
1+ ζs

y−μs
σs

)−1/ζs−1

+
for t in a thunderstorm period

1
σns

(
1+ ζns

y−μns
σns

)−1/ζns−1

+
for t in a non-thunderstorm period

The ML estimate of the Poisson process parameters is the value of η = (μns,σns,
ζns,μs,σs,ζs), say η̃ = (μ̃ns, σ̃ns, ζ̃ns, μ̃s, σ̃s, ζ̃s), that maximizes (6). An analytic
expression for η̃ does not exist, and (6) must be maximized using numerical
methods. In particular, we have used the optim function in R [19], which
implements by default the method described in [17].

Equation for the N-Year Return Value

Recall from the section “Introduction” that the N-year return value is the wind
speed, yN , where the probability that yN will be exceeded in any 1 year is
1/N. Without loss of generality, since the number of observations in the region
[0,1]× (yN,∞) is assumed to be distributed as a Poisson random variable with mean
∫ ∞

yN

∫ 1
0 λ2(t,y), the N-year return value is the solution to the equation

1− exp

{

−
∫ ∞

yN

∫ 1

0
λ2(t,y)dtdy

}

=
1
N

(7)

for yN since 1−exp
{
−∫ ∞yN

∫ 1
0 λ2(t,y)dtdy

}
is the probability that one or more wind

speeds above yn occur in 1 year. Letting As and Ans represent the typical amount of
thunderstorm and non-thunderstorm time, respectively in 1 year, (7) becomes

1− exp

{

−As

∫ ∞

yN

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dy

− Ans

∫ ∞

yN

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dy

}

=
1
N
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Since 1− exp{−1/N} is approximately 1/N for large N, the simpler

As

∫ ∞

yN

1
σs

(

1+ ζs
y− μs

σs

)−1/ζs−1

+

dy

+Ans

∫ ∞

yN

1
σns

(

1+ ζns
y− μns

σns

)−1/ζns−1

+

dy =
1
N

is solved instead. This is also the approach taken in [14]. The N-year return value is
then the solution to

As

(

1+ ζs
yN − μs

σs

)−1/ζs

+Ans

(

1+ ζns
yN − μns

σns

)−1/ζns

=
1
N

(8)

for yN . There is no analytic expression for the N-year return value, but a numerical
solver can be used. In particular, we use the R function uniroot, which leverages
a Fortran subroutine based on an algorithm described in [1]. Estimates of As

and Ans are discussed in the section on interpolating to spatial coordinates where
observations have not been made.

Clusters of Extreme Wind Speeds

Since extreme wind speeds at a particular station are driven by the underlying envi-
ronmental conditions, they tend to cluster together in time. This calls the Poisson
process model into question. More specifically, the independence assumption is less
tenable. So that the independence assumption is more tenable, clusters are identified,
and only cluster maximums are considered in the fitting process. To identify clusters,
consecutive observations are considered to be from different clusters if they are
separated by some specified period of time. In this chapter, that period of time
for non-thunderstorm winds is taken to be 1 day, and for thunderstorm winds it
is taken to be one hour. Thunderstorm and non-thunderstorm winds are de-clustered
separately. This is similar to the de-clustering procedure used in [26].

Choice of Thresholds

An important consideration when fitting the Poisson process model for extreme
values is the choice of the threshold, and here it will be necessary to choose two
thresholds. The threshold pair can have a substantial impact on the estimated N-year
return value, due in part to the fact that the thresholds determine which observations
in the time series are included (and excluded) for fitting. Sometimes, a high quantile
of the observed wind speeds is used. The authors of [14] use the 95th quantile.

Here, a different approach is taken, which is to find the pair of thresholds that
produce the best fit, in a sense, of the model to the data. The process begins by
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Fig. 4 Q-Q plot of the Wi’s for the threshold pair, thunderstorm = 51.5 and non-thunderstorm =
54.5, at station 724650

specifying a regular grid of threshold pairs. In this case, the observed wind speeds
are rounded to integer values, so the grid of potential thresholds are always taken
to be of the form xx.5. The matter of generating this grid is returned to shortly. For
each grid point or pair of potential thresholds, the fit of the model is judged using
the W statistic on page 31 of [27]. Specifically,

Wi =
1

ζ̃Ti

log

{

1+
ζ̃TiYi

σ̃Ti + ζ̃Ti(uTi − μ̃Ti)

}

.

If the Poisson process model (and the parameter estimates) were exactly correct,
the Wi’s would be independent and identically distributed (iid) exponential random
variables with mean one. So the pair of thresholds that lead to the Wi’s most closely
resembling iid exponential random variables with mean one is chosen, and quantile-
quantile (Q-Q) plots are used to judge this resemblance. Figure 4 presents such a
Q-Q plot of the Wi’s for the best threshold pair at station 724650. The horizontal
axis in Fig. 4 depicts quantiles of the exponential mean one distribution, and the
vertical axis depicts the ordered Wi’s. Notice in Fig. 4 that the points follow the 45◦
line very well. This implies that the Wi’s closely resemble iid observations from a
exponential distribution with mean one.

When selecting a threshold pair, it would be most desirable to visually examine
quantile-quantile plots, such as the one in Fig. 4, for all potential threshold pairs in
the grid. Since this is impractical, the information contained in the plots must be
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numerically summarized. One sensible choice is to calculate the vertical distances
from each point to the 45◦ line and then summarize those distances. We chose to
examine the maximum distance, but the mean or median distance could have been
used too. Then, the threshold pair that minimizes the distance summary is selected.
The selected threshold pair was not very sensitive to the choice of distance summary,
but some differences did exist. For station 724650, the selected threshold pair is
82.9 kilometers per hour (km/h) (51.5 miles per hour (MPH)) for thunderstorm time
periods and 87.7 km/h (54.5 MPH) for non-thunderstorm time periods. Note that
the calculations are done in MPH since the original units of the data are MPH, but
the results here and in the following sections are presented in both MPH and km/h.
One may be surprised that the selected threshold for thunderstorm winds is smaller
than the selected threshold for non-thunderstorm winds. This is not always the case,
but it is also not rare. To understand why, consider that a very small proportion of
the total observation time is occupied by thunderstorms (for station 724650 less
than 1%). So that enough observations are available to provide good estimates
of the thunderstorm parameters, a slightly lower threshold may be useful. The
de-clustered and thresholded observations that are used to fit the Poisson process
model for station 724650 are depicted in Fig. 5. From Fig. 5, it is clear that very high
thunderstorm wind speeds are much larger than very high non-thunderstorm winds.
For instance, around 1995, station 724650 experienced a thunderstorm wind speed
that was just shy of 161 km/h (100 MPH). The largest non-thunderstorm observation
is less than 129 km/h (80 MPH).

The first step in the process for selecting a threshold pair is to construct a grid of
potential threshold pairs. To do this, an upper and lower bound on the thunderstorm
and non-thunderstorm thresholds is chosen. To choose an upper and lower bound for
the thresholds, a minimum and maximum average number of observations per year
is selected. For the minimum, three, four, or five are reasonable. It is undesirable
to use only one or two because an advantage of the Poisson process approach to
extreme values over the classical approach is its ability to use more data than just the
yearly maxima. In this chapter, the minimum is taken to be four so that the amount
of data used for fitting the extreme value model parameters is at least four times what
would be used with the classical approach. There is more flexibility in choosing the
maximum. It should be large enough so as not to miss good threshold pairs, but not
so large that it adds undue computational burden. In this chapter, the maximum is
taken to be fifteen, which in this case fits those two qualitative criteria nicely. Then,
the upper bound for the thunderstorm threshold is the largest thunderstorm threshold
that leads to no less than an average of four thunderstorm observations per year. The
lower bound for the thunderstorm threshold is the smallest thunderstorm threshold
that leads to no more than an average of fifteen thunderstorm observations per year.
The bounds on the non-thunderstorm thresholds are calculated similarly. For station
724650, on which observations spanning almost eighteen years are considered, this
leads to a lower and upper bound on the thunderstorm threshold to be 71.6 km/h
(44.5 MPH) and 89.3 km/h (55.5 MPH), respectively. The lower and upper bound
on the non-thunderstorm threshold for station 724650 is 78.1 km/h (48.5 MPH) and
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Fig. 5 The thresholded and declustered data for station 724650 that will be used to fit the Poisson
process model

89.3 km/h (55.5 MPH), respectively. Recall that the selected thunderstorm threshold
was 82.9 km/h (51.5 MPH), which allows 108 total thunderstorm observations, and
the selected non-thunderstorm threshold was 87.7 km/h (54.5 MPH), which allows
123 total non-thunderstorm observations.

Interpolating

Recall that the goal of this analysis is the estimation of the N-year return value at an
arbitrary longitude (θ ) and latitude (φ ), but so far only the estimation of the N-year
return values at observing stations has been discussed. To interpolate to (θ ,φ) pairs
where data have not been collected, LPR, also known as locally weighted scatter
plot smoothing (LOESS or LOWESS), is leveraged [3, 4].
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Suppose that at (θ ,φ) there exists some “true” Poisson process producing the
irregular time-series of wind speeds. Then, we can denote the parameters of those
“true” Poisson processes as ζs(θ ,φ), ζns(θ ,φ), σs(θ ,φ), σns(θ ,φ), μs(θ ,φ), and
μns(θ ,φ). It is reasonable to assume that the spatially varying functions are smooth,
but that their exact form is unknown. Under these assumptions, we may model the
estimated Poisson process parameters at station j, for example μ̃s( j), as

μ̃s( j) = μs(θ j,φ j)+ ε
μs
j , (9)

where the εμs
j has zero expectation and variance τ2

μs
( j). Similar spatial models are

assumed for the other Poisson process parameters. The error variance is allowed
to vary from station to station because the stations have been in use for different
periods of time. Thus, differing amounts of uncertainty in the ML estimates is
expected. In fact, we assume that error variances are proportional to the estimated
variances from the ML estimation procedure, so τ2

μs
( j) = τ2

μs
v̂ar(μ̃s( j)), where

v̂ar(μ̃s( j)) is the estimated variance of μ̃s( j) from the ML estimation procedure.
The spatial models for the Poisson process parameters can be estimated by LPR,

and the function locfit in the R package locfit [12] is used to produce the
estimates of μs(θ ,φ), μ̂s(θ ,φ) and the other Poisson process parameters at (θ ,φ)
of interest. Another good general reference to LPR, which is written specifically for
using the R package locfit is [11]. The estimated values of the Poisson process
parameters due to LPR can then be transformed to an estimated N-year return value
at (θ ,φ) using (8) and a numerical solver.

To use (8) and a numerical solver to estimate a N-year return value at (θ ,φ),
a value for As and Ans must be available, and the following procedure is used to
get a plug-in estimate for them. At each observing station, the average number of
thunderstorms per year during the observation period was calculated, and the mean
of those averages is taken. This number can be interpreted as the typical number of
thunderstorms occurring in one year, and it is multiplied by the typical length of a
thunderstorm, which is taken to be one hour, to get As. Lastly, if the units of time
are days, Ans = 365−As.

When using LPR, the value of the smoothing parameter, or bandwidth, must
be chosen. For this task, the generalized cross-validation score [5] is utilized.
Generally speaking, larger bandwidths will lead to biased predictions, and smaller
bandwidths will lead to predictions with higher variability . The generalized cross-
validation score attempts to balance the trade-off between bias and variance, and
low generalized cross-validation scores are preferred. The gcv function of the
R package locfit is used to calculate the generalized cross-validation scores.
A second LPR parameter, the degree of the local polynomial, also has to be chosen,
and one is used since it is a typical choice.

Since the Euclidean distance between observations plays an important role
in LPR, the (θ ,φ) pairs are not directly used as covariates. Rather, (θ ,φ) are
transformed to their Lambert Conformal Conic Projections (x,y) using the function
mapproject from the R packagemapproj [20]. For our example, the parameters
for the projection are lat0= 37.044 and lat1= 39.549, the minimum and
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maximum of the observed latitudes. Thus, for example, μs(θ ,φ) is more accurately
described as μs[hxy(θ ,φ)], where hxy(·, ·) represents the projection from (θ ,φ) to
(x,y). However, we continue to use the original notation for brevity.

Summary of the Estimation Procedure

Since the estimation procedure described in this section is complex, a summary
is given here so that the reader may see a concise but still complete view of the
algorithm.

1. Fit a two-dimensional non-homogeneous Poisson process model to each station
separately

• Create a grid of reasonable threshold pairs
• Decluster the raw time series for each threshold pair
• Fit a Poisson process model to the declustered data using ML for each

threshold pair
• Quantify the fit of Poisson process model to the data for each threshold pair

using the quantile-quantile plot approach
• Select the threshold pair that leads to the best fit
• The final parameter estimates for a station are the ones that correspond to the

selected threshold pair

2. Interpolate the Poisson process parameters to all longitude and latitude
coordinates of interest separately

• Use LPR
• Choose a LPR bandwidth for each parameter using generalized cross-

validation
• Use Lambert conformal conic projections instead of longitude and latitude

directly

3. Calculate the N-year return value at each longitude and latitude of interest using
the interpolated values

Bootstrap for Estimating Uncertainty

To assess the uncertainty in our estimates of the N-year return values, point-wise
bootstrap percentile upper bounds are calculated. The bootstrap was introduced in
[6], and a general introduction to it can be found in [7]. This bootstrap algorithm is
based on re-sampling the residuals from the fitted spatial models for each Poisson
process parameter. The raw residuals are not directly sampled. They are first scaled
so that they will have a common variance. After the residuals are re-sampled with
replacement, they are again scaled by the appropriate standard error from the ML
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estimation procedure so that they have the appropriate variance (since some stations
have been in use longer than others). To create a bootstrap data set for each of
the Poisson process parameters, the re-sampled and scaled residuals are added to
the value of the fitted surface at the appropriate coordinate, (θ j,φ j) for station j.
The bootstrap data sets are then used in the same manner as described above to
estimate N-year return values at any coordinate of interest. When this has been done
many times, say NB = 1,000, there exists a bootstrap distribution of N-year return
values at each coordinate of interest . The upper bound is then some high quantile,
maybe 90%, of that bootstrap distribution. More details on the bootstrap algorithm
are provided in the appendix.

Results

In this section, the methods of the sections “Estimating N-Year Return Values”
and “Bootstrap for Estimating Uncertainty” are applied to data from 26 observing
stations in Kansas. A map of Kansas with the locations of all 26 observing stations as
well as the locations of some of the larger cities in Kansas is displayed in Fig. 6. The
stations are marked by the dots, and the cities are marked by their names. Note that
most of the cities have at least one reporting station nearby. For example, Wichita
has three. The station that was used as an example in much of this chapter is marked
by its number, 724650. The parameter estimates and their ML standard errors for all
26 stations are given in Table 1.

In Figs. 7 and 8, contour maps of the estimated 50-year return values (a) and
the point-wise (not simultaneous) 90% upper bounds for those estimates (b) are
presented.

Kansas
City

Lawrence

Manhattan Topeka

Wichita

724650

Fig. 6 Map of Kansas that includes all 26 observing stations (marked by dots) and some of
Kansas’s larger cities (marked by only by text)
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Fig. 7 Contour map of estimated 50-year return values over the convex hull encompassing the 26
observing stations. The results are presented in km/h outside of the parentheses and (MPH) inside
of the parentheses

Fig. 8 Contour map of point-wise 90% upper bounds on estimated 50-year return values over the
convex hull encompassing the 26 observing stations. The results are presented in km/h outside of
the parentheses and (MPH) inside of the parentheses

The contour lines in Figs. 7 and 8 are restricted to the convex hull that
encompasses the 26 stations since estimation outside of that convex hull would be
extrapolation.

Figure 7 shows that the cities marked in Fig. 6 all have an estimated return value
that is less than 137 km/h (85 MPH), and Fig. 8 shows that the 90% upper bound on
the estimated 50-year return value is about 145 km/h (90 MPH). Also from Fig. 7,
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a positive trend from east to west can be observed, which becomes steeper in the
western part of the state. This is indicated by the contour lines being closer together.
Figure 8 shows the same positive trend for the 90% point-wise upper bounds,
but the increased steepness of the trend in the western part of Kansas is far more
pronounced. Thus, the uncertainty in the estimated 50-year return value is larger in
the western part of the state. This is due, at least in part, to there being less stations
in the western part of the state.

An interesting comparison is between Figs. 7 and 8 and the 50-year return values
in the ASCE 7-10 Standard [16]. From the wind speed by location website of the
Applied Technology Council [30], the ASCE 7-10 Standard gives the 3-s peak gust
50-year return value at the station 724468 (near Kansas City) and station 724650
to be 145 km/h (90 MPH). Further, [25] states that the ASCE 7-95 Standard [15]
gives the 50-year return value to be 145 km/h (90 MPH) for all of Kansas. In Fig. 7,
the estimated 50-year return value for station 724468 (eastern Kansas) is below
145 km/h (90 MPH), but for station 724650 (western Kansas), it is slightly above
145 km/h (90 MPH). In Fig. 8, the 90% upper bound for station 724468 (eastern
Kansas) is about 145 km/h (90 MPH), but for station 724650 (western Kansas), it
is far above 145 km/h (90 MPH). Again the increased uncertainty in the estimated
50-year return values in the western part of the state is at least partly due to the
sparseness of stations there. Further, the large uncertainty in the estimated 50-year
return value specifically at station 724650 could also be partly due to its position as a
vertex on the convex hull encompassing the stations since uncertainty for regression
surfaces tends to increase towards the boundaries of the observed independent
variables. If perhaps there truly are regional differences as illustrated in Figs. 7
and 8, a constant N-year return value over the entire state, as in [16], would imply
risk inconsistency, which is undesirable.

Conclusion

In this chapter, a two-stage procedure for creating a map of N-year return values
based on irregular time series of wind speeds at observing stations within the region
to be mapped is described. In the first stage, a two-dimensional non-homogeneous
Poisson process model is fitted using maximum likelihood to wind speeds above
a high threshold at each observing station. In the second stage, local polynomial
regression is used to interpolate the parameters of the Poisson process model to any
coordinate of interest. The interpolated parameter values are then used to estimate
N-year return values at the coordinates of interest. The uncertainty in those estimates
is quantified using a bootstrap algorithm to calculate point-wise upper bounds.

The procedure was demonstrated on data from 26 stations within Kansas for
N = 50, with the results shown in Figs. 7 and 8. The estimated 50-year return values
showed a positive east to west trend, and the trend became steeper in the western
part of the state. The point-wise upper bounds showed a similar trend; however
the increased steepness in the western part of the state was far more pronounced.
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The increased uncertainty in the western part of the state is at least partly due to the
sparsity of the stations there.

For two of the observing stations (one in the east and one in the west), the results
of this procedure were compared to the 3-s peak gust 50-year return values stated in
the ASCE 7-10 Standard. The ASCE 7-10 Standard gave both 50-year return values
as 145 km/h (90 MPH). The procedure presented in this chapter gives estimates that
are below 145 km/h (90 MPH) in the east and slightly above 145 km/h (90 MPH) in
the west with 90% upper bounds that are very close to 145 km/h (90 MPH) in the
east but far above 145 km/h (90 MPH) in the west.
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Appendix

The details of the bootstrap algorithm for calculating a percentile upper bound on
the N-year return value at a coordinate of interest are presented now. Let rμs

j =
μ̃s( j)−μ̂s(θ j ,φ j)

se[μ̃s( j)−μ̂s(θ j ,φ j)]
, where se[μ̃s( j)− μ̂s(θ j,φ j)] is the estimated standard deviation of

μ̃s( j)− μ̂s(θ j ,φ j). Similar quantities for the other Poisson process parameters are
also defined. Recall that (θ j,φ j) is the latitude and longitude of station j, so rμs

j is
the standardized residual for station j. Now, carry out the following steps.

1. From (rμs
1 ,rμs

2 , · · · ,rμs
Nstations

), sample with replacement to obtain (rμs,∗
1 ,rμs,∗

2 , · · · ,
rμs,∗

Nstations
). Perform a similar procedure for the other Poisson process parameters.

2. Use the re-sampled residuals to create a bootstrap dataset. Specifically, μ̃∗
s ( j) =

μ̂s(θ j ,φ j) + τ̂μs

√
v̂ar(μ̃s( j))rμs,∗

j for j = 1,2, · · · ,Nstations where τ̂μs is an esti-

mate of τμs . Note that rμs,∗
j is scaled by the estimated variance of εμs

j . Perform a
similar procedure for the other Poisson process parameters.

3. Repeat the procedure in the section “Estimating N-Year Return Values” for
estimating the N-year return value at all (θ ,φ) of interest using the bootstrap
dataset.

4. Repeat steps 1–3 Nboot times to get Nboot estimates of the N-year return value at
all (θ ,φ) of interest, and call them yk

N(θ ,φ). We take Nboot = 1,000.
5. The (1−α)100% percentile upper bound for the N-year return value at (θ ,φ) is

then the (1−α)100% quantile of (y1
N(θ ,φ),y2

N(θ ,φ), · · · ,yNboot
N (θ ,φ)).

To use the above procedure, one must be able to calculate rμs
j , τ̂μs , and

the corresponding quantities from the other Poisson process parameters. The R
package locfit will calculate (τ̂μs r

μs
j ) and τ̂μs , which are sufficient to carry out

the above algorithm. It is likely that other software packages for LPR will also have
the ability to calculate these quantities.
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Decision Analysis Methods for Selecting
Consumer Services with Attribute
Value Uncertainty

Dennis D. Leber and Jeffrey W. Herrmann

Abstract The basic risky decision is defined as a decision for which the outcome
of an uncertain event, in addition to the alternative selected, defines the final
consequence. Beyond the uncertain event, additional uncertainties can enter a
decision including the uncertainty in the attribute values used to assess the decision
consequences. When considering the selection of consumer products and services,
formal and informal reviews of products and services are often used by consumers to
estimate the level of satisfaction that will be received. When developing a decision
model based on these data, attribute value uncertainty is often present and should be
incorporated. In this chapter, we consider the uncertainty in the attribute values used
to describe the possible consequences. We present several approaches to incorporate
attribute value uncertainty into the decision analysis for choosing a roofing firm
based on customer review data.

Introduction

As the digital age evolves, personal opinions can be found regarding just about
anything with only a few clicks of a mouse. While some opinions – fashion,
entertainment, political – may be appealing only in the eye of the beholder, others
can be very useful for consumers. For example: reviews and ratings from previous
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purchasers are shared for products on many retail websites; travel websites often
provide a forum for past travelers to convey their experiences and reviews of a hotel
or resort; and the dining experiences of past patrons at restaurants nationwide can be
found in abundance. Many rely on these reviews to provide, in a qualitative sense,
a measure of the satisfaction expected to be received from the product or service
being considered.

While these individual qualitative reviews are certainly useful, more quantitative
summaries of consumers’ opinions are available from non-profit organizations such
as Consumers Union and the Center for the Study of Services. These organizations
survey their members to gain real world knowledge of consumer products and
services. The survey results are analyzed and provided as summary statistics for
a variety of performance rating criteria. Consumers can use these results when
selecting a product or service provider.

From a decision analysis framework, one might model such a consumer decision
as a decision under certainty with either a single or multiple attributes. The products
(or service providers) are represented as n alternatives. The m attributes for each
alternative are a subset of the available performance rating criteria, and the attribute
values are the quantitative values based on the survey results. For each of the
n alternatives, the multiple attribute values are combined using a model of the
decision-maker’s preferences, which yields a decision parameter value that is the
basis for the final selection.

The survey attempts to assess the true values of the performance rating criteria.
Because the survey is based on limited data, the summary statistics used for the
performance rating criterion value is an estimate of the true value and contains
uncertainty. We refer to the uncertainty associated with the attribute values as
attribute value uncertainty. When selecting a product or service provider, the
decision-maker should consider how this uncertainty affects the relative desirability
of the alternatives. Through an example of selecting a roofing firm based on data
published by the Center for the Study of Services, we illustrate a proposed method
to incorporate the attribute value uncertainty into the analysis of a decision.

Decision Analysis and Uncertainty

Decision problems can be classified on several dimensions. First, the decision-
maker can be either an individual or a group. Second, the number of attributes used
to describe the set of consequences can be a single attribute or can consist of multiple
attributes. And finally, a decision problem may be classified under conditions of
certainty, risk, or uncertainty. These conditions may be defined as follows [1]:

1. Decisions under certainty: Each alternative is known to lead invariably to a
specific outcome.

2. Decisions with risk: Each alternative leads to one of a set of possible outcomes,
where each outcome occurs with a probability assumed to be known by the
decision-maker. These outcomes may be the result of an uncertain future event,
for example.
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3. Decisions under strict uncertainty: Each alternative leads to one of a set
of possible outcomes, though nothing is known or can be stated about the
probability of the occurrence of each outcome.

Ron Howard first coined the term decision analysis in a 1966 conference talk
[2] where he provided a formal procedure for the analysis of decision problems.
Active work in this field had been taking place for more than a decade prior
to Howard’s introduction of the terminology. Notable contributions during this
time include works from von Neumann and Morgenstern [3], Savage [4], and
Luce and Raiffa [1]. These works provided the foundation to formally address,
through analytical methods, the decision problem for which the consequence of
the action cannot be realized until some uncertain event is resolved; i.e., decisions
with risk. The method of expected utility theory, first formalized by von Neumann
and Morgenstern [3] and later put into practical terms for multiattribute decision
analysis in the award winning text of Keeney and Raiffa [5], provides a structured
approach to decision analysis when uncertain events exist through the consideration
of the probability distributions over the potential outcomes of the uncertain event.
Consider the following example of a risky decision for which the method of
expected utility theory is applicable. A family is considering one of two outings
during the upcoming weekend: a visit to a local museum or attending an outdoor
Major League Baseball game. An uncertain event, a weekend rain storm, whose
likelihood has been described with some probability by meteorologists, may lead to
unfavorable consequences if the family chooses to attend the baseball game.

The driving force behind all decisions is the decision-maker’s preference struc-
ture. Models to describe one’s preference structure include ordinal value functions,
measureable value functions, and utility functions. Dyer [6] provides a comprehen-
sive overview of these models, their applications and underlying assumptions, and
assessment methods. In brief, ordinal value functions are applicable in decisions
under certainty. They lead to a rank ordering of the decision alternatives, but do
not indicate magnitude of preference among the alternatives. Measureable value
functions, also applicable in decisions under certainty, provide an interval scale
of measurement; that is, the decision-maker’s strength of preference amongst the
alternatives is captured. Finally, utility functions are applicable in decisions with
risk. The utility model of one’s preference structure not only considers the decision-
maker’s values of the potential consequences but also incorporates his psychological
reactions to taking risks. See Keeney and Raiffa [5], Kirkwood [7], Dyer and Sarin
[8], von Winterfeldt and Edwards [9], and Farquhar and Keller [10] for further in-
depth discussions of these preference structure models.

A further aspect of uncertainty in decision making was presented in the 1960s
by Daniel Ellsberg, best known in the decision analysis community for his now
infamous Ellsberg Paradox (see [11] for a well described presentation). The term
decision ambiguity in the decision analysis context was first defined by Ellsberg
[12] and has since been generalized and elaborated by many. Frisch and Baron [13]
present a nice definition: “Ambiguity is uncertainty about probability, created by
missing information that is relevant and could be known.” Some have used this
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idea to challenge the validity of utility theory; particularly as a descriptive theory
though most proponents of utility theory argue that the theory was meant only
as a normative one [6, 13, 14]. Others have attempted to expand utility theory to
include ambiguity (see [15] as an example). In short, decision ambiguity refers to the
uncertainty in describing the probability profile of a risky decision. In the previously
noted example of the family outing, the decision ambiguity is the uncertainty in the
probability of the weekend rainstorm described by the meteorologists.

To summarize, uncertainty in decision making is by no means a new concept. The
theory of expected utility addresses the decision problem for which an uncertain
future event stands between the decision at hand and the realized consequences.
Decision ambiguity considers the uncertainty involved in describing the probability
profile of the uncertain event in a risky decision. Other examples of uncertainty in
decision making include uncertain decision-maker preference structures [16] and
uncertainty in attribute weights [17–19]. Although these methods encompass many
aspects of uncertainty in decision making, they all presume that the consequences
(described by the attribute values) are precisely defined and neglect any uncertainty
that may exist in their assessment. Little work has been published that explicitly
considers the uncertainty that may be present in the assessments of the consequences
(the attribute value uncertainty). Until now, this work has been limited to the use of
the PROMETHEE outranking technique to incorporate attribute value uncertainty,
as in Hyde et al. [20] and Zhang et al. [21].

Problem Statement

The consequence associated with any decision is the result of the selected alternative
and the outcome of relevant external factors that are outside the control of the
decision-maker (e.g., an uncertain future event). To illustrate this perspective, a
simple decision may be represented as a decision table (Table 1). The n decision
alternatives a1, a2, . . . , an are the rows in the table. The columns in the table
correspond to s1, s2, . . . , sr, the r mutually exclusive and exhaustive possible
outcomes of relevant external factors. Associated with each possible outcome is
P(sj), the probability that sj will be the true outcome. As shown in each cell of the

Table 1 General form of a decision table

Outcomes

s1 s2 . . . sr

Decision
alternatives

a1 x1,1,1, x1,1,2, . . . , x1,1,m x1,2,1, x1,2,2, . . . , x1,2,m . . . x1,r,1, x1,r,2, . . . , x1,r,m

a2 x2,1,1, x2,1,2, . . . , x2,1,m x2,2,1, x2,2,2, . . . , x2,2,m . . . x2,r,1, x2,r,2, . . . , x2,r,m

. . . . . . . . . . . . . . .

an xn,1,1, xn,1,2, . . . , xn,1,m xn,2,1, xn,2,2, . . . , xn,2,m . . . xn,r,1, xn,r,2, . . . , xn,r,m



Decision Analysis Methods for Selecting Consumer Services. . . 409

table, the consequence that ensues when alternative ai is selected and sj is the true
outcome is described by m attributes and their associated attribute values xij1 to xijm.

Table 1 clearly displays the components of a decision: the alternatives, the
uncertain possible outcomes, and the resulting consequences described by attribute
values. When the decision components are viewed as displayed in Table 1, it
becomes evident that uncertainty in expressing the attribute values (that is, the
uncertainty in the values of xijk) is essentially unlike uncertainty about which of the
set of possible outcomes, s1, s2, . . . , sr, will occur (risky decision) and uncertainty
in defining the probability of each outcome, P(sj) (decision ambiguity).

While it may be conceivable to model the attribute value uncertainty as an
uncertain event in a risky decision, we choose to maintain a decision model that
distinguishes the attribute value uncertainty as a unique component of uncertainty.
The reason is that a decision-maker can control, to some extent, the amount of
uncertainty in an estimate of the true value of an attribute by varying the amount
of information observed in its assessment whereas the outcome of a future uncertain
event cannot be controlled in this same manner.

Decision-makers often consider decision alternatives that have consequences
that are described by uncertain attributes. If a decision problem includes attributes
whose values are determined by means of sampling and measurement, attribute
value uncertainty exists. For example, the listed fuel mileage of a new car being
considered is only an estimate of the true value based on sampling and experimental
evaluations which include measurement. When these attribute values are provided
only as point values, the decision-maker must move forward under the assumptions
that the values are accurate and that the level of uncertainty associated with each
alternative is equivalent. Although the value of a new car’s fuel mileage may be an
innocent example, the Department of Homeland Security’s selection of a radiation
detection system to be installed at airports based on estimated system performance
parameters is a much more serious matter. Consider also the decisions that depend
upon the results of the 2010 United States census. The allocation of congressional
seats and federal funding will be decided based on the estimated population within
each congressional district. There is undeniably uncertainty in these estimates, and
the uncertainties are not equivalent from district to district.

The selection of a product or service provider may be modeled as a multiattribute
decision under certainty. That is, there are no uncertain future events that stand
between the decision at hand and the realized consequences. In this case there is
only a single outcome. The alternatives a1, a2, . . . , an are the n products or service
providers being considered. Some of the relevant attributes have attribute value
uncertainty. Because the model is a decision under certainty, either a multiattribute
ordinal value function or a multiattribute measurable value function may be used to
represent the preference structure. The decision-maker’s goal in this situation is to
select the alternative that, given his preferences, maximizes his satisfaction in the
presence of attribute value uncertainty. We shall propose an approach to incorporate
the attribute value uncertainty into the decision model and then consider various
rules for evaluating the decision-maker’s satisfaction with each alternative.



410 D.D. Leber and J.W. Herrmann

In this situation, the decision-maker faces the risk of selecting an alternative that
is not the best one, which could be identified if no attribute value uncertainty existed.
The decision-maker may have to make a tradeoff, as in other settings involving risk,
between alternatives whose performance is described to range from very well to
poor (that is, there is a large amount of uncertainty about their performance) and
other alternatives whose performance is described as neither very well nor poor
(that is, there is less uncertainty about their performance). The proposed methods
should help the decision-maker understand this tradeoff and make a better decision.

Approach

This section describes the approach that we will use to identify the best of a set of
alternatives that have attribute value uncertainty. For any alternative, the point esti-
mates for each attribute can be used to evaluate the decision model. The alternative
with the largest resulting decision parameter value (e.g., value or measurable value
in a decision under certainty, utility in a risky decision [6]) would be considered
the alternative most fitting given the decision-maker’s preferences. We will call this
the expected value approach. Because this approach fails to consider the attribute
value uncertainty, it may fail to select the alternative that maximizes the decision-
maker’s satisfaction. Thus, we propose the following approach, which augments the
expected value approach by incorporating the attribute value uncertainty as follows:

1. Identify and develop the alternatives a1, a2, . . . , an and the attributes.
2. Model the uncertainty of each attribute value for each alternative. Let Fij(x) be

the probability distribution for alternative i’s value for attribute j, i= 1, . . . ,n,
j= 1, . . . ,m.

3. Randomly sample the attribute values based on the associated uncertainty models
to generate R realizations for each alternative. Each realization has a single value
for each of the relevant attributes. Let xijr be alternative i’s value for attribute j in
realization r, i= 1, . . . ,n, r = 1, . . . ,R.

4. Define the multiattribute decision model based on the decision-maker’s prefer-
ence structure and the realizations of the attribute values. This includes defining
the individual value (or utility) functions and attribute weights.

5. Propagate the attribute value uncertainty through the multiattribute decision
model and onto the decision parameter. That is, for each alternative and each
of its R realizations, calculate the corresponding decision parameter value. The
result is a distribution of R decision parameter values for each alternative. Let
yir be alternative i’s value for the decision parameter in realization r, i= 1, . . . ,n,
r = 1, . . . ,R.

6. Use a decision rule to identify the most desirable alternative based upon
distributions of the decision parameter values.

By appropriately adjusting the definition (Step 4) and evaluation (Step 5) of the
decision model, this approach can be used in both decisions under certainty and
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decisions with risk, including risky decisions with decision ambiguity. As Steps 1
and 4 above are the basis for developing any decision model [5] our discussion in the
following Sections will focus on approaches to model the attribute value uncertainty
(Step 2) and selecting an alternative based on a collection of decision parameter
distributions (Step 6).

Modeling Attribute Value Uncertainty

The ideal attribute value input to the decision model is the true, but often unknown,
value. As previously discussed, when attribute values are obtained based on
sampling, such as surveys or measurements, the value obtained is merely an estimate
of the true attribute value. This estimate contains some uncertainty that depends
upon the experimental technique used to estimate the value. In this section, we
describe several approaches to modeling this uncertainty. Our general decision
analysis approach to incorporate attribute value uncertainty can be used with any
of these approaches for modeling attribute value uncertainty.

Uncertainty and its assessment has become a popular topic in recent years.
Lindley [22] suggests the reason for the peak in interest is that the rules for
assessing and applying uncertainty are now understood and that past tendencies of
suppressing uncertainties are no longer necessary. Of the various methods that could
be leveraged to model attribute value uncertainty, we will discuss two approaches:
a bootstrap approach and a Bayesian approach.

A Bootstrap Method for Modeling Attribute Value Uncertainty

The non-parametric bootstrap method relies upon resampling of the observed data
to model the attribute value uncertainty. Introduced by Efron [23], the bootstrap
is “a computer-based method for assigning measures of accuracy to statistical
estimates” [24].

Given observed data x1, x2, . . . , xn, a typical application of the non-parametric
bootstrap technique involves generating a sample of size n with replacement from
the observed empirical distribution. Denoted by x *, this sample is called a bootstrap
sample. From the bootstrap sample, we compute the value of the parameter of
interest, denoted by θ *. We repeat this process b times to create an approximation
for the distribution of θ * and obtain statistical properties such as the standard error,
which are directly related to the parameters of the distribution that underlies the
original observations.

A number of variants of the bootstrap exist beyond the non-parametric bootstrap
method such as the parametric bootstrap and the Bayesian bootstrap, each of which
could also be used to develop a model of the attribute value uncertainty. These
variants utilize the same general resampling approach to create an approximation
for the distribution of θ *, though the Bayesian bootstrap uses a posterior probability
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distribution for resampling the observed data rather than the uniform distribution
used in the non-parametric bootstrap resampling. The parametric bootstrap samples
from an assumed parametric distribution with parameter values estimated based
upon the observed data. Chernick [25] provides a summary of these and other
bootstrap techniques as well as a variety of applications.

A Bayesian Model of Attribute Value Uncertainty

Another alternative in developing a model of the attribute value uncertainty is to
leverage the Bayesian paradigm of inference, which describes where the likely
attribute values are found using the posterior probability distribution [26]. Generally
speaking, an initial degree of belief, described in terms of a probability distribution
called the prior, is updated using Bayes’ Theorem when new data are observed to
produce a new degree of belief called the posterior distribution.

This approach allows for probabilities to be associated with the unknown
parameters. That is, the resulting posterior probability distribution describes what
is currently known about the parameters, where the probabilities are interpreted
as representing the degree of belief that given values of the parameter is the true
value [27].

The posterior distribution provides a method to model one’s knowledge of the
true value of the attribute. This model captures the uncertainty in the attribute value
estimate provided by the sampling or measurements.

Selection of an Alternative

Traditional decision analysis approaches clearly identify the most desirable alter-
native. This property should not be lost when expanding the model to be more
comprehensive by including attribute value uncertainty. The result of propagating
uncertainty is a set of decision parameter values that are described by distributions.
Thus, selecting an alternative changes from a simple ordering exercise to a
comparison of distributions. This section discusses three approaches to compare
the resulting decision parameter distributions: Rank 1, Stochastic Dominance, and
Majority Judgment.

Rank 1

In each realization, each alternative has one value for the decision parameter. If we
consider the realizations one at a time and examine the decision parameters for all of
the alternatives in that realization, then the alternatives can be ranked by the decision
parameter, and the most desirable alternative (the one ranked first) can be identified.
(If multiple alternatives tie for first in a realization, all of those so tied are considered
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as ranked first.) The number of realizations in which an alternative is ranked first (its
rank 1 value) describes the relative desirability of that alternative. An alternative’s
rank 1 value can vary from 0 (it is never ranked first) to R (it ranked first in every
realization). We use this value in the decision rule that selects the alternative with
the greatest rank 1 value.

Stochastic Dominance

Our second approach builds upon the concept of stochastic dominance for com-
paring distributions. In the following discussion Yi and Yj represent the decision
parameters for alternatives i and j respectively. The distributions of these parameters
are the ones generated by the R realizations.

Hadar and Russell [28] discuss stochastic dominance as an approach to predicting
a decision-maker’s choice between two uncertain events without knowledge of the
decision-maker’s utility function. They define two types of stochastic dominance:
first-degree stochastic dominance and second-degree stochastic dominance which
are presented below.

First-degree stochastic dominance: Yi stochastically dominates Yj in the first degree
if and only if

P [Yi ≤ y]≤ P [Yj ≤ y] ∀y (1)

That is, the value of the cumulative distribution for Yi never exceeds that of Yj

for all y∈ Y.
Second-degree stochastic dominance: When the support of Yi and Yj is contained

within the closed interval [a, b], Yi stochastically dominates Yj in the second
degree if and only if

∫ t

a
P [Yi ≤ y]dy ≤

∫ t

a
P [Yj ≤ y]dy ∀t ∈ [a,b] (2)

That is, the area under the cumulative distribution for Yi is less than or equal to
that of Yj for all t ∈ [a,b].

First-degree stochastic dominance is relevant in the absence of any restrictions
on the unknown utility function other than monotonicity. Second-degree stochastic
dominance is more restrictive in that the results apply only when the unknown
utility functions are concave, indicating a risk-averse decision-maker. Under these
restrictions, if Yi is found to stochastically dominate Yj in either the first or second
degree then alternative i is preferred to alternative j because alternative i will have a
greater expected utility.

If a single Yi is identified to stochastically dominate (first- or second-degree) Yj,
for all j, i �= j, and, in at least one case, the inequality in Eqs. 1 or 2 is found to be a
strict inequality then Hadar and Russell have shown that alternative i can be selected
with few underlying assumptions.
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We use the idea of stochastic dominance as a decision rule to select the alternative
with a set of decision parameter values that stochastically dominates all others. It
should be noted, however, that this rule may not produce a solution, and thus an
alternative would not be identified for selection.

In particular, consider the decision parameter values for alternatives i and j. Both
are sets of R values generated as discussed in Step 5 of the approach. Alternative
i dominates alternative j based upon the ideas of first-degree stochastic dominance
if, for all values y, the number of values of the decision parameter Yi that are not
greater than y is less than or equal to the number of values of the decision parameter
Yj that are not greater than y.

Let Zi = {yi[1],yi[2], . . . ,yi[R]} be the ordered set of the R decision parameter
values generated as discussed in Step 5 of the approach for alternative i where
yi[1] ≤ yi[2] ≤ . . . ≤ yi[R]. Let fi(y) be the number of decision parameter values in
Zi that are less than or equal to y. Note that this is a step function that increases at
each value in the set Zi. Let a and b be the lower bound and the upper bound on
the decision parameter values across all of the alternatives. Alternative i dominates
alternative j based upon the ideas of second-degree stochastic dominance if the
following condition holds:

∫ t

a
fi(y)dy ≤

∫ t

a
f j(y)dy ∀t ∈ [a,b] (3)

Because fi(y) and fj(y) are step functions, it is easy to calculate these integrals for
any value of t, and this condition holds for all t∈ [a,b] if it holds for all t∈Zi ∪Zj.

Majority Judgment

By considering the decision parameter value resulting from each of the R realiza-
tions as a score assigned by an individual judge or voter, the problem of selecting
an alternative based on distributions of decision parameter values may be viewed
as one of social choice. A consensus value for each alternative that appropriately
represents the message of all judges is sought in comparing and selecting the most
desirable alternative. While many models of social choice exist, we consider the
method of Majority Judgment.

In an attempt to identify a model of social choice that overcomes the short-
comings displayed by traditional social choice models such as the Borda and
Condorcent methods, Balinski and Laraki [29, 30] propose the method of Majority
Judgment. The Majority Judgment method relies upon the middlemost interval
to identify a social grading function that has desirable functional properties,
provides protection against outcome manipulation by individual voters or judges,
and overcomes many of the shortcomings of traditional social choice models.
When considering yi[1], yi[2], . . . , yi[R] ordered scores for a given alternative i, the
majority-grade is defined to be the median score, yi[(R+ 1)/2], when R is odd
and the lower bound of the middlemost interval, yi[R/2], when R is even where
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yi[1] ≤ yi[2] ≤ . . . ≤ yi[R]. The Majority Judgment method identifies the alternative
with the largest majority-grade as the most desirable alternative in the social choice
context. If multiple alternatives have the same largest majority-grade, then a single
majority-grade value is removed from the set of scores for each alternative in the
tie, and the majority-grade of the new distributions are calculated. If a tie again
occurs, this process is repeated until a single alternative has the largest majority-
grade. The method extends this concept to provide a complete rank-ordering termed
the majority-ranking.

As the majority-grade is defined based upon the middle-most interval, it empha-
sizes the significance of place in order rather than magnitude. That is, it is robust
against extreme scores. As the goal of the decision problem at hand is to identify the
most desirable alternative given the set of considered alternatives this trait makes
the method of Majority Judgment an attractive rule for selecting an alternative.
Further, the majority-ranking provides a ranking between any two alternatives that
are dependent upon the grades of only those two alternatives. In other words, the
majority-ranking is independent of irrelevant alternatives (Arrow’s IIA).

To select a decision alternative based on the Majority Judgment method where
the decision parameters are described by distributions, a majority-grade is computed
for each alternative by considering the decision parameter value resulting from each
of the R realizations as an individual score. Specifically, the median (if R is odd)
or the lower bound of the middlemost interval (if R is even) of the distribution of
decision parameter values is computed for each alternative. The alternative with the
largest majority-grade is then identified as the most desirable alternative. If a tie
exists, the tie-breaking procedure defined by the method of Majority Judgment is
used to identify the single most desirable alternative.

Application

When homeowners require a repairman or other services, they often seek reviews
and recommendations for potential service providers. One source for such informa-
tion is the Center for the Study of Services, who publishes quarterly periodicals in
several major metropolitan areas. These periodicals provide ratings for various con-
sumer services. The Spring/Summer 2011 edition of the Washington Consumers’
Checkbook [31] provides an extensive review of roofing firms in the Washington,
D.C., metropolitan area. We will consider the problem of selecting a roofing firm
using the data in the Washington Consumers’ Checkbook to illustrate the proposed
approaches for making decisions in the presence of attribute value uncertainty. As
the purpose of this demonstration is to illustrate the application of the decision
analysis method rather than to endorse any particular service provider, the roofing
firm names as provided by the Washington Consumers’ Checkbook review have
been replaced by numeric ID codes.
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The Washington Consumers’ Checkbook review includes ten performance rating
criteria for each of 94 roofing firms. The results of the review were obtained through
a survey of the organization’s members. The ten performance rating criteria are:

1. Work performed properly on first attempt
2. Began and completed work promptly
3. Provided cost information early
4. Neatness of work
5. Expert advice on service options and costs
6. Overall performance
7. Percentage of customers rating a firm “adequate” or “superior” for “overall

performance”
8. Number of complaints (and rate) filed with local government
9. Number of complaints (and rate) filed with the Better Business Bureau

10. Percent of $5,000 job the firm allows the customer to pay upon completion

For each of criteria 1 through 6, the measure provided is the proportion of
customers surveyed who rated the firm as “superior”. For criteria 8 and 9, the
complaint rate is the ratio of the number of complaints filed to the number of full-
time employees performing residential work. This measure is an attempt to account
for the exposure of a company, whereas a larger company that performs more work
experiences greater exposure to incur complaints. In addition to the performance
rating criteria, the number of survey responses is noted for each roofing firm.

Roofing Firm Decision Model

The decision of selecting a roofing firm from the firms reviewed in the Washington
Consumers’ Checkbook was modeled as a multiattribute decision with certainty.
There are no uncertain events in this decision model, but uncertainty is prevalent in
the review’s estimates of the performance criteria values that are attributes of the
decision model.

The alternatives considered in this decision model are the roofing firms. Of the
94 firms included in the survey, seven were removed from consideration due to
incomplete data, so n= 87 decision alternatives remained.

For this demonstration, we considered the following m= 4 attributes:

X1: Work performed properly on first attempt
X2: Began and completed work promptly
X3: Neatness of work
X4: Percent of $5,000 job the firm allows the customer to pay upon completion

The survey results for the performance rating criteria were used as estimated
values of the attributes included in the decision model. The estimates for attributes
X1, X2, X3 are provided as the proportion of customers surveyed who rated the
firm “superior” for each performance criteria. These attributes are random variables
consisting of a collection of Bernoulli trials: the performance criterion was rated by
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Table 2 Summary statistics for the distribution of data across the 87 firms considered in the
decision model

Mean Std dev Min Median Max

Number of survey responses 54.17 66.30 10 29 390
X1: Work performed properly on first attempt 0.74 0.16 0.23 0.79 1.00
X2: Began and completed work promptly 0.74 0.16 0.28 0.77 1.00
X3: Neatness of work 0.76 0.16 0.27 0.79 1.00
X4: Percent of job firm allows paid after completion 0.77 0.19 0.33 0.67 1.00

each survey respondent as either superior or not. Thus, for each of the i roofing firms
(i= 1, 2, . . . , 87), each of the Xj performance criteria (j= 1, 2, 3) can be described
by a binomial random variable with parameters pij and ki, where pij is the proportion
of the ki survey respondents who provided a rating of “superior” for the performance
criteria. For these attributes, a larger value is preferred.

Attribute X4 is not random; it is provided by the roofing firm. The attribute is
the percentage of a $5,000 job that the firm will allow the customer to pay upon
completion of the job. The value is considered to be a constant for each firm. Larger
values for X4 are preferred because, if the value is small, the customer must pay
more upfront, which increases the customer’s financial risk. There were seven firms
(of the 94 firms included in the survey) for which no value for this attribute was
obtained. These seven firms were removed from the alternatives considered in the
decision analysis model. Summary statistics of the distribution for the four attributes
and the number of survey responses across the 87 firms considered are provided in
Table 2.

A multiattribute measurable value function was used to represent the decision-
maker’s preference structure. The preference model used in this demonstration
represent the preference structure of the author. We assume the preference structure
is such that attributes X1, X2, X3, X4 are mutually preference independent and
mutually difference independent. Therefore, the multiattribute measureable value
function can be represented by the sum of single attribute measureable value
functions [8] as displayed in Eq. 4.

v(x1,x2,x3,x4) =
4

∑
i=1
λivi (xi) (4)

Here ∑4
i=1 λ 1 + λ 2 + λ 3 +λ 4 = 1 and the individual measureable value func-

tions vi(xi) are scaled such that, for xi
*, the most preferred outcome, vi(xi

*)= 1 and,
for xi

0, the least preferred outcome, vi(xi
o)= 0.

Expected Value Approach

One may employ the performance ratings provided by the survey in conjunction
with Eq. 4 to evaluate the multiattribute measureable value model. As described
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Table 3 Additive individual measureable value functions and weights for the expected value
approach

Attribute vi(xi) λ i

X1: Work performed properly on first attempt v1 (x1) =− 1
3.634

(
1− e(x1−0.23)/0.502

)
0.476

X2: Began and completed work promptly v2 (x2) = 1− e−(x2−0.28)/0.866 0.190
X3: Neatness of work v3(x3)= x3/0.73− 0.37 0.286

X4: Percent of price for a $5,000 job the firm
allows the customer to pay upon
completion of job

v4 (x4) = 1
0.909

(
1− e−(x4−0.33)/0.280

)
0.048

Table 4 Attribute values and resulting decision parameter value for the top 10 roofing firm
alternatives based on the expected value approach

Roofing firm ID n x1 x2 x3 x4 Value

Firm 29 24 1.00 0.92 0.96 1.00 0.9837
Firm 84 82 0.99 0.99 0.99 1.00 0.9835
Firm 57 23 0.95 0.96 0.96 1.00 0.9263
Firm 28 54 0.96 0.92 0.92 1.00 0.9216
Firm 90 36 0.94 0.88 0.97 0.95 0.9183
Firm 8 347 0.95 0.94 0.93 1.00 0.9145
Firm 91 49 0.96 0.73 0.89 1.00 0.9089
Firm 93 13 0.92 1.00 0.92 0.67 0.8679
Firm 71 89 0.93 0.74 0.84 1.00 0.8570
Firm 35 23 0.91 0.83 0.91 0.66 0.8530

by Keeney and Raiffa [5], the alternative with the largest resulting value would be
considered to be the alternative most fitting given the decision-maker’s preferences.

The individual measureable value functions vi(xi), i= 1, 2, 3, 4, that were
considered in the value analysis were developed by utilizing an augmentation to
the midvalue splitting technique that leverages an analytical exponential form [7]
based on the attribute value ranges displayed in Table 2. The swing weighting
procedure [32] was used to develop the associated weights λ i, i= 1, 2, 3, 4, for each
individual measureable value function. The individual measureable value functions
and associated weights are provided in Table 3.

Based on these defined individual measureable functions and associated weights,
Eq. 4 was evaluated for each alternative. Table 4 displays the top 10 alternatives
resulting from the analysis utilizing the expected value approach. All results are
displayed graphically in Fig. 1. Roofing Firm 29, whose value equals 0.9837, is the
most desirable alternative. This firm is followed closely by Roofing Firm 84, whose
value equals 0.9835.
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Fig. 1 Decision model results using the expected value approach

Incorporating Attribute Value Uncertainty

To describe the uncertainty in attributes X1, X2, and X3 we chose to use a Bayesian
approach. For each alternative and each of these attributes, we began with the
assumption – or prior knowledge – that the true value of the attribute lies between
0 and 1 with equal likelihood. This is represented by the Uniform (0, 1) prior
distribution, which is equivalent to a Beta (1, 1) distribution. Observations from
a Binomial (ki, pij) distribution were used to update the prior distribution. In this
case, the observations were the estimates of the Xj performance criteria (j= 1, 2,
3) obtained by the Washington Consumers’ Checkbook review for the i= 1, 2,
. . . , 87 roofing firms. Given this new information along with the prior distribution,
the knowledge about the unknown parameter p was updated to create a posterior
distribution. Because the Beta (α , β ) distribution is the conjugate prior to the Bino-
mial (n, p) distribution, the posterior distribution is the Beta(1+ kipij, 1+ ki(1− pij))
distribution. This posterior distribution describes the uncertainty in each attribute for
each alternative.

Given the posterior distributions for each attribute for each alternative, we drew
R= 1000 random samples from each of these distributions. Summary statistics for
these random realizations for each attribute across all alternatives are presented in
Table 5.
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Table 5 Summary statistics for the 1000 random realizations across all alternatives

Mean Std dev Min Median Max

X1: Work performed properly on first attempt 0.73 0.17 0.027 0.76 1.00
X2: Began and completed work promptly 0.73 0.17 0.050 0.76 1.00
X3: Neatness of work 0.74 0.17 0.049 0.78 1.00
X4: Percent of job firm allows paid after completion 0.77 0.19 0.33 0.67 1.00

Table 6 Additive individual measureable value functions and weights when considering attribute
value uncertainty

Attribute vi(xi) λ i

X1: Work performed properly on first attempt v1 (x1) =− 1
4.53

(
1− e(x1−0.027)/0.570

)
0.476

X2: Began and completed work promptly v2 (x2) = 1
0.954

(
1− e−(x2−0.050)/0.309

)
0.190

X3: Neatness of work v3(x3)= x3/0.951− 0.05 0.286

X4: Percent of price for a $5,000 job the firm
allows the customer to pay upon
completion of job

v4 (x4) = 1
0.909

(
1− e−(x4−0.33)/0.280

)
0.048

Based on the distributions of the random realizations for each attribute across
all alternatives, summarized by the ranges displayed in Table 5, the individual
measureable value functions vi(xi), i= 1, 2, 3, 4, and associated weights λ i, i= 1,
2, 3, 4, were redefined by again using an augmentation to the midvalue splitting
technique and the swing weighting procedure. The redefined individual measureable
value functions and weights are provided in Table 6.

Provided these defined individual measureable functions and associated weights,
Eq. 4 was evaluated for each alternative for each of the 1000 random realizations.
The result is a distribution of 1000 overall decision parameter values for each roofing
firm.

When analyzing the resulting 87 distributions of decision parameter values,
we first found the minimum value of every alternative’s decision parameter and
identified the greatest of these minimum values. We then determined that 59
alternatives were dominated in the following way: for each of these 59 alternatives,
the maximum value of its decision parameter was less than the greatest minimum
value. This left 28 non-dominated alternatives. The non-dominated alternatives and
their associated value distributions are displayed in Fig. 2.

Results

Given the distributions of decision parameter values for the non-dominated roofing
firms, we applied the Rank 1, Stochastic Dominance, and Majority Judgment
decision rules. Table 7 lists the Rank 1 and Majority Judgment results for the six
firms that had the most value in the expected value approach (see Table 4). The
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Fig. 2 Decision parameter distributions for the 28 non-dominated alternatives

Table 7 Results for each decision rule considered. For each firm, the table lists its rank when
using the different decision rules. For the expected value approach, the value in parenthesis is the
overall value. For the rank 1 decision rule, the value in parenthesis is the number of times that firm
was ranked first. For Majority Judgment, the value in parenthesis is the majority-grade

Roofing firm ID n Expected value Rank 1 Majority judgment

Firm 29 24 1 (0.9837) 2 (175) 2 (0.9426)
Firm 84 82 2 (0.9835) 1 (740) 1 (0.9724)
Firm 57 23 3 (0.9263) 3 (27) 5 (0.9007)
Firm 28 54 4 (0.9216) 4 (23) 4 (0.9164)
Firm 90 36 5 (0.9183) 5 (13) 6 (0.8980)
Firm 8 347 6 (0.9145) 6 (11) 3 (0.9234)

results for the Stochastic Dominance decision rule are best displayed graphically as
empirical cumulative distribution curves, which are displayed in Fig. 3 for the top
roofing firms.

As seen in Table 7, when considering the more comprehensive decision model
that incorporates the attribute value uncertainty, the Rank 1 and Majority Judgment
decision rules identify Roofing Firm 84 as the most desirable alternative with
Roofing Firm 29 identified as the second most desirable alternative. (The expected
value approach identified Roofing Firm 29 as the most desirable alternative, with
Roofing Firm 84 as the second largest value.) In 1000 realizations, Roofing Firm
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Fig. 3 Empirical cumulative distribution curves for the top roofing firms. Roofing Firm 84 is
shown to stochastically dominate all other firms in the first degree

84 was the most desirable option 740 times, and Roofing Firm 29 was the most
desirable option only 175 times. The majority-grade in the Majority Judgment
selection method for Roofing Firm 84 was 0.9724, while the majority-grade for
Roofing Firm 29 was 0.9426.

As shown in Fig. 3, the empirical cumulative distribution curve for Roofing Firm
84 never exceeds that of any other alternative, so Roofing Firm 84 stochastically
dominates all other alternatives in the first degree. Thus Roofing Firm 84 is deemed
to be the most desirable alternative using the Stochastic Dominance decision rule.
This result is consistent with the results obtained by the other decision rules
that consider the attribute value uncertainty. Further, the fact that we found one
alternative that stochastically dominates all of the other alternatives in the first
degree is an extremely powerful result, as Hadar and Russell [28] have shown that
this is the decision-maker’s most preferred alternative regardless of his underlying
utility function.

Summary and Conclusions

This chapter presented an approach for making decisions when uncertainty exists
in the values of the attributes being used to compare the alternatives and derive
a decision parameter. This type of uncertainty is different from uncertainty about
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future events (risky decision) and uncertainty about the probabilities of future events
(decision ambiguity). Ignoring this uncertainty, especially when it varies between
alternatives, could lead to poor decisions.

The method presented here requires modeling the uncertainty about the attribute
values and then propagating that uncertainty to determine the uncertainty in the
decision parameter. The method is a Monte Carlo approach that randomly samples
values of the uncertain attributes and computes the corresponding values of the
decision parameter. Because it is not limited to specific types of distributions
or decision models, it is a very general approach that can be used in a wide
variety of settings. This chapter presented three decision rules (Rank 1, Majority
Judgment, and Stochastic Dominance) for selecting an alternative based on its
decision parameter distribution.

Unfortunately, it does require many samples of the uncertain attributes, which
could be computationally expensive. The decision-maker must choose a decision
rule to compare the distributions of the alternatives’ decision parameters, and
different rules may identify different alternatives as the “best”.

This chapter has used the example of selecting a roofing firm to demonstrate
the approach, but the approach can be used in any setting with attribute value
uncertainty, including other models of attribute value uncertainty, other forms of
the decision parameter, and other decision rules beyond those presented here.

The next research question to consider is that of experimental design: when
planning to initially obtain, or if the decision-maker has the opportunity to get more
information about some attributes for some alternatives, which information would
be most valuable? In this case, information provides value by removing uncertainty
about an alternative’s decision parameter estimate.
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Improvement in Survival Analysis
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Abstract Developing individualized prediction rules for disease risk and prognosis
has played a key role in modern medicine. When new genomic or biological
markers become available to assist in risk prediction, it is essential to assess
the improvement in clinical usefulness of the new markers over existing routine
variables. Net Reclassification Improvement (NRI) has been proposed to assess
improvement in risk reclassification in the context of comparing two risk models and
the concept has been quickly adopted in medical journals (Pencina et al., Stat Med
27:157–172, 2008). We propose both nonparametric and semiparametric procedures
for calculating NRI as a function of a future prediction time t with a censored failure
time outcome. The proposed methods accommodate covariate-dependent censoring,
therefore providing more robust and sometimes more efficient procedures compared
with the existing nonparametric-based estimators (Pencina et al., Stat Med 30:
11–21, 2011; Uno et al., Stat Med 32:2430–42, 2013). Simulation results indicate
that the proposed procedures perform well in finite samples. We illustrate these
procedures by evaluating a new risk model for predicting the onset of cardiovascular
disease.
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Introduction

Developing individualized prediction rules for disease risk and prognosis is
fundamental for successful disease prevention and treatment selection. For many
diseases, risk prediction models have been developed and incorporated into clinical
practice guidelines. For example, the Gail model was developed for predicting
individual breast cancer risk [10] and a risk calculator based on that model can be
used to assist physicians making screening recommendations. For cardiovascular
disease (CVD), prediction models such as the Framingham Risk Score (FRS) are
used for stratifying patients into different levels of risks. However, much refinement
is needed even for the best of these models because of their limited discriminatory
accuracy. For example, the Framingham model, largely based on traditional clinical
risk factors, has recognized limitations in its clinical utility [12]. A considerable
fraction of patients who experienced CVD events had none of the identified risk
factors, indicating a need to explore avenues beyond routine clinical measures for
more accurate prediction [15]. This fuels much of the current search for novel
biologic markers and genetic factors that, when combined with routine clinical risk
factors, may provide accurate prediction at the individual level.

When new genomic or biological markers become available to assist in risk
prediction, it is essential to assess the clinical usefulness of these new markers
compared to existing routine markers. Careful evaluation of the incremental value
is particularly crucial when markers are either expensive or invasive to measure.
To quantify the added clinical value of new markers over a conventional risk
scoring system for predicting disease risk, one may calculate the difference in
the prediction measures for the existing conventional model and the new model,
which includes information from the new markers. For example the difference in
the areas under the receiver operating characteristic curves (AUC of ROC) are often
used to quantify the improvement in discrimination attributable to added markers.
Since a risk model is often used to stratify patients into proper risk categories,
statistical summaries that depend on clinically meaningful risk thresholds may be
more relevant [4, 6, 17]. As an alternative to measuring the difference between
AUCs, Net Reclassification Improvement (NRI) has also been proposed to assess
improvement in risk reclassification in the context of comparing two risk models
constructed with and without novel markers [18]. Using “up” and “down” to denote
changes in one or more risk categories in the upward and downward directions,
respectively, for a subject between their baseline and augmented risk values, the
NRI is defined as

NRI = [Pr(up|Diseased)+ Pr(down|Healthy)]− [Pr(down|Diseased)+ Pr(up|Healthy)] .

Such a measure is appealing because it acknowledges both desirable risk reclas-
sifications (up for diseased and down for healthy subjects) and undesirable risk
reclassifications (down for diseased and up for healthy subjects). Due to its
simplicity, NRI has been quickly adopted in medical journals. However, compared
with many other measures for incremental values, the concept has not received much
attention in the statistical literature.
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Since a risk model is often used for predicting an individual’s future outcome,
it is essential to incorporate the additional dimension of time when assessing the
performance of a risk model in a cohort study. For both deriving and evaluating risk
models, prospective cohort data is often used. In this setting a subject’s health status
at a future time t is sometimes unknown due to loss of follow-up, termination of a
study or the occurrence of a competing risk event. Such censoring poses additional
challenges compared with settings previously examined in the literature which
focus on incremental value calculation with a dichotomous outcome. Currently
there is limited development in methods to estimate the incremental value of
novel markers with censored failure time outcomes. Recently Pencina et al. [19]
proposed a method for calculating time-dependent NRI, based on nonparametric
Kaplan-Meier (KM) estimators in order to account for censoring in cohort data. The
asymptotic properties of a similar estimator is studied in detail in [24]. However,
the validity of these estimators relies critically on the assumption that censoring is
independent of predictors used in the risk models. Furthermore, the nonparametric
procedure considered in these estimators may potentially lead to efficiency loss.
A more flexible and more efficient estimating procedure is needed in practice.

In this manuscript, we propose quantitative procedures for calculating NRI as
a function of a future prediction time t with a censored failure time outcome.
Compared with existing nonparametric estimators, our procedures do not require the
assumption that censoring is independent of predictors, therefore the methods would
be widely applicable to many practical situations. We also consider procedures
that aim to improve efficiency while maintaining robustness. This manuscript is
organized as follows. In section “Measures of Risk Stratification and Reclassifi-
cation”, we specify models and define NRI suitable for event time outcomes. In
section “Estimation”, we describe procedures for estimating time-dependent NRI
using data obtained from a prospective cohort study with a failure time outcome.
We comment on the theoretical properties of our proposed estimators in sec-
tion “Inference”. We then describe simulation studies to evaluate the performance
of the proposed estimators. The results are reported in section “Simulation Studies”.
An application of our procedures for comparing two CVD risk models is presented
in section “Example”. Concluding remarks are in section “Discussion”.

Measures of Risk Stratification and Reclassification

Consider the situation that a vector of predictor Y measured at baseline is used
for predicting the time to event outcome T . Risk models can be built using sub-
vectors of Y. Let Y(1), a function of Y, denote a vector of conventional predictor
values in the existing model. Let Y(2), also a function of Y, denote a vector of
predictors used in the new model that contains Y(1), but also new predictor values.
Individual-level risk at a future time t can be derived as P = Pr(T ≤ t|Y(1)), based
on the conventional model, and Q = Pr(T ≤ t|Y(2)), the corresponding risk based on
the new model, respectively. Since, in practice, risk categories are often uncertain
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for many diseases, a more objective and flexible measure of improvement in risk
prediction would be based on P or Q in their original continuous scales. Therefore,
following the definition of [19], in this manuscript we focus on the time-dependent
continuous NRI, which is a more general definition that does not rely on the
existence of risk categories. In the time-dependent setting, we further denote an
‘event’ person at time t as those with T ≤ t, and a ‘nonevent’ person as T > t. Here,
NRI(t) is equal to the sum of ‘event NRI’ and ‘nonevent NRI’, which are defined as:

event NRIu(t)= Pr(Q−P> u|T ≤ t)−Pr(Q−P≤ u|T ≤ t)≡ 2Pr(Q−P> u|T ≤ t)−1,

and

nonevent NRIv(t)= Pr(Q−P≤ v|T >t)−Pr(Q−P> v|T > t)≡1−2Pr(Q−P>v|T >t).

Since, NRIu,v(t) = event NRIu(t) + nonevent NRIv(t), it follows that NRIu,v(t) =
2{Pr(Q−P > u|T ≤ t)−Pr(Q−P > v|T > t)}. In practice we may chose u and v
such that improvement in risk estimates is meaningful [24]. Setting u = v = 0 gives
the ‘continuous NRI’ considered in [19]. For the ease of presentation, in the sequel,
we’ll omit the subscript u and v from our notations and assume u = v = 0, but note
that our estimators can be constructed for any arbitrary u and v. In the next section,
we show how each component of NRI(t) can be estimated.

Estimation

Suppose we have a cohort of N individuals from the targeted population followed
prospectively. Due to censoring, the observed data consist of N i.i.d copies of vector,
D = {Di = (Xi,δi,Yi)

T, i = 1, · · · ,N}, where Xi = min(Ti,Ci), δi = I(Ti ≤Ci) for Ti

and Ci denote failure time and censoring time respectively. Yi are predictors from
individual i measured at time 0, including subset Yi(1) used in the existing model
(model 1) and Yi(2) in the new model (model 2) such that Yi(1) ∈ Yi(2). For illus-
tration, we first assume that P and Q both follow the conventional Cox regression

models. Specifically, at time t, we assume P(θ 1) = 1− exp[Λ01(t)exp{βT

1 Y(1)}]
and Q(θ 2) = 1− exp[Λ02(t)exp{βT

2 Y(2)}], where Λ0k is the baseline cumulative
hazard function, β k are unknown vector of parameters, for model k = 1, 2, and
θ 1 = (Λ01(t),βT

1 )
T,θ 2 = (Λ02(t),βT

2 )
T. It is important to note that these models are

most likely not correctly specified. Nevertheless under a mild regularity condition,
the standard maximum partial likelihood estimator β̂ k for β k converges to a constant
vector, as n → ∞ [13]. This provides theoretical ground for our asymptotic studies.

To estimate NRI(t), Pencina et al. [19] first expressed the two key components as

Pr{B(θ)> 0|T ≤ t}= Pr{T ≤ t|B(θ)> 0}Pr{B(θ)> 0}
Pr(T ≤ t)
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and

Pr{B(θ)> 0|T > t}= Pr{T > t|B(θ )> 0}Pr{B(θ )> 0}
Pr(T > t)

,

where B(θ) =Q(θ 2)−P(θ1) and θ = (θ 1,θ 2)
T. To account for censoring, Pencina

et al. [19] proposed to use the KM estimator to estimate the survival function using
data from all subjects for Pr(T ≤ t) and using subjects with B(θ )> 0 for estimation
of Pr[T ≤ t|{B(θ) > 0}]. We refer to the resulting estimator as the ‘KM estimator’
hereafter.

Uno et al. [24] considered estimating NRI(t) based on an inverse-probability-of-
censoring weighted (IPW) estimator (hereafter referred to as the ‘IPW estimator’),
with its key components estimated as

P̂r
IPW{B(θ)> 0|T ≤ t} =

∑i I{Bi(θ̂ )> 0,Xi ≤ t}Ŵi(t)

∑i I(Xi ≤ t)Ŵi(t)
(1)

sP̂r
IPW{B(θ)> 0|T > t} =

∑i I{Bi(θ̂ )> 0,Xi > t}Ŵi(t)

∑i I(Xi > t)Ŵi(t)
(2)

where θ̂ = (θ̂ 1, θ̂ 2)
T, θ̂ 1 = (Λ̂01(t), β̂

T

1 )
T, θ̂ 2 = (Λ̂02(t), β̂

T

2 )
T, Ŵi(t) =

I(Xi ≤ t)δi/Ĥ(Xi) + I(Xi > t)/Ĥ(t) and Ĥ(·) is the KM estimator of H(·) =
P(C > ·). Due to the equivalence between the KM estimator and the IPW
estimator for marginal survival functions under independent censoring [21], the
two estimators are likely to have very similar robustness and efficiency. Both
estimators are consistent under an independent censoring assumption regardless
of the adequacy of the two fitted models, P(θ 1) and Q(θ2). This is particularly
appealing for model comparisons.

One potential weakness of both estimators is that they can be biased if censoring
is dependent on a subset of Y(2). On the other hand, when model 2 is correctly
specified, such covariate-dependent censoring can be incorporated based on the
model since C ⊥ T given βT

2 Y(2) or Q(θ 2). This motivates us to propose a more
robust alternative to the [24] estimator by estimating censoring probabilities given
Y(2) via kernel smoothing over Q(θ 2). Let H1

q (t) = P(C > t | Q(θ 2) = q,Δi(θ ) = 1)
and H•

q (t) = P(C > t |Q(θ 2) = q) whereΔi(θ ) = I{Bi(θ )> 0}. To estimate NRI(t),
we propose to modify Eqs. 1 and 2 by considering the following more robust IPW
censoring weights

W̃ (ι)
i (t) =

I(Xi ≤ t)δi

H̃(ι)
Qi(θ̂2)

(Xi)
+

I(Xi > t)

H̃(ι)
Qi(θ̂2)

(t)
for ι = 1 and •,

where H̃(ι)
q (t) = exp{−Λ̂ (ι)

q (t)}= exp{−∫ t
0 π̂

(ι)
q (s)−1dN̂(ι)

Cq (s)},

N̂(ι)
Cq (s) = n−1 ∑

i:Δi(θ̂ )∈�ι

Kh{Qi(θ̂ 2)−q}NCi(s), π̂
(ι)
q (s) = n−1 ∑

i:Δi(θ̂ )∈�ι

Kh{Qi(θ̂ 2)−q}I(Xi ≥ s),
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NCi(s) = I(Xi ≤ s)(1− δi), �1 = 1 and �• = {0,1}, Kh(·) = 1
h K
{

q−Qi(θ2)
h

}
, K is

a symmetric kernel density function, with h = h(n) → 0 as the bandwidth. Note
that Δi(θ̂ ) ∈ �1 is simply the subset of individuals with Bi(θ̂ ) > 0 and Δi(θ̂ ) ∈
�• is the set of all individuals. Consequently we can then use these more robust
kernel smoothing weights in the IPW estimator, to obtain the ‘Smooth-IPW (S-IPW)
estimators’,

P̂r
S-IPW{B(θ )> 0|T ≤ t} =

∑iΔi(θ̂ )W̃
(1)
i (t)I(Xi ≤ t)

∑i W̃
(•)
i (t)I(Xi ≤ t)

and (3)

P̂r
S-IPW{B(θ )> 0|T > t} =

∑iΔi(θ̂ )W̃
(1)
i (t)I(Xi > t)

∑i W̃
(•)
i (t)I(Xi > t)

. (4)

This resulting estimator for NRI(t) is

ÑRI(θ̂ , t) = 2×
[

P̂r
S-IPW{B(θ̂)> 0|T ≤ t}− P̂r

S-IPW{B(θ̂)> 0|T > t}
]

.

The estimator can be shown to have the property of ‘double robustness’, i.e., it only
requires that the risk model Q is correctly specified or that the independent censoring
assumption holds.

Additionally, to improve upon the efficiency of the class of nonparametric
estimators, we propose considering a semiparametric estimator. Note that

Pr{B(θ )> 0|T > t}= E[E{I(B(θ )> 0,T > t) | Y(2)}]
E[E{I(T > t) | Y(2)}]

=
E{I(B(θ )> 0)P(T > t | Y(2))}

E{P(T > t | Y(2))}
.

Therefore NRI(t) can be estimated semiparametrically as

N̂RI(θ̂ , t) = 2×
{

P̂r
SEM

(B(θ)> 0|T ≤ t)− P̂r
SEM

(B(θ )≤ 0|T > t)

}

,

with the ‘SEM’ estimators,

P̂r
SEM

(B(θ )> 0|T ≤ t) =
∑n

i=1Δi(θ̂ )Qi(θ̂ 2)

∑n
i=1 Qi(θ̂ 2)

, (5)

P̂r
SEM

(B(θ )> 0|T > t) =
∑n

i=1Δi(θ̂ ){1−Qi(θ̂ 2)}
∑n

i=1{1−Qi(θ̂ 2)}
. (6)

Under the correctly specified model Q(θ 2), the semiparametric estimator accom-
modates a covariate-dependent censoring situation and would be more efficient
compared to the Smooth-IPW estimator. In practice, to estimate NRI(t), if estimates
from such a semiparametric method agree well with those of the nonparametric
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methods, one may choose to report results based on the semiparametric method for
additional gain in efficiency. To automatize the procedure, we suggest considering
a combined estimator (hereafter referred as the ‘combined estimator’), which takes
the form

p̂× N̂RI(θ̂ , t)+ (1− p̂)× ÑRI(θ̂ , t),

with p̂ being a weight that is dependent on the aptness of the semiparametric
model. For example, p̂ can be taken to be the p-value from a consistent test
of the proportional hazards assumption for a Cox regression model fit. Such an
estimator provides a simple procedure which is robust over a wide variety of
situations. In numerical studies, we show that such a combined estimator can be
more efficient compared with the nonparametric estimators, while maintaining the
double robustness property.

We note that the proposed estimators can be easily generalized to NRI
based on risk categories. Consider a situation where individuals are classified
as low, intermediate or high risk: low risk if their risks are below r1, and
high risk if their risks are above r2. The reclassification accuracy of risk
models in such a setting can be quantified with a 3-category NRI of the form
NRIcategory(θ̂ , t) = P(up|T ≤ t)−P(down|T ≤ t)+P(down|T > t)−P(up|T > t).
To estimate P(up|T ≤ t) and P(up|T > t), we may simply replace Δi(θ̂ )
with Ω up

i (θ̂ ) = I(Pi(θ 1) ≤ r1,Qi(θ 2) > r1) + I(r1 < Pi(θ 1) ≤ r2,Qi(θ 2)>r2)
in Eqs. 3 and 4, respectively. Similarly, to estimate P(down|T ≤ t) and
P(down|T > t), one may replace Δi(θ̂ ) withΩ down

i (θ̂ ) = I(Qi(θ 1)≤r1,Pi(θ 2)>r1)
+I(r1 < Qi(θ 1) ≤ r2,Pi(θ 2) > r2) in Eqs. 3 and 4. Similarly, one may obtain a
semiparametric estimator of NRIcategory(θ̂ , t) by replacing Δi(θ̂ ) with Ω up

i (θ̂ ), or
Ω down

i (θ̂ ) in Eqs. 5 and 6.

Inference

To make inference about ÑRI(θ̂ , t), we study the asymptotic properties of proposed
estimators. In the Appendix, we show that ÑRI(θ̂ , t) is uniformly consistent for
NRI(θ 0, t), where θ0 = (Λk0(·),βT

k0)
T with β k0 being the unique maximizer of

the expected value of the corresponding partial likelihood. Furthermore, we show
that the process W̃ (t) =

√
n{ÑRI(θ̂ , t)−NRI(θ 0, t)} is asymptotically equivalent

to a sum of i.i.d terms, n−1/2∑n
i=1 εi(t) where εi(t) is defined in the Appendix.

By a functional central limit theorem of [20], the process W̃ (t) converges weakly
to a mean zero Gaussian process in t. We also show that N̂RI(θ̂ , t) is uniformly
consistent for NRI(θ 0, t), and that the process ˜N (t) =

√
n[N̂RI(θ̂ , t)−NRI(θ 0, t)]

is asymptotically equivalent to a sum of i.i.d terms n−1/2∑n
i=1 ζi(t) where ζi(t) is

defined in the Appendix. Again, by a functional central limit theorem, the process
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˜N (t) converges weakly to a mean zero Gaussian process in t. With weak
convergence of both N̂RI(θ̂ , t) and ÑRI(θ̂ , t), it follows that the combined estimator
converges to a zero-mean process. Due to the variation in p̂, the combined
estimators may not be a Gaussian process. We show in our simulation that to make
inference, resampling procedures such as a bootstrap method can provide a valid
approximation of the limit distribution. Specifically, at each of the bth bootstrap
iterations, with b = 1, . . . ,B, we conduct a random sampling with replacement of
the original dataset, and fit our new and old risk models based on the sampled
dataset, denoted as Pb(θ̂ ) and Qb(θ̂ ). These estimates from the fitted models

are then used to calculate N̂RI
b
(θ̂ , t) and ÑRI(θ̂ , t) based on the bootstrapped

samples. This procedure will be repeated B times, and confidence intervals can
be constructed either based on the percentile method, or a normal approximation
where the standard error is calculated based on the empirical standard errors of

{N̂RI
b
(θ̂ , t),b = 1, . . .B} and {ÑRI

b
(θ̂ , t),b = 1, . . . ,B}. The combined estimator

can be inferred similarly by repeatedly calculate the weights based on each bootstrap

sample in addition to N̂RI
b
(θ̂ , t) and ÑRI(θ̂ , t).

In the absence of an independent validating set, often in practice the same dataset
is used for both fitting the model with several predictors and calculating a measure
such as NRI(t). Such an ‘apparent’ summary may potentially lead to the so-called
‘overfitting’ phenomenon, i.e. estimates of model performance will tend to be more
optimistic compared with the corresponding estimates if the model were to applied
to a new dataset. Several methods for correcting the bias from apparent estimates
can be considered. The 0.632 Bootstrap method [9] has been shown to have better
performance compared with a simple cross-validated approach. The estimator was
derived in our simulation as follows: we first obtained a bootstrapped estimate

N̂RI
bt
(t) by sampling the data with replacement to obtain the training set. The

training set is used to estimate the model parameters {θ̂ (train)

k ,k = 1,2}. The remaining
subjects make up the validation set, and are used to calculate the various estimates of

NRI using parameter values {θ̂ (train)

k ,k = 1,2}. This is repeated B times and N̂RI
bt
(t)

is the mean across the repetitions. The 0.632 bootstrap estimate is,

N̂RI
0.632bt

(t) = 0.632N̂RI
bt
(t)+ (1− 0.632)N̂RI

apparent
(t),

where N̂RI
apparent

(t) is the estimate without using cross-validation. To construct a

confidence interval based on N̂RI
0.632bt

(t), we follow the suggestions given in [22]
and [23] by shifting the apparent error based confidence interval in the amount of

bias estimated as b̂ias = N̂RI
apparent

(t)− N̂RI
0.632bt

(t). Specifically, if [L,R] is the
confidence interval calculated based on the procedure described above, then the bias
corrected confidence interval is [L− b̂ias,R− b̂ias].
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Simulation Studies

To examine the performance of various NRI(t) estimators, we conducted simulation
studies under several different scenarios. Throughout we chose n= 500 and used
200 bootstrap samples to calculate standard errors. Results for each setting were
produced from 1,000 simulations. We calculated NRI(t), for t = 3 for comparing
two risk models using the KM, IPW, Smooth-IPW, SEM and the combined
estimators described in section “Estimation”. We fitted Cox regression models to
calculate risks for both the new and existing models using corresponding predictors.

For the first setting presented in Table 1, two predictors Y1 and Y2 were simulated
from a multivariate normal distribution with mean (0,0.5), σy1 = σy2 = 1 and a

Table 1 Simulation results under noninformative censoring and correctly specified new risk
model with mean of bias (Mean(bias)) and standard deviation (Std. dev.) of the estimated param-
eters across simulations, the mean of the standard error estimates calculated for each simulation
using bootstrapping (Mean(std. error)), and coverage of the 95% bootstrap confidence interval
based on the normal approximation. Note that KM=Kaplan-Meier estimator, IPW= Inverse
Probability Weighted estimator, Smooth IPW= Smooth Inverse Probability Weighted estimator,
SEM=Semiparametric estimator, Combined=Combined estimator, as defined in the text

Method Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti > t) NRI(t)

True values 0.592 0.358 0.468
KM

Mean(bias) 0.003 0.001 0.002
Std. dev. 0.034 0.030 0.104
Mean(std. error) 0.034 0.030 0.103
95% bootstrap CI cov. 0.946 0.946 0.946

IPW
Mean(bias) 0.002 0.002 −0.001
Std. dev. 0.034 0.030 0.105
Mean(std. error) 0.034 0.031 0.104
95% bootstrap CI cov. 0.943 0.95 0.951

Smooth IPW
Mean(bias) 0.001 0.003 −0.003
Std. dev. 0.034 0.030 0.104
Mean(std. error) 0.034 0.030 0.103
95% bootstrap CI cov. 0.946 0.942 0.949

SEM
Mean(bias) 0.001 0.003 −0.003
Std. dev. 0.024 0.029 0.082
Mean(std. error) 0.025 0.028 0.080
95% bootstrap CI cov. 0.952 0.942 0.937

Combined
Mean(bias) 0.002 0.003 −0.002
Std. dev. 0.029 0.028 0.089
Mean(std. error) 0.031 0.029 0.095
95% bootstrap CI cov. 0.968 0.949 0.969
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correlation ρ of 0.25. The relationship between survival time T and Y followed a
proportional hazards model with parameters β1 = log(3) and β2 equal to log(1.5).
Censoring time was generated from a U(0,a) distribution where a was chosen
to produce approximately 40% censoring. Note that in this setting, model Q is
correctly specified and the independent censoring assumption is correct. We took
the baseline model to consist of Y1 and the new model to include both predictors.
As expected, all estimators shown in Table 1 provide unbiased estimates. The
bootstrap-based variance estimators perform well with coverage percentage close to
the 95% nominal level. Since the risk based on the new model is correctly specified,
the semiparametric method is the most efficient. Improvement in efficiency over the
nonparametric procedures is observed with our combined estimators.

Under this setting we also considered a null model where β2 = 0 i.e. there is no
incremental value of the new marker and NRI(t) = 0. We found that in this situation
all estimators tend to slightly over estimate NRI(t), and variance estimators based on
the bootstrap estimators tend to be conservative (see Table 2). We do not recommend
calculating NRI(t) in the case when the new marker does not independently predict
outcome in a model with conventional predictors. Note that all theoretical results in
the Appendix are derived under the assumption that β2 �= 0 and thus our proposed
procedures are only valid under this assumption. In practice, if the null setting is a
likely possibility, estimation should be treated with care.

The second setting we considered was identical to the first setting, except that
censoring time was dependent on marker values. Here, censoring time,

C =U ·B+ exp(X − 3Y2) · (1−B),

where U was generated from a Uniform(0,a) distribution where with a chosen to
yield about 40% censoring, X was generated from a N(0,1) distribution and B
was generated from a N(2 ·Y1,1) distribution. Note that in this setting, model Q is
correctly specified but the independent censoring assumption is not correct. As seen
in the results presented in Table 3, the KM estimator yields biased estimators for
both NRI(t) and its two key components. The IPW estimator is biased for both
Pr(P > Q|T ≤ t) and NRI(t), whereas the smooth-IPW estimator substantially
alleviates such biases. However, we observed large variation in nonparamatric
estimators of NRI(t) as compared with the semiparametric and combined estimators
(Table 3).

The third setting we investigated considers the case where survival time depends
on four markers Yi, for i = 1, · · · ,4, but we only have access to the first two.
In particular, Y comes from a multivariate normal distribution with mean 0, and
σi j = 1 for i = j and 0.25 otherwise. Survival time relates to the marker data
through a model where the hazard function is specified as λ (t|Y) = 0.1 ∗ {3Y1 +
1.5Y2 + 2Y3 + 2.5Y4 + exp(3Y1)}. Note that in this setting, model Q is misspecified
as depending only on Y1 and Y2. Censoring time in this setting is generated the same
as in the first setting, which does not dependent on T or Y. Since the SEM estimator
misspecified the relationship between T and Y as λ (t|Y) = λ0 exp(β1Y1 + β2Y2),
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Table 2 Simulation results under noninformative censoring and correctly specified new risk
model with mean of bias (Mean(bias)) and standard deviation (Std. dev.) of the estimated
parameters across simulations, the mean of the standard error estimates calculated for each
simulation using bootstrapping (Mean(std. error)), and coverage of the 95% bootstrap confidence
interval based on the normal approximation. Data is generated under the null model that
β2 = 0. Note that KM=Kaplan-Meier estimator, IPW= Inverse Probability Weighted estimator,
Smooth IPW =Smooth Inverse Probability Weighted estimator, SEM=Semiparametric estimator,
Combined=Combined estimator, as defined in the text

Method Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti > t) NRI(t)

Null model: β2 = 0
True values 0.5 0.5 0
KM

Mean(bias) 0.01 −0.02 0.061
Std. dev. 0.034 0.026 0.091
Mean(std. error) 0.043 0.033 0.118
95% bootstrap CI cov. 0.996 0.971 0.98

IPW

Mean(bias) 0.01 −0.019 0.058
Std. dev. 0.034 0.026 0.092
Mean(std. error) 0.044 0.033 0.119
95% bootstrap CI cov. 0.996 0.972 0.981

Smooth IPW
Mean(bias) 0.009 −0.019 0.055
Std. dev. 0.034 0.026 0.092
Mean(std. error) 0.044 0.033 0.118
95% bootstrap CI cov. 0.996 0.972 0.981

SEM
Mean(bias) 0.009 −0.019 0.057
Std. dev. 0.023 0.025 0.067
Mean(std. error) 0.029 0.031 0.081
95% bootstrap CI cov. 0.99 0.967 0.957

Combined
Mean(bias) 0.008 −0.019 0.055
Std. dev. 0.029 0.025 0.077
Mean(std. error) 0.039 0.032 0.104
95% bootstrap CI cov. 0.997 0.971 0.977

it yields biased results. All other estimators are unbiased (Table 4). Throughout the
three settings we considered, the combined estimator remained unbiased and more
efficient than other nonparametric estimators.

To evaluate the procedures described above, we simulated 10 markers from a
multivariate normal distribution with mean 0, σYi = 1 and pairwise correlations
equal to 0.25. The number of parameters and sample size were chosen to mimic
the setting of our data example described in section “Example”. We consider a Cox
model for failure time, with hazard ratio parameters for 10 markers specified as
β =(log(2), log(.77),0, log(1.81),0,0,0, log(0.5),0, log(1.2)).The baseline model
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Table 3 Simulation results under covariate-dependent censoring and correctly specified new risk
model with mean of bias (Mean(bias)) and standard deviation (Std. dev.) of the estimated param-
eters across simulations, the mean of the standard error estimates calculated for each simulation
using bootstrapping (Mean(std. error)), and coverage of the 95% bootstrap confidence interval
based on the normal approximation. Note that KM=Kaplan-Meier estimator, IPW= Inverse
Probability Weighted estimator, Smooth IPW= Smooth Inverse Probability Weighted estimator,
SEM=Semiparametric estimator, Combined=Combined estimator, as defined in the text

Method Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti > t) NRI(t)

True values 0.611 0.45 0.322
KM

Mean(bias) 0.067 −0.062 0.259
Std. dev. 0.040 0.040 0.126
Mean(std. error) 0.041 0.040 0.129
95% bootstrap CI cov. 0.615 0.659 0.483

IPW
Mean(bias) −0.024 0.005 −0.057
Std. dev. 0.034 0.045 0.131
Mean(std. error) 0.035 0.044 0.130
95% bootstrap CI cov. 0.897 0.944 0.918

Smooth IPW
Mean(bias) −0.013 0.007 −0.038
Std. dev. 0.041 0.041 0.133
Mean(std. error) 0.040 0.040 0.132
95% bootstrap CI cov. 0.937 0.939 0.941

SEM
Mean(bias) 0 −0.001 0.002
Std. dev. 0.025 0.039 0.098
Mean(std. error) 0.026 0.037 0.095
95% bootstrap CI cov. 0.951 0.932 0.938

Combined
Mean(bias) −0.006 0.002 −0.016
Std. dev. 0.031 0.039 0.109
Mean(std. error) 0.035 0.039 0.117
95% bootstrap CI cov. 0.975 0.951 0.971

consists only of the first marker. To derive a new model based on the information
on all 10 markers, for each simulation, we first fit a model with all ten markers. The
expanded model consists of all markers that have non-zero β at an α = 0.05 level.
We found that in the case of estimating NRI, under our simulated scenario, the
apparent summaries are quite close to the true values in many cases. Since the bias
is at the rate of g/N, where g is the number of predictors under consideration for risk
model building, overfitting may be of more concern when large numbers of genetic
markers are involved with a relatively small sample size. In the situation there is a
slight indication of overfitting, the 0.632 bootstrap procedure appears to be adequate
in correcting the bias (see Table 5).
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Table 4 Simulation results under noninformative censoring and misspecified new risk model
with mean of bias (Mean(bias)) and standard deviation (Std. dev.) of the estimated parameters
across simulations, the mean of the standard error estimates calculated for each simulation
using bootstrapping (Mean(std. error)),and coverage of the 95% bootstrap confidence interval
based on the normal approximation. Note that KM=Kaplan-Meier estimator, IPW= Inverse
Probability Weighted estimator, Smooth IPW= Smooth Inverse Probability Weighted estimator,
SEM=Semiparametric estimator, Combined=Combined estimator, as defined in the text

Method Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti > t) NRI(t)

True values 0.646 0.395 0.504
KM

Mean(bias) 0.007 −0.002 0.016
Std. dev. 0.072 0.023 0.160
Mean(std. error) 0.074 0.024 0.164
95% bootstrap CI cov. 0.94 0.945 0.947

IPW
Mean(bias) 0.004 −0.001 0.008
Std. dev. 0.072 0.023 0.160
Mean(std. error) 0.074 0.024 0.165
95% bootstrap CI cov. 0.945 0.942 0.95

Smooth IPW
Mean(bias) 0.003 −0.001 0.007
Std. dev. 0.072 0.023 0.160
Mean(std. error) 0.074 0.024 0.164
95% bootstrap CI cov. 0.943 0.946 0.95

SEM
Mean(bias) −0.046 0.003 −0.099
Std. dev. 0.022 0.022 0.068
Mean(std. error) 0.022 0.023 0.068
95% bootstrap CI cov. 0.448 0.943 0.682

Combined
Mean(bias) −0.009 0.000 −0.020
Std. dev. 0.057 0.022 0.128
Mean(std. error) 0.062 0.023 0.139

95% bootstrap CI cov. 0.970 0.947 0.976

Example

The Framingham risk model (FRM) has been used for population-wide CVD
risk assessment. The model was developed based on several common clinical
risk factors, including age, gender, total cholesterol level, high-density lipoprotein
(HDL) cholesterol level, smoking, systolic blood pressure and high blood pressure
treatment [25]. To improve the predictive capacity of the FRM, a new risk model
has been developed recently using data from the Women’s Health Study [5], based
on variables in the Framingham risk model and an inflammation marker, C-reactive
protein (CRP). Prior to adapting the new model in routine practice, it is important
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Table 5 Simulation results comparing apparent estimates and the 0.632 bootstrap for cor-
recting overfitting. Note that Smooth IPW= Smooth Inverse Probability Weighted estimator,
SEM=Semiparametric estimator, Combined=Combined estimator, as defined in the text

Estimator Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti > t) NRI(t)

True values 0.684 0.275 0.817
Smooth IPW Apparent

Mean(bias) 0.000 0.004 −0.007
Std. dev. 0.036 0.028 0.108
CI coverage 0.962 0.963 0.964
0.632 bootstrap
Mean(bias) −0.008 0.008 −0.032
Std. dev. 0.034 0.027 0.102
CI coverage 0.971 0.969 0.968
Bootstrapped se
Mean(std. error) 0.039 0.030 0.114

SEM Apparent
Mean(bias) 0.003 −0.001 0.009
Std. dev. 0.023 0.025 0.072
CI coverage 0.955 0.954 0.945
0.632 bootstrap
Mean(bias) 0.005 −0.003 0.015
Std. dev. 0.022 0.024 0.072
CI coverage 0.953 0.962 0.937
Bootstrapped se
Mean(std. error) 0.024 0.025 0.071

Combined Apparent
Mean(bias) 0.001 0.001 0.001
Std. dev. 0.028 0.026 0.087
CI coverage 0.982 0.969 0.975
0.632 bootstrap
Mean(bias) −0.002 0.003 −0.008
Std. dev. 0.027 0.025 0.085
CI coverage 0.989 0.975 0.983
Bootstrapped se
Mean(std. error) 0.035 0.028 0.102

to quantify its prediction performance, especially in comparison to that of FRM.
We illustrate here how our proposed procedures can be used to evaluate and compare
the clinical utility of the two risk models using an independent dataset from the
Framingham Offspring Study [14].

The Framingham Offspring Study was established in 1971 with 5,124 partici-
pants who were monitored prospectively for epidemiological and genetic risk factors
for CVD. We consider here 1,728 female participants who have CRP measurement
and other clinical information at the second exam and are free of CVD at the
time of examination. The average age of this subset was about 44 years (standard
deviation= 10). The outcome we consider is the time from exam date to first
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Table 6 NRI estimates for two risk models for predicting 10-year CVD risk among
women in the Framingham offspring cohort. Note that KM=Kaplan-Meier estimator,
IPW= Inverse Probability Weighted estimator, Smooth IPW= Smooth Inverse Probability
Weighted estimator, SEM= Semiparametric estimator, Combined=Combined estimator,
as defined in the text

Method Pr(Pi −Qi > 0|Ti ≤ t) Pr(Pi −Qi > 0|Ti < t) $NRI(t)

KM
Est 0.483 0.508 −0.049
SE 0.069 0.028 0.176

IPW
Est 0.478 0.508 −0.059
SE 0.070 0.028 0.178

Smooth IPW
Est 0.480 0.508 −0.057
SE 0.070 0.028 0.178

SEM
Est 0.587 0.503 0.167
SE 0.015 0.026 0.067

Combined
Est 0.570 0.504 0.132
SE 0.054 0.027 0.137

major CVD event including CVD-related death. During the followup period 269
participants were observed to encounter at least one CVD event and the 10-year
event rate was about 4%. For illustration we chose t = 10 years as in [25]. For each
individual, two risk scores were calculated: one based on the FRM (Model 1),
combining information on age, systolic blood pressure, smoking status, high-density
lipoprotein (HDL), total cholesterol, medication for hypertension; the other based on
an algorithm developed in [5] (Model 2), with the addition of CRP concentration.
We use Cox models to specify the relation between the time-to-CVD events and
model scores (linear predictors from the models).

Both models are well calibrated based on calibration plots (not shown). For
comparison, we first give AUC results and use the bootstrap to obtain confidence
intervals. The AUC for an ROC curve at 10-years is 0.752 (95% CI: 0.721,0.783)
for Model 1 and 0.758 (95% CI: 0.729,0.787) for Model 2. The difference between
the two AUCs is not statistically significant: 0.006 (95% CI: −0.033, 0.046).
We now investigate whether the new models reclassify patients in terms of their
risks and CVD outcome at 10 years. We consider NRI(10-years) for such an
evaluation using the methods described in section “Estimation”. Table 6 shows that
estimates from the three nonparametric models are quite consistent, all indicating
that the new model does not add significant improvement gauged by NRI. The
semiparametric model, however, does indicate a significant incremental value
with NRI= 0.167 (SE= 0.067), and the combined estimator indicates a similar
magnitude of improvement, though not significant (NRI= 0.132, SE= 0.137).
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Note that since we considered a continuous NRI with u = v = 0, the observed
improvement at this magnitude may not be interpreted as clinically substantial.
Since different conclusions could be reached depending on which estimation
method is chosen, this analysis highlights the need to consider multiple robust
approaches for calculating NRI.

Discussion

Net Reclassification Improvement provides an alternative tool for evaluating risk
prediction models [18] beyond the traditional ROC curve framework. The concept
has continued to gain popularity in the medical literature, yet its statistical prop-
erties have not been well studied to date in the statistical literature, and existing
methods for calculating NRI under the failure time outcome setting are limited.
In this manuscript, we provide a more thorough investigation of a variety of
estimation procedures. Our proposed nonparametric and semiparametric estimators
improve upon existing methods both in terms of robustness and efficiency under
a variety of practical situations. Such improvement is quite important, since we
observe that compared with other measures such as AUC, NRI estimates, in general,
are not very stable with substantial variations in the estimators we have considered.
The proposed procedures can be used for estimating both continuous NRI and
NRI with pre-specified fixed categories. As illustrated in the example, the choice
of estimation method can lead to different conclusions. In practice, the method
chosen should depend on a number of important considerations including the
likelihood that the model has been correctly specified and that the assumptions
concerning censoring are correct. In addition, in situations where the new marker
may be expensive or difficult to ascertain, an approach which considers both the
risks and benefits of obtaining the marker should be considered in a decision-
making process. We recommend such measures to be used in practice with caution.
A thorough evaluation of a risk model should consider a wide spectrum of measures
for assessing discrimination and calibration, and NRI may be better served as one of
the summary measures to complement graphical displays of risk distributions [11].
All analyses were performed in R. Code for implementing the proposed procedures
is available upon request.
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Appendix

Throughout, we assume that the joint density of (T,C,Y) is twice continuously
differentiable, Y are bounded, and 1 > P(T > t)> 0, 1 > P(C > t)> 0. The kernel
function K is a symmetric probability density function with compact support and
bounded second derivative. The bandwidth h → 0 such that nh4 → 0. In addition,
the estimator θ̂ k converges to θ 0k for k = 1,2 as n → ∞ [13], where β k0 is the
unique maximizer of the expected value of the corresponding partial likelihood and
Λk0 is the baseline cumulative hazard for k = 1,2. We denote the parameter space
for θ k by Ωk and assume that Ωk is a compact set containing θ0k. Furthermore, we

assume that β 2 �= 0 and note that Q(θ 2) = 1−exp{Λ02(t)e
βT2 Y(2)} and P(θ 1) = 1−

exp{Λ01(t)e
βT

1 Y(1)} are the respective limits of Q(θ̂ 2) and P(θ̂ 1), for any given Y(2)

and Y(1). The in-probability convergence of Q(θ̂ 2)→Q(θ 02) and P(θ̂1) and P(θ 01)

are uniform in Y(2) and Y(1) due to the convergence of θ̂ → θ0 = (θT
01,θT

02)
T.

Asymptotic Properties of ÑRI(θ̂ , t)

From the same arguments as given in [3] and [7], it follows that we have the uniform

consistency of H̃(ι)
q (t) to H(ι)

q (t) = P{C ≥ t | Q(θ 2) = q,Δ(θ ) ∈�ι}, where �1 = 1
and �• = {0,1}, for ι = 1 and •. It follows, using the uniform law of large numbers
[20], that

sup
θ

|ÑRI(θ , t)−NRI(θ , t)| → 0.

This along with the convergence of θ̂ to θ 0 implies that ÑRI(θ̂ , t) is uniformly
consistent for NRI(θ 0, t).

Throughout, we will use the fact that E{Δi(θ )I(Xi ≤ t)δiH
(1)
Qi(θ2)

(Xi)
−1 |

Qi(θ 2) = q} = P(Δi(θ ) = 1,Ti ≤ t | Qi(θ 2) = q) if either C ⊥ T,Y(2) (model
may be misspecified) or Q(θ 2) = Pr(T ≤ t|Y(2)) i.e. the Cox model is correctly
specified though censoring may be such that C ⊥ T | Y(2) (double robustness).

We first write the i.i.d representation of
√

n[ÑRI(θ , t)−NRI(θ , t)] for any θ . Note
that

√
n{ÑRI(θ , t)−NRI(θ , t)} = 2

√
n{P̃r(Δ(θ ) = 1|T ≤ t)− Pr(Δ(θ ) = 1|T ≤

t)}−2
√

n{P̃r(Δ(θ ) = 1|T > t)−Pr(Δ(θ ) = 1|T > t)}. We first examine the initial
component,

P̃r(Δ(θ̂ ) = 1|T ≤ t) =
∑iΔ(θ̂ )I(Xi ≤ t)δi/H̃(1)

Qi(θ̂2)
(Xi)

∑i I(Xi ≤ t)δi/H̃(•)
Qi(θ̂2)

(Xi)
≡ N̂(t, θ̂ , H̃)

D̂(t, θ̂ , H̃)
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where N̂(t,θ ,H) = n−1∑iΔi(θ )I(Xi ≤ t)δi/H(1)
Qi(θ2)

(Xi) and D̂(t,θ ,H) =

n−1∑i I(Xi ≤ t)δi/H(•)
Qi(θ2)

(Xi). Let N(t,θ ) = Pr(Δ(θ ) = 1,T ≤ t) and D(t) =

Pr(T ≤ t). Then by the uniform consistency of the IPW weights, we have

√
n{P̃r(Δ(θ ) = 1|T ≤ t)−Pr(Δ(θ ) = 1|T ≤ t)}≈√

n{N̂(t,θ , H̃)D(t)−N(t,θ )D̂(t,θ , H̃)}/D(t)2.

Examining the numerator,
√

n{N̂(t,θ ,H̃)D(t)− N(t,θ )D̂(t,θ ,H̃)} =
√

n{(1) +
(2)−(3)}where (1)= N̂(t,θ ,H)D(t)−D̂(t,θ ,H)N(t,θ ), (2)= N̂(t,θ ,H̃)D(t)−
N̂(t,θ ,H)D(t), and (3) = [N(t,θ )D̂(t,θ , H̃)− D̂(t,θ ,H)N(t,θ )]. Note that

(1) =
√

n(N̂(t,θ ,H)D(t)− D̂(t,θ ,H)N(t,θ )) = n−
1
2 ∑U1i(t), where

U1i(t) =
I(Xi ≤ t)δi

H(1)
Qi(θ2)

(Xi)
Δi(θ )D(t)− I(Xi ≤ t)δi

H(•)
Qi(θ2)

(Xi)
N(t,θ )

Using a Taylor series expansion, Lemma A.3 of [2] and the asymptotic expansion
for Λ̂q(t) given in [8],

(2) = D(t)
√

n{N̂(t,θ ,H̃)− N̂(t,θ ,H)}

= D(t)n−1/2∑
i

Δi(θ )I(Xi ≤ t)δi

H(1)
Qi(θ2)

(Xi)

⎡

⎣
H(1)

Qi(θ2)
(Xi)

H̃(1)
Qi(θ2)

(Xi)
−1

⎤

⎦

= D(t)n−1/2
∫ ∫ t

0

[
H(1)

q (s)

H̃(1)
q (s)

− 1

]

d∑
i

Δi(θ )δiI(Xi ≤ s,Qi(θ 2)≤ q)

H(1)
Qi(θ2)

(Xi)

≈ D(t)
∫ ∫ t

0

√
n
[
Λ̂ (1)

q (s)−Λ (1)
q (s)

]
d

⎧
⎨

⎩
1
n∑i

Δi(θ )δiI(Xi ≤ s,Qi(θ 2)≤ q)

H(1)
Qi(θ2),

(Xi)

⎫
⎬

⎭

≈D(t)
∫ ∫ t

0

[
n−

1
2∑Kh {q−Qi(θ 2)}M(1)

Cq (s,Xi,δi)
]

dP(Δ(θ )=1,T ≤ t,Q(θ2)≤q)

where

M(1)
Cq (t,Xi,δi) =

∫ t

0

dNCi(s)− I(Xi ≥ s)dΛ (1)
q (s)

π (1)
s (q)

.

Now by a change of variable, ψ = q−Qi(θ2)
h and f (t,q) ≡ ∂ 2P(Δ(θ ) = 1,

T ≤ t,Q(θ 2)≤ q)/∂ t∂q,
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(2) ≈ D(t)
∫ ∫ t

0

√
n

[
1
n∑K (ψ)MC(ψh+Qi(θ2))(s,Xi,δi)

]

f (t,ψh+Qi)dsdψ

= D(t)n−1/2∑
∫ ∫ t

0
K (ψ)a{s,hψ+Qi(θ 2),Xi}dsdψ = n−

1
2 ∑U2i(t),

where U2i(t) = D(t)
∫ t

0 a(s,q∗,Xi)ds and a(t,q,Xi) = MCq∗(t,Xi,δi) f (t,q∗). Similar
arguments can be used to obtain an asymptotic expansion for (3) as (3) ≈
n−

1
2 ∑U3i(t) and therefore, the numerator,

√
n
[
N̂(t,θ , H̃)D(t)−N(t,θ)D̂(t,θ , H̃)

]≈
n−

1
2 ∑{U1i(t)+U2i(t)+U3i(t)}. The same arguments as given above can be used to

obtain an asymptotic expansion for
√

n{P̃r(Δ(θ ) = 1|T > t)−Pr(Δ(θ ) = 1|T > t)}
as n−

1
2 ∑n

i=1 D(t)−2
− {U−1i(t)+U−2i(t)+U−3i(t)} where D(t)−, U−1i(t),U−2i(t), and

U−3i(t) are defined similarly to D(t), U1i(t),U2i(t), and U3i(t) with T ≤ t replaced

with T > t. Therefore,
√

n{ÑRI(θ , t)−NRI(θ , t)} ≈ n−
1
2 ∑n

i=1 2[D(t)−2{U1i(t) +

U2i(t)+U3i(t)}−D(t)−2
− {U−1i(t)+U−2i(t)+U−3i(t)}] = n−

1
2 ∑n

i=1ηi(t).
Note that regardless of correct model specification,

√
n(θ̂ − θ0) = n−1/2∑ψi +

op(1) where ψi are i.i.d mean zero random variables by Lin and Wei [16] and
Uno et al. [24]. Using a Taylor series approximation and the i.i.d representation
of

√
n[ÑRI(θ , t)− NRI(θ , t)] for any θ , we can write W̃ (t) =

√
n[ÑRI(θ̂ , t)−

NRI(θ 0, t)] as a sum of i.i.d terms, n−1/2∑n
i=1 εi(t) defined below.

√
n[ÑRI(θ̂ , t)−NRI(θ 0, t)]

=
√

n[ÑRI(θ̂ , t)−NRI(θ̂ , t)+NRI(θ̂ , t)−NRI(θ 0, t)]

≈√
n[ÑRI(θ̂ , t)−NRI(θ̂ , t)+

∂NRI(t)
∂θ

|θ0(θ̂ −θ0)

=
√

n[ÑRI(θ̂ , t)−NRI(θ̂ , t)]+
√

n(θ̂ −θ0)
∂NRI(t)
∂θ

|θ0

≈√
n[ÑRI(θ̂ , t)−NRI(θ̂ , t)]+n−1/2∑ψi

∂NRI(t)
∂θ

|θ0

≈ n−1/2
n

∑
i=1
ηi(t)+ n−1/2∑ψi

∂NRI(t)
∂θ

|θ0

= n−1/2
n

∑
i=1
εi(t)

where εi(u,v, t) = ηi(u,v, t)+ψi
∂NRI(t)

∂θ |θ0 . By a functional central limit theorem

of [20], the process W̃ (t) converges weakly to a mean zero Gaussian process in t.
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Asymptotic Properties of N̂RI(θ̂ , t)

Recall that we assume the Cox model is correctly specified and thus, Q(θ 2)

= Q(θ 2, t,Y(2)) = Pr(T ≤ t|Y(2)) = 1−exp{Λ02(t)e
βT

2 Y(2)} and SQi(θ2)(t) = Pr(T >

t|Y(2)) = exp{Λ02(t)e
β2Y(2)}. To derive asymptotic properties of N̂RI(θ̂ , t) we

assume the same regularity conditions as in [1]. The uniform consistency of
Q(θ̂ 2, t,Y(2)) for Q(θ 2, t,Y(2)) in t and Y(2) follows directly from the uniform

consistency of Λ̂02(t) and β̂ 2. It follows from the uniform law of large num-
bers [20] that N̂RI(θ̂ , t) is uniformly consistent for NRI(θ 0, t). Andersen and
Gill [1] show that

√
n(β̂2 − β02) is a normal random variable and

√
n(Λ̂02(t)−

Λ02(t)) converges to a Gaussian process. By the functional delta method it
can be shown that

√
n{Q(θ̂ 2, t,Y(2))− Q(θ 2, t,Y(2))} converges to a zero mean

Gaussian process in t and Y(2). Similar to the derivation for ÑRI(θ̂ , t), it can

be shown that the process Ñ (t) =
√

n[N̂RI(θ̂ , t)−NRI(θ 0, t)] is asymptotically
equivalent to n−1/2∑n

i=1 ζi(u,v, t). In particular, for a fixed θ ,
√

n{N̂RI(θ , t)−
NRI(θ , t)} ≈ n−1/2∑n

i=1η∗
i (t) where η∗

i (t) = 2[D(t)−2{Δi(θ )Qi(θ 2)−Pr(Δi(θ ) =
1|Ti ≤ t)Qi(θ 2)}−D(t)−2

− {Δi(θ )[1−Qi(θ 2)]−Pr(Δi(θ ) = 1|Ti > t)[1−Qi(θ 2)]}].
Thus, Ñ (t)≈ n−1/2∑n

i=1ζi(t) where ζi(u,v, t) =η∗
i (t)+ψi

∂NRI(t)
∂θ |θ0 . Once again,

using a functional central limit theorem, this implies that Ñ (t) converges to a
Gaussian process with mean zero.
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