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Preface

The theory and applications of dihedral Fourier analysis presented in these notes are
aimed at the study of experimental data indexed by, or associated with, the points in
a dihedral symmetry orbit such as the images of a retina’s visual field. The images

are iterated 90◦ rotations and/or horizontal reflections of each other, and together,
the resulting set of images gives a symmetry orbit generated by any one of the
images. The orbit has the symmetries of the rotations {1,r,r2,r3}=C4 and reversals
{h,rh,r2h,r3h} = C4h that together define the dihedral group D4 = C4 ∪C4h.
Similarly, the vector field illustrated in the diagram below gives a D4 orbit when
the rotations in C4 and reversals in C4h are represented with the (homomorphic)
substitutions

r �→ R =

[
cosφ −sinφ
sinφ cosφ

]
, h �→ H =

[
1 0
0 −1

]
,

where φ = 2π/4, and applied to the position (q) and the direction (p) of a given
field vector (q, p), thus defining the dihedral orbit shown below

vii
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O = {(τq,τ p); τ ∈ D4}.

Here a reversal was defined as a counterclockwise rotation preceded by an x-axis
reflection. Note that any two distinct-color vectors are line-reflection image of each
other, whereas any two vectors of the same color are double-reflection (or rotation)
image of each other. In that orbit, for example, we may want to evaluate the gradients

xτ = [∇ f (τq)] · τ p, τ ∈ D4,

of a response function f evaluated at τq in the direction of the vector τ p along each
field vector in the orbit O , or the behavior of the center of mass

Xσ =
∑τ mτ σFτ

∑τ mτ
, σ ∈ D4,

in the homogeneous field
Fτ = (τq, p); τ ∈ D4,

with fixed direction p and allocated masses mτ .

The dihedral orbits generated by Dn, as planar transformations, are simply
the 2n symmetries of an n-sided regular polygon for n > 2, whereas the planar
transformations in D2 = {1,r,h,rh} describe the symmetries of a 180◦ rotation
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(r) and of two line reflections (h, rh = v) along the vertical and horizontal axes,
respectively. We often write, then, D2 = {1,r,h,v}.

The orbits illustrated above are generated by applying the symmetries τ ∈ D4 to
any one of the eight components in the orbit, so that they are independent of the
orbit’s generator or initial condition.

It is precisely this arbitrariness that is characteristic of the resulting invariants
in any dihedral analysis. They are always invariant (in a way to be made precise
throughout the text) to the different choices in initial conditions. Obviously, the
image

resulting as the superposition 1+ r+ h+ v of the elements in the D2 orbit

remains the same for all D2 transformations, whereas the superposition 1− r−h+v
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either stays the same, when transformed by 1 or v, or becomes color-reversed when
transformed by r or h.

Every orbit O is to be understood, in the present data-analytic context, as a
framework, a set of labels for experimental observations, so that the analysis of
any data indexed by a dihedral orbit consists of systematically determining the
summaries of the data allowed by the orbit invariants, suggesting their statistical
analysis, and proposing eventual broad-range interpretations.

The points in the data space for any dihedral analysis will often be expressed as
the symbolic linear combinations

x = ∑
τ

xτ τ,τ ∈ Dn

in which the 2n coefficients xτ are the data of interest along the orbit. The xτ
are naturally real (R) scalar measurements, eventually extracted from complex
coefficients. In a few cases, the xτ will be points in the ring R of n× n real data
matrices. We write, respectively, CDn or RDn to indicate the dihedral (group)
algebra and the dihedral (group) rings. They are complex vector spaces endowed
with a multiplication induced by the dihedral multiplication. Details will be
presented in Chap. 2.

As it will turn out, every dihedral algebra shall correspond to a direct sum of
irreducible (matrix) linear subspaces

Mn1(C)⊕ . . .⊕Mnm(C)� CDn

of dimensions n2
1, . . . ,n

2
m that is isomorphic to the original data vector space CDn, in

dimension equal to the order (2n) of Dn. In the dihedral ring case, the points in the
linear subspaces are matrices over the ring R.
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The linear subspaces are stable under the different choices of orbit generators
or initial conditions and are indexed by the set (D̂n) of irreducible representations
(ξ ) of Dn. For statistical inference, a sample of these orbital data would then be
obtained.

The explicit formulation of the orbit invariants, sometimes referred to as
analytical properties, is the result of evaluating the dihedral Fourier transforms, to
be defined as the linearizations

< x,ξ >= ∑
τ∈Dn

xτ ξτ ∈Mnξ (C)

of x that appear as the components in the direct-sum factorization of CDn, one for
each irreducible representation ξ in dimension of nξ . The isomorphic property of the
factorization ensures the existence of the Fourier-inverse relation. The formulation
of the Fourier transforms as direct-sum components of CDn is developed in Chap. 2.
In that same chapter we will show that from the full spectral information

{< x,ξ >: ξ ∈ D̂n}

on x, a unitary basis F for CDn can always be constructed, relative to which
the analysis of the dihedral decomposition of ||x||2 becomes (theoretically and
computationally) simplified, so that the analysis of variance

||x||2 = ∑
ξ

nξ

2n
||< x,ξ > ||2,

can be obtained directly from the Fourier transforms as Parseval’s equalities for the
dihedral groups.

Finally, we remark that when the dihedral multiplication is replaced by the
additive structure of Rn then

< x,λ >=

∫
xrξ λ

r dr,

where ξ λ
r = exp(2π iλ · r), for r,λ ∈ R

n, is the usual Fourier transform of x ∈ C
R

n

evaluated at the irreducible representations ξ λ . As suggested in [1], it is then natural
to refer to the space of D̂n as the dual space of Dn.

These lecture notes are divided as follows: Chap. 1 is an overview of the theory
and methods of dihedral analysis. It introduces data sets and examples defining and
connecting the algebraic notions of symmetry with those of statistical summaries
and inference. Chapter 2 includes the required algebraic aspects and data-analytic
results. Applications are developed in Chaps. 3–6.

Chicago, IL Marlos A.G. Viana
Waterloo, ON Vasudevan Lakshminarayanan
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Chapter 1
Symmetry and Experimental Data

1.1 Introduction

This chapter is an overview of the arguments relating symmetry, experimental
data, and inference that appear in the theory, methods, and applications of dihedral
analysis. The example introduced here is based on the only commutative case
(n = 2) and yet it includes all the basic elements present in the non-commutative
(n > 2) cases.

1.2 The Flag Ranking Data

Fifteen undergraduate students were individually presented with a printed copy of
the set of colored flags shown in Fig. 1.1, and simply asked to rank the flags in each
row, according to their preference. The table shown in the Appendix on page 9
shows the resulting 90 rankings (first, second, third and fourth preference) for the
flags A,B,C, and D.

Each row in Fig. 1.1 is a distinct symmetry orbit. To see this note that each flag
in column B can be obtained from the flag in column A by an horizontal reflection,
each flag in column D is the image of flag A by a vertical reflection, and each flag
in column C is the double reflection image of flag A.

Flag A is, of course, its own unaltered image, the effect of the identity
transformation on itself. In addition, no two flags in distinct rows are image of each
other by one of these symmetry transformations. Together, these are the 4! = 24
possible distinct flags. The symmetries in the set D2 = {1,r,h,v}, where 1 indicates
the identity transformation leaving the flags unaltered, together with the operation
of composition of transformations, form a finite group and multiply according to
the table shown in (1.1). That is, the (associative) product τσ of two symmetries
τ,σ ∈ D2 is a symmetry in D2; 1τ = τ1 = τ , so that 1 is the identity element and

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 1
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013



2 1 Symmetry and Experimental Data

Fig. 1.1 The 24 flags used in
the flag ranking experiment

each τ ∈ D2 has a corresponding τ−1 ∈ D2 such that ττ−1 = τ−1τ = 1. Moreover,
τσ = στ for all τ,σ ∈ D2, so that D2 is a commutative group.

D2 1 v h r
1 1 v h r
v v 1 r h
h h r 1 v
r r h v 1

(1.1)

The table in (1.2) shows the observed joint frequency counts for the first-choice
flags (rows) and second-choice flags (columns). For example, in 12 rankings flag A
was the first choice and flag D was the second choice. In other words, there were 12
(A,D) transitions.

A B C D total
A 0 2 3 12 17
B 4 0 14 4 22
C 6 11 0 10 27
D 16 1 7 0 24

total 26 14 24 26 90

(1.2)

There were also 14 (B,C) transitions and 11 (C,B) transitions, both related by a
vertical reflection. Similarly, there were 12 (A,D) and 16 (D,A) transitions, equally
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related by a vertical reflection, so that together there were 53 first-to-second choices
related to vertical transitions. This set of transitions

Ov = {(A,D),(D,A),(B,C),(C,B)},

is itself an orbit of D2, generated by selecting any transition (X ,Y ) ∈ O and
evaluating (τX ,τY ) for all τ ∈ D2. The orbit and its corresponding transition data
can be summarized as

Ov =

(A,D) (D,A)∥∥∥
∥∥∥

(B,C) (C,B)

�→
12 16∥∥∥ ∥∥∥
14 11

, (1.3)

and, as a point in the group algebra CD2 is then written as

V = 12+ 16 v+ 14 h+ 11 r.

The same reasoning identifies the transitions (A,B), (B,A), (C,D) and (D,C)
resulting from horizontal reflections, leading to the orbit and corresponding fre-
quency counts shown in (1.4).

Oh =

(A,B) (D,C)∥∥∥
∥∥∥

(B,A) (C,D)

�→
2 7∥∥∥ ∥∥∥
4 10

. (1.4)

The corresponding data are expressed as

H = 2+ 7 v+ 4 h+ 10 r.

Similarly, the transitions (A,C), (C,A), (B,D), and (D,B), determined by double
reflections, define the orbit

Oo =

(A,C) (D,B)∥∥∥
∥∥∥

(B,D) (C,A)

�→
3 1∥∥∥

∥∥∥
4 6

, (1.5)

with the corresponding data

R = 3+ 1 v+ 4 h+ 6 r.
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1.3 The Orbit Invariants as Fourier Transforms

We observe that the effect of choosing a different orbit starting point on

x = x11+ xvv+ xrr+ xhh,

is equivalent to multiplying x by an element in D2. For example,

hx = x1(h1)+ xv(hv)+ xr(hr)+ xh(hh) = x1h+ xvr+ xrv+ xh1,

thus relabeling the data according to

x1↔ xh, xv↔ xr.

This is a D2-shuffle of the original data. The other shuffles are

vx : x1↔ xv, xh↔ xr,

and
rx : x1↔ xr, xv↔ xh.

We would like to summarize the orbital data in a way that is independent of the
D2-shuffles, or, equivalently, free of the arbitrariness of the orbit generator choice.

A solution is the set of summaries given by

x1 + xh + xv + xr,

x1 + xh− xv− xr,

x1− xh + xv− xr,

x1− xh− xv + xr.

For example,

τ(x1 + xh− xv− xr) = xτ1 + xτh− xτv− xτr =±(x1 + xh− xv− xr), (1.6)

for all τ ∈ {1,h,v,r}, thus giving rise to a one-dimensional (invariant) subspace.
As it will be the case in general, these invariants will be simply the dihedral Fourier
transforms of the data x, thus capturing precisely the sets of (orbit) invariants of
interest, and, in that process, decomposing the data space CDn into (orbit) invariant
subspaces. We will return to the analysis of the flag preference data later on in
Chap. 5. In the next section we outline the algebraic framework within which the
notion of orbit invariance can be better justified.



1.4 The Algebraic Framework 5

1.4 The Algebraic Framework

Let xτ indicate a scalar component of x, indexed by τ ∈D2, and write

x = ∑xτ τ (1.7)

to denote the symbolic C-linear combination of the dihedral elements with scalar
coefficients the components of x. As it is immediately seen, the set

CD2 =

{
∑

τ∈D2

xτ τ : xτ ∈ C

}

has a C−vector space structure with a basis indexed by D2, and is endowed with a
multiplication

x y = ∑
τ,σ

xτ yσ τσ = ∑
τ

(
∑
σ

xσ yσ−1τ

)
τ = ∑

τ
(x∗ y)ττ = x∗ y, (1.8)

induced by the dihedral multiplication. The resulting structure is called a dihedral
algebra. If the dihedral coefficients are points in a ring R with identity, then the
resulting structure is indicated by RD2 and called a dihedral ring.

The experimental data of interest for the Fourier analysis over a finite group G are
then interpreted simply as points in the group algebra or group ring of G, whereas the
Fourier transforms, as we shall see, are certain matrix realizations of the underlying
group algebra.

In the D2 case, there are four linear mappings

1 h v r
ξ 1 1 1 1 1
ξ h 1 1 −1 −1
ξ v 1 −1 1 −1
ξ r 1 −1 −1 1

, (1.9)

that satisfy the homomorphic property ξτ ξσ = ξτσ for all τ,σ ∈ D2 and lead to the
linear combinations

< x,ξ >= ∑
τ∈D2

xτ ξτ , (1.10)

of ξ , with scalar coefficients given by the components of x, one for each

ξ ∈ D̂2 = {ξ 1,ξ h,ξ v,ξ r}.
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The linear combinations < x,ξ > will be defined as the Fourier transforms of x
evaluated at ξ ∈ D̂2, so that the summaries introduced on page 4 follow directly
from (1.10). They satisfy the (orbit) invariance property

< τx,ξ >= ξτ < x,ξ >, (1.11)

for all τ ∈ D2 and ξ ∈ D̂2.
In the present case of D2, each transform gives rise to a basis for an invariant

subspace in dimension of one, thus accounting for the dimension of the (data) vector
space CD2. Together, these transforms are exactly two types:

1. An overall sum < x,ξ 1 >= x1 + xh + xv + xr of responses;
2. And three pairwise comparisons

• < x,ξ h >= x1 + xh− xv− xr,
• < x,ξ v >= x1− xh + xv− xr,
• < x,ξ r >= x1− xh− xv + xr.

The pairwise comparisons, we observe, are just sums over the cosets

D2/{1,v}= {{1,v}, {h,r}},

D2/{1,h}= {{1,h}, {v,r}},
D2/{1,r}= {{1,r}, {v,h}},

in a way that when appropriate any probability distribution (p,1− p) over the cosets
is such that a D2 relabeling will either leave it the same or change it to its com-
plement (1− p, p). In doing so, however, its entropy (Ent) remains constant. This
will be particularly useful when the dihedral data are in the form of (multinomial)
frequency counts.

1.5 Inference

The flag preference study suggests that we may compare the orbits according to
each one of the invariants. When compared with respect to invariant linked to ξ1,
we obtain

ξ 1(V,H,O) = (53,23,14),

which is a decomposition of the total number (90) of initial rankings into elementary
orbit components. Their uniform-prior marginal posterior distributions,

Lv ∼ Be(54,38), Lh ∼ Be(24,68), Lr ∼ Be(15,77),
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Fig. 1.2 Posterior densities for the probabilities of matching first and second-choice flags by a
vertical (red), horizontal (green), and double-reflection (blue) image of each other

are shown in Fig. 1.2, demonstrating a visible preference to matching first and
second-choice flags by a vertical reflection image of each other. More on that
later on Chap. 5. The pairwise within-orbit invariants determined by ξ v,ξ h and
ξ r are informative orbit-invariant components of variability. We may, for example,
summarize the within-orbit entropy by their extreme entropy values. The flag data
are amenable to broader algebraic formulations, related to the fact that the six
four-flag orbits (the rows in Fig. 1.1) are actually points in the quotient group
S4/D2 ∼ D3, so that within D2-orbit preferences may be studied as points in a D3

orbit. We will return to that analysis later on in Chap. 5.

Problems

1.1. Verify the D2-invariance property < τx,ξ >= ξτ < x,ξ >, for all τ ∈ D2

and ξ ∈ D̂2.

1.2. Indicating by V the set of all mappings s : {1,2,3} �→ {a,c, t}, describe
the left sτ−1 and right σs actions of D3 as a permutation group of {a,c, t} and
{1,2,3} respectively. Show that in one case, the resulting orbits are in one-one
correspondence with the non-empty subsets of {a,c, t}.
1.3. Referring to the transition preference data V,H,R given on page 3, evaluate
πξ =< X/4,ξ > for each X = V,H,R and then show that: (1) πξ πη = 0 if ξ �= η ;
(2) π2

ξ = πξ , and (3) ∑
ξ∈D̂2

πξ = 1.
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1.4. Referring again to the transition preference data V,H,R given on page 3,
evaluate and interpret the pairwise products (as points in the group algebra) among
the corresponding relative frequency distributions X/ < X ,ξ1 >, for X =V,H,R.

1.5. The following matrices summarize the first-to-second transition counts given
by the matrix in (1.2), according to the distinct D3 orbits in the flag preference data.

x1 =

⎡
⎢⎢⎣

0 0 1 4
0 0 0 1
0 0 0 2
5 0 2 0

⎤
⎥⎥⎦ , xr =

⎡
⎢⎢⎣

0 0 0 1
0 0 2 1
1 5 0 2
2 1 0 0

⎤
⎥⎥⎦ , xr2 =

⎡
⎢⎢⎣

0 0 1 2
3 0 4 0
2 1 0 1
1 0 0 0

⎤
⎥⎥⎦ ,

xh =

⎡
⎢⎢⎣

0 0 1 3
0 0 0 1
1 1 0 1
5 0 2 0

⎤
⎥⎥⎦ , xrh =

⎡
⎢⎢⎣

0 1 0 0
0 0 3 1
1 4 0 2
1 0 2 0

⎤
⎥⎥⎦ , xr2h =

⎡
⎢⎢⎣

0 1 0 2
1 0 5 0
1 0 0 2
2 0 1 0

⎤
⎥⎥⎦ .

Refer to Fig. 1.1 on page 2 and show that the orbits are indexed by the dihedral group
D3. Then, re-evaluate the within-orbit posterior distributions for the probabilities of
matching first and second-choice flags by reflections and double-reflections.

1.6. Evaluate the frequency distribution of the 24 possible flag rankings, based on
the data shown in the Appendix A, on page 9.

1.7. Do the findings suggested by the first-to-second preference transition counts
hold for the second-to-third transition counts? Explain.
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Appendix A: The Flag Preference Data

Each block gives the six four-flag rankings from one of the 15 subjects.

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
A D B C D A C B A D B C
A D B C C B D A D A B C
C B D A B C D A C A D B
C B A D C D B A C A B D
D C A B C D B A A B D C
A B C D B C A D A D B C
C D B A D C B A D C A B
C D B A D A C B B D A C
B A C D A D B C B A C D
D C B A B D A C D C B A
D C B A C A B D C D A B
D C B A C D B A C A B D
A D C B A C D B D A C B
C D A B B C A D C B D A
C D A B B A C D B C D A
A D C B D A C B D A B C
B C D A B C A D C B D A
C D A B B C A D B C D A
D A C B A D C B D A C B
B C A D C B A D C A B D
A D B C D A B C B C D A
A D B C A D C B D A B C
D A C B B C D A C B D A
D A C B D A B C B C A D
C D A B D A C B B D C A
C B D A C B D A D B C A
C A B D B C A D A C B D
D A C B D A C B A C D B
C B D A C B D A B D A C
A D C B B C A D B A C D



Chapter 2
Algebraic and Data-Analytic Aspects

2.1 Introduction

As outlined in Chap. 1, the algebraic structure of natural interest for the dihedral
analysis is the dihedral group algebra CDn, defined by the elements

x = ∑xτ τ,

in one-to-one correspondence with the points x in C
2n.

Although the algebraic aspects reviewed in this chapter are focused on the
dihedral groups, many related extensions and examples can be found in [2]. Unless
stated otherwise, all vector spaces are finite, and their dimensions are assumed to be
evaluated over the complex field.

2.2 The Dihedral Groups

The dihedral groups Dn can be objectively introduced as matrix groups of planar
rotations and reversals. Specifically, they can be generated by a central counter-
clockwise rotation

R =

[
cosφ −sinφ
sinφ cosφ

]

of φ = 2π/n radians and a line reflection (say along the horizontal axis)

H =

[
1 0
0 −1

]
,

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 11
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013
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by observing that together, the iterated rotation R j and reversal R jH matrices for
n≥ 2 multiply according to the rules

Rn = 1, H2 = 1, HR j = R− jH, j = 0, . . . ,n− 1. (2.1)

We observe that the anti-commutativity HR = R−1H of R and H has the effect of
producing two equivalent reversal mechanisms distinguished only by the direction
of the rotation mechanism.

We briefly recall that an algebraic group is a nonempty set G equipped with
an associative binary operation G×G → στ ∈ G, an (identity) element 1 ∈ G,
satisfying 1τ = τ1 = τ , for all τ ∈ G and such that for every τ ∈ G, there is
an (inverse) element τ−1 ∈ G such that ττ−1 = τ−1τ = 1. The dihedral matrices
introduced above, for example, give a non-commutative matrix group of order 2n
for n > 2. The dihedral matrix groups can also be generated by any two reflection
matrices along lines with an angular separation of (2π/n)/2 radians. These angles
are often referred to as dihedral angles.

In its abstract formulation, the dihedral group Dn of order 2n is the (set) orbit

Cn∪Cnh

of

Cn = {1,r,r2, . . . ,rn−1}, n≥ 2,

by an involution {1,h}, with multiplication rules given by

rn = 1, h2 = 1, hr j = r− jh, j = 0, . . . ,n− 1. (2.2)

A word about notation: Denoting

α : d ∈ {1,−1} �→ α(d) = (1− d)/2∈ {0,1},

we may occasionally write

r jhα(d) ≡
{

r j if d = 1

t j if d =−1
(2.3)

for j = 0, . . . ,n− 1, to indicate a generic rotation (d = 1) or a reversal (d =−1) in
Dn. We observe that the multiplication in Dn is just the semi-direct product

( j,d)� ( j′,d′) = ( j+ d j′ mod n, dd′) (2.4)

in Zn×Z2. Similarly, we shall write

βτ = R jHα(d), j = 0, . . . ,n− 1, d =±1,
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to indicated the corresponding rotation and reversal matrices, and their correspond-
ing harmonics

β k
τ = R jk mod nHα(d) k = 1,2, . . . ,m =

{
n
2 − 1 if n is even,
n−1

2 if n is odd,
(2.5)

understanding that β 1 = β .

2.3 Dn Conjugacy Orbits

Writing

[η ] = {τητ−1, τ ∈ Dn}
to indicate the conjugacy orbit of η ∈ Dn and using the defining relations h2=1,
hr j = r− jh for Dn, it directly follows that r j1(r j2)r− j1 = r j2 , and r j1 h(r j2)hr− j1 =
r− j2 , so that

[r j] = {r j,r− j}
is the conjugacy orbit of r j. In particular, [1] = {1}. Moreover,

r j1(r jh)r− j1 = r2 j1+ jh, and r j1 h(r jh)hr− j1 = r2 j1− jh,

so that one obtains, for n even

[r jh] =

{
{r2 j1h : j1 = 0, . . . ,n− 1}, for j even;

{r2 j1+1h : j1 = 0, . . . ,n− 1}, for j odd,

whereas, for n odd, the reversals are self-conjugate:

[r jh] = {r jh : j = 0, . . . ,n− 1}.

To illustrate, if n = 6, the conjugacy orbits are

{1}, {r,r5}, {r2,r4}, {r3}, {h,r2h,r4h}, {rh,r3h,r5h},

whereas, if n = 7, the orbits are

{1}, {r,r6}, {r2,r5}, {r3,r4}, {h,rh, . . . ,r6h}.
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2.4 Dihedral Sets and Modules

We say that a set S is a dihedral set if there is a mapping

(τ,s) ∈ Dn× S �→ τs ∈ S

such that 1s = s and σ(τs) = (στ)s for all σ ,τ ∈Dn, and s ∈ S. In this case we also
say that Dn acts on S. We say that the action is opposite if σ(τs) = (τσ)s for all
σ ,τ ∈ Dn, and s ∈ S.

If a vector space V is a finite dihedral set and

τ(x+ y) = τx+ τy, τ(λ x) = λ (τx),

for all x,y ∈V and scalars λ , then we say that the dihedral action is linear, and that
V is a dihedral representation space or a dihedral module. In this case we also say
that x �→ τx is a dihedral representation. Its dimension is equal to the dimension of
the module V as a complex vector space.

Clearly Dn is itself a dihedral set under the (left) regular action

σ �→ τσ ,

that extends to an opposite linear action

τx = τ ∑
σ

xσ σ = ∑
σ

xτ−1σ σ (2.6)

on CDn, thus affording the group algebra CDn with a (left) module structure
of dimension 2n. We may refer to CDn as the dihedral regular module. The
corresponding facts apply to the right regular action σ �→ στ−1, and unless
otherwise stated we will assume all modules to be left modules.

From (2.6), with y,x ∈ CDn, we have

yx=

(
∑
τ

yτ τ
)

x=∑
τ

yτ(τx)=∑
τ

yτ

(
∑
σ

xτ−1σ σ

)
=∑

σ

(
∑
τ

yτ xτ−1σ

)
σ =∑

σ
(y∗x)σ σ ,

so that the multiplication xy in CDn is given by the group convolution x∗y, allowing
us to write

xy = x∗ y.

Also from (2.6), the matrix form of the regular representation x �→ τx is a 2n× 2n
permutation matrix, indicated from now on by φ , with entries

(φτ )ση = 1 ⇐⇒ τσ = η .

Direct calculation then shows that, for all τ,ν ∈Dn,

φτ φν = φντ , (2.7)
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so that φ is a dihedral anti-homomorphism, whereas its transpose φ ′ gives the
corresponding dihedral homomorphism. These notions are equivalent, and will
generally be referred as dihedral homomorphisms.

We say that V is a submodule of CDn to indicate that V is a subspace of CDn

where Dn acts linearly. Consequently, all submodules are stable subspaces in the
sense that τx ∈V for all x ∈V and τ ∈ Dn.

If V is a dihedral submodule in dimension of m, we write ρτ to indicate the matrix
form (in a given basis) of a generic dihedral (linear) action on V , so that then ρτ in
a point in the vector space ∈ GLm(C) of all invertible m×m linear mappings over
C. By definition, then, ρ is dihedral homomorphism.

If ρ is a dihedral homomorphism then clearly FρF−1 is also a dihedral
homomorphism, for all F ∈ GLm(C). In that case we say that the dihedral
homomorphisms ρ and FρF−1 are equivalent, and write ρ � FρF−1 to indicate
the equivalence.

Every module has at least two submodules: itself and the zero submodule
{0}. A module with no other submodule is called a simple module. Clearly, one-
dimensional modules are simple.

Definition 2.1 (Dihedral linearizations). Given a dihedral homomorphism ρ on
GLm(C) and x ∈ CDn, the evaluation

< x,ρ >=∑xτ ρτ ∈Mm(C)

is called a linearization of CDn in Mm(C). In particular,< x,φ > is called the regular
linearization of x.

Proposition 2.1. For all dihedral homomorphisms ρ ,η ,ξ , all x,y ∈ CDn, and
scalars λ , we have:

1. If ρ � η⊕ ξ then < x,ρ >�< x,η >⊕< x,ξ >;

2. < x+ y,ρ >=< x,ρ >+< y,ρ >;

3. λ < x,ρ >=< λ x,ρ >;

4. < xy,ρ >=< x,ρ >< y,ρ >=< x∗ y,ρ >.

Proof. The proof is by direct evaluation. For the equalities in 4, we recall that

x y = ∑
τ,σ

xτ yσ τσ = ∑
τ

(
∑
σ

xσ yσ−1τ

)
τ = ∑

τ
(x∗ y)ττ = x∗ y,

as introduced earlier on page 14. �
Decompositions such as < x,ρ >�< x,η >⊕< x,ξ > appearing in Proposition 2.1
are often referred to as product of matrix algebras, e.g. [3, p.79], [4, p.48].
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We also remark that, more generally, the notation ρ � mη ⊕ . . .⊕ nξ indicates
that there is a basis in the representation space of ρ relative to which

ρτ = Diag (Im⊗ητ , . . . , In⊗ ξτ), τ ∈ G,

where Ir indicates the r× r identity matrix.

Proposition 2.2. Let, for n≥ 2, and ( j,d) ≡ τ ∈Dn,

• 1 : ( j,d) �→ 1;
• α : ( j,d) �→ d;
• γ+ : ( j,d) �→ (−1) j , for n even;
• γ− : ( j,d) �→ d(−1) j , for n even.

Then, for ξ ∈ {1,α,γ+,γ−} and x in CDn, the linearizations < x,ξ > are simple
dihedral submodules of CDn.

Proof. The result follows by directly showing that each ξ ∈ {1,α,γ+,γ−} is a one-
dimensional dihedral homomorphism, so that < x,ξ > is simple. �
Example 2.1. The simple D3 submodules described in Proposition 2.2:

• < x,1 >= ∑τ 1τ xτ = x1 + xr + xr2 + xh + xrh + xr2h;

• < x,α >= ∑τ ατ xτ = x1 + xr + xr2− xh− xrh− xr2h.

Example 2.2. The simple D4 submodules described in Proposition 2.2:

• < x,1 >= ∑τ 1τ xτ = x1 + xr + xr2 + xr3 + xh + xrh + xr2h + xr3h;

• < x,α >= ∑τ ατ xτ = x1 + xr + xr2 + xr3− xh− xrh− xr2h− xr3h;

• < x,γ+ >= ∑τ γ+τ xτ = x1− xr + xr2− xr3 + xh− xrh + xr2h− xr3h;

• < x,γ− >= ∑τ γ−τ xτ = x1− xr + xr2− xr3− xh + xrh− xr2h + xr3h.

Example 2.3. Simple one-dimensional modules are constant over conjugacy orbits.
The following is the evaluation of the simple dihedral modules described in
Proposition 2.2 over the conjugacy orbits

{1}, {r,r5}, {r2,r4}, {r3}, {h,r2h,r4h}, {rh,r3h,r5h},

of D6, from Sect. 2.3:

1 : {+}, {+}, {+}, {+}, {+}, {+},

α : {+}, {+}, {+}, {+}, {−}, {−},
γ+ : {+}, {−}, {+}, {−}, {+}, {−},
γ− : {+}, {−}, {+}, {−}, {−}, {+}.
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Similarly, over the conjugacy orbits

{1}, {r,r6}, {r2,r5}, {r3,r4}, {h,rh, . . . ,r6h}.

of D7, we obtain:
1 : {+}, {+}, {+}, {+}, {+},
α : {+}, {+}, {+}, {+}, {−}.

Proposition 2.3 (Orbit invariance). If ρ is a dihedral homomorphism and x ∈
CDn then, for all τ,σ ∈ Dn,

< τx,ρ >= ρτ < x,ρ >, < xσ ,ρ >=< x,ρ > ρσ .

Proof. From (2.6), we have,

< τx,ρ >=∑
σ

xτ−1σ ρσ = ∑
γ

xγ ρτγ = ∑
γ

xγρτ ργ = ρτ < x,ρ >,

and, similarly, < xσ ,ρ >= ∑τ xτσ−1ρτ = ∑γ xγργσ =< x,ρ > ρσ . �
In particular

< τxτ−1,ρ >= ρτ < x,ρ > ρτ−1 .

Proposition 2.4. The row (column) spaces of the linearizations < x,ρ > are
dihedral left (right) submodules of CDn.

Proof. Observing that the row (column) j of a matrix product AB is a linear
combination of the rows (columns) of B (A), with coefficients the row (column)
j of A (B), the result follows from Proposition 2.3, which defines the actions

yσ = yρσ , σ ∈ Dn,

on the right for every y in the column space of < x,ρ >, and

τy = ρτy, τ ∈ Dn

on the left, for every y in the row space of < x,ρ >. �
It then follows, from Proposition 2.4 that the column (row) space of the regular
linearization < x,φ > is a dihedral left (right) submodule of CDn.

Proposition 2.5. CDn allows for m= n/2−1 distinct two-dimensional submodules
for n even and m = (n− 1)/2 submodules for n odd, n≥ 2.

Proof. Direct verification shows that the β k defined in (2.5) are dihedral homomor-
phisms, so that the corresponding linearizations
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< x,β k >, k = 1,2, . . . ,m =

{
n
2 − 1 if n is even,
n−1

2 if n is odd, x ∈ CDn,

give two-dimensional submodules according to Proposition 2.4. �
Proposition 2.6. The two-dimensional submodules < x,β 1 >,. . . ,< x,β m > are
simple.

Proof. Since < τx,β k > reduces as β k
τ < x,β k >, it is sufficient to study the

C-reducibility of β k in Dn. Since the eigenvectors for (all) the rotation components
of β k in Dn are (i,1) and (−i,1) for all k,n, it then follows that the only proper
subspace of the (column) spaces of < x,β k > is the null space, completing
the proof. �
As a consequence, referring to Proposition 2.2 on page 16, the sum of the squares
of the corresponding dimensions in

D̂n = {1,α,γ+,γ−,β1, . . . ,βm} (2.8)

is equal to 4+(n/2−1)22 = 2n when n is even, and is equal to 2+((n−1)/2)22 =
2n in

D̂n = {1,α,β1, . . . ,βm} (2.9)

when n is odd. Therefore, e.g. [2, Prop. 4.2], these are exactly the simple modules
of CDn. As a result, we have:

Proposition 2.7. CDn as a semi-simple module factors as

CDn �< x,1 >⊕< x,α >⊕< x,γ+ >⊕< x,γ− >

n/2−1⊕
k=1

< x,βk >

when n is even and as

CDn �< x,1 >⊕< x,α >

(n−1)/2⊕
k=1

< x,βk >

when n is odd, n≥ 2. �
Definition 2.2 (Dihedral Fourier Transforms). Each simple module < x,ξ > in
the decomposition of CDn given by Proposition 2.7 is called the Fourier transform
of x at the corresponding representation ξ .

Additional Notation: From now on we assume that, for n≥ 2,

m =

{
n
2 − 1 if n is even,
n−1

2 if n is odd.
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Here are a few examples of dihedral decompositions, following Proposition 2.7.

Example 2.4. CD2 gives four simple modules all in dimension of 1:

< x,1 >= x1 + xr + xh + xrh;

< x,α >= x1 + xr− xh− xrh;

< x,γ+ >= x1− xr + xh− xrh;

< x,γ− >= x1− xr− xh + xrh.

Example 2.5. CD3 has two simple modules in dimension of 1:

< x,1 >= x1 + xr + xr2 + xh + xrh + xr2h;

< x,α >= x1 + xr + xr2− xh− xrh− xr2h;

and one in dimension of 2:

< x,β >=
1
2

[
2x1− xr− xr2 + 2xh− xrh− xr2h

√
3(−xr + xr2 + xrh− xr2h)√

3(xr− xr2 + xrh− xr2h) 2x1− xr− xr2− 2xh + xrh + xr2h

]
.

Example 2.6. CD4 gives four simple modules in dimension of 1 and one in
dimension of 2:

< x,1 >= x1 + xr + xr2 + xr3 + xh + xrh + xr2h + xr3h;

< x,α >= x1 + xr + xr2 + xr3− xh− xrh− xr2h− xr3h;

< x,γ+ >= x1− xr + xr2− xr3 + xh− xrh + xr2h− xr3h;

< x,γ− >= x1− xr + xr2− xr3− xh + xrh− xr2h + xr3h;

< x,β >=

[
x1− xr2 + xh− xr2h −xr + xr3 + xrh− xr3h

xr− xr3 + xrh− xr3h x1− xr2− xh + xr2h

]
.

Example 2.7. CD6 allows for four simple modules in dimension of 1:

< x,1 >= x1 + xr + xr2 + xr3 + xr4 + xr5 + xh + xrh + xr2h + xr3h + xr4h + xr5h

< x,α >= x1 + xr + xr2 + xr3 + xr4 + xr5− xh− xrh− xr2h− xr3h− xr4h− xr5h

< x,γ+ >= x1− xr + xr2− xr3 + xr4− xr5 + xh− xrh + xr2h− xr3h + xr4h− xr5h

< x,γ− >= x1− xr + xr2− xr3 + xr4− xr5− xh + xrh− xr2h + xr3h− xr4h + xr5h;

and two simple modules in dimension of 2. The matrix entries of < x,β1 > are:
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< x,β1 >1,1=
1
2
(2x1+xr−xr2−2xr3−xr4+xr5+2xh+xrh−xr2h−2xr3h−xr4h+xr5h)

< x,β1 >2,1=
1
2

√
3(−xr− xr2 + xr4 + xr5 + xrh + xr2h− xr4h− xr5h)

< x,β1 >1,2=
1
2

√
3(xr + xr2− xr4− xr5 + xrh + xr2h− xr4h− xr5h)

< x,β1 >2,2=
1
2
(2x1+xr−xr2−2xr3−xr4+xr5−2xh−xrh+xr2h+2xr3h+xr4h−xr5h) ,

whereas the matrix entries of < x,β2 > are given by

< x,β2 >1,1=
1
2
(2x1−xr−xr2+2xr3−xr4−xr5+2xh−xrh−xr2h+2xr3h−xr4h−xr5h)

< x,β2 >2,1=
1
2

√
3(−xr + xr2− xr4 + xr5 + xrh− xr2h + xr4h− xr5h)

< x,β2 >1,2=
1
2

√
3(xr− xr2 + xr4− xr5 + xrh− xr2h + xr4h− xr5h)

< x,β2 >2,2=
1
2
(2x1−xr−xr2+2xr3−xr4−xr5−2xh+xrh+xr2h−2xr3h+xr4h+xr5h) .

2.5 Class Functions

A point x ∈CDn that is constant on the components of a dihedral conjugacy orbit is
called a dihedral class function. More precisely, x is such that xτστ−1 = xσ , for all
σ ,τ ∈ Dn.

Proposition 2.8. If x ∈ CDn is a class function then the dihedral linearizations
< x,ρ > commute with ρτ for all τ ∈ Dn.

Proof. In fact,

ρτ < x,ρ > ρτ−1 =< x,ρτ ρρτ−1 >=∑
σ

xσ ρτστ−1 = ∑
σ

xτστ−1ρτστ−1 =< x,ρ >,

completing the proof. �
Definition 2.3 (Dihedral characters). The character of ξ ∈ D̂n is the point χξ =
tr ξ = ∑τ (tr ξτ)τ ∈ CDn.

Therefore, given ξ ,η ∈ D̂n, and since χξ is a class function, Schur’s Lemma implies
that

< χξ ,η >= λ Inη ,
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so that taking the trace in each side of the equality and solving for λ we obtain

< χξ ,η >=
1

nη
< χξ ,χη > Inη . (2.10)

Clearly, the dihedral characters are simply

χξ = ξ , if nξ = 1

or else, when ξ = β k,

χk
j,d = tr β k

j,d = (1+ d)cos
2π jk

n
, k = 1, . . . ,m.

It immediately follows that

Proposition 2.9 (Orthogonality of dihedral characters). For all χ ,η in D̂n

we have
1

2n ∑
τ

χξ
τ χη

τ = δχ ,η ,

and, moreover,

1
2n ∑

ξ
χξ

1 χξ
τ =

⎧⎨
⎩∑ξ

n2
ξ

2n = 1, if τ = 1,

0, if τ �= 1.

2.6 Dihedral Projections

Define, for ξ ∈ D̂n,

πξ =
nξ

2n
χξ ∈ CDn.

Proposition 2.10. For all ξ ,η ∈ D̂n, the following properties hold:

1. π2
ξ = πξ (projection);

2. πξ πη = 0, η �= ξ (algebraic orthogonal);
3. ∑ξ πξ = 1 (partition of unity).

Proof. To verify the above properties we recall that, for x,y ∈ CDn,

x y = ∑
τ,σ

xτ yσ τσ = ∑
τ

(
∑
σ

xσ yσ−1τ

)
τ = ∑

τ
(x∗ y)ττ = x∗ y,
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as introduced earlier on page 14. In each case, it is then sufficient to evaluate the
convolution components ∑σ xσ yσ−1τ . With the semi-direct product (2.4) notation

( j,d)� ( j′,d′) = ( j+ d j′ mod n, dd′)

in mind, we identify ( j,d)ξ ≡ πξ
τ and write

• ( j,d)1 = 1/2n;
• ( j,d)α = d/2n;
• ( j,d)γ+ = (−1) j/2n, for n even;
• ( j,d)γ− = d(−1) j/2n, for n even;

• ( j,d)β k = 2Cos
[

2 jkπ
n

]
/n; if d = 1, and ( j,d)β k = 0, if d =−1; k = 1, . . .m.

Therefore

xσ yσ−1τ = ( j,d)x[( j,d)−1
y � ( j′,d′)y] = ( j,d)x[(− j/d,d)y � ( j′,d′)y]

= ( j,d)x(− j/d+ d j′ mod n,dd′)y,

and

∑
σ

xσ yσ−1τ = ∑
j,d

( j,d)x(− j/d+ d j′ mod n,dd′)y (2.11)

then gives the τ = ( j′,d′) component of x ∗ y. The proof of the three properties
follows from directly evaluating (2.11) in each of the cases. For the projection
property we have:

( j′,d′)π2
1
= ∑

j,d

( j,d)1(− j/d+ d j′ mod n,dd′)1 = ∑
j,d

1
2n

1
2n

=
1

2n
= ( j′,d′)π1 ,

for all ( j′,d′), that is, π2
1 = π1. Similarly,

( j′,d′)π2
α
= ∑

j,d

( j,d)α (− j/d+ d j′ mod n,dd′)α

= ∑
j,d

d
2n

dd′

2n
= ∑

j,d

d′

4n2 =
d′

2n
= ( j′,d′)πα ,

for all ( j′,d′), that is, π2
α = πα ;

( j′,d′)π2
γ+

= ∑
j,d

( j,d)γ+(− j/d+ d j′ mod n,dd′)γ+

= ∑
j,d

(−1) j

2n
(−1) j/d+d j′

2n

=
1

4n2

[
∑

j
(−1) j′+∑

j
(−1)2 j− j′

]



2.6 Dihedral Projections 23

=
1

4n2 [n(−1) j′+ n(−1)− j′ mod n]

=
2n(−1) j′

2n2 =
(−1) j′

2n
= ( j′,d′)πγ+

;

for all ( j′,d′), that is, π2
γ+ = πγ+;

( j′,d′)π2
γ−

= ∑
j,d

( j,d)γ−(− j/d+ d j′ mod n,dd′)γ−

= ∑
j,d

d(−1) j

2n
dd′(−1) j/d+d j′

2n

= d′∑
j,d

(−1) j

2n
(−1) j/d+d j′

2n
=

d′(−1) j′

2n
= ( j′,d′)πγ− ;

for all ( j′,d′), that is, π2
γ− = πγ− , and similarly, noting that ( j,−1)πβk = 0 for all

j = 0, . . . ,n− 1,

( j′,d′)π2
βk

= ∑
j
( j,1)β k(− j+ j′ mod n,1)β k

= ∑
j

4
n2 Cos

[
2 jkπ

n

]
Cos

[
2( j− j′)kπ

n

]

=
2
n

Cos

[
2 j′kπ

n

]
= ( j′,1)πβk ,

and ( j′,d′)π2
βk

= 0 if d′ = 0, so that ( j′,d′)π2
βk

= ( j′,d′)πβk for all j′,d′. The

derivations proving the orthogonality property are similar and are left as an
exercise. To prove the partition of unit property ∑ξ πξ we first assume that n is
odd. Then, if ( j,d) = (0,1), we have:

(0,1)1 +(0,1)α +
m

∑
k=1

(0,1)β k =
1

2n
+

1
2n

+
n− 1

n
= 1,

that is (∑ξ πξ )1 = 1. If j > 1 and d = 1 we have,

( j,1)1 +( j,1)α +
m

∑
k=1

( j,1)β k =
2

2n
− 1

n
= 0,

whereas if j > 1 and d =−1 we have,

( j,−1)1 +( j,−1)α +
m

∑
k=1

( j,−1)β k =
1

2n
− 1

2n
+ 0 = 0,
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that is, (∑ξ πξ ) j = 0, if j �= 1, and hence ∑ξ πξ = 1. If n is even, we have the
additional terms

( j,d)γ+ +( j,d)γ− =

⎧⎪⎪⎨
⎪⎪⎩

2
2n , if ( j,d) = (0,1);
2

2n (−1) j, if j > 1, d = 1;

0 if j > 1, d =−1,

whereas, for n even,

m

∑
k=1

( j,1)β k =

⎧⎪⎪⎨
⎪⎪⎩

n−2
n if j = 0;

− 2
n if j > 1 is even ;

0 if j > 1 is odd .

Therefore, if ( j,d) = (0,1), we have:

∑
ξ
(0,1)ξ = (0,1)1 +(0,1)α +( j,d)γ+ +( j,d)γ− +

m

∑
k=1

(0,1)β k

=
4

2n
+

n− 2
n

= 1,

so that (∑ξ πξ )1 = 1; If j > 1 is even, we have

∑
ξ
( j,1)ξ =

4
2n
− 2

n
= 0;

whereas if j > 1 is odd,

∑
ξ
( j,1)ξ =

2
2n
− 2

2n
= 0.

Therefore, (∑ξ πξ ) j = 0 for all j > 1 and d = 1. Finally, if d =−1,

∑
ξ
( j,−1)ξ =

1
2n
− 1

2n
+

(−1) j

2n
− (−1) j

2n
= 0,

and hence ∑ξ πξ = 1, concluding the proof. �
Proposition 2.11 (Canonical Projections). Let Pξ =< πξ ,φ >, where φ is the

dihedral (Dn) regular homomorphism. Then, for all ξ ,η ∈ D̂n, we have:

1. P2
ξ = Pξ ;

2. Pξ Pη = 0, ξ �= η;
3. ∑ξ Pξ = 1.
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Proof. Equalities 1 and 2 follow from equality 4 in Proposition 2.1 on page 15
and equalities 1 and 2 of Proposition 2.10. Equality 3 follows from equality 1 in
Proposition 2.1 on page 15 and equality 3 in Proposition 2.10. �
Proposition 2.11 gives a decomposition of the identity element in GLm(C) into an
algebraically orthogonal sum of projection matrices that decompose the identity
matrix of the corresponding dimension. The many applications and interpretations
of the canonical projections decomposition are presented in detail in [2].

Proposition 2.12. The (algebra) homomorphism

ϕ : x ∈ CDn �→
⊕

ξ
< x,ξ >∈∏

ξ
Mnξ (C)

in an isomorphism.

Proof. First note that ϕ(1) =
⊕

ξ < 1,ξ >=
⊕

ξ ξ1 =
⊕

ξ Inξ . Suppose that ϕ(x) =⊕
ξ Inξ for some non-null x ∈CDn. Then < x,ξ >= Inξ for all ξ ∈ D̂n, so that, from

Proposition 2.3 on page 17,

< τx,ξ >= ξτ < x,ξ >= ξτ Inξ = ξτ ,

so that
nξ

2n
< τx,ξ >=

nξ

2n
ξτ .

Taking the trace on both sides, we have,

< τx,πξ >=
nξ

2n
χξ

τ =
1

2n
χξ

1 χξ
τ .

Summing over D̂n we obtain, from Proposition 2.9 on page 21,

∑
ξ
< τx,πξ >=< τx,∑

ξ
πξ >=

1
2n ∑

ξ
χξ

1 χξ
τ =

⎧⎨
⎩∑ξ

n2
ξ

2n = 1, if τ = 1

0, if τ �= 1.

From Proposition 2.10 we know that ∑ξ πξ = 1, so that then < τx,1 >= δτ1, or
x = 1, concluding the proof. �
Proposition 2.13 (Inversion Formula).

xτ = ∑
ξ

nξ

2n
tr [ξτ < x,ξ >].

Proof. From Proposition 2.3 on page 17, we have

nξ

2n
< τx,ξ >=

nξ

2n
ξτ < x,ξ >,
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so that, taking the trace on both sides,

< τx,πξ >=
nξ

2n
tr [ξτ < x,ξ >],

summing over D̂n, and applying Proposition 2.10, gives

< τx,1 >= ∑
ξ

nξ

2n
tr [ξτ < x,ξ >],

or

xτ = ∑
ξ

nξ

2n
tr [ξτ < x,ξ >],

which is the inversion formula. �

2.7 Fourier Bases

In data analytical applications it is often useful to have a C
2n interpretation of

Proposition 2.12, in a way that the algebra isomorphism and the resulting inversion
formula appear in terms of a non-singular matrix transformation. To illustrate,
consider the CD4 decomposition, and write

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

< x,1 >

< x,α >

< x,γ+ >

< x,γ− >

< x,β >11

< x,β >21

< x,β >12

< x,β >22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
8.

The Fourier basis for this space is defined as the normalized rows of the matrix F
satisfying

X = Fx,

with normalizing (row) constants
√

nξ/2n. In the present example, the constants

are, respectively,
√

2/4 for the representations in dimension of one and 1/2
for the representation in dimension of two. The matrix F is shown in (2.12),
where the horizontal line separates the rows corresponding to the one-dimensional
representations from the rows associated with (the columns of ) the two-dimensional
representation β .
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F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
0 −1 0 1 0 1 0 −1
1 0 −1 0 −1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.12)

In general, we have

(Fx)ξ =

√
2n
nξ

< x,ξ >, ξ ∈ D̂n, (2.13)

where (Fx)ξ indicates the partition of Fx corresponding to ξ ∈ D̂n, with the
understanding that here < x,ξ > is written as a nξ × 1 vector with components
given by the columns of < x,ξ >.

In the D4 case above, we adjoined 4 blocks in dimension of 1× 8 and one block
in dimension of 22× 8. If F is the normalized (hence orthogonal) version of F
given by (2.12) and φ the (left) regular representation of D4 then direct calculation
shows that

FφF ′ = Diag (1,α,γ+,γ−, I2⊗β ), (2.14)

and, in general, we have:

Proposition 2.14. If F indicates the Dn Fourier basis and φ the corresponding
(left) regular representation, then

Fφσ F ′ = Diag (. . . , Inξ ⊗ ξσ , . . .)ξ∈D̂n
.

Proof. The columns of Fφσ when φ is the left regular representation are given
by {στ : τ ∈ Dn}. Moreover, any row of Fφ associated with ξ ∈ D̂n is given by√

nξ/g{ξ i f
στ : τ ∈ Dn} for some i, f = 1, . . .nξ , and a column of F ′ is a row of F ,

or
√

nη/g{η jk
τ : τ ∈Dn}, for some η ∈ D̂n, and j,k = 1, . . . ,nη , and if ξ or η are in

dimension of one we make i = f or j = k, respectively. Therefore, the ξ ,η (block)
entry of Fφσ F ′ is given by

(Fφσ F ′)i f , jk =

√nξ nη

g ∑
τ

ξ i f
στ η jk

τ ,

whereas, writing ξ i f
στ = ∑

nξ
�=1 ξ i�

σ ξ � f
τ , we obtain

(Fφσ F ′)i f , jk =

√nξ nη

g

nξ

∑
�=1

ξ i�
σ ∑

τ
ξ � f

τ η jk
τ = 0
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when ξ �= η e.g., [4], [2, p.81]. If η = ξ , then, recalling that ξ jk
τ = ξ k j

τ−1 ,

(Fφσ F ′)i f , jk =
nξ

g

nξ

∑
�=1

ξ i�
σ ∑

τ
ξ � f

τ ξ k j
τ−1 =

nξ

g

nξ

∑
�=1

ξ i�
σ

g
nξ

δ� jδ f k = 0

if � �= j or f �= k. Otherwise, when � = j and f = k, the ξ ,ξ (block) entry of
Fφσ F ′ is

(Fφσ F ′)ik, jk = ξ i j
σ ,

when k = 1, . . . ,nξ , thus giving nξ copies of ξσ . Arranging the rows of F that
correspond to ξ according to 11, . . . ,nξ 1, . . .1nξ , . . . ,nξ nξ expresses the ξ ,ξ entry
of Fφσ F ′ as Inξ ⊗ ξσ , so that, together, Fφσ F ′ is a block diagonal matrix with

the diagonal components given by Inξ ⊗ ξσ for the distinct ξ ∈ D̂n, concluding the
proof. �
Proposition 2.15. If F indicates the Fourier basis of Dn and Pξ it the left regular

canonical projection associated with ξ ∈ D̂n, then

FPξ F ′ = Diag (0, . . . , Inξ ⊗ Inξ , . . . ,0).

Proof. Evaluation of the regular canonical projection for ξ ∈ D̂n using Proposi-
tions 2.14 on the preceding page and 2.9 on page 21, and the equality in (2.10),
gives

FPξ F ′ =
nξ

2n ∑
τ∈Dn

χξ
τ FφτF

′ =
nξ

2n
Inξ ⊗ ∑

τ∈Dn

χξ
τ ξτ

=
nξ

2n
Inξ⊗< χξ ,ξ >=

nξ

2n
Inξ ⊗

2n
nξ

Inξ = Inξ ⊗ Inξ .

As a consequence, considering (2.13), we obtain the analysis of variance of x in
terms of its spectral decomposition;

Corollary 2.1 (Parseval’s Equality). If x ∈ C
2n then

||x||2 = ∑
ξ∈D̂n

nξ

2n
||< x,ξ > ||2.

Example 2.8. Consider the following two points x,y in CD4,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ x y
1 1 5
r 2 1

r2 1 4
r3 1 3
h 5 3

rh 10 4
r2h 4 1
r3h 5 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From Example 2.6 on page 19, we have,

< x,1 >= 29, < y,1 >= 26;

< x,α >=−19, < y,α >= 0;

< x,γ+ >=−7, < y,γ+ >= 0;

< x,γ− >=−5, < y,γ− >= 10;

< x,β >=

(
1 4
6 −1

)
, < y,β >=

(
3 1
−3 −1

)
.

Then,
x · x = ||x||2 = ∑

τ
x2

τ = 173,

whereas, equally,

∑
ξ∈D̂n

nξ

2n
||< x,ξ > ||2 = 1

8
(292 + 192+ 72 + 52)+

2
8
(12 + 42 + 62 + 12) = 173.

Moreover,

x · y = ∑
τ

xτ yτ = 98 = ∑
ξ∈D̂n

nξ

2n
< x,ξ >< y,ξ >,

with the understanding that when ξ is of dimension greater than one ξ the products
of the two transforms should read as the (Hadamard) inner product < x,ξ > ·
< y,ξ > two matrices.

More generally, then, Corollary 2.1 read as:

Corollary 2.2. If x,y ∈ C
G then

x · y = ∑
ξ∈D̂n

nρ

2n
< x,ξ >< y,ξ > .
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Example 2.9. Given two points

x = x0 + x1ω + x2ω2, y = y0 + y1ω + y2ω2

in the group algebra of C3, then

< x,ξ1 >= x0+x1+x2, < x,ξ2 >= x0+x1ω+x2ω2, < x,ξ3 >= x0+x1ω2+x2ω

are the Fourier transforms of x, and similarly for y. Direct calculation then shows that

x · y = ∑
τ

xτ yτ =
1
3

3

∑
j=1

< x,ξ j >< y,ξ j >.

It is understood that in Corollaries 2.1 and 2.2 the inner products are Hermitian
products.

2.8 The Center of CDn

The center of Dn is the subset of Dn whose elements commute with all points in
Dn. We write Cent. Dn to indicate the dihedral center. By linearity, the definition
extends to CDn and all dihedral linearizations, and clearly Cent. Dn = Cent. CDn.
The reader can check that Cent. Dn is an associative algebra. CDn is also called the
enveloping algebra of Dn [3, p.79].

Example 2.10 (A basis for the center of the regular linearization of D3). The reader
can verify, using the definition of conjugacy classes, that a basis for the center of the
D3 regular linearization algebra, see page 15,

{< x,φ >;x ∈ CD3},

where φ is the (left) regular representation of D3, is given by the identity I, and the
matrices

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

so that the matrix elements in the center of the regular linearization have the form
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C = aI+ bC1 + cC2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a b b c c c
b a b c c c
b b a c c c
c c c a b b
c c c b a b
c c c b b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Similar argument shows that the canonical projections P1,Pα ,Pβ for the regular
representation of D3 also form a basis for the center of the regular linearization
algebra, with the advantage of being (algebraically) orthogonal. For example, since
C is in the center of the algebra, we must have

C = �1P1 + �αPα + �βPβ ,

so that then

CP1 = �1P1, CPα = �αPα , CPβ = �β Pβ . (2.15)

Taking the trace on both sides, we have

�1 =
tr CP1

tr P1
= a+ 2b+ 3c, �α =

tr CPα
tr Pα

= a+ 2b− 3c, �β =
tr CPβ

tr Pβ
= a− b.

(2.16)

The reader may also verify that the characterization of the matrix elements in
the center of the regular linearization algebra of D3 can be obtained by taking an
arbitrary matrix

H =< a,φ >=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a b c α β γ
c a b γ α β
b c a β γ α
α γ β a c b
β α γ b a c
γ β α c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

in the algebra and centralizing it

C � ∑
τ∈G

φτ Hφ ′τ .

The matrices C in the center of the regular linearization algebra transform
according to

FCF−1 = C = Diag (�1, �α , �β I4). (2.17)
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2.9 Group Rings

The following definitions are relevant to the analysis of data indexed by symmetries.

Definition 2.4. Given a ring R and a group G, the set

RG =

{
∑
τ

rτ τ, rτ ∈ R,τ ∈ G

}

of all finite formal R-linear combinations of elements of G, together with the
operations of addition (component-wise) and multiplication (induced by the group
multiplication), is called the group ring of G over R.

Example 2.11 (Visual fields). The matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 26 27 24 21 0 0 0
0 0 23 23 26 28 25 22 0 0
0 27 29 27 27 28 29 29 28 0

28 29 29 29 31 20 20 28 28 29
26 26 29 30 33 34 28 27 28 27
28 30 30 31 32 33 33 4 27 28
27 29 31 31 32 32 30 29 28 27
0 30 31 31 28 29 32 30 30 0
0 0 28 32 29 28 29 28 0 0
0 0 0 26 27 28 29 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

describes the output of an automated perimetry test used in the assessment of the
visual field. The entries represent the sensitivity of the retina in detecting the light
stimulus and is expressed in decibel units, with a maximal possible reading of 50db.
A 50db target is the dimmest target the instrument can project. The smaller the
reading the lower the sensitivity at that retinal location given by reference to the
rows and columns of the matrix.

The set of matrices

{F1,Fr,Fr2 ,Fr3 ,Fh,Frh,Fr2h,Fr3h}

shown below give a dihedral (D4) orbit on the visual field and each matrix field is
a point in the ring of the 10× 10 matrices over the reals, indexed by D4, so that the
formal sums

∑
τ∈D4

Fτ τ,

gives an example of a point in the group ring of D4 over the ring of the real 10×10
matrices. Each one of the following matrices is obtained from F by applying the
corresponding planar (counterclockwise) rotations and reversals to its row-column
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indices, in the natural way, with the x (y) axis placed between rows (columns)
5 and 6.

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 26 27 24 21 0 0 0
0 0 23 23 26 28 25 22 0 0
0 27 29 27 27 28 29 29 28 0

28 29 29 29 31 20 20 28 28 29
26 26 29 30 33 34 28 27 28 27
28 30 30 31 32 33 33 4 27 28
27 29 31 31 32 32 30 29 28 27
0 30 31 31 28 29 32 30 30 0
0 0 28 32 29 28 29 28 0 0
0 0 0 26 27 28 29 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 26 27 24 21 0 0 0
0 0 23 23 26 28 25 22 0 0
0 27 29 27 27 28 29 29 28 0
28 29 29 29 31 20 20 28 28 29
26 26 29 30 33 34 28 27 28 27
28 30 30 31 32 33 33 4 27 28
27 29 31 31 32 32 30 29 28 27
0 30 31 31 28 29 32 30 30 0
0 0 28 32 29 28 29 28 0 0
0 0 0 26 27 28 29 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fr2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 29 28 27 26 0 0 0
0 0 28 29 28 29 32 28 0 0
0 30 30 32 29 28 31 31 30 0

27 28 29 30 32 32 31 31 29 27
28 27 4 33 33 32 31 30 30 28
27 28 27 28 34 33 30 29 26 26
29 28 28 20 20 31 29 29 29 28
0 28 29 29 28 27 27 29 27 0
0 0 22 25 28 26 23 23 0 0
0 0 0 21 24 27 26 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fr3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 29 27 28 27 0 0 0
0 0 28 28 28 27 28 30 0 0
0 22 29 28 27 4 29 30 28 0

21 25 29 20 28 33 30 32 29 29
24 28 28 20 34 33 32 29 28 28
27 26 27 31 33 32 32 28 29 27
26 23 27 29 30 31 31 31 32 26
0 23 29 29 29 30 31 31 28 0
0 0 27 29 26 30 29 30 0 0
0 0 0 28 26 28 27 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 26 27 28 29 0 0 0
0 0 28 32 29 28 29 28 0 0
0 30 31 31 28 29 32 30 30 0
27 29 31 31 32 32 30 29 28 27
28 30 30 31 32 33 33 4 27 28
26 26 29 30 33 34 28 27 28 27
28 29 29 29 31 20 20 28 28 29
0 27 29 27 27 28 29 29 28 0
0 0 23 23 26 28 25 22 0 0
0 0 0 26 27 24 21 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Frh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 27 28 27 29 0 0 0
0 0 30 28 27 28 28 28 0 0
0 28 30 29 4 27 28 29 22 0

29 29 32 30 33 28 20 29 25 21
28 28 29 32 33 34 20 28 28 24
27 29 28 32 32 33 31 27 26 27
26 32 31 31 31 30 29 27 23 26
0 28 31 31 30 29 29 29 23 0
0 0 30 29 30 26 29 27 0 0
0 0 0 27 28 26 28 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fr2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 21 24 27 26 0 0 0
0 0 22 25 28 26 23 23 0 0
0 28 29 29 28 27 27 29 27 0

29 28 28 20 20 31 29 29 29 28
27 28 27 28 34 33 30 29 26 26
28 27 4 33 33 32 31 30 30 28
27 28 29 30 32 32 31 31 29 27
0 30 30 32 29 28 31 31 30 0
0 0 28 29 28 29 32 28 0 0
0 0 0 29 28 27 26 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Fr3h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 28 26 28 27 0 0 0
0 0 27 29 26 30 29 30 0 0
0 23 29 29 29 30 31 31 28 0

26 23 27 29 30 31 31 31 32 26
27 26 27 31 33 32 32 28 29 27
24 28 28 20 34 33 32 29 28 28
21 25 29 20 28 33 30 32 29 29
0 22 29 28 27 4 29 30 28 0
0 0 28 28 28 27 28 30 0 0
0 0 0 29 27 28 27 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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2.10 Multivariate Normal Data

The following result follows from applying Propositions 2.14 and 2.15.

Proposition 2.16. Let x be a random vector with components indexed by Dn

carrying a multivariate normal distribution with vector of means μ and covariance
matrix Λ , or x ∼ N(μ ,Λ) and assume that Λ is in the center of the (left) regular
C-algebra of Dn. Then

Λ = ∑
ξ∈D̂n

λξ Pξ

where Pξ is the regular canonical projection associated with ξ ∈ D̂n, λξ =
tr Pξ Λ/tr Pξ , and if F indicates the Fourier basis of Dn,

Fx∼ N(F μ ,Diag (. . . ,λξ In2
ξ
, . . .)ξ∈D̂n

).

Moreover, for each ξ ∈ D̂n,

(Fx)ξ ∼ N((F μ)ξ ,λξ In2
ξ
),

is the distribution of the block-component (Fx)ξ of Fx corresponding to ξ , and
these components are independently distributed (and independent) multivariate
normal models.

2.11 Selected Dihedral Bases

In this section we derive the element components of Proposition 2.16 for the dihedral
groups D3,D4,D5,D6, and D7.

Example 2.12 (D3). The Fourier basis for D3, following Sect. 2.5, is giving by

F3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.42 0.42 0.42 0.42 0.42 0.42
0.42 0.42 0.42 −0.42 −0.42 −0.42
0.59 −0.30 −0.30 0.59 −0.30 −0.30

0.0 0.51 −0.51 0.0 0.51 −0.51
0.0 −0.51 0.51 0.0 0.51 −0.51

0.59 −0.30 −0.30 −0.59 0.30 0.30

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

whereas

Λ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a b b c c c
b a b c c c
b b a c c c
c c c a b b
c c c b a b
c c c b b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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is the covariance structure amenable to Proposition 2.16. The first two rows of F3

account for the two characters of D3 in dimension of one, and the remaining ones
for the single character in dimension of two. The two row blocks correspond to
rotations and reversals, respectively, and similarly for the two column blocks. This
notation applies to similar matrices in this section. The matrix Λ3 is in the center of
D3, and hence in the center of its group algebra. Its coefficients in the basis given
by the regular canonical projections are,

λ1 = a+ 2b+ 3c, λα = a+ 2b− 3c, λβ = a− b,

corresponding to the symmetric, signature and (single) two-dimension characters.
From Proposition 2.16, corresponding to the symmetric and alternating characters,
respectively,

(Fx)1 ∼ N((F μ)1,a+ 2b+ 3c), (Fx)α ∼ N((F μ)α ,a+ 2b− 3c),

whereas, corresponding to the single character in dimension of two,

(Fx)β ∼ N((Fx)β ,(a− b)I4).

Example 2.13 (D4). Similarly,

F4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
0.36 0.36 0.36 0.36 −0.36 −0.36 −0.36 −0.36
0.36 −0.36 0.36 −0.36 0.36 −0.36 0.36 −0.36
0.36 −0.36 0.36 −0.36 −0.36 0.36 −0.36 0.36
0.50 0 −0.50 0 0.50 0 −0.50 0

0 0.50 0 −0.50 0 0.50 0 −0.50
0 −0.50 0 0.50 0 0.50 0 −0.50

0.50 0 −0.50 0 −0.50 0 0.50 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the Fourier basis for D4, where the first four rows are indexed by the symmetric
(1), anti-symmetric (α), γ+, and γ− characters, all in dimension of one (their
interpretation is discussed later on in Sect. 2.7). The remaining four rows account
for the single character in dimension of two (β ). The covariance structure in the
center of D4 has the pattern of

Λ4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c b d e d e
b a b c e d e d
c b a b d e d e
b c b a e d e d
d e d e a b c b
e d e d b a b c
d e d e c b a b
e d e d b c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

λ1 = a+ 2b+ c+ 2d+ 2e, λα = a+ 2b+ c− 2d− 2e

λγ+ = a− 2b+ c+ 2d− 2e, λγ− = a− 2b+ c− 2d+ 2e, λβ = a− c

are its coefficients in the regular canonical projection basis.

Example 2.14 (D5). Its Fourier basis

F5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
0.31 0.31 0.31 0.31 0.31 −0.31 −0.31 −0.31 −0.31 −0.31
0.45 0.16 −0.36 −0.36 0.16 0.45 0.16 −0.36 −0.36 0.16
0.0 0.42 0.26 −0.26 −0.42 0.0 0.42 0.26 −0.26 −0.42
0.0 −0.42 −0.26 0.26 0.42 0.0 0.42 0.26 −0.26 −0.42

0.45 0.16 −0.36 −0.36 0.16 −0.45 −0.16 0.36 0.36 −0.16
0.45 −0.36 0.16 0.16 −0.36 0.45 −0.36 0.16 0.16 −0.36
0.0 0.26 −0.42 0.42 −0.26 0.0 0.26 −0.42 0.42 −0.26
0.0 −0.26 0.42 −0.42 0.26 0.0 0.26 −0.42 0.42 −0.26

0.45 −0.36 0.16 0.16 −0.36 −0.45 0.36 −0.16 −0.16 0.36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is indexed by the symmetric and alternating characters, one fundamental character
in dimension of two (β ) and its first harmonic (β 1), also in dimension of two. The
covariance structure with the symmetry of D5 has the pattern of

Λ5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c c b d d d d d
b a b c c d d d d d
c b a b c d d d d d
c c b a b d d d d d
b c c b a d d d d d
d d d d d a b c c b
d d d d d b a b c c
d d d d d c b a b c
d d d d d c c b a b
d d d d d b c c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and is expressed, in the canonical projection basis, in terms of the coefficients

λ1 = a+ 2b+ 2c+ 5d, λα = a+ 2b+ 2c− 5d

λβ = a+ 2 cos(2/5π)b−2 cos(1/5π)c, λβ 1 = a−2 cos(1/5π)b+2 cos(2/5π)c.

Example 2.15 (D6). With similar interpretations, we have:
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Λ6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d c b e f e f e f
b a b c d c f e f e f e
c b a b c d e f e f e f
d c b a b c f e f e f e
c d c b a b e f e f e f
b c d c b a f e f e f e
e f e f e f a b c d c b
f e f e f e b a b c d c
e f e f e f c b a b c d
f e f e f e d c b a b c
e f e f e f c d c b a b
f e f e f e b c d c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with coefficients

λ1 = a+ 2b+ 2c+ d+ 3e+ 3 f , λα = a+ 2b+ 2c+ d− 3e− 3 f

λγ+ = a− 2b+ 2c− d+ 3e− 3 f , λγ− = a− 2b+ 2c− d− 3e+ 3 f

λβ = b+ a− c− d, λβ 1 = a− c+ d− b.

Example 2.16 (D7). The matrices in its center have the form

Λ7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d d c b e e e e e e e
b a b c d d c e e e e e e e
c b a b c d d e e e e e e e
d c b a b c d e e e e e e e
d d c b a b c e e e e e e e
c d d c b a b e e e e e e e
b c d d c b a e e e e e e e
e e e e e e e a b c d d c b
e e e e e e e b a b c d d c
e e e e e e e c b a b c d d
e e e e e e e d c b a b c d
e e e e e e e d d c b a b c
e e e e e e e c d d c b a b
e e e e e e e b c d d c b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Its coefficients are indexed by the symmetric, alternating, the fundamental two
harmonics, specifically,

λ1 = a+ 2b+ 2c+ 2d+ 7e, λα = a+ 2b+ 2c+ 2d− 7e,

λβ = a+ 2 cos(2/7π)b− 2 cos(3/7π)c− 2 cos(1/7π)d,

λβ 1 = a− 2 cos(3/7π)b− 2 cos(1/7π)c+ 2 cos(2/7π)d,

λβ 2 = a− 2 cos(3/7π)d+ 2 cos(2/7π)c− 2 cos(1/7π)b.
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2.12 Log-Transformed Multinomial Data

Here the dihedral data x is such that the underlying dihedral group is also the support
for a multinomial distribution with probability parameters p based on N =< 1,x >
observations. Let � indicate the corresponding log count data, with components �τ =
log(xτ/N), for τ ∈ Dn, and Dp = Diag (. . . , pτ , . . .). Then, e.g., [5, p.494],

Proposition 2.17.

L [
√

NF (�−λ )]→N (0,FD−1
p F ∗ −Fee′F ∗),

where λτ = log pτ are the components of λ .

In particular, here,

Fee′F ∗ = Diag (g2,0, . . . ,0).

2.13 Additional Remarks

1. Most of the definitions introduced in this chapter are, more precisely, definitions
on the left, with corresponding definitions obtained by dihedral actions defined
on the right;

2. The regular linearizations < x,φ > are particular types of linearizations in the
sense of [1]. Specifically, if a finite group G acts on a set S and x ∈ C

S, then

[T (τ)x](s) = x(τ−1s)

gives a linear representation of G in C
S, so that when S = G the regular

linearization is

φτ(x)σ = xτ−1σ ;

3. Proposition 2.10 on page 21 is a general result for finite groups and depends
essentially of the orthogonality relations among irreducible characters, e.g., [4,
p.50], [6, p.473].

4. Proposition 2.12 on page 25 is the central result underlying the algebraic aspects
presented in these notes and a general property of semisimple algebras e.g., [4,
Sect. 6.2].

Problems

2.1. Describe (1) the action of the dihedral group D3 on the distinct vertices {a,b,c}
of a regular triangle and (2) its action on the oriented edges
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{(a,b),(b,c),(c,a),(b,a),(a,c),(c,b)}

of the triangle. Re-evaluate (1) and (2) above when a and b are indistinguishable.

2.2. Describe the distinct dihedral groups D2 as permutation subgroups of S4. For
example D2 can be generated both by {(12),(34)} and by {(12)(34),(13)(24)}.
2.3. Describe the distinct dihedral groups D3 as permutation subgroups of S3.

2.4. Describe the distinct dihedral groups D4 as permutation subgroups of S4.

2.5. Verify that rotations and reversals have opposite parity.

2.6. Describe the D4 trace indexing xτ = tr [βτ Σ ] of a an arbitrary 2×2 covariance
matrix.

2.7. Describe the D4 trace indexing xτ = tr [(βτ ⊗ βτ)Σ ] of a an arbitrary 4× 4
covariance matrix.

2.8. Functional invariance can be characterized by its commutativity with a given
symmetry operator. Show that when the two-dimensional Laplace operator Δ f =
∂xx f + ∂yy f is applied to a function f (p) subject to rotation r(p) of its argument,
then Δ f (r(p)) = r(Δ f (p)). That is, (Δ f )r = r(Δ f ).

2.9. Referring to Problem 1.2 on page 7, study the correspondence between the
power set of n objects and the set of all n-ary words in length of n. Endowing the
power set with the inclusion-exclusion multiplication turns it into an Abelian group.
Carry on the Fourier analysis and evaluate the canonical projections.

2.10. Determine the dihedral invariants of Dn acting (by permutation) on the power
set of n = 2,3,4,5,6 objects. Study how the invariants depend on the chosen
realization of Dn.

2.11. Determine the dihedral linearizations < x,ρ > of the permutation represen-
tations ρ of Dn acting on {1, . . . ,n}, for n = 2,3,4,5,6. Specify the particular
realization of Dn adopted in the linearization.

2.12. Following with the definitions introduced on page 12, show that β k
σ�τ =

β k
σ β k

τ .

2.13. Starting with the D4 linearization

< x,β >=

[
1+ h− r2− r2h −r+ rh+ r3− r3h

r+ rh− r3− r3h 1− h− r2+ r2h

]

of x at β , using the short notation xτ ≡ τ , let each entry (B+
i j ,B

−
i j) of

B =

[
(1+ h, r2 + r2h) (rh+ r3, r+ r3h)
(r+ rh, r3 + r3h) (1+ r2h, h+ r2)

]
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indicate the signed components of < x,β >. Show that B transforms as

rB =

[
B21 B22

B⊥11 B⊥12

]
, r2B =

[
B⊥11 B⊥12
B⊥21 B⊥22

]
,

r3B =

[
B⊥21 B⊥22
B11 B12

]
, hB =

[
B11 B12

B⊥21 B⊥22

]
,

rhB =

[
B21 B22

B11 B12

]
, r2hB =

[
B⊥11 B⊥12
B21 B22

]
, r3hB =

[
B⊥21 B⊥22
B⊥11 B⊥12

]
,

where B⊥i j indicates the transposed entry (B−i j ,B
+
i j) of Bi j. Argue that the signed

components of B and their complements are stable within each column space of
< x,β >.

2.14. Prove the algebraic orthogonal property in Proposition 2.10 on page 21.



Chapter 3
Curvature and Refraction Data

3.1 Introduction

The cornea is the main refracting surface of the human eye. Its front (anterior)
surface is approximately 1.3cm2 with an average radius of curvature of about
7.8mm. Typical computer algorithms for corneal curvature measurement (known as
keratometry) are based on projecting a pattern of concentric rings of light onto the
anterior surface of the cornea and numerically determining the relative separation
between the images of these reflected rings of light. This models the anterior surface
of the cornea as a highly polished spherical mirror. By sampling the curvature at
specific circularly equidistant points, a numerical model for the surface curvature
may be obtained.

The corneal curvature, κ , and its refractive index, η , contribute to determining
the surface’s optical refractive power κ(η − η ′), where η ′ = 1 is the reference
refractive index of the air. Most of the light takes place at the surface of the cornea,
which has refractive index η = 1.3376. Light then passes through the aqueous
humor (η = 1.336, close to the refractive index of water) to the lens (η = 1.386–
1.406, where it is refracted further) and through the vitreous humor to the retina at
the back of the eye.

The standard unit of refractive optical power is the diopter (D) and is defined
as the inverse of the radius of curvature. One diopter equals one inverse meter
(m−1). For example, using the standard keratometric index η = 1.3375, a cornea
with a curvature of 7.50 mm at 0◦ has power (1/0.0075)× 0.3375= 45D, whereas
if the curvature at 90◦ is 7.25 mm, the power is 46.50 D. The difference between
these steep (maximum) and the flat (minimum) curvatures is the amount of regular
astigmatism present in the optics of the eye, which interferes with a sharp formation
of the image on the retina. In the present example, the regular astigmatism is 1.50 D.

Figure 3.1 shows the optical power contours for two fellow eyes. In this chapter
we will develop the dihedral spectral analysis for refraction power contours and
related optical applications.

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 41
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013
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Fig. 3.1 36-point optical power for two fellow eyes. Left eyes on the left column

3.2 Dihedral Analysis of Optical Power

We will illustrate the assessment of the dihedral data with a numerical, shorter
random contour

y = {−2.04877,1.42571,0.552724,−1.23325}.
of length 4.

The rotational symmetry data extracted from the original contour are defined as
the (usual Pearson) correlations between y and its zero-, one-, two-, and threefold
rotated contours. In our illustration, we computed the correlation between y and,
respectively,

{−2.04877,1.42571,0.552724,−1.23325},
{1.42571,0.552724,−1.23325,−2.04877},
{0.552724,−1.23325,−2.04877,1.42571},

and

{−1.23325,−2.04877,1.42571,0.552724},
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thus producing the rotation data

{1,−0.0933946,−0.813211,−0.0933946}.
The reversal symmetries extracted from the contour are defined as the correlations
between y and the reversed images

{−1.23325,0.552724,1.42571,−2.04877},

{−2.04877,−1.23325,0.552724,1.42571},
{1.42571,−2.04877,−1.23325,0.552724},

and

{0.552724,1.42571,−2.04877,−1.23325},
of the originally rotated contours, thus producing the reversal data

{0.812994,0.0735885,−0.999784,0.113201}.

The dihedral data extracted from the original contour is then the joint data

x = {1,−0.0933946,−0.813211,−0.0933946,0.812994,0.0735885,−0.999784,0.113201},

indexed by D4.
Specifically, given a contour y in length of n, its Dn indexing is given by

xτ = Corr (y,Hα(d)R jy), j = 0,1, . . .n− 1, d =−1,1, (3.1)

where, here, R is the n× n cyclic permutation matrix for (12 . . .n), and H is
corresponding permutation matrix with all ones along the transverse (i,n − i)
diagonal. We also observe that

Clearly, the mapping

τ = hα(d)r j ∈ Dn �→ ρτ = Hα(d)R j ∈ GLn(R)

is simply the representation of Dn acting naturally on the index set {1, . . .n}, so that

xτ = Corr (y,ρτ y) =
y′ρτy− ny2

||y− y||2 .

As a direct consequence of the Canonical Projections Theorem we have,

Proposition 3.1. If xτ = Corr (y,ρτ y) for τ ∈ Dn then

1 = ∑
ξ

nξ

2n
< x,χξ >, (3.2)

where the sum is over all irreducible representations of Dn.
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Fig. 3.2 Rotation (dots) and reversal (squares) data for the L1 contour
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Fig. 3.3 Rotation (dots) and reversal (squares) data for the R1 contour

The dihedral indexing based on the correlation coefficients is, of course, bound
to the interval (−1,1).

We conclude this section with the detailed spectral analysis of the power contours
shown in Fig. 3.1. For simple reference we will denote the contours for the fellow
eyes on the top row by L1 and R1. Similarly, for the second row, L2 and R2.

Figures 3.2–3.5 show the rotation and reversal data extracted from the indicated
contours, as introduced in (3.1) above. It is apparent that the dihedral indexing can
reveal or at least amplify seemingly miniscule asymmetries in the power profiles,
thus enhancing their distinctive aspects.
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Fig. 3.4 Rotation (dots) and reversal (squares) data for the L2 contour
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Fig. 3.5 Rotation (dots) and reversal (squares) data for the R2 contour

These data can be interpreted against known power profiles. For example, the
theoretical power profile

t �→ [ cost sin t
][ s+ csin2 (α) −csin(2α)/2
−csin(2α)/2 s+ ccos2 (α)

][
cost
sin t

]
, t ∈ (0,2π)
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Fig. 3.6 Power profile of a (s,c,α) = (5,−4,0) sphero-cylindrical lens

for a (s,c,α) = (5,−4,0) sphero-cylindrical lens, shown in Fig. 3.6, corresponds
to the 36-point, or D36, dihedral profile shown in Fig. 3.7, with features that are
compatible with those shown for the observed profile shown in Fig. 3.5.

3.2.1 The Spectral Decomposition

For each profile y, we evaluate the Parseval’s decomposition

||x||2 = ∑
ξ

nξ

2n
||< x,ξ > ||2,

for the extracted data x over D36, which allows for 4 irreducible representations
in dimension of one and 17 representations in dimension of two, thus accounting
for the 4+ 4× 17 = 72 data points indexed by D36 (Fig. 3.8). The tables in (3.3)
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Fig. 3.7 D36 data extracted from the power profile of a (s,c,α) = (5,−4,0) sphero-cylindrical
lens
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Fig. 3.8 D36 data extracted from the power profile of a (s,c,α) = (5,−4,0) sphero-cylindrical
lens with added white noise

show the D36 dihedral spectral decomposition for the fellows eyes corresponding to
the contours L1,R1, L2,R2 introduced above, and the tables in (3.4) show the D36

spectral decomposition for a purely spherical power contour (s,c,α) = (5,0,0),
for the contour of (s,c,α) = (5,−4,0) shown above in Fig. 3.6, and for the same
contour with white noise added.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

α 0

γ+ 0

γ− 0.0000810

β1 24.1

β2 0.959

β3 0.000294

β4 0.000455

β5 0.000070

β6 0.000063

β7 0.000031

β8 0.000008

β9 0.000081

β10 0.0000241

β11 0.0000021

β12 0.000312

β13 0.0000148

β14 0.0000025

β15 0.0000119

β16 0.0000256

β17 0.00000007

||x||∧2 25.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

α 0

γ+ 0

γ− 0.000108

β1 19.3

β2 1.63

β3 0.0000246

β4 0.00509

β5 0.00154

β6 0.000105

β7 0.000398

β8 0.0000655

β9 0.0000100

β10 0.000478

β11 0.0000316

β12 0.0000283

β13 0.0000472

β14 0.000537

β15 0.000180

β16 0.000008

β17 0.00711

||x||∧2 21.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

α 0

γ+ 0

γ− 0.0000299

β1 3.67

β2 13.0

β3 0.0557

β4 0.00173

β5 0.00454

β6 0.0000197

β7 0.000171

β8 0.000001

β9 0.000189

β10 0.0000605

β11 0.000704

β12 0.000181

β13 0.000276

β14 0.000164

β15 0.000006

β16 0.0000773

β17 0.000009

||x||∧2 16.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

α 0

γ+ 0

γ− 0.00352

β1 0.122

β2 25.5

β3 0.0183

β4 0.000827

β5 0.000844

β6 0.0000151

β7 0.0000506

β8 0.0000205

β9 0.0000790

β10 0.00886

β11 0.000170

β12 0.0000518

β13 0.00284

β14 0.00271

β15 0.0000260

β16 0.00544

β17 0.00155

||x||∧2 25.7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0
β2 0
β3 0
β4 36.0
β5 0
β6 0
β7 0
β8 0
β9 0
β10 0
β11 0
β12 0
β13 0
β14 0
β15 0
β16 0
β17 0

||x||∧2 36.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0
β2 35.7
β3 0
β4 0.000545
β5 0
β6 0
β7 0
β8 0
β9 0
β10 0
β11 0
β12 0
β13 0
β14 0
β15 0
β16 0
β17 0

||x||∧2 35.7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0.00206
β1 0.0000894
β2 21.8
β3 0.0297
β4 0.0312
β5 0.0209
β6 0.000662
β7 0.0533
β8 0.00970
β9 0.0318
β10 0.000699
β11 0.0000391
β12 0.000004
β13 0.00538
β14 0.00609
β15 0.0000667
β16 0.00199
β17 0.000660

||x||∧2 22.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)
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3.3 Dihedral Analysis of Wavefront Aberration Polynomials

Consider, to illustrate, the following estimated wavefront aberration radial polyno-
mials, shown in Fig. 3.9:

W2(r, t) = 0.264861
(−1+ 2r2)− 0.106237r2Cos[2t]− 0.228447r2Sin[2t];

W3(r, t) =−0.0328445r
(−2+ 3r2)Cos[t]+ 0.179979r3Cos[3t]

+ 0.014439r
(−2+ 3r2)Sin[t]− 0.0865721r3Sin[3t];

W4(r, t) =−0.0230155
(
1− 6r2+ 6r4)− 0.00927528r2(−3+ 4r2)Cos[2t]

+ 0.0326643r4Cos[4t]− 0.00361759r2(−3+ 4r2)Sin[2t]

+ 0.0613639r4Sin[4t];

W5(r, t) = 0.0527403r
(
3− 12r2+ 10r4)Cos[t]− 0.0534837r3(−4+ 5r2)Cos[3t]

− 0.0143293r5Cos[5t]+ 0.0434211r
(
3− 12r2+ 10r4)Sin[t]

− 0.0380357r3(−4+ 5r2)Sin[3t]+ 0.0457845r5Sin[5t].
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Fig. 3.9 Single mode contours (r = 1) for the polynomials W2 (red, two-foil), W3 (blue, trefoil),
W4 (purple, tetrafoil), and W5 (black, pentafoil)
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Their superposition W = W2 +W3 +W4 +W5 is shown in Fig. 3.10, whereas its
associated rotations-reversals data is shown in Fig. 3.11.

The dihedral D12 decompositions for the elementary modes W2,W3,W4,W5 are
shown on (3.5), whereas the decompositions for the joint superposed mode is shown
in (3.6). The elementary modes are clearly and distinctly characterized in each case:

W2 : β2, W3 : β1,β4, W4 : β2,β4, W5 : β1,β3,β5,

whereas the superposed mode is projected among those individual sets of
components

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0
β2 12.0
β3 0
β4 0
β5 0

||x||∧2 12.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0.0117
β2 0
β3 11.3
β4 0
β5 0

||x||∧2 11.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0
β2 0.00485
β3 0
β4 11.5
β5 0

||x||∧2 11.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 2.06
β2 0
β3 1.75
β4 0
β5 0.500

||x||∧2 4.31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
α 0
γ+ 0
γ− 0
β1 0.0140
β2 4.51
β3 0.993
β4 0.0233
β5 0.00529

||x||∧2 5.55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

3.4 Dihedral Spatial Filters

The basic theoretical framework, borrowed from earlier developments in filter
theory, describes the intensity of an elementary image, e.g., [8], as a linear
superposition, or convolution,

I (u) =
∫

S (u− v)O(v)dv,
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Fig. 3.10 Superposition W2 +W3 +W4 +W5 of the single modes shown in Fig. 3.9
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Fig. 3.11 Rotations (red dots) and Reversals (black squares) for the joint mode W of Fig. 3.10
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over the object plane (R2), of a spread function or impulse response S and the
source image O in the object plane (R2). This is conveniently arranged so that,
in turn,

Î = Ŝ Ô (3.7)

is the corresponding spectral distribution Î of I (its Fourier transform), where

Ŝ (ω) =

∫
S (u)exp[−iω ·u]du

is the optical transfer function or frequency response. Equality (3.7) corresponds to
equality 4 in Proposition 2.1 on page 15 in the dihedral analysis formulation.

The Dihedral Filters

From Sect. 3.4, we now study the (first-order) dihedral bases

bτ(x) = x′βτx

as spatial filters (or point spread functions) for the power contours

p(x) = x′Fx =
1
2
{(2s+ c)(x2

1+ x2
2)− ccos(2α)(x2

1− x2
2)− 2csin(2α)x1x2}.

Evaluation of their convolution

mτ(y) = [bτ ∗ p](y) =
∫

B
bτ(y− x)p(x)dx, τ ∈ Dn,

over a window B in polar coordinates gives

mτ(θ ) =
(

2(1+ d)(c+ 2s)Cos

[
2 jπ

n

]
+ c(−1+ d)Cos

[
2

(
α +

jπ
n
−θ
)])

,

up to a proportionality constant due to integrating out the polar radius, and where
( j,d) indicates the element τ ∈ Dn. That is, j = 0, . . . ,n− 1 are the step rotations
(d = 1) and reversals (d = −1). In the above expression, the window is ±π/2.
We also note that, clearly, the resulting discrete convolution is embedded in the
continuous (unconnected) D∞ case,

μτ(θ ) = 2(1+ d)(c+ 2s)Cos[φ ]+ c(−1+ d)Cos[φ + 2(α−θ )] ,

up to a proportionality constant.
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Fig. 3.12 Profile contour for (s,c,α) = (3,−2,π/3), in black, and extracted spherical-equivalent
component contour, in red color, using a dihedral D4 rotational (even) filter

Extracting the Attributes of the Power Profiles

Figures 3.12–3.14 show the original profile (in black color) of a power matrix with
spherical power s = 3D, cylindrical power c =−2D and major orientation α = π/3.

The contours in red color are the resulting extracted contours μτ after the
convolution with the D4 filters for rotations (Fig. 3.12) and reversals (Figs. 3.13
and 3.14). The two even filters j = 0,2 for rotations are equivalent, and the odd ones
j = 1,3 are null. The reversal filters give two sets of filters j = 0,2 and j = 1,3,
each one with two equivalent filters.

Specifically, the rotation filters evaluate

m0,1(0) = m2,1(0) =±2(s+ c/2) =±2M, (3.8)

thus extracting Humphrey’s spherical equivalent (M). The even reversals evaluate

m0,−1(0) = m2,−1(0) =±(c/2)cos(2α) =±C+, (3.9)
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Fig. 3.13 Profile contour for (s,c,α) = (3,−2,π/3), in black, and extracted orthogonal astigma-
tism C+ component contour, in red color, using a dihedral D4 reversal (even) filter

thus extracting the orthogonal astigmatism component C+, whereas the odd rever-
sals extract

m1,−1(0) = m3,−1(0) =±(c/2)sin(2α) =±C× (3.10)

the oblique astigmatism component C×. Clearly, the ratio of these two components
determines the orientation α . Therefore, all features of the contour are recovered by
the dihedral (D4) filters.

Figure 3.15 shows, similarly, the corresponding extracted component features for
a (s,c,α) = (0.5,3,π/3) power profile.

A Direct Evaluation of the Profile Features

As shown earlier, the power matrix decomposes as a dihedral linearization

F = M

[
1 0
0 1

]
+C+

[
1 0
0 −1

]
+C×

[
0 1
1 0

]
= Mβ0,0 +C+β0,−1 +C×β1,−1,
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Fig. 3.14 Profile contour for (s,c,α) = (3,−2,π/3), in black, and extracted oblique astigmatism
C× component contour, in red color, using a dihedral D4 reversal (odd) filter

so that the convolution of p(x) = x′Rx with bτ(x) = x′βτ x depends only on
the convolutions bτ ∗ bσ , for τ,σ ∈ Dn. Direct evaluation up to a constant of
proportionality then shows that in D4, we have for all j,k = 0,1,2,3,

[b1, j ∗ b1,k](θ ) = Cos

[
jπ
2

]
Cos

[
kπ
2

]
,

independent of θ , and

[b−1, j ∗ b−1,k](θ ) = Cos

[
( j+ k)π

2
− 2θ

]
,

whereas b1, j ∗ b−1,k = 0. These relations then directly determine the power profile
features (3.8)–(3.10).
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Fig. 3.15 Profile contour for
(s,c,α) = (0.5,3,π/3), in
black, and extracted spherical
equivalent (top), orthogonal
astigmatism (center) and
oblique astigmatism (bottom)
component contours, in red
color, using a dihedral D4
rotational (even), reversal
(even), and reversal (odd)
filters, respectively
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3.5 The Algebraic Structure of Dioptric Power Matrices

We recall that a ring (R,+, ·) is a set R together with two binary operations + and ·
in R such that

• (R,+) is an Abelian group;
• a · (b · c) = (a ·b) · c;
• a · (b+ c) = a ·b+ a · c, (b+ c) ·a = b ·a+ c ·a.

We often simply write ab to indicate a ·b. The identity element in (R,+) is indicated
by 0, and if there is an element 1 ∈ R �= {0} such that 1a = a1 = a for all a ∈ R then
R is said to be a ring with unit. We say that a∈ R is a unit if there is an element b∈ R
such that ab = ba = 1. The set of units in R is a group called the group of units of R.

Consider the dioptric power matrices

R(s,c,α) =

[
s+ csin2 (α) −csin(2α)/2
−csin(2α)/2 s+ ccos2 (α)

]
,

defined here for s,c,∈ R and 0 ≤ α ≤ 2π . In what follows we will construct a ring
structure for the dioptric power matrices under the usual sum and multiplication of
matrices. This requires showing that, under certain conditions, the power matrices
are closed under addition and multiplication. The remaining properties will follow
from the fact that these matrices are a subset of the ring of all real 2× 2 matrices
under addition and multiplication, that R(1,0,0) gives the multiplicative identity,
and R(0,0,0) = 0 gives the additive identity in R.

To verify the additive closure, first note that

R(s,c,α) = (s+ c/2)

[
1 0
0 1

]
− (c/2)cos(2α)

[
1 0
0 −1

]
− (c/2)sin(2α)

[
0 1
1 0

]
,

where the matrix components are elements in the matrix group of D4. It is then
easier to see that

R(s1,c1,α1)+R(s2,c2,α2) = R(s1 + s2,c1 + c2,α∗),

where

α∗ =
1
2

arctan
c1 sin(2α1)+ c2 sin(2α2)

c1 cos(2α1)+ c2 cos(2α2)
,

for c1 cos(2α1)+ c2 cos(2α2) �= 0, and otherwise α∗ = π/2. Of course, α∗+ π is
the other optically equivalent solution. Therefore, we have the Abelian structure for
(R,+), thus endowing (R,+, ·) with the structure of a ring with unit.

To illustrate, numerically,

R(5,4,π/6)+R(3,2,π/8)= R(8,6,α∗),
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where

α∗ =
1
2

arctan
4sin(π/3)+ 2sin(π/4)
4cos(π/3)+ 2cos(π/4)

=
0.96

2
= 0.48.

To conclude this section we add that the group of units of the dioptric power ring is
determined by those matrices such that detR(s,c,α) = s(s+ c) �= 0.

Problems

3.1. Show that ∑τ xτ = 0, where xτ is given by (3.2) on page 43.

3.2. Verify the multiplicative closure of the dioptric power matrix ring.

3.3. Referring to (3.1), study the probability law of

xτ = Corr (y,Hα(d)R jy), j = 0,1, . . .n− 1, d =−1,1,

under a bivariate Gaussian structure for x,y.

3.4. Following with Problem 3.3 above, study the covariance structure for the
resulting dihedral orbit under the same Gaussian structure. This is the broad set
up for inference when the unit of analysis is a given symmetry orbit, and a
sample of such orbits is then obtained experimentally. The algebraic mechanism
for introducing an (analysis of variance) error component is detailed in [2, e.g.,
Standard Decomposition].



Chapter 4
Symbolic Sequences

4.1 Introduction

In this chapter we discuss in detail a dihedral analysis of multinomial data indexed
by D4. Specifically, we consider the analysis of data indexed by the rotations and
reversals orbit

{AGCT,GCTA,CTAG,TAGC,TCGA,CGAT,GATC,ATCG}

of the DNA word AGCT under D4 that, together with the non-equivalent DNA orbits

{ACGT,CGTA,GTAC,TACG,TGCA,GCAT,CATG,ATGC},

{GACT,ACTG,CTGA,TGAC,TCAG,CAGT,AGTC,GTCA},

of, respectively ACGT and GACT, describe the full symmetric group S4 orbit of
AGCT.

The data are frequency counts along 6 adjacent equal-length regions of the
complete HIV1 genome.1 For related examples see [9–11].

The matrices shown in (4.1)

1Human immunodeficiency virus type 1, isolate BRU, complete genome (LAV-1), Accession
number K02013.1 (HIVBRUCG), http://www.ncbi.nlm.nih.gov/nucleotide/. The complete BRU
isolate is 9,229 BP-long

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 59
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013

http://www.ncbi.nlm.nih.gov/nucleotide/
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τ
1
r

r2

r3

r3h
r2h
rh
h

OD4 1 2 3 4 5 6
AGCT 11 6 5 4 6 16
GCTA 7 3 3 6 7 11
CTAG 9 3 4 11 3 5
TAGC 5 1 9 9 5 7
TCGA 2 0 0 1 0 3
CGAT 2 1 0 0 1 2
GATC 4 5 3 4 3 6
ATCG 1 0 0 0 0 3

,

OD4 1 2 3 4 5 6
ACGT 0 0 1 0 2 1
CGTA 0 0 0 0 1 0
GTAC 3 9 7 6 9 6
TACG 1 0 1 1 1 0
TGCA 10 4 6 5 8 3
GCAT 8 5 5 9 5 5
CATG 6 2 7 8 5 3
ATGC 6 1 3 6 7 3

,

OD4 1 2 3 4 5 6
GACT 7 6 6 6 0 6
ACTG 3 7 3 5 8 7
CTGA 3 5 5 2 6 6
TGAC 7 5 3 4 4 6
TCAG 14 14 6 10 6 6
CAGT 8 12 13 6 7 4
AGTC 1 2 4 4 3 2
GTCA 4 4 6 4 4 4

. (4.1)

give the frequency counts along the dihedral orbits described above, where each
column corresponds to one of 6 equal-length adjacent regions in the genome. Each
region is approximately 1,500 base pairs. A program used to generate the frequency
counts is given in Appendix A on page 75.

4.2 The Dihedral Orbit Display

Given a set of dihedral D4 frequency counts xτ , the field orbit

Xτ = βτ q+ xτβτ e j, (4.2)

where e′j = (δ1 j,δ2 j), scales each direction vector βτe j positioned at βτ q according
to the corresponding frequency count xτ , thus producing a dihedral D4 orbit scaled
by the observed dihedral (frequency count) data. Figure 4.1 shows the dihedral
display of the GACT orbit in region 4 of the HIV1 genome, corresponding to
the frequency counts shown in (4.1). It jointly displays all points in the orbit,
highlighting the rotations

r ↑ • • → 1∥∥∥
∥∥∥

r2 ←• • ↓ r3

,

shown in black color arrows, and reversals

r2h←• • ↑ rh∥∥∥
∥∥∥

r3h ↓ • • → h

,

shown in red color arrows. The frequency counts are scaled, for plotting purposes,
by 2/∑τ xτ , so that the magnitude of an arrow has an ordinal character only,
proportional to its relative frequency in the orbit.
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Fig. 4.1 Dihedral display of
the GACT orbit in region 4 of
the HIV1 genome

4.3 A Center of Mass Display

The resultant effect of the scaled orbit in the center of mass is then proportional to

C j(X) = ∑
τ

Xτ =

(
∑
τ

βτ

)
q+

(
∑
τ

xτ βτ

)
e j.

Since β is irreducible, we have ∑τ βτ = 0, whereas ∑τ xτ βτ is the Fourier transform
of x at β , so that

C j(X) =< x,β > e j.

Conversely, we have then the following useful interpretation:

Proposition 4.1. The column spaces of the dihedral two-dimensional D4 Fourier
transform of the orbit displacement data are center of mass displacements corre-
sponding to elementary displacements dx and dy.

That is,

dx �→ C1(X) =< x,β > e1 =

[
1− r2+ h− r2h
r− r3 + rh− r3h

]
≡ C1,

dy �→ C2(X) =< x,β > e2 =

[−r+ r3 + rh− r3h
1− r2− h+ r2h

]
≡ C2.
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Fig. 4.2 The AGCT and GCTA orbits for the HIV1 genome in region 2

The orbit invariance at the center of mass, from (2.3), is simply

C j(τX) =< τx,β > e j = βτ−1C j, (4.3)

and the unitary character of β guarantees that

||C j(τX)||= ||C j(X)||,

for all τ ∈ D4. Figure 4.2 shows the equivalent orbits AGCT and GCTA in region
2 of the HIV1 genome. Here the relabeling AGCT �→ GCTA is effected by the 90◦
counterclockwise rotation, or τ = r. Consequently, as illustrated, the center of mass
is rotated by 270◦ (τ−1).

A generic interpretation of components of C1 can be visualized in the dia-
grams (4.4) and (4.5), both or which, under homogeneous weights, are ± trans-
lations

−r2h→• • → 1∥∥∥
∥∥∥

−r2 →• • → h

r2h←• • ←−1∥∥∥
∥∥∥

r2→ • • ←−h

; (4.4)

along the x-axis and ± translations

r ↑ • •↑ rh∥∥∥
∥∥∥

−r3h ↑• •↑−r3

−r ↓• •↓−rh∥∥∥
∥∥∥

r3h ↓• •↓ r3

(4.5)

along the y-axis. Similarly, the components of C2, visualized in (4.6) and (4.7),
under homogeneous weights, also give± translations
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−r ↓ • • ↑ rh∥∥∥
∥∥∥

−r3h ↑• • ↓ r3

r ↑ • • ↓ −rh∥∥∥
∥∥∥

r3h ↓• • ↑ −r3

; (4.6)

along the x-axis and ± translations

r2h←• •→ 1∥∥∥
∥∥∥

−r2 →• •←−h

−r2h→• •←−1∥∥∥
∥∥∥

r2 ← • •→ h

(4.7)

along the y-axis. In terms of the symbolic sequences, the resultant of C1 is a
superposition of the modes

−cgat→• • → agct∥∥∥ ∥∥∥
−ctag →• • → atcg

cgat←• • ←−agct∥∥∥ ∥∥∥
ctag→• • ←−atcg

; (4.8)

and
gcta ↑ • •↑ gatc∥∥∥ ∥∥∥
−tcga ↑• •↑−tagc

−gcta ↓• •↓−gatc∥∥∥ ∥∥∥
tcga ↓ • •↓ tagc

, (4.9)

whereas C2 gives a superposition of

−gcta ↓• • ↑ gatc∥∥∥
∥∥∥

−tcga ↑• • ↓ tagc

gcta ↑• • ↓ −gatc∥∥∥
∥∥∥

tcga ↓• • ↑ −tagc

; (4.10)

and

cgat←• •→ agct∥∥∥
∥∥∥

−ctag →• •←−atcg

−cgat→• •←−agct∥∥∥ ∥∥∥
ctag ← • •→ atcg

. (4.11)

Figure 4.3 shows the dx and dy components of the two-dimensional dihedral D4

Fourier transform for the frequency counts along the AGCT orbit in region 2 for the
HIV1 genome.
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Fig. 4.3 The dx and dy components of the two-dimensional dihedral D4 Fourier transform for the
frequency counts along the AGCT orbit in region 2 for the HIV1 genome

4.4 Invariant Displays

From (4.3), the irreducibility of β implies that

∑
σ

ξσ C j(σX) =

(
∑
σ

ξσ βσ−1

)
C j = 0,

for the ξ = 1,α,γ+ and γ−. The corresponding invariant profiles are obtained as the
superpositions of

σXτ = βσ−1τ q+ xτβσ−1τ e j = βγq+ xσγe j

relative to ξ = 1,α,γ+ and γ−. That is,

Xξ
γ = βγq+(∑

σ
ξσ xσγ)βγe j, γ ∈ D4.

The resulting invariant orbits for the original AGCT orbit, based on the frequency
counts introduced in (4.1), are shown in (4.12)–(4.15) and corresponding Figs. 4.4–
4.7. These summaries are in analogy to the visual field summaries, mentioned earlier
in the Preface and Example 2.11 on page 32. Each rotated or reversed viewing of
vector fields composing the image either leaves the field the same or changes the
sign (direction) of the vector fields.
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Fig. 4.4 The invariant X1 profile for the AGCT orbit, along the six regions of the HIV genome
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Fig. 4.5 The invariant Xα profile for the AGCT orbit, along the six regions of the HIV genome
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Fig. 4.6 The invariant Xγ+ profile for the AGCT orbit, along the six regions of the HIV genome
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Fig. 4.7 The invariant Xγ− profile for the AGCT orbit, along the six regions of the HIV genome
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τ X1 1 2 3 4 5 6
1 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53
r 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53

r2 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53
r3 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53
h 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53

rh 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53
r2h 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53
r3h 1+ h+ r2h+ r2 + rh+ r+ r3+ r3h 41 19 24 35 25 53

(4.12)

τ Xα 1 2 3 4 5 6
1 1− h− r2h+ r2− rh+ r+ r3− r3h 23 7 18 25 17 25
r 1− h− r2h+ r2− rh+ r+ r3− r3h 23 7 18 25 17 25

r2 1− h− r2h+ r2− rh+ r+ r3− r3h 23 7 18 25 17 25
r3 1− h− r2h+ r2− rh+ r+ r3− r3h 23 7 18 25 17 25
h −1+ h+ r2h− r2 + rh− r− r3+ r3h −23 −7 −18 −25 −17 −25

rh −1+ h+ r2h− r2 + rh− r− r3+ r3h −23 −7 −18 −25 −17 −25
r2h −1+ h+ r2h− r2 + rh− r− r3+ r3h −23 −7 −18 −25 −17 −25
r3h −1+ h+ r2h− r2 + rh− r− r3+ r3h −23 −7 −18 −25 −17 −25

(4.13)

τ X γ+ 1 2 3 4 5 6
1 1+ h+ r2h+ r2− rh− r− r3− r3h 5 1 −6 −5 −5 −1
r −1− h− r2h− r2 + rh+ r+ r3+ r3h −5 −1 6 5 5 1

r2 1+ h+ r2h+ r2− rh− r− r3− r3h 5 1 −6 −5 −5 −1
r3 −1− h− r2h− r2 + rh+ r+ r3+ r3h −5 −1 6 5 5 1
h 1+ h+ r2h+ r2− rh− r− r3− r3h 5 1 −6 −5 −5 −1

rh −1− h− r2h− r2 + rh+ r+ r3+ r3h −5 −1 6 5 5 1
r2h 1+ h+ r2h+ r2− rh− r− r3− r3h 5 1 −6 −5 −5 −1
r3h −1− h− r2h− r2 + rh+ r+ r3+ r3h −5 −1 6 5 5 1

(4.14)

τ X γ− 1 2 3 4 5 6
1 1− h− r2h+ r2+ rh− r− r3+ r3h 11 9 0 5 −1 7
r −1+ h+ r2h− r2− rh+ r+ r3− r3h −11 −9 0 −5 1 −7

r2 1− h− r2h+ r2+ rh− r− r3+ r3h 11 9 0 5 −1 7
r3 −1+ h+ r2h− r2− rh+ r+ r3− r3h −11 −9 0 −5 1 −7
h −1+ h+ r2h− r2− rh+ r+ r3− r3h −11 −9 0 −5 1 −7

rh 1− h− r2h+ r2+ rh− r− r3+ r3h 11 9 0 5 −1 7
r2h −1+ h+ r2h− r2− rh+ r+ r3− r3h −11 −9 0 −5 1 −7
r3h 1− h− r2h+ r2+ rh− r− r3+ r3h 11 9 0 5 −1 7

(4.15)
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4.5 A Class of D4 Orbit Invariants

We recall that the H = −∑ j p j log p j of a finite set of n mutually exclusive
events with corresponding probabilities p1, . . . , pn is a measure of the amount of
uncertainty associated with those events [12, p. 3]. Its value is zero when any of the
events is certain, it is positive otherwise, and attains its maximum value (logn) when
the events are equally likely, that is, p1 = . . .= pn = 1/n, or the uniform distribution
case. Alternatively [13, p.7], H is the mean value of the quantities − log p j and can
be interpreted as the mean information in an observation obtained to ascertain the
mutually exclusive and exhaustive (hypotheses defined by those) events.

The orbit invariants, from Example 2.6 on page 19, are just the Fourier
transforms, written here in short notation (τ ≡ xτ):

• < x,1 >= 1+ r+ r2 + r3 + h+ rh+ r2h+ r3h;
• < x,α >= 1+ r+ r2+ r3− h− rh− r2h− r3h;
• < x,γ+ >= 1− r+ r2− r3 + h− rh+ r2h− r3h;
• < x,γ− >= 1− r+ r2− r3− h+ rh− r2h+ r3h;

• < x,β >=

[
1− r2 + h− r2h −r+ r3 + rh− r3h
r− r3 + rh− r3h 1− r2− h+ r2h

]
.

To properly summarize the frequency counts, avoiding eventual negative sums, we
evaluate the signed two-component transforms

Lα =
(
1+ r+ r2+ r3,h+ rh+ r2h+ r3h

)
,

Lγ+ =
(
1+ h+ r2+ r2h, r+ r3 + rh+ r3h

)
,

Lγ− =
(
1+ r2+ rh+ r3h, h+ r+ r3+ r2h

)
,

by summing the positive (ξ = 1) and negative-signed (ξ = −1) counts as a two-

component distribution Lξ = ( f ξ
+, f ξ
−). Similarly, the entries of < x,β > lead to the

two-component transform Lβ with entries

L11 =
(
1+ h, r2 + r2h

)
, L12 =

(
r3 + rh, r+ r3h

)
,

L21 =
(
r+ rh, r3 + r3h

)
, L22 =

(
1+ r2h, h+ r2) .

Then, defining

−L = ( f−, f+)≡L ⊥,

direct verification shows that

τLξ = ξτ−1Lξ ,
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for all τ ∈ D4 and ξ = α,γ+,γ−,β . Moreover, indicating by Ent L the entropy of
L (as a properly normalized relative frequency distribution), we have

Ent Lξ = Ent L ⊥
ξ , (4.16)

for ξ = α,γ+,γ−. When ξ = β , the interpretation of τLξ = ξτ−1Lξ is that the
column spaces of Lβ are invariant subspaces. However, because βτ is always one
of the matrices

(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(−1 0
0 1

)
,

(
0 −1
−1 0

)
,

it follows that for all τ ∈ D4

Ent τ{L1i,L2i} ∈ {Ent L1i,Ent L2i}, i = 1,2,

so that the extreme (column) entropies,

maxEnt {L1i,L2i}, minEnt {L1i,L2i}, i = 1,2, (4.17)

are dihedral D4 orbit constants, or invariants. In summary, we have:

Proposition 4.2. The (relative) frequency count summaries

Ent Lα , Ent Lγ+ , Ent Lγ− ,

and

maxEnt {L1i,L2i}, minEnt {L1i,L2i}, i = 1,2,

are dihedral D4 invariants.

4.6 Entropy Displays

Referring to the frequency counts shown in (4.1) we evaluated the invariants in
each of the six regions, based on the frequency distributions defined (in the AGCT
orbit) by

Lα = {AGCT+CTAG+GCTA+TAGC, ATCG+CGAT+GATC+TCGA},

Lγ+ = {AGCT+CTAG+GATC+TCGA, ATCG+CGAT+GCTA+TAGC},
Lγ− = {AGCT+ATCG+CGAT+CTAG, GATC+GCTA+TAGC+TCGA},

and

Lβ =

(
{AGCT+TCGA, CTAG+GATC} {CGAT+TAGC, ATCG+GCTA}
{CGAT+GCTA, ATCG+TAGC} {AGCT+GATC, CTAG+TCGA}

)
.



72 4 Symbolic Sequences

Fig. 4.8 The rotation-reversal Ent Lα relative entropy profiles for the D4 orbits of AGCT, ACTG,
and ATGC

Fig. 4.9 The Ent Lγ+ invariant relative entropy profiles for the D4 orbits of AGCT, ACTG, and
ATGC

For example, the total frequency count for rotations in the AGCT orbit in region 1 is

1+ r+ r2 + r3 = 11+7+9+5 = 31,

and

h+ rh+ r2h+ r3h = 2+2+4+1 = 9,

for reversals, so that Lα = (32,9) and Ent Lα = 0.52629. The maximum entropy for a two-
part distribution in 0.693147, so that we evaluated the relative entropy as the fraction of the max
entropy. In this case, we have 0.52629/0.693147 = 0.759276. The same evaluation, along the six
consecutive regions, gives the rotation-reversal profile

Ent Lα = {0.759276,0.899744,0.543565,0.591673,0.63431,0.832946}

for the AGCT orbit. Figure 4.8 shows the profiles for the three distinct D4 orbits, based on the
frequency counts in (4.1). The remaining profiles are shown in Figs. 4.9–4.12.
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Fig. 4.10 The Ent Lγ− invariant relative entropy profiles for the D4 orbits of AGCT, ACTG,
and ATGC

Fig. 4.11 The maxEnt {L11,L21} invariant relative entropy profiles for the D4 orbits of AGCT,
ACTG, and ATGC

Fig. 4.12 The maxEnt {L12,L22} invariant relative entropy profiles for the D4 orbits of AGCT,
ACTG, and ATGC
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Problems

4.1. The following table

O 1 2 3
AGCT 112 92 84
GCTA 54 44 32
CTAG 17 6 4
TAGC 52 34 16
ATCG 84 111 53
GATC 72 89 47
CGAT 65 137 82
TCGA 37 81 46

gives the frequency counts along a D4 dihedral orbit on three equal-length consecutive regions of
the Salmonella virus,2 spanning the complete 93,877 BP-long genome. Similarly, the following
table

O 1 2 3
AGCT 0 1 4
GCTA 0 2 1
CTAG 0 2 3
TAGC 1 1 2
ATCG 4 1 3
GATC 5 6 3
CGAT 3 1 1
TCGA 5 0 5

gives the corresponding frequency counts for the 2,761 BP-long Tobbaco virus.3

1. Study, in each one of the three regions, the entropy of the dihedral invariants (as Fourier
transforms) for the Salmonella virus.

2. Study, in each one of the three regions, the entropy of the dihedral invariants (as Fourier
transforms) for the Tobacco virus.

3. Propose a method to statistically assess the chirality hypothesis, as the interpretation of the
< x,ξα > invariant.

4. Based on the methodology proposed above, study the chirality of both genomes, in each one of
the regions.

5. Study the large-sample distribution of the entropy associated with each dihedral invariant (as
Fourier transforms).

6. Propose a Monte Carlo method to compare the chirality entropy of the two genomes, in each
region.

2Accession NC 017054.1 Salmonella enterica subsp. enterica serovar Typhimurium str., complete
sequence.
3Accession NC 004654.1 Tobacco leaf curl Japan virus, complete genome.
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Appendix A: Selected Computational Tools

The following routines are executable in (Wolfram Research, Champaign, IL) Mathematica.

D4 Orbit Generation

Auxiliary Cell Expressions

myd4 := {Cycles[{}], Cycles[{{1, 4, 3, 2}}],
Cycles[{{1, 3}, {2, 4}}], Cycles[{{1, 2, 3, 4}}],
Cycles[{{2, 4}}], Cycles[{{1, 2}, {3, 4}}],
Cycles[{{1, 3}}],
Cycles[{{1, 4}, {2, 3}}]} (*auxiliary cell*)

Main Cell Expressions

d4orbit[s1_, s2_, s3_, s4_] :=
DeleteDuplicates[
Table[StringJoin[

Permute[{SymbolName[s1], SymbolName[s2],
SymbolName[s3],

SymbolName[s4]}, myd4[[j]]]], {j, 1, 8}]]

Usage

In[]:= d4orbit[A,G,C,T]
Out[]= {AGCT,GCTA,CTAG,TAGC,ATCG,GATC,CGAT,TCGA}

In[]:= d4orbit[A,G,A,T]
Out[]= {AGAT,GATA,ATAG,TAGA}

In[]:= d4orbit[A,G,A,G]
Out[]= {AGAG,GAGA}

In[]:= d4orbit[A,A,A,A]
Out[]= {AAAA}

D4 Orbit Generation and Frequency Counts

Auxiliary Cell Expressions

length[seq_] := StringLength[seq[Sequence]][[1]]
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unicount[word_, seq_, nr_] :=
Table[Length[
StringPosition[
StringTake[
seq[Sequence][[1]],

{1 + (i - 1)*Floor[ length[seq]/nr ],
i*Floor[ length[seq]/nr ]}],
SymbolName[word]]], {i, 1, nr}]

Main Cell Expressions

matd4orbit[s1_, s2_, s3_, s4_, seq_, nr_] :=
Join[

Table[{Symbol[d4orbit[s1, s2, s3, s4][[j]]]}, {j, 1,
Length[d4orbit[s1, s2, s3, s4]]}],

Table[unicount[Symbol[
d4orbit[s1, s2, s3, s4][[j]]], seq, nr],

{j,1, Length[d4orbit[s1, s2, s3, s4]]}], 2]
// MatrixForm

Usage

The cell expression

matd4orbit[s1_, s2_, s3_, s4_, seq_, nr_]

generates the frequency counts for the D4 orbit of s1, s2, s3, s4 in nr adjacent equal-
length regions in the sequence seq, given in FASTA format.

In[] matd4orbit[A, G, C, T, hiv1, 2]

Out[]: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AGCT 22 26
GCTA 13 24
CTAG 16 19
TAGC 16 21
ATCG 1 3
GATC 12 13
CGAT 3 3
TCGA 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Chapter 5
Symmetry Preference and Perception

5.1 Introduction

The human tendency of pairing asymmetrical images in a way that gives preference
to stimuli that more closely approach perfection has been observed in more general
contexts, e.g., [14]. The flag preference data described in Chap. 1 suggest that hidden
in the first-to-second rankings is the preference for matching the two flags in a way
that one is a vertical reflection image of the other. This demonstration was repeated
again with a second group of 13 subjects, thus producing a total of 78 rankings.
In the second demonstration, the flags had the same coloring and were squares in
shape instead of rectangular. The results, summarized in (5.1), are strikingly similar
to the those introduced in (1.2), on page 2.

A B C D total
A 0 4 2 14 20
B 2 0 15 2 19
C 3 17 0 2 22
D 14 2 1 0 17

total 19 23 18 18 78

(5.1)

Subsequently, another set of data was obtained from a modified set of flags, shown
in Fig. 5.1, with the same purpose of ranking the flags in each row according to one’s
preference. Subjects were in the same age group (college students) as in the other
rankings. The distribution of the first-to-second transition counts is shown in (5.2).

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 77
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013



78 5 Symmetry Preference and Perception

Fig. 5.1 The set of flags for the modified symmetry perception data

A B C D total
A 0 37 17 26 80
B 34 0 52 23 109
C 20 35 0 37 92
D 34 15 24 0 73

total 88 87 93 86 354

, (5.2)

The objective of this chapter is describing the orbit structure of the aggregated
frequency counts, such as those in (5.1) or (5.2) together with the full set of rankings.

5.2 The D2 Orbit Structure in S4

The sets of flags shown in Fig. 1.1 on page 2 or Fig. 5.1 correspond to the 24 distinct
permutations of their four colors or patterns, respectively. As mentioned earlier,
using the colored (Yellow, Black, Green, and Red) set as a reference, the first row is
generated as the D2 orbit
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O1 = {YBGR =

Y B∥∥∥
∥∥∥

G R

, GRYB,RGBY,BYRG},

and the subsequent ones by letting

D3 = {1,r,r2,h,rh,r2h}

act on the {B,G,R} colors while fixing the yellow-colored corner:

Or = {YGRB =

Y G∥∥∥
∥∥∥

R B

, RBYG,BRGY,GYBR},

Or2 = {YRBG =

Y R∥∥∥
∥∥∥

B G

, BGYR,GBRY,RYGB},

Oh = {YBRG =

Y B∥∥∥ ∥∥∥
R G

, RGYB,GRBY,BYGR},

Orh = {YRGB =

Y R∥∥∥
∥∥∥

G B

, GBYR,BGRY,RYBG},

Or2h = {YGBR =

Y G∥∥∥ ∥∥∥
B R

, BRYG,RBGY,GYRB}.

The resulting orbits are then indexed by D3 � S3 and the elementary structure of
the full set of flags is S4/D2 � D3. The same structure is present in the set of flags
shown in Fig. 5.1.

Correspondingly, the within-orbit first-to-second preference transition counts,

T1 =

⎛
⎜⎜⎝

0 7 7 2
3 0 6 0
3 8 0 9
7 2 5 0

⎞
⎟⎟⎠ , Tr =

⎛
⎜⎜⎝

0 6 4 6
7 0 9 5
2 10 0 2
4 2 2 0

⎞
⎟⎟⎠ , Tr2 =

⎛
⎜⎜⎝

0 6 2 5
4 0 9 4
4 5 0 7
3 6 4 0

⎞
⎟⎟⎠ ,
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Th =

⎛
⎜⎜⎝

0 2 2 2
7 0 10 7
3 3 0 4

10 4 5 0

⎞
⎟⎟⎠ , Trh =

⎛
⎜⎜⎝

0 8 1 4
6 0 4 5
3 5 0 11

10 1 1 0

⎞
⎟⎟⎠ , Tr2h =

⎛
⎜⎜⎝

0 8 1 7
7 0 14 2
5 4 0 4
0 0 7 0

⎞
⎟⎟⎠

give a decomposition ⎛
⎜⎜⎝

0 37 17 26
34 0 52 23
20 35 0 37
34 15 24 0

⎞
⎟⎟⎠= ∑

τ
Tτ

of the total count (5.2) that is also indexed by D3. The first-to-second preference
counts are embedded in the distribution R of the frequency counts for the com-
plete four-flag rankings, that, accordingly, allows for a decomposition R = ∑Rτ
presented in the table shown in (5.3).

Permutation R1 Rr Rr2 Rh Rrh Rr2h R

abcd 6 4 5 1 6 5 27
abdc 1 2 1 1 2 3 10
acbd 6 2 2 1 1 0 12
acdb 1 2 0 1 0 1 5
adbc 2 4 3 1 3 3 16
adcb 0 2 2 1 1 4 10
bacd 0 5 2 2 3 6 18
badc 3 2 2 5 3 1 16
bcad 2 5 4 3 0 8 22
bcda 4 4 5 7 4 6 30
bdac 0 2 3 6 3 2 16
bdca 0 3 1 1 2 0 7
cabd 1 1 2 1 2 2 9
cadb 2 1 2 2 1 3 11
cbad 5 6 3 1 3 3 21
cbda 3 4 2 2 2 1 14
cdab 4 0 3 1 8 1 17
cdba 5 2 4 3 3 3 20
dabc 2 3 2 5 4 0 16
dacb 5 1 1 5 6 0 18
dbac 0 2 3 1 1 0 7
dbca 2 0 3 3 0 0 8
dcab 2 0 4 2 0 3 11
dcba 3 2 0 3 1 4 13

(5.3)
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Clearly, each i j entry in the first-to-second preference count matrices is obtained
as the sum of the frequency counts for the rankings i jxy + i jyx for the choices
x,y complementary to i, j in {a,b,c,d}. For example, the frequency counts for
transitions (A,D), (D,A), (B,C), and (C,B) associated with vertically transformed
first-second choices are obtained as the total for the sums of the frequencies for
the rankings adbc+ adcb, dabc+ dacb, bcad+ bcda, and cbad+ cbda respectively.
Given, say,

T1 =

⎛
⎜⎜⎝

0 7 7 2
3 0 6 0
3 8 0 9
7 2 5 0

⎞
⎟⎟⎠ ,

and R1 in (5.3), we have 2= (A,D)= adbc+ adcb= 2+ 0, 7= (D,A)= dabc+
dacb= 2+ 5, 6= (B,C)= bcad+ bcda= 2+ 4, and 8= (C,B)= cbad+cbda= 5+3.

5.3 The Dihedral D2 Summaries

The D2 dihedral analysis based on the overall transitions

⎛
⎜⎜⎝

0 37 17 26
34 0 52 23
20 35 0 37
34 15 24 0

⎞
⎟⎟⎠= ∑

τ
Tτ

is the analysis of the CD2 data, in the same notation of Chap. 1,

V = 26+ 34v+ 52h+35r,

H = 37+ 24v+ 34h+37r,

R = 17+ 24v+ 23h+20r.

(<V,ξ1 >,< H,ξ1 >,< R,ξ1 >) = (147,132,75),

as described earlier in Chap. 1, page 7, gives the posterior (marginal) densities

Lv ∼ Be(148,208), Lh ∼ Be(133,223), Lr ∼ Be(76,280),

relative to uniform prior, shown in Fig. 5.2. When compared with the Fig. 1.2, it
becomes evident that the preference to matching first and second-choice flags by
a vertical reflection image of each other was lessened by the patterned (perhaps
distracting) style of the flags in the present data. Furthermore, each orbit gives the
additional component summaries < x,ξ > relative to the remaining characters
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Fig. 5.2 Posterior densities for the probabilities of matching first and second-choice flags by a
vertical (red), horizontal (green), and double-reflection (blue) image of each other

1 h v r
ξ 1 1 1 1 1
ξ h 1 1 −1 −1
ξ v 1 −1 1 −1
ξ r 1 −1 −1 1

,

from (1.9), on page 5. Specifically, we obtain, in analogy with the dihedral analysis
presented in Chap. 4,

<V,ξ > �→

⎧⎪⎪⎨
⎪⎪⎩

Lv = (60,87)

Lh = (78,69)

Lr = (61,86)

,

that can be summarized, by Proposition 4.2 on page 71, by their minimum entropy

min{Ent Lv,Ent Lh,Ent Lr}= 0.676;

Similarly,

< H,ξ > �→

⎧⎪⎪⎨
⎪⎪⎩

Lv = (61,71)

Lh = (71,61)

Lr = (74,58)

,
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with
min{Ent Lv,Ent Lh,Ent Lr}= 0.685;

and

< R,ξ > �→

⎧⎪⎪⎨
⎪⎪⎩

Lv = (41,43)

Lh = (40,44)

Lr = (37,47)

,

with
min{Ent Lv,Ent Lh,Ent Lr}= 0.680.

In each orbit, these are invariant summaries of components of variability, so that
the interpretation is that these components do not show a substantially different
variability.

5.4 The Dihedral D3 Summaries

In this section we look at the within-orbit first-to-second preference transition counts
Tτ , τ ∈ D3 described in Sect. 5.2. From Chap. 2 on page 19, the one-dimensional
invariant summaries are the Fourier transforms

< T ,ξ1 >= ∑
τ

Tτ =

⎛
⎜⎜⎝

0 37 17 26
34 0 52 23
20 35 0 37
34 15 24 0

⎞
⎟⎟⎠ ,

and

< T ,ξα >= T1 +Tr +Tr2− (Th +Trh +Tr2h)

=

⎛
⎜⎜⎝

0 19 13 13
14 0 24 9
9 23 0 18

14 10 11 0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0 18 4 13
20 0 28 14
11 12 0 19
20 5 13 0

⎞
⎟⎟⎠ ,

where T is a point in the group ring RD3. Here, as in the previous summaries for
frequency data, we evaluate the relative entropy in the rotation-reversal distributions
in the corresponding matrix entries. The relative entropy is the entropy of the relative
frequency distribution as a fraction of the corresponding uniform distribution. The
results, summarized in (5.4), identify a potential sensitivity of (A,C) transitions to
the two types of orbits.
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⎛
⎜⎜⎝

∗ 0.999473 0.787127 1.
0.977418 ∗ 0.995727 0.965636
0.992774 0.927527 ∗ 0.999473
0.977418 0.918296 0.994985 ∗

⎞
⎟⎟⎠ . (5.4)

The two-dimensional invariant is the transform < T ,β >, for T ∈RD3, may be
expressed as

< T ,β >=∑Tτ ⊗βτ

to jointly describe the transforms evaluated at each scalar entry of T as points in
the group algebra CD3 of D3. Matrix (5.5) shows the comparison

∑
rotations

Tτ ⊗βτ− ∑
reversals

Tτ ⊗βτ

between rotations and reversals. Each off-diagonal 2× 2 matrix gives the above
comparison for the corresponding transition frequency count. See also Problem 5.2
in this chapter.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 7.00 0 3.00 −1.73 0 1.73
0 0 0 −5.00 1.73 5.00 3.46 −7.00

−3.00 −1.73 0 0 −4.00 8.66 −8.00 −3.46
3.46 −2.00 0 0 8.66 −2.00 −1.73 −1.00
1.00 3.46 2.00 −5.20 0 0 8.00 −1.73

0 −1.00 3.46 −1.00 0 0 −10.4 1.00
−1.50 −9.53 −5.50 2.60 1.00 6.93 0 0
−7.79 8.50 −4.33 1.50 3.46 3.00 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.5)

Problems

5.1. Show that Proposition 2.3 on page 17 holds across equivalent representations.

5.2. Verify that relative to

B =

(
1
√

3
1 −√3

)
,

the new matrices bτ = Bβτ B−1, although no longer canonically unitary, are conve-
niently given by

(
1 0
0 1

)
,

(
0 1
−1 −1

)
,

(−1 −1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
−1 −1

)
,

(−1 −1
0 1

)
,
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for τ = 1,r,r2,h,rh,r2h respectively. Show that

< x,b >=∑τbτ =

(
1− r2− r2h+ rh h+ r− r2− r2h
h− r+ r2− rh 1− r+ r2h− rh

)
,

or, equivalently, that

< x,b >=

(−BGR+BRG+GRB−RGB −BGR+GBR+RBG−RGB
BGR−BRG+GBR−RBG −BRG+GRB−RBG+RGB

)
,

in terms of the D3 orbit for the sequence BGR suggested by the construction
introduced in Sect. 5.2.

5.3. Interpret, in the context of symbolic sequences, the D3 orbit invariants obtained
in Problem 5.2 above.



Chapter 6
Other Applications

6.1 Normal Modes

In this chapter we outline an application of the Fourier transform in the selection
of the so-called normal modes in molecular spectroscopy, e.g., [15, p. 138], [16,
p.184]. Although the Fourier transforms appear, implicitly, in [17, p.239], their
usefulness in sorting out the distinct vibrational modes is not made explicit. The
need for a detailed analysis of the modes comes from the fact that a typical action
of a space group on the molecular framework is not transitive. Therefore, the
irreducible representations appear with extra multiplicities in the factorization of the
space group representation. By isolating the symmetry orbits, and thus retaining the
transitivity, the separation of the modes appears with less effort. The joint vibrational
scheme is then obtaining by matching the transforms according to the irreducible
representations.

We will illustrate this mechanism with a simple planar framework, so that in
each molecule we consider only the canonical (x,y) displacements. Figure 6.1
shows a five-atom framework, where atoms 1,2,3,4, and eventually 5 as well, are
interchangeable. We want to derive the normal modes effected by the action of
D2 = {1,h,v,o} on the corresponding (x j,y j) displacements.

The action of D2 on the displacements gives a representation ρ on GL20(R) that
factors as

ρ = 6ξ 1⊕ 5ξ h⊕ 5ξ v⊕ 4ξ r,

where the components

1 h v r
ξ 1 1 1 1 1
ξ h 1 1 −1 −1
ξ v 1 −1 1 −1
ξ r 1 −1 −1 1

M.A.G. Viana and V. Lakshminarayanan, Dihedral Fourier Analysis: Data-Analytic 87
Aspects and Applications, Lecture Notes in Statistics 206,
DOI 10.1007/978-1-4614-5562-2 1, © Springer Science+Business Media New York 2013
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x1x2

x3 x4

y1y2

y3 y4
x0

y0

Fig. 6.1 A five-point D2
framework

are the irreducible representations (1.9) of D2, introduced earlier on page 5. The
action of D2 = {1,h,v,r} gives 6 orbits, specifically:

O0
x = {x0,x0,−x0,−x0}, O1

x = {x1,x4,−x2,−x3}, O2
x = {x2,x3,−x1,−x4},

O0
y = {y0,−y0,y0,−y0}, O1

y = {y1,−y4,y2,−y3}, O2
y = {y3,−y2,y4,−y1}.

Next, in each orbit, we evaluate the dihedral transforms

< x,ξ 1 >= x1 + xh + xv + xr,

< x,ξ h >= x1 + xh− xv− xr,

< x,ξ v >= x1− xh + xv− xr,

< x,ξ r >= x1− xh− xv + xr,

as introduced earlier on Example 2.4 on page 19. The (component) normal modes
in the x-displacement direction are obtained from the x-displacement orbits:

O0
x O1

x O2
x

ξ 1 0 x1− x2− x3 + x4 −x1 + x2 + x3− x4

ξ h 4x0 x1 + x2 + x3 + x4 x1 + x2 + x3 + x4

ξ v 0 x1− x2 + x3− x4 −x1 + x2− x3 + x4

ξ o 0 x1 + x2− x3− x4 x1 + x2− x3− x4

,

where each component is an orbit D2-invariant reducing as the corresponding
irreducible representations ξ 1, ξ h, ξ v, or ξ r. Similarly, the component normal
modes in the direction of the y-displacements are
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Fig. 6.2 The D2 normal modes afforded by ξ 1 (top left), ξ h (top right), ξ v (bottom left), and ξ r

(bottom right)

O0
y O1

y O2
y

ξ 1 0 y1 + y2− y3− y4 −y1− y2 + y3 + y4

ξ h 0 y1− y2 + y3− y4 y1− y2 + y3− y4

ξ v 4y0 y1 + y2 + y3 + y4 y1 + y2 + y3 + y4

ξ r 0 y1− y2− y3 + y4 −y1 + y2 + y3− y4

.

Figure 6.2 illustrates the superposition of the x- and y-displacements, for each
irreducible representation.

It is easy to observe that in either displacements the modes induced by ξ v and ξ h

are of the translational type (displacing the center of mass), whereas the other two
are of the vibrational types.

6.2 Center of Mass Displacements

Consider effect of the D4 field orbit
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Fig. 6.3 D4 displacements induced by the characters ξ1 (left) and ξα (right). The center of mass
displacement is null for homogeneous masses

r ↑ •m1 •m0 → 1∥∥∥ ∥∥∥
r2 ←•m2 •m3 ↓ r3

r2h←•m1 •m0 ↑ rh∥∥∥
∥∥∥

r3h ↓ •m2 •m3 → h

.

acting on elementary objects of mass m0,m1,m2,m3 located at the vertices

{(1,1),(−1,1),(−1,−1),(1,−1)},

respectively, so that the components of

m = (m0,rm1,r
2m2,r

3m3,rhm0,r
2hm1,r

3hm2,hm3)

describe the action of the position orbit on the distinct mass elements. Assuming
that m0 + . . .+m3 = 1, the (scalar components of the) Fourier transforms < m,ξ >
are just the center of mass for the position vectors re-oriented by the correspondent
representation. Specifically, we obtain, from Example 2.6 on page 19,

< m,1 >= m0(1+ rh)+m1(r+ r2h)+m2(r
2 + r3h)+m3(r

3 + h),

< m,α >= m0(1− rh)+m1(r− r2h)+m2(r
2− r3h)+m3(r

3− h).

These are one-dimensional subspaces for the center of mass, illustrated in Fig. 6.3.
Similarly,

< m,γ+ >= m0(1− rh)+m1(−r+ r2h)+m2(r
2− r3h)+m3(−r3 + h),

< m,γ− >= m0(1+ rh)+m1(−r− r2h)+m2(r
2 + r3h)+m3(−r3− h).
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Fig. 6.4 D4 displacements induced by the characters γ+ (left) and γ− (right). The center of mass
displacement is null for homogeneous masses

Fig. 6.5 Degenerate D4 displacements induced by the components β11 (left) and β21 (right) of the
two-dimensional character ξβ . The center of mass is subject to a translational vibration modes

These displacements are shown in Fig. 6.4. The displacements associated with
column spaces of ξβ are given by

< m,β >11= m0−m1r2h−m2r2 +m3h,

< m,β >21= m0rh+m1r−m2r3h−m3r3,

shown in Fig. 6.5, and by

< m,β >12= m0rh−m1r−m2r3h+m3r3,

< m,β >22= m0 +m1r2h−m2r2−m3h,

shown in Fig. 6.6.
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Fig. 6.6 Degenerate D4 displacements induced by the components β12 and β22 of the two-
dimensional character ξβ . The center of mass is subject to a translational vibration modes

6.3 Polarization States

In this section we illustrate the dihedral analysis of polarimetric data from scanning
laser fundus imaging, based on the method described in [18].

Imaging polarimetry gives information that is largely uncorrelated with spectral
and intensity images and therefore can provide enhanced images based on mapping
the state of across the field of interest. Here the polarization information is given
in the form of the Stokes vector defined as a time-averaged intensity. In order to
do this, the simplest way is to insert a polarization analyzer in front of the imaging
optics.

A full Stokes vector is measured at every pixel in the scene. However, the
Stokes vector cannot be measured directly, and several individual measurements
are made and then combined to determine the Stokes vector. The most straight
forward technique is the measuring of four linearly independent polarized intensities
through linear and circular analyzers, as described in [18]. The elements can be then
combined to recover the Stokes vector.

Indicate by E ′ = (Ex,Ey) the complex amplitudes of the electric field, so that

I = |Ex|2 + |Ey|2, Q = |Ex|2−|Ey|2, U = 2ℜ(ExEy), V = 2ℑ(ExEy),

are the components of the Stokes vector [19, p.256], [8, Ch.9],

S′ = (I,Q,U,V ).

Quantities of particular importance [20] are the degree of polarization (p) given by

p2 =
V 2 +Q2 +U2

I2 ;
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the degree of linear polarization

Q2 +U2

I2 ;

and the degree of circular polarization

V 2

I2 .

In addition, the relations

tan(2ψ) =
U
Q
, tan2(2χ) =

V 2

Q2 +U2

define the orientation (χ) of the polarization ellipse and its ellipticity (ψ). In
spherical coordinates (Ip,2ψ ,2χ) we have

Q = Ipcos(2ψ)cos(2χ), U = Ipsin(2ψ)cos(2χ), V = Ipsin(2χ),

so that
Q2 +U2 +V 2 = p2I2,

with the equality p = 1 holding for fully polarized Stokes vectors.

Dihedral Indexing

Let also, for each τ ∈D4,

xτ =
1
4

E∗βτ−1E ∈C,

where β is the single irreducible representation of D4 in dimension of 2. Direct
evaluation then shows that

x′ =
1
4
(I, iV,−I,−iV︸ ︷︷ ︸

rotations

,Q,U,−Q,−U︸ ︷︷ ︸
reversals

),

whereas

< x,β >=
1
4
{ I(1− r2)+ iV(r− r3)+Q(t− r2h)+U(rh− r3h) },
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or

< x,β >=
1
4

(
I

[
1 0
0 1

]
+ iV

[
0 −1
1 0

]
+Q

[
1 0
0 −1

]
+U

[
0 1
1 0

])

=
1
2

[
I+Q U− iV
U + iV I−Q

]
,

thus recovering precisely the matrix form of the Stokes vector, in the sense of
[7], and interpreted here as its scattering matrix [21]. Moreover, the dihedral (D4)
analysis retains the interpretation of the degenerate states in the standard Cartesian
basis. More precisely,

• Polarization along the x,y-axes: ±Q→±
[

1 0
0 −1

]
;

• Polarization along the 45◦- and 135◦-lines: ±U →±
[

0 1
1 0

]
;

• Right or left-hand circular polarization:±iV →±
[

0 −1
1 0

]
.

We also observe that < x,ξ >= 0 for the remaining 4 irreducible representations of
D4 (in dimension of one) due to the definition

xτ =
1
4

E∗βτ−1E =
1
4

tr [EE∗βτ−1 ]

of xτ and the orthogonality of the irreducible characters. As a consequence, the
Parseval’s equality in Corollary 2.1 on page 28 is simply

||x||2 = 1
4
||x̂(β )||2 = 1

2
||S||2. (6.1)

Jones Matrices and Dihedral Analysis

The elementary Jones matrices (J) for the distinct optical elements follow directly
from the dihedral D4 Fourier transform

< x,β >=
1
2

[
I+Q U− iV
U + iV I−Q

]
≡ J(I,Q,U,V ),

as a function of the Stokes parameters. Specifically,

J(1,1,0,0) =

[
1 0
0 0

]
,
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for the linear polarization in the x direction;

J(1,−1,0,0) =

[
0 0
0 1

]
,

in the y direction;

J(1,0,1,0) =
1
2

[
1 1
1 1

]
,

in the 45◦ direction;

J(1,0,−1,0) =
1
2

[
1 −1
−1 1

]
,

in the 135◦ direction;

J(1,0,0,−1) =
1
2

[
1 i
−i 1

]
,

for the left-hand circularly polarization state, and

J(1,0,0,1) =
1
2

[
1 −i
i 1

]
,

for the right-hand circularly polarization state.

J(1,0,0,0) =
1
2

[
1 0
0 1

]
,

gives the unpolarized state, thus proving the following result.

Proposition 6.1. All classical Jones matrices are the dihedral Fourier transform
at the irreducible representation of D4 in dimension of 2, evaluated at distinct
polarization states.

Mueller Matrices

The defining relations for the Stokes vectors are, in matrix form,

S =

⎡
⎢⎢⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎤
⎥⎥⎦(E⊗E)≡ T (E⊗E), (6.2)
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Fig. 6.7 A scanning laser fundus image, from [18], with permission and its 30◦ polarized
rendering

so that if LE is the outgoing field leaving a linear device L then its corresponding
Stokes vector is

T [(LE)⊗ (LE)] = T (L⊗L)(E⊗E) = T (L⊗L)T−1T (E⊗E) = M S,

where M = T (L⊗L)T−1 is the Mueller matrix for the device L. We observe that
M /
√

2 is the Hermitian version of M .

Example 6.1. If

Pθ =

[
cos(θ )2 cos(θ )sin(θ )
cos(θ )sin(θ ) sin(θ )2

]

is the polarizer taking the projection of the electric field E in the direction making
an angle θ with the x-axis, then

Mθ =
1
2

⎡
⎢⎢⎣

1 cos(2θ ) sin(2θ ) 0
cos(2θ ) cos(2θ )2 1

2 sin(4θ ) 0
sin(2θ ) 1

2 sin(4θ ) sin(2θ )2 0
0 0 0 0

⎤
⎥⎥⎦

is its Mueller matrix. From the evaluation of MαMθ , for example, we directly see
that the analyzer’s outgoing intensity Iα is related to its incoming intensity Iθ leaving
the polarizer by

Iα =
1
2
{ICos[α−θ ]2+QCos[α−θ ]2Cos[2θ ]+UCos[α−θ ]2Sin[2θ ]}=Cos[α−θ ]2Iθ ,

which is the well-known Malus’ law.

Figure 6.7 shows a fundus image its polarized copy, obtained from the Mueller
matrix for the polarizer with α = π/6. The resulting intensity Ipol is obtained from
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the (first entry of) the resulting Stokes vector M S. In this case,

Ipol =
1
4
[2I+Q+

√
3U ].

Inserting a Reflection

The cos2 law Iα = Cos[α − θ ]2Iθ naturally defines an experiment in which the
resulting data are then indexed by rotations, or in the finite case, by Cn. On the
other hand, if M̂θ is the Mueller matrix of the polarizer preceded by a reflection,
that is, the Mueller matrix of

Pθ

[
1 0
0 −1

]
,

then, the evaluation of MαM̂θ shows that

Iα =
1
2
{ICos[α−θ ]2 +QCos[α−θ ]2Cos[2θ ]−UCos[α−θ ]2Sin[2θ ]}= Cos[α−θ ]2I−θ .

The semi-direct structure of the multiplication in Dn then leads to indexing the
outgoing intensity

Iτ,σ = Cos[τ−θ ]2Iδ (σ)θ , (σ ,τ) ∈ Dn,

with the elements of Dn, where here δ is the automorphism in C2 �→ {−1,1} that
appears in the construction of the semi-direct product, in Sect. 2.2, on page 11.

Dihedral Decompositions

The dihedral decompositions of M = T (L⊗L)T−1 can be obtained in a number of
different ways. Here we will describe one approach in detail for the case in which
L is an arbitrary matrix with entries �i j ∈ R. The underlying algebraic structure is
the product group D4×D4. Similar steps would apply for the complex case and for
Dn×Dn.

We start with the dihedral D4 (trace) decomposition

2L = (�11 + �22)

[
1 0
0 1

]
+(�21− �12)

[
0 −1
1 0

]

+(�11− �22)

[
1 0
0 −1

]
+(�12 + �21)

[
0 1
1 0

]
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of L. It then follows that M decomposes as a superposition of Mueller matrices of
the elementary dihedral devices,

1 =±
[

1 0
0 1

]
,
⊙

=±
[

0 −1
1 0

]
,
⊕

=±
[

1 0
0 −1

]
,
⊗

=±
[

0 1
1 0

]

corresponding to unpolarized, (L-R) circularly polarized, plane polarized along the
main axes, or along the main diagonals, respectively. The additional components
are generalized Mueller matrices, indicated here by M, corresponding to the tensor
products

L⊗F

of two distinct elementary devices, interpreted as linear objects in phase-space [22–
25], or the result of entangled outgoing fields

T (L⊗F)(E⊗E) = T (L⊗F)T−1T (E⊗E) =MS.

There are four realizable components:

M11 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , M�� =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥⎥⎦ ,

M⊕⊕ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ , M⊗⊗ =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦ ;

and six generalized components:

M1�+M�1 =

⎡
⎢⎢⎣

0 0 0 −i
0 0 −1 0
0 1 0 0
−i 0 0 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 0 0 i
0 0 −1 0
0 1 0 0
i 0 0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M1⊕+M⊕1 =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,
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M1⊗+M⊗1 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 0 1 0
0 0 0 i
1 0 0 0
0 −i 0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M�⊕+M⊕� =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −i
1 0 0 0
0 −i 0 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 0 −1 0
0 0 0 i
1 0 0 0
0 i 0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M�⊗+M⊗� =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 −i
0 0 −i 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0

0 0 0 i
0 0 i 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

M⊕⊗+M⊗⊕ =

⎡
⎢⎢⎣

0 0 0 −i
0 0 1 0
0 1 0 0
i 0 0 0

⎤
⎥⎥⎦+
⎡
⎢⎢⎣

0 0 0 i
0 0 1 0
0 1 0 0
−i 0 0 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎦ .

More specifically, given an arbitrary real matrix

L =

[
�11 �12

�21 �22

]
,

write
f = �11 + �22, g = �21− �12, h = �11− �22, �= �12 + �21.

Then, its Mueller matrix

M =
1
4

⎡
⎢⎢⎣

f 2 + g2 + h2 + �2 2 f h+ 2g� −2gh+ 2 f � 0
2 f h− 2g� f 2− g2 + h2− �2 −2 f g+ 2h� 0
2gh+ 2 f � 2 f g+ 2h� f 2− g2− h2 + �2 0

0 0 0 f 2 + g2− h2− �2

⎤
⎥⎥⎦

decomposes as

M =
1
4
[ f 2M11 + g2M��+ h2M⊕⊕+ �2M⊗⊗]

+
1
4
{ f g[M1�+M�1]+ f h[M1⊕+M⊕1]}
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+
1
4
{ f �[M1⊗+M⊗1]+ gh[M�⊕+M⊕�]}

+
1
4
{g�[M�⊗+M⊗�]+ h�[M⊕⊗+M⊗⊕].

In summary, then, the Mueller matrix of an arbitrary real Jones matrix is a
real-coefficient superposition of elements in a linear representation equivalent to
the irreducible representation βτ ⊗ βσ of D4 × D4, where β is the irreducible
representation of D4 in dimension of two.

The dihedral analysis is then the study of the spectrum

{< x,ξ >, ξ ∈ D̂n×Dn},

and it extends to complex Jones matrices by recalculating the Mueller matrix above.
It also extends to the product Dn×Dn′ of distinct dihedral groups.

Dihedral Actions and Orbits on the Poincare Sphere S

Defining
(τ,S) ∈Dn×S �→ T (βτ ⊗βτ)T

∗S,

we have (σ ,(τ,S)) = (στ,S) and ||(τ,S)||= ||s||, due to the unitary character of β .
Therefore that (τ,S) ∈S . The resulting orbit of a point S ∈S is given by

OS = {(τ,S), τ ∈ Dn}.

Example 6.2. A D3 orbit in S has three points

⎡
⎢⎢⎢⎣

I
Q

U
V

⎤
⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎣

I

−Q
2 +

√
3U
2

−
√

3Q
2 − U

2
V

⎤
⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎣

I

−Q
2 −

√
3U
2√

3Q
2 − U

2
V

⎤
⎥⎥⎥⎦ ,

generated by the rotations and the three points

⎡
⎢⎢⎢⎣

I
Q

−U
−V

⎤
⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎣

I

−Q
2 −

√
3U
2

−
√

3Q
2 + U

2
−V

⎤
⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎣

I

−Q
2 +

√
3U
2√

3Q
2 + U

2
−V

⎤
⎥⎥⎥⎦ ,
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Fig. 6.8 A D3 orbit in the
Poincare sphere S

generated by the reversals. Figure 6.8 shows the D3 orbit generated at

(1,1/
√

3,1/
√

3,1/
√

3) ∈S ,

with rotations and reversals shown with distinct colors. Note their pairwise orthog-
onality.

Given a dihedral orbit in S and the (first row m of) a Mueller matrix of an
experiment, then

Iτ = m · (τ,S), τ ∈ Dn

are the outgoing intensities along the dihedral orbit, amenable for the symmetry
study of interest. For example, in imaging experiments in which m = m(x,y) as a
function of the pixel location (x,y), then

Iτ(x,y) = m(x,y) · (τ,S), τ ∈ Dn.

The Intensity Indexing

The intensity indexing uτ is defined as the intensity |xτ |2 = xτ xτ of the trace
indexing. More precisely,

uτ = n2|xτ |2.
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Therefore, in the present context (n = 4), it gives

u′ = (I2,V 2, I2,V 2,Q2,U2,Q2,U2).

The Canonical Projections for the D4 Intensity Indexing

Evaluation of the canonical projections for the intensity data gives:

u′P1u =
1
2
[I2 +V 2 +Q2 +U2]2;

u′Pα u =
1
2
[I2 +V 2−Q2−U2]2;

u′Pγ+u =
1
2
[I2−V 2 +Q2−U2]2;

u′Pγ−u =
1
2
[I2−V 2−Q2 +U2]2;

whereas u′Pβ u = 0. Evidently, then,

u′u = u′P1u+ u′Pα u+ u′Pγ+u+ u′Pγ−u.

Additional statistical tests may be obtained from combining pairs of projections into
shorter canonical decompositions, such as

u′u = u′(P1 +Pα)u+ u′(Pγ+ +Pγ−)u

= (I2 +V 2)2 +(Q2 +U2)2 +(I2−V 2)2 +(Q2−U2)2;

u′u = u(P1 +Pγ+)u+ u(Pα +Pγ−)u

= (I2 +Q2)2 +(V 2 +U2)2 +(I2−Q2)2 +(V 2−U2)2;

or

u′u = u′(P1 +Pγ−)u+ u′(Pγ+ +Pα)u

= (I2 +U2)2 +(V 2 +Q2)2 +(I2−U2)2 +(Q2−V 2)2.

The two components in each of the shorter decompositions remain algebraic
orthogonal and idempotent [2].
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A Numerical Example

The estimated scattering matrix

x̂(β ) =
1
2

[
I+Q U− iV
U + iV I−Q

]

for the fundus image shown in Fig. 6.7 is

1
2

[
0.314 0.103− i0.097
0.103+ i0.097 0.138

]
,

based on the estimated mean Stokes vector

Ŝ′ = (0.226,0.088,0.103,0.097)± (0.122,0.108,0.150,0.082).

The image’s estimated SPAN is

||< x,β > ||2 = 1
2
||S||2 = 0.03807.

Generalized Intensity Decomposition

The total intensity ||S||2 can be decomposed for arbitrary dihedral symmetries by
extending the trace indexing

xτ =
1
n

E∗βτ−1E

to τ ∈ Dn. Direct evaluation shows that

||x||2 = 1
n2 ∑

τ
{I2 cos2 φτ +V 2 sin2 φτ︸ ︷︷ ︸

rotations

+ Q2 cos2 φτ +U2 sin2 φτ +QU sin(2φτ)︸ ︷︷ ︸
reversals

}

=
1

2n
||S||2,

where φτ are the dihedral angles for Dn. Consequently,

||S||2 = 2
n ∑

τ
{I2 cos2 φτ +V 2 sin2 φτ +Q2 cos2 φτ +U2 sin2 φτ +QU sin(2φτ)}.

Isotropic Vectors

The matrix
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Fig. 6.9 Distribution of ||S||21
in the fundus image shown in
Fig. 6.7

< x,β >=
1
2

[
I +Q U − iV
U + iV I−Q

]

has several interesting properties, e.g. [7, Ch.3]. In particular,

2det < x,β >= I2−Q2−U2−V 2 = ||S||1,

so that det < x,β >= 0 corresponds to isotropic vectors, or null vectors in the
associated non-Euclidean norm ||.||1. Moreover,

||S||1 = 2det < x,β >=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0, S is a real space-like vector;

< 0, S is a real time-like vector;

= 1, S is a real unit space-like vector;

=−1, S is a real unit time-like vector.

Figure 6.9 shows the distribution of ||S||21 for the stokes vectors in the fundus image
shown in Fig. 6.7.

6.4 Decompositions of Entropy

In this section we will apply the dihedral analysis to illustrate the interpretation of
the uncertainty content in the entropy of a probability distribution indexed by a finite
group. See also [26].
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Example 6.3 (D2 support). Indicate by p = ∑τ pτ τ a probability distribution
indexed by D2 and by �= ∑ log pτ τ the corresponding log probabilities.

The regular representation of K4 gives the projections

P1 = 1/4

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ , Pv = 1/4

⎡
⎢⎢⎣

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

⎤
⎥⎥⎦ ,

Ph = 1/4

⎡
⎢⎢⎣

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

⎤
⎥⎥⎦ , Pr = 1/4

⎡
⎢⎢⎣

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

⎤
⎥⎥⎦ ,

so that I =P1 +Pv+Ph+Pr is the decomposition of the corresponding identity
matrix into the sum of algebraically orthogonal projections. Correspondingly, each
invariant subspace is in dimension of one. The decomposition of the identity matrix
carries over to

−H = p · �= ∑ p′Pξ �p = H1 +Hv +Hh +Hr,

in which:

H1 =
1
4

log(p1 pv ph pr) =
1
4
< p,ξ1 >< �,ξ1 >;

Hv =
1
4
(p1 + pv− ph− pr) log

p1 pv

ph pr
=

1
4
< p,ξv >< �,ξv >;

Hh =
1
4
(p1 + ph− pv− pr) log

p1 ph

pv pr
=

1
4
< p,ξh >< �,ξh >;

and

Hr =
1
4
(p1 + pr− ph− pv) log

p1 pr

ph pv
=

1
4
< p,ξr >< �,ξr >,

where {ξ1,ξv,ξh,ξr} are the irreducible representations of D2. Verifying Corol-
lary 2.2 on page 29, we obtain

−H = p · �= ∑
ξ

1
4
< p,ξ >< �,ξ > .

We observe that:

1. If p1 = pv and pr = ph then H =− 1
2 log(pv p′v)− 1

2 (pv− p′v) log pv
p′v

, where p′v =
1− pv.



106 6 Other Applications

2. If p1 = ph and pr = pv then H =− 1
2 log(ph p′h)− 1

2 (ph− p′h) log ph
p′h

, where p′h =
1− ph.

3. If p1 = pr and pv = ph then H = − 1
2 log(pr p′r)− 1

2(pr− p′r) log pr
p′r

, where p′r =
1− pr.

We see that each one of these hypotheses (of pairwise, clustered distributions)
leads to a decomposition of the entropy into the sum of a two-component log
geometric mean and Kullback’s divergence between a clustered distribution and the
corresponding two-component uniform distribution.

Example 6.4 (D3 support). To facilitate the writing, denote by

p′ = (r1,r2,r3︸ ︷︷ ︸
rotations

, t1, t2, t3︸ ︷︷ ︸
reversals

),

a probability distribution indexed by D3, and by

�′ = (logr1, logr2, logr3, log t1, log t2, logt3)

the corresponding log probabilities. The dihedral action on the orbit gives three
canonical projections: P1 is the averaging 6×6 projection A6 with all entries equal
to 1/6;

Pα = 1/6

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

; Pβ = 1/3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0

0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It then follows that

−H = p′�= p′P1�+ p′Pα�+ p′Pβ �,

with the regular components of the entropy H given by

H1 = p′P1�=
1
6

log[r1r2r3t1t2t3];

Hα = p′Pα�=
1
6

log(
r1r2r3

t1t2t3
)(r1+r2+r3−t1−t2−t3);

Hβ = p′Pβ �=
1
3

log[(
r1

r2
)r1−r2(

r1

r3
)r1−r3(

r2

r3
)r2−r3(

t1
t2
)t1−t2(

t1
t3
)t1−t3(

t2
t3
)t2−t3 ].
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Moreover, we have, for all irreducible representations ξ = 1,α,β of D3,

Hξ = p′Pξ �=
nξ

6
< p,ξ > ·< �,ξ >,

so that, as stated in Parseval’s equality, Corollary 2.1 on page 28,

−H = p · �= ∑
ξ

nξ

6
< p,ξ > ·< �,ξ > .

We observe that

1. H1 is the log geometric mean of the components of p.
2. Hα can be expressed as r•D(r : u) + t•D(t : u), where r• is the marginal

probability r1 + r2 + r3 of a rotation, t• is the marginal probability t1 + t2 + t3 of a
reflection, D(r : u) is Kullback’s divergence between the rotation subcomposition
[27, p.33]

r = (r1,r2,r3)/(r1 + r2 + r3)

and the uniform distribution u = (1,1,1)/3, and D(t : u) is the divergence
between the reflection subcomposition t =(t1, t2, t3)/(t1+t2+t3) and the uniform
distribution u.

3. H3 can be expressed as

1
3

D((r, t) : (1,1)/2)+
1
2
(r• − t•)(r− t),

where r and t indicate here the log geometric mean of r and t, respectively.

6.5 Elementary Algebraic Surfaces

Given a scalar function f defined in the plane, we are interested in describing the
parametric profile

fτ = f (βτ (q+ p))− f (βτq), τ ∈ D4 (6.3)

of the surface f obtained along the dihedral D4 orbit {βτq,βτ p} generated by q =
(1,1), p = (1,0), as shown in Fig. 6.10. We will summarize the parametric profile
of f by evaluating its D4 spectrum

{< f ,1 >, < f ,α >, < f ,γ+ >, < f ,γ− >, < f ,β >},
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Fig. 6.10 The D4 field orbit of q = (1,1), p = (1,0)

keeping in mind its relation

f ′Pξ f =
nξ

8
||< f ,ξ > ||2

to the D4 regular canonical projections.

Gaussian Quadratic Form

Let

f (x,y) = (x− μx,y− μy)

[
σx

2 ρ σx σy

ρ σx σy σy
2

][
x− μx

y− μy

]
.

Then, direct evaluation shows that:

< f ,1 >= 12
(
σ2

x +σ2
y

)
,

< f ,α >= 0,

< f ,γ+ >= 12
(
σ2

x −σ2
y

)
,
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< f ,γ− >= 16ρσxσy,

< f ,β >=

(−8σx (μxσx +ρμyσy) 0
−8σy (ρμxσx + μyσy) 0

)
.

We observe that, sequentially, the parameters {σx,σy} can be recovered or estimated
by experimental Fourier transforms at {α,γ+}; ρ from an experimental transform
at γ−; and {μx,μy} by the column space of the transform at β . That is, if

xτ = xqτ+pτ − xqτ , τ ∈D4

are experimental data observed along the orbit, then the sequential equating of

< x,ξ >=< f ,ξ >,

as indicated above, will lead to solving for estimates of the corresponding parame-
ters in the Gaussian surface.

Baker’s Cornea Asphericity Model

The Baker’s asphericity model [28, 29] is given by

f (x,y) =−2R(−a+ x)+ (1−Q)(−a+ x)2+(−b+ y)2,

where R is a curvature parameter, Q a shape parameter, and (a,b) a centering offset.
When B is centered at the origin, its cut along the z = 0 plane gives

y =
√

x
√

2R+(−1+Q)x

along which the curvature when Q = 0 is −1/R. Direct evaluation shows that:

< f ,1 >=−12(Q− 2),

< f ,α >= 0,

< f ,γ+ >=−12Q,

< f ,γ− >= 0,

< f ,β >=−8

(
a(1−Q)+R 0
b 0

)
.

Here we observe that all model parameters up to the x-offset can be experimentally
recovered.
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Fig. 6.11 The elliptic contours for (c,a,b) = (1,0.5,1) and (c,a,b) = (1,1,0.5)

Ellipsoids

For the ellipsoid

f (x,y) = c

(
1− x2

a2 −
y2

b2

)1/2

,

we have

< f 2,1 >=−12c2(
1
a2 +

1
b2 ), < f 2,α >= 0,

< f 2,γ+ >=−12c2(
1
a2 −

1
b2 ), < f 2,γ− >= 0,

< f 2,β >=

(
0 0
0 0

)
.

Here we observe that < f 2,γ+ > can be used to assess a = b (sphericity), whereas
large absolute values of < f 1,1 > imply c > a = b (prolate spheroid), as illustrated
in Fig. 6.11.

Problems

6.1. Carry out the studies described in Problem 4.1 on page 74, using the dihedral
D3 basis introduced in Problem 5.2 on page 84, for the dihedral orbit data for the
Salmonella
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O 1 2 3
AGT 385 407 318
GTA 369 351 351
TAG 176 121 36
ATG 477 559 610
TGA 581 656 754
GAT 446 547 579

,

and Tobacco

O 1 2 3
AGT 8 19 11
GTA 13 17 18
TAG 8 11 10
ATG 22 16 14
TGA 15 27 22
GAT 26 18 13

viruses.

6.2. The following are the frequency counts for the D3 orbit of GCT along 6
consecutive regions of the HIV1 genome. See also Sect. 4.1 on page 59.

O 1 2 3 4 5 6
GCT 21 10 8 15 20 38
CTG 17 21 15 17 28 36
TGC 18 9 10 17 23 22
GTC 7 6 8 9 9 5
TCG 5 1 2 1 0 6
CGT 2 1 1 1 3 3

1. Show that the entropy for the estimated orbit distribution p based on the
frequency counts in region 1 is Ent p = 1.57448.

2. With the same notation introduced in Sect. 6.4 on page 104, show that

• < p,1 >= 1, < �,1 >=−2.07906.
• < p,α >= 0.6, < �,α >= 4.51961.

• < p,β >=

(
0.1 0.0494872
0.0247436 0.

)
, < �,β >=

(
0.977347 0.843032
0.74403 −0.611888

)
.
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• Ent p =−∑ξ nξ < p,ξ > ·< �,ξ > /6, where the sum is over the irreducible
representations ξ = 1,α,β of D3, and nξ their corresponding dimension.

6.3. Study the D4 parametric profile for the hyperbolic paraboloid

f (x,y) = c

(
x2

a2 −
y2

b2

)
.
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Glossary

The following is a list of selected symbols used in the text and their definitions.

• C and R the complex and real fields.
• Cn: The cyclic groups of order n.
• Dn: The dihedral groups.
• τ,σ , . . .: Dihedral group elements.
• CDn: The dihedral group algebra over the complex field.
• x,y, . . .: Points in CDn.
• ρ ,η , . . . dihedral homomorphisms.
• < x,ρ >: Dihedral linearizations ∑τ xτ ρτ , where ρ is a dihedral homomorphism;
• φ : The regular module x �→ τx.
• D̂n (the Dn dual): The set of distinct simple submodules of CDn, or the set of all

non-equivalent irreducible representations of Dn.
• < x,ξ >: The dihedral Fourier transform of x ∈CDn evaluated at ξ ∈ D̂n.
• Os: A symmetry orbit containing s.
• Diag (a,b, . . .): A diagonal matrix with diagonal entries a,b, . . ..
• GLn(C): The general linear group of invertible n× n matrices with entries in C.
• A⊗B: The Kronecker product of matrices A and B.
• tr A: The trace of matrix A.
• ρ � m β ⊕ . . .⊕ n γ indicates the existence of a basis in the representation space

of ρ relative to which

ρτ = Diag (Im⊗βτ , . . . , In⊗ γτ), τ ∈Dn.
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A
Action

opposite, 14
right regular, 14

Analysis of variance, 28, 58
Asphericity, 109

B
Basis

unitary,

C
Class function, 20–21
Commutativity, 39
Correlation, 42–44
Covariance, 34–36, 39, 58
Curvature, 41–58, 109

corneal, 41

D
Data

multinomial, 6, 38, 59
multivariate normal, 34

Dihedral
angle, 12, 103
basis, 34–37, 52
character, 20, 21
field, 32, 60
group, 8, 11–13, 38, 39, 100, 115
homomorphism, 15–17, 115
indexing, 44, 93–95
linearization, 15, 20, 30, 39, 54, 115
module, 14, 16

orbit, 58, 60–61, 74, 101, 110
projection, 21–26
representation, 14
ring, 5
set, 14–20

Distribution
multinomial, 38
multivariate normal, 34

E
Entropy, 7, 71–73, 82, 83, 104–107, 111

max, 72
relative, 72, 73, 83

F
Field, vector, 64
Fourier

basis, 26–28, 34–36
transform, 4–6, 18, 30, 52, 61, 63, 64, 83,

87, 90, 94, 95, 109, 115
Fundus image, 96, 103, 104

G
Genome, 59–68, 74, 111

J
Jones matrices, 94–95, 100

K
Keratometry, 41
Kullback’s divergence, 106, 107
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L
Laplace operator, 39
Linearization, 15–17, 39

regular, 30, 31, 38

M
Malus’ law, 96
Module

dihedral, 14, 16
dihedral regular, 14
left, 14
simple, 15, 18, 19

O
Optical power, 41–48
Orbit

conjugacy, 13, 16, 20
dihedral, 60–61, 101
field, 60, 89, 108
invariant, 4, 64, 85
symmetry, 1, 87, 115

P
Parseval’s equality, 28, 94, 107
Perception, 77–85
Polarization, 92–104

circular, 93, 94
linear, 93, 95

Preference, 1, 4, 6, 7, 9, 77–85

R
Ranking, 1–3, 6, 8, 9, 77, 78, 80, 81
Reflection, 1–3, 7, 11, 12, 77, 81, 82, 97, 107
Refraction, 41–58

S
Sphericity, 109, 110
Stokes vector, 92–97, 103, 104
Submodule, 15–18, 115
Subspace, 4, 6, 71, 90, 105

stable, 15
Symbolic sequences, 59–76
Symmetry

operator, 39
orbit, 1, 58, 87, 115
rotational, 42

T
Transposition, 15

V
Vibrational modes, 87
Visual field, 32, 64

W
Wavefront, 49

aberration, 49–50
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