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Preface

Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-
reaching and substantial. His vast catalog of work spans the spectrum from funda-
mental contributions to statistical theory to innovative methodological development
to new insights in a number of subject matter areas. From the outset of his career,
rather than taking the “safe” route of pursuing incremental advances, Ray has fo-
cused on tackling the most important statistical research challenges of our time, and
in doing so it is fair to say that he has literally shaped and defined a host of areas of
statistics, including weighting and transformation in regression, measurement error
modeling, quantitative methods for nutritional epidemiology, and non- and semi-
parametric regression. It is indisputable that Ray is one of the giants of the field, and
we are honored to have had the opportunity to prepare this volume, which highlights
some of his most influential work.

The book is organized into seven main parts, each focused on a key area in which
Ray has made significant contributions. The seven subject areas reviewed in this
book were chosen by Ray himself, as were the articles representing each area. Each
part is focused around these key papers, and, for each, we asked distinguished re-
searchers in the area to provide a commentary giving insight into not only the sig-
nificance of the featured papers but also on Ray’s impact on the area more broadly.
The commentaries not only review Ray’s work, but they also are filled with his-
tory and anecdotes that reflect the fact that Ray is also a really nice guy! Indeed, as
former students and collaborators of Ray, we are pleased that the personality, gen-
erosity, friendship, and enthusiasm we know so well emerge throughout all of the
commentaries, whose authors have almost all had the pleasure of working with Ray
firsthand as we have. We are deeply grateful to these contributors, whose thoughtful,
insightful commentaries provide an inspiring roadmap to Ray’s achievements. Due
to their extraordinary efforts, this book is a fitting tribute to a scholar and educator
whose influence on not only science but also on the individual students, postdocs,
and junior colleagues he has mentored is legendary.

Our elation with the authors who contributed their insights into Ray’s work and
personality is tempered by the death of George Casella. George provides an enter-
taining overview of Ray’s work in a hodgepodge of “Other” areas. He was both a

ix



X Preface

close friend and colleague of Ray. We are grateful that George was able to contribute
his personal reflections before his passing.

Putting together this volume was made even easier by Ray himself, and we can-
not thank him enough. He provided us with extensive materials, including not only
the list of articles around which the book is focused but also a detailed narrative of
his own thoughts on his work, his biography, and other resources.

We would also like to acknowledge Jennifer Moy, a student at North Carolina
State University, whose assistance in preparing Ray’s complete bibliography was
invaluable.

At the beginning of each commentary, the articles included in this volume that
form the basis for the commentary are listed and are identified by acronyms in brack-
ets; for example, “MEM” for Measurement Error Models.” The second number in
brackets is the number of citations reported by Google Scholar at the time Ray com-
piled the list (2011).

Of course, a book devoted to the contributions of Raymond Carroll cannot possi-
bly provide a full accounting of his work. Despite approaching the start of his fifth
decade as a researcher, Ray has not slowed his pace one bit, and he continues to pro-
duce and inspire and mentor students and postdocs unabated. We fully expect to be
called upon to put together “Volume 2,” featuring still other areas Ray has already
influenced and forthcoming contributions in areas that have yet to be defined.

Raleigh, NC Marie Davidian
Boston, MA Xihong Lin
Houston, TX Jeffrey S. Morris
Raleigh, NC Leonard A. Stefanski

December 2012
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Biography of Raymond J. Carroll

Raymond J. Carroll is Distinguished Professor of Statistics, Nutrition, and Toxicol-
ogy at Texas A&M University, where he has been on the faculty since 1987. He
was the first statistician ever given a Method to Extend Research In Time (MERIT)
Award from the National Cancer Institute (NCI) of the National Institutes of Health
(NIH), receiving this honor for his seminal contributions to statistical methodology
and the impact of that methodology on public health. He is the principal investigator
of an NCI-funded Bioinformatics training program and is the founding director of
the Texas A&M Center for Statistical Bioinformatics. He is also the Director for the
Texas A&M Institute of Applied Mathematics and Computational Science (http://
iamcs.tamu.edu).

Raymond Carroll was born April 21, 1949 in Yokohama, Japan, into an Irish
Catholic military family, and he is the eldest of five siblings. His father, who spent
the Second World War in India and China, was transferred successively from Yoko-
hama to Nagoya, Japan, Washington DC, Wichita Falls, Texas, Ramstein, Germany,
Wichita Falls, Omaha, Nebraska, and Seoul, Korea, and finally retired from his last
assignment in Wichita Falls. He is married to Marcia Ory. A memorial tree with a
plaque honoring the memory of his parents Regina and Norman is situated in the
heart of the central campus a few feet southwest of “Sully,” a bronze statue of the
first president of Texas A&M University. Three other memorial trees are adjacent,
two honoring the memories of his father-in-law, mother-in-law, and brother-in-law,
and the other honoring the memory of Don Risner, a good friend and fishing guide
from North Texas. Raymond attended high schools in Germany, Texas, and Ne-
braska. He graduated from the University of Texas at Austin in 1971 with a BA in
mathematics and was especially influenced by courses in analysis and measure the-
ory given by E. W. Cheney and G. W. Stewart, respectively. He received his PhD
in Statistics from Purdue in 1974 under the direction of Shanti Gupta, with won-
derful advice from Leon Gleser. He has held positions at the University of North
Carolina at Chapel Hill and the University of Pennsylvania. He has published over
350 papers and given over 300 invited talks. The peripatetic nature of his childhood
has made him an avid traveler, a characteristic not shared by his siblings. Since his
first invitation to Australia in 1987, he has visited that country over 20 times, and he
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has visited Germany, the site of two of his sabbaticals, nearly yearly since 1980. He
is in addition a bad golfer who takes mulligans liberally and a mediocre although
enthusiastic fly fisherman.

Dr. Carroll is one of the world’s foremost experts on problems of measurement
error, data transformation, and nonconstant variation, and more generally on sta-
tistical regression modeling. His work has found application in a broad variety of
fields, including marine biology, laboratory assay methods, econometrics, epidemi-
ology, molecular biology, and many others. He has served as Editor of Biometrics,
a journal of the International Biometric Society, and as Editor of the Journal of the
American Statistical Association (JASA) Theory and Methods section. He has won
many honors in the profession, including the two major research awards. The first
is the 1988 Committee of Presidents of Statistical Societies (COPSS) Presidents’
Award, given annually by five major statistical societies to the outstanding statisti-
cian under the age of 40. Secondly, he gave the COPSS Fisher Lecture at the 2002
Joint Statistical Meetings, an award given by these statistical societies in honor of a
senior statistician “whose research has influenced the theory and practice of statis-
tics.”

Carroll’s work is characterized by a combination of deep theoretical advances,
innovative methodological development, and close contact with science. His first
seminal contribution to statistical methodology was to create methods for the analy-
sis of data with nonconstant variation; these methods being the transform-both-sides
method for nonlinear regression (together with David Ruppert) and the variance
function estimation approach (with Marie Davidian), both still in wide use. This
work developed from two projects, one on marine fisheries where he worked with a
team investigating how to model and manage the menhaden fishery in the Atlantic,
and the other project involving immunoassays at Eli Lilly and Company. In the early
1990s, with the inspiration of his close friend Mitchell Gail, he developed a deep
interest in epidemiologic case—control studies that led to his receiving the George
W. Snedecor Award from COPSS in 1997 for work in this area (together with Bruce
Lindsay and Katherine Roeder). The span of his scientific work is amazing, includ-
ing among many others (a) modeling ozone exposure in Houston (the 1997 JASA
Applications Editor’s Invited Paper); (b) understanding the effects of diet on breast
cancer; and (c) discovering interactions between genes and the environment (with
Nilanjan Chatterjee and Yi-Hau Chen).

Carroll is no doubt most well known for his work in the area of nonlinear mea-
surement error modeling, with applications to nutritional and radiation epidemiol-
ogy. The body of seminal research is of such depth, and of such importance, that at
the International Biometric Conference in 2000 in Berkeley, Scott Zeger described
him as the “grandfather” of measurement error modeling. His 1995 book and 2006
second edition with David Ruppert, Len Stefanski, and Ciprian Crainiceanu is the
standard reference in the field. This work began with his landmark 1984 paper in
Biometrika on measurement error in the binary regression framework and has con-
tinued to the present. He was the first to suggest the use of likelihood methods in
the nonlinear measurement error context. Along with Len Stefanski, he developed
the theory for and coined the name for regression calibration, the most commonly
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used method in nutritional epidemiology. His 1987 paper with Stefanski developed
the method of conditional score function. His 1990 paper with Stefanski and his
1988 paper with Peter Hall on deconvolution established the theoretical basis show-
ing how difficult it really is to understand latent variable distributions: this result
provides the theoretical underpinnings for the semi-parametric approaches in mea-
surement error models that have become increasingly popular. The deconvolution
area has become of great importance and interest, and even 20 years later the papers
have led others into the area. Carroll continues to produce important ideas, and his
work continues to influence others, in such important problems as mixed models,
segmented regression, instrumental variables, and nonparametric regression. More
recently, he has written papers on reanalysis of important radiation epidemiology
studies to account for measurement error, both in Biometrics.

Carroll’s work on measurement error modeling is also one of the landmark works
in nutritional epidemiology. He helped design the NCI-AARP Diet and Health
Study, the first study to confirm a link between fat in diet and breast cancer. He
was the senior author on the first major biomarker study (the OPEN Study) to un-
derstand how well common instruments such as the food frequency questionnaire
actually measure diet. This study was funded because of the methodological devel-
opments done together in what is now a long collaboration with Laurence Freed-
man, Victor Kipnis, and Douglas Midthune suggesting that the heart of the problem
of null studies was the instruments themselves.

Dr. Carroll has worked with many researchers from around the world, but no
doubt his closest collaboration has been with David Ruppert, now of Cornell Univer-
sity. They were next door office neighbors at the University of North Carolina from
1977 to 1987, where they started their original collaboration, and they have written
over 45 papers in addition to 4 books. Other colleagues with whom he has written 10
or more papers include Mitchell Gail, Victor Kipnis, and Douglas Midthune of the
National Cancer Institute; Peter Hall of the University of Melbourne; Len Stefanski
of North Carolina State University; Laurence Freedman of the Gertner Institute in
Israel; Naisyin Wang of the University of Michigan; Joanne Lupton, Nancy Turner
and Robb Chapkin, nutritionists at Texas A&M; Xihong Lin of Harvard; and Bani
Mallick of Texas A&M.

More recently, Dr. Carroll has developed a deep interest in basic molecular cell
biology and how it relates to nutrition and colon carcinogenesis. His research grants
include as co-investigator Dr. Joanne Lupton (the endowed Professor of Human
Nutrition at Texas A&M) and Dr. Nancy Turner. This work includes papers both in
biology journals and in JASA and Biostatistics, with many more papers under devel-
opment. Carroll is involved to the point of generating his own biological hypotheses,
suggesting new ways of measurement, and providing support so that novel mea-
surements can be undertaking to understand molecular pathways. More recently,
this close work with biologists and electrical engineers has led to the establishment
of an NCI-funded training program in Biostatistics and Bioinformatics, for which
Dr. Carroll has been the principal investigator since 2001, and the program has re-
cently been renewed until 2016. The program is unique because it aims to train
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statisticians and electrical engineers in biology and includes mentors from biologi-
cal fields.

Dr. Carroll is an inspirational teacher and a major innovator for the Department’s
teaching program. In the 1990s he introduced the use of the computer and class
projects into STAT 302, an undergraduate course aimed at life science students.
Similarly, since 2000, in STAT 651 he was the first non-distance education expert to
create a distance course, something now routine in the department. Dr. Carroll has
won a College of Science Teaching Award, and he has graduated 35 PhD students,
many of whom are leading figures in academia and industry. He has also been the
mentor to many faculty members around the USA, including many who are now
full professors, and he is legendary for his willingness to give advice and technical
assistance.
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Chapter 1
Measurement Error

By John P. Buonaccorsi and Aurore Delaigle

About the Authors. John Buonaccorsi is Professor of Mathematics and Statistics at the
University of Massachusetts, Amherst. He received his PhD from Colorado State University
in Statistics in 1982. He has been at the University of Massachusetts ever since, including
participation in the University’s Statistical Consulting Center for twenty years. His original
research interests were in optimal experimental design, estimation of ratios, and calibra-
tion, followed by a focus on measurement error over the last 25 years. He is the author
of the recently published book, Measurement Error: Models, Methods and Applications.
He also publishes extensively in ecology, with a recent emphasis on temporal data. John
has a long-standing collaboration with colleagues in the Medical School at the University
of Oslo, focusing on the use of measurement error methods in epidemiology. His relation-
ship with Ray dates back to two early conferences dedicated to measurement error—the
1989 National Institutes of Health workshop, and the 1990 AMS-IMS-SIAM conference at
Humboldt State University. John and Ray have been in regular contact ever since.

Aurore Delaigle is Professor and Queen Elizabeth II Fellow, Department of Mathemat-
ics and Statistics, University of Melbourne. She received her PhD from the Université
Catholique de Louvain (UCL) in Belgium, on the topic on nonparametric measurement
error problems. Ray heard about her thesis during a visit at UCL, and later invited Aurore
to visit Texas A&M, when she was an Assistant Professor at the University of California,
San Diego. Ray visits Melbourne every year, often resulting in a measurement error paper
jointly written by him, Aurore Delaigle, and Peter Hall.

Selected Papers on Measurement Error

[MEM-1]-[161] Carroll, R. J., Spiegelman, C., Lan, K. K., Bailey, K. T., and Abbott, R. D.
(1984). On errors-in-variables for binary regression models. Biometrika, 71, 19-25.

[MEM-2]-[163] Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in
logistic regression. Annals of Statistics, 13, 1335-1351.

[MEM-3]-[26] Carroll, R. J., Gallo, P. P. and Gleser, L. J. (1985). Comparison of least
squares and errors-in-variables regression, with special reference to randomized analysis of
covariance. Journal of the American Statistical Association, 80, 929-932.

[MEM-4]-[145] Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal
scores in generalized linear measurement error models. Biometrika, 74, 703-716.

[MEM-5]-[303] Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for decon-
volving a density. Journal of the American Statistical Association, 83, 1184—1186.

[MEM-6]-[239] Stefanski, L. A. and Carroll, R. J. (1990). Deconvoluting kernel density
estimators. Statistics, 21, 165-184.

[MEM-7]-[193] Carroll, R. J. and Stefanski, L. A. (1990). Approximate quasilikelihood
estimation in models with surrogate predictors. Journal of the American Statistical Associ-
ation, 85, 652—663.

[MEM-8]-[86] Carroll, R. J., Gail, M. H., and Lubin, J. H. (1993). Case-control studies with
errors in predictors. Journal of the American Statistical Association, 88, 185-199.

M. Davidian et al. (eds.), The Work of Raymond J. Carroll: The Impact
and Influence of a Statistician, DOI 10.1007/978-3-319-05801-6_1,
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[MEM-9]-[61] Wang, N., Lin, X., Gutierrez, R. G,. and Carroll, R. J. (1998). Generalized
linear mixed measurement error models. Journal of the American Statistical Association,
93, 249-261.

[MEM-10]-[81] Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regres-
sion with errors in covariates. Biometrika, 86, 541-554.

[MEM-11]-[85] Liang, H., Hérdle, W., and Carroll, R. J. (1999). Estimation in a semipara-
metric partially linear errors-in-variables model. Annals of Statistics, 277, 1519-1535.

[MEM-12]-[81] Berry, S. A., Carroll, R. J., and Ruppert, D. (2002). Bayesian smoothing
and regression splines for measurement error problems. Journal of the American Statistical
Association, 97, 160-169.

It is both a privilege and a challenge to summarize Ray Carroll’s contributions in
measurement error. Ray literally wrote the book on the topic with coauthors David
Ruppert, Len Stefanski, and Ciprian Crainiceanu (Carroll et al., 2006), and his fin-
gerprints are present in a huge amount of published research on measurement error
over the past 30 years. In addition to the book, Ray has authored or coauthored close
to 100 papers involving measurement error alone, addressing a vast array of prob-
lems. His work covers models from the fairly simple to the very complex with an
emphasis ranging from the relatively applied to the highly theoretical. Our detailed
discussion of Ray’s work concentrates heavily on the twelve papers appearing in this
volume, although this only scratches the surface of his contributions. We first dis-
cuss parametric models ((MEM-1]-[MEM-4] and [MEM-7]-[MEM-9]), then turn
to non-parametric and semi-parametric models including deconvolution problems
(IMEM-5],[MEM-6],[IMEM-10]-[MEM-11]).

Parametric Models

To put Ray’s early work in context, it is worth setting the stage a bit. Prior to
the early 1980s, measurement error (or “errors-in-variables” as it was known prior
to the 1980s) had attracted a fair amount of attention in both the statistical and
econometrics literature. The focus until then was heavily on linear problems un-
der what is now referred to as classical measurement error (independent additive
error with mean zero and constant variance). Further, the emphasis leaned towards
identifiability issues and correction methods based on knowledge about the mea-
surement error variances (either known or estimated via replication) or assumptions
about functions of them. Carroll et al. (1984 [MEM-1]) and Stefanski and Carroll
(1985 [MEM-2]) are among the earliest papers to expand the treatment of mea-
surement error in a number of practically useful directions, primarily in: (i) moving
away from linear models for the true values and (ii) handling more complex non-
additive measurement error models and accommodating different types of data for
estimation of the measurement error model. Of particular interest at that time was
the treatment of measurement error in predictors in nonlinear models in general, and
binary regression in particular. A good sense of these new directions can be gleaned
from the proceedings of the workshop on errors-in-variables held at the National In-
stitutes of Health (Byar and Gail, 1989) and the AMS-IMS-SIAM conference held
at Humboldt State University (Brown and Fuller, 1990). One of us [JB] had the
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pleasure of attending both of these conferences. Ray was an important presence at
both. His early work during this period, along with coauthors, blazed a number of
new trails.

While measurement error in linear models poses significant challenges (see
Fuller, 1987) the treatment of nonlinear models calls for certain fundamentally
different approaches. Carroll et al. (1984 [MEM-1]), Stefanski and Carroll (1985
[MEM-2]), and later, Carroll, Gail, and Lubin (1993 [MEM-8]) deal explicitly with
binary regression models. By the 1980s these models were in widespread use, espe-
cially in epidemiology, and there was early recognition that mismeasurement in the
predictors could lead to bias in estimated coefficients and associated probabilities.

Motivated by the analysis of data from the Framingham Heart Study, Carroll
et al. (1984 [MEM-1]) address a number of fundamental issues in dealing with er-
ror in the predictors in binary regression, attacking both the question of what the
effects of measurement error are on (so-called naive) methods that ignore it and
looking at how to correct for bias induced by measurement error. The true predic-
tors are assumed normally distributed as are the measurement errors, which also
are assumed to be additive with constant covariance matrix. The paper [MEM-1]
makes use of an “induced” model, i.e., a model for ¥ given the observed, rather
than the true, predictors. With a logistic model, it is impossible to write down the
exact induced model in a form that is useful. An important insight in [MEM-1] is
that if the original model is probit (which often provides a good approximation to
the logistic), then the induced model is also a probit model with explicit expressions
for the parameters in the induced model in terms of the coefficients in the original
model, the covariance matrix of the measurement error and the mean and covariance
matrix of the true predictors. The yield from this was twofold: (i) an exact expres-
sion for the limiting values (and hence asymptotic bias) of the naive estimators that
ignore the measurement error and (ii) an easy way to correct the naive estimators
for bias. The bias results also show how measurement error in some predictors can
induce bias in the coefficients of other perfectly measured predictors. The corrected
estimators fall under the heading of pseudo-estimators that employ estimates of the
measurement error covariance and the structural parameters obtained from repli-
cation. Inferences were based on the bootstrap, which at the time the paper was
written, was a relatively new methodology.

The 1985 Annals of Statistics paper, Stefanski and Carroll (1985 [MEM-2]), joint
with Len Stefanski and based on Len’s PhD work as a student under Ray, also dealt
with binary regression, but assuming a logistic model for the true values. This pa-
per heads off into some fundamentally new directions, compared to Carroll et al.
(1984 [MEM-1]), for a couple of reasons: (i) the lack of a clean expression for an
induced model in the structural case posed significantly new challenges and (ii) the
desire to address the so-called functional setting where the unobserved predictors
are conditioned on and treated as fixed, an important consideration as it relaxes the
assumption of an overall random sample. This was ground-breaking work, notable
for both the high level of mathematical rigor and the novelty of the approaches taken
in addressing both the behavior of the naive estimators and new strategies for cor-
recting for measurement error. The approach here is in the context of the so-called
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small measurement error asymptotics, relying on very careful use of expansions
for both the likelihood function (under normal measurement errors) and the cor-
responding naive estimating equations. After a rigorous treatment of asymptotics
for small measurement error, leading to characterization of bias of naive estima-
tors, three correction methods are explored. These were based on: (i) subtracting
an estimate of the approximate bias of the naive estimator; (ii) using an approx-
imate maximum likelihood estimator under normal measurement errors; and (iii)
under normality, finding a sufficient “statistic” A (see the discussion of Stefanski
and Carroll (1987 [MEM-4]) below) so that Y|A follows a logistic model. This
leads to the development of unbiased (nonlinear) estimating equations; i.e., estimat-
ing equations calculated from the observed data that have expected value of zero at
the parameters of the true-data model. With the use of certain approximations, all
three of these approaches, coming from fairly different directions, lead to carrying
out a logistic regression but with the observed/error prone predictors replaced by an
updated/imputed value. These methods are predecessors of regression calibration,
which also uses imputed values, but motivated from yet another perspective. Sim-
ulations provide additional evidence that these estimators greatly improve on the
naive approaches in many situations. Finally, [MEM-2] also touches on the fact that
naive tests for parameters involving perfectly measured predictors may not always
be correct.

Following this initial work on binary regression are two landmark papers Ste-
fanski and Carroll (1987 [MEM-4]) and Carroll and Stefanski (1990 [MEM-7],
extending earlier work in major ways using methods that continue to impact both
applications and methodological research. Stefanski and Carroll (1987 [MEM-4])
extends the sufficient-statistic method in Stefanski and Carroll (1985 [MEM-2]) to
handle additive normal measurement error with a generalized linear model for the
response in terms of the error-free predictors. It modifies the naive estimating equa-
tions to get unbiased estimating equations in three different ways covering both
functional and structural models, and addressing questions of efficiency. As with
Stefanski and Carroll (1985 [MEM-2]), accommodating the functional setting is a
critical contribution. (For consistency of terminology with the rest of this chapter
we refer to the true value as X and the error-prone measure as W, even though
in the original paper U was the true value and X the error-prone measure.) There
are three types of estimators here, all making use of A; = W; + Y; 28, where £2
is the covariance matrix of the measurement errors. The quantity A; is referred to
as “parameter-dependent sufficient statistic” in that the distribution of Y;|A; does
not depend on the unobserved X;. The first part of [MEM-4] treats the functional
case with two related sets of “unbiased” score equations. The first results in what
is called a “sufficiency estimator” while the other, which garnered more attention,
is based on the conditional score approach of Bruce Lindsay, developed for related
problems. This leads to a so-called conditional estimator. The resulting two sets of
estimating equations have common components but differ in one multiplicative fac-
tor. The conditional estimating equations involve an arbitrary function of A, ¢(A4),
where ideally #(-) is chosen to obtain efficient estimators. They then turn their atten-
tion to handling the structural model with an unspecified distribution g(-), for the
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true values. In this setting they are able to characterize unbiased score functions and
lay out efficient corrected scores. The resulting estimating equations are of the same
form as those leading to the conditional estimator but with 1 (A) = E(X|A). Details
are provided for the all-important linear, logistic, and Poisson models.

Carroll and Stefanski (1990 [MEM-7]) is among the most influential measure-
ment error papers published. The scope is remarkably broad, providing a very
general framework for attacking measurement error problems. It allows for a rich
class of models for the true values, with E(Y|X) = f,(X,8) and V(Y |X) =
02v,(X,B,0), where X contains the true predictors. It also allowed for non-
additive measurement error or Berkson error. At the same time it accommodates
various types of additional data, including combinations of reliability data (involv-
ing replication) and validation data (involving mismeasured and true values), with
either type of data possibly being either internal or external to the main study data.
This work carefully derives approximations for E(Y |W) and V(Y |W), where the
conditional mean potentially depends on W, B and the measurement error parame-
ters, while the variance may depend on these and the additional variance parameters
(0% and 0). The development of these approximations depends in turn on a model,
exact or approximate, for E(X|W) and V(X |W). Using the model for E(Y|W)
and V(Y |W) three general approaches to obtaining corrected estimators are given.
The most enduring of these are based on the use of general quasi-likelihood meth-
ods for fitting the model for E (Y |W) taking into account V(Y |W), in conjunction
with the use of the estimating equations for the measurement error parameters that
arise from the reliability and/or validation data. As this method has evolved it is
often implemented in a pseudo manner, first estimating the measurement error pa-
rameters, substituting them in the model for Y | W and then estimating the remaining
parameters. A special case of this approach is what is now known as regression cali-
bration, developed at around the same time by Gleser (1990) and Rosner, Willett and
Spiegelman (1989) in special settings. Regression calibration runs the naive analysis
after substituting an estimate of £ (X |W) in place of the unobserved X. However,
the estimated covariance matrix of the corrected estimates does not simply follow
from the analysis on the imputed values. A general asymptotic theory is developed
here, applicable to regression calibration as a special case. We agree with Ray’s as-
sessment that the more general versions of the quasi-likelihood approach are under-
used. [MEM-7] also presents two additional methods, one based on approximating
the quasi-likelihood estimating equations, which generalized other earlier work by
others, and a second method based on correcting the naive estimator by subtracting
an estimator of the approximate bias.

The 1993 case—control paper by Carroll, Gail, and Lubin (1993 [MEM-8]) is
connected to Ray’s earlier work on logistic regression problems in that the model
for Y| X is still logistic. Here, however, the data arise from a case—control design
involving independent samples from populations with outcome ¥ =0or Y = 1. It
is well known that in the absence of measurement error, data from the case—control
setting can be treated as if it is prospective, at least as far as estimation of the non-
intercept coefficients are concerned. With measurement error, much more attention
needs to be given to the distinctions between the case—control and prospective set-
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tings. Among other considerations, the nature of case—control studies often leads to
differential measurement error as a result of recall bias, while many MEM meth-
ods are built on the assumption of non-differential measurement error. [MEM-§]
is the first to provide a comprehensive look at measurement error in case—control
studies, beyond those that had addressed the problem in highly parametric fash-
ion based on the normal discriminant model and normal measurement errors (e.g.,
Armstrong, Whittemore, and Howe, 1989; Buonaccorsi, 1990). As with a number
of Ray’s other papers this one is notable for its scope. In [MEM-8] the authors take
a likelihood approach based on the retrospective nature of case—control data while
incorporating the prospective logistic model for the outcome given the covariates. It
uses internal validation data in the form of subsamples from the cases and controls
in which the true (X') as well as the mismeasured (W) covariates are obtained. This
validation data allow for estimating the distribution of W given X and Y (modeled
in a parametric manner) as well as the distribution of X within each outcome status.
The latter are estimated nonparametrically using the empirical distribution function
of the X's from the validation data, computed separately for each outcome status.
In this sense the model is semi-parametric. The use of these empirical distribution
leads to the need for new theory in deriving the asymptotic behavior of the likeli-
hood estimators. They also give attention to the use of external validation data as
well as replication under additive non-differential measurement error. Finally they
address the fact that methods designed for the prospective setting (such as regression
calibration) may encounter trouble in the case—control scenario; see Guolo (2008)
for a recent discussion.

Linear Problems. Some of Ray’s earliest work was on measurement error in lin-
ear models. In addition to Carroll, Gallo, and Gleser (1985 [MEM-3]), related to
earlier work by Carroll and Gallo (1982), his other important contributions include
studying misuse of orthogonal least squares in “errors-in-variables” based on po-
tentially invalid assumptions about the measurement error variances (Carroll and
Ruppert, 1996); and investigating the somewhat under-discussed problem of model
diagnostics in the presence of measurement error (Carroll and Spiegelman, 1992).
The broader context of Carroll, Gallo, and Gleser (1985 [MEM-3] lies in the fact that
measurement error in some predictors often leads to biases in estimated coefficients
and in tests associated with other perfectly measured predictors. This is true of both
linear and nonlinear models. However there are conditions under which inferences
for certain linear combinations of coefficients of perfectly measured predictors are
robust to the measurement error, depending on the correlation structure among the
different predictors involved. One example discussed in the paper is the analysis of
covariance with individuals randomized to treatments, and measurement error in the
covariate; see Carroll (1989) for additional discussion. It is shown that the balance
in covariates arising via the randomization leads to valid inference regarding the
treatment effects. However, [MEM-3] goes quite a bit further. It asks the question
of when the so-called naive estimator is better than an errors-in-variables maximum
likelihood estimator obtained under the assumption that the measurement error is
known up to a proportionality constant. This question is addressed via a comparison
of the asymptotic properties of the two estimators. Further, and more important, it
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is shown that if the condition on the design matrix that leads to robustness of the
naive estimators is incorporated into the model, then the MLE using this informa-
tion along with the assumed structure of the measurement error covariance matrix
is the same as the usual least squares estimator.

Mixed Models. Wang et al. (1998 [MEM-9]), with Wang, Lin, and Gutierrez, is
another great example of Ray’s foundational contributions studying measurement
error in new settings. In 1998 there was a relatively slim literature on measure-
ment error in mixed models, even for the linear case. The paper [MEM-9] jumped
to the general problem with a generalized linear mixed model for the true values,
with an emphasis on additive measurement error for predictors associated with the
fixed effects part of the model. More specifically with i indexing a cluster and j
an observation within a cluster, Y;; denoting the response, b; a vector of random
effects, A;; and Z;; being known vectors, and X;; a vector of predictors subject
to measurement error, the conditional generalized linear model they consider has
g(E(Yij|Xij, Zij, Aij ,bi) = Bo+ X;,BX + Zlgﬂz + A;b,-. The Z are treated as
fixed throughout, while the X's are assumed random with a distribution that may de-
pend on Z. The authors development allows for a general measurement error model
via specification of the distribution of (W|X, Z), where W is observed in lieu of X,
but they later focus on additive errors. Additional variance covariance parameters
enter the model via a parameter ¢ and Cov(b;) = D(6) and an important consid-
eration in mixed models is that the variance/covariance parameters are themselves
often of interest.

There are three general contributions in [MEM-9]. The most important one is the
analysis of the induced model, with the twofold goal of bias assessment and sug-
gesting correction methods. For standard regression problems, the induced model
frequently is in the same form as the original model, either exactly or approxi-
mately, although there are a number of exceptions to this rule. The mixed model
proved to be much more sensitive. As shown in [MEM-9] the measurement error
often perturbs the structure of the fixed and random effects portions, leading to
model misspecification in both. The key result in Wang et al. (1998 [MEM-9]) is
manifested in their very general equation (6). They follow with a detailed analysis
of a number of special cases illustrating how the general form of the fixed or random
effects part of the model may, or may not, be altered by the measurement error. An
important point here is that the nature of the biases depend on the structure of the
distribution of X |Z, which itself can have a mixed model structure. They provide a
detailed discussion of settings where the X;; are assumed i.i.d., called the homoge-
neous case, or the X;; follow a one-way random effects model with cluster specific
means, called the heterogeneous case. The second contribution of [MEM-9] char-
acterizes the biases that occur when (assuming the measurement error variance is
known) maximum likelihood estimation is used assuming the homogeneous model,
when in fact the heterogeneous model holds. Exact results are given for the lin-
ear mixed model, showing there is still bias in estimators of both the fixed effects
coefficients and the variance estimates. Biases are assessed numerically for the lo-
gistic case because of the absence of a closed-form solution. The final contribution
of [MEM-9] addresses correction methods. The authors first show that in most sit-
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uations the use of regression calibration encounters problems because the induced
model does not retain the same structure as the original model, the exception being
in estimation of the fixed effects coefficients in certain linear mixed models. As an
alternative to regression calibration, SIMEX estimators are proposed, evaluated via
simulation, and illustrated using Framingham Heart Study data.

Non- and Semiparametric Models

Ray made outstanding contributions to nonparametric curve estimation in the
presence of measurement error, in both the density and the regression contexts. Work
by Ray and his coauthors initiated a huge and growing literature on nonparametric
estimation in the presence of measurement error.

His first contributions (separately with Hall and Stefanski) study a nonparamet-
ric kernel density estimator that corrects for the contamination present in the data
(Carroll and Hall, 1988 [MEM-5] and Stefanski and Carroll, 1990 [MEM-6], which
together have attracted nearly 600 citations). In that problem, we observe data on
W (the contaminated observations), but we are interested in estimating the density
fx of X, where W = X + U. Here, U is an unobserved measurement error, but its
density fy is known. Since the density fy of the contaminated data is the convolu-
tion of fx and fy, the consistent kernel density estimator of fy is usually referred
to as the deconvolution kernel density estimator.

Although Carroll and Hall (1988 [MEM-5]) appeared in print first, Stefanski and
Carroll (1990 [MEM-6]) was written first and contains many important results that
have been used extensively by others. It derives the deconvolution kernel density
estimator, calculates its bias, variance, and asymptotic mean integrated squared er-
ror in the Fourier domain, suggests a cross-validation bandwidth, and applies the
method to data from a breast cancer study. Working in the Fourier domain makes
the elegant theory possible and provides the framework for the now well-established
distinction between the ordinary-smooth and the super-smooth errors. Another im-
portant result of [MEM-6] is that, conditionally on the unobserved X;s, the expec-
tation of the deconvolution kernel density estimator of fx is equal to the standard
kernel density estimator of fx constructed from the X;s. Together with the Fourier
transform approach, this result turned out to be the key to solving the long-open
problem of developing a local polynomial regression estimator with measurement
errors (Delaigle, Fan, and Carroll, 2009).

Carroll and Hall (1988 [MEM-5]) also contains major results. It was the first to
establish minimax convergence rates of the deconvolution kernel density estima-
tor, and opened the way to a long series of influential papers about nonparametric
density and regression estimators in the measurement error context. In particular,
[MEM-5] showed that the very slow convergence rates of the deconvolution estima-
tor in the case where the errors are normal, are not due to poor performance of the
estimator itself, but are inherent to the difficulty of the problem. In other words, they
showed that it is not possible to construct a nonparametric estimator that has faster
convergence rates than the deconvolution kernel estimator.

Later Ray attacked complex nonparametric regression problems involving mea-
surement errors. Fan and Truong (1993) were the first to extend the deconvolution
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kernel density estimator to the regression context, where the goal is to estimate a
regression curve m(X) = E(Y|X) from data on (W,Y), where W = X 4+ U with
X and U independent and the measurement error density fy is known. However,
this estimator suffered from the same slow convergence rates as in the density case,
and no data-driven bandwidth had yet been derived to calculate it in practice. The
idea of Ray and his collaborators was that instead of trying to consistently estimate
a curve that can only be estimated with much difficulty, why not target instead a
curve that is only approximately equal to m (), but which is more easily estimated?
This lead to very innovative procedures and a lot of subsequent work by others.

One such approximation method is a nonparametric version of the SIMEX ideas
of Cook and Stefanski (1994). In SIMEX, we learn how measurement error modifies
a target by artificially adding more noise to the data and monitoring the effects. By
learning about the relation between E(Y |W) and E(Y |W + error), Carroll, Maca
and Ruppert (1999 [MEM-10]) were able to extrapolate back that information to es-
timate the curve E(Y | X) from a nonparametric estimator of £ (Y |W) (their method
is actually more sophisticated than this). They showed that nonparametric SIMEX
is only consistent if the variance of U tends to zero, but in practice it can give great
results when this variance is not too large. This small variance idea was ingeniously
exploited by Carroll and Hall (2004) to remove the bias of naive kernel estimators,
and was later used by other authors in a variety of different contexts.

The structural regression splines in Carroll, Maca, and Ruppert (1999 [MEM-
10]) improve upon SIMEX. Their idea is to approximate m(:) by a spline m () with
a fixed number of knots, and estimate 772(+) (instead of m(-)) from the contaminated
data. Since E(Y|W) is well approximated by E(m(X)|W), the spline coefficients
of m(-) can be estimated by fitting E(m(X)|W) to the (W;,Y;) data. In practice
this requires estimators of moments of functions of X conditional on W. The dis-
tribution of X |W could be estimated nonparametrically, but because it results in
slow convergence rates they instead make the structural assumption that the distri-
butions of X and W are both normal. Even though this assumption is usually not
exactly satisfied in real data applications, it is often good enough to give reasonable
approximations. There were two drawbacks to this method, though: (i) choosing the
smoothing parameter was too difficult; and (ii) the near orthogonality of the condi-
tional means of the spline basis functions caused numerical instability. To overcome
these difficulties, a Bayesian version of smoothing and regression spline was sug-
gested in Berry, Carroll, and Ruppert (2002 [MEM-12]).

Another influential work was Liang, Hirdle, and Carroll (1999 [MEM-11])
wherein the authors show how to consistently estimate partially linear models when
the explanatory variables in the linear part are measured with error. In the error-free
case, Severini and Staniswalis (1994) suggest estimating the nonparametric part as-
suming the parametric part known, then estimate the parameters by least squares,
plugging in the nonparametric estimator. Because this method is not consistent in
case of measurement errors, Liang, Hérdle, and Carroll (1999 [MEM-11]) add a
penalty to the least-squares sum to overcome the attenuation effect of measurement
erTors.
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Ray made so many other major contributions in extending non- and semiparamet-
ric estimation problems with measurement errors that it is impossible to list them
all here. These include the use of instrumental variables in Carroll et al. (2004), the
development of locally efficient estimators for semiparametric models in Ma and
Carroll (2006), the combination of Berkson and classical errors in nonparametric
regression in Carroll, Delaigle and Hall (2007), the provocative parametric rates in
nonparametric prediction in measurement error models in Carroll, Delaigle and Hall
(2009), and the development of methods for quantile regression in Wei and Carroll
(2009), to cite just a few.
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SUMMARY

We consider binary regression models when some of the predictors are measured with
error. For normal measurement errors, structural maximum likelihood estimates are
considered. We show that if the measurement error is large, the usual estimate of the
probability of the event in question can be substantially in error, especially for high risk
groups. In the situation of large measurement error, we investigate a conditional
maximum likelihood estimator and its properties.

Some key words: Functional model; Logistic regression; Measurement error; Probit regression; Structural
model.

1. INTRODUCTION

The Framingham Heart Study (Gordon & Kannel, 1968) is a prospective study of the
development of cardiovascular disease. This study has been the basis for a considerable
amount of epidemiologic research. For example, there has been considerable emphasis on
analysing the probability of developing coronary heart disease. Many of the analyses
have attempted to relate baseline risk factors to the probability of developing heart
disease; these risk factors include systolic blood pressure, serum cholesterol, etc. Often,
in the analysis, logistic or probit binary regression is employed.

It is well known that many baseline risk factors are measured with error; systolic blood
pressure is a good example (Armitage & Rose, 1966; Rosner & Polk, 1979). One of us was
asked by a number of investigators whether such measurement errors could sub-
stantially affect the binary regression estimates and, if so, what could be done to correct
for the measurement error. The present study is an outgrowth of these questions,
although there are many important practical facets of the problem yet to be
investigated.

Michalek & Tripathi (1980) show that ordinary logistic regression will not be too badly
disturbed by measurement error as long as such error is moderate; see also Ahmed &
Lachenbruch (1975). While our model is different, our methods provide alternatives to
ordinary binary regression which will help the experimenter to get a more precise
understanding of the effect of the measurement errors, especially if they are severe and
the sample size is large.

12
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The model is similar to that of Halperin, Wu & Gordon (1979). We have a sample of N
persons from a particular population, e.g. males aged 45-54. The 7th person in the sample
is assumed to have a p-vector of baseline risk factors z;, with the probability of
developing disease given z; taking the form

where @(.) is a known distribution function such as for logistic regression
Q(a) = (14+e7 %1, and for probit regression G(a) = ®(a). Here ®(.) is the standard
normal distribution function. We return to probit regression later, but it is important to
remember that probit and logistic regression often given similar results (Finney, 1964).

We partition the risk factors «; into components observed without and with error, so
that

v = (wh,z), B =(B1.B3) (12)

In (1-2), the vectors {w;} can be observed at nearly exact levels, while the g-vectors {z;}
are measured with nontrivial error and cannot be observed; rather, we observe

Z; = z;+u;. (1-3)

The {u;} are assumed independently and normally distributed with mean zero and
nonsingular covariance ;.

When the risk factors {z;} observed with error are unknown constants, we have a
functional model (Kendall & Stuart, 1979, Chapter 29). In this instance, classical
maximum likelihood theory does not apply. In fact, even in simple binary regression
models, the functional maximum likelihood estimate of B is not consistent when Q,, is
known; details are available from the authors. This is in contrast to linear regression,
where the functional maximum likelihood estimate is consistent if the ratio of the error
variances is known or if there is finite replication of the predictors. Consistent and
asymptotically normal estimates for the functional logistic regression model can be
constructed when the measurement errors in (1-3) are normally distributed; this work
will be reported elsewhere.

In §2 we study the structural model, wherein the {z;} are themselves independent with
common distribution function F, which we will suppose is that of a normal random
vector with mean u, and covariance Q,. In effect, we condition on the observed values
(w;, Z;) and replace (1'1) by pr(Y; = 1|w;, Z;), the probability of an event given the
observed outcomes; see Armstrong & Oakes (1982) for a similar idea.

In this paper we present a small Monte Carlo study, as well as the analysis of actual
data, in which we investigate the effect of measurement error on predicting the
probability of heart disease on the basis of systolic blood pressure. The major purpose of
these sections is to illustrate that for large sample sizes and realistically large
measurement errors, the usual method of ignoring measurement error can be improved.
This is not to suggest that the conditional estimator will emerge as the standard for
practical use; this point is discussed in the concluding section.

As in linear regression, there are at least two good reasons to estimate the error-free
regression. First, measurement processes may improve, making the errors-in-variables
estimates more valuable. Second, it can be meaningful to investigate the true regression
coefficient; see Wu, Ware & Feinleib (1980) for an example of linear regression where the
errors-in-variables estimates are physically sensible but the least squares estimates are
not.

13
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2. STRUCTURAL CASE: NORMAL DISTRIBUTION

The model is given by (1'1), (1-2) and (1-3), but in the structural case we eliminate the
nuisance parameters {z;} by assuming they are independent and normally distributed
with mean vector p, and covariance matrix Q,. The error vectors {u;} are also assumed to
be normal random vectors with mean zero, covariance Q,,, and independent of one
another and of {z;}. For the moment, assume p,, Q, and Q,; are known. Then, except for a
complicated constant of proportionality, the likelihood of Y;, conditioned on {Z;} and as
a function of G in (1-1) is given by

N
LG, By, B2, Qg 1, Q,) = 1;11 i (1—t)t 7T, 1
4= JG{w§ﬂ1+(ﬂ’2Aﬂz)%”+d§Aﬁz} d(v)dv, (2:2)

A=+ N7 di=071 1 +Qy' 7

and ¢(.) is the standard normal density function.

In effect, the calculation of the likelihood (2:1) depends only on evaluating (2-2). This is
no easy matter for the logistic function, although if the number of variables measured
with error is small, (2:2) can in principle be evaluated by numerical integration. For
probit regression, (2:2) can be evaluated explicitly:

t; = O{(w} By +d; AB,) (1+B; AB,) 7%}

Since logistic and probit regression often give similar estimates of event probabilities,
especially for our examples, in the rest of the paper we confine our discussion to probit
regression.

In most instances, the nuisance parameters y,, Q, and Q,, will be unknown, although
one could conceive of setting pu, =0 particularly to obtain some shrinkage. Joint
estimation of these parameters and f through the full conditional likelihood may be
computationally feasible, although this as well as existence of a sensible maximum for
the conditional likelihood remains to be explored. An alternative is suggested by the
work of Gong & Samaniego (1981), which is to find estimates of y,, Q, and Q,,, substitute
them in (2-1) and (2-2) and maximize. An obvious estimate for y, is the sample mean of
the {Z;}, while an estimate Q,,, for (Q,+Q,) is the sample covariance of {Z;}. A
common device is to estimate Q,, by replication. If, for example, each variable subject to
error is measured twice (Z;;, Z;), then an estimate {,, of Q,, is the sample covariance of
$(Z;,— Z;,). This suggests the estimate

Q. =0,,,—-Q,, (2:3)

where Q,,, is the sample covariance of Z; = $(Z;; + Z,).

Two points relating to the above need to be emphasized. First, as we have proposed it,
estimating Q,, requires replication. In linear regression, if the ratio of the error variances
is known, no such replication is necessary. It is not clear and remains to be seen whether
direct maximization of the likelihood is computationally feasible and produces consis-
tent and asymptotically normal estimates. A second point is that (2:3) is not necessarily
positive-definite, a problem which is similar to that observed for moments estimates in
variance components problems. In our applications and perhaps for most examples, N is
large relative to g, so that Q, will usually be positive-definite. This is no guarantee;
further work is needed.

14



22 RAYMOND J. CARROLL ET AL.

The covariance matrix of our estimates can be estimated by the bootstrap method
(Efron, 1979); see §4. Alternatively, one could try to generalize equations (2:5) and (2+6)
of Gong & Samaniego (1981) and take numerical derivatives. Finally, if maximum
likelihood is used, one can in principle evaluate the sample information matrix.

3. RESULTS OF A SIMULATION STUDY
We performed a small Monte Carlo study for the probit model

pr(Y;=1|2)=®(P;+p,2), Zij= 2+ w5 (j=1,2i=1,...,N).

The {z;} and {u,-,-} were generated as independent univariate normal random variables
with means zero and variances g2, g2 respectively. We chose f; = —1-40, B, = 1:34 and
302 = g2, with the two values of ¢2=00833,010. The sample sizes were
N = 300,600,1200. For each of the six combinations of (o'f, N), we generated 400
simulated data sets.

In §4, we discuss an example which turns out to be very similar to one of our
simulated cases, 62 = 0-0833 and N = 600. The other cases were chosen to be both
realistic and illustrative. We should emphasize that our experience has been with large
data sets, and we would not recommend routinely correcting for measurement error for
small sample sizes.

The results of the Monte Carlo study are reported in TableT. From the reported results
and our other simulations, we can make the following observations. First, usual probit
regression is, as expected, more biased but less variable than the conditional likelihood
estimate. Thus, in small samples where variance dominates, the usual probit regression
will be preferred, while in large samples where bias dominates, the conditional likelihood
approach will be preferred.

A second point which is not very clear from Table T but which occurs consistently
throughout our more extensive simulations is that, subject to fixed (B, B,) and 362 = a2,
as the predictor variance ¢2 increases the conditional likelihood approach to correcting
for measurement error improves. This phenomenon also occurs if we fix the variances
(62, 02) and increase the slope f,.

A third point concerns estimating f; + f8,, which determines the disease probability for
a very high risk event z; = 1. Here, the conditional errors-in-variables method is about
109, more efficient than it is for estimating f, alone.

In §4 we discuss two simple methods which improve upon the conditional likelihood
approach for errors-in-variables correction by about 109%,. Hence for the case N = 600
and ¢? = 00833, which we know to be relevant, it is possible to get about 199, increase
in efficiency by correcting for measurement error rather than using ordinary regression.

4. AN EXAMPLE

To get some idea of the possible effects of measurement error in a realistic context, we
considered some of the data from the Framingham Study (Gordon & Kannel, 1968).
Data used here were on 589 men aged 45-54. Individuals were called diseased cases if
they developed coronary heart disease within the ten year interval after examination; 56
were eventually considered to be diseased. We used as our predictor variables not the
actual systolic blood pressure but rather log {(systolic blood pressure—75)/25}, which
was originally suggested by Cornfield (1962); these transformed observations appear
reasonably normally distributed in our data set.

15



Errors-in-variables for binary regression models

Table 1. 4 Monte Carlo study for the probit regression model

Bias

Standard
deviation

10 x mean
squared error

Eff.

Bias

Standard
deviation

10 x mean
squared error

Eff.

pr(Y; = 1]z) = ®(1-34z,— 1-40)

Sample size, N = 300

o2 = 00833 62 =010
Probit EIV Probit EIV
—000 —002 000 —-002
—-019 003 —-018 004
012 013 012 013
0-38 048 035 043
035 043 031 038
015 * 017 015 * 018
1182 * 229 152 * 1-88
1-58 1-83 1-28 144
869, 849,
80% 819,
86% 899%,
Sample size, N = 1200
a2 = 00833 a2 =010
Probit  EIv Probit EIV
001 —0-01 001 —001
—020 0-01 —0-20 002
006 006 006 0-06
017 021 016 020
016 019 015 018
003 * 004 003 * 004
067 * 043 065 * 041
061 * 036 057 * 033
86% 889%,
1559, 1559,
1709, 1729,

23

Sample size, N = 600

o2 = 00833
Probit  EIv

001
—020
008
025
022 027
007 008
098 * 091
083 * 071

889,

108%,

1189

—-001
001
009
0-30

Probit

—-019

62 =010
EIV

—001
002
009
029

001

008
023
020 025
007 008
090 * 082
075 * 062
869
1099,
1219

Values of {7} normally distributed with mean zero and variance o2. Measurement error variance
62 =402, Probit, ordinary probit regression; E1v, estimates derived from conditional approach. Eff.,
mean squared error efficiency with respect to ordinary probit regression. * in mean squared error

rows, difference significant at 19, level by signed rank test.

STD

Bi+B,z2 spB =175

Mean
STD

Table 2. Framingham data: probit regression,

pr(Y;=1|z) = 0B, +p,%)

Usual Probit
probit EIV
—2:13 —240
—2:13 —241
0-22 0-31
101 134
1-02 136
024 034
—073 —054
—072 —053
014 019

Usual

SBP probit
175 Probability 023
Mean 024

STD 004

200 B,+B,2 —051
Mean —049
STD 019
200 Probability 031
Mean 032
STD 007

Probit

EIV
030
030
006

—024
—023

0-26
0-40
041
010

Y; indicates development of coronary heart disease; z; = log {(sBP—175)/25}, where
SBP is true systolic blood pressure.
Mean, bootstrap; sTD, bootstrap standard deviation; E1v, errors-in-variables.
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Letting the {z;} and {Z} of §2 be these transformed observations, we estimated
62 = 00833, 6% = 0-3162; details of this estimation procedure, which uses method of
moments and components of varignce, are available from the authors. The estimates of
the intercept and slope (B, ) for usual probit regression and the conditional likelihood
errors-in-variables method are given in Table 2. Also given are the ‘bootstrap’ (Efron,
1979) means and standards deviations of these estimates, where in this case we bootstrap
by randomly sampling with replacement 589 observations from the original data set,
estimating ¢2 and 6% and then calculating the bootstrap estimates of (8;,8,). As
expected, the usual probit regression estimates are attenuated, i.e. have larger intercept
but smaller slope than the conditional likelihood method, and have smaller standard
deviations.

Also of interest is the probability of disease and its inverse for those with very high
blood pressure. We specifically focused on those whose true systolic blood pressure is 175
or 200. The estimates from the data, along with bootstrap means and standard
deviations, are also given in Table 2. One of the basic consequences of the attenuation of
(B4, B,) is that the usual probit estimates of the probability of developing disease will be
lower than that of the errors-in-variables method, at least for individuals in the highest
risk groups. Of course, since this is only one data set, we can make no claims that our
errors-in-variables estimates are closer to the true values that are the usual probit
estimates, but we believe our answers are physically meaningful.

5. CONCLUDING REMARKS

Correcting for measurement error will be worthwhile when the measurement error
variance and sample size are such that the bias in the usual methods becomes large
relative to the increased variance due to correction. For the situations we have
investigated, this means that the sample size must be quite large. Simulations not
reported here indicate the increased value of correction at a given sample size for
increasing amounts of measurement error.

We view the conditional approach as a first step towards developing a useful method
to correct for measurement error. We harbour no illusion that further work will show
that the conditional approach is optimal. For example, the mean squared errors for the
conditional approach given in Table T can be easily decreased by approximately 109, by
one of two methods. The first method is based on a naive shrinkage idea and involves
replacing d; in (2-2) by d;,, = (1—«)d;+0Z;, where o = 25/M and M is the greater of the
number of events, or N minus the number of events. In an unpublished 1982 North
Carolina dissertation, R. Clark fixes y,, Q, and Q,,, computes the Bayes estimate of z;
given Z;, estimates (u,, Q,, Qy), and then uses ordinary logistic or probit regression on the
result. For the realistic simulations reported here, the two alternative methods behave
similarly. When o2 is increased by a factor of 3, Clark’s alternative method was 10-15%,
more efficient for N = 300 and about 49, more efficient for N > 600; whether such a
value of 62 for a given f = 1-34 occurs routinely in practice remains to be seen. It is clear
that shrinkage and Bayes ideas do improve upon the direct conditional likelihood
approach, and these ideas should be pursued further.

Throughout, we have assumed normality. We have performed simulations where the
predictors are highly skewed, e.g. chi-squared with one degree of freedom. The effect on
all the errors-in-variables techniques tend to be markedly negative. This is a warning for
practice and an area requiring further research.
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COVARIATE MEASUREMENT ERROR IN LOGISTIC
REGRESSION*
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In a logistic regression model when covariates are subject to measure-
ment error the naive estimator, obtained by regressing on the observed
covariates, is asymptotically biased. We introduce a bias-adjusted estimator
and two estimators appropriate for normally distributed measurement errors
—a functional maximum likelihood estimator and an estimator which exploits
the consequences of sufficiency. The four proposals are studied asymptotically
under conditions which are appropriate when the measurement error is small.
A small Monte Carlo study illustrates the superiority of the measurement-er-
ror estimators in certain situations.

1. Introduction and motivation. Logistic regression is the most used form
of binary regression [see Berkson (1951), Cox (1970), Efron (1975), and Pregibon
(1981)]. Independent observations (;, x;) are observed where (x;) are fixed
p-vector predictors and ( ;) are Bernoulli variates with

(1.1) Pr{y = 1x;} = F(x7B,) 2 (1 + exp(—x?ﬂo))fl, i=1,...,n.

Subject to regularity conditions, the large-sample distribution of the maximum
likelihood estimator of B, is approximately normal with mean zero and covari-
ance matrix (1/n)S, (B,), where S,(-) is defined for y € R”? as

(1.2) Su(v) = n "X FO(x]y)xx].
1

Motivation for our paper comes from the Framingham Heart Study (Gordon
and Kannel, 1968), a prospective study of the development of cardiovascular
disease. This ongoing investigation has had an important impact on the epide-
miology of heart disease. Much of the analysis is based on the logistic regression
model with y an indicator of heart disease and x a vector of baseline risk factors
such as systolic blood pressure, serum cholesterol, smoking, etc. It is well known
that many of these baseline predictors are measured with substantial error, e.g.,
systolic blood pressure. When a person’s “true” blood pressure is defined as a
long-term average, then individual readings are subject to temporal as well as
reader-machine variability. In one group of 45-54 year old Framingham males it
was estimated that one fourth of the observed variability in blood pressure
readings was due to within-subject variability. The second author was asked by
some Framingham investigators to assess the impact of such substantial measure-
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1336 STEFANSKI AND CARROLL

ment error and to suggest alternatives to usual logistic regression which account
for this error. The present study is an outgrowth of these questions.

When covariates are measured with error the usual logistic regression estima-
tor of B, is asymptotically biased, [see Clark (1982) and Michalik and Tripathi
(1980)]. As a consequence of bias there is generally a tendency to underestimate
the disease probability for high-risk cases and overestimate for low-risk cases; it
will be said that measurement error attenuates predicted probabilities. Also, bias
creates a problem with hypothesis testing; in Section 2 it is shown that the usual
asymptotic tests for individual regression components can have levels different
than expected. An example of this occurs in an unbalanced two-group analysis of
covariance where interest lies in testing for treatment effect but the covariable is
measured with error.

The severity of these problems depends, of course, on the magnitude of the
measurement error. In some situations ordinary logistic regression might perform
satisfactorily. However, when measurement error is substantial, alternative pro-
cedures are necessary. In addition, the availability of techniques which correct for
measurement error can make clear the need for better measurement, e.g., more
blood-pressure readings over a period of days.

In Section 2 our measurement-error model is defined and the asymptotic bias
in the usual logistic-regression estimator is studied. Section 3 presents some
alternative estimators; results of a Monte Carlo study are outlined in Section 4;
proofs of the asymptotic results are given in Section 5.

Until recently the study of measurement-error models has focused primarily
on linear models; see the review article by Madansky (1959) and the papers by
Fuller (1980) and Gleser (1981). Interest in nonlinear models is increasing with
recent contributions by Prentice (1982), Wolter and Fuller (1982a, 1982b), Carroll,
Spiegelman, Lan, Bailey, and Abbott (1984), Armstrong (1984), Amemiya (1982),
and Clark (1982). Of these articles Clark (1982) and Carroll et al. (1984) focus
specifically on logistic regression. The asymptotic methods employed in this
paper are similar to those used by Wolter and Fuller (1982a) and Amemiya (1982)
in their studies of nonlinear functional relationships.

2. A measurement error model for logistic regression.

2.1. The model. Our measurement-error model starts with (1.1), but rather
than observing the p-vector x; we observe

(2.1) X, =x,+ ov; wherev, = 3%,

In (2.1) =72 is the square root of a symmetric positive semidefinite matrix =
scaled so that ||Z]| =1 and (¢;) are independent and identically distributed
random vectors with zero mean and identity covariance; also ¢; is independent of
¥, i =1,..., n. The scale factor ¢ dictates the magnitude of the measurement
error, e.g., if X; is a mean of m independent replicate measurements of x; then
o « m~ /2. The asymptotic theory presented in this paper requires that ¢ — 0 as
n — oo, i.e., large sample, small measurement-error asymptotics. The asymptotics
are relevant for two situations: (i) when X; is an average of m-independent
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measurements of x,, in which case the Central Limit Theorem suggests that (¢;)
should be viewed as normal random variates, and (ii) when measurement error is
small but nonnegligible. In the latter case the moments of order greater than two
of (¢;) generally differ from those of a normal variate.

Our methods of correcting for bias require knowledge of the error covariance
matrix V £ ¢23. Since this information is seldom available all asymptotic results
are derived for the case in which V is replaced by an estimator V satisfying

(2.2) n/A(V - V)= 0,(s?).

Condition (2.2) is satisfied, for example, when V is estimated by replication. It is
convenient to write V = 622 where 62 = ||V|| and £ = V/||V||. Note that (2.2)
then implies n'/%(1 — 6%/6%) = O,(1).

2.2. The effects of measurement error. Our investigation starts with a study
of the estimator obtained by regressing y; on the observed X;. This estimator, to
be called B, maximizes

n

(2.3) L,(y)2n 'Y {ylog F(cfy) +(1 — y)log F(—cv)}

1
and satisfies

(2.4)

-~ =

(3= F(c[B))e; = 0,

when ¢; = X;, i = 1,..., n. Our interest lies in the behavior of B as max(o, n"!)
— 0. In addition to assumptions on the errors ¢;, some design conditions are
necessary to insure weak consistency of B. We shall work with the following
assumptions where || - || denotes the Euclidean norm:

(C1) G,(v) converges pointwise to a function G(y) possessing a unique maxi-
mum at fB,, where G,(-) is defined as

G(v) & n ' X (F(xT8, log F(xTy) + F(~xT8, )log F(~xTy))

(C2) L(llx)? = o(n?);

1
(C3) E(lley]]) < oo.
The condition (C1) is an assumption of convenience since for each n, G (-) is
concave with a maximum at B,. Weaker conditions could thus be employed by
studying subsequences of G,(-) [see Theorem 10.9, Rockafellar (1970)].
Consistency of # is proved in Theorem 5.1. This result is necessary to establish
the following asymptotic expansion which is crucial to our investigation. Theo-
rem 1 gives conditions such that

B =B+ n—l/zsn“l(ﬁo)zn

28) +0PS 1 (Bo) (o s + Yo -+ 0y(max(o?, /%)),
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where

N
|

n= n~1/2i(yi - F(xiTBo))xi

-
I

n
n,1 _(2")<1ZF(2)(xiTBO)xiBgE
1

~
S
|

= —n 'Y FO(x7B,)=.
)

THEOREM 1. (Asymptotic expansion of ﬁ ). Assume that B is a consistent
estimator of B, satisfying (2.4). Also assume:

(Al) There exists a positive definite matrix M, 8 > 0 and N, < oo, such that
S, (Y) = M whenever n > N, and ||y — Byl < 6;

(A2) n7'LHjlxl|® - x? < o, max, _; ,llx ]l = o(a™?);

(A3) E(e,)) =0, E(e,T) =1, E(|l&;)|2"*) < o0 for some a > 0.
Then B has the expansion given in (2.5).

Note that the first part of (A2) implies max, _,_,|lx;|| = o(n'/?). This fact is
used repeatedly in the proofs in Section 5. Assumptions (Al) and (A2) are
sufficient to prove asymptotic normality for S;'/%(8,)Z, by using the
Cramér-Wold device (Billingsley, 1979, Theorem 29.4) and appealing to Proposi-
tion 5.3.2 of Laha and Rohatgi (1979). Thus Theorem 1 indicates that with
X = n'/%2, we can expect n'/%(8 — B,) to be approximately normally distributed
with mean AS, '(By)(J,,; + J, 2)B, and covariance S, '(8,), when n is large and
o is small. When X; is a mean of m replicates, 62 « m~! and A describes the
relationship between the sample size and the rate of replication. The asymptotic
bias obviously decreases with increasing replication.

We can use expansion (2.5) to construct a corrected estimator, ﬁc, which has
smaller asymptotic bias. Before doing so we comment on the problems with j3
alluded to in the introduction.

Bias AND ATTENUATION. Consider simple logistic regression through the
origin with B8, > 0. One expects to see attenuation, i.e., a negative first-order bias
term. For most designs this is true. Somewhat surprisingly and completely at
odds with the linear regression case, S, '(B,)(J, , + o, 5)B, can be positive. One
design in which this occurs arises when most cases have very high or very low
risk, i.e., |xB,| is large for most i.

HYPOTHESIS TESTING. Consider a two-group analysis of covariance, xT =
1,(=1), d,), By = (By, B1, Bs). The covariance d; is measured with error having
variance o2. Often interest lies in testing hypotheses about the treatment effect
B,. A standard method to test B, =0 is to compute its logistic regression
estimate compared to the usual estimate of its asymptotic standard error. When
the asymptotics of Theorem 1 are relevant and n'/?6 — A > 0, this test ap-
proaches its nominal level only if the second component of S, '(8,)(J,, ; + J,, 2)B,
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approaches zero. Letting s, denote the second row of S; '(8,) this is achieved
only if

n
n~' Y s7x, F O (xfBy)oB; — 0.
1

This will not hold in the common epidemiologic situation in which the true
covariables are not balanced across the two treatments. Thus, when substantial
measurement error occurs in a nonrandomized study, there will be bias in the
asymptotic levels of the usual tests.

3. Accounting for measurement error. In this section three alternative
approaches to estimatation are studied. The first is based on expansion (2.5) and
is distribution free in the sense that only moment assumptions are made about
the measurement errors. The second two methods are based on an assumption of
normally distributed errors; their asymptotic properties are then studied under
more general conditions.

3.1. Adjusting for bias in B. Write b, = S, \(By)(J, , + J, ,)B, and b, =
8 {(BY(J,, 1 + J,2)B, where

n
gn(Y) n_le(l)( XiTY)XiXiT

(3.1) J, = —(2n)" ZF‘”( B)X.ATS,

jn,2 ‘nflem(XiT/?)S;
1
b depends only on the observed data and, under the conditions of Theorem 1
and (2.2), approximates b, in the sense that b b,=0 (1) as min(n, o > .
This result suggests that the bias-corrected estimator ,B B — 62b, should have
smaller asymptotic bias for large n and small o. We state these results as a
theorem.

THEOREM 2. Assume the conditions of Theorem 1 and (2.2). Then ﬁ’c is
consistent and

B. =B, +n 28 (B,)Z, + o,(max(o?, n"1/2)).

REMARKs. Theorem 2 follows from Theorems 5.1 and 5.2 which are proved
using the following characterization of ,B Note that B =(I- ‘2B B where
B = S B, , +d, 2)- Since X/B=XN(I-6%B,) B, it follows that B
maximizes (2.3) when ¢, =X, , defined as

(3.2) % .= X, +6*I-6°BT) 'BX,.

In this sense Bc is a type of two-stage estimator obtained by doing logistic
regression with %;  replacing X,.
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The estimator Bc is not unbiased just less biased. The Monte Carlo study of
Section 4 shows that in realistic sampling situations the reduction in bias can be
substantial.

3.2. Normal measurement error. When measurement error is present there is
an added source of variability which is not accounted for by model (1.1). We now
expand this model by assuming that (¢;) are normally distributed, an assumption
which is not unreasonable in some situations. The log-likelihood for estimating S,
and x,,..., x,, is then

{»log(F(x7B)) + (1 — y,)log( F(—x7B))

-~ M=

(3.3)
_(202)_1(Xi - xi)Tzq(Xi - xi)}'

The vectors’ E,, ¢, maximizing (3.3) satisfy
n
Z(J’i - F(EiTB[))Ei =0
1

& =X, +(y,— F(e'8))o%2,, i=1,...,n.

There are two problems with this estimator—it depends on the unknown matrix
022 and solving for B; and (¢;) is difficult. For these reasons we suggest an
approximate version of ;. Noting the form of ¢; we let

(3.4) & ;=X +(y— F(XB))s2Sp

and define ﬁ, as the estimator obtained by maximizing (2.3) with ¢, = &, ; ﬁ, is
consistent and has an asymptotic expansion given in the next theorem. The
assumption of normal errors is not necessary for Theorem 3.

THEOREM 3. Assume the conditions of Theorem 1 and (2.2). Then B, is
consistent and

(3.5) l§, =B, +n V8 Y(B,)Z, + GZSnfl(ﬂo)Jn,l,Bo + op(max(oz, n—x/z)).

REMARKS. A comparison of (2.5) and (3 5) indicates that our appr0x1mate
functional maximum likelihood estimator, B,, and the uncorrected estimator, B,
have first-order blases of the same magnitude. It can be shown (Stefanski, 1983)
that the bias term in B, is not due to our one-step modification nor to use of V in
place of V, i.e,, when V is known the full functional maximum likelihood
estimator, B,, also has the expansion given in (3.5) even in the case of simple
logistic regression. This is in contrast to linear regression where, if the ratio of
error variances is known or if there is finite replication of the predictors, the
functional maximum likelihood estimator is consistent.

Our final estimator starts with an assumption of normal errors and exploits
the consequences of sufficiency. Given ¢ and B,, a sufficient statistic for
estimating x, is ¢(B,) = X; + 0%(y, — 1)=B,. It follows that the distribution of
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¥; given ¢;(B,) does not depend on x;,. The reason for using this particular
sufficient statistic is that

(3.6) P{J’i = 1[@(&))} = F(C_'iT(Bo)Bo)
and hence the score equation
(3) > (5 - F(ET(BB))E(B) = 0

1

is unbiased for B,. The conditional probability (3.6) also suggests another ap-
proach—replace ¢; by ¢,(y) in (2.3) and maximize the resulting expression as a
function of y. However, a simple calculation indicates that the resulting score
equation is not unbiased for B, thus we will confine our attention to (3.7).

Equation (3.7) can have multiple solutions not all which produce a consistent
sequence of estimators. Since ¢,(8) also depends on the unknown matrix ¢?Z, we
propose the following modification: Let

(3.8) £ =X+ 62(%‘ - lz)gé

and define ,és, the sufficiency estimator, as the maximizer of (2.3) when ¢; is
replaced by £, ,. This estimator is consistent and has the expansion given in the
next theorem.

THEOREM 4. Assume the conditions of Theorem 1 and (2.2). Then [35 is
consistent and

(3.9) B.= B+ n7V8, (B))Z, + o,(max(a?, n"'/%)).

REMARKS 1. Theorem 4 does not require the assumption of normal measure-
ment error. Also, B can be replaced by any consistent estimator in the definition
of £; .. The effects of nonnormal measurement error and our particular choice of
%; , become apparent only when Bs is expanded through terms of order
max?(o2, n~'/2). This analysis is lengthy and is not presented here [see Stefanski
(1983)].

2. It is possible to define a sufficiency estimator for a large class of measure-
ment-error models. In particular, we have in mind the generalized linear models
with canonical link functions (McCullagh and Nelder, 1983). A complete exposi-
tion of this theory will appear elsewhere.

In the discussion following Theorem 1, it was noted that n'/%(8 — B,) is
asymptotically normal with nonzero mean provided n'/%6? — A. It follows from
Theorems 2 and 4 that both n'/*(8. — B,) and n'/%(B, — B,) are asymptotically
normal wjth zero means under the same conditions. Furthermore, it can be shown
that for 8, and B, asymptotic normality is obtained under the weaker condition
n'/26% — X [see Stefanski (1983) for details].

In the next section results from a small Monte Carlo study are presented.

4. Monte Carlo. We conducted a smallA siglula}tion experiment to determine
the relative merits of the four estimators 8, 8., B;, and B,. The model for the
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study was
(4.1) Pr{y,=1d;} = F(a + Bd;), i=1,...,n,
where F(-) is defined in (1.1).

As our estimators are derived for the functional case, one possible Monte Carlo
study would have consisted of generating for fixed (d,,..., d,) a sequence of
response vectors (y,,..., ¥,) according to (4.1), and a sequence of measurement-
error vectors. This would allow evaluation of the estimators’ performance for the
particular design (d,,..., d,,). However, several different designs would have to
be studied in order to obtain a useful overall measure of performance. We opted
instead for a study in which at each step the design (d,,..., d,,) is generated at
random and, in turn, a single response vector and measurement-error vector are
generated. After a number of such steps are completed, the overall performance
of the estimators is investigated [c.f. Olkin, Petkau, and Zidek (1981) and
Dempster, Schatzoff, and Wermuth (1977)]. We believe this approach better
indicates the estimators’ performance in a wide variety of settings.

We considered these sampling situations where x? denotes a chi-squared
random variable with one degree of freedom:

(1) (a,8) = (—1.4,14), (d;) ~ Normal(0, 03 );
(II) (lI,B)= (_1'4’1'4)7 (di)"od(X?_ 1)/‘/-2—;
where,

62=10.10, n=300,600.

For each case, we considered two sampling distributions for the measurement
errors: (a) Normal(0, 72) and (b) a contaminated normal distribution, which is
Normal(0, 72) with probability 0.90 and Normal(0,2572) with probability 0.10.
For both cases, 72 was one third the variance of the true predictors (7% = 02/3).

We believe these two sampling situations are realistic, but their representative-
ness is limited by the size of our study. The sample sizes n = 300,600 may seem
large, but our primary interest is in larger epidemiologic studies where such
sample sizes are common. For example, Clark (1982) was motivated by a study
with n = 2580, Hauck (1983) quotes a partially completed study with n > 340,
and we have analyzed Framingham data for males aged 45-54 with n = 589. In
addition, for the particular designs in our study, the unconditional probability of
response (y = 1) is only about 0.10. As in the case of Bernoulli trials, an
estimator’s variance decreases more like 1/np(1 — p) than 1/n and for this
reason np(l — p) is sometimes called the effective sample size. In our study the
effective sample sizes are only about 30 and 60 respectively. Furthermore, the
results of the study suggest that correcting for measurement error when
the effective sample size is small is unwarranted, except possibly when measure-
ment error is larger than what we have studied.

The values of the predictor variance o} and the normal measurement error
variance 72 are similar to those found in the Framingham cohort mentioned in
the previous paragraph when the predictor was log {(systolic blood pressure —
75)/3}, a standard transformation. The choice of (a, 8) comes from Framingham
data as well. All experiments were repeated 100 times.
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In each experiment, we sampled two independent measurements (D, ;, D; ,) of
each d; the observed covariate was X, = (1, D,)?, where D, = (D;, + D, ,)/2.
Thus o2, the variance of D,, was equal to (1/6)a? for the case of normal
measurement error while for the contaminated normal error distribution 6% =
(3.4/6)02. The matrix 0?Z has only one nonzero entry which was estimated by
the sample variance of (D, , — D; ,)/2.

In addition to the four estimators presented in this paper, we included in the
study a proposal due to Clark (1982). She suggests the estimator 3 ~ Oobtained by
maximizing (2.3) when c; is replaced by %, y = X, — 5288 ¥ (X, — fi) where {i
and 2, are the sample mean and covariance of the observed data. Motivation for
this estimator derives from an assumption of normal errors and normal covariates
x,. In this case E(x;|X,)= X; — 62223 X; — p) and hence %, , is a natural
estlmator of x;. Theorems 5.1 and 5.2 can be used to prove conmstency and derive
an asymptotlc expansion for this estimator. Like 8 and B,, BN has a nonzero
first-order bias although it is too lengthy to present here.

Sweeping conclusions cannot be made from such a small study. However, we
can make the following qualitative suggestions. First f is less variable but more
biased than the others. Sample sizes such as n = 600 as in the study or Clark’s
n = 2580 are such that bias dominates and hence are candidates for using
corrected estimators. An opposite conclusion holds for small sample sizes where
variance dominates. A second suggestion from Table T is that when Var(J) is
small relative to its bias [Case I(b), II(b), and when n = 600], the corrected
estimators perform quite well.

Both Bs and /§, were defined via an assumption of normal errors yet they also
performed well when the errors were contaminated normal [Cases 1(b), II(b)].
Clark’s estimator proved to be sensitive to the assumption of normal covariates;
By performed very well in our study when the predictors were normally distrib-
uted, but it did have a noticeable drop in efficiency when the predictors were
highly skewed (Case II). Finally, the corrected estimator B,, which was derived
with no distributional assumptions for either the predictors or errors, performed
well throughout the study.

In summary, the Monte Carlo results suggest that the estimators ,Bc, B,, ,B;,
and Clark’s B n are useful alternatives to B when covariates are measured with
error. The pressing practical problem now appears to be how to delineate those
situations in which ordinary logistic regression should be corrected for its bias.
Studies of inference and more detailed comparisons of alternative estimators will
be enhanced by the identification of those problems where measurement error
severely affects the usual estimation and inference.

5. Proofs of theorems. Consider the estimator 8 obtained by maximizing
(2.3) when c; is replaced with %; where

(5.1) &, =x,+ ov;, + o%g,,.

In Theorem 5.1 we prove weak consistency of 8 under conditions (C1), (C2), (C3),
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TABLE 1
Results from our Monte Carlo study of the simple logistic regression model Pr{y, = 1|d;} = F(a +
Bd.). Observed covariates are X; = (1,D;)T where D; is the mean of two independent measurements
of d;. The normal measurement errors have variance o3 / 3; the contaminated normal errors have
distribution function G(x) = 0.9®(x /1) + 0.1®(x / 57) and variance (3.4 / 3)o7. “Efficiency” refers to
mean-squared error efficiency with respect to ordinary logistic regression.

B B. B, By B,
CASE I(a). (o, B) = (—1.4,1.4), (d;) ~ N(0, 62 = 0.1), normal measurement error.

n = 300 Bias —-0.21 —-0.04 -0.05 -0.02 -0.06
Std. Dev. 0.52 0.61 0.61 0.61 0.60
Efficiency 100%* 85% 85% 84% 88%

n = 600 Bias -0.22 -0.05 —-0.05 —-0.02 —0.06
Std. Dev. 0.33 0.38 0.38 0.38 0.38
Efficiency 100%* 108% 106% 107% 108%

CASE I(b). Same as Case I(a) but measurement errors have the contaminated normal distribution.

n = 300 Bias -0.49 -0.16 -0.19 0.02 -0.20
Std. Dev. 0.34 0.48 0.48 0.54 0.46
Efficiency 100%* 143% 139% 121% 143%

n = 600 Bias -0.53 -0.20 -0.21 -0.03 -0.22
Std. Dev. 0.24 0.33 0.34 0.38 0.33
Efficiency 100%* 223% 215% 234% 216%

CASE II{a). (a, B) = (—1.4,1.4),(d;) ~ 04()(12 - 1)/\/5, o,f = 0.1, normal measurement error.

n = 300 Bias -0.28 —-0.06 -0.07 0.10 -0.08
Std. Dev. 0.47 0.58 0.57 0.66 0.56
Efficiency 100%* 90% 91% 69% 93%

n = 600 Bias —-0.27 —0.03 —0.04 0.11 -0.056
Std. Dev. 0.33 0.41 0.41 0.45 0.40
Efficiency 100%* 111% 110% 85% 112%

CASE II(b). Same as Case II(a) but measurement errors have the contaminated normal distribution.

n = 300 Bias -0.43 -0.13 -0.15 0.12 -0.17
Std. Dev. 0.33 0.44 0.45 0.53 0.43
Efficiency 100%* 141% 134% 103% 141%

n = 600 Bias —0.46 -0.15 —-0.16 0.10 -0.18
Std. Dev. 0.25 0.33 0.34 0.40 0.33
Efficiency 100%* 201% 190% 159% 194%

*By definition.

and

(P1)

Z”gin”2 = Op(n)
1

In Theorem 5.2 an asymptotic expansion for B is given. The consistency and
asymptotic expansions of B, ,B ,B,, and B follow from these general results by
noting that X;, £; ., £, ;, and &, , all have the representation given in (5.1). We
remind the reader that all the asymptotic expressions hold as max(o, n71!) = 0.
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THEOREM 5.1 (Consistency). Assume (C1), (C2), (C3), and (P1), then 8 — B,
= 0,(1).

ProoF. Define L () to be the function obtained by taking ¢; = X, in (2.3).
The identity log(F(¢)/(1 — F(¢))) = t is used to show L (y) - G(y)=R,, +
R, ,, where

R,,= n“Z(y.- - F(xiTﬂo))szY
1

n
R, ,=n""L{%(&ly - xTy) + log F(~[y) — log F(~x[y)}.
1

Under (C2), R, ; has mean zero and asymptotically negligible variance, and by
(C3) and (P1),

IR, oIl < 20|lylln ™' Lllv; + 0g;,ll = 0,(1).
1

Consequently (C1) implies that L (-) converges pointwise in probability to G(-).
An appeal to Corollary I1.2 of Andersen and Gill (1982) concludes the proof.

The consistency results follow by applying Theorem 5.1 first to B, ( 8in=0)
and then to 8., f;, and B,. Next we derive the asymptotic expansions for these
estimators.

THEOREM 5.2 (Asymptotic expansion). Assume (Pl) and the conditions of
Theorem 1, then
B= By + n'28, Y By)Z, + 0231;_1(30){('3]",1 + Jn,2)ﬂ0 +b,;+ bn,4}
+o0,(max(0?, n~1/2)),

where
n

b, 3= n“‘Z(yi - F(xiT:BO))giny
1

b, 4= —n"ZF“’(xiTﬁo)x,-giTnﬁo,
1
where S,() is given in (1.2), and Z,,, J, ,, and J, , are defined in (2.5).

Theorem 5.2 is proved with a series of lemmas. First we show how Theorems
1-4 follow as corollaries. Theorem 1 is immediate since g;, = 0 for B. For §,,
8in = (6%/0%)(I — §2BT)"'BTX; where B, = S;Y(B)J, , + o, ). Assumptions
(A2), (A3), Lemma 5.1, and (2.2) imply b, ; = 0,(1), and

_bn,4 _ nvlem(xiTﬁo)xiXiTBn(I _ &ZB")
1
= Sn(BO)BnBO + Op(l)

= (Jn,l + Jn,2)BO + Op(l),
thus proving Theorem 2.

-1

Bo
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For B, g, = (6%/0%)(y; — F(X7B))2B and (A2), (A3), Lemma 5.1, and (2.2)
imply b, , = 0,(1), and

bos = 'Y (3 — F(x7B,)) S8, + 0,(1)
1

= —d, ,B, + 0,(1).

Theorem 3 follows. Finally for 8,, g, = (62/02)(y; — 1)2B. (A2), (A3), Lemma
5.1, and (2.2) imply

b, 3= n-IZ(.)’i - F(x;"BO))(yi - %)Eﬁo + Op(l)
= _Jn,ZBO + Op(l)

R S FO(xT8) (3 — 1)xBIEBy + 0,(1)
1

bn,4

—n VY FO(x7B, ) (F(x7B,) — 4)x:BT 2By + 0,(1)
1

= —Jn,IBO + Op(l)‘

In the last step we use the identity F@(¢) = F®(¢)1 — 2F(¢t)). This proves
Theorem 4. Notice that in deriving these results we used only the fact that
B — By = 0,(1). Thus the conclusions of theorems 3 and 4 remain unchanged if B
is replaced by any other consistent estimator in the definitions of %, ; and %, ,.
In particular, this can be shown to imply that the fully iterated versions of the
functional and sufficiency estimators (provided consistent versions are chosen)
also satisfy Theorems 3 and 4, respectively (Stefanski, 1983).
The proof of Theorem 5.2 starts with the following weak law.

LEMMA 5.1. Letu,, u,,... be independent random vectors such that E(u;) =
0 for all i, and E(]uijl”") < B for all i and j, and some a > 0 and B < oo,
where u;; is the jth element of u,. If ¥}|a,| = O(n) and max, _; _,(la;|/n) = o(1)
then n™'Ela;u; = o,(1).

ProOF. The proof of the lemma entails a routine verification of the assump-
tions of Theorem 5.2.3 (Chung, 1974) and is not given here.

LEMMA 5.2. Under the conditions of Theorem 1,

n‘IZ(y,- - F(X,-TBO))Xi =n"V2Z,+ 0¥ J,  +dJ,5)B + op(max(oz, n~1%)).
1

PrROOF. n 'T(y,— F(X'B))X; =T, , + T, ,, where

T..= n 'Y (3 — F(XB,))x:
1

T,>= On“Z(yi - F(XiTBO))Di'

1
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A Taylor series expansion of F(-) shows that
Tn,l = n-1/2Zn + o‘2Jn,1[)’0 + n_1/2Qn,1,o + 02(‘Dn,l + Rn,l)’
where

n
Qn,l,u = —on””ZF‘”(xTBo)viTBoxi
1

o)
It

= —@n) S {FO(TB) (1B - BTA,)x,)

e
Il

—(20) " R (FO(XTB,) — FO(278,))(c7Bo )

and X, is on the line segment joining x; to X, Q,.1,, has mean zero and
asymptotically negligible variance thus n~'/%Q, , , = o(n~'/?). Assumptions
(A2) and (A3) and Lemma 5.1 are used to show D, ; = o0,(1). Also note that

IR, oIl < (21) ' Elll( 078,)*min(1, o|07B,)) < 4,47,
1

where

n ) 1/2
A,= (n“Zuxin?(v?Bo) ) ,
1

. 172
a3 = (S i1, )|
1

Assumptions (A2) and (A3) and Lemma 5.1 imply A, = O,(1) while (A3), the
fact that max(n~!,0) —» 0, and the Dominated Convergence Theorem imply
A% = o,(1). It follows that ¢*(D, , + R, ;) = 0,(c?). Combining these results we
get
(5.2) T,,=n"?Z,+o%J, B, + op(max(oz, n~1/2)),
Another Taylor series expansion of F(-) shows that

T,o=0%, 280+ n"?Q, 5 ,+ 0D, + R, ,),

where
n
Qn,2,a = Un_l/ZZ(}’i - F(xiTBo))Di
1
D, .= ‘”hle“)(xiTBo)(viviT - 2)Bo
1
R, .= _n—IZ(F(l)(XiTBO) - F(l)(x?BO))Div?BO’
1
and X, lies on the line segment joining x; to X;. Q,, 5 ,, D,, and R, , are all
0,(1), and the proofs are analogous to those for @, , ,, D, ,, and R, ,, respec-

tively. Consequently,
(5.3) T, ,= 0%, .8, + o,(max(o?, n~/%)).
Combining (5.2) and (5.3) completes the proof of the lemma.
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_ LEmMMA 53. Assume the conditions of Theorem 1 and (Pl) and define
H,(y) = n""C{(y; — F(&]Y))%;. Then

Hn(BO) = n_l/ZZn + 02((Jn,1 + Jn,2)BO + bn,3 + bn,4) + Op(maX(02, n—1/2)).
Proor. ﬁn(BO) =W,,+W,,+W,,+ W, ,, where

W,.1= n”Z(yi - F(XiTBO))Xi’
1

n

W,.= on“Z(F(XiTBo) - F(fiTIBO))(”i + 0gr),

1

W, 5= 02"_12(}’1' - F(XiT:BO))gin!

1
W, = n 'Y (F(XB,) — F(£1B,))x;-
1
Note that in light of (A2) and (P1)
W, oll < o’n ' Lllgl(lloll + oligial) = 0,(0?).
1

Also,

W, 5 — 02b, 5l < 020~ Y | F(x7B,) — F(XB,) |I8:all
1

< IBollo’n™  Lllvil gl
1

1/2

n 1/2 n
snBo||os(n—‘va,-n2) (n“anmn?)
1 1

using (A3) and (P1). One term in a Taylor series expansion of F(-) and Lemma
5.1, (A2), and (P1) show that

n

W, s — 02b, 4l < 0?Boll>n = L (olloll + o2&l Izl 11l
1
< o2|lﬁon"’{on“2uv,~n llx ] 1&nll + 02071 X |jax,l ng,-,,lﬁ}
1 1
n 1/2 n 1/2
scr?uBon?{o(n“Z||v,»n2ux,»nz) (n“anmu“’)
1 1

+o2( max llxi}])n_Ileginllz}
<i<n 1

= 0,(0?).
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An expansion for W, ; is given in Lemma 5.2. Combining the above results proves
the lemma.
Define

Ral
Rx

8.00) = n R ROy,
1
and note that

(5.4) S.(v) = (3/9v)A,(v),
where H (-) is defined in Lemma 5.3.

LemMa 54. Conditions (A2), (A3), and (pl) imply n(ﬁ) - Sn(,E) = 0,(1)
for any B on the line segment joining B, and B.

Proor. S (B)-S(B)=H,,+ H, ,, where

H,, = n"ZF‘”(fiTE)(fifiT - xxl),
1

H,,=n"'} {F“’(iiTvB_) - FO(xB) }xx!.
1

The boundedness of FU(-) and some elementary inequalities are used to show

I H, ,ll < n-12(2ux,n llov; + 628l + llov, + 0%8,,I|%)

1/2

n 172 n n
< 2(n_12”xi||2) (nIZHovi +0%g,01° +n7 Y |lov; + 0,12
1 1

1

Assumption (A2) implies n™'E7||x;||* = O,(1) and (A3) and (P1) imply n~'X7||ov;
+0 gm[[2 = 0,(1). Thus ||H, || = 0,(1) as min(¢~', n) > co. A Taylor series
expansion of F M(-) and the boundedness of F®(-) are used to show

1H, ol < uﬂun‘lZnov + 0%l x|
(5.5) n a2 n 1/2
< 1|B||{an‘121|v,»n llx)? + o2 max nxiu)(n“zgfn) (n‘12||x,~||2) }

1 <i<n 1 1
Assumption (A2) and Lemma 5.1 imply n~!ZP||v| ||x,]|2 = ),(1), and (A2) and
(P1) imply that the second term in (5.5) is 0,(1). Thus ||H, .|| = 0,(1) as
min(s~1, n) > oo and the proof is complete.

LEMMA 5.5. Assume (P1) and the conditions of Theorem 1, then
B-B,= (max(o n~12)).

ProOF. Let H,(-) be the function defined in Lemma 5.3. Consider the
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real-valued function of y defined as J,(v) = HY(y)XB — B,). The Mean Value
Theorem proves the existence of some B8 on the line segment joining 8 to 8, such
that

AT(Bo)(B = Bo) = (B — Bo)"S(B)(B = Bo),
where § (-) is defined in (5.4).

It follows that ||8 — B,ll < |IH, (BO)HA;m(gn(E)) where A,;.(A)= minimum
eigenvalue of A. By Lemma 54, S(B)— S(B) = 0,(1) hence by (Al),
PALL(S.(B)) < 2AL (M)} - 1. Thus IIB BoH and ||H, (Bo)ll have the same
order which, from Lemma 5.3,1s O, (max(o 2)).

We are now in a position to prove Theorem 5.2.

PROOF OF THEOREM 5.2. By definition n™'Li(y, — F(£IB))%, = 0; expand-
ing F(-) in a Taylor series shows that S(8 — B8,) = H,(B,), where

= n"‘ZF“’( B.)xxT

and for each i, ||B;— B, <18 = Boll- (A2), (A3), (P1), and the conclusion of
Lemma 5.5 are used to show S — S(B;) = 0,(1). The theorem follows from
Lemma 5.5.
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Comparison of Least Squares and Errors-in-
Variables Regression, With Special Reference to
Randomized Analysis of Covariance

RAYMOND J. CARROLL, PAUL GALLO, and LEON JAY GLESER*

In an errors-in-variables regression model, the least squares
estimate is generally inconsistent for the complete regression
parameter but can be consistent for certain linear combinations
of this parameter. We explore the conjecture that, when the
least squares estimate is consistent for a linear combination of
the regression parameter, it will be preferred to an errors-in-
variables estimate, at least asymptotically. The conjecture is
false, in general, but it is true for some important classes of
problems. One such problem is a randomized two-group anal-
ysis of covariance, upon which we focus.

KEY WORDS: Measurement error; Randomized studies; Func-
tional models; Structural models; Asymptotic theory.

1. INTRODUCTION

The literature on the problem of linear regression when some
of the predictors are measured with error is substantial (for
example, see Reilly and Patino-Leal 1981). Recent work in-
cludes the theoretical study of Gleser (1981) and the important
practical shrinkage suggestions of Fuller (1980). Also see An-
derson (1984) and Healy (1980).

A subarea of this literature concerns two-group analysis of
covariance when some of the predictors are measured with error
(for example, see Lord 1960, Cochran 1968, DeGracie and
Fuller 1972, and Cronbach 1976).

Lord (1960) discussed the case of one covariate measured
with error. He noted that it may “happen. . .that the usual
covariance analysis (least squares) will fail to detect a statis-
tically significant difference between groups. . .when such a
difference actually exists and can be detected by proper statis-
tical procedures” (p. 309). He also gave a numerical example
of this phenomenon.

Cochran (1968) and DeGracie and Fuller (1972) discussed
two-group analysis of covariance, providing in particular some
discussion of the case in which the true values of covariates
are themselves random variables; this is usually called a
“structural” model in the literature. They showed that if the
covariables are unbalanced, as might happen in an observational
study, then the meaurement error will cause least squares to
inconsistently estimate the true treatment difference. In the sense
of asymptotics, when the covariables are unbalanced one should
then correct for measurement error if it is substantial; a global
small-sample statement of this type cannot be made.
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Now consider a completely randomized study, where the
covariables will be balanced on average across the two treat-
ments. In this case, Cochran (1968) and DeGracie and Fuller
(1972) indicated that least squares will consistently estimate
the treatment difference. The question that remains to be an-
swered is: Should we correct for measurement error when the
least squares estimate consistently estimates the treatment ef-
fect? It is the purpose of this article to partially answer this
question. Using large-sample distribution theory, we show that
in a balanced, completely randomized study with measurement
error in the covariables, the least squares estimate of the treat-
ment difference will be generally preferred when compared to
a particular errors-in-variables regression estimator. This result
can be generalized, so in a large class of problems, when least
squares is consistent for a linear combination of the regression
parameter, it will be preferred, at least asymptotically. Further,
for a smaller but not insubstantial class of problems, when least
squares is consistent for a linear combination of the regression
parameter, it is the maximum likelihood estimate of this linear
combination, taking the consistency into account.

2. THE NORMAL CASE WITH NO REPLICATION:
TECHNICAL BACKGROUND

A special case of considerable interest occurs when all errors
are normally distributed and no replicates of the variables mea-
sured with error are available. The general model considered
here, which includes the analysis of covariance as a special
case, is given by

Y=Xp +Xp+ ¢

C=X,+U

B = 167, V.
Here, Y and ¢ are (N X 1) vectors, X, is an (N X p) matrix
observed without error, and X, is an (N X g) matrix of true
values that we cannot observe exactly. Rather, we observe C.
The rows of the matrix (U, &) will be assumed to be mutually
independent normally distributed random vectors with mean
zero and covariance matrix 2

In comparing least squares and errors-in-variables methods,
we must pick a representative member of the latter class. In
the main, we will do this by following Gleser (1981) for the
case that no replicated estimates of X, are available; the rep-
licated case will be discussed at the end of the article. Gleser
studied the functional model in which X; = (1, 1, ..., )T
and X, are considered fixed constants. A special case of his
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model assumes that there is a known matrix Eo and an unknown

constant ¢ for which
o Fw O
a(o 1>~

E=0220=

If 2“ is the covariance matrix of the rows of U, then in (2.2)
we are assuming that we know the ratio of the elements of
. to 62, the variance of the elements of ¢. Gallo (1982)
exhibited the maximum likelihood estimate of 8, which is given
in Appendix A.
He also proved the following.

@.2)

Theorem 1 (from Gallo 1982).
A = lim N7'(X,, X;)'(X,, X5)
N

Suppose that

exists and is positive definite. Then if ), is the functional
maximum likelihood estimate, N'/2(f,, — f) is asymptotically
normally distributed with zero mean and covariance matrix

cov(fu) = d{A" + a0 <g g) A-‘} :

where d = [f7, —11 3 [, —1]7 and Q"' = [I, f,] 3~
A
3. MAIN RESULTS

There are instances other than randomized two-group anal-
ysis of covariance in which certain linear combinations of the
least squares estimate are consistent for the same linear com-
binations of the parameter. Consider the model (2.1) with 7
= (BT, BY) in which it is desired to estimate the parameter Y7,
where " = (3], y}). Partitioning A in (2.3) into components
A, informally the least squares estimate

B = (X1, OF Xy, O)'(Xy, OFY
converges in probability to
Ay Ay, - 0
[Az, 8o+ Eu] -.p) TG

This leads to the following result, which was proved formally
by Gallo (1982).

Theorem 2. The least squares estimate yTBL is consistent
for y7f; that is, it converges in probability to y*f for all B, o2,
zu, if and only if

73 = AR Ay 3.2

Computing the asymptotic distribution of least squares is
fairly complicated. Recall that X, is observed exactly, and we
will assume it has a column of ones; X, is measured with error
as in (2.1). Suppose we are interested in estimating a linear
combination y7f for which least squares is known to be con-
sistent—that is, (3.2) holds. Then the next result gives a de-
scription of an important case for which least squares will be
asymptotically preferred to the functional maximum likelihood

estimate.
Theorem 3. Make the following assumption.

Given X, the rows of R = X, — X,A[;'A, are independent
and identically distributed with mean zero and covariance

Apy = Ay — AyA['A,. (3.3)
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Further, suppose that R is distributed independently of ¢ and
U. Define

A=y, + 30
Then the least squares and functional maximum likelihood es-
timates a7}, and a”fy are asymptotically normally distributed
with mean a”f and variances 6*(L)/N, 6*(M)/N, respectively,
where g2(L) < ¢*(M). In fact,

o) = M) — GTAGRBE T N E, By

a*M) = GTARY@? + BT, o).

The proof of Theorem 3 is sketched in Appendix B. The
asymptotic distribution of least squares when (3.3) does not
hold has been computed by Gleser, Carroll, and Gallo (1985),
but here one need not necessarily prefer least squares. This
issue is discussed in the next section. Note that assumption
(3.3) holds if X, and X, are independent random matrices.

It may be considered a bit unfair to compare least squares
to a “maximum likelihood estimator” that does not take into
account the consistency of least squares. It turns out that, under
normality assumptions, the maximum likelihood estimate of
yT when it is known that least squares is consistent for y7f is
simply the least squares estimate of y"f. Specifically, we have
the following.

Theorem 4. Suppose that the assumptions of Theorem 3
hold and that the rows of R are normally distributed indepen-
dently of ¢ and U. Then the maximum likelihood estimate of
7" given X, and subject to (3.2) is simply the least squares
estimate of y"f.

4. EXAMPLES AND EXTENSIONS

Consider a completely randomized two-group analysis of
covariance, with covariables subject to error. Formally, this
problem can be subsumed into the more general structure (2.1)
by letting X, be the covariables and

(5)
a

11 - 1
T = =

XTI = (x, X9, - - - “4.1)

5 Xan)-

Here the {s;} are zero—one variates representing the assign-
ment to the two groups. The parameter of interest is a, the
treatment or group effect. In the notation of Section 3, we wish
to estimate y”f3, where y, = 0, T = (0, 1). By using Theorem
2, it is easy to show that least squares is consistent for the
group effect a only when the limiting means of the covariables
are the same for the two groups. If treatment assignment is
random, then the least squares estimate is consistent, assump-
tion (3.3) holds, and by Theorem 3 the least squares estimate
of group effect has a smaller limiting variance than the maxi-
mum likelihood estimate.

It is reasonable to conjecture that complete randomization is
not necessary for least squares to be preferred in the context
of an analysis of covariance. For example, one might randomize
in blocks or use alternative balancing schemes (see Wei 1978).
The details of the proof of Theorem 3 might prove helpful in
studying this conjecture.

It should be noted that in a balanced randomized study, the
usual 7 test for treatment effect has correct nominal level asymp-
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totically. Thus, from both an estimation and inferential stand-
point, for large samples least squares will be preferred over the
functional estimate.

When assumption (3.3) is violated, difficulties arise. For
instance, consider analysis of covariance for the pure functional
case in which the group assignment variables {s;} occur in the
fixed sequence {— 1, +1, —1, +1, .. .}. Let the covariables
{x;} be fixed. In a variety of circumstances, Gleser et al. (1985)
have shown that the least squares estimate @, of the treatment
effect a satisfies

N'"2@, —a) =V + AN"'2 3 sx,, 4.2)
i=1
where A is a constant and V is asymptotically normally dis-
tributed. To obtain an asymptotic distribution for N2 (a, —
a), one must make assumptions about the behavior of the second
term on the right side of (4.2). Generalization of (4.2) and
further discussion are given by Gleser et al. (1985).

Even if X, and X, are random variables, violation of (3.3)
can cause failure of the main conclusion of Theorem 3. The
reason is that in this case the limit distribution of least squares
can depend on the fourth moment of X, whereas that of the
functional estimate depends only on the second moment of X ;.

Finally, in some instances an assumption such as (2.2) will
not be tenable, so a functional estimate cannot be computed.
There are many ways out of this dilemma. One is to take
independent replicates of C;, C, of X, in (2.1). One can com-
pute the normal theory functional estimate in this case and
obtain a result similar to Theorem 1 but more general in the
sense that the underlying random variables need not actually
be normally distributed. The computation of this functional
estimate and its asymptotic distribution theory are available in,
for example, Gallo (1982).

5. CONCLUSION

In a particular errors-in-variables regression model, we have
shown that least squares will often be asymptotically more
efficient than a particular functional regression estimate, when
the former is known to be consistent. This happens in particular
when those variables X, subject to error are distributed inde-
pendently of those variables X, measured without error, or more
generally when X, follows a linear regression in X;. An im-
portant special case of this least squares preference phenomenon
is a randomized analysis of covariance in which one wants to
estimate the treatment effect. Finally, if the linear regression
of X, on X, follows a multinormal distribution, and if it is
known that the least squares estimate is consistent for the linear
combination y"f, then the least squares estimate is the maxi-
mum likelihood estimate for y7f.

APPENDIX A: THE MAXIMUM LIKELIHOOD
ESTIMATOR FOR MODEL (21)

Define L = I — X,(X7X,):'XTand W = [C, YJ'L[C, Y]. Let 6 be
the smallest eigenvalue of zo' ' W, where o i given in (2.2).
Define

C.=[X,,C] = [X,X, + U},

_ _,f0o 0
D = CIC. 0(0 2»)
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The matrix D is nonsingular with probability one, and the functional
estimate is B, = D-'CTY. The formula for By is derived by Gallo
(1982) and relies on similar work of Gleser (1981) and Healy (1980).

APPENDIX B: THE ASYMPTOTIC DISTRIBUTION
OF LEAST SQUARES

The following general result can be justified formally and is at the
heart of the analysis of covariance calculations. We sketch herein a
proof without stating all the necessary regularity conditions. Let
el = (1, 1,...,1).

Define
Apy = Bp = 8878, A = (Mg, + 17,
and suppose that y satisfies (3.2) as well as
N-"XT(R + U) = 0,(1), (B.1)
where R = X, — X,A['A,. Then the least squares estimate satisfies
N2y (B = ) = N""V[AGX{(e — UB,)
+ NT"TAGXT(R + U) + o,(1),

Lemma 1.

(B.2)
where ¢ = N\ }:“ B.

Proof (Sketch). Define C. = [X,, X, + U]. Then
€y 0
N G.-p+ (Eu li‘z)

0
= Cl(e — UBy)IN + . (B.3
(e B.) (2 ﬂz) (B.3)
Multiply both sides of (B.3) by N'2y"(CIC./N)™"' to get

N2yTB, = B) = N"T(CIC.IN)™! (C.’(e — UB)IN + (}:O ﬂ))

— N'"y(CIC.IN)™! <$0ﬂz> . (B4

By Slutsky’s theorem, the first term on the right-hand side of (B.4)
equals

-1
2) Ci(e — UB,)IN + <Xoﬂz> + o,(1)
= N""HIAG'XT(e — UB) + o,(D),

vira s 04
(B.5)
which is the same as the first term on the right-hand side of (B.2).
The second term in (B.4) is

N IXTX) XTR + UW £, By, (B.6)
where

W@, + T,

By (B.1), this completes the proof.

XIX\IN)— A,

One should note that (B.1) is satisfied in the randomized two-group
analysis of covariance.
Using Lemma 1 and writing for the analysis of covariance

XT = (g 2 ** Xw)

U™ = (uyu ~* uy)
v

m, = N! 2 Xais
P

we see that
N
N“@, = a) = N2 3 sife: + (1 = Blu; + 17(xy — my)},
i=1

(B.7)
7= (07, + }:u)" t. B
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Expression (B.7) shows why Theorem 3 may apply to alternative
randomization schemes.

Proof of Theorem 3. The form of o*(M) follows directly from
Theorem 1. The form of g*(L) follows from (B.2) and the assumptions
of the theorem.

Proof of Theorem 4.  First assume that Aj;'A,, is known. Define

U, Ai'An)p

t=a+pLp-HLALS
Given (X,, C), we have

Y |X, C) =X+ SNAy,,B, + F, (B.8)
where § = C — X,A;;'A;; and the rows of F are independent normal
random variables with mean zero and variances £2. If we define

I =0ta, £=Ndufy L=A7,
then it is fairly direct to show that the mapping of ,, ., 62, Ay, to
n, &, a2, L is one to one from the space {g* > 0, A, > 0} to the
space {0 > 0, L — ¢* 4, > O}.
One can show next that the map =, &, L, g to , &, L, £2 is also

one to one onto the space {£2 > 0, L > 0}. To see this, note that

£2 = g2 + BiAn By — BiAnN\AnfB,
0 + ELL - 02 )" LE — ETL = H(oY).
Thus £2 is a function of 7, &, L, 2. For the converse we must show

that given =z, &, L, £2 there exists 6> > 0 such that £2 = H(c?) and
L - o* &, > 0. Write

z;uzL 2:;0112 = IDIT,

where T is an orthogonal matrix and D is diagonal with elements
d,zd, = =d, Then

=

Ho) = ot - Lt + 3 7 307 Lo, - o),
K=1

where (I' 2;1/2 L&)y is the Kth element of the matrix. Moreover,
L - ¢* 4, > 0if and only if D — %, > 0 if and only if 0 <
0*> < d,. Hence we must show that there exists 2 such that 0 < ¢
< d, and H(c?) = £2. However, H(g?) is continuous and increasing
in o2, Further,

lim H(e?) = 0 < £? and lzim H(o?) = o > £2.
-0 o2sd,

Joumal of the American Statistical Association, December 1985

Hence a solution exists, and the map is one to one. We next complete
the proof of Theorem 4.
Now, the maximum likelihood estimates of n and & are seen from

(B.8) to be

&, Sy Xy, ', SYY.
Since the column space of (X;, C) is the same as the column space
of (X, §), it follows that, given (X,, S, A;;'Ay), the maximum
likelihood and least squares estimates of 7 coincide; that is,

a(MLE) = ¢, A;'Ap)B..

This means that y'ﬁL is the maximum likelihood estimate (MLE) of

y'm, given X,, S and Aj'A,,. Since, under (3.2), y'n = "B, the
proof is complete.
[Received September 1982. Revised April 1985.]
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SUMMARY

This paper studies estimation in generalized linear models in canonical form when the
explanatory vector is measured with independent normal error. For the functional case,
i.e. when the explanatory vectors are fixed constants, unbiased score functions are obtained
by conditioning on certain sufficient statistics. This work generalizes results obtained by
the authors (Stefanski & Carroll, 1985) for logistic regression. In the case that the
explanatory vectors are independent and identically distributed with unknown distribu-
tion, efficient score functions are identified. Related results for the structural case are
given by Bickel & Ritov (1987).

Some key words: Conditional score function; Efficient score function; Functional model; Generalized linear
model; Measurement error; Structural model.

1. INTRODUCTION
Given a covariate p-vector U = u, assume that Y has the density

y(a+B"u)—b(a+Bu)
a(e)

with respect to a o-finite measure m(.). In (1-1), 8" = (e, 87, ¢); a(.), b(.) and ¢(.,.)
are known functions; and the dominating measure m(.) does not depend on 6 or u. The
density (1-1) is that of a generalized linear model in canonical form (McCullagh &
Nelder, 1983, Ch. 2). Suppose that u cannot be observed but that k independent
measurements, X = (X, ..., X;), of u are available. When measurement error is normally
distributed the matrix X has the density

hy(y; 6, u)=€Xp{ +C(y,¢)} (1-1)

f[ )" ép
hy(x; 0, u)
j=1 |Q|

xp {—3(x —u)"Q7"(x; —w)}, (1-2)

where () is the covariance matrix of the measurement-error vector. Together (1-1) and
(1-2) define a generalized linear measurement-error model with normal measurement
error. If for a sample (Y;, X;) (i=1,..., n) the covariables {u;} are unknown constants,
a functional model is obtained; if {&;} are independent and identically distributed random
vectors from some unknown distribution, a structural model is obtained (Kendall &
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Stuart, 1979, Ch. 29). In the present paper the problem of deriving unbiased scores for
0 in both functional and structural models is studied.

There is a vast literature on this problem when (1-1) is a normal density. This dates
back to Adcock (1878) and has been reviewed by Anderson (1976); see also Moran
(1971). Recently there has been considerble interest in nonlinear measurement-error
models; see Prentice (1982); Wolter & Fuller (1982a, 1982b), Carroll et al. (1984), Stefanski
(1985) and Stefanski & Carroll (1985).

The density (1-1) includes normal, Poisson, logistic and gamma regression models.
The key feature these models have in common is a natural sufficient statistic for u when
all other parameters are fixed. The same is true of the normal density in (1-2). In fact
(1-2) could be replaced with any density possessing a natural sufficient statistic for u
when other parameters are fixed and much of the theory in this paper holds with little
or no modification.

In § 2 functional models are studied. This work generalizes results of Stefanski &
Carroll (1985) on logistic regression. Structural models are studied in § 3 and efficient
score functions for estimating 6 are identified. Related work includes that of Bickel &
Ritov (1987).

If the covariates u,,...,u, are observed without error the maximum likelihood
estimator of § maximizes = log hy(Y;; 6, ;). Let X; be the mean of the k measurements
of u;; that value of § which maximizes = log hy(Y;; 6, X;) will be called the naive
estimator. This estimator is usually inconsistent (Stefanski, 1985) although when Q/k is
small its bias will be small.

2. FUNCTIONAL MODELS
2-1. The functional likelihood
Consider the functional version of (1:1) and (1:2) when k=1 and

Q/a(¢)=Q, (2-1)

where Q) is known. In simple linear regression, (2-1) reduces to the common identifiability
assumption that the ratio of the measurement-error variance to the equation-error variance
is known. Similarly, (2-1) ensures identifiability of the parameters in the general model
(1-1) and (1-2).

The random variables (Y;, X;) (i=1,...,n) are independent but not identically
distributed since their distributions depend on the true regressors u;, which vary with i.
However, for notational convenience the subscript i will be dropped when referring to
(Y;, X;) in situations where it causes no confusion. Under (1-1), (1-2) and (2-1) the joint
density of (Y, X) is

hyx(y, x; 6,u)=hy(y; 6, u)hx(x; 6, u). (22)
For a set of n observations the log likelihood is
L(6,u,,... ,,un) = Z log{hy,x(Y:, X; 6, u;)}. (2-3)
i=1
When Y is normally distributed it is known that under (2-1) maximizing (2-3) with
respect to (a, BT, é, u,,...,u,) results in consistent estimators of the regression

coefficients @ and B (Gleser, 1981). For models other than the normal, the task of
maximizing (2-3) with respect to its n + p +2 parameters is formidable. More importantly
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it is not generally true that maximizing (2-3) produces consistent estimators. In logistic
regression the functional maximum likelihood estimator of («, B) is not consistent under
assumption (2-1) (Stefanski & Carroll, 1985). The problem is due to the large number
of nuisance parameters (Neyman & Scott, 1948). The unwieldy functional likelihood,
and its failure to produce consistent estimators underscore the need for an alternative
approach to estimation.

2-2. Unbiased score functions

The literature on estimating a structural parameter in the presence of a large number
of nuisance parameters dates back to the paper by Neyman & Scott (1948). They were
the first to show that maximum likelihood estimation is not always a viable alternative.
Andersen (1970) proved consistency of a conditional maximum likelihood estimator in
a special class of models. Later we show a fundamental difference between our model
(2-2), and those considered by Andersen (1970). Recent work on the problem includes
that of Lindsay (1980, 1982, 1983, 1985) and Kumon & Amari (1984).

In this section unbiased score functions are obtained by conditioning on certain
parameter-dependent sufficient statistics. It is shown how these scores relate to the
conditional scores of Lindsay (1982) and some problems associated with their application
are discussed.

Consider the density in (2-2). If u is viewed as a parameter and «, B and ¢ as fixed,
then the statistic

A=A(Y, X, 0)=X+YQB (2-4)

is complete and sufficient for u. Consequently the distribution of Y |A depends only on
Y, X and 6, but not on u. From this conditional distribution it is possible to derive
unbiased estimating equations for 6 which are independent of .

Let hyja(y|8; 6) denote the conditional distribution of Y given A = 8. In the calculations
that follow, & is treated as a fixed conditioning argument until the final step of the
analysis, equation (2-8), wherein § is set equal to 8(y, x, 8) = x + yQB; see equation (2-4).
The Jacobian of the transformation which takes (Y, X) into (Y, X + YQp) has deter-
minant one. Thus pr (Y =y, A=8)dm(y)dd=pr(Y =y, X =8 —yQB)dm(y)ds and one
finds

hyia(]8; 0) =exp [yn —3y’B"QB/a(¢) +c(y, d)—log {S(n, B, $)}],  (2'5)
where 7 =(a+8"8)/a(¢) and S(.,.,.) is defined as

S(n, B, ¢) =J exp {yn —3y’B"QB/ a($)+ c(y, $)}dm(y).

Note that (2:5) is an exponential family density in n with Y as the natural sufficient
statistic. Thus moments of Y given A =5 can be computed from the partial derivatives
of S(m, B, ¢) with respect to n; for example

Eo( YIA =8)=[(3/9n) log {S(n, B, ¢)}]n=(u+ﬂr6)/a(¢}' (2-6)

Using the exponential family representation in (2-5) and the fact that m(.) does not
depend on 6, it can be shown that

I hya(y|8; 6)dm(y) =0, (2:7)
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where
HY]A(y l 8,0)=1(8/30)hyay | 5 0).
Thus defining ¢s(y, x, 6) = (3/360) log hy|a(y|8; 6) evaluated at 6 = x+ y()B, we have that

{y—E(Y|A=8)}/a(¢)

Us(n, x, 0)=| {y—E(Y|A=8)}6/a(é)—{y*— E(Y*|A=8)}0B/a($) ,
r(y,x, 0)— E{r(Y, X, 0)]A=3} s=x+yQp
(2:8)
where
_oc(y, )  a+8'B , BOB
r(y, X, 0)_ a¢ y a2(¢) a (¢)+y 202(¢) a (d’)'

Also ¢,(.,.,.) is unbiased for 9; that is Eo{¢s(Y, X, 0)} = E,[ Eo{tss(Y, X, 6)|A}]=0.
The inner conditional expectation is zero by (2-7).
Any estimator, s, satisfying
Y os(Yi, X, 05)=0 (2:9)

i=1

will be called a sufficiency estimator. It is worth emphasizing that fs does not maximize
the conditional likelihood, = log{hy(Y;|A;(0);6)}, where A;(8)=X;+ Y QB. The
estimator which does maximize this likelihood is generally not consistent, a consequence
of the fact that the resulting score is not unbiased.

In the conditional likelihood the conditioning statistic depends on 6 and it is here that
our model differs from those studied by Andersen (1970). He studies models in which
the sufficient statsitistics for the nuisance parammeters are independent of the structural
parameter. The derivation of ¢ exploited the fact that hy x factorizes into the product
of hy, and h,. This factorization is similar to one used by Kalbfleisch & Sprott (1970).
Other uses of conditional likelihoods like (2-5) arise in hypothesis testing problems (Cox
& Hinkley, 1974, p.146).

Consider the density in (2-2) and let Ay x = (8/36)hy,x. Note that

hy.x(, x; 6, u)_E{[’iY.x(Y,X;O, u)] }
hy,x (», x; 6, u) hyx(Y, X; 0, u) A=x+vQB

{y—E(Y[A=8)}/a(s)
=| {y—E(Y|A=8)}u/a(s) ,
r(y,x, 0)— E{r(Y, X, 0)|A=5} 5=x+yQp

where r(y, x, 6) is defined in (2-8). As the expression in brackets above depends on the
unknown covariate u only as a vector of weights this suggests the class of score functions

{y—E(Y|A=8)}/a(¢)
Yoy, x,0)=| {y—E(Y|A=8)}1(8)/a($) (2-10)
r(yax96)_E{r(XXyG)|A=6} S=x+yQp

indexed by the vector-valued function ¢(.). When #(A) depends on (Y, X) only through
A, we have E[{Y—E(Y|A)}t(A)]=E(t(A)E[{Y—E(Y|A)}|A])=0 and thus ¢ is
unbiased. The score (2:10) is motivated by the work of Lindsay (1980, 1982, 1983) and
will be called a conditional score.
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Any estimator b satisfying
Y v (Y, Xi, 00) =0 (2-11)
i=1

will be called a conditional estimator.

Ideally, ¢(.) in (2-10) would be chosen to minimize the asymptotic variance of fc.
However, for a functional model the optimal choice of ¢(.) will depend on the particular
sequence of covariates and thus no globally optimal choice exists. A related problem is
noted by Cox & Hinkley (1974, p. 146) in a discussion of locally most powerful similar
tests. The information unbiasedness criterion suggested by Lindsay (1982) leads to
complex choices for ¢(.) even in simple versions of the models studied in this paper.
For example, in simple logistic regression through the origin (a =0) the function #(.)
for which . satisfies E (4% + ¢/-|A) =0 takes the form

—{1+exp (88 —3B87)}"/? exp 3(6 —B)*}
d+[{1+exp (88 —3B°)}"" exp {3(6 — B)’}d5’

where d is a constant which may depend on B.

Some choices for #(.) are now given which seem reasonable in the absence of any
theory producing tractable alternatives. In terms of asymptotic efficiency no choice of
t(.) can outperform ¢(A;) = u; ; but of course this not available to the statistician. However,
the fact that #(A;) = u; is optimal suggests that #(A;) should be a good estimator of u;.
Further support for this argument is given in § 3 where it is shown that for structural
models the optimal choice is t(A;) = E(U;|A)).

Consider simply taking t(A) =A. Since E(A)=E(X+YQB)=u+E(Y)QB, t(A) is a
biased estimator of u, but if Q| is small then the bias is small. For logistic regression the
choice #(A) = A results in equivalence of s and - as shown in § 2-:3. Another estimator
of u is obtained by noting that X is unbiased for u and A is sufficient for u, thus
t(A)= E(X|A) is a uniformly minimum variance unbiased estimator of u. Also, since

E(X|A)=A-E(Y|A)QB, (2:12)

only the conditional moment of Y|A, given by (26), is needed to find E(X |A).

Since (2-8) and (2-10) are unbiased, regularity conditions will ensure the existence of
consistent sequences of estimators 65 and - satisfying