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Preface

Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-
reaching and substantial. His vast catalog of work spans the spectrum from funda-
mental contributions to statistical theory to innovative methodological development
to new insights in a number of subject matter areas. From the outset of his career,
rather than taking the “safe” route of pursuing incremental advances, Ray has fo-
cused on tackling the most important statistical research challenges of our time, and
in doing so it is fair to say that he has literally shaped and defined a host of areas of
statistics, including weighting and transformation in regression, measurement error
modeling, quantitative methods for nutritional epidemiology, and non- and semi-
parametric regression. It is indisputable that Ray is one of the giants of the field, and
we are honored to have had the opportunity to prepare this volume, which highlights
some of his most influential work.

The book is organized into seven main parts, each focused on a key area in which
Ray has made significant contributions. The seven subject areas reviewed in this
book were chosen by Ray himself, as were the articles representing each area. Each
part is focused around these key papers, and, for each, we asked distinguished re-
searchers in the area to provide a commentary giving insight into not only the sig-
nificance of the featured papers but also on Ray’s impact on the area more broadly.
The commentaries not only review Ray’s work, but they also are filled with his-
tory and anecdotes that reflect the fact that Ray is also a really nice guy! Indeed, as
former students and collaborators of Ray, we are pleased that the personality, gen-
erosity, friendship, and enthusiasm we know so well emerge throughout all of the
commentaries, whose authors have almost all had the pleasure of working with Ray
firsthand as we have. We are deeply grateful to these contributors, whose thoughtful,
insightful commentaries provide an inspiring roadmap to Ray’s achievements. Due
to their extraordinary efforts, this book is a fitting tribute to a scholar and educator
whose influence on not only science but also on the individual students, postdocs,
and junior colleagues he has mentored is legendary.

Our elation with the authors who contributed their insights into Ray’s work and
personality is tempered by the death of George Casella. George provides an enter-
taining overview of Ray’s work in a hodgepodge of “Other” areas. He was both a
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close friend and colleague of Ray. We are grateful that George was able to contribute
his personal reflections before his passing.

Putting together this volume was made even easier by Ray himself, and we can-
not thank him enough. He provided us with extensive materials, including not only
the list of articles around which the book is focused but also a detailed narrative of
his own thoughts on his work, his biography, and other resources.

We would also like to acknowledge Jennifer Moy, a student at North Carolina
State University, whose assistance in preparing Ray’s complete bibliography was
invaluable.

At the beginning of each commentary, the articles included in this volume that
form the basis for the commentary are listed and are identified by acronyms in brack-
ets; for example, “MEM” for Measurement Error Models.” The second number in
brackets is the number of citations reported by Google Scholar at the time Ray com-
piled the list (2011).

Of course, a book devoted to the contributions of Raymond Carroll cannot possi-
bly provide a full accounting of his work. Despite approaching the start of his fifth
decade as a researcher, Ray has not slowed his pace one bit, and he continues to pro-
duce and inspire and mentor students and postdocs unabated. We fully expect to be
called upon to put together “Volume 2,” featuring still other areas Ray has already
influenced and forthcoming contributions in areas that have yet to be defined.

Raleigh, NC Marie Davidian
Boston, MA Xihong Lin
Houston, TX Jeffrey S. Morris
Raleigh, NC Leonard A. Stefanski
December 2012
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Biography of Raymond J. Carroll

Raymond J. Carroll is Distinguished Professor of Statistics, Nutrition, and Toxicol-
ogy at Texas A&M University, where he has been on the faculty since 1987. He
was the first statistician ever given a Method to Extend Research In Time (MERIT)
Award from the National Cancer Institute (NCI) of the National Institutes of Health
(NIH), receiving this honor for his seminal contributions to statistical methodology
and the impact of that methodology on public health. He is the principal investigator
of an NCI-funded Bioinformatics training program and is the founding director of
the Texas A&M Center for Statistical Bioinformatics. He is also the Director for the
Texas A&M Institute of Applied Mathematics and Computational Science (http://
iamcs.tamu.edu).

Raymond Carroll was born April 21, 1949 in Yokohama, Japan, into an Irish
Catholic military family, and he is the eldest of five siblings. His father, who spent
the Second World War in India and China, was transferred successively from Yoko-
hama to Nagoya, Japan, Washington DC, Wichita Falls, Texas, Ramstein, Germany,
Wichita Falls, Omaha, Nebraska, and Seoul, Korea, and finally retired from his last
assignment in Wichita Falls. He is married to Marcia Ory. A memorial tree with a
plaque honoring the memory of his parents Regina and Norman is situated in the
heart of the central campus a few feet southwest of “Sully,” a bronze statue of the
first president of Texas A&M University. Three other memorial trees are adjacent,
two honoring the memories of his father-in-law, mother-in-law, and brother-in-law,
and the other honoring the memory of Don Risner, a good friend and fishing guide
from North Texas. Raymond attended high schools in Germany, Texas, and Ne-
braska. He graduated from the University of Texas at Austin in 1971 with a BA in
mathematics and was especially influenced by courses in analysis and measure the-
ory given by E. W. Cheney and G. W. Stewart, respectively. He received his PhD
in Statistics from Purdue in 1974 under the direction of Shanti Gupta, with won-
derful advice from Leon Gleser. He has held positions at the University of North
Carolina at Chapel Hill and the University of Pennsylvania. He has published over
350 papers and given over 300 invited talks. The peripatetic nature of his childhood
has made him an avid traveler, a characteristic not shared by his siblings. Since his
first invitation to Australia in 1987, he has visited that country over 20 times, and he
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has visited Germany, the site of two of his sabbaticals, nearly yearly since 1980. He
is in addition a bad golfer who takes mulligans liberally and a mediocre although
enthusiastic fly fisherman.

Dr. Carroll is one of the world’s foremost experts on problems of measurement
error, data transformation, and nonconstant variation, and more generally on sta-
tistical regression modeling. His work has found application in a broad variety of
fields, including marine biology, laboratory assay methods, econometrics, epidemi-
ology, molecular biology, and many others. He has served as Editor of Biometrics,
a journal of the International Biometric Society, and as Editor of the Journal of the
American Statistical Association (JASA) Theory and Methods section. He has won
many honors in the profession, including the two major research awards. The first
is the 1988 Committee of Presidents of Statistical Societies (COPSS) Presidents’
Award, given annually by five major statistical societies to the outstanding statisti-
cian under the age of 40. Secondly, he gave the COPSS Fisher Lecture at the 2002
Joint Statistical Meetings, an award given by these statistical societies in honor of a
senior statistician “whose research has influenced the theory and practice of statis-
tics.”

Carroll’s work is characterized by a combination of deep theoretical advances,
innovative methodological development, and close contact with science. His first
seminal contribution to statistical methodology was to create methods for the analy-
sis of data with nonconstant variation; these methods being the transform-both-sides
method for nonlinear regression (together with David Ruppert) and the variance
function estimation approach (with Marie Davidian), both still in wide use. This
work developed from two projects, one on marine fisheries where he worked with a
team investigating how to model and manage the menhaden fishery in the Atlantic,
and the other project involving immunoassays at Eli Lilly and Company. In the early
1990s, with the inspiration of his close friend Mitchell Gail, he developed a deep
interest in epidemiologic case–control studies that led to his receiving the George
W. Snedecor Award from COPSS in 1997 for work in this area (together with Bruce
Lindsay and Katherine Roeder). The span of his scientific work is amazing, includ-
ing among many others (a) modeling ozone exposure in Houston (the 1997 JASA
Applications Editor’s Invited Paper); (b) understanding the effects of diet on breast
cancer; and (c) discovering interactions between genes and the environment (with
Nilanjan Chatterjee and Yi-Hau Chen).

Carroll is no doubt most well known for his work in the area of nonlinear mea-
surement error modeling, with applications to nutritional and radiation epidemiol-
ogy. The body of seminal research is of such depth, and of such importance, that at
the International Biometric Conference in 2000 in Berkeley, Scott Zeger described
him as the “grandfather” of measurement error modeling. His 1995 book and 2006
second edition with David Ruppert, Len Stefanski, and Ciprian Crainiceanu is the
standard reference in the field. This work began with his landmark 1984 paper in
Biometrika on measurement error in the binary regression framework and has con-
tinued to the present. He was the first to suggest the use of likelihood methods in
the nonlinear measurement error context. Along with Len Stefanski, he developed
the theory for and coined the name for regression calibration, the most commonly
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used method in nutritional epidemiology. His 1987 paper with Stefanski developed
the method of conditional score function. His 1990 paper with Stefanski and his
1988 paper with Peter Hall on deconvolution established the theoretical basis show-
ing how difficult it really is to understand latent variable distributions: this result
provides the theoretical underpinnings for the semi-parametric approaches in mea-
surement error models that have become increasingly popular. The deconvolution
area has become of great importance and interest, and even 20 years later the papers
have led others into the area. Carroll continues to produce important ideas, and his
work continues to influence others, in such important problems as mixed models,
segmented regression, instrumental variables, and nonparametric regression. More
recently, he has written papers on reanalysis of important radiation epidemiology
studies to account for measurement error, both in Biometrics.

Carroll’s work on measurement error modeling is also one of the landmark works
in nutritional epidemiology. He helped design the NCI-AARP Diet and Health
Study, the first study to confirm a link between fat in diet and breast cancer. He
was the senior author on the first major biomarker study (the OPEN Study) to un-
derstand how well common instruments such as the food frequency questionnaire
actually measure diet. This study was funded because of the methodological devel-
opments done together in what is now a long collaboration with Laurence Freed-
man, Victor Kipnis, and Douglas Midthune suggesting that the heart of the problem
of null studies was the instruments themselves.

Dr. Carroll has worked with many researchers from around the world, but no
doubt his closest collaboration has been with David Ruppert, now of Cornell Univer-
sity. They were next door office neighbors at the University of North Carolina from
1977 to 1987, where they started their original collaboration, and they have written
over 45 papers in addition to 4 books. Other colleagues with whom he has written 10
or more papers include Mitchell Gail, Victor Kipnis, and Douglas Midthune of the
National Cancer Institute; Peter Hall of the University of Melbourne; Len Stefanski
of North Carolina State University; Laurence Freedman of the Gertner Institute in
Israel; Naisyin Wang of the University of Michigan; Joanne Lupton, Nancy Turner
and Robb Chapkin, nutritionists at Texas A&M; Xihong Lin of Harvard; and Bani
Mallick of Texas A&M.

More recently, Dr. Carroll has developed a deep interest in basic molecular cell
biology and how it relates to nutrition and colon carcinogenesis. His research grants
include as co-investigator Dr. Joanne Lupton (the endowed Professor of Human
Nutrition at Texas A&M) and Dr. Nancy Turner. This work includes papers both in
biology journals and in JASA and Biostatistics, with many more papers under devel-
opment. Carroll is involved to the point of generating his own biological hypotheses,
suggesting new ways of measurement, and providing support so that novel mea-
surements can be undertaking to understand molecular pathways. More recently,
this close work with biologists and electrical engineers has led to the establishment
of an NCI-funded training program in Biostatistics and Bioinformatics, for which
Dr. Carroll has been the principal investigator since 2001, and the program has re-
cently been renewed until 2016. The program is unique because it aims to train
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statisticians and electrical engineers in biology and includes mentors from biologi-
cal fields.

Dr. Carroll is an inspirational teacher and a major innovator for the Department’s
teaching program. In the 1990s he introduced the use of the computer and class
projects into STAT 302, an undergraduate course aimed at life science students.
Similarly, since 2000, in STAT 651 he was the first non-distance education expert to
create a distance course, something now routine in the department. Dr. Carroll has
won a College of Science Teaching Award, and he has graduated 35 PhD students,
many of whom are leading figures in academia and industry. He has also been the
mentor to many faculty members around the USA, including many who are now
full professors, and he is legendary for his willingness to give advice and technical
assistance.
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Chapter 1
Measurement Error
By John P. Buonaccorsi and Aurore Delaigle

About the Authors. John Buonaccorsi is Professor of Mathematics and Statistics at the
University of Massachusetts, Amherst. He received his PhD from Colorado State University
in Statistics in 1982. He has been at the University of Massachusetts ever since, including
participation in the University’s Statistical Consulting Center for twenty years. His original
research interests were in optimal experimental design, estimation of ratios, and calibra-
tion, followed by a focus on measurement error over the last 25 years. He is the author
of the recently published book, Measurement Error: Models, Methods and Applications.
He also publishes extensively in ecology, with a recent emphasis on temporal data. John
has a long-standing collaboration with colleagues in the Medical School at the University
of Oslo, focusing on the use of measurement error methods in epidemiology. His relation-
ship with Ray dates back to two early conferences dedicated to measurement error—the
1989 National Institutes of Health workshop, and the 1990 AMS-IMS-SIAM conference at
Humboldt State University. John and Ray have been in regular contact ever since.

Aurore Delaigle is Professor and Queen Elizabeth II Fellow, Department of Mathemat-
ics and Statistics, University of Melbourne. She received her PhD from the Université
Catholique de Louvain (UCL) in Belgium, on the topic on nonparametric measurement
error problems. Ray heard about her thesis during a visit at UCL, and later invited Aurore
to visit Texas A&M, when she was an Assistant Professor at the University of California,
San Diego. Ray visits Melbourne every year, often resulting in a measurement error paper
jointly written by him, Aurore Delaigle, and Peter Hall.

Selected Papers on Measurement Error

[MEM-1]-[161] Carroll, R. J., Spiegelman, C., Lan, K. K., Bailey, K. T., and Abbott, R. D.
(1984). On errors-in-variables for binary regression models. Biometrika, 71, 19–25.

[MEM-2]-[163] Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in
logistic regression. Annals of Statistics, 13, 1335–1351.

[MEM-3]-[26] Carroll, R. J., Gallo, P. P. and Gleser, L. J. (1985). Comparison of least
squares and errors-in-variables regression, with special reference to randomized analysis of
covariance. Journal of the American Statistical Association, 80, 929–932.

[MEM-4]-[145] Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal
scores in generalized linear measurement error models. Biometrika, 74, 703–716.

[MEM-5]-[303] Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for decon-
volving a density. Journal of the American Statistical Association, 83, 1184–1186.

[MEM-6]-[239] Stefanski, L. A. and Carroll, R. J. (1990). Deconvoluting kernel density
estimators. Statistics, 21, 165–184.

[MEM-7]-[193] Carroll, R. J. and Stefanski, L. A. (1990). Approximate quasilikelihood
estimation in models with surrogate predictors. Journal of the American Statistical Associ-
ation, 85, 652–663.

[MEM-8]-[86] Carroll, R. J., Gail, M. H., and Lubin, J. H. (1993). Case-control studies with
errors in predictors. Journal of the American Statistical Association, 88, 185–199.

M. Davidian et al. (eds.), The Work of Raymond J. Carroll: The Impact
and Influence of a Statistician, DOI 10.1007/978-3-319-05801-6 1,
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2 1 Measurement Error

[MEM-9]-[61] Wang, N., Lin, X., Gutierrez, R. G,. and Carroll, R. J. (1998). Generalized
linear mixed measurement error models. Journal of the American Statistical Association,
93, 249–261.

[MEM-10]-[81] Carroll, R. J., Maca, J. D., and Ruppert, D. (1999). Nonparametric regres-
sion with errors in covariates. Biometrika, 86, 541–554.

[MEM-11]-[85] Liang, H., Härdle, W., and Carroll, R. J. (1999). Estimation in a semipara-
metric partially linear errors-in-variables model. Annals of Statistics, 27, 1519–1535.

[MEM-12]-[81] Berry, S. A., Carroll, R. J., and Ruppert, D. (2002). Bayesian smoothing
and regression splines for measurement error problems. Journal of the American Statistical
Association, 97, 160–169.

It is both a privilege and a challenge to summarize Ray Carroll’s contributions in
measurement error. Ray literally wrote the book on the topic with coauthors David
Ruppert, Len Stefanski, and Ciprian Crainiceanu (Carroll et al., 2006), and his fin-
gerprints are present in a huge amount of published research on measurement error
over the past 30 years. In addition to the book, Ray has authored or coauthored close
to 100 papers involving measurement error alone, addressing a vast array of prob-
lems. His work covers models from the fairly simple to the very complex with an
emphasis ranging from the relatively applied to the highly theoretical. Our detailed
discussion of Ray’s work concentrates heavily on the twelve papers appearing in this
volume, although this only scratches the surface of his contributions. We first dis-
cuss parametric models ([MEM-1]-[MEM-4] and [MEM-7]-[MEM-9]), then turn
to non-parametric and semi-parametric models including deconvolution problems
([MEM-5],[MEM-6],[MEM-10]-[MEM-11]).

Parametric Models

To put Ray’s early work in context, it is worth setting the stage a bit. Prior to
the early 1980s, measurement error (or “errors-in-variables” as it was known prior
to the 1980s) had attracted a fair amount of attention in both the statistical and
econometrics literature. The focus until then was heavily on linear problems un-
der what is now referred to as classical measurement error (independent additive
error with mean zero and constant variance). Further, the emphasis leaned towards
identifiability issues and correction methods based on knowledge about the mea-
surement error variances (either known or estimated via replication) or assumptions
about functions of them. Carroll et al. (1984 [MEM-1]) and Stefanski and Carroll
(1985 [MEM-2]) are among the earliest papers to expand the treatment of mea-
surement error in a number of practically useful directions, primarily in: (i) moving
away from linear models for the true values and (ii) handling more complex non-
additive measurement error models and accommodating different types of data for
estimation of the measurement error model. Of particular interest at that time was
the treatment of measurement error in predictors in nonlinear models in general, and
binary regression in particular. A good sense of these new directions can be gleaned
from the proceedings of the workshop on errors-in-variables held at the National In-
stitutes of Health (Byar and Gail, 1989) and the AMS-IMS-SIAM conference held
at Humboldt State University (Brown and Fuller, 1990). One of us [JB] had the
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pleasure of attending both of these conferences. Ray was an important presence at
both. His early work during this period, along with coauthors, blazed a number of
new trails.

While measurement error in linear models poses significant challenges (see
Fuller, 1987) the treatment of nonlinear models calls for certain fundamentally
different approaches. Carroll et al. (1984 [MEM-1]), Stefanski and Carroll (1985
[MEM-2]), and later, Carroll, Gail, and Lubin (1993 [MEM-8]) deal explicitly with
binary regression models. By the 1980s these models were in widespread use, espe-
cially in epidemiology, and there was early recognition that mismeasurement in the
predictors could lead to bias in estimated coefficients and associated probabilities.

Motivated by the analysis of data from the Framingham Heart Study, Carroll
et al. (1984 [MEM-1]) address a number of fundamental issues in dealing with er-
ror in the predictors in binary regression, attacking both the question of what the
effects of measurement error are on (so-called naive) methods that ignore it and
looking at how to correct for bias induced by measurement error. The true predic-
tors are assumed normally distributed as are the measurement errors, which also
are assumed to be additive with constant covariance matrix. The paper [MEM-1]
makes use of an “induced” model, i.e., a model for Y given the observed, rather
than the true, predictors. With a logistic model, it is impossible to write down the
exact induced model in a form that is useful. An important insight in [MEM-1] is
that if the original model is probit (which often provides a good approximation to
the logistic), then the induced model is also a probit model with explicit expressions
for the parameters in the induced model in terms of the coefficients in the original
model, the covariance matrix of the measurement error and the mean and covariance
matrix of the true predictors. The yield from this was twofold: (i) an exact expres-
sion for the limiting values (and hence asymptotic bias) of the naive estimators that
ignore the measurement error and (ii) an easy way to correct the naive estimators
for bias. The bias results also show how measurement error in some predictors can
induce bias in the coefficients of other perfectly measured predictors. The corrected
estimators fall under the heading of pseudo-estimators that employ estimates of the
measurement error covariance and the structural parameters obtained from repli-
cation. Inferences were based on the bootstrap, which at the time the paper was
written, was a relatively new methodology.

The 1985 Annals of Statistics paper, Stefanski and Carroll (1985 [MEM-2]), joint
with Len Stefanski and based on Len’s PhD work as a student under Ray, also dealt
with binary regression, but assuming a logistic model for the true values. This pa-
per heads off into some fundamentally new directions, compared to Carroll et al.
(1984 [MEM-1]), for a couple of reasons: (i) the lack of a clean expression for an
induced model in the structural case posed significantly new challenges and (ii) the
desire to address the so-called functional setting where the unobserved predictors
are conditioned on and treated as fixed, an important consideration as it relaxes the
assumption of an overall random sample. This was ground-breaking work, notable
for both the high level of mathematical rigor and the novelty of the approaches taken
in addressing both the behavior of the naive estimators and new strategies for cor-
recting for measurement error. The approach here is in the context of the so-called



4 1 Measurement Error

small measurement error asymptotics, relying on very careful use of expansions
for both the likelihood function (under normal measurement errors) and the cor-
responding naive estimating equations. After a rigorous treatment of asymptotics
for small measurement error, leading to characterization of bias of naive estima-
tors, three correction methods are explored. These were based on: (i) subtracting
an estimate of the approximate bias of the naive estimator; (ii) using an approx-
imate maximum likelihood estimator under normal measurement errors; and (iii)
under normality, finding a sufficient “statistic” � (see the discussion of Stefanski
and Carroll (1987 [MEM-4]) below) so that Y j� follows a logistic model. This
leads to the development of unbiased (nonlinear) estimating equations; i.e., estimat-
ing equations calculated from the observed data that have expected value of zero at
the parameters of the true-data model. With the use of certain approximations, all
three of these approaches, coming from fairly different directions, lead to carrying
out a logistic regression but with the observed/error prone predictors replaced by an
updated/imputed value. These methods are predecessors of regression calibration,
which also uses imputed values, but motivated from yet another perspective. Sim-
ulations provide additional evidence that these estimators greatly improve on the
naive approaches in many situations. Finally, [MEM-2] also touches on the fact that
naive tests for parameters involving perfectly measured predictors may not always
be correct.

Following this initial work on binary regression are two landmark papers Ste-
fanski and Carroll (1987 [MEM-4]) and Carroll and Stefanski (1990 [MEM-7],
extending earlier work in major ways using methods that continue to impact both
applications and methodological research. Stefanski and Carroll (1987 [MEM-4])
extends the sufficient-statistic method in Stefanski and Carroll (1985 [MEM-2]) to
handle additive normal measurement error with a generalized linear model for the
response in terms of the error-free predictors. It modifies the naive estimating equa-
tions to get unbiased estimating equations in three different ways covering both
functional and structural models, and addressing questions of efficiency. As with
Stefanski and Carroll (1985 [MEM-2]), accommodating the functional setting is a
critical contribution. (For consistency of terminology with the rest of this chapter
we refer to the true value as X and the error-prone measure as W , even though
in the original paper U was the true value and X the error-prone measure.) There
are three types of estimators here, all making use of �i D Wi CYi˝ˇ, where ˝
is the covariance matrix of the measurement errors. The quantity �i is referred to
as “parameter-dependent sufficient statistic” in that the distribution of Yi j�i does
not depend on the unobserved Xi . The first part of [MEM-4] treats the functional
case with two related sets of “unbiased” score equations. The first results in what
is called a “sufficiency estimator” while the other, which garnered more attention,
is based on the conditional score approach of Bruce Lindsay, developed for related
problems. This leads to a so-called conditional estimator. The resulting two sets of
estimating equations have common components but differ in one multiplicative fac-
tor. The conditional estimating equations involve an arbitrary function of �, t.�/,
where ideally t.�/ is chosen to obtain efficient estimators. They then turn their atten-
tion to handling the structural model with an unspecified distribution g.�/, for the
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true values. In this setting they are able to characterize unbiased score functions and
lay out efficient corrected scores. The resulting estimating equations are of the same
form as those leading to the conditional estimator but with t.�/DE.X j�/. Details
are provided for the all-important linear, logistic, and Poisson models.

Carroll and Stefanski (1990 [MEM-7]) is among the most influential measure-
ment error papers published. The scope is remarkably broad, providing a very
general framework for attacking measurement error problems. It allows for a rich
class of models for the true values, with E.Y jX/ D fm.X;ˇ/ and V.Y jX/ D
�2vm.X;ˇ;�/, where X contains the true predictors. It also allowed for non-
additive measurement error or Berkson error. At the same time it accommodates
various types of additional data, including combinations of reliability data (involv-
ing replication) and validation data (involving mismeasured and true values), with
either type of data possibly being either internal or external to the main study data.
This work carefully derives approximations for E.Y jW / and V.Y jW /, where the
conditional mean potentially depends on W , ˇ and the measurement error parame-
ters, while the variance may depend on these and the additional variance parameters
(�2 and �). The development of these approximations depends in turn on a model,
exact or approximate, for E.X jW / and V.X jW /. Using the model for E.Y jW /
and V.Y jW / three general approaches to obtaining corrected estimators are given.
The most enduring of these are based on the use of general quasi-likelihood meth-
ods for fitting the model for E.Y jW / taking into account V.Y jW /, in conjunction
with the use of the estimating equations for the measurement error parameters that
arise from the reliability and/or validation data. As this method has evolved it is
often implemented in a pseudo manner, first estimating the measurement error pa-
rameters, substituting them in the model for Y jW and then estimating the remaining
parameters. A special case of this approach is what is now known as regression cali-
bration, developed at around the same time by Gleser (1990) and Rosner, Willett and
Spiegelman (1989) in special settings. Regression calibration runs the naive analysis
after substituting an estimate of E.X jW / in place of the unobserved X . However,
the estimated covariance matrix of the corrected estimates does not simply follow
from the analysis on the imputed values. A general asymptotic theory is developed
here, applicable to regression calibration as a special case. We agree with Ray’s as-
sessment that the more general versions of the quasi-likelihood approach are under-
used. [MEM-7] also presents two additional methods, one based on approximating
the quasi-likelihood estimating equations, which generalized other earlier work by
others, and a second method based on correcting the naive estimator by subtracting
an estimator of the approximate bias.

The 1993 case–control paper by Carroll, Gail, and Lubin (1993 [MEM-8]) is
connected to Ray’s earlier work on logistic regression problems in that the model
for Y jX is still logistic. Here, however, the data arise from a case–control design
involving independent samples from populations with outcome Y D 0 or Y D 1. It
is well known that in the absence of measurement error, data from the case–control
setting can be treated as if it is prospective, at least as far as estimation of the non-
intercept coefficients are concerned. With measurement error, much more attention
needs to be given to the distinctions between the case–control and prospective set-
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tings. Among other considerations, the nature of case–control studies often leads to
differential measurement error as a result of recall bias, while many MEM meth-
ods are built on the assumption of non-differential measurement error. [MEM-8]
is the first to provide a comprehensive look at measurement error in case–control
studies, beyond those that had addressed the problem in highly parametric fash-
ion based on the normal discriminant model and normal measurement errors (e.g.,
Armstrong, Whittemore, and Howe, 1989; Buonaccorsi, 1990). As with a number
of Ray’s other papers this one is notable for its scope. In [MEM-8] the authors take
a likelihood approach based on the retrospective nature of case–control data while
incorporating the prospective logistic model for the outcome given the covariates. It
uses internal validation data in the form of subsamples from the cases and controls
in which the true (X ) as well as the mismeasured (W ) covariates are obtained. This
validation data allow for estimating the distribution of W given X and Y (modeled
in a parametric manner) as well as the distribution ofX within each outcome status.
The latter are estimated nonparametrically using the empirical distribution function
of the Xs from the validation data, computed separately for each outcome status.
In this sense the model is semi-parametric. The use of these empirical distribution
leads to the need for new theory in deriving the asymptotic behavior of the likeli-
hood estimators. They also give attention to the use of external validation data as
well as replication under additive non-differential measurement error. Finally they
address the fact that methods designed for the prospective setting (such as regression
calibration) may encounter trouble in the case–control scenario; see Guolo (2008)
for a recent discussion.

Linear Problems. Some of Ray’s earliest work was on measurement error in lin-
ear models. In addition to Carroll, Gallo, and Gleser (1985 [MEM-3]), related to
earlier work by Carroll and Gallo (1982), his other important contributions include
studying misuse of orthogonal least squares in “errors-in-variables” based on po-
tentially invalid assumptions about the measurement error variances (Carroll and
Ruppert, 1996); and investigating the somewhat under-discussed problem of model
diagnostics in the presence of measurement error (Carroll and Spiegelman, 1992).
The broader context of Carroll, Gallo, and Gleser (1985 [MEM-3] lies in the fact that
measurement error in some predictors often leads to biases in estimated coefficients
and in tests associated with other perfectly measured predictors. This is true of both
linear and nonlinear models. However there are conditions under which inferences
for certain linear combinations of coefficients of perfectly measured predictors are
robust to the measurement error, depending on the correlation structure among the
different predictors involved. One example discussed in the paper is the analysis of
covariance with individuals randomized to treatments, and measurement error in the
covariate; see Carroll (1989) for additional discussion. It is shown that the balance
in covariates arising via the randomization leads to valid inference regarding the
treatment effects. However, [MEM-3] goes quite a bit further. It asks the question
of when the so-called naive estimator is better than an errors-in-variables maximum
likelihood estimator obtained under the assumption that the measurement error is
known up to a proportionality constant. This question is addressed via a comparison
of the asymptotic properties of the two estimators. Further, and more important, it
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is shown that if the condition on the design matrix that leads to robustness of the
naive estimators is incorporated into the model, then the MLE using this informa-
tion along with the assumed structure of the measurement error covariance matrix
is the same as the usual least squares estimator.

Mixed Models. Wang et al. (1998 [MEM-9]), with Wang, Lin, and Gutierrez, is
another great example of Ray’s foundational contributions studying measurement
error in new settings. In 1998 there was a relatively slim literature on measure-
ment error in mixed models, even for the linear case. The paper [MEM-9] jumped
to the general problem with a generalized linear mixed model for the true values,
with an emphasis on additive measurement error for predictors associated with the
fixed effects part of the model. More specifically with i indexing a cluster and j
an observation within a cluster, Yij denoting the response, bi a vector of random
effects, Aij and Zij being known vectors, and Xij a vector of predictors subject
to measurement error, the conditional generalized linear model they consider has
g.E.Yij jXij ;Zij ;Aij ;bi / D ˇ0 CXT

ij ˇX CZT
ijˇZ CAT

ij bi . The Z are treated as
fixed throughout, while the Xs are assumed random with a distribution that may de-
pend onZ. The authors development allows for a general measurement error model
via specification of the distribution of .W jX;Z/, whereW is observed in lieu of X ,
but they later focus on additive errors. Additional variance covariance parameters
enter the model via a parameter � and Cov.bi / D D.�/ and an important consid-
eration in mixed models is that the variance/covariance parameters are themselves
often of interest.

There are three general contributions in [MEM-9]. The most important one is the
analysis of the induced model, with the twofold goal of bias assessment and sug-
gesting correction methods. For standard regression problems, the induced model
frequently is in the same form as the original model, either exactly or approxi-
mately, although there are a number of exceptions to this rule. The mixed model
proved to be much more sensitive. As shown in [MEM-9] the measurement error
often perturbs the structure of the fixed and random effects portions, leading to
model misspecification in both. The key result in Wang et al. (1998 [MEM-9]) is
manifested in their very general equation (6). They follow with a detailed analysis
of a number of special cases illustrating how the general form of the fixed or random
effects part of the model may, or may not, be altered by the measurement error. An
important point here is that the nature of the biases depend on the structure of the
distribution of X jZ, which itself can have a mixed model structure. They provide a
detailed discussion of settings where the Xij are assumed i.i.d., called the homoge-
neous case, or the Xij follow a one-way random effects model with cluster specific
means, called the heterogeneous case. The second contribution of [MEM-9] char-
acterizes the biases that occur when (assuming the measurement error variance is
known) maximum likelihood estimation is used assuming the homogeneous model,
when in fact the heterogeneous model holds. Exact results are given for the lin-
ear mixed model, showing there is still bias in estimators of both the fixed effects
coefficients and the variance estimates. Biases are assessed numerically for the lo-
gistic case because of the absence of a closed-form solution. The final contribution
of [MEM-9] addresses correction methods. The authors first show that in most sit-
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uations the use of regression calibration encounters problems because the induced
model does not retain the same structure as the original model, the exception being
in estimation of the fixed effects coefficients in certain linear mixed models. As an
alternative to regression calibration, SIMEX estimators are proposed, evaluated via
simulation, and illustrated using Framingham Heart Study data.

Non- and Semiparametric Models

Ray made outstanding contributions to nonparametric curve estimation in the
presence of measurement error, in both the density and the regression contexts. Work
by Ray and his coauthors initiated a huge and growing literature on nonparametric
estimation in the presence of measurement error.

His first contributions (separately with Hall and Stefanski) study a nonparamet-
ric kernel density estimator that corrects for the contamination present in the data
(Carroll and Hall, 1988 [MEM-5] and Stefanski and Carroll, 1990 [MEM-6], which
together have attracted nearly 600 citations). In that problem, we observe data on
W (the contaminated observations), but we are interested in estimating the density
fX of X , where W DXCU . Here, U is an unobserved measurement error, but its
density fU is known. Since the density fW of the contaminated data is the convolu-
tion of fX and fU , the consistent kernel density estimator of fX is usually referred
to as the deconvolution kernel density estimator.

Although Carroll and Hall (1988 [MEM-5]) appeared in print first, Stefanski and
Carroll (1990 [MEM-6]) was written first and contains many important results that
have been used extensively by others. It derives the deconvolution kernel density
estimator, calculates its bias, variance, and asymptotic mean integrated squared er-
ror in the Fourier domain, suggests a cross-validation bandwidth, and applies the
method to data from a breast cancer study. Working in the Fourier domain makes
the elegant theory possible and provides the framework for the now well-established
distinction between the ordinary-smooth and the super-smooth errors. Another im-
portant result of [MEM-6] is that, conditionally on the unobserved Xi s, the expec-
tation of the deconvolution kernel density estimator of fX is equal to the standard
kernel density estimator of fX constructed from the Xi s. Together with the Fourier
transform approach, this result turned out to be the key to solving the long-open
problem of developing a local polynomial regression estimator with measurement
errors (Delaigle, Fan, and Carroll, 2009).

Carroll and Hall (1988 [MEM-5]) also contains major results. It was the first to
establish minimax convergence rates of the deconvolution kernel density estima-
tor, and opened the way to a long series of influential papers about nonparametric
density and regression estimators in the measurement error context. In particular,
[MEM-5] showed that the very slow convergence rates of the deconvolution estima-
tor in the case where the errors are normal, are not due to poor performance of the
estimator itself, but are inherent to the difficulty of the problem. In other words, they
showed that it is not possible to construct a nonparametric estimator that has faster
convergence rates than the deconvolution kernel estimator.

Later Ray attacked complex nonparametric regression problems involving mea-
surement errors. Fan and Truong (1993) were the first to extend the deconvolution
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kernel density estimator to the regression context, where the goal is to estimate a
regression curve m.X/D E.Y jX/ from data on .W;Y /, where W D X CU with
X and U independent and the measurement error density fU is known. However,
this estimator suffered from the same slow convergence rates as in the density case,
and no data-driven bandwidth had yet been derived to calculate it in practice. The
idea of Ray and his collaborators was that instead of trying to consistently estimate
a curve that can only be estimated with much difficulty, why not target instead a
curve that is only approximately equal to m.�/, but which is more easily estimated?
This lead to very innovative procedures and a lot of subsequent work by others.

One such approximation method is a nonparametric version of the SIMEX ideas
of Cook and Stefanski (1994). In SIMEX, we learn how measurement error modifies
a target by artificially adding more noise to the data and monitoring the effects. By
learning about the relation between E.Y jW / and E.Y jW C error/, Carroll, Maca
and Ruppert (1999 [MEM-10]) were able to extrapolate back that information to es-
timate the curveE.Y jX/ from a nonparametric estimator ofE.Y jW / (their method
is actually more sophisticated than this). They showed that nonparametric SIMEX
is only consistent if the variance of U tends to zero, but in practice it can give great
results when this variance is not too large. This small variance idea was ingeniously
exploited by Carroll and Hall (2004) to remove the bias of naive kernel estimators,
and was later used by other authors in a variety of different contexts.

The structural regression splines in Carroll, Maca, and Ruppert (1999 [MEM-
10]) improve upon SIMEX. Their idea is to approximatem.�/ by a spline Qm.�/ with
a fixed number of knots, and estimate Qm.�/ (instead of m.�/) from the contaminated
data. Since E.Y jW / is well approximated by E. Qm.X/jW /, the spline coefficients
of Qm.�/ can be estimated by fitting E. Qm.X/jW / to the .Wi ;Yi / data. In practice
this requires estimators of moments of functions of X conditional on W . The dis-
tribution of X jW could be estimated nonparametrically, but because it results in
slow convergence rates they instead make the structural assumption that the distri-
butions of X and W are both normal. Even though this assumption is usually not
exactly satisfied in real data applications, it is often good enough to give reasonable
approximations. There were two drawbacks to this method, though: (i) choosing the
smoothing parameter was too difficult; and (ii) the near orthogonality of the condi-
tional means of the spline basis functions caused numerical instability. To overcome
these difficulties, a Bayesian version of smoothing and regression spline was sug-
gested in Berry, Carroll, and Ruppert (2002 [MEM-12]).

Another influential work was Liang, Härdle, and Carroll (1999 [MEM-11])
wherein the authors show how to consistently estimate partially linear models when
the explanatory variables in the linear part are measured with error. In the error-free
case, Severini and Staniswalis (1994) suggest estimating the nonparametric part as-
suming the parametric part known, then estimate the parameters by least squares,
plugging in the nonparametric estimator. Because this method is not consistent in
case of measurement errors, Liang, Härdle, and Carroll (1999 [MEM-11]) add a
penalty to the least-squares sum to overcome the attenuation effect of measurement
errors.
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Ray made so many other major contributions in extending non- and semiparamet-
ric estimation problems with measurement errors that it is impossible to list them
all here. These include the use of instrumental variables in Carroll et al. (2004), the
development of locally efficient estimators for semiparametric models in Ma and
Carroll (2006), the combination of Berkson and classical errors in nonparametric
regression in Carroll, Delaigle and Hall (2007), the provocative parametric rates in
nonparametric prediction in measurement error models in Carroll, Delaigle and Hall
(2009), and the development of methods for quantile regression in Wei and Carroll
(2009), to cite just a few.
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SUMMARY 

We consider binary regression models when some of the predictors are measured with 
error. For normal measurement errors, structural maximum likelihood estimates are 
considered. We show that if the measurement error is large, the usual estimate of the 
probability of the event in question can be substantially in error, especially for high risk 
groups. In the situation of large measurement error, we investigate a conditional 
maximum likelihood estimator and its properties. 

Some key words: Functional model; Logistic regression; Measurement error; Probit regression; Structural 
model. 

1. INTRODUCTION 

The Framingham Heart Study (Gordon & Kannel, 1968) is a prospective study of the 
development of cardiovascular disease. This study has been the basis for a considerable 
amount of epidemiologic research. For example, there has been considerable emphasis on 
analysing the probability of developing coronary heart disease. Many of the analyses 
have attempted to relate baseline risk factors to the probability of developing heart 
disease; these risk factors include systolic blood pressure, serum cholesterol, etc. Often, 
in the analysis, logistic or probit binary regression is employed. 
It is well known that many baseline risk factors are measured with error; systolic blood 

pressure is a good example (Armitage & Rose, 1966; Rosner & Polk, 1979). One of us was 
asked by a number of investigators whether such measurement errors could sub•
stantially affect the binary regression estimates and, if so, what could be done to correct 
for the measurement error. The present study is an outgrowth of these questions, 
although there are many important practical facets of the problem yet to be 
investigated. 

Michalek & Tripathi (1980) show that ordinary logistic regression will not be too badly 
disturbed by measurement error as long as such error is moderate; see also Ahmed & 
Lachenbruch (1975). While our model is different, our methods provide alternatives to 
ordinary binary regression which will help the experimenter to get a more precise 
understanding of the effect of the measurement errors, especially if they are severe and 
the sample size is large. 
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The model is similar to that of Halperin, Wu & Gordon (1979). We have a sample of N 
persons from a particular population, e.g. males aged 45--54. The ith person in the sample 
is assumed to have a p-vector of baseline risk factors X;, with the probability of 
developing disease given X; taking the form 

pr(Y;=1lx;)=G(x;p) (i=1, ... ,N), (H) 

where G(.) is a known distribution function such as for logistic regression 
G(a) = (1+e-•)-1, and for probit regression G(a) =~(a). Here~(.) is the standard 
normal distribution function. We return to probit regression later, but it is important to 
remember that probit and logistic regression often given similar results (Finney, 1964). 

We partition the risk factors X; into components observed without and with error, so 
that 

x; = (w;, z;), /3' = (/3~, /3~). (1·2) 

In (1·2), the vectors {w;} can be observed at nearly exact levels, while the q-vectors {z;} 
are measured with nontrivial error and cannot be observed; rather, we observe 

(1·3) 

The {u;} are assumed independently and normally distributed with mean zero and 
nonsingular covariance QM· 

When the risk factors {z;} observed with error are unknown constants, we have a 
functional model (Kendall & Stuart, 1979, Chapter 29). In this instance, classical 
maximum likelihood theory does not apply. In fact, even in simple binary regression 
models, the functional maximum likelihood estimate of f3 is not consistent when QM is 
known; details are available from the authors. This is in contrast to linear regression, 
where the functional maximum likelihood estimate is consistent if the ratio of the error 
variances is known or if there is finite replication of the predictors. Consistent and 
asymptotically normal estimates for the functional logistic regression model can be 
constructed when the measurement errors in (1·3) are normally distributed; this work 
will be reported elsewhere. 

In§ 2 we study the structural model, wherein the { z;} are themselves independent with 
common distribution function F, which we will suppose is that of a normal random 
vector with mean Jlz and covariance n �. In effect, we condition on the observed values 
(w;,Z;) and replace (1·1) by pr(Y; = 1lw;,Z;), the probability of an event given the 
observed outcomes; see Armstrong & Oakes (1982) for a similar idea. 

In this paper we present a small Monte Carlo study, as well as the analysis of actual 
data, in which we investigate the effect of measurement error on predicting the 
probability of heart disease on the basis of systolic blood pressure. The major purpose of 
these sections is to illustrate that for large sample sizes and realistically large 
measurement errors, the usual method of ignoring measurement error can be improved. 
This is not to suggest that the conditional estimator will emerge as the standard for 
practical use; this point is discussed in the concluding section. 

As in linear regression, there are at least two good reasons to estimate the error-free 
regression. First, measurement processes may improve, making the errors-in-variables 
estimates more valuable. Second, it can be meaningful to investigate the true regression 
coefficient; see Wu, Ware & Feinleib (1980) for an example of linear regression where the 
errors-in-variables estimates are physically sensible but the least squares estimates are 
not. 
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2. STRUCTURAL CASE: NORMAL DISTRIBUTION 

The model is given by (1-1), (1·2) and (1·3), but in the structural case we eliminate the 
nuisance parameters {z1} by assuming they are independent and normally distributed 
with mean vector Jlz and covariance matrix il,. The error vectors { u1} are also assumed to 
be normal random vectors with mean zero, covariance nM, and independent of one 
another and of { z1}. For the moment, assume Jl., il, and QM are known. Then, except for a 
complicated constant of proportionality, the likelihood of Y1, conditioned on {Z1} and as 
a function of Gin (1-1) is given by 

N 

L(G,p1,p2,nM,JI.,ilz) = n tr•(l-t;) 1 -Y', 
1=1 

(2·1) 

t; = fa{wiP1 +(P2AP2)tv+diAP2} r/J(v)dv, (2·2) 

A= (il,i/ +il; 1 )- 1 , d1 = il; 1 Jt,+ilM-1 Z1 

and r/J( . ) is the standard normal density function. 
In effect, the calculation of the likelihood (2·1) depends only on evaluating (2·2). This is 

no easy matter for the logistic function, although if the number of variables measured 
with error is small, (2·2) can in principle be evaluated by numerical integration. For 
probit regression, (2·2) can be evaluated explicitly: 

t; = ~{(wiP1 +diAP2) (I+P2AP2)-t}. 

Since logistic and pro bit regression often give similar estimates of event probabilities, 
especially for our examples, in the rest of the paper we confine our discussion to pro bit 
regression. 

In most instances, the nuisance parameters Jl., n. and nM will be unknown, although 
one could conceive of setting Jlz = 0 particularly to obtain some shrinkage. Joint 
estimation of these parameters and p through the full conditional likelihood may be 
computationally feasible, although this as well as existence of a sensible maximum for 
the conditional likelihood remains to be explored. An alternative is suggested by the 
work of Gong & Samaniego (1981), which is to·find estimates of Jl., nz and nM, substitute 
them in (2·1) and (2·2) and maximize. An obvious estimate for Jlz is the sample mean of 
the {Z1}, while an estimate fi,M for (il,+ilM) is the sample covariance of {Z1}. A 
common device is to estimate QM by replication. If, for example, each variable subject to 
error is measured twice (Zu, Z;2), then an estimate nM ofilM is the sample covariance of 
!(Z11 - Z12 ). This suggests the estimate 

(2·3) 

where fi,M is the sample covariance of Z1 = t(Z11 + Z12 ). 

Two points relating to the above need to be emphasized. First, as we have proposed it, 
estimating QM requires replication. In linear regression, if the ratio of the error variances 
is known, no such replication is necessary. It is not clear and remains to be seen whether 
direct maximization of the likelihood is computationally feasible and produces consis•
tent and asymptotically normal estimates. A second point is .that (2·3) is not necessarily 
positive-definite, a problem which is similar to that observed for moments estimates in 
variance components problems. In our .applications and perhaps for most examples, N is 
large relative to q, so that fi, will usually be positive-definite. This is no guarantee; 
further work is needed. 
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The covariance matrix of our estimates can be estimated by the bootstrap method 
(Efron, 1979); see §4. Alternatively, one could try to generalize equations (2·5) and (2·6) 
of Gong & Samaniego (1981) and take numerical derivatives. Finally, if maximum 
likelihood is used, one can in principle evaluate the sample information matrix. 

3. RESULTS OF A SIMULATION STUDY 

We performed a small Monte Carlo study for the probit model 

pr(Y1 = Ilz1) = <P(P1 +P2 z1), Zu = z1+uu (j = 1,2; i =I, ... ,N). 

The {z;} and {uu} were generated as independent univariate normal random variables 
with means zero and variances u;, u! respectively. We chose p 1 = -1·40, P2 = 1·34 and 
3u! = u;, with the two values of u; = 0·0833,0·10. The sample sizes were 
N = 300, 600, 1200. For each of the six combinations of (u;, N), we generated 400 
simulated data sets. 

In § 4, we discuss an example which turns out tc be very similar tc one of our 
simulated cases, u; = 0·0833 and N = 600. The other cases were chosen tc be both 
realistic and illustrative. We should emphasize that our experience has been with large 
data sets, and we would not recommend routinely correcting for measurement error for 
small sample sizes. 

The results of the Monte Carlo study are reported in Table 1. From the reported results 
and our other simulations, we can make the following observations. First, usual probit 
regression is, as expected, more biased but less variable than the conditional likelihood 
estimate. Thus, in small samples where variance dominates, the usual pro bit regression 
will be preferred, while in large samples where bias dominates, the conditional likelihood 
approach will be preferred. 

A second point which is not very clear from Table 1 but which occurs cop.sistently 
throughout our more extensive simulations is that, subject tc fixed (p 1 , P2 ) and 3u! = u;, 
as the predictor variance u; increases the conditional likelihood approach to correcting 
for measurement error improves. This phenomenon also occurs if we fix the variances 
(u!, u;) and increase the slope P2 • 

A third point concerns estimating P1 + p2 , which determines the disease probability for 
a very high risk event z1 = 1. Here, the conditional errors-in-variables method is about 
10% more efficient than it is for estimating P1 alone. 

In § 4 we discuss two simple methods which improve upon the conditional likelihood 
approach for errors-in-variables correction by about 10%. Hence for the case N = 600 
and u; = 0·0833, which we know to be relevant, it is possible to get about 19% increase 
in efficiency by correcting for measurement error rather than using ordinary regression. 

4. AN EXAMPLE 

To get some idea of the possible effects of measurement error in a realistic context, we 
considered some of the data from the Framingham Study (Gordon & Kannel, 1968). 
Data used here were on 589 men aged 45-54. Individuals were called diseased cases if 
they developed coronary heart disease within the ten year interval after examination; 56 
were eventually considered to be diseased. We used as our predictor variables not the 
actual systolic blood pressure but rather log{(systolic blood pressure-75)/25}, which 
was originally suggested by Cornfield (1962); these transformed observations appear 
reasonably normally distributed in our data set. 
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Table 1. A Monte Carlo study for the probit regression model 
pr ( Y1 = II z1) = tli(I·34z1-l-40) 

23 

Sample size, N = 300 Sample size, N = 600 
a~= 0·0833 a;= 0·10 a~= (}0833 a;= 0·10 

Pro bit EIV Pro bit EIV Pro bit EIV Pro bit EIV 

Bias PI -0·00 -0·02 0·00 -(}02 0·01 -(}01 0·01 -0·01 
p2 -0·19 (}03 -0·18 0·04 -0·20 0·01 -0·19 0-()2 

Standard PI 0·12 (}13 0·12 0·13 (}08 0·09 0·08 0·09 
deviation p2 0·38 (}48 0·35 0·43 (}25 0·30 (}23 0·29 

P1+P2 0·35 (}43 0·31 (}38 (}22 0·27 0·20 0·25 
10xmean PI 0·15 * (}17 0·15 * 0·18 0-()7 (}08 0·07 0·08 

squared error p2 1·82 * 2·29 1·52 * 1·88 (}98 * (}91 0·90 * (}82 
PI+P2 1·58 1·83 1·28 1-44 (}83 * 0·71 (}75 � (}62 

Eff. PI 86% 84% 88% 86% 
p2 80% 81% 108% 109% 

P1+P2 86% 89% ll8% 121% 

Sample size, N = 1200 
a;= 0·0833 a;= 0·10 

Pro bit EIV Pro bit EIV 

Bias PI (}01 -0·01 0·01 -0·01 
p2 -0·20 0-()1 -0·20 (}02 

Standard PI (}06 (}06 0·06 0·06 
deviation p2 (}17 (}21 0·16 (}20 

PI+P2 0·16 0·19 0·15 0·18 
10xmean PI 0·03 � 0·04 (}03 * 0·04 

squared error p2 0·67 � 0·43 (}65 * (}41 
P1+P2 0·61 * 0·36 0·57 * (}33 

Eff. PI 86% 88% 
p2 155% 155% 

P1+P2 170% 172% 
Values of {z,} normally distributed with mean zero and variance a~. Measurement error variance 
a!= jo-;. Probit, ordinary probit regression; EIV, estimates derived from conditional approach. Eff., 
mean squared error efficiency with respect to ordinary probit regression. * in mean squared error 
rows, difference significant at 1% level by signed rank test. 

Table 2. Framingham data: probit regression, 
pr ( Y1 = II z1) = tli(P 1 + P2 z1) 

Usual Pro bit Usual 
pro bit ElY SBP pro bit 

PI -2·13 -2·40 175 Probability 0·23 
Mean -2·13 -2·41 Mean 0·24 
STD (}22 (}31 STD 0·04 
p2 1·01 1·34 200 P1 +P2z -0·51 
Mean 1·02 1·36 Mean -0·49 
STD (}24 (}34 STD 0·19 
P1 +P2z, SPB = 175 -( }73 -( }54 200 Probability 0·31 
Mean -(}72 -(}53 Mean 0·32 
STD (}14 (}19 STD 0-()7 

Pro bit 
EIV 

0·30 
0·30 
0·06 

-0·24 
-0·23 

0·26 
0·40 
0·41 
0·10 

Y; indicates development of coronary heart disease; Z; = log{(sBP-75)/25}, where 
SBP is true systolic blood pressure. 
Mean, bootstrap; STD, bootstrap standard deviation; EIV, errors-in-variables. 
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Letting the { z;} and { Z;} of § 2 be these transformed observations, we estimated 
a-; = 0·0833, 8'~ = 0·31&;; details of this estimation procedure, which uses method of 
moments and components of variance, are available f:r,:om the authors. The estimates of 
the intercept and slope (/31 , /32 ) for usual pro bit regression and the conditional likelihood 
errors-in-variables method are given in Table 2. Also given are the 'bootstrap' (Efron, 
1979) means and standards deviations of these estimates, where in this case we bootstrap 
by randomly sampling with replacement 589 observations from the original data set, 
estimating a; and a~ and then calculating the bootstrap estimates of (/31 ,/32 ). As 
expected, the usual pro bit regression estimates are attenuated, i.e. have larger intercept 
but smaller slope than the conditional likelihood method, and have smaller standard 
deviations. 

Also of interest is the probability of disease and its inverse for those with very high 
blood pressure. We specifically focused on those whose true systolic blood pressure is 175 
or 200. The estimates from the data, along with bootstrap means and standard 
deviations, are also given in Table 2. One of the basic consequences of the attenuation of 
(/31> /32 ) is that the usual pro bit estimates. of the probability of developing disease will be 
lower than that of the errors-in-variables method, at least for individuals in the highest 
risk groups. Of course, since this is only one data set, we can make no claims that our 
errors-in-variables estimates are closer to the true values that are the usual probit 
estimates, but we believe our answers are physically meaningful. 

5. CONCLUDING REMARKS 

Correcting for measurement error will be worthwhile when the measurement error 
variance and sample size are such that the bias in the usual methods becomes large 
relative to the increased variance due to correction. For the situations we have 
investigated, this means that the sample size must be quite large. Simulations not 
reported here indicate the increased value of correction at a given sample size for 
increasing amounts of measurement error. 

We view the conditional approach as a first step towards developing a useful method 
to correct for measurement error. We harbour no illusion that further work will show 
that the conditional approach is optimal. For example, the mean squared errors for the 
conditional approach given in Table 1 can be easily decreased by approximately 10% by 
one of two methods. The first method is based on a naive shrinkage idea and involves 
replacing d; in (2·2) by d;* = (1-IX) d;+IXZ;, where IX= 25/M and M is the greater of the 
number of events, or N minus the number of events. In an unpublished 1982 North 
Carolina dissertation, R. Clark fixes p,., n. and QM, computes the Bayes estimate of Z; 
given Z;, estimates (p,., 0., QM), and then uses ordinary logistic or pro bit regression on the 
result. For the realistic simulations reported here, the two alternative methods behave 
similarly. When a; is increased by a factor of 3, Clark's alternative method was 1()-15% 
more efficient for N = 300 and about 4% more efficient for N ~ 600; whether such a 
value of a; for a given f3 = 1·34 occurs routinely in practice remains to be seen. It is clear 
that shrinkage and Bayes ideas do improve upon the direct conditional likelihood 
approach, and these ideas should be pursued further. 

Throughout, we have assumed normality. We have performed simulations where the 
predictors are highly skewed, e.g. chi-squared with one degree of freedom. The effect on 
all the errors-in-variables techniques tend to be markedly negative. This is a warning for 
practice and an area requiring further research. 
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In a logistic regression model when covariate.~ are subject to measure•
ment error the naive estimator, obtained by regressing on the observed 
covariates, is asymptotically biased. We introduce a bias-adjusted estimator 
and two a~timators appropriate for normally distributed measurement errors 
-a functional maximum likelihood a~timator and an a~timator which exploits 
the consequences of sufficiency. The four proposals are studied asymptotically 
under conditions which are appropriate when the measurement error is small. 
A small Monte Carlo study illustrates the superiority of the measurement-er•
ror estimators in certain situations. 

1. Introduction and motivation. Logistic regression is the most used form 
of binary regression [see Berkson (1951), Cox (1970), Efron (1975), and Pregibon 
(1981)]. Independent observations (Y;, x;) are observed where (x;) are fixed 
p-vector predictors and (y;) are Bernoulli variates with 

i = 1, ... , n. 

Subject to regularity conditions, the large-sample distribution of the maximum 
likelihood estimator of /30 is approximately normal with mean zero and covari•
ance matrix (1/n)Sn- 1(/30 ), where Sn( ·)is defined for y E RP as 

n 

(1.2) Sn(Y) = n- 1 I:,F(l>(xfy)x;xf, 

Motivation for our paper comes from the Framingham Heart Study (Gordon 
and Kannel, 1968), a prospective study of the development of cardiovascular 
disease. This ongoing investigation has had an important impact on the epide•
miology of heart disease. Much of the analysis is based on the logistic regression 
model with y an indicator of heart disease and x a vector of baseline risk factors 
such as systolic blood pressure, serum cholesterol, smoking, etc. It is well known 
that many of these baseline predictors are measured with substantial error, e.g., 
systolic blood pressure. When a person's "true" blood pressure is defined as a 
long-term average, then individual readings are subject to temporal as well as 
reader-machine variability. In one group of 45-54 year old Framingham males it 
was estimated that one fourth of the observed variability in blood pressure 
readings was due to within-subject variability. The second author was asked by 
some Framingham investigators to assess the impact of such substantial measure-

Received July 1983; revised July 1985. 
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ment error and to suggest alternatives to usual logistic regression which account 
for this error. The present study is an outgrowth of these questions. 

When covariates are measured with error the usual logistic regression estima•
tor of {J 0 is asymptotically biased, [see Clark (1982) and Michalik and Tripathi 
(1980)]. As a consequence of bias there is generally a tendency to underestimate 
the disease probability for high-risk cases and overestimate for low-risk cases; it 
will be said that measurement error attenuates predicted probabilities. Also, bias 
creates a problem with hypothesis testing; in Section 2 it is shown that the usual 
asymptotic tests for individual regression components can have levels different 
than expected. An example of this occurs in an unbalanced two-group analysis of 
covariance where interest lies in testing for treatment effect but the covariable is 
measured with error. 

The severity of these problems depends, of course, on the magnitude of the 
measurement error. In some situations ordinary logistic regression might perform 
satisfactorily. However, when measurement error is substantial, alternative pro•
cedures are necessary. In addition, the availability of techniques which correct for 
measurement error can make clear the need for better measurement, e.g., more 
blood-pressure readings over a period of days. 

In Section 2 our measurement-error model is defined and the asymptotic bias 
in the usual logistic-regression estimator is studied. Section 3 presents some 
alternative estimators; results of a Monte Carlo study are outlined in Section 4; 
proofs of the asymptotic results are given in Section 5. 

Until recently the study of measurement-error models has focused primarily 
on linear models; see the review article by Madansky (1959) and the papers by 
Fuller (1980) and Gieser (1981). Interest in nonlinear models is increasing with 
recent contributions by Prentice (1982), Wolter and Fuller (1982a, 1982b), Carroll, 
Spiegelman, Lan, Bailey, and Abbott (1984), Armstrong (1984), Amemiya (1982), 
and Clark (1982). Of these articles Clark (1982) and Carroll et al. (1984) focus 
specifically on logistic regression. The asymptotic methods employed in this 
paper are similar to those used by Wolter and Fuller (1982a) and Amemiya (1982) 
in their studies of nonlinear functional relationships. 

2. A measurement error model for logistic regression. 

2.1. The nwdel. Our measurement-error model starts with (1.1), but rather 
than observing the p-vector X; we observe 

(2.1) 

In (2.1) ~1/2 is the square root of a symmetric positive semidefinite matrix ~ 
scaled so that 11~11 = 1 and ( e;) are independent and identically distributed 
random vectors with zero mean and identity covariance; also E; is independent of 
Y;, i = 1, ... , n. The scale factor a dictates the magnitude of the measurement 
error, e.g., if X; is a mean of m independent replicate measurements of X; then 
a a: m- 112• The asymptotic theory presented in this paper requires that a --> 0 as 
n --> oo, i.e., large sample, small measurement-error asymptotics. The asymptotics 
are relevant for two situations: (i) when X; is an average of m-independent 
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measurements of X;, in which case the Central Limit Theorem suggests that ( e;) 
should be viewed as normal random variates, and (ii) when measurement error is 
small but nonnegligible. In the latter case the moments of order greater than two 
of ( e;) generally differ from those of a normal variate. 

Our methods of correcting for bias require knowledge of the error covariance 
matrix V ~ o 2 ~. Since this information is seldom available all as;ymptotic results 
are derived for the case in which V is replaced by an estimator V satisfying 

(2.2) 

Condition (2.2) is satisfied, for example, when V is estimated by replication. It is 
convenient to write V = 8 2~ where 8 2 = IIVII and ~ = VfiiVII. Note that (2.2) 
then implies n112(1- 8 2jo 2 ) = Op(1). 

2.2. Thi effects of measurement error. Our investigation starts with a study 
of the estimator obtained by regressing Y; on the observed X;. This estimator, to 
be called /J, maximizes 

n 

(2.3) Ln('y) ~ n- 1 L {y;Iog F( cfy) +(1- y;)log F( -cfy)} 
1 

and satisfies 
n 

{2.4) L(Y;- F(cfP))c; = 0, 
1 

when c; = X;, i = 1, ... , n. Our interest lies in the behavior of p as max( o, n - 1) 
--> 0. In addition to assumptions on the errors E;, some design conditions are 
necessary to insure weak consistency of p. We shall work with the following 
assumptions where II · II denotes the Euclidean norm: 

(C1) Gn(Y) converges pointwise to a function G(y) possessing a unique maxi•
mum at P0 , where Gn( ·) is defined as 

n 

Gn( y) ~ n- 1 L { F(xTPo)log F( xfy) + F( -xTPo)log F( -xfy)}; 
1 

n 

(C2) L(llx;ll)2 = o(n2 ); 

1 

(C3) E(lle111) < oo. 
The condition (C1) is an assumption of convenience since for each n, Gn( ·) is 
concave with a maximum at Po· Weaker conditions could thus be employed by 
studying subsequences of Gi ·) [see Theorem 10.9, Rockafellar (1970)]. 

Consistency of Pis proved in Theorem 5.1. This result is necessary to establish 
the following asymptotic expansion which is crucial to our investigation. Theo•
rem 1 gives conditions such that 

/J =Po+ n- 112S;; 1(fJo)Zn 

+o 2S;;1(fJo){Jn,1 + Jn,2)fJo + oP(max(o 2 , n- 1/ 2 )), 
(2.5) 
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where 
n 

Zn = n- 112L(Y;- F(xTPo})x; 
I 

n 

Jn, 1 = - (2n) -I :EP< 2l(xT/30 }x;PJ'!. 
I 

n 
J = -n-I"F(Il(xTIJ }!. 
n,2 £..J ,tJo � 

I 

THEOREM 1. (Asymptotic expansion of /3). Assume that /3 is a consistent 
estimator of Po satisfying (2.4). Also assume: 

(A1) There exists a positive definite matrix M, 8 > 0 and N0 < oo, such that 
Sn( y) ~ M whenever n ~ N0 and \IY - Poll 5 8; 

(A2) n- 1E~IIx;ll 2 --> x 2 < oo, max1 <i<n11X;\I = o(a- 2 ); 

(A3) E(e1) = 0, E(e1ef) =I, E(\leJI 2+a) < oo for some a> 0. 
Then /3 has the expansion given in (2.5). 

Note that the first part of (A2) implies maxL,;i,;niiX;\1 = o(n112 ). This fact is 
used repeatedly in the proofs in Section 5. Assumptions (A1) and (A2) are 
sufficient to prove asymptotic normality for S;;li2(P0 )Zn by using the 
Cramer-Wold device (Billingsley, 1979, Theorem 29.4) and appealing to Proposi•
tion 5.3.2 of Laha and Rohat~ (1979). Thus Theorem 1 indicates that with 
A = n11 2a 2 , we can expect n112(P- Po) to be approximately normally distributed 
with mean AS;; 1(P0 )( Jn 1 + Jn 2 )P0 and covariance S;; 1(P0 ), when n is large and 
a is small. When X; is 'a melffi. of m replicates, a 2 o:: m- 1 and A describes the 
relationship between the sample size and the rate of replication. The asymptotic 
bias obviously decreases with increasing replication. 

We can use expansion (2.5) to construct a corrected estimator, Pc• which has 
smaller asymptotic bias. Before doing so we comment on the problems with /3 
alluded to in the introduction. 

BIAS AND A'ITENUATION. Consider simple logistic regression through the 
origin with Po > 0. One expects to see attenuation, i.e., a negative first-order bias 
term. For most designs this is true. Somewhat surprisingly and completely at 
odds with the linear regression case, S;; 1(Po)(Jn I+ Jn 2)flo can be positive. One 
design in which this occurs arises when most c~ses ha've very high or very low 
risk, i.e., lxfPol is large for most i. 

HYPOTHESIS TESTING. Consider a two-group analysis of covariance, xT = 
(1, ( -1);, d;), Po = (p0 , P1, P2 ). The covariance d; is measured with error having 
variance a 2• Often interest lies in testing hypotheses about the treatment effect 
{3 1 � A standard method to test {3 1 = 0 is to compute its logistic regression 
estimate compared to the usual estimate of its asymptotic standard error. When 
the asymptotics of Theorem 1 are relevant and n11 2a -->A > 0, this test ap•
proaches its nominal level only if the second component of sn- 1(Po)( Jn,l + Jn,2)Po 
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approaches zero. Letting s2 denote the second row of 8;; 1(/30 ) this is achieved 
only if 

n 
n-1" sTx.F<2l(xTa )a2a2--> 0 L.. 2 , ,Po 1-'2 • 

1 

This will not hold in the common epidemiologic situation in which the true 
covariables are not balanced across the two treatments. Thus, when substantial 
measurement error occurs in a nonrandomized study, there will be bias in the 
asymptotic levels of the usual tests. 

3. Accounting for measurement error. In this section three alternative 
approaches to estimatation are studied. The first is based on expansion (2.5) and 
is distribution free in the sense that only moment assumptions are made about 
the measurement errors. The second two methods are based on an assumption of 
normally distributed errors; their asymptotic properties are then studied under 
more general conditions. 

3.1. Adjusting for bias in p. Write bn = sn- 1(/30 )(Jn, 1 + Jn, 2 )/30 and bn = 
s;; 1(P)< Jn 1 + Jn 2 )P. where 

n 

sn('r) = n- 1LF(l)(xt-r)xixt 
1 

n 

(3.1) Jn,1 = -(2n)- 1 LF<2l(Xth}xipr~. 

n 
J = -n-1 "pOl(XTh)~· 

n,2 L., l fJ ' 
1 

bn depends only on the observed data and, under the conditions of Theorem 1 
and (2.2), approximates bn in the sense that bn- bn = op(1) as min(n, a- 1)--> oo. 
This result suggests that the bias-corrected estimator Pc ~ s -a 2bn should have 
smaller asymptotic bias for large n and small a. We state these results as a 
theorem. 

THEOREM 2. Assume the conditions of Theorem 1 and (2.2). Then Pc is 
consistent and 

Pc = f3o + n - 1128;; 1(/30 )Zn + oP(max( a 2 , n - 11 2 ) ). 

REMARKS. Theorem 2 follows from Theorems 5.1 and 5.2 which are proved 
using the following characterization of Pc· Note that Pc =(I- o2Bn)P where 
Bn = S;; 1(P)( Jn,l + Jn,2). Since xrs = xru- o2Bn)- 1Pc it follows that Pc 
maximizes (2.3) when ci =xi, c• defined as 

( ) A X A2(J A2BAr)-1f'.rx 3.2 Xi, c = i + a - (J n Dn i• 

In this sen8e fie is a type of two-stage estimator obtained by doing logistic 
regression with xi,c replacing xi. 
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The estimator Pc is not unbiased just less biased. The Monte Carlo study of 
Section 4 shows that in realistic sampling situations the reduction in bias can be 
substantial. 

3.2. Normal measurement error. When measurement error is present there is 
an added source of variability which is not accounted for by model (1.1). We now 
expand this model by assuming that (ei) are normally distributed, an assumption 
which is not unreasonable in some situations. The log-likelihood for estimating Po 
and x 1, � � � , xn is then 

n 

(3.3) 
L { Yilog( F( xfP)) + (1 - y;)log( F( -xTP)) 
I 

-(2o 2 )- 1(Xi- x;)T};- 1(Xi- x;)}. 

The vectors i'J 1 , ci maximizing (3.3) satisfy 
n 

L(Yi- F( cfi31 ))ci = o 
I 

i = 1, ... , n. 

There are two problems with this estimator-it depends on the unknown matrix 
a 2}; and solving for #1 _and ( ci) is difficult. For these reasons we suggest an 
approximate version of p1. Noting the form of ci we let 

(3.4) A ( ( T,A))A2AA xi,/= Xi + Yi - F Xi p a };p 
and define /31 as the estimator obtained by maximizing (2.3) with ci = i\ 1 ; /31 is 
consistent and has an asymptotic expansion given in the next theorem. The 
assumption of normal errors is not necessary for Theorem 3. 

THEOREM 3. Assume the conditions of Theorem 1 and (2.2). Then /31 is 
consistent and 

REMARKS. A comparison of (2.5) and (3.5) indicates that our approximate 
functional maximum likelihood estimator, /31, and the uncorrected estimator, /3, 
have first-order biases of the same magnitude. It can be shown (Stefanski, 1983) 
that the bias term in /31 is not due to our one-step modification nor to use of V in 
place of V, i.e., when V is known the full functional maximum likelihood 
estimator, #1, also has the expansion given in (3.5) even in the case of simple 
logistic regression. This is in contrast to linear regression where, if the ratio of 
error variances is known or if there is finite replication of the predictors, the 
functional maximum likelihood estimator is consistent. 

Our final estimator starts with an assumption of normal errors and exploits 
the consequences of sufficiency. Given o 2 } ; and P0 , a sufficient statistic for 
estimating xi is ci(p0 ) =Xi+ o 2(yi- 1)};p0 • It follows that the distribution of 
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Y; given c;(P0 ) does not depend on X;. The reason for using this particular 
sufficient statistic is that 

(3.6) 

and hence the score equation 
n 

(3.7) E(Y;- F(cf(P)P))c;(P) = o 

is unbiased for Po· The conditional probability (3.6) also suggests another ap•
proach-replace C; by c;(Y) in (2.3) and maximize the resulting expression as a 
function of y. However, a simple calculation indicates that the resulting score 
equation is not unbiased for P0 , thus we will confine our attention to (3.7). 

Equation (3.7) can have multiple solutions not all which produce a consistent 
sequence of estimators. Since c;(P) also depends on the unknown matrix a 2~, we 
propose the following modification: Let 

(3.8) xi,s =X;+ 82(Y;- H±h 
and define ft •. the sufficiency estimator, as the maximizer of (2.3) when c; is 
replaced by X; s· This estimator is consistent and has the expansion given in the 
next theorem.' 

THEOREM 4. Assume the conditions of Theorem 1 and (2.2). Then P. is 
consistent and 

(3.9) 

REMARKS 1. Theorem 4 does not require the assumption of normal measure•
ment error. Also, P can be replaced by any consistent estimator in the definition 
of X; •. The effects of nonnormal measurement error and our particular choice of 
X;, s 'become apparent only when P. is expanded through terms of order 
max2( a2 , n- 112 ). This analysis is lengthy and is not presented here [see Stefanski 
(1983)). 

2. It is possible to define a sufficiency estimator for a large class of measure•
ment-error models. In particular, we have in mind the generalized linear models 
with canonical link functions (McCullagh and Neider, 1983). A complete exposi•
tion of this theory will appear elsewhere. 

In the discussion following Theorem 1, it was noted that n 112 (P- {:J0 ) is 
asymptotically normal with nonzero mean provided n 112a 2 - > A. It follows from 
Theorems 2 and 4 that both n 112(Pc- Po) and nl!2(P.- {:J0 ) are asymptotically 
normal with zero means under the same conditions. Furthermore, it can be shown 
that for Pc and ft. asymptotic normality is obtained under the weaker condition 
n 112a 4 ->A [see Stefanski (1983) for details]. 

In the next section results from a small Monte Carlo study are presented. 

4. Monte Carlo. We conducted a small simulation experiment to determine 
the relative merits of the four estimators p, Pc, p1, and ft.. The model for the 
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study was 

(4.1) Pr{yi =lid;}= F(a + f3di), 

where F( ·) is defined in (1.1). 

i = 1, ... , n, 

As our estimators are derived for the functional case, one possible Monte Carlo 
study would have consisted of generating for fixed ( d 1, � � � , dn) a sequence of 
response vectors ( y 1 , � � � , Yn) according to (4.1), and a sequence of measurement•
error vectors. This would allow evaluation of the estimators' performance for the 
particular design ( dp ... , dn). However, several different designs would have to 
be studied in order to obtain a useful overall measure of performance. We opted 
instead for a study in which at each step the design ( dp ... , dn) is generated at 
random and, in turn, a single response vector and measurement-error vector are 
generated. After a number of such steps are completed, the overall performance 
of the estimators is investigated [c.f. Olkin, Petkau, and Zidek (1981) and 
Dempster, Schatzoff, and Wermuth (1977)]. We believe this approach better 
indicates the estimators' performance in a wide variety of settings. 

We considered these sampling situations where x~ denotes a chi-squared 
random variable with one degree of freedom: 

(I) (a,/3) = (-1.4,1.4), (dJ- Normal(O,oJ); 

(II) (a,/3)=(-1.4,1.4), (di)-oAx~-1)//2; 
where, 

aJ = 0.10, n = 300,600. 
For each case, we considered two sampling distributions for the measurement 

errors: (a) Normal(O, r 2 ) and (b) a contaminated normal distribution, which is 
Normal(O, r 2 ) with probability 0.90 and Normal(O, 25r 2 ) with probability 0.10. 
For both cases, r 2 was one third the variance of the true predictors ( r 2 = oJ/3). 

We believe these two sampling situations are realistic, but their representative•
ness is limited by the size of our study. The sample sizes n = 300,600 may seem 
large, but our primary interest is in larger epidemiologic studies where such 
sample sizes are common. For example, Clark (1982) was motivated by a study 
with n = 2580, Hauck (1983) quotes a partially completed study with n 2 340, 
and we have analyzed Framingham data for males aged 45-54 with n = 589. In 
addition, for the particular designs in our study, the unconditional probability of 
response (y = 1) is only about 0.10. As in the case of Bernoulli trials, an 
estimator's variance decreases more like ljnp(l - p) than ljn and for this 
reason np(l - p) is sometimes called the effective sample size. In our study the 
effective sample sizes are only about 30 and 60 respectively. Furthermore, the 
results of the study suggest that correcting for measurement error when 
the effective sample size is small is unwarranted, except possibly when measure•
ment error is larger than what we have studied. 

The values of the predictor variance al and the normal measurement error 
variance r 2 are similar to those found in the Framingham cohort mentioned in 
the previous paragraph when the predictor was loge{(systolic blood pressure-
75)/3}, a standard transformation. The choice of (a, /3) comes from Framingham 
data as well. All experiments were repeated 100 times. 
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In each experiment, we sampled two independent measurements (Di 1, Di 2 ) of 
• - T - ' ' 

each di; the observed cov~ate was Xi= (1, Di) , where Di = (Di,r + Di, 2 )/2. 
Thus a 2, the variance of Di, was equal to (1/6)aJ for the case of normal 
measurement error while for the contaminated normal error distribution a 2 = 

(3.4j6)aJ. The matrix a 2I has only one nonzero entry which was estimated by 
the sample variance of (Di 1 - Di 2)/2. 

In addition to the four ~timators presented in this paper, we included in the 
study a proposal due to Clark (1982). She suggests the estimator P N obtained by 
maximizing (2.3) when ci is replaced by xi N =xi- 8 2~~i 1(Xi- p.) where p. 
and ~ x are the sample mean and covariance 'of the observed data. Motivation for 
this estimator derives from an assumption of normal errors and normal covariates 
xi. In this case E(xiiX;) =Xi- a 2IIi1(Xi- p.) and hence xi,n is a natural 
estimator of xi. Theorems 5.1 and 5.2 can be used to prove consistency and derive 
an asymptotic expansion for this estimator. Like P and p1, PN has a nonzero 
first-order bias although it is too lengthy to present here. 

Sweeping conclusions cannot be made from such a small study. However, we 
can make the following qualitative suggestions. First P is less variable but more 
biased than the others. Sample sizes such as n = 600 as in the study or Clark's 
n = 2580 are such that bias dominates and hence are candidates for using 
corrected estimators. An opposite conclusion holds for small sample sizes where 
variance dominates. A second suggestion from Table 1 is that when Var(p) is 
small relative to its bias [Case I(b), II(b), and when n = 600], the corrected 
estimators perform quite well. 

Both Ps and P1 were defined via an assumption of normal errors yet they also 
performed well when the errors were contaminated normal [Cases I(b), II(b)]. 
Clark's estimator proved to be sensitive to the assumption of normal covariates; 
P N performed very well in our study when the predictors were normally distrib•
uted, but it did have a noticeable drop in efficiency when the predictors were 
highly skewed (Case II). Finally, the corrected estimator Pc, which was derived 
with no distributional assumptions for either the predictors or errors, performed 
well throughout the study. 

In summa!y, the Monte Carlo results s'!ggest that the estimators Pc, p1, fis, 
and Clark's PN are useful alternatives toP when covariates are measured with 
error. The pressing practical problem now appears to be how to delineate those 
situations in which ordinary logistic regression should be corrected for its bias. 
Studies of inference and more detailed comparisons of alternative estimators will 
be enhanced by the identification of those problems where measurement error 
severely affects the usual estimation and inference. 

5. Proofs of theorems. Consider the estimator /J obtained by maximizing 
(2.3) when ci is replaced with xi where 

(5.1) 

In Theorem 5.1 we prove weak consistency of /J under conditions (C1), (C2), (C3), 
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TABLE 1 

Results from our Monte Carlo study of the simple logistic regression model Pr{y, = lid;) = F( a + 
{3d,). Observed covariates are X,= (l,D)T where D, ~~the mean of two independent measurements 
of d,. The normal measurement errors have variance oJ I 3; the contaminated normal errors have 
distribution function G(x) = 0.9<P(x IT) + 0.1 <P(x / 5T) and variance (3.4 I 3)oJ. "Efficiency" refers to 
mean-squared error efficiency with respect to ordinary logistic regression. 

~. 

CASE I( a). (a, /3) = ( -1.4, 1.4), ( d,)- N(O, oJ = 0.1), normal measurement error. 
n = 300 Bias - 0.21 - 0.04 - 0.05 - 0.02 - 0.06 

Std. Dev. 0.52 0.61 0.61 0.61 0.60 
Efficiency 100%* 85% 85% 84% 88% 

n = 600 Bias -0.22 -0.05 -0.05 -0.02 -0.06 
Std. Dev. 0.33 0.38 0.38 0.38 0.38 
Efficiency 100%* 108% 106% 107% 108% 

CASE I(b). Same as Case I( a) but measurement errors have the contaminated normal distribution. 

n = 300Bias -0.49 -0.16 -0.19 0.02 -0.20 
Std. Dev. 0.34 0.48 0.48 0.54 0.46 
Efficiency 100%* 143% 139% 121% 143% 

n = 600 Bias -0.53 -0.20 -0.21 -0.03 -0.22 
Std. Dev. 0.24 0.33 0.34 0.38 0.33 
Efficiency 100%* 223% 215% 234% 216% 

CASE II( a). (a, {3) = ( -1.4, 1.4), ( d;) - od(Xf - 1)1/2, oJ = 0.1, normal measurement error. 

n = 300 Bias -0.28 -0.05 -O.o7 0.10 -0.08 
Std. Dev. 0.47 0.58 0.57 0.66 0.56 
Efficiency 100%* 90% 91% 69% 93% 

n = 600 Bias - 0.27 - 0.03 - 0.04 0.11 - 0.05 
Std. Dev. 0.33 0.41 0.41 0.45 0.40 
Efficiency 100%* 111% 110% 85% 112% 

CASE II(b). Same as Case II( a) but measurement errors have the contaminated normal distribution. 

n = 300 Bias -0.43 -0.13 -0.15 0.12 -0.17 
Std. Dev. 0.33 0.44 0.45 0.53 0.43 
Efficiency 100%* 141% 134% 103% 141% 

n = 600 Bias -0.46 -0.15 -0.16 0.10 -0.18 

Std. Dev. 0.25 0.33 0.34 0.40 0.33 
Efficiency 100% * 201% 190% 159% 194% 

*By definition. 

and 

n 

(Pl) Ltlginll 2 = Op(n). 
1 

In Theorem 5.2 an asymptotic expansion for j3 is given. The consistency and 
asymptotic expansions of fi, fie, i)1, and iJ. follow from these general results by 
noting that· X;, xi, c• xi, 1, and xi,s all have the representation given in (5.1). We 
remind the reader that all the asymptotic expressions hold as max( a, n -l) -> 0. 
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THEOREM 5.1 (Consistency). Assume (C1}, (C2}, (C3}, and (P1}, then p- /30 

= op(1). 

PROOF. Define Ln("Y) to be the function obtained by taking c; =X; in (2.3). 
The identity log(F(t)/(1- F(t))) =tis used to show Ln("Y)- Gn("Y) = Rn, 1 + 
Rn, 2 , where 

n 

Rn, 1 = n- 1 L(Y;- F(x[/30 ))xfy 
1 
n 

Rn, 2 = n- 1 L{Y;(xfy- xfy) + logF( -.ify) -logF( -xfy)}. 
1 

Under (C2}, Rn 1 has mean zero and asymptotically negligible variance, and by 
(C3) and (P1}, ' 

n 

11Rn,211 :S: 2allylln- 1 LIIV; + aginll = op(1). 
1 

Consequently (C1) implies that Ln< ·)converges pointwise in probability toG(·). 
An appeal to Corollary II.2 of Andersen and Gill (1982) concludes the proof. 

The consistency results follow by applying Theorem 5.1 first to {3, (gin= 0) 
and then to Pc, /31, and f3s. Next we derive the asymptotic expansions for these 
estimators. 

THEOREM 5.2 (Asymptotic expansion). Assume (P1) and the conditions of 
Theorem 1, then 

P = /30 + n-lf2S;; 1(/3o)Zn + 0' 2S;; 1(/3o){(Jn,1 + Jn,2)/3o + bn,3 + bn,4} 

+oP(max(a 2, n-lf2)), 

where 
n 

bn,3 = n- 1 L(Y;- F(xff3o))gin• 
1 

n 

bn,4 = -n- 1 LF(1l(xff30 )x;gl',./30 , 

1 

where Sn( ·) is given in (1.2}, and Zn, Jn, 1, and Jn, 2 are defined in (2.5). 

Theorem 5.2 is proved with a series of lemmas. First we show how Theorems 
1-4 follow as corollaries. Theorem 1 is immediate since gin== 0 for /3. For Pc, 
gin= (B 2/a 2 } (I- B 2B~)- 1B;!'X; where hn = sn- 1<P><Jn 1 + Jn 2 ). Assumptions 
(A2), (A3}, Lemma 5.1, and (2.2) imply bn,a = op(1), and ' ' 

n 

-b _ -l"'F<ll( Ta) XTBA (I- A29. )-la n,4 - n t- X;f'o X; i n 0' .On f'O 
1 

= Sn(f3o)Bnf3o + op(1) 

= ( Jn,l + Jn,2)f3o + op{1), 

thus proving Theorem 2. 
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For /J1, gin= (8 2j0' 2)(Y;- F(Xt/J))~/J and (A2), (A3), Lemma 5.1, and (2.2) 
imply bn, 4 = op(1), and 

n 

bn,3 = n- 1 L(Yi- F(xTf3o))2"'2.f3o + op(1) 
I 

= -Jn.2Po + op(1). 

Theorem 3 follows. Finally for fis, Cin = (8 2/0' 2 )(Y;- !)~/J. (A2), (A3), Lemma 
5.1, and (2.2) imply 

n 

bn,a = n- 1 L(Y;- F(xf[30 )}(Y;- !)"'2.{30 + op(1) 
I 

= -Jn,2Po + op(1) 
n 

bn, 4 = -n- 1 L:F(!>(xf[30 )(yi- !)xif3J'"'2.[30 + oP(1) 
I 

n 

= -n- 1 L:F<1>(xf[30 )(F(xf[30 )- !}x;f3J'"'2.[30 + op(1) 
I 

= -Jn, 1{30 + op(1). 

In the last step we use the identity F<2>(t) = F<1>(t)(1- 2F(t)). This proves 
Theorem 4. Notice that in deriving these results we used only the fact that 
/J- {30 = op(1). Thus the conclusions of theorems 3 and 4 remain unchanged if /J 
is replaced by any other consistent estimator in the definitions of X;, 1 and X;, s· 

In particular, this can be shown to imply that the fully iterated versions of the 
functional and sufficiency estimators (provided consistent versions are chosen) 
also satisfy Theorems 3 and 4, respectively (Stefanski, 1983). 

The proof of Theorem 5.2 starts with the following weak law. 

LEMMA 5.1. Let u 1, u2 , ••• be independent random vectors such that E(u;) = 
0 for all i, and E(iu;l+"') ~ B for all i andj, and some a> 0 and B < oo, 
where U; j is thejth element of U;. If I:?la;l = O(n) and max1 ,;; ;,;; n<lail/n) = o(1) 
then n- 1I:fa;u; = op(1). 

PROOF. The proof of the lemma entails a routine verification of the assump•
tions of Theorem 5.2.3 (Chung, 1974) and is not given here. 

LEMMA 5.2. Under the conditions of Theorem 1, 
n 

n- 1 L(Y;- F(Xtf30 ))X; = n-1/ 2Zn + 0' 2(Jn,I + Jn, 2){30 + oP(max(0' 2 , n-1/2 )). 

I 

PROOF. n- 1Lf(Y;- F(Xtf30 ))X; = Tn,! + Tn, 2, where 
n 

Tn,! = n- 1 L(Y;- F(Xtf30 ))x;, 
I 

n 

Tn, 2 = O'n- 1 L(Y;- F(X{f30 )}v;. 
I 
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A Taylor series expansion of F( ·) shows that 

where 
Tn,1 = n- 112Zn + tJ 2Jn,1Po + n- 112Qn,1,a + G2(Dn,1 + Rn,1), 

n 
Q = -Gn-112~ F<1>(xTa )vTa X· 

n,l, a ~ r,PO 1.fiO " 
1 
n 

Dn. i = - (2n) - 1 L {F<2>( xfp0 )( ( vfPo)2 - PJ"2.Po )x;} 
I 

n 

Rn, 1 = - (2n) - 1 L ( F<2>( X[P0 ) - F<2>( xfp0 ) }( vfp0 ) 2 X;, 
1 

1347 

and X; is on the line segment joining X; to X;. Qn, 1,a has mean zero and 
asymptotically negligible variance thus n - 112Q n, 1, a = op( n - 1/ 2 ). Assumptions 
(A2) and (A3) and Lemma 5.1 are used to show Dn, 1 = op(1). Also note that 

n 

11Rn, 111 :5: (2n)-1LIIX;II( vfp0 ) 2min(1, tJjvff30 1) :5: AnA~. 
. I 

where 

Assumptions (A2) and (A3) and Lemma 5.1 imply An = Op(1) while (A3), the 
fact that max( n- \ tJ) - 0, and the Dominated Convergence Theorem imply 
A~ = op(1). It follows that tJ 2(Dn, 1 + Rn, 1 ) = op(G 2). Combining these results we 
get 

(5.2) T = n- 112Z + tJ 2J a + o (max(G 2 n- 112)) n, I n n, !PO p ' • 

Another Taylor series expansion of F( ·) shows that 

where 
n 

Qn,2,a = tJn- 112 L(Y;- F(xTPo))v; 
I 

n 

Dn,2 = -n-1 l:F(l>(xfp0 )( v;vT- "2.)!30 
1 

n 

Rn, 2 = - n- 1 L ( F(l>( X[P0 ) - F(l)("xfPo))v;vff3o, 
1 

and X; lies on the line segment joining X; to X;. Qn, 2,a, Dn, 2 and Rn, 2 are all 
op(1 ), and the proofs are analogous to those for Q n,I, a• Dn,I• and R n, 1, respec•
tively. Consequently, 

(5.3) Tn, 2 = tJ2Jn,2P0 + oP(max(tJ 2, n-112)). 

Combining (5.2) and (5.3) completes the proof of the lemma. 



32

1348 STEFANSKI AND CARROLL 

LEMMA 5.3. Assume the conditions of Theorem 1 and (P1) and define 
Hn('y) = n- 1Ef(Y;- F(xfy))i;. Then 

fin(Po) = n-1!2zn + a2((Jn,1 + Jn,2)f3o + bn,3 + bn,4) + oP(max(a2, n-1/2)). 

PROOF. fin<Po) = wn,1 + wn,2 + wn,3 + W,.,4• where 
n 

Wn, 1 = n- 1L(Y;- F(XtPo))X;, 
1 

n 

W,., 2 = an- 1L,(F(XtPo)- F(xfPo))(v; + agin), 
1 

n 

Wn,a = a2n-1L(Y;- F(Xtf3o))gin• 
1 

n 

Wn,4 = n- 1L,(F(Xtf3o)- F(xTPo))x;. 
1 

Note that in light of (A2) and (P1) 

Also, 

n 

IIWn,2ll ;5; <J 2n- 1 Lllginll(llv;ll + allginll) = oP(a 2). 
1 

n 

iiWn,3- a2bn,a11 ;S; <J 2n- 1 L jF(xTPo)- F( XtPo) l11gin11 
1 

n 

;S; ll/3olla 3n - 1 Lllv;llllginll 
1 

;S; 11Polla3 ( n- 1 ~llv;ll 2 ) 1/
2
( n- 1 ~llgin11 2 ) 112 

= oP(a2), 

using (A3) and (P1). One term in a Taylor series expansion of F( ·) and Lemma 
5.1, (A2), and (P1) show that 

n 

11Wn,4- <J 2bn,411 ;5; <J 2II/3oll 2n-1L,(allv;ll + <J 2IIginll)llx;llllgin11 
1 

;S; a 211Poll 2{ an- 1 ~llv;llllx;llllg;nll + <J 2n-1 ~llx;llllgin11 2} 

{ ( n )112( n )112 
;S; <J 211/3oll 2 a n- 1 ~llv;II 2 IIX;II 2 n- 1 ~llg;nll 2 

+a 2( ~x llx;ll)n-1 f:Ug;nll 2} 
1 ,;;1,;;n 1 
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An expansion for W,. 1 is given in Lemma 5.2. Combining the above results proves 
the lemma. ' 

Define 
n 

sn('y) = n- 1 L,F(l)(xfr)x;xf 
1 

and note that 

(5.4) 

where fin(·) is defined in Lemma 5.3. 

LEM!'.!_A 5.4. Corulitions (A2), (A3), and SPl) imply Sn(j j )- Sn(jj) = op(l) 
for any P on the line segment joining Po and p. 

PROOF. Sn(jj)- Sn(jj) = Hn, 1 + Hn, 2, where 
n 

H = n-1 "'p<1l(xTiil(x.xr- x.xr) 
n,l J...., ,pI ' z ' ' ' 

1 

n 

Hn, 2 = n- 1 L { F< 1l(xffll-F< 1l(xfif) }x;xf. 
1 

The boundedness of F(ll( ·) and some elementary inequalities are used to show 
n 

i!Hn)i ~ n- 1 L(211xil!llov; + 0 2gin11 + !lov; + 0 2gin11 2) 
1 

~ 2( n-1 ~IIX;II2) 1/2( n-1 ~ilovi + a2ginil2) 1/2 + n-1 ~llovi + o2gin112· 

Assumption (A2) implies n- 1I:fllxi11 2 = Op(l) and (A3) and (Pl) imply n- 1I:fllovi 
+ o2gin11 2 = op(l). Thus 11Hn, 1 11 = op(l) as min( o-r, n)--> oo. A Taylor series 
expansion of F< 1l( ·) and the boundedness of F< 2l( ·) are used to show 

Assumption (A2) and Lemma 5.1 imply n- 1I:fllvi1111xill 2 = Op(l), and (A2) and 
(Pl) imply that the second term in (5.5) is op(l). Thus 11Hn, 2 11 = op(l) as 
min( o- \ n) --> oo and the proof is complete. 

LEMMA 5.5. Assume (Pl) and the conditions of Theorem 1, then 

[3- Po= op(max(o 2 , n- 112 )). 

PROOF. Let fin(·) be the function defined in Lemma 5.3. Consider the 



34

1350 STEFANSKI AND CARROLL 

real-valued function of y defined as Jn(Y) = fiJ(y)(/3- /30 ). The Mean Value 
Theorem proves the existence of some j j on the line segment joining /3 to /30 such 
that 

fiJ(f3o)(/3- f3o) = (/3- f3o)TSn(jj)(j3- f3o), 

where Sn( ·) is defined in (5.4). 

It follows that 11/3- /30 11 s 11Hn(/30 )ll~;;.fn(Sn(jj)) _where A min( A)= minimum 
eigenval~Ie _of A. By Lemma 5.4, Sn{/3) - Sn(/3) = _?p(l) hence by (Al), 
P{>-.;;.USn(/3)) s 2>-.;;,l-n(M)}-> 1. Thus 11/3- /30 11 and IIHnC/30 )11 have the same 
order which, from Lemma 5.3, is Op(max( a 2 , n - 112 )). 

We are now in a position to prove Theorem 5.2. 

PROOF OF THEOREM 5.2. By definition n- 1l:~(Y;- F(if/3))i; = 0; expand•
ing F( ·)in a Taylor series shows that S(/3 - /30 ) = Hi/30 ), where 

n s = n- 1 f.F(l>(xTfi;}x;xT 
1 

and for each i, lllJi - f3oll s 11/3 - /30 11. (A2), (A3), (Pl), and the conclusion of 
Lemma 5.5 are used to show S- Sn(/30 ) = op(l). The theorem follows from 
Lemma5.5. 
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Comparison of Least Squares and Errors-in�
Variables Regression, With Special Reference to 

Randomized Analysis of Covariance 
RAYMOND J. CARROLL, PAUL GALLO, and LEON JAY GLESER* 

In an errors-in-variables regression model, the least squares 
estimate is generally inconsistent for the complete regression 
parameter but can be consistent for certain linear combinations 
of this parameter. We explore the conjecture that, when the 
least squares estimate is consistent for a linear combination of 
the regression parameter, it will be preferred to an errors-in•
variables estimate, at least asymptotically. The conjecture is 
false, in general, but it is true for some important classes of 
problems. One such problem is a randomized two-group anal•
ysis of covariance, upon which we focus. 

KEY WORDS: Measurement error; Randomized studies; Func•
tional models; Structural models; Asymptotic theory. 

1. INTRODUCTION 

The literature on the problem of linear regression when some 
of the predictors are measured with error is substantial (for 
example, see Reilly and Patino-Leal 1981). Recent work in•
cludes the theoretical study of Gleser (1981) and the important 
practical shrinkage suggestions of Fuller (1980). Also see An•
derson (1984) and Healy (1980). 

A subarea of this literature concerns two-group analysis of 
covariance when some of the predictors are measured with error 
(for example, see Lord 1960, Cochran 1968, DeGracie and 
Fuller 1972, and Cronbach 1976). 

Lord (1960) discussed the case of one covariate measured 
with error. He noted that it may "happen ... that the usual 
covariance analysis (least squares) will fail to detect a statis•
tically significant difference between groups. . when such a 
difference actually exists and can be detected by proper statis•
tical procedures" (p. 309). He also gave a numerical example 
of this phenomenon. 

Cochran (1968) and DeGracie and Fuller (1972) discussed 
two-group analysis of covariance, providing in particular some 
discussion of the case in which the true values of covariates 
are themselves random variables; this is usually called a 
"structural" model in the literature. They showed that if the 
covariables are unbalanced, as might happen in an observational 
study, then the meaurement error will cause least squares to 
inconsistently estimate the true treatment difference. In the sense 
of asymptotics, when the covariables are unbalanced one should 
then correct for measurement error if it is substantial; a global 
small-sample statement of this type cannot be made. 

* Raymond], Carroll is Professor of Statistics, University of North Carolina, 
Chapel Hill, NC 27514. Paul Gallo is Group Leader, Preclinical Statistics, 
Lederle Laboratories, Pearl River, NY 10954. Leon Jay Gieser is Professor of 
Statistics, Purdue University, West Lafayette, IN 47907. Carroll's work was 
supported by Air Force Office of Scientific Research Contract AFOSR~F~ 
49620~82~C-0009 and by United States Anny Contract DAAG29-80-C-0041. 
Gieser's work was supported by National Science Foundation Grant DMS-
8121948. The authors thank Robert D. Abbott and Leonard A. Stefanski for 
helpful discussions. 

Now consider a completely randomized study, where the 
covariables will be balanced on average across the two treat•
ments. In this case, Cochran (1968) and DeGracie and Fuller 
(1972) indicated that least squares will consistently estimate 
the treatment difference. The question that remains to be an•
swered is: Should we correct for measurement error when the 
least squares estimate consistently estimates the treatment ef•
fect? It is the purpose of this article to partially answer this 
question. Using large-sample distribution theory, we show that 
in a balanced, completely randomized study with measurement 
error in the covariables, the least squares estimate of the treat•
ment difference will be generally preferred when compared to 
a particular errors-in-variables regression estimator. This result 
can be generalized, so in a large class of problems, when least 
squares is consistent for a linear combination of the regression 
parameter, it will be preferred, at least asymptotically. Further, 
for a smaller but not insubstantial class of problems, when least 
squares is consistent for a linear combination of the regression 
parameter, it is the maximum likelihood estimate of this linear 
combination, taking the consistency into account. 

2. THE NORMAL CASE WlTH NO REPllCATlON: 
TECHNICAL BACKGROUND 

A special case of considerable interest occurs when all errors 
are normally distributed and no replicates of the variables mea•
sured with error are available. The general model considered 
here, which includes the analysis of covariance as a special 
case, is given by 

r = x,p, + x,p, + e 

c = x, + u 
P = [pf. PlY. (2.1) 

Here, Y and e are (N x l) vectors, X, is an (N x p) matrix 
observed without error, and X2 is an (N x q) matrix of true 
values that we cannot observe exactly. Rather, we observe C. 
The rows of the matrix ( U, e) will be assumed to be mutually 
independent normally distributed random vectors with mean 
zero and covariance matrix l:. 

In comparing least squares and errors-in-variables methods, 
we must pick a representative member of the latter class. In 
the main, we will do this by following Gleser (1981) for the 
case that no replicated estimates of X2 are available; the rep•
licated case will be discussed at the end of the article. Gleser 
studied the functional model in which X, = (l, l, ... , lf 
and X2 are considered fixed constants. A special case of his 
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model assumes that there is a known matrix lo and an unknown 
constant u2 for which 

l = u'lo = u'(~~ ~). (2.2) 

If l, is the covariance matrix of the rows of U, then in (2.2) 
we are assuming that we know the ratio of the elements of 
l, to u;, the variance of the elements of e. Gallo (1982) 
exhibited the maximum likelihood estimate of p, which is given 
in Appendix A. 

He also proved the following. 

Theorem 1 (from Gallo 1982). Suppose that 

ll = lim N- 1(X1, X2)'(X1, X2 ) ,_.., 
exists and is positive definite. Then if PM is the functional 
maximum likelihood estimate, N 112 (PM - p) is asymptotically 
normally distributed with zero mean and covariance matrix 

cov(PMl = a{ ll-1 + ll-1 (~ g) ll-'}, 

where d = [pl:, -1] ::!; [,Bl:, - JY and Q-' = [/, p,] ;t-1 
[I,p,y, 

3. MAIN RESULTS 

There are instances other than randomized two-group anal•
ysis of covariance in which certain linear combinations of the 
least squares estimate are consistent for the same linear com•
binations of the parameter. Consider the model (2.1) with {f' 
= (/J[, /fi) in which it is desited to estimate the parameter y7p, 
where y7 = (y[, yl). Partitioning ll in (2.3) into components 
llij, informally the least squares estimate 

PL = ((X~o C)'(X~o C)t 1(X~o C)'Y 

converges in probability to 

Journal of the American statistical Assoclaflon, December 1985 

Further, suppose that R is distributed independently of e and 
U. Define 

1\ = (ll22.1 + l,t'. 
Then the least squares and functional maximum likelihood es•
timates a7PL and a7PM are asymptotically normally distributed 
with mean a7P and variances u2(L)IN, u2(M)IN, respectively, 
where u2(L) :5 u2(M). In fact, 

u 2(L) = u'(M) - (yfllih,)/fi l, 1\ I, p, 
u'(M) = (yfllih,Hu' + PI l, p,). 

The proof of Theorem 3 is sketched in Appendix B. The 
asymptotic distribution of least squares when (3.3) does not 
hold has been computed by Gieser, Carroll, and Gallo (1985), 
but here one need not necessarily prefer least squares. This 
issue is discussed in the next section. Note that assumption 
(3.3) holds if X1 and X2 are independent random matrices. 
It may be consideted a bit unfair to compare least squares 

to a "maximum likelihood estimator" that does not take into 
account the consistency of least squares. It turns out that, under 
normality assumptions, the maximum likelihood estimate of 
y7 p when it is known that least squares is consistent for y7 P is 
simply the least squares estimate of y7p. Specifically, we have 
the following. 

Theorem 4. Suppose that the assumptions of Theorem 3 
hold and that the rows of R are normally distributed indepen•
dently of e and U. Then the maximum likelihood estimate of 
y7p given X1 and subject to (3.2) is simply the least squares 
estimate of y7 p. 

4. EXAMPLES AND EXTENSIONS 

Consider a completely randomized two-group analysis of 
covariance, with covariables subject to error. Formally, this 
problem can be subsumed into the more general structure (2.1) 
by letting X 2 be the covariables and 

[ ] 
-I ( ) llu ll 12 0 p 

ll,, ll22 + ~. - ~.p, + . (3.1) ( ) ( ) xr, = I I ... I p /l 
S 1 s2 "' SN ' I = a ' 

This leads to the following result, which was proved formally 
by Gallo (1982). 

Theorem 2. The least squares estimate yrpL is consistent 
for y7p; that is, it converges in probability to y7p for all p, u2 , 

l .. if and only if 

Yl = yfllii'll,,. (3.2) 

Computing the asymptotic distribution of least squares is 
fairly complicated. Recall that X 1 is observed exactly, and we 
will assume it has a column of ones; X2 is measured with error 
as in (2.1). Suppose we are interested in estimating a linear 
combination y7p for which least squares is known to be con•
sistent-that is, (3.2) holds. Then the next result gives a de•
scription of an important case for which least squares will be 
asymptotically preferred to the functional maximum likelihood 
estimate. 

Theorem 3. Make the following assumption. 

GivenX1 , therowsofR = X2 - X11lii 11l 12 areindependent 
and identically distributed with mean zero and covariance 

(3.3) 

(4.1) 

Here the {s,} are zero-one variates representing the assign•
ment to the two groups. The parameter of interest is a, the 
treatment or group effect. In the notation of Section 3, we wish 
to estimate y7p, where y2 = 0, yf = (0, 1). By using Theorem 
2, it is easy to show that least squares is consistent for the 
group effect a only when the limiting means of the covariables 
are the same for the two groups. If treatment assignment is 
random, then the least squares estimate is consistent, assump•
tion (3.3) holds, and by Theorem 3 the least squares estimate 
of group effect has a smaller limiting variance than the maxi•
mum likelihood estimate. 

It is reasonable to conjecture that complete randomization is 
not necessary for least squares to be preferred in the context 
of an analysis of covariance. For example, one might randomize 
in blocks or use alternative balancing schemes (see Wei 1978). 
The details of the proof of Theorem 3 might prove helpful in 
studying this conjecture. 

It should be noted that in a balanced randomized study, the 
usual t test for treatment effect has correct nominal level asymp-
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totically. Thus, from both an estimation and inferential stand•
point, for large samples least squares will be preferred over the 
functional estimate. 

When assumption (3.3) is violated, difficulties arise. For 
instance, consider analysis of covariance for the pure functional 
case in which the group assignment variables {sJ occur in the 
fixed sequence { - I, + l, - l , + l , . . . } . Let the covariables 
{x,) be fixed. In a variety of circumstances, Gieser et al. (1985) 
haVe shown that the least squares estimate (LL Of the treatment 
effect a satisfies 

Nu 2(dL- a)= V + AN- 112 2: s;x,, (4.2) 
i"'1 

where A is a constant and V is asymptotically normally dis•
tributed. To obtain an asymptotic distribution for N 112 (dL -

a), one must make assumptions about the behavior of the second 
term on the right side of (4.2). Generalization of (4.2) and 
further discussion are given by Gieser et al. (1985). 

Even if X1 and X2 are random variables, violation of (3.3) 
can cause failure of the main conclusion of Theorem 3. The 
reason is that in this case the limit distribution of least squares 
can depend on the fourth moment of X, whereas that of the 
functional estimate depends only on the second moment of X 1• 

Finally, in some instances an assumption such as (2.2) will 
not be tenable, so a functional estimate cannot be computed. 
There are many ways out of this dilemma. One is to take 
independent replicates of C,, C2 of X, in (2.1). One can com•
pute the normal theory functional estimate in this case and 
obtain a result similar to Theorem 1 but more general in the 
sense that the underlying random variables need not actually 
be normally distributed. The computation of this functional 
estimate and its asymptotic distribution theory are available in, 
for example, Gallo (1982). 

5. CONCLUSION 

In a particular errors-in-variables regression model, we have 
shown that least squares will often be asymptotically more 
efficient than a particular functional regression estimate, when 
the former is known to be consistent. This happens in particular 
when those variables X2 subject to error are distributed inde•
pendently of those variables X 1 measured without error, or more 
generally when X 2 follows a linear regression in X 1 � An im•
portant special case of this least squares preference phenomenon 
is a randomized analysis of covariance in which one wants to 
estimate the treatment effect. Finally, if the linear regression 
of X 2 on X 1 follows a multinormal distribution, and if it is 
known that the least squares estimate is consistent for the linear 
combination yT f3, then the least squares estimate is the maxi•
mum likelihood estimate for yT fJ. 

APPENDIX A: THE MAXIMUM LIKELIHOOD 
ESTIMATOR FOR MODEL (2.1) 

Define L ~I- X,(X[X,)-'X[ and W ~ [C Y)TL[C, Y]. Let 0 be 

the smallest eigenvalue of l:; 1 W, where to is given in (2.2). 
Define 

C. ~ [X, C] ~ [X,, X 2 + U], 

D ~ ere. - o (~ £} 

The matrix D is nonsingular with probability one, and the functional 
estimate is /JM = D- 1CfY. The formula for PM is derived by Gallo 
(1982) and relies on similar work of Gieser (1981) and Healy (1980). 

APPENDIX B: THE ASYMPTOTIC DISTRIBUTION 
OF LEAST SQUARES 

The following general result can be justified formally and is at the 
heart of the analysis of covariance calculations. We sketch herein a 
proof without stating all the necessary regularity conditions. Let 
er ~(I, I, ... ,!). 

Lemma 1. Define 

and suppose that y satisfies (3. 2) as well as 

N- 112X[(R + U) = OP(I), (B. I) 

where R = X2 - X1.d i[ 1d 12 • Then the least squares estimate satisfies 

Nl12yr({JL - p) = N rnyfdi11Xf(e - U/32) 

+ N- 112yf.di1 1Xf(R + U) + op(l), (B.2) 

where~ ~ 1\ $, fl,. 
Proof(Sketch). Define C.~ [X,, X 2 + U]. Then 

N j;,p, 
(CiC.) (j}, _ fll + ( 0 ) 

~ C[(c - Ufl,)!N + (j;~ fl,) . (B.3) 

Multiply both sides of (B.3) by N'"y'(CiC.!N)-' to get 

N'"y'(j}, - fll ~ N'"y'(C(C,/N)-' ( Ci(c - Ufl,)!N + (j;~ fl,)) 
- N"'y'(CiC.!N)-' (j;~ fl,) . (B.4) 

By Slutsky's theorem, the first term on the right-hand side of (B.4) 
equals 

N'"y'!J. + (~ lr Ci(c- Ufl,)!N + (I~fl,) + o,(l) 

= N- 112yf.6.i1 1Xf(e - U/32 ) + op(l), (B.S) 

which is the same as the first term on the right-hand side of (B.2). 
The second term in (B.4) is 

N'"yf(X[X,)-'X[(R + U)W l, fl, (B.6) 

where 

W~(.6.221+lu)-l, 
By (B.l), this completes the proof. 

One should note that (B .I) is satisfied in the randomized two-group 
analysis of covariance. 

Using Lemma 1 and writing for the analysis of covariance 

we see that 

xr = (X21 Xn � � � X2N) 

ijT = (Ul Uz ... UN) 

·' 
N112 (fi.~.. - a) = N- 112 2: s1{e, + (IJ - /32)Tu, + 1f(x2, - m2}}, 

1~1 

(B.7) 
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Expression (B.7) shows why Theorem 3 may apply to alternative 
randomization schemes. 

Proqf qf Theorem 3. The fonn of u'(M) follows directly from 
Theorem I. The form of u'(L) follows from (B.2) and the assumptions 
of the theorem. 

Proof of Theorem 4. First assume that 4ii1.d12 is known. Define 

"=(I, 8."'8.,)p 

£ = u' + p(r.,p,- P,r.,/\l:,p,. 
Given (X" C), we have 

(Y I x,. C) = x,, + S/\8.,,,p, + F, (B.S) 

where S = C - X 14ii 1 .6. 12 and the rows ofF are independent nonnal 
random vari3.bles with mean zero and variances £2 • If we define 

~x = a-24.22.1• c; = / \ti 22.1/J 2 , L = 1\-1 , 

then it is fairly direct to show that the mapping of /J 1, /J2 , a 2 , 4 22.1 to 
n:, e. u 2, Lis one to one from the space {a2 > 0, .6.22.1 > 0} to the 
space {u' > 0, L - u' l:w > 0}. 

One can show next that the map n:, c;, L, a 2 ton, c;, L, £2 is also 
one to one onto the space {£2 > 0, L > 0}. To see this, note that 

£2 = u2 + /J~422.1/J2 - /Ji4n./\4n.JP2 

= u' + ~TL(L - u ' t~t' Le - erL = H(u 2). 

Thus £2 is a function of 1t. e' L, a 2 • For the converse we must show 
that given n, c;, L~ £2 there exists a 2 > 0 such that £2 = H(a 1 ) and 
L - u 2 t..., > 0. Write 

~.:,'lz L ~.:,112 = rnrr, 

where f is an orthogonal matrix and D is diagonal with elements 
d 1 ~ d2 2 ··· 2: dr Then 

H(u') = u' - ~L~ + ± (fT l::,'" L~)kl(d, - u'), 
K=l 

where (fT l::m L~)K is the Kth element of the matrix. Moreover, 
L - u' l:w > 0 if and only if D - u'I, > 0 if and only if 0 < 
a 2 < dr Hence we must show that there exists a 2 such that 0 < a2 

< dP and H(a 2 ) = £2 • However, H(a 2) is continuous and increasing 
in a 2• Further, 

lim H(u') = 0 < £' and lim H(u') = "' > £'. 
-o ~4~ 
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Hence a solution exists, and the map is one to one. We next complete 
the proof of Theorem 4. 

Now, the maximum likelihood estimates of n and ~ are seen from 
(B.S) to be 

{(X,, S)'(X,, S)}-'(X,, S)'Y. 

Since the colunm space of (X,, C) is the same as the column space 
of (X 1, S), it follows that, given (X~o S, l1ii1.1.22 ), the maximum 
likelihood and least squares estimates of n coincide; that is, 

"(MLE) = (I, 8.o'8.,)p,. 
This means that y7p, is the maximum likelihood estimate (MLE) of 
yrn, given X~o Sand l1jj 14 12 • Since, under (3.2), yrn = yrp, the 
proof is complete. 

[Received September 1982. Revised April 1985.] 
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SUMMARY 

This paper studies estimation in generalized linear models in canonical form when the 
explanatory vector is measured with independent normal error. For the functional case, 
i.e. when the explanatory vectors are fixed constants, unbiased score functions are obtained 
by conditioning on certain sufficient statistics. This work generalizes results obtained by 
the authors (Stefanski & Carroll, 1985) for logistic regression. In the case that the 
explanatory vectors are independent and identically distributed with unknown distribu•
tion, efficient score functions are identified. Related results for the structural case are 
given by Bickel & Ritov (1987). 

Some key words: Conditional score function; Efficient score function; Functional model; Generalized linear 
model; Measurement error; Structural model. 

1. INTRODUCTION 

Given a covariate p-vector U = u, assume that Y has the density 

{ y(a+f3Tu)-b(a+f3Tu) } 
hy(y;O,u)=exp a(cp) +c(y,cp) (1·1) 

with respect to a (]'-finite measure m(. ). In (1·1), OT =(a, f3T, cp ); a(.), b(.) and c( ., . ) 
are known functions; and the dominating measure m(.) does not depend on 0 or u. The 
density (1·1) is that of a generalized linear model in canonical form (McCullagh & 
Neider, 1983, Ch. 2). Suppose that u cannot be observed but that k independent 
measurements, X= (X~> ... , Xd, of u are available. When measurement erroris normally 
distributed the matrix X has the density 

k (2'1T)-!P I T--1 

hx(X; 0, u)=FJ.
1
lOJ!exp{-2(Xj-u) fl (X;-u) }, (1·2) 

where fi is the covariance matrix of the measurement-error vector. Together (1·1) and 
(1·2) define a generalized linear measurement-error model with normal measurement 
error. If for a sample ( Y,, X;) (i = 1, ... , n) the covariables {u ; } are unknown constants, 
a functional model is obtained; if { u;} are independent and identically distributed random 
vectors from some unknown distribution, a structural model is obtained (Kendall & 
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Stuart, 1979, Ch. 29). In the present paper the problem of deriving unbiased scores for 
8 in both functional and structural models is studied. 

There is a vast literature on this problem when (1·1) is a normal density. This dates 
back to Adcock (1878) and has been reviewed by Anderson (1976); see also Moran 
(1971). Recently there has been considerble interest in nonlinear measurement-error 
models; see Prentice (1982); Wolter & Fuller ( 1982a, 1982b ), Carroll eta!. ( 1984 ), Stefanski 
(1985) and Stefanski & Carroll (1985). 

The density (1·1) includes normal, Poisson, logistic and gamma regression models. 
The key feature these models have in common is a natural sufficient statistic for u when 
all other parameters are fixed. The same is true of the normal density in (1·2). In fact 
(1·2) could be replaced with any density possessing a natural sufficient statistic for u 
when other parameters are fixed and much of the theory in this paper holds with little 
or no modification. 

In § 2 functional models are studied. This work generalizes results of Stefanski & 
Carroll (1985) on logistic regression. Structural models are studied in § 3 and efficient 
score functions for estimating 8 are identified. Related work includes that of Bickel & 
Ritov (1987). 

If the covariates u1 , � � � , u. are observed without error the maximum likelihood 
estimator of 8 maximizes l: log hy( Y;; 8, u,). Let X, be the mean of the k measurements 
of u,; that value of 8 which maximizes l: log hy( Y,; 8, X,) will be called the naive 
estimator. This estimator is usually inconsistent (Stefanski, 1985) although when fi/ k is 
small its bias will be small. 

2. FUNCTIONAL MODELS 

2·1. The functional likelihood 

Consider the functional version of (1·1) and (1·2) when k = 1 and 

n; a(q,) = n, (2·1) 

where n is known. In simple linear regression, (2·1) reduces to the common identifiability 
assumption that the ratio of the measurement-error variance to the equation-error variance 
is known. Similarly, (2·1) ensures identifiability of the parameters in the general model 
(1·1) and (1·2). 

The random variables ( Y;, X,) (i = 1, ... , n) are independent but not identically 
distributed since their distributions depend on the true regressors u,, which vary with i. 
However, for notational convenience the subscript i will be dropped when referring to 
( Y,, X,) in situations where it causes no confusion. Under (1·1), (1·2) and (2·1) the joint 
density of ( Y, X) is 

hy.x(Y, x; 8, u) = hy(y; 8, u)hx(x; 8, u). (2·2) 

For a set of n observations the log likelihood is 
n 

L(8, u~>··· ,u.)= 1~1 iog{hy.x(Y,,X,; 8, u,)}. (2-3) 

When Y is normally distributed it is known that under (2·1) maximizing (2·3) with 
respect to (a, {3T, q,, u~> ... , u.) results in consistent estimators of the regression 
coefficients a and {3 (Gieser, 1981). For models other than the normal, the task of 
maximizing (2·3) with respect to its n + p + 2 parameters is formidable. More importantly 
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it is not generally true that maximizing (2·3) produces consistent estimators. In logistic 
regression the functional maximum likelihood estimator of (a, f3) is not consistent under 
assumption (2·1) (Stefanski & Carroll, 1985). The problem is due to the large number 
of nuisance parameters (Neyman & Scott, 1948). The unwieldy functional likelihood, 
and its failure to produce consistent estimators underscore the need for an alternative 
approach to estimation. 

2·2. Unbiased score functions 

The literature on estimating a structural parameter in the presence of a large number 
of nuisance parameters dates back to the paper by Neyman & Scott (1948). They were 
the first to show that maximum likelihood estimation is not always a viable alternative. 
Andersen (1970) proved consistency of a conditional maximum likelihood estimator in 
a special class of models. Later we show a fundamental difference between our model 
(2·2), and those considered by Andersen (1970). Recent work on the problem includes 
that of Lindsay (1980, 1982, 1983, 1985) and Kumon & Amari (1984). 

In this section unbiased score functions are obtained by conditioning on certain 
parameter-dependent sufficient statistics. It is shown how these scores relate to the 
conditional scores of Lindsay (1982) and some problems associated with their application 
are discussed. 

Consider the density in (2·2). If u is viewed as a parameter and a, f3 and cf> as fixed, 
then the statistic 

.1=.1(Y,X, O)=X+ Yll/3 (2·4) 

is complete and sufficient for u. Consequently the distribution of Yl.1 depends only on 
Y, X and 0, but not on u. From this conditional distribution it is possible to derive 
unbiased estimating equations for 0 which are independent of u. 

Let hYia(Y 18; 0) denote the conditional distribution of Y given .1 = 8. In the calculations 
that follow, 8 is treated as a fixed conditioning argument until the final step of the 
analysis, equation (2·8), wherein 8 is set equal to 8(y, x, O) = x + yllf3; see equation (2·4). 
The Jacobian of the transformation which takes ( Y, X) into ( Y, X+ Y!l/3) has deter•
minant one. Thus pr ( Y = y, .1 = 8)dm(y )d8 = pr ( Y = y, X= 8- yllf3)dm(y )d8 and one 
finds 

hYia(Y 18; 0) = exp [Y'T/ -!y2{3Tllf3/ a(cf>) + c(y, c/>) -log {S( 71, /3, c/> )}], (2·5) 

where 'T/=(a+8T/3)/a(cf>) and S(.,.,.) is defined as 

S(71, /3, c/>) = f exp{y'T/-!Y2f3Tllf3/a(cf>)+c(y, cf>)}dm(y). 

Note that (2·5) is an exponential family density in 71 with Y as the natural sufficient 
statistic. Thus moments of Y given .1 = 8 can be computed from the partial derivatives 
of S( 'TJ, {3, cf>) with respect to TJ; for example 

E9 ( Yl.1 = 8) = [(aja71) log {S( 'TJ, /3, c/>)}] ,~(a+.B r 8)/a(<f>)· (2·6) 

Using the exponential family representation in (2·5) and the fact that m(.) does not 
depend on 0, it can be shown that 

(2·7) 
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where 

livla(Y I 8, 0) =(a/ aO)hvla(Y I 8; 0). 

Thus defining t/Js(y, X, 0) =(a/ ao) log hvla(Y I 8; 0) evaluated at 8 =X+ y11f3, we have that 

[ 
{y- E ( Y I .i = 8)} I a ( <!>) l 

t/15 (y, x, O) = {y- E( Yl.i = 8)}8/ a(<f>) - {y 2 - E( Y2 1~ = 8)}11{3/ a(<f>) , 

r(y, X, 0)- E{r( Y, X, O) l.i- 8} 8~x+yflf3 

(2-8) 

where 
ac(y, <!>) a+8Tf3 , 2 f3T11f3 , 

r(y, x, 0) =-------;;;---- y a 2 (<!>) a(<!>)+ Y 2a 2(<f>) a(</>). 

Also t/1,(.,.,.) is unbiased for 0; that is E0 {t/15 (Y,X,O)}=E 0 [E 0 {t/15 (Y,X,O)I.i} ]=O. 

The inner conditional expectation is zero by (2·7). 
Any estimator, 05 , satisfying 

I t/ls( Y" X,, Os) = 0 (2·9) 
i=l 

will be called a sufficiency estimator. It is worth emphasizing that 05 does not maximize 
the conditional likelihood, ~log {hvla( Y, I .i,( 0); 0)}, where .i,( 0) =X,+ ¥,11{3. The 
estimator which does maximize this likelihood is generally not consistent, a consequence 
of the fact that the resulting score is not unbiased. 

In the conditional likelihood the conditioning statistic depends on 0 and it is here that 
our model differs from those studied by Andersen (1970). He studies models in which 
the sufficient statsitistics for the nuisance parammeters are independent of the structural 
parameter. The derivation of t/Js exploited the fact that hv.x factorizes into the product 
of hv,a and h,. This factorization is similar to one used by Kalbfleisch & Sprott (1970). 
Other uses of conditional likelihoods like (2·5) arise in hypothesis testing problems (Cox 
& Hinkley, 1974, p.146). 

Consider the density in (2·2) and let liv.x = (aj aO)hv,X· Note that 

hv,x(Y, x; 0, u) 

hv.x(Y, x; 0, u) 
{ [ h vx(Y,X;O,u) J } 

E h;x(Y,X;O,u) a~x+yllf3 

= {y-E(YI.i=8) }u ja(<f>) , [ 
{y- E ( Y I .i = 8)} I a ( <!>) l 

r(y, x, 0)- E {r( Y, X, 0) I .i = 8} s~x+yllf3 

where r(y, x, 0) is defined in (2·8). As the expression in brackets above depends on the 
unknown covariate u only as a vector of weights this suggests the class of score functions 

[ 
{y- E ( Y I .i = 8)} I a ( <!>) l 

t/Jc(y,x, 0)= {y-E(YI.i=8)}t(8)/a(<f>) 

r(y, X, 0)- E{r( Y, X, 0) l.i = 8} 8 ~x+yflf3 
(2·10) 

indexed by the vector-valued function t(. ). When t(.i) depends on ( Y, X) only through 
.i, we have E[{Y-E(YI.i)}t(.i)]=E(t(.i)E[{Y-E(YI.i)}l.iJ)=O and thus t/Jc is 
unbiased. The score (2·10) is motivated by the work of Lindsay (1980, 1982, 1983) and 
will be called a conditional score. 
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Any estimator Oc satisfying 

I 1/lc(Y,, X;, Oc) =0 
i=l 

will be called a conditional estimator. 

707 

(2·11) 

Ideally, t(.) in (2·10) would be chosen to minimize the asymptotic variance of Oc. 
However, for a functional model the optimal choice oft(.) will depend on the particular 
sequence of covariates and thus no globally optimal choice exists. A related problem is 
noted by Cox & Hinkley (1974, p. 146) in a discussion of locally most powerful similar 
tests. The information unbiasedness criterion suggested by Lindsay (1982) leads to 
complex choices for t(.) even in simple versions of the models studied in this paper. 
For example, in simple logistic regression through the origin (a = O) the function t(.) 
for which 1/Jc satisfies E ( 1/J~ + 1/J~·I .:\) = 0 takes the form 

8 -{1+ exp (8{3 -!{3 2)}'113 exp H(8- {3)2} 

t( )= d+J{l+exp(8f3-!f3 2)} 1113 expH(8-f3?}d8' 

where d is a constant which may depend on {3. 
Some choices for t(.) are now given which seem reasonable in the absence of any 

theory producing tractable alternatives. In terms of asymptotic efficiency no choice of 
t(.) can outperform t(~,) = u,; but of course this not available to the statistician. However, 
the fact that t(~;) = u, is optimal suggests that t(~,) should be a good estimator of u,. 
Further support for this argument is given in § 3 where it is shown that for structural 
models the optimal choice is t(~,) = E( U; 1~;). 

Consider simply taking t(~) =~.Since E(~) = E(X + Yll{3) = u + E( Y)fl/3, t(~) is a 
biased estimator of u, but if In I is small then the bias is small. For logistic regression the 
choice t(.:\) =~results in equivalence of 1/Js and 1/Jc as shown in§ 2·3. Another estimator 
of u is obtained by noting that X is unbiased for u and ~ is sufficient for u, thus 
t(~) = E(X I~) is a uniformly minimum variance unbiased estimator of u. Also, since 

E(X I~)=~- E( Yl~)fl/3, (2·12) 

only the conditional moment of Yl~, given by (2·6), is needed to find E(X 1~). 
Since (2·8) and (2·10) are unbiased, regularity conditions will ensure the existence of 

consistent sequences of estimators 05 and Oc satisfying (2·9) and (2·11) respectively. It 
is not generally true that (2·9) and (2·11) define 05 and O, uniquely. More importantly, 
there can exist sequences of solutions which are not consistent, and thus care must be 
taken when defining 05 and Oc. Although we know of no definitive solutions to this 
problem in practice, certain solutions seem to work reasonably well. Our discussion 
focuses on Oc although it applies equally well to 05 • In the case that X, u and {3 
are scalars and the family of solutions to (2·11) has only one member with the same sign 
as the naive estimator, then choose Oc to be that solution. This selection rule is known 
to work in simple linear regression as detailed in § 2·3. 

For multiple regression models (p;, I) two solutions are suggested. In the first Oc is 
defined as the solution to (2·11) which is closest to the naive estimator defined in§ I. 
This rule is justifiable when measurement error is small, however it can break down when 
measurement error is large. This is discussed in greater detail for the normal model in 
§ 2·3. The second solution entails one or two steps of a Newton-Raphson iteration of 
(2·11) starting from the naive estimator. Again, this is generally appropriate only when 
the measurement is small. However, in some realistic sampling situations, Stefanski & 
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Carroll (1985) show that such an approach substantially improves upon the naive 
estimator in their study of measurement error in logistic regression. 

When consistent sequences of solutions to (2·9) and (2·Il) are obtained the asymptotic 
distributions of Os and Oc are easily derived since both are M -estimators (Huber, I967). 

2·3. Normal, logistic and Poisson regression 

In this section the strengths and limitations of the estimation theory are illustrated by 
studying it in three particular generalized linear models. 

Suppose first that Y has a normal distribution with mean a+f3Tu and variance u 2. 
For this model cf> = u 2, a( cf>) = cf> and m(.) is Lebesgue measure. Using (2·5) one finds 
that the distribution of Y given 11 = 5 is normal with variance u 2/(1 + {3Tf!{3) and mean 
f.L, where 

f.L =(a+ {3T5)/(1 + {3Tfl{3). (2·13) 

Corresponding to (2·8) one finds 

I 
+ (T2 (y-f.L) 

1/Js(Y, x, 8) = 
fl/3 

I2 {(y- f.L)2f!{3- (y- f.L)(5 -2f.Lflf3)} 
(T 

-I (y- f.L)2(1+ {3Tfl{3) 
-+-"'----'--'--'---.,...:..--.:....:.. 
2u2 2u4 8=x+yfl{J 

where f.L is defined in (2·13). Define /1t=(J+f!{3{3T)- 1{11(Y;,X;,8)-af!{3}, where 
11(., ., .) is given by (2·4), and consider the equations 

f T *(I)- 2_1+{3Tfl{3f 2 
;'::, (Y;-a-{3 11;) f1t -0, u- n ;'::, (Yi-f.L;) · (2·I4) 

Every solution to (2·I4) is also a solution to I.l/ls( Y;, X;, 8) = 0; that is any solution to 
(2·I4) is a sufficiency estimator. The similarity of (2·I4) to the usual normal equations 
is readily apparent. However, 11T depends on a and f3 and thus (2·I4) is nonlinear in 
the parameters. 

Note that 11T is also sufficient for U; and that, given 11T, Y; is normal with mean 
a+ f3T 11T. Since 11T is the functional maximum likelihood estimator for u; in this model 
(Gieser, I981), equation (2·I4) shows that the functional maximum likelihood estimator 
is a sufficiency estimator. 

From (2·I4) it follows that as= Y-tHx and using this it is possible to deduce that 
Ps satisfies 

(2·I5) 

where YT= Y;- Y, XT=X;-X. A 

Consider (2·I5) for the case p = I; that is f3s is a scalar. This quadratic equation has 
two real roots (Kendall & Stuart, I979, Ch. 29); unfortunately our derivation of (2·I5) 
via the argument in§ 2·2 does not indicate which root is appropriate. Had the equations 
(2·I4) been derived as the gradient of the functional log likelihood, the appropriate root 
would have been dictated by the maximizing principle. 
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In § 2·2 it was suggested that in the case of multiple solutions to (2·9) and (2·11) we 
pick that solution closest to the naive estimator. In this particular case the two roots of 
(2·15) converge to {30 and -u2 1({3072), where 72 = ilu2 is the measurement-error variance. 
The naive estimator converges to u~f3ol ( u~ + 7 2), where u~ is the limiting value of the 
sample variance of the true u,'s. Thus the suggested selection rule asymptotically chooses 
the right root whenever 

lf3ol72 I ( u~ + 72) < {lf3olu~l ( u~ + 72 ) + U 2 I ( 72lf3ol)}. 

This inequality holds if and only if 272 < [ u~ + u 2 I {3~+{( u~ + u 21 {3~)2 +4u2u~j {3~}']. The 
infimum of the right-hand side above with respect to the ratio u 21 {3~ is 2u:. Thus whenever 
7 2 < u~ the selection rule works no matter what the values of u 2 and {3~; however, if 
7 2 > u~ and u 21 {3~ is sufficiently small then the selection rule chooses the wrong root. 
This is encouraging, for it is unusual to have measurement error so large that 7 2 ;:, u~. 

Finally for the normal model E 8 ( Y; I~;)= a+ {3T M and, from (2·12), Eo(X; I~;)= M. 
Thus t/Js and t/Jc define the same estimators, that is 05 = Oc, when t( 8) = E0 (X I~= 8 ), 
which is linear in 8 in this case. 

Now consider logistic regression in which pr 0 ( Y = 11 u) = F( a+ {3T u ), where F( t) = 
11(1 + e-'). For this model a( <P) = 1 and m(.) is counting measure on {0, 1}. Using (2·5) 
one obtains 

pro ( Y = 11~ = 8) = F{a + (8 -4ilf3)T{3}, (2·16) 

and corresponding to (2·8) is the logistic sufficiency score 

t/1 5 (y, x, II)= [y- F{a + (8 -4ilf3 )T {3}](.., _1"{3) I ; 
U ~!> 8=x+yH{3 

(2·17) 

and setting "'.f.t/15 ( Y,, X;, II)= 0 results in the equivalent equations 

(2·18) 

where ~f = ~; -!!1{3. Conditioned on ~f, Y; is a Bernoulli variate with mean F(a + {3T~J). 
Stefanski & Carroll (1985) show in a Monte Carlo study that, in spite of the possibility 
of multiple solutions to (2·18), a modified one-step version of (as, ~DT, starting from 
the naive estimator, performed well in some realistic sampling situations. Unlike the 
normal model the logistic sufficiency estimator does not correspond to the functional•
maximum likelihood estimator, which in this case is not consistent (Stefanski & Carroll, 
1985). In § 3·3 it is shown that the logistic sufficiency score is optimal for a particular 
structural model. 

For logistic regression t/Js and t/Jc are equivalent when t(8) is linear but not when 
t( 8) = E(X I~= 8). Under linearity oft(.) the equivalence follows by comparing (2·17) 
to (2·10) when t(.) is linear. Howeve- •vith E8 (YI~=8) given by (2·16), E(XI~=8)= 
8- F{a + ( 8 -!ilf3)T {3}!1{3 and corresponding to (2·10) with t( 8) = E(X I~= 8) are the 
equations 

,t, {Y;-F(a+{3T~m[M+{!-F(al+{3T~f)}il{3] =0. (2·19) 

Although (2·18) and (2·19) clearly differ, the practical significance of this difference has 
not yet been investigated. 
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The final model considered is that of Poisson regression in which 

For this model a( 4>) = 1 and m(.) is counting measure on {0, 1, ... }. 
From (2·5) it follows that 

r Y-kjl:!..-8 _(k!)-Iexp{k(a+f3T8)-~k2{3Tfl{j} 
Pe(- - )-~(j!)Iexp{j(a+f3T8)-~/{3Tflf3}' (2·20) 

where the sum is over j = 0, ... , oo. Since (2·20) has no closed form the scores .Ps and 
.Pc are quite messy. 

In the normal and logistic models it transpires that .Pc and .Ps are equivalent provided 
t(.) is linear. These examples appear to be the exceptions rather than the rule; i.e. in 
general there is no choice oft(.) which makes .Pc equivalent to 1/15 • To see why, consider 
models in which a(cf>)= 1. In these cases (2·8) and (2·10) are respectively 

[ y-E(Yjl:!..=8) ] [ y-E(Yjl:!..=8) ] 
o/c= {y-E(YJ1:!..=8)}t(8)' .Ps= {y-E(Yjl:!..=8)}8-{y2 -E(Y2 jl:!..=8)}fl{3 . 

Because .Ps involves the second-order conditional moments of Y there is in general no 
choice oft( 8) such that .Pc and .Ps are equivalent. In the special case oflogistic regression, 
Y= Y 2 and taking t(8)=8-fl{3 results in equality. 

3. STRUCTURAL MODELS 

3 ·1. The structural likelihood 

In this section the model studied is the structural version of (1·1) and (1·2) wherein 
u1 , ••• , u" are independent and identically distributed observations with unknown density 
g(u). The density g is an element of '&, a family of densities with respect to Lebesgue 
measure, denoted v (. ). As in § 2, it is assumed that k = 1 along with the identifiability 
condition (2·1). Under these conditions the joint density of ( Y, X) is 

Jy,x(y, x; 6, g)= f hy.x(y, x; 6, u)g(u) dv(u), (3·1) 

where hY.x is defined in (2·2). LetiY,x(Y, x; 6, g)= (aja6)Jy,x(Y, x; 6, g) and assume that 
differentiation and integration can be interchanged in (3·1). If g(.) were known then the 
efficient score for 6 would be 

i(y, x, 6, g)= (a/ a6)l(y, x, 6, g), 

where l(y, x, 6, g)= logfy,x (y, x; 6, g) and the information available in ( Y, X) for estimat•
ing 6 would be ,j = E(W). 

A useful expression for i is obtained by noting that upon differentiating the logarithm 
of (3·1) we get 

1.( )=J(aja6)1og(h)hgdv=E{~ 1 h( _6 U)JY= X=} 
y, X, 6, g J hg dv a6 og y, X, ' y, X � 
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Thus if g(.) is viewed as a 'prior' for u then i has the interpretation as the posterior 
expectation of the functional maximum likelihood 6-score. Furthermore, since a= 
X+ Yf!/3 is sufficient for u in the conditional model, hv.x (y, x; 6, u ), the conditional 
distribution of U I ( Y = y, X = x) is the same as the conditional distribution of U I a= 
x+ya{3. Thus 

i(y, x, 6, g)= E{(a/ a6) log h(y, x; 6, U) I a= x + yllf3}. (3·2) 

3 · 2. Efficient score functions and information bounds 
Efficient score functions for estimating 6 =(a, f3T, <f> )Tin the presence of the nuisance 

function g(.) are now derived. As in § 2 the existence of certain sufficient statistics plays 
a key role here. The structural model studied is a generalization of a model considered 
by Bickel & Ritov (1987). Whereas they study simple linear regression under a number 
of conditions, including that of replicated measurements and our assumption (2·1), we 
consider the more general model only under the latter assumption. 

Our structural model with unknown g(.) is included in the class of semi-parametric 
models studied by Begun eta!. (1983); see also Pfanzagl (1982, Ch. 14). Thus it is possible 
to apply their results to our model to find the efficient score for 6. However, our model 
has a good deal more structure than those considered by Begun et a!. (1983) and this 
can be exploited to obtain a simple derivation of the efficient 6-score which uses only 
classical results. Furthermore, our derivation clearly illustrates the importance of the 
'statistic' a= X+ Yf!/3 encountered earlier in the discussion of functional models. 

In § 2 the primary goal was to find unbiased scores for 6 and it was of no consequence 
that we failed to give a precise statement of the relevant parameter space. The same is 
not true for the discussion of efficiency in structural models. The problem stems from 
the fact that for certain generalized linear models (1·1) there are linear restrictions on 
the quantity a+ f3T u. These usually specify the sign of a+ f3T u, for example for the 
gamma and inverse gamma models. For the normal, logistic and Poisson models there 
are no restrictions. 

We now assume that the family of densities {hv(y; 1J )}, obtained by setting 1J =a+ f3T u 
and fixing <f> in the right-hand side of ( 1·1 ), is a regular exponential family for 1J E H 
where H is one of the three open intervals ( -oo, 0), (0, oo), ( -oo, oo). Let 6 =(a, f3T, <f>) 
be an element in 0 = IR x [RP x IR+ and g an element of ' §. Write T = ( 6, g) and, with 
supp (g)= support of g, define T = { r: a+ f3T u E H for u E supp (g)}. The appropriate 
parameter space for our structural model is T. 

In searching for an optimal score function for 6 we restrict attention to only those 
functions rfJ satisfying the following three conditions for all r = ( 6, g) in T: 

(i) Er{r/I(Y,X,6) }=0, 

(ii) ET{(aja6)r/J( Y, X, 6)}= -Er{rf!(Y, X, 6)F(T, X, 6)}, 
(iii) Er{llr/J(Y,X,6)II 2}<oo. 

These conditions are fairly standard. The set of score functions satisfying (i)-(iii) is 
denoted by !1'. 

We now show that under an assumption concerning the richness of ' § that every score 
in g must be conditionally unbiased with respect to a= X+ Yf!/3; that is if rfJ is in g 
then, for all r E T, 

(3-3) 

Before stating our assumption on ' § we make a definition. 
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Definition. A collection of functions, 'J{, is said to be complete with respect to a measure 
JJ- if a necessary condition for 

J t(s)h(s) dJJ-(s)=O, 

for all hE ife, is t(.) = 0 JJ--almost surely. 

For a fixed 8 E E> let <§ 8 = {g E <§: ( 8, g) E T} and let 118 be Lebesgue measure on 
{u E ~": a+ f3T u E H}. We now make the following assumption. 

Assumption 1. For each fixed 8 E E>, <§ 8 is complete with respect to 118 • 

Assumption 1 plays a role similar to the convexity condition (C) of Bickel (1982), and 
to assumption (S) of Begun et al. (1983). Note that if H = ( -oo, oo) then T =ex <§ and 
<§ 8 = <§ for all 8; and <§ will be complete provided it contains a complete parametric 
family of densities whose support is all of ~P. For example, if <§ contains all of the 
p-dimensional normal densities then <§ is complete. 

LEMMA 3·1. With~= X+ Y!l/3, Assumption 1 implies that any rfJ in 9' must satisfy (3·3). 

Proof. Fix 8. For any rfJ in 9' we know that E8,g{r/l( Y, X, 8)} =0 for all g E <fi8 • Condition•
ing first on~ means that E8,g{Q(~)}=O for all gE <fi8 where Q(d)= E8,g{r/I(Y, X, 8)1~}. 
We now show that E8,g{ Q(~)} = 0 for all g E <§ 8 implies that Q(~) = 0 almost surely. 

First note that E{Q(~)} = E[E{Q(~) I U}]. Now, for our structural model the condi•
tional distributions of Y I U and X I U, and hence that of ~I U, do not depend on g. 
Therefore, E{Q(~) I U = u} also does not depend on g. The fact that E8,g{Q(~)} = 0 for 
all g E <§ 0 implies that, 0 = J E { Q(~) I U = u }g(u) d110 ( u) for all g E <§ 0 • Completeness of 
<§,. with respect to 118 means that E8 { Q(~) I U} = 0, 118 -almost surely. Using properties of 
the bilateral Laplace transform it can be shown that the function E{ Q(~) I U = u} is 
continuous over its domain and thus the fact that E 8 { Q(~) I U} = 0, 110 -almost surely 
implies that E { Q(~) I U = u} is identically equal to zero for all u satisfying a+ f3T u E H. 
The density of~ I U = u forms an exponential family in u. Since the parameter space for 
this family, {u: a+ f3T u E H}, is an open subset of~". the family is complete. Note also 
that ~ = X+ Y!l/3 has a Gaussian component and thus its distribution is absolutely 
continuous with respect to Lebesgue measure. Thus E { Q(~) I U = u} = 0 whenever 
a+ f3T u E H implies Q(~) =0 11-almost surely. Since Q(~) = E{r/1( Y, X, 8) I~} the lemma 
follows. D 

The implication of Lemma 3·1 is important; the only score functions which are unbiased 
for all r E T are those which satisfy (3·3). This fact enables us to deduce, quite simply, 
the form of the efficient score for 8. 

As a measure of efficiency of a score rfJ we use the positive-definite matrix V.p = 
{E(rfJF)}-1 E(rfrrfJT){E(irfJ Tn-•. Under sufficient regularity conditions V"' is the asymptotic 
covariance matrix of nl(e- 8), when 8 solves ~r/1( Y,, X,, B)= 0. 

We now show that for every rfJ E 9', V~, is bounded below, in the sense of positive•
definiteness, by V.p•, where 

rfr* = i(y, x, 8, g)- E{i( Y, X, 8, g) I~= x+ y!lf3}; (3·4) 

that is rfr* is the efficient 8-score. 

THEOREM 3·1. Assumption 1 implies V.p ;3 V"'' for all rfJ E 9'. 
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Proof. Define IC.,_ to be the influence functions for 1/1, that is Ic.,={E(I/IiT)}- 11/J; Ic.,_. 
is the influence function for 1/J*. 

Pick any 1/J E 9'. Now, since 1/JF = 1/JI/I*T + 1/ JE(Fill), Lemma 3·1 implies, after first 
conditioning on ll, that E(I/IF) = E(I/J!/1*). From this fact it follows that v;;;l = E(!/1*1/J*T) 
and E{Ic.,_Ic!� } = E{Ic., _.Ic! } = v., •. Using these relationships we find 

E{(Ic., -Ic.,.)(Ic., -Ic.,.)T} = E(IC., _Ic!)- E(Ic.,.Ic!)- E(Ic., _Ic!.)+ E(Ic.,_.Ic!.) 

= v.,- v., •. 
Thus for any 1/J E 9', v., can be represented as the sum of v.,. and a nonnegative-definite 
matrix which vanishes if and only if Ic., = Ic.,. almost surely. This establishes the 
optimality of 1/J*. D 

To find 1/J* note that Y and U are conditionally uncorrelated given ll. This follows 
from the fact that the u-field generated by ll is a sub-u-field of that generated by ( Y, X). 
Thus E( YUill)= E{E(YUI Y, X) Ill}= E{YE( Vill) Ill}= E( Yill)E( Vill). Using this 
and (3·2) we get 

1/1* = i- E(iill) = E(h/ hI Y, X)- E{E(h/ hI Y, X) Ill}= E(h/ hI Y, X)- E(h/ hill), 

from which it follows that 

[ 
{y-E(Yill= 8)} /a(<f>) l 

1/l*(y,x, 6)= {y-E(Yill=8)}E(Uill=8)/a(<f>) . 

r(y,x, 6)-E{r(Y,X, 6)lll=8} 8~x+yflfl 

(3·5) 

Comparison with (2·10) shows that 1/J* is a conditional score with t(8)=E(Uill=8), 
hence the rationale for choosing t(ll) as an estimator of U in the functional model. 

3 · 3. Some models in which E ( U I ll = 8) is linear 

Since the optimal score in (3·5) depends on the unknown g(. ), it is not readily apparent 
how to construct asymptotically efficient estimators. The theoretical feasibility of doing 
so is suggested by the work of Bickel (1982), and Bickel & Ritov (1987) have successfully 
carried out such a construction for a model similar to ours. Our preliminary work on 
constructing efficient estimators for the class of models considered in the present paper 
is promising; however, the efficient estimators are necessarily complex and this makes 
them less than fully acceptable. For a simpler but related class of models Lindsay (1985) 
proposes modelling E ( U Ill= 8) with a parametric family and estimating the additional 
parameters of this regression model. Such a procedure can result in fully efficient 
estimators only if the true regression of U on ll is a member of the parametric family 
chosen. Furthermore, Lindsay considers only scalar models and obtains estimates of the 
model for E ( U Ill= 8) by maximizing an empirical version of the information. An 
analogous approach in our higher-dimensional model would require maximizing an 
information matrix, a more difficult task. 

In light of the difficulties involved in finding efficient estimators, an argument can be 
made for using a simple estimator provided it is optimal in some cases of interest. We 
now study the conditional score (2·10) when t( 8) = 8. For this choice oft(.), 1/JcL is used 
to denote the conditional score. Since two scores are equivalent if and only if one is a 
nonsingular matrix multiple of the other, 1/JcL is equivalent to any conditional score for 
which t(8) is a one-to-one linear function of 8. Using the same argument it follows that 
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tf!cL is equivalent to the optimal score (3·5) for any model in which E( U 1.1 = 8) is linear. 
Thus conditions ensuring linearity of E( U 1.1 = 8) also ensure that tf!cL is optimal. 

A straightforward calculation indicates that 

where 

E( U J.1 = 8) = Ju exp {u T!r18/ a(<f> )}g*(u) dv (u) 
Jexp {uT!l-18/a(<f>)}g*(u) dv (u)' 

*( )- { uTn- 1u+2b(a+/1Tu)} ( ) 
g u - exp 2a ( 4>) g u . 

(3·6) 

Consider (3·6) when E( Uj.1 = 8) = M8 + Vand 8 is replaced by a(<f>)!ly. The resulting 
equation, which must hold for all y E ~P, can be written in the form 

a(<f> )M!ly + V =(a/ ay) log { w( y)}, (3·7) 

where w( y) = w*( y)/ w*(O) and w*( y) = J exp (u T y)g*(u) dv(u). Note that w( y) is the 
multivariate moment-generating function of the probability density g*(u)/w*(O). Log 
convexity of w(.) implies that M!l is nonnegative which in turn implies that the differential 
equation (3·7) has the solution log { w( y)} =!a(<f> )yTM!ly+ yTV, and thus g*(u)/ w*(O) 
must be a N(V, a(<f>)Mn) density. In terms of g(.) this means that E( Uj.1 = 8) = M8+ V 
if and only if 

( ) { uTn-•u+2b(a+/1Tu)-(u-V)Tn-•M-1(u-V)} 
g u ocexp 2a(4>) . (3-8) 

Finally we conclude that t/lcL is optimal when (3·8) holds. 
At first glance it seems that tf!cL has a very weak claim to optimality in that it appears 

that there is only one g(.) for which it is optimal, and furthermore that this g(.) depends 
on 0. However, recall that tf!cL is optimal no matter what M and V are, thus we are free 
to vary M and V in (3·8). This creates a family of distributions for which tf!cL is optimal. 

If in the normal regression model g(.) is a normal density, then U and .1 are jointly 
normally distributed and E( U J.1 = 8) is linear in 8. Thus for the normal regression model, 
t/ICL is equivalent to t/1* whenever the covariate U is normally distributed. This fact could 
also have been deduced by noting that for the normal regression model b(t) =!t2 and 
thus the exponent in (3·8) is a quadratic form in u. Here g(u) must be a normal density 
in order for E(Uj.1) to be linear. Furthermore, M and V can be chosen to obtain any 
mean and covariance matrix and thus g(.) can be chosen independently of a, 11 in this 
case. 

Now consider logistic regression. Much of the motivation for logistic regression is 
derived from its connection to normal theory discriminant analysis. Suppose that ( Y, U) 
have the distributional properties 

pr(Y=O)=II0 , pr(Y=l)=II1 =1-II0 , UjY=y-N(JLy,'ll) (y=O,l). 

(3-9) 

It then transpires that Y given U follows the logistic model with parameters depending 
on II0 , JLo, 1£1 and 'It, that is pr(Y= lj U=u)= 1/{l+exp (a+/1Tu)}, where 

(3·10) 
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A routine calculation shows that, under (3·9), 

E( U[d= 5) = (n- 1 +'IJI-1)-1(!l- 18+'1Jf- 11Lo), 

that is E( U [ d = 8) is linear, and thus for logistic regression t/JcL is equivalent to 1/J* 
whenever (3·9) holds for any choice ofll0 , ILo. ILl and 'IJI. The covariate distribution g(.) 
cannot be chosen entirely independently of (a, {3T) in this model. We are free to choose 
any II0, ILo. IL1 and 'IJf which in turn determine both (a, {3T) and g(.). However, since 
the p+1 components of (a,{3) are functions of the !p(p+1)+2p+1 components of 
('IJI, ILo. ILl, II0), that is the relationship is not one-to-one, there are several different g(. ), 
all corresponding to the same (a, {3). That is, even for a fixed (a, {3) there are several 
different g(.) for which t/JcL is optimal. This family of g(.) corresponds to all normal 
mixtures of the form (3·9) where 'IJI, ILo, ILl and II0 are constrainted to satisfy (3·10). Of 
course if the normal discriminant assumptions were known to hold a priori, then the 
linear discriminant, a+ {3 T u, would preferably be estimated using a full parametric 
likelihood (Efron, 1975; Michalik & Tripathi, 1980). 

Finally note that for both the normal and logistic models the sufficiency score (2·8) is 
equivalent to t/JCL· Thus for these two models the sufficiency score is optimal in the 
situations described above. 

4. CONCLUDING REMARKS 

The assumption of normal errors, (1·2), is not crucial to the theory developed herein, 
the existence of a complete sufficient statistic for u when the other parameters are fixed 
is. The situation in which (1·2) is replaced with an assumption of replicated measurements, 
that is k > 1 in (1·2), is conceptually no different than when (1·2) is assumed with the 
exception that both ll and rf> can now be estimated; thus there will be an additional 
!p(p + 2)-dimensional component to all the scores. 

Although no distributional assumption on the measurement errors is more natural than 
that of normality, it is still an unverifiable assumption unless replicate measurements are 
made. The sufficiency, conditional and efficient score lose their unbiasedness when the 
assumption of normal errors is erroneous. Thus when measurement error is nonnormal, 
estimates derived from these scores will be inconsistent and the asymptotic bias will 
generally not be computable. Approximations to the bias can be obtained using the 
small-measurement asymptotics employed by Stefanski (1985) although we have not 
attempted these calculations. 
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Optimal Rates of Convergence for 
Deconvolving a Density 

RAYMOND J. CARROLL and PETER HALL* 

Suppose that the sum of two independent random variables X and Z is observed, where Z denotes measurement error and 

has a known distribution, and where the unknown density f of X is to be estimated. One application is the estimation of a 

prior density for a sequence of location parameters. A second application arises in the errors-in-variables problem for nonlinear 
and generalized linear models, when one attempts to model the distribution of the true but unobservable covariates. This article 

shows that if Z is normally distributed and f has k bounded derivatives, then the fastest attainable convergence rate of any 
nonparametric estimator off is only (log n) -ktz. Therefore, deconvolution with normal errors may not be a practical proposition. 

Other error distributions are also treated. Stefanski-Carron (1987a) estimators achieve the optimal rates. The results given 

have versions for multiplicative errors, where they imply that even optimal rates are exceptionally slow. 

KEY WORDS: Deconvolution; Density estimation; Errors in variables; Measurement error; Rates of convergence. 

1. INTRODUCTION 

Suppose that we wish to gain information about the 
density f of a random variable X, but because of mea•
surement error can only observe Y ~ X + Z, where the 
measurement error Z is independent of X. Assume Z has 
a known density function f z with characteristic function 
¢2 . We address the following question: From a sample 
Yt. ... , Y", how well can f be estimated? 

Applied problems in which knowledge off is required 
were discussed by Mendelsohn and Rice (1982) (see also 
Medgyessy 1977). Nonparametric estimates off were dis•
cussed by Stefanski and Carroll (1987a). 

An application of our results is to the nonparametric 
empirical Bayes problem (see Berger 1980; Maritz 1980). 
Here f represents the prior distribution for a sequence of 
location parameters Xt. ... , X". The idea is to estimate 
the prior nonparametrically, as opposed to the alternative 
method of specifying a parametric form for the prior with 
parameters to be estimated. We consider how well a prior 
can be estimated non parametrically. 

Another application is to the problem of measurement 
error models (errors in variables) for nonlinear regression 
and generalized linear models (see Stefanski and Carroll 
1987b). Other recent articles include Carroll, Spiegelman, 
Lan, Bailey, and Abbott (1984), Stefanski and Carroll 
(1985), Stefanski (1985), and Schafer (1987). In this prob•
lem, X is the true predictor, but because of measurement 
error Z we can observe only Y ~ X + z. Although Ste•
fanski and Carroll (1985) and Stefanski (1985) use a sen•
sitivity analysis approach, Carroll et al. (1984) and Schafer 
(1987) assume a specific distributional form for f. This 
article addresses how well the data can be used in a non•
parametric way to suggest a parametric form for f. Schafer 
(1987) shows that in generalized linear models, the EM 
algorithm for maximum likelihood requires knowledge of 

* Raymond J. Carroll is Professor and Head, Department of Statistics, 
Texas A&M University, College Station, TX 77843. Peter Hall is Pro•
fessor, Department of Statistics, Australian National University, Can•
berra, Australian Capital Territory 2601, Australia. Carroll's work was 
supported by the U.S. Air Force Office of Scientific Research and un•
dertaken during a visit to the Australian National University. The authors 
thank Len Stefanski and Cliff Spiegelman for helpful conversations. 

the first two conditional moments of X, given Y and the 
response variable in the generalized linear model. Other 
problems require the conditional moments of X, given Y. 
In either case, how well these conditional moments can 
be estimated from data depends on how well f can be 
estimated from data. 

The case of normal measurement error is particularly 
important. We show that if f has k bounded derivatives 
and errors are normal, then the fastest rate of convergence 
of any estimator off is only (log n)-'12 , and that this rate 
is achieved by a kernel estimator of Stefanski-Carrol! 
(1987a) type. This very slow rate suggests that deconvo•
lution to get precise point estimates of f may not be a 
practical procedure with normal errors, even if optimal 
estimators are employed. With k ~ 2, it also follows that 
the best achievable rate for estimating the distribution 
function of X can be no faster than (log n)- 312 • Thus even 
estimating probabilities for X is difficult. 

We emphasize that our results pertain to precise point 
estimation of the density f and its distribution function. 
It is likely that other quantities may be estimated much 
more precisely, such as conditional moments of X, given 
Y or the number of modes of f. 

We also show that Stefanski-Carrol! estimators attain 
optimal convergence rates for many other error distribu•
tions, such as gamma, exponential, and double-exponen•
tial. For example, the optimal achievable rate in the 
double-exponential case is n -ki(Zk+S). Our results indicate 
that if the error density is compactly supported and infi•
nitely differentiable then the optimal convergence rate is 
slower than n-' for any a > 0. Deconvolving a density 
with smooth measurement error is intrinsically difficult, 
with convergence rates much slower than those usually 
encountered in density estimation. 

These results have obvious implications for models with 
multiplicative error, Y ~ XZ, that may be expressed ad•
ditively by taking logs. The density of log Z is infinitely 
differentiable in many important cases, such as when Z is 
gamma or lognormal, so convergence rates are extremely 
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slow. Hence deconvolution is difficult when errors are 
multiplicative. 

Of course, our lower bounds to convergence rates con•
tinue to apply when error distributions are known imper•
fectly-for example, when errors are normal with 
unknown variance. In such cases where the error distri•
bution is specified up to estimable parameters, the distri•
bution can often be estimated n 112 consistently by 
replication. Since estimators of the X-density f converge 
at rates considerably slower than n - 112 , replacing the true 
error distribution by its estimated version does not mea•
surably affect convergence rates of Stefanski-Carrol! 
estimators. Hence both our lower and upper bounds to 
convergence rates apply when error distributions are 
imperfectly specified, up to a parametric form. 

Section 2 gives details of our calculations in the case of 
normal measurement errors. In Section 3 we briefly discuss 
other error distributions. 

2. DECONVOLUTION WHEN ERRORS 
ARE NORMAL 

Write C,(B) for the class of k-times differentiable den•
sities f having sup f s B and suplf'>l s B. Let X have 
density f, Z be normal N(O, 1) independent of X, andY 
= X + Z. The following theorem provides bounds to the 
accuracy with which f E C,(B) can be estimated from an 
n sample of Y's. 

Let x0 be any real number, and J(x0) be any nonpara•
metric estimator of f(x0), based on an n sample of Y's. 

Theorem 1. Assume that the error distribution is nor•
mal N(O, 1). If for some sequence of positive constants 
{a., n ;, 1} we have 

lim inf inf P_,{lf(xo) - f(xo)l :5 a,} = 1 (2.1) 
It-+"'> /ECJ<(B) 

for each B > 0, then 

lim (log n )'12a, = "'· (2.2) 
~ 

Theorem 1 (see the Appendix for proof) declares that 
the rate of convergence of j to f cannot be faster than 
(log n)""', over densities in C,(B). Kernel estimators 
attaining this rate of convergence were constructed by 
Stefanski and Carroll (1987a) and are given as follows. 
Let G be a symmetric function vanishing outside ( - 1, 1), 
having k + 2 bounded derivatives on ( - "', "') and sat•
isfying G(t) = 1 + O(ltl') as t-> 0. Put h "' (2/log n )112, 

G(w, h) "'(2n)-1 J cos(tw/h)G(t)exp{(t/h)2/2} dt, and 
j(x) "' (nh)- 1 ~i G(Yj - x, h), where {Y" ... , Y,} is 
a random sample from the distribution of Y. The following 
result is an easy generalization to k > 2 of a result of 
Stefanski and Carroll (1987a). 

Theorem 2. Assume that the error distribution is nor•
mal N(O, 1). If the constants a, satisfy (2.2) and j is the 
kernel estimator just defined, then (2.1) holds for each 
real number x 0 and each B > 0. 

A referee has commented that the minimax nature of 
Theorem 1 may be unduly pessimistic. Further work with 

the Stefanski-Carrol! estimator will be the judge of this 
concern. Cliff Spiegelman has conjectured that much bet•
ter rates of convergence can be obtained if we limit con•
sideration to smaller classes of densities, such as those 
confined to a known interval. Len Stefanski has also sug•
gested that the small error approach of Stefanski and Car•
roll (1985) and Stefanski (1985) could be used to good 
effect in small samples. 

The basic method of proof of Theorem 1 (see the Ap•
pendix) can be used to show that if k = 2, the distribution 
function of X can be estimated at a rate no faster than 
(log n )-312• Let F, and F0 be the distribution functions for 
f, and fo in the proof of Theorem 1, and evaluate them 
at ex0, where x0 > 0. The calculations rely on an approx•
imation to H 21-1(x0) given by Magnus, Oberhettinger, and 
Soni (1966, p. 254), and various integral identities (p. 251). 
We omit the details. Using slightly different techniques, 
the same result has been obtained independently by Y. 
Ritov in an as-yet unpublished paper. 

3. DECONVOLUTION FOR GENERAL ERRORS 

There are versions of Theorems 1 and 2 for a variety of 
different types of error distributions. The general principle 
is: the smoother the residual distribution, the slower the 
optimal achievable rate of convergence. It is convenient 
to consider this principle in the Fourier domain, bearing 
in mind that smoother distributions have characteristic 
functions with thinner tails. If X, Y, and Z have respective 
characteristic functions <f>x, <f>y, and <f>z, and if Y = X + 
Z where X and Z are independent, then the characteristic 
function of X is recoverable from that of Yvia the formula 
<f>x = <f>y/ <f>z. Any data-based form of this inversion be•
comes increasingly difficult as the tails of </>z become thin•
ner. For example, if Z has a gamma distribution with shape 
parameter a, then the tails of </>z(t) decrease like ltl-• as 
ltl-> oo, so deconvolution is difficult for large a. In fact, 
the fastest achievable rate of convergence over densities 
in C,(B) is n -kl(2k+2•+ 1>. This is made clear by the following 
analog of Theorem 1. Again, J(x0) is a nonparametric 
estimator of f(x0). 

Theorem 3. Assume that the error distribution is 
gamma with shape parameter a > 0. If for some sequence 
of positive constants {a., n ;, 1} we have lim inf_ 
inftEc,(B) P,{if(x0) - f(x0)1 s a,} = 1 for each B > 0, then 

lim nk1(2k+2a+l)a11 = +oo. (3.1) 

The "double gamma" case, where Z is symmetric and 
IZI is gamma( a), is similar. There, Theorem 3 continues 
to hold for integer a, provided 2a in (3.1) is changed to 
4(a - [a/2]), where [a/2] denotes the largest integer not 
exceeding a/2. In particular, the optimal rate of conver•
gence when errors have a double-exponential distribution 
is n -kr(zk+s). 

Proofs of results such as Theorem 3, where algebraic 
rates are available, run as follows. Let £----+ 0 as n ~ oo, 
and fix a k-times differentiable density fo that is bounded 
away from 0 in a neighborhood of the origin. Let H be a 
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bounded, compactly supported function with at least k 
bounded derivatives, satisfying H(O) ,< 0 and f xiH(x) dx 
= 0 for 0 :5 j <a + 1. Put f,(x) "'fo(x) + e'H(xle), 
and let g, and g0 be the convolution densities for fo and 
f, respectively. It may be shown that if e = 

n ~ 11 (2'+ 2•+ 1), then I, defined at (A.6) (see the Appendix), 
satisfies I = O(n ~ 1). Then, arguing much as in the proof 
of Theorem 1, the best attainable rate of convergence 
emerges as being no faster thane'. Similar techniques show 
that for smooth, infinitely differentiable error densities 
such as the Cauchy, the optimal convergence rate is slower 
than n ~o for any a > 0. 

Stefanski-Carroll-type kernel estimators achieve opti•
mal rates in the normal, gamma, and double-gamma cases. 

4. DISCUSSION 

Deconvolution problems are important in their own 
right, as well as in nonparametric estimation of priors. In 
measurement error models, deconvolution arises if one 
wishes to use data either to suggest models for the unob•
servable predictors or to estimate conditional moments 
useful in likelihood calculations. When the measurement 
errors are normally distributed, our results are pessimistic, 
suggesting that it is difficult to deconvolve effectively over 
a wide class of distributions for X if one is interested in 
precise estimates of the true density f. Other functions of 
f may be estimated better, such as the conditional mo•
ments of X given Y or the general shape of f. 

APPENDIX: PROOF OF THEOREM 1 

To simplify notation, we relocate so that x 0 = 0 and rescale 
so that Z is normal N(O, !), with density 1p(z) = n~ 112e-•z. Let 
a 2':: 1, and write fo for the N(O, a 2) density; l for the integer 
part of log n; b1 = 2-1{(2j)!}-"'i'"; ~ = 1-'"e'JB, where e and J 
E (0, !-] are fixed; and H 0 , H,, ... for Hermite polynomials 
orthogonal with respect to If!. The following properties are ob•
tainable from Magnus et al. (1966, p . .252) and Sansone (1959, 
p. 324): H;(-x) = (-1)'H1(x); 

exp{2xey- (ey)') = 2:; H1(x)(ey)•lj!; (A.1) 
,~o 

I H,(x)H,(x)e~•' dx = n"'2'i! if i = j, 0 otherwise; (A.2) 

I H2,(x)x2''fi(X) dx = (2j)!/{4h(j - i)!}; (A.3) 

lb,H,1(x)'fl(x)l :5 C(1 + lxl"')e~•'"; (A.4) 

~ supi(didx)'b1H21(xie)'fi(Xie)i :5 C JB, (A.5) 

where C depends only on k. 
Put fJx) = fo(x) + ~b,H,(xie)'fl(xie). By (A.4), and since 

~(n)--> 0 and e < 1 :5 ( J, f, is a density for large n. If X has 
density fo or f, then Y = X + Z has density g0 or g.,, respectively, 
where g, is the N(O, ( J 2 + i) density, g,(x) ~ g,(x) + ~b,h,(x), 
and 

h,(x) =I H,(y!e)'fi(Yie)'fi(X- y) dy 

= e'fi(X) 2:; H,1(x)e'i{4•-'(j- /)!}~', 
}~I 
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using (A.1) and (A.3). Since 'fl(x)'lg,(x) :s; C,e-•', 

I= I (g, - g,)'(g,)-• :5 C,(~b,)' 

X I h,(x )2e'' dx 

= Cze2*+2 .:PZ21{(Z/)!}-lf112-k 

x 2: (e'i4)'(2j)!{(j - /)!}~', (A.6) 
J=l 

using (A.2). But {(21)!)-• :s; C,(/!)~ 22~"1"2 , (2j)! :5 C,(j!)222lj~"2 , 

and j!/(j- /)! = <;)I! s 2ft!. Hence, remembering that e :s;!. 

J s C4e2k+2 c52/l-k 2: (4e4)ij-t12 
{"'/ 

s C,(e, J)t"'-'(4e')' = o(n-'). (A.7) 

Given B > 0, we see from (A.4) and (A.5) that by choosing 
a large and 0 small, not depending on B, we may ensure that fo 
and f, E C,(B) for large n. For an event A, let P,(A) and P,(A) 
denote the probability of A under f, and f 0 , respectively. If {a,} 
satisfies (2.1), then by (A.7) and the Cauchy-Schwarz inequality 

[P,{i/(0) - f,(O)i :s; a,}]' 

:s; P,{i/(0) - f,(O)i :s; a,}(1 + /) ' 

= {1 + o(1)}P,{i/(O) - f,(O)i"' a,), 

so both Po{i/(0) - f,(O)I :5 a,} and P,{i/(0) - fo(O)i :5 a,} con•
verge to 1 as n --> oo. Hence lf,(O) - fo(O)I :s; 2a, for large n. 
But lf,(O)- / 0(0)1 = ~b,(2l)!!l!n'" z 2CB(log nt"'. where C 
does not depend on B. Therefore, a.,?::": CB(log n)-k 11 for large 
n. Since this is true for each B > 0, then (log n)k12a, ~ oo, 
completing the proof. 

[Received July 1987. Revised March 1988.] 
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Summary. This paper considers. estimation of a continuous bounded probability density 
when observations from the density are contaminated by additive measurement errors 
having a known distribution. Properties of the estimator obtained by deconvoiving a kernel 
estimator of the observed data ~:~:e investigated. When the kernei used is sufficiently smooth 
the deconvolved estimator is shown to be pointwise consistent and bounds on its integrated 
mean squared error are derived: Very weak assumptions are made. on the measurement-error 
density thereby permitting a comparison of the effects of different types of measurement 
error on the decpnyolved estimator. 
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1. Introduction 

1.1. The deconvolution problem 

Let U and Z be independent random variables with probability density functions 
g and h respectively. Then the random variable X== U +Zhas the densityf=g*h 
where *denotes convolution. Assuming his known we consider estimating g :from 
a set of independent observations {X1}j~1 having t)le common density f. 

The problem arises whenever data are measured with nonnegligible error and 
knowledge of g is desired. In this case U represents a true value, Z is an error of 
measurement and X is an observed' value. An application is discussed in MENDEL•
SOHN and RICE (1983); other applications and related work can be found in 
EDDINGTON (1913), TRUMPLER and WE.AVER (1953), KAHN (1955), G.AFFEY (1959), 
WISE et. al. (1977), and DEVBOYE and WISE (1979). Our interest in the problem 
arises :from its potential for application in measurement-error-modelling. For 
example, work is in progress at the Radiation Effects Resea.rch Foundation, 
Hiroshima, Japan, to assess the health effects of radiation exposure. Measured 
exposures are known to contain substantial measurement errors. Some of the 
statistical models proposed for the ,data require estimation of the distribp.tiOJ;t:-. 
(density) of true radiation exposures given only data on measured exposurl.ls and 
reasonable assumptions concerning the error distribution. Since the sample sizes 
involved are very large, nonparametric density estimation with deconvolution 
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seems feasible. This paper establishes the elementary asymptotic theory asso•
ciated with deconvolving a kernel density estimator and presents results from a 
simulation study demonstrating the difficulty of nonparametrio deconvolution in 
moderate to large samples. 

The deconvolution problem can also be cast in the format of an empirical BAYES 
problem wherein g represents the prior distribution for a sequence of location 
parameters. Estimation of prior distributions or mixing distributions have been 
studied by several authors, for example, BLUM and SuSAR:L.A. (1977), CHOI and 
BU:LGREN (1968), DEELY and KRusE (1968), M.Am:Tz (1967) and PRESTON (1971). 
The estimator proposed in. Section 1.2 is a transformation of a kernel density 
estimator of f. Some papers in which a tratnsformation of a density estimatur is of 
primary interest include TAYLOR (1982} and IJ.u,L and SMITH (1986). Recent 
contributions to the literature on deconvolution include CARROLL and lJ.u,L 
(1988), F.A.N (1988), Lru and TAYLOR (1988a, b) and STEFANSKI (1989). 

Although many of the estimators proposed in the literature have been shown to 
be consistent less is known about their rates of convergence. The estimator we 
propose has the advantage of being analytically and, in some oases, computatio•
nally no more complex than an ordinary kernel density estimator, thus facilitating 
a discussion of its convergence properties. However, a price is paid for the reduc•
tion in complexity in that the resulting estimator is not range preserving, i.e., it 
assumes negative values with positive probability. 

Throughout we make very weak assumptions on h and this allows us to assess 
the effects of different types of measurement error. A conclusion indicated by the 
analysis is that the difficulty of the deconvolution problem varies inversely with 
the smoothness of the measurement-error density. Thus deconvolution is particu•
larly difficult under the common assumption of normally distributed errors. 

Some conditions on hare necessary to insure that g is identifiable. We assume 
that, h has a nonvanishing characteristic function, w,., i.e., 

jW,.(t)j >0, for all real t, (1.1) 

Although (1.1) is not the weakest assumption insuring identifiability of g it holds 
in many oases of interest, and in particular at the normal model. 

1.2. The estimator 

Let K be a bounded even probability density function whose characteristic func•
tion, (/1 K, satisfies; for each fixed .A. >0, 

sup IWK(t)/W,.(t/l)j <oo; 
t 

Implied by (1.2) are the facts that wi:/IW,.( e/.A.)j2, !WKI and wi: are all integrable, 
which in turn implies that WK is invertible, i.e., 

(1.3) 
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Let J be an ordinary kernel density estimator off based on the kernel K, 
n 

/(x)=(nJ..)-1 I} K ((X 1-x)!J..). (1.4) 
j~l 

The characteristic function of 1 is denoted <P1 and satisfies <Pj(t) = &(t) (/J K(J..t) 
n 

where &(t) =n-1 I} eitX1 is the empirical characteristic function of {X1}f~l· Under 
1~1 .. 

(1.2) if>1/<Pn is an integrable function and therefore possesses a FOURIER transform. 
The estimator we propose is {j given by 

{j(x) = (2n)-1 J e-it"'{<P1(t)/<Pn(t)} dt. (1.5) 

Note that it is not possible to replace <P1 with & in (1.5) since the resulting integral 
does not exist. By using <P1 in place of & we are able to force integrability of the 
integrand in (1.5) by suitable choice of (/JK· 

Define the function K'f as 

K'f(t) = (2n)-1 f eit'Y {<!JK(y)/<Pn(YIJ..)} dy. (1.6) 

Then {j ha,s the representation 
n 

{j(x)=(nJ..)-1 I} K'f ((X1-x)/J..). (1.7) 
1-1 

Properties of {j are best understood in terms of the properties of K'f and the latent 
variables {U;, Zi}J~I· 

Equation (1.2) implies that IKfl is bounded, thus I{JI is also bounded and its 
expectation necessarily exists. Furthermore, Rn interchange of expectation and 
integration, justified by FuBINI's Theorem and (1.2), shows that 

E {K'f ({X -x)/J..) I U}=K ((U -x)/J..}. (1.8) 

From (1.8) it follows that 

E{{j(x)}=J..-IE {K ((U -x)/J..)}= J J..-lK ((u-x)!J..) g(u) du, (1.9) 

Thus {j has the same bias as an ordinary kernel density estimator. Formally, this is 
a consequence of the fact that the linear operations of expectation and FOURIER 
transformation commute. Furthermore if {j* is the kernel estimator 

n 
{j*(x)=(nJ..)-1 I} K ((0"1-x)/J..) 

1~1 

then it follows from (1.8) that E{{j(x) 1 U1, ... , Un}=g*(x). Thus, conditionally {j 
can be viewed as an unbiased estimator of {j*. 

The fact that if>Kis even and real implies that K'f is real and thus {/is also. When 
his even, K'f is even. If (/J KI<Pn( •IJ..) possesses m continuous integrable derivatives, 
then it follows from the RIEMANN-LERE1SGUE Lemma that Kt_(t) =o(l~!-m) as 
It!-= and form; ; ; ; : 2 this means that Kf and hence g are integrable. Furthermore m 
this case the FOURIER Inversion Formula indicates that 

(1.10) 
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Evaluating (1.10). at y = 0 shows that JKf(t) dt= 1 implying that J g(x) dx = 1. 
Since Kf has many properties of an ordinary kernel we call it a deconvoluting 
kernel. The one property it lacks is nonnegativity; the left hand side of (1.10) is 
not positive definite thus K.i cannot be a true probability density. Since, condi•
tioned on {U;}f~1 , g is an unbiased estimator of g*, this probletn can be viewed as a. 
failure of unbiased estimators to. be range preserving. 
In summary, provided fPK/rb,.(e!J.) is smooth and (1.2) holds, g is continuous, 

real-valued and integrable with J g(x) dx= 1.' Although the seve:dty of (1.2) de•
pends on fb,., it is always possible to satisfy these conditions when (1.1)'holds by 
choosing rp K so that it vanishes outside a finite interval. For example, we can take. 
fP K proportional to U(2m) where U(Zm) is the 2m-folq convolution. of the uniform 
density, x(Jx(;§ 1,)/2, with itself. Th~ corresponding density· is propo~tional to 
{sin (t)/t}2m. When m ~ 2,. u< 2m> has two ~ontinuous integrable d~riva,tive.s and the 
smoothness conditions on fPK/rb,.( e/J.) are obtained· provid,e!I, fb,. is sufficiently 
smooth. If fb,. is not smooth then g need not be integrable although it will still be 
bounded and square integrable. 

For certain measurement-error distributions (1.6)·has·a closed-form expression. 
For example, when h(x) = (1/2) e-1"'1, Kf(t) =K(t) -J.-2K"(t). In fact the integral in 
{1.6) can be evaluated analytically whenever 1/fb,. is a pQlynomial. Unfortu,nately, 
it does not seem possible to' obtain Ki in closed form for the normal measurement•
error model. 

2: Asymptotic results 

In this section we establish the point-wise consistency of g and derive. an approxi•
mation to its integrated mean square error. Throughout we work under the assump-
tions that g is continuous and bounded and hence square integrable. · 

Theorem 2.1. If rbx and rb,. are such that (1.1) and (1.2) hold and g is continuous 
and bounded then g(x) defined by (1.5) is a consistent estimator of g(x) provided n-+=, 
;. ..... o and (nJ.)-1 J Q>~(t) lrb,.(t(A.)I-z.dt ..... o. 

. ,.~, 

Proof. Since lfb Kfrb,.( e/J.) I is square integrable we have from (1.6) and PARSE•
VAL's Identity 

J {K.i(x)}2 dx= (2n)-1 J rbi(t) I fb,.(t/J.).I-2 dt. (2.1) 

In light of (1.9) we can appeal to known results on kernel density to claim that 
the bias of g(x) converges to zero as'). -+-0. 

Define 
A(J., a)=j {K.i(x)}2 g (a+A.x) dx [f {K.i(z)}2 dx]-1 

and note that A(J., a) is bounded by B,=sup g(:t). Now note that 

"' 
E {K.i ((X -x)/A.)}2 = J J {Ki ( (z+u~x)/J.)}2 g(u) duh(z) dz 
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and after the change of variables t= (z+u-x)/A in the inner integral we get 

E {K j ((X c-x)/A)}2=A j A (J,, x-z) h(z) dz j {K,i(t)}2 dt {2.2) 
;§ABg f {Kj(t) }Z dt. 

Now since nA2 Var {g(x)} is bounded by the left hand side of (2,2) we find that 

Var {g(x)} ;§ {nA)-1 Bg J {Ki(t) }2 dt (2.3) 
={2nnA)-1 Bg J !J)i(t) J!])n{t/A)J-2 dt, 

upon appealing to {2.1). Under the assumptions of the theorem, {1.9) and {2.3) 
show that E{g(x)}-g(x) and Var {g(x)}-0 thus concluding theproof. • 

Now we derive an approximation to the integrated mean squared error of g. 
Using PARSEVAL's Identity, (2.1) and the change of variables t= (X -y)/A we 
have that as n-= and A->-0, 

J Var {g(y)} dy (2.4) 
=n-l f A-2 E {K j ((X -y)/A)}2 dy-n-1 f [E {J,.-1 Ki ((X -'y)/.A.)}]2 dy 
=n-1 E f A-2 {K j ((X-y)/A)}2 dy-(2nn)-1 f J<Pg(t)J2 <P~(At) dt 

= (An)-1 J {Kj(t)}2 dt- (2nn)-1 J J<Pg{t)l2 <P~(Jlt) dt 
= (2nnA)-1 J <P~(t) J<Pn{t/A)I-2 dt+o{(n.A,)-1} ~ (2nnJl)-1 J <P~(t) J<Pa(t/A)J-2 dt. 

If in addition to previous assumptions, g possesses two bounded integrable deriv•
atives then as .A.-0, 

J [E{g{x)} -g(x)]2 dx~ {A.4/4) .ub J {g"(x)}2 dx (2.5) 

when .UK,2= J y2K(y) dy-<=- Combining (2.4) and (2.5) we have that to a first-order 
approximation 

J E {g(x)-g{x)}2 dx~(~nnA)-1 J !J)~(t) J<Pn{t/A)J-2 dt 

+ (J.4/4) .ub J {g"(x)}Z dx-

(2.6) 

The first term in (2.6) can be much larger than the variance component of the 
integrated mean squared error of an ordinary kernel density estimator. This is the 
price paid for not measuring {UJ}f~1 precisely. The rate at which 

Vu(A)= f <P~(t) J!])h(t/A)J~2 dt (2.7) 

diverges as A decreases is dictated by the tail behavior of J<PnJ, which in turn is 
related to the smoothness of h. Suppose that !J)K is strictly positive on {- B, B 
and vanishes off this interval. Then considering (2.7) when his standard normal, 
CAUCHY and double-exponential we have respectively that for each 0-<s-<B 
there exist positive constants c1, ... , cs such that 

c1e(B-�>'IA' ;§ V K,n(A) ;§ c2eB'IJ.' (normal) 
cae<B-e)/J.;§ V K,h(Jl); §c4e 2B(J. (CAUCHY) 

V K,h(Jl) ~cs.:t~4 (double exponential) . 

Thus in these cases in order for (2.4) to converge to zero, A must approach zero at 
a rate no faster than {log (n)}-112 for the normal model, no faster than {log (n)}-1 
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for the CAUCHY model, and no faster than n-115 for the double-exponential model 
In other words, these are necessary conditions on l if the first term on the right 
hand side of (2.6) is to be asymptotically negligible. By considering these rates-in 
the right hand side of {2.5), it follows that the best possible rates on the integrated 
mean squared errors of (j are {log (n)}-2, {log (n)}-1 and n-419 for the normal, 
CAUCHY and double-exponential cases respectively. Here we have considered only 
the order of the bandwidth. A more complete discussion of bandwidth selection 
can be found in STEFANSKI {1989). 

The normal, CAUCHY and double-exponential densities share the same ordering 
with respect to their peakedness at the origin; the normal is least peaked and the 
double-exponential is most peaked. The relationship between the variance of (j 
and the peakedness of k is intuitive if we thirik of peakedness as a measure of 
the closeness of k to a delta function for which measurement error is identically 
zero and the deconvolution problem disappears. This analogy can be pushed a 
little further by considering a model wherein only 100 P% (O<p< 1) of the data 
are measured ·with error and the remaining data are error free. In this case we 
have X=U+Z* where P(Z*=0)=1-p and P(Z*=Z)=p. The characteristic 
function, ([>* of Z* is ([>*(t)= (1-p)+p([>n(t). Nothing in the previous analysis 
required Z to have an absolutely-continuous distribution. IfZ* and not Zis the 
measurement-error variable then the variance term in (2. 7) becomes 

(2:nnl)-1 f {([>i(t) !1-p+ p([>n(t/l)!-2} dt~ (2:nnl)-1 f ([>i(t) dt/(1-p)2 

which is the same order of magnitude as the variance term for ordinary kernel 
density estimation. Thus for the model in which some data are error free we get 
convergence of the integrated mean-squared error at the usual rates. A similar 
model for discrete data was studied by DEVROYE and WISE (1979). We do not 
know of any instances in which this model· has been studied for continuous 
variates. 

3. Normal measurement error 

We now argue that the poor performance of (j at the normal measurement error 
model is intrinsic to the decon~"6lution problem and that convergence rates like 
{log { n)} -p, p > 0, are to be expected. 

Let g be any estimator of g which is continuous, bounded and integrable. Then 
g determines an estimator off, namely f=k*(j where k is the standard normal 
density. It follows that J and all of its derivatives are continuous, bounded and 
integrable. 

Let e be the convolution operator corresponding to standard normal meas•
urement error and let ® be the differential operator. Expanding et'/2 hl. a MAo-

-
LAURIN series we get that formally e-1=}] ( -1/2)1 ®2ij jl. Thus when f=k*fi, 

- 1-1 
g(x) = E ( -1/2)1 J< 2il (x)/j! provided the series is convergent. Therefore we cannot 

i-1 
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expect to estimate g any better than we can estimate arbitrarily high derivatives 
of f. In contrast, when his double-exponential, tJ>,.(t) = 1/( 1 + t2 }, and deconvolution 
corresponds to a differential operator of order 2. Thus the rate of convergence for 
deconvolving double-exponential errors is the same as for estimating a second 
derivative. 

Theorem 3.1. below shows that under certain regularity conditions, if the perform•
ance of J deteriorates sufficiently upon one differentiation, then the rate of con~ 
vergence of the integrated mean squared error of g ~an be no better than inverse 
powers of log (n) for a large class of estimators. 

In the theorem it is assumed that g, f and f' are bounded, integrable estimators 
of g, f and f' respectively. For an .integrable random function, 8( • ), with an inte•
grable expectation, E{s( • )}, let tl> 8 (t) and fl>E{•}(t) denote J eitzs(x) dx and J eitz 
E{s(x)} dx respectively. With this notation we have that ti>1=tPntPu and tJ> 1,(t) = 
= - ittl>1(t) under the conditions stated above. 

Theorem 3.1. If for s=g, 1 and]', 

E{fl>8(t)} = fl>E{i} (t); 

J V or {s(x)} dx,;, (2n)-1 J E {lfl>8(t)- fl>E{s}(t} 12} dt; 
J Var {](x)} dx=n-tc1 ,,.a,.; 

J [E{J(x)}-f(x)J2 dx=~,,.a;;:'; 
J Var{J'(x)} dx=n-1ea,na~+•; 

(3.1) 

(3.2} 

(3.3} 

(3.4} 

(3.5) 

where r and s are positive constants,· the sequence {an}..:..=; and {ct,n}, {c2,n} and 
{cs,n} are convergent sequences with positive limits,· then the integrated mean squared 
error of { j exceeds Cz,n {(ct,n/Cs,n) log (n)}-'1' for large n. 

Proof. For convenience drop the subscript non an, c1 ,n, ... , ca,n·" The relation•
ship ti>1=fl>utPn, (3.1), (3.2), JENSEN's inequality, (3.3} and (3.5) are. used to show 
that 

J Var {g(x)} dx=(2n)-1 J et'E {IQ'W) -fl>Em(t)l2} dt 
?=J Var {/(x)} dxexp ([j Var {f'(x)} dx] [ j Var {J(x)} dx]-1) 
= (n- 1act) exp {(cs/cl) a'} . 

If (eg/c1) a'?=log (n), then (c1a/n) exp {(c3/c1) a'} diverges and thus the integrated 
mean squared error of g diverges unless a<{(c1jeg) log (n)}11'. But (3.4}, (3.1} and 
two simple inequalities together imply that 

c2a--r = J [E {f(x)}-f(x)J2 dx= (2n)-1 Je-t' lfl>E{ii}(t)- tPg(t) 12 dt 

~ (2n)-1 J lfl>E(ii} (t)- Wg(t) 12 dt ,1 
~E [j {g(x)-g(x)}2 dx]. 

Thus when a<{(ct/cs) log (n)}11' the integrated mean squared error of g ex6eedr·•

c2 {(c1/cs) log (n)}--r/• , 

which concludes the proof. • 



64

176 statistics 21 ( 1990) 2 

When 1 is a kernel density estimator with nonnegative kernel, a-1 is the band•
width, r = 4, s ·= 2 and the theorem shows that the mean integrated squared error 
of fi can converge at a rate no faster·than {log (n)}-2. 

The significance of Theorem 3.1lies in the fact that most nonparametric density 
estimators used in applications show a significant drop in performance upon dif•
ferentiation. The theorem indicates that if such an estimator is deconvolved to 
remove a normal component, then the resulting estimator will have a mean 'inte•
grated squared error that converges no faster than negative powers of log (n). 
In a paper that has appeared since submission of this paper, (C,A.RROLL and 

HALL, 1988), it is established that the best point-wise convergence rates for decon•
volving riormal measurement error are. proportional to {log (n)}-d/2 when g has d 
bounded derivatives. This result and Theorem 3.1 suggest that deconvolving nor•
mal measurement error is generally not likely to be very successful except in very 
large samples or when the density being estimated is extremely. smooth and its 
smoothness is exploited. This often means resorting to estimators off and g which 
are neither positive or integrable or both. Smoothness assumptions on g are not 
unreasonable in some applications and if we are interested primarily in determin•
ing the gross structure of g, e.g., presence and location of modes (SILVERMAN, 

1981), nonnegativity and integrability are not crucial. 

4. A procedure for normal errors 

Due to the difficulties inherent in deconvolving normal errors we investigated use 
of the so-called sine kernel, K(x) = (nx)-1 sin (x), (D.A.VIS, 1975; TAJ?J.A. and THoMP�

SON, 1978) with characteristic function q).K(t)=x(Jt\~1). This kernel takes full 
advantage of smoothness properties of g by allowing bias to decrease at rates dic•
tated by the tail behavior of Jq>,[. Lighter tails of Jq)g[ correspond to better conver•
gence rates for {j. The improved asymptotic performance is obtained at the ex•
pense of nonnegativity of 1 and integrability of both l and {j. These are properties 
which might reasonably be sacrificed for the sake of determining shape. 

The estimator proposed in Section 1 requires a bandwidth-selection rule for 
implementation. We now show that a cross-validation approximation to the 
integrated squared error of { j,.-AISEg(A), is given by 

1/J.. -

AISJil (J..)= f 2 -(n+l) !c])(t)!2 ·dt. (4.1) 
fl (n-l)nl!lih(t)!2 

0 

Let {X}(J) denote the sequence {X;} with X 1 removed and let tPm be the empirical 
characteristic function of {X}(J>· Then the fact that 

E [e-itXJt/J 11)(t) I U1, {X }i ] =tP(i)(t) e 1tu;q>h( -t) , 

motivates the approximation via PARSEV.A.r/s relation 

i; e -ltx;~(i)(t) !l>g(i!t) · 

f {jgdx~(2:rm)-lf H i!Z>h(t)!2 dt • 
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Thus for the purpose of minimization 
A n -ltX A 

n I !Px(.1t) 12 ·I !P(t) 12-2 1; e iq;(f)!PK(At) 

J (g-g) 2 dx~ f (2nn) ~~~(t)l 2 dt=AlSEg(A). 

The last equality follows from (4.1) upon invoking the relationship 
n 
IJ e-itXJcf><il(t) = (n-1)-1 {n2 IW(t)ILn}, 
j~l 

substituting x(l).tl ~ 1) for <Px().t) and noting that lcP( • )12 is even. 
The cross-validation approximation to the integrated squared error of J, 

AISEp.), is given by the right side of (4.1) upon setting <Pn(t) = 1. Differentiating 
(4.1) with respect to). shows that extreme points of AISEg and AISE, both satisfy 
ln(A) = 0, where 

ln(A) =n {n-1)-1 {2- (n +1) lcP(1/).)12}. (4.2) 

Equation (4.2) indicates that the optimal cross-validation bandwidths for esti•
mating g and f respectively are identical except possibly when (4.2) has multiple 
solutions. This is a consequence of using the sine kernel and the fact that f is 
infinitely differentiable . .A sufficient condition for the mean integrated squared 
errors of g and 1 to have identical minima is given in the Appendix. 

5. Simulation results 

We conducted a Monte Carlo study to determine if g is capable of revealing fea•
tures of g which are masked by convolution with h. In particular we took g to be a 
50-50 mixture of normal densities with means ± (2/3)112 and common variances 
1/3. Normal measurement error with variance 1/3 was added to g so that f is a 
50-50 normal mixture with means, ± (2/3)112, and common variances, 2/3. For this 
parameterization, g is bimodal, f is unimodal and the measurement error variance 
is 1/3 the variance of g, although it equals the variance of each normal component 
of g. 

Observations were generated from f, and g was computed according to (1.5) 
with ci> x(t) = t, (ltl ~ 1 ). This requi;~d numerical integration of 

1/.t 

g(x) =n-1 J qn,a(t) dt 
0 
n 

where qn,a(t)=n-1 E cos {t (Xj-X) } et'a'12 . The integral was evabmted using 
1~1 

SIMPSON's rule with sequential doubling of the grid size until successive iterations 
of g(x) differed by less than 10-5. The computational procedure is accurate al•
though it is slow. 

In our study estimates were calculated over a 65-point grid spanning [- 3T, 
3.5]. Sample s!ze was set at n= 2500. ·With samples this large A1SEg(A) and 
AISE1 ().) are well-behaved and esti~ated bandwidths can be reliably computed 
12 statistics 21 (1990) 2 
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by solving (4.2). Optimal bandwidths were also deternrined by minimizing the 
integrated squared error of g. Due to the large number of computations involved 
only 25 repetitions were performed. Figure 1 summarizes the findings of the simu•
lation. Of the 25 density estimators, two were of significantly poorer quality than 
the rest due to estimated bandwidths which were much too small. Figure ia con•
tains an overlap plot of the rema1ning 28 estimates and gives a good idea of-the 
variability inherent to the estimators. 
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~igure 1 b displays the mean of the density estimates /1, and {ic over the same 23 
observations alluded to above. The mean density estimates are very similar to their 
population counterparts, apart from the negativity in g. 
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Fig. 1. Simulation results: la. Twenty-three estimates g; lb. Means of twen•
ty-three estimll.tes of J (unimodal) and g (bimodal); lc. Three worst esti•
mates g; ld. Scatterplot of estimated bandwidths versus optimal bandwidths. 
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Figure 1 c graphs the three most extreme estimated densities. These densities 
correspond to the largest and two smallest estimated bandwidths. 

Figure 1d contains a scatter plot of estimated versus optimal bandwidths. The 
latter were determined l>y minimizing f (g- g)2 dx. The discrete nature of the data 
is an artifact of the optimization procedures employed, which searched over the 
grid 

(1.5, 1.475, ... , 0.75) cr/{log (2:n;a2n112)}112, cr2= 1/3, · n= 2500. 

All bandwidths, estimated and optimal, fell within the boundaries of this grid. The 
correlation coefficient for these data is - 0.458. Removing the maximum and 
minimum estimated bandwidths changes. the correlation to -0.670. The negative 
correlation between estimated and optimal bandwidths is typical of bandwidth 
selection procedures. 

Of th~ 25 estimates, 13 showed clear evidence of bimodality, 4 showed question•
able evidence and the remaining 8 gave little or no evidence of bimodality. The 
marginal performance of g is consistent with the asymptotic results of Sections 2 
and 3 even though the latter pertain specifically to nonnegative kernel estimators. 
The model is artificial only with regards to the loss of bimodality in the presence 
of measlirement error. The signal-to-noise ratio is not extreme. Thus a reasonable 
conclusion is that deconvolution is generally going to be ·a viable technique only 
with very large sample sizes. And in these cases computational efficiency may dic•
tate the choice of estimator, at least to some extent. 

6. Applications 

The theoretical results and simulation evidence in the previous sections indicate 
that deconvolution with normal errors will generally be feasible only with very 
large sample sizes and this limits its applicability. Furthermore, the need to specify 
the error density and the fact that our asymptotic results indicate widely varying 
performance under different error models, suggest that deconvolution may not be 
robust to choice of error model. We now examine the extent of these limitations in 
a particular application. ·-'-• 

We consider estimating the density of long-term log daily saturated fat intake 
in women, using data from a study on the relationship of breast cancer incidence 
and dietary:fat, see JoNES, et al. (1987). We use the same 288.8 observations on 
women of age less than 50 employed by STEFANSKI and C.ARROLJ. (1989). Estimates 
of the error variance for these data suggest that as much as 50-75% of the vari•
ability in the obsenre.d dat!J. may }l.e d11e tq.ll).easuremEmt error. The simulation 
results suggest that' for a sample of size 2888, deconvolving this much noise is 
problematic. However·, it is possible to gain .sdrp.e insight into the data oy deoo:n•
volving lesser amounts of noise. 

In the example we used the &,inc kernel and bandwidth selection prc;>cedure de•
acribed in; Section 4.. Recall that for the sino :Kernel, bandwidth selection is inde-
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pendent of the error density asymptotically, see Section~ and the appendix. The 
deconvolved density estimator was computed under three different assumptions 
on the error density, normal (N), double exponential (DE) and hyperbolic cosine 
(HC) ((2/n) (et +e-t)-1). These densities were chosen for their qualitatively dif�
ferent behaviour at the origin and in the tails, and because of their analytical 
tractability. In each case the densities were scaled to have common variance. 

Because the estimators are not range preserving, in applications we suggest 
employing the positive projections of the estimators J'enormalized to integrate to 
one over the range of the data. Figures 2a and 2b display the resulting estimators 
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1. YN• YDE• and YHc assuming that a;= (1/5) a_i. and (1/3) a_i. respectively. The 
density estimates are graphed over the range of the observed data. For the case 
a;= (1/5) a_i., the three deconvolved densities are nearly identical. For the case of 
larger measurement error, distinctions between the three deconvolved densities are 
more noticeable. However, differences between the three estimates of g are still 
small relative to the differences between 1 and any one estimate of g. 

Assuming that the additive symmetric error model is reasonable, both figures 
suggest the interpretation that the long left tail of 1 is due to an underlying bimo•
dal g smoothed by convolution. However, the data are 24-hour recall measure•
ments of log saturated fat intake (STEFANSKI and CARROLL, 1989) and it seems 
prudent not to blindly accept the assumption of symmetric measurement error ami•
the interpretations it renders. For example, it may be that a proportion of sub•
jects systematically underreport foods high in saturated fats, resulting in a skewed 
or bimodal error density. This would also account for the long left tail in/. In fact, 
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jf the density, g, of '!true'' log saturated fat intake is· approximately normal and 
the error distribution, h, is bimodal, then the deconvolved density estimates, 
c.alculated under the assumption of symmetric errors, would be approximating h 
not g. 
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Fig. 2. Saturated-fat example: 2a. a~= (1/5) a}; 2b. a~= (1/3) a}; J, solid 
line; YDE• dashed line; {JHO• dotted line; §N, solid line; Ordering at the primary 
mode,J<OnE<§Ho<§N, both cases. 
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Appendix 

Using P .ARSEV.AL's Identity, the fact that <P x( �) is an indicator function, eveness of 
l<PA � )12 and j<P11.( • )j2 and the relationship E {l~(t)- <P1(t)j2}= {1-I<Pt(t)j2}/n it can 
be shown that the mean integrated squared error of g, MISEg(A), is given by 

1/;. 

MISE (A)=c+ 1 f 1 -(n+ 1) i!Pt(t)i2 dt 
9 11:" n I !Pll.(t) [2 

0 

where cis a constant depending on f and h but not).. The mean integrated squared 
error of J, MISE,().), is obtained from (A.1) by setting <P 11(t) = 1. 
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Suppose Ag and Af minimize M 1SEg and M 1SE1 respectively. By the Fundamen•
tal Theorem of Calculus, 1n(Ag) = 0 and 1n().1) = 0 where 

1n(A.)= 1- (n +1) lqiP/.1.)1 2 

Assume that lq> 1 (t)12 is strictly decreasing on [B, =)for some B >0. Since J.g and 
;. 1 necessarily converge to zero, A.:q1 and .1.!1 are contained in the interval [ B, co) for 
sufficiently large n. However, for .I.E (0, 1/ B], 1,(.1.) is one-to-one under the assump•
tion on lq> 1 (t)l2 and thus the condition 1,(.1.) = 0 uniquely determines A. It follows 
that Ag and .1.1 are equal for sufficiently large n. 

Note that 1,(.1) defined in (4.2) can be regarded as an unbiased estimating 
equation for Ag and J.1 in the sense that E{1,(.1.)}=1n(.l.). 
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Approximate Quasi-likelihood Estimation in Models 
With Surrogate Predictors 

RAYMOND J. CARROLL and LEONARD A. STEFANSKI* 

We consider quasi-likelihood estimation with estimated parameters in the variance function when some of the predictors are 
measured with error. We review and extend four approaches to estimation in this problem, all of them based on small 
measurement error approximations. A taxonomy of the data sets likely to be available in measurement error studies is developed. 
An asymptotic theory based on this taxonomy is obtained and includes measurement error and Berkson error models as special 
cases. 

KEY WORDS: Berkson error; Measurement error; Quasi-likelihood; Reliability data; Validation data. 

1. INTRODUCTION AND PRELIMINARIES 

1.1 Quasi-likelihood Models With 
Surrogate Predictors 

The general quasi-likelihood/variance function model 
for a scalar response Y given a p-variate predictor X = x 
is 

E(Y I X= x) = fm(X, fJ), 

var(Y I X = x) = a'f,(x, p, 0), (1.1) 

where a 2 is a scalar parameter and p and 0 are column•
vector parameters designated collectively as e = (fJ', 0', 
a 2)'. Model (1.1) includes the usual quasi-likelihood 
models and generalized linear models, as well as models 
in which the variance is an unknown function of the mean 
or predictors. For additional motivation and background 
on these models, see Carroll and Ruppert (1988) and 
McCullagh and Neider (1989). 

We consider fitting model (1.1) when a q-variate proxy 
W ( q 2: p) is observed in place of the random predictor 
X in some subset of the available data. We assume that 
W is a surrogate for X, meaning that the conditional dis•
tribution of Y given (X, W) is identical to the conditional 
distribution of Y given X. 

When the conditional distribution of X given W is spec•
ified parametrically, it is possible in principle to calculate 
the conditional mean and variance of Y given W and to 
estimate unknown parameters using standard quasi-like•
lihood/variance function techniques. This approach fre•
quently requires numerical multiple integration and is 
computationally unattractive. In addition, experience in•
dicates that this approach can be sensitive to specification 
of the conditional distribution of X given W; see, for ex-
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Editor's Note: This article was reviewed under the direction of the 
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ample, Schafer (1987). The methods developed in this 
article depend only on the first two moments of the error 
given W, which is more in the spirit of quasi-likelihood/ 
variance function techniques; see Carroll and Ruppert 
(1988, sec. 2.5). In Section 3 we describe a general ap•
proximate model for the first two conditional moments of 
Y given W when the', relationship between X and W is 
specified either conditionally on X or conditionally on W. 
Thus we incorporate both measurement error and Berk•
son-error models. 

Measurement error models are subsumed under the gen•
eral model 

W = c(X, q) + iJU, E(U I X= x) = 0, 

cov( U I X = x) = O.(x, q, y), (1.2) 

where c(·, ·)and !1(·, ·, ·)are known and A = (q', y', 
J 2 )' is a column vector of parameters. In certain models 
some components of A may be known. This includes the 
classical measurement model (Fuller 1987), c(x, q) = x, 
O.(x, q, y) = !1, as well as linear models, c(x, q) = q, + 
IJT x, O.(x, q, y) = !1, where q contains all of the unique 
elements of 1'/o and q1 � Models in which some predictors 
are measured without error are handled by allowing 
!1( ·, ·, ·) to have less than full rank. Of course we can 
benefit from the full generality of (1.2) only when suffi•
cient validation/reliability data are available for estimating 
the unknown components of A; see Section 2. 

In Section 3 we impose one significant restriction on 
(1.2). We require that the equation I = c(s, q) can be 
solved for s as a smooth function of (t, q) in a neighborhood 
of the true parameter q, that is, s = c·(t, q), where c•
denotes an inverse to c. This is always possible when W 
and X are scalars and c(·, ·)is smooth and strictly mono•
tonic in its first argument. The requirement is more strin•
gent when the dimension of X exceeds 1. For example, in 
the multivariate regression version of (1.2), W = q, + 
q1X + J U, where q1 is a q x p matrix, it requires that 
rank (qi) = p and, in this case, X = q! (W - q0 - J U), 
where IJI is a generalized inverse of q1 satisfying 'II 7/J 
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Berkson error models are subsumed under the general 
model 

X= c*(W, ~) + aU, E(U I w = w) = 0, 

cov(U I W = w) = U*(w, ~- y), (1.3) 

where c*(·, ·)and !1*(', ·,·)are known and A=(~',(', 
(F) 1 is a column vector of parameters. In certain models 
some components of A may be known. The classical Berk•
sonerrormodelhasc*(w,~) = wandil*(w,~,y) = n. 
When some components of U are equal to 0, H*(·, ·, ·) 
has less than full rank. As with (1.2), (1.3) includes most 
regression models used for data analysis. 

New classes of estimates have been developed recently 
based on small measurement error approximations, that 
is, under the assumption that i5 in (1.2) and (1.3) is small. 
We distinguish four approaches: (i) correct the naive es•
timators obtained by fitting (1.1) with X replaced by g(W, 
~- 0), where g is given in (3.1) (Amemiya and Fuller 1988; 
Stefanski 1985; Stefanski and Carroll 1985); (ii) approxi•
mate the quasi-likelihood/variance function estimates 
(Whittemore and Keller 1988); (iii) approximate the quasi•
likelihood/variance function model and then estimate the 
parameters in this model (Armstrong 1985; Carroll 1989; 
Fuller 1987, sec. 3.3; Rudemo, Ruppert, and Streibig 
1989); and (iv) replace X by an estimate of E(X I W) and 
perform a standard analysis (Gieser 1989; Rosner, Willet, 
and Spiegelman 1989). These estimates are computable, 
widely applicable, and, in our experience, work well in 
applications. 

In this article we develop a general model for the ob•
served data that encompasses both (1.2) and (1.3) for small 
iJ. We generalize previous models both with respect to the 
class of submodels relating Y to X and those linking X 
and W. The methods of estimation described previously 
are studied in the context of this general model. We show 
that Method (iv) can be viewed as a special case of Method 
(iii) and that Methods (i) and (ii) have a common under•
lying structure. These results allow us to present unified 
asymptotic distribution results for Methods (i) and (ii) and 
Methods (iii) and (iv), respectively. The asymptotic theory 
covers both the cases when the nuisance parameters A are 
known as well as when some or all of the components of 
A are unknown, provided that sufficient data are available 
for estimating these unknowns. 

Section 1.2 explains some notations and definitions used 
in the article. In Section 2, we identify the common data 
structures that arise in the analysis of models with surro•
gate predictors. In Section 3, we define our general model, 
develop three approximate quasi-likelihood models for the 
observed data, and discuss several examples. Section 4 
studies estimation based on the approximate quasi-likeli•
hood/variance function models derived in Section 3. Sec•
tion 5 discusses estimation via Methods (i) and (ii). Two 
examples are discussed in Section 6. 

1.2 Notations and Definitions 

In this article we will use the notation for derivatives of 
vector- and matrix-valued functions as described in Fuller 
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(1987, app. A.4). To these results we add notations for 
aA!ae and aA/aO', where A is a p X q matrix and e is 
an r x 1 vector. The former is an rp x q matrix containing 
the r x 1 vectors aa,i(O)Iae in a p x q block structure. 
The latter is a p x qr matrix containing the 1 x r vectors 
aa,i (8)/aO' in a p x q block structure. 

We extend the definition of the trace function to ds x 
s (d, s = 1, 2, ... ) matrices as follows: define tr(A,,,) 
= {trace(A1), , trace(A,)}', where Ai is the square 
matrix containing rows ( j - 1)s + 1 through js of A. 
Although we use tr more extensively, it is particularly 
convenient in the handling of quadratic approximations to 
vector-valued functions of random vectors. For example, 
iff(') isp x 1, Z is q x 1, f,(z) = (a/az')f(z), and 
f,(z) = (alaz)f,(z), then the quadratic Maclaurin se•
ries approximation to f(Z), fQ(Z) can be represented as 
fQ(Z) = f(O) + f,(O)Z + (1/2)tr{f,(O)ZZ'} and its 
expectation as E{fQ(Z)} = f(O) + j,(O)E(Z) + (1/2) 
tr{f,(O)E(ZZ')}. The mnemonic simplicity of the latter 
two expressions is due to the fact that tr is a linear op•
erator. 

Finally, we use dim( v) to denote the dimension of a 
row- or column-vector v. 

2. Data Structures 

In this article we assume that the data available for 
estimating the parameters of (1.1) and (1.2) or (1.3) are 
composed of one or more of five types: 

1. primary data containing n1 observations (Yi, WJ; 
2. internal validation data containing n2 observations 

(Y,,X 1, W,); 
3. internal reliability data containing n3 observations (Y1, 

wil, . , W,k), where for fixed i, wij ( j = 1, ... , k,) 
are iid; 

4. external validation data containing n4 observations 
(X1 , W1) ; 

5. external reliability data containing n5 observations 
(W", ... , W1,), where for fixed i, W1i ( j = 1, ... , k,) 
are iid. 

Observations within and between data types are stochast•
ically independent. 

When necessary for clarity we attach an additional pre•
ceding subscript to an observation to indicate its type. For 
example, the pairs (X 21 , W 21 ) and (X41 , W 41 ) are from in•
ternal and external validation data, respectively. This no•
tation permits identification of unobservables without 
ambiguity, for example, xli and u2i. 

All five types of data are relevant to model (1.2); when 
model (1.3) is assumed, however, only primary and vali•
dation data are relevant. 

The primary data generally do not identify all of the 
components of 0 or the unknown components of A. Ex•
ternal validation/ reliability data generally identify the un•
known components of A and allow for identification of 0 
when combined with primary data. Internal validation/ 
reliability data serve the same purpose as external data 
with regard to identification but are preferred over exter-
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nal data for obvious reasons. Note that internal validation 
data can be used to test the conditional independence 
assumption of Section 1. 

Typically, the data required for a measurement error 
analysis have n1 > 0 and one of n2 , . � � , n5 > 0, depending 
on model (1.2) or (1.3). For example, Tosteson, Stefan•
ski, and Schafer (1989) have n2 ~ n3 ~ n5 ~ 0, but n4 > 
0 (see Sec. 6). Rudemo et al. (1989), however, have n 2 ~ 
n3 ~ n4 ~ n5 ~ 0, but they assume that X ~ W + JU 
and they exploit the nonlinearity in their model to identify 
J2 

As noted previously, we assume that reliability data are 
collected only when the measurement error model (1.2) 
is assumed. In this case if W,, ~ c(X,, q) + oU,, E(U,, I 
X, ~ x1) ""0, and cov (U,, I X, ~ x,) ~ !1(x1 , q, y) for 
r ~ 1, ... , k,, then W,. ~ c(X,, q) + kj 112 oU,., E(U,. 
I X, ~ x,) "" 0, and cov( u,. I X, ~ x,) ~ !1(x1 , q, y). Thus 
(W,., X,) satisfy (1.2) upon replacing o with k,- 112 o. This 
fact is exploited later in the article. 

When n 1 and n2 > 0 all parameters are identifiable even 
when n3 = n4 = n5 = 0. Typically, n1 ~ n2 because of 
additional costs associated with obtaining observations on 
X. Thus we have a small data set from which consistent 
estimates of 0 can be found and a larger data set from 
which approximately consistent estimates are available us•
ing the methods of Sections 4 and 5. In general, the effect 
of pooling the two types of data is to obtain a less variable 
and less biased estimate than would be obtained if only 
the primary data were available. The estimates are also 
typically much less variable than if the primary data were 
ignored, but the bias incurred means that a variance-bias 
trade-off determines whether the primary data should be 
used. Of course, the primary data are useful in testing for 
no association; see Tosteson and Tsiatis (1988) and Ste•
fanski and Carroll (1990). 

3. BASIC MODELS AND EXAMPLES 

In this section, we determine three general approximate 
models for Y given W when the error in predicting X from 
W is small. The three approximations to the mean and 
variance functions of Y given W are given in Equations 
(3.2), (3.4), and (3.5), respectively. Several specific cases 
of the model are discussed for illustration and clarification 
of the general results. 

Assume, in addition to (1.1), that as o--> 0, there are 
known functions (g, h,, h3 ), parameters A~ (q', y', o2 ) ', 

and a mean zero random variable U, such that 

X ~ g(W, q, oU), 

E(ou 1 W) ~ o'h,(w, q, y) + Op(o'), 

cov(oU I W) ~ o 2h3 (W, ~- y) + 0p(o 3 ). (3.1) 

Define 

and 
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letting subscripts denote derivatives. Define fux and fvxx 
similarly. Also define g,(w, ~. s) ~ (a/as')g(w, ~. s) and 
g,(w, ~. s) ~ (a/as)g,(w, ~. s) and 

Hm(w, ~. y, {J) 

~ f={g(w, ~. 0), (J)g,(w, ~. O)h 2 (w, ~. y) 

+ (1/2)tr[f=.{g(w, ~. 0), (J) 

x g,(w, q, O)h 3 (w, q, y)g,(w, ~. 0)'] 

+ (1/2)/={g(w, ~. 0), (J) 

x tr{g,(w, ~. O)h 3(w, ~. y)). 

Define H,(w, ~. y, (J, fJ, a 2 ) similarly except that f, replaces 
f m. In addition, define 

S(w, q, y, (J) ~ f={g(w, ~. 0), (J)g,(w, q, 0) 

x h3 (w, q, y)g,(w, ~. O)'f={g(w, ~. 0), (J)'. 

Assumption (3.1), the relationships E(P I W) ~ E{E(P 
I X) I W} (p ~ 1, 2), and Taylor series expansions of 
fm{g(w, ~. ou), (J) and f,{g(w, ~. ou), (J, fJ) around J ~ 
0 are used to show that 

E(Y I W) = umA.I (W, (J, ~. y, 02 ), (3.2a) 

and 

var(Y I W) ~ U,A, 1 (W, 8, fJ, a 2 , ~. y, o'), (3.2b) 

where 

ijmA,I(W, (J, q, y, 02) 

~ fm{g(w, ~. 0), (J) + o'Hm(w, q, y, (J) 

and 

U,A.l(W, {J, fJ, a 2, ~' y, 02) 

~ a 2 [j,{g(w, q, 0), (J, fJ) + o2H,(w, q, y, (J, fJ, a 2 ) ] 

+ o 2S(w, ~. y, (J). 

The error in the approximation in (3.2) is of order OP(J3). 
The subscript A in (3.2a) and (3.2b) indicates the ap•
proximate nature of model. The model specified in (3.2) 
is an extension of some approximate models studied by 
Armstrong (1985) and Fuller (1987, sec. 3.3) to allow for 
more general error structures in both the models relating 
Y to X and X with W. 

A simpler and sometimes appropriate approximate 
model can be obtained by first modeling X as a function 
of W and then substituting the conditional expectation of 
X given W for X in a standard analysis of (1.1). This 
approach is most natural in the generalized Berkson error 
model, in which case E(X I W) is, in our notation, g(W, 
~. 0), but it can also be employed when (1.2) is known to 
hold. In the latter case an approximation to E(X I W) 
would be employed: 

E(X 1 w) ~ g(W, q, o) + o'g,(W, q, O)h,(W, ~, r) 

+ (o 2 /2)tr{g,(W, ~. O)h 3(W, ~. y)). 
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Note that the error in this approximation is of order 0 ,( c53) 

and that E(X I W) reduces to E(X I W) under the Berkson 
model (1.3). Thus we use it in the following, assuming 
that either (1.2) or (1.3) holds. Substituting E(X I W) for 
X in (1.1) induces a second approximate model: 

UmA.z(W, p, q, y, 02) = f m{E(X I w = w), p}, (3.3a) 

U,A.z(w, p, fi, cr2, l'f, y, 02) = cr2f,{E(X I W = w), p, fl}. 

(3.3b) 

Taylor series expansions of UmA.z and U,A,z and evalu•
ation at w = W show that, with an error of order O,(c53), 

= {c5'/2)tr(f=,{g(W, l'f, 0), p}g,(W, l'f, 0) 

X h3(W, l'f, y)g,(W, l'f, 0)'] (3.4a) 

and 

= cr2(c52/2)tr(f={g(W, l'f, 0), p}g,(W, l'f, 0) 

x h,(w, q, r)g,(W, "· O)'l + o'S(W, "· r. p). (3.4b) 

It follows that the strategy of replacing X by E(X I W) 
can be justified whenever the right sides of (3.4) are neg•
ligible. Consider, for example, simple logistic regression, 
Pr(Y = 1 I X = x) = F(Po + p,x), where F(t) = {1 + 
exp(t)} _,, under the Berkson error model (1.3) with c * ( w, 
l'f) = w. In this case, noting that cr2 = 1, (3.4a) and (3.4b) 
are 

UmA.I - UmA,z = (fir/2)var(X I W) 

x p<2l{p0 + p1g(W, l'f, 0)} 

and 

u,..l - u,.,, = (Pl/2)var(X I W) 

x (F<2l{fio + fi1g(W, l'f, 0)} 

X [1 - 2F{Po + p,g(W, Tf, 0)}]) 

where F<'l is the kth derivative of F. Thus the two ap•
proximations are essentially equal whenever Pl var(X I W) 
is negligible. This occurs near the null model p, = 0, a 
situation not uncommon in epidemiologic research (Ros•
ner et al. 1989). Similar justification for (3.3) can be found 
for other generalized linear models. 

The strategy of replacing X by E(X I W) has the ad•
vantage of always producing a range-preserving model, 
whereas (3.2) does not. We observed earlier, however, 
that it is not always appropriate. We now describe a third 
approximate model that is range preserving and differs 
from (3.2) by O,(c53). Let am = am(w, l'f, p) = fm.{g(w, 
l'f, 0), P}'lllfm.{g(w, l'f, 0), PHI', and define a,= a,(w, l'f, 
p, fi) analogously. Define 
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and 

U,.,, = cr 2f,(g(w, l'f, 0) + c52a,{H,(w, l'f, y, p, fi, cr 2) 

+ cr·2S(w, l'f, y, p)}, p, fi]. (3.5b) 

Taylor series expansions of UmA.3 and U,.,, and evaluation 
at w = W show that they differ from (3.2) by O,(c53). 

In Sections 4 and 5 we study estimation for the approx•
imate model (UmA• U,.), where (UmA• U,A) can be any 
one of (UmAJ• U,A,;) (i = 1, 2, 3) given by (3.2), (3.3), or 
(3.5), respectively. We now show by examples the flexi•
bility and generality of our modeling framework. 

Example 3.1 (general linear Berkson e"or model). 
Consider the model (1.3) with c• (w, '7) = 1'/o + "' w. In 
the notation of (3.1), 1'/ is a vector containing the unique 
elements Of 1'/o and 1'/1, g(w, l'f, Ou) = 1'/o + l'flW + OU, hz 
= g" = 0, g, = lwm(u)• h,(w, Tf, y) = O*(w, q, y), 

S(w, l'f, y, P) = fmAI'fo + 1'/IW, P) 

X O*(w, 'f, YHm.<'lo + TfiW, P)', 

and 

with a similar expression for H,. 

Example 3.2. Consider a homoscedastic linear regres•
sion Berkson error model fm(x, P) = x'P, f,(x, p, fi) = 
1, x = 1'/o + 1'f1W + Ou, and cov(U I W = w) = O*(w, l'f, 
y). It follows that E(Y I W = w) = P'(q0 + q1 w) and 
var(Y I W = w) = cr2 + c5'fi'q,O*(w, q, Y)l'f\P. If O*(w, 
q, y) is constant, then the observed data will have constant 
variance and we can estimate p only if q0 , q1 are known, 
as in the classical Berkson case, or estimated from addi•
tional data. In the Berkson case, if only one variable, say 
the last, x<•>, with proxy w<•>, is measured with error, 
then the model is sufficiently identified to check for het•
eroscedastic measurement error. For example, if e = (0, 
... , 0, 1)', then when O*(w, "' y) = ee' exp(yw<•>), we 
have var(Y I W = w) = cr2 + c5l exp(yw<•>). Graphical 
and formal devices for checking whether y = 0 here and 
estimating y were given in Carroll and Ruppert (1988, sec. 
2.7, chaps. 3 and 6). This example illustrates that our 
approach allows one to model various facets of the data 
while retaining the underlying measurement error struc•
ture. 

Example 3.3. In assay models (Davidian, Carroll, and 
Smith 1988; Rudemo et al. 1989), f m(x, p) is usually non•
linear. A standard model assumes that the variance is pro•
portional to a power of the mean, that is, f,(x, p, fl) = 
fm(x, P)'. Here X is the univariate log concentration, with 
zero concentration measured without error and handled 
separately. In the linear Berkson error version of model 
(1.3), q0 = 0, q1 = 1. In practice, both cr and c5 are fairly 
small (Davidian eta!. 1988). We have h2 = g, = 0, g, = 
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1, and to within order o,(u' + o'). as u--+ 0 and 0--+ 0, 
Equations (3.2) yield 

E(Y I W) = fm(W, P) + (o212) 

X f=,(W, p)h3(W, y) (3.6a) 

and 

var(Y I W) = u'f,(W, p, 0) 

+ o'f;;...(w, P)h,(W, r). (3.6b) 

Model (3.6) is typically identifiable. Whether measure•
ment error has constant variance can be assessed by pos•
iting forms for h3 , for example, h,(w, y) = exp(yw), and 
then using standard techniques for variance analysis. 
Model (3.6a) may not be range preserving, and in such 
cases we suggest using the approximate mean model cor•
responding to (3.5a): 

E(Y I W) = f (w + o'fmu(W, p)h,(W, y) P) 
m 2f=(W,p) ' . 

In this example, the variance function is range preserving. 

Example 3.4 (general linear measurement error 
model). Consider the linear measurement error model 
version of (1.2). It follows that, for a generalized inverse 
~-satisfying~-~ = l,x,, g(w, ~. ou) = 'li"(W - ~o -
ou), g, = -Yf[, and g~ = 0. It is easily shown that E(U 
I 'lo + ,,x) = 0 and cov(U I 'lo + ,,X) = E{fi(X, Yf, y) 
I 'lo +~,X} = fi.(x, ~. y), where fi.(x, ,, y) = fi{Yf!(X 
- ~0 ) 'I· y}. Let Kw be the marginal density of W with 
gradient "~. An appeal to Lemma A.1 in the Appendix 
shows that 

and 

- [tr{ afi.(~w· "' y) } h2(w, Yf, y) = 
0 

"<'>(w) ] 
+ fi.(w, Yf, y) ~ 

h,(w, Yf, y) = fi.(w, ~. y). 

(3.7a) 

(3.7b) 

This model includes the possibility that W is a biased mea•
surement for X but can be calibrated with estimated pa•
rameters Yfo, Yj 1 • If W is unbiased so that Yfo = gu = 0, '11 

= /dim(XJ = - Ks, we have the classical measurement error 
model. For identifiability, one of the diagonal elements of 
fi( ·, ·, ·) corresponding to a predictor measured with error 
must have value 1.0. 

In some instances, exact forms for h2 and h3 can be 
computed. For example, suppose that U and X are in•
dependent and normally distributed, the latter with mean 
J.lx and covariance fix, and that E(W I X) = X and cov(W 
I X) = fi. Here fi has the first diagonal element equal to 
1.0. In the notation of (3.1), g(w, ,, ou) = w - ou, A 
= (y', o')', y contains the unique elements of J.lx. fix. and 
fi, and 

h2 (w, A) = fi(fix + o2fi)- 1(w - J.lx) 
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and 

h,(w, A) = fi{I - (fix + o'fi) -'O'fi}. 

Often, sample sizes are large enough that when the di•
mension of W is small, the location score K~IKw in (3.7a) 
can be estimated nonparametrically. Related work on hy•
pothesis testing (Stefanski and Carroll, 1990) shows that 
estimating "~ IKw is feasible and advantageous when 
dim(W) = 1. Alternatively, a flexible parametric density 
could be fit to {W,}, thereby providing an estimator of 
K~ IKw. Note that K~ IKw is linear iff Kw is normal. 

Example 3.3 (continued). Consider the mean and vari•
ance functions for Example 3.3 but for a measurement 
error model instead of a Berkson error model, with X 
scalar so that fi = 1. Assuming normality and letting u 
--+ 0, o--+ 0, to within O,(u3 + o') we obtain 

var(Y I W) = u'f,(W, p, 0) 

+ o'g,(w, p)u'xt(o' + u'x); 

E(Y I W) = fm(W, P) + {(1/2)u'xfmu(W, P) 

- fm,(W, P)(W- J.lx)}o'l(o' + u'x) 

= fm [ W + (o' ~' u'x) 

X { fmu(W,p)u'x _ W + } P] 
2fm,(W, P) J.lx ' 

The two approximations for the mean are from (3.2a) and 
(3.5a), respectively, the latter appropriate when the true 
mean is positive. Note that in this case a simpler model 
can be obtained by replacing (o 2 + u'x) with u'x in both 
the mean and variance function without affecting the order 
of the approximation. 

Example 3.5. The error in using (3.7) is of order 
O,(o') when X and U are normally distributed. However, 
(3.7) suggests flexible models that can cope with nonnor•
mal and/or heteroscedastic error. Consider, for example, 
a logistic regression study such as described by Jones et 
al. (1987). In this study, the outcome is incidence of breast 
cancer, and the predictor X is average daily dietary sat•
urated fat intake. We have analyzed a subset of these data 
consisting of a cohort of 2,888 women under the age of 
50. In this group there were 37 cases of breast cancer. 
Here W is derived from a 24-hour diet recall questionnaire 
and has a large variance. It is reasonable in this case to 
suppose that W is unbiased for X. Thus we set Yfo = 0 and 
,, = 1. If measurement error variance is log-linear in X, 
and if we replace the score K~(w)IKw(w) by a linear func•
tion of w, then (3. 7) and a little algebra yield 

E(W I X = x) = x, 

E(oU IW = w) = 0 2 exp(a,w)(a, + a,w) 

= o2h2(w, A); (3.8a) 

var(oU I w = w) = o2 exp(a,w) = o'h,(w, A). (3.8b) 
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Equations (3.8) identify h2 , h3 • For binary regression 
models, Pr(Y = 1 I X = x) = F(Po + p,x), (3.2) yields 
an approximate model that is not range preserving, and 
we suggest using (3.5). In this case (3.5a) gives the ap•
proximate mean to within 0p(a3), 

Pr(Y = 1 I W) ~ F [Po + PdW - O'h,(W, A)} 

+ (a'I1)PlF"(Po + p, W)h,(W, A)], (3.9) 

with F21 (v) = F(2l(v)/ F(Il(v), where F<1> and fi'l are the 
first two derivatives of F. Note that, for binary regression 
models, the approximations in (3.5) satisfy U,A.3 = UmA.3 
(1 - UmA.3)· 

4. ESTIMATORS BASED ON 
APPROXIMATE QUASI-LIKELIHOOD 

Estimation of the parameters in the approximate quasi•
likelihood/variance function models (3.2), (3.3), and (3.5) 
is complicated by the fact that data of different types are 
frequently available. We now describe a general method 
of obtaining estimators with asymptotically valid standard 
errors from data composed of combinations of observa•
tions of the types described in Section 2. Our approach to 
estimation is based on the principles set forth in Davidian 
and Carroll (1987) and Carroll and Ruppert (1988), but it 
is tailored to the specifics of the problem at hand. 

Presentation of the general theory is facilitated by a 
judicious partitioning of the parameters in A = (71', y', 
a2)', which we now describe. Recall that (UmA• U,.) is 
used to repesent the approximations in either (3.2), (3.3), 
or (3.5). 

Depending on the particular model assumed in (1.2) or 
(1.3), some components of A may be known. Designate 
the unknown components by Au. It is implicitly assumed 
that the components of Av are identified by the available 
data. Let AJ: designate those components of Au that are 
identified by the primary data. Partition AJ: into those 
components appearing in the mean function U mA , A'f.m, 
and those not appearing in the mean function, A';,. Let 
APm be a subset of A);., and let A,., be a subset of the set 
of parameters in A): that are not contained in Ap,.. The 
parameters in Au that are capable of being estimated with 
the primary data are contained in A'P, whereas AP = 

(A\>,., AI,)' contains the parameters that we choose toes•
timate using the primary data. The two sets need not be 
equal and will sometimes differ for reasons of convenience 
and/or model robustness. Frequently, either APm or A,., 
will be empty. Finally, let Av• contain all of the parameters 
in Av not contained in APm or A,.,. Thus, depending on 
context, we can write either Au = (A\>,., AI,, AI,.)' or A 
= (Tf', y', a')' or A = (Au, AiJ), where the last equality 
denotes set equivalence. It is also convenient to write A 
= (i;', jl', & 2)', even when some components of A are 
known. 

Most of the information for estimating the components 
of Avis contained in the validation and/or reliability data, 
depending on the particular model under study. We as•
sume that unbiased score equations, Y R.APm, Y R,AI't;, Y R.AvR, 
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Y v.Ap,., Y v.AI'V, and Y v.AvR, are available for obtaining con•
sistent M estimators of the components of Au from the 
available reliability and validation data. For example, in 
Example 3.1, 7fo and 711 would often be estimated by the 
usual normal equations for linear regression. The scores 
with first subscript R are functions of A and the replicates 
of Win the reliability data. The scores with first subscript 
V are functions of A and the pairs (X, W) from the vali•
dation data. 

We propose to estimate ® and Au with M estimators 
~ and Au, solving equations of the form 

0 = n·I ±}: ~1 (®, Au), (4.1) 
j=l i=l 

where j indexes the five types of observations described 
in Section 2. We now describe the functional form of F;; 
for each of the five types of data described in Section 2. 

Write UmA and U,A for the right sides of (3.2), (3.3), 
and (3.5), and define rA = y - UmA· Let 'VP.B• 'I'P.O• 
'l"p,.,z, 'I'P.Ap,' 'I'P.APv' and 'VP.AvR be functions of (y, w, 8, 
A) defined via componentwise matching in the following 
equations: 

('V~.p, 'l'kA,J = ( y -;;,~mA ) a(;'~~~ml ; 
( r~ - U,A ) a log U,A . 

('l'~.o, 'I' pAl' 'I'~.A,,J = UvA a(Ot, u2, A~) ' 

With these definitions, F"(®, Au) = ('V~.P• '¥~ .•• 'I'P.a'• 
'I'~.APm' 'I'~.AI'V' 'I'~.AvR)' evaluated at (Yu, WI;, e, A). 

Write f m and f, for the mean and variance function in 
(1.1), and definer = y - fm· Let 'l'w.p. 'l'w.o. 'l'wo'• 
'l'w.APm' 'l'w.AI'u' and 'WIV,AvR be functions of (y, X, w, e, A) 
defined via componentwise matching in the following 
equations: 

'l'w.p = ( y -fm)afm. 
f, ap ' 

With these definitions, F,(@, Au) = ('l'lv.p, 'l'lv.o. 
'¥ JV,,.z, 'Vhr,Ap,' 'l"hr,AI'II' 'Vhr,AvR)1 evaluated at Y2;, x2j, w2i, 
®,A). 

For internal reliability data we summarize the obser•
vation (Y1 , Wn, ... , w,.,) as (Y1 , W,, k1 ) ; see Section 
2. Define UmA* and u,A. as functions of (w, k, @, A) 
via 

and 

u,A. U,A(w, p, (J, u', ,, y, a'lk), 
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and define rA* = y - UmA*. Using established conven•
tions, define 

and 

With these definitions, F3i(e, Au) = ('1'}., 8, 'I')R.o, 
'fJR.o-2, 'I')R.Arm' 'lf)RAPv' 'lJ)R,AvR) 1 evaluated at (Y31 1 w3i·• 
k1 , e, A). 

Finally, since external data generally provide no infor•
mation onE>, 

and 

evaluated at (X4;, W,1) and (W51 , • •• , W51,,), respectively. 
The scores we defined for estimating 8, a 2, and APu use 

squared residuals. Other scores based on functions of ab•
solute residuals can also be employed; see Davidian and 
Carroll (1987). 

Let n = n 1 + ··· + n5 and p1·" = nJn. The asymptotic 
distribution of (0, Au) is given for the case in which n -7 
oo and Pi.n ---7 Pi:=:: 0. 

The M estimators ( 0, Au) converge in probability to 
(e., Au4 ), satisfying 

0 = limn- 1 ± i; E{Fil(e., Au.)). 
n-->"" j=l 1=! 

Let Gil(e, Au) be the matrix of partial derivatives of Fil 
with respect to (e', A~), and define 

5 "< 

A =lim n- 1 L; L; E{Gi,(e., Au.)} 
n_,.'J) j=1 1=! 

and 

5 "' 
B =lim n- 1 L L E{F,1(e., Au.) 

n--.,., j=l 1=1 

Moment estimators of these matrices are given by 

5 "' 

A= n-' L; L; Gi1 (0, Au) 
j=! i=l 

and 
5 "' 

13 = n- 1 L; L; £;,(0, Au)£;,(/J, Au)'. 
j=! i=l 

Journal of the American Statistical Association, September 1990 

Standard asymptotic results imply that, under sufficient 
regularity conditions, 

n 112{(0 - e.)', (Au- Au.)'}'~ 'll{O, A -'B(A')- 1 ), 

k'B(A')- 1 ~A -'B(A') - 1 � (4.21) 

Example 4.1 (externally validated studies). Suppose 
that Au = A, APm and Ap, are both empty, and n 2 = n3 

= n 5 = 0. Thus estimation of A depends entirely on an 
external validation data set. In this case the only nonzero 
Fj 1 are 

Fli(E>, Au) = ('l'~.P• 'l'~.o, 'I'P,a~, Olxdim(Au)) 1 

and 

Let 'I ' and y denote the nonidentically zero components 
of F11 and F41 , respectively. The matrices in the asymptotic 
covariance matrix of ( 4.2) for this case have the forms 

B = (p 1 B" 0 ) 
0 p4 Bv ' 

where, for example, A~.0 E(a'l'/ae') and B~ = 
E('l''l''). In this case the asymptotic covariance matrix of 
n"2(0 - e.) has the form 

p[ 1 A,.,l,B~(A~.e) _, + p4't:., (4.3) 

where t:. is a nonnegative matrix. The matrix t:. depends 
on the submatrices of A and B in a simple but not very 
informative way. The term p 4 1 t:. is the contribution to the 
asymptotic covariance matrix of n 112(0 - e.) due to 
estimating A. 
If costs c1 , c2 can be assigned to obtaining observations 

(Y, W), (X, W), respectively, then (4.3) could be used for 
design purposes. 

5. ALTERNATIVE ESTIMATORS 

Denote the right side of (4.1) by L *(e, ~. y, J 2). Fre•
quently, APm and Ap, are both empty, and then L' = (L', 
L'.)', where L. does not depend on e. It follows that Au 
is found by ~olving L. (Au) = 0 and 0 is found by solving 
L(e, r,, y, 6 2 ) = 0. In this case there are two additional 
approaches to estimation that deserve attention. Below 
we adapt the methods proposed by Whittemore and Keller 
(1988) and Stefanski (1985) to our estimation problem. 

In the following we drop the distinction between Au and 
A, keeping in mind that the latter is (Au, Ait). Note that 

L(e, A) = n _, ± i: FJ,(e, A), 
J =1 l =1 

where F;,(e, A) denotes the first dim(e) rows of F;1 (e, 
A) ( j = 1, 2, 3; i = 1, ... , n1 ). 

5.1 Approximating the Quasi-likelihood Estimators 

Let 0( r) be a function of r defined implicitly by the 
equation L(0(r), r,, y, rb2 ) = 0. Note that 0(1) = 0 and 
0(0) is the so-called naive estimator obtained by fitting 
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model (1.1) to the pairs (Yp, Xq1 )7>~ 1 ( j = 1, 2, 3), using 
standard estimation techniques, where (Y11 , Xq1 ) = (Yi,, 
X1,(~, 0)) and 

(Y,,,Xj,(ry,b)) = (Y1,g(W1,ry,bU1,)), ifj = 1, 

= (Y,,X4 ), 

= (Y3,, g(W,,, IJ, bU31 )), 

if j = 2, 

if j = 3. 

(5.1) 

In fact the naive estimator defined previously satisfies 

3 "' 
0 = n -I I I 'I'r(Y1, Xq 1 , e(O)), 

J=l t=l 

where 'I'r is the appropriate score for model (1.1) in the 
absence of measurement error. 

With this notation we now derive the estimator pro•
posed by Whittemore and Keller (1988). Taylor series ex•
pansions of L(®(r), ~- y, rb2 ) and e(r) lead to the 
approximations to within 0p(b3), 

L0 (e(O), ~- y, O)e,(O) + b2L,,(e(O), ~- y, 0) = 0 

and 

e,(O) = e(1) - e(O), 

where, for example, L0 = oL!o0' and e, = oelor. Thus 
® = ec.I' where 

eel = e(O) - b2{Le(e(O), h, y, 0)}-'La•(e(O), ~- y, 0). 

The utility of e,_1 lies in its computability. It is an explicit 
function of®(O), which in turn often can be obtained using 
standard statistical software. The difference, e - e,_" is 
O(b') a.s. when L is a well-behaved function of 0 and 
b'. 

Write e,_, = e,_,(UmA> u,A) to emphasize the depen•
dence of ec,l on UmA and UuA• and let Urn and Uv denote 
the left sides of (3.2a) and (3.2b), respectively. Then since 
the approximations in (3.2) and (3.5) are of order 0p(b3), 

itfollowsthateel(UmA> U,A) = e,.1(Um, U,)inthesetwo 
cases. Thus eel is the estimator proposed by Whittemore 
and Keller (1988) whenever the approximations in (3.2) 
or (3.5) are employed. 

Note that E>c.l can be written in the form 

e,, = e(O) + (b 212)Q"(e(O), A)- 1H"(e(O), A), 

where 

3 "' 
QA0, A) = n _,I I q,1 (0, A), 

J=l i=l 

3 "' 
H"(e, A)= n·I I I h,,(e, A), 

j=l i=l 

q'l(e, A)= 'I're(¥1, Xj,(IJ, 0), 0), 

and 'Pre = (O/o0')'I'r. 
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5.2 Correcting the Naive Estimators 

Assume temporarily that for internal reliability data k1 

= k for i = 1, ... , n3 and suppose that fi and y are 
consistent for ry and y. Then the naive estimator, e(O), 
converges in probability to eN satisfying 

3 

o = I p,W,(~" Xq" eN), 
j=l 

where (Yi" Xg1 ) = (Y1" Xf1 (ry, 0)) ( j = 1, 2, 3). Let (Y1" 

X1,) = (Y11 , A; 1 (ry, b)) ( j = 1, 2, 3). In the Appendix we 
show that under both (1.2) and (1.3) there exist functions 
d 11 (y, x, IJ, y) and d21 (y, x, IJ, y) such that 

E(Xq,- X1, 1 v," X1,) = J'd,/Y," xjl, "' y) + Op(b3 ) 

and 

cov(Xq1 - A;, I Y1,, X1,) = b'd,,(Y;" x," IJ, y) 
+ 0p(b 3 ). 

Note that d 12 and d 22 are identically zero under both (1.2) 
and (1.1). In addition, d13 and d23 are defined only under 
(1.2) and in this case d13 = d11 I k and dn = d21 I k. 

An adaptation of the Taylor series argument in Stefanski 
(1985)showsthat0N = 0- (b212)Q- 1H + O(b3 ), where 

Q = E L~ Pi 'Pre(~" Xq" 0)} 
and 

H = E (t, Pi[2'I'r1 (Y1" X11 , 0) d1; (Yil, A; 1 , IJ, y) 

+ tr('I'ru(Y1,, X; I> 0) d, 1 (Y1,, X;I, IJ, y))]) -

Let Kn = 1, K12 = 0, and K 11 = k 1-I, and define 

and 

h11 (0, A)= K,J2'I'r"{Y1,, Xj,(q, 0), 0} 

X d11{Y1;, Xf1(1J, 0), IJ, y) 

+ tr['I'ru{¥1, X;,(ry, 0), 0} 

X d,,{Y1;, Xf;(IJ, 0), 0}]), 

q,1 (0, A)= 'l'w{¥1,, Xj,(q, 0), 0}, 

Q"(e, A) = n" 1 ± ± q,,(e, A), 
j=l i=l 

H"(0, A) = n· 1 ± ± h11 (0, A). 
j=l 1 =I 

Then 8c,2 , defined as 

e,,, = e(O) + (b 212)Q"(e(O), A)-'H"(e(O), A), 

is the estimator proposed in Stefanski (1985), adapted to 
our model. 

The estimators 0c.J and 0c,z can both be viewed as cor•
rections to the naive estimator, but doing so obscures their 
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fundamental difference. The former is an approximation 
to the quasi-likelihood estimator, whereas e,_, is a true 
correction for bias in the sense that it is obtained by sub•
tracting an estimator of an approximation to the asymp•
totic bias in e(O). 

5.3 Asymptotic Distributions 

We now derive the asymptotic joint distribution of 
e(O), A, and ®" where e, = e, I or e,~. This is accom•
plished by representing (8(0)', A;, ®D' as an M estimator 
and appealing to standard asymptotic theory. 

Let 

j = 1, 2, 3, 

= odlm(8)x!, j = 4, 5; 

Y1,(A) = o,.,,A)x'' j = 1, 

= 'l'w.A(Xj,, W1,, A), j = 2, 4, 

= 'l'm,A(~'il' ... 'wjik,, A), j = 3, 5; 

and 

a,(El1 , A, El2) = q11(® 1, A)(El2 - El1) 

- (<l 2/2)h,,(®1, A), j = 1, 2, 3, 

= odim(e)xb j = 4, 5. 

Define C,,(®1, A, ®2) 

e(o), A, and e, satisfy 

' ~ 
o = L L c1,(e(o), A, e,). 

i=l i=l 

TheM estimators ®(0), A, and e, converge in probability 
to e., A., and 8c•, respectively, where 

' "' 0 =lim n- 1 L L E{C1,(®., A., El,.)}. 
"""""'00 i'""l i=l 

Let D11 ( ®1 , A, ®2 ) be the matrix of partial derivatives of 
C1, with respect to (®\, A', ®\), and define 

' "' A =lim n- 1 L L E{D; ;(El., A.,®,.)} 
, _.,. j-1 j =1 

and 

' "� B =lim n- 1 L L E{C;;(®., A.,®,.) 
n--+00 j=I i=l 

Moment estimators of these matrices are given by 

5 "' 
A= n-l L L D;.(e(O), A, ec) 

jal i=l 

and 

' "� !J = n-l L L C;;(e(O), A, e,)C;;(e(O), A, e,)'. 
j=l i=l 
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Standard asymptotic results imply that, under sufficient 
regularity conditions, 

n 112{(®(0) - ®.)',(A - A.)',(®, - ®,.)'}' 

and 

-". m{O, A -IB(A')- 1 } 

A -l!J(A') _,_...A -IB(A')- 1 � 

6. EXAMPLES 

We now present two examples, one with a Berkson error 
structure and the second with a measurement error struc•
ture. 

Lung Function (Berkson model). For this example we 
use a subset of the data analyzed by Tosteson et al. (1989). 
As a means of studying the relationship between respi•
ratory health and exposure to nitrogen dioxide in school•
age children, these authors fit a pro bit regression model 
of Y = indicator of the presence of wheeze, on X = 
log(personal exposure to nitrogen dioxide), using a pri•
mary data set containing 231 observations on (Y, W), 
where W = (log(bedroom exposure), log(kitchen expo•
sure))' and two external validation data sets containing 81 
and 564 observations, respectively, on (X, W). 

Tosteson et al. elected to model personal exposure as 
a function of bedroom and kitchen exposure, thereby cre•
ating a Berkson error model. The log transformations were 
used to induce linearity and homoscedasticity in the regres•
sion of X on W. These authors fit the model X = 1'/o + 
'1\W + oU; E(U I W) = 0; var(U I W) = 1. In our 
notation, g" = h2 = 0 and g, = h3 = 1. They assumed a 
probit binary model with U standard normal, thereby ob•
taining a probit model for Y on W. Standard errors re•
ported by Tosteson et al. were computed without making 
allowance for the fact that parameters in the prediction 
equation for X had been estimated. 

Fitting the model using the smaller of the two validation 
data sets (the Portage data), we find that J = .265, fio = 
1.28, and i;\ = (.28, .33). Let W, = 1'/o + 11\ W. For probit 
regression, (3.9) becomes, with no assumptions on the 
distribution of U, 

Pr(Y = 1 I W,) = <t>{(Po + p, W)(1 - <l'Pl/2)} 

= <t>{(Po + p,W,)/(1 + <l'Pl)"' }. (6.1) 

The second approximation follows easily from the first and 
is exact when U is normally distributed. The observed 
regression slope estimate for the probit model of Y on W, 
is .05. This estimate can be related top, by (6.1), from 
which it is intuitively obvious that there is essentially no 
effect due to estimating A. This intuition is confirmed by 
an application of (4.2). 

Diet and Breast Cancer (measurement error model). 
For illustration, we consider a sample of 2,888 women 
under the age of 50, the data being a subset of those used 
by Jones et al. (1987). The response Y is an indicator of 
breast cancer, and the predictor X is the logarithm of long-
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term average daily saturated fat intake. There were 37 
cases of breast cancer in the study. Long-term average 
daily saturated fat intake is unobservable, and as the "ob•
served" predictor we have W, the logarithm of a 24-hour 
diet-recall proxy for daily average saturated fat intake; 
see Jones et al. for elaboration on the study design and 
data collection. We model on the log scale under the as•
sumption that on this scale the errors, that is, the dif•
ferences W - X, are approximately normal and uncor•
related with X. 

Dietary measures exhibit great within-person variability, 
and epidemiologists are concerned with the effects of such 
large measurement errors on standard statistical analyses. 
In this example we fit a logistic regression measurement 
error model for the purpose of illustrating the effect of 
measurement error on a logistic analysis of these data. 

In the study, W had mean 2.98 and between-person 
standard deviation .635. A logistic regression fit to the (Y, 
W) data yielded an estimated slope of - .40, with esti•
mated standard error .24 and p value .08. We fit a mea•
surement error model, assuming the approximate model 
W = X + oU, where U given X has mean 0 and vari•
ance 1. 

We do not have access to validation/reliability data for 
this study, but for illustrative purposes we use the vali•
dation results reported by Willett et al. (1985). They did 
not transform fat intake, and they used four seven-day 
diet record measurements, finding that the correlation be•
tween any two weekly measurements is approximately .55. 
If we assume normally distributed measurement error on 
the log scale, then after allowing for the log transformation 
their data suggest that, for their study, (i = .34. Their 
seven-day diet records differ from our 24-hour recall mea•
surements and should be more precise. It is not clear how 
to make the conversion from seven-day diet records to 24-
hour recall measurements, but as a reasonable guess to 
illustrate our methods, we use (i = .53; that is, we assume 
that seven-day diet records are about 2.5 times less vari•
able than 24-hour recall. 

Using this value foro, the method of Section 5.2 yields 
an estimated slope of - .62. When we regard (i as known, 
the slope estimate has an estimated standard error of .24 
and a p value of .01. To assess the effect of uncertainty 
in (i under the constraint that we do not have actual ex•
ternal reliability data, we make the assumption that U is 
normally distributed, so that with the sample size of 150 
in the paper by Willett et al. (1985), the variance of & 2 

should be approximately 2<i 2/150 = (.033) 2• Using the 
theory of Section 5, we find that the adjusted standard 
error for the slope is .23, an insignificant change. 

Because we expected the standard error of the corrected 
estimate to be larger than that of the naive estimate, we 
also performed a small bootstrap simulation. We resam•
pled the (Y, W) pairs to form bootstrap samples and re•
peated the experiment 200 times. The usual analysis had 
bootstrap mean -.39 and standard error .16, and the cor•
rected analysis had bootstrap mean - .60 and standard er•
ror .23. The results of the bootstrap study are displayed 
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as kernel density estimates in Figure 1. A Gaussian kernel 
with bandwidth .20 was employed. 

The asymptotic theory and the bootstrap analysis are. 
remarkably similar for the corrected estimate, but for the 
usual analysis the estimated standard error seems to be a 
bit too high. A possible explanation for this finding is 
that the number of cases (Y, = 1) is small. Letting V, be 
the vector containing a constant 1.0 and the observed 
diet measurement, the usual logistic regression analysis 
gives the estimated asymptotic covariance matrix 
{~;·v,v:poi(V:,b)}- 1 = Q,~' [see (6.3)], whereas the the•
ory of M estimation yields the estimated covariance 
Q;'[~'W,V:{Y, - F(v:p)}']Q,~'· Let P, = F(v:PJ. Note 
that when P = 0, fi, = !, and the two estimated covariance 
matrices are equal. Thus they will be approximately equal 
whenever p is small. When P, are not all near t however, 
the two covariance matrices can differ substantially. In our 
example for most observations, Y, = 0 and P, = 0. It 
follows that for most observations (Y, - P,)' = fi; "" P, 
= fi,(1 - fi, ). Thus one might expect that the ordinary 
logistic standard errors may be a bit too large. 

Because of the imprecision in relating 24-hour recall 
measures with seven-day diet records, as well as the fact 
that we have not included other predictors, we wish to 
emphasize that the preceding analysis was illustrative only. 

~~---r----~--~----~----~---. 

Figure 1. The results of the bootstrap study in Section 6 are displayed 
as kernel density estimates. The solid line represents the values ob~ 

tained for the usual logistic regression estimate, and the dashed line 
represents the values for the corrected estimate. 
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7. CONCLUSION 

The class of quasi-likelihood/variance function models 
(1.1) is broad and of recognized importance in statistical 
practice. We have examined some general methods of con•
structing parameter estimates when the predictors in (1.1) 
are measured with error. A major part of this paper, Sec•
tions 4 and 5, developed a comprehensive asymptotic the•
ory for estimates derived using these methods. The theory 
provides usable standard error estimates and allows for 
the presence of validation and/ or replication data. 

In Sections 2 and 3, we developed range-preserving 
models for the observed data based upon (1.1). One such 
class of methods, (3.5), was shown to be correct to order 
O(J'). A second set of models, which replace X by an 
estimate of E(X [ W), is given by (3.3). We showed that 
these are correct only to order O(J2), although in (3.4) 
we note that in many applications the difference between 
(3.3) and (3.5) will be negligible. Taken together, the 
range-preserving model classes (3.3) and (3.5) include as 
special cases most of the suggestions made previously in 
the literature. 

One can thus summarize the article as having (a) de•
veloped broad classes of models and estimators; (b) taken 
explicit account of the types of data sets, including vali•
dation and replication data, that are likely to be available 
in a measurement error model; and (c) provided the 
asymptotic distribution theory for parameter estimates, 
including formulas for obtaining consistent standard er•
rors. We view these combined results as a necessary first 
step toward addressing the question of which method 
works best in practice. One advantage of the range-pre•
serving models (3.3) and (3.5) is that, being models for 
the observed data, they can be checked for fit and com•
pared with one another, as is done in a specific case by 
Rudemo et al. (1989). In our first example, we found that 
the two models were essentially the same for the likely 
values of the parameters. In other cases, the two models 
may differ. If forced to choose between the two in the 
absence of an applied context, we would recommend (3.5) 
over (3.3). The former is based on higher-order expansions 
in terms of J, and it is more flexible with respect to model•
ing, as it can accommodate heterogeneous variability in 
the relationship between X and W. As seen in the discus•
sion of logistic regression just following (3.4), such het•
erogeneity can be important in model fitting. 

APPENDIX: TECHNICAL COMPLEMENTS 

The following lemma is used in Example 3.4 and in the der•
ivations of the functionsd,, and d,, ( j ~ I, 2, 3) defined in Section 
5.2. 

Lemma A. I. Suppose that V1 , V2 , and V3 are random vectors 
such that V, ~ V, + o V,, where o > 0 is a constant scalar. If 
V, and V, have joint density fv,v,(v,, v,), E(V, I V,) ~ 0, cov(V3 

I V, ~ v,) ~ O(v,), and E(V, I V,) and cov(V, I V,) are three•
times differentiable functions of 0 a.s., then 
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E(V, I V,) ~ -o,[tr,{ aO(v,) } + O(v,) a log{fv,(v,)} ] 
av, au, ll]"'"vl 

+ o,(o') 

~ -o,[tr,{aO(v,)} + O(v,) a log{fv,(v,)}] 
av, av, .. ~~v~ 

+ o,(o') 

and cov(V, I V 1) ~ O(V1 ) + 0,(0). 
Proof. Under the assumptions of the lemma, the assertion 

about cov(V, I V,) is obvious and the second expression for E(V, 
I V1) follows easily from the first. Thus it only remains to identify 
the terms in the Maclaurin series expansion of E(V, I V,). Note 
that 

E(V, IV,)~ Jv,Jv,[v,(v, I v, - ov,)fv,(V, - ov,) dv,. (A. I) 
J fv,v,(V, - ov,, v,) dv, 

The denominator in (A.!) equals fv,(V,) + O,(o). After a Tay•
lor series expansion, the numerator in (A.l) is shown to be 

_, [J , { afv,tv,(v, I v,)} d f ( ) 
p V3V 3 dV

1 
V3 v2 V, 

+ J fvJv,(v, I v,)v,v\ dv, {afv,(v,)}] + O,(o') ~ 
av1 ~~~~v~ 

- o [tr {aO(v,)} fv,(v,) + O(v,) afv,(v,)] + O,(o'), 
av, av1 u1 .. v1 

completing the proof. 

We now derive the functions do; and d,, ( j ~ I, 2, 3) defined 
in Section 5.2. Note that Xq 1 is function of~~ and~~, (j = 1, 
2, 3) and thus the conditional independence assumption of Sec•
tion 1.1 implies that d 11 and ~1 are functions of~~ a.s. for j = 

I, 2, 3. 
Consider first the generalized measurement error model (1.2). 

Note thatg{c(X,, q), q, 0} ~X, a.s. A Taylor series expansion 
shows that 

Xcu ~ g(W,, q, 0) 

~X, + og.{c(X,, q), q, O}U 

+(o'/2)tr[g •• {c(X,, q), q, O}U,U\,] + O,(o'). 

Thus under (1.2), 

d,(y,,, x,,, q, y) ~ tr[g •• {c(x,,, q), q, O}O(x,,, q, y)] 

and 
d,(y,,, x,, q, y) ~ g.{c(x,,, q), q, 0} 

X O(x,,. q, y)g~{c(x,,. q), q, 0}. 

Both d12 and d22 are identically 0, and d13 = d11 1 k and d23 = d21 1 
k, where k is the number of replicates. 

Now consider the generalized Berkson error model (1.3). Let 
f,.(c') be the density of C'(W, q), assumed to exist. Con•
ditioning first on {C'(W, q), W} and then on {C'(W, q)} shows 
that 

E{U I C'(W, q)} ~ 0 

and 

cov{U I C'(W, q)} ~ O'*(W, q, y), 

where O"(W, q, y) ~ E{!l'(W, q, y) I C'(W, q)}. Frequently, 
O"(W, q, y) is a function of C'(W, q) and then O''(W, q, y) 
~ O*(W, q, y). However, this is not always the case. 
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It follows directly from Lemma A.l that 

d ( ) { afl"(x,, ~- y)} 
l\ y,,, X11, 1'J, Y = tr iJXJI 

and 

d21(Y,1o x,~o 1'J y) = fl**(X1t. q, y). 

Both d, 2 and dn are identically 0, and d13 and d23 are not defined 
for the generalized Berkson error model. 

I Received August 1988. Revised February 1990.] 
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Case-Control Studies With Errors in Covariates 
R. J. CARROLL, M. H. GAIL, and J. H. LUBIN* 

We devise methods for estimating the parameters of a prospective logistic model with dichotomous response D and arbitrary oovariates 
X from case-control data when these covariates are measured with error. We suppose that some fraction of the cases and controls 
provide only the error·prone covariate measurements, W (the •incomplete" or .. reduced" data), whereas some of the cases aod 
controls provide measurements on X and W (the "complete" data). We assume a measurement error density with a finite set of 
parameters a, namely fWJxo(w[x, d, cr), and nondifferential error is treated as a special case of this model,/w1x(w[x, a). Our 
algorithm estimates both the logistic parameters and a from a pseudolik.elihood. Because empirical distribution functions are used 
in place of needed distributions in the pseudolikelihoods. the required asymptotic theory is more elaborate tluln for pseudolikelihoods 
based on substitution for a finite number of nuisance parameters. We also examine computationally simpler methods under the 
assumptions that the disease is rare and that errors are nondiff'erential. Estimates of m(W) = E(X[ W) are substituted for X in the 
logistic model when Xis not available. Such estimates of m(W) can be obtained from the complete data described above or from 
an independent validation study. If measurements on X are not available, m(W) can still be estimated from replicated W measurements 
in some circumstances. A final approach uses approximate logistic regression techniques and is appropriate when a more accurate 
approximation is required than obtained by simply substituting m(W) for X. Asymptotic theory is presented for each of these 
procedures. and examples are used to illustrate the calculations. 

KEY WORDS: Asymptotics; Case-control study; Differential misclassification; Errors in variables; Logistic regression; Pseudo•
likelihood. 

1. INTRODUCTION 

Since the work of Cornfield (I 951), it has been appreciated 
that the prospective odds ratio of disease { P( D = I I X) I 
P(D = OIX)} {P(D = liXo)/P(D = OIXo)} could bees•
timated from case-control data as the odds of exposure, 
{P(XID = l) /P(X 0 ID = 1)}/{P(XID = 0)/P(XoiD 
= 0)}, where X 0 is a baseline or reference level of exposure 
and other covariates and where D = I or 0 corresponds to 
the presence or absence of disease. Although one can use 
retrospective logistic models (Prentice 1976) to describe co�
variate outcomes, conditional on disease status, all but the 
simplest such models become unwieldy and only equivalent 
to a prospective logistic model if the retrospective model is 
saturated (Breslow and Powers 1978). For these reasons, and 
because it is more intuitive to think of covariates as causing 
disease than to think of disease as altering the distribution 
of exposures, it is common practice to fit a prospective logistic 
model to case-control data, namely 

P(D = !IX= x) • JfL(I:J~ + ffx), (I) 

where J (L( v) = {I + exp(-v)}- 1� In model (1), {J~ 
= log{P(D = !IX= Xo)/P(D = OIX = Xo)}- ii'Xo· As 
discussed by Mantel (1973) and Farewell (1979), if model 
(I) describes the risk of disease in the source population, 
then, in the population constructed by case-control sampling, 
it will also describe the conditional probability of disease 
given covariates, except that {J~ is replaced by fJo = {J~ 
+ log(..-J!..-0) where .-1 is the probability that a case (D 
= I) will be selected from the source population for the case-

* R. J. Carroll is Professor of Statistics and Toxicology, Department of 
Statistics, Texas A & M University, College Station. TX 77843-3143. 
M. H. Gail is Head. Epidemiologic Methods Section and J. H. Lubin is 
Senior Health Statistician, National Cancer Institute, Bethesda, MD 20892. 
R. J. Carroll's research was supported by grants from the National Institute 
of General Medical Sciences and the National Cancer Institute and was 
partially completed during a visit to the National Cancer Institute. The 
authors thank A. Hildesheim and colleagues for supplying the data for Section 
2; two referees, who provided detailed and very useful comments above and 
beyond the call of duty; and David Pee oflnformation Management Sciences, 
Inc. for his expert computational assistance. 

control sample and r 0 is the probability that a control will 
be selected. Remarkably, standard logistic regression, per•
formed as if D were the dependent variable and the covariates 
X were fixed, leads to maximum likelihood estimates of /30 

and {J' for case-control sampling, whether X is discrete (An•
derson 1972) or contains continuous components (Prentice 
and Pyke 1979). In particular, as the latter authors show, in 
the composed population obtained by randomly sampling 
n1 cases (D = I) and no controls (D = 0) from the source 
population, the prospective maximum likelihood estimators 
(MLE's) (30 and {3, together with the empirical distribution 
function, F(x), maximize the retrospective likelihood 

II7.hP(X,I D, = I)II7"!~~P(Xd D, = 0), 

subject to F(D = I)= n1/(n1 +no). 
In this article we extend the use of the prospective logistic 

model to case-control data in which the covariates X are 
measured with error. In most of the article, we assume that 
the true covariates X and error-prone measurements Ware 
available in a validation study consisting of a random sample 
of nc1 cases and nco controls. These "complete" data are 
represented forD= dby { (Xc 1d, Wad), d = 0, I, and i = I, 
2, ... , llcd} . In addition, we have incomplete or "reduced" 
case-control data, {WRido d = 0, I, and i = I, 2, ... , nRd}, 
forD = d obtained by sampling nR 1 cases and nRo controls 
from the source population. We define nc =nco+ nc1 and 
nR = nRo + nR 1 � It is assumed that selection as complete or 
reduced data is completely at random, so that the infor•
mation on Xis missing at random (Little and Rubin 1987). 
Disease status is assumed to be known without error. 

The first approach we take is based on pseudolikelihoods. 
We express the retrospective likelihood for the case-control 
data in terms of the prospective logistic model (I), a para•
metric measurement error modelfw1x. v(wlx, d, a) with 
parameter a, and F 1 (X) and F0 (X), the distributions of X 
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among cases and controls. Pseudolikelihoods are obtained 
by inserting simple estimates of F1 and F0 or of F 1, F0 , and 
a, leading to pseudolikelihood estimates {3, together with 
estimates of its covariance. Nondifferential measurement er•
ror,Jw1x.0(wlx, d, a)~ fw,x(wlx, a), is treated easily as 
a special case. We examine the special case of dichotomous 
X and Win Section 2 and compare pseudolikelihood esti•
mates with maximum likelihood. In Section 3 we outline 
general theory for the pseudolikelihood approach. When X 
is discrete and takes on a finite number of values as in Section 
2, the limit theory can be obtained by combining the Taylor 
series calculations of pseudolikelihood with case-control 
probability calculations (Appendix A), using techniques 
similar to those of Gong and Samaniego (1981). Otherwise, 
the limit theory is nonstandard. 

Alternative approximate procedures are available if disease 
is rare and nondifferential error is assumed. Carroll, Spie•
gelman, Lan, Bailey, and Abbott (1984), Rosner, Willett, 
and Spiegelman (1989), Rosner, Spiegelman, and Willett 
( 1990), Whittemore ( 1989), andGleser( 1990) have suggested 
or studied substituting m(W) = E(X I W), or an estimate 
of m( W), for X in the analysis of cohort data if errors are 
nondifferential. Carroll and Stefanski ( 1990) provided a 
theoretical analysis. We investigate this idea for case-control 
studies with nondifferential error and rare diseases (Sec. 4.1). 
In Section 4.2 we consider this approximation for the case 
in which m( W) is estimated from independent validation 
data. In Section 4.3 we consider the case that X cannot be 
obtained but instead replicate measures are available. Our 
results are related to those of Armstrong, Howe, and Whitte•
more (1989) and Buonaccorsi (1990) in the special case that, 
given D ~ d, W ~X+ e, where e is an independent normal 
error with covariance independent of d and X is normally 
distributed (Sec. 4.3). Buonaccorsi (1990) also considered 
differential measurement error and obtained an asymptotic 
theory for it. One drawback of the substitution approach in 
Section 4.1 is the assumption that the distribution of X given 
W can be adequately described by its conditional expectation. 
In Section 4.4 we consider briefly a more general approach. 

In Section 5 we present simulations to compare general 
pseudolikelihood methods with the methods based on the 
rare disease and nondifferential error assumptions. In Section 
6 we summarize the results. 

The possibility of differential measurement error is greater 
in retrospective studies than in prospective studies; therefore, 
it is important to develop methods for retrospective studies 
that allow for differential measurement error. Differential 
error models have remained relatively unexplored in the lit•
erature pertaining to prospective studies. Our work includes 
a new pseudolikelihood algorithm that allows us to handle 
the differential error model in retrospective studies. These 
methods require complete (validation) data, however, and 
in some case-control studies of historical exposures it will 
not be possible to obtain such data. 

2. DICHOTOMOUS X 

To fix ideas and compare pseudolikelihood methods with 
maximum likelihood estimation, we consider the simple case 
of dichotomous X. Table 1 summarizes data on exposure to 
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Table 1. Case-Control Data 

D X w 
Complete data 

0 
1 
0 
1 
0 
1 
0 
1 

Incomplete data 

Count 

13 
3 
5 

18 
33 
11 
16 
16 

318 
375 
701 
535 

NOTE· Odds ratio (X: D) from complete data = 1.9n. Odds ratio (W:O) from incomplete data 

= 1.545. Sensiti11Jty = P(W = 1IX = 1, D =d)~ .783 and .500 ford= 1, o. Specificity= P(W 

= OIX = 0, D =d)~ .812 and .750 ford= 1, 0 

herpes simplex virus type 2 (HSV -2) measured by a refined 
western blot procedure (X) and by a less accurate western 
blot procedure ( W), in women with invasive cervical cancer 
(D ~ I) and in controls (D ~ 0). Most of the data are in•
complete (or reduced), yet we are primarily interested in 
evaluating the relationship between D and X, which is only 
directly observable in the complete data. Note that the odds 
ratio 1.977 from the complete data exceeds the "crude" odds 
ratio 1.545 relating W with Din the incomplete data. There 
is a substantial amount of misclassification in this example, 
as indicated by low sensitivity and specificity (see Table 1). 
Moreover, the sensitivity seems higher for the cases than for 
the controls (p ~ .049 by Fisher's exact two-sided test). Thus 
there is evidence for differential measurement error. See Hil•
desheim et al. (1991) for a full description of these data. 

The simplest parameterization with which to analyze 
these data is the "retrospective model" P(X, WID) 
~ P(XID)P(WI X, D), which requires six parameters: 
P(X~ liD~ l),P(X~ liD~O),P(W~ liX~O,D 

~O),P(W~ liX~O,D~ !),P(W~ !IX~ l,D~O), 

andP(W~ !IX~ l,D~ l).Dahm,Gail,Rosenberg,and 
Pee ( 1990) fitted this saturated retrospective model by directly 
maximizing the retrospective likelihood 

IIdkl{P(X ~liD~ d)P(W~ kiX ~ /, D ~d)) V(d,k.l) 

X rrd{*. P(X~ liD~ d)P(W~ kiX~ I, D ~ d)rd,kl, 
(2) 

where V( d, k, I) is the number of completely classified ob•
servations in cell D ~ d, W ~ k and X~ I, and Y( d, k) is 
the number of incompletely classified observations with D 
~ d and Y ~ k. The assumption of nondifferential error 
reduces the number of required parameters to 4, because 
P(W~ !IX~ l,D ~ 0) ~ P(W~ !IX~ / ,D ~!)for/ 

~ 0, 1. As is clear from Table 1, one can regard the reduced 
data as a mixture, over X, of complete tables and use the 
EM algorithm and related methods in the literature on in•
complete contingency tables and on misclassification in cat•
egorical data to maximize the retrospective likelihood (2), 
as reviewed by Espeland and Hui ( 1987), Ekholm and Palm-
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gren (1987), and Chen (1989). The "matrix method" 
(Greenland 1988a; Greenland and Kleinbaum 1983) can also 
be used to estimate the parameters in (2). In this example, 
using the methods of Greenland (1988a), we found that the 
estimated variances of the estimated log odds ratio were about 
22% and 69% larger than those of the MLE in the differential 
and nondifferential cases. Because model (2) is "saturated" 
with respect to the outcome space for X, maximum likeli•
hood estimation under the retrospective parameterization 
will equal that under the prospective risk model (I). 

Nonetheless, it is instructive to outline the maximization 
of (2) using the following prospective parameterization. As 
described in Section I, Pc(D ~ II X~ x) ~ JfL(f3oc + {J' x) 
in the complete data, where f3oc ~ (3~ + log(,.,c/,.oc) and 
"•c and "•c are probabilities of selecting cases and controls 
for the complete case-control sample. In the incomplete data 
the same model applies for PR(D ~ II X~ x), except 13ocis 
replaced by f3oR ~ (3~ + log(,.,RI"oR) ~ f3oc + log{(,.,RI 
roR)I(,.,cfroc)} ~ f3oc+ log(nR,ncolnRoflc�)· The marginal 
distribution of X in thecompletedataisQk(X) ~ {n 1cF1(x) 

+ nocF0(x) } Inc, and in the reduced data the marginal dis•
tribution of Xis Q1(x) ~ {n,RF,(x) + ~Fo(x)}lnR. The 
term P(X ~ !I D ~ d) in (2) can be replaced by 
q1(l)PR(D ~ diX ~ l)l(nRdlnR) for reduced data and by 
Qk(/)Pc(D ~ diX ~ l)l(ncdlnc) for complete data. Here 
q1 and Qk are probability mass functions corresponding to 
Q1 and Qk. Maximum likelihood estimates are obtained 
by maximizing (2) with these substitutions over f30c, (3', 
Qk(X ~ 1), q1(X ~ i),P(W~ II X~ l,D ~d), andd, l 
~ I, 2 subject to P( D ~ I) ~ nc 1 Inc in the complete data 
andP(D ~ I)~ nR.!nR in the reduced data. Note that these 
two constraints reduce the number of free parameters to 
8-2 ~ 6 for the differential error model and to 6-2 ~ 4 for 
the nondifferential error model. Alternatively, one can ex•
press q1(X ~ I) and Qk(X ~ I) in terms of the two param•
eters P(X ~ II D ~ I) and P(X ~ II D ~ 0), the correspond•
ing point masses from the distributions F1 (x) and F0 (x), 

before obtaining constrained maximum likelihood estimates. 
Rather than proceed in this way, however, we calculated 
MLE's using the simpler retrospective parameterization 
(Table 2). 

The log odds ratio (3 from the complete data alone is es•
timated as log(~dil ~ .681 with standard deviation .400 
(Table 2). Maximum likelihood estimation allowing for dif•
ferential error yields{§ ~ .609 (SD ~ .350); under the non•
differential error model, one obtains {3 ~ .958 (SD ~ .237) 
(Table 2). The differences in these two estimates of (3 may 
be so large because the data appear to exhibit differential 
measurement error. As indicated previously, the sensitivity 
of the error-prone measurement, W, is higher among cases 
than among controls (see Table 1). A 2-degree-of-freedom 
likelihood ratio test of the hypothesis of nondifferential mea•
surement error based on all the data yields a difference of 
deviances of 4.962 (p ~ .073). Compared to maximum like•
lihood using the complete data only, maximum likelihood 
based on both the complete and incomplete data improves 
the efficiency of estimates of (3 only by the factor ( .400 I 
.350)2 ~ 1.31 in the presence of possible differential error. 
Under the assumption of nondifferential error, which is 
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Table 2. Parameter Estimates (and St_andard Errors) 
for the Data In Table 1. 

Parameter ML.E Complete Pseudollkellhood 

Differential Error 

p .609 (.350) .681 (.400) .622(.355) 
Poo -.980 (.187) -.981 (.185) 
Pr(W= 1[X = O,D = 0) .311 (.055) .250 (.065) .317(.057) 
Pr(W=1[X=O,D=1) .189 (.085) .188 (.098) .195(.069) 
Pr(W = 1 [X= 1, D = 0) .578 (.087) .500 (.088) .577(.067) 
Pr(W = 1 [X= 1, D = 1) .784 (.068) .783 (.086) .790(.067) 
Pr(X = 1 [D = 1) .591 (.084) .590 (.079) .590(.079) 
Pr(X = 1 [D = 0) .440 (.056) .421 (.057) .421 (.057) 

Nondifferential Error 

p .958 (.237) .681 (.400) .959(.226) 

Poo -1.181 (.142) -1.163(.140) 
Pr(W= 1[X=O) .257 (.043) .223(.055) .266(.042) 
Pr(W= 1[X= 1) .679 (.041) .618 (.064) .686(.041) 
Pr(X = 1 [D = 1) .652 (.052) .590 (.079) .590(.079) 
Pr(X = 1 [D = 0) .418 (.046) .421 (.057) .421 (.057) 

NOTE: "Complete" refers to complete data only. 

problematic for these case-control data, the efficiency im•
provement is much greater, namely ( .400 I .237)2 ~ 2.85. 
These small improvements in efficiency obtained from using 
the entire data set instead of the complete data alone reflec1 
the low sensitivity and specificity of the error-prone data 
(Table 1). In this example even large amounts of error-prone 
data add little information on the odds ratio of interest. 

Note that the maximum likelihood estimates of P(X 
~ II D ~ I) and P(X ~ II D ~ 0) are not exactly equal to 
the empirical estimates of these quantities from the complete 
data only (Table 2), so that the complete data estimates of 
these quantities do not maximize the likelihood for the com•
bined data. Thus the nice result in Prentice and Pyke ( 1979) 
for complete data that the empirical estimate of Qk(X) and 
the prospective logistic estimates of f3oc and {J' are maximum 
likelihood estimates does not generalize to the case of in•
complete data, at least when n1c/nc 'f n1RinR. This finding 
suggests that maximum likelihood estimates will be hard to 
compute exactly in the general case of continuous covariates 
X and leads to the following pseudolikelihood estimate. 

The pseudolikelihood is obtained by reexpressing P(X 
~ !I D ~ d) in (2) in terms of the prospective risk models 
PR(D ~ diX ~ l) and Pc(D ~ dl X~ l) as described pre•
viously and by substituting estimates <71(1) and Qk(/) for 
q1 and Qk based only on the complete data. The estimates 
<71(1) and Qk(/) are weighted averages of the empirical mass 
functions corresponding to the empirical distribution func•
tions F0 (x) and F1 (x), which are obtained from noncases 
and cases in the complete data. The resulting pseudolikeli•
hood is then maximized over f30c, (3, and the four misclas•
sification parameters (two if nondifferential misclassification 
is assumed). Standard deviations were computed by com•
bining standard Taylor series calculations with case-control 
theory (Appendix A). Pseudolikelihood yields results and 
precision very nearly equal to that of maximum likelihood 
(Table 2). 

In Section 3 we outline the theory needed to apply pseu•
dolikelihood methods to more complicated prospective risk 
models (I) with continuous and discrete co variates. 
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3. PSEUDOLIKELIHOOD WITH X OBSERVED 
IN A SUBSAMPLE 

3. 1 Notation 

Let nc = nco + ncr and nR = nRo + nRr be the sample 
sizes of the complete and incomplete case-control data sets. 
To apply the prospective model (I) to the complete data, we 
define 0 = (floc,{!')' and the quantities 

He( X, 0) = :HL(Poc + x'P) and He( X, 0) 

= Hc(x, 0){1- He( X, 0)}. 

For the incomplete or reduced data, we define HR and HR 
similarly, except that, as in Section 2, Poe is replaced by PoR 
=Poe+ log(nRrncolnRoncr). Let Fd be the marginal distri•
bution function of X given D = d, and let Fd be the empirical 
distribution function of X in the complete data given D = d. 
Define nd = ned + nRd and n = no + n, and let Q]: 
= ~~-o (ncd!nc)Fdand Q~ = ~~-o(nRdfnR)Fdbethe mar•
ginal distribution functions of X in the complete and incom•
plete case-control samples. Denote their density or mass func•
tions by q'.j: and q~ and their empirical estimates by Q]: 
= ~~~o (ncd!nc)Fdand Q~ = ~~~o (nRdfnR)Fd. 

One can estimate the slope parameter p in (I) by regressing 
D on X in the complete case-control data, as in Prentice and 
Pyke ( 1979). We are interested in improving the precision 
of these estimates by also using the incomplete data. This 
will be accomplished by assuming that the conditional den•
sity/mass function of Wgiven (X, D = d).fwlxo(wlx, D 
= d, a), depends on a finite set of parameters a. 

By allowingfw1x0 (wlx, D = d, a) to depend on d, we 
explicitly allow for differential error; our results include 
nondifferential error as a special case. As an example, con•
sider an analysis of covariance model for generating the dif•
ferential error; that is, W given X= x, D = dis normally 
distributed with mean ~0 + ~ 1d + ~2x and variance u2 � In 
this case a= (~0 , ~ 1 , ~2 , u)1• In Section 2, for the case of 
differential error, a consists of the four parameters P(W 
= II X = I, D = d) for I, d = 0, I, whereas for nondifferential 
error a consists of the two parameters P( W = II X = I), 
1=0, I. 

3.2 Likelihoods 

Cases ( d = I) and controls ( d = 0) contribute factors 

fxwlo(X, wiD= d) 

=fxlo(xiD = d)fwlxo(wlx,D = d, a) 

= !!£ q'f(x)Hc(x, O)d{l- Hc(x, 0)} 1-d 
ned 

XfwiXo(WI X, D = d, a) (3) 

to the likelihood for the complete data. Corresponding factors 
for the incomplete data are 

fwlo(wl D =d)=!!!!._ J HR(x, O)d{l - HR(x, 0)} r-d 
nRd 

X fwlxo(wl X, D = d, a)dQ~(x). (4) 
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If Q~ were known, then (4) would contribute information 
about 0 and the incomplete data could be used to improve 
the estimation of 0. We will pursue this idea, but substitute 
Q ~ for Q~. This substitution leads to a pseudolikelihood 
factor for a single observation for the incomplete case-control 
data: 

fwlo(wiD = d, 0, a) 

I "CC< 

= niJ L; L; nRk HR(Xc;•, O)d{l- HR(Xc;k, 0)} 1-d 
k .. o i=l nck 

Xfwlxo(wiXc;k, D = d, a). (5) 

From (3) and (4), the combined likelihood and pseudo•
likelihood for the complete and incomplete data is propor•
tional to 

L(O, a)= ll~~oii7.:tH~(Xc;d, 0){1- Hc(Xctd. 0)} 1-d 

X ll~~oiT7~/wlo(WRtd I D = d, 0, a) 

X Tii..oTI7:'ffwiXD(Wc;d IXcw. D = d, a). (6) 

It is important to emphasize that (6) is not the likelihood of 
the data; instead, it is an estimated or pseudolikelihood. 

Letfw1x0 (wlx, d, a) be the likelihood of Wgiven (X, D) 
with unknown parameter a, and define 'itd(x, w, a)= (/J/ 
oa)lng{fwiXD(wlx, D = d, a)}. 

3.3 Estimating Equations 

The derivatives of the log of the terms in ( 6) that arise 
from complete data with respect to a and 0 are 

and 

I "<:d 

.Lcr(a) = L: L: 'itd(Xcw. Wcw. a) 
d...O i=l 

I "<'d 
.LdO)= L; L;(l,Xbd)'{d-Hc(Xc;d,O)}. (7) 

d=O i=l 

Because .L c 1 (a) is the likelihood estimating equation eval•
uated at a, E.Lc 1(a) = 0. Prentice and Pyke (1979), using 
the retrospective sampling distribution, showed that 
E.Lc2(0) = 0. The corresponding estimating equations of 
( 0, a) from the incomplete data are 

I ""' 
.LR,(O, a, Q~) = L; L; Sd(WRtd. 0, a, Q~); 

d=O i=l 

I ""' 
.LRr(O, a, Q~) = L; L; Sdo(WRw• 0, a, Q~), (8) 

where if 

Gdr(W, x, 0, a) 

= H~(x, 0){1- HR(x, 0)} 1-d fw1xo(wlx, D = d, a), 

Gd,(w, x, 0, a) 

= (2d- l)G)HR(x, O)fw1xo(wlx, D = d, a), 

Gd,(w, X, 0, a)= H~(x, 0){1- HR(X, 0)} l-d 

a 
X&; fwiXD(wl X, D = d, a), 
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and 

sdk(w,O,a,Ql})= I Gdk(w,x,O,a)dQl}(x), 
then 

S( O QR)=Sdl(w,O,a,Ql}) 
d w, , a, X SJ,(W, 0, a, Ql}), 

S ( O QR)_Sd3(w,O,a,Ql}) 
d* W, 'a, X - SdJ(W, (),a, Q§) , 

By standard likelihood considerations, the estimating equa•
tion for a in the incomplete data is asymptotically unbiased; 
that is, E.LR,(O, a, Ql}) = 0. In Appendix A we show that 
the estimating equation for 0 is also asymptotically unbiased; 
that is, E.LR,(O, a, Ql}) = 0. 

In the notation of estimating equations, the pseudolike•
lihood algorithm SOlves 0 = .£c,(a) + .£RI(0, a, Ql}) 
= .Lc,(O) + .LR,(O, a, Ql} ). We used the Newton-Raphson 
algorithm to solve these equations. 

3.4 Limiting Distributions and Covariance 
Estimation 

If X is a discrete random variable with a finite number of 
elements as in Section 2, then there are only a finite number 
of parameters to be estimated from the complete data. From 
(3) and (4), these are the parameters (0, a) and the masses 
of X given D = 0, 1. One can maximize the pseudolikelihood 
(6), this being computationally convenient. Alternatively, 
one can combine (3) and (4) and maximize the likelihood, 
either slightly overparameterized or subject to the constraint 
f Hc(x, 0) dQ'i(x) = nc,/nc. The asymptotic normality 
and covariance matrix ofn112(0- 0) is obtainable by com•
bining Taylor series and case-control probability calculations 
(Appendix A). For continuous X the more complicated the•
ory outlined in Appendix A is needed to take into account 
the fact than an estimated function, Q 'i, rather than an es•
timated finite set of parameters is used to obtain the pseu•
dolikelihood ( 6). The resulting covariance estimates require 
extensive computations. 

In some problems it may be possible that the effect of 
estimating Ql} can be ignored. This issue needs to be ex•
plored. As shown in Appendix A, this conjecture being true 
would result in far simpler covariance formulas. When X is 
categorical, Q§ consists of a finite number of parameters 
and standard calculations apply to this case (Appendix A). 

Estimates of standard errors and confidence intervals also 
can be obtained from bootstrap sampling. In the complete 
data for D = d, obtain a bootstrap sample of size ned by 
sampling with replacement from the set {XCfJ, W 0 d; d = 1, 
... , ned}. In the incomplete data forD = d, obtain a boot•
strap sample of size nRd by sampling with replacement from 
the set {WR;d; d = 1, ... , nRJ)). 

3.5 Nondifferential Error 

In the case ofnondifferential error, we havefwrxD(wlx, 
D = d, a)= fw1x(wlx, a). Other than this minor change 
of notation, all of our previous results apply. Of course, in 
real data analysis there are important practical differences 
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from the differential error case. The practical choice of when 
to use the nondifferential assumption will be critical in ap•
plications (Greenland 1988b). 

4. RARE DISEASE APPROXIMATIONS WITH 

NONDIFFERENTIAL ERROR 

In the previous sections the measurement error model 
concerned the distribution of W given X and D. In this sec•
tion we will assume that disease is rare and that measurement 
error is nondifferential, and we work instead with distribution 
of X given Wand D. In Section 4.1 we consider validation 
as described in Section 3, with a linear error model. Section 
4.2, we assume an external validation gives information 
about W, but no complete data set is available. In Section 
4.3 we consider the case that replicates of Ware observable 
but X is not observable; in Section 4.4 we consider a method 
different from (9) that uses an approximation to the likeli•
hood. 

4.1 Internal Validation 

Suppose that error is nondifferential and define m( w) 
= E(XI W = w). Rosner eta!. (1989, 1990), Whittemore 
(1989), Gieser (1989), Pierce, Stram, Vaeth, and Schafer 
(1992), and Carroll and Stefanski (1990) noted that for 
moderate effects, a reasonable approximation for cohort data 
is 

Pr(D= IIW=w)= I Pr(D= !IX=x)fxrw(xlw)dx 

"' JfL{fJo + fJ'm(w)} 

=Pr{D=IIX=m(w)}. (9) 

We will use (9) as if it were an equality. Ifm( w) were known, 
one could perform a logistic regression with different inter•
cepts and predictors m( WR,d) and Xctd in the incomplete 
and complete data. In essence we impute the value m(WR;J) 
for the true but unobserved predictor. 

In practice m(w) is unknown. To estimate it for contin•
uous X, we consider an analysis of covariance model for X 
given W, D; that is, 

E(XIW,D)=ao+a 1D+a 2W, sothat 

X=ao+a 1D+a2W+ V, where 

E(VI W, D)= 0. (10) 

The linear model (10), while standard, is restrictive. We have 
chosen it to obtain easily computed standard errors. It is 
possible to use the techniques of Appendix B to obtain results 
for models more general than (10). 

In general the term in D is needed in fitting (1 0), because 
nondifferential error does not imply that X and D are con•
ditionally independent given W. However, if the disease is 
rare, then 

m(W) = ao + a,W + a 1Pr(D = II W) 

,:::::; ao + azW. (11) 

Note here thatXisa(p X 1) vector, as area0 anda1 , whereas 
W is (q X 1) and a 2 is (p X q). Substituting (11) into (9), 
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we obtain Pr(D ~ II W ~ w) = JtL(/3** + {3'a,w), where 
{3** ~ {3'!; + {31a0 � Note that {3** is a different intercept from 
{3'!; in the prospective model (1) applied to complete case•
control data (D, X). Thus the intercepts for regressions of 
D on X and D on Win the retrospective data are different, 
even if nCI! nco ~ nR , ; nRo. Let & 2 be the ordinary least 
squares estimate of a 2 obtained by applying (I 0) to the com•
plete data. Then the algorithm is to run a logistic regression 
with a common slope {3, subject to the following: 

• Complete data: intercept f30c, predictors (Xc; J) 
• Incomplete data: intercept f3oR, predictors (&,WRiJ). 

Computing the estimator requires nothing more than ac-
cess to a standard logistic regression program, with a dummy 
variable for whether one is using complete or incomplete 
data. However, unlike in the Prentice and Pyke ( 1979) con•
text, the estimated standard errors from such a logistic 
regression are formally inconsistent. The reason for this is 
the need to adjust the standard errors for estimation of a,. 
In many instances, however, one can estimate a2 much better 
than one can estimate {3, in which case the estimated standard 
errors from the dummy variable logistic regression will be 
accurate enough for most purposes. A quick way to check 
this is to compare the logistic regression program's standard 
errors for f3 with the linear regression standard errors for a2. 
When the effect of estimating a 2 cannot be ignored, asymp•
totic theory is given in Appendix B. 

In some problems there are no complete cases, only com•
plete controls. In these cases, the complete controls can be 
treated as an external validation data set (see Sec. 4.2). 

4.2 External Validation and Unbiased Surrogates 

In some instances, complete data will be unavailable. Ap•
proximation (11) still can be used if a 2 is estimated from an 
independent validation study; see Appendix B for details. 
This is the case discussed by Rosner et al. (1989), see also 
Spall (1989) for related theory. 

In some instances, instead of observing X in the complete 
data, we observe only an unbiased surrogate x. ~ X+ U, 

where U is independent of W. In this case, one uses the 
complete data to estimate a2 , and then runs a logistic regres•
sion of all the data, complete and incomplete, using a2 w 
as the predictor. The theory required is only a minor mod•
ification of what appears in Appendix B. 

4.3 Independent Replication 

Even if gold standard measurements X are unavailable, 
approximate techniques can be developed as long as inde•
pendent replicates are available, and W is unbiased for X. 
In this subsection we discuss one possible implementation 
of such techniques. 

Our starting point is the approximate model (9), in which 
we need to ascertain m(w). Suppose that, prospectively, W 
~X+ U, where X and U are independent with means (JLx, 
0) and covariances (:l:x, :l:u). Define At~ :l:x(:l:x + :l:u)- 1� 
As in Carroll and Stefanski ( 1990) and Gieser ( 1990), the 
best linear approximant to m(W) is (I- A1)E(X) + A1 W, 
which suggests using A1 W as the predictor in a logistic 
regression. 
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With replication, estimating A 1 can be accomplished under 
two circumstances. First, one might entertain the normal 
discriminant model of Michalek and Tripathi ( 1980) and 
Armstrong et al. ( 1989) with normal errors, so that given D, 
the previous model holds for (W, X) with constant covari•
ance matrices. Buonaccorsi (1990) also considered this 
model, but allowed X to be multivariate and did not mandate 
that surrogate Wbe unbiased for X; his work also included 
a comprehensive asymptotic theory, as well as allowing for 
differential measurement error. Alternatively, if the disease 
is sufficiently rare, the covariance matrices (~x. ~u) are es•
sentially the same as those computed from among the con•
trols. 

There are two possible sampling strategies appropriate for 
these cases: ( 1) that replication is done only among the con•
trols or (2) that both cases and controls are replicated. In the 
latter case the covariances given D ~ d do not depend on d. 
Our treatment will handle both cases. Represent the "in•
complete" data by (DR,d. WRid) for d ~ 0, 1 and i ~ 1, 
... , nRd, with nR = nRo + nR 1, and represent the "complete" 
data by the replicated samples (Dc;J, Wcidt, ... , WciJM) for 
d = 0, 1 and i = 1,. . , ned. nc =nco+ nch where M ~ 2. 
In most instances the replicates are done in time, and we 
will let Wcidt denote the first replicate. Define AM~ :l:x( :l:x 
+ M- 1:l:u)- 1 and let AM be the estimate of AM defined later. 
Except for differing intercepts, the best linear approximant 
to the regression of xld on wid is AI wid for "incomplete" 
data and AM wid for complete data, where wid is the mean 
of the replicates for person i with disease status d. Our pro•
cedure is based on substituting m( W,d) for X,d in the "in•
complete" data and m( W,J) for X,d in the "complete" data: 

• Estimate AM and A1 by estimating :l:u and :l:x. Let 

I ned 

:i:u ~ nc1 L: L: (M- W 1 

d=O 1=! 

M 

X L; (Wcidk- WCid·)(Wc,Jk- WoJ.) 1 (12) 
k=l 

be the mean of the separate within-person estimates of 
:l:u. Then let :i:x be :i:w- :i:u, where 

:i:w ~ (nRo +nco- 2)- 1 

X ~7~?(WRIO- WR.o)(WR,o- WR.o) ' 

+ (nRo +nco- 2)- 1 

X :1:7;1M( Wc;o. - Wc.o. )(Wc;o.- Wc.o. ) ' 

is estimated among the controls, because :l:w ~ cov(W) 
= cov( WID ~ 0) if the disease is rare. 

• If controls and cases are replicated, run a logistic regres•
sion with intercepts fJoc and fJoR and predictors 
AM W cid· and A1 WRid for the complete and incomplete 
data but with common slope {3. 

• If controls only are replicated, use the first replication 
and run a logistic regression with predictors A1 Wodl 
and A1WR1d· 
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Operationally, the algorithm takes the following form. Define 
0 = (f3oc, f3oR, {3')' and 

I "c' ( 0 ) 
Sc.I(O, A1) = n(:l/2 ~ ~ , 1 

d-o I-I A,Wctdl 

and 

I "M ( 1 ) 
Sc,z(O, AM)= n(:112 ~ ~ , ()_ 

d-O 1-1 AMWCid· 

X { d- J!df3oc + {3'AM Wcid·)}. 

If cases and controls are replicated, we find estimates by 
solving 0 = SR(li, A1) + Sc,2 (li, AM); if only controls are 
replicated, e = (f30R, {3')', and estimates are found by solving 
0 = SR(li, A1) + Sc,I (li, AJ). Theoretical details are given in 
Appendix C. 

4.4 More General Approximations 

In those cases where the first moment approximation (9) 
is not adequate, a second approximation may be used. For 
a rare disease in the source population, the logistic probability 
satisfies J!df36 + {3'x)"" exp({3/; + {31x). For nondifferential 
error and a rare disease, our method requires an approxi•
mation to the distribution of X given Wand D = 0 (that is, 
among noncases), which we denote by fxiW,D(xl w, D = 0, 
a), It then follows that 

Pr(D = 11 W = w)"" exp{f3(\' + R(w, {3, a)), 

where 

exp{R(w, {3, a)) 

=I exp({3'x)fxiW(xl w, a) dx 

=I exp({3'x)fxiW,D(xlw,D=O,a)dx. (13) 

Setting Pr( D = 0 I W = w) = 1 in the odds ratio represen•
tation in the first line of this article, we find that for any wo, 

fwtD(W/D = l)lfwtD(woiD = 1) 

fww(wiD = O)lfwtD(Wol D = 0) 

= exp{R(w, {3, a)- R(w0 , {3, a)). (14) 

The calculations of Hsieh, Manski, and McFadden ( 1985) 
thus imply that for the complete and incomplete case-control 
data, 

fxwtD(x, wiD= d)=!!£ q}(x)J!f(f3oc + {3'x) 
ned 

X {1- J!df3oc + f3'x)} I-d fwtxD(wlx, d, a) (15) 

and 

fwtD(wiD =d)= ~q{\,(w)J!f{f3oR + R(w, {3, a)) 
nRd 
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X [1- J!L{f3oR + R(w, {3, a)) ] 1-d (16) 

Here q{\,( w) is the density of W in the incomplete case•
control data. Equations ( 13)-(16) are similar to the approach 
derived independently by Sattcn and Kupper (in press), who 
show that ( 16) is an exact expression for the likelihood. If X 
given W is normally distributed with linear mean structure 
and constant covariance matrix, R(w, {3, a) is linear in w, 
essentially yielding the approximate likelihood used to derive 
the estimates in Section 4.1. 

Estimation of the parameters in ( 15) and (16) is via max•
imizing the joint likelihood. Given a, (f30c, f3oR, {3) can be 
estimated by the method of scoring, based on a logistic model 
with probabilities J!L(f30c + {3'x) and J!L{f3oR + R(w, {3, 
a)) for the complete and incomplete data. The asymptotic 
theory for the estimates is effectively a special case of that 
of Section 3 (see App. A). 

The ideas in this subsection are clearly connected to Sec•
tion 3. The estimates are more appropriate than those of 
Section 4.1 for categorical X; see Satten and Kupper (in press) 
for details. 

5. A SIMULATION EXPERIMENT 

Our simulation concerns lognormally distributed predic•
tors with nondifferential error, the parameters based on those 
discussed by Nero, Schwher, and Nazaroff ( 1986). They re•
viewed data on the distribution of radon in single-family 
homes in the United States and found that the lognormal 
distribution fit the observations reasonably well. In our sim•
ulations the prospective logistic regression model was given 
by Pr(Y= 11 X= x) = J!L(-3.09 +.SOx). Data were gen•
erated prospectively as follows. First, X was generated as a 
lognormal random variable so that ln(X) had mean 
( -1 /2)u",. and variance ui, where trx = 1.08. Disease out•
come D was generated from the prospective model given 
earlier. The predictor W was also lognormal, with ln(W) 
given (X, D) having mean ln(X) +I'D and variance trb, the 
values given later. The results were accumulated into a case•
control study. In this setup, with </J( ·)as the standard normal 
density function, 

fwtx,D(wlx, d)= (wud)- 1</J[ {ln(w) -ln(x)- l'd)!trJ]. 

We repeated each experiment 1,000 times. 
We first describe results for the nondifferential case with 

I'D= I'I = 0, tro = tr1 = .25, .50, 1.00, nco= net = 40, and 
nRo = nR 1 = 80. We computed the pseudolikelihood esti•
mator both assuming nondifferential error and allowing for 
differential error with possibly different means and variances. 
In addition we computed a version of the approximate es•
timate of Section 4.1; but instead of approximating E(X I W) 
by a linear function, we computed it exactly from the known 
structure, a computation that requires knowledge of the 
marginal distribution of X, which is usually not available. 
The results from computing E(X I W) exactly shed some 
light on the need to use data analytic techniques to check 
the assumption that the regression of X on W is linear. 
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In the examples in which the assumption of non differential 
error holds (Cases I, 2, and 3 in Table 3), each of the methods 
for nsing reduced data yields smaller mean squared error 
(MSE) and squared median absolute error (MAE 2) than do 
the methods using only the complete data. The gains in ef•
ficiency can be substantial. Surprisingly, the pseudolikelihood 
method that allows for differential error (PL - D) is nearly 
as efficient in these examples as the other methods, which 
are based on the assumption of nondifferential error. Thus 
in these examples there is little loss of efficiency from in•
cluding the extra parameters needed to model differential 
error and there are large gains in robustness, as we will de•
scribe. Note that the method labeled APPROX, which as�
sumes that the regression of X on W is linear, begins to lose 
efficiency as the measurement error increases (case 3), 
whereas the method that replaces X by an exact expression 
for E(X I W) retains good efficiency. Thus in practice every 
effort should be made to model E(X I W) correctly when 
using substitution methods (Pierce eta!. 1992). 

We also repeated the same experiment but allowed for 
differential measurement error (cases 4-6 in Table 3). We 
set""~ -1.47 and I' I ~ 1.47, but still allowed uo ~ u1 ~ 1.0. 
We then let the variances differ by setting ( ui\, utJ ~(.50, 
1.00), (1.00, 2.00), and (1.00, 1.00). The methods that as�
sume nondifferential error yield biased estimate of {J and 
large MSE and MAE 2 values, giving a striking illustration 
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of the need to carefully assess an assumption of nondiffer•
ential error (Greenland 1988b). This suggests that the PL 
- D should be computed even when the error is assumed to 
be nondifferential. This estimator improves on using the 
complete data only, and the gains are comparable to those 
seen using similar amounts of nondifferential error. 

In summary, when the error is properly modeled, the 
pseudolikelihood estimates can lead to improvements over 
the complete data estimator. The version of this estimate 
that allows for differential error confers robustness without 
(in these simulations) much loss of efficiency; however, we 
do expect that in some situations a loss of efficiency will 
result from using the differential error procedure when the 
nondifferential method is applicable. The regression adjust•
ments of Section 4.1 are reasonable to use when the regression 
of X on W is modeled carefully and the measurement error 
is nondifferential. The complete data estimate, although less 
efficient than the other methods, has the advantage that no 
error or regression modeling is required. 

6. DISCUSSION 

Although considerable research has been devoted to the 
analysis of error-prone covariates in cohort studies (Arm•
strong 1985; Carroll et al. 1984; Carroll and Stefanski 1990; 
Carroll and Wand 1991; Gieser 1990; Pepe and Fleming 
1991; Pierce et al. 1992; Rosner et al. 1989, 1990; Schafer 

Table 3. Lognormal Simulation 

... •uo ""' 
COMP APPRO X LRMEAN PL-ND PL-D 

<:asa#1 .00 .25 .25 
Mean .57 .53 .52 .53 .53 
MSE 1.00 .37 .28 .32 .31 
Median .52 .52 .51 .52 .51 
MAE2 1.00 .40 .33 .34 .33 

Case#2 .00 .50 .50 
Mean .56 .55 .52 .54 .53 
MSE 1.00 .52 .31 .34 .44 
Median .52 .53 .50 .52 .51 
MAE 2 1.00 .55 .34 .42 .42 

Case#3 .00 1.00 1.00 
Mean .57 .55 .51 .55 .55 
MSE 1.00 .88 .39 .55 .65 
Median .53 .52 .49 .53 .53 
MAE2 1.00 .99 .54 .67 .76 

Case#4 1.47 1.00 1.41 
Maan .55 1.08 .91 1.28 .55 
MSE 1.00 8.03 5.88 18.1 .76 
Median .52 1.00 .84 1.21 .52 
MAE2 1.00 12.9 5.74 25.5 .73 

<:asa#5 1.47 .71 1.00 
Mean .55 1.35 .73 1.35 .54 
MSE 1.00 18.0 2.24 15.5 .59 
Median .52 1.29 .69 1.29 .51 
MAE' 1.00 31.8 2.00 32.3 .59 

casa #6 1.47 1.00 1.00 
Mean .56 1.35 .85 1.32 .55 
MSE 1.00 15.8 3.68 13.3 .65 
Median .53 1.28 .79 1.27 .52 
MAE 2 1.00 36.5 5.12 35.5 .70 

NOTE: See Section 5fordetalls. The true value is {J- .5. COMPreferstoestimatesof {Jusing complete data only, APPROX refers to the estimate of Section 4.1, LRMEAN means replacing X by 
the exact expression for E(XI W) and using this expression In the incomplete data, and PL- ND and PL.- D mean the pseudolikelhood estimate computed assuming nondlfferential and dilfen!ntial 
error structure. In an cases, 110 - -1'1· MSE and MAE refer to the relative mean aquarederrorancl median absolutearorfrcm fJ =.50 relative to thatoftheoompletedataestlmate. 
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1987; and Whittemore 1989), this article is the first to pro•
pose methodologies for the analysis of case-control data un•
der the prospective logistic risk model (I). In the case that 
X is categorical these pseudolikelihood methods may be an•
alyzed by previously developed methods (see Gong and Sa•
maneigo I 981 and our App. A). But for the case of a con•
tinuous covariate, a more complex asymptotic theory (see 
App. A) is required. These pseudolikelihood methods are 
flexible in that they may be used with quite general error 
distributions, fw1x0 (Wix, D = d, a), and they allow for 
differential error. 

Two other approaches are available. First, when X is dis•
crete the retrospective logistic model (Prentice 1976) may 
be used, in which case methods for incomplete, mixed-up 
contingency table data are applicable (see for example, Chen 
1989; Espeland and Hui I 987; Greenland and Kleinbaum 
I 983). As the support of X becomes more complex, however, 
these methods become unwieldy. 

A second approach is based on the dual assumptions of 
nondifferential error and rare disease. Under these circum•
stances replacing X in (!)by E(XI W)(see Secs4.1, 4.2, and 
4.3) or replacing exp(X1/l) in (I) by E{exp(X'/l)l W) (see 
Sec. 4.4) in the incomplete data leads to approximately con•
sistent estimates of /l. The former substitution has been sug•
gested previously for cohort data and justified by Armstrong 
et al. (1989) under a normal discriminant model for case•
control data. Satten and Kupper (1993) and Spiegelman and 
Robins (personal communication) have independently sug•
gesred a representation as in Section 4.4, although their use 
of the representation is different, see also Wang, Wang and 
Carroll (1992). As far as we know, however, this article is 
the first to develop the necessary distribution theory for case. 
control data, except for the special results in Armstrong et 
al. (1989) and Buonacct>rsi (1990) and for the discrete case 
in Section 4.4 by Satten and Kupper (in press). These meth•
ods are easy to implement, even if some components of X 
(call them Z) are measured accurately in both the complete 
and incomplete data, whereas other components of X (call 
them X �) are measured with error in the incomplete data. 
We assume that Z and x. have no common elements. Then 
X= (X0 , Z)isreplaced by E(XIZ, W) = {E(X.IZ, W), 
Z } in the incomplete data. For the pseudolikelihood methods 
of Section 4.4, suppose that the prospective risk model (I) 
is rewritten as 7{L(!l~ + !l'zZ + !l'xX. + ~rzx.), where 
Z x. represents interactions that depend on Z and x •. Then 
in the incomplete data, one replaces exp(/l'zZ + !li:X. 
+ rTZX0 ) by exp(/l'zZ) E{exp(/l'xX. + ~rzx.)IZ, W) 
and proceeds as in Section 4.4. A major limitation of these 
methods is the reqnirement of nondifferential error structure. 

All the methods mentioned require accurate specification 
of the error model to make use of the incomplete data. The 
contingency table literature describes formal methods for 
selecting error models (see, for example, Espeland and Odo•
roff I 985). More work is J'!'<IUired to determine the robustness 
of the methods presented to misspecification of the error 
model. The work of Carroll et al. ( 1984) and Schafer ( 1987) 
indicates significant sensitivity to specification of the error 
model when the measurement error is moderately large. 

Simulations suggest that the methods of Section 3 perform 
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wellforsamplesofpractical size(Table 3). But if the complete 
data are sparse, so that F0 and F1 have few jump points, and 
if there is very little error in W, so thatfw1x0 (wlx, d, a) is 
nearly degenerate at w = x, then (5) may be nearly 0, because 
thenfwtxn(wlx, d, a) may be nearO where Ql}(x) has mass. 
Thus (5) can be a poor approximation to (4), and numerical 
instability may result. A possible improvement is to use 
smoothed versions of F0 and F1 � Further numerical studies 
are also needed to determine how well the proposed estimates 
of covariance perform in samples of modest size. 

If, as discussed, X= (X0 , Z) where Z is measured without 
error but x. is measured with error in the incomplete data, 
then the pseodolikelihood methods (see Sec. 3) become more 
complicated. Assume the prospective risk model RL(/l~ 
+ !l'zZ + !l'xXo + ~rzx.). If Z is discrete, one can stratify 
on Z to obtain stratum-specific estimates of ll x + ~Z as in 
Section 3 and subsequently obtain an estimate of the com•
mon slope parameter /lx. Alternatively, one can replace (4) 
by 

fzwtn(z, wid) 

=~IH~(z,x.,O){l-HR(z,x.,o))'-d 
nRd 

Xfwt~x •. n(wlz, x., d, a)q~(z)Qlf,tz(dx.lz). (17) 

Note that in ( 17), q~ ( • ) can be brought outside the integral 
sign and thus may be ignored. To apply the methods of Sec�
tion 3, we construct estimates of Qlf,1z(x.l z) given by 
Qlf,tz(x.lz) = L:~-o (nRdZfnRz)Fd(xld, z), where Fd(xld, 
z) is the empirical distribution of x. among members of the 
complete sample with D = d and Z = z, nRdZ is the number 
of persons with status D = d and Z = z in the incomplete 
data, and nRz = L::..o nRdZ· Then Equation (17) is approx•
imated by a sum analogous to (5), and the methods ofSection 
3 and Appendix A apply. 

If Z is continuous, there are at least three possible ap•
proaches that we outline here, although additional research 
is necessary to develop the ideas. One approach is to ignore 
information on Z in the incomplete data and to compute 
the likelihood of W given D, with X replaced by (X, Z); 
this entails some loss of information. A second approach is 
to assume a flexible parametric model for the distribution 
of X given (Z, D), with parameters estimated from the com•
plete data; this leads to a parametric form for Qlf,tz( ·) 
in (17). 

A third possibility is to reverse the conditioning in (17), 
so that 

X f wt~x .. n( • )q~tx,(zl Xo) dz dQJ},(x0 ). (18) 

One might assume a flexible parametric model for the dis•
tribution of Z given (X0 , D) with parameters estimated in 
the complete data, use these distributions to compute 
q~ 1 x,( ·)in (18), and then follow the pseudolikelihood al•
gorithm. 

In Section 3 we did not discuss the possibility that the 
measurement error model for W given X and D would be 
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assessed by an independent data set, as in Section 4.2. In 
principle, however, earlier studies may be used to obtain 
better estimates of the error distribution fw1x0 � It is often 
reasonable to assume that this error distribution is invariant 
across studies. The alternative methods of Section 4 require 
the distribution of X given Wand D; this distribution may 
vary from study to study. For example, in the nondilfurential 
case, W given X might be normally distributed and mean X 
and variance ul;. If X is normally distributed with variance 
u'\c ,d in the dth study population, then the slope of X on W 
is u'\c,d!(u'\c,d + u/;)in thedthstudy. Thislackofinvariance 
of the distribution of X given W indicates a need for caution 
in incorporating external information on this error distri•
bution into the analyses of Section 4. 

Most of the techniques in this article apply to the more 
general relative risk model where 13' x on the right side of (I) 
is replaced by a general function R(x, {3), because the ar•
guments of Prentice and Pyke (1979) still apply as in (13) 
and(l6). 

In summary, when X is discrete we recommend likelihood 
and pseudolikelihood methods over the matrix method. For 
continuous X and differential measurement error, pseudo•
likelihood provides the only consistent estimate among those 
studied. For rare diseases and nondifferential measurement 
error, when gold standard X measurements are unavailable, 
the methods of Sections 4.2 and 4.3 can be used. When X's 
are available and the measurement error is nondifferential, 
the possible choices are pseudolikelihood as in Section 3, 
the linear imputation melhods of Sections 4.1 and 4.2, and 
the likelihood methods of Section 4.4. Pseudolikelihood is 
fundamentally different from the rest, because its basis is an 
error model for W given X, with the marginal of X estimated 
nonparametrically. The other methods are based on models 
for X given Wand the assumptions of nondifferential mea•
surement error and rare diseases. In applications one should 
assess the measurement error structure carefully when sew 
lecting and applying these methods. Ancillary analyses using 
variations of the error model may reveal how sensitive conM 
elusions are to the assumed error model. 

APPENDIX A: THEORY FOR SECTION 3 

Two major results of this appendix are as follows. In Section A.2 
we show that the estimating equations for pseudolikelihood are 
asymptotically unbiased, which leads to consistent and asymptot•
ically normal estimates. In Section A.3 we sketch a technical result 
that is necessary to handle the contribution due to estimating 
Q~. The main asymptotic theory, stated in Section A.4 and sketched 
in Section A.5, uses this result. 

Unless otherwise stated, our results assume that nc/n, nco/nc, 
and nRo! nR converge to numbers strictly between 0 and 1. If this 
is not the case, then the results will fail and the rates of convergence 
will be slower than as stated. 

A.1 A Covariance Result 

Refer to (7) and (A.4). Let G he a matrix with all O's except the 
first element, which is (nc/nco) + (nc/nc 1). Then, as shown by 
Prentice and pyke (1979, p. 408), cov{nc112 .Lcz(8)} ~ -! !,., 
- !l282G!l262 • This fact is used in (A.I9), (B.3), (B.4), (C.3), 
and(C.4). 
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A.2 Asymptotic Unbiasedness otthe 
Estimating Equations 

Note that (8) converges to 
.LRz(8, a, Q~) 

I ""' 
~ L L (nRinM)Sdz(WR;d, 8, a, Q~)lfwlo(WRid I D ~d), 

d-O 1-1 

with has exceptation 

nR ± E{Sd2(W, 8� a, Q~)~D ~ dj 
d-0 fw,o(WI D ~d) 

~ nR ± f Sdz(w, 8, a, Q~) dw 
d""O 

XdQ~dw. 
Because J fwlxD(wlx, D = d, a) dw = l, interchanging dw and 
dQ~ yields 

E.LLZ(8, a, Q~) ~ nR i (2d- I) J G)HR(X, 8) dQ~(x) ~ 0, 

because the integral does not depend on d and Ld (2d- I) ~ 0. 

A.3 A General Technical Lemma 

Define zll = Q 1- - Q1-. Let Qdw be the distribution function of 
W given D = d, and let Qdw be the corresponding empirical distri•
bution function. Define TdE(x, fJ, a, Qow, Q1w, Q~) and Td(x, fJ, 
a, Qow, Qlw, Q~) by 

TdE(.) ~ nRd ± nRk 
ned k-o nR 

and 

{ Gk 2 (w, X, 8, a) 

X f - Gk 1(w, x, 8, a)Sk(~, 8, a, Q~} dQkw(w) (AI) 
skl(w, 8, a, Qx) 

T.(·) ~ TdE(·)- E{ TdE(X, 8, a, Qow, Q1w, Q~)ID ~d). 

Also Td• is the same as Td, except ( Gk2, Sk) are replaced by (Gk 3, 
Sh). We wish to show that 

I""' 
nc112 L L {Sd(WRtd> 8, a Q~)- Sd(WRid> 8, a, Q~)) 

d-O 1-l 

I •Rd 

~ nc112 L LTd(Xcid. 8, a, Qow, Qlw, Q~) + o,(l), (A.2) 
d-o 1-1 

and that a similar result holds if we replace Sd by Sd• and T d by 
T h· For convenience will write Sd(w) and Sd{w). Note that Sdk(w) 
- Sdk(w) = Op(n- 112 ), because when written out this is just an 
average of terms Sdk minus their expectation. Hence 

Sd(w)- Sd(w) 

Sdz(w) Sdz(w) 

~ sdl(w)- sdl(w) 

Sd 2 (w)- Sd2(w)- Sd(w){ Sd1(w)- Sdl(w)} 

~ sdl(w) 

~ Sdz(w)-Sdz(w)-Sd(w){Sdl(w)-Sdl(w)) + ( _ 112 ) 

Sdl(W) Op n 

~ f Gdz(W, X, 8, a)- Gd 1(w, x, 8, a)Sd(w, 8, a, Q~) 
sdl(w, 8, a, Q~) 

X dZ.(x) + o,(n-112 ) 

~ J :D(w, x) dZ.(x) + o,(n-112), 
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say. Hence the left side of(A.2) is, to order O,(n-112), 

I "'"'I "" n<:'" ~ ~ :D(WRJd, x) dZ.(x) 
d-o I-I 

= n<:' 1' ± n .. I I :D(w, x) dZ.(x) dQ.,w(w) 
d=O 

""n(:112 ± n .. I I D(w, x) dQdW(w) dZ.(x) + o,(l) 
d=O 

= n(:112 ± n .. I Ud(x) dZ.(x) + o,(l). 
d=O 

(A.3) 

We thus must show that the first terms on the right sides of (A.2) 
and (A.3) coincide. Note that the latter is 

n(:112 ± nRd ± ~ ~[Ud(XOJ<) -E{Ud(x)iD= k}] 
d-o k-o 1-1 nRnck 

I"« 

= n:!' ~ ~ Td(Xcid. 9, a, Qow, Q,w, Ql}), 
d-o 1-1 

completing the argument. 

A.4 Asymptotic Theory 

In this subsection we state the limiting distribution of the pseu•
dolikelihood estimate of 8. A sketch of the proof is given in the next 
subsection. To this end, let subscripts 8 and a denote derivatives 
and define 

I""' 
ll10 =n(:1 ~ ~E{Sd*6(WRid•9,a,Ql})iD=dJ, 

d-o i-1 

I""" o,., =n<:' ~ ~E{S-..(w • .,,9,a,Ql})ID=d}, 
d=O 1-1 

I "Cd 

!I,.,= n(:1 ~ ~ E{'~>"d.(XCid, Wcrd. a)iD =d), 
d-0 1-1 

I""' !l,. = n(:1 ~ ~ E{S ... (WJOd. 9, a, Ql})ID =d), 
d=O l=l 

I""" 
!1,.1 =n(:1 ~ ~E{S.o(WJOd,9,a,Ql})iD=dJ, 

ll, = -n(: 1 ~ ~ E Hc(XC/d, 9) . I ""' {( I )( I ) ' . I 
t1=0 i=-1 Xcut Xcut 

D=d}. (A.4) 

02, = lhet +Om, 

and 

-(Ill. !l") o.- . 
!1,. !l,. 

RemarkA.l. Proofs of the results in this section are sketched 
informally in the next subsection. Technically, the major difficulty 
is in keeping the random variable Sd 1(w, 8, a Q1-) away from 0, 
where Sd1(w, 9, a, Ql}) = (n .. !n.) WID(wiD = d, 9, a). This 
difficulty is evident from Section A.3. We have been able to prove 
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the results only under fairly stringent regularity conditions, the key 
ones being as follows. 

• For differential error, W given D = d has compact support and 
/wiD( wiD= d, 8*, a.) is strictly positive on this support and 
in neighborhoods of( 8, a). This condition includes categorical 
Was a special case. 

• For nondifferential error, either the previous condition holds 
or the sums in (.£R1, .lR2) are taken only over WRidon a fixed 
set independent of d and interior to the support of W given 
D=d. 

Formal proofs even under these strict conditions are messy. 
In what follows, rather than present detailed proofs under precise 

conditions, we sketch them only. We provide a level of detail that 
we hope will enable the reader to follow the main ideas. 

When we use the notation "A~ B", we mean that A- B = Op(l). 

Result. With functions T d and T ~ defined in the previous 
subsection, define for s = I, 2 

I""" 
1!'1 = n(:112 ~ ~ [Sd(w.,d. 9, a, Ql}) 

d-0 i=l 

-E{Sd(W, 9, a, Ql})ID =d)], 

I""" 
c>, = n(:112 ~ ~ [Sd.(w • .,, 9, a, Ql}) 

d=O t=l 

- E{Sd•(W, 9, a, Ql})ID =d)], 

I! '* ' 

= n(:112 ± ~ [ V"'(Xc.,, WCid, 9, a, Qow, Q1 ~, Ql}) ]• 
d=Ot=l -E{V.,(X, W,9,a,Qow,Qiw,Qx)iD=D} 

Vd 1(x, w, 8, a, Qow, Q,w, Q1-) 

= (~){d- H(x, 9)} + Td(X, 9, a, Qow, Q1w. Q§), 

and 

vd2(x, w, 8, a, Qow. Q,w, Q~) 

= "t'd(X, W, a)+ Td*(X, 8, a, Qow, Qlw, Q1-). 
Then 

n~2(~ = ;) = -o;'(::: :~) + op(l). 

Hence n:!'<6- 9) is asymptotically normally distributed with mean 
0 and covariance matrix the lower right block of 

o;'{cov(::)+cov(::)}o;'. (A.5) 

A.5 Sketch of Proof of Result 

We first note that because the estimating equations are asymp•
totically unbiased, under sufficient regularity conditions the esti•
mates are consistent. Define 

I"<> 

&, = nC 112 L L Td(Xc,d, 8, a, Qow, Q,w, Q1-) 

and 
I •at 

&, = n(:112 ~ ~ T ._(Xc.,, 9, a, Qow, Q1w. Ql}). 
d .. O i-1 

Formally expanding in a Taylor series and using Section A.3, we 
find that 

nC112Lcl(&) ~ nC112.lct(a) + 0, .. 2n~;f2(&- a), 

n(:112 .CC2(iJ)"" n(:112 .Cc2(9) + llmn:!'(6- 9), 

nC;112.lRI(1J, &, Q1) ~ nC/f2£Rl(8, a,~) 

+ 0 11n2'2(8- 8) + O,"',n~2(&- a)+ &2, 
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and 

n(; 112 .[R2(0, &, Q~) ~ n(; 112 .£.R2((), a, Q!{.) 

+ 0 261 ni2 (8- 0) + fh.,n~2 (&- a)+ 8 1 • 

By formal Taylor series expansions, we then obtain 

and 

o ~ nc' 1'{.LC2(0) + .L.,<o, &, Q/f)} 

= nc' 12 {.LC2(8) + .LRz(8, a, Q/f)) 

+ 81 + fhani\&- a)+ fiuni' \8- 0), 

o ~ nc'~'{.Lc,(&) ~ .L.,(o, &, Q/f)) 

= nc'~'{ .Lc,(a) + .L.,(8, a, Q/f)) 

+ &, + n,"n~'(&- a)+ n,.n~'(o- 8). 

Combining (A.6) and (A.7) yields 

-n*n~2 (~ = ;) 

(A.6) 

(A.7) 

,...., _ 112 (.CcJ(a) + .LR1(8, a, Q§) + n:J1e2) 
.- nc LcAO) + .LR 2(8, a, Q§) + n:f2 81 · 

Each of the first three terms on the right side of(A.6) and (A.7) has 
mean 0, even though their individual summands do not. Thus, we 
may replace an individual summand, say Uid• by its centered version 
U,d-E{U;d[D~d). 

A.6 Covariance Estimates 

We now provide consistent estimates of the covariance matrix 
(A.S). Estimating the various subscripted 0-matrices is performed 
by removing the expectations in their definitions and replacing ( fJ, 
a, Q§) by (iJ, a, Q1). For example, 

1 "Cd 

Q1or2 = nC 1 L L wd.,(Xod, Wc;d, &) ; 

I ned 

n,, ~ nc' L: L: sd"(w.,d, o, &, Q/f). 
d-O i-1 

Estimation ofcov(@ 1) is similar. Define 

We make similar definitions for Sd* and define 

/'..(&') ~ _, ± z (Sd,(WRid)- Sd•)(Sd,(WR;d)- Sd') 
cov (§1 1 nc d=Oi-l Sd(WR;d)-Sd Sd(WR,d)-Sd . 

We require estimates ofT d and T d•· Refer to (A. I) and define 

fdE(x) ~ TdE(X, 0, &, <2ow, Q,w, Q/f); 

with f d• defined similarly. 

Define '13 1 = - Q 202 - OmGOm and 

and fork ~ 3, 4, 
I ned 

'l3k = nC1 L L { vdk(Xod, Wod)- Vdk} 
d=O i=l 
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A consistent estimate of cov( @~, @~r is 

~(~:) = (~ 1 ~) + '134 + '133 + '13~. 
A.7 Generalizations 

If Q1 is known or the effects of estimating it are ignored, the 
covariance estimates given previously simplify by setting Vd 4 = {0, 
W~(x, w, a) }1• The estimates are easy to compute in this case. 

When there are a finite number of parameters, as when X is 
discrete, or for the likelihood estimates of Section 4, covariance 
estimates can be computed as follows. Let e include all parameters 
to be estimated and let J'(0) be the estimating equation, generally 
a sum of terms of the form 

J'(EJ) ~ i:O c~ >!';dc(EJ) + ~ >l'tdR(EJ)) • 

Then 0isestimated by solvingO = J'(8). LetJ'e(0) be the derivative 
of the estimating equation. Let 7(0) = cov{ J'(0)}, which is cal•
culated using the case-control probabilities. Then the estimated co•
variance matrix is J'9 1(8)T(8)J'91(0) . 

For example, in the 2 X 2 X 2 example of Section 2, 3(0) can 
be expressed as a function ofthe cell counts in the two quadrinomials 
defined by complete data (X, W) separately for D = 0, 1 and in 
the two binomials defined by the reduced data W separately forD 
= 0, 1. These four groups of cell counts constitute four independent 
multinomial random variables with cell probabilities determined 
by the parameters 0; hence multinomial theory can be used to 
derive a formula for 'T(0). These methods can be used either for 
maximum likelihood or pseudolikelihood estimates by defining ap•
propriate estimating equations, J'(O). 

APPENDIX 8: THEORY FOR SECTION 4.1 

B.1 Statement of Results 

Define a = (a0 , a 1 , a 2) 1 and define e by a~ = ea. Define 
8 ~ (/3oc, f3oR. /3')', Hc(x, 0) ~ '}(L(f3oc + f!'x), H.(w, e, a,) 
= J(L(f3oR + {31azw), 

' """ .LdO)~ L: L;(l,O,Xbd)'{d-Hc(Xc;d,e)}, 
d=O i=l 

and 
l riRd 

.LR2(8,a,)~ L L {0, 1,(a,WRtd)')'{d-HR(WRid,8,a2)). 
d-0 1-1 

The estimates solve Lc2 (0) + .LR2(0, tl2) = 0. In this section we 
show that in the limit, 

n::f2(iJ- 0) = n; 1nC.l 12 {Lcz(O) + Lc3(8, a2) + .LR2(8, az)} 

+ Op(l), (B.l) 
where 
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and 

!l.~nc' ± ~E{(D~,d)(D:,_)'ID~d}. 
""'o ,_, Weut WCid 

Thus for a matrix fY23 defined later, n:f2(8- 0) is asymptotically 
normally distributed with mean 0 and covariance matrix 

-•[cov(nc"'Lcz(O)} + cov(nc'12LC3(0, a,) l]g-• (B. 2 ) 
0 ' + cov{ ncP2 .[R2(6, a2)} + (Y23 + fYh 9 • 

where, by Section A.l, 

(
nc +.!!£. 0 
nco nc, 

cov(nc"'Lcz(O)} ~ !lo- !lo ~ ~ 

and 

cov{ nC112 .CR2(6, a2)} 

(0 0 0) 
0 nR +~ 0 

nRo nR1 0 0 0 
!l.,. (B.4) 

Also, because e = (Oqx~o OqX,, lq), Vad = Xc,d- ao - a1Dc,d 

- a 2Wad. and if Viti� = 0&e0..(1, Dcid. Wbd)'VbdP. then 

'""' cov(nc"'Lc,(O, a)}~ nc' L L E(v,.,.v:.. [D ~d) 
d=O t=l 

and 

&,~nc' ± ~E[{d-Hc(Xod,O))( ~ )v:...jD~d]. 
d=O t=l Xc1d 

Remark B. I. Constructing an estimated covariance matrix 
is particularly easy: & 23 , ORII, 0 01 , 0&, and 0., are estimating by 
replacing (6, ao, a 1, a 2) by their estimated values, removing the 
expectations, and replacing V cui in their definitions by the residuals 
VC!d = XCid- ao- alDC!d- a2wCid. 

We now sketch (B.!). By a Taylor series, 

0 = nc"'( Lc,(O) + LR,(O, a,)} 

- O,n::/2(8- 6) + nR .. n~2(&2- a2)1fJ 

1f a = (a 0 , a~o a 2)', then the least squares estimates of a solves 

so that 

'" '" n~2(CL- a)~ 0; ; 1nC 112 L L (1, DC/d, Wbd>'V'ctd� 
d=O i=l 

Because a~= ea, (B.l) follows. 

8.2 External Validation 

In the case of external validation, covariance calculations simplify 
because the estimate &: 2 is independent of .CR 2 ( 0, a2), and only 
minor changes to the previous theory are necessary. Let &: 2 be the 
estimate of a2 , and let A be the asymptotic covariance matrix of 
n1'2(CL2- a2)'fJ. Referring to Appendix B, let ORII• be obtained by 
deleting the first row and column of ORf, and let 0&• be obtained 
by deleting the first row of!lR•· Let 0 ~ (fJoR, /3')'. Solving LR2 (0, 
& 2) = 0 yields 0. If G is the matrix with all Os except a first element 
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given by (nR!nRo) + nR!nR 1), then n1' 2(8- 6) has asymptotic co•
variance matrix 

ORJ.<oRII.- oR9,.GoR,. + o&.AoR ... )oRJ.,. 

Remark B. I then applies for covariance estimation. 

APPENDIX C: RESUlTS FOR SECTION 4.3 

C.1 Results When Cases and Controls are Replicated 

We first consider the situation in which cases and controls are 
replicated. Note that in either sampling strategy, 

+ o,(nc' 12 ) (C.la) 

and 
I ned 

:i:u- :!:u ~ nc' L L (S~,.- :!:u) + o,(nc"2), (C.lb) 
d-o i=t 

where SRid = (WR;d- #'d)(WRid- J.Ld) 1, Sod= (Weld· - J.'d)( WcuJ. 
- I'd)', I'd~ E(W[ D ~ d), and s'bd are the summands to (12), 
but with W replaced by U. Define (b., ~ l(d ~ O):!:x'(SR;d 
- :!:w):!:x'(nc + n.)/(nco + nRo), Clod ~ I(d ~ O):!:x'(Sc,d 
- l;w)~:i.l(nc + nR)f(nco + nRo), and Q~,d = 2:X1(S& 
- ~u)~:X1 • Then, in the next subsection we show that 

where 

I "" [( 0 )( 0 )' !lR, ~ nc' L L E 1 1 
d=O I= I AI WR/d A, w Cid 

X 1f(f30R + {3'A, WR;d)[D ~ dl 
09 = 0 01 + OR9, 

!l., ~ -n('' ± ~ E[( ~ ) 
d-O t-1 A,WRid 

(C.2) 
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and 

!lCM = -n(:' ± ~ E[ ( ~ ) 
d-0 1•1 AM w Cid· 

XJf(tloc+ffAMWCid.)W'c,,.ID=d]. 

From (C.2), n;!'(o- 8) is asymptotically normally distributed with 
mean 0. Its covariance matrix is estimated as follows. First note 
that 

cov { SR( 8, A,)} 

}· (C.3) 

and 

(C.4) 

Then the first term on the right side of(C.2) has a covariance matrix 
estimated by 

where 

IJ'.,=nc'±~(- ~ )vRid{d-'HL(oy,+~'A,WRui}, 
d-o i-1 A, WRid 

where VR,d is defined by replacing population quantities in V Rid by 
sample quantities. Similarly, the second term in (C.2) has covariance 
matrix estimated by 

C.2 Sketch of Proof of (C.2) 

Define Qw = ~x'(±w- :!:w):!:x' and Qu = ~x'(±u- :!:u)~ 
X1 � Then a simple expansion shows that 

(AM- AM)'= M-'A\t(QwAM:!:u- QuAM:!:w) 

+ o,(n~"2 ), (C.5) 

and similarly for (AM- AM)'. By a standard Taylor series, 

0 1(0- 8) = SR(8, A,)+ Sc~(8, AM) 

+ OR,n~2(A, - At)'{3 

+ llCMn;!2(AM- AM)'II + o,(I). (C.6) 

Substituting (C.5) into (C.6) and then using the expansion (C.l) 
yields (C.2). 
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C.3 Replication of Controls 

In this case nc, = 0 and nc = nco- Here are the necessary changes. 
Change llco by replacing (AM, Wad.) by (A, Wc;dl), and collapse 
the zero rows in ORf and 0 0 ; then OR, = 0 0 = n,, which can be 
estimated by pooling all the data. In the covariance formulas, replace 
(C.3) and (C.4) by 

!l _ !l (nino+ n/n, 0) 
• • 0 0 II,, 

where no= nco+ nRo and n1 =net + nRI· 
[Received February 1991. Revised May 1992.] 
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Bias Analysis and SIMEX Approach in Generalized 
Linear Mixed Measurement Error Models 

Naisyin WANG, Xihong LIN, Roberto G. GUTIERREZ, and Raymond J. CARROLL 

We consider generalized linear mixed models (GLMMs) for clustered data when one of the predictors is measured with error. 
When the measurement error is additive and normally distributed and the error-prone predictor is itself normally distributed. we 
show that the observed data also follow a GLMM but with a different fixed effects structure from the original model. a different 
and more complex random effects structure, and restrictions on the parameters. This characterization enables us to compute the 
biases that result in common GLMMs when one ignores measurement error. For instance, in one common situation the biases in 
parameter estimates become larger as the number of observations within a cluster increases, both for regression coefficients and 
for variance components. Parameter estimation is described using the SIMEX method, a relatively new functional method that 
makes no assumptions about the structure of the unobservable predictors. Simulations and an example illustrate the results. 

KEY WORDS: Asymptotic bias; Corrected penalized quasi-likelihood; Measurement error; Random effects; Variance com•
ponents. 

1. INTRODUCTION 

Correlated data are frequently observed in various stud•
ies, such as longitudinal studies, clinical trials, and fa•
milial studies. Generalized linear mixed models (GLMMs) 
have become increasingly popular for analyzing such cor•
related and overdispersed data (see Breslow and Clayton 
1993 for examples). A potential difficulty in making in•
ference in GLMMs is that a full-likelihood analysis is 
burdened by often intractable numerical integration (al•
though see McCulloch 1997 for Monte Carlo computa•
tion). Hence various approximate and Bayesian inference 
procedures have been proposed. The approximations in•
clude Laplace's approximations (Breslow and Lin 1995; Liu 
and Pierce 1993), penalized quasi-likelihood (PQL) (Bres•
low and Clayton 1993; Schall 1991), and corrected pe•
nalized quasi-likelihood (CPQL) (Lin and Breslow 1996). 
The Bayesian procedures include EM-type algorithms (Sti•
ratelli, Laird, and Ware 1984) and the Gibbs sampler (Zeger 
and Karim 1991). 

A common problem for analyzing correlated data is the 
presence of covariate measurement error. For example, it 
has been well documented in the literature that covariates 
such as blood pressure (Carroll, Ruppert, and Stefanski 
1995), urinary sodium chloride (USC) level (Wang, Car•
roll, and Liang 1996), and exposure to pollutants (Tosteson, 
Stefanski, and Schafer 1989) are often subject to measure•
ment error. In a longitudinal hypertension study, a patient's 
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hypertension status may vary from one hospital visit to an•
other due to different average USC levels prior to the hospi•
tal visit. A child's respiratory status may change from time 
to time depending on different amounts of pollutants (e.g., 
N02 or ozone) to which the child is exposed at different 
times. In the Framingham Heart Study data that we examine 
in Section 8, a binary outcome for the presence or absence 
of left ventricular hypertrophy (LVH) was observed every 
2 years in an 8-year period for 75 coronary heart disease 
patients. The primary interest was to study the association 
between the risk of LVH and the time-varying covariate 
systolic blood pressure (SBP), after adjusting for other co•
variates including baseline age, smoking status, body mass 
index, and exam number (1-4). Because it is appropriate 
to assume biologically that the risk of LVH depends on 
the average SBP prior to the exam rather than on the SBP 
measured at the exam, one needs to model the measurement 
error in SBP while accounting for correlation among mul•
tiple observations measured repeatedly over time for each 
patient. 

The problem of measurement error with independent ob•
servations has a vast literature in linear models (Fuller 
1987) and a growing literature in generalized linear models 
and other nonlinear models (Carroll eta!. 1995). Generally, 
the literature distinguishes between functional modeling, in 
which nothing is assumed about the unobserved predictors, 
and structural modeling, in which specific assumptions are 
made about the distributional structure of these unobserved 
predictors. The effects of measurement error on the analy•
sis of clustered data and ways to correct for these effects 
are not well understood, however. 

In this article, we propose a new class of models, general•
ized linear mixed measurement error models (GLMMeMs), 
which model the correlation and the measurement error si•
multaneously (Sec. 2). We explore GLMMeMs from two 
directions: bias analysis and functional inference using the 
SIMEX method (Cook and Stefanski 1994). To illustrate 
the fundamental impact of measurement error and our pri-
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mary findings, we concentrate on a simple but represen•
tative GLMMeM in our bias calculations (see Sec. 2.2); 
however, the proposed SIMEX method is applicable to the 
general GLMMeMs. In Sections 3 and 4 we study the bias 
in parameter estimation when the measurement error is not 
properly taken into account. The work here is facilitated by 
our showing that a GLMMeM can be viewed as a GLMM, 
with the same link function but with different fixed-effects 
and random-effects structures. This characterization enables 
us to compute the biases in parameter estimates resulting 
from ignoring measurement error. The bias analysis results 
are illustrated using several common GLMMs, including 
linear, logistic, and Poisson mixed models. The directions of 
the biases are complex and sometimes counterintuitive. For 
example, we show that in a particular but common setup, 
the biases in parameter estimates increase with the cluster 
size. 

The description of the GLMMeM brings out the fact that 
likelihood estimation in this context requires the specifi•
cation of a cluster-specific joint distribution for the unob•
served covariates. Just as in the ordinary generalized linear 
model (GLM), concerns about robustness to distributional 
assumptions arise, but in GLMMeMs there are additional 
robustness concerns with respect to the covariance struc•
ture of the unobservables. In Section 5 in a special case 
we compute the biases resulting from a maximum likeli•
hood analysis that accounts for measurement error but in•
correctly specifies the within-cluster covariance structure of 
the unobservable. 

In Section 6 we pursue functional estimation of regres•
sion coefficients and variance components and investigate 
the SIMEX procedure of Cook and Stefanski (1994). We 
also point out that the naive regression calibration approach 
often yields inconsistent estimates of certain parameters in 
GLMMeMs. We provide numerical results of a simulation 
and an example in Sections 7 and 8, and concluding remarks 
in Section 9. 

2. THE GENERALIZED LINEAR MIXED 
MEASUREMENT ERROR MODEL 

2.1 The General Model 

Suppose that the data are obtained from m independent 
clusters with outcome variable Yii, unobserved true covari•
ate X;;{p1 x 1), observed X;;-related covariate W;;. and 
other observed covariates Z;; (p, x 1) and A;; ( q x 1 ), 
where i = 1, ... , m identifies the cluster; j = 1, ... , ni iden•
tifies subjects within clusters; and (:X,;, Z;;) and A,; are 
associated with the fixed effects and random effects. That 
is, we consider the situations where the error-prone covari•
ates X,; are associated with fixed coefficients. Given the 
covariates Xii, Zii, Aij and an unobserved q x 1 random•
effects vector h,, the observations ¥;; in the ith cluster are 
assumed to be independent with means Jls~},x and variances 

rfn.;:;/v(J.t~},x), where ¢ is a scale parameter, Kij is a prior 
weight (e.g., binomial denominator), and v( ·) is a variance 
function. The GLMM of Y given X and Z is constructed 
by assuming that the conditional mean Jl.~},x is related to 
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X;;, Z;;. and A,; through a GLM, 

g(p.~J,,) = f3o + Xf;f3x + Zf;f3z + Af;b,, (I) 

where g( ·) is a monotonic differentiable link function, the 
random effects b; are independent of the covariates and are 
independent N(O, D( ll)), and ll is an l x 1 vector of variance 
components. Model (I) allows flexible correlation structures 
by assuming appropriate design matrix A,; and covariance 
matrix D of the random effects b,. 

Define Yi = (Yil, ... ,YinJT,Xi = (Xil, ... ,XinJT, 
and z, and w, similarly. The integrated quasi-likelihood 
of Y, given (X,, z,) in the ith cluster is 

L,(Y;IX;, Z,; {3, ll) <X IDI-112 

I { n; 1 } 
X exp Lh;(Y.;IXi;. z,;, b,)- 2b[D- 1b, db,, 

J=l 

(2) 
b; 

where l;;(Y.;IX,;, Z;;, b,) <X J;.~·· ~<;;(¥.; -u)/{¢v(u)}du 
denotes the conditional log quasi-likelihood of ¥.; given 
(X;;, Z;;, b,) (see Breslow and Clayton 1993, eq. 2). 

The model is completed by adding the measurement error 
structure. The most convenient structure is additive error, 
so that 

wij = xij + uij, (3) 

where the U,; are independent of the X;; and are inde•
pendent N(O, E •• ). When W and X are scalar, we write 
the measurement variance Euu simply as <T~. Model (3) is 
essential to our analytical closed-form bias calculations in 
Sections 3-5 but not for numerical bias calculations, esti•
mation, and inference. Neither the independence of the U,; 
nor the additivity is required (see Sec. A.5 in the Appendix). 
The joint integrated quasi-likelihood in the ith cluster is 

L,(Y,,W,IZ;) 

=I L,(Y,IX,,Z,)L,(W;iX,,Z,)L,(X.IZ,)dX,, (4) 

where L, (X, I Zi) is the likelihood function of X; (so far un•
specified) and L, (W, IX,, Z;) is the error distribution, which 
is often assumed to he independent of z, as in (3). The de•
pendence of the quasi-likelihood on the within-cluster con•
ditional distribution of the unobserved X's leads to issues 
of model robustness. 

A special case is instructive. Suppose that X;; is scalar 
and that xi = liTJO + Zi1Jz + exh where li is an ni X 1 
vector of Is and e,, given z, is normally distributed with 
mean 0 and covariance matrix ~xxi. Denote an ni x f4 
identity matrix by I, and the reliability matrix by A, = 
Exxi{Exxi + cov(U,)} - 1 � Note that Exxi and A, depend 
on i through their dimensions n,, but the set of unknown 
parameters in ~xxi and Ai does not depend on i. We can 
write X, = (I,- A,)(l;1Jo + Z;71z) + A,W, + bi, where 
the sum of the first two terms corresponds to E(X;IW;, Z,) 
and hi =X,- E(X,IW,,Zi) =(I,- Ai)e,,- A,U, is 
N{O, (I,- A,):Exx;} and is independent of b, and W,. The 
independence between hi and w, can be easily checked by 
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showing cov(bi, W,) = 0. The expression of X, indicates 
that the jth component of x, can be written as, say, 

Xii = etoJ + r/;zr a.zJ + W[ a.wJ + c&bi. (5) 

Because bi = x, - E(X,JW,, Z;) and Y, is independent 
of w, given x,, (Y,JW,, z,, bj, b,) has the same distri•
bution as (Y,JX;, z,, b,) and follows the same conditional 
generalized linear model(!), except that X; is replaced by 
(5). In other words, the observed data (Y,JW,, Z;) follow 
a GLMM as follows: 

g(!t~}.wl = (f3o + ao;f3x) + wr O:w;f3x 

+ (ri;z; o:z;f3x + Z'f';f3z) + (A'f';b, + C'f';fJ,bi), (6) 

where bf = {bf, b(} denotes a vector of the new random 
effects. 

Equation ( 6) shows that ignoring the measurement er•
ror may result in misspecifying both the fixed-effects and 
random-effects structures. The cluster size n;, which is im•
plicit in the reliability matrix A,, also plays an important 
role in the asymptotic bias in maximum likelihood estimator 
(MLE) under a misspecified model as m --> oo. A general 
approach for bias analysis is to maximize the probability 
limit of the log quasi-likelihood of the misspecified model, 
which is equal to its expectation, when model (6) is true. 
Calculations of this expectation often involve numerical in•
tegration. Appendix Section A.5 gives a brief discussion on 
numerical integration techniques using Gaussian-Hermite 
quadrature. When the misspecified model and the observed 
data (Y,JW,, Z;) models follow the same type of GLMMs, 
bias calculations can be greatly simplified by using the cor•
respondence of their mean models (see Sec. 3). The forego•
ing general bias calculation strategy applies to an arbitrary 
GLMMeM. A more complicated GLMMeM structure re•
quires no extra procedures than the ones used for a simple 
structure, except that the results will be more complicated. 
We hence consider simple GLMMeMs in our bias analysis 
to show the fundamental impact of measurement error and 
our primary findings, and to demonstrate the basic tech•
niques used in bias calculations. 

2.2 Specific Models Considered in Bias Analysis 

In the bias analyses in Sections 3-5, for simplicity we 
assume that n; = n, the X,; are scalar, and simple ran•
dom intercept GLMM g(~t~j ,) = (30 + (J,X,; + b,, where 
the b, are independent N(O, e). We distinguish between two 
cases depending on the iikelihood structure L,(X,) of X,. 
The homogeneous case occurs when the X;; are marginally 
independent and have the same distribution irrespective of 
the cluster, so that 

where the a,, independent of the model random effect b,, 
are independent N(O, u;~). 

Although the two models that we consider here have 
simple structures, the bias calculation techniques used in 
Sections 3-5 are applicable to more complicated cases. 
Specifically, as indicated in Section 2.1, we can accom•
modate the covariates measured without error z, by treat•
ing z, as fixed and further allow for multivariate X;; and 
a more complicated structure of the random effects b,. 
For example, to accommodate multivariate ~i, we can 
define Xf = (X"[,, ... , X"fn), define W, analogously, and 
modify (6). 

To appreciate the practical differences between the homo•
geneous and heterogeneous models, we consider an ozone 
exposure example. Wben the subjects are from the same 
site, one distribution can be used to describe the behavior 
of the short -term average ozone exposures for all subjects, 
and the homogeneous model is appropriate. In this case the 
variations in ozone exposure may be mainly seasonal. On 
the other hand, if these subjects are from different neighbor•
hoods, then the heterogeneous model, which accommodates 
cross-cluster variation, should be used. Clearly, a homoge•
neous model is a special case of the heterogeneous model 
(u;~ = 0), and this seems to indicate that one should con•
sider only the heterogeneous model. However, assuming a 
heterogeneous model while the homogeneous model holds 
results in estimators with unnecessarily large variance. 

The next three sections are devoted to studying the 
asymptotic biases in regression coefficients and variance 
component estimators under three misspecified models. To 
facilitate the bias analysis, it is helpful to rewrite ( 6) in the 
special cases under consideration. The calculations outlined 
in Appendix Section A.l show that the observed data under 
the heterogeneous GLMMeM satisfy 

where 

g(~t~},w) = f3h + (J~W,; + (J~W,. + b; + b;j, (9) 

(3~ = (1- >.)(1- 5.lf3x. 

5. = (u; + u~)/(u; + <T~ + nu;~), 

>. = u;f(u; + u~), 

n 

Wi.=n- 1 LWii, 
j=l 

(7) and 

where the e;; are independent N(O, u;). In the heteroge•
neous case, conditional on a cluster random effect ai, the 
distributions of the X,; differ from cluster to cluster. In the 
version that we study here theoretically, we assume that the 
conditional cluster means differ, so 

(8) 

The random effects b; and b;j are independent of W,;, 
and are mutually independent and distributed as N(O, 8') 
and N(O, -y), where 8' = 8 + (1 - >.)(1 - 5.)(3;u~fn and 
"Y = Aa~.B~. The exact expressions of b~ and b~j are given 
in Appendix Section A.l. 



103

252 

3. BIAS IN THE NAIVE ESTIMATOR UNDER THE 
HOMOGENEOUS MODEL 

In this section we study the asymptotic biases in naive es•
timators of regression coefficients and variance component 
when the homogeneous model (7) holds. The naive estima•
tor is defined as the estimator under the model that ignores 
the measurement error, 

(10) 

From (9), the homogeneous model has X = 1,/32 = 0, and 
B = B' and thus can be written as 

Y(J.'~}.w) = !3o + !3~ W;; + b; + b'f;, (II) 

where the b; are independent N(O, B) and the b'f; are inde•
pendent N(O, -y). 

Because conditional on the b; and the W;;, the model 
for the observed data (11) corresponds to an overdispersed 
GLM, the bias analysis of the naive estimators can proceed 
by comparing the conditional mean E{Yi; [W;;, b,) and the 
conditional variance var(Y;; [W;;, b;) under the naive model 
(10) with those under the homogeneous model (11). Note 
that this conditional mean and variance under the homoge•
neous model can be easily obtained by integrating out b'f; 
from (11). 

Although the naive model correctly assumes that the Yi; 
are independent conditional on W;; and b;, it may misspec•
ify both the mean and variance conditional on W;; and b;. 
When there is a correspondence between E(Yi;[W;;, b;) and 
var(Y;;[W;;,b;) under these two models, they follow the 
same type of GLMM, and hence the asymptotic biases in 
regression coefficients and the variance component can be 
easily derived. Otherwise, the calculations are often dif•
ficult, and closed-form expressions for the biases are not 
always available. 

3.1 The Linear Mixed Model for Gaussian Data 

It can be easily shown that in the linear mixed model, 
the observed data also follow a linear random intercept 
model, with the terms b'f; in (11) absorbed into the within•
cluster variance in the responses. The naive estimators 
hence asymptotically converge to /3o,naive = i3o + {1 -
A)J.'xi3x. /3x,naJve = A/3x. and Bnruve =B. Thus the naive esti•
mators of the regression coefficients are asymptotically bi•
ased in a usual way, but the naive estimator of the variance 
component is asymptotically unbiased. 

3.2 The Probit, Logistic, and Log-linear Mixed Models 

for Binary Data 

When Y, given X, follows a probit random intercept 
model, so too do the observed data Y; given W;. Let 
T = {1 + -y) 112 = {1 + Ao-~/3~) 112 ; the derivations outlined 
in Appendix Section A.2 show that /3o,naJve = {/3o + {1 -
A)J.'xi3x}/T,/3x,naive = A/3x/T, and Bnruve = B/T2 � These re•
sults indicate that the naive estimators of both !3x and B 
are asymptotically biased toward 0. For the logistic model, 
exact closed-form results are not available. But by approx•
imating the standard logistic distribution function by the 
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distribution function of a mean 0 normal random variable 
that has standard deviation c = 1571" 1 {16/3) "" 1. 7, similar 
calculations show that the same bias expressions obtain, but 
with T replaced by T' = {1 + J.u~/3~/c2)1/2, 

The log-linear model assumes a log link function and is 
useful in ecological studies, where the disease rates may 
be low. Using the identity f exp(a + t) dif!(t/u) = exp(a + 
u2 /2) for any constants a and u, where if!{·) denotes the cu•
mulative probability function of a standard normal random 
variable, similar calculations to those given in Appendix 
Section A.2 show that {Y ; [W,) also follows a log-linear 
random intercept model and that the naive estimators con•
verge to /3o,naive = /3o + (1 - J.)J.<xi3x + -y /2, i3x,nruve = J.f3x. 
and Bnaive =B. These results, except for the intercept, agree 
with those in the linear mixed model. 

3.3 The Poisson Mixed Model for Count Data 

Define B' = B + -y,d;; = exp{B/2 + /3o + f3xX;;). and 
e;; = exp{ B' /2 + /30 + /3~ w,, ), where /30 and /3~ are 
defined in Section 2.2 with X = 1. Then the conditional 
mean and covariance of Y; given w, under the Pois•
son mixed model are E(Yi;[W;;) = e;;. var(Y;;[W;;) = 

e;; + <f;{exp(B') - 1}, and cov(Y;;, Yik[W;;, W;k) = 

e;;e;k{exp(B'- -y)- 1}, and those of Y; given X; follow 
the same structure except that c;; is replaced by d;; and 
that cov(Y;;, Yi•[X;;,X;•) = d;;d;•{exp(B)- 1}. The lack 
of correspondence between the two covariances reveals that 
(Y[W) and (Y[X) do not follow the same GLMM struc•
ture. Thus the approach based on the conditional mean cor•
respondence is not applicable. 

Using the techniques of reparameterization and apply•
ing the properties of sufficient statistics and maximum 
likelihood estimators, the calculations outlined in Ap•
pendix Section A.3 show that /3o,naive = /30 + ( B + 'Y -
Bnaive)/2, fix,naive = Af3x, and 

{ (n- I)+ exp(j3~u~) } 
Bnaive = B +log (n _ l) + exp{J.~ui;) . (12) 

Equation (12) suggests that the naive estimator Bnaive over•
estimates B and that its bias depends on the cluster size n 
and decreases monotonically to 0 as the cluster size n r 00. 

4. BIAS IN THE NAIVE ESTIMATOR UNDER 
THE HETEROGENEOUS MODEL 

In this section we study the asymptotic bias of the naive 
estimator when the heterogeneous model (8) holds. We see 
from (9) that the heterogeneous conditional quasi-likelihood 
{Y [W) also corresponds to a GLMM, with the same 
random-effects structure as in the homogeneous case but 
with an additional fixed effect-namely, the within-cluster 
mean of the W's. When the heterogeneous model is true, 
a comparison of (9) and (II) suggests that the naive model 
(10) misspecifies both the fixed-effects and the random•
effects structures. This double misspecification makes the 
bias analysis much more complicated, and closed-form so•
lutions are often not available. 

Nonetheless, we can calculate the asymptotic bias in 
the naive estimator when the cluster size n goes to infin-
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ity. Specifically, our calculations show that the bias in the 
naive estimator becomes the same as in the homogeneous 
case when n --+ oo, except that 8 is replaced by 8 + ( 1 -
A)2u~~fl;. This can be easily shown by noting that for the 
heterogeneous model (9), as n --+ oo, we have A --+ 0, !3; --+ 
(1-A)/3.,8' __, 8, and W,. = 11. +a, +U,. + e,.--+ 11• +a,. 
Consequently, the heterogeneous GLMM in (9) becomes 

9(11~],w) = /3~ + /3~ W;; + b~i + b;j, (13) 

where /3~ = flo + (1 - A)l1xflx, b~, = b, + (1 - A)j3.a, 
now follows N(O, 8+ (1-A)2u;~fl;), and b';j stays the same. 
Because within a cluster (13) has the same structure as (11), 
and because the cluster size is infinite, the maximum like•
lihood estimated within-cluster intercept (and slope) must 
have the same form, except that b, is replaced by b~, and 
hence 8 is replaced by 8 + (1- A) 2u;"fl;. In the next two 
sections we use analytic and numerical approaches to study 
the asymptotic bias in the naive estimator in the linear and 
logistic mixed models when the cluster size n is finite. 

4.1 The Linear Mixed Model 

Denote the residual variance by u 2 , which corresponds 
to the scale parameter <P in Section 2. Let the probabil•
ity limits of the naive estimators as m --+ oo be f3naive = 

(,Bo,naive, flx,naive)T and iJ = (Bnaive, u~aive). Then /3naive and 
iJ are solutions of the following equations, which are the 
probability limits of the linear mixed model score equations 
as m --> oo (Harville 1977): 

E{WTV-1(Y- Wt3naive)} = 0 (14) 

and 

1 { T -! { )V 
2 E(Y- Wt3nruve) V ail; 

x v - 1(Y- Wt3naive)- tr ( y-l ~~)} = 0, (15) 

where W = (1, W), V = a;_aivel + BnaiveJ,J is ann x n 
matrix of Is, and the expectations are taken with respect 
to both W and Y. For simplicity, here we have removed 
the subscripts i of Y, and W,, because they are identically 
distributed. Repeatedly using the equality 

E(XTBX) = tr(BV .) + p:{;BJ1x, (16) 

which holds for any positive definite matrix B and any ran•
dom vector X following N (1-'x, V.), the calculations out•
lined in Appendix Section A.4 yield flo,naive = flo + (1 -
A*)J..txfJx, fJx,naive = A*fJx, 

Bnaive = B + {1 - A*)2u~p.fJ;, 

and 

where 

A closed-form solution to (17) and (18) does not seem to 
be available. However, defining p = 8naive/ O'~aive using (17) 
and writing (17) and (18) as joint equations of (A.,p), one 
can easily solve them numerically. 

Because A :::; A* :::; 1, the naive estimator fJx,naive is still 
attenuated, but to a lesser extent compared to that in the 
homogeneous case. In contrast, Bnaive and a;_aive generally 
overestimate their true counterparts. Our theoretical calcu•
lations show that the values of fJo,naive, fJx,naive, Bnaive• and 
a;_aive all depend on the cluster size n. Some tedious cal•
culations show that 8A,(8n < 0. Hence A, is a decreas•
ing function of n, and the biases in all naive estimators 
except u~aive become more serious when n increases. As 
n i oo, A, l A, and we obtain the results in the last para•
graph before Section 4.1. 

In Figures Ia and lb, we numerically evaluate the bi•
ases in flx,naive and Bnaive for u~ varying between 0 and 
1. For each plot, we obtained four curves correspond•
ing to n = 2, 5, 10, and oo. The parameter configurations 
were flo = 0, /3. = 2, B = .5, u2 = 1, u;" = 1.5, and 
11• = 0, u~ = 1. The relative bias is defined as the bias of 
a parameter divided by its true value. Note the major fea•
tures of the plot-the naive estimator of fix is attenuated, 
the naive estimator Bnaive overestimates B, and the biases in 
f3x,naive and Bnaive increase as n increases. 

4.2 The Logistic Mixed Model 

Our interest here is in calculating the bias in naive esti•
mator in the logistic mixed model when n is finite and the 
heterogeneous model is true. Because there is no closed•
form expression for these biases, even in the probit case, 
we calculated the asymptotic bias by numerically maximiz•
ing the probability limit of the log-likelihood of the naive 
model, which is calculated by its expectation, when the bet•
erogeneous model is true. We briefly describe our numerical 
methods in Appendix Section A.S. The parameter configu•
rations used in our numerical calculations are identical to 
those used in Section 4.1. As shown in Figures lc and ld, 
the naive estimate f3x,naive underestimates flx as usual, and 
its bias becomes larger as u~ and n increase, whereas the 
bias in Bnaive is no longer monotonic in a~, and its direction 
depends on a~ and a;P-. For example, Bnaive underestimates 
8 when u~ is close to 0 and overestimates 8 when u~ in•
creases. For n = 2, the measurement error effect on Bnaive is 
less pronounced compared to its effect on fJx,na.ive; however, 
there is substantial bias when n = oo. This simply points 
out once again that cluster size is important in the bias of 
estimates computed by ignoring measurement error. 

5. BIAS IN THE HOMOGENEOUS MAXIMUM 
LIKELIHOOD ESTIMATOR UNDER THE 

HETEROGENEOUS MODEL 

In this section we study the asymptotic bias in the MLE 
assuming the homogeneous model (7) when the heteroge•
neous model (8) in fact is true. The major issue is: What 
happens when one accounts for measurement error in a like•
lihood analysis, but incorrectly models the covariance of 
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Figure 1. Asymptotic Relative Biases In Naive Estimates of f3x and 9 In the Linear and Logistic Mixed Models When the Heterogeneous X Model 

is True. The true parameter values are {3 0 = 0, f3x = 2, 9 = .5, u2 = 1, J.Lx = 0, ~ = 1, and u~~t = 1.5, The four plots correspond to (a) relative 
bias In f3x,nsive against a; for the linear model; (b) relative bias In 9naive against a~ for the linear model; (c) relative bias in f3x,naive against u; for 
the logistic model; and (d) relative bias in 9naive against a~ for the logistic model. The four curves in (a) and {b) are -, n = 2;-- -, n = 5; -- -, 

n = 10; and---, n = oo. The two curves in (c) and (d) are-, n = 2 and---, n = oo. 

the unobserved predictors? The calculations in this special 
case give some idea of the biases that can occur in structural 
modeling with an incorrectly specified structural model. 

In our calculations we assume for simplicity that .,-~ 
·is known. The unknown parameters under the homoge•
neous model are ((30 ,(3., B) and (!"., .,-~). By writing (4) as 
L;(Y;, W;) = L;(Y;IW;)L;(W,), a comparison of the ho•
mogeneous model (11) with the heterogeneous model (9) 
reveals that the bias in the homogeneous MLE comes from 
two sources: one from misspecification of the marginal like•
lihood of w, and the other from misspecification of the 

likelihood structure of Y, given W,. It is easily seen that 
the former ignores the cluster-level random effect a,. In 
contrast to the naive model, the homogeneous GLMM (11) 
assumed by the latter misspecifies only the fixed-effects 
structure. 

Denote the asymptotic limits of the homogeneous MLEs 
of (f3o, f3x, B) and (!"xo .,-~,.X) when the heterogeneous model 
is true by (f3o,homJ3x,hom, Bhom) and (J.tx,hom, u~.hom' A hom). 
Because the Wi are sufficient statistics for (JLx, o-~), some 
calCulations give J..Lx,hom = J.Lx, a;,hom = u; + u~w and 

Ahom = O"~,hom/(<T;,hom + .,-~) = (.,-~ + 0"~~)/(<T~ + 
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a~" +a~). The bias analysis of (J3o,horn, f3x,horn, 8hom) may 
then proceed by comparing the heterogeneous GLMM (9) 
and the homogeneous GLMM (II) with>. replaced by Ahorn 
in (11). Because the homogeneous GLMM (11) misspeci•
fies the fixed-effects structure, such bias analyses are often 
difficult, and closed-form solutions may not be obtained. 

But when n --> oo, closed-form results are available. A 
comparison of the homogeneous GLMM (11) and the het•
erogeneous n --> oo GLMM (13) shows that the two models 
have the same structure. Consequently, we have f3o,horn + 
(1- Ahorn)l'x,homf3x,horn = J3o + (1- A)JLxf3x, Ahorni3x,hom = 
>.f3x, and 8hom = 8 + (1- >.) 2a;,"j3~. Simple calculations 
give i3o,hom =flo+ (1- >.')JLxi3x and i3x,hom = ),' f3x, where 
>.' = >.j A hom· When the homogeneous model is true, we 
have a~" = 0 and >.' = 1, and the homogeneous MLEs 
of (i3o, !3x, 8) are hence unbiased. Because >.' S 1, the ho•
mogeneous MLE of f3x always underestimates !3x and the 
homogeneous MLE of 8 always overestimates 8 as n --> oo. 
Because >.' ~ >., the bias in homogeneous MLE of !3x is 
often less than its naive counterpart as n --> oo. The homo•
geneous MLE and the naive estimator of 8 are .the same as 
n --> oo in the linear and Poisson mixed models, whereas 
8hom is larger than 8naive in the logistic and probit mixed 
models. In the next two sections we study the bias in the 
homogeneous MLE in the linear and logistic mixed models 
when the cluster size n is finite. 

5.1 The Linear Mixed Model 

Using (11), it can be easily shown that under the homo•
geneous linear mixed model, the observed data Y, given 
w, also assume a linear random intercept model. Thus 
we can sitnply use the results in Section 4.1 to calcu•
late the asymptotic bias in homogeneous MLE. Specif•
ically, we replace (i3o,naiveo i3x,naive) by (J3o,hom + (1 -
Ahom)JLx,homP:.c,hom, AhomP:.c,hom) and replace (Bnaive, a~aive) 
by (Bhom,a~om +Ahoma~tJ~,hom) in all equations in Section 
4.1. This gives 

/3o,hom + (1- Ahom)!'xi3x,hom = f3o + (1- A,,)JLxf3x, 

a;om + Ahoma~tJ~,hom = a2 + {(1- A**)2a~ + A~*a~}tJ~, 
and 

8hom = 8 + (1 - >..,) 2a~"j3~, 
where A** is equal to A* in (18) except that Bnaive and a~aive 
are replaced by Bhom and a~om + Ahoma~j3~ hom· Using the 
foregoing equations for (8hom,a~oml• one ~an easily show 
that the value of>. .. is the same as that of>., in (18) for a 
given set of parameter values. 

Simple calculations yield i3o,hom i3o + ( 1 -
>.:)JLxf3x, i3x,hom = >.:f3x, and a~m = a 2 + {(1 - >.,) 2a~ + 
(>.~ - >.,>.:Ja~}/3;,, where .>.: = >.,j A hom· Because >., S 
.>.: s 1, the homogeneous MLE i3x,hom is still attenu•
ated, but its bias is less than that of its naive counterpart. 
The homogeneous MLE 8hom is identical to the naive es•
timator Bnaive, and both overestimate B. As n i oo, we 
have .>., L >. and .>.: L >.', and hence i3x,hom L >.' !3x and 

8hom 8 + (1 - >.)a~"j3~. which agree with the general 
n --> oo results in the last paragraph before Section 5.1. 
Similar to the naive case, the biases in Px,hom and Bhom 

increase with n. 
In Figure 2 we numerically study the asymptotic biases 

in t3x,hom and Bhom· The parameter configurations and setup 
in Figrue 2 are identical to those used in Figure I. These 
figures reflect our theoretical results. Specifically, the bias 
in Px,hom is less than the bias in Px,naive and increases with 
n (see Fig. 2a). As expected, Figures lb and 2b are identical. 

5.2 The Logistic Mixed Model 

We now study the bias in the homogeneous MLE in the 
logistic mixed model when the heterogeneous model is true. 
Because no closed-form solution is available, we evaluated 
the bias by numerically maximizing the expectation of the 
log-likelihood of the homogeneous model when the het•
erogeneous model is· true. We used numerical integration 
techniques similar to those in Section 4.2 to calculate this 
expectation; see Appendix Section A.5 for details. 

The same parameter configurations as those in Figure I 
were used in our numerical bias calculations. The results 
are given in Figures 2c and 2d. Our calculations show that 
for n = 2, i3x,hom slightly overestimates !3x· Its bias slightly 
increases with a~ in the range that we consider. Contrary to 
the naive case, here the regular attenuation in !3x estitnator 
is not present for n = 2. The homogeneous MLE 8hom 
overestimates 8 for both n = 2 and n = oo, and the bias 
tends to be larger as n increases. 

It is interesting to compare the biases in naive estimates 
with the biases in homogeneous MLEs. The naive estimate 
of !3x is much more biased than its homogeneous MLE 
counterpart. However, in figures not provided here, compar•
isons of Bhom and Bnaive for various values of a;,.,. indicate 
that when a~" is small, the biases for 8hom and 8naive have 
different directions. 

6. SIMULATION EXTRAPOLATION AND 
FUNCTIONAL METHODS 

Carroll et a!. (1995) have drawn a distinction between 
functional modeling, in which nothing is assumed about the 
distribution of the X's, and structural modeling, in which 
a parametric model (e.g., homogeneous or heterogeneous 
normal) is assumed and the MLE is computed. Functional 
methods have the advantage that when they apply, they are 
model robust. Two common functional methods are regres•
sion calibration and simulation extrapolation (SIMEX). We 
discuss their application in GLMMeMs in this section. 

6.1 Inconsistency of the Regression Calibration 
Approach 

The regression calibration method simply replaces X by 
an estimate of E(X[W, Z), and applies the naive method 
to these imputed values. Using (6) and (9) and noticing the 
sum of the first three terms is E(X,[W,,Zi), Wang, Lin, 
and Gutierrez (1997) showed that regular regression calibra•
tion in GLMMeMs often correctly specifies the fixed-effects 
structure but may misspecify the random-effects structures. 
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Figure 2. Asymptotic Relative Biases in Homogeneous MLEs of f3x and (} in the Linear and Logistic Mixed Models When the Heterogeneous 
X Model is True. The true parameter values are {30 = 0, f3x = 2, 8 = 0.5, ~ = 1, IJ.x = 0, ~ = 1, and a~~-' = 1.5. The four plots correspond to 
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Because the regression coefficients and variance compo•
nents are often not orthogonal in GLMMs, regression cal•
ibration can yield biased estimates of both ([3., f3z) and 8, 
especially the latter. 

Specifically, under the homogeneous X model, the re•
gression calibration estimators of (30 , (3., and 8 are unbiased 
in the linear mixed model and biased in the logistic mixed 
model, with the asymptotic limits equal to f3o/T', {J,jT', 
and (T*)-28, where T' is defined in Section 3.2. Under 
the heterogeneous X model, the regression calibration esti•
mators of flo, (3., and 8 converge to (30 , (3., and 8' in the 

linear case, where 8' is defined in (9), and converge to 
fJo/T',/3./T', and (T*)- 28' in the logistic case. (For other 
bias analysis results and how to correct for the bias in naive 
regression calibration estimator, see Wang, Lin, and Gutier•
rez 1997.) 

6.2 Simulation Extrapolation Estimation 

SIMEX is a simulation-based measurement error method, 
a full description of which has been is given by Carroll 
et al. (1995) and Cook and Stefanski (1994). Rather than 
repeating the content of these references, we explain the 
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Figure 3. SIMEXICPQL Extrapolations in the Framingham Data 
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SIMEX procedure using Figure 3, which shows applica•
tion of SIMEX to the LVH example in Section 8. The two 
parameters of interest are the regression coefficient of the 
log-transformed SBP f3x and the variance component e. For 
more details about this example, see Section 8. 

Let the estimated value of ""~ be a~. The SIMEX method 
consists of two steps. The first step, the simulation step, is to 
establish the naive estimates if the measurement error were 
(1+~)"~· A simple empirical method is to add to the terms 
W;; a normally distributed random variable with mean 0 
and variance ~a~, then recompute the naive estimates. Do•
ing this only once may be misleading, because it introduces 
simulation variability, so instead one repeats the procedure 
a large number B times and computes the median of the 
resulting parameter estimates. For example, to estimate f3x 
in Figure 3, one does so for each~= (0, .5, 1.0, 1.5, 2.0) and 
plots the resulting naive estimates of f3x versus~- These are 
shown in small solid squares in Figure 3. Comparing the 
solid quadratic line connecting them to a plot such as Fig•
ure lc, which is the bias curve of the naive estimate of f3x 
resulting from ignoring measurement error, the solid curve 
in Figure 3 corresponds to part of the curve in Figure 1 c 
where a~ ;::: &~. The rest of the curve where a~ < 8-~ is 
"hidden." Therefore, the solid curve in Figure 3 is referred 
as partial bias plot. 

In the second step, the extrapolation step, a model is fit 
to the partial bias plot. A typical default is the quadratic, 
which we used. This is because quadratic curves often ap•
proximate the bias curves in Figure 1 wen, and quadratic 
extrapolation works wen in our simulation. We also ex•
perimented with fitting a quadratic to the log-transformed 
naive variance component estimates, to little positive effect 
for most of the cases considered. After a model is fit, the 
"hidden" parts of the fignre are fined in by extrapolating 
the model to the values less than <7~, which are the dashed 

curves in Figure 3. The extrapolated value at ~ = -1 (zero 
error variance) is the SIMEX estimator. 

Our calculations in Sections 3-5 show that the biases 
in the naive estimators are continuous functions of a~. 
Straightforward derivations using the M estimator argu•
ments given by Wang, Lin, Gutierrez, and Carron (1997, 
appendix) indicate that the asymptotic results given by Car•
ron et aL (1995) and Stefanski and Cook (1995) are directly 
applicable. Note that both of the latter works accommodate 
nonadditive or dependent measurement errors provided that 
the exact extrapolants are used and that the error distribu•
tions are normal. In our work we chose the corrected penal•
ized quasi-likelihood method (CPQL) as our naive estima•
tor, because compared to the naive MLE, it is more stable, 
easier to implement, and converges much faster and its per•
formance is comparable to its MLE counterpart when the 
variance components are small or moderate. Because the 
CPQL estimator is an M estimator, the results of Stefanski 
and Cook (1995) can be applied. The CPQL procedure is 
briefly described in Appendix Section A.6. (For more de•
tails, see Breslow and Lin 1995 and Lin and Breslow 1996.) 

7. SIMULATIONS 

We conducted a simulation study to evaluate the 
finite-sample performance of various estimators. Bi•
nary observations Yi; were generated within each clus•
ter with conditional success probabilities satisfying logit 
{Pr(Y;;IX,;,Z;;,b;)} = f3o + f3xX<; + f3zZ;; + b;,i = 
1, 2, ... , m, j = 1, 2, . .. , n. The following combinations of 
experiments were considered: (a) m = 50, 100, n = 3, 8, 
which are common sample sizes in longitudinal studies; 
and (b) homogeneous model (7) with /Lz = 0, within-cluster 
variance a~ = 1, and between-cluster variance U~~ = 0 
and heterogeneous model (8) with /Lx = 0, ""; = 1, and 
a~~ = 1.5. A moderate measurement error variance a~ = .5 
was considered for both the homogeneous and heteroge•
neous models. The exactly measured covariate Z was gen•
erated independently from a standard normal distribution. 
Other parameters used to specify the YIX and WIX models 
were e = .5, f3o = 0, f3z = 1, and f3x = 2. There were 1,000 
simulations for each parameter setting. A single run for 
one dataset using our C program with m = 100 and n = 3 
took about 1.5 minutes on a SUN UltraSparc station, and 
about 4 minutes when n = 8. The estimators considered in 
the simulation study included the (artificial) estimates based 
on the true X's, naive CPQL, and SIMEX/CPQL. For the 
SIMEX estimates, we set B = 100 and used quadratic ex•
trapolations for all parameters (SIMEX-Q). The results are 
displayed in Tables 1 and 2. 

We first comment on the homogeneous case ( ""~~ = 0). 
These results are largely consistent with our theory. The 
estimates of f3x and f3z reflect attenuation and are reasonably 
wen corrected by SIMEX/CPQL. The theoretical value of 
f3naive,z is f3z/T* "" .9 (T* defined in Sec. 3.2), which is less 
biased than the estimate of f3z. As expected, there is a bias•
variance trade-off, so that in estimating (3., SIMEX/CPQL 
is less biased but more variable than the naive estimate, 
which ignores measurement error. A similar phenomenon 
occurs for estimating the variance component e. The only 
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Table 1. Simulation of Logistic Regression in the Homogeneous Case; 
that is, the Between-Cluster Variance is~~ = 0 

Cluster size Parameter Method Mean SE MSE Mean SE MSE 

m= 50 m = 100 

n=3 f3x = 2 TRUEX 2.188 .531 .310 2.093 .313 .106 
NAIVE 1.516 .348 .356 1.470 .217 .328 
SIMEX-Q 2.100 .633 .411 2.010 .335 .125 

fJz = 1 TRUEX 1.088 .335 .120 1.051 .219 .050 
NAIVE .944 .283 .083 .918 .189 .042 
SIMEX-Q 1.074 .364 .138 1.036 .232 .055 

e = o.5 TRUEX .528 .560 .314 .500 .390 .152 
NAIVE .438 .474 .229 .407 .335 .121 
SIMEX-Q .570 .627 .397 .532 .428 .170 

n=B f3x = 2 TRUEX 2.090 .256 .074 2.066 .185 .038 
NAIVE 1.461 .175 .322 1.447 .131 .322 
SIMEX-Q 1.987 .290 .084 1.959 .210 .046 

f3z = 1 TRUEX 1.039 .185 .036 1.033 .130 .018 
NAIVE .907 .162 .035 .902 .113 .022 
SIMEX-Q 1.018 .196 .039 1.010 .136 .019 

e = o.5 TRUEX .465 .286 .083 .456 .198 .041 
NAIVE .369 .237 .073 .359 .168 .048 
SIMEX-Q .466 .293 .087 .451 .207 .045 

NOTE: Here n refers to the number of observations per cluster, f3o = o, f3x = 2, f3z = 1, and 8 ... . 5. The measurement error variance 
is ~ = .5. The Z's are generated as standard normal and random variables. 

feature that is somewhat at odds with the theory is that the 
naive estimates for n = 8 and n = 3 seem to have biases 
of different magnitudes. This discrepancy may be due to a 
much larger sampling variation of the variance component 
estimates when n = 3 compared to n = 8. As pointed out 
by one of the referees, when n = 3, the estimates of 8 had 
large variation even when the true X were used. For a study 
with a small cluster size and a small-to-moderate number 
of clusters, one needs to be aware that variance component 
estimates may not be reliable; however, the fixed-effects 
coefficients could be obtained with good precision. 
In the heterogeneous case (a~~= 1.5), a similar pattern 

repeats itself, although the results are less definitive. For 
a~ = .5, as expected, there is relatively little bias in es•
timating 8. The magnitude of bias in estimating (3 is also 
smaller than that in the homogeneous case. SIMEX/CPQL 
does a good job of correcting bias in both estimates. Note 
that the quadratic extrapolation function works well for all 
scenarios considered in our simulations. 

8. FRAMINGHAM HEART STUDY 

We illustrate the SIMEX/CPQL method using the left 
ventricular hypertrophy (LVH) data discussed in Section I. 
The study includes 75 patients who have coronary heart 
disease (CHD) developed before or during the study pe•
riod and have not received diuretics treatment. Binary in•
dicators Y for the presence or absence of LVH diagnosed 
by electrocardiogram (ECG) were observed every 2 years 
in an 8-year period. Two systolic blood pressure readings 
(SBP) were taken during each exam and were transformed 
to log(SBP-50) as suggested by Carroll et a!. (1995) to 
achieve approximate normality. The covariates considered 
are X, average log-transformed SBP, and Z, age, smoking 
status, body mass index, and the exam number (values 1-

4). A logistic mixed model with random intercept was fit. 
Analysis of this dataset using our C program took about 4 
minutes. The objective is to study the association between 
the risk of LVH and SBP after adjusting for the other co•
variates. 

Initial analysis of the observed blood pressures them•
selves, or their residuals after regressing on Z, shows strong 
evidence in favor of the heterogeneous model, with approxi•
mately ~ of the observed variability due to cluster-to-cluster 
variation. Thus even in the absence of measurement error, 
we would conclude that a~ "" (1/2)a~_. 

Because blood pressures are obtained only every 2 years, 
and it is entirely possible that a person's SBP changes over 
time, there is no direct estimate of a~; this would require 
that SBP be obtained over a number of days within a rela•
tively shorter period. To see this, consider the following ar•
gument. Suppose that within a cluster, X, given z, follows 
a normal linear model with mean 11o1 + Z;1Jx and co•
variance matrix a~I + O"~P.J. Then Wi given Zi follows 
a normal linear model with the same mean but with covari•
ance matrix (a~+ a~)I + a;~J. Thus the observed Fram•
ingham (W, Z) data alone can identify only the sum of a; 
and a~. but not either component separately. One means of 
identification is to fix a value of a;, (e.g., a~ = 0), which 
assumes that latent blood pressure does not vary over the 
course of the study. Alternatively, identification is possi•
ble only from the assumed model for Y given (X, Z) and 
(outside the linear GLMM) from distributional assumptions 
concerning X. 

For illustrative purposes, we vary the measurement error 
variance between the two extremes a~ = 0 and a~ = 0, us•
ing the method-of-moments estimator of their sum (.016) to 
identify a~ exactly. In this illustration a~ is treated as fixed 
and known, and we thus used the standard error estimation 
methods of Stefanski and Cook (1995). 
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Table2. Simulation of Logistic Regression in the Heterogeneous Case 

Cluster size Parameter Method Mean SE MSE Mean SE MSE 

m =50 m= 100 

n=3 f3x = 2 TRUEX 2.180 .479 .261 2.094 .337 .123 
NAIVE 1.729 .378 .216 1.661 .251 .178 
SIMEX-Q 2.173 .623 .418 2.067 .388 .155 

f3z = 1 TRUEX 1.082 .382 .153 1.037 .253 .066 
NAIVE .951 .355 .128 .911 .229 .060 
SIMEX-Q 1.086 .454 .213 1.032 .280 .080 

9 = 0.5 TRUEX .541 .603 .365 .500 .451 .203 
NAIVE .510 .559 .312 .457 .401 .163 
SIMEX-Q .603 .697 .496 .545 .489 .241 

n=8 f3x = 2 TRUEX 2.106 .282 .091 2.056 .185 .037 
NAIVE 1.641 .200 .169 1.618 .139 .165 
SIMEX-Q 2.041 .311 .098 2.006 .211 .044 

f3z = 1 TRUEX 1.048 .215 .048 1.028 .142 .021 
NAIVE .919 .194 .044 .906 .126 .025 
SIMEX-Q 1.030 .239 .058 1.012 .151 .023 

9 = 0.5 TRUE X .467 .330 .110 .453 .239 .059 
NAIVE .416 .300 .097 .407 .211 .053 
SIMEX-Q .443 .359 .132 .434 .248 .066 

NOTE: Here f3u = o, fJx = 2, fJz = 1, and 8 = .5. The measurement error variance Is ~ = .5. The within-cluster variance of the X's 
Is~ = 1. The between-cluster variance Is~~ = 1.5. The Z's are generated as standard normal random variables. 

We expect from our theory that as "~ increases, the mea•
surement error--<XJrrected estimate of f3x will increase and 
the estimate of e will decrease. The results confirm this. 
The estimate of f3x increased from 2. 79 with a standard 
error of 1.44 (p value = .052) when "~ = 0 to 3.92 with 
a standard error of 1.73 (p value = .023) when <r~ = .016. 
This suggests statistically significant effect of SBP on LVH. 
Higher SBP is associated with a higher risk of LVH. The 
evidence becomes stronger when the measurement error is 
taken into account. 

The estimate of 0 decreased from 2.05 with a standard 
error of 1.57 when "~ = 0 to 1.85 with a standard error 
of 1.52 when "~ = .016. We note that the nominal stan•
dard error of 0 cannot be used directly for testing e = 0, 
because the null hypothesis is on the boundary of the pa•
rameter space and the Wa1d statistic is not asymptotically 
distributed in a chi-square (Lin 1997). A SIMEX/score test 
for the variance component developed in an earlier version 
of this article (Wang, Lin, Gutierrez and Carroll 1997) in•
dicates strong evidence for a nonzero variance component. 
Specifically, the p value of the score test increased from 
<.0001 when "~ = 0 to .006 when "~ = .016. Figure 3, 
discussed in Section 6.2, illustrates the SIMEX/CPQL ex•
trapolations of f3x and e when "~ = 0. 

The conclusions for the rest of the regression coefficients 
stay the same with or without taking the measurement er•
rors into account; namely, except for the intercept, none is 
significant at .05 level. The SIMEX/CPQL and the naive 
CPQL estimates (standard errors) of the regression coe_ffi•
cients for intercept, age, smoking status, body mass index, 
and the exam number are -23.92(8.45), .03(.07), -.75(.73), 
.02(.11), and .43(.25) and -17.7(6.88), .03(.06), -.60(.67), 
.05(.11), and .43(.25). 

9. CONCLUDING REMARKS 

In this article, we have shown that the effect of ignoring 
measurement error in GLMMeMs can be to bias regression 
coefficient and variance component estimators. The reason 
is that even under normality assumptions, the observed data 
follow a GLMM but with the structure of the fixed effects 
and random effects being misspecified. For example, typ•
ically the observed data are overdispersed relative to the 
assumed model ignoring measurement error (Sec. 2). 

We have been able to compute the biases in a number 
of cases (Sees. 3-5). Typically, the broad direction of the 
biases in regression coefficient estimators is similar to that 
in ordinary generalized linear models (GUM), whereas the 
direction of bias when estimating the variance component 
varies from case to case. Our results show that there is an 
important effect of the within-cluster sample size on the bi•
ases, and indeed some of the worst biases may occur when 
such sample sizes are the largest. We note that the tech•
niques that we provided in bias calculations apply to more 
complicated cases. 

The measurement error literature makes a distinction 
between functional and structural modeling. The former 
makes no assumptions about the distribution of the un•
observables, and the latter typically makes distributional 
assumptions. The appeal of functional modeling is one 
of model robustness. We showed in Section 5 that in 
GLMMeMs there is an additional component of concern 
in structural modeling with respect to model robustness•
namely, the assumed covariance structure of the unobserv•
able predictors within a cluster. 

The functional estimator that we considered (Sec. 6) is 
the SIMEX/CPQL method, largely because it has the po•
tential to estimate parameters with minimal bias. Because 
CPQL is often fast even when the random-effects structures 
become more complicated, with respect to computational 
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concern we expect that using SIMEX/CPQL to fit the gen•
eral GLMMeM in ( !) would still be practical. Using the 
general theory of Carroll et a!. (1995) and Stefanski and 
Cook (1995), one can show that the SIMEX approach can 
be applied to the cases with dependent measurement errors 
and multivariate x,,. 

In our example (Sec. 8), we noted a difficulty with 
the functional approach in GLMMs-namely, that without 
careful attention to experiment design, the strncture of the 
measurement error (additivity, covariance) may not be iden•
tifiable from the observed covariates themselves. Thus in 
our example of logistic regression, estimating the measure•
ment error covariance with any precision would require a 
stmctural approach; in the linear GLMM, only the covari•
ance structure of the unobserved covariate must be speci•
fied. Clearly, if one is to consider the issue of measurement 
error in GLMMs, one must also pay attention to the design, 
and allow for estimation of the error covariance structure. 

The appeal of functional methods in general, and the 
SIMEX procedure in this article in particular, is robustness 
against modeling the strncture of the latent unobservable 
covariates X. But the formidable appeal of functionality 
and the ease of implementation of the SIMEX procedure 
must be balanced by the potential loss of information and 
efficiency incurred relative to a correctly modeled structural 
analysis. Based on some preliminary calculations, we con•
jecture that the loss of efficiency in functional estimation 
may not be very severe in many problems for estimating the 
regression parameters (f30 .f:3x, f3z), but can in some cases 
be considerable for estimating variance components. Even 
in the ordinary GLIM, the tradeoff between model robust•
ness and efficiency is a subject under vigorous development, 
with many attempts to mndel the latent covariates flexibly. 
In the GLMMeM context, with its more complex strncture 
involving both distributions and covariances of the latent 
variables, such flexible modeling is a challenging problem 
that clearly deserves attention. 

APPENDIX: DETAILED BIAS CALCULATIONS 

A.1 Derivation of Equation (9) 

Under the heterogeneous X model, we have Ai = (cr;I + 
a;!-IJ) { (a! + 0'~)1 + o-;!-IJ}- 1 and exi = ail+ ei. Using the 
equality (al + bJ)-1 ~ a-1{1- b(a + bn)-1J} for any con•
stants a and b. we have A,~ u!{.XI + n-1 (1- .X)(!- :\)J} and 
X; ~ .XW, + (1- .X)(!- ~)W;.l + (1- .X):\I'zl + bi. where 
b; ~X,- E(X;]W,) ~ b;,1 + bi,,b;, ~ :\(!- .X)a,- (1-
.X)(l- :\)e,.- (1- .X)!- :\)lJ,., and the jth component of bi, is 
h:iii = (1-.\)eii ->..Uii· Note that bii and h2i are independent and 
are independent of Wi and bi. Define b~ = ~ +f3xhiib~j = f3wbiii· 
We then have equation (9). 

A.2 Bias Derivations in the Homogeneous Probit 
GLMMeM 

The naive probit model is q,-I (p;~j,w) = f3o + ,Bw Wij + bi, 

and the Y;.j are binary with conditional means jt~~.w and condi•

tional variances il~J,w(l- it~J,w). The homogeneous probit model 

is .p- 1 (J.'t~w) = {3~ + {3~ Wij + bi + b~3 . To integrate out b~j. one 
can use the identity J i!>(a + t)di! >(th 112 ) ~ <I>{ a(!+ 1')-112 } 
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for any constants a and 'Y· It follows that E(Y;.3jWi 3 ,bi) satisfies 
.P,--- 1 (J.L~j,w) = (1 + 'Y)- 1 12 (,8~ + ,B~Wij + bi)· We hence have the 
bias results in Section 3.2. 

A.3 Bias Derivations in the Homogeneous Poisson 
GLMMeM 

Let ( ~ 0/2 + f!o and (' ~ o� /2 + {30. The marginal means 
of (Y;;]X;;) and (Yi;]W;;) are d.;; ~ exp(( + f3zX;;) and c;3 ~ 
exp((* + {3~ Wij ). This slight reparameterization allows () to occur 
only in the conditional variances and covariances of (¥;.3 jXij) and 
(¥;.3 IWij) and not in the conditional means. Simple calculations 
using the correspondence between the conditional means of the 
(Y]X) and the (Y]W) models show that the naive estimators of 
((,{3.) converge to ((',{3~). 

Given ((,/3m), if the X's are observable, then the sufficient 
statistics for 0 are (Yr., ... ' Ym.). Denoting e ~ exp(O) - 1, 
the asymptotic limit of the MLE of e statistics e ~ { E(i';. -
d,.)2 - n-1 E(d..)} /E(d;.). The asymptotic limit of the naive 
estimator Onaive must retain the same characterization and 
satisfies e .... , ~ { E(i'i. - C;. )2 - n - 1 E(C;.)} I E(c'f. ), where 
euaive = exp(Ouaive) -1, and the expectation is taken with respect 
to (¥;.3, Wij, Xij) under the homogeneous Poisson model. Some 
calculations show that eualve = exp(Onaive) - 1 = exp(O*) -
1 + (n- l){(n- 1) + exp(.Xf3;u;,}}-1{exp(-1')- l}exp(O'). 
Equation (12) follows immediately. 

A.4 Bias Derivations in the Heterogeneous Linear 
GLMMeM 

Let {3 ~ (f!o,f3z)T and X~ (l,X). Equation (14) can he writ•
ten as E(WTV-1W)f3,,1., ~ E(XTV-1 X)[j. Applying (16) to 
both sides of this equation, some algebra yields /3o,na.ive, /3re,naive, 

and .\* given in (18). To solve (15) for 8nnive and O"~aive• we 
first calculate the mean and covariance of T = Y - W,Bna.ive 

as Jl.T ~ E(T) ~ 0 and 

VT ~ cov(T) 

~ {(0'2 + {3~•"''"'"~) + lT;,(f3z- f3z,,.!.o) 2 }1 
+ {0 + ,.;,"(f3z- f3z ... i.o)'}J 

~ {u2 + (>.;"~ + (1- >.,)2 0'~){3;,}1 

+ {0 + (1- .X,)'u;,"{3~}J. 

Using the equalities 8Vj80,,,., ~ J ,8V jau;,,., ~I and (16), 
one can show that (15) is equivalent to tr(V- 1 JV- 1 V T) ~ 
tr(V-1J) and tr(V- 1V-1VT) ~ tr(V-1 ). Because V and VT 
have the same matrix structure, we have V = V T· Equivalently, 
8naive and O"~a.ive satisfy (17). 

A.5 Numerical Bias Calculations of the Naive Estimators 

Denote the log-likelihood by l = log L. The naive es•
ti;m.ators /31lf.tive = (/!Jo,naive,/3re,naive) and Bnaive maximize 
m- 1 L.::1 l"''"(Y,, W,, z,;[j.,ll,), where L"''"(Y,, W;, z,; 
,8.,8.) takes the same form as (2) except Xi is replaced by Wi. 
Thus, the probability limit of the naive estimators .8naive and 8naive 

maximizes E{l'"'"' (Y,, W;, Z;; { j ., II,)]Z;} as m --> oc. where 
the expectation is taken with respect to (Yi, Wi, Xi) conditional 
on Zi. For simplicity, we remove the subscript i in the ensuing 
discussion. Using the identity E(·]Z) ~ E{E(·!X, Z)} and the 
independence of Y and W given X, Z, we first calculate 

E{l"''"'(Y,W,Z;(j.,II,)]X,Z} 

~ ll"'"'"'(Y,X,Z;{j.,II,)L(Y!X,Z;{j.,ll,)dv(Y), (A.!) 
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where v(Y) denotes an appropriate probability measure of Y 
and 

l'""'"'(Y,X,Z;{3.,9.) 

= fl""'"'(Y,X+V,Z;{3.,9.)L(V)dV. (A.2) 

In the heterogeneous logistic GLMMeM considered in Section 4.2, 
we have 

l .. "'"'(Y,X,Z;{3.,9.) 

= {)log{J]]~'•,.w(b)d<J>(b)} d<J>(u1) ... <J>(u.), 

where l'v;,w(b) = {Hw;(b)}Yi{1- Hw1 (b)}'-Yi,Hw1 (b) = 

H(f3o. + (3 •• X; + (3 •• u.u; + 9~ 12 b), and H(v) = {1 + 
exp(-v)}-1 

We next need to further take expectation of (A.l) with re•
spect to X conditional on Z. For the heterogeneous X model 
considered in Section 4.2, X follows N(J.Lxl, V :~:), with V :~: = 

u;I + u,i~tJ. Let T = A-1(X- J.Lzl), where A is a lower 
triangular matrix satisfying AA T = V :~: obtained using the 
Cholesky decomposition of V •. Denoting (A.l) by f(X, Z), 
we have E{l""'"'(Y, W,Z;{3.,11.)!Z} = E{f(X,Z)IZ} = 

E{f(!'.l +AT, Z)jZ} = f f(!'.l +AT, Z) d<J>(T,) ... d<J>(Tn). 
Evaluation of required integration can be carried out by repeat•
edly using 20-point Gauss-Henni.te quadrature for small n. Monte 
Carlo simulations can be used for large n. Using the change-of•
variable technique for numerical integration has been discussed 
in detail by Davidian and Giltinan (1995, chap. 7). An optimiza•
tion routine was used for maximization. This numerical technique 
can be applied to accommodate the cases with nonadditive and/or 
dependent measurement errors provided that the conditional dis•
tribution of (W!X) is normal. 

The foregoing procedures can be used to calculate the biases 
of the homogeneous estimators discussed in Section 5. Specifi•
cally, we can replace L "''"' (Y, W, Z; {3., 9,) in (A.l) and (A.2) by 
Lh"m(Y, W,Z;{3.,9.,!' • .,u~.). which is defined as L(Y, WjZ) 
in (4) with L(XjZ) being normal with mean I'•• and covariance 
o-;*I. We then maximize the resulting expectation with respect 
to /3* 1 8* 1 Jl.z*• and u;*. The maximizers are J3homJhom 1 J.Lz,hom. 
and O"~,hom· 

A.6 The CPQL Method 

A popular approximate inference procedure in the GLMM with•
out measurement error (1) is the penalized quasi-likelihood (PQL) 
method of Schall (1991) and Breslow and Clayton (1993). De•
note the right side of equation (1) by 11t~z· A key feature of 
PQL is that it can be easily implemented by iteratively fitting 
a linear mixed model to a modified dependent variable Yij 

11t;z + g'(Jl.t~z)(Yi;- J.Lt~x) as 

Yi; = f3o + Xf;/3:~: + Zi,t3z + Af,bi + E:ij, 
where the random effects b; follow N(O, D(ll)), e;; fol•
lows N(O, Ki-t), and Ki; is the working weight and equals 

{ 4>~<;j 1 v(l't~.) (g' (l't~.))2 } - 1 • The recently developed SAS macro 
GLIMMIX using the MIXED procedure has made this method 
readily accessible to practitioners. Simulation studies of Breslow 
and Clayton (!993) show that the PQL estimates may be subject 
to serious bias when the data are sparse (e.g., binary). Breslow and 
Lin (!995) and Lin and Breslow (!996) have proposed corrected 

PQL estimates to improve the performance of PQL. Specifically, 
the corrected PQL (CPQL) estimators take the form iicP = c,ii,. 
and &cp = &p + Ca&cP, where (/3P, &P) and (/3cP 1 &cP) denote 
the PQL and CPQL estimators, and the correction matrices Ca 
and C& are easy to calculate and are given in equations (16) and 
(20) of Lin and Breslow (1996). In this article we used CPQL as 
our naive estimators. 

[Received November 1996. Revised September 1997.] 
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SUMMARY 

In many regression applications the independent variable is measured with error. When 
this happens, conventional parametric and nonparametric regression techniques are no 
longer valid. We consider two different approaches to nonparametric regression. The first 
uses the SIMEX, simulation-extrapolation, method and makes no assumption about the 
distribution of the unobserved error-prone predictor. For this approach we derive an 
asymptotic theory for kernel regression which has some surprising implications. Penalised 
regression splines are also considered for fixed number of known knots. The second 
approach assumes that the error-prone predictor has a distribution of a mixture of normals 
with an unknown number of components, and uses regression splines. Simulations illus•
trate the results. 

Some key words: Estimating equation; Local polynomial regression; Measurement error; Regression spline; 
Sandwich estimation; SIMEX. 

1. INTRODUCTION 

We consider the problem of nonparametric regression function estimation in the pres•
ence of measurement error in the predictor. Suppose that the regression of a response Y 
on a predictor X is given by E(Y I X)= m(X). Instead of observing X, we can only observe 
W, an error-prone measurement related to X by an additive error model, W =X + U, 
where U is a mean-zero normal random variable with variance O"~. The question is how 
to estimate m(.) when observations on Y and Ware all that are available. 

This problem has been addressed previously, most notably by Fan & Truong (1993), 
who found the following discouraging result. Suppose that we allow m(.) to have up to 



114

542 R. J. CARROLL, J. D. MACA AND D. RUPPERT 

k derivatives. They showed that, if the measurement error is normally distributed, even 
with known error variance, then, based on a sample of size n, no consistent nonpara•
metric estimator of m(.) converges faster than the rate {log(n)} -k. Since, for example, 
log( 10 000 000) = 16, effectively this result suggests that consistent non parametric 
regression function estimation in the presence of measurement error is impractical. 

The Fan & Truong result can be interpreted in another way. As reviewed by Carroll, 
Ruppert & Stefanski ( 1995), much of the enormous practical progress made in the field 
of measurement error for nonlinear models has been through the use of approximately 
consistent estimators, i.e. estimators which correct for most of the measurement error 
induced bias, but not all. Furthermore, when the measurement error variance is zero then 
the associated convergence rate is of order n-t rather than {log(n)} -k. We might expect, 
then, that estimation will be of practical use if the measurement error variance is not too 
large. Theoretically, for small errors, that is u~--> 0, the bias of naive estimators is of the 
order 0(~), while the approximate error correctors have a bias of order O(u~) or less. 

A second positive interpretation is to remember that the Fan & Truong result pertains 
to globally consistent estimation, i.e. estimators of E(YIX) which are consistent without 
anything but smoothness assumptions. Such results say nothing about estimators which 
are consistent for a flexible yet parametric subclass of the nonparametric family. For 
example, regression splines are a well-known parametric family with the capability of 
estimating wide classes of regression functions. If one is willing to estimate E(Y I X) by a 
regression spline, then effective semiparametric estimation of E(Y I X) should be possible 
even in the presence of measurement error. 

This paper develops the two ideas of approximately consistent and regression spline 
estimation in the presence of measurement error. In § 2 we show how to implement the 
SIMEX, simulation-extrapolation, method (Cook & Stefanski, 1994; Stefanski & Cook, 
1995) in ordinary nonparametric kernel regression, cubic smoothing splines and penalised 
regression splines. The SIMEX method is a functional method, i.e. one that can be applied 
without estimation of the distribution of the unobservable X. In § 3, we take up the 
structural approach in the context of regression splines, showing that the observed data 
follow a type of regression spline depending on the conditional distribution of X given 
W. If W given X is normally distributed, X given W depends on the marginal distribution 
of X, which we model flexibly by a mixture of normal distributions with an unknown 
number of components. This flexible distribution is estimated by modifying the Gibbs 
sampling algorithm of Wasserman & Roeder (1997). Section 5 gives a number of simu•
lations. Section 6 has concluding remarks. 

While the discussion to follow is easiest in the case that the measurement error variance 
u; is known, in practice that is usually not the case. In some instances, ~ is estimated 
by an external dataset. Otherwise, internal replicates are used, so that we observe 
W;j =X; + U;j for i = 1, ... , n and j = 1, ... , K; ;::: 1, where the measurement errors U;j are 
independent, mean zero, normally distributed random variables with variance u;; a compo•
nents of variance estimate is given as equation (3·2) in Carroll eta!. (1995). In theory, for 
either external or internal data, ~is estimated at ordinary parametric rates Op(n-+), and 
so the asymptotic effect of such estimation on nonparametric regression functions is 
often nil. 

2. THE SIMEX ESTIMATOR 

The SIMEX estimator was developed by Cook & Stefanski (1994); see Carroll et a!. 
( 1996) and Stefanski & Cook ( 1995) for related theory. The idea behind the method 
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is most clearly seen in simple linear regression when the independent variable is subject 
to measurement error. Suppose the regression model is E(Y I X)= IX + flX and that 
W =X+ U, rather than X, is observed where U has mean zero and variance u;, and u; 
is known. It is well known that the ordinary least squares estimate of the slope from 
regressing Yon W converges to flu~(u~ + u;)-\ where u~ denotes the variance of X. 

For any fixed A> 0, suppose one repeatedly 'adds on', via simulation, additional error 
with mean zero and variance u;A to W, computes the ordinary least squares slope 
each time and then takes the average. This simulation estimator consistently estimates 
g(A) =flu~/ { ~ + u;( 1 + A)}. Since, formally at least, g( -1) = fl, the idea is to plot g(A) 
against A ?: 0, fit a model to this plot and then extrapolate back to A = -1. Cook & 
Stefanski ( 1994) show that this procedure will yield a consistent estimate of A if one uses 
the model g(A) =Yo+ y1(y2 + A)- 1• 

Here is the precise definition of the SIMEX estimator for non parametric regression. First 
consider the case that number of replicates Ki = 1 and that u. is known. Fix B > 0 to be 
a large but finite integer, 50-200 in practice, and consider estimation of E(YIX) at x 0 • 

For b = 1, ... , B and any A > 0, let B;b (i = 1, ... , n) be a set of independent standard 
normal random variables which are then transformed to have sample mean zero, variance 
one and to be uncorrelated with the Y's and the W's. Define W;b(A) = w; + u.Ateib· The 
resulting estimate from these simulated data is mb,;.(x 0 ). The average of these estimates 
over b = 1, 0 0 0, B is m;.(Xo). 

With any nonparametric regression estimator, the SIMEX estimator is then defined by 
a three-step process: (a) select a finite set of A's, such as A= 0, 1, 1, ~, 2, and compute m;.(x 0 ); 

(b) fit a convenient function of A, such as a quadratic, to the terms m;.(x 0 ); (c) extrapolate 
this function back to A= -1, resulting in m(x 0 ). 

When u. is unknown, it is replaced by an estimate. If the number of replicates is constant 
and equal to K, then Wib(A) = W;. + (u.K--5- A-5-B;b). The only remaining step is how to handle 
the case that the number of replicates is not constant. Carroll et al. ( 1995) use the definition 
of W;b(A) given immediately above, but there is a theoretical difficulty, namely that 
E(YI W;_, K; = 1) =1= E(YI W;_, K; = 2). This causes some problems of theory and even more 
of notation because, if we define m;.(x 0 , K;) = E(Y I "W;,, K;), then the naive kernel regression 
estimator which ignores measurement error converges to n- 1 I:7= 1 m;.(x 0 , Ki), which is a 
mixture of regression functions depending on the design. Despite this technical compli•
cation, the results derived in the Appendix extend immediately. 

The estimators as implemented in this paper are as follows. 

Kernel estimators. For a symmetric density function K(.) and bandwidth h, define 
Kh(u) = h- 1 K(ujh). Local linear kernel estimates solve the weighted least squares equation 
in fl =(flo, fldT, 

n 

0 = L [l;- GI{Wib(A)- Xo}A]G2 {W;b(A)- Xo}Kh {W;b(A)- Xo}, (1) 
i=1 

where G2(v) = (1, v)T. The kernel estimate is mb,;.(x 0, h)= [30. In general, one must estimate 
h as well, and we do this using empirical bias bandwidth selection; see Ruppert ( 1997). 
The resulting implemented estimate is mb,;.(x 0). The average of these estimates over 
b = 1, ... , B is m;.(x 0). The MATLAB programs for computing empirical bias bandwidths 
selection are freely available at http:/ www.orie.cornell.edu/ ~ davidr/matlab. 

Smoothing splines. Cubic smoothing splines (Green & Silverman, 1994, Ch. 2) form 

http://www.oric.cornell.edu/ ~ davidr/matlab
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another method of computing the estimates m;Jx0 ). These are available in S-Plus in the 
command 'smooth.spline'; the tuning constant is estimated by generalised crossvalidation. 

Regression splines. We write the regression spline of order p and with l knots (~1> ... , ~ 1 ) 
as 

P I 

mpl(x; P) = I Pi xi+ I Pp+ i(x- ~i)~, (2) 
j~O j~1 

where v+ = vl( v > 0) and J(.) is the indicator function. Eilers & Marx (1996) propose 
fixing the knots and estimating the regression parameters by penalised least squares, with 
the penalty term estimated by generalised crossvalidation, see their formula (29). With 
this parameterisation, and for a fixed penalty term IX, the idea is to minimise 

n { I }2 I 
i~1 Y;- Po- P1x- ... - PPxP- i~1 Pp+ i(x- ki)~ +IX i~1 p;+ i· (3) 

The resulting functions serve as mJ.(x0 ). We implemented this method in MATLAB. 
Eilers & Marx ( 1996) use the B-spline basis rather than the truncated power function 

in (3). However, their approach is identical to ours for equally spaced knots and similar 
in other cases. Let Jc, Z and Y be the parameter vector, design matrix and response vector, 
respectively, of the linear model in ( 3 ). Then /J is (ZTZ + 1XD) - 1 ZTY, where D is the diagonal 
matrix with zeros in the first p + 1 diagonal places and ones elsewhere along the 
diagonal. 

3. STRUCTURAL APPROACH TO REGRESSION SPLINES 

The SIMEX estimators described in § 2 have in common the fact that they make no 
assumption about the distribution of the unobserved X's. In contrast, in structural esti•
mation in measurement error models one hypothesises a distribution for X depending on 
a parameter e. Since W given X is normal with mean X and variance a;, (a., e) together 
produce the conditional distribution of X given W. Furthermore, if Y given X has mean 
determined by the spline (2), Y given W has mean 

(4) 

We write P for the vector P/s. Under a parametric model for X given W, all the conditional 
expectations in ( 4) are easily calculated numerically. The Pi's can be estimated by penalised 
least squares, along the lines of ( 3) with the obvious substitutions of E(X i I W) for Xi and 
E{(X- ~i)~ I W} for (X- ~i)~. 

Our proposal then is as follows. Use the values of W to estimate a distribution for X 
and hence for X given W; one flexible method for doing this is described below. Then for 
given IX estimate the Pi's by minimising 

n [ p I ]2 I 
i~1 Y;- j~O PjE(Xi I W;)- j~1 Pp+ jE { (X- ~j)~ I W;} +IX j~1 p;+ j· (5) 

Here E( -I WI) means conditional expectation given w; calculated using e in place of the 
unknown e. The estimated function at Xo is then 

p A l A 

m(xo; IX)= I Pixb + I Pp+j(xo- ~i)~. 
j~o j~ 1 
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Estimation of the smoothing parameter cc is complicated by the fact that the structural 
regression spline has an enormous variance when cc = 0 because of the near singularity of 
the resulting design matrix, induced by the shrinkage inherent in computing E(XiJW) 
and E{(X- ~i)~ I W}. The generalised crossvalidation method, which has a tendency to 
undersmooth, is thus unacceptable unless one places a lower bound on the smoothing 
parameter. Although not reported here, this procedure works remarkably well in our 
simulations when the smallest possible value of cc equals 10-6 times the sample size times 
the sample variance of the observed W's. 

Instead, we replace generalised crossvalidation by a mean squared error estimation 
procedure, based on doubling smoothing and defined as follows. Write the design matrix 
implied by ( 4) as Z, and when predicting at an individual value call the design vector z. 
The bias of the fitted line at a design vector z is B(z, cc, /3) = zTM(cc)/3, where M(cc) = 
(zTz + ccD)- 1 zTz- I. If we fix CCo and use /J(cco) to estimate bias, then the variance of this 
estimated bias is 

V(z, cc, CCo) = zTM(cc)C(cco)MT(cc)z, 

where C(cco) = a2 (cco)(ZTZ + CCoD) - 1 ZTZ(ZTZ + CCoD)- 1. If we start from CCo and /J(cco), 
a biased-corrected estimate of squared bias is B2 {z, cc, /J(cc0 )}- V(z, cc, cc0 ). Now the 
variance for the fitted line at a point z for a given cc is R(z, cc) = zTC(cc)z. This leads to the 
following algorithm. 

ALGORITHM. Fix cc0 at a value that implies considerable smoothing. Define cc1 to minimise 
the average, over a grid of values z, of the function B2 {z, cc, /J(cc0)}- V(z, cc, cc0 ) + R(z, cc). Set 
cc0 = cc1 and then repeat until convergence. 

Since the regression of Y on W is generally heteroscedastic, we used a weighted version 
of this procedure, with weights calculated as follows. First a naive spline was estimated 
using generalised crossvalidation. Absolute residuals were formed and regressed on W 
with a spline using generalised crossvalidation. The weights are the inverse of the square 
of the fitted values of this last smooth. However, it is well known that weighting can be 
disastrously variable if the weights are allowed to vary too much, so we computed the 
median weight and then truncated the fitted weights to be within a factor of 3 of this 
median. 

The remaining issue is to specify a distribution of X. The obvious one is the normal 
distribution, in which case W = X + U would be marginally normally distributed, so that 
the assumption of normal X can be checked empirically from the observed data. To build 
some model robustness, one could use instead a flexible parametric family which includes 
the normal distribution, e.g. the seminonparametric family of Davidian & Gallant (1993) 
or the mixture of normals family. 

A mixture of k normals has the means iik = (Jt1k, ••. , Jlkk), standard deviations iJk = 
(a1k, ... , akk) and proportions Pk = (p1k> ... , Pkk), where L~~ 1 Pik = 1. When X is observ•
able, Wasserman & Roeder (1997) propose a Bayesian method for estimating (k, iik, iJk> fJd 
when k is constrained to lie in the set 1 ~ k ~ L for some fixed L. Here we modify their 
method to account for the measurement error. Suppose that we observe Wii =X;+ U;i 
fori= 1, ... , nand j = 1, ... , m;. Let a. have the inverse-chi prior density (A., r.), where 
r. is known, i.e. 
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Fix k. Let W consist of all the observed W's, X and latent X's, and Gk the latent group 
assignment indicators (Gkl, ... , Gkn) that identify from which of the k normal subpopula•
tions X is drawn; let [Ak] be proportional to a scaling constant, and [.ilk, ifk, Pk] be the 
prior defined by Wasserman & Roeder (1997). 

The joint density for given k is 

[tV, X, Gk, u., Ak, flk, uk, Pk] ~[WI X, u.J[u.J[XI Gk, Ak, flk, uk, Pk] 

X [Gk I Ak> flk> ifk, Pk][Ak> flk> ifk, pk]. ( 6) 

Inspection of ( 6) reveals that the Gibbs sampler has an especially convenient form. Once 
one has generated the latent variables X and u. in a Gibbs step, the generation of 
(Gb Ak> flk> ifk> Pk) is exactly the same as if the X were known and there was no measure•
ment error. Thus we can adapt without change the Gibbs steps derived by Wasserman & 
Roeder (1997). Implementing the Gibbs steps for generating u. and X is also easy. One 
sees that u. given all the rest is inverse-chi with parameters 

A.+ I I ("Wii-Xi?, r.+ I mi> 
i=l 

while any Xi, given all the rest and given that Gki = j, is normal with mean and variance 

J1 = ("W;uyk + Jliku~)j(ma}k + u~), u2 = u~uykj(muyk + u~), 

respectively, where fVi = L.7~ 1 "Wii· 
Following Wasserman & Roeder (1997), having generated estimates of E>k = 

(a., flk, ifk> Pk) for given k, namely the median of the value (ak> flk, ifk) and the mean of the 
values Pk in the Gibbs steps, we estimate the posterior probability that there are k mixture 
components as n- 3kf2 J(ek), where l(E>k) is the likelihood of tlj. evaluated at the parameters 
E>k. This likelihood is 

n mi k 

l(E>k) = f1 f1 I Plk(afk + ~)-±(2n)-± exp { -~("Wii- fllk?J(afk +a~)}. 
i~1 j~tl~t 

We now return to ( 4 ). To implement this, we need the conditional distribution of Xi 
given ("Wit> ... , "Wim,) for i = 1, ... , n. When X is a mixture of k normals, this conditional 
distribution is easily seen to be a mixture of k normals with the jth mean 

(Jlik~ + Wmuyd(a~ + mayk)-1, 

the jth variance equal to aJku;(u; + muyk)-1, and the jth proportion given by 

Pik ( ifik it [Pikifii/ exp{ -~(W- Jlik) 2 /iJfd]) - 1 
exp{ -~(W- J.lik) 2 /ifyd, 

where ifik = (ayk + m- 1 ~)±. If (~ 1 , ••• , ~L) are the estimated posterior probabilities formed 
from Gibbs sampling, we take Xi given ("Wit. ... , "Wim.) to be a mixture of the previously 
defined mixture normals, with mixing proportions(~;, ... , ~L). 

4. THEORETICAL DEVELOPMENT 

4·1. Introduction 

As is essentially always the case, theoretical results are most readily obtained for kernel 
methods. The results then apply at least heuristically to cubic smoothing splines through 
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the use of equivalent kernels (Silverman, 1984). Results for regression splines are more 
difficult. In unpublished work, S. Zhou has derived bias and variance formulae for unpenal•
ised regression splines, but the formulae are not straightforward and the conditions require 
that the number of knots be of order n115• For the sample sizes considered in our simu•
lations, namely 200-500, this means a very small number of knots, which is exactly against 
the Eilers & Marx (1996) approach of using a fairly large number of knots. 

4·2. Kernels and regression splines 

We phrase our main theoretical result in a general way, and prove it explicitly in the 
case oflocallinear kernel regression; the details are in the Appendix. In any given problem, 
suppose that the measurement error is u;. Write the density of W with this measurement 
error as f(w, cr;) and the regression of Yon W with this measurement error as m(w, cr~). 
Thus, for instance, in the SIMEX steps we work with the derived variables W(A) which have 
measurement error ( 1 + A)u;, and the corresponding density and regression functions are 
f{w, (1 + A)cr~} and m{ w, (1 + A)cr;}. 

Let the kernel function be K(.). Suppose further that, when the bandwidth ish and the 
measurement error is cr;, for fixed constants q 1 and q 2 , the bias and variance of the kernel 
regression are given by 

hq1 '§b{x, m(x, cr~),f(x, u;), u;, K}, (nhq2 )- 1 '§v{x, m(x, cr~),f(x, cr;), u;, K}, 

respectively. We run the SIMEX algorithm with B simulation replications at each value A 
in a finite set A. We extrapolate using a polynomial of order q8 � Define e8 to be the (q. + i)•
vector with jth element (-1)i+l, s(A) to be the (q. + 1)-vector with jth element Ai- 1 and 
E 8 to be the ( q8 + 1) x ( q8 + 1) matrix all of whose elements are zero except the first, which 
equals one. Finally, define cT(x, A)= e~ o:::J.EA s(A)sT(A)} - 1. 

THEOREM 1. Assume that the polynomial extrapolant is exact. For any A, denote the 
bandwidth by h4 � Then, as n--> oo and then B--> oo, the SIMEX kernel estimator is asymptoti•
cally equivalent to an estimator with the bias and variance given respectively by 

cT(x, A) I h1''§b[x, m{x, (1 + A)cr~},f{x, (1 + A)cr~}, (1 + A)cr~, K]s(A), (7) 
!.EA 

The variance ( 8) is the more surprising, implying that the variance of the SIMEX estimate 
is asymptotically the same as if measurement error were ignored, but multiplied by 
cT(x, A)E.c(x, A), a factor which is independent of the regression function. Thus, we can 
easily compare the various extrapolants on the basis of variance. For instance, suppose 
that the set of possible values of A is A= (0·0, 0·5, 1·0, 1·5, 2·0). Then direct calculation 
shows that use of the quadratic extrapolant leads to an estimator which is asymptotically 
9 times more variable than that based on the linear extrapolant, while the cubic extrapolant 
is asymptotically 52 times more variable than the linear extrapolant. 

The results (7)-(8) also apply at least roughly to linear and cubic smoothing splines, 
through the 'equivalent kernel' approach (Silverman, 1984). These results say that such 
smoothing splines behave away from the boundary like a Nadaraya-Watson kernel 
regression estimator with a locally chosen bandwidth and a higher-order kernel. If we 
make the identification, the major consequence is that the ratio of the variances of a kernel 
regression estimate and a linear or cubic smoothing spline when using SIMEX should be 
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roughly the same as if measurement error were ignored. If the two methods are calibrated 
so that they have roughly the same variance when measurement error is ignored, then 
they should have roughly the same variance after use of the SIMEX procedure. 

4· 3. Comparisons of kernels, regression splines and smoothing splines in SIMEX 

For regression splines, with or without penalties, there is no known equivalent kernel, 
although clearly the same results ought to apply approximately since regression splines 
with many knots and smoothing splines behave similarly. 

One can gain some insight in the case that one uses a finite, fixed number of knots as 
n--+ oo, and one fixes the penalising factor a. Let 9"(X) be the design vector associated 
with (2), and as before let fJ be the collection of regression coefficients. Then, if X is 
observable, the penalised regression spline estimator is the solution to 
L:~~ 1 t/1(~, Xi> {3, a)= 0, where 

I 

t/J(~, X;, {3, a)= 9"(X){Y- 9"T(X)fJ}- 2(a/n) I flp+ i· 
j~l 

(9) 

Equation (9) is an estimating equation, and, if we ignore the dependence on nand formally 
treat it as an unbiased estimating equation, i.e. as if it had mean zero, then the asymptotic 
theory for SIMEX given by Carroll eta!. (1996) applies. Asymptotically of course the term 
a/n in (9) disappears and the estimator has the same behaviour as if there were no penalty. 
However, we have found that keeping this term in gives a somewhat better approximation 
to what actually happens in the simulations. 

In the five models described in the simulation, § 5, we have computed the resulting 
asymptotic variances using numerical integration for 10 knots at the k/11 quantiles of the 
distribution of W (k = 1, ... , 10). When a= 0·0, the cubic extrapolant is approximately 
4 times more variable than the quadratic extrapolant, and approximately 20 times more 
variable than the linear extrapolant. There is thus less variance inflation for using cubic 
extrapolation than in the kernel and smoothing spline case, although the variance inflation 
is still substantial. This suggests that, while the cubic extrapolant function should perform 
poorly for kernel and smoothing spline SIMEX, it will have better behaviour for regression 
spline SIMEX. This is at least qualitatively what happens in our simulations. 

4·4. Structural regression splines 

Asymptotic analysis for structural splines is also possible, and is most convenient in the 
case that X is known to have a normal distribution, and the knots and a are fixed. The 
estimating equation for fJ is the derivative of a typical term in ( 5). The estimating equation 
for the mean of X, Jl," is W- Jl,., the estimating equation for the variance of X, u~, is 
(W- Jlx? - u~, and a standard parametric analysis using estimating equation theory is 
easily obtained. 

Unfortunately, because of the near collinearity of the terms in (5), numerical compu•
tation of the asymptotic variance of the structural spline estimator is difficult. By a 
mixture of exact calculations and 10 001-point Gaussian quadrature, we have been able 
to compute this variance in what we call Case 1 in the simulations, namely that 
m(x)= 1000xt(1-x)t for n=200, var(YIX)=0·00152, Y normally distributed given X, 
with X~ N(0·5, 0·252 ) and u~ = 3u~j7. This calculation shows that the variance of the 
structural spline essentially blows up for 10 or more knots as a--+ 0. As long as there is 
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substantial smoothing, the variance of the fitted function is small, while the bias is negli•
gible. Thus, we would expect the structural spline to have good bias and variance behav•
iour if we ensure that the smoothing parameter never becomes too small, an expectation 
fulfilled in the simulations. 

5. SIMULATIONS 

We performed simulations on five test cases, for only one of which was the distribution 
of X from a normal distribution. The cases are as follows. 

Case 1. We have m(x) = 1000x~(1- x)~ for n = 200, var(YI X)= 0·00152, Y normally 
distributed given X, with X- N(0·5, 0·252 ) and rr; = 3rr;j7. 

Case 2. This is the same as Case 1, except that X followed a skew-normal distribution. 
The skew-normal base density is 21/J(x)<l>(10x), where 1/1 and <I> are the density and distri•
bution function of the standard normal distribution, respectively. We used the translation 
and scaling of this density which had the same mean and variance for X as in Case 1. 
The skew-normal as investigated here is quite skew, and cannot be exactly modelled as a 
mixture of normals. 

Case 3. This is the same as Case 2, but with n = 400. 

Case 4. We have m(x) = 10 sin(4nx), n = 500, X uniform on [0, 1], var(YIX) = 0·052 

and rr. = 0·141. 

Case 5. This is the same as Case 4, except that var(YIX)=0·022 and m(x)= 
100/{2- sin(2nx)}. 

We used S-Plus for the estimation of smoothing splines and mixtures of normals, and 
MATLAB for kernel regression and regression splines. We generated and saved 200 datasets 
from each of the five cases, so that all methods are computed using the same simulated 
datasets. 

In our simulations, it is obviously impractical to monitor convergence of the Gibbs 
sampler for every case. Instead, we examined a few test cases, examined their behaviour 
graphically, and noted that convergence of the sampler with good mixing appeared to 
have been reached at 2000 runs in each case. We then ran the sampler in the simulation 
12 000 times. 

There is no known bandwidth estimator for Fan & Truong's (1993) deconvoluting 
kernel estimator. We followed their approach, and compared our methods to a method 
which cannot be calculated without knowing the true regression function. Specifically, we 
used their kernels (5·1) and (5·2), and in each case found the global bandwidth which had 
minimum mean squared error. The mean squared error at this minimum was then reported. 
We experimented with using local linear deconvolution, but found that this led to higher 
mean squared errors. It is important to note that the mean squared errors listed for 
deconvolution are sensitive to the bandwidth, and of course the results we present are 
more favourable, perhaps far more favourable, to the deconvolution estimate than one 
would expect in practice. 

In the first case, our mixture of normals method always selected that there was one 
population, and gave essentially no probability to two or more components. For the other 
cases, many simulations gave significant probability to two populations, but none gave 
probability to three populations. In results not reported here, for Cases 2 and 3, the 
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estimated mixture density reproduces some of the features of the skew normal, but does 
not nearly reproduce it exactly. For Cases 4 and 5, the results are far worse, because the 
uniform density appears to be poorly modelled by a mixture of normals. Qualitatively, 
we expect the most problems for the structural regression spline in these latter two cases, 
because the mixture density provides a poor representation of the actual density of X. 
The results from the simulations are given in Table 1. 

Table 1. Squared bias and mean squared error results from the simulations 

Method 
Naive Naive SIMEX SIMEX 

Naive regression smoothing SIMEX smoothing regression Structural Decon. 
Case kernel spline spline kernel spline spline spline kernel 

Squared bias 
11·8 12·6 13-0 2·9 3·8 2·8 0·4 6·9 

2 13-8 14·2 14·7 4·9 5·3 4·5 1·2 8·8 
3 13-9 14·1 14·2 5·0 5·0 4·5 1·0 8·6 
4 32·3 30·7 31·3 15·7 13-5 12·2 1·4 17·6 
5 77-5 73·5 76·8 23·9 25·4 23·2 16·9 58·9 

Mean squared error 
12·4 13-2 13-5 6·4 6·26 5·6 2·1 8·9 

2 14·4 14·6 15·1 8·1 7·3 6·6 5·5 10·9 
3 14·4 14·6 14·4 7·7 5·8 6·9 5·6 13-7 
4 32·8 31·2 31·8 18·8 15·5 14·5 7·6 20·3 
5 80·5 76·0 79·1 32·6 35·2 34·4 37·9 62·1 

We see that the 'naive' kernel, smoothing spline and regression spline all have similar 
behaviour, as do the SIMEX kernel, smoothing spline and regression spline with quadratic 
extrapolant. The SIMEX methods have much smaller bias and mean squared errors than 
the methods which ignore the measurement error. The deconvolving kernel methods have 
behaviour somewhat intermediate between the naive and SIMEX approaches, although 
these results are of limited relevance because the former has bandwidth optimised to have 
smallest mean squared error. 

Where possible, in results not reported here, we have compared the simulation results 
with the asymptotic theory, and found them roughly in accord with one another. 

The structural regression spline has good performance overall, although it is biased in 
Case 5. As described above, the reason for this is a mixture of the regression function 
chosen and the fact that mixtures of normals do not give a good approximation to the 
uniform density, especially with measurement error. We re-ran the structural spline in 
Case 5 but with X normally distributed with the same mean and variance as the uniform, 
and hence in the mixture family, and as expected the bias essentially disappeared. 

Our results, both theoretical and numerical, indicate that within the SIMEX context 
kernels, smoothing splines and penalised regression splines with a large number of knots 
behave fairly similarly. The quadratic extrapolant seems the one of choice among the 
polynomials, because of better bias behaviour than the linear extrapolant but far smaller 
variability than the cubic extrapolant. The structural regression spline approach has over•
all the best numerical behaviour in these simulations, and sometimes is far more efficient 
than the other methods. It clearly has considerable potential, although the simulation 
results on which this potential is based do not exhaust the possible regression functions 
one might observe in practice. 
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6. DISCUSSION 

551 

We have assumed without comment that W =X+ U, with U normally distributed and 
having mean zero. In fact, for purposes of nearly nonparametric estimation, it suffices 
merely that some monotone transformation of originally observed W's follow this additive 
error model, that is g(W)=g(X)+ U, because if g(.) is any strictly monotone function, 
E(YI X= x0 ) = E{Yig(X) =g(x0 ) }. 
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APPENDIX 

Theory for SIMEX estimate in kernel regression 
The goal of this Appendix is to sketch a proof of the main result (7)-(8) for local linear kernel 

regression. In the SIMEX algorithm, we add normally distributed measurement error to the observed 
W's b = 1, ... , B times, for each value of A.. Let!;.(.) be the density function of W + A,tu.e, where 
e has a standard normal distribution. Hence, if fw(.) is the density of W, 

f;.(Xo) = f (.l.112u~12 )- 1fw(z)¢{(xo- z)/(.l.112u.)} dz. 

Let m;.(x0 )=E(YIW+A.112 uu=x0 ). Carroll, Ruppert & Welsh (1998) show that, for any fixed b, 
as h->0 and nh->oo, with jz2K(z)dz= 1, . 

mb,;.(Xo, h)- m;.(Xo)- (h2/2)ml,2>(xo) = {tif;.(xo)} - 1 I [Y;- m;. {W;b(A.)}]KdW;b(A.)- Xo}, (A1) 
i=1 

where the error is of order op{h2 + (nh)-t}. 
In what follows, it is convenient notationally to use the same bandwidth for every b = 1, ... , B, 

but to allow this bandwidth to depend on A.; hence we write h;.. In practice and as in our simulations, 
one might estimate h for each A, and b, but as n-> oo the error in estimating this bandwidth becomes 
negligible, and hence asymptotically the same bandwidths are being used for all b. 

Using (A1) and the decomposition of Carroll et a!. (1996), since B is fixed and since 
m;.(Xo, h)= B- 1 r.~=1 mb,;.(Xo, h;.), we have 

m;.(Xo, h;.)- m;.(Xo)- (hi/2)ml,2l(xo) 

= {tif;.(x0W 1 ,t
1 

( B- 1 bt [Y ;- m;. {W;b(A.)}]Kh, {W;b(.l,)- x0 }). (A2) 

In what follows, we will use the following slight abuse of notation. We will write expressions for 
moments of m;.(x 0 , h;.), but these will actually apply to the asymptotically equivalent version on 
the right-hand side of (A2). The terms inside the parentheses on the right-hand side of (A2) are 
independent mean zero random variables. Letting Y = (Yi, ... , Y,) and W = (l'fl, ... , JiY,), and using 
the right-hand side of (A2) as equivalent to the left-hand side, consider 

var{m;.(x0 , h;.)} = E[var{m;.(x0 , h;.) 1¥. W} ] 

+ var[E{m;.(x0 , h;.)- m;.(x0)- (hi/2)ml,2>(x0 )IY; W}]. (A3) 
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If A= 0 or if a;= 0, then mo(xo) = E(YI w = Xo), fo(Xo) = fw(Xo) and (A2) becomes 
n 

mo(Xo, ho)- mo(Xo)- (h~/2)mb2>(xo)""' {'!fo(Xo)} - 1 L p; -mo(W;)}Kho(W.- Xo), 
l=i 

which has mean zero and asymptotic variance 

{nh0f0 (x0 )} - 1 var(YI W = x0 ) f K 2(v) dv. (A4) 

If A> 0 and u; > 0, we study the terms of (A3) in turn. For the first, note that, given Y and W, the 
only remaining random variables are the (e,b), which are all mutually independent. Hence 

var{m;.(x0 , h;.) iY, W} 
n 

""'{nBJI(x0 )} - 1 n- 1 L var[ {Yi- m;.(W; + u.Ate)}Kh_, (W; + O"uAte- x0 ) IY;, W.J 
i=l 

= {nBJI(x0 )} - 1 n- 1 ,t
1 
f {Yi- m;.(W; + u.AteW K~_,(W; + u.Ate- x0 )1jl(e) de 

- {nBf1(x0 ) } - 1 n- 1 ,t
1 

[ f {Yi- m;.(W; + u.X'e)}KdW. + u.l'e- x0 )1/l(e) de J. 
Setting z = (W; + u.Ate- x 0 )/h;. so that W. + u.Ate = x 0 + zh;. and e = (x0 + zh;.- W;)ju.At, we com•
pute the two terms as 

2 '-1 -1 ~ f 2 2 (zh;.+Xo-W.) {nh;.Bf ;.(x 0 )u.l"} n ,:-
1 

{Yi- m;.(x0 + zh;.)} K (z)t/l u.A' dz 

2 2 1 1 ~ [ f (zh;. + x 0 - W;) ] 2 
- {nBJ ;.(x0 )u.A}- n- ,:-

1 
{Y;- m;.(X0 + zh;.)}K(z)t/l O"uAt dz . 

The second term is O(n- 1 ), so we are left with 

var{m;.(x0 , h;.) iY, W} ""'{nh;.Bfi(x0 )u.At} - 1 { f K 2(z) dz} n- 1 ,t
1 
{Yi- m;.(x0 )} 2 t/l (~~:o). 

(AS) 

Note the curious fact that there is a Bin the denominator. This means that, if B is large, (AS) is 
small in comparison to what happens when A= 0; see (A4). In fact, as B-+ oo, (A2) converges to 

n 

{n/;.(x0 )} - 1 L E[{Y;- m;.(W; + u.Ate)}Kh_,(W. + u.Ate)IY;, W;], (A6) 
i=l 

and this random variable has zero variance given (Y, W), just as predicted by (AS). 
We next turn to the second term in (A3 ). If we continue to assume that A> 0 and u; > 0, the 

expectation in question is just 

{'![;.(xo)} - 1 J
1 
f {Yi- m;.(W; + u.Ate)}Kh)W. + u.Ate- x0 )1/l(e) de 

which has variance of order O(n - 1 ). We have thus shown that, for A > 0, u; > 0, 

var{m;.(x0 , h)}= O{(nhB)- 1 } + O(n- 1 ). (A8) 
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It is important to note that the second term in (A3) is O(n - 1 ) only when A> 0 and u~ > 0. If 
either equals 0, the expectation calculated above is 

n 

{nfo(xon-1 L {Y;- mo(W.)}Kho(W.- Xo), 
i=1 

which has mean zero and variance O{(nh)- 1 }. The difference is that, when A> 0 and u~ > 0, (A8) 
represents a 'double-smooth', i.e. summation and integration, and it is well known that double 
smoothing increases rates of convergence. 
If we compare (A4) with (A8), we note that, for n and B sufficiently large, the latter will be 

negligible with respect to the former, at least in practice. Hence, in what follows, we will ignore 
this variability by treating B as if it were equal to infinity. This makes the analysis of the 
SIMEX extrapolants easy. In our notation we are minimising in d, say, the sum of squares 
I:, {m 1 (x0 , h1 )- sT(A)d} 2• Thus, we are solving 0 =I:, {m 1 (x0 , h1 )- sT(A)d}s(A). Using standard 
least-squares results, we obtain 

.si- d = { ~ s(A)sT(A)} -
1 ~ {m 1 (x0 , h1 )- sT(A)d}s(A). (A9) 

If we assume the terms m1 (x0 ) actually follow the extrapolant function, this means that the left•
hand side of (A9) has approximate mean 

{ ~ s(A)sT(A)} -
1 ~ (hi/2)m~l(x0)s(A), 

and, because B is large, its approximate variance is 

{nhd0 (x0 )} - 1 {I K 2 (z) dz} var(Y[W = x0 ) { ~ s(A)sT(A)} -
1 E, { ~ s(A)sT(A)} -

1
• 

The SIMEX estimate is just eJ d~ so that its asymptotic bias is cT(x0 , A) I:, him~l(x0)s(A)/2, and its 
asymptotic variance is 

as claimed. 
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We consider the partially linear model relating a response Y to 
predictors (X, T) with mean function XT/3 + g(T) when the X's are 
measured with additive error. The semiparametric likelihood estimate of 
Severini and Staniswalis leads to biased estimates of both the parameter 
{3 and the function g(·) when measurement error is ignored. We derive a 
simple modification of their estimator which is a semiparametric version 
of the usual parametric correction for attenuation. The resulting estimator 
of {3 is shown to be consistent and its asymptotic distribution theory is 
derived. Consistent standard error estimates using sandwich-type ideas 
are also developed. 

1. Introduction and background. Consider the semiparametric par•
tially linear model based on a sample of size n, 

(1) 

where X; is a possibly vector-valued covariate, T; is a scalar covariate, the 
function g(·) is unknown and the model errors e; are independent with 
conditional mean zero given the covariates. The partially linear model was 
introduced by Engle, Granger, Rice and Weiss (1986) to study the effect of 
weather on electricity demand and further studied by Heckman (1986), Chen 
(1988), Speckman (1988), Cuzick (1992a, b), Liang and Hiirdle (1997) and 
Severini and Staniswalis (1994). 

We are interested in the estimation of the unknown parameter {3 and the 
unknown function g(·) in model (1) when the covariates X; are measured 
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with error. Instead of observing X;, we observe 

(2) wi =X;+ U;, 

where the measurement errors U; are independent and identically dis•
tributed, independent of (Y;, X;, T), with mean zero and covariance matrix 
Iuu· We will assume that Iuu is known, taking up the case that it is 
estimated in Section 5. The measurement error literature has been surveyed 
by Fuller (1987) and Carroll, Ruppert and Stefanski (1995). 

If the X's are observable, estimation of f3 at ordinary rates of convergence 
can be obtained by a local-likelihood algorithm, as follows. For every fixed {3, 
let g(T, {3) be an estimator of g(T). For example, in the Severini and 
Staniswalis implementation, g(T, {3) maximizes a weighted likelihood as•
suming that the model errors e; are homoscedastic and normally distributed, 
with the weights being kernel weights with symmetric kernel density func•
tion K(·) and bandwidth h. Having obtained g(T, {3), f3 is estimated by a 
least squares operation, 

n 2 
minimize L {Y; - X;T/3- g(T;, f3)} . 

i=1 

In this particular case, the estimate for f3 can be determined explicitly. Let 
gy,i·) and gx,h(·) be the kernel regressions with bandwidth h of Y and X on 
T, respectively. Then 

~n = [;~1 {X;- gx,h(T;)}{X;- gx,h(T;)}T r1 

(3) 
n 

X L {X;- gx,h(T;)}{Y;- gy,h(T;)}. 
i= 1 

One of the important features of the estimator (3) is that it does not require 
undersmoothing, so that bandwidths of the usual order h - n - 115 lead to the 
result 

(4) 

where B is the covariance matrix of X- E(XIT) and C is the covariance 
matrix of e{X- E(XIT)}. 

The least squares form of (3) can be used to show that if one ignores the 
measurement error and replaces X by W, the resulting estimate is inconsis•
tent for {3. The form, though, suggests even more. It is well known that in 
linear regression, inconsistency caused by the measurement error can be 
overcome by applying the so-called "correction for attenuation." In the context 
of semi parametric models, this suggests that we use the estimator 

~n = [i~1 {W ;- gw,h(T;)}{W;- gw,h(T;)}T- n!.uu r1 

n 
(5) 

X L {W;- gw,h(T;)}{Y;- gy,h(T;)}. 
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The estimator (5) can be derived in much the same way as the Severini-Stan•
iswalis estimator. For every {3, let g(T, {3) maximize the weighted likelihood, 
ignoring the measurement error. Then form the estimators of {3 via a 
negatively penalized operation 

n 2 
(6) minimize L {Yi - W/{3- g(Ti, {3)} - {3Tiuu {3. 

i~l 

The negative sign in the second term in (6) looks odd until one remembers 
that the effect of the measurement error is attenuation, that is, to underesti•
mate {3 in absolute value when it is scalar, and thus one must correct for 
attenuation by making {3 larger, not by shrinking it further towards zero. 

In this paper, we analyze the estimate (5), and show that it is consistent, 
asymptotically normally distributed with a variance different from (4). Just 
as in the Severini-Staniswalis algorithm, the kernel weight with ordinary 
bandwidths of order h ~ n - 115 may be used. 

The outline of the paper is as follows. In Section 2, we define the weighting 
scheme to be used and hence the estimators of {3 and gO. Section 3 is the 
statement of the main results for {3, while the results for gO are stated in 
Section 4. Section 5 states the corresponding results when the measurement 
error variance Iuu is estimated. Section 6 gives a numerical illustration. 
Final remarks are given in Section 7. All proofs are delayed until the 
Appendix. 

2. Definition of the estimators. For technical convenience we will 
assume that the Ti are confined to the interval [0, 1]. Throughout, we shall 
employ C(O < C < oo) to denote some constant not depending on n, but which 
may assume different values at each appearance. In our proofs and statement 
of results, we will let the X's be independent random variables. 

Let wni(t) = wni(t; T1, ... , Tn) be weight functions depending only on the 
design points T1 , ... , Tn. For example, 

(7) Wni(t) = :n (~ 1K( t ~n 8 ) ds, 1:::;; i:::;; n, 

where s0 = 0, sn = 1 and si = (1j2)(T(i) + T(i+ 1)), 1 :::;; i :::;; n - 1, T(i) are the 
order statistics of Ti, hn is a sequence of bandwidth parameters which tends 
to zero as n ---> oo and KO is a nonnegative kernel function, which is 
supposed to have compact support and to satisfy 

supp(K) = [ -1,1],supiK(x)l:::;; C < oo, 

jK(u) du = 1 and K(u) = K( -u). 
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The fact that g(t) = ECY;- Xlf31T = t) = ECY;- W;rf31T = t) suggests 
n 

(8) gn(t) = L Wnj(t)(Yj- Yl}Tt3n) 
j~l 

as the estimator of g(t). 
In some cases, it may be reasonable to assume that the model errors e; 

are homoscedastic with common variance a 2 � In this event, since E{¥; -
Xlf3 - g(T;)}2 = a 2 and E{Y; - W/f3 - g(T;)} 2 = E{¥; + Xlf3 - g(T;)}2 + 
f3T~uu {3, we define 

(9) 

as the estimator of a 2 • 

3. Main results. Let the components of X; be X; = (X;) be denoted by 
Xij' Denote h/T) = E(X;)T), Y; =X; - E(X;IT), 1 s i s n, 1 s j s p. We 
make the following assumptions. 

ASSUMPI'ION 1.1. sup0 < 1 < 1 E(IIX1 II4 IT = t) < oo and B = E(V 1V /) is a pos•
itive definite matrix. 

ASSUMPI'ION 1.2. gO and h/·) are Lipschitz continuous of order 1. 

ASSUMPI'ION 1.3. The weight functions wni(-) satisfy: 
n 

( i) max L wnj(T;) = Op(1), 
l,. ;i,. ;n j~l 

(ii) 

n 

(iii) max L wn1(T;)I(I'Ij- T;l >en)= Op(cn), 
l,.;t,.;n j~l 

where bn = n-415 , en= n - 115 log n. 

ASSUMPI'ION 1.4. E(e) = E(U) = 0 and sup; E(el + lllf;ll4 ) < oo, 

Our two main results concern the limit distributions of the estimates of f3 
and a 2 • 

THEOREM 3.1. Suppose that Assumptions 1.1-1.4 hold. Then t3n lS an 
asymptotically normal estimator; that is, 

n 112 (/3n- f3) -'>d N(O,B- 1 rB- 1 ), 

with r = E[(e- U1:J){X- E(XIT)}]'~ 2 + E{(UUT - ~uu)f3}® 2 + E(UUTe 2 ), 

where A® 2 = AAT. Note that r = E(e- UTf3)2B = E{(UUT- ~uu)f3}® 2 + 
~uu a 2 if e is homoscedastic and independent of (X, T). 
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THEOREM 3.2. Suppose that the conditions of Theorem 3.1 hold, and that 
thee's are homoscedastic with variance a 2 and independent of (Xi, T;). Then 

REMARKS. (i) It is relatively easy to estimate the covariance matrix of ~n. 
Let dim( X) be the number of the components of X. A consistent estimate of 
B is just 

n 

{n- dim( X)} -l L {Wi- gw,h(Ti)} ® 2 - kuu =def Bn. 
i~l 

In the general case, one can use (25) below to construct a consistent sand•
wich-type estimate of r, namely, 

In the homoscedastic case, namely that ei is independent of (Xi, Ti, U;) with 
variance a 2 and with U being normally distributed, a different formula can 
be used. Let '5'({3) = E{(UUT- kuu)f3}® 2 • Then a consistent estimate of r is 

(ii) In the classical functional model [Kendall and Stuart (1992)], instead 
of obtaining an estimate of kuu through replication, it is instead assumed 
that the ratio of kuu to a 2 is known. Without loss of generality, we set this 
ratio equal to the identity matrix. The resulting analogue of the parametric 
estimators to the partially linear model is to solve the following minimization 
problem: 

n ¥;- W?f3 2 

i~l V1 +II {311 2 =min!, 

here and in the sequel 11·11 denotes the Euclidean norm. One can use the 
techniques of this paper to show that this estimator is consistent and 
asymptotically normally distributed. The asymptotic variance of the estimate 
of {3 for the case where ei is independent of (Xi, T) can be shown to be 
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4. Asymptotic results for the nonparametric part. 

THEOREM 4.1. Suppose that Assumptions 1.1-1.4 hold and that wn;(t) 
are Lipschitz continuous of order 1 for all i = 1, ... , n. Then for fixed T;, 
the asymptotic bias and asymptotic variance of gn(t) are, respectively, 
I:i'~ 1 wn;(t)g(T;) - g(t) and I:i~ 1 w;;(t)( f3 T'Iuu f3 + u 2 ). These are all of order 
O(n - 215) for the kernel estimators. 

5. Estimated error variance. Although in some cases the measure•
ment error covariance matrix 'Iuu has been established by independent 
experiments, in others it is unknown and must be estimated. The usual 
method of doing so [Carroll, Ruppert and Stefanski (1995), Chapter 3] is by 
partial replication, so that we observe Wii =X; + [1; 1, j = 1, ... , m;. 

For notational convenience, we consider here only the case that m; :::; 2 
and assume that a fraction 8 of the data has such replicates. Let W; be the 
sample mean of the replicates. Then a consistent, unbiased method of mo•
ments estimate for 'Iuu is 

A I:i~1I:.i~1(wij- w;)(w; 1 - w;f 
'Iuu = ~n ( 1) 

"-'i~1 m;-

The estimator changes only slightly to accommodate the replicates, becoming 

fin= [i~l {W; -gw,h(T;)}® 2
- n(1- 8j2)iuur

1 

n 
(10) 

X L {W;- gw,h(T;)}{Y;- gy,h(T;)}, 
i~l 

where gw,h(·) is the kernel regression of the W;'s on 1';. 
Using the techniques in the Appendix, one can show that the limit distri•

bution of (10) is Normal(O, B- 1 f2B- 1), with 

r2 = (1- 8)E[( B- Ulj3) {X- E(XIT)} r2 

+ 8E[(e- [fTf3){X-E(XIT)}r 2 

(11) 
+(1- B)E([{uur- (1- BJ2)Iuu}f3r2 + uure 2 ) 

+ BE([{ud- (1- BJ2)Iuu}f3r2 + ude 2 ). 

In (11), U refers to the mean of two U's. In the case that e is independent of 
(X, T), the sum of the first two terms simplifies to {u 2 + f3T(1- 8j2)'Iuu {3}B. 

Standard error estimates can also be derived. A consistent estimate of B is 

Bn = {n- dim( X)} - 1 E {W;- gw,h(T;)}® 2
- (1- 8j2)iuu· 

i~ 1 
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Estimates of f 2 can also be easily developed. In the homoscedastic case with 
normal errors, the sum of the first two terms can be estimated by (an 2 + (1 -
8j2)~:1uu ~n)Bn. The sum of the last two terms is a deterministic function of 
( {3, a- 2 , ~uu), and these estimates are simply substituted into the formula. 

A general sandwich-type estimator is developed as follows. Define K = 

n- 1 Ei~ 1mj\ and define 

-"- ( - -"-T~ ) 1uu ~n 
Ri = W; ¥;- Wif3n + ---

mi 

K {1 T ~ } +a( mi- 1) 2(Wn- Wd(Wn- Wi2) - ~uu . 

Then a consistent estimate of f 2 is the sample covariance matrix of the R;'s. 

6. Numerical example. To illustrate our method, we consider data from 
the Framingham Heart Study. We consider n = 1615 males with Y being 
their average blood pressure in a fixed two-year period, T being their age and 
W being the logarithm of the observed cholesterol level, for which there are 
two replicates. 

We do two analyses. In the first, we use both cholesterol measurements, so 
that in the notation of Section 5, 8 = 1. In this analysis, there is not a great 
deal of measurement error. Thus, in our second analysis, which is given for 
illustrative purposes, we use only the first cholesterol measurement, but fix 
the measurement error variance at the value obtained in the first analysis, in 
which case 8 = 0. For nonparametric fitting, we chose the bandwidth using 
cross-validation to predict the response. In precise terms, we compute the 
squared error using a geometric sequence of 191 bandwidths ranging in [1, 
20]. The optimal bandwidth is selected to minimize the squared error among 
these 191 candidates. An analysis ignoring the measurement error found 
some curvature in T; see Figure 1 for the estimate of g(T). All calculations 
were performed in XploRe [Hardie, Klinke and Turlach (1995)]. 

Our results are as follows. First, consider the case that the measurement 
error is estimated and both cholesterol values are used to estimate ~uu· The 
estimator of {3 ignoring the measurement error is 9.438, with estimated 
standard error 0.187. When we account for the measurement error, the 
estimate increases to ~ = 12.540 and the standard error increases to 0.195. 

In the second analysis, we fix the measurement error variance and use 
only the first cholesterol value. The estimator of {3 ignoring the measurement 
error was 10.7 44, with estimated standard error 0.492. When we account for 
the measurement error, the estimate increases to ~ = 13.690 and the stan•
dard error increases to 0.495. 

7. Discussion. The nonparametric regression estimator (8) is based on 
locally weighted averages. Clearly, results such as Theorem 3.1 should apply 
if (8) is replaced by a locally linear kernel regression estimator or by a spline 
estimator, although our proofs do not apply to these estimators. 
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Kernel fit: SBP on patient Age 

~~~-----r------~r-------~--~ 
40 50 60 

Patient Age 

FIG. 1. Estimate of the function g(T) in the Framingham data ignoring measurement error. 

We have treated the case that the parametric part X of the model has 
measurement error and the nonparametric part T is measured exactly. An 
interesting problem is to interchange the roles of X and T, so that the 
parametric part is measured exactly and the nonparametric part is measured 
with error, that is, E(YIX, T) = 8T + g(X). Fan and Truong (1993) have 
shown in this case that with normally distributed measurement error, the 
non parametric function g( ·) can be estimated only at logarithmic rates and 
not with rate n-215• We conjecture even so that (} can be estimated at 
parametric rates, but this remains an open problem. 

APPENDIX 

In this Appendix, we prove several required lemmas. Lemma A.1 provides 
bounds for h/T)- E'k~ 1 wnk(T)h/Tk) and g(T)- E'k~ 1 wnk(T)g(Tk). The 
proof is immediate. 

LEMMA A.l. Suppose that Assumptions 1.1-1.4 hold. Then 

where G0(·) = g(-) and G1(·) = h 1(·) for l = 1, ... , p. 

LEMMA A.2. If Assumptions 1.1-1.4 hold, then n-1:XT:X = B + op(1). 
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PROOF. Denote hns(T) = h.(T;)- Lk~1wnk(T)Xks•lt follows from xjs = 
~T~ . 

h 8 (1j) + Vj. that the (s, m)th element of X X (s, m = 1, ... , p) 1s 
n m n 

L_X 1.X1m = L Vj.Vjm + Lhns(1J)Vjm 
j~1 j~1 }~1 

n n 

+ L hnm(1J)Vjs + L hns(1J)hnm(1J) 
j~ 1 j~ 1 

n 3 

= def L VJs VJm + L R~q}m · 
j~1 q~1 

The strong law oflarge numbers implies that n - 1 Ei~ 1Viv;T = B + op(1), and 
Lemma A.1 means R<;1m = op(n), which together with the Cauchy-Schwarz 
inequality shows that R~11m = op(n) and R~1m = op(n). This completes the 
proof of the lemma. D 

LEMMA A.3 (Bernstein's inequality). Let r1, ... ' rn be independent ran•
dom variables with zero means and bounded ranges, lfil::;; M. Then for each 
TJ > 0, 

D t I - 1(1 I 114) d " - - I - 1(1 I > 114 ) . - 1 eno e e1 - e1 e1 ::;; n an e1 - e1 e1 - e1 e1 n , J - , ... , n. 
We next establish several results for nonparametric regression. 

LEMMA A.4. Assume that Assumptions 1.3 and 1.4 hold. Then 

max I t wnk(T;)ek I= op{n- 215 log(n)}. 
1:5!:5n k~1 

PRooF. Fix L > 0 but arbitrarily large. Let 

BnL = { max t wn1(Ti) ::;; L, ~ax wn1(Ti) ::;; Lbn}. 
1:5!:5n }~ 1 1:5!,J:5n 

Then 

P{ 1~f,xn ~ 1~1 wnj(T;)e1 I> n- 21 5 1og(n)} 

(12) ::;; P{l(BnL) = 0} 

+ Pc~f:n ~ 1~1 wn1(T;) e1 I> n - 215 1og(n), l(BnL) = 1}. 
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Since by Assumption 1.3, P{I(BnL) = 1} can be made arbitrarily small by 
choosing L sufficiently large, it suffices to show that the second term in (12) 
converges to zero for any L. 

Application of Bernstein's inequality to (12) is complicated by the fact that 
the terms wn/T) and I(BnL) = 1 are random. We first condition on these 
terms and will later uncondition. For sufficiently large C, first note that 

p{ l~f':n ~j~l wnj('li){ ej- E( ej)} I 

> Cn-215 log(n)l{wnj{'li)}, l(BnL) = 1} 

~ i~lp{lj~lwnj(T;){ej-E(ej)}l 
> cn- 215 log(n)l{wnj(Ti)}, l(Bnd = 1}. 

Now apply Bernstein's inequality with 7J = Cn - 215 log(n) and M = 2Lbnn114 • 

Then the right-hand side of the last expression is bounded by 

n ( C2n-4/5log2(n) ) 
( 13) 2 /(BnL) .L exp - 4LCb n1/ 4 - 215 log(n) + 2L:n w2.(T.)var( e') · 

, ~ 1 n J ~ 1 n; ' J 

First note that bn = n - 415 and var(ej) < oo. On the set that l(BnL) = 1, we 
have thus that 

n n 

L w;j(T;) ~ L Wnj(T;) max wnj(Ti) ~ L2 bn. 
j~l j~l l,;,,;,;n 

This means that (13) is bounded by 2nl(BnL)exp{ -(CjL)log(n)} ~ n-312 for 
sufficiently large C. Since this last expression is independent of the {wn/T)} 
except through I(BnL), we have that 

p{ max It wnj(T;){ej -E(ej)}l > cn- 215 log(n)[I(BnL) = 1} ~ n- 312 , 
l,;,,;n j~l 

This shows that 

(14) 1~f:n ~j~l wnj(T;){ ej - E( ej)} I = oAn - 215 log( n) }. 

Now consider Vn = max 1 ,i,;n EJ~ 1wn/T){eJ- E(ej)}. Let p and q be such 
that 1 ~ p < 2, 1/p + 1/q = 1 and 1/q < 2/5- 1/4. By Holder's inequal•
ity, 
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Clearly, 
n 

(15) n- 1 _L [leJ -E(eJ)Ip -E{IeJ -E(eJ)n) =op(1). 
J~l 

Also, again using Holder's inequality, 

EleJIP =E{Ie)PJ(e1 > n 114)} s (Eie/r14{P(Ie) > n114)f-p14 , 

which by Chebyshev's inequality is bounded by s n-l+pf4(Eie/)P14. It thus 
follows that 

(16) 
n 

L EleJ- E(eJ)IP = Op(nP14 ). 

j~l 

Replacing (16) into (15), we get 
n 

L leJ- E(eJ)IP = Op(nP14 ), 

j~l 

where, along with the fact that 1/q < 2/5 - 1/4, we find that 
n 

l
max L wnj(T;){eJ- E(eJ)} = Op(n<l-4q/5)/q+l/4) = op(n-215). 
,;t,;n j~l 

This completes the proof of Lemma A.4. D 

LEMMA A.5. Suppose that Assumptions 1.1-1.4 hold. Then 

n 

L eigi = op(nl/2). 
i~l 

The same holds if g(T) is replaced by h/T). 

PRooF. We prove only the first step, as the other steps follow in a similar 
fashion. Let gn = n 112 jlog(n): 

P(l i~l ~gi I> gn) s P(l i~l ~gi I> gn, mFigil sen log n) 

+ P( mfxlgil >en log n ). 
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The second term is op(1) by Lemma A.l. For the first term, let ri be the event 
that lgil ::::; en log(n). Then, 

P[l it1 [f;gi I > gn, {I( ri) = 1 Vi)}] 
n 

(17) ::::; g;; 2 L E[U;g;{I(r;) = 1}] 2 

n 

+ g;; 2 L E[U;Ukgigkl(rk) = 1 V k}]. 

Since g;{J(r;) = 1} ::::; en log(n) is independent of [1;, the first term in (17) is 
O{ng;; 2 e~ log2(n)} = o(1). The second term is easily seen to equal zero. D 

LEMMA A.6. Suppose that Assumptions 1.1-1.4 hold. Then 
n n 

n- 112 L L wn1(T;)e1U; = op(1), 
i~ 1 j~ 1 

n n 

n- 112 L L wnj(T;)e1ei = op(1), 
i~lj~1 

n n 

n- 112 L L wn1(T;)~U; = Op(1). 
i~ 1 J~ 1 

PRooF. We prove only the first step, as the other steps follow in a similar 
fashion. Let riJ be the event that lwn/T)I::::; Cbn log n: 

P{n-1121.-E _E wn1(T;)e1U; I> g} 
,~ 1 J~ 1 

::::; P{n- 1 / 2 1.-E _E wnj(T;)e1U; I> g, I(riJ = 1 V i,j)} 
,~1 J~1 

The second term tends to zero by Assumption 1.3(ii). For the first term, note 
that 
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The last equation holds because U; and EJ~ 1 wn/T)ejl(rij = 1 Vi, j) are 
independent for each i, and U; are iid with mean zero. It suffices to prove 

In fact, 

E{ .t wnj(Ti)ejl(rij = 1 Vi,j)}
2 

J~1 

n 

= I: E{ wnj(T;)ejl(rij = 1 V i,j)}2 

j~1 

n 

+ I: E{ wnj(T;)ejwnk(T;)ekl(rij = 1 V i,j)}. 
j+k 

The second term equals zero. The first term equals 

.t E[ { wnj(T;) ei{I( rij) = 1 V i,j}], 
J~1 

and this is O{nb; log2(n)} = o(l), as required. D 

LEMMA A. 7. Assume that Assumptions 1.1-1.4 hold. Then 

(18) 

(19) 

(20) p lim n- 1yTy = f3TB{3 + u2. 
n-- >oo 

PRooF. Since Wi =Xi+ U; and Wi =Xi+ TJ;, for the (s, m) matrix ele•
ment we obtain 

(21) n-1(wrw).m = n-1(:irx).m + n-1curx).m 

+ n-1(:iTfJ)sm + n-1(fJTfJ)sm· 

First, we prove that the second and third terms converge to zero. It follows 
from the strong law of large numbers and Lemma A.2 that 

(22) 
n 

n- 1 I: xjs~m ~ 0 a.s. 
j~l 
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Observe that 

n- 1 (XTfr).m = n- 1 [i~1X1.Ujm- i~1 t~1 wnk('l))Xk•}Ujm 

- j~1 t~1 wnk('lj)Ukm }xjs 

+ j~1 t~1 Wnk('lj)Xks} t~1 Wnk('lj)Ukm}] · 

Similarly to the proof of Lemma A.4, we can prove that 

sup I E wnk('lj)Ukm I= Op(1), 
1s;J,;n k~1 

which, together with (22) and Assumption 1.3(ii), imply that each term above 
tends to zero. The same reason implies that n- 1(UTX).m also tends to zero. 

Second, we prove 
-1 - T- 2 (23) n (U U).m ~ a-sm• 

where a-.;;, is the (s, m)th element of luu• 

n- 1 (frTfr)sm = n-l[j~1 Uj.Ujm- j~1 t~1 Wnk('lj)Uks}Ujm 

- j~1 t~1 Wnk('lj)Ukm }Uj. 

+ j~1 t~1 Wnk('lj)Uk•}t~1 Wnk('lj)Ukm} ]· 

Obviously, n- 1 EJ~ 1 Uj.Ujm ~a-.;;,. It follows from Lemmas A.4 and A.6 that 
(23) holds. Using (21), (23) and the arguments for n- 1(UTX).m ~ 0 and 
n -l(XTfr).m ~ 0, we complete the proof of (18). 

We now prove (19). Note that \VTy = WT(X/3 + G + e). From Lemma 1, 
EJ~ 1gJ = Op(c!n), so that 

I.E XJ•gJI:::;; ( .E X1~ .t g])
112

:::;; Op(cnn112 )( .E X1~) 112 
= Op(Cncn) 

j~1 j~1 j~1 j~1 

and 
n n 

cwTG-). = I: x1.i1 + I: Uj.i1 
j~ 1 j~ 1 

n { n } n 
i~1 XJ•- k~1 wnk('l))Xks gJ + 1~1 Uj.gJ. 

Obviously, n- 1 EJ~ 1Uj.g1 tends to zero. Therefore n- 1(WTG). tends to zero. 
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The proof that n - 1(WTe)8 tends to zero is similar to that of n - 1(WTfJ). ~ 0. 
Combining the above arguments and (18), we complete the proof of (19). The 
proof of (20) can be completed by similar arguments. The details are omitted. 

D 

LEMMA A.B. Assume that Assumptions 1.1-1.4 hold. Then 
n n 

n- 1; 2 E e)li = n- 112 E e;Vi + Op(1), 

n n 
n-1/2 L it/j? = n-1/2 L VJI;T + op(1). 

PRooF. We show only the first step, as the second step follows in a similar 
fashion. Let h(T) = E(XIT) and hi= h(T). By a direct calculation, 

n n n n 

n-1/ 2 L ei(V;- Xi)= n- 112 L e/1-i- n- 112 Lei L wnj(TJ{Xi- h(1J)}. 
i=1 i=1 i=1 j=l 

The first term is op(1) by Lemma A.4. The second term follows, using 
Assumption 1.1 by using the same method of proof as in Lemma A.6, upon 
remembering that for j =t- k, 

D 

PRooF OF THEOREM 3.1. Denote dn = (WTW- n'Iuu)fn. By Lemma A.7 
and a direct calculation, 

n1!2( ~n- f3) = n1!2J1~1(wry + wrw{3 + n'Iuu f3) 

= n-1!2J1~1(i:TG + XTe +fiT(;+ fJTe 

-XTU/3- fJTfJ{3 + n'Iuu f3 ). 

By Lemmas A.1-A.2, A.4-A.6 and A.8, it is an easy calculation to show that 

n1!2(~n _ /3) = n-112.:1~1 

n 

(24) X L (Viei- V;lf;,T/3 + ll;,ei- ll;,lf;,T/3 + 'Iuu /3) 
i= 1 

n 

(25) =def n- 112 E {in+ Op(1). 

Since limn--+oo n- 1E?= 1Y; = 0 and limn--+oo n- 1 E?= 1V;ViT =Band supi E(ei4 + 
IIUII4 ) < 00, it follows that the sequence of kth elements {{i\{'l} of {{in} (k = 
1, ... , p) satisfy, for any given { > 0, n - 1 Ei= 1E{ {i\{'l2I(I Ci\{'ll > (n112 )} ~ 0 as 
n ~ oo. This means that the Lindeberg condition for the central limit theorem 
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holds. Moreover, note that 

covUnJ = E{Vi(ei- V?J3)} 02 + E{(u;v?- Iuu)f3t 2 + E(u;u;Te?) 

+ E(V;u;TJ3J3Tu;u;T) + E(u;u;TJ3J3Tu;)V;. 

These arguments ensure that 
n 

lim n- 1 E cov((n;) = E[(e- UTJ3){X- E(X[T)}r2 
n->oo 

Theorem 3.1 now follows. D 

PROOF OF THEOREM 3.2. Denote 

A =n-1[yTy yTw]· A=[J3TBJ3+cr2 J3TB ]· 
n \\TTy WTW ' Bj3 B + luu ' 

A = n-1[(e + VJ3)\e- VJ3) (e + VJ3)T(U + V)l 
n (U + V)\e + VJ3) (U + V)T(U + V) . 

Note that &n2 = (1, - /3J)An(1, - ffiJ)T - ffi:Iuu ffiJ. A direct calculation using 
Lemma A.6 yields that n112(&n2 - cr 2) = n112 E4~ 1S.n + n- 112(e- Uj3)T(e•
UJ3) - n112( j3Tluu J3 + cr 2) + Op(1), where 1S 1n 1= (1, - J3J)(An - An)(1, 
- J3;>T, s2n = (1, - J3J)(An - A)(O, J3 T - J3;>T, s3n = (0, J3 T - J3J)(An -
A)(1, - J3 T)T, s4n = - ( J3 - J3JB( J3 - J3n). It follows from Theorem 3.1 and 
Lemma A. 7 that n 112 S1n converges to zero in probability for j = 2, 3, 4. To 
show that n 112S 1n = op(1) is more detailed, but follows from Lemmas A.1, 
A.4-A.6. This means that 

n 

n112( (}n2- cr2) = n-1/2 L { ( Bi- u;TJ3)2- ( j3Tluu J3 + cr2)} + op(1). 
i~ 1 

Theorem 3.2 now follows immediately. D 

PROOF OF THEOREM 4.1. Since J3n is a consistent estimator of j3, its 
asymptotic bias and variance equal the relative ones of EJ~ 1 wn/t)Oj - WJ1J ), 
which is denoted by g~(t). By a simple calculation, 

n 

Eg~(t)- g(t) = L wni(t)g(Ti)- g(t), 
i~l 

n 

g~(t)- Eg~(t) = L w;i(t)( J3Tluu J3 + cr 2 ). 

Both terms are O(n - 215) by Lemma A.1 and Assumption 1.3(iii). Theorem 4.1 
then follows. D 
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Bayesian Smoothing and Regression 
Splines for Measurement Error Problems 

Scott M. BERRY, Raymond J. CARROLL, and David RUPPERT 

In the presence of covariate measurement error, estimating a regression function nonparametrically is extremely difficult, the problem 
being related to deconvolution. Various frequentist approaches exist for this problem, but to date there has been no Bayesian treatment. 
In this article we describe Bayesian approaches to modeling a flexible regression function when the predictor variable is measured with 
error. The regression function is modeled with smoothing splines and regression P-splines. Two methods are described for exploration of 
the posterior. The first, called the iterative conditional modes (II:M), is only partially Bayesian. X::M uses a componentwise maximization 
routine to find the mode of the posterior. It also serves to create starting values for the second method, which is fully Bayesian and 
uses Markov chain Monte Carlo (MCMC) techniques to generate observations from the joint posterior distribution. Use of the MCMC 
approach has the advantage that interval estimates that directly model and adjust for the measurement error are easily calculated. We 
provide simulations with several nonlinear regression functions and provide an illustrative example. Our simulations indicate that the 
frequentist mean squared error properties of the fully Bayesian method are better than those of X:M and also of previously proposed 
frequentist methods, at least in the examples that we have studied. 

KEY WORDS: Bayesian methods; Efficiency; Errors in variables; Functional method; Generalized linear models; Kernel regression; 
Measurement error; Nonparametric regression; P-splines; Regression splines; SJM:EX method; Smoothing splines; 
Structural modeling. 

1. INTRODUCTION 

ln this article we present a fully Bayesian approach to the 
problem of nonparametric regression when the independent 
variables are measured with error. This is known to be an 
extremely difficult problem in terms of global rates of conver•
gence. Fan and Truong (1993) showed that for additive nor•
mally distributed measurement error, the optimal rate of con•
vergence is {log(n)}' for a globally consistent estimator when 
making no assumptions other than the existence of two contin•
uous derivatives. They constructed an estimator using kernel 
methods that achieve this very slow rate of convergence. 

Carroll, Maca, and Ruppert (1999) relaxed the assump•
tion of global consistency. They suggested two estimators: 
(a) a semiparametric estimator based on the S IMEX method 
of Cook and Stefanski (1994), which makes no assumptions 
about the unknown and unobserved covariates, and (b) a more 
parametric estimator that assumes that the unobserved covari•
ates follow a mixture of normals distribution. Their meth•
ods are based on fixed-knot regression splines (or polynomial 
splines; see Eilers and Marx 1996; Ruppert and Carroll 2000; 
Sec. 2.2). ln simulations, they showed that their methods are 
generally far superior to those of Fan and Truong (1993), with 
only moderate bias and smaller variability. The more paramet•
ric model tended to have by far the best performance in their 
simulation study. 

There is at least one major difficulty with the efficient but 
more parametric approach of Carroll et a! (1999). Let X be 
the true covariate and let W be the measured covariate. Basi•
cally, they propose fitting a modified polynomial spline. They 
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start with the power function basis in X described in Section 
2.2. Then the modified polynomial spline has as its basis 
functions the regression of the true basis functions in X on 
the observed covariate W. The resulting modified polynomial 
basis functions of W are very highly correlated. Their method, 
like ours and any other nonparametric method, requires the 
choice of smoothing parameters. As described by them, stan•
dard approaches to smoothing parameter estimation, such as 
generalized cross-validation (GCV) cannot be used, because 
GCV occasionally does no smoothing. This matters because in 
such cases their formulation leads to unusually great instabil•
ity of function estimation. They developed two ad hoc meth•
ods for handling this problem: put a positive lower bound 
on the smoothing parameter, and use an entirely different 
method based on estimating the mean squared error. However, 
they gave evidence that shows nonetheless that their method 
remains numerically unstable if there are more than 15 knots. 

One way to deal with this numerical instability is to use a 
different set of basis functions in X that are nearly orthogonal, 
for example, the B-spline basis. One would then conjecture 
that when the B-spline basis functions in X are regressed on 
the observed covariate W, they will not be highly correlated, 
and the method of Carroll et a!. (1999), will be more stable. 
In practice, this conjecture remains to be proven. 

Rather than trying to tweak the method of Carroll et a!. 
in this way, we set out to do something radically different. 
Specifically, we conjectured that a fully Bayesian approach 
had the potential to achieve large gains in efficiency of estima•
tion compared to previously proposed methods. One additional 
assumption is necessary-namely, the error distribution of the 
response Y about its mean was specified up to parameters. 

In this article we propose a new method for nonparametric 
function estimation when the covariate is measured with error. 
Our procedure can be looked at as the natural fully Bayesian 
extension of the techniques of Carroll et al. (1999). l can also 
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be viewed as the extension to measurement error models of the 
Markov chain Monte Carlo (MCMC) technique of Hastie and 
Tibshirani (1998) or, viewed more broadly, the entire Bayesian 
formulation of smoothing splines (e.g., Wahba 1978, 1983; 
Nychka 1988, 1990). 

The methodology that we present is new in two respects. 
First, the adjustment for bias due to measurement error comes 
automatically from the Bayesian machinery. fu contrast, other 
methods explicitly analyze the bias and devise a correction 
in a more ad hoc fashion. Second, and perhaps more impor•
tantly, the smoothing parameter selector, which also comes 
automatically from the Bayesian approach, is designed for the 
measurement error problem. Earlier work either did not pro•
pose a smoothing parameter selector (Fan and Truong 1993) or 
applied a smoothing parameter selector that ignores the effects 
of measurement error. However, measurement error has large 
effects on both bias and variance, and a smoothing parameter 
that is optimal for correct! y measured covariates may be far 
from optimal in the presence of measurement error. 

fu Section 2 we describe some background information on 
smoothing and regression P-splines that is necessary for our 
development. fu Section 3 we present our methodology. Two 
approaches are used. One is straightforward from a calcula•
tion standpoint, but estimates only the conditional mode. The 
second method uses the fully Bayes approach and finds the 
entire posterior distribution. fu Section 4 we presents simula•
tions of these two algorithms. The results indicate that even as 
a frequentist estimator, our fully Bayesian method is at least 
competitive with that of Carroll et a!. (1999), and sometimes 
is much better. fu Section 5 we provide an illustrative example 
and in Section 6 we present a discussion of the results. 

2. SMOOTHING AND REGRESSION P-SPLINES 

Here we present a brief introduction to smoothing and P•
splines. For additional information, see the work of Wahba 
(1978, 1990), Green and Silverman (1994), Hastie and Tib•
shirani (1998), and Eubank (1999) on smoothing splines and 
Eilers and Marx (1996) and Ruppert and Carroll (2000) on 
P-splines. 

2.1 Smoothing Splines 

Assume that Yi = m(X;) + Ei, where Ei has mean 0 and 
variance u;. Let [a, b] be the interval for which an esti•
mate of m is sought. Let g be the best natural cubic spline 
(NCS) approximator of m, that is, the NCS that minimizes 
I:7~r {m(X1)- g(X,)}'. ff m is smooth, then the error in 
approximating m by g typically is negligible compared to the 
estimation error, so we assume that m = g. 

A smoothing spline is defined as the minimizer over g of 
the penalized sum of squares, 

S(g) =trY,- g(X,))'+a {lg''(x))'dx, (I) 
i=I a 

for a > 0. This minimizer is a NCS with knots at the 
distinct X; values. The integral term of (1) is a rough•
ness penalty, and a is the smoothing parameter. Let g = 
{g(X1),g(X2), ••• ,g(X,)}'. The penalty term can be writ•
ten as aJ:{g11 (x)J2dx = agTKg, where K is an n x n•
dimensional matrix of rank n - 2, defined by Eubank (1999). 

The smoothing spline minimizing S(g) is g = A(a)Y, where 
A(a) = (I+aK)- 1 andY= (Y1 , � � � ,Y,)T. The vector g 
uniquely defines the smoothing spline. 

The Bayesian approach to smoothing splines gives the vec•
tor g a prior density proportional to the "partially improper" 
Gaussian process, 

where M = n - 2 and K is defined as before. Although 
both K and g depend on the knot locations, because g1Kg = 
J: {g" (x))' dx, this prior is independent of the knot locations. 
If the observations Y1 are independent and normally distributed 
with mean g(X1) and variance u;, then the posterior distribu•
tion for g is multivariate normal with mean g = A( a )y and 
covariance matrix u'lA(a). 

2.2 Regression P-Splines 

Smoothing splines become less practical when n is large, 
because they use n knots. A more general approach to 
spline fitting is penalized splines, or simply P-splines, a 
term borrowed from Eilers and Marx (1996). Let B(x) = 
{B1 (x), ... , BN(x))', N :S n be a spline basis. The P-spline 
model specifies that for some N-dimensional p, g(x) := 
B(x)Tp. Let D be a fixed, symmetric, positive semidefinite 
N x N matrix and let a be a __smoothing parameter. The penal•
ized least squares estimator fJ(a) minimizes 

t[Y,-B(X,)Tpj' +afJTDfJ. 
t=l 

Let 13 be then x N matrix with ith row equal to B(X1)T. 
Then the penalized least squares estimator is 

The choice of k has been discussed by Ruppert (2000) who 
found that the exact value of k is not important, provided that 
k is at least a certain minimum value. Generally, k = 20 suf•
fices for the types of regression functions found in practice, 
and k = 40 provides a margin of safety. Of course, there will 
be exceptions where more knots are required, for example, a 
long periodic time series. Also, functions whose higher deriva•
tives are large may not be well approximated by, say, quadratic 
splines; see Figure 3. 

Here we use the term "P-splines" to refer to both P•
splines and smoothing splines as a special case. Convenient 
classes of P-splines are the penalized B-splines of Eilers 
and Marx (1996) and the closely related splines of Ruppert 
and Carroll (2000). The latter are the pth-degree polynomial 
splines with k fixed knots, t1, � � � , tk. The knots could be 
equally spaced on the range of the X1 's, although we prefer 
to select them at the quantiles of the X's. A convenient basis 
is B(x)=(i,x,x2 , ••• ,xP,(x-t1 )~, ••• ,(x-t,)~)r Then 
{32+p� �� � , {3N are the sizes of the jumps in the pth derivative 
of g(x) = B(x)Tp at the knots. Ruppert and Carroll (2000) 
penalize these jumps by letting D be the N x N diagonal 
matrix with p + I O's followed by k I 's along the diagonal. 
Then pT D/3 = 4= 1 f3i+p+j is the sum of the squared jumps. 
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2.2.1 Bayesian P-Splines. We partition Pinto the coeffi•
cients of the monomial basis functions of the truncated power 
basis functions by letting pT =(Pi. Pil where P, is of length 
p + 1 and /12 is of length k. 

The penalized least squares estimator is the mean of the 
posterior distribution of fJ when fJ 1 has an improper uniform 
(on R'+ 1) prior density and /12 has a proper prior proportional 
to y'i2 exp{-(y/2)PiP2 } where y = afu; and, as before, k 
is the number of knots. This prior on fJ induces a prior on 
g(·) and g because g(x) = B(x)rp. 

The posterior of fJ, conditional on u; and a, is 
N{(:BT:B + aD)-l:lJTY,u;(:BT:ll + aD)- 1). Let A(a) = 
:B(:BT:B + ao)-l:lJT. Then the posterior distribution of g = 
:B/1, conditional on (a,u;), is N{A(a)v,u;A(a)), the same 
result obtained for smoothing splines. Often D is singular but 
13T 13+aD is nonsingular, so that the prior is improper but the 
posterior is proper. 

3. GENERAL MODEL 

We consider the measurement error model 
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mode of g by the iterative conditional modes (K:M) algo•
rithm (Besag 1986). The calculation is fast and easy to blend 
with a program that calculates a P-spline. The K:M method 
also serves to create starting values for the second method, 
which is fully Bayesian but involves more complex and time•
consuming calculation. The former is described in the next 
section; the latter, in Section 3.2. 

3.1 The Iterative Conditional Modes Algorithm 

In this section we describe an iterative method of estimating 
g in the presence of measurement error by finding the mode 
of the posterior in (5). This methodology sacrifices the philo•
sophical advantages of a fully Bayesian analysis for compu•
tational ease. In the first step, we estimate the three variance 
components u;, u;, and a; these estimates are held fixed for 
the rest of the procedure. We first describe the estimation of 
these variance components. 

Y, = m(X,)+<,, i= l, ... ,n, 

If m; = 1 for all i = I, ... , n, then the user must sup•
ply an estimate for u;; otherwise, the usual pooled sample 
variance of the W's from analysis of variance calculations 
is used. If sJ is the sample variance of wil' ... � wim • then 

(3) a,;= L:~r (m,- l)s!f L:7~, (m, -1). ' 
The initial estimate for the X parameter is x<o) = 

(WI' ... 'Wn)� where wi = E7~1 W;)mi. A naive smooth•
ing spline, g<o), is estimated by assuming X = xco) and fit•
ting the standard nonmeasurement error smoothing spline. The 
smoothing parameter for the naive estimator, &, is fit using 
cross-validation (CV) or GCV; we use CV in our numerical 
work in this article. We use the standard estimate of u; (see 
Green and Silverman 1994), 

where the Ei are the independent normal random variables with 
mean 0 and variance u;. The X's are not observable (i.e., they 
are latent variables), but W that are surrogates for the Xs are 
observed, 

i= l, ... ,n, j=l, ... ,m,, (4) 

where the Uu are independent normal errors with mean 0 and 
variance uJ. 

Model (4) is more general that it first appears. It can be 
interpreted as stating that a known function of the observed 
covariates (W) is the same function of the latent variables, 
plus independent, homoscedastic, normally distributed mea•
surement errors. We have written (4) as if the function were 
the identity function, but it could be anything (e.g., the loga•
rithm). The reason for this generality is that in (3), the function 
m(·) is unknown, so that, for example, if m,(v) = m{exp(v)), 
then m,{log(x)) = m(x). 

The mean function m is modeled as a P-spline with smooth•
ing parameter a. We use the notation [A] and [A[B] to repre•
sent prior densities and conditional densities. 

Denote 6 = (g, X,u; ,u;, a). The posterior density is 

[8[Y, W]"' [Y[g, X,u,;J [W[x,u.;J [g[a] [u,;] [u;J [X] [a]. 
(5) 

The form of (5) has a structure that is common in latent 
variable models. We exploit an important feature of such 
models, namely that in the Gibbs sampler or other Monte 
Carlo computational approaches, once X1 , � � � , Xn are gen•
erated from the posterior, estimation of g becomes a stan•
dard problem for which much software exists. A basic mod•
eling issue and computational problem is how to generate 
x" ... ,x •. 

Two approaches to the estimation of g are taken. The first 
method, which is "quick and dirty;• estimates the posterior 

a;= t {Y,- gCo>(5q0l) }'/trace{ I- A( a)). 
i=l 

A normal prior distribution is used for each X;, with mean 11-x 
and varianceu;, where J..tx andux are constants. In the algo•
rithm, we replace these by the mean and standard deviation of 
theWs. 

Conditional on a;, a;, and&, the posterior distribution is 
proportional to 

[ 
1 " 1 " m, 

exp - 2.<7; ~{Y,- g(X,)}2 - 2.<7; ~E(W,j- X,)' 

I ~ 2 a T l - 2u_; {=;(X,-!J-J - 2.0'ig Kg. (6) 

We use the K:M approach described by Besag (1986) to find 
the posterior mode of (6). This approach can be also phrased 
as generalized EM (Meng and Rubin 1993). The approach is 
to find the posterior mode by sequentially finding the mode 
of the complete conditional distributions. This is in contrast 
to Gibbs sampling, where observations are iteratively drawn 
from the complete conditionals. In summary, ICM iteratively 
updates the parameters with their modal values. 

ICM Algorithm 

1. Find the estimates a;, U;, &, and the naive spline g<o). 
Seti= I. 
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2. Fixing K, find the vector X that maximizes (6) condi•
tional on g(i-r). These are labeled x(i>. There is no analytic 
solution available. We use a grid search to find the maximum 
for each component of X. The complete conditional for each 
component of X is independent of the other components of X, 
because we have fixed K. Therefore, this maximization can 
be done individually. We maximize each component using a 
uniform grid evaluation, followed by a finer grid used in the 
region of the maximum value from the first grid. 

3. Find the vector g<i) that maximizes (6) conditional on 
X( I). This is the usual P-spline for a nonmeasurement error 
problem, which is described in Section 2. 

4. Set i = i + I and repeat steps 2 and 3 until the estimate 
g<il converges. 

Figure 1 demonstrates the ICM method with simulated data. 
The data consist of 100 X's generated from a standard normal 
distribution. The responses, Y, were generated from a normal 
distribution with a standard deviation of .3 and a mean func•
tion of 

m(x) = sm(1Tx/2) 
1 +2x2{sign(x)+ 1} 

(7) 

Each m, = 2 and the Wij for j = 1, 2, are normally distributed 
with a mean of X; and a standard deviation of .8. Figure 1 

01• 

-2 -1 

Figure 1. The (x,y) Pairs Are Shown With Open Diamonds Whereas 
the ('W, Y) Observations Are Shown With Solid Diamonds. The true 

regression function is shown with the solid line. The naive spline esti�

mate, the ICM spline from one iteration (/CM-1), and the converged 
JCM spline (ICM) are also shown. The 1's represent the (X (I), Y) pairs. 

shows the (x, y) pairs with open diamonds and the (W, y) 
pairs with solid diamonds. The regression function m(x) and 
the naive regression spline, g< 0 l, are presented, and the esti•
mated (XOl, Y) pairs from the first ICM iteration are shown 
by the "1" symbols. The naive spline, the estimated curve 
from one iteration of the X:M procedure, gO>, and the curve 
judged to have converged, gCro), are presented. 

The motivation behind the X:M approach is that it uses 
some of the strengths of the Bayesian approach but is very 
easy to program and fast to compute. An S-PLUS function for 
the ICM approach is available from the first author. 

The major difficulty with the ICM method as a general 
method for measurement error models can be seen most 
clearly by considering parametric models g(X) = g(X, {3) of 
known form but with an unknown parameter {3. If in (6) 
we set a= 0, delete the term L7~, (X, -ILJ 2 /(2cr;;J, replace 
g(X,) by g(X,, {3), and maximize in the unknown param•
eters {X" ... , X11 ,{3,uJ,u;), then we are computing what 
is known in the literature as the functional maximum likeli•
hood estimate (Fuller 1987). Functional models assume that 
XI, ... ' xn are fixed parameters to be estimated. In contrast, 
in a structural model, the Xi's are latent variables from a dis•
tribution depending on structural parameters; one integrates 
the X; 's out of the likelihood and maximizes simultaneously 
over the structural and other parameters. In linear regression, 
the functional approach is known to yield consistent estimates 
of regression parameters. fu nonlinear regression, this need 
not be the case. Fuller(1987) and Amemiya and Fuller (1988) 
studied parametric nonlinear regression problems as n -+ co 
and uJ-+ 0 in such a way that uJ ex n- 112 • They found that 
in the terms of rate of convergence, the functional approach 
is no better than the naive approach, because both have bias 
of order O(a; J = O(n- 112 ); see eq. (2.11) of Amemiya and 
Fuller (1988). 

This similarity with functional modeling suggests that 
although the ICM approach is computationally simple, it need 
not yield consistent estimates of the regression function, not 
even in parametric problems. The next section describes the 
fully Bayesian approach, which is computationally more dif•
ficult but has the benefits of the Bayesian machinery. The 
fully Bayesian approach is structural, and with diffuse priors, 
one gets essentially the structural maximum likelihood esti•
mate (MLE), a consistent estimator. In this context, the ICM 
method largely serves to produce starting values for the full 
Bayesian approach. 

3.2 Fully Bayesian Approach 

In this section we develop the fully Bayesian approach to 
this problem. The X::M approach estimates the variance com•
ponents and keeps them fixed, allowing the smoothing spline 
estimate and the X's to fluctuate. fu this section, prior distri•
butions are placed on all parameters, including the structural 
parameters (p..x,u;) and the variance components (u;,u;), 
and the joint posterior distribution is calculated. One of the 
benefits of this approach is that observations of the smoothing 
spline are generated from the posterior, and thus we estimate 
the entire posterior distribution of g, not just its mode. Thus 
calculation of the various forms of "error bars" is straightfor•
ward. These credible sets take into account the measurement 
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error of the independent variables and the use of a data-based 
smoothing parameter. 

The method is as follows. Without loss of generality, we 
replace a;u; by' } ' . The prior distributions for u; and u; are 
inverse-gamma distributions, and the prior distribution for 'Y is 
a gamma distribution:u;' ~ IG(A., B,),u; ~ lG(Au, Bu). and 
y ~ G(A1 , B1 ). We use the definitions of the inverse-gamma 
and ganuna distributions (respectively) from Berger (1985): 

f(x[A,B) = f(A)~AxA+I exp(-L )/(o.oo)(x) 

and 

I _ 1 A-! (-X) f(x A, B)- r(A)BA X exp B /(O,oo)(x). 

There is no reasonable prior distribution for the X's, which 
eases the computational burden. This prior distribution also 
can easily change from application to application. In some 
examples, a flat reference prior may be reasonable, whereas 
in others, a normal hierarchical distribution may be appropri•
ate. A mixture of normals is a flexible approach that has some 
intuitive appeal (see Carroll, Roeder, and Wasserman 1999). 
A difficulty is that the X,s continually change throughout the 
MCMC algorithm, and updating this mixture at every itera•
tion is chronically slow. We leave the choice of prior distri•
bution for X an open choice for the particular application. 
For the simulations and examples in this article, we use a 
hierarchical Bayes approach. A normal distribution with mean 
f.l-x and variance u; is used, where f.l-x ~ normal(dx, t;) and 
uJ ~ IJ(A,, BJ. 

The hyperparameters that are fixed a priori and thus are 
"tuning constants" are denoted by Roman fonts. These are 
Ay, By, Au, Bu, Ay, B1 , dx, t~, Ax, and Bx. 

Assuming the hierarchical normal structure for [X], the joint 
posterior is proportional to 

{ 
1 " 1 " m; 

exp - 'lni ~{Y,- g(X,))'- 2nJ ~~(Wu- X,)' 

1 " 1 } - 2n; ~(X;- JLJ2 - 21; (JLx- dx)' 

x exp{-(y/2)gTKg- _I _ _ _ l_ 
B£u; BuuJ 

-~-B.~;} 
xu ;2(n/2+A,+I)U ;2(1/2Ej_1 m;+Au+I) 

xu;2(nfz+Ax+I)1'(A 1+MJ2-I), (8) 

where M = n - 2 as in (2). The sampling is done using a 
successive substitution algorithm (Gelfand and Smith 1990). 
The complete conditional distributions for the parameters are 

g[X, y,u;', Y, W ~normal{A(u;'y)y,u;'A(u;'y) }. 

[X,[W,,g,u',u;, Y, W] 
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u;[g,X, Y, W 

~ lG(A,+n/2, [1/B,+ (1/2) t{Y,- g(X,)J'r'} 

u;[x~ n(Au+(l/2) 

tm,. [lfBu+(l/2)t~<w,j-xYr} 
y[g,X~G(Ay+~, [1/By+~gTKgr} 

JL,[X ~ normal{(nXtx +dpJ)/(nt;+u;),u;t;f(nt; +u;)), 

u;[x ~ IG [Ax+ nj2, { B_;1 + (1/2) t(X,- JLJ' rl 
The estimates u;, u;, Y. x(oo), and gCl> from the ICM 

approach are used as starting values for the MCMC algo•
rithm. Observations from each of the complete conditionals 
are drawn iteratively in the order just presented. The gener•
ation of an observation of g is computationally difficult for 
smoothing splines, because they have n knots. Because the 
values of X, K (for smoothing splines), and y are continually 
changing in the algorithm, the matrix A(u;'y) (which is n x n) 
and its inverse must be recomputed for each iteration of the 
MCMC algorithm. Hastie and Tibshirani (1998) discussed an 
algorithm for generating observations of g in O(n) operations. 
Computations can be reduced by using P-splines with fewer 
than n knots, with no real loss of precision (Ruppert 2000). 

The complete conditionals for the X; 's require a 
Metropolis-Hastings step. This is done by generating a can•
didate observation of Xi from a normal distribution with a 
mean of the current value of Xi and a standard deviation 
of 2n ~i) / ,J'm;, where u ~i) is the current value of u u in the 
MCMC algorithm. Using Wi as an estimate of Xi, without the 
information in the regression function, has a standard error of 
u !il I rm;. Using the rule of thumb of a candidate value with a 
standard deviation twice the standard deviation of the marginal 
posterior provides a conservative candidate distribution for X;. 
In terms of efficiency of the Metropolis-Hastings step, in our 
experience it is better to overestimate this standard deviation 
than to underestimate it. The evaluation of the complete con•
ditional for X, is computationally straightforward. 

Generating observations from each of the other complete 
conditionals is straightforward and fast. Because the position 
of X changes throughout the algorithm, when using smoothing 
splines, we keep track of the value of g at a uniformly dis•
tributed grid of points. For each realization of g in the sampler, 
the value of g for each grid point is recorded. This enables us 
to keep track of pointwise moments and percentiles. For fixed•
knot P-splines, g is defined by p, the coefficients of the basis 
functions. Because the basis functions stay fixed as X varies, 
there is no need to record the values of g on a grid. Rather, 
one keeps track of the realizations of fJ. For any realization of 
P there is a corresponding realization of g given by g = 13{3. 
Details of implementation are given in the Appendix. 

Having observations from the joint posterior distribution 
provides a powerful tool for inference. The pointwise mean 
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curve is a natural estimate of the regression mean function m. 
Pointwise credible intervals can also be calculated very eas•
ily from the observations of g. Functions (linear or nonlinear) 
of the regression function can also be estimated, along with 
standard errors. This is the approach used by Wabba (1983) 
in nonmeasurement error cases and by Hastie and Tibshi•
rani (1998) in nonmeasurement error semiparametric models. 
Wahba's work predated the revolution in Bayesian computa•
tions, and she treated the smoothing parameter as fixed. Hastie 
and Tibshirani used the Gibbs sampler to adjust the credible 
sets for uncertainty in the variance components that define the 
smoothing parameter. In this article, use of the Gibbs sampler 
also adjusts the credible sets for measurement error. 

Although the regression function and its functionals are the 
main focus of this article, inferences about the mismeasured 
X/s can also be made. Posterior means and credible inter•
vals can easily be constructed for each of the individual Xi's. 
The variance components may also be of interest, and like•
wise constructing estimates and credible intervals for them is 
straightforward. 

For an example of this method, we use the same data 
from the I:M example and use smoothing splines. A point•
wise posterior mean curve is used for the estimate of m. 
Credible curves are calculated by interpolating the pointwise 
100(1- a)% credible intervals. A bum-in time of 500 obser•
vations is used with 1,000 observations from the posterior. 
Figure 2 shows the estimate of g and the 90% pointwise cred•
ible curves. 

There are at least two possible methods for choosing the 
smoothing parameter for a smoothing spline. We place a 
prior distribution on y; Hastie and Tibshirani (1998) used 
an identical procedure within serniparametric models. It is 
worth noting that by placing a continuous density prior on 
y, we have automatically given zero prior probability to the 
possibility of doing no smoothing at all. This is an auto•
matic way of avoiding the possibility of gross undersmooth•
ing that caused so much trouble for the methods of Carroll 
eta!. (1999). 

An alternative to this method that we recommend is to 
choose the smoothing parameter using a criterion such as CV 
or GCV during each iteration of the successive substitution 
sampling. This method loses some of the Bayesian interpreta•
tion, is computationally expensive, and does not account for 
the effects of measurement error. However, a referee asked 
that we evaluate this procedure; see Section 4. 

4. SIMULATIONS 

4.1 Basic Simulations 

We performed a series of simulations to compare our meth•
ods with those of Carroll et a!. (1999). The results presented 
here are based on smoothing splines, but checks show that P•
splines with 30 knots give much the same results. In each case, 
200 simulated datasets were generated, with Xi generated as 
independent normal random variables with mean f-Lx and vari•
ance u;, with two replicates (mi = 2), and with €i also nor•
mally distributed. In each simulation, for the fully Bayesian 
method, the following prior distributions are used: u; rv 
13(1, 1), u;; ~ IG(l, 1), y ~ G(3, 1000), J.t, ~ N(O, 10'), 

0 
ci 
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"' " 
-3 -2 

� 

-1 

Figure 2. An Example of the Fully Bayesian Spline. The solid curve 

is the true regression function. The dashed middle cuNe is the mean of 

the posterior of the regression function. The dotted error bars represent 

the piecewise 90% credible inteNa/s. 

andu; ~ 13(1, 1). These priors were selected because of their 
relative flexibility. They are all proper, yet they are not strong, 
in the sense of bringing a lot of information to the problem. 
We found the results insensitive to moderate modifications of 
these priors. The flexibility of these priors is demonstrated by 
their success in the different regression functions used in the 
simulations. 

For purposes of bias and mean squared error calculations, 
the smoothing spline estimates of g were computed on a grid 
of 10 I points in the interval [a, b ], the interval chosen to con•
tain most of the distribution for X. The mean squared biases 
and mean squared errors were computed over this grid. 

It is impossible to assess convergence of the MCMC chain 
for all simulated data sets. Instead, for a few selected datasets, 
we used tests of convergence (Gelman and Rubin 1992) sep•
arately for each parameter and also for the estimated function 
on a few selected grid points. 

The first five cases considered were as follows: 

Case 1: The regression function, m, is given in (7), with 
n = 100, a= -2.0, b = 2.0, u?; = .32 , u;; = .82 , J.t, = 0, and 
u1=1. 

Case 2: Same as case 1, except n = 200. 
Case 3: A modification of case I except that n = 500. 
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Table 1. The Mean Squared Bias and MSE for the Simulation 

Method Case 1 Case2 Case3 Case4 Cases Case6 Case 7 Cases 

Mean squared bias x 10 2 

Naive 5.59 4.92 521 1108 3733 4.83 4.80 1527 
ICM 2.98 2.22 2.04 629 1541 220 1.94 8.51 
Bayes .78 .38 1.04 17.4 468 1.74 1.68 620 
Structural(5) 1.38 .62 .46 3.7 838 1.47 1.48 12.82 
Structural(15) 1.44 .60 .66 3.3 226 1.75 1.70 12.36 

MSE x10' 

Naive 6.91 5.57 5.38 1155 3793 5.77 5.84 16.48 
ICM 5.93 3.87 329 751 1948 4.36 3.93 12.38 
Bayes 2.84 1.56 1.47 195 1031 2.69 2.49 7.41 
Structural(5) 8.17 3.82 1.73 217 2032 727 7.91 16.84 
Structural(15) 9.90 5.40 1.85 237 799 6.94 9.91 2022 

NOTE: The regression functions are m(x) = sin(1TX/2)/[1 + :bc2 { sign(x) + 1} ] (cases 1, 2, 3 and 6), m(x) "' 1 OOOX~(l - x)~ (case 4), and m{x) = 1 Osin(41TX) (case 5). 

Case 7 is same as case 1 except that X Is a normalized chl-squared(4) random variable, and ~ Is generated as a Laplace random variable. Case 8 is same as case 

1 except that m(x) = H(tOOX)+H{ -100(x- .S)}, where H(x) = {1 +exp(-x) } - 1 . This function Is poorly fit by a regression P-spllne with 35 knots. 'Naive" Is the natve 

smoothing spline, "ICM" is the fully iterated ICM method, "Bayes� is the fully Bayesian method, and "Structural(m)" is the structural regression P-spline of Carroll et al. 
{1999) with m knots. In each column, the smallest MSE values is in boldface. 

Case 4: Case I of Carroll et a!. (1999). so that m(x) = 
IOOOx~(l- x)~. x+ =xl(x > 0). with n = 200, a= .I. b = .9, 
IT:= .00152 , IT:= (3f7)o};. /Lx = .5, and IT;= .252 

Case 5: A modification of case 4 of Carroll et a!. ( 1999), 
so that m(x) = 10sin(4'1Tx), with n = 500, a= .I, b = .9, 
uJ = .052, u; = .1412 , f..Lx = .5, and u; = .252 • 

The methods compared were the following: 

• Naive smoothing spline fit ignoring measurement error 
• Fully iterated ICM approach 
• Fully Bayesian approach 
• Structural method (Carroll et a!. 1999), 5 knots 
• Structural method. 15 knots. 

Table 1 presents summary results for mean squared bias and 
mean squared error (MSE). The S IMEX method discussed by 
Carroll eta!. (1999) using a 40-knot quadratic P-spline and a 
quadratic extrapolant was also computed, with results better 
than the naive estimator but generally inferior to the others. 
The striking feature of this table is that our Bayesian estimator 
has at least as good frequentist properties as the frequentist 
methods. fu cases 1 and 2 it clearly dominates, having less 
than half of the MSE of the other methods. In case 3, it MSE 
efficiency is 20% greater than the structural spline with 15 
knots, whereas in case 5 it is only 25% less efficient. The 
improvement of the fully Bayesian method over the frequentist 
methods is especially large for smaller sample sizes, cases I 
and 6 for example, where n = 100. 

Clearly, even this limited simulation suggests that our 
Bayesian method is at least competitive with other methods 
proposed previously in the literature. 

4.2 Robustness to Priors 

Our priors are proper yet not particularly informative. How•
ever, as suggested by a referee, it is interesting to compare our 
results when different priors are used. Here we focus on case 
1 in the simulation, with the priors modified as follows: u J "'"' 
IG(3. 1), IT:~ IG(3. 1). 'Y ~ G(2, 2000), !Lx ~ N(O. 100'), 
and IT;~ D(3. 1). Compared with Table I. when we ran 

the simulation using these priors, the MSE of the Bayesian 
approach changed from 2.84 to 2.53, a minimal change. We 
have run selected exercises on datasets with different priors, 
and in all cases there were only minimal changes. 

4.3 Distributional Robustness and Model 
Misspecification 

The method that we have developed assumes that X and • 
are nonnally distributed. and that the function m(x) is ade•
quately represented by a spline. We ran a limited number of 
simulations to study violations of these assumptions. 

Case 6: The same as case 1 except that X is a normalized 
chi-squared(4) random variable. Squared bias and MSE are 
evaluated on [ -1.25, 2.00[. 

Case 7: The same as case 1 except that X is a normal•
ized chi-squared(4) random variable and E is generated as a 
Laplace random variable. Squared bias and MSE are evaluated 
on [-1.25. 2.00]. 

Case 8: The same as case I except that m(x) = H(lOOx) + 
H{-IOO(x- .5)), where H(x) ={I +exp(-x))-1 � This func•
tion is poorly fit by a regression P-spline with 35 knots; see 
Figure 3. The results are also displayed in Table I. 

Jn case 6, where the distribution from X is far from the 
normal distribution, the Bayes method is still more efficient 
than the other methods. For case 7, where in addition the dis•
tribution for E is nmmormal, we see that the Bayes method is 
still best. although as expected with a small loss of efficiency. 
We are not sufficiently bold or naive to suggest that the Bayes 
method will retain distributional robustness in all cases, but 
the results are at least encouraging in the case of small model 
deviations. 

Jn case 8, it is the spline representation of the function m(x) 
that fails. Because all of the methods in Table 1 are based on 
splines, it was difficult to guess a priori what would happen 
in the simulation, although one perhaps would have expected 
that all the methods would be equally bad. although as it turns 
out the Bayes method had the smallest bias and MSE. 
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Figure 3. The Function m(x) = H(100x)+ H{- 100(x- .5)}, Where 
H(x) = {1 + exp(-x) }- 7 (--:), and the Best-Fitting Quadratic 
P-Spline With 35 Knots (--- -). 

5. EXAMPLE 

This article was partially motivated by the analysis of a real 
dataset. Unfortunately, we do not have pennission to discuss 
the study details here. or to make the data available to the pub•
lic. The data that we have have been transformed and rescaled, 
and random noise has been added. 

Essentially, there is a treatment group and a control group, 
which are evaluated using a scale at baseline ( W) and at the 
end of the study (Y). Smaller values of both indicate a more 
severe disease. The scale itself is subject to considerable error, 
because it is based on a combination of self-report and clinic 
interview. The study investigators estimate that in their trans•
formed and rescaled form, the measurement error variance is 
approximately u; = .35. 

A preliminary Wilcoxon test applied to the observed change 
from baseline, Y- W, indicated a highly statistically signifi•
cant difference between the two groups. 

ln the notation of (3), the main interest focuses on the pop•
ulation mean change from baseline a(X) = m(X)- X for the 
two groups and, most importantly, on the difference between 
these two functions. 

Preliminary nonparametric regression analysis of the data 
ignoring measurement error indicates possible nonlinearity in 
the data. A quadratic regression is marginally statistically sig•
nificant in the control group (p "" .03) and marginally non•
statistically significant in the treated group("" .07). When we 
corrected the quadratic fits for the measurement error (Cheng 
and Schneeweiss 1998) and bootstrapped the resulting param•
eter estimates, both p values exceeded .20, although the fitted 
functions had substantial curvature. Thus the evidence for a 
linear model is mixed. We are interested in understanding the 
nature of the statistically significant difference between the 
two groups as evidenced by the Wilcoxon test. 

Figure 4 plots LI.(X) for the placebo and treatment group 
using the fully Bayesian method. The functions are fairly sim•
ilar in shape, with the treated group having higher values, 
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Figure 4. Estimate of the Function !:J.(x) = m(x)- x for the Control 
Group (--- -)and the Treatment Group (--:) in the Example. 

essentially uniform in the range [ -1.50, 2.25] and covering 
most of the distribution of X. Both fitted functions exhibit cur•
vature, although for those with true baseline score exceeding 
0, the fitted functions are fairly linear. 

Figure 5 shows the differences between the two functions, 
along with the 90% pointwise credible interval using the fully 
Bayesian method. The upper part of this interval is below 0 
from approximately -1 to 2, and thus is in agreement with 
the Wilcoxon analysis. Interestingly, there is no evidence that 
the treatment is particularly effective for those who have the 
most severe disease at baseline (i.e., those with a true baseline 
score less than -1 ). 

6. DISCUSSION 

The Bayesian approach to measurement error, modeling the 
mismeasured variables as latent random variables and inte•
grating them out, is a powerful one. In this article we have 
developed a Bayesian method for nonparametric regression in 
the presence of measurement error. By modeling a smoothing 
spline from a Bayesian standpoint, we create algorithms to 
calculate the posterior distribution of the regression function. 
The resulting estimate accounts for the effects of measurement 
error both on the estimator and on the smoothing parameter. 
The resulting smoothing parameter selector appears to be the 
first to adjust for the effects of measurement error. 

Two algorithms are presented. The first algorithm is a quick•
and-dirty method to find a posterior mode. The technique, 
based on the :X:M procedure, is easy to combine with a 
program that calculates splines and is very fast. The fully 
Bayesian procedure is based on an MCMC algorithm. The 
fully Bayesian procedure is computationally more difficult but 
benefits from the modeling of each unknown and exploring 
the posterior, rather than finding the mode. 

The simulations demonstrate the flexibility of the fully 
Bayesian approach, and even its efficiency in the frequentist 
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Figure 5. Estimate (solid line) of the Difference of the Function 
l:l(x) = m(x)- x Between the Treatment Group and the Control Group 

in the Example (control-treatment) With 90% Pointwise Credible Inter�
vals (dashed lines). 

sense, at least in the examples we have investigated. The fully 
Bayesian approach also enables inference on more than just 
the regression function. 

We believe that the fully Bayesian approach works better 
than the previous proposals is because: often one can esti•
mate the unknown X; significantly more accurately using all 
information in the data about xi rather than using just the 
wij � j = l,- --. n,. It is possible that a likelihood-based fre•
quentist spline approach can also take advantage of this infor•
mation, but such work is clearly outside the scope of this arti•
cle. Many errors-in-variables techniques in parametric prob•
lems, and the technique of Carroll et aL (1999) in the non para•
metric problems, and estimate X; using only the Wij· However, 
there is information in Y; about X;. and the fully Bayesian 
approach extracts this information. This fact can be seen in (9) 
for the conditional density of X1 given the other parameters. 

As an illustration, we generated data from the follow•
ing model. The sample size was n = 201, the X1 were 
normal(!, 1), m1 = 2, and m(x) = sin(2x). Also "• = .15 and 
u u = 1. The fully Bayesian estimate of m is the spline fit 
with the imputed X's, averaged over the Gibbs sample. Thus 
the crucial quantity is how close the imputed m(X,) are, on 
average over the Gibbs samples, to the actual value of this 
quantity. In examples such as this one where m is nonmono•
tonic, for some cases the imputed X; might not be close to 
the actual X, but the imputed m(X,) might be close to the 
true m(X,). For estimation of m(-), the latter is good enough. 
Therefore, we compared various estimates of the X; by using 
the norm l!m(X)- m(X)[[, where X= (X,, ___ , X"Y is the 
vector of true X; and similarly X is the vector of predicted X;. 
Note that m( ·) here is the true regression function. We are not 
comparing estimates of m(·), only estimates of the X;. Con•
sider two estimators of X. The first estimator is the conditional 
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expectation of X; given Wi. Because {X;, W;) is jointly nor•
mal, this is the optimal estimator given only wj. The second 
estimator uses the X; from the Gibbs output and thus is a sam•
ple from the distribution of X; given the Y; and the Wii. We 
calculated [[m(X)- m{E(X[W)J[[ and l!m(X) -ave{m(X)J[[ 
where "ave" means average over the MCMC output and is 
thus a Monte Carlo estimate of conditional expectation given 
the Y; and the Wij· For six samples, the ratios of these norms 
were 3.1, 3.7, 3.8, 2.7, 2.1, and 4.2. These values are consis•
tently well above 1, showing that the fully Bayesian approach 
is giving more information about X, than what is available 
from W1 alone. The latter also uses the full structural model 
for the marginal distribution of the X1, so it is not the struc•
tural assumption that is giving extra information about the X1 

to the Bayesian estimator; rather, it is the regression model 
relating Y; to X; that provides this information. Clearly, this 
leaves open the possibility that with highly nonnormal errors, 
or highly heteroscedastic ones, the misspecified information 
from our simple model will lead to bias or other deleterious 
behavior in the Bayesian method. 

We study the case where the measurement error and nat•
ural error are normally distributed. In most of the cases in 
the measurement error literature, the results are robust to the 
assumption of normality, once the additivity of errors in ( 4) is 
satisfied, possibly by transformation. Extending the normality 
of the E's in (3), the natural error, to other distributions adds 
a level of complexity to the problem, because the normal•
ity of the complete conditional distribution for the spline will 
no longer hold. The methods presented in this article could 
be naturally combined with the work of Hastie and Tibshi•
rani (1998) for modeling measurement error in semi parametric 
models. 

While this manuscript was undergoing a final revision, 
an interesting unpublished manuscript by Ganguli, Stauden•
mayer, and Wand appeared. These authors extend our model 
by assuming multiple covariates and an additive regression 
function. They also estimate fixed effects and the variance 
components (of the random coefficients in the spline) by max•
imum likelihood. Because the smoothing parameters are ratios 
of variance components, these are also chosen by maximum 
likelihood. The likelihood involves a high-dimensional inte•
gral, so computation of the MLEs is not trivial, and the author 
uses the nesting EM algorithm of van Dyk (2000). Simulations 
indicate that the MLEs behave satisfactorily, but the MLEs 
were not compared to other estimators. 

APPENDIX: BAYESIAN IMPLEMENTATION FOR 

REGRESSION P-SPLINES 

For fixed-knotP-splines, g(x) ~ BT (x)Jl, g ~ 13/l, and the penalty 
matrix is D. Apportion B(x) = {BJ(x),Bi(x)}T, where BJ(x) is the 
first p+ 1 elements of BT(x). Apportion fJ = (fJi,fJ~)T similarly. 
Then let the prior for fJ 1 be normal(O, !5l) for a fixed covariance 
matrix land 5 "large," and the prior for f32 be normal{O, y- 1 I} (lis 
the identity matrix). Define the matrix D* =u;diag(l-1 j8, yl). In 
the limit as 8-+ oo, D*-+ u;yD. With these conventions, the joint 
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JX >.S ierior for fJ becomes 

/liY . X. W = normai(QH. Q). 

If = u ; ' L; B(X,)Y 1 = u ; ' 1J' Y. ,., 

Q =u.'li::B(X,)B'(X1)+ D. , - • = cr.'('JJ''JJ+J>.)-1
• ,-., 

Similarly. the complete conditjona l for X is 

I I ' 
X,I Y,.IV,<xcxp ---,~(Y,- 6' (X,)p)' 

2u, , ... 
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and received the Wilcoxon Prize in 1986 jointly with Ray. He has had 28 PhD students and
three of them, Len Stefanski, David Giltinan, and Doug Simpson, were jointly advised with
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[TW-2]-[57] Carroll, R. J. and Ruppert, D. (1982). A comparison between maximum likeli-
hood and generalized least squares in a heteroscedastic linear model. Journal of the Ameri-
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of the American Statistical Association, 82, 1079–1092.

By the early 1980s, regression with homoscedastic errors was well understood,
but methodology for handling heteroscedastic noise was just being developed. There
were two general approaches. In the first, studied by Carroll and Ruppert (1981
[TW-1], 1984 [TW-3]), the response is transformed to homoscedasticity. In the
second, studied by Carroll and Ruppert (1982 [TW-2]) and Davidian and Carroll
(1987 [TW-4]), one uses a variance function that specifies the conditional variance
of the response given the covariates. Transformation has the added feature that it
can also reduce skewness of the errors, but transformation is useful only when the
conditional variance is of a special form and, in particular, is a function of the condi-
tional mean; this is a common occurrence, but there are many applications where it
does not occur. Transformation and variance functions can be combined into a very
general methodology as described briefly below.

There are two important reasons for modeling the conditional variance. The first
is that the regression parameters can be more precisely estimated if one weights
by the reciprocals of the conditional variances. The second is that prediction and
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156 2 Transformation and Weighting

calibration intervals can be grossly inaccurate (true coverage probabilities far from
nominal values) if one ignores the heteroscedasticity. As Davidian and Carroll (1987
[TW-4]) note, the second reason may be more important. A weighted analysis is
significantly more efficient than an unweighted one only when there is substantial
heteroscedasticity, but even a small amount of heteroscedasticity, say the conditional
standard deviation varying by a factor of two, can cause prediction and calibration
intervals to be seriously in error.

Transformation and the Box–Cox Controversy

Carroll and Ruppert (1981 [TW-1]) find a middle ground in a somewhat acrimo-
nious controversy about the use of the Box–Cox transformation model in practice.
Although the transformation of variables, e.g., replacing a variable by its logarithm,
has had a long history in statistics, estimation of transformation parameters was not
put on a firm theoretical footing until Box and Cox (1964). Their model is

y
.�/
i D xiˇC�"i ; (2.1)

where yi is a nonnegative response for the i th case, xi is a vector of predictors,
ˇ is a vector of regression coefficients, � is the residual standard deviation, and
"1;"2; : : : ;"N are i.i.d. N.0;1/, or more generally i.i.d. F for some known F . Here,

y.�/ D .y� �1/=�; �¤ 0;

D log.y/; �D 0;
(2.2)

embeds the log transformation smoothly into the power transformation family.
Model (2.1) states that, after transformation by an unknown parameter �, the re-
sponse follows a homoscedastic, Gaussian linear model.

The controversy was over whether inference about ˇ should be conditional on
the value of � or not. Box and Cox (1982) recommend the conditional approach so
that once � is estimated, � is treated as if it were known and equal to its estima-
tor O�. Bickel and Doksum (1981) disagree and study the sampling variability of ˇ
when � is treated as unknown. Because the value of ˇ is highly dependent on that
of �, the estimators Ǒ and O� are highly correlated, and the standard deviations of
the components of Ǒ are much larger when � is estimated compared to when � is
treated as known. In summary, Box and Cox argue that uncertainty about � should
be ignored when making inference about ˇ, while Bickel and Doksum argue that
this uncertainty should be acknowledged and has a large effect, so that inference
about ˇ is unstable.

Neither of these viewpoints seems entirely satisfactory. In a rebuttal to Bickel
and Doksum, Box and Cox (1982) ask “how can it be sensible scientifically to state
a conclusion as number measured on an unknown scale?” This is a reasonable ques-
tion. On the other hand, there are few if any other estimation problems where ignor-
ing the uncertainty in nuisance parameters is recommended in practice. Certainly,
there must be some cost due to estimation of �.
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Carroll and Ruppert (1981 [TW-1]) study the problem of prediction about y on
the original scale. That is, they study f . O�;x0ˇ

�/ where f .�; �/ is the inverse of y.�/

so that f .�;y.�// � y, x0 is a value where prediction is to be made, and ˇ� is an
estimator of ˇ. Working on the original scale circumvents Box and Cox’s objection
to conclusions stated on an unknown scale.

Carroll and Ruppert (1981 [TW-1]) show that the high correlation between O�
and ˇ� has effects that are similar to the effects of multicollinearity in multiple
regression. Both have small, but non-ignorable, effects on prediction. Carroll and
Ruppert first look at the case of simple linear regression with � D 0 and prove a
general result showing that the cost (inflation of the mean squared error) due to
estimating � cannot exceed 50 % and often is much smaller, e.g., at most 8 % in
the balanced two-sample problem. Then, they look at the general case where the
dimension of ˇ is p and extend the model so that "1;"2; : : : ;"N are i.i.d. F for some
known F . Asymptotic results are messy in the general case but simplify if one uses
small-� asymptotics where � ! 0 as n! 1. Small-� asymptotics were also used
by Bickel and Doksum. In the small-� case, the cost of estimating � is 1=p, exactly
the same as the effect of adding an additional covariate in linear regression. In their
last section, they look at the problem of predicting the mean response and show that
the cost of adding r additional nuisance parameters when there are q parameters in
the model is bounded by r=q.

Estimation of the mean on the original scale was studied further by Taylor (1986).
Taylor (1988) studied the related problem of estimating event probabilities using
binary regression where the link function contains an unknown parameter. Taylor,
Siqueira, and Weiss (1996) propose a general framework that includes the Box–
Cox model and binary regression with link parameters as special cases. In all three
papers, it was found that the cost of estimating the unknown nuisance parameters is
small but not ignorable.

Weighting in Regression

Carroll and Ruppert (1982 [TW-2]) address the question of whether one should
use the generalized least squares estimator (GLSE) or the normal-theory maximum
likelihood estimator (MLE) when fitting heteroscedastic models. The weighted
least-squares estimator weights each squared residual by the reciprocal of its con-
ditional variance, but is generally not available since the conditional variances
typically are unknown. The GLSE replaces the unknown conditional variances by
estimators. The MLE maximizes the likelihood under the working assumption that
the errors are normally distributed. Of course, it is only a true maximum likelihood
estimator when that assumption holds. The Carroll and Ruppert model is

Yi D xT
i ˇC "i ff .xi ;ˇ;�/g�1=2 ; (2.3)

where Yi is the response, xi is a vector of covariates, ˇ contains the regression co-
efficients, "1; : : : ;"N are i.i.d. with variance �2, f is unknown function that models
the heteroscedasticity, and � is a vector of parameters that specify the conditional
variance of Yi given xi . A typical example of f is
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ff .xi ;ˇ;�/g�1=2 D .xT
i ˇ/

˛; (2.4)

so that the conditional variance is proportional to a power of the conditional mean.
(In this model, it is usually assumed that xT

i ˇ is positive.)
There are two sources of information about ˇ, the conditional mean xT

i ˇ and
the conditional standard deviation Œf .xi ;ˇ;�/�

�1=2. Maximum likelihood uses both
sources and has the smallest possible asymptotic covariance matrix if the errors are
Gaussian as the MLE assumes. The GLSE uses only the first source and, in gen-
eral, is not fully efficient. However, variance models are often only approximations.
Carroll and Ruppert (1982 [TW-2]) show that even a minor misspecification of the
heteroscedasticity can degrade the performance of the MLE but has little effect on
the GLSE.

More precisely, Carroll and Ruppert (1982 [TW-2]) assume that

Yi D xT
i ˇC "i ŒGN .xi ;ˇ;�/�

�1=2; (2.5)

where N is the sample size, GN .xi ;ˇ;�/ D f .xi ;ˇ;�/f1C 2BN�1=2h.xi ;ˇ;�/g,
and N�1

PN
iD1h

2.xi ;ˇ;�/ ! � for some 0 < � <1. Thus, 2BN�1=2h.xi ;ˇ;�/

represents the misspecification of the conditional standard deviation and, since it
decays to 0 at rateN�1=2, the model misspecification is too small to be detected with
certainty even in the limit as N ! 1. More formally, the true model is contiguous
to the assumed model.

The asymptotic distribution of the GLSE assuming model (2.3) is the same under
the models (2.3) and (2.5), so that the GLSE is not affected by contiguous misspec-
ification. The asymptotic distribution of the MLE assuming model (2.3) has the
same (fully efficient) asymptotic variance under models (2.3) and (2.5), but there is
a bias under (2.5). Whether the MLE or the GLSE has the smaller asymptotic mean
squared error (MSE) depends on the amount of model misspecification as deter-
mined byB , h.x1;ˇ;�/; : : : ;h.xN ;ˇ;�/, and how much information about ˇ is con-
tained in the conditional standard deviations. The latter is determined byw1; : : : ;wN

where, with Ǒ
M the MLE, we have

N 1=2. Ǒ
M �ˇ/DN�1=2

NX

iD1

fvi"i Cwi ."
2
i �1/g CoP .1/; (2.6)

so that, roughly speaking, wi ; i D 1; : : : ;N , determine how the second source of
information about ˇ is used and v1; : : : ;vN do the same for the first source.

In summary, the asymptotic distribution of the GLSE is robust to misspecifica-
tion of the conditional standard deviation, but this is not true of the MLE. If there
is no misspecification, then the MLE has the smallest asymptotic mean squared er-
ror (MSE), but under misspecification either the MLE or the GLSE may have the
smallest MSE.

Carroll and Ruppert (1982 [TW-2]) also discuss robustness to outliers. For the
GLSE, (2.6) holds with wi � 0 so the GLSE depends linearly, not quadratically,
on "1; : : : ; "N . Although neither the GLSE nor the MLE is robust to outliers, the
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MLE is more seriously affected by outliers because it depends quadratically upon
the errors. A robust M-estimator called ROBUST WEIGHTED is also considered in
the paper and, in a Monte Carlo study, is the best performing estimator, even when
the heteroscedasticity is correctly specified and the errors are normally distributed;
in this case, it is tied with the MLE.

Carroll and Ruppert (1984 [TW-3]) propose a model that is at first glance super-
ficially similar to, but ultimately rather different from, the Box–Cox (1964) trans-
formation model. The Carroll–Ruppert model starts with a theoretical model

yi D f .xi ;�0/; i D 1; : : : ;N; (2.7)

relating a response yi to a covariate vector xi . Here f is a known function that
might have been derived from scientific theory, e.g., pharmacokinetics, and �0 is
an unknown parameter vector. Model (2.7) will not hold exactly and in many cases
there will be substantial variation of yi about f .xi ;�0/.

To estimate �0, one can expand (2.7) to the nonlinear regression model

yi D f .xi ;�0/C "i ; i D 1; : : : ;N; (2.8)

where "1; : : : ;"N are i.i.d. errors and typically are assumed to be normally dis-
tributed. Carroll and Ruppert noted that (2.7) is equivalent to h.yi /D hff .xi ;�0/g;
for all i , where h is any invertible transformation. However, the noise model

h.yi /D hff .xi ;�0/g C "i ; (2.9)

with "1; : : : ;"N i.i.d. Gaussian, can hold for at most one h. Therefore, there is
no compelling reason to assume (2.8). Instead, Carroll and Ruppert (1984 [TW-
3]) argue that (2.9) holds for some h in a parametric family of transformations,
e.g., (2.2). As an example, if there are multiplicative lognormal errors so that
yi D f .xi ;�0/exp."i / where "1; : : : ;"N are i.i.d. normal, then (2.9) holds with
h.y/D log.y/.

Model (2.9) seeks a transformation h that induces additive, homoscedastic, and
Gaussian errors. The Box–Cox transformation also has these goals, but the Box–
Cox transformation model has a third goal, inducing a simple linear model. For
example, xiˇ in (2.1) might be a no-interaction model and then one seeks a � so
that this no-interaction model holds; Box and Cox (1964) provide such an example.
In other examples, xi D .1 wi / for a scalar covariate wi and one seeks � so that
E.yi jwi / is linear in wi . In contrast, model (2.9) does not seek to simplify the
regression model. Instead, it preserves the regression model by applying h to both
yi and f .xi ;�0/. In practice, h will be monotonic and then (2.9) implies that the
median of yi is f .xi ;�0/; this is the sense in which the model is preserved. Stated
differently, the Carroll–Ruppert method is used when yi already fits the regression
model while the Box–Cox method is used when yi must be transformed to fit the
regression model.

Because f .xi ;�0/ is the median of yi , the problem of stating conclusions on an
unknown scale is avoided. Conclusions can be stated about yi itself. Therefore,
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the controversy discussed previously about inference for the Box–Cox model is
avoided. Using small-� asymptotics, Carroll and Ruppert show that the limit dis-
tribution of O� is the same when the transformation parameter is unknown as when
it is known. A more general result that does not use small-� asymptotics is that
the cost of not knowing the transformation parameter is at most 	=2 D 1:57. This
bound should be contrasted with the huge costs that Bickel and Doksum found for
the Box–Cox model. Moreover, Carroll and Ruppert’s Monte Carlo study shows that
this bound is usually quite conservative.

Davidian and Carroll (1987 [TW-4]) provide a comprehensive study of variance
function estimation and compare the many variance function estimators that have
been proposed. They use the model

EYi D �i D f .xi ;ˇ/I var.Yi /D �2g2.´i ;ˇ;�/; (2.10)

where Yi is a response, xi is a vector of covariates in the regression function f , ´i

is the vector of covariates in the variance function g2, ˇ is a vector of regression
parameters, � is a vector of variance parameters, and "1; : : : ;"N are i.i.d.. Typically,
ˇ is estimated by ordinary least squares and fixed. The residuals from this prelim-
inary estimator of ˇ can be used to estimate � . For example, the squared residuals
are estimators of g2 though they are biased unless one corrects for the loss of de-
grees of freedom. Often, log.g/ is linear in � , and then it is tempting to use the
logarithms of the absolute residuals as the responses, though Davidian and Carroll
note that residuals near zero induce outliers when this is done. If the data come in
groups where xi and ´i are constant, then the sample variances of these groups are
unbiased estimators of g2 and can be used as the responses in a regression model
with g2 as the regression function.

Combining Transformation and Weighting

Transformation and weighting need to be combined in some applications. A gen-
eralization of (2.9) discussed in Chapter 5 of Carroll and Ruppert (1988) is

h.yi /D hff .xi ;�0/g C�g.´i ;ˇ;�/"i : (2.11)

One application of this model is to fitting the Michaelis–Menten equation of enzyme
kinetics. A number of methods for estimating the Michaelis–Menten parameters
have been proposed. Ruppert, Carroll, and Cressie (1989) show that all of these are
special cases of a general transformation/weighting model, so each is efficient only
for a certain error structure, that is, for particular values of the transformation and
variance parameters. By using the general model, one can adapt to the error structure
and obtain more accurate estimators.
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On prediction and the power transformation family 

BY R. J. CARROLL AND DAVID RUPPERT 

Department of Statistics, University of North Carolina, Chapel Hill 

SUMMARY 

609 

The power transformation family is often used for transforming to a normal linear 
model. The variance of the regression parameter estimators can be much larger when the 
transformation parameter is unknown and must be estimated, compared to when the 
transformation parameter is known. We consider prediction of future untransformed 
observations when the data. can be transformed to a linear model. When the 
transformation must be estimated, the prediction error is not much larger than when the 
parameter is known. 

Some lrey word.9: Asymptotic distribution; Box-Cox family; Maximum likelihood estimation; Monte-Carlo 
simulation; Prediction of conditional median; Robustness. 

1. !NTRODUC'TION 

The power transformation family studied by Box & Cox (1964) takes the following 
form: for some unknown,\ and i = 1, ... , n, 

(H) 

Here a is the standard deviation; the e1 are independently and identically distributed with 
mean zero, variance one and distribution F, and 

(A)_ {(yA-1) /, \ (,\ * 0), 
y - logy (..\=0). 

Box & Cox propose maximum likelihood estimates for ,\ and {J when F is the normal 
distribution. There are numerous alternative methods as well as proposals for testing 
hypotheses of the form H0 : ,\ = ,\ 0 (Hinkley, 1975; Andrews, 1971; Atkinson, 1973; 
Carroll, 1980). Carroll studied the testing problem via. Monte-Carlo; by allowing F to be 
nonnormal he approximated a problem with outliers and found that the chance of 
mistakenly rejecting the null hypothesis can be very high indeed. 

Bickel & Doksum (1981) develop an asymptotic theory for estimation. For technical 
reasons they assume that the design vectors x 1, x2 , ... are independent and identically 
distributed according to G. If the maximum likelihood estimate of the regression 
parameter is p when,\ is known, and (J� = P(A) when,\ is unknown and estimated by X, they 
compute the asymptotic distributions of ni@- { J ) /a and ni(( J � -( J ) /a as n-+ oo and 
a -+ 0. These distributions, which are given in the Appendix, are different, and as regards 
variances 

the cost of not knowing,\ and estimating it ... is generally severe .... The problem is that p� and i are highly 
correlated. 
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Their theoretical and Monte Carlo work indicate that X and {J* are highly variable and 
highly correlated, and as discuBSed in § 2, the problem is similar in nature to that of 
multicollinearity. An example of the variability of {J* is given in the next section. 

These results are somewhat controversial. One point of discussion concerns the scale on 
which inference is to be made: i.e. should one make unconditional inference about the 
regression parameter in the correct but unknown scale, a.s in Bickel & Doksum's theory, or 
a conditional inference for an appropriately defined 'regression parameter' in an 
estimated scale? 

In order to eliminate such problems, we will study the cost of estimating A when one 
wants to make inferences in the original scale of the observations. In the multicollinearity 
problem, reasonably good prediction is still possible if new vectors x arrive independently 
with the distribution G. Motivated by this fact, we focus our attention specifically on 
prediction, but we also discuss the two-sample problem and a somewhat more general 
estimation theory. Using Bickel & Doksum's asymptotic theory and Monte Carlo, we find 
that for prediction as well a.s other problems in the original scale there is a cost due to 
estimating A, but it is generally not severe. 

2. PREDICTING THE CONDITIONAL MEDIAN IN REGRESSION 

2·1. The general case 

Our model specifically includes an intercept, i.e. x1 = (1, c1); by suitable rescalin~ we 
assume the c1 have mean zero and identity covariance. From the sample we calculate A and 
{J*, and we are given a new vector x 0 = (1, c0 ), which is independent of the other x's but 
still has the same distribution G. This formulation is simple but hardly necessary; the 
design vectors x1 could satisfy the usual regression assumptions, and x0 can be thought of 
a.s chosen according to the design. Our predicted value in the transformed scale would be 
x0 {J*, so a natural predictor isj(X,x0 {J*) where 

j(A 8) = {(l +.\8) 11;. (A =I= 0), 
' e8 (A= 0). 

Notice that ifF ha.s median equal to 0, then j(A, x0 {J) is the median of the conditional 
distribution of y given x0 , even though it is not necessarily the conditional expectation. 
Calculation of conditional expectations would require the use of numerical integration 
and that F be known or an estimator ofF be available. See § 3 for further discussion. 

A Taylor expansion shows that 

j(X, x0 {J*)-f(A, x0 {J)/g(A, x 0 {J) ""' x0 ({J* -{J) +h(A, x 0 {J)(X -A) (2-1) 

where 
g(A, 8) = j(A, 8)/(l+A8), h(A, 8) = 8/A-{(l +A8)log (1 +A8)}N. 

Estimates I. and p� are unstable and highly correlated, and expansion (2·1) shows that 
our problem as presently formulated is quite similar to a prediction problem in 
regression when there is multicollinearity. 

2·2. Case l 

We now assume that F is a normal distribution, A= 0, a= 1, and the model is simple 
linear regression with slope {3 1 a.nd intercept {10 . 
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For this special case, likelihood calculations (Hinkley, 1975) can be made. Here the 
correct scale is the log scale and E(c1) = 0, E(cf) = 1, E(ct) = ft 3 and E(c1) = ft4 � Lengthy 
likelihood analysis shows 

where 

and where 
c= -t(l+,B~+M> . .at=.a,+tMP-3/.ao. y=3+4M+.a1(!-'4-~-'~-1). 

Note that if A were not estimated we would have had :E0 as the identity matrix, and in the 
next section we give an example which demonstrates the multicollinearity. 

THEOREM 1. Let MSE (A, x0 ) be the mean sqoored error for utimating the conditional 
median of Y given x0 and A known, while MSE (A, x0 ) is the same qoontity lrut with A unknown. 
Then 

where 

EG( II Xo W :: ~!:::~)/ E( II Xo 11 2 ) --> H(,81), (2·2) 

H(,Btl = 1 +t{1 +,81(p.4 -1-p.~)}{6+8,8~ +,81(p.4 -1-p.~W 1 . 

Note thatp.4 -1-p.~ = E{(cf -p.3 c1 -1)2 } ~ 0. The quantity (2·2) is a modified form of 
the average cost for prediction when A is estimated. If one prefers to assume the design 
vectors are constants, then one might think of (2·2) as an average over the design. In either 
case the results are encoursging: · 

(i) there is a cost due to estimating A, but it cannot exceed 50%; 
(ii) for the balanced two-sample problem, c1 = ± 1 with probability t. the cost is at most 

8% and decreases to zero as ,81 --> cc. 

2·3. Case 2: Symmetric errors 

We now allow A and the number of regression parameters, p, to be arbitrary, but we 
assume that F is symmetric about zero. 

Here we use the asymptotic theory of Bickel & Doksum, in which n --> cc and a -+ 0 
simultaneously; see the Appendix for details. We report results only for the simplest case 
of an orthogonal design in which 

. 
n- 1 :L x!x1 -+ I. 

1=1 

It then follows that (A, p�) is asymptotically normally distributed with mean (A, ,8) and 
covariance a:Etfn, where 

[ 1 -D 1 :E 1 ~e- 1 -D' el+D'D' 
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x = (1,x2 , .•• ,xp) = (x1 , ..• ,xp), H(a,>.) = ).- 1 a->.- 2(1+>.a)log(1+>.a), 
p 

D = E{H(xp,>.)x}, e = E[{H(xp,>.)ll]- L [E{x 1H(xp,>.)}] 2 � 
j= 1 

It is interesting that in the case of simple linear regression >. = 0, 1:1 is different from but 
of the same form as :E0 . More precisely, c is replaced by c• = c+t and tr by 
e = JI't(p.4 -p.~-1)/4. 

THEOREM 2. As N -+ oo and a -+ 0 for any >., 

EG {llxoii 2 :~:~!::::}/EG(IixoWl-+ 1+1/p, 

where p is the dimension of the vector p. 

The small a asymptotics of Bickel & Doksum tell us that there is a positive but bounded 
cost due to estimating>., with the cost decreasing asp increases. Note that Theorem 2 and 
Theorem 1 agree for simple linear regression,>.= 0, p.4 -1-p.i > 0 and P1 -+ oo. 

Bickel & Doksum and Carroll also simultaneously introduced robust estimates of(>., {J) 
based on the ideas of Huber ( 1977). One can use Bickel & Doksum's small a asymptotics to 
show that (i) the cost in robust estimation for estimating>. is still1/p and (ii) Bickel & 
Doksum's and Carroll's methods have better robustness properties than does maximum 
likelihood. 

We conducted a. small Monte Carlo study to check small sample performance and to 
investigate the results ofTheorems 1 and 2. The observations were generated according to 
(1+Po+P1 c1+e1) 11;.for>. = -1, andexp({J0 +fl1 c1+e1) for>.= 0. Heren = 20, the e1 are 
standard normal, flo = 5, /1 1 = 1 and the c1 centred at zero, equally spaced, satisfy :E c~ = n 
and range from -1·65to 1·65. Thenp.4 = 1·79and H(/11 ) = 1·06, sothatTheorems1 and 2 
lead us to expect very little cost due to estimating >.. There were 600 repetitions of the 
experiment. Likelihood calculations show that 

3·65 1·35] 
50·28 18·25 

. 7·76 
with correlation matrix 

[ 
1 0·99 0·93] 
. 1 0·92 , 
. . 1 

which illustrates the multicollinearity quite well, for if>. were known then nt(p0 - {1 0 ) and 
nt(p1 -/10 ) would be uncorrelated with common variance 1. 

In rows 1 to 4 of Table 1, we provide an analysis of the estimates fJ8 and fJT in the case 
that>. is estimated. The estimates are biased and have much larger mean squared errors 
than the estimates Po and ~1 obtained for the case that >. is known. 

The remaining rows of Table 1 give the results for the prediction problem. The last row 
corresponds to Theorems 1 and 2, although the actual mean squared errors are computed. 
It appears that, on the average, our asymptotic calcula:tions are reasonable, and there is 
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Table I. Monte-Carlo resull8 for the model Y1 = {J 0 +{31 e1+ue" 
flo = 5, and {J 1 = 1; EK and Eu denote expedatian when ,.\ is known 

and unknown, rupedively 

A= -1-o A= (H) 

JEu<ftol-JioJ 

JEu<fttl-Jid 

()-44 <HlO 

()-20 ()-26 

[ Eu{ <Po-Jlo)2}/E,;{ <Po- Jlo)2}]1 12·9 9-6 

[Eu{<P, -Jitl2}/E,.{<P.-JI.l2}Ji 
Eu[{J(A,Pol-f(A,Jio)}2] 
E,:[{/(.1, Jlo)-/(.I,Jio)}2J 

Eu[{J(A,Po-1-65fl.)-f(A,flo-1·66J!,)}'] 
E,.[{J(A, Po -1·66fJ,)-f(A,flo -1-65{J, )}21 

Eu[{f(A,Po+P, co)-/(A,flo+P, co)}2] 
E,.[{J(A,flo+fl, Co)-/(A,flo+P, Co)}2] 

• The value predicted by a likelihood analysis using :!: 0 . 

t The value predicted by the small a analysis using :!: 1. 

For the last entry, c0 is randomly chosen from the design. 

4-() 4-() 

1-()2 

1·35 
1·27° 
2·27t 

1-()8 

1-()1° 
21JOt 

1-06 
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only a small cost involved in estimating,.\ for prediction. To read rows 5 and 6, we note that 
to this point we have defined the cost of estimating,.\ as an average over the distribution of 
the new value x0 • It is also of interest to study the costs conditional on a. given value of x0 . 

For Case 1 when x0 = (1,e0 ) and,.\= 0 we find that 

MSE(A,x0 ) 

MSE (,.\ = 0, xo) -+ 1 o(eo. fJ), 

while for Case 2 this limit is l't (e0 , tJ), where 

1 1(e 0 ,{3)=ar.1 aT (j=1,2), a=[-!(fJ0 +{J1 c0 )1 ,1,c0 ). 

Rows 5 and 6 of Table 1 give the ratios of the mean squared errors at two points, the centre 
and an extreme of the design. As expected from Theorems 1 and 2, there is only a. slight 
cost due to estimating..\, and the small u a.symptotics of Bickel & Doksum are somewhat 
conservative. 

3. PREDICTION OF THE CONDITIONAL MEAN 

The estimator in§ 2 is the median of the conditional distribution of y given x0 . Our focus 
in this section is on estimating the conditional mean of y given x0 . 

We sketch a general result which indicates that the cost of extra. nuisance parameters, 
such as..\, is not large. We a.ssume a regreBBion model with (Y1, X1) having a. joint density 
g(y, x !80 ). As in normal theory regreBBion we assume 

g(y, x !80 ) = g1(y I x, 80 )g2(x). 

Letting L.( 8) denote the log likelihood, we make the usual a.BBumptions: 

E{L~(80)} = 0, 

E{L~(80)L~(80)T} = -E{L;(80 )} = 1(80), (3·1) 
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where fJft is the maximum likelihood estimate, q is the dimension of the parameter 80 and 
the prime denotes differentiation with respect to fJ at fJ = 80 � We are given a new value x0 
and wish to predict E(Y I x0 ); the natural estimate, which usually is only computable 
numerically, is 

Taylor expansion shows that 
AJ(Yixo) = fyg1(ylx0 ,fJft)dy. 

Aft(fJ0 ,x0 ) = nt{(AJ(Yix0 )-E(Yix0 )} 

'"""J{y-E(ylxo)} {:8 logg1(ylxo. Bo)}nt(fJ.-fJo)g1(Yixo. Bo)dy 

= J{y-E(ylx0 )} [:8 logg(y,x0 lfJ0 )]nt(fJ.-fJ0 )g1(ylx0 ,fJ0 )dy. (3·2) 

An overall measure of the accuracy of the prediction is E{A:(fJ0 ,x0 ) } ; (3-1) and (3·2) and 
Schwarz's inequality show that for a sample [/ 

E{A:(fJo,Xo) It/}~ var{y-E(ylxo)}nt(fJ.-fJo)T J(fJo)nt(fJft-fJo). 

Since nt((Jft -fJ0 )T J(fJ0 )nt(fJft- 80 } converges in distribution to a chi-squared variable with 
q degrees of freedom, this suggests that 

E{A;(fJ0 ,x0 }} ~ qvar{y-E(ylx0 }}. (3·3} 

Equation (3·3} shows that in prediction with q parameters the average squared prediction 
error is bounded, and this bound increases in relative magnitude by r/q when r additional 
nuisance parameters are added. A similar result holds for the two-sample problem. 

Example. Consider the transformation model ( 1·1} but take A = 1; this means one uses 
the Box-cox model when transformation is unnecessary. If there are p regression 
parameters, then q = p + 1 when A = 1 is known and 

E{A;(fJ0 ,x0 )} = var{y-E(ylx0 }}p. 

When one estimates .\, (3·3} shows that 

E{A;(fJ0 ,x0 ) } ~ var{y-E(ylxo)}(p+2). 

Thus, the relative cost of estimating A is at most 2/p, which agrees qualitatively with 
Theorem 2. 

We thank Professors Bickel and Doksum for providing a copy of their paper and the 
referee for his helpful comments. 

APPENDIX 

Some asymptotica 
Suppose that the distribution function F is symmetric. In the theory of Bickel & 

Doksum (1981}, it is assumed that a= f"7j where r = r(n} is a known sequence tending to 
zero and 1J is unknown and fixed. Define 

A= (x1, ... ,x.)T, P = A(AT A}- 1 AT, Q =(AT A}- 1 AT dr, d = (d1 , �. � ,d.}. 

d1 = {A- 2(v1-1)-v1loglvd}, v1 = 1+"-x1,B, e =ddT -dPdr. 
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Assum~ that e converges to a positive limit, they prove after very detailed calculations 
that n+{(,\-.\)/u, ({J*-fJ)/u, (~-7J)/'I} is asymptotically normally distributed with mean 
zero and covariance 

lim e- 1 -QT (n- 1 AT A)- 1e+QQT 0 . [ 1 -Q 0] 
•-ao 0 0 !e 

Hence when,\ is estimated one adds to the covariance of {J* the term lim (QQT e - 1 ), which 
is positive~semidefinite and, as the example shows, can often be much larger than the 
covariance of P when,\ is known. It is this extra term which causes the instability of the 
regression estimate {J* when ,\ is estimated. 
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A Comparison Between Maximum Likelihood and 
Generalized Least Squares in a 

Heteroscedastic Linear Model 
R.J. CARROLL and DAVID RUPPERT* 

We consider a linear model with normally distributed but 
heteroscedastic errors. When the error variances are 
functionally related to the regression parameter, one can 
use either maximum likelihood or generalized least 
squares to estimate the regression parameter. We show 
that likelihood is more sensitive to small misspecifica•
tions in the functional relationship between the error var•
iances and the regression parameter. 

KEY WORDS: Linear models; Heteroscedasticity; Con•
tiguity; Robustness; Weighted least squares; Maximum 
likelihood. 

1. INTRODUCTION 

There has been considerable recent interest in the het•
eroscedastic linear model, which we write as 

Y; = x' 1~ + e1[f(x;, ~. 8)]- 112 , (1.1) 

where ~(p x I) is the regression coefficient, {x 1(p x I)} 
are the design vectors, {e1} are independent and identi•
cally distributed with distribution function F, and the 
function f(x1, ~. 9) expresses the possible heteroscedas•
ticity. Bickel (1978) considers various tests of the hy•
pothesis of homoscedasticity, that is, tests of 

Ho:f(x1 , ~. 8) =constant. (1.2) 

His work has been extended by Carroll and Ruppert 
(1981), and the tests have been shown to be locally most 
powerful by Hammerstrom (1981). Other recent papers 
are Jobson and Fuller (1980), Carroll and Ruppert (1982), 
Box and Hill (1974), and Fuller and Rao (1978). 

Box and Hill (1974), Carroll and Ruppert (1982), and 
Jobson and Fuller (1980) suggest various forms of gen•
eralized weighted least squares estimates (GLSE) of ~. 
Basically, ~he suggestion is to obtain preliminary e~ti­
mates (~p,8) of(~. 8), estimate variances by [f(x 1, ~P• 
0)]- 1 , and then perform ordinary weighted least squares. 
Carroll and Ruppert (1982) emphasize robustness and 
develop methods that are robust against outliers and non-

• R.J. Carroll is Associate Professor and David Ruppert is Assistant 
Professor, Department of Statistics, University of North Carolina, 
Chapel Hill, NC 27514. R.r. Carroll was supported by the U.S. Air 
Force Office of Scientific Research Contract AFOSR-80-0080. Part of 
his research was completed at the Universitat Heidelberg, with support 
from the Deutsche Forscbunggemeinschaft. David Ruppert was sup. 
ported by NSF Grant MCS78-01240. The authors wish to thank the 
editor and associate editor for many helpful comments. 

normal distributions F; they prove that generalized M 
estimates of~. which include GLSE estimates as special 
cases, are just as good asymptotically as if the weights 
were really known. The same phenomenon has been 
found in other models of heteroscedasticity; see Williams 
(1975) for a review. 

Jobson and Fuller (1980) suggest using the information 
about ~ in the function f to improve the GLSE. They 
state that their method is asymptotically equivalent to the 
MLE for ~ obtained by setting up the normal likelihood 
based on (1.1) and maximizing it; this likelihood is 

N N 

! ~ log(f(x;, ~. 8))- i ~ (Y,- x',~)' f(x,, ~. 8). 
i=J 1=1 

(1.3) 

They have a very interesting result that suggests that as 
long as (1.1) is correct and F is normal the MLE will be 
preferred to the GLSE. 

In this heteroscedasticity problem, we have an addi•
tional robustness consideration. Besides the usual goal 
(Huber 1981) of protecting ourselves against outliers and 
nonnormal error distributions, we also must protect our•
selves against slight misspecifications in the functional 
relationship between var(Y1) and (x;, ~. 8). Since this 
functional relationship expressed in (1.1) through f is 
typically at best an approximation, and since our primary 
interest is estimating ~. we would prefer not to estimate 
~ by a statistic that is adversely affected by slight mis•
specification of f. 

In this note, we assume that the error distribution F 
is actually normal. We study the robustness of GLSE and 
MLE to small specification errors in f using simple con•
tiguity techniques. We show that small mistakes in spec•
ifying f can easily make GLSE preferable to the MLE. 

2. A CONTIGUOUS MODEL 

We consider small deviations from (1.1) in the form of 

Y; = x·,~ + [gN(x;, ~. 8)]- 112e,, (2.1) 

where for a scalar B and arbitrary unknown function h, 

KN(x,, ~. 8) = f(x, ~. 8){1 + 2BN- 112h(x;, ~. 8)} (2.2) 
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N 

N- 1 ~ h 2(x1, f3, 9)--+ I" (0 <I"< co) 
i=1 

{e,} are iid standard normal. 

One should note that the model (2.1) is very close to 
the assumed model (1.1). Thus the model (2.1) fits our 
needs because the variance misspecification error is very 
small and decreases for larger sample sizes. An estimate 
of f3 that is robust against specification errors should have 
the same asymptotic properties under both models (1.1) 
and (2.1). Thus the question at hand is to study the sen•
sitivity of the MLE and GLSE when (1.1) is assumed but 
(2.1) is true. If /1 denotes the log-likelihood for (1.1), and 
lz is the log-likelihood for (2.1), it is quite simple to show 
that, when (1.1) is true, to order oP(l), 

[.=h-I, 
N 

,:, - B 2 1" - ~ (e/ - I)Bh(:J:, ~. ~)N- 112 , (2.3) 
i=l 

so that by the Central Limit Theorem, 

~(l.)----='-+ N( -B 2 .,, 2B2 1") when model (1.1) holds, 

(2.4) 

where N(a, b) is the normal distribution with mean a and 
variance b. From Corollary 1.2 of Hajek and Sldak (1967, 
p. 204), this means that model (2.1) is contiguous to model 
(1.1). 

3. LIMIT DISTRIBUTIONS FOR GLSE 

Suppose that for some positive definite matrix S, 
N 

N- 1 ~ x'1 x,f(x1 , f3, 9)--+ S. (3.1) 
1=1 

Then, assuming normal errors and smoothness conditions 
on f, Carroll and Ruppert (1982) (as well as Jobson and 
Fuller 1980) show that when model (1.1) is true, the GLSE 
~a satisfies 

N 

N 112(f3a- f3) - N- 112 ~ s-'x',f'12(x, f3, 9)e,~ 9, 
1=1 

(3.2) 

N112(~a - f3)----='-+ N(O, s- 1 ). (3.3) 

A formal proof is possible as long as f is smooth, {f(x, 
~. 9)} is J>ounded away from co uniformly in i, and (~p• 
9) satisfy 

and 

(3.4) 

Carroll and Ruppert (1982) and Jobson and Fuller (1980) 
verify (3 .4) in the normal case under certain technical 
conditions. 
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Now, since {e,} are normal random variables, one uses 
(2.3) and (3.2) to show that/. = 12 - I, and N112(~a -
f3) are asymptotically independent, so that by LeCam's 
third lemma (Hajek and Sldak 1967, p. 208), 

~(N112(~a - f3))--+ N(O, s- 1 ), (3.5) 

and this under either model (1.1) or (2.1). This means that 
GLSE is robust against small specification errors of the 
variance function f. This encouraging result suggests that 
one will not go too wrong with GLSE as long as model 
(1.1) is reasonable: These results are easily extended to 
the robust estimates introduced by Carroll and Ruppert 
(1982). 

4. LIMIT DISTRIBUTION FOR THE MLE 

While GLSE is robust against minor errors in speci•
fying the function f in model (1.1), the same cannot be 
said for the MLE. Denote this MLE by ~M· JobsOn and 
Fuller (1980) show that for a particular covariance matrix 
l:, if the MLE is computed assuming (1.1), then under 
(1.1), 

N112(~M - f3)----='-+ N(O, l:). (4.1) 

The result of particular interest is that l: is no larger than 
s-' (see 3.1) and (3.3) in the sense that s-' - l: is 
positive semi-definite under the model (1.1). In addition 
to (4.1), from (2.3) and the proof of Theorem 2 in Jobson 
and Fuller (1980), N112(~M- f3) and/. are jointly asymp•
totically normal with mean (0, - B2 .,), marginal vari•
ances (l:, 2B21"), and covariances Bq computed below, 
that is, 

(N112(~M- f3)',/.) 

----='-+N(<o. -B 2 .,), [;.B. 2B~!])· <4.2) 

We now indicate why it is true that the only cases in 
which the MLE can be expected to be robust against 
variance specification errors is when S- 1 = l: and the 
MLE is asymptotically equivalent to GLSE. To see this, 
first consider model (1.1) to hold. Jobson and Fuller 
(1980) show that ~M is essentially a linear function of {e,} 
and {e,Z - 1}, that is, for vectors {v1} and {w,}, 

N112(~M- f3) 
N 

= N- 112 ~ {v1e1 + w1(e/ - 1)} + oP(l). (4.3) 
I= I 

If we have w1 "" 0 (i = 1, ... , N), then from (3.2), (4.3), 
and Gauss-Markov, we have that 

N112(~m- ~a)..!:.. 0, 

and the estimates have the same limit distribution. Thus 
the only way for ~ M to improve on ~a under (1.1) is for 
the {w,} to be nonzero. In this case, however, we can 
perform contiguity calculations based on (2.3) and (4.3), 
thus showing that under model (2.1), for the MLE com-
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puted assuming (1.1), 

N112(~M - p)---=--. N( -2Bq, :£), (4.4) 
N 

q = lim N- 1 :£ w1h(x1 , p, 6). 
N-+oo i-1 

Of course, q will be nonzero in general if the {w 1} are. 
These results have important consequences for effi•

ciency. Suppose we wish to estimate the linear combi•
nation a'p. Then, under model (1.1), 

NMSE (a'~G)->a'S- 1 a 

NMSE (a'~M)-> a:£ a"' a•s-'a. (4.5) 

However, under the model (2.1), when the GLSE and 
MLE are computed assuming (1.1), 

NMSE(a'~G)->a' s-'a (no change) 

NMSE(a'~M)->a'l:a + 4B2(a'q)', (4.6) 

and of course a'~ M will be a rather poor estimate if a is 
not orthogonal to q and B is large. 

5. MONTE CARLO SPECIFICATIONS 

We performed a small Monte Carlo study to illustrate 
the results given in the previous section, as well as to 
determine the effect of nonnormality; these are the two 
aspects of robustness discussed in this note, distributional 
robustness in heteroscedastic models as well as robust•
ness against misspecification of the form of the variance 
function. All of the results are based on the following 
model (<:r1 = [f(x 1, p, 6)]- 112 in the previous notation): 

Y, = Po + p,x" + PzXa + "••• (i = 1, ... , N). 

Here N = 40 and the design {(x11 , x12)} is as given in a 
similar experiment performed by Jobson and Fuller 
(1980). What varies in our experiments is the form of {<:r,} 
and the distribution of the errors {e1}. However, all 
weighted estimates were computed assuming the follow•
ing model for variances: 

<r? =a, + azT?, •• =Po+ p,x" + PzXa. (5.1) 

In context, (5.1) acts like (1.1) of the text. In all the 
experiments, we took (Po. P" Pz) = (10, -4, 2), as is 
done by Jobson and Fuller (1980). Normal random num•
bers were generated by the IMSL routine GGNPM. Con•
taminated normal random numbers were generated by 
first finding a normal deviate Z, and then multiplying Z 
by 3.0 if a uniform (0, I) random number generated by 
IMSL's GGUBS exceeded .90. The starting seed was 
325017, and the experiments were repeated 800 times. 

The estimators we used included first of all the ordinary 
least squares estimate (LSE). We also attempted to study 
the estimator JLS of Jobson and Fuller (1980), which is 
a one-step version of the MLE; see their paper for details. 
Their estimate worked well at the normal error model 
and for their choice (a1, a 2) = (300.0, .2), but it was very 
bad at nonnormal distributions or even when the hetero-
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scedasticity was severe. Consequently, the estimator 
JLS* studied here is a modification of Jobson and 
Fuller's. Basically, JLS* is JLS if both &uLS <: 0 and 
&2JLS ~ 0, where &uLs, &21Ls) are the estimates of (a}, 
a 2 ) using JLS. However, if either &uLS < 0 or &21LS < 
0, we estimated (a1 , a 2 ) as in Equation (5.1) of Jobson 
and Fuller. The modified estimator JLS* appeared to us 
to be very much better than JLS in overall performance. 

We also defined a GLSE called GLSE and a weighted 
robust estimate ROBUST WEIGHTED (Carroll and Rup•
pert 1982). In extensive trial and error work, we found 
that in small samples, the choice of method of estimating 
the weights has a very big effect on GLSE, although 
asymptotically there is no effect as long as consistent 
estimates are available; ROBUST WEIGHTED seems 
almost insensitive to the choice of weighting method even 
in small samples. Details will be reported in a future 
paper. We finally settled on the following somewhat com•
plicated method. 

First, for any function '¥, define 

~('¥) = (21r)- 112 J '¥ 2 (v) exp( -v2 /2)dv. 

In general, Huber's Proposal 2 simultaneously solves 

l:'l'((Y,- X/p)/<:r){X,/<:r} = 0 

and 

l:'¥2((Y, - X/P)/<:r) = (N- p) ~ ('¥), (5.4) 

where p = dimension of p. Now define 

w.(x) = min (k,l X I) sign (x). 

The LSE solves (5.4) using k = ao. A general algorithm 
for defining weighted estimates is based on k. Essentially, 
what we do is estimate a 2 robustly and a 1 consistently. 
The estimates of a 2 will also be consistent, although ro•
bust estimates of a 1 are apparently not feasible (see Car•
roll1979, Sec. 3 for theoretical details). Estimating a 2 by 
any of the standard methods is not robust and results in 
poor overall performance of GLSE. For any given k, the 
algorithm we used is as foll\)ws. 

I. Let ~ solve (5.4) using '¥2 • 

2. Define r1 = (Y1 - X,'~)', and Pas in Jobson and 
Fuller (1980). 

3. Form predicted values t1 = x',p. 
4. Define H as an (N x 2) matrix, the first column of 

which consists of ones, the second the t?. 
5. Solve (5.4) for the regression model 

Er =PH(::) 
using '¥2 (this is much like (5.1) of Jobson and Fuller 
1980). Define Z1 = r1 - max (&z, O)t,Z. 

6. Define&, = N- 1 :£ z,. 
7. Compute d.,Z = max(&" 0) + max (&2 , 0) t?. 
8. Solve (5.4) using '¥2 with Y1 and X 1 replaced by Y,! 

u1 and X 1/u 1 � Call this estimate ~. 
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9. Repeat (2)-(8), except in Step (8) use 'I' k instead of 
'l'z. 

Our estimate GLSE uses k = oo, while ROBUST 
WEIGHTED uses k = 2. The estimate HUBER was the 
Huber Proposal 2 computed in Step l. 

Finally, the mean squared error (MSE) of an estimator, 
as well as the standard error of this MSE, were calculated 
by the following simple device. Denote by WLS the 
weighted least squares estimate based on the weights 
ai -z. This is not a real statistic since the weights are 
unknown in practice. Then, for JLS* as an example, 

MSE (JLS*) = E{~(JLS*) - IW 

= E[{~(JLS*) - IW - {~(WLS) - !3Fl 

+ MSE(WLS). (5.5) 

The second term on the right side of (5.5) is known 
exactly; the first term and its standard error are calculated 
by the Monte Carlo experiment. Because of the corre•
lation between JLS * and WLS, this method produces 
better estimates of MSE(JLS*) than would the usual di•
rect Monte Carlo calculation. 

6. MONTE CARLO RESULTS 

The first part of the study concerns the effect of non•
normality on the estimates and is reported in Table l. In 
constructing this table, the assumed model (5 .l) was ac•
tually true, with (<>~> tx2 ) = (300, .2) as in Jobson and 
Fuller's work. For each estimator, the first line is the 
ratio of its MSE with that ofWLS (the weighted estimator 
with known weights). ]!.rote that the Carroll-Ruppert RO•
BUST WEIGHTED is the best; it is quite competitive at 

Table 1. Distributional Robustness When Model 

(5.1) Is Assumed and Is True, tx1 = 300 and <>2 = .20 

Standard Normal Contaminated Normal 
Errors Errors 

~0 ~- ~' ~0 ~- ~' 
LSE 1.32 1.27 1.27 1.33 1.26 1.24 

.05 .04 .04 .06 .05 .05 
-.11 .03 -.01 .14 .00 .01 

JLs· 1.18 1.17 1.12 1.25 1.21 1.21 
.04 .04 .04 .06 .06 .10 

-.35 .05 -.03 -.26 .05 -.02 

GLSE 1.16 1.18 1.16 1.16 1.14 1.11 
.03 .04 .03 .05 .04 .04 
.16 .02 -.02 .39 .00 .00 

Huber 1.27 1.27 1.27 0.96 0.94 .099 
.04 .04 .04 .04 .04 .05 
.07 .01 -.01 .32 -.01 .00 

Robust 1.16 1.18 1.16 0.88 0.89 0.92 
Weighted .03 .03 .03 .04 .04 .05 

.23 .01 -.02 -.02 -.01 -.01 

Actual MSE 196.9 1.08 .57 354.4 1.94 1.02 
ofWLS 

NOTE: The first row is the MSE ratio (MSE of indicated estlmalor/MSE of WLS), the 

second its standard error, and the third is the observed Monte Carlo bias. 
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the normal model and the clear winner at the contami•
nated normal model; this is in agreement with theory. 
Note too that, qualitatively at least, JLS* suffers the 
worst in the switch from normal to contaminated normal. 

The benefit of using our modification JLS* to Jobson 
and Fuller's JLS is dramatic here. Ordered as in Table 
l, the MSE ratio values for JLS are 1.22, 1.27, 1.25, 2. 72, 
7.27, and 13.27. 

Table 2 is designed to cover the problem of specifi•
cation robustness discussed theoretically in Sections 
l-4. Designing a Monte Carlo experiment that illustrated 
the theory was quite difficult because the theory is a local 
theory. We finally used heteroscedastic models that had 
fairly large inequalities in variances. The assumed model 
was (5.1), but with tx 1 = 100, tx2 = .20. For the left side 
of Table 2, we do calculations when (5.1) is in fact true, 
the errors are normally distributed, and tx 1 = 100, tx2 
= .20. In the right side of Table 2 the model correspond•
ing to (2.1) and (2.2) has 

rr? = <>t exp(2txll T, I), 

<Xt = 100, 

and 

<X2 = .128. (6.1) 

The choice of tx2 = .128 in Table 2 reflects a model 
whose variance behavior is close to that of (5.1) with tx 1 

= 100, tx2 = .20; the ratio of(6.1) to (5.1) over the range 
of the mean value is between .95 and 1.15. Further, the 

Table 2. Specification Robustness When (5.1) Is 
Assumed. Small Specification Error 

Model (5. 1) Is True Model (6.1) Is True 
a, = 100, a2 = .20 a,= 100, a2 = .128 
(correct model) (misspecified model) 

~0 ~- ~' ~0 ~- ~' 
LSE 1.62 1.59 1.60 1.63 1.63 1.58 

.07 .06 .06 .07 .07 .06 
-.04 .02 -.01 -.04 .02 -.01 

JLs· 1.54 1.51 1.39 1.62 1.62 1.54 
.12 .12 .09 .15 .16 .16 

-.19 .04 -.03 -.22 .04 -.03 

GLSE 1.27 1.29 1.28 1.28 1.31 1.27 
.05 .05 .05 .05 .05 .05 
.07 .02 -.02 .09 .02 -.02 

Huber 1.62 1.59 1.60 1.63 1.63 1.58 
.07 .06 .06 .07 .07 .06 

-.04 .02 -.01 -.04 .02 -.01 

Robust 1.27 1.29 1.28 1.27 1.29 1.26 
Weighted .05 .04 .04 .05 .05 .04 

.18 .01 -.02 .21 .01 -.01 

Actual MSE 116.1 .72 .35 120.2 .74 .35 
ofWLS 

NOTE: The first row is the MSE ratio (MSE of indicated estimator/MSE of WLS), the 

second Its standard error, and the third is the observed Monte Carlo bias. 
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~iffere?~ in actual MSE for WLS (with known weights) 
1s negligible, as can be seen in the last row of Table 2. 
As predicted by our theory, the only estimate that seems 
at all affected by the error in specifying the variances 
(assuming (5.1) when (6.1) is true) is JLS*, the MLE 
approximation. Note, too, how well our estimate RO•
BUST WEIGHTED performs; it is quite good at the nor•
mal error model and, as seen in Table 1, is superior for 
the contaminated normal model. 

V:e ~so analyzed the case for (6.1) that a 2 = .131, 
which illustrates a specification error resulting in over•
weighting the points with largest variance. This hardly 
affected WLS. Once again, the worst overall performance 
was turned in by JLS*; this MLE approximation was the 
weighted method most affected by the specification error. 

One might ask how well our theory predicts the specific 
numbers in Table 2. As this section shows, the theory is 
at least qualitatively correct in predicting that the MLE 
approximation JLS* would be most sensitive to variance 
function misspecification, while GLSE and ROBUST 
WEIGHTED would be only slightly affected (see (4.6)). 
On the other hand, the result (4.5) that indicates thatJLS* 
should be better than GLSE when the variances are cor•
rectly specified was not borne out. Another instance, 
which is really not too bad, in which asymptotic theory 
and Monte Carlo theory do not closely agree is that the 
GLSE had about 30 percent higher mean squared error 
than WLS. Because the approximation given by (4.5) is 
not close to the Monte Carlo results, evaluating the ex•
cess mean squared error 4B2 (a' q) ' in (4.6) due to vari•
ance misspecification in unlikely to be too accurate. If 

cr? = 1/f(x,, (3, 8) 

and 

8,' = 1/gN(X;, (3, 8), 

then from (2.2) we have approximately 

2Bh(x,, (3, 8) ,;, N 112(rr?/8? - 1). (6.2) 

Using the theory of Jobson and Fuller, we can evaluate 
the terms {w,} of (4.3), which then enables us from (6.2) 
to approximate 2Bq of (4.4). When this is done, we are 
able to predict that in going from the correct model to 
the misspecified model in Table 2, the MSE for JLS* 
should increase by (4.7 percent, 5.8 percent, 4.7 percent) 
for estimating (J3o, 13t. (32). The actual Monte Carlo in•
creases were (8.9 percent, 10.3 percent, 10.8 percent). 
In other words, in this example, the effect of variance 
function misspecification on the MLE approximation 
JLS* was more than that predicted by the asymptotic 
theory. 
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7. DISCUSSION 

The theoretical work and the small Monte Carlo study 
presented here indicate that the maximum likelihood es•
timate (or approximations to it) in a heteroscedastic 
model is sensitive both to the normal error assumption 
and to small errors in specifying a functional form for the 
variances. Generalized least squares estimates are sen•
sitive to the normal error assumption but, at least theo•
retically, are robust against small variance specification 
~rrors; a particular GLSE was constructed that, in a lim•
Ited Monte Carlo study, had these properties in small 
samples. The robust weighted estimators of Carroll and 
Ruppert (1982) had the best theoretical and empirical ro�
bustness behavior, while at the same time giving up only 
very little when all assumptions about the variances and 
error distributions are true. For homoscedastic regres•
sion models, estimators with bounded influence functions 
have been defined and studied (Krasker and Welsch 
1982). We did not consider the question but believe it is 
possible to develop bounded influence weighted esti•
mators with appealing properties for heteroscedastic 
situations. 

[Received Apri/1981. Revised June 1982.] 

REFERENCES 
BICKEL, P.J. (1978), .. Using Residuals Robustly 1: Tests for Heter· 

oscedasticity, Nonlinearity," Annals of Statistics, 6, 266-291. 
BOX, G.E.P., and HILL, W.J. (1974), "Correcting Inhomogeneity of 
'it.~':;89':ith Power Transformation Weighting," Technometrics, 

CARROLL, R.J. (1979), "Estimating Variances of Robust Estimators 
When the Errors are Asymmetric,'' Journal of the American Statis· 
tical Association, 14, 674-679. 

CARROLL, R.J., and RUPPERT, D. (1981), "On Robust Tests for 
Heteroscedasticity," Annals of Statistics, 9, 205-209. 

-- (1982), .. Robust Estimation in Heteroscedastic Linear Models " 
Annals of Statistics, 10, 429-441. ' 

FULLER, W.A., and RAO, J.N.K. (1978). "Estimation for a Linear 
Regression Model With Unknown Diagonal Covariance Matrix" 
Annalso/Statistics 6,1149-1158. ' 

HAJEK, J,, and SIDA~. Z. (1967), Theory of Rank Tests, New York: 
Acadennc Press. 

HAMMERSTROM, T. (1981), "Asymptotically Optimal Tests for Het•
eroscedasticity in the General Linear Model," Annals of Statistics, 
9, 368-380. 

HUBER, P.J. (1981), Robust Statistics, New York: John Wiley. 
JOBSON, J.D., and FULLER, W.A. (1980), "Least Squares Estima•

tion When the Covariance Matrix and Parameter Vector are Func•
~~.~L~::~ted," Journal of the American Statistical Association, 

KRASKER, W.S., and WELSCH, R.E. (1982), "Efficient Bounded 
Influence Regression Estimation," Journal of the American Statis· 
tical Association, 77, 595-604. 

WILI:IAMS, J.S. (1975), .. Lower Bounds on Convergence Rates of 
Weighted Least Squares to Best Linear Unbiased Estimators," in A 
i'::Z~~a~~::Wo~~~-and Linear Models, ed. J .N. Srivastava, 



174

Power Transformations When Fitting Theoretical 
Models to Data 

RAYMOND J. CARROLL and DAVID RUPPERT* 

We investigate power transformations in nonlinear 
regression problems when there is a physical model for 
the response but little understanding of the underlying 
error structure. In such circumstances, and unlike the 
ordinary power transformation model, both the response 
and the model must be transformed simultaneously and 
in the same way. We show by an asymptotic theory and 
a small Monte Carlo study that for estimating the model 
parameters there is little cost for riot knowing the correct 
transform a priori; this is in dramatic contrast to the re•
sults for the usual case where only the response is tnms•
formed. Possible applications of the theory are illustrated 
by examples. 

KEY WORDS: Transformations; Box-Cox models; The•
oretical models; Robustness; Nonlinear regression. 

1. INTRODUCTION 

Often in scientific work, an experimenter observes data 
y, and x/ = (x 11 ••• Xp;) and postulates that these data 
follow a model 

y, = f(x,, 6o), i = I, ... , N, (1.1) 

where 60 is a k-parameter vector. The function/may be 
derived, for example, from differential equations believed 
to govern the physical system that gave rise to the data. 
The deterministic model (1.1) is often inadequate since 
the data exhibit random variation, but whereas/was de•
rived from theoretical considerations, there is really no 
firm understanding of the mechanism producing the ran•
domness. In this case, the experimenter usually assumes 
that 

y, = f(x;, 6o) + E;, (1.2) 

where the {< 1} are iid N(O, rr02 ). In those cases in which 
the data suggest that model (1.2) is also unsatisfactory, 
one might then, for example, assume that the errors are 
multiplicative and lognormal, so that 

log(y1) = log(f(x,, 6o)) + <;. (1.3) 

* Raymond J. Carroll is Professor of Statistics and David Ruppert is 
Associate Professor of Statistics at the U Diversity of North Carolina, 
Chapel Hill, NC 27514. Research for this article was supported by the 
Air Force Office of Scientific Research Grant F49620-82-C-0009 and by 
National Science Foundation Grant MCS 8100748. Rod Reish kindly 
provided the authors with the menhaden data. He and Rick Deriso 
greatly aided our understanding of those data. The authors also thank 
a referee and an editor for their comments on an earlier version of this 
paper. 
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The point here is that model (1.1) is equivalent to the 
model 

h(y,) = h(f(x;, Oo)) 

whenever hO is a monotonic transformation. Therefore 
(1.2) and (1.3) are based on the same theoretical model, 
but they allow variability to enter into the model in dif•
ferent fashions. 

A more flexible approach is to take a sufficiently rich 
family of strictly monotonic transformations h(y, l\), in•
dexed by the m-vector parameter l\, and to assume that 
for some value l\0 , 

h(y,, l\o) = h(f(x,, 6o), l\o) + E;. (1.4a) 

Equation ( 1.1) could be understood to mean Ey = for y 
= f when there is no error. We have in mind the latter 
meaning; the former is not possible under (1.4a). The 
model (1.4a) is in the spirit of Box and Cox (1964), who 
suggested the family of power transformations with m = 
I and 

h(y, l\) = y"' = (y" - 1)/l\ if)\¥ 0 

= log(y) if l\ = 0. (1.4b) 

However, as we will make clear, our proposed model 
(1.4) has greatly different ramifications than those usually 
associated with the power family. Box and Cox (I 964) 
used their family in a study of the transformation model 

h(y, l\o) = x'6o + E. (1.5) 

Notice that here, unlike in (1.4), the regression function 
in (1.5) is not transformed. Box and Cox sought a trans•
formation that achieves (a) a simple additive or linear 
model, (b) homoscedastic errors, and (c) normally dis•
tributed errors. Our model is different. Theoretical con•
siderations already provide a regression function. We 
hope to transform the response and the regression func•
tion simultaneously to obtain homoscedasticity and nor•
mality. 

There are two reasons for using model (1.4) instead of 
simply fitting (1.1) by least squares or some other method. 
First, estimation of Oo based on model (1.4) should be 
more efficient than other methods. Second, it may be 
necessary to estimate the entire conditional distribution 
of y given x; if the data clearly suggest that the distri-
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butions of {y, - f(x,, e0 )} are not constant across i, one 
must go beyond standard regression methodology. 

An example that motivated the research of this article 
is the relationship between egg production in a fish stock 
and subsequent recruitment into the stock. At least for 
some species, as egg production increases, the changes 
in the skewness and variance of recruitment are as large 
as the change in the median recruitment, and these 
changes in distributional shape may have important im•
plications for management of the fishery. This example 
is discussed in more detail in Section 4.1. 

Another possible reason for transformation is that 
often, for an appropriate h, h(f(x,, e)) is a linear function 
of e. Linearization was an accepted technique before the 
advent of nonlinear regression programs. Now, however, 
the statistician must decide whether to use linearization 
or nonlinear regression. As discussed later, our theory 
provides a method for deciding whether linearization is 
appropriate. 

A natural question is, Which aspects of the data enable 
us to estimate Ao? If we transform y, by h( ·, A) and A ,o 
Ao, then information that A ¥ Ao is provided by both (a) 
nonnormality and (b) nonconstancy in i of the distribution 
of h(y,, A) - h(f(x,, eo), A). If the values of f(x,, eo) are 
relatively constant, then (a) provides most of the infor•
mation. On the other hand, if cr 2 = var(.,) is small, then 
most of the information is provided by heteroscedasticity. 
To see this last fact, suppose, for example, that (1.4b) 
holds and that we do not transform the data (i.e., we use 
A = 1), but that the true value Ao is not I. For each A, 
let g(·, A) be the inverse of the function h(·, A), and define 
gy(y, A) = (a/ay) g(y, A). Then by (1.4) and a Taylor 
approximation, which is suitable if e, is small, we have 

y, = g[h(f(x,, eo), Ao) + e,, Ao] 

= f(x,, eo) + k,e,, 

where k, = gy[h(f(x,, eo), Ao), Ao]; therefore y, is ap•
proximately normally distributed with mean f(x,, e0 ) and 
variance k/rr2 . 

When analyzing data, after we have determined esti•
mates fore, A, and cr, we can estimate the density of y, 
(or of [y, - f(x,, e)], the residual from the median). By 
plotting this estimated density we can check for skewness 
and other signs of nonnormality on the original scale. By 
overlaying plots for several values of x, we can also check 
for heterogeneity of the distribution of the untransformed 
data. Instead of graphing densities, we might graph quan•
tiles against quantiles of the normal distribution; non•
normality would then be especially easy to detect. We 
use such a quantile-quantile plot in Example 4.1. 

When we make inferences about e, the issue arises 
whether~ should be treated as fixed or whether we should 
acknowledge that it is random. For example, there are at 
least two approaches to estimating the variance-covari•
ance matrix of li. The first is invert the estimated Fisher 
information matrix for (A, cr, 8). The second is to trans•
form the model and the response by h(·, ~)and then use 
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standard nonlinear regression methodology. The second 
method is not strictly correct since it treats A as known 
rather than estimated. However, it is convenient and ex•
pedient since existing nonlinear least squares software 
can be applied. In this article we report large-sample anal•
ysis and Monte Carlo results showing that the two meth•
ods tend to give similar results. The second method usu•
ally underestimates the variability of e, but it does give 
a rough approximation to this variability. In the different 
model (1.5) of Box and Cox (1964), the two methods can 
give drastically different results, and this fact has led to 
considerable controversy; see Bickel and Doksum (1981), 
Carroll and Ruppert (1981), Hinkley and Runger (1984), 
and Box and Cox (1982). 

Another major difference between our model and that 
of Box and Cox (1964) is that in our model the parameter 
e has physical meaning even when Ao is unknown; f(x,, 
eo) is the median of y, regardless of the value of Ao. 

2. THEORETICAL ANALYSIS 

To analyze the effect of treating ~ as fixed (and equal 
to Ao), we begin by computing the information matrices 
for (Ao, eo, cr0 ) and (e 0 , cro), the latter case assuming that 
Ao is known. The details quickly become intractable, so 
we resort to the approximation cr 0 = 0. The following 
theorems are proved in Appendix A. 

Theorem 1. Under general conditions, if N-> oo and 
then cro-> 0, the limit distribution of a is the same whether 
Ao is known or unknown. The limit distribution of 6- de•
pends on whether Ao is known or unknown. 

Theorem I says that the effect of having to transform 
the problem to get homoscedastic, normal errors is small 
when O"o is small. However, we are not concerned only, 
or even primarily, with small cr0 • In fact, the need for 
transformation will probably be greater when cr0 is large. 
When cr0 is small, e from the untransformed data, 
S, ~ 1, Will have a Small bias because y i Will be approxi•
mately normally distributed. Moreover, although il,~ 1 
may be inefficient in terms of variance, there may be less 
need for an efficient estimate if cro is small. The small cr 0 

asymptotics do, however, lead to major simplifications, 
and the Monte Carlo results presented later agree with 
them. 

Because we are interested in all values of cr 0 , we looked 
at a second approach. This approach is outlined in Ap•
pendix A. Basically, we construct a third estimator of e0 

and compute its efficiency with respect to li(A 0 ), the es•
timator of eo when Ao is known. This gives us a bound 
on the efficiency of the MLE. 

Theorem 2. For any Ao, cro, eo, f, or design {x,}, as N 
-> 00 , the asymptotic relative efficiency of the MLE 
B(~) compared to that estimate B(~o) with Ao known is at 
least 2/-rr, that is, 

ARE(S(~). S(Ao)) <= 2/-rr. 

This bound is very general, and if the Monte Carlo sim-
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ulation in Section 3 is any guide, the bound is conser•
vative. It follows that the practice of transforming and 
then using a standard errors for 0(~) the estimates output 
from a nonlinear least squares package witt be only mod•
erately in error. 

3. MONTE CARLO 

To study 6 when N is finite and <ro is not necessarily 
small, we undertook a small simulation of the model 

h(y,, l\o) = h(81 + 82 x,, l\o) + ""' ' ' (3.1) 

where h(-) is the Box and Cox (1%4) power family (1.4b). 
In our simulations, N = 50, the design points {x1} were 
equally spaced on [ -1, 1], the errors were normally dis•
tributed with mean zero and variance one, and 8 1 = 7, 
82 = 2. We considered three estimators: (a) ML esti•
mator, l\o known (KNOWN), (b) ML estimator, l\0 un•
known (MLE), and (c) The ordinary least squares esti•
mator (LSE) without any transformation. 

Since it is a rather frequent practice to use least squares 
estimation without transformation, we included the LSE 
in the study. The method of computation is outlined in 
Appendix B. We chose three values of cr0 : cr0 = .05, .10, 
and .50. We present results in Tables I and 2 for l\ 0 = 0 
(lognormal data) and l\0 = .25. There were 600 replica•
tions of the experiment for each (l\0 , cr0 ) and each esti•
mator, all generated from a common set of random num•
bers. The normal random deviates were generated from 
the IMSL routine GGNPM. Estimation of (8 1 , 82 ) for 
each l\ was done by the lMSL routine ZXSSQ while 
ZXGSN was used to estimate l\0 . 

The results for the ML estimator with l\ 0 unknown (de•
noted by MLE) are very encouraging. The mean squared 

Table 1. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

INTERCEPT. The median response is linear 
with intercept = 7 and slope = 2.) 

~ = .00 .25 

.05 .10 .50 .05 .10 .50 

Bias of KNOWN .03 .06 .56 .01 . 03 .23 
MSE of KNOWN 2.41 9.67 24.87 .90 3.59 9.04 
Bias of MLE .02 .04 .60 .01 .02 .19 
MSE of MLE 

MSEofKNOWN 1.02 1.05 1.14 1.01 1.03 1.12 
MSE of MLE - MSE 
of KNOWN .05 .47 3.44 .01 .09 1.09 

STD. ERROR of above 
difference .02 .15 .77 .01 .04 .25 

Bias of LSE .11 .40 9.48 .04 .13 2.60 
MSE of MLE 

MSE of LSE .97 .90 .22 1.00 .98 .63 
MSE of MLE - MSE 
ofLSE -.06 -1.15 -96.62 .00 -.06 -6.07 

STD. ERROR of above 
difference .04 .33 4.71 .01 .06 .78 

NOTE: Known = ML estimate with A known, MLE ... ML estimate with A unknown, and 

LSE = ordinary least squares estimate. In these calculations, the mean squared error 
{MSE) and STD. ERROR of difference terms are muttlplled by T .. 2. Here T = 10 if cr :S 

.10and T = 1 if a= .50. 
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Table 2. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

SLOPE The median response is linear with 
intercept = 7 and slope = 2.) 

~ = .00 .25 

.05 .10 .50 .05 .10 .50 

Bias of KNOWN .01 .01 .03 .00 .01 .02 
MSEof KNOWN 7.08 28.36 72.23 2.71 10.83 27.24 
Bias of MLE -.01 -.04 -.15 .00 -.02 -.16 
MSE of MLE· 

MSEof KNOWN 1.06 1.06 1.01 1.06 1.06 1.03 
MSE of MLE - MSE 
of KNOWN .41 1.57 .95 .15 .60 .72 

STD. ERROR of 
difference .10 .40 .67 .04 .77 .27 

Bias of LSE .05 .15 2.97 .02 .04 .50 
MSE of MLE ----
MSE of LSE .98 .59 1.01 1.01 .91 
MSE of MLE - MSE 
of LSE -.16 -1.29 -50.54 .05 .13 -2.81 

STD. ERROR of above 
difference .18 .80 5.10 .06 .23 .74 

NOTE: Known = Ml estimate with A known, MLE = Ml estimate with A unknown, and 

LSE = ordinary least squares estimate. In these calculations, the mean squared error 

(MSE) and STD. ERROR of difference terms are multiplied by T .. 2. Here T = 10 if u s 
tO and T= 1 ifu =.50. 

errors for MLE are reasonably close to those for 
KNOWN, the ML estimator with l\0 known, especially 
for the slope 82 • These results agree with our small " 
theory and indicate the moderate cost of not knowing l\o. 
The relative efficiencies of MLE to KNOWN are always 
welt above the lower bound of 2/-rr. To appreciate how 
welt MLE does compared with KNOWN (line 2 of Tables 
I and 2), see Table 5 of Bickel and Doksum (1981); in 
their model, which we call (1.5), they have ratios MLE(l\o 
estimated)/KNOWN(l\0 known) always at least 1.5 and 
as large as 211, while ours never exceed 1.2. 

The other valuable point learned from Table 2 is that 
when we estimate the stope 82 , the ML estimator with 
l\o unknown tends to dominate the LSE, especially for 
larger values of <ro. In other words, for our model (1.4), 
there is real value to transformation when it is appropri•
ate . 

Finally, it should be noted that there is indeed a (mod•
erate) cost for estimating 80 when l\ 0 must also be esti•
mated . .The consequence of this moderate cost is that 
inference drawn in the "usual" way-treating ~ as if it 
were preassigned-will be only moderately in error. (See 
Carroll and Ruppert 1981 and Carroll 1982a for details 
concerning the error in the usual inference for model 
(1.5), which tends to be moderate, on average, but which 
can be large for prediction at individual design points.) 

4. EXAMPLES 

4.1 Spawner-Recruit Data 

This research was motivated by our study of the pop•
ulation dynamics of the Atlantic menhaden, which is, ex•
cluding shellfish, the third largest commerical U.S. fish-
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ery. The Atlantic menhaden fishery experienced a 
massive decline in the mid-1960's, and although there has 
been a slight recovery, present yields are only about half 
of those in the early 1960's. Our simulation study was an 
attempt to find strategies to reverse this decline in har•
vest; see Ruppert et al. (1983) for further details. 

An important part of our study was the examination of 
the spawner-recruit (SR) relationship, in which we at•
tempted to use the number of eggs E produced by mature 
menhaden (spawners) to predict the number R of juvenile 
menhaden recruited into the fishery (recruits). Estimates 
of E and R for the 21-year period 1955-1975 are given in 
Table 3. 

An inspection of Table 3 or a plot of R against E shows 
that there is substantial variability. Note, for example, 
that 1958 has only the eighth-largest egg production, while 
it produced twice as many recruits as any other year. The 
year 1975 has the third-largest number of recruits but only 
the fourteenth largest egg production. 

Two of the more usual ways to model the SR relation•
ship are through the following approximations: 

(Beverton-Holt 1957) 

(Unnormalized Gamma) R, = 6Et exp(-yE,). 

The Unnormalized Gamma (Gamma) is an extension of 
the Ricker (1954) equation, which allows only 8 = I. Both 
the Beverton-Holt and the Ricker equations were derived 
from deterministic models. There appears to be no dis•
cussion in the fisheries literature on how these models 
should be interpreted for fish populations exhibiting 
highly variable SR relationships. The parameters are 
often estimated by using linearizing transformations. As 
stated in the Introduction, these two models can be 
thought of as part of a relationship driving the system, 
but they entail considerable variation. We wanted not 

Table 3. Spawner-Recruit Estimates 

Year 

1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 

"ln units of 1014 eggs. 
11 ln unitsof1010 tish. 

Egg Production Ea 

2.42289 
1.77413 
1.13816 
1.11338 
1.32726 
1.88340 
2.62193 
1.63753 

.63302 

.33314 

.20943 

.16043 

.18389 

.23256 

.15267 

.22244 

.31532 

.33109 

.33011 

.27415 

.30154 

Recruits Rb 

.85558 
1.00935 
.49287 

2.10332 
.31186 
.41814 
.30636 
.30912 
.25417 
.29163 
.21642 
.30285 
.17046 
.24301 
.40457 
.20309 
.47767 
.37155 
.40746 
.52426 
.92933 
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only to decide upon one of the two models, but also, for 
our simulations, to do an adequate job of describing the 
nature of the variation in recruitment given egg produc•
tion. The difference between the two models can have 
important effects on methods for managing the menhaden 
fishery. When, as is usual, 'Y < 0, the Gamma curve ex•
hibits overcompensation; that is, eventually large egg 
production decreases recruitment, perhaps because of 
competition for food or perhaps because of a population 
explosion of a predator species. The Beverton-Holt 
model is much different, since it specifies that, except 
for random variation, large egg production will lead to an 
asymptote a- 1 in recruitment. Since many strategies pro•
posed for increasing the harvest depend on increasing egg 
production, perhaps beyond historically observed levels, 
the choice of the Gamma over the Beverton-Holt model 
could lead to a different management strategy. There has 
been no previous evidence for Atlantic menhaden sup•
porting the Gamma curve, so a priori we would favor the 
Beverton-Holt curve, but it is obviously important for us 
to determine if the Beverton-Holt curve describes the 
present data as well as or better than the Gamma model. 

Linearization leads to the models 

(Beverton-Holt, Linear) R,- 1 =a+ j3E,- 1 + cr 1e, 

(Gamma, Linear) log R, = 81og E, + a. + -yE, 

+ cr,e,. (4.1) 

From the point of view of meeting the assumption that 
e,, ... , En are iid N(O, 1), the linearized Beverton-Holt 
is superior; the predictions of R, are similar for the two 
models, but the residuals from the linearized Gamma are 
less normal-looking and somewhat more heteroscedastic. 
Thus, if we are constrained to admitting only the linear•
ization models (4.1), the choice for simulation studies 
would be the Beverton-Holt. 

There is, however, no reason why the variation about 
the Gamma model should be best explained by forcing 
linearization through logarithms. As argued in the Intro•
duction, a more flexible model for determining the struc•
ture of the model variability is through our nonlinear Box•
Cox models 

(Beverton-Holt) R!'•' ={(a+ j3E,- 1)- 1 }""' + cr8 e, 

(Gamma) 

The MLE for )..8 is ~8 = - . 72, with a 90% confidence 
interval of ( -1.0, -0.17), and ~8 restricted to [ -1, 1]. 
The likelihood ratio test for H0 : )..8 = - 1.0 has value AB 
= .63, indicating that the linearized Beverton-Holt model 
is at least reasonable. (Compare with X (I) quantiles.) 

For the Gamma model, we obtained ~c = - .71, with 
a 90%confidence interval of( -1.0, - .16). The likelihood 
ratio test for H o: Ac = 0 has value Ac = 4.61. This in•
dicates that linearizing the Gamma model is probably not 
appropriate. In fact, having transformed by the power 
~c = - . 71, the .residuals are essentially as normal look•
ing and homoscedastic as those from the linearized 
Beverton-Holt. 
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The estimated Gamma curve reaches a maximum well 
above historically observed levels of egg production. In 
fact. the fitted Gamma and Beverton-Holt curves are 
quite similar over the observed range. However, our sim•
ulation experiments included allowing increased egg pro•
duction where overcompensation would have an effect if 
the Gamma curve were used in the simulation model. We 
decided to base our simulations on the Beverton-Holt SR 
relationship, because there is no real evidence for over•
compensation. 

As this example makes clear, nonlinear models that can 
be linearized should not necessarily be linearized, since 
transformation analysis of response and predictor func•
tion can lead to a data scale with better distributional 
properties. In some cases, however, such as the Sever•
ton-Holt model given here, the transformation analysis 
will provide added support for linearization. 

Our theory predicts that the need to estimate A is not 
costly in regard to estimation of" and~. and examination 
of the relevant Fisher information matrices suggests that 
this is, in fact, the case. If we fix A = ~. and (pretending 
that A = ); was known a priori) invert the information 
matrix for«, ~. and a, then the estimated (asymptotic) 
variances are .2029, 2.0361, and .0258, respectively. If 
we invert the information matrix for«, ~. cr, and A, then 
the estimated (asymptotic) variances for "• ~. and a are 
.2213, 2.0394, and .1674, respectively. As our theory pre•
dicted, only the variance of a increased substantially. 

From our data analysis, we concluded that a realistic 
simulation model would need to be stochastic, and it was 
in the development of a stochastic model that power 
transformations proved to be most useful. In our simu•
lation model we used 

(4.2) 

where &, ~. and a are estimates on the ); scale, and • is 
a standard normal pseudorandom number. With small 
probability the quantity in square brackets in (4.2) will 
be close to 0 or even negative, but in the model this quan•
tity was truncated, so recruitment never exceeded twice 
the greatest recruitment observed in our data. In (4.2) 
one could use the MLE,); = - .72, but for simplicity, 
and because a likelihood ratio test indicated that H 0 : A 

= - 1.0 was very credible, we used ~ = - 1.0. 
Model (4.2) with either ); = -1.0 or ); = - .72 is a 

particularly simple model that possesses these essential 
characteristics found in the data: 

(i) Recruitment is highly variable and the variability 
increases with E. 

(ii) Recruitment is positively skewed, and the skew•
ness also increases with£. Therefore, except when 
E is small, the fishery has occasional dominant year 
classes. 

The heteroscedasticity and variable skewness can be 
seen by examining the estimated distributions of recruit•
ment with eggs set equal to the observed values during 
1961 and 1969, the years with highest and lowest values 
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of egg production, respectively, among all years for which 
we have data. In Figure l, the quantiles of these estimated 
distributions are plotted against normal quantiles. The 
plots were obtained by plotting (4.2) with<= <t>- 1(i/70) 
on the horizontal axis and <I>- 1 (i/70) on the vertical axis 
fori = 2, ... , 68, and interpolating these points with a 
spline. (<I> is the standard normal distribution function.) 
For the graphs, we used); = -.72 in (4.2), but i; = -1.0 
(the value used in simulations) would give similar plots. 

With our model we were able to make a detailed sim•
ulation study of management policies for Atlantic men•
haden. We found that management of a fishery with oc•
casional, randomly occurring, dominant-year classes is a 
problem considerably different from managing a fishery 
with low variability. 

In some situations, A may be a nuisance parameter that 
is estimated only so that other parameters can be more 
efficiently estimated. However, as in this example, we 
may sometimes want to know the conditional distribution 
of the dependent variable, given the independent varia•
bles. A then becomes a parameter equally as important 
as other parameters. 
It is no coincidence that As = A a. Since, for the range 

of E in the data, the Beverton-Holt and unnormalized 
Gamma curves with estimates substituted for the param•
eters are similar, their residuals from the estimated me•
dians are also similar. ); is determined by the nonnor-

II 

L£000: HETl«XX 

t5 '21 

IEcttUlfOJAMTllU 

--HlOHtGM 

" " 
--LOWEOO.S 

Figure 1. Estimated quantiles of recruitment plotted against stan•
dard normal quantiles. Recruitment is conditional on egg produc•
tion being equal to the 1961 value (HIGH EGGS) or the 1969 value 
(LOW EGGS). Recruitment is in units of 1Cf fish. 
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mality and heterogeneity of distribution that can be 
detected in these residuals. 

As a final note, the analysis presented here was not 
merely an academic exercise; it formed a part of our study 
of the SR relationship, which itself was only a small (al•
beit important) component of a large study performed 
under time constraints. We welcome further analyses of 
the data, but we hope it is clear that we do not consider 
the reported analysis complete. In fact, we analyzed 
many other models under varying assumptions. For ex•
ample, the inclusion of a quadratic time trend in the lin•
earized Beverton-Holt model substantially improved the 
fit to the data. However, the time trend may be due to 
substantial overfishing in the l%0's, and the use of the 
trend for predicting future recruitments does not seem 
warranted. Another candidate for an explanatory variable 
in a more complex model is recruitment lagged one year. 

4.2 Chemical Reaction Data 

As a second sample, consider the data of Carr (1960) 
on the isomerization of pentane. For that data set, one 
proposed model is 

y = 9o9z(Xz - XJ/1.632) . (4.3) 
I + 9,x, + 9zxz + 93X3 

Box and Hill (1974) also list the data and discuss the 
model. They linearize (4.3) by taking inverses and then 
using a form of weighted least squares; without going into 
the full details, it suffices to state that their analysis sug•
gests that y'" has constant variance, where ll = .8 (see 
also Pritchard, Downie, and Bacon 1977). We shall call 
the Box and Hill method power transformation (linear•
ized) weight least squares (PTWLS). 

Since the linearized model based on analyzing y- 1 in 
(4.3) exhibits marked heteroscedasticity, it is interesting 
to see how our estimation method (based on (1.4a)•
(1.4b)) performs; this method will be called PTBS for 
power transforming both sides. Based on Box and Hill's 
analysis, we should expect our PTBS to find ll = .8. As 
seen in Table 4, we estimated~ = .71, which is definitely 
encouraging. 

We applied PTBS to model (4.3), untransformed. See 
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Table 4 for the results, which for 9 are somewhat different 
from those obtained by Pritchard, Downie, and Bacon 
(1977), who used their algorithm DIRECT on the untrans•
formed data. Possibly this difference is due to the pres•
ence of several local minima. When we applied un•
weighted nonlinear least squares to model (4.3), using 
Box and Hill's (1974) PTWLS solution as a starting value, 
other algorithms found a different solution with a smaller 
sum of squares than that reported by Pritchard, Downie, 
and Bacon (see Table 4). 

Our aim in studying this example was to show that our 
PTBS gives reasonable results. We think our answers are 
perfectly sensible, and they correspond to PTWLS. For 
both, one obtains physically meaningful (positive) esti•
mates of 9, 92 , and 93 , but unweighted linear least 
squares on the inverse scale gives negative estimates. We 
believe that PTWLS and PTBS can be recommended 
equally for this data set, although perhaps unweighted 
nonlinear least squares is just as effective and somewhat 
simpler. 

A minor advantage of using the untransformed data is 
that on the inverse scale, Observation 6 of Box and Hill 
is highly influential even with power weighting (Carroll 
l982b), while on the original scale no observation appears 
to have unusually high influence on the estimate of ll. 
Influence and diagnostics for inference in our model are 
questions that should be addressed in the future. 

We used our transformation method successfully on 
other data sets, including the second data set mentioned 
by Pritchard, Downie, and Bacon. 

APPENDIX A: PROOFS 

Outline of Proof for Theorem 1 

The likelihood analysis proceeds as follows. Define 

Z; = dh(f;(9o), llo)/d9o, 

f,(9) = f(x,, 9), f, = f,(9o), 

hy(y) = hy(y, ll) = dh(y, ll)/dy, and h(y) = h(y, ll). 

Let h,(y) and hn(Y) be the gradient vector and Hessian 
of h(y, ll) with respect to ll. By shnple algebra we find 

Table 4. Analysis of Carr's Data Using Unweighted, Least Squares, Power Transformation 
Weighted Least Squares (PTWLS), and Power Transforming Both Sides (PTBS) 

Estimation Method Unweighted PTWLS PTBS Unwelghted Unwelghted 

Source Pritchard et at. Box and Hill IMSLZXSSQ� Pritchard at al. BMDP3R� 
and ZXGSN 

Response Variable y-1 y-1 y y y 
~ 1 -.8 .71 1 1 
~um of Squaresc 3.24397 3.23448 

Oo 16.3 40.00 39.2 35.9 35.9 

01 -.043 .75 .043 1.04 .071 

o. -.014 .35 .021 .55 .038 

0. -.098 1.85 .104 2.46 .167 

a See Section 5. 
"Same solution obtained with BMDPAR, SAS·NLIN with derivatives, and IMSl ZXSSQ. 
c Used to compare the fits with A = 1 and response 5 = y. 
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the joint information matrix of (Oo, <ro, Ao) as (all sum- then 
mations are from l to N) 

lim lim FE- 1 F' = [ 0 0 ], 

where 

0 
l/(2rro4 ) 

S = N- 12:,z;z/, 

C1 = -N- 1E"' ;i,Z; [h,(y;)- h,(f;) ] ' , 

C2 = -N- 1E"';i,e;[h,(y;) - h,(f;)]', 

C3 = N' 1E"' ;i, { [h,(y;)- h,(f;) ] [h,(y;)- h,(f;) ] ' 

+ E;[h .. (y;) - h .. (f;)] 

+ (aiaA)(aiaA)'log[hy(y;)]}. 

In general, C 1 and C2 are not zero, and the asymptotic 
distribution of (0, & 2) when Ao is estimated differs from 
when Ao is known. The key question, of course, is 
whether C 1 and C 2 are sufficiently different from zero to 
seriously affect the distribution of ~-

The expressions C 1, C 2, and C 3 are complex even when 
[;(Oo) has a nice form such as simple linear regression. 
To simplify matters sufficiently so that we can gain some 
insight about the difference between knowing and esti•
mating Ao, we follow Bickel and Doksum (1981) and oth•
ers and let <ro--+ 0. 

Taylor expansions show that under mild regularity con•
ditions C1 = 0(rro2), C2 = O(rro2), and CJ = O(rr02) as rr0 
--+ 0. Standard calculations show that when Ao is known, 

N 112 covariance [(0 - Oo)irro, (rr2 - <ro2)/rr02 I Ao known] 

--+A -I = [(lim g)-1 ~] . (A.l) 

LetD = Diag(rr0 , .•• , rr0 , rr02, l, ... , !). Then, to find 
this limiting covariance matrix when A.0 is unknown, we 
must find the upper left (k + I) x (k + l) corner of 

which by standard results on inverting partitioned ma•
trices is A -I + FE-'F', where A -I is given in (A.!), E 
= C3/rr02 - B'A B, F = A - 1B, and B' = (C1/rro C2/ 
rr02). Clearly, 

and 

E = C3/rro2 - c,•s-•c,irro2 - ZCiC2/rro4 

To obtain simple asymptotics, we will assume that for <ro 
fixed, Cdrro2 , C2/rro2 , and C3/rr02 converge as N ---7> oo, 
and that these, in turn, have limits D 1, D2, and D3, re•
spectively, as <ro--+ 0. We also assume that S--+ Sx (pos•
itive definite) as N--+ oo. If D3 - 2DiD2 is nonsingular, 

o:n~ON-crc 0 W 

where W = 4Di[DJ- DiD2]- 1D2. 

Outline of Proof of Theorem 2 

Let w1, ... , wN be positive numbers, and let 01 be 
any point that minimizes the expression 

"';i,w, I y,- f,ro,) !-
Under (1.4), [ 1(80) is the unique median of y,, so 9, will 
be consistent under some regularity conditions. The 
asymptotic distribution of 01 can be studied using tech•
niques in Ruppert and Carroll (1980). A particularly sim•
ple asymptotic variance matrix is obtained if w, = 
hy(f1(80 ), Ao), that is, if w, is proportional to the density 
of [y, - f,(Oo)l at its median, zero. Then 

N 112(0 1 - Oo)irro....:£... N(O, (,/2)S- 1). 

Although w1 depends on Oo and Ao, the methods in Carroll 
and Ruppert (1982) can be used to show that the same 
limiting distribution holds if one substitutes VN-consis•
tent estimates for Oo and Ao. 

Let V(Ao) and V(~) be the asymptotic variance ma•
trices oftl(Ao) and 0(~). respectively. Since V(Ao) = s-•, 
the asymptotic optimality of the MLE shows that 

s- 1 , v(~), (1Ti2)s-•. 

where the inequalities are in the sense of positive defi•
niteness. 

APPENDIX B: COMPUTATION 

Let L(O, rr, A) denote the log-likelihood for model (1.4). 
We do not recommend direct maximization of this like•
lihood by a canned routine for maximizing a function of 
many parameters. Rather, we adopt the usual practice for 
the Box-Cox (1964) model (1.5), which reduces the prob•
lem to maximizing a function of the scalar A. Here are 
the general steps we used. 

Step I. Fix an initial scale A'"- For the simulation and 
second example, A'" = 1.0, while for the first example 
Am was chosen to satisfy (4.1). 

Step 2. Obtain preliminary estimates ofe, say e'"· For 
the simulation and first example, these were found by 
least squares, while for the second example the starting 
values are the last column of Table 4. The value rr'" is 
simply the square root of the mean squared residual. 

Step 3. Now begin the maximization of the log-likeli•
hood. At the current value of A, find O(A), <r(A) by using 
a nonlinear regression algorithm, starting from 6(1), rr0 >. 
After completion, update e'" = O(A), rr'" = rr(A). Define 
the one-parameter function L *(A) = L(O(l\), <r(A), A). 

Step 4. On the interva!A E [- 1.0, 1.0], L *(A) is often 
concave and can be maximized by a program specifically 
designed to maximize a concave function of one param•
eter. If L *(A) is not concave, use a grid search. 
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For Steps 3 and 4, we used the IMSL subroutines 
ZXSSQ and XZGSN, respectively. The latter program 
includes a check for convexity of - L *(;\.), which in the 
simulations was always satisifed. 

[Received November 1982. Revised October 1983.] 
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Variance Function Estimation 
M. DAVIDIAN and R. J. CARROLL* 

Heteroscedastic regression models are used in fields including eco•
nomics, engineering, and the biological and physical sciences. Often, the 
heteroscedasticity is modeled as a function of the covariates or the regres•
sion and other structural parameters. Standard asymptotic theory implies 
that how one estimates the variance function, in particular the structural 
parameters, has no effect on the first-order properties of the regression 
parameter estimates; there is evidence, however, both in practice and 
higher-order theory to suggest that how one estimates the variance func•
tion does matter. Further, in some settings, estimation of the variance 
function is of independent interest or plays an important role in esti•
mation of other quantities. In this article, we study variance function 
estimation in a unified way, focusing on common methods proposed in 
the statistical and other literature, to make both general observations 
and compare different estimation schemes. We show that there are sig•
nificant differences in both efficiency and robustness for many common 
methods. 

We develop a general theory for variance function estimation, focusing 
on estimation of the structural parameters and including most methods 
in common use in our development. The general qualitative conclusions 
are these. First, most variance function estimation procedures can be 
looked upon as regressions with "responses" being transformations of 
absolute residuals from a preliminary fit or sample standard deviations 
from replicates at a design point. Our conclusion is that the former is 
typically more efficient, but not uniformly so. Second, for variance func•
tion estimates based on transformations of absolute residuals, we show 
that efficiency is a monotone function of the efficiency of the fit from 
which the residuals are formed, at least for symmetric errors. Our con•
clusion is that one should iterate so that residuals are based on generalized 
least squares. Finally, robustness issues are of even more importance 
here than in estimation of a regression function for the mean. The loss 
of efficiency of the standard method away from the normal distribution 
is much more rapid than in the regression problem. 

As an example of the type of model and estimation methods we con•
sider, for observation-covariate pairs (Y,,x,), one may model the variance 
as proportional to a power of the mean response, for example, 

E(Y,) ~ f(x., p), var(Y,) ~ uf(x., f!J', 
f(x.,f!J >0, 

where f (x,. fJ) is the possibly nonlinear mean function and (} is the 
structural parameter of interest. "Regression methods" for estimation 
of(} and u based on residuals r1 = Y; - f(x 1, $.) for some regression 
fit iJ. involve minimizing a sum of squares where some function T of 
the jr,j plays the role of the "responses" and an appropriate function of 
the variance plays the role of the "regression function." For example, 
if T(x) = x 2, the responses would be if, and the form of the regression 
function would be suggested by the aproximate fact E(rn = u2f 
(x, iJ.)'111. One could weight the sum of squares appropriately by consi•
dering the approximate variance of ri. For the case of replication at 
eachx,, some methods suggest replacing the r1 in the function Tby sam•
ple standard deviations at each x,. Other functions T, such as T(x) = 

x or log x, have also been proposed. 

KEY WORDS: Asymptotic efficiency; Heteroscedasticity; Regression; 
Variance estimation. 

1. INTRODUCTION 

Consider a heteroscedastic regression model for ob•
servable data Y: 

EY; = JJ; = f(x;, P); var(Y;) = a 2g2(z;, p, IJ). (1.1) 

* M. Davidian is Assistant Professor, Department of Statistics, North 
Carolina State University, Raleigh, NC 27695-8203. R. J. Carroll is Pro•
fessor, Department of Statistics, University of North Carolina, Chapel 
Hill, NC 27514. This work was supported by Air Force Office of Scientific 
Research Grant F-4962Q.85·C.0!44. 

Here, {xJ are the design vectors, P(p x 1) is the regression 
parameter, f is the mean response function, and the vari•
ance function g expresses the heteroscedasticity, where { zJ 
are known vectors, possibly the {xJ, a is an unknown scale 
parameter, and !J(r x 1) is an unknown parameter. For 
example, the variance may be modeled as proportional to 
a power of the mean: 

g(z;, p, IJ) = f(x;, P)', f(x;, fl) > 0. (1.2) 

One might also model the variance as quadratic in the 
predictors, that is, 

ag(z;, p, IJ) = 1 + IJ 1x; + IJ 2x/, 

or by an expanded power of the mean model, that is, 

a'g2(z,, p, IJ) = IJ, + !Jzf(x;, P)''· (1.3) 

Box and Meyer (1986) used 

g(z;, p, !J) = exp(z!O). 

An important feature of ( 1.1) is that no assumption about 
the distribution of the {Y;} has been made other than that 
of the form of the first two moments. Models that may be 
regarded as special cases of (1.1) are used in diverse fields, 
including radioimmunoassay, econometrics, pharmacoki•
netic modeling, enzyme kinetics, and chemical kinetics, 
among others. The usual emphasis is on estimation of p 
with estimation of the variances as an adjunct. 

The most common method for estimating P is general•
ized least squares, in which one estimates g(z" p, IJ) by 
using an estimate of (} and a preliminary estimate of P and 
then performs weighted least squares; see, for example, 
Carroll and Ruppert (1982a) and Box and Hill (1974). This 
might be iterated, with the preliminary estimate replaced 
by the current estimate of p, a new estimate of(} obtained, 
and the process repeated. Standard asymptotic theory as 
in Carroll and Ruppert (1982a) or Jobson and Fuller (1980) 
shows that as long as the preliminary estimators for the 
parameters of the variance function are consistent, all es•
timators of p obtained in this way will be asymptotically 
equivalent to the weighted least squares estimator with 
known weights. 

There is evidence that for finite samples, the better one's 
estimate of IJ, the better one's final estimate of p. Williams 
(1975) stated that "both analytic and empirical studies ... 
indicate that . . . the ordering of efficiency (of estimates 
of p) . . . in small samples is in accordance with the or•
dering by efficiency (of estimates of IJ)" (p. 563). Roth•
enberg (1984) showed via second-order calculations that 
if g does not depend on p, when the data are normally 
distributed the covariance matrix of the generalized least 
squares estimator of p is an increasing function of the 
covariance matrix of the estimator of IJ. 
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Second-order asymptotics provide only a weak justifi•
cation for studying the properties of variance function es•
timates. Instead, our thesis is that estimation of the struc•
tural variance parameter 0 is of independent interest. In 
many engineering applications, an important goal is to 
estimate the error made in predicting a new observation; 
this can be obtained from the variance function once a 
suitable estimate of 0 is available. In chemical and bio•
logical assay problems, issues of prediction and calibration 
arise. In such problems, the estimator of e plays a central 
role. As motivation for the study of variance function es•
timation, in Section 2 we discuss the problem of calibration 
and prediction in the case of heteroscedasticity. For a for•
mal investigation of how the statistical properties of pre•
diction intervals and calibration constructs, such as the 
minimal detectable concentration, are highly dependent 
on how one estimates e, see Davidian, Carroll, and Smith 
(1987). In off-line quality control, the emphasis is not only 
on the mean response but also on its variability; Box and 
Meyer (1986) stated that "one distinctive feature of Jap•
anese quality control improvement techniques is the use 
of statistical experimental design to study the effect of a 
number of factors on variance as well as the mean" (p. 
19). The goal is to adjust the levels of a set of experimental 
factors to bring the mean of the responses to some target 
value while minimizing standard deviation; the problem 
involves simultaneous consideration of both mean and 
variability, where the latter may be a function of the mean 
(see Box 1986; Box and Ramirez 1986). These authors 
advocated methods based on data transformations to ac•
count for the heteroscedasticity in separating the factors 
into those affecting dispersion but not location, those af•
fecting location but not dispersion, and those affecting 
neither. Similarly, one might employ effective estimation 
of variance functions in this application. We briefly discuss 
the relationship between variance function estimation and 
one type of data transformation in Section 3. 
It should be evident from this brief review that, far from 

being only a nuisance parameter, the structural variance 
parameter 0 can be an important part of a statistical analy•
sis. The foregoing discussion suggests the need for a un•
ified investigation of estimation of variance functions, in 
particular, estimation of the structural parameter 0. Pre•
vious work in the literature tends to treat various special 
cases of (1.1) as different models with their own estimation 
methods. The intent of this article is to study parametric 
variance function estimation in a unified way. Nonpara•
metric variance function estimation has also been studied 
(see, e.g., Carroll 1982); we will confine our study to the 
parametric setting. 

Parametric variance function estimation may be thought 
of as a type of regression problem in which we try to 
understand variance as a function of known or estimable 
quantities and in which e plays the part of a "regression" 
parameter. The major insight that allows for a unified 
study is that the absolute residuals from the current fit to 
the mean or the sample standard deviations from replicates 
are basic building blocks for analysis. At the graphical 
level, this means that transformations of the absolute re•
siduals and sample standard deviations can be used to gain 
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insight into the structure of the variability and to suggest 
parametric models. For estimation, a major contribution 
is to point out that most of the methods proposed in the 
literature are (possibly weighted) regressions of transfor•
mations of the basic building blocks on their expected 
values. Many exceptions to this are dealt with in this article 
as well. 

Our study yields these major qualitative conclusions. As 
stated here, they apply strictly only to symmetric error 
distributions, but they are fairly definitive, and one is un•
likely to be too successful ignoring them in practice. 

1. Robustness plays a great role in the efficiency of 
variance function estimation, probably even greater than 
in estimation of a mean function. For example, if the vari•
ance does not depend on the mean response, the standard 
method will be normal theory maximum likelihood, as in 
Box and Meyer (1986). A weighted analysis of absolute 
residuals yields an estimator only 12% less efficient at the 
normal model, which rapidly gains efficiency over maxi•
mum likelihood for progressively heavier tailed distribu•
tions. This slope of improvement is much larger than is 
typical for estimation of the mean response. For a standard 
contaminated normal model for which the best robust es•
timators have efficiency 125% with respect to least squares, 
the absolute residual estimator of the variance function 
has efficiency 200%. 

2. We obtain implications for fit to the means upon 
which the residuals are based. It has been our experience 
that unweighted least squares residuals yield unstable es•
timates of the variance function when the variances de•
pend on the mean. This is confirmed in our study, in the 
sense that the asymptotic efficiency of the variance func•
tion estimators is an increasing function of the efficiency 
of the current fit to the means. Thus we suggest the use 
of iterative weighted fitting, so the variance function es•
timate is based on generalized least squares residuals. As 
far as we can tell, this part of our article is one of the first 
formal justifications for iteration in a generalized least 
squares context. 

3. It is standard in many applied fields to take m rep•
licates at each design point, where usually m s; 4. Rather 
than using (transformations of) absolute residuals for es•
timating variance function parameters, one might use the 
sample standard deviations. We develop an asymptotic 
theory from which we obtain the efficiency of this substi•
tution. The effect is typically, although not always, a loss 
of efficiency, at least when there are m s; 4 replicates. The 
clearest results occur when the variance does not depend 
on the mean. Normal theory maximum likelihood is a 
weighted regression of squared residuals; the correspond•
ing method would be a weighted regression based on sam•
ple variances. Using the latter entails a loss of efficiency, 
no matter what the underlying distribution. For normally 
distributed data, the efficiency is (m - 1)/m, thus being 
only 50% for duplicates. For other methods, using the 
replicate standard deviations can be more efficient. This 
is particularly true of a method due to Harvey (1976), 
which is based on the logarithm of absolute residuals. A 
small absolute residual, which seems always to occur in 
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practice, can wreak havoc with this method. This is con•
sistent with our influence function calculations, so we sug•
gest some trimming of the smallest absolute residuals be•
fore applying Harvey's method. 

4. Our results indicate that the precision of estimates of 
8 is approximately independent of a. In addition, in the 
power of the mean model (1.2), the efficiency of a regres•
sion estimator improves as the relative range of values of 
the mean response increases; efficiency depends on the 
spread of the logarithms of means, not their actual values. 
This helps explain why in assays, estimating variances is 
typically much harder than estimating means. 

In Section 2 we discuss the prediction and calibration 
problems as a motivating example of a situation in which 
variance function estimation is of key importance. In Sec•
tion 3 we describe a number of methods for estimation of 
8. We do not discuss robust methods (see Giltinan, Carroll, 
and Ruppert 1986). In Section 4 we present an asymptotic 
theory for a general estimator of e whose construction 
encompasses the methods of Section 3. Section 5 contains 
examples of specific applications of our theory and a dis•
cussion of the implications of our formulation. Sketches 
of proofs are presented in Appendix A. 

2. AN EXAMPLE: THE ROLE OF VARIANCE 

ESTIMATION IN PREDICTION AND 

CALIBRATION PROBLEMS 

One example in which heterogeneity of variation occurs 
is in calibration experiments in the physical and biological 
sciences, in which one fits a model such as (1.1) to a sample 
{ Y,, x,) (i = 1, ... , N). The {xJ may be concentrations 
of a substance and the { Y,} may be counts or intensity 
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levels that vary with concentration. The interest lies in 
using the estimated regression to make inference about a 
pair { Y0 , x0), which is independent of the original data 
set. One may wish to obtain point and interval predictors 
for Y0 in the case in which x0 is known (prediction) or 
estimate x0 in the case in which Y0 only is known ( cali•
bration) (see Rosenblatt and Speigelman 1981). As a mo•
tivating example for considering estimation of variance 
functions as an independent problem, we describe the pri•
mary role of form and estimation of the variance function 
in construction of prediction/calibration intervals in the 
case of heteroscedasticity. 

Throughout this discussion assume that xi === zi so that 
we may write the variance function as g(x,, p, 8), and 
assume that the data are approximately normally distrib•
uted. Given x 0 , the standard point estimate of the response 
Yo is f(x0 , /1), where /J is some estimate for p. For any 
consistent estimator /1 of p, under (1.1) the variance in the 
error made by the prediction is, for large sample sizes, 
var{ Y0 - f(x 0 , /1)) = a 2g'(x0 , p, 8), so the error in pre•
diction is determined mainly by the variance function a2g'(x0 , 

p, 8) and not the original data set itself. An approximate 
(1 - a) 100% confidence interval for Yo is l(x0) = {all Y 
in the interval f(xo, /1) ± tf'_-t;, ag(x0 , /1, e)) ; here tf'_-£:2 

is the (1 - a/2) percentage point of the t distribution with 
( N - p) degrees of freedom and a and /1 are estimates. 
If the parameters are estimated by a weighted analysis, 
such as generalized least squares assuming (1.1), all esti•
mates are consistent and the prediction interval becomes 

l(x0) ={all Yin the interval 

f(xo, P) ± tf'_-t;,ag(xo, p, 8)). (2.1) 

30 40 50 60 

Esterase 

Figure 1. Approximate Form of Prediction lnteNals for a Unear Mean Response Function Based on Unweighted (ignoring heteroscedasticity) 

and Weighted [as in (1. 1 )] Regression Fits. Esterase assay 95% prediction limits: dashed line-unweighted, solid line-weighted. 
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If one were to ignore the heterogeneity, the interval would 
be given by 10 (x0) = {all Y in the interval f(x0 , P) ± 

tf~-£12 8}. For an unweighted analysis, however, a 2 would 
be estimated by the unweighted mean squared error D-L = 
a'N- 1 ~ g'(x, /3, 8) = a 2gl; for large N. Thus the un•
weighted prediction interval satisfies 

1u(x0 ) = {all Yin the interval 

f(xo, p) ± tf".:-t"agN}· (2.2) 

Comparing (2.1) and (2.2), we see that where the vari•
ability is small, the unweighted interval will be too long 
and hence pessimistic, and conversely where the variance 
is large. Figure 1 illustrates this phenomenon for the results 
of an assay for the concentration of an enzyme esterase, 
where the responses are binding counts in the simple sit•
uation of an approximately linear mean response function 
where variability increases with mean response. 

The situation is the same for calibration. For simplicity 
in discussing calibration, assume that f(x, /3) is strictly 
increasing or decreasing in x. Given Y 0 , the usual estimate 
of x0 is that value satisfying Y0 = f(x, fj). The common 
confidence interval for x0 is the set of all x values for which 
Y0 falls in the prediction interval 1(x); this interval is ac•
tually a (1 - a) 100% confidence interval for the unknown 
x0 . Since the confidence interval for x0 is thus an inversion 
of the intervals in Figure 1, again, the effect of not weight•
ing is intervals that are too long for x0 when the variance 
is small and the opposite when the variance is large. We 
are not familiar with any extensive investigation of cali•
bration confidence intervals for heteroscedastic models, 
but see Watters, Carroll, and Spiegelman (1987). 

The key point of this discussion is that when hetero•
geneity of variance is present, how well one models and 
estimates the variances will have substantial impact on 
prediction and calibration based on the estimated mean 
response, since the form of the intervals depends on the 
form of the variance function. Some theoretical work has 
been done verifying the implications of this discussion; for 
an investigation of how the statistical properties of esti•
mators for calibration quantities depend on those of the 
estimator 8, see Davidian et al. (1987) and Carroll (1987). 

3. ESTIMATION OF 8 

We now discuss the form and motivation for several 
estimators of 8 in (1.1). In what follows, let fj. be a pre•
liminary estimator for p. This could be unweighted least 
squares or the current estimate in an iterative reweighted 
least squares calculation. Let e1 = {Y 1 - f(x,, /3)}/{ag(z,, 
p, 8)} denote the errors so that Ee1 = 0 and Eei = 1, and 
denote the residuals by r1 = Y1 - f(x1, fj.). We consider 
some methods requiring m1 "' 2 replicates at each of M 

design points; for simplicity, we consider only the case of 
equal replication m1 = m and write in obvious fashion {Y,J 
( j = 1, ... , m) to denote the m observations at x, where 
appropriate, so that N = Mm is the total number of ob•
servations. In this case, let Y,. and s, denote the sample 
mean and standard deviation at xi. For consistency of ex•
position, however, we denote the sum over all observa-
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tions as ~[: 1 instead of ~~~~7: 1 . When we speak of re•
placing absolute residuals {jr,j} by sample deviations {sJ in 
the case of replication, jr,j or s, appears m times in the 
sum. 

3.1 Regression Methods 

3.1.1. Pseudolikelihood. Given f;., the pseudolikeli•
hood estimator maximizes the normal log-likelihood l(fj., 
8, a), where 

N 

l(/3, 8, a) = - N log a - 2: log{g(z,, p, 8)} 
i=l 

N 

-(2a2)-1 2: {Y, - f(x1 , f3)}'!g'(z 1, fJ, 8) (3.1) 
i=1 

(see Carroll and Ruppert 1982a). Here the term "pseu•
dolikelihood" is used as in Gong and Samaniego (1981). 
Generalizations of pseudo likelihood for robust estimation 
have been studied by Carroll and Ruppert (1982a) and 
Giltinan et al. (1986). 

3.1 .2. Least Squares on Squared Residuals. Besides 
pseudolikelihood, other methods using squared residuals 
have been proposed. The motivation for these methods is 
that the squared residuals have approximate expectation 
a 2g2( z 1, p, 0) (see Amemiya 1977; Jobson and Fuller 1980). 
This suggests a nonlinear regression problem in which the 
"responses" are {rl} and the "regression function" is a2g2(z1, 

fj., 8). The estimator 8,. minimizes in 8 and a, 

N 

2: {rt - a 2g'(z1, fj., 8)}2• 

i"'l 

For normal data the squared residuals have approximate 
variance a4g4(z1, p, 8); in the spirit of generalized least 
squares, this suggests the weighted estimator that mini•
mizes in e and (J' 

N 

2: {rt- a 2g'(z1, fj., 8)}2/g'(z,, fj., &.), (3.2) 
i=l 

where&. is a preliminary estimator for 8, 8,., for example. 
Full iteration, when it converges, would be equivalent to 
pseudo likelihood. 

3.1.3. Accounting for the Effect of Leverage. One ob•
jection to methods such as pseudolikelihood and least 
squares based on squared residuals is that no compensa•
tion is made for the loss of degrees of freedom associated 
with preliminary estimation of p. For example, the effect 
of applying pseudolikelihood directly seems to be a bias 
depending on piN. For settings such as fractional facto•
rials, where p is large relative to N, this bias could be 
substantial. 

Bayesian ideas have been used to account for loss of 
degrees of freedom (see Harville 1977; Patterson and 
Thompson 1971). When g does not depend on p, there•
stricted maximum likelihood approach of Patterson and 
Thompson suggests in our setting one estimate 8 from the 
mode of the marginal posterior density for 8 assuming 
normal data and a prior for the parameters proportional 
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to a-'- When g depends on p, one may extend the Bayesian 
arguments and use a linear approximation as in Box and 
Hill (1974) and Beal and Sheiner (1987) to define a re•
stricted maximum likelihood estimator. 

Let Q be theN x p matrix with ith row fp(x 1, P)'lg(z,, 
p, 0), where fp(x1, PJ = a/ap{f(x1, p)}, and let H = 
Q(Q'Q) - 'Q' be the "hat" matrix with diagonal element h11 

= h11(P, 0); the values {h.} are the leverage values. It turns 
out that the restricted maximum likelihood estimator is 
equivalent to an estimator obtained by modifying pseu•
dolikelihood to account for the effect of leverage. This 
characterization, although not unexpected, is new; we de•
rive this estimator and its equivalence to a modification 
of pseudolikelihood in Appendix B. 

The least squares approach using squared residuals can 
also be modified to show the effect of leverage. Jobson 
and Fuller (1980) essentially noted that for nearly normally 
distributed data we have the approximations 

Err= a 2(1 - h,)g2(z1, p, 0), 

var r[ = 2a4(1 - h11) 2g4(z1, p, 0). 

To exploit these approximations modify (3.2) to minimize 
in 0 and a, 

N 

2: {r [ - a 2(1 - h11)g'(z,, p., O)P 
i=l 

+ {(! - h11 ) 2g'(z,, p., &.)}, (3.3) 

where h11 = h11(p., II.) and II. is a preliminary estimator 
for 0. An asymptotically equivalent variation of this esti•
mator in which one sets the derivatives of (3.3) with respect 
to 0 and a equal to 0 and then replaces &. by 0 can be 
seen to be equivalent to pseudolikelihood in which one 
replaces standardized residuals by studentized residuals. 
Although this estimator also takes into account the effect 
of leverage, it is different from restricted maximum like•
lihood. 

3.1.4. Least Squares on Absolute Residuals. Squared 
residuals are skewed and long-tailed, which has led many 
authors to propose using absolute residuals to estimate 0 
(see Glejser 1969; Theil1971). Assume that 

E\Y, - f(x 1, P)\ = 71g(z,, p, 0), 

which is satisfied if the errors {e,} are iid. Mimicking the 
least squares approach based on squared residuals, one 
obtains the estimator 0 AR by minimizing in 'I and 0, 

N 

2: {\r1\ - 71g(z,, p., 0)}2 

In analogy to (3.2), the weighted version is obtained by 
minimizing 

N 

2: {\r1\ - 71g(z1 , p., O)}'/g'(z1, p., II.), 
i=l 

where II. is a preliminary estimator for 0, probably OAR· 

As for least squares estimation based on squared residuals, 
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one presumably could modify this approach to account for 
the effect of leverage. 

3.1.5. Logarithm Method. The suggestion of Harvey 
(1976) is to exploit the fact that the logarithm of the ab•
solute residuals has approximate expectation log{ag(z, p, 
0)}. Estimate 0 by ordinary least squares regression of 
log\r,\ on log{ag(z1, p., 0)}, since if the errors are iid, the 
regression should be approximately homoscedastic. If one 
ofthe residuals is near 0, the regression could be adversely 
affected by a large "outlier"; hence in practice one might 
wish to delete a few of the smallest absolute residuals, 
perhaps trimming the smallest few percent. 

3.2 Other Methods 

Besides squares and logarithms of absolute residuals, 
other transformations could be used. For example, the 
square root and i root would typically be more normally 
distributed than the absolute residuals themselves. Such 
transformations appear to be useful, although they have 
not been used much to our knowledge. Our asymptotic 
theory applies to such transformations. 

In a parametric model such as (1.1), joint maximum 
likelihood estimation is possible, where we use the term 
maximum likelihood to mean normal theory maximum 
likelihood. When the variance function does not depend 
on p, it can be easily shown that maximum likelihood is 
asymptotically equivalent to weighted least squares meth•
ods based on squared residuals. In the situation in which 
the variance function depends on p this is not the case. In 
this setting, it has been observed by Carroll and Ruppert 
(1982b) and McCullagh (1983) that, although maximum 
likelihood estimators enjoy asymptotic optimality when 
the model and distributional assumptions are correct, the 
maximum likelihood estimator of p can suffer problems 
under departures from these assumptions. This suggests 
that joint maximum likelihood estimation should not be 
applied blindly in practice. The theory of the next section 
shows the asymptotic equivalence of maximum likelihood 
with other methods in a simplifying special case. Based on 
this theory, we tend to prefer weighted regression methods 
even when the data are approximately normal for reasons 
of relative computational simplicity. 

Although we have chosen to describe the methods of 
Section 3.1 as "regression methods," asymptotically equiv•
alent versions of such methods may be derived by consid•
ering maximum likelihood assuming some underlying dis•
tribution. For example, the form of the weighted squared 
residuals method is that of normal theory maximum like•
lihood with p known and II. replaced by 0 (pseudolikeli•
hood); the form of the weighted absolute residual method 
is that of maximum likelihood assuming P known and II. 
replaced by 0 under the double exponential distribution. 
Thus what we term a regression method may be viewed 
as an approximation to maximum likelihood assuming a 
particular distribution. We feel that the regression inter•
pretation is a much more appealing and natural motiva•
tion, since no particular distribution need be considered 
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Table 1. Description of Some Methods tor Variance Function Estimation 

Normal theory maximum likelihood In p, a,(). Maximum likelihood 
Pseudolikelihood Normal theory maximum likelihood when p is set to current value. When iterated, equivalent to maximum likelihood if the 

variance does not depend on p. 
Weighted squared 
residuals 

Weighted absolute 
residuals 

Logartthm method 
Restricted maximum 
likelihood 

Regress squared residuals on the variance, function, weight inversely with squared current variance estimate. 

Regress absolute residuals on the standard deviation function, weight inversely with current variance estimate. 

Regress logarithm of absolute residuals on log of standard deviation function. Be wary of near-zero residuals. 
Pseudolikellhood corrected for leverage. Maximizes marginal posterior for noninformative prior. 

All of the preceding except restricted maximum likelihood have analogs formed by replacing absolute residuals by sample standard deviations In 
the case of replication. The following are based on the mean function or design being fully or partially unknown and are often used in assays. 

Rodbard and Frazier Regress log sample standard deviation on log sample mean, where the variance function depends on p only through the 
means. 

Modified maximum 
likelihood 

Modified functional maximum likelihood [Eq. (2.5)], where variance function depends on p only through means. 

Sadler and Smith Same as modified maximum likelihood, but means estimated by sample means. 

to obtain the form of the estimators, only the mean-vari•
ance relationship. 

Another joint estimation method is the extended quasi•
likelihood of Neider and Pregibon (1987) also described 
in McCullagh and Neider (1983). This estimator is based 
on assuming a class of distributions "nearly" containing 
skewed distributions, such as the Poisson and gamma. Al•
though it may be viewed as iteration between estimation 
of IJ and a and generalized least squares for p, technically 
this scheme does not fit in the general framework of the 
next section: an asymptotic theory was developed else•
where (see Davidian and Carroll, in press). A related for•
mulation was given by Efron (1986). 

Methods requiring replicates at each design point have 
been proposed in the assay literature. These methods do 
not depend on the postulated form of the regression func•
tion; one reason that this may be advantageous is that in 
many assays, along with observed pairs (Yii, x,), there will 
also be pairs in which only Y,i is observed. A popular and 
widely used method is that ofRodbard and Frazier (1975). 
If we assume that 

g(z, p, IJ) = g(l', z,, IJ), (3.4) 

as in, for example, (1.2) or (1.3), the method is identical 
to the logarithm method previously discussed except that 
one replaces jr,j by the sample standard deviation s, and 
f(x,, fj.) in the "regression" function by the sample mean 
Y, .. As a motivation for this and the method of Harvey, 
consider that under ( 1.2) IJ is simply the slope parameter 
for a simple linear regression. 

As an alternative, under the assumption of indepen•
dence and (3.4), the modified maximum likelihood method 
of Raab (1981) estimates IJ by joint maximization in the 
(M + r + 1) parameters a 2 , IJ, "" ... , I'M of the "mod•
ified" normal likelihood 
M 

II {2na'g'(.u,, z,, IJ))<m-1)12 
i=l 

X exp[-f (Y,i - l';)2/{2a2g2(1'1, z,, IJ)}]. (3.5) 
}~! 

The modification serves to make the estimator of a un•
biased. The idea here is to improve upon the regression 

method of Rodbard by appealing to a maximum likelihood 
approach that, despite a parameter space increasing as the 
number of design points, is postulated to have reasonable 
properties. A related method is that in which IJ and a are 
estimated by maximizing (3.5) with"' replaced by Y,., the 
motivation being computational ease and evidence that 
this estimator may not be too different from that of Raab 
in practice (see Sadler and Smith 1985). 

Table 1 contains a summary of some of the common 
methods for variance function estimation and their for•
mulations. 

4. AN ASYMPTOTIC THEORY OF VARIANCE 
FUNCTION ESTIMATION 

In this section we construct an asymptotic theory for a 
general class of regression-type estimators for IJ. Since our 
major interest lies in obtaining general insights, we do not 
state technical assumptions or details. In what follows, in 
the case of replication N--. oo in such a way that m remains 
fixed. The reader uninterested in this development may 
wish to review the definition of the form of the estimators 
in the first two paragraphs of Section 4.1 and then skip to 
Section 5, where conclusions and implications of the the•
ory are presented. 

4.1 Methods Based on Transformations of 
Absolute Residuals 

Writed,!JI) = jY,- f(x,,p)j. Let Tbeasmoothfunction 
and define M, by 

M,('l, IJ, p) = E[T{d,(p))], 

where '1 is a scale parameter that is usually a function of 
a only. We consider estimation of the more general pa•
rameter '1 instead of a itself for ease of exposition, and 
since u is estimated jointly with IJ in regression methods, 
our theory focuses on expansions for '1 and IJ jointly. If 
;,., 8*, and P. are any preliminary estimators for 11, (), 
and p, define ~ and IJ to be the solutions of 

N 

N-lil L H,(,, IJ, fj.) {T{d,(fj.)) - M,(,, IJ, fj.)) 
i=l 

+ V,(~. &., fj.) = 0, (4.1) 
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where V;(~, 0, p) is a smooth function and H, is a smooth 
function that for the estimators of Section 3 is the partial 
derivative of M, with respect to (~, 0). In what follows, 
we suppress the arguments of the functions M 1, V 1, etcetera 
when they are evaluated at the true values ~. 0, and p. 
Specific examples are considered in the next section. 

The class of estimators solving (4.1) includes directly or 
includes an asymptotically equivalent version of the esti•
mators of Section 3.1. For methods that account for the 
effect of leverage, M, V,, and H, will depend on the h,. 
In this case we need the additional assumption that if h 
~ max{h,}, then N 112h converges to 0. 

Theorem 4.1. Let fi,, 0,, and/1, be N 112 consistent for 
estimating ~. 0, and p. Let T be the derivative of T, and 
define 

C, ~ H,[T{d,(P)} - M,]!V,, 

N 

B1.N ~ N- 1 L H,Hf!V,, 
i=l 

N 

Bz.N ~ -N- 1 2: (H,IV,)a!ap{M,(~. 0, P)}, 
i=l 

N 

B 3.N ~ - N- 1 :2; (H,JV,)fp(x,, P)E[T{d,(p)}sign(e,)]. 
i=l 

Then, under regularity conditions as N ~ oo, 

B N1;2 [1 - ~J ~ N-1/2 £ C 
1,N e - e i=l l 

+ (Bz.N + B,.N)N112 (/1, - P) + op(1). (4.2) 

We may immediately make some general observations 
about the estimator {j solving (4.1). Note that if the vari•
ance function does not depend on p, then M, does not 
depend on p and hence B2 .N = 0. For the estimators of 
Section 2.1, Tis an odd function. Thus, if the errors {e,} 
are symmetrically distributed, E[H,{d;(P)}sign(e,)] ~ 0 and 
hence B 3.N = 0. 

Corollary 4.l(a). Suppose that the variance function 
does not depend on p and the errors are symmetrically 
distributed. Then the asymptotic distributions of the 
regression estimators of Section 3.1 do not depend on the 
method used to obtain fj,. If both of these conditions do 
not hold simultaneously, then the asymptotic distributions 
will depend in general on the method of estimating p. 

The implication is that in the situation for which the 
variance function does not depend on P and the data are 
approximately symmetrically distributed, for large sample 
sizes the preliminary estimator for p will play little role in 
determining the properties of /1. Note also from (4.2) that 
for weighted methods, the effect of the preliminary esti•
mator of 0 is asymptotically negligible regardless of the 
underlying distributions. 

The preliminary estimator fj, might be the unweighted 
least squares estimator, a generalized least squares esti•
mator, or some robust estimator. See, for example, Huber 
(1981) and Giltinan et a!. (1986) for examples of robust 
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estimators for p. For some vectors {vN.J, these estimators 
admit an asymptotic expansion of the form 

N 

N112(/1, - p) ~ N- 112 :2; 'l'(vN.i� e,) + op(1). (4.3) 
i=l 

Here '¥ is odd in the argument e. In case the variance 
function depends on p, B 2 N ,0 0 in general; however, if 
the errors are symmetrically distributed and fj, has ex•
pansion ofform (4.3), then the two terms on the right side 
of ( 4.2) are asymptotically independent. The following is 
then immediate. 

Corollary 4.J(b). Suppose that the errors are sym•
metrically distributed and that fj, has an asymptotic ex•
pansion of the form (4.3). Then for the estimators of Sec•
tion 3.1, the asymptotic covariance matrix of {j is a mono•
tone nondecreasing function of the asymptotic covariance 
matrix of fj,. 

By the Gauss-Markov theorem and the results ofJobson 
and Fuller (1980) and Carroll and Ruppert (1982a), the 
implication of Corollary 4.1(b) is that using unweighted 
least squares estimates of p will result in inefficient esti•
mates of IJ. This phenomenon is exhibited in small samples 
in a Monte Carlo study of Davidian eta!. (1987). If one 
starts from the unweighted least squares estimate, one 
ought to iterate the process of estimating li-use the cur•
rent value fj, to estimate 0 from (4.1), use these fj, and 
{j to obtain an updated fj, by generalized least squares, 
and repeat the process e - 1 more times. It is clear that 
the asymptotic distribution of {j will be the same for e "= 
2 with larger asymptotic covariance for e ~ 1, so in prin•
ciple one ought to iterate this process at least twice. See 
Carroll, Wu, and Ruppert (1987) for more on iterating 
generalized least squares. 

4.2 Methods Based on Sample 
Standard Deviations 

Assume replication, and as before let {s,} be the sample 
standard deviations at each x,, which themselves have been 
proposed as estimators of the variance in generalized least 
squares estimation of p. This can be disastrous (see Jac•
quez, Mather, and Crawford 1968). When replication ex•
ists, however, practitioners feel comfortable with the no•
tion that the {s,} may be used as a basis for estimating 
variances; thus one might reasonably seek to estimate 0 
by replacing d,(/J,) by s, in (4.1). 

The following result is almost immediate from the proof 
of Theorem 4.1 in Appendix A. 

Theorem 4.2. If d,(/1,) is replaced by s, in (4.1), then 
under the conditions of Theorem 4.1 the resulting esti•
mator for 0 satisfies (4.2) with B 3.N = 0 and the redefi•
nitions 

C, ~ (H,IV,){T(s,) - M,}, 

M, ~ E{T(s,)} ~ M,(~, 0, p). 

(4.4a) 

(4.4b) 

If the errors are symmetrically distributed, then, from 
(4.2) and Theorem 4.2, whether one is better off using 
absolute residuals or sample standard deviations in the 
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methods of Section 3.1 depends only on the differences 
between the expected values and variances of T{d 1(P)} and 
T(s1). In Section 5 we exhibit such comparisons explicitly 
and show that absolute residuals can be preferred to sam•
ple standard deviations in situations of practical impor•
tance. 

4.3 Methods Not Depending on the 
Regression Function 

We assume throughout this discussion that the variance 
function has form (3.4) and replication is available. From 
Section 3.1 we see that the "regression function" part of 
the estimating equations depends on f(x., ft.), so in the 
general equation (4.1) M,, V., and H, all depend on f(x1, 

p.). In some settings, one may not postnlate a form for 
the p, for estimating 0; the method of Rodbard and Frazier 
(1975), for example, uses s, in place of d1(ft.) as in Section 
4.2 and replaces f(x., ft.) by the sample mean Y,. We 
now consider the effect of replacing predicted values by 
sample means for the general class (4.1). 

The presence of the sample means in the variance func•
tion in (4.1) requires more complicated and restrictive 
assumptions than the usual large sample asymptotics ap•
plied heretofore. The method of Rodbard and Frazier and 
the general method (4.1) with sample means are nonlinear 
errors-in-variables problems as studied by Wolter and 
Funer (1982) and Stefanski and Carron (1985). Standard 
asymptotics for these problems correspond to letting a go 
to 0 at rate N- 112• In Section 4.4 we discuss the practical 
implications of a being small; for now, we state the fonow•
ing result. 

Theorem 4.3. Suppose that we replace f(x., ft.) by 
Y, in M., V., and H 1 in (4.1) and adopt the assumptions 
of Theorems 4.1 and 4.2. Further, suppose that as N-+ 
co, a -+ 0 simultaneously and 

(i) N 112a-+ .<, 0 S .<<co; 
(ii) N112 ~{:, C, has a nontrivial asymptotic normal limit 

distribution; 
(iii) The {e1} are symmetric and iid; 
(iv) {jY, - p.lfa}' has uniformly bounded k moments, 

some k > 2. 

Then the results of Theorems 4.1 and 4.2 hold with B2 N 

= B,,N .. 0. . 

This result shows that under certain restrictive assump•
tions, one may replace predicted values by sample means 
under replication; it is important to realize, however, that 
the assumption of sman a is not generany valid and hence 
the use of sample means may be disadvantageous in sit•
uations where these asymptotics do not apply. Further, 
relaxation of Assumption (iii) win result in an asymptotic 
bias in the asymptotic distribution of the estimator not 
present for estimators based on residuals regardless of the 
assumption of symmetry (see App. A). 

The estimator of Raab (1981) discussed in Section 3.2 
is also a functional nonlinear error-in-variables estimator, 
complicated by a parameter space with size of order N. 
Sadler and Smith (1985) observed that the Raab estimator 
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is often indistinguishable from their estimator with p1 re•
placed by Y, in (3.5); such an estimator is contained in 
the general class ( 4.1 ). Davidian (1986) showed that under 
the asymptotics of Theorem 4.3 and additional regularity 
conditions the two estimators are asymptotically equiva•
lent in an important special case. We may thus consider 
the result of Theorem 4.3 relevant to this estimator. 

4.4 Small a Asymptotlcs 

In Section 4.3 technical considerations forced us to pur•
sue an asymptotic theory in which a is small. It turns out 
that in some situations of practical importance these 
asymptotics are relevant. In particular, in assay data we 
have observed values for a that are quite small relative to 
the means. Such asymptotics are used in the study of data 
transformations in regression. It is thus worthwhile to con•
sider the effect of sman a on the results of Sections 4.1 
and 4.2 and to comment on some other implications of 
letting a -+ 0. 

In the situation of Theorem 4.1, if the errors are sym•
metrically distributed, then for the estimators of Section 
3.1, if a-+ 0 asN-+ co, then there is no effect for estimating 
the regression parameter p. In the situation of Theorem 
4.2, the errors need not even be symmetricany distributed. 
The major insight provided by these results is that in cer•
tain practical situations in which a is sman, the choice of 
ft. may not be too important even if the variance function 
depends on p. 

Small a asymptotics may be used to provide insight into 
the behavior of other estimators for (I that do not fit into 
the general framework of (4.1). It can be shown that the 
extended quasilikelihood estimator need not necessarily 
be consistent for fixed a, but if one adopts the asymptotics 
of the previous section, this estimator is asymptoticany 
equivalent to regression estimators based on squared re•
siduals as long as the errors are symmetrically distributed. 
Otherwise, an asymptotic bias may result, which may have 
implications for inference for 0. For discussion see Davi•
dian and Carron (in press). 

The sman a assumption also provides an illustration of 
the relationship between variance function estimation and 
data transformations. Let l(y, <p) = (Y" - 1)/<p, and con•
sider the model 

E{l(Y,, tp)} = l(f(x., {f), tp}, var{I(Y., <p)} = a; 

(4.5) 

such "transform both sides" models are proposed and mo•
tivated by Carron and Ruppert (1984). For a = 0, E(Yi) 
= f(x., {f) and var(Y1) = af(x., p)('-•l, so in (1.2) we have 
(I= 1 - 'P· Thus, when the sman u assumption is relevant, 
(4.5) and (1.1), (1.2) represent approximately the same 
model. 

5. APPLICATIONS AND FURTHER RESULTS 

In Section 4 we constructed an asymptotic theory for 
and stated some general characteristics of regression-type 
estimators of 0. In this section we use the theory to exhibit 
the specific forms for the various estimators of Section 3 
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and compare and contrast their properties. In our inves•
tigation we rely on the simplifying assumptions implied by 
the theory of Section 4, in particular the small u asymptotic 
approach in which u--> 0 and N--> oc. Throughout, define 
v(i, f3, 0) = log g(z;, /3, 0), let v0(i, /3, 0) be the column 
vector of partial derivatives of v with respect to 0, let ~(/3, 
0) be the covariance matrix of v0(i, /3, 0), and let r(i, /3, 
0) = {1, vl(i, f3, 0))'. For simplicity, assume that the errors 
{e;} are iid with kurtosis K; K = 0 for normality. 

5.1 Maximum likelihood, Pseudollkellhood, 
Restricted Maximum Likelihood, and 
Weighted Squared Residuals 

Writing q = logu, we have T(x) = x 2, M, = exp(2q)g'(z,, 
f3, 0), v, = Ml ,Hf = aM,Ia(q, 0')', and E[T{d,(f3)}sign(e,)] 
= 2E[Y, - f(x,, /3)] = 0, so B3,N"' 0 regardless of the 
underlying distributions. If h --> 0 such that N 112h--> 0 for 
methods accounting for the effect of leverage, then all of 
these methods admit an expansion of the form (4.2) with 
B 3 .N = o, The expansion will be different depending on 
whether p. is a generalized least squares estimator for f3 
or full maximum likelihood, since the maximum likelihood 
estimator has an expansion quadratic in the errors and 
that of the generalized least squares estimator is linear in 
the {e;} (see Carroll and Ruppert 1982b ). The implication 
is that regression methods based on iterated weighted 
squared residuals and full maximum likelihood are differ•
ent in general asymptotically. Regardless of the underlying 
distributions, for fixed u, Davidian (1986) showed that the 
asymptotic covariance matrix of the former methods in•
creases without bound as a function of u whereas that of 
maximum likelihood remains bounded for all u. Further, 
a simple comparison of the two covariances reveals that 
under reasonable conditions maximum likelihood has 
smaller asymptotic covariance as long as K ::> 2. Although 
these facts may suggest a preference for full maximum 
likelihood even away from normality, the computational 
and model robustness considerations mentioned earlier 
may make this preference tenuous. Generalized least 
squares and maximum likelihood estimators for f3 both 
satisfy /J. - f3 = Op(uN- 1"), so if u--> 0 or g does not 
depend on f3, then 0 is asymptotically normally distributed 
with mean e and covariance matrix 

(2 + K){4N~(f3, 0))-l (5.1) 

As mentioned in Section 3, under the small u asymp•
totics of Theorem 3.3, the extended quasilikelihood esti•
mator of 0 is asymptotically equivalent to the estimators 
here with asymptotic covariance matrix (5.1). Thus, if g 
does not depend on f3 or u--> 0, pseudolikelihood, weighted 
squared residuals, restricted maximum likelihood, maxi•
mum likelihood and, if u--> 0, extended quasilikelihood, 
are all asymptotically equivalent. In addition, all of these 
estimators have influence functions that are linear in the 
squared errors, indicating substantial nonrobustness. 

We may also observe that these methods are preferable 
to unweighted regression on squared residuals. Write (5.1) 
as 
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where V is the N x N diagonal matrix with elements V, 
and W is the N X p matrix with ith row H!. For the 
unweighted estimator based on squared residuals, calcu•
lations similar to those above show that the asymptotic 
covariance matrix when either g does depend on f3 or u 
--> 0 is given by 

( ! + Ki4)(W'w)- 1(W'VW)(W'w)- 1• (5.3) 

The comparison between (5.2) and (5.3) is simply that of 
the Gauss-Markov theorem, so (5.2) is no larger than 
(5.3). 

5.2 Logarithms of Absolute Residuals and the 
Effect of lnllers 

We do not consider deletion of the few smallest absolute 
residuals. Here T(x) = log x, so T(x) = x- 1 � Letting q 
= log u and assuming iid errors we have M, = q + v(i, 

/3, 0) + E log lei, V, "' 1, and H, = r(i, /3, 0). Under the 
assumption of symmetry of the errors, with g not depend•
ing on f3 or u--> 0, tedious algebra shows that 0 is asymp•
totically normally distributed with mean 0 and covariance 
matrix 

var{log(lei2)}{4N~(f3, 0))-l (5.4) 

The influence function for this estimator is linear in the 
logarithm of the absolute errors. This indicates nonro•
bustness more for inliers than for outliers, which at the 
very least is an unusual phenomenon. If the errors are not 
symmetric, then there will be an additional effect due to 
estimating f3 not present for the methods of Section 5.1, 
even if g does not depend on f3. 

5.3 Weighted Absolute Residuals 
Assume that the errors are iid, and let exp(q) = uEiel. 

Consider the weighted estimator. We have T(x) = x, T(x) 
= 1, M, = exp(q )g(z,, /3, 0), and V, = MI. Thus, if the 
errors are symmetrically distributed and either g does not 
depend on f3 or u--> 0, {! is asymptotically normally dis•
tributed with mean 0 and covariance matrix 

{<l/(1 - <l)}{N~(/3, 0)}- 1, (5.5) 

where b = varlei. The influence function for this estimator 
is linear in the absolute errors. By an argument similar to 
that at the end of Section 5.1, we may conclude that when 
the effect of /1. is negligible one should use a weighted 
estimator and iterate the method. 

5.4 General Transformations 

One may also consider other power transformations of 
absolute residuals. If ). -F 0 is the power of absolute re•
siduals on which the regression is based, then define q by 
exp(.!.q) = u'E(iel') and T(x) = x'. ThenM, = exp(.!.q)g'(z,, 
/3, 0), V, = M/. Straightforward calculations show that if 
the errors are symmetric and either g does not depend on 
f3 or u --> 0, then 0 is asymptotically normally distributed 
with mean 0 and asymptotic covariance matrix 

[var(iei')i{E(iei')}2]{.!.'N~(f3, 0)}- 1, (5.6) 

(5.2) with influence function linear in lei'· Thus (5.6) yields (5.1) 



191

1088 

when A = 2 and (5.5) when A = 1. For square root trans•
formations, for example, A = !, and from (5.1) and (5.6), 
the asymptotic relative efficiency of the square root trans•
formation relative to pseudolikelihood under normal er•
rors is .693; from (5.5), the efficiency relative to weighted 
absolute residuals is .791. 

At this point it is worthwhile to mention that under the 
simplifying assumptions of our discussion, the precision of 
general regression estimators does not depend on a, since 
a general expression such as (5.6) is independent of 'I· 
Thus how well we estimate 8 in many practical cases will 
be approximately independent of a. Furthermore, when 
the power of the mean model for variance (1.2) holds, 
v0 (i, p, 8) = log p,, so ~(p, 8) is the limiting variance of 
the {log p;}. From the general expression (5.6), the pre•
cision with which one can estimate 8 depends only on the 
relative spread of the mean responses, not their actual 
sizes, and clearly this spread must be fairly substantial so 
that the spread of the logarithms of the means will be so 
as well. The implications are that for (1.2), the design will 
play an important role in efficiency of estimation of 8, and 
in some practical situations we may not be able to estimate 
8 well no matter which estimator we employ. 

5.5 Comparison of Methods Based on Residuals 

We assume that the errors are symmetric and iid and 
that either g does not depend onp or a is small. By (5.1), 
(5.4), and (5.5), the asymptotic relative efficiency of the 
three methods depends only on the distribution of the 
errors. For normal errors, using absolute residuals results 
in a 12% loss in efficiency, whereas for standard double 
exponential errors there is a 25% gain in efficiency for 
using absolute residuals. For normal errors, the logarithm 
method represents a 59% loss of efficiency with respect 
to pseudolikelihood. 

In Table 2 we present asymptotic relative efficiencies 
for various contaminated normal distributions. The 
asymptotic efficiency of the weighted absolute residual 
method to pseudolikelihood is the same as the asymptotic 
relative efficiency of the mean absolute deviation with 
respect to the sample variance for a single sample (see 
Huber 1981, p. 3); the first column of the table is thus 
identical to that of Huber. The table shows that, although 
at normality neither the absolute residuals nor the loga-

Table 2. Asymptotic Relative Efficiency of Appropriately Weighted 
Regression Methods Based on a Function T of Absolute Residuals 

and the Method Based on Logarithms of Absolute Residuals 
With Respect to Appropriately Weighted Regression Methods 

Based on Squared Residuals for Underlying Contaminated 
Normal Error Distributions With Distribution Function F(x) = 

(1 - a)<l>(x) + a<l>(x/3) 

Contamination 
T(x) 

fraction a x21s xl/2 x"3 logx 

.000 .876 .772 .693 .606 .405 

.001 .948 .841 .756 .662 .440 

.002 1.016 .906 .816 .715 .480 

.010 1.439 1.334 1.216 1.075 .720 

.050 2.035 2.100 '1.996 1.823 1.220 
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rithm methods are efficient, a very slight fraction of "bad" 
observations is enough to offset the superiority of squared 
residuals in a dramatic fashion. For example, just 2 bad 
observations in 1,000 negate the superiority of squared 
residuals. If 1% or 5% of the data are "bad," absolute 
residuals and the logarithm method, respectively, show 
substantial gains over squared residuals. The implication 
is that, although it is commonly perceived that methods 
based on squared residuals are to be preferred in general, 
these methods can be highly nonrobust. Our formulation 
includes this result for maximum likelihood, showing its 
inadequacy under slight departures from the assumed dis•
tributional structure. We also include asymptotic relative 
efficiencies for appropriately weighted residual methods 
based on square, cube, and i roots to pseudolikelihood 
using (5.6) and observe that these methods also exhibit 
comparative robustness to contamination. 

5.6 Methods Based on Sample 
Standard Deviations 

Assume that m « 2 replicate observations are available 
at each design point. In practice, m is usually small (see 
Raab 1981). We compare using absolute residuals with 
using sample standard deviations in the estimators of Sec•
tion 3 .1. One advantage of sample standard deviations 
over absolute residuals is that, because they do not use 
the mean function, they will be robust to misspecification 
of the model for the mean response; absolute residuals 
will not. We assume that one is fairly confident in the 
postulated form of the model, thus viewing methods based 
on sample standard deviations as not taking full advantage 
of the information available. For simplicity, assume that 
the errors are iid and symmetrically distributed and that 
either g does not depend on p or a is small. If the errors 
are not symmetric and a is not small or the variance de•
pends on p, using sample standard deviations presumably 
will be more efficient than in the discussion that follows. 
This issue deserves further attention. 
Lets~ be the sample variance of m errors {e1 , � � � , em}. 

It is easily shown by calculations analogous to those of 
Section 5.1 that replacing absolute residuals by sample 
standard deviations has the effect of changing the asymp•
totic covariance matrices (5.1), (5.4), and (5.5) to 

Pseudolikelihood: {(2 + K) + 2/(m - 1)}{4N~(P. 8)}- 1; 

Logarithm method: m var{log(s;.)}{4N~(P, 8)}- 1 ; 

Weighted absolute residuals: 

{mJ./(1 - a.)){N~(P. !1)}- 1, (5.7) 

where o. = var(sm). Table 3 compares the asymptotic 
relative efficiencies of using sample standard deviations 
with using transformations of absolute residuals for various 
values of m when the errors are standard normal. The 
values in the table for T(x) = x' and x indicate that if the 
data are approximately normally distributed, using sample 
standard deviations can entail a loss in efficiency with re•
spect to using residuals if m is small. For substantial rep•
lication (m « 10), using sample standard deviations pro-
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Table 3. Asymptotic Relative Efficiency of Regression Methods 
Based on a Function T of Sample Standard Deviations Relative 

to Using Regression Methods Based on a Function T of 
Absolute Residuals under Normality for T(x) 

(weighted methods) 

T(x) 

m x' Jog x 

.500 .500 .500 

.667 1.000 .696 

.750 1.320 .801 

9 .889 1.932 .986 
10 .900 1.984 1.001 

1.000 2.467 1.142 

duces a slight edge in efficiency with respect to weighted 
absolute residuals for T(x) = x. 

The second column of Table 3 shows that, for the log•
arithm method, using sample standard deviations sur•
passes using residuals in terms of efficiency except when 
m = 2 and is more than twice as efficient for large m. In 
its raw form, loglr11 is very unstable because, at least oc•
casionally, lr11 = 0, producing a wild "outlier" in the regres•
sion. The effect of using sample standard deviations is to 
decrease the possibility of such inliers; the sample standard 
deviations will likely be more uniform, especially as m 
increases. The implication is that the logarithm method 
should not be based on residuals unless remedial measures 
are taken. The suggestion to trim a few of the smallest 
absolute residuals before using this method is clearly sup•
ported by the theory; presumably, such trimming would 
reduce or negate the theoretical superiority of using sam•
ple standard deviations. 

Table 4 contains the asymptotic relative efficiencies of 
weighted squared sample standard deviations and loga•
rithms of these to weighted squared residuals under nor•
mality of the errors. The first column is the efficiency of 
Raab's method to pseudolikelihood, and the second col•
umn is the efficiency of the Rodbard and Frazier method 
to pseudolikelihood. The results of the table imply that 
using the Raab and Rodbard and Frazier methods, which 
are popular in the analysis of radioimmunoassay data, can 
entail a loss of efficiency when compared with methods 
based on weighted squared residuals. Davidian (1986) 
showed that the Rodbard and Frazier estimator can have 

Table 4. Asymptotic Relative Efficiency of Regression Methods 
Based on a Function T of Sample Standard Deviations Relative 

to Regression Methods Based on Weighted Squared 
Residuals Under Normal Errors 

T(x) 

m x' /ogx 

2 .500 .203 
3 .667 .405 
4 .750 .535 

9 .889 .783 
10 .900 .804 

1.000 1.000 
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a slight edge in efficiency over the weighted squared re•
siduals methods for some highly contaminated normal dis•
tributions. From (5.7), the squared residual methods will 
be more efficient than Raab's method in the limit. Also 
note that the entries for T(x) = x and log x in Table 3 
for m = oo are the reciprocals of the first row of Table 2 
and that the entries for the last row of Table 4 are 1.0; 
thus if both Nand m grow large all the methods yield the 
same results. 

Table 4 also addresses the open question as to whether 
Raab's method is asymptotically more efficient than the 
Rodbard and Frazier method for normally distributed data. 
The answer is a general yes, thus agreeing with the Monte 
Carlo evidence available when the variance is a power of 
the mean. The results of this section suggest that, in the 
case of assay data containing pairs for which only Y11 is 
observed, an estimator for (} combining estimation based 
on residuals for the observations for which X 1 is known 
and on standard deviations otherwise in an appropriately 
weighted fashion would offer some improvement over the 
methods currently employed (see Davidian et al. 1987). 

6. DISCUSSION 
In Section 4 we constructed a general theory of regres•

sion-type estimation for e in the heteroscedastic model 
(1.1). This theory includes as special cases common meth•
ods described in Section 3 and allows for the regression 
to be based on absolute residuals from the current regres•
sion fit as well as sample standard deviations in the event 
of replication at each design point. Under various restric•
tions such as symmetry or small a, when the variance 
function g does not depend on p, we showed in Sections 
4 and 5 that we can draw general conclusions about this 
class of estimators as well as make comparisons among 
the various methods. 

When employing methods based on residuals, one should 
weight the residuals appropriately and iterate the process. 
There can be large relative differences among the methods 
in terms of efficiency. Under symmetry ofthe errors, squared 
residuals are preferable for approximately normally dis•
tributed data, but this preference is tenuous, since these 
can be highly nonrobust under only slight departures from 
normality; methods based on logarithms or the absolute 
residuals themselves exhibit relatively more robust behav•
ior. For the small amount of replication found in practice, 
using sample standard deviations rather than residuals can 
entail a loss in efficiency if estimation is based on the 
squares of these quantities or the quantities themselves. 
For the logarithm method based on residuals, trimming 
the smallest few absolute residuals is essential, since for 
normal data using sample standard deviations is almost 
always more efficient than using residuals, even for a small 
number of replicates. Popular methods in applications such 
as radioimmunoassay based on sample means and sample 
standard deviations can be less efficient than methods based 
on weighted squared residuals. In some instances, the pre•
cision with which we can estimate 0 depends on the relative 
range of values of the mean responses, not their actual 
values, so immediate implications for design are suggested. 
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Efficient variance function estimation in heteroscedastic 
regression analysis is an important problem in its own 
right. There are important differences in estimators for 
variance when it is modeled parametrically. 

APPENDIX A: PROOFS OF MAJOR RESULTS 

We now present sketches of the proofs of the theorems of 
Section 4. Our exposition is brief and nonrigorous, as our· goal 
is to provide general insights. In what follows, we assume that 

N'n [ z :: ~] = 0,(1); (A.1) 

under sufficient regularity conditions it is possible to prove (A.1). 
Such a proof would be long, detailed, and essentially noninfor•
mative; see Carroll and Ruppert (1982a) for a proof of N'n 
consistency in a special case. 

Sketch of the Proof of Theorem 4.1. From (4.1), a Taylor 
series, the fact that E[T{d,(p)}) = M, and laws oflarge numbers, 
we have 

0 = N-"' f (H,IV,)[T{d,(ft.)} - M,(~. /}, P.)] + o,(1). 
i•l 

(A.2) 

By tbe arguments of Ruppert and Carroll (1980) or Carroll and 
Ruppert (1982a), 

N 

N-"' L (H,IV,)[T{d,(ft.)} - T{d,(P)}) 
i•l 

= N-•n :± (H,!V,)T{d,(/f)}{d,(ft.) - d,{/f)} + o,(1) 
i•l 

(A.3) 

Applying this result to (A.2) along with a Taylor series in M, 
gives 

0 = N-�n :± C, + (B,.N + B, .� )N'n(ft. - p) 
i•l 

- B, . � N'n [~ = :] + o,(1), 

which is (4.2). 

Theorem 4.2 follows by a similar argument; in this case the 
representation (A.3) is unnecessary. 

Sketch of the Proof of Theorem 4.3. We consider Theorem 
4.2; the proof for Theorem 4.1 is similar. Recall here that (3.4) 
holds. In tbe following, all derivatives are with respect to the 
mean I'• and the definitions of C, and M, are as in (4.4). 

Assumption (iv) implies that 

N 112 max ]Y,. - p1] ~ 0, 

'"""' 
so a Taylor series in,, 8, and Yr gives 

B, .• N'n [~ = :] 
N N 

= N-�n L C, - N-"' L (M,H,IV,)(Y, - p,) 
1=1 1•1 

N 

+ N-�n L {(H,IV,) - (V,JV,)}(Y, - p,) + o,(1). ,_, 
(A.4) 

Since Y,. - p, = ag(p, z, O)i" .... A,N-ll2gf.llt, Z~o 8)£,.. where a,. 
is the mean of the errors at X;, we can write the last two terms 
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on the right side of (A.4) as 
N 

lN-· L ii,(q, .• + q,.,C,) (A.S) ,_, 
for constants {q ,) . Since ii, has mean 0, (A.S) converges in prob•
ability to 0 if E(ii,C,) = 0, which holds under the assumption of 
symmetry. Thus (A.S) converges to 0, which from (A.4) com•
pletes the proof. Note that if we drop the assumption of sym•
metry, from (A.S) the asymptotic normal distribution of N'n( { j 
- 9) will have mean 

N 

p-lim {lBi:kN-� L (ii,C,q,.,)}. 
N-"" i•l 

APPENDIX 8: CHARACTERIZATION OF RESTRICTED 
MAXIMUM LIKELIHOOD 

Let j j. be a generalized least squares estimator for p. Assume 
first that g does not depend on p. Let the prior distribution for 
the parameters 1<(/1, 9, a) be proportional to a-'. The marginal 
posterior for 8 is hard to compute in closed form for nonlinear 
regression. Following Box and Hill (1974) and Beal and Sheiner 
(1987), we have the linear approximation 

f(x, P) = f(x, ft.) + f,(x, P.)'(p - ft.). 

Replacing f(x, P) by its linear expansion, the marginal posterior 
for 9 is proportional to 

{ggf(IJ)} -•n 

p(9) = aW ''(9){Det Sa(9)}'" ' (B.1) 

where 
N 

a'a(9) = (N - p)-• L rl/gl(9), 
i•l 

Sa(9) = N-• f f,(x, P.)f,(x, P.)'/gf(9), 
i•l 

and where Det A = determinant of A. 1f the variances depend 
on p, we extend the Bayesian arguments by replacing g,(9) by 
g(z, P •• 9). 

Let H be the hat matrix H evaluated at P. and let h., = 

h.,(ft., 9). From (3.1), pseudolikelihood solves in (9, a) 

f [rt/{a'g'(z, P., 9)}] [ (. p~ 9) ] 
1=1 V9 I, *' 

N [ 1 ] =L . ,_, v9(i, p., 9) · 
(B.2) 

Since His idempotent, the left side of (B.2) has approximate 
expectation 

:± [ . 1 -piN_ ]. 
,., v,(1, P •• 9)(1 h.,) 

(B.3) 

To modify pseudolikelibood to account for loss of degrees of 
freedom, equate the left side of (B.2) to (B.3). From matrix 
computations as in Nel (1980), this can be shown to be equivalent 
to restricted maximum likelihood. 

[Received July 1986. Revised Apri/1987.] 
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Raymond Carroll’s work has had an important impact on epidemiologic research.
This article reviews contributions to theory for the case–control design and to meth-
ods for nutritional and radiation epidemiology. Some of these contributions build on
Ray’s broad-ranging research on regression analysis, measurement error, and miss-
ing data problems. Ray has been a welcome visitor at the U. S. National Institutes
of Health (NIH), first with the National Heart, Lung, and Blood Institute and later
with the National Cancer Institute (NCI), both as a Visiting Scientist and Guest Re-
searcher and as a friendly collaborator who drops by from time to time. At NIH,
he has given valuable advice on a wide range of topics and collaborated on many
projects not covered by this article, including the analysis of survival data with in-
formative censoring (Wu and Carroll, 1988 [OW-2]), the design of community inter-
vention trials (Gail et al., 1996), the design and analysis of the “kin-cohort” design
for genetic epidemiology (Carroll et al., 2000; Gail et al., 1999), the meta-analysis
of surrogate endpoints (Gail, 2000), and agreement of exposure assessments based
on quantile groupings (Borkowf et al., 1997), among many others.

Theory of the Case–Control Study and Its Extensions

During a visit to NCI in 1990–91, Ray took an interest in the effects of measure-
ment error on covariates measured in case–control studies (Carroll, Gail, and Lubin,
1993). He quickly mastered the theory of estimation for case–control studies and
the subtleties of arguments (Prentice and Pyke, 1979), showing that one can analyze
case–control data under a logistic model as if the data are from a prospective cohort
design. Remarkably, the resulting estimates of log relative odds ratios are maximum
likelihood under retrospective sampling, and their covariances, estimated as if the
study wereprospective, arealso correct; only the variances of intercepts need adjust-
ment. Wondering whether or not the prospective approach also applies to variants
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of the case–control design, Ray and his colleagues (Carroll, Wang and Wang, 1995
[EPI-1]) prove that the resulting estimates are consistent and give conditions under
which covariances are consistently estimated, which is often the case. They prove
that, if these conditions are violated, the prospective estimators of the variances of
log odds ratios overestimate the true variance from the retrospective design, thus
leading to conservative assessments. This work justifies using the prospective ap-
proach for case–control studies with differential and non-differential measurement
error, with repeated exposure measurement designs and with missingness by design.
Related work shows that the distribution of covariates in the general population is
only identifiable from case–control data if the probability of disease is also known
and that the results of Prentice and Pyke (Prentice and Pyke, 1979) only hold if the
assumed distribution of covariates in the general population is unrestricted (Roeder,
Carroll and Lindsay, 1996 [EPI-2]).

This latter point has important implications for genetic epidemiology, where one
might wish to make assumptions on the distribution of covariates in the general
population to gain efficiency in a case–control analysis. For example, Chatterjee
and Carroll (Chatterjee and Carroll, 2005 [EPI-6]) assume that a genetic variant (G)
is distributed independently of an environmental risk factor (E) in the population
and develop methods of inference for the logistic model of risk. Although previous
work exploits this assumption to test for G�E interactions, the work of Chatter-
jee and Carroll provides for a full logistic analysis of all risk factors and the G�E
interactions. Their profile likelihood methods are also applicable to parametric as-
sumptions on the covariate distribution, such as Hardy–Weinberg assumptions used
to estimate diplotype distributions (Spinka, Carroll, and Chatterjee, 2005). This ap-
proach has greatly broadened the tools available for logistic analysis of case–control
data whenever restrictive assumptions on the covariate distribution are justified; of-
ten those assumptions will increase the efficiency of the analysis.

Nutritional Epidemiology

It was David Byar who first introduced Ray to the field of nutritional epidemi-
ology. Byar was the Chief of the Biometry Branch, the group of statisticians in
Division of Cancer Prevention of NCI. In the mid- to late-1980s, that Division had
as one of its main projects the investigation of the hypothesis that dietary fat intake
is a major cause of breast cancer. This hypothesis was supported by animal stud-
ies, by ecologic studies and by a number of case–control studies, but the leaders of
the Division wanted to conduct a very large randomized dietary intervention trial
to prove the hypothesis. The projected cost of such a trial was very high, and the
proposal met with strong opposition from some researchers, particularly those who
were conducting large observational cohort studies that could potentially address
the hypothesis. Byar, however, saw problems in the design of such nutritional co-
hort studies, not the least of which was the problem of dietary measurement error.
He decided to highlight this issue and conduct a workshop on the statistical implica-
tions and methods of handling measurement error, to which he invited Ray, whom
he recognized as one of the leaders in this field. Ray delivered a review paper at
the workshop that was subsequently published (Carroll, 1989) together with others
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from the workshop in a special issue of Statistics in Medicine. This was Ray’s in-
troduction to a long and fruitful collaboration with the statisticians at the Biometry
Branch of the Division of Cancer Prevention at NCI.

The watershed in this collaboration came in the mid-late 1990s. Up to that time,
the accepted method of evaluating a dietary questionnaire of the type used in large
cohort studies was to conduct a sub-study comparison of the intakes reported on the
questionnaire with those reported from more detailed and shorter-term self-report
instruments, such as multiple-day food diaries or 24-h recalls. Methods of statistical
adjustment of the results from the cohort study were then based on the assumption
that such self-report instruments were unbiased measures of true intake and had er-
rors that were independent of true intake and, most importantly, independent of the
errors in the cohort study questionnaire. However, many nutritionists in the field
were dubious regarding this set of assumptions. Unfortunately, no definitive data
were available to prove or disprove their doubts. In 1997, Ray participated in an
informal meeting of statisticians at the Biometry Branch to discuss this problem.
Together, they decided to investigate through calculation what would be the impli-
cations if the assumptions were contravened. It soon became clear that the crucial
assumption was the independence of the errors of the questionnaire and the more
detailed reference instrument. If these errors were positively correlated, then the
questionnaires would be made to look less error-prone than they really were. We
published this result (Kipnis et al., 1999), but there were still not sufficient data to
say whether this was or was not a real concern.

By this time, some validation studies were being conducted using not only more
detailed self-report instruments as reference measures but also biomarkers that
had been shown to provide reliable measures of dietary intake (called “recovery”
biomarkers), the foremost among them at that time being 24-h urinary nitrogen as
a measure of protein intake. Availability of this extra measure, which could indeed
be safely assumed to have errors independent of the errors in a questionnaire, in
a study conducted in the UK, allowed empirical testing of the concerns explained
above. The results, reported in Kipnis et al. (2001 [EPI-3]), confirmed the previous
doubts regarding over-optimistic assessments of the questionnaire’s accuracy. For
protein intake, the correlation of the questionnaire report with true intake was esti-
mated to be 0.28 using the biomarker, compared to the over-optimistic 0.43 using
the more-detailed self-report. This result meant that under the previous erroneous
assumptions, planned sample sizes of cohort studies were about half of that really
required.

This preliminary work provided the impetus for NCI to approve a large valida-
tion study of dietary self-report instruments, which became known as the OPEN
(Observing Protein and Energy Nutrition) Study, using as reference measures three
recovery biomarkers for measuring energy intake, protein intake, and potassium
intake, respectively. The results of the OPEN study (Kipnis et al., 2003 [EPI-5]) re-
confirmed and extended the earlier results (Kipnis et al., 2001 [EPI-3]), and its de-
sign also allowed confirmation that the errors of the questionnaire and more-detailed
self-report were substantially correlated. The success and impact of the study has in-
spired a new generation of validation studies using biomarkers.
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More recently, Ray’s insights have led to three further important developments
in the field. The first concerns the use of so-called concentration biomarkers (those
markers of dietary intake that do not enjoy the nice properties of recovery biomark-
ers). Ray had, early on in our work, insisted that these biomarkers could surely
be used to advantage in nutritional epidemiology, but for a long time they were
used only for informal checking on self-report instruments without any solid theo-
retical underpinning. Only recently has the use of such biomarkers been proposed
for increasing the precision of relative risk estimates in nutritional epidemiology
(Freedman et al., 2011; Prentice et al., 2009). The second concerns the idea of com-
bining different types of self-report instruments, again for the purposes of increasing
precision in estimating disease risk (Carroll et al., 2012). The third concerns his de-
velopment of technology for multivariate analysis of many foods or nutrients (Zhang
et al., 2011) that will have applications in dietary surveillance, dietary patterns, and
other areas of nutritional epidemiology.

Ray’s contributions to the work of statisticians and epidemiologists at the NCI
and thus to nutritional epidemiology have been pivotal, as recognized by his being
given the prestigious position of final author in the highly cited publications (Kipnis
et al., 2001) and (Kipnis et al., 2003).

Radiation Epidemiology

In 1995, Ray, along with his colleagues David Ruppert and Len Stefanski, pub-
lished the first edition of their landmark work on the effect of measurement error in
nonlinear models (Carroll, Ruppert, and Stefanski, 1995). Around this time, statis-
ticians such as Ethel Gilbert, Don Pierce, Duncan Thomas, and Dan Stram, among
others, studied the health effects of radiation in atomic bomb survivors, in workers in
nuclear facilities, and in persons exposed to fallout from US nuclear weapons tests.
These researchers began to consider how to account for errors in radiation dosime-
try to improve estimates of the effects of radiation on health outcomes. During this
period Owen Hoffman, who had worked on a number of environmental dose recon-
struction projects, also collaborated with Charles Land and others to develop em-
pirical, Monte-Carlo-based methods to characterize uncertainty in estimates of the
“probability of causation” (or assigned share) (National Research Council, 1984)
for cancers occurring after radiation exposure. In 1997, Owen Hoffman and Elaine
Ron organized a workshop on Uncertainties in Radiation Dosimetry and Their Im-
pact on Dose–Response Analysis (Ron and Hoffman, 1999) that brought together
scientists interested in this topic. Ray gave a keynote presentation on the limita-
tions of replacement methods (such as regression calibration) and proposed the use
of Bayesian methods with subjectively derived dose estimates (Carroll, 1999). His
presentation was highly influenced by Owen Hoffman’s work and, as a direct con-
sequence of their interaction at this workshop, Ray began collaborations with Owen
and others on topics related to the effect of dose uncertainty in radiation risk esti-
mation.

Following the 1997 conference, Ray worked with Elaine Ron, Jay Lubin, Dan
Schafer, and others on a reanalysis of data from an important study of scalp irradia-
tion and thyroid cancer that lead to a presentation (Carroll et al., 2000b) and a pair
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of papers (Lubin et al., 2004; Schafer et al., 2001) that develop a generalized regres-
sion calibration method to estimate radiation dose–response on thyroid cancer risk.
This method accounts for dose uncertainties that reflected a combination of assign-
ment (Berkson) and classical measurement errors. A primary finding of this work is
that adjustment for dosimetry errors had little impact on the magnitude of the risk
estimate or its standard error in this study. This was believed to be because dose
uncertainty in this study was largely the result of Berkson errors and the response
was linear in dose.

Working with Owen Hoffman and others, Ray developed Bayesian methods to
allow for the effects of dose uncertainty on thyroid cancer risk estimates in victims
of radioactive fallout from nuclear weapons tests carried out at the Nevada test site.
In the spirit of Ray’s talk at the 1997 workshop, this work went beyond the use of
simple replacement estimators. The resulting paper (Mallick, Hoffman and Carroll,
2002 [EPI-4]) develops Bayesian methods based on a latent variable model for the
error structure that allows for both classical and Berkson error (Reeves et al., 1998).
This novel method assumes that the total error variance is known for each individual
but that the proportion of the total attributable to classical measurement or Berkson
error isunknown. Priors aredefined for the risk parameters (for parametric or mono-
tone, semi-parametric dose–response models) and for the fraction of the total dose
error arising due to Berkson error. A Markov chain Monte-Carlo (MCMC) method
is used to obtain samples from the posterior densities. This paper ends with a brief
discussion of the “open problem” of dealing with the effect of shared uncertain-
ties on risk estimates. Uncertainties that are common to some or all individuals are
said to be “shared uncertainties.” This type of uncertainty is an important aspect of
many complex radiation dosimetry systems. Examples of shared uncertainties in-
clude misspecification of the location of the hypocenters for the atomic bombs or
misspecification of parameters in a model for plutonium clearance from the lung.
In a subsequent paper (Li et al., 2007), Ray and his colleagues tackle the problem
of shared uncertainties that arise as a result of the use of model-based dose surro-
gates. They showthat simple replacement methods fail to account for the potentially
complex effects of the correlated errors that arise as a consequence of shared uncer-
tainties and developed both Bayesian (MCMC-based) and frequentist (Monte-Carlo
EM) approaches to dealing with such shared errors.

In view of his longstanding interest in innovative research on characterizing and
dealing with the effect of measurement error, it is not surprising that Ray Carroll
has played an important role in highlighting the complex nature of the uncertain-
ties in radiation dose estimation and the potential impact of these uncertainties on
radiation risk estimates while helping to develop innovative statistical methods to
address the problem. As radiation dosimetrists develop increasingly complex sys-
tems that often involve the construction of samples from the (possible) distribution
of an individual’s “true” dose given information on characteristics of the individual
and the nature of the exposures, there is a need for additional statistical methodology
to incorporate this information into risk estimation. While much remains to be done,
Ray and his colleagues have taken important steps in this direction. Although not
discussed in this section, other aspects of Ray’s work are quite relevant to studies of
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radiation effects, including work on estimating response thresholds in the presence
of dose-measurement error (Kuchenhoff and Carroll, 1997) and the use of SIMEX
methods in dealing with dose uncertainty (Carroll et al., 2006; Kukush et al., 2011).
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Prospective Analysis of Logistic Case-Control Studies 
R. J. CARROLL, Suojin WANG, and C. Y. WANG* 

In a classicaJ case-control study, Prentice and Pyke proposed to ignore the study design and instead base estimation and inference 
on a random sampling (i.e., prospective) formulation. We generalize this prospective formulation of case-control studies to include 
multiplicative models, stratification, missing data, measurement error, robustness, and other examples. The resulting estimators, 
which ignore the case-control study aspect and instead are based on a random-sampling formulation, are typically consistent for 
nonintercept parameters and are asymptotically normally distributed. We derive the resulting asymptotic covariance matrix of the 
parameter estimates. The covariance matrix obtained by ignoring the case-control sampling scheme and using prospective formulas 
instead is shown to be at worst asymptotically conservative and asymptotically correct in a variety of problems; a simple sufficient 
condition guaranteeing the latter is obtained. 

KEY WORDS: Asymptotics; Corrections for attenuation; Differential measurement error; Estimating equations; Measurement 
error; Missing data; Robust estimates. 

1. INTRODUCTION 

In a classical prospective logistic regression study, a ran•
dom sample from a source population is taken and the status 
of a binary outcome D is ascertained, along with the values 
of covariates (Z, X), these being related via the logistic 
regression model 

pr(D = liZ, X)= H(8~ + 8\ 12 + 8\,X), (I) 

where H ( � ) is the logistic distribution function. The classical 
case-control study (choice-based sample in econometrics) 
begins with the model (I), but instead nses retrospective 
sampling. Specifically, one first obtains a set of cases 
(D = l)andcontrols(D = 0), and then samples from within 
the cases and controls to observe the covariates. The analysis 
of case-control studies of this type was described by Prentice 
and Pyke ( 1979), who showed that if one ignored the case•
control sampling scheme and analyzed the data as if it came 
from a prospective sampling scheme, then the resulting es•
timates of (811 , 812 ) are consistent and the usual standard 
errors are asymptotically correct. 

For prospective logistic regression studies, many other 
types of analyses and sampling schemes are possible. Here 
are a few examples: 

• One might replace the classical logistic regression pa•
rameter estimates by robust methods of estimation (Co•
pas 1988; Carroll and Pederson 1993, Kiinsch, Stefanski, 
and Carroll 1989). 

• When X is measured with error, there is a large literature 
dealing with techniques for measurement error correc•
tions in logistic regression (e.g., Carroll and Stefanski 
1994; Rosner, Willett, and Spiegelman 1989; Satten and 
Kupper 1993; Stefanski and Carroll, 1987). 

* R. J. Carroll is Professor, Suojin Wang is Associate Professor, Department 
of Statistics, Texas A&M University, College Station, TX 77843-3143. 
C. Y. Wang is Assistant Member, Division of Public Health Sciences, 
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Sholom Wacholder, whose questions led to the general formulation of this 
article, and to Jamie Robins, for help with the argument in Section A. I. 
They also thank two referees for their comments and an associate editor 
who read the article in painstaking detail and suggested many useful changes. 

• In problems with partially missing data, one can use 
likelihood techniques (Little and Rubin 1987) or un•
biased estimating equations due to Robins, Rotnitzky, 
and Zhao ( 1994). 

Although the prospective analyses of these prospective 
techniques have been worked out, there is to date no cor•
responding general theory for whether they even lead to con•
sistent estimates when applied to case-control studies and, 
if they do, whether these prospectively calculated standard 
errors are asymptotically correct in case-control studies. Our 
aim is to provide one version of such a theory, and in par•
ticular to answer the question: When can prospective analyses 
be used in case-control studies without having to adjust for 
the retrospective sampling structure? 

We will show that, in general, using prospectively derived 
standard errors is at worst asymptotically conservative; that 
is, the standard errors are at worst too large. In addition, we 
derive a simple sufficient condition guaranteeing that pro•
spective standard errors are asymptotically correct. 

In the Appendix we sketch an informal argument derived 
from a semiparametric perspective that suggests that pro•
spectively computed standard errors are retrospectively cor•
rect whenever the distribution of ( Z, X) is left unrestricted. 
Much of this article is a formalization of this argument, along 
with consideration of cases that are not so easily categorized. 
The key feature of our analysis is that we start with a general 
class of unbiased estimating equations, instead of working 
with specific examples. The results allow for general patterns 
of missing data as well as for stratified studies. The asymptotic 
distribution theory is almost trivial to derive in this general 
framework, thus facilitating the identification of a simple 
sufficient condition for checking whether prospectively de•
rived standard errors are asymptotically correct. Our results 
apply not only to the linear logistic model ( 1 ) , but also to 
the multiplicative model of Weinberg and Wacholder 
(1993). 

Here is an outline of the article. Section 2 reviews the 
known results on estimating equations, estimating functions, 
and sandwich covariance estimation in prospective studies. 
Using this background, we provide a simple argument show-
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ing why prospective standard errors are at worst asymptot•
ically conservative when applied to case-control studies. Sec•
tion 3 defines the general estimating equation framework 
allowing for missing and mismeasured data. Section 4 states 
the two main results. 

The rest of the article considers important special cases, 
the results for which are new with one exception. Section 5 
considers studies with no missing or mismeasured data. In 
work generalizing that of Weinberg and Wacholder ( 1993) 
for multiplicative models and Wang and Carroll ( 1993, 1995) 
for robust logistic estimation, we show that essentially any 
prospectively motivated estimator can be used retrospec•
tively, with asymptotically correct standard errors. 

Further sections deal with problems of missing and mis•
measured data. Section 6 applies the general theory to a 
modification of the unbiased estimating equations proposed 
by Robins et al. ( 1994) for case-control studies with mis•
measured data when there is a validation subsample, allowing 
for differential measurement error (formally defined in Sec. 
6). Section 7 considers measurement error models with 
nondifferential measurement error in which a validation 
study can be done, using the simple prospective likelihood 
methods due to Satten and Kupper ( 1993). Section 8 dis•
cusses measurement error models when validation is not 
possible, and uses prospective correction-for-attenuation 
methods. In all three cases, prospective standard errors are 
asymptotically correct retrospectively. 

Section 9 investigates the theory for the partial question•
naire design of Wacholder, Carroll, Pee, and Gail ( 1994 ), 
which has a nonmonotone pattern of missingness; it is shown 
that, in principle at least, prospective standard errors are 
asymptotically conservative. The results in Sections 5-9 are 
new. Section 10 studies the two-stage studies of Breslow and 
Cain ( 1988). 

2. ESTIMATING EQUATIONS, SANDWICH 
ESTIMATORS, AND THE CLASSICAL MODEL 

One of our main results is that prospectively derived stan•
dard errors are at worst asymptotically conservative. Justi•
fication for this result is easiest to understand in the classical 
simple logistic model, pr(D ~ lj X)~ H(O~ + 01X). The 
argument uses nothing more than standard estimating equa•
tion theory; we will outline this theory and the nomenclature 
as we go along. Extensions to complex problems require little 
more than change in notation. 

2.1 Prospective Sampling 

We first consider prospective sampling, and write 0* 
= ( 06, 01 )'.The prospective ordinary logistic regression es•
timate is the solution to the equation 

~ L; if; {D, X,, 0*). (2) 
i=l 

The entire term on the right side of (2) is called an estimating 
equation. The arguments'/;( D,, X,, 0*) are called estimating 
functions. The prospective estimator is denoted by E>*. 
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Prospective theory requires that the estimating equation 
be unbiased; that is, it has mean zero when evaluated at the 
parameters, so that 

(3) 

For logistic regression, even more is true. The estimating 
functions are themselves unbiased, having mean zero at the 
parameters: 

o~E('f(D,X,,0*)) for i~ l, ... ,n. (4) 

However, only Equation (3) is required for now. 
By use of Taylor series, it is known that 0* is asymptot•

ically normally distributed (under regularity conditions), and 
we write the distribution as 

n'12(El*- 0*) 

= Normal(O, B-1(0*)A(0*)B-'(0*)}, where (5) 

B(0*) ~ n- 1 '~ E{a~• 'f(D;, X,, 0*)} (6) 

and 

Formula ( 5) is often called the sandwich formula, because 
A(0*) is sandwiched between inverses of B(0*). 

At this point, we may now use the fact that the estimating 
functions are unbiased-that is, use ( 4 )-to conclude that 
if we define 

n- 1 L E( 'f(D;, X;, 0*)'/;'(D, X,, 0*)} ~ C(0*), (8) 
i=l 

then A(0*) ~ C(0*) and 0• is asymptotically normally 
distributed with mean 0* and covariance matrix 
n- 1 s- 1(0*)C(0*)B-'(0* ). 

Of course, in ordinary logistic regression we know that 
C( 0*) and B(0*) are equal and can he consistently estimated 
by the usual information formula. In general, though, a con•
sistent nonparametric estimate of these terms can be based 
on the method of moments; that is, in ( 6) and ( 8) remove 
the expectations and replace 0* by 0*. The resulting co•
variance matrix estimator is sometimes called the robust 
sandwich formula, where in a misnomer the term "robust" 
is used as a replacement for "model-free" (Drum and 
McCullagh 1993 ). For example, the resulting model-free es•
timate of B( 0*) is just 

~ ~ n a -
B(0*) ~ n_, L: a0 � 'f(D,, x,, 0*). 

F! 

2.2 Retrospective Sampling 

We now turn to retrospective sampling. The key point to 
notice in the preceding argument is that we used unbiasedness 
of the estimating functions only in showing that (7) 
equals (8). 

In retrospective sampling, define 00 ~ 0~ + log(ndn0 ) 



206

Carroll, Wang, and Wang: Prospective Analysis of Case-Control Studies 159 

- log{pr(D ~ 1)/pr(D ~ 0)), where pr(D ~ 1) is the 
unknown prospective rate. Prentice and Pyke ( 1979) showed 
that if9 ~ (00 , 81) 1 and we replace e• by 9, then the esti•
mating function ( 2) is still unbiased; that is, ( 3) holds. But 
the estimating functions are not unbiased, so that ( 4) fails, 
and hence it is not true that A(9) ~ C(9). 

Asymptotically, the distribution ( 5) still remains the same, 
but with the prospective parameter 9* and prospective es•
timator 9• replaced by the retrospective parameter 9 and 
retrospective estimator e, which of course is the solution to 
( 2) under retrospective sampling. 

Because the estimating equation is unbiased, we can re•
write ( 7) as follows: 

A(9) ~ n-•cov[± .p(D 1 , X,, e)- E{± 1/!(D, X,, e)}] 
t=l t=l 

~ n-• ~ cov[,P(D,X1 , 9)- E{.p(D 1 ,X1 , 9)}] 
i=l 

~n-• ~E{.p(D,,x,,e),P'(D,,X,,9)) 
i=l 

- n-• ~ E{.p(D 1 , X1 , 9))E{,P'(D 1 ,X1 , e) } 
i=l 

~ C(9)- D(9). 

The main conclusion now follows, in a series of steps: 

• Prospectively, the asymptotic covariance matrix is 
n-• n-• (9*)C(9*)B-'(9* ). 

• Applying prospective formula directly to a retrospective 
study is equivalent to basing estimation as if the correct 
covariance matrix were n-1 B'1(9)C(0)B-1(El). 

• But the proper covariance is n-• n- 1(0){ C(0) 
- D(0)}B-1(0). 

• Because D(0) is positive semidefinite, prospective co•
variance formulas are at worst conservative. 

2.3 Further Steps 

The reasoning given previously is perfectly sound, but we 
have skipped over a few steps. For example, we have simply 
assumed that the actual covariance estimators derived from 
a prospective analysis estimate the corresponding quantities 
retrospectively, which is true but needs to he justified. 

Our analysis shows that prospective covariance formulas 
are at worst conservative, but no insight is given as to when 
these formulas are asymptotically correct. Our second main 
contribution is to derive a simple sufficient condition for this 
asymptotic correctness. The condition is routine to check in 
the examples described in this article, as well as other ex•
amples that we have not included. Deriving the sufficient 
condition requires a more detailed examination of D(0). 
This task is relegated to the general theory. 

3. PROSPECTIVE FORMULATION 

3.1 Likelihood for Complete Data 

The following conventions are used throughout. Disease 
status is denoted by D, observable co variates by Z, and co-

variates that may he partially missing by X. Anticipating the 
possibility that the study may he stratified, we use the stratum 
assignment variableS, taking on the values 1, ... , .S. When 
considering measurement error problems, instead of observ~ 
ing X, a proxy W is typically observed for all study partici•
pants; for example, blood pressure measured at a single time 
point as a proxy for long-term blood pressure measurement. 
The vector of parameters of major interest is denoted by 81 ; 

for example, in (1), 81 ~ (8111 , 8'.,) 1 � 

If there were no missing data, then we assumed a sampling 
mechanism of a classical case-control study within each stra•
tumS= s, with n1s cases, n0s controls and ns = nos+ n15 

observations. The total sample size is n ~ ~ n,. We assume 
that the terms nj,/ n converge to positive constants, so that 
our work does not apply to matched case-control studies. 

In those cases where a proxy W exists, it is sometimes 
useful to allow for an error model for it. Thus we write the 
likelihood of W given (D, Z, X) and stratumS~ s as[( wl z, 
x, d, s, 82 ), where 82 is an unknown parameter. We will 
assume that the prospective model is of the form 

pr(D ~ II Z, X, S ~ s) 

~H{O;;,+R,(0 1 ,82 ,Z,X)), (9) 

where R,(81, 82 , Z, X) is an arbitrary function. Although 
the vector 02 is in both the conditional likelihood for Wand 
in (9), this is simply a convention; not all components of82 

must appear in both likelihoods. Model (9) includes the lin•
ear logistic model ( 1) and the multiplicative model of Wein•
berg and Wacholder ( 1993) as special cases. 

From the usual odds ratio formulation of Prentice and 
Pyke (1979), the retrospective likelihood that (Z, X, W) 
~ (z, x, w) when (D, S) ~ (d, s) is 

(n,fnd,)q,(z,x)Hf(- ){ 1- H,( ·)} t-df(wlz,x, d, s, 82 ), 

where (10) 

H,( ·) ~ H{80 , + R,(81 , 82 , z, x)). 

In ( 10), q,( ·)is the marginal density of(Z, X) in stratum 
S ~ s induced by the case-control sampling scheme and Bas 
~ o;;, + log(n1,/no,) - log{pr(D ~ II S ~ s)fpr(D ~ Ol 
S ~ s)}, where pr(D ~ II S ~ s) is the prospective rate in 
stratums. We write e = (801, ... ' 8os. OL 8~) 1 , the retro~ 
spective parameter, and 0* ~ (8~" ... , 8~8 , O't, 8\)1, the 
prospective parameter. 

3.2 Missing Data 

The theory allows for the possibility that different 
components of X are missing in different subsets of the 
data. If there are J such possible patterns of missingness 
<l. ~ (o" ... , oJ) is a vector with a single nonzero component 
indicating which pattern is applicable. The only assumption 
is that the data are missing at random, and hence the missing 
data indicators and X are conditionally independent given 
(Z, W, S, D), with selection probabilities 7rj(Z, W, S, D) 
~pr(oj~ liZ, W,S,D,X). 

For example, suppose that X has two components, X(l l 
and X12 >. There are four possible patterns of missingness 
here: ( I ) both components missing; ( 2) only X11 l missing; 
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( 3) only X(2) missing; and ( 4) neither component missing. 
In this case, li1 ~ I means that both components of X are 
missing, li2 ~ I means that only X(I 1 is missing, and so on. 
Table I summarizes the notation. 

3.3 Prospective Estimating Equations 

With the exception of the leading term, ( 10) is of the same 
general form as a prospective likelihood with stratum-specific 
intercepts. Thus a natural approach to estimation is to use 
prospective estimating equations. Let liv, denote the value 
of li1 for the ith individual in the sth stratum. The prospective 
estimating function defined for the jth pattern of missingness 
and the sth stratum is '1! 1,( D, Z, X, W, s, f)), and the es•
timators are defined as solutions to 

8 n_. J 

0 = n~I L L L {Jijs'Itjs(D;s, Z;s, X;s, W;s, s, 8) 
s=l i=l j=l 

3 n, 

~ n- 1 L L £~(8) ~ 'T.(fl). 
s=l i=I 

(II) 

In effect, we are suggesting that one ignore the case-control 
study design and proceed as if the data arose from a pro•
spective sample. 

4. ASYMPTOTIC THEORY 

4.1 Main Results 

Readers who are interested mainly in the applications may 
skip this section without any loss. 

In our analysis we make two basic assumptions. First, we 
assume that given (D, S = s), the vectors (Z; 9 , X; 3 , Wis. tl.;9 ) 

are independent and identically distributed as i varies. The 
individual components of these vectors are, of course, de•
pendent. The assumption of independent and identically 
distributed data is only for simplicity in this analysis and is 
not always necessary, as we show in Section 10. 

The second assumption is that Equation ( II) is retro•
spectively unbiased, so that ... 

o~ L LE{.C~(fl)ID~,s). (12) 
s=I i=l 

Assumption ( 12) is satisfied in all the cases that we have 
examined. As described in more detail in the Appendix, Sec•
tion A.2, this appears to be a general phenomenon and not 
simply a matter of convenient example selection on our part. 

To state the main result, we set the following definitions. 
Define/,(·, fl) ~ H~(·){l- H,(-)) 1-df(wiz, x, d, s, 
02)q,( • ). The notation d! '( �) means integration or sum•
mation with respect to the arguments of!'( • ). Let '1! 1,0 be 
the matrix of partial derivatives of '1! 1, with respect to e. 
Also, define 

� I J I 
'T o<e> ~ L (n,/n J L L .-j(- J 'l! 1,o( ·, 8) 

s=l d=Oj~l 

X/,(·,fl)djl(Z,X,W), (13) 

� I J I 
qe) ~ L (n,/n J L L .-J< � )'1! 1,( ·, 8)wj,( ·,e) 

s""l d=O j=l 

X/,( �, 8) djl(Z, X, w), (14) 
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Variable 

D 
z 
X 
w 
s ., 

Table 1. Notation Used in the Paper 

Explanation 

Response 
Fully observed covariates 
Missing or mismeasured covariates 
Proxy for X in measurement error problems 
Stratum indicator variable 
Indicator that X is missing with pattem number j 
Probability of missing data pattern j 'II"J(z,w,s,d) 

El 
e· 
8, 
8, 

Retrospective parameter, including stratum intercepts 
Prospective parameter, induding stratum intercepts 
Non·intercept parameter in the prospective logistic model 
Error model parameter tor the distribution of W 

and 

•<~> ~I ± .-1( • )'ll11,( ·, 8)/,( ·, 9) d!l(z, x, w). 
j=l 

Theorem. Let 9 be the solution to ( 11 ) under retro•
spective sampling, and let @• be the solution to (II) under 
prospective sampling. Under appropriate regularity condi•
tions, retrospectively, n 1' 2(9- 8) is asymptotically normally 
distributed with mean zero and covariance matrix 

{'T o(SW 1[C(8)- ± ± { ni/(nn<~>) }•<~>•~.] 
s-1 d-O 

X {'To(S))-1• (15) 

Prospectively, define /, 0 (·, 9*) ~ q, 0 (z, x)H~0 (·){1 
- H,.( �) } l-d/( � I ·, 02), where q, 0 ( �) is the marginal of 
(Z, X) in the prospective sampling distribution in the sth 
stratum and H, 0 ( ·)is the same asH,(·) but with prospective 
stratum-specific intercepts. Let C * ( 8* ) and 'T •• ( 8* ) be de•
fined similarly to C( e) and 'T 0 ( e), but with I, and f) replaced 
by /, 0 and 8*. Then n 112 (9* - 8*) is asymptotically nor•
mally distributed with mean zero and covariance matrix 

{ 'T .. <8* > l -~c.(e* ) { 'T .. <8* l J -1. 
The proof is sketched in the Appendix. 

4.2 When are Prospective Standard Errors 
Asymptotically Correct? 

(16) 

For the moment, assume that prospectively derived co•
variance matrix estimates are consistent estimates of the 
quantity 

If this is true, then the foregoing theorem states that the 
prospective covariance matrix estimates are at worst con•
servative. 

Here we state a simple sufficient condition that guarantees 
that prospectively derived standard errors are asymptotically 
correct. For most cases, K 03 = - K Is for each stratum, and we 
assume this here. This leads to the following simple result. 

Corollary. Suppose that • 1, ~ - �" ' and that • 1, is pro•
portional to the sth column of'T .,(8) for s ~ I, ... , 8. Then 
prospectively derived covariance formulas for ( 01, 02) are 
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asymptotically correct. More generally, the result holds if 
the rows ofT o(Ell•t. corresponding to 81 all equal zero. 

We show later that many examples satisfy the conditions 
of this corollary. 

The reason that prospectively derived covariance matrix 
estimators actually estimate ( 17) is that they are in all cir•
cumstances derived from sums of functions of e and the 
individual observations. For example, consider the model•
free sandwich estimator from prospective formulas (Sec. 2), 
namely 

3 n, 

{T .o(c3W'n·' ~ ~ L;,(S)Ll,(S){T .o(SW', 
s-1 i=l 

where 

Using the retrospective likelihood ( 10) and the fact that c3 
is a consistent estimator ofe, it is easily seen that the model•
free sandwich estimator consistently estimates ( 17). 

For those cases for which prospective formulas are con•
servative, there are two ways to construct asymptotically 
correct covariance estimates. The preferred method is to be•
gin with ( 15) and estimate T 9 ( e) and C( e) by prospective 
formulas; typically, one would not use the "model-free" es•
timates of these terms. For example, in the classical problem 
with no missing data, these matrices would be estimated by 
the observed information. To estimate "d• in ( 15), use led, 
~ n;' L:'-: 1 l(D1, ~ d).C,,(S), a model-free consistent 
estimate. 

This hybrid approach, where Kd, is estimated without a 
model and To( e) and C( e) typically being based on a pro•
spective model, will work for most cases. But it need not 
yield a positive semidefinite covariance matrix estimate, be•
cause of the subtraction in ( 15). In such cases, a model-free 
sandwich covariance matrix estimate can be employed, 
namely {T .o(c3)}-'B.(S){T .o(S)}-', where 

8 I ns 

B.(0) ~ n-1 ~ ~ ~ l(D;, ~ d) 
s=l d=O i=l 

x [.C;s(0l- m(d, s, em .. -J', 
where m(d,s,e) ~ n'd,' L:'-: 1 l(D;, ~ d).C;s(0)isanestimate 
of E{ .C;,(9)1 D;s ~ d}. 

5. CLASSICAL STUDIES 

By a classical case-control study, we mean one with no 
missing data and a single stratum. Dropping the subscripts 
( j, s), which indicate missing data pattern and stratum 
number, from (9) we have pr(D ~ II X)~ H{ 8~ + R(01 , 

X) } . In this section we show that in classical case-control 
studies, essentially any reasonable prospectively defined es•
timating equation yields consistent estimators, and the pro•
spective standard errors are asymptotically correct. The work 
generalizes that of Weinberg and Wacholder ( 1993 )on mul•
tiplicative models and Wang and Carroll ( 1993, 1995) on 
robust estimation. 

To motivate the class of estimators, first consider simple 
linear logistic regression with R(x, 81 ) ~ 8\x, and recall 
from ( 2) that the estimating function for the maximum 
likelihood estimator is 1/;(d, x, 8*) ~(I, x)' {d- H(8~ 
+ 8'1x) }. By assumption, prospectively 

E{I/I(D,X, 0*)1X} ~ 0, (18) 

because pr(D ~ II X)~ H(8~ + 8\X). For the prospective 
maximum likelihood estimator in the general model, the 
estimating equation for the maximum likelihood esti•
mator is 1/;(d, x, 0*) ~ {1, (iJ/iJIJ 1 )R(8 1� x) } [d- H{8~ 
+ R ( 81 , x) } ] , and ( 18) still holds. The same condition ap•
plies to all the robust estimators discussed by Carroll and 
Peterson (1993). 

The fact then is that most estimators prospectively satisfy 
(18). We will say that an estimating function 1/;(D, X, 9*) 

is (prospectively) conditionally unbiased if( 18) holds pro•
spectively for all 0*. 

In the Appendix, we show the following result. 

Lemma. Any conditionally unbiased estimating func•
tion leads to a retrospectively unbiased estimating equation, 
and prospectively derived standard errors are asymptotically 
correct. 

The result is anticipated from the Appendix Section A.l, 
because in this context no restrictions have been made on 
the marginal distribution of X. 

5.1 A Simulation 

We performed a small simulation in simple linear logistic 
regression to illustrate the results. There were 7 5 cases and 
75 controls. The predictor X was generated either as a normal 
random variable with mean zero and variance l or as a t•
random variable with 3 degrees of freedom. We chose 8~ 
~ -4.0, 81 ~ -.4, -.6, -.8. When X is normally distributed, 
the values of 01 were chosen so that the relative risks of mov•
ing from the 90th to the I Oth percentile of the distribution 
of X equal 3, 5, and 8. There were 500 simulations for each 
case. 

Two prospectively derived estimators were considered: (I) 
the ordinary linear logistic estimator, and ( 2) the robust 
leverage-downweighting estimators defined by Carroll and 
Pederson ( 1993, sec. 4.1 ). The results are given in Table 2. 
Note that in all cases, both the ordinary and the robust 
methods attain very nearly their nominal levels. 

Table 2. Simulation of Ordinary and Robust Logistic Regression 

Ordinary Robust 

Distribution 9, 90% 95% Median 90% 95% Median 

Normal -.4 .886 .944 -.435 .886 .940 -.434 
-.6 .878 .940 -.610 .894 .940 -.612 
-.8 .912 .964 -.816 .912 .964 -.806 

1(3) -.4 .912 .964 -.400 .914 .964 -.403 
-.6 .888 .936 -.618 .882 .924 -.619 
-.8 .906 .952 -.812 .898 .952 -.811 

NOTE: In 500 simulations, the coverage rates are given for nominal 90% and 95% Intervals. 
The median of the slope estimates is also listed. 
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6. MISMEASURED DATA: DIFFERENTIAL ERROR 

6.1 Introduction 

In most problems with missing data, and less frequently 
in problems with measurement error, X is observable in 
a subset of the study. A wide variety of parametric tech•
niques have been developed for likelihood analysis of 
missing data, and the corresponding likelihoods for mea•
surement error models are also well known. Recently, 
however, techniques have been developed which attempt 
to avoid strong parametric assumptions (see, for example, 
Carroll and Wand 1991, Pepe and Fleming 1991, and 
Reilly and Pepe 1995). 

We will say that measurement error is nondijferential and 
that W is a surrogate for X if W is independent of D given 
(Z, X, S). Otherwise, measurement error is differential. 

Robins et al. ( 1994) described a general class of prospec•
tively unbiased estimating equations for missing and mis•
measured data in a single stratum. We concentrate on this 
case in linear logistic regression and by modifying their a!>' 
proach slightly allow for differential measurement error. As 
a matter of interpretation, we take the view that interest lies 
in the effects of X on disease in the presence ofthe covariates 
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Z measured without error, and not otherwise in W. 
Thus the interesting prospective logistic model is H(8i; 
+ 8\ 1Z + 8\,X). Our analysis requires a model for the error 
distribution of W given (Z, X, D). 

6.2 Estimating Equations and Results 

The estimating equations can be described as follows. 
Let 1/t( d, z, x, 8) be the usual logistic estimating function 
M(z, x){d- H(·)}, where M(z, x) ~ (1, z', x')'. 
Write the conditional density or mass function for W as 
f(wlz, x, d, 8) ~ f(wlz, x, d, 82). Let X(z, x, w, d, 8) be 
any unbiased estimating function for 82 � 

For any function ~ ~ ~( z, x, w, d), define 

ll(z, x, w, ~. 8) 

I 

~ L: Hz,x, w,d)f(wlz,x,d,e)Hd(. ) {1-H(. )} l-d. 
d-O 

Then for an arbitrary function t/>(d, z, w) (Robins eta!. 
[ 1994] showed how one can choose q, prospectively; the same 
method applies retrospectively), withj ~ I being the case 
that all of(Z, X, W, D) are observed, we define 

w,(·,e)~ [ 
8 ) ll(Z,X, W, .. l/1,8) ll{Z,X, W,(!- .. )</>,8)] 

t/I(D,Z,X, - ll(Z,X, W, .. ,El) ll(Z,X, W, .. ,El) 

ll(Z, X, W, .. x, 8) 
X(Z, X, W, D, 8)- ll(Z, X, W, .. , 8 ) 

and 

Note that because there is a single stratum, we have dropped 
the index corresponding to stratum assignment. This esti•
mating equation is prospectively unbiased and, as can be 
verified directly, also retrospectively unbiased (see the A!>' 
pendix, Sec. A.5). In that section we also show that pro•
spectively derived standard errors are asymptotically correct. 

7. LIKELIHOOD AND NONDIFFERENTIAL 
MEASUREMENT ERROR 

Sa !ten and Kupper ( 199 3) considered likelihood analysis 
for prospective studies with nondifferential measurement er•
ror. We study their easily computed "unconditional" method 
in the context of the logistic model ( I ) , showing that it leads 
to consistent estimates in the retrospective model and that 
prospectively derived standard errors are retrospectively 
asymptotically correct. 

Prospectively, Satten and Kupper formulated the problem 
as follows. For all subjects, (D, Z, W) is observed. But for 
the ith individual either X, is also observed ( 511 ~ I ) or X1 

is not observed (512 ~ 1). If/x1z,w,v is the density or mass 
function of X given (Z, W, D), then the prospective likeli•
hood can be written as 

fr !f~\z,w.n(X,IZ,, W;, D;){pr(D1 ~ !IZ1, W1))D' 
i=l 

X {I- pr(D1 ~ !IZ1, W,)}'-D1 ]. ( 19) 

The hard part is to compute each term. Satten and Kupper's 
approach is to model the distribution of X given (Z, W, 
D ~ 0); that is, among the controls, depending on a param•
eter 82 � Define 

R(Z, W,8)~log[E(exp(8\2X)IZ, W,D~0,82)]. 

Prospectively, they showed that Pr(D ~ II Z, W) 
~ H{8i; +8\ 1Z +R(Z, W,S)),andfurtherthattheratio 
of the density or mass functions is 

fxlz.w,n(xlz,w,d~ 1,8) exp{ 8bx-R(z,w, 8 )}, 
fxlz.w,v(xlz, w, d ~ 0, 8) 

thus writing the conditional density of X given (Z, W, 
D ~ I) in terms of that of(Z, W, D ~ 0). 

The prospective likelihood ( 19) is now specified, and the 
maximum likelihood estimator can be computed. In the A!>' 
pendix, Section A.6, we show that maximizing this prospec•
tive likelihood leads to estimators that are retrospectively 
consistent and standard errors that are asymptotically correct. 

8. MEASUREMENT ERROR AND REPLICATION 
8.1 Introduction 

The classical formulation of the measurement error prob•
lem (Fuller 1987) is one in which the true predictor Xis not 
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observable, and instead only an unbiased surrogate (defined 
in Sec. 6) W for X may be observed, possibly with replication 
on a subset of the data. If the variance of the measurement 
error is known or estimated from external data sources, then 
the standard linear regression method is the so-called "cor•
rection for attenuation." In nonlinear regression models, the 
same correction for attenuation often works extremely well. 
There are a variety of proposals based on the idea of a cor•
rection for attenuation (see Carroll and Stefanski 1990; Gie•
ser 1990; Liu and Liang 1992; Rosner et al. 1989; Rosner, 
Spiegelman, and Willett 1990; and Schafer 1993). Carroll 
and Stefanski ( 1994) described an instrumental variables 
method. 

These methods differ fundamentally from the moments 
methods of Section 6 in that they apply in the common case 
where X is never observable; for example, blood pressure or 
diet history. 

The application of these ideas to case-control studies with 
nondifferential measurement error were briefly explored by 
Rosner et al. ( 1989), studied by Armstrong, Howe, and 
Whittemore ( 1989) and Buonaccorsi ( 1990) using discrim•
inant analysis techniques and allowing for differential mea•
surement error, and suggested as a general methodology with 
partially replicated data by Carroll, Gail, and Lubin ( 1993). 
Although all of these methods can be analyzed by our general 
theory, in this section we define and investigate a version of 
the correction for attenuation methodology based on pro•
spective considerations but appropriate for case-control 
studies. The asymptotic distribution theory is most naturally 
studied using two strata. 

8.2 Estimating Equations and Results 

We will assume that W is a surrogate for X, that is, in•
dependent of D given (Z, X), and that the surrogate can be 
replicated with independent errors. Let W = ( W 1 , W2 ), where 
If} = X + flj and U1 , U2 are independent and identically 
distributed with mean zero and variance u~. To keep the 
analysis simple, we will ignore Z and study the prospective 
model H(O~ + 01X). There are two strata (s = 1, 2): one 
in which only W 1 is observed (s = 1 ), the other for which 
both (W 1 , W2 ) are observed (s = 2). Set J = 1 and "i = 1. 

A good approximation (Carroll and Stefanski 1990; Gieser 
1990; Rosneret al. 1989) to the probability of response given 
the observed surrogate is 

pr(D =II W1 )""' H{06 + 01m1(W1 )) 

and 

pr(D= IIW)"" H{O~ +01m2 (W)), 

where m 1(W1 ) = E(XI W1 ) and m2 (W) = E(XI W). The 
correction-for-attenuation methodology estimates the func•
tions (m 1 , m2 ) and regresses the response on these estimated 
functions, with one intercept per stratum. 

Of course the regression functions (m 1 , m2 ) are not esti•
mable, because they depend on the underlying disease rates. 
But they can be approximated in the common case tbat the 
disease is rare, because they are approximately the same in 
the controls as they are in the source population, and hence 

m 1(W1) ""'E(XIW 1 , D 0) and m2 (W) ""'E(XIW, 
D = 0 ), approximations tbat we will henceforth treat as exact. 
Let fi.w be the mean of W 1 among the controls. Following 
Carroll and Stefanski ( 1990) and Gieser ( 1990), for s = I, 
2 estimates of the best linear approximations to these regres•
sions are 

g,(W,, u~, u~, fi.w) = fi.w+ {(u~- u~)/u~}(W,- fi.w) 

and 

= iiw + {(u~- iT~)!( iT~- u~J2))(W- ii.w). 

where (1~ is the sample variance of W1 among all the controls 
and u~ is the sample variance of(W1 - W2 )/2 1' 2 among the 
replicated data. 

The algorithm then is as follows. Use the replicated data 
to construct uz and use the W 1 's from all the control data 
to construct fi.w and u~. Then regress D on the functions 
(g 1 , g2 ) for s = I, 2, with stratum specific intercepts. 

Subject to the levels of approximation described, in the 
Appendix, Section A.7, we show that prospective covariance 
formulas may be used for the estimate of01 � The preceding 
analysis is readily extended to problems with vector pre•
dictors. 

8.3 A Simulation 

We performed a small simulation in simple linear logistic 
regression to illustrate the results. There were 300 cases and 
controls. The number of replicated observations in each case 
and control was 25. Prospectively, the variable X was gen•
erated as a normal random variable with mean zero and 
variance 1. We chose 0~ = -4.0, 01 = -.4, -.6, -.8. With 
these values, prospectively the event rates are approximately 
3%, the type of "rare-disease" situation one might expect. 
The values of 01 were chosen so that the relative risks of 
moving from the 90th to the lOth percentile of the distri•
bution of X equal 3, 5, and 8. 

The measurement error model was W = X+ U, where U 
is independent of D and X and is generated as a normal 
random variable with mean zero and variance u; = .25, .5, 
1.0, representing small, moderate, and large measurement 
error. 

We estimated 01 using the foregoing algorithm. Standard 
errors were computed using a prospective method described 
in the Appendix, Section A. 7. The results, given in Table 3, 
indicate that the prospectively derived confidence intervals 
achieve very nearly their nominal levels. 

9. PARTIAL QUESTIONNAIRES 

9.1 Introduction 

The partial questionnaire design ofWacholder et al. ( 1994) 
is a single-stratum design where the covariate Z is of primary 
interest and the components of X = (X" X2 ) are partially 
missing by design. Such designs may be of considerable use 
when X 1 and X2 are expensive or difficult to assess. The ad•
vantage of deliberately making components of (X 1 , X2 ) 

missing is a lesser burden on study subjects, possibly resulting 
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Table 3. Simulation of Correction for Attenuation 

·~ 8, 90% 95% Mean Median 

.25 -.4 .89 .96 -.41 -.41 
-.6 .89 .96 -.61 -.60 
-.8 .91 .96 -.82 -.81 

. 50 -.4 .91 .96 -.41 -.41 
-.6 .89 .95 -.62 -.60 
-.8 .92 .96 -.82 -.81 

1.00 -.4 .93 .95 -.43 -.40 
-.6 .90 .93 -.65 -.60 
-.8 .90 .94 -.87 -.80 

NOTE: The measurement error variance is ~, the slope is fJ,, and the number of replicated 

cases ami the number of replicated controls both equal 25. In 1,000 simulations, the coverage 

rates are given for nominal90% and 95% intervals. The mean and med1an of the slope est1mates 

are also listed. 

in increased participation. Further details on the motivation 
of the study design were discussed by Wacholder et al. 
(1994). 

The partial questionnaire design is under consideration 
for a study to be done by the National Cancer Institute. The 
study concerns the health effects of pesticide exposure (Z); 
diet and cooking practices (X,) and level of physical activity 
(X2 ) are also of interest. Measuring diet and cooking practices 
with any degree of accuracy is difficult, expensive, and time•
consuming for both investigators and study participants; ac•
curately measuring physical activity levels can be burden•
some as well. Hence the investigators wish to minimize the 
number of subjects for whom both diet and activity are mea•
sured, because measuring both will affect compliance and 
accuracy. 

The pattern of missingness here is nonmonotone in the 
sense of Little and Rubin (1987). We will show that the 
prospective formulas are not necessarily asymptotically cor•
rect and that in principle a correction needs to be made. 

9.2 Estimating Equations and Theory 

In this case, J = 4, 1r1 = 1fj(Z, D), and bj = I if Z only is 
observed ( j = I), (X1 , Z) is observed ( j = 2), (X2 , Z) is 
observed ( j = 3 ), or the entire set (X,, X2 , Z) is observed 
( j = 4). Wacholder et al. ( 1994) assumed that (X, X2 , Z) 
are discrete random variables. 

The prospective model is pr(D = I[ X1 , X2 , Z) = H(8~ 
+ 811 X 1 + 812 X2 + 8132). The marginal distribution of 
(X1 , X 2 , Z) induced by the case-control sampling scheme 
before "covering up" (X1, X2) is written as q(x 1 , x 2 , z, 82), 

where we have included fh as a parameter to allow various 
categorical data submodels; for example, the fully saturated 
model or the model in which (X,, X 2 ) is independent of Z 
(Bishop, Fienberg, and Holland 1~75). Thus 81 = (8 11 , 812 , 

813 )' and 8 = (80 , 8'1 , 8\)'. 
There is no requirement in this formulation that (X,, X2 , 

Z) be discrete. If they are not, then one must specify a model 
for the distribution of these random variables induced by 
the case-control sampling scheme. 

In this case, we show in the Appendix, Section A.8, that 
the elements of'T8 (8)K 11 corresponding to 81 need not all 
be zero, so that the prospective covariance formula for e, 
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can be asymptotically conservative. When (X1 , X2 , Z) are 
all binary and their distribution is left unspecified, it can be 
shown that prospective covariance formula are correct, in 
accordance with the Appendix, Section A. I, but the pro•
spective covariance formula is conservative when a logistic 
model applies . 

10. TWO-STAGE STUDIES 

Our estimating equation approach can be applied even 
when the missing-data indicators oi]S are dependent. As an 
illustration, consider the single-stratum two-stage study of 
Breslow and Cain ( 1988 ), which is based on the prospective 
model pr(D = I[X) = H(8~ + 8'1X). The variable Z is a 
categorical surrogate with M levels. The assumption is that 
Z is conditionally independent of D given X, which might 
occur, for example, when Z is a categorical level of a con•
tinuous covariate X. In effect, the model is a linear logistic 
model, where the coefficient for Z is known to be zero. 

At the first stage, we observe (D, Z), we note the number 
of observations in each ( D, Z) category and then within 
each category select a further subsample of fixed size in which 
X is also observed. 

In the Appendix, Section A.9, we show how to apply our 
estimating equation approach to rederive the Breslow and 
Cain result. (For a general discussion of two-stage designs, 
see Zhao and Lipsitz 1992.) 

11. DISCUSSION 

We have proposed a method for the analysis of prospective 
estimating equations in case-control studies. The major con•
clusions are that prospectively unbiased estimating equations 
are typically retrospectively unbiased and that the use of 
prospectively derived standard error estimates is asymptot•
ically at worst conservative. 

The examples we have considered allowed for multipli•
cative and linear logistic models, missing data, mismeasured 
data, and robust estimation. The techniques are applicable 
in general, and should prove useful in the consideration of 
other complex problems. 

APPENDIX: TECHNICAL PROOFS 

A.1 Semiporametric Perspective 

Some insight into when the prospective standard errors are 
asymptotically correct can be gained by the following informal 
semiparametric argument. Suppose that the distributions of 
(Z, X) and (WIZ, X, D) are not parameterized. Then they are 
completely unrestricted, or (semi parametrically) governed by 
infinite-dimensional parameters (p 1 , p2 ). The prospective likelihood 
can then be written as 

fz.x(z, xjp,)fD1z.x(dlz, x, 00 , O,)fw1z.x,D(wjz, x, d, p2 ). 

From Prentice and Pyke ( 1979 ), the prospective likelihood also 
can be written as 

fz.x1D(z, xl d, 0,, p,)jj,(d, p4 )/w1z.x.D(w[z, x, d, p,), 

where (p3 , p4 ) are unrestricted (infinite-dimensional) and 81 is 
characterized by the log-odds ratio. Because (p 2 , p3 , p4 ) are all un•
restricted, (D1 , ••• , Dn) is retrospectively ancillary for 81, and hence 
the distributions of estimates of0 1 should be the same prospectively 
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and retrospectively, even with missing X's. The same argument 
applies even when the distribution of (WI Z, X, D) is parameterized. 

This informal argument is complementary to the results in Sec•
tions 5 and 6. It applies in Section 7 when the roles of X and W 
are interchanged. The result in Section 8 is not easily categorized. 
For the partial questionnaire design of Section 9, when the distri•
bution of(Z, X) is not parameterized, the semiparametric argument 
also applies. 

A. 2 Retrospective Unbiasedness ot Prospective 
Estimating Equations 

We have no proof that prospective estimating equations are al�
ways retrospectively unbiased. But this is the case in every example 
we have examined, including the ones in this article. The following 
informal argument shows that retrospective unbiasedness is the rule, 
rather than the exception. This argument is a precise manifestation 
of the well-known fact that in a classical study, if we fictitiously 
.. sampled" from a case-control study, case or control status would 
follow a logistic model. 

We first show what it means for the estimating equation to 
be retrospectively unbiased. Define 1,( ·, 6) ~ Hf( ·){I 
- H,(-)} 1-df(wjz, x, d, s, 82 )q,( ·),where as before q,( ·)is the 
marginal density or mass function of (Z, X) in the case-control 
sampling scheme. The notation dp.( � ) means integration or sum•
mation with respect to the arguments of I'(· ) . Then, by ( 10), the 
estimating equation is retrospectively unbiased if 

(A. I) 

We next compute cov{n 1' 2Tn(0) } (conditioned on all the D's 
of course). Let the notation [ · · ·]indicate a repeat of the preceding 
term. Using ( 12), we have 

cov{n"'T.(6)} 

~ n- 1 i ~ E([L,(6)- E{L.,(6)jD,, s) ][ • • ·]'jD,, s) 

. ., 
~ n- 1 2: 2: (E{L,(6)L:,(6)jD,.s} 

- [E{L.,(6)1 D,. s} ][ · • · ]') 

~C(6)- 2:2: (n.,/n)[E{L.,(6)1D.,~d,s)][···]'. 

It is easily seen that E{L.,(6)jD,, ~ d, s) ~ (n, /nd,)<d, thus 
showing that 

• 1 

cov{n 11'T.(6)} ~ C(6)- 2: L: {ni/(nn.,))<.,<~,. (A.4) 
s=l d=O 

Now, using (10), we have 

• 1 

C(6) ~ L: 2: (n.,/n)E{L.,(6)Ll,(6)ID., ~ d, s) 
s=t d=O 

• 1 , I 
~ L: 2: (n, /n) 2: ,..k)¥,(·,6)¥!,(·,6)1,(-,6) 

s=t d=O 1=1 

It will be useful in later work to note that the retrospective expec- X dp.( z • x • w) · (A.S) 

tation ( 12) is given by This is identical to ( 14 ), as required. 
8 I 3 ! 

2: 2: nd,E{L 1,(6) jD 1, ~ d,s) ~ L: n, L: �d�· (A.2) A.4 Theory lor the Classical Model 
d=O 

Strictly speaking, retrospective unbiasedness of the estimating 
equation means that ( 20) holds for all 0 and q3 ( o ) in an appropriate 
class. 

Now tum to the prospective formulation. For a prospective 
model, the likelihood of(D, X, Z, W) givenS~ sis!,.(·, 6*) 
~ q,.(z, x)Hf.(·){l - H,.(·)) 1-df(·l·, 82), where e* 
= (Ori',, ... , Oris, O't, 0~) 1 , Q3 *( •) is the marginal of (Z, X) in the 
prospective sampling distribution in the sth stratum, and Hs*( ·) 
is the same as H 3 ( o ) but with prospective stratum-specific intercepts. 
Thus prospective unbiasedness means that for all e* and Qu ( � ) in 
an appropriate class, 

(A.3) 

Note the similarity between (A. I) and (A.3 ). The equations are 
formally identical, with the only difference one of notation. Hence 
we can expect that prospectively unbiased estimating equations will 
also be retrospectively unbiased. In all the cases we have examined, 
the relationship between (A.l) and (A.3) trivially leads to retro•
spective unbiasedness of the estimating equation. 

A.3 Sketch of Proot of the Main Theorem 

Consider the retrospective formulation, where the parameter is 
0. By a Taylor series expansion, n 112(9- 0) = -{Tne(e) }- 1 

nlJZ<J'n(9). By a calculation similar to (A.2), Tne(8) has expec•
tation ( 13); suppressing the dependence on sample sizes, denote 
the result byT .,(6). 

We have defined conditional unbiasedness to mean that ( 18) 
holds for all 9*. Write6 ~ (80 , 9',)', H(x, 6) ~ H{8 0 + R(O,x)), 
and H"'(x, 9) ~ H(x, 9){1- H(x, 6)}. Then conditional un•
biasedness means that for any (x, 0), 

1 

0 ~ 2: l{(d, x, 6)Hd(x, 6){1- H(x, 6)}'-d. (A.6) 
doO 

In our notation, <d ~ J l{(d,x, 6)Hd(x, 6){1- H(x, 6)} 1-dq(x) 
dx, so that "o + "' = 0 by (A.6), and hence prospective estimating 
equations that are conditionally unbiased are also unbiased retro•
spectively. It also follows that 

Te(6) ~I± ofe(d, X, 9)Hd(x, 9){1- H(x, 6)} 1-dq(x) dx. 
d=O 

Differentiating the right side of(A.6) with respect to 0 and then 
integrating with respect to q(x)dx, we find that the first column of 
-T.,(6)is 

I± (2d- I)l{(d, X, 9)H(x, 6){1- H(x, 6)}q(x) dx. 
d=O 

(A.7) 

It follows then that < 1 equals the first column (A.7) of -T9 (6) if 

1{(1, X, 6) ~{I- H(x, 6)} {l{(l,x, 6)- of(O, X, 6)}, 

which follows directly from (A.6). 
Based on the lemma in Section 4, we have thus shown that pro•

spectively defined standard errors for slope parameters are retro-
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spectively asymptotically correct for the general class of condition•
ally unbiased prospective estimating equations. 
A.5 Theory for Differential Error 

We first briefly sketch an argument showing that the estimating 
equations of Section 6 are retrospectively unbiased. Because there 
is only a single stratum, we drop the stratum indicators and, as in 
Section 6, write Kd = [{•d(Y,) + •d(4>))', K~(X)]'. We will show 
thattc 0 (X) + tc 1(X) = 0, the other cases being similar. By definition, 

I 

~ K,(X) 
d-<J 

= ± J 1r(d, z, w)Hd(·){l- H(·))'-d 
d-O 

X f( wl z, x, d, 6)q(z, x) 

( d 9(z, x, w, ..X, 6)} d 
X X(z, X, w, , 6)- 9 (z, X, w, 1r, 8 ) I'(Z, X, w) 

=J(9(·,..X,8)-9(·,1rX,8) ± 1r(·)Hd(·) 
9(·,.-,8) d-<J 

X {1- H(·)) 1-df(·, 6)}q(•) d,.(z,x, w). 

Because this integrand is zero, this yields the desired result. 
We now show that except for the intercept, prospective co•

variance formulas are asymptotically correct. To do this, we 
must show that tc1 is proportional to the first column ofT e(@). Let 
H'"( ·) = H( ·) { 1 - H( ·)) he the derivative of H( · ). Because 
9 { ·, ~M(z,x), 8} = M(z, x)9( ·, ~. 8), direct calculations indicate 
that<,= [ {•1(Y,) + • 1(4>)}', •\(X)]', where 

� 1(Y,) = J 1r(l, z, w)M(z, x)f(wlz, x, d = 1, 6)q(z,x) 

X [H'"(·)- H(·)9{ ·,1r(l-H),8}ld ( x w) 
9(·,,,8) "z, , , 

<1(4>)= J H(·)f(wlz,x,d= 1,6)q(z,x) 

X [ (1- .-(1, z, w)j4>(1, z, w) -1r(l, z, w) 

9{·,(1-,)q,,e}]d .. ' ) 
x 9 (·,,-,e) ,.,z,x,w, 

and 

• 1(X) = J 1r( 1, z, w)H( • )f(wlz, x, d = 1, 8)q(z, x) 

[ d 8 9 < · � .-x, e>] d < > X X(w,z,x, =1, )- 9 (·,,-, 8 ) ,.z,x,w. 

With80 being the intercept, (o/fJIJ0)'1!2 = O,(o/fJIJ0 )Y, = M(z,x)H''', 
(o/o8 0 )Hd(l- H) 1-d = (2d- l)H'"· and for any function~(·), 
(o/fJIJ0 )9( ·, ~. 6) = 9( ·, to,. 8) + 9 { ·, (d- H)t, 8). Writing 
9( ·, t. 6) = 9(t), by direct but tedious algebra, we find that if 'I!, 
= ( ~1ta• ,Y11b)1, then 
9(,-)(o/fJIJo)Y,,. 

= -M(z,x)[ 9{ 1r(d- H)')- 9 '{r~t .. ~ H)} l 
- [ 9{(1- 1r)(d- H)4>)- 9{(1- r)~}(~l"(d- H)} l· 

(A.8) 
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Clearly, (o/fJIJ0 )Y,1• does not depend on d. Remembering that 
(o/o80 )'1!2 = 0, the part of the first column of'T .(8) corresponding 
tol/t1ais 

± J 1r( • )(o/fJIJo)Y,,.( • )Hd( ·) 
d-O 

X{l -H(·)) 1-df(·l·,8)q(·)d,.(z,x,w) 

= J 9( ·, "· 6)(o/fJIJ0 )Y,1.( • )q( ·) d!L(z, x, w). (A.9) 

We now substitute the right side of(A.8) into (A.9), noting that it 
factors naturally into components depending on tP and 1/t, the latter 
through M. We thus rewrite (A.9) as 

-J {G1(Y,)+G2 (4>)}q(·)dl'(z,x,w). (A.lO) 

Direct but tedious algebra shows that the integrands corresponding 
to Y, and 4> in (A.lO) exactly equal the integrands in • 1(Y,) 
and K1(</>). 

Similarly, the part of the first column of 'T .(6) corresponding 
tol/t,bis 

-J [ 9{ ·, .-x(d- H), 6} 

_9{·,rX,8}9{·,r(d-H),8}] (·)d( ) 
!l(·,1r,S) q JLZ,x,w. 

It can be shown that the integrand of this expression equals the 
integrand of • 1(X). 

We have thus shown that K 1 is proportional to the first column 
ofT e(8), and hence that prospective covariance formulas may be 
used. 

A.6 Theory for Nondifferential Measurement Error 

The analysis requires a small notational change, namely to in•
terchange the roles of x and w. Dropping the stratum indicators, 
( 10) then becomes 

(n/nd)q(z, w)Hi(·){l- H.(·)) 1-d.fx1z;w.D(xlz, w, d, 8,); 

H.(·)= H{80 + 8\ 1z + R(z, w, 6)}. 

In our theory, H.(·) replaces H( ·) and.fx1z.w.v( ·)replaces/(·). 
Dropping stratum indicators, the estimating equations for max•

imum likelihood then fit into our notation with J = 2: 

'1! 1( ·) = (AI'(· ) {D- H.(·) }, Sl,, S~)' 

and 

w,( ·) = (At'(· ){D- H.(·)}, 0', O')', 

where S,, =(o/fJIJ2)Iog{fx1z;w.D(XIZ, W,D,6)) and S,.,isdefined 
similarly. In addition, .IH.(Z, W) = (1, Z', U9,2 , U~2 ) 1 , where U~ 
= (o/fJIJ2 )R(Z, W, 6) and similarly for U,.,. 

It is easy to show that these prospective estimating equations are 
retrospectively unbiased. With the redefinition of/(·), the first col•
umn of'T .(6) is 

'T .,(8) = -(i J A!'(z, w)Hl.''< • )/( ·, 6) d!L(z, x, w), 0', o')' 

= -(± J A!'(z, w)H1''(·)Hi(·){l-H.(·)}'-d 
d-- { J 

X q(z, w)Jx,z;w.v(xlz, w, d, 6) d~(z, x, w), 0', 0')' 

= -(J A!'(z, w)H1"< • )q(z, w) d,.(z, w), 0', o')'. 
(A.ll) 
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the last step following because the only term depending on x is 
fx 1z,w,D(xlz, w, d, 0), which is a density and hence integrates to 
l. That (All) equals -K 1 is immediate. 

We have thus shown that the Satten and Kupper ( 1993) "un•
conditional" method for prospective studies can be applied without 
change to retrospective studies. 

A. 7 Theory for Corrections for Attenuation 

Let the mean of W1 among the controls be f.l.w and the mean of 
W1 - W2 among the controls be f.l.e = 0. For technical reasons 
having to do with the fact that n~ is being estimated by the sample 
variance Q-~, we must include an estimating equation for J.le even 
though it is known; this estimating equation has no effect on the 
standard error estimates. The estimating equations for this algorithm 
are, with 82 = (J.Jw, J.le, n~, n~) 1 , 

gi(Wr,O"w.O"u,~w) r( ~ ' )[d-H{O,+O,g,(W,,a~,u;l}]1 
'ltn = (WI- ~w)l(D = 0) 

and 

{ (W,- �·) ' - u~)l(D ~ 0) 
0 
0 

( ~ )rd- H{ o, + e,g,( w, .~ .• ;)} J 
g2( W, <1~, 0"~, ~w) 

'ltn = (WI- ~w)l(D = 0) 
{ (W,- � � ) ' - a~)l(D ~ 0) 

{(WI- W2)/2 112 -
[ { (WI- W2)/2 112 - -a~] 

By treating the approximations we have made to be exact, it is 
easily shown that the estimating equations are unbiased. If/( w I x) 
is the density function of W = (W1 , W 2 ) given X, because K 1s is 
based on the case d = 1 it follows trivially that 

K 1 ,~ J {a,b,g,(·),O,O,O,O}'H\''(·)q(·)f(wix)dM(X, w), 

where (a, b)= (1, 0) and (0, 1) for s = 1, 2. It is also easily verified 
that the first column of'T e(0), which is based on the expectations 
of the derivative ofifll with respect to 80 1> equals -Kll, whereas 
the second column of'T 8 (0) is -K 12 � Hence, subject to the levels 
of approximation described, the conclusion is that prospective co•
variance formulas may be used for the estimate of 81 � 

We estimated standard errors using a prospective formulation. 
The covariances of the terms if 11 and if 12 were originally computed 
using the "model-free'' method, with the usual exception that in 
the upper 3 X 3 matrix corresponding to the logistic parameters, 
we replaced the model-free terms by the usual information contri-
butions. 

For the terms corresponding to the derivatives of if 11 and if 12 , 

we again started with the model-free method and again modified 
the upper 3 X 3 matrix by substituting information contributions. 
For the other terms in the first three rows of if 11 and if 12 , we ex•
plicitly used the prospective result that eliminates the contributions 
of the derivatives of the terms g 1 and g2 when they are outside of 
H( ·),because prospectively terms such as 

( - ; g,(W,, u~, u~, ~w))[D- H{ 0, + O,g,(W,, u~, u~, ~w)}] au, 

have mean zero. Generalization to vector predictors is immediate. 

A.8 Theory for Partial Questionnaires 

We will use the estimating equations from prospective maximum 
likelihood, which can be described as follows. Define 

G,~Hq, G 3 ~ f Hqd~(x,), 
G, ~ f Hq d~(x2 ), 

A 2 ~ f qd~(x2 ), A,~ f qdM(X,,x,), 

C',(-)~ {a;a(00 ,0,,012 ,0,)}G,(-), 

L/-) ~ (a;ao,)G,)(- ), 

.M,<.) ~ (a;ao,)A/. ), M( •) ~ ( 1, x,, x2 , z)' . 

The prospective estimating equations are in our general form with 

>¥ _ ( <! ',(-) {DA,(-)-G,(-)) / [G,(-) {A,(-)-G,(·) } ] ) 

' ' - DL,(-)!G,(-) +(I- D){ fit,(·)-L,(-))1 {A/ ' )- G,(·) } . 

The estimating equation is retrospectively unbiased, and by defi•
nition we write 

~ Z J ,-,(z, 1)v,,(1,z,x 1 ,x2 ,0)H(·)q(·)d~(x,,x,z). 
J~l 

Defined~,(·)~ d~(x 1 , x2 , z), d~3 ( ·) ~ dM(X, z), d~,( ·) ~ dM(X 1 , 

z),anddM,( ·) ~ d~(z). Recall that(8/8v)H(v) ~ H'''(v) ~ H(v) { 1 
- H(v)) and defineR(·)~ (a;aO,)q( ·).Then 

K'" ~ Z J ,-,<z, 1){C',(-)/G,(-)}H(·)q(·)d~(x1 ,x2 , z). 
j=l 

Note, however, that@;( •) and Gi •) depend only on z, (xr. z), 
(x2 , z), and (x~> x 2 , z) for j = 1, 2, 3, 4, so that 

Similarly, 

K,, ~ Z J ,-,<z, 1)C',( •) dp,( �) 
rJ 

~ Z J ,-,<z, t)C',(·)dp(X1,x2 , z) 
yl 

~ J C',(·)dM(x,,x2 ,z) 

~ f M(·)H0 '(·)q(·)dp(x,,x2,z). 

K,.,~ Z J ,-,(z, 1){Lk)/G,(-)}H(·)q(·)dp(x,,x,z) 
;=1 

Because T 6 (0) and C(El) of( 13 )-( 14) are the same as in the pro•
spective case, and the estimating equations are obtained from max•
imum likelihood, it follows that 'T 8(0) = -C(0); this may be 
verified directly by algebra. It is easier to compute C(0), which is 
given by 
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+ i J ~,(z, l )( -t',( ' ) )( -t' ; (,) ) ' 
r' M,\ ')-Lj(-) M/ ')-Lj(-) 

X {A, \ ' )- G,\' ) } - 1 d~k ). 

When (Z, X1o X 2 ) are all binary and their distribution is left un•
specified, detailed considerations show that prospective covariance 
formulas are asymptotically correct. 

A. 9 Theory for Two-Stage Studies 

Let nd be the number of observations with D = d, let nmd be the 
random number of observations with (D = d, Z = m), and let 
n~d be the fixed number of observations in the second stage within 
each(D, Z)category. Define82 md= pr(Z= m[ D =d). Note that 
(n14 , ••• , nMd) is a multinomial,random variable with probabilities 

(82,1d> � · ·, 82,Md). 

Because there is only a single stratum, we will drop the stratum 
assignment indicators. In ( 11 ),j = 1 refers to observations selected 
into the second-stage sample, and j = 2 denotes those which are 
not so selected. Define 1/; 21 ( ·, 0) = 0 and 

1/;11 ( •, 0) ~ (l, X')'[d- H{80 + 8\X + log(n0 /n,) 

+ log(n:i 1/n:i0 ) + log(82•20 /82.z1)} ]. (A.l2) 

Let 1/; 12 = 1/;22 (·, 0) be the vector of size 2M whose (dM + m)th 
element equals /(D ~ d){J(Z ~ m)- O,,md}. 

Let '¥1 = ( 1/;}1 , 1/;}2 ) 1 � Denote the logistic argument in (A.12) by 
H*(Z, X, 0) and write HV 1 = H*( 1 - H*). 

At the end of this section, the estimating equation is shown to 
be unbiased, the particular method being to condition on all nmd 
:2=: n!d or, equivalently, on all the h's. In addition, with (f>, i) 
denoting the collection of aU (D, Z )'s, we later show that 

(A.l3) 

Next we show that the estimating equations for (0 0 , 01 ) are uncor•
related with those for ( 02, 10 , ••• , 02.M1 ), so that the covariance matrix 
A(0) ~ C(0)- D(0) is block diagonal. To see this, first note that 
the off-diagonal term in the covariance matrix is 

n- 1 £[(,~ o"l/; 11 (·,0)) 

x(,~ o,,P,(·,0)+n-1 ,~ o, 21J; 22(·,0))'1ii]. 

The terms associated with 1/; 12 = 1/; 22 depend only on (15, i). So, if 
we condition on this term and apply (A.l3), then we have the 
desired result. 

Breslow and Cain did not use our estimating equation approach, 
but their results are equivalent to ours, except that they worked 
with the parameterization ~md = log(fhmd). In our notation we have 
shown that 

A(0) ~[A" 0 l· 
0 A22 
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7' 812 , their term B to our A22 , and, as we show at the end of this 
section, their term G to our A11 • 

We now turn to filling in the main technical steps. We first show 
(A.l3). The notation is that H*( ·, 0) refers to the logistic argument 
in (A.l2). Because the conditional density or probability mass 
function/(xlz, d)~ f(x, zl d)j82,,d, then 

{~ o"(l, XD' {D,- H,( ·, 0)} Iii, i, a] 
M 1 

~ L; L; n~dE[(l,X')'{d-H,(·,0)}JD,Z,b] 
m=1 d=O 

M 1 

~ L: L: n~dE[(l,X')'{d-H,(·,0)}1D,Z] 
m=1 d=O 

~ m~1 J (l,x')'q(x,m)[~,ndo:::/n {d-H,(·)} 

X Hd( • ) {I - H( ·)} 1-d] dJ<(X). 

(A.l4) 

However, the term in square brackets in (A.14) equals zero, 
proving (A.!3 ). 

Next we prove that the estimating equation is unbiased. The part 
corresponding to 1/; 11 ( ·, 0) is unbiased by (A.13 ). For the other 
part, for specificity consider the estimating equation corresponding 
to 02,m 1. This has expectation 

(n1/n) J {I (z ~ m)- o,,m1 }(n/n,)ll(. )q(x, z) d~(x, z). 

Because (njn 1 )H( · )q(x, z) is the distribution of (X, Z) given 
D = 1, the estimating equation has expectation (ndn){pr(Z 
~mJD~ l)-82.mt} ~o. 

Now we show that our A11 is the same as Breslow and Cain's 
matrix G, except for the replacement in our calculations of n- 1 by 
their n;1, where n* = Lz,dn~d· Define~( •, 0) = E{ 1/111( ·, E>)lf>. 
i}. We have that 

A11 (0) ~ n· 1 cov(,~ o,,P11 (·,0)1ii) 

~ n'1 £[ cov(,~ o,11/;11(,, 0)Jii, i, a)l ii] 

+ n'1cov[ £(.~ '""'"(., 0)Jii, i, a)l ii] 

~ n'1E[ co{~ o,l/;11 ( ·, 0)Jii, i, a)1 ii], 

the last step following from (A.14). Thus 

A11 (0) ~ n;1E( £[,~ o, {o/11 ( •, 0)1/;\ 1( ·, 0) 

- ~<·,0)<'<·. 0)}Jii, t, a]1ii) 

M 1 

~ L: L: (n:d;n,)E{o/11 (·,0)1/;\ 1(·,0) 
Except for the change in parameterization and the fact that our z=1 d=O 

asymptotics are based on the total sample size n rather than on the - H . , 0) e ( . , 0) 1 D = d' z = z}. 
total n* = Lm d n~d (a notational difference of no effect on the final 
results), their.term H corresponds to our T 811 , their term A to our This last term is Breslow and Cain's matrix G. 
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A Semiparametric Mixture Approach to Case-Control 
Studies With Errors in Covariables 

Kathryn ROEDER, Raymond J. CARROLL, and Bruce G. LINDSAY 

Methods are devised for estimating the parameters of a prospective logistic model in a case-control study with dichotomous 
response D that depends on a covariate X. For a portion of the sample, both the gold standard X and a surrogate covariate W 
are available; however, for the greater portion of the data, only the surrogate covariate W is available. By using a mixture model, 
the relationship between the true covariate and the response can be modeled appropriately for both types of data. The likelihood 
depends on the marginal distribution of X and the measurement error density (W]X, D). The latter is modeled parametrically based 
on the validation sample. The marginal distribution of the true covariate is modeled using a nonparametric mixture distribution. 
In this way we can improve the efficiency and reduce the bias of the parameter estimates. The results also apply when there is no 
validation data provided the error distribution is known or estimated from an independent data source. Many of the results also 
apply to the easier case of prospective sampling. 

1. INTRODUCTION 

In this article we examine logistic case-control studies 
with errors in covariables, using a semiparametric mixture 
model approach. Although we use case-control studies to 
illustrate our points, many of the results and methods apply 
more generally. 

To study the relationship between disease status and ex•
posure level to a suspected disease causing agent (X), epi•
demiologists often use retrospective sampling in which the 
diseased population (the "cases," with D = 1) and the 
disease free population (the "controls," with D = 0) are 
sampled separately to determine their levels of exposure 
X. Viewed from the perspective of the joint population of 
(X, D), we are taking observations from the conditional 
distributions of X [D. 

Suppose that the probability of disease in the source pop•
ulation can be described by the prospective logistic model, 
Pr(D = 1[X = x) = K(x) = [1 + exp( -{30 - f3ix)]- 1 , and 
the marginal density of X in the population is g(x), which 
will be modeled as an unknown density. Then the popula•
tion is described by parameters (!3o, /31 , g). It is well known 
that standard logistic regression, performed as if D were the 
dependent variable and the covariates X were fixed, leads 
to the maximum likelihood (ML) estimate of {31 for ret•
rospective sampling (Prentice and Pyke I 979). Uuless the 
prevalence of disease in the source population ( <P) is known, 
f3o must be viewed as a nuisance parameter. In Section 2 
we shed new light on this well-known result by demon•
strating that the retrospective model is identifiable up to a 
specific equivalence class. If <P is unknown, then only {31 is 
identifiable. The remaining parameters, {30 and g, are linked 
by¢. 

Epidemiologists often use a validation design, in which 
some of the data are "complete" in that the covariates are 

Kathryn Roeder is Associate Professor, Department of Statistics, Carne•
gie Mellon University, Pittsburgh, PA 15213. Raymond J. Carroll is Pro•
fessor, Department of Statistics, Texas A&M University, College Station, 
TX 77843. Bruce G. Lindsay is Professor, Department of Statistics, Penn 
State University, University Park, PA 16802. The authors are grateful to 
D. Bennett for providing the code for the simulations. Roeder's and Lind•
say's research was supported by the National Science Foundation. Carroll's 
research was supported by National Cancer Institute Grant CA-57030. 

measured both directly (without error) and indirectly (with 
error), whereas for the remainder of the data, the covariates 
are measured only indirectly. The latter sample is called the 
"reduced" or "incomplete" sample. Let W and X denote 
the covariates measured with and without error. Carroll, 
Gail, and Lubin (I 993) extended the use of the prospec•
tive logistic model to account for this errors-in-variables 
design. Other papers in the area include the work of Arm�
strong, Whittemore, and Howe (1989), Buonaccorsi (1990), 
and Satten and Kupper (1993). 

A motivating example that we analyze in Section 8 con•
cerns the effect of low-density lipoprotein (LDL) choles•
terol (X) on the probability of heart disease (D). Consider 
a design in which the case-control sample is split into a 
group of size nc and another group of size nR, indepen•
dent of LDL level. Suppose that total cholesterol (W) and 
LDL are measured for nc individuals, of which nCl are 
cases and nco are controls. Because LDL is expensive to 
measure relative to total cholesterol, only total cholesterol 
is measured in the remaining nR individuals. The complete 
and reduced data sets are {X,,W,,D,,i = 1, ... ,nc} and 
{W;,D;,j = 1, ... ,nR}· 

Following Carroll et a!. (1993), we assume a parametric 
conditional distribution for W, given X and D, denoted by 
fw1x,v(w[x,d;a). We choose a parametric model for the 
measurement error distribution for two reasons: (a) there is 
opportunity to test this· assumption through the validation 
data, and (b) in many problems, other studies will also have 
assessed this assumption, and the error distribution may be 
transportable from study-to-study. On the other hand, G, 
the distribution of X corresponding to density g, is left 
unspecified, largely because this distribution depends on the 
source population. 

A natural way to model errors-in-variables data is with 
a semiparametric mixture model (Kiefer and Wolfowitz 
1956). Let h;(~;a,/3) denote the conditional likelihood 
of (W;,D;[X = ~). For the reduced data, it is imme•
diately obvious that the joint likelihood of (W;, D;) can 
be written in the form of a mixture model, L;(a,j3,G) 
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= J hj(( ; a, (3) dG(~). The joint likelihood of the complete 
data (Xi, Wi, Di) can also be written in the form of a mix•
ture model, Li(a, (3, G) = J hi(~; a, (3)I(xi = ~) dG(~), 
with the use of an indicator function. 

But the terms in the conditional (retrospective) likelihood 
are not of the form of a mixture model. In Section 3 we 
show that if e maximizes the joint likelihood, then it lies in 
an equivalence class of parameters that also maximize the 
retrospective likelihood. Hence maximizing the joint like•
lihood is equivalent to maximizing the retrospective likeli•
hood. Thus a semiparametric mixture model approach can 
be taken to obtain ML estimates after all. Specifically, the 
retrospective ML estimate of the parameter of interest, {31 , 

can be obtained by maximizing the joint likelihood over 
the parametric (a, (3) and nonpararnetric (G) components 
of the likelihood. A confidence interval for (31 is obtained 
from the profile likelihood. Assuming the likelihood satis•
fies the regularity conditions specified by Kiefer and Wol•
fowitz (1956), the profile ML estimator, S1 , is consistent. In 
certain models with conditional structure, the estimates of 
the parametric component are known to be asymptotically 
efficient (Lindsay, Clagg, and Grego 1991; van der Vaart, in 
press). Although many simulation studies have shown high 
efficiency in other models (e.g., Lesperance 1989), a general 
theory of efficiency has not yet been developed. 

Because X was not measured in the reduced sample, the 
problem can be viewed as a missing-data problem. In Sec•
tion 4 we present an EM algorithm to obtain the ML esti•
mate of G and also note graclient-based algorithms appro•
priate for semiparametric mixture models. 

In Section 5 we partially extend the results to models for 
which the probability of disease depends on additional co•
variates. In Section 6 we develop an extension to a study 
design without direct validation data. Suppose that no com•
plete data are available in the sample, but that an indepen•
dent study has been conducted in which both X and W have 
been measured. Although none of the other measurement 
error models can handle this situation, the semiparametric 
mixture method can analyze data of this form. This model 
requires that the measurement error be nondifferential (i.e., 
the distribution of WjX, D does not depend on D). 

When validation data are available, a natural competitor 
to the mixture method is the pseudolikelihood method pro•
posed by Carroll eta!. (1993). They estimated the marginal 
distribution of X using a weighted average of the empirical 
distributions of X j D = d obtained from the complete data. 
This estimate is plugged into the likelihood, from which 
the maximum pseudolikelihood estimates of the remaining 
parameters is obtained. By modeling the relationship be•
tween W and D, using a rough-and-ready estimate of the 
unobserved distribution of X, the information about {31 con•
tained in the reduced data can be partially recovered. But 
because the distribution of W depends on X, there is some 
additional information in the reduced sample about the dis•
tribution of X. Consequently, jointly maximizing the full 
likelihood should yield more information about (31 than is 

available when only the complete data are used to estimate 
the distribution of X. 

In Section 7 we present a simulation experiment that 
evaluates the performance of the mixture method for var•
ious sample sizes and amounts of measurement error. The 
mixture method always performs as well or better than the 
pseudolikelihood method. The amount of improvement de•
pends on the sample size and the amount of error in the 
measurements. In Section 8 we analyze an epidemiological 
data set and present profile likelihoods. 

2. IDENTIFIABILITY 

Throughout this section we treat X as a discrete ran•
dom variable for ease of exposition; however, all of the 
results extend directly to the continuous case. Assume that 
the probability of disease in the source population for a 
given level of exposure can be modeled by the prospective 
logistic model K(x). Then it is readily determined that 

fv(d) = { ~K(x)g(x)} d { ~JC(x)g(x) rd, (1) 

where JC(x) = 1- K(x). It follows that 

Pr(X = xjD =d) 

K(x)dJC(x)l-dg(x) (2) 

{I;xK(x)g(x)}d{I:x!C(x)g(x)} 1 d. 

For the p-dimensional parameter (31 to be identifiable from 
this distribution, it will be assumed that g(xj) > 0 for some 
set x 0 , x 1 , ••• , xp of a:ffinely independent vectors. The fol•
lowing lemma provides useful information for the consid•
eration of identifiability issues and, later, for maximization 
of the likelihood. 

Lemma I. Suppose that ((30 ,(31 ,g) and (80 ,(3~,g') are 
two logistic regression models satisfying 

Pr(D = 1;f3o,f3J,g) = ¢ 

and 

Pr(D = 1;(3~,(3;,g') = ¢'. 

Then 

Pr(X = xjD = d; 8o,f3,, g)= Pr(X = xjD = d;(30, f3I ,g') 

(3) 

if and only if 

a. (3, = (3~; 

b . . 80 = f3o +log(¢'¢)/(¢'¢); and 
c. g'(x) = [1 + exp((30 + f3ix)]/[1 + exp(f3o + f3ix)] 

g(x)/I:x{[l + exp((30 + 8jx)]/[1 + exp(f3o 
+ (3jx)]}g(x), 

where ;p = 1 - ¢ and ¢• = 1 - ¢'. 

Proof See the Appendix. 
Thus we see that from the retrospective sample, only the 

parameter (31 is fully identifiable. The marginal distribution 
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of X can be determined only up to an equivalence class of 
functions. But if the true population probability of disease, 
¢, is otherwise known, then the foregoing formulas show 
that /3o and g are identifiable. 

3. THE ERRORS-IN-VARIABLES MODEL 

We assume that the true covatiates and the error-prone 
measurements are available in a validation study consist•
ing of a random sample of nc1 cases and nco controls. 
Thus the complete data consist of no = nco + nc1 obser•
vations, {Xi,Wi,Di;i = l, ... ,n0 }. In addition, we have 
nR = nRo + nR1 incomplete or reduced observations, 
{W;,D;;j = l, ... ,nR}, obtained from a random sample 
of nR1 cases and nRo controls. The number of cases overall 
is nt = net + n Rl, and the number of controls is no = nco 
+ nRo· It is assumed that the data are missing X at random 
(Little and Rubin 1987). 

Because we are assuming that the division of the cases 
and controls into the reduced and complete subsamples 
is done conditionally on D but independently of the val•
ues of X, the conditional distribution of X = x given 
both D = d and the subsample information is still just 
the conditional distribution of X = x given D = d 
that was described by (2) in the previous section: Pr(X 
= xiD = d) = fx,n(x,d)/fn(d), where fx,n(x,d) 
= K:(x)dJC(x) 1-dg(x). The marginal distribution of D, 
given in (!), can be reexpressed in the form of a mixture, 

fn(d) = { j K(x) dG(x)} d { j K:(x) dG(x)} J-d, (4) 

where G may be discrete or continuous. Recall from Lemma 
I that there is an equivalence class of choices for ({30 , g) 
for which the same retrospective model is obtained. Now 
¢ = f D (1) identifies a particular pair. If it were necessary 
to evaluate fn(l) for each subsample (reduced and com•
plete) separately, then it would be necessary to incorporate 
a differential shift for each {30 and to estimate a different 
g for each subsample. The following argument shows why 
this is not necessary. 

In the reduced sample, the likelihood contribution from 
an observation (W,D) is fwln(wld) = fw,n(w,d)/fn(d), 
where 
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Note the device of using an indicator function so that both 
(5) and (7) are written as integrals dG(~). 

Putting these together, we get that the likelihood to max•
imize is of the form 

( j3 G) LJ(a,j3,G) 
La a, , = LM(f3,G) , 

where 

LJ(a,j3,G) = IT!w,n(w;,d;) IT!w,x,n(w,,x,,d,) (8) 
j=l i=l 

and 

LM(/3,G) = {fn(lW'{fn(OW'· 

In the foregoing, C, J, and M stand for conditional, joint, 
and marginal. Note that as functions of G, both LJ and 
LM have the product-of-integrals form IJ, f t,(~) dG(~), for 
some nonnegative functions t,(~). It follows that the condi•
tional likelihood Lc (a, {3, G) is a ratio of two products of 
integrals. Consequently, we cannot apply the theory of non•
parametric mixture models to the retrospective likelihood. 
Here now we run into some good fortune, as we can simply 
estimate the parameters from LJ(a,/3, G), which does have 
mixture form. The parameter estimates that we so obtain 
will be in an equivalence class of estimators that maximize 
Lc(a,j3,G), being that member of that equivalence class 
that fits the observed fractions of cases and controls. More•
over, the profile likelihood for {31 from LJ is the same as 
from La. 

We state the result in a general manner, as it has appli•
cations in other problems (see, e.g., Lindsay et al. 1991). 
Suppose that for a two-parameter model (8,¢), we have a 
likelihood decomposition of the form 

LJ(8,¢) 
Lc(8,¢) = LM(8,¢) ' 

where LM ( 8, ¢) is of multinomial form: LM ( 8, ¢) 
= IJ~[pk(8,¢)1m', wherem = m1+ .. · + mK andp1(8,¢) 
+ .. · + PK(8, ¢) = 1. In tltis setting we have the following 
simple theorem. 

Jw,n(w,d) = j h(~)dG(~), 

Theorem 2. Let !1 be the set of all ( 8, ¢) in the parameter 
space such that there exists¢' depending on (8, ¢) satisfy•
ing (a) Lc(8,¢) = Lc(8,¢'); and (b) Pk(8,¢') = mk/m. 
Suppose that in the set of ( 8, ¢) maximizing La ( 8, ¢), there 

(5) exists (e 0 , ¢0 ) in !1. Then the following hold: 

and 

h(~) = K:(~)dJC(~) 1-d !w[x,n(wl~, d). (6) 

I. (e 0 , ¢0) maximizes LJ(8, ¢). 
2. If (eJ,¢J) is any maximizer of LJ(8,¢), then it satis•

fies (b) and also maximizes L0 (8, ¢). 

Moreover, if the entire parameter space is in !1, then LJ 
and La generate the same profile likelihoods for 8. 

In the complete subsample, the likelihood contribu•
tion from an observation (W,X,D) is fw,x[n(w,xld) 

!w,x,n(w,x,d)/fn(d), where 
Proof See the Appendix. 
Corollary 3. If (&,/3,G) maximizes LJ(a,j3,G), then 

(&,/3, G) also maximizes Lc(a,/3, G) and satisfies the equa•
tion Pr(D = 1; &, /3, G) = nJ/n. The profile likelihoods for 

(7) {31 from Lc and LJ are identical. Jw,x,n(w,x,d) = j h(~)I{x = ~}dG(~). 
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Proof See the Appendix. 
Besides extending the result of Prentice and Pyke (1979) 

to the situation with errors in covariables, this manner of 
proof considerably clarifies the kind of structural features 
necessary for an equivalence between a retrospective and 
prospective likelihood analysis. One needs sufficiently rich 
structure to fit perfectly the marginal distribution of D with•
out diminishing the ability to fit the conditional distributions 
of the covariates given D. In particular, it is important to 
note that if we had modeled the marginal distribution G 
parametrically, then exact equivalence between prospective 
and retrospective inferences would not necessarily follow. 

4. ALGORITHMS 

In this section we present two algorithms for maximiz•
ing the likelihood with respect to the mixing distributions 
for a fixed value of (a:,[J). Algorithms for estimating (a, (3) 
given G have been discussed by Carroll et a!. (1993). To 
obtain the joint ML estimates for (a:, B) and G, we alter•
nate between the two estimation problems. Throughout the 
discussion of estimates for G, we suppress the dependence 
of the likelihood on the parametric component of the model 
(a,(J). 

4.1 Geometric Results About Mixture Models 

We first summarize a number of results about nonpara•
metric mixture estimators due to Lindsay (1983). For 
a fixed value of (a:, (3), the problem reduces to one 
of maximizing a concave functional, l( G) = sum7~1 
logL,(G) + I:7,;:1log£1(G), over a convex set. 
The likelihood vector, evaluated at the ML estimate 
(L1(G), ... , L,(G), ... , Lj(G), .. , Lnn(G)), is unique. Fur•
thermore, the ML estimate 6 is known to be a discrete dis•
tribution that has a fixed upper bound, K, on the number 
of support points: K equals the number of distinct terms 
in the likelihood vector. Because the maximization prob•
lem has these convenient properties, it is not difficult to 
construct an algorithm that walks up the likelihood surface 
and converges to the ML estimate regardless of the starting 
value of G. 

The gradient method described later can be applied di•
rectly to obtain the ML estimate of G. But the EM algo•
rithm can be conveniently applied only if the problem is 
simplified somewhat. We presuppose that G has support 
on a fixed grid, ~ ~ ( 6, ... , ~M). The problem of finding 
the ML estimate on this grid inherits all of the convenient 
properties of the full maximization problem. In particular, 
algorithms can be constructed that are guaranteed to con•
verge regardless of the starting value. 

4.2 EM Algorithms 

Because the reduced data are missing X, the problem is 
suited to the EM algorithm, which estimates missing data 
and then maximizes the likelihood, given these estimates. 
The missing data can be thought of as a membership in•
dicator variable for the M possible values of the covariate 
~ ~ (~1, ... , ~M ). For convenience, we assume through-

out that ~ is known, although it is possible to implement 
a more general version of the EM algorithm to estimate 
the best grid for G. This assumption is justified shortly. 
The group membership for the complete data is obvious 
because X is observed; in other words, for the ith observa•
tion, the posterior probability of group membership is one 
for~~ Xi. Consequently, the set of support points,~. must 
include all distinct observed X's. The group membership 
for reduced data can be estimated in the usual say (see, 
e.g., Titterington, Smith, and Makov 1985). Let L1(GC=l) 
~ L;,gC=l(~t)h1 (~,). The EM algorithm, at the (m + 1)st 
step, puts mass gC=+l)(~k) ~ {Ack + ARk)/(nc + nR), at 
~k, where 

and 
nc 

Ack ~ L I(xi ~ ~k)· 
i=l 

For a fixed (a:, (3), lim=~oc GC=l maximizes the likelihood, 
provided that the support points are known. 

Remark. Although the EM algorithm is typically used 
to estimate both the location of the support ~ and the mass 
associated with each point of support, we chose to select 
a fixed grid of support points and then estimate the proba•
bility associated with each point of support. Selection of 
~ can be based on the observed X's, W's, and the dis•
tributional relationship between X and W. We found it 
sufficient to include each distinct X from the complete 
data set as well as a grid of points separated by at most 
1/5aw]X• where crw]x may depend on X. The range of 
the grid can be determined by estimating E[XIW] for the 
minimum and maximum value of W observed in the exper•
iment; call the minimum predicted value x1 and the max•
imum predicted value Xh· Define the grid on the interval 
[x,-2&w]x~x, xh+2aw]x~x,l· Provided that a sufficiently 
dense grid is used, the solution will not differ measurably 
from the exact ML estimate. Time required to perform a 
single iteration of the algorithm increases directly with the 
number of grid points. We chose to use a fixed grid in the 
interest of computational feasibility; the EM algorithm is 
notoriously slow, especially when both the location and the 
weights must be estimated. 

4.3 Gradient Methods 

Because the optimization problem reduces to one of max•
imizing a concave function over a convex set, gradient•
based algorithms are ideally suited to this maximization 
problem. 

The gradient of the log-likelihood at G toward 6(0, a 
point mass at ~, is 

" " [ hj(~) l D(G,~) ~ L... [I(xi ~ ~)- 1] + L... L (G) -1 · 
i j J 

(9) 

The algorithms are based on the following characterization 
due to Lindsay (1983). The mixing distribution G maxi•
mizes the likelihood if and only if 
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a. D(G,~) sOforall~; and 
b. D(G,~) = 0 in the support of G. 

This result is the basis of the gradient methods. We 
present a simple but somewhat inefficient algorithm known 
as the VDM (Federov 1972; Wynn 1970). At the mth step, 
let G(m) be the current estimator. At each step, find ~m 
to maximize D(G(m)), and then find em to maximize the 
likelihood evaluated at {1- e)G(m) + e8(~m); set G(m+l) 
= {1 - em)G(m) + e8(~m). Iterate until condition (a) is 
virtually satisfied. Other, more efficient versions of this sort 
of algorithm have been developed (see Boehning 1985, Les•
perance and Kalbfleisch 1992, and Wu 1978a,b). 

4.4 Combining Algorithms for the Parametric and 

Nonparametric Components of the Model 

Although the likelihood is concave as a function of G, 
there are no guarantees that it wiii even be unimodal when 
viewed as a function of (a,/3). Therefore, it is essential 
that good starting values be obtained for the parametric 
component of the model. We used the foiiowing algorithm 
with good success. 

I. Estimate f3 from the complete observations (X, D) us•
ing a standard logistic regression algorithm. Call this f3c. 

2. Estimate a from the complete observations {X, W, D). 
Call this ac. 

3. From the complete data, estimate G independently 
from (a, !3) using a weighted average of the empirical dis•
tribution of X for cases and controls. Caii it GpL: this is 
the estimator used by Carron eta!. (1993). 

4. Set G = GPL, and estimate (a,/3), using an algo•
rithm such as the modified Newton-Raphson to maximize 
the likelihood. The complete-data estimators, ( ac, f3c), are 
natural choices for a starting value. The resulting estimators 
are the partial likelihood estimators of Carron et al. (1993). 
Call these (apL,iJPL)· 

5. Fix the parametric components at (aPL, /3PL)· Using 
either the gradient algorithm or the EM algorithm, max•
imize the likelihood over G. If a gradient algorithm is 
used, then any starting value wiii work; a natural choice 
is GPL· If the EM algorithm is used, then any starting 
value wiii suffice, provided that positive mass is associ•
ated with each grid point. We used a starting value equal to 
.9 • GPL + .1 *Uniform(~), where the discrete uniform had 
equal mass on the grid points ~. 

6. Maximize the likelihood over (a,/3), fixing Gat the 
maximum obtained in the previous iteration. 

7. Maximize the likelihood over G, fixing {a,/3) at the 
maximum obtained in the previous iteration. 

8. Repeat Steps 6 and 7 until convergence. 

Because the steps involved in estimating G for a fixed 
value of (a,/3) are guaranteed to converge, ail of the dif•
ficulties encountered in this algorithm are shared by other 
parametric ML estimation problems. For example, if the 
Newton-Raphson algorithm is not modified, then it can 
overstep the maximum and fail to converge. Ail of the usual 
warnings appropriate to maximizing a function apply. By 
using multiple starting values and checking the likelihood 

Journal of the American Statistical Association, June 1996 

at each step of the parametric estimation scheme, one can 
ensure convergence eventually. There is no need to monitor 
the algorithms that estimate the nonparametric component 
of the model, as they are guaranteed to walk up the likeli•
hood surface. 

5. ADDITIONAL COVARIATES MEASURED 
WITHOUT ERROR 

Frequently, additional covariates measured without error 
wiii be available. For instance, indicator variables such as 
sex and smoking status may have been recorded. In this 
section we extend our methodology to incorporate this extra 
information. Let Z denote an arbitrary set of covariables 
measured without error. Model the probability of disease, 
given ail the covariates, as a prospective logistic regression 
model, where 

Pr(D = l[X = ~.z = z) 

= {1+ exp( -!3o- !3l~- /32z)}-1 = 1C(~,z). 

Mimicking the development of the likelihood given in (5)•
(7), let 

h,(~) = Kd;(~,z,)K(~,z,)'-d;fwlx,z,D(w,[~,zj,dj)· (10) 

Let dGx,z(x,z) = dFz(z) x Gx1z(x[z) = dGx(x) 
x Fz;x(z[x) represent the joint distribution of (X, Z) in 
the case-control population. The contributions to the likeli•
hood from the reduced and complete observations are then 

L1(a,{3,G) =.L h,(~;a,fJ)dGx,z(~,z) (11) 

and 

L,(a,{3,G) = h h,(~;a,{3)I(x, = ~)dGx,z(~,z). (12) 

We now arrive at a curious situation where ML proce•
dures for estimating the joint distribution Gx,z wiii break 
down. To simplify the issues, consider the case in which 
we observe variables (W, Z), where W is X observed with 
error but Z is observed directly. Suppose that the distri•
bution of W given X = x is symmetric and unimodal 
about x. If the observed z, are all distinct, then by writing 
Gx,z = GzGx;z, one can show that the ML estimator for 
the joint distribution Gx,z is n- 1 ~ 8(w,, z,), where 8 is 
the point mass distribution. This foiiows because w, is the 
value of x maximizing the error density fw;x(w,[x). Thus 
the ML estimator converges to Gw,z, not G x,z. Curiously, 
regardless of whether the variables are both observed with•
out error or both observed with error, ML stiii produces 
appropriate estimates. The problem seems to be that the 
sharpness of the Z observations prevents the pooling to•
gether of information over i that is necessary to obtain good 
estimates of conditional distribution of X given Z. For ex•
ample, if Z is discrete with a finite number of values, then 
this problem does not arise, as then the conditional distri•
bution for each Z = z can be consistently estimated and 
wiii simply be the mixture estimator of G x obtained from 
the set of W's that have Z = z. 
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With this in mind, we must consider alternative strategies 
for this case. One strategy would be to attempt to model the 
Z given X distribution. If fztx were known, then for the 
reduced observations, (11) becomes 

and the problem is of the same form as that solved previ•
ously. Furthermore, if fztx is known to follow some para•
metric form depending on ry and W[X, D, Z depends on a, 
then the results of the previous sections apply with para•
metric component (ry, a,(3). The drawback of this approach 
is that if the form of Z[X is unknown, then the results will 
depend on parametric modeling assumptions. This problem 
is especially difficult if Z is multivariate with discrete and 
continuous components. 

Another possibility that retains the nonparametric flavor 
of our approach and that has the same mathematical struc•
ture would be to model G x z as a discrete mixture of con•
tinuous densities, such as 't1rjN(f.' J , hi), where h would 
have to be chosen so as to balance the criteria of providing 
a flexible family of distributions (h small) and providing 
sufficient smoothing to alleviate the foregoing problem (h 
large). This approach has been studied in a slightly different 
context by Magder and Zeger (in press). Further research 
is necessary to resolve these issues. 

6. NO COMPLETE DATA OBSERVED 

Consider a situation in which only W1 D have been mea•
sured (no validation data). If the measurement error dis•
tribution, fw[x,v, is known, then the likelihood is of the 
form LJ(f3,G) = IJ;',:' 1 fw,v(wj,d1 ), where fw.v is given 
by (5). Notice that this is equivalent to (8) for nc = 0 and a 
known. Provided that the model satisfies the identifiability 
constraints of Kiefer and Wolfowitz (1956), (3 and G can be 
consistently estimated by the ML estimates even though no 
complete data are available. In fact this is the usual form of 
a serniparametric mixture model (see, e.g., Butler and Louis 
1992; Lindsay 1995). 

If the measurement error distribution is unknown, then it 
clearly cannot be estimated from the reduced sample. But if 
an independent data set is available in which both X and W 
have been measured, then it is possible to proceed as indi•
cated earlier, provided that the measurement error distribu•
tion is nondifferential (i.e., does not depend on D). The idea 
is to use these data to obtain an estimate of the distribution 
of WIX in the case-control population. The assumption of 
nondifferential error is necessary, because otherwise fw

1
x 

is a function of the study population. In particular, 

fwtx(w[x) = fwtx,v(w[x, D = O)fv(O) 

+ fwtx.v(w[x, D = l)fv(l), 

which depends on the prevalence of diseased individuals in 
the population unless fwtx,v = fwtx· Consequently, the 
measurement error distribution is transportable only if it is 
nondifferentiable. We conclude that the ML methods pre-

sented so far are just as applicable in this situation as they 
are in the usual validation study, provided that the measure•
ment error is nondifferential. 

Contrast this scenario to the situation encountered when 
using methods that require a model for X I W (see, e.g., Sat•
ten and Kupper 1993). Clearly, by the same argument, the 
distribution of X[W is not transportable unless the effect 
is null; hence such methods cannot be applied in the no•
validation situation. The pseudo likelihood method proposed 
by Carroll et al. (1993) clearly is not applicable either, as it 
requires an empirical estimate of the distribution of X. 

The only other literature that allows for consistent esti•
mation when there is no validation and the error model is 
estimated independently is the paper by Stefanski and Car•
roll (1987), who assumed normally distributed measurement 
error. Our results allow for any error distribution. 

To fit the model in this situation, use the following mod•
ification of the algorithm given in Section 4.4: 

1. Obtain an ad hoc estimate of E[X[W = w,], i 

= 1, ... , n using the known distribution of W[X. Call it 
.X,, and refer to X, D, W as the pseudo-complete data. 

2. Estimate (3 from the pseudo-complete data (X,, D,, i 
= 1, ... , n) using a standard logistic regression algorithm. 
Call this f3Pc· 

3. From the pseudo-complete data, estimate G indepen•
dently from (3 using a weighted average of the empirical 
distribution of X for cases and controls. Call it GPL· 

4. Set G = GPL, and estimate (3 using an algorithm such 
as the modified Newton-Raphson to maximize the likeli•
hood. The pseudo-complete estimator, (f3pc), is a natural 
choice for a starting value. Call the result f3PL· 

5. Fix the parametric component at f3PL· Using either 
the gradient algorithm or the EM algorithm, maximize the 
likelihood over G. If a gradient algorithm is used, then any 
starting value will work; a natural choice is GpL. If the 
EM algorithm is used, then any starting value will suf•
fice, provided that positive mass is associated with each 
grid point. We used a starting value equal to .9 * GPL + .1 
•Uniform(O, where the discrete uniform had equal mass 
on the grid points ~ which are chosen as in Section 4. 

6. Maximize the likelihood over (3, fixing Gat the max•
imum obtained in the previous iteration. 

7. Maximize the likelihood over G, fixing (3 at the max•
imum obtained in the previous iteration. 

8. Repeat Steps 6 and 7 until convergence. 

7. A SIMULATION EXPERIMENT 

To examine the performance of our estimator, we sim•
ulated data with measurement error under two scenarios: 
with and without a validation study. We chose a lognormal 
distribution for both X and W[X, D, because this distribu•
tion often arises in practice (see, e.g., Nero, Schwehr, and 
Nazaroff 1986). Distributions and parameter values were 
chosen to be similar to or identical with those simulated 
by Carroll et al. (1993). Data were generated prospectively, 
and then a case-control sample was obtained from this sim•
ulated source sample. The prospective logisticmodel was 
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Table 1. Known Measurement Error Model With No Complete 

Data, {3 1 = .5 

nRo nRI u=O cr= .25 17= .50 a= .75 

40 40 Mean .53 .54 .57 .59 
MSE .061 .078 .111 .180 
RMSE 1.00 1.28 1.82 2.95 

120 120 Mean .51 .50 .53 .55 
MSE .012 .022 .026 .054 
RMSE 1.00 1.83 2.16 4.50 

NOTE: Mean and MSE of !31 are calculated based on 50 repetitions of the simulation experi· 
ment. RMSE is the ratio of the MSE of the model of interest divided by the MSE of the model 

with a =0 

given by Pr(D = 1IX = x) = IC(x), with {30 = -3.09 and 
{31 = .5. The true covariate, X, was generated as a log•
normal random variable so that log(X) had mean -1/2o-; 
and variance u;, where (7x = 1.08. The surrogate predic•
tor was also lognormal, with log(W), given (X, D), having 
mean log(X) and standard deviation o-, which varied. We 
repeated each experiment 50 times. 

The general form of the measurement error model 
that we fit is log(W) = a0 + a 1 log(X) + o-o, with o 
~ N(O, 1); the simulated data fell into this class, with a 0 

= 0, a 1 = 1, and o- varying. In addition to the unknown 
mixing distribution G, the model also has five free pa•
rameters, (a0 ,ai,a,j30 ,,B1); hence we call this the five•
parameter model. In the following subsection we assume 
that (a0 , a 1 , o-) are known. This leaves only two parametric 
unknowns, ({30 ,{31); hence we call this the two-parameter 
model. 

We used the EM algorithm to estimate the mixing distri•
bution. We chose sample sizes and parameters to provide 
valid comparisons for realistic sample sizes and to illustrate 
the limits of the method. A value of o- = 1 represents a 
large amount of measurement error: a-~ ~ a 2 . The method 
failed to converge occasionally with this amount of mea•
surement error. In practice one could fit this model when 
o- = 1, provided that a number of starting values could be 
used to find the ML estimate. Alternatively, o- < .25 rep•
resents a rather small measurement error. In principle, this 
method will perform well when o- < .25; however, the EM 
grid would have to be quite dense to yield an estimate sim•
ilar to the actual ML estimate for G. The computations are 
prohibitively slow for simulations in this situation. Conse•
quently, we report only the performance of the method for 
()" = .25, .50, .75. 
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7.1 Known Measurement Error 

In this section we assume that the measurement error 
distribution is known and examine the performance of 
the two-parameter model with a small, medium, and large 
amount of measurement errors (o- = .25, .50, .75). Samples 
{X,, W,, D,, i = 1, ... n} of size 80 and 240 were generated, 
each consisting of half cases and half controls. First, using 
{X,, D,, i = 1, ... n}, we estimated f3 using the prospective 
logistic model (equivalent too- = 0). Next, omitting the gold 
standard variables X, and using only {W,, D,, i = 1, ... n }, 
we estimated (fJ, G) using the mixture model (the MIX 
method). Results are presented in Table I. Notice that as the 
variance of the measurement error distribution increased, 
the mean squared error (MSE) of the MIX method increased 
rapidly. In fact, when o- = 1, the reduced data appeared 
to have almost no information remaining relative to when 
o- = 0 (results not reported). As the sample size increased, 
the MSE decreased substantially, as would be expected. Of 
greater interest is the increase in the disparity between the 
performance with and without measurement error. This is 
especially apparent for models with larger measurement 
error. 

For sample sizes smaller than 80, it is unlikely that 
the semiparametric model provides any advantages over a 
model that assumes a parametric form for the unobserved 
covariate. For smaller sample sizes, the data simply do not 
provide sufficient information from which to estimate the 
distribution of this unobservable accurately in a nonpara•
metric setting. 

Next, we simulate data from a validation study. To see 
the effect of increasing "amount of complete data, first ~ 
and then !t of the data were considered as complete. The 
performance of the MIX method is compared with the pseu•
dolikelihood (PL) method proposed by Carroll et al. (1993) 
in Table 2. We found that if a substantial proportion of the 
data are complete ( !t or more), then the PL and MIX meth•
ods perform similarly. When only ~ of the data are com•
plete, the pattern of results is markedly different. The MSE 
of both methods increased dramatically; however, the MIX 
method performed much better than the PL method for this 
scenario. The difference in performance was greatest when 
the variance of the measurement error was greatest. 

For the most part, we found that the MIX method either 
provided the same estimate as the PL method or provided 
one that was better. When the number of reduced obser•
vations was not large relative to the number of complete 

Table 2. Known Measurement Error Model With Some Complete Data, /3 1 = .5 

cr= .25 cr= .50 .75 

nco nc1 nRo nRI PL MIX PL MIX PL MIX 

30 30 90 90 Mean .496 .496 .500 .502 .512 .505 
MSE .016 .016 .021 .020 .038 .032 
RMSE 1.00 1.05 1.19 

15 15 105 105 Mean .512 .501 .568 .515 .611 .522 
MSE .040 .017 .089 .033 .143 .038 
RMSE 2.35 2.70 3.76 

NOTE· Mean and MSE of 131 are calculated based on 50 repetitions of tl)e simulation experiment RMSE is the ratlo of the MSE of the PL estimator to the MSE of the MIX estimator. 
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Table 3. Unknown Measurement Error Model With Some Complete Data, j3 1 = .5 

a= .25 a= .50 .75 

nco nc, nRo nR, PL MIX PL MIX PL MIX 

30 30 30 30 Mean .501 .507 .500 .503 .518 .522 
MSE .038 .034 .046 .045 .063 .060 
RMSE 1.12 1.15 1.05 

30 30 90 90 Mean .481 .478 .471 .468 .493 .489 
MSE .025 .022 .034 .027 .067 .048 
RMSE 1.14 1.26 1.40 

NOTE: Mean and MSE of ~i are calculated based on 50 repetitions of the simulation experiment. RMSE is the ratio of the MSE of the PL estimator to the MSE of the MIX estimator 

observations, it was often the case that no information be•
yond that provided by the PL estimate was available in the 
data about the distribution of X. In these cases the algo•
rithm essentially stopped at Step 4 (Sec. 4.4) and produced 
the PL estimate. Thus it is apparent from these simulations 
that the MIX method outperforms the PL method only when 
there are substantially more reduced observations than com•
plete observations; however, as nR grows, the discrepancy 
between the performance will continue to increase. 

When the measurement error distribution is known (or 
obtained from another study), there is no lower bound on 
the number of complete cases required. Comparing Table 
I to Table 2, one can see the reduction in the MSE when 
at least some of the observations are complete (compare 
simulations with total sample size of 240). As expected, 
when a = .25, the improvement is not substantial: .022 
versus .016 and .017. When CJ ~ .75, the difference is more 
notable: .054 versus .032 and .038. 

7.2 Unknown Measurement Error 

In this section we assume that the measurement error 
distribution is known to be lognormal, but the three param•
eters of the lognormal model are unknown. This puts us 
in the framework of the five-parameter model. To compare 
the MIX method and the PL method, we simulated vali•
dation data sets with two different sample sizes and three 
different measurement errors: nco = nc1 = 30, nRo = nR 1 

= 30; nco = nc1 = 30, nRo = nR1 = 90; and a = 25, 
.50, .75. 

For the first choice of sample sizes, the MIX method 
and the PL method performed almost identically, suggest•
ing that for data like those simulated, little extra informa•
tion can be extracted by maximizing over the mixing dis•
tribution. But again, the MIX method outperforms the PL 

Table 4. Coverage of Nominal 95% Confidence Intervals 

nco nc, nRo nR, Model type Coverage 

0 40 40 2p 92 
0 120 120 2p 94 

30 30 90 90 2p 95 
15 15 105 105 2p 96 
30 30 30 30 5p 92 
30 30 90 90 2p 93 

In each case, "' = .5. The experiment was repeated 250 times to obtain estimated 

coverage values. The standard error of the coverage is sqrt(p(1 - p)/250), where pis the true 

coverage probablllly. 

method when the number of complete observations is small 
relative to the number of reduced observations. 

The disparity between the methods increased with the 
variance in the measurement error distribution. The PL 
method also tends to perform poorly when the measurement 
error is small, relative to the number of complete observa•
tions (not reported}. We believe that PL performs poorly in 
this setting, because when W is not close to any X in the 
sample, the contribution to the pseudolikelihood is nearly 
zero and hence the efficiency of the method is reduced. 

Comparing the two-parameter and five-parameter results 
(Tables 2 and 3), it is clear that the variance of the esti•
mator increases substantially when the parameters of the 
measurement error distribution must be estimated. 

We discovered that the algorithm was not stable with 
less than 60 complete observations, when the five-parameter 
model was fit. Again, we found that the MIX method tended 
to provide the same estimate as the PL method, or one 
that was better. Comparing the two-parameter and five•
parameter results with sample sizes 30, 30, 90, 90, we see 
that the MIX method outperformed the PL method more 
often when the measurement error distribution was not 
known; (for example, for ( J = . 75, the root mean squared 
error (RMSE) was 1.40 for the five-parameter model, but 
only 1.19 for the two-parameter model.} 

The measurement error model can be extended to al•
low for differential error by incorporating two extra pa•
rameters: log(w) = rx0 + rx11og(x) + rx2d + CJd~"· Carroll et 
al. (1993) performed extensive simulations, comparing the 
seven-parameter PL model to competing methods in the 
validation study setting, and found that incorporating the 
two extra parameters did not significantly reduce the effi•
ciency of the PL model, and, moreover, it provided a sub•
stantial increase in the robustness of the model. Our meth•
ods demonstrated a serious bias in the estimates of the (31 
when the nondifferential error was ignored. We found that 
for the sample sizes and parameter values given in Table 
3, the seven-parameter MIX method performed equal to or 
better than the seven-parameter PL method (not reported). 
In toto, these results suggest that it is worthwhile to use 
a richer measurement error model unless there is evidence 
that the measurement error is nondifferential. 

7.3 Profile Likelihoods 

There is currently no standard methodology for com•
puting the variance of a profile ML estimate in a semi-
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Figure 1. Boxplot of LDL Cholesterol (LDL) and Total Cholesterol 
(TC) for Individuals With (D = 1} and Without (D = OJ Heart Disease. 
Here (a) shows the differences in distribution for LDL cholesterol across 
cases and controls, while (b) shows a weaker, but similar pattern for total 
cholesterol. 

parametric mixture model. Here we let ¢ denote all nui•
sance parameters, including the mixing distribution, and 
let PI denote the parameter of interest. For a real-valued 
parameter of interest, Lesperance (1989) proposed invert•
ing the semiparametric generalized likelihood ratio test 
A(p!) = 2logsup~,,¢L(PI,¢)/sup¢L(p~,¢) to obtain 
a (1 - a)100% profile confidence interval {PI: A(p!) 
< X[( a)}. She observed good coverage properties when 
using this method for a number of standard mixture prob•
lems. We also found good coverage using this method (Ta•
ble 4). As expected, the results were slightly anticonser•
vative. Based on Lesperance's simulations and ours, we 
recommend this approach for finding a confidence interval 
for PI· 

8. A CHOLESTEROL STUDY 

In this example we analyze a data set concerning the risk 
of coronary heart disease (CHD) as a function of blood 
cholesterol level. These data were extracted from the Lipids 
Research Clinics study, which was previously discussed by 
Satten and Kupper (1993). We use a portion of these data 
involving men age 60-70 who do not smoke (256 records: 
4 outliers were removed). A subject is recorded as having 
CHD (D = 1) if they have had a previous heart attack, 
an abnormal exercise electrocardiogram, history of angina 
pectoris, and so forth. The measured covariables are low•
density lipoprotein (LDL) cholesterol level and total choles•
terol (TC) level. Direct measurement of LDL levels is time•
consuming and requires costly special equipment. For this 
reason, we are interested in whether TC serves as a useful 
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surrogate for LDL. Note that the measurement error of TC 
is not the source of error of primary interest; rather, the 
unknown quantity of the other components of TC (triglyc•
erides and high density lipoproteins) lead to the "measure•
ment error." Henceforth CHD, LDL/100, and TC/100 play 
the roles of D, X, and W. 

In this data set, both X and W have been recorded for 
each subject. In the full data set there are 113 cases, of 
which 47 had LDL levels higher than 160. Among the 143 
controls, 43 had elevated LDL levels. Figure I presents box•
plots of the data. Using X as the predictor, the prospective 
logistic regression estimate for p 1 was .656 with a standard 
error of .336. Contrast this with the attenuated estimate 
(.540) obtained when measurement error was ignored and 
W was used as the predictor. 

A nondifferential lognormal measurement error model 
provided a good fit to the data (Fig. 2), with the exception 
of a slight increase in the variance of W[X for small values 
of X. The differential measurement error model fit signifi•
cantly better but did not change the parameters enough to 
have a practical impact on the estimation procedure. Conse•
quently, the measurement error was modeled using a non•
differential error model. 

To illustrate the information present in the reduced data, 
we analyzed a sample of data with and without the reduced 
observations. From the 113 cases and 143 controls, 32 cases 
and 40 controls were randomly selected to serve as com•
plete data. The remaining observations were treated as re-
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Figure 2. Relationship Between Total Cholesterol (TC) and LDL 
Cholesterol (LDL). Here (a) illustrates the relationship for controls (D 
= O), and (b) illustrates cases (0 = 1). 
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Figure 3. Profile Likelihood of (3 1 for the Cholesterol Data. The hori�

zontal bar marks the 95% profile confidence interval. 

duced observations. Using only tbe 72 complete observa•
tions, we obtained i31 = .943 with standard error of .62. 
Figure 3 illustrates the profile likelihood for the nondif•
ferential model when both complete and reduced data are 
used: .61 = .765. To compare, notice that a 95% confidence 
interval using all of the data as complete had length of 
1.34, a 95% profile interval for the 72 complete observa•
tions and 184 reduced observations had length 1.75, and a 
95% confidence interval for tbe 72 complete observations 
only had length 2.48. We conclude tbat the precision of tbe 
estimate increases substantially when both complete and re•
duced data are used. 

9. CONCLUSIONS 

In this article, we have suggested using nonparametric 
mixture methods to estimate regression parameters when 
one or more of the regression parameters are measured 
with error. The theoretical results and implementation of 
the MIX method have both concentrated on the logistic 
case-control study, allowing for differential measurement 
error. We have considered situations where the predictor X 
is observed in a subset of the study (Sees. 3 and 4) or can•
not be observed at all (Sec. 6). Simulations (Sec. 7) and an 
example (Sec. 8) indicate the feasibility of the methodology. 

The use of mixture methods, and the MIX method itself, 
is not restricted to logistic case-control studies but also ap•
plies to any prospective (as opposed to case-control) likeli•
hood problem. In principle, one needs only a likelihood for 
tbe distribution of the response Y given the predictor X, as 
well as a parametric error model relating the observed pre•
dictor W to (Y, X) (differential error) or relating W to X 
(nondifferential error). When X is partially observed in this 
context, there are many other competing techniques (see 
Robins, Hsieh, and Newey 1995 and references therein). 
When X is unobserved, as occurs in the classical measure•
ment error problem, nondifferential measurement error is 
required. Mixture methods apply as discussed in Section 

6, as long as there is sufficient information to identify the 
parameters of the relevant distributions, especially the er•
ror distribution of W given X. We discussed in Section 
6 the case where there is an independent experiment that 
estimates the distribution of W given X. It is possible to 
extend the results to a second case, where there are repli•
cates of W that are sufficient in themselves to identify the 
error distribution. 

APPENDIX: PROOF OF RESULTS FROM 
SECTIONS 2 AND 3 

Proof of Lemma 1 

a. (31 = ,6i, because the log odds ratio is proportional to (31 for 
either retrospective modeL 

b. Follows from Bayes's theorem. 
c. When d = I, (3) implies 

/C(x)g(x)/¢ = IC'(x)g'(x)f<f). 

It follows that 

g'(x)=g(x) ¢'[l+exp(tJ0+tJi:r)]_ 
· <P[l + exp(tJo + tJix)] 

For d = 0, the same relationship holds. The result follows 
from noting that ~xg'(x) = l. 

Proof of Theorem 2 

The key to the proof is that any (e, ¢') satisfying (b) nec•
essarily maximizes LM(B,¢*), as this term is maximized over 
all possible multinomial probabilities p 1 , ... ,PK· Thus given any 
(Be,¢) maximizing Le(e, ¢),the corresponding (Be,¢ ') satisfy•
ing (a) and (b) simultaneously maximizes both terms in the product 
Lc(B, ¢)LM(fJ, ¢).If the entire parameter space is in 0, then for 
any 80 there is a ¢0 that maximizes Lc ( 80 , ¢) over ¢ and satis•
fies Pk(Bo, ¢0) = Consequently, the joint and conditional 
profile likelihoods for are equaL 

Proof of Corollary 3 

From Lemma 1, for any fixed set of parameters (a,( J,G), 
we can find a set (o:*, j3,G*) giving the same conditional dis•
tributions for X given D but having the prespecified value of 
Pr{D = 1; a* ,(3,G*} = ntfn. But it follows that the conditional 
distributions of W given Dare also identical for (ot, {3,G*) and 
(:a, {3, G); hence the values of Lc are identical, and so the hypoth•
esis of the theorem is met. 

[Received May 1994. Revised July 1995.] 
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Empirical Evidence of Correlated Biases in Dietary Assessment Instruments 
and Its Implications 
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and Raymond J. Carroll' 

Multiple-day food records or 24-hour recalls are currently used as "reference" instruments to calibrate food 

frequency questionnaires (FFQs) and to adjust findings from nutritional epidemiologic studies for measurement 

error. The common adjustment is based on the critical requirements that errors in the reference instrument be 

independent of those in the FFQ and of true intake. When data on urinary nitrogen level, a valid reference 

biomarker for nitrogen intake, are used, evidence suggests that a dietary report reference instrument does not 

meet these requirements. In this paper, the authors introduce a new model that includes, for both the FFQ and 

the dietary report reference instrument, group-specific biases related to true intake and correlated person�

specific biases. Data were obtained from a dietary assessment validation study carried out among 160 women 

at the Dunn Clinical Nutrition Center, Cambridge, United Kingdom, in 1988-1990. Using the biomarker 

measurements and dietary report measurements from this study, the authors compare the new model with 

alternative measurement error models proposed in the literature and demonstrate that it provides the best fit to 

the data. The new model suggests that, for these data, measurement error in the FFQ could lead to a 51% 

greater attenuation of true nutrient effect and the need for a 2.3 times larger study than would be estimated by 
the standard approach. The implications of the results for the ability of FFQ-based epidemiologic studies to 

detect important diet-disease associations are discussed. Am J Epidemio/2001 ;153:394-403. 

biological markers; dietary assessment methods; epidemiologic methods; measurement error; models, 
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Scientists have long sought a connection between diet and 
cancer. A number of large prospective studies have now 
challenged conventional wisdom, which was derived in 
large part from international correlation studies and animal 
experiments, in reporting no association between dietary fat 
and breast cancer (1) and, most recently, no association 
between dietary fiber and colorectal cancer (2). These null 

epidemiologic findings may ultimately be shown to reflect 
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the truth about these diet-cancer hypotheses. Alternatively, 

however, the studies themselves may have serious method•
ological deficiencies. 

Usually, in large studies, a relatively inexpensive method 
of measurement, such as a food frequency questionnaire 
(FFQ), is employed. Investigators now recognize that errors 

in the values reported on FFQs can profoundly affect the 

results and interpretation of nutritional epidemiologic stud•
ies (3-5). Dietary measurement error often attenuates 
(biases toward I) the estimated disease relative risk and 

reduces the statistical power to detect an effect. An impor•
tant relation between diet and disease may therefore be 
obscured. 

Realization of this problem has prompted the integration 

into large epidemiologic investigations of calibration sub•
studies that involve a more intensive but presumably more 
accurate dietary reporting method, called the "reference" 

instrument. Typically, the instruments chosen for reference 
measurements have been multiple-day food records, some•
times with weighed quantities instead of estimated portion 
sizes, or multiple 24-hour recalls. FFQs have been "vali•
dated" against such instruments, and correlations between 
FFQs and reference instruments, sometimes adjusted for 
within-person random error in the reference instrument, 
have been quoted as evidence of FFQ validity (6, 7). 

Additionally, on the basis of such studies, statistical meth�

ods have been employed to adjust FFQ-based relative risks 

mailto:victor_kipnis@nih.gov


229

for measurement error (8), using the regression calibration 
approach. 

The correct application of the regression calibration 
approach relies on the assumptions that errors in the refer•
ence instrument are uncorrelated with 1) true intake and 
2) errors in the FFQ (9). Throughout this paper, we take 
these two conditions as requirements for a valid reference 
instrument. 

Recent evidence suggests that these assumptions may be 
unwarranted for dietary report reference instruments. 
Studies involving biomarkers, such as doubly labeled water 
for measuring energy intake and urinary nitrogen for mea•
suring protein intake (10-16), suggest that reports using 
food records or recalls are biased (on average, towards 
underreporting) and that individuals may systematically dif•
fer in their reporting accuracy. This could mean that all 
dietary report instruments involve bias at the individual 
level, although direct evidence for individual macronutri•
ents other than protein is not yet available. Part of the bias 
may depend on true intake (which manifests itself in what 
we call group-specific bias), therefore violating the first 
assumption for a reference instrument. Part of the bias may 
also be person-specific (defined below in detail) and may 
correlate with its counterpart in the FFQ, thereby violating 
the second assumption. 

For this reason, Kipnis et a!. (9) proposed a new mea•
surement error model that allows for person-specific bias in 
the dietary report reference instrument as well as in the FFQ. 
Using sensitivity analysis, they showed that if the correla•
tion between person-specific biases in the FFQ and the ref•
erence instrument was 0.3 or greater, the usual adjustment 
for measurement error in the FFQ would be seriously incor•
rect. However, the paper presented no empirical evidence 
that such correlations exist. 
In this paper, we present results of a reanalysis of a cali•

bration study conducted in Cambridge, United Kingdom 
(17-19) that employed urinary nitrogen excretion as a bio•
marker for assessing nitrogen intake (20) in addition to the 
conventional dietary instruments. The biomarker measure•
ments allowed us to generalize the model by Kipnis eta!. (9) 
and further explore the structure of measurement error in 
dietary assessment instruments and its implications for 
nutritional epidemiology. 

MODELS AND METHODS 

Effect of measurement error 

Consider the disease model 

( !) 

where R(D]T) denotes the risk of diseaseD on an appropri•
ate scale (e.g., logistic) and Tis the true long term usual 
intake of a given nutrient, also measured on an appropriate 
scale. In this analysis, all nutrients were measured on the 
logarithmic scale. The slope a 1 represents an association 
between nutrient intake and disease. Let Q ~ T + eQ denote 
the nutrient intake obtained from an FFQ (also on a loga-
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rithmic scale), where the difference between the reported 
and true intakes, eQ, defines measurement error. Note that 
short term variation in diet is included in eQ, as well as sys•
tematic and/or random error components resulting from the 
instrument itself. We assume throughout that error eQ is non•
differential with respect to disease D; that is, reported intake 
contributes no additional information about disease risk 
beyond that provided by true intake. 

Fitting model I to observed intake Q instead of true 
intake T yields a biased estimate U1 of the exposure effect. 
To an excellent approximation (21), the expected observed 
effect is expressed as 

(2) 

where the bias factor At is the slope in the linear regression 
calibration model 

(3) 

where ~ denotes random error. 
Although, in principle, when measurement error eQ is cor•

related with true exposure T, A1 could be negative or greater 
than I in magnitude, in nutritional studies At usually lies 
between 0 and I (22) and can be thought of as an attenua•
tion of the true effect a.1� 

Measurement error also leads to loss of statistical power 
for testing the significance of the disease-exposure associa•
tion. Assuming that the exposure is approximately normally 
distributed, the sample size required to reach the requested 
statistical power for a given exposure effect is proportional 
to (22) 

N oc l/[p2(Q,T)crl] ~ lj(1 .. 12crQ2), (4) 

where p(Q,T) is the correlation between the reported and true 
intakes, aQ2 is the variance of the questionnaire-reported 
intake, and oi is the variance of true intake. Thus, the 
asymptotic relative efficiency of the "naive" significance 
test, compared with one based on true intake, is equal to the 
squared correlation coefficient p2(Q,T). 

Commonly used measurement error adjustment 

Following equations 2 ~nd 3, the UIJ.biased (adjusted) 
effect can be calculated as A.j1Ut, where A1 is the estimated 
attenuation factor. Estimation of A1 usually requires simul•
taneous evaluation of additional dietary intake measure•
ments made by the reference instrument in a calibration 
substudy. The common approach in nutritional epidemiol•
ogy, introduced and made popular by Rosner eta!. (8), uses 
food records/recalls as reference measurements (F), 
assuming that they are unbiased instruments for true long 
term nutrient intake at the personal level. For person i and 
repeat measurement j , the common model can be 
expressed as 

(5) 
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where it is assumed that errors eQi and eFij satisfy 

E(eFijiT,) = 0, 

Cov(eFij� eFij') = O,j * j', 
Cov(eFij� eQ,) = 0. 

(6) 

(7) 

(8) 

(9) 

Note that the assumption in equation 7 assures that 
Cov(eFij�T,) = 0. 

The calibration data 

The data were obtained from a dietary assessment valida•
tion study carried out at the Medical Research Council's 
Dunn Clinical Nutrition Center, Cambridge, United 
Kingdom (17). One hundred and sixty women aged 50-65 
years were recruited through two general medical practices 
in Cambridge. Subjects from practice I (group I) were stud•
ied from October 1988 to September 1989, and those from 
practice 2 (group 2) were studied from October 1989 to 
September 1990. The principal measures for this study were 
a 4-day weighed food record and two 24-hour urine collec•
tions obtained on each of four occasions (seasons) over the 
course of 1 year. Season 1 was October-January; season 2, 
February-March; season 3, April-June; and season 4, July•
September. 

The weighed food record was the primary dietary report 
instrument of interest. The weighed records were obtained 
using portable electronic tape-recorded automatic scales that 
automatically record verbal descriptions and weights of 
food without revealing the weight to the subject. Each 4-day 
period included different days chosen to ensure that all days 
of the week were studied over the year, with an appropriate 
ratio of weekend days to weekdays. 

Urine specimens were checked for completeness with p•
aminobenzoic acid and were used to calculate urinary nitro•
gen excretion (23). Since it is estimated that approximately 
81 percent of nitrogen intake is excreted through the urine 
(20), the urinary nitrogen values were adjusted, dividing by 
81 percent, to estimate the total nitrogen intake of each indi•
vidual. Subjects were asked to collect the first 24-hour urine 
sample on the third or fourth day of their food record proce•
dure and the second sample 3-4 days later. 
In this analysis, we studied nitrogen intake (glday) and 

analyzed the Oxford FFQ, which is based on the widely 
used FFQ of Wtllett et a!. (24), modified to accommodate 
the characteristics of a British diet. Nitrogen in foods is ana•
lyzed directly and then converted to dietary protein content 
using established factors of 5.1lH5.38 (25). The FFQ was 
administered I day before the start of the weighed food 
record in season 3. We used the weighed food record as the 
dietary report reference instrument and the adjusted urinary 
nitrogen measurements as the biomarker. Urinary nitrogen 
has long been used as a critical measure of protein nutriture 
in nitrogen balance studies (20, 26-39), and adjusted urinary 
nitrogen appears to provide a marker for nitrogen intake that 

is valid as a reference instrument, as defined in the 
Introduction. (See the Appendix for more details.) 

Note that both weighed food records and urinary nitrogen 
measure intake over a short period of time, while the FFQ 
assesses diet during the previous year. Therefore, errors in 
weighed food records and urinary nitrogen may reflect sea•
sonal patterns in food consumption, but FFQ errors should 
not, in principle, contain seasonality. 
In all of our analyses, we applied logarithmic transforma•

tion to the data to better approximate normality. Table I lists 
the mean values and variances of the transformed data 
according to instrument and season. 

Check of standard reference instrument assumptions 

As we noted above, it is a requirement that the reference 
instrument in a calibration study contain only error that is 
unrelated to true nutrient intake and is independent of error 
in the FFQ. Here we demonstrate an indirect check of these 
assumptions for the weighed food record in the Medical 
Research Council data. A critical assumption in our analysis 
is that adjusted urinary nitrogen meets the above require•
ments of a reference instrument for nitrogen intake. 

Suppose that the common assumptions (equations 5-9) 
for a reference instrument hold for the weighed food 
record. We would then expect that using the common 
approach (8) with the weighed food record as the reference 
instrument should lead to nearly the same estimated atten•
uation as using the urinary nitrogen as the reference instru-

TABLE 1. Numbers of individuals, mean values, and 
variances of log-transformed nitrogen intake measurements 

in the Medical Research Council studY* 

Instrument No. Mean Variance 

Food frequency questionnaire 137 2.544 0.0709 

Weighed food record 

Season 1 160 2.371 0.0584 
Season 2 160 2.380 0.0490 
Season 3 160 2.354 0.0502 
Season 4 156 2.321 0.0450 

Adjusted urinary nitrogen level 

Season 1 

First measurement 117 2.497 0.0547 
Second measurement 112 2.476 0.0606 

Season 2 

First measurement 112 2.538 0.0425 
Second measurement 111 2.523 0.0466 

Season 3 

First measurement 116 2.507 0.0517 
Second measurement 110 2.483 0.0515 

Season 4 

First measurement 122 2.446 0.0469 
Second measurement 116 2.446 0.0530 

* Data were obtained from a dietary assessment validation study 
(17) carried out at the Dunn Human Nutrition Unit, Cambridge, 
United Kingdom, 1988-1990. 

Am J Epidemiol Vol. 153, No. 4, 2001 



231

ment. Figures 1 and 2 display scatterplots of averaged 
weighed food record data versus FFQ data and averaged 
urinary nitrogen data versus FFQ data, respectively; the 
slopes of the regression lines give the estimates of the 
respective attenuation factors. The former method yielded 
an estimated attenuation factor of 0.282, while the latter 
estimated it as 0.187; using a statistical test based on their 
bootstrap distributions, the difference between these two 
estimates is statistically significant (p = 0.022). This 

2.8 
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j 2.4 

~ 
~ 2.2 

E(FIQ) - 1.645 + 0.282Q 

U U ll U U ~ U D D 
LogFFQ 

FIGURE 1. Scatterplot of log nitrogen intake as measur~d by aver�
aged values from a dietary report reference instrument F (weighed 
food record (WFR)) versus a food frequency questionnaire (FFQ) Q, 
with an estimated linear regression line. Data were obtained from a 
dietary assessment validation study (17) carried out at the Dunn 
Clinical Nutrition Center, Cambridge, United Kingdom, 1988-1990. 

E(MIQ)- 2.014 + 0.187Q 
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FIGURE 2. Scatterplot of log nitrogen intake as measured by the 
averaged biomarker M (adjusted urinary nitrogen (UN) excretion) 
versus a food frequency questionnaire (FFQ) Q, with an estimated 
linear regression line. Data were obtained from a dietary assess�
ment validation study (17) carried out at the Dunn Clinical Nutrition 
Center, Cambridge, United Kingdom, 1988-1990. 
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important finding means that the attenuation caused by 
measurement error in the FFQ is in fact more severe than 
it would appear when using the weighed food record as the 
reference instrument. If we accept the previously stated 
assumptions concerning urinary nitrogen, this result sug•
gests that the weighed food record does not satisfy at least 
one of the two major requirements for a reference instru•
ment-namely, that its error be unrelated to true intake and 
independent of error in the FFQ. 

A new dietary measurement error model 

Model for the FFQ. The error in an FFQ is thought likely 
to include a systematic within-person bias b that may 
depend on the individual's true intake T, as well as within•
person variation£ (19, 21, 40), so that 

Q = T + eQ = T + b + £ . 

We approximate the relation between bias b and true intake 
T as the linear regression 

where r has zero mean and variance cr/ and is independent of 
T. T itself has mean J..lT and variance cr/. The component 
PQO + PQt T is common to all persons with the same true 
intake and may be called group-specific bias. The second 
term PQt T can be thought of as arising from correlation 
between error and true intake. For example, given the 
social/cultural pressure to follow the "correct" dietary pattern, 
persons with a low intake of supposedly healthy food may be 
tempted to overreport their intake, and those with a high 
intake of supposedly unhealthy food may be tempted to 
underreport. In this case, as in many other instances, ~Q1 is 
negative, giving rise to the flattened slope phenomenon in the 
regression of reported intake on true intake E(Q]T) = PQO + 
(PQt + l)T . 

The difference r between within-person bias and its 
group-specific component varies from person to person and 
may be determined by personality characteristics such as 
susceptibility to social/cultural influences. We will call it 
person-specific bias. Note that this error component is part 
of within-person systematic error and will be reproduced in 
repeated measurements on the same individual. 

Gathering all of the error components together, we model 
the FFQ intake Qij for individual i and repeat measurement 
(season) j as 

(10) 

where PQt = PQt + 1. The term JlQi represents a possible 
seasonal effect at the population level, a factor that usually 
improves model fit (41). Similarly, below we use the sym•
bols J..lFj and J..lMj to represent seasonal effects in reference 
instrument reports and in marker levels, respectively. 
Within-person random error Eij has variance aE 2 and is inde•
pendent of other terms in model (equation) 10. 
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Model for the dietary report reference instrument. As we 
have argued, we need to allow for systematic group-specific 
and person-specific biases in dietary report reference instru•
ments. Thus, we now make the same assumptions regarding 
the error structure for the reference instrument as for the 
FFQ and use a model which is analogous to that of model 
10. 

In the Medical Research Council study, each individual i 
was requested to provide the weighed food record in each 
( j ) of the four seasons. We model these data as 

i = I, ... , n, j = I, 2, 3, 4, (11) 

where I3FO + {3F1 Ti represents group-specific bias and where 
s1 and u1j denote person-specific bias and within-person ran•
dom error, with variances cr/ and au2, respectively, and are 
assumed to be independent of each other and of true intake 
T1• As before, JlFj represents a seasonal effect at the popula•
tion level. 

Note that the terms, in equation 11 is parallel to the term 
r1 in equation 10 for the FFQ. Since the same personality 
traits can influence both person-specific biases, one may 
anticipate that the two will have a nonzero correlation p(r,s). 

Because there was only one application of the FFQ in the 
Medical Research Council study ( 17), we cannot estimate 
a,/ and a/ separately, only their sum. Thus, we can estimate 
the covariance between r and s and the correlation between 
r + £ and s, but not the correlation p(r,s). The correlation 
hetween r +£and swill be smaller than p(r,s), because£ is 
independent of s. 

Model for the biomarker. As we mentioned above, it is 
reasonable to assume that adjusted urinary nitrogen has 
errors that are unrelated to true intake and to errors in dietary 
assessment instruments. The Medical Research Council 
study included two repeat urinary nitrogen measurements in 
each of the four seasons. Lettingj denote season (j = I, 2, 
3, 4), as before, and k denote the repeat measurement within 
the season (k = I, 2), we write this model as 

M,j, = !luj + T, + w, + vi j, (12) 

where 1) Mijk denotes the kth repeat of the urinary nitrogen 
measurement of person i in season j; 2) wi and vi jk denote 
person-specific bias and within-person random error, with 
variances aw2 and O"v2, respectively, and are assumed to be 
independent of each other and of true intake T1 ; and 3) !lMj 
represents a seasonal effect at the population level. It is crit•
ical that w, is independent of true intake T, and of all error 
components in the dietary report instruments Q and F. 

As we explain in the Appendix, external evidence sug•
gests that the variance of the person-specific bias, wio is very 
small relative to the variance of other terms in the model. 
Therefore, we assume in our main analysis that its variance 
is actually zero, and we show in the Appendix that our 
results do not change appreciably when other reasonable 
values of the variance are used. 

Unlike model 10-11 for dietary assessment methods, 
which is not identifiable without biomarker data (9), model 

12 with a specified value for the variance of wi, such as zero, 
is identifiable on its own. Fitting it to the Medical Research 
Council data supports the assumption that the within-person 
random errors vi jk are mutually independent (i.e., they are 
not correlated within season) and have constant variances 
within seasons but not between seasons. In particular, sea•
son 2 has a different error variance than the other three sea•
sons, which have similar variances, so that, denoting the 
variance ofvijk by <Yvj. <Yvl = <J~3 = <Yv4 * crv2. 

In contrast, the variances of Eij and uij are assumed to be 
constant for all i and j; this assumption is supported by 
exantination of plots of residuals after fitting model I 0-12 
to the data. The within-person random errors Eij, uij, and vi jk 
are assumed to be mutually independent, except when the 
instruments are administered in the same season, in which 
case seasonal fluctuations in diet are assumed to produce 
nonzero correlation between uij and v ijk· To verify that FFQ 
errors were not affected by seasonality, we initially allowed 
for nonzero correlations between Eij and each of the errors uij 
and vi jk in season 3. As we expected, these correlations were 
found to be very small and statistically nonsignificant, and 
we did not include them in the final model. 

Model!0-12 involves 20 unknown parameters. From the 
data, we can estimate 19 unique variances and covariances. 
These, together with an assumed value for the variance of 
wi, allow us to estimate all of the parameters of the model. 
In practice, we use the method of maximum likelihood for 
estimation, which increases efficiency when there are miss•
ing values in the data. 

Alternative measurement error models 

Several alternatives to measurement model 10--12 have 
been proposed in the literature. In table 2, we list six mod•
els that are special cases of (and nested within) the more 
general model 10-12. These include the common model of 

TABLE 2. Six alternative models that are special cases of 
the new model, model 1 o-12 

Model 

Common model 

(Rosner et al. (B)) 

Freedman eta!. (42) 

Kaaks et al. (40) 

Spiegelman et al. (43) 

Kipnis et al. (9) 

New (restricted) 

Parameter restrictions 

~" = 1; <>.' = 0; p(r,s) = 0; p(e,u) = 0 

13Ft= 1; CJs2 = 0; p(r,s) = 0; p(e,u) is 
nonzero for contemporaneous 

measures 

~" = 1; p(r,s) = 0 

13Ft= 1; CJr2 = CJ/ = 0; p(E,U) iS 
nonzero for all measures 

13Ft= 1; p(E,u) is nonzero for 
contemporaneous measures 

p(r,s) = 0; p(E,u) is nonzero for 
contemporaneous measures 
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Rosner et a!. (8) and models proposed by Freedman et a!. 
(42), Kaaks eta!. (40), Spiegelman eta!. (43), and Kipnis et 
a!. (9). The defining manner in which each model departs 
from model 10-12 is given in the table. To test the signifi•
cance of the correlation between person-specific biases in 
the FFQ and the weighed food record, we also included in 
the comparison a version ofmodel10-12 with p(r,s) = 0. 

For comparison purposes, we slightly modified the 
literature-based models by adding the term JlFj to represent 
a possible seasonal effect in the weighed food record. We 
also included the urinary nitrogen measurements that were 
modeled by equation 12. 

Plummer and Clayton (19) suggest a quite general model 
(their model II( c)) that includes our model as a special case. 
They do not consider person-specific biases but allow 
group-specific biases to vary in repeat administrations of the 
same instrument. In addition, within-person random errors 
are assumed to be correlated, both across repeat administra•
tions of the same instrument and across instruments, with 
the exception of errors in the biomarker. These are assumed 
to be correlated across repeat administrations within the 
same season and with errors in dietary report instruments in 
the same season but to be independent of measurements 
taken in different seasons. Moreover, all of the correlations 
and variances that are assumed to exist are allowed to differ 
from one another. 

Prentice ( 44) suggested a model similar to that presented 
by Kipnis et a!. (9), except that he explicitly assumed that 
p(r,s) ~ cr,/cr, (9). However, all model parameters are 
allowed to depend on body mass index, and we do not 
include his model in this comparison. 

MODEL COMPARISON USING MEDICAL RESEARCH 
COUNCIL DATA 

Model comparison criteria 

All models mentioned above were fitted to the Medical 
Research Council data by the method of maximum likeli•
hood under multivariate normality-a reasonable assump•
tion after the logarithmic transformation-and compared 
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using three criteria. We first tested the models' goodness of 
fit by comparing each model with the unstructured (i.e., 
fully saturated) model using the likelihood ratio x' test. A 
model that fits the data should produce a nonsignificant p 
value, thereby indicating that it does not explain the data 
significantly worse than the most general model possible. 
We also applied the likelihood ratio test to evaluate differ•
ences in model fit for nested models. In addition, all models 
were compared using two standard model selection criteria, 
the Akaike Information Criterion (AIC) and the Bayes 
Information Criterion (BIC) (29). These are defined as 

AIC = log(likelihood) - d 

and 

BIC = log(likelihood) - log(n) X d/2, 

where d is the number of parameters and n is the sample 
size. Larger values of AIC and BIC are desirable. Both AIC 
and BIC penalize more complex models: The "best" models 
chosen by the BIC tend to be simpler than those chosen by 
theAIC. 

Model comparison results 

The results of model comparison are given in table 3. 
Ideally, one aims to find a model that passes the goodness•
of-fit test, is not significantly different from any more com•
plex model, provides a significantly better fit than all mod•
els nested within it, and has the highest AIC and BIC scores 
among all models. For the Medical Research Council data, 
model 10-12 emerges as best by these criteria. First, it is one 
of only four models, together with its two simplified ver•
sions and the model of Plummer and Clayton (19), to pass 
the goodness-of-fit test. Second, it does not fit the data sig•
nificantly worse than the more general model of Plummer 
and Clayton. The likelihood ratio x' statistic comparing the 
two models is 38.8 (38.8 = 1,173.2- 1,134.4), based on 37 
degrees of freedom (37 = 56- 19) (p ~ 0.39). Third, model 
10-12 provides a significantly better fit (p $ 0.0011) than 

TABLE 3. Results of a model comparison using the Medical Research Council data* 

-2 X Degrees 
p 

Akaike Bayes 
Model log of 

value+ 
Information Information 

likelihood freedomt Criterion Criterion 

Unstructured {fully saturated) -1,222.3 104 507.2 224.7 
Plummer and Clayton (19) modelll(c) -1,173.2 56 0.426 530.6 378.5 
New model (equations 1G-12) -1,134.4 19 0.393 548.2 496.6 
New model restricted to p(r,s) = 0 -1,123.7 18 0.167 543.9 495.0 
Kipnis et al. (9) -1,122.2 18 0.142 543.1 494.2 
Kaaks et al. (40) -1,112.4 17 0.049 539.2 493.0 
Spiegelman et al. (43) -1,058.0 17 <0.001 512.0 465.8 
Freedman et al. (42) -1,050.1 16 <0.001 509.1 465.6 
Common model (Rosner et al. (8)) -1,050.1 15 <0.001 510.1 469.3 

*Data were obtained from a dietary assessment validation study (17) carried out at the Dunn Human Nutrition 
Unit, Cambridge, United Kingdom, 1988-1990. 

t Number of parameters. 
:t: p value for goodness-of-fit test relative to the unstructured model. 
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any model nested in it. For example, comparing it with its 
version with uncorrelated person-specific biases, the likeli•
hood ratio x' statistic is 10.7 (10.7 = 1,134.4- 1,123.7), 
based on I degree of freedom (I = 19- 18), with a p value 
ofO.OOII. 

These results suggest that group- and person-specific 
biases exist in both the FFQ and the weighed food record, 
and that these person-specific biases are indeed correlated. 
With only one FFQ measurement, this correlation cannot be 
estimated directly, but it is at least 0.35 (the low bound for 
p(r,s) corresponding to cr/ = 0) and may be considerably 
higher. For example, if the variance of the person-specific 
bias is the same for the FFQ and the weighed food record, 
this correlation is estimated as 0.81. 

Attenuation of estimated effect and statistical power 

Table 4 displays the estimates of the most interesting 
parameters for model I 0-12 and the common model. They 
include the attenuation factor A~o the variance of true intake 
cr/, the correlation p(Q,7) between the FFQ and true usual 
intake, and the slopes ~QI and ~FI that represent group•
specific biases in the FFQ and weighed food record, respec•
tively. For all parameters, except a/, there are major differ•
ences between model I 0-12 and the common approach. 
First, the slope of the regression of the weighed food record 
on true intake, ~F~> assumed to be 1 in the common 
approach, is estimated as 0.766 in our model, thereby 
demonstrating the flattened slope phenomenon in the refer•
ence instrument. In addition, the common approach suggests 
that the slope in the regression of the FFQ on true intake, 
~Qio is 0.661 and the correlation p(Q,7) between the FFQ 
and true usual intake is 0.432, while onr model estimates 
them as 0.430 and 0.284, respectively, indicating much less 
accuracy. 

The major parameter controlling the ability to detect 
disease-nutrient relations using an FFQ is the attenuation 
factor A.1• The common approach yields the attenuation fac•
tor of 0.282, while onr model estimates it as 0. I 87. Since the 
true effect of an exposure is calculated as the observed effect 
divided by the attenuation factor, our model suggests that 
the true effect would be 51 percent greater than the one esti•
mated by the common approach. There is also a much 
greater impact on the design of epidemiologic studies. As 
follows from equation 4, for any two models, the ratio of the 
sample sizes for the same required statistical power is the 
same as the squared ratio of their attenuation factors. Thus, 
our model suggests that the study size based on the common 

model should be increased by the factor 2.3 ((0.282/ 
0.187)2 = 2.3); that is, studies would have to be more than 
twice as large as suggested by the common model in order 
to maintain nominal power. 

DISCUSSION 

Onr pnrpose has been to propose a statistical framework 
(model 10-12) for evaluating common dietary assessment 
reference instruments (multiple-day food records, 24-honr 
recalls) and to employ this framework to evaluate the 
weighed food record as a reference instrument for nitrogen 
intake (which is essentially equivalent to protein intake) 
using data from the Medical Research Council study (17). 
We have demonstrated that our model produces the best fit 
to these data when compared with several other models pro•
posed in the literature: 

Its fit is not significantly different from that of the 
more complex models that we studied. 
It provides a significantly better fit than the simpler 
models, which are special cases of it. 
It has the highest values of AIC and BIC, two numer•
ical measures of model fit. 

Our statistical framework allows evaluation of two major 
common assumptions about a dietary report reference 
instrument: 1) there is no correlation between its measure•
ment error and true intake; and 2) there is no correlation 
between its measurement error and that of the FFQ. Our 
results using the Medical Research Council data suggest that 
both assumptions are violated because of the presence of 
both group- and person-specific biases in the weighed food 
record and the correlation of the person-specific bias with 
that in the FFQ. 

The statistical model we used rests on the requirement 
that the urinary nitrogen marker for nitrogen intake does 
itself satisfy assumptions 1 and 2 above. Assumption 1 is 
supported by several studies, documented in the Appendix, 
that have examined urinary nitrogen under various con•
trolled feeding situations. Assumption 2 is based on the 
strong intuition that discrepancies between this biomarker 
measurement and true intake are caused by physiologic fac•
tors and therefore will be unrelated to errors in a dietary 
report instrument. 

We have thus demonstrated that, at least for these data, 
the weighed food record may well be a flawed reference 
instrument. There still remains the question, Do these flaws 

TABLE 4. Estimated parameters for the new and common models using the Medical Research Council 

data* 

Model 

New 

Common 

Attenuation 
factor (A.1) 

0.187 (0.056)t 
0.282 (0.054) 

0.031 (0.004) 
0.030 (0.004) 

p(Q.7) 

0.284 (0.082) 
0.432 (0.076) 

0.430 (0.129) 
0.661 (0.131) 

0.766 (0.066) 
1 

* Data were obtained from a dietary assessment validation study (17) carried out at the Dunn Human Nutrition 
Unit, Cambridge, United Kingdom, 1988-1990. 

t Numbers in parentheses, standard error. 

Am J Epidemiol Vol. 153, No.4, 2001 



235

translate into anything of importance? We believe that they 
do. As was shown above, using the common approach yields 
the estimated attenuation factor of 0.282, but it is estimated 
as 0.187 when using the new model. In addition, the esti•
mated correlation between the FFQ-based nitrogen intake 
and trne intake is 0.432 by the common approach but only 
0.284 by the new model. This correlation is used as a mea•
sure of the FFQ validity, and its squared value represents the 
loss in statistical power to test the significance of a disease•
exposure association. Thus, for these data, the real effect of 
measurement error in the FFQ is a greater attenuation (51 
percent) and a greater loss of power (52 percent) for testing 
the true effect than would be estimated by the common 
approach. 

Our estimates of the attenuation factor also indicate that 
the common approach may lead to unexpectedly underpow•
ered studies. For the Medical Research Council data, our 
model suggests the need for a study 2.3 times larger than 
would have been designed had the common approach been 
used. 

In summary, our results suggest that the impact of mea•
surement error in dietary assessment instruments on the 
design, analysis, and interpretation of nutritional studies 
may be much greater than has been previously suspected, at 
least regarding protein intake. Both the attenuation of diet 
effect and the loss of statistical power in FFQ-based epi•
demiologic studies may be greater than previously esti•
mated, because of the use of dietary reporting methods as 
reference instruments. This means that current and past 
studies may be underpowered and may explain some of the 
null results that have been found in nutritional epidemiol•
ogy. There is a need to confirm our results by conducting 
further studies with biomarkers. 

Our paper covers only the analysis of protein intake unad•
justed for total energy intake. Further work is needed on the 
effects of measurement error on the analysis of protein den•
sity or energy-adjusted protein intake (6), an approach that 
is often used in nutrition analyses. This will require simulta•
neous consideration of both energy intake, using a bio•
marker such as doubly labeled water (10), and protein 
intake, using urinary nitrogen excretion. Black et a!. (16) 
reported results from a small study with such data that sup•
ported a correlation between underreporting of protein and 
underreporting of energy, but also higher rates of underre•
porting of energy than of protein. As was reported previ•
ously (45), the effect of measurement error in energy•
adjusted models can be more complex than in univariate 
analysis. Therefore, further studies are needed in which data 
from questionnaires, dietary report reference instruments, 
and biomarkers for protein and energy intakes are all col•
lected and analyzed simultaneously to investigate the effects 
of measurement error on protein density or energy-adjusted 
protein intake. 
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APPENDIX 

Nitrogen balance studies require known levels of pro•
tein/nitrogen intakes and complete urine collections in addi•
tion to either estimation or collection of fecal, sweat, or 
other miscellaneous losses in order to be valid, and this has 
been done with varying levels of rigor and oversight. 
Generally, the goals of such studies have been to assess pro•
tein requirements and protein sources. 

Among studies with varying levels of controlled condi•
tions in which protein intakes were provided at levels nec•
essary to maintain a positive nitrogen balance (a near-given 
in diets in developed countries), the long term ratio of uri•
nary nitrogen to dietary nitrogen among individuals is gen•
erally within a range of 70-90 percent (20, 26-39). 
Bingham and Cummings (20) specifically addressed the 
question of nitrogen output and validation of dietary intakes 
in a rigorously controlled feeding study of eight adults 
adhering to their regular diets and found that the mean ratio 
of urinary nitrogen to dietary nitrogen was 81 percent, with 
a standard error of 2 percent (range, 78-83 percent). In 
other well-controlled studies, group means have ranged 
from 77 percent to 88 percent (26-32). Generally, urinary 
nitrogen is robust in free-living adults, except when there is 
inadequate total energy and/or protein intake, inadequate 
essential amino acid intake, a very high fiber intake, or pro•
fuse sweating (46-49). None of these conditions are preva•
lent in adequately nourished populations, and a range of 
70-90 percent represents a realistic range for biologic vari•
ability in the ratio of urinary nitrogen to dietary nitrogen 
that does not depend on age, gender, and source of protein, 
as long as subjects maintain a positive nitrogen balance. 
This is supported by different studies that measured this 
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range in old and young participants and in men and women 
with soy, egg, meat, or mixed sources of protein in their 
diets (20, 26--39). 

Nevertheless, the ratio of urinary nitrogen to dietary nitro•
gen does not represent an exact biologic constant and may 
still include interperson variability, or person-specific bias. 
Three studies described by Bingham and Cummings (20), 
Oddoye and Margen (28), and Castaneda eta!. (32) and two 
studies described by Young et a!. (39) provided information 
on within-person variation in the ratio (R) of urinary nitro•
gen to dietary nitrogen and therefore can be analyzed by 
analysis of variance to estimate and/or test the presence of 
person-specific bias in the urinary nitrogen biomarker. 
These five studies represent a valuable subsample of the 
controlled feeding studies and include both men (20, 28, 39) 
and women (32), young (28, 39), middle-aged (20), and 
elderly (32) participants, and a variety of protein sources, 
including soy protein (39), meat-free protein (32), formula 
diets (26), beef protein (39), and usual diet (20). 

We carried out a meta-analysis of these five studies using 
a random effects model for ratio R that included both a ran•
dom study effect and, nested in it, a random person effect 
(person-specific bias). The study effect 11 was very small 
(variance cr" 2 ~ 0.0006) and not statistically significant 
(p ~ 0.21), while the person effect w was also relatively 
small (variance crw' ~ 0.0021) but highly statistically sig•
nificant (p ~ 0.0008). These results provide some evidence 
that although ratio R does not seem to depend on age, gen•
der, and source of protein intake, it does contain a small 
person-specific bias. After we pooled all of the participants 
from the five studies and fitted a random effects model with 
a random effect representing person-specific bias, the vari•
ance of this bias was estimated as 0.0027 (standard devia•
tion 5.2 percent). The mean long term ratio of urinary nitro•
gen to dietary nitrogen was estimated as 83.5 percent 
(standard error 2.3 percent), which agrees well with the cal-
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ibration constant of 81 percent suggested by Bingham and 
Cummings (20). The mean ratio (83.5 percent) and the stan•
dard deviation of its person-specific bias (5.2 percent) agree 
well with the general observation that individual ratios fall 
between 70 percent and 90 percent. 

These results suggest that urinary nitrogen level satisfies 
both requirements for a reference instrument. The stability 
of the urinary nitrogen:dietary nitrogen ratio and the rela•
tively low person-specific bias support the essential absence 
of correlation between errors in adjusted urinary nitrogen 
and true nitrogen. The relatively low person-specific bias 
and the fact that the bias is probably physiologically based 
rather than psychologically based also support the essential 
absence of correlation between errors in adjusted urinary 
nitrogen and errors in dietary report instruments. 

It is interesting to note that the estimated variation due to 
person-specific bias in the urinary biomarker for protein 
intake constitutes only about 10 percent of the estimated 
variation of true protein intake. Nevertheless, to investigate 
how this person-specific bias might change the result of our 
model fit, we conducted a sensitivity analysis by including 
person-specific bias in the biomarker model and changing 
its value from aw2 = 0 (the value assumed in the main text) 
to crw' ~ 0.0027 (the value estimated in this appendix). The 
results are reported in appendix table I. The estimated atten•
uation factor was not affected by the presence of person•
specific bias in the biomarker, since this bias does not 
violate the two major requirements for the reference instru•
ment. Other parameters in the model changed slightly. The 
estimated variance of true intake was reduced by the varia•
tion due to person-specific bias. The estimated correlation 
between true intake and its FFQ measure was increased by 
4.5 percent, and the estimated slopes in the regressions of 
FFQ and weighed food record on true intake were increased 
by approximately I 0 percent each. However, the general 
conclusions reached in the paper remain the same. 

APPENDIX TABLE 1. Estimated parameters for the new model, with and without person-specific biases 
in the urinary biomarker, using the Medical Research Council data* 

Model 

a 2 =0 a:2 = 0.0027 

Attenuation 
factor(J.) 

0.187 (0.056)t 
0.187 (0.056) 

0.031 (0.004) 
0.028 (0.004) 

p(O.T) 

0.284 (0.082) 
0.297 (0.085) 

0.430 (0.129) 
0.472 (0.142) 

0. 766 (0.066) 
0.839 (0.074) 

*Data were obtained from a dietary assessment validation study (17) carried out at the Dunn Human Nutrition 
Unit, Cambridge, United Kingdom, 1988-1990. 

t Numbers in parentheses, standard error. 
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SuMMARY. V{e construct Bayesian methods for semiparametric modeling of a monotonic regression func•
tion when the predictors are measured with classical error, Berkson error, or a mixture of the two. Such 
methods require a distribution for the unobserved (latent) predictor, a distribution we also model semi•
parametrically. Such combinations of sernipararnetric methods for the dose-response as well as the latent 
variable distribution have not be€n considered in the measurement error literature for any form of measure•
ment error. In addition, our methods represent a new approach to those problems where the measurement 
error combines Berkson and classical components. While the methods are general, we develop them around a 
specific application, namely, the study of thyroid disease in relation to radiation fallout from the Nevada test 
site. We use this data to illustrate our methods, which suggest a point estimate (posterior mean) of relative 
risk at high doses nearly double that of previous analyses but that also suggest much greater uncertainty in 
the relative risk. 
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1. Introduction 

This article develops semiparametric Bayesian methods for 
regression problems where a predictor is measured with either 
classical error, Berkson error, or a combination of classical and 
Bmkson measurement error. We allow the regression function 
and the distribution of the unobservable (latent) covariate to 
be modeled either parametrically or nonparametrically. Our 
methods are applied to a study of thyroid cancer induced by 
fallout from nuclear testing (Stevens eta!., 1992). 

There is of course an enormous literature on regression 
problems where the latent covariate is measured either en•
tirely with classical error or entirely with Berkson error (Car•
roll, Ruppert, and Stefanski, 1995). There have been numer•
ous articles that model the latent variable semiparametri•
cally (Roeder, Carroll, and Lindsay, 1996; Miiller and Roeder, 
1997; Carroll, Roeder, and Wasserman, 1999; Schafer, 2001; 
Richardson et al., unpublished manuscript). There arc also ar•
ticles that model the regression function semiparametrically 
(Carroll, Maca, and Ruppert, 1999). However, to date, no 
one has exhibited methods that are semiparametric both in 
the model and in the latent variable distribution. 'T'his article 
exhibits such methods. We focus for specificity on radiation 

13 

epidemiology, where the latent variable is the dose to an in•
dividual, typically measured with a combination of classical 
and Berkson errors. The methods developed to date for these 
models (cf., Reeves et al., 1998; Schafer et al., 2002) rely on 
approximations to the regression function given the observed 
data and typically use as the predictor an estimate of its con•
ditional expectation given the observed dose, the so-called 
regression calibration approach. 

This article takes a Bayesian approach. In the problem of 
interest, the regression function is reasonably thought to be 
monotone in the latent variable, so we allow either a para•
metric form or a semiparametric monotone form. In addition, 
the likelihood of the mixed Berkson~classical model depends 
on the distribution of the latent variable; this distribution we 
model either parametrically or flexibly semiparametrically. 

In our example and in other such exercises in radiation 
dosimetry, the estimation of an individual's dose is the result 
of a complex modeling process including physical transport 
systems, biological processes, and direct measurements. It is 
typical to assign to the dose a total uncertainty, which is in 
effect the sum of the Berkson error variance and the classical 
error variance. This total uncertainty is known nominally at 
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the individual level, but the relative contribution of Berkson 
and classical errors is unknown. However, in these cases: is it 
reasonable to suppose that the proportion p of the error vari•
ance that is due to Berkson error lies within a defined interval 
on [0, 1]. Our Bayesian methods place a prior distribution on 
the relative contribution p, being uniformly distributed on the 
predefined intervaL 

This article is structured as follows. In Se<'~tion 2, we de•
scribe the Nevada test-site data in detail. In Section 3, we 
describe parametric and semiparametric models for the dose•
response. Of particular note in this section is that we develop a 
semipara.metric approach that makes the dose response mono•
tonic, using a mixtures-of-beta cumulative distribution func•
tions (CDFs) approach. 

In both these sections, we show that the likelihood function 
depends on the distribution of a latent variable and way thm; 
be sensitive to misspccification of this distribution. Indeed, 
in our example) we present evidence that the latent variable 
in the natural log-dose scale is far from normally distributed. 
Section 4 describes our Bayesian approach in detail. Of par•
ticular note here is that, instead of specifying a distribution 
for the latent variable, we model the latent variable semipara•
metrically, using P6lya trees. Section 5 contains the reanalysis 
of the Nevada test-t>ite data. Section 6 contains the results of 
a small simulation study. Section 7 has concluding remarks. 
An appendix gives brief details of the priors and Metropolis 
Hastings proposals used in our calculatiom;. 

2. Berkson/Classical Errors 
Stevens et al. (1992) describe a study of thyroid disease in 
relation to fallout from the Nevada test site (NTS). Similar 
statistical i::>::>ues arise in the Hanford Thyroid Disease Study 
(Davis et al., 1998) and the Oak Ridge Radiation Study (Os•
trouchov, Frome, and Kerr, 1998). In the Nevada study, 2473 
individuals who were cxpot~ed to radiation as children were ex•
amined for thyroid disease. The primary radiation exposnre 
came from milk and vegetables. Dosimetry calculations were 
based on age at exposure, gender, residence history, x-ray his•
tory, whether as a child the individual was breast fed, and a 
diet questionnaire filled out by the parent focusing on milk 
consumption and vegetables. The data were then fed into a 
complex model and, for each individual, the point estimate of 
thyroid dose and an associated standard error were reported. 
Unfortunately, only the summary statistics are available in 
the data me. 

A statistically significant relationship between dose and 
neoplasms developed was obtained when fitting a logistic re•
gression model with stratum-specific intercepts, adjustments 
for confounders, and a terrn for dose of the form log(1 +Odose) 
(see below for more details). In one such analysis (Stevens et 
al., p. 208), the estimate of e more than doubled after ac•
counting for dose uncertainty by assuming a classical error 
model, i.e., if all the error were classical and error is ignored, 
relative risks are underestimated. In Section 3.1, we show that 
assuming that all the error is Berkson and ignoring classical 
error overestimates relative risk. 
It is helpful to consider the model used to calculate dose to 

the thyroid of a specified individual from a single milk source 
contaminated by a single Nevada test-site event. This model 
has the following form (Stevens et al.: p. 85): 

W=CxDCFxixTDxFP. (1) 

where W = reported dose to thyroid of the subject; C = 
time-integrated mdioiodine concentration of milk; DCF = 
ingestion dose conversion factor; I = individual milk intake 
rate in liters per day. measured by a food frequency ques•
tionnaire; F P = frequency of purcha...;;e correction factor; and 
TD = time-delay factor. A detailed elicitation of the error 
structure for each component is not possible because of space 
limitations. The following is a hricf summary. Milk intake (I), 
information on frequency of purchase (FP), and the sources 
of milk used to compute the time-delay factor (TD) come 
from a food frequency questionnaire (FFQ) filled out by the 
parent. As such, the error here is probably be,;t thought of as 
mainly classicaL The ingestion dose conversion factors (DCF) 
arc specific for age and isotope. Uncertaiuties associated with 
DC F are probably best modeled a.':l a mixture of Berkson and 
classical type::;. The time-integrated radioiodine concentration 
of milk (C) is specific not to individuals but to producers. One 
would ordinarily think of C as of Berkson type, but there is 
a major component of it that is classical, namely the deposi•
tion of 1131 (Kerber et al., 1993; Simonet aL, 1995) across the 
regions under study. Thus, the error structure for estimated 
dose to the thyroid has a mixture of classical and Berkson 
error. 

This brief outline is simplistic. For example, the mass inter•
ception of I 131 on vegetation and the transfer of iodine from 
feed to cow's milk are important components of the DCF. 
Their distribution is estimated by a combination of data from 
a literature review and expert judgment, thus combining clas•
sical and Berkson error in c.ornplex ways. 

RR-eves et al. (1998) consider data with a mixture of Berk•
son and classical error, although in a context far different 
from ours. At a formal mathematical level, their model is ap•
plicable to the Utah study; our approaches to analysis are far 
different. Let Y be the indicator of disease and let Z denote 
a vector of covariates measured without error, e.g., age 1 sex, 
and state. We will take logarithms in ( 1) and assign Berkson 
and classical error formulas to the pieces as described above. 
Denote true dose by X and observed dose by W. Then there 
is a latent V'ariable L, which we call the latent intermediate 
variable, such that 

log( X)= log(L) + Ub, 

log(W) = log(I,) + U,. 
(2) 

(3) 

The terminology latent intermediate variable is suggestive be•
cause L is intermediate between X and W. 

\Ve assume that (VV, L) are conditionally independent of 
the response Y given (X, Z) and that the Berkson and clas•
sical errors are independent. Here Ub is Berkson error with 
variance IT~, Uc is cla.."\sical error with variance aZ, and log(L) 
has mean J.iJ, and variance aJ ..... \i\llth a change in notation, 
these models are the same as model ( 4) in Reeves et al. There 
are covariates Z measured without error, so as is standard in 
the mea..surement error problem, e.g .. I-LL may be allowed to 
depend on a linear function of Z and a'i is understood to be 
a conditional variance given Z. 

The Utah study data file provides the ::;urn of the Berkson 
and classical error variances for each individual but does not 
provide the relative contribution of each to the sum. Our ap•
proach is to allocate the total error variance acro8s the two 
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types, where we allow for a fixed proportion p of an individ•
ual's error to come from each source, and vary this source in 
our Bayesian analysis by placing an informative prior on the 
fixed proportion. 

3. Dose-Response Modeling 
In this section, we provide a discussion of model fitting when 
the distribution of the latent intermediate variable L in (2)•
(3) is specified. For convenience, for now we assume that 
log( L) is normally distributed conditional on Z and X > 0, 
where Z consists of the patient age at exposure, sex, and state 
of residence (Utah, Nevada, Arizona). In state s, 

[log(L) IZ, state=s]~normal(a.o+ZTa,,,.,-;). (4) 

We denote by A the collection of these parameters. 
In general, we consider four types of modeling efforts: (a) 

all dose uncertainties are ignored; (b) error purely of Berkson 
type; (c) error purely of classical type; and (d) error a mixture 
of Berkson and classical errors, with the fraction of variance 
due to the Berkson part being p, i.e., a~J(a~ +a;) = p. In 
the latter case, we face an identifiability issue: while the total 
uncertainty ul + 0'~ is given in the data base, p itself is not 
identifiable. For our Bayesian analysis, we handle this issue by 
using an informative prior for p. Based on previous considera•
tions, it seems reasonable to balance the classical and Berkson 
errors, with a substantial fraction being of each type. Thus, 
we gave p a uniform prior on the interval [0.2, 0.8], creating a 
form of model mixing. 

3.1 Parametric Dose-Response Models 

The model used by Stevens et al. (1992) in their dose-response 
was defined as follows. For numerical convenience, we rescaled 
dose to be dosefmax(doae) = dose/0.461 Gy (Gray). The 
model is 

logit {pr(Y = 1 I Z, X)} = f3o + zT (3, +log(!+ OX). (5) 

Let f.LLjZ and ai1z be the conditional mean and variance of 

log(L) given Z. Define Axlw,l = ootlz/(ootiZ + o-~). Using 
standard calculations, assuming that the nonzero L's are log 
normal, and making the usual exponential approximation to 
the logistic function appropriate for rare events, it can be 
shown that, for the observed data, 

logit {pr(Y = I I Z, W)} 

R< /lo + zT iJ1 +log(!+ 0-,W.>.•iw,'), (6) 

'Y = exp{(l- Axlw,t)(I"LIZ +o-ilz/2) + o-~/2}. 

In the Berkson case, Axlw,£ = 1 and "Y = exp(u~/2) > 1, 

so that the right-hand side of (6) reduces to f3o + zT fJ1 + 
log(!+ B7W), meaning that an analysis that ignores Berkson 
errors overestimates the dose-response parameter by the 
factor ""f, thus falsely inflating the effect of dose. Indeed, when 
regressing Y against (Z, W), if one assumes Berkson error, 
then W should be replaced by -yW, where 'Y varies among 
individuals; essentially, such an approach was used by Stevens 
et al. (1992). 

3.1.1 MCMC calculations. In terms of our MCMC calcula•
tions, we make the following comments. When the measure•
ment error in the dose is incorporated, (X, L) are treated as 
latent variables, i.e., augmented data, and observations are 

sampled from their complete conditionals. Let f(L I Z, A) 
be the density of L depending on Z and the parameter A. 
Remember that the data base gives us the value of a~ + a~, 
with the possible unknown being p = <1~/(a~ + ac)· Let 
the prior density be 7r(,Bo,t31,8,A,p). Then the complete 
distribution for an observation is written a.s 

f(Y I X, Z,f3o,f3t,O)f(X, WI L,oo~,.,-~,p)f(L I Z,A) 

X 1r(f3o,(3,,0,A,p). 

In (7), when a~ +a; = 0, we have L = X = W = 0. 

(7) 

All priors were chosen to be proper but noninformative, 
with the exception of that for 8. For fJ, the prior was chosen 
to be normal, truncated at zero, with prior mean being the 
empirical Bayes estimator ignoring measurement error but 
with a large variance. 

Due to the logistic model framework, the complete 
conditional distributions for (.Bo,f31,fJ,X) are nonstandard. 
We used a Metropolis step to generate observations from these 
nonstandard distributions. The complete conditionals for L 
and A are standard. 

3.2 Monotonic, Semiparametric Dose-Response 

Here we replace the term log(! +BX) in (5) by a more flexible 
semiparametric form, namely 

logit {pr(Y = 1 I z, X)} = f3o + zT f31 + g(X). (8) 

Following (5), in (8) it makes sense to have g(-) be an 
unknown but strictly monotone function, with the property 
that g(O) = 0. For a general function g(x), modeling in 
such a circumstance has been considered previously by many 
authors, e.g., using regression splines. These methods do not 
guarantee monotonicity of the dose-response. We thus use 
instead the approach of Mallick and Gelfand (1994), which 
has three steps: (a) monotonically transform the range of the 
function to the unit interval, (b) note that then modeling g 
is equivalent to modeling an unknown distribution function, 
and (c) model this distribution function as a mixture of beta 
distribution functions. 

Thus, for some function T(·), we assume that g(·) satisfies 

r 

T{g(x)} = I;weiB[T{go(x)},c,,d,j. (9) 
l=l 

In (9), T is a monotonic transformation from the real line 
to [0, 1]. In addition, IB(u; c, d) denotes the incomplete beta 
function, associated with a beta density in standard form 
having parameters c and d but evaluated at u. In (9), r denotes 
the number of mixands and W£ denotes the mixing weights, 
with the constraints that we ~ 0 and Ef=1 W£ = 1. Finally, 
go is a centering function for g. The data will revise 90 to 
an estimator of the unknown function g revealing the extent 
of departure from 90· In our application, it is natural to set 
go(x) = 1 +Ox, where in our example B is the posterior mean 
estimate of the corresponding parametric model. Because X 
and hence G(x) are nonnegative, we slightly modify Mallick 
and Gelfand's suggestion by chooeing T(v) = v/(1 + v). 

In viewing gas unknown. we might think ofr, (w1, ... ,wr). 
and the (ct, d.e) as unknown. In practice, we have found that 
assuming r is unknown gains little compared with, say, r = 6. 
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Given r, it is mathematically easier to assume that the 
component beta densities are specified but that the weights 
are unknown. Following Mallick and Gelfand (1994), we 
take C£ = £, dt = T + 1 - £, providing a Collection of 
densities that blanket the unit interval. Hence, specification 
of g is equivalent to specification of the w 's. In addition 
to the constraints that W£ 2: 0 and E£== 1 w.e = I, 
(9) and the condition g(O) = 0 implies that k!/(1 + 
k1) = E{~1 WtlB{k!/(1 + k,),c,,d,}, i.e., the we satisfy an 
additional linear constraint. 

For the Bayesian analysis, we need to specify a prior 
distribution for the w's, noting this is a distribution on the 
r-dimensional simplex. We chose for this distribution the 
Dirichlet("!= 1) (Berger, 1985, p. 561). The intuition behind 
this choice is as follows. If go is a baseline function for g, 
then we might choose f(w) such that, a priori, g is centered 
around go. The data would then revise this prior in terms 
of the support for go. Centering g around go corresponds to 
centering :Ef=l wz!B{u; q,dl) around u. If we center using the 
mean, as is typically done in the case of Dirichlet processes, 
we obtain 

LE(w,)IB(u;c,,d,) = u. (10) 
£=1 

Then (9) requires r~ 1 E!B(u;ez,dz) = u. If we use ez and dz 
as in previous the paragraph and take r even, expansion of 
the terms in this summation about 1/2 yields, to a firstOorder 
approximation, an average that is u. 

4. Intermediate Variable Distribution 

We next propose a flexible parametric model for log(£). 
There are many ways to specify a flexible, skewed, heavy•
tailed distribution for log(L). Possibilities include the skewed•
normal distribution, the mixture of normals distribution, or 
models such as those used by Davidian and Gallant (1993). 
These methods are easy to write down, but the MCMC 
calculations involving them are not entirely straightforward 
since they require Metropolis steps. 

In contrast, our method is to assume log(£) has an un•
known distribution and impose a P6lya-tree prior (Lavine, 
1992; Walker and Mallick, 1996). The method allows consider•
able flexibility in the mndel for log( L) as well as great ease of 
calculation. The flexibility and ease of calculation are bought 
at the price of difficult notation. 

We give here a brief description of the methodology 
used. Within each state s, we assumed that the distribution 
function oflog(L) for nonzero doses was F8 (x-a8 o-zTa8 I), 
where F8 (·) is the realization of a random distribution 
function. The prior for Fs ( ·) is a P61ya tree distribution, 
defined as follows. 

We start with a base distribution function G, the normal 
distribution function {with a large standard deviation, in 
this case 40). We then partition the real line. At stage 
m = 1, the first partition is (Eo, BI), where Bo = 

(-oo,G~ 1 (1/2)). At stage m = 2, we partition Bo and B1 
separately into (Boo, Bol) and (Bw, Bn), respectively, where 
Boo = ( -oo, G~1 (1/4)) and B10 = [G~ 1 (1/2), G~ 1 (3/4)). 
We continue in this way so that, at stage m + 1, we partition 
Bi1 , •.. ,i..,. into Bi1, ... ,im,O and Bi1 ,.,.,i.,...,l· At any stage m, 
order the j = 1' ... ' 2rn partitions into n; and note that 

Bj = [G~ 1 {(j- 1)/2m]}, G~ 1 (j/2=)). In our calculations, 
we continued with m = 1, ... , M = 8 levels of partitioning. 

The P6lya tree prior for F8 is defined on the sets Bj 

for j = 1, ... , 2M as follows. At stage m = 1, let Co 

be the realization of a beta random variable with indices 
bo, (o). Then Fs(Bo) = Co, and of course F,(B,) = C1 = 
1 - Co. At stage m = 2, let Coo and Cto be realizations of 
beta random variables with indices ('YOO,(ao) and ('YIO,(w), 
respectively. Then F8 (Boo) = CoCoo, F,(BDl) = C0 (1 -
Coo), F,(B10) = C1C10, F,(Bn) = C,(1 - C10). We 
continue in this way for m = 3, ... , M, thus defining F8 on 
the sets Bj for j = 1, ... , 2M. This defines a P6lya tree 

distribution with partition 0 = (Bj)1:: 1 and parameters 
A= {-y0,(o>Yoo,(oo, ... ), which we denote as PT(fl,A). For 
our prior, at stage m, we set the t's and the <' s all equal to 
Cpolyam2 , where Cpolya = 0.5, although we experimented with 
different values 0.1 :5 Cpolya :5 1.0 and the results changed 
hardly at all. 

We have now defined the P6lya tree prior for F8 • Given 
observations Lis from state s, the posterior of Fs is also a 
P6lya tree distribution with the same set partition n. The 
parameters are updated as follows. First, at stage m = 1, 'Yo 
is updated to 1o+no8 , where nos is the number of L's in state 
s that fall into the set Bo. At stage m = 2, 700 and 'i 'w are 
updated to 100 + naa and '110 + nw, where njo is the number 
of L's in state s that fall in Bjo· Further levels of the t's are 
generated in the same way. 

In the MCMC calculations, suppose that the complete 
conditional for Fs is PT(rl,As*). We generate observations 
from state s as follows. First generate F8 • In state 8, the 
distribution function for the L's is F8 (x- aso- zTa8 t)· 
Observations from this distribution function are easily 
generated by a Metropolis-Hastings step. Conditioned on F, 
the regression parameters a 8 o and a 8 1 are also generated by 
a Metropolis-Hastings step. See the Appendix for details. 

5. Analysis of the Nevada Test-Site Data 

5.1 Mode! Fitting 

This section provides our reanalysis of the Nevada test-site 
data, where we illustrate the methods we have developed. 
In what follows, we will refer to the parametric dose•
response model (5) and the semiparametric dose-response 
model (8). We will also refer to four error structures: (a) 
none, i.e., ignoring measurement error; (b) Berkson, i.e., when 
all measurement error is Berksoni (c) classical, i.e., when all 
measurement error is classical; and (d) mixture, i.e., when the 
fraction p of the measurement error variance is Berkson and p 
is uniformly distributed on the interval [0.2, 0.8]. We will also 
refer to models for the latent intermediate variable L, namely, 
the parametric normal model ( 4) and the semiparametric 
latent intermediate variable model described in Section 4. 

In our analyses, the response Y was the period prevalence 
(1985~ 1986) of thyroid neoplasms. There were only 19 such 
neoplasms in the data set, although the effect of dose is 
statistically significant when ignoring measurement error and 
performing a likelihood ratio test. 

Table 1 gives results for the parametric dose-respoilSe 
mode] (5) for the cases that mea..~11rement error is ignored, 
is purely Berkson, is purely classical, or is a mixture of 
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Tab le 1 
Postfflor tntllTl$ and credible sets f or the parameter 8 in model {5) 

aM for the relative risk ot tr1le dose I Gy {100 ra<i) 

Lower 95% Upper 95% Lov.·er 95% Upper 95% 
En or Latent Posterior credible credible R.Rat credible credible 
model variable mea..o 8 bound 

No error 38.90 16.28 
Clo.o;sica1 Normal 74.06 34.52 
Classical Sem i 68.19 30.9 1 
Oerkson 31.90 13.09 
MixLUre Nortm\l 56.1 I 18.58 
Mixture Sem i 45 .6() 12. 1<> 

clas:,ical ami Ocrkson e rror. In the fi rst two C3SC!:; 1 no latent 
im.en ncdiaLC variable modcJ is assumed. while for the other 
c:ascs, we allow for the paramet ric or semi paramet ric latent 
intennediate variable model. This ~.-able giv~ results bolh for 
the estin,ate or() as well as for the relative risk at true dose 1 
Gy = 100 rud. 

Kote that, M expected from the theory, ignoring the mea~ 
surement. error 1ctu:ls to a slight overestimate of the dose•
response rat c a,~; compared with a pure Berkson error anal•
ysis. In oout.rASL, if all t.he measurement. error were cla.ssJcal, 
ignoring measurement error would lead to a substantial un· 
dere:stimate o f risk. This i.s in agreement with the calcu1ations 
of Steven~ ct al. ( 1992). In rCS \IIts not reported here. v.-e com· 
putcd the maximum likelihood estifnnte for 0 via numerical 
integration, the estimated value being almost the same as the 
posterior mean. As mig ln. be expected from these oonsidcro•
t ions, the mixiure error model gives risk estimates bet.woon 
the no-error and LOOo/o..cJa.ssical error estimates. 

Figure 1 illustrates the lack of normality of log(L) in Utah. 

bound dOOS<> = I Gy bo~tnd bO\.md 

58.98 9.43 4.53 13.79 
108.55 17.06 8.48 2~.54 
102.15 15.79 7.70 23. 16 
48.00 7.92 3.~ 11.41 

101.98 13.17 5.03 23. 12 
~.99 10.89 2.63 22.60 

In our case, the Berkson error model suggests a lower bO\llld 
on the relative risk of 3.84, whit~ the mixture semipa.ram~tric 

model suggests a lower bound of 1.68. Correspood ing largP 
differences are seen in the upper 95% credible bounds, not too 
surprising given the extra flexibility in our modeling approath. 

5.2 Model Seleclion 

In select ing among the modcJs described in Soct.ion S. L, 
customary Bayesian rnodel screeuillg selects the model with 
the largest va.lue of the marginal density of the data 
evalual.ed at the observations . In the present C.'\SC, we will 
use t.be deviance information criterion ( DIG ) a.') in Spiegel· 
halter, Dest, and Carlin (unpublished manuscript) to do 
this cale ulat.ion. Get b be the posterior expcctabion of the 
deviance of the model and Po be the cffcct.ivc n\HHbCr of 
parameters in the model, defined as Po = D- D(;;), whe re 71 
contains all the pararneters of the tnodcl and iJ is it.s posterior 
expectation. Then DIG = fJ + Po and can be calculated 
easily using the MCMC satnples and using the sample means 
of the simulated values of D and the plug-in t$t imatcs or the 
deviance using the sample means of the simulated values of 
an the parameters 11· 

Specifically, we computed a posterior mean P61ya tree dis•
tribution by averaging the MC~1C probability values ror each 
partition. \Ve ~hen generated 5000 observations from this pos~ 
terior mean P61ya tree. As seen in Figure l , the result. is skew, 
pointing out the need for more flexible latent inu~rmcdia~ 

variable modeling in t he log scale. Coupled \Vith tltis plot lC 
indicating the need for a flexible d istribution for the latent 0 

intermediate variable, we will present evidence in Section 5.2 ~ 
in support of tbe need for a flexible dose--response funct ion. o 

Table 2 give:; the general results and compares the pnra..•
met ric a nd semi parametric dose-response models {5) and (8). 
Here we ref)tl-iCL attention to estimating the relative risk a t 
t rue dose 1 Cy = lOO rad. lu our discussion, we specifically 2 
want. to OO nLrUSL two analyses: (a) Oerkson error model with o 
the dose r~porlsc fun ction (5), an analysis fa irly dose to that I 
done in Stevens CL al. {1992), and (b) t he mixture or Berkson ~ 
and clfL'>Sical errors with scmipa.ramctric do:;e resp<>nse and 
latent intermediate variable functions. Note t.lm.t t.he latter 

0 

model suggests a near dvubling of the posterior mean relative 0 

risk from 7.92 to 14.23. 
Perhaps the more interest ing result is the compa.risoo be�

tween the uncertainties in these posterior means as exhibited 
through 95% credible intervals. lt. is wen known in measure-•
ment error models that correction for mea.,uremem. error a£. 
rects both parameter estimation and predsion of inference. 

Fig·m·c l. A hiswgram illustrating th0 posterior distrib\1· 
tion of r~Or)z,ero values of log(L) for Utah when modeled by a 
P61ya tree distribution, 
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Table 2 
Posterior means and credible sets for the relative risk at true dose I Gy ( HIO rad) 

Error 
model 

No erro r 

Berkson 

Classical 

M ixture 

Regression 
model 

Parametric 
Semi parametric 
Parametric 
Semi parametric 
Parame1.r ie 

Semiparamet ric 

Paramet ric 

Se1niparamctric 

Latent 
variab le 
model 

Parametric 
Semi parametric 
Pi.\rametric 
Semiparamet.ric 
Parametric 
Semi parametric 
Parametric 
&~miparamctric 

For logistic regression with probtthilities p,, the deviance is 
D = 2E, Y, log(Y,/p,) + ( \'1 - 1) Jog{(!-Y,)J(l - p,)). DIC 
ror no dose effect is 229.2. DIC ror pararnct.ric models with· 
out. error • with Berkson c·rrors, with classical errors, and witb 
mixture errors a re 218.5, 2l4.6, 213.9, and 2ll.4, respectively. 
DJ C for scmiparametric models without error, with Berkson 
errors, with c lassical errors, and with mixture errors are 216.3, 
211.7, 210.4, and 207.2, respectively. T his gives soooe support 
for the need to usc t.he scmiparametric regression model (8) 
coupled with Lhe semipara rnctric dose-response model (Se<..'•
tion 4). 

6. SiniUlations 
' W e ~rfonned a sm all simulation study to understand the rel•
ative performance of our m.ethods. T he sample size was lbe 
same as in the data set , with two logistic functions in true 
dose X : (a) logit{pr( Y = I I X )} = log( I + 0.6X) and (b) 
logit{pr(Y "' 1 1 X)} = 2 - 1./(J + X 2). W e assorned that 
half the measurement ecror was classical and half was Berkson 
and that t he measurement error was relatively la.rge. Specifi•
cally, log(L) = normal(-0.3466,0.84082 ), log(X) =log(!,)+ 
normal(O, 0.84082) , and log(W) = Jog(L)+normal(0,0.84082

). 

'fbese specificat-ions mearlS that. X < 0. 10 wit.h probability 
0.05 and X < 5 with probability 0.95, not too far from what 
appears lo a.ctuaUy happen ln the nct.\131 data with dose di•
vided by 0 .461Gy. \Ve evaluated the relative risk o n t.he in•
terval 0 to 5. The main difference between the l:iimulationnnd 
the data is that the former has many more obsen 'tlt.ions with 
Y= l. 

\Ve genera ted a s ingle data set. Figures 2 and 3 compare the 
true relative risk function (thicker solid line)1 the estimated 
relative risk when error is ignored (thin solid line), a nd the 
fit via our semipanunet.ric dooe-response a nd latent interme•
diate variable model (doshed line). T he f~g>ares demonstrate 
t he superiority of our methods in these two Ct1.'5e$. 

In addition, we computed the D IC for these t,, .. o sirnulatec.l 
data sets. As expected, in the first s imulation, the paramet•
ric model (dose-respontie and latent intermcdia t.c.: variable) 
had the lowest DIG, while in the second , the SCnliJ>Matnet.ric 
modcl had the lowest DJC. 

Relative { ..o \V CT 95% Upper 9~% 
risk at credible credible 

dose 1 Gy interval interval 

9.43 4.&3 13.79 
13.77 2.46 18.9 1 
7.92 3.84 11.41 
9.95 3.10 13.20 

17.06 8.48 24.~4 
15.79 7.70 23.16 
21.54 9.4 1 36.66 
18.98 7.98 32.69 
13.17 5.o3 23.12 
10.89 2.63 22.60 
16.42 2.19 34.75 
14.23 1.68 33.61 

7 . Discussion 

7.1 Summary Comment-s 

We ha"e constructed 8ay<:sion methods for analysis of 
data when predictors have & combination or cla.')Si<;al and 
Berkson measurement. error. W e appliOO our methods tO an 

im.portant. data set in radiation epidemiology. T he methods 
allow for a scmiparametric yet monotonic regression fuJ\Ct.ion 
a long with a. scmip.-Lrametric latent intermediate variable 
model. The methods are easily extended lO any generalized 
linear model. In our exrun ple, the combination of the two 
semiparametric approaches yi~ldOO tl1e smallest. d~wianoo 
information criterion. lt also yielded a much larger relative 
risk at relatively high doses than $\~gg.,;ted by a Oerkson 
error model with parametric dose response furlCtiOn1 albeit 
with much wider uncert.a.inties in the estimat.e of this rela tive 
risk. 

Figure 2. Results for the simulated data set. with 
logit(pr(Y = 1 J X )} = log( I + 0.6X). The true relati"c 
risk is the thicker solid Linc

1 
the estimated relative risk 

ignoring mea.'iurerncnt error is the thin solid line, a nd our 
semipara mctric estimate is t he dashed line. 
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Figu re 3. Results for the simulated datu M!t with 
logit{pr(Y = I I X)} = 2- 1./{1 + (X2)}. The <rue 
rclo.tivc risk ls the thicker solid line, the <'&limnted relatlve 
r•sk ignoring measurement error is the ~hin solid line, and our 
M·mipa.rnmC"tric estimate is t he dMht'<l lillC:. 

lu our cxomple. the total error vnrinm:c, i.e., t.hc 8Um 

of the JJerkson and classical error variances, wo.s assumed 
(0 tw known for each individt.ml but thr individual C'rror 
varinnccs ww; unknown. In the context of the exantple, it. 
\'oM imJ)rfi.C.'lical for us tO redo the dosimetry rotl...,t.ruction and 
to tlm.'i unLAng.le the rt!'lativ.- contributions to the total error 
"'nriantt. Our solution tO this dile:rnma v.'M to &&-Utile that a 
frortion pof each '-arianc:e was of Ot>rlt.on ty(><', and ... pia«<! 
a uniform. distribution on p within a wflkltfined inlf'n'&lthat 
i:t. reasonable in the OOT\U!Xt Of tht C:X&rnp)('. Of COUr&C, jf the 
tlosirnctry could have been redone, then th~ information could 
lx- inrorporated nat.urally into the R3,)'{'bian rraruework. 

The pl'eoodirlg pantgraph ma.k~ cleur, ancl it i.:, wort.h 
rt•C'mpha:,iziug, that we hnve heen forC<'d to assunte tl•at 
the data set. aecurately specified ~he totnl error varla.nce. 
' L hi~ iH clearly a ma j or limitAtion or any annlyt~ is of dooe 

un<'(•rtn.intie~. IL is al~o Jlrohnble t hnt. t.l1e pC'r<'(l lttogt~ t> of total 
error t ltat is classic.1.J varies from individual to individual; we 
hnvc chosen to make p fixed ocross Individuals, although at 
l<•n..-,t.. in prlnC"iplc we oould have allov.·cd it to vary oe<.:ording to 
S01 1W ~->PN"ifi<:d distribution. 'rhC* two J>i{'()C8 of un&\'Oidablc 
roughness in the data base mea.n.s thRL th~ ~r\·nda te6t-sitc 

data should b<st be thought of as"'' illuotratiou o f the general 
m<-1 hodology. 

ln other examplES, tbe total error \Viance may not be 
knO\\ n Our methods are. in principle, tMily cxt.cn<IOO to this 
.,..,..., although issues of identifiability become more complex. 

\Vh~uever there is a component or classical error~ a 
di.Stribution for a latent intermt>dit:Lte variable must. be 

~J>e<:ified. At feast in pdnciple, it. is po681ble that. misspecifying 
th(! di~trib\Jtion or the latent intermediate vnrinble could cause 
blnscs in regression modeling. \Vc assumed sepamte regres&ion 
IIIOdCIS ror Q Cat.egOrien.l varittblc und COO~idcrcd hoth £u1Jy 
p&rtUriCtric a rH.J Rexible semip<,nl•notric d i.stril>utions, the 
hu.lcr lmscd on the P61ya tree distl'ibution, Clcorly, there is 
nod1ing magical about the P61yn tr<'t' di~tribution, and other 
flexible semiparamctric distributions could lw ua<.."<<. 

\\·e also examined thfl' form or the d06e-rcsponsc function, 
allowing the dose to 1x- modeled M'miparametricaUy. In 
tbe context of ~he example, 1t was reasonable to assume 
a monotonic function, and our M:!rniparametric approach 
incorporates the monotonicit.y nnturslly. 

7.2 Shared Uncertamhc• 

FinaLJy, we comment on o ur wumption that the Berkson 
and classical errors a.rc indcl)<'ndent.. across individuals. This is 
almost certainly not. the CASe, nnd thus our data analysis uu~y 
thus be best thought of as au UJu~tration of methodology. 
The ra.dioiodine OOilCX'ntrMiOn or milk, C , in (1) includes 
the deposition of 1131 by ~ion, 1ts mass interception on 
vegetation, the effectJ\t haJf.llfe of 1131 in the \"egetation , 
the oonsumption of ''eget&tion by~.,. and tbe milk transfer 
coefficient (abbre,iated here M MTC). \\'bile similar issues 
apply to tbc ma.ss intercepbon aod the dose COO\-ers.ion 
Fa<:tor. consider for example the MTC for a child in a 
particular region whotte rnilk corues from a backyard cow: thl' 
problem we now discuss IS probably even greater for children 
consuming milk from com•ncrcial dairies. As we understand 
it , as part of the modeling J ) roccss, the Ut.ah study generated 
a dist ribution for t.hc MTQt rue log normally d istributed with 

mean J.Lt~- ITC and variance u~ITC· 1£ these parameters were 
known, then th<' rrmr strueture for the MTC would be 
primarily Berkson. I towC'vrr, tht"&" parameters are no'- known 
and are instead estimat<>d by ft. ('()lnbiuation of historical data 
and literature re\•iew. Thi!-t lOtan~ I hAL the error in estimating 
the coefficients is the ""'nr, hen<'<' shared, by alit be childt'<'n 
in tbe region with a backyard cow 

U oderstandin~ how such l'lhftn.'d uncertainties affect para .. 
meter estimation and mft"ffnct as an open problem .:orth 
considerable study. \\'~ hMe perform«! one prehminal)' 
Cl\lculation. \Ve consider the panmu:tric ~response model, 
the parametric (normal) latent tntermediate \'llriable ( L) 
model, and the mixtu~ or lkrkson and classical error 
structure. \Ve allo\lo·ed for shared un~rtainties in the Berkson 
error model (2). Specifically, for the s•x grouP" formed by •he 
combinations of stat~ nnd genders. the Berkson errors for 
ind ividuals within cnch group Wf!rc ossumcd to have common 
correlation p, w h ich we varied from 0.01 0.2, 0.4, and 0.6. The 
posterior mean estirnot.ett of the par·n.mctcr 0 ror each of th('S(' 
s ituations were 56. 1 I, 65.85, 84. 12t and 9:>.06, t CS(>OCtively. 

The credible intervals ""'• (18.58, 101.98), (21.44,120.21 ), 
(30.41, 142.95), and (38.23, 151 69), respectively. The fairly 
large cha.flges in pt:Lram<."ter O!timates and credjbJc intcr\"al~ 
suggest the need in futui'C' for data to be gathered that can 
accou.nt for tbe pcltiSibiluy of ttbared un«:rtainties.. 
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monotone quand les predicteurs sont mesur€s avec une er•
reur classique, une erreur de Berkson ou les deux. De telles 
methodes demandent une distribution pour le predicteur non 
observe (variable latente), distribution que no us modClisons 
a.ussi de f~n semi-parametrique. De telles combinaisons de 
methodes semi-paramCtriques pour la rCponse a des doses 
aussi bien que pour la distribution de Ia variable latente n'ont 
pas ere etudiCes dans la littffature sur les erreurs de mesure, 
quelle que soit Ia forme de l'erreur de mesure. De plus, nos 
methodes proposent une nouvelle approche des problemes oii 
l'erreur de mesure combine une composante de Berkson et une 
composante classique. Ces methodes sont generales mais nous 
les dCveloppons au tour d 'une application particuliE~re qui est 
l'Ctude des maladies de la thyro"ide en relation avec les radi•
ations venant du site de test du Nevada. Nons utilisons ces 
donnees pour illustrer nos methodes, lesquelles suggerent une 
estimation ponctuelle (moyenne a posteriori) du risque relatif 
a des doses pres de deux fois plus elevee que celle obtenue 
par les analyses pr8cedentes, mais suggere aussi une bien plus 
grande incertitude sur le risque relatif. 
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APPENDIX 

MCMCDetails 

The prior for the f3's were independent normals with mean 
zero and variance 1000. The prior for fJ was a truncated nor•
mal with mean 40 and variance 100. The prior for p was 
uniform[0.2,0.8]. The prior for thew's was Dirichlet(-y = 1} 
{Berger, 1985, p. 561). The priors for the state-level parame•
ters (a 8 o, a 8 1) was independent normals with mean zero and 
variance 100. The P6lya tree prior is as specified in Section 4. 

The Metropolis proposals were as follows. The subscript 
"old" means the current values of the parameters. For the 
{3's, the Metropolis proposals were normal(f3old, 1.0, and sim•
ilarly for the B's. For the w's, the following considerations 
apply. To accommodate the constraint to the simplex, it is 
rescaled to r - 1 dimensional Euclidean space using a logit 
transformation. Supressing subscripts, let ze = log(we). The 
Jacobian from theW-Space to the z-space is llf=tW£ 1 whence 
the complete conditional distribution for z, up to a eonstant 
of proportionality, is readily obtained. A normal proposal den•
sity with mean the current value and standard deviation 0.5 
is used for z, and starting values W£ = 1/r worked well. The 
proposals for the state-level variables a 8 o1 a 8 t were inde•
pendent normals with the current values as the mean and 
standard deviation 0.5. The prior is used as the proposal 
for p. 
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Multiple-day food records or 24-hour dietary recalls (24HRs) are commonly used as "reference" instruments to 

calibrate food frequency questionnaires (FFQs) and to adjust findings from nutritional epidemiologic studies for 
measurement error. Correct adjustment requires that the errors in the adopted reference instrument be 
independent of those in the FFQ and of true intake. The authors report data from the Observing Protein and 
Energy Nutrition (OPEN) Study, conducted from September 1999 to March 2000, in which valid reference 

biomarkers for energy (doubly labeled water) and protein (urinary nitrogen), together with a FFQ and 24HR, were 

observed in 484 healthy volunteers from Montgomery County, Maryland. Accounting for the reference 

biomarkers, the data suggest that the FFQ leads to severe attenuation in estimated disease relative risks for 

absolute protein or energy intake (a true relative risk of 2 would appear as 1.1 or smaller). For protein adjusted 

for energy intake by using either nutrient density or nutrient residuals, the attenuation is less severe (a relative 

risk of 2 would appear as approximately 1.3), lending weight to the use of energy adjustment. Using the 24HR as 
a reference instrument can seriously underestimate true attenuation (up to 60% for energy-adjusted protein). 
Results suggest that the interpretation of findings from FFQ-based epidemiologic studies of diet-disease 

associations needs to be reevaluated. 

bias (epidemiology); biological markers; diet; energy intake; epidemiologic methods; nutrition assessment; 

questionnaires; reference values 

Abbreviations: DLW, doubly labeled water; FFQ, food frequency questionnaire; OPEN, Observing Protein and Energy Nutrition; 

24HR, 24-hour dietary recall. 

Much of the recent literature on the relation between diet 
and cancer has been based on analytic epidemiologic studies 
using food frequency questionnaires (FFQs). A number of 
large prospective studies of this kind have failed to find a 
consistent relation between dietary components (such as fat, 
fiber, and fruits and vegetables) and cancers of the breast, 
colon, or rectum (1-3), which may be explained by a true 
lack of diet-cancer associations or, alternatively, by serious 

methodological limitations of the studies themselves, espe•
cially due to FFQ measurement error. 

Over the years, investigators have recognized that the 
reported values from FFQs are subject to substantial error, 
both systematic and random, that can profoundly affect the 
design, analysis, and interpretation of nutritional epidemio•
logic studies (4--{}). Dietary measurement error often attenu•
ates (biases toward one) the estimates of disease relative 
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risks and reduces statistical power to detect their signifi•
cance. Therefore, an important relation between diet and 
disease may be obscured. 

This problem has prompted researchers involved in large 
epidemiologic investigations to integrate calibration 
substudies that include a more intensive, but presumably 
more accurate, reference method, typically multiple-day 
food records (7) or multiple 24-hour dietary recalls (24HRs) 
(8). Comparing reference measurements with those from the 
FFQ enables adjustment for attenuation by using the regres•
sion calibration approach (7). However, the correct applica•
tion of this approach requires that the adopted reference 
instrument satisfy two critical conditions. Although it may 
be imperfect and contain measurement error, this error 
should be independent of I) true intake and 2) error in the 
FFQ (9). Throughout this paper, we take these two condi•
tions as requirements for a valid reference instrument. 

A great deal of accumulated evidence suggests that 
common dietary report reference instruments are unlikely to 
meet these requirements. Studies with the few biomarkers of 
dietary intake that do qualify as valid reference measure•
ments ("reference" biomarkers), such as doubly labeled 
water (DLW) for total energy expenditure and urinary 
nitrogen for protein intake, demonstrate serious systematic 
biases in all dietary report instruments that may be poten•
tially related (10-16). This has led to proposals for new 
models of dietary measurement error that might explain why 
the large prospective studies fail to find a relation between 
diet and cancer, even were an important relation to exist (9, 
17, 18). 

For example, Kipnis et a!. (9) considered two potential 
systematic components of dietary measurement error. The 
first component reflects correlation between error and true 
intake ("intake-related" bias). The second component 
("person-specific" bias) is independent of true intake and 
represents the difference between total within-person bias 
and its intake-related component. The existence of 
person-specific biases was proposed in all dietary report 
instruments, and a sensitivity analysis demonstrated that 
correlation between person-specific biases in the FFQ and 
the reference instrument, if ignored, could lead to serious 
underestimation of the degree of attenuation in a conven•
tional calibration study. In a subsequent paper, Kipnis eta!. 
(18) provided empirical evidence directly supporting their 
hypothesis, based on the results from a validation study that 
included the urinary nitrogen reference biomarker for 
protein intake. Moreover, based on the urinary nitrogen data, 
the measurement error model was extended to also include 
intake-related bias in dietary report reference instruments 
and was shown to fit the data statistically significantly better 
than other proposed models. 

In this paper, we take this further by analyzing data from 
the Observing Protein and Energy Nutrition (OPEN) Study 
that included reference biomarkers for protein (urinary 
nitrogen) and energy (DL W) intakes, together with a FFQ 
and a 24HR. This study enabled us to evaluate not only abso•
lute protein intake but also total energy and energy-adjusted 
protein intakes (19). We were therefore able to investigate 
the conjecture that energy adjustment substantially reduces 
measurement error in reported intake and that remaining 
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error can be reliably corrected for by the common approach 
(20). 

MATERIALS AND METHODS 

Effect of measurement error 

The effects of dietary measurement error on the estimation 
of disease risks are well known (9). The most important 
concept is that of attenuation. Consider the disease model 

(I) 

where R(Di1) denotes the risk of diseaseD on an appropriate 
scale (e.g., logistic) and Tis true habitual intake of a given 
nutrient, also measured on an appropriate scale. The slope a1 

represents an association between the nutrient intake and 
disease (e.g., log relative risk). In practice, FFQ-reported 
intake Q is used instead of unknown true intake T. We 
assume throughout that dietary measurement error is nondif•
ferential with respect to disease D; that is, reported intake 
contributes no additional information about disease risk 
beyond that provided by true intake. To an excellent approx•
imation, fitting modell to reported intake leads to estimating 
not the true risk parameter a1 but the product a! = /...1 a1 of 
a 1 and the slope /...1 in the linear regression calibration model, 
T = A, + A1 Q + ~. where ~ denotes random error. 

In nutritional studies, the value of A1 is usually between 0 
and I (21), so dietary measurement error leads to underesti•
mation of the true risk parameter. This underestimation is 
called attenuation, and /...1 is called the attenuation factor. 
Values of /...1 closer to zero lead to more serious underestima•
tion of risk. For example, a true relative risk of 2 would 
appear as 2°·4 = 1.32 if the attenuation factor were 0.4 and as 
2°·2 = 1.15 if the attenuation factor were 0.2. 

Measurement error also leads to loss of statistical 
power for testing disease-exposure associations. Approx•
imately, the sample size required to reach the desired 
statistical power to detect a given risk is proportional 
to N= l/{p2(Q,T)cr}} = 1/{Afcr~}. where p(Q,T) is 
the correlation between the reported and true intakes and cr~ 
and cr~ are the between-person variances of the reported and 
true intakes, respectively (21). In particular, for a given FFQ, 
the required sample size is inversely proportional to the 
squared attenuation factor, A.~. For example, if the true atten•
uation factor were 0.2, the sample size, calculated by 
assuming that A1 = 0.4, should be multiplied by 0.42/0.22 = 4 to 
achieve the nominal power. 

Estimation of the attenuation factor 

Estimation of the attenuation factor /...1 requires collecting 
additional reference measurements to compare with the FFQ 
in the calibration substudy (9). The common approach in 
nutritional epidemiology uses a more intensive dietary report 
method as the reference instrument, assuming that it is unbi•
ased at the individual level and that its errors are independent 
of those in the FFQ (7). In this paper, we contrast this model 
with the measurement error model of Kipnis et a!. (18) that 
specifies the same general error structure in the dietary 
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report reference instrument (F) as the one for the FFQ (Q). 
To be fully identifiable, the model requires data from a refer•
ence biomarker. The model is specified as 

Qu = J.lQi + ~Qo+ ~QIT; + r; +eu 

Fij = llFj + ~Fo + ~FITi+si+ uij 

Mij = JlMj+Ti+t>ij, 

(2) 

where Jl 0 , JlFj• and JlMj are time-specific group intercepts for 
the FFQ, 24HR, and biomarker, respectively, which sum to 
zero over j; ~QO and ~FO are the overall group intercepts for 
the FFQ and 24HR; ~QI and ~FI are the slopes reflecting 
intake-related bias for the FFQ and 24HR; r; and s; are 
person-specific biases for the FFQ and 24HR that are inde•
pendent of true intake Ti, have means zero, variances a~ and 
cr:, respectively, and are correlated with the correlation 
coefficient P,s; and eij, uij, and uij are within-person random 
errors for the FFQ, 24HR, and biomarker, with means zero 
and variances cr~, a~, and a~, respectively, that are assumed 
to be independent of each other and of other terms in the 
model, except that "within-pair" errors (eij, uij), (eij, u!i), and 
(uip ui) are allowed to be correlated, if the corresponding 
measurements are taken contemporaneously. 

In the presence of the reference biomarker, model 2 does 
not require an instrument F to estimate the error components 
in the FFQ. However, its inclusion enables us to additionally 
analyze the error structure of the dietary report reference 
instrument and its relation to that in the FFQ. 

The common model may be obtained from model 2 by 
ignoring information from the reference biomarker and 
assuming that the dietary report instrument F contains no 
intake-related bias (~FI = 1) or person-specific bias 
( cr; = 0). We use the following general form of this model: 

Qu = J.lQi + ~Qo + ~QI T; + r; + eu, 
Fij = JlFj+T;+Uij. 

(3) 

When the model parameters are used, the attenuation 
factor is expressed as 

(4) 

and the correlation of the FFQ and true intake is given by 

PQ, T = cov(T, Q) 
)var(T)var(Q) 

Both are estimated by replacing the parameters by their 
estimates based on the corresponding model 2 or 3. Doing so 
is essentially equivalent to adjusting for random measure•
ment error in the adopted reference instrument. 

The OPEN data 

The OPEN Study was conducted by the National Cancer 
Institute from September 1999 to March 2000. The recruit•
ment procedure, subject characteristics, and detailed study 
conduct are described in the companion paper in this issue of 
the Journal (22). Briefly, 261 male and 223 female partici•
pants aged 40--69 years were healthy volunteers from Mont•
gomery County, Maryland. Each participant was asked to 
complete a FFQ and a 24HR on two occasions. The FFQ was 
completed within 2 weeks of visit 1 and then approximately 
3 months later, within a few weeks of visit 3. The 24HR was 
completed at visit 1 and then approximately 3 months later at 
visit 3. Participants received their DLW dose at visit 1 and 
returned 2 weeks later (visit 2) to complete the DLW assess•
ment. In addition, repeat DLW measurements were collected 
from 14 male and 11 female volunteers who received their 
second DL W dose at the end of visit 2 and returned 2 weeks 
later to complete their DLW assessment. Participants 
provided two 24-hour urine collections during the 2-week 
period between visit 1 and visit 2, verified for completeness 
by using the PABAcheck method (23). Since approximately 
81 percent of nitrogen intake is excreted through the urine 
(18) and nitrogen constitutes 16 percent of protein, the 
urinary nitrogen values were adjusted, by dividing by 0.81 
and multiplying by 6.25, to estimate individual protein 
intake. 

The adopted FFQ was the Diet History Questionnaire, 
developed and evaluated at the National Cancer Institute 
(24-28). The 24HR was a highly standardized version using 
the five-pass method, developed by the US Department of 
Agriculture for use in national dietary surveillance (29). 

Statistical analysis 

Throughout, we applied the logatithmic transformation to 
energy and protein to make measurement error in the DLW 
and urinary nitrogen biomarkers additive and homoscedastic 
and to better approximate normality. In addition to total 
energy and protein, the reference biomarkers in the OPEN 
Study enabled us to evaluate dietary measurement error for 
energy-adjusted protein intake. Because modeling relations 
between disease and multiple covariates measured with error 
is beyond the scope of this paper, we assumed that model I 
included only energy-adjusted exposure and that energy was 
not related to disease. We used two energy adjustment 
methods: nutrient density and nutrient residual (19). Protein 
density was calculated as the percentage of energy from pro•
tein sources and was then log transformed. The protein 
residual was calculated from the linear regression of protein 
on energy intake on the log scale. Both protein density and 
residual were calculated for each instrument by using the 
protein and energy intakes as measured by this instrument. 
The convention used for dealing with biomarker-based 
derived measures is explained in the Appendix. 

For all dietary vatiables, we excluded extreme outlying 
values that fell outside the interval given by the 25th percen•
tile minus twice the interquartile range to the 75th percentile 
plus twice the interquartile range. For each variable and each 
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TABLE 1. Estimated attenuation factor A, and correlation p( Q, 1) of food frequency 

questionnaire-reported intake (Q) and true intake (1)* in the Observing Protein and 

Energy Nutrition Study, Maryland, September 1999-March 2000 

Nutrient Gender Model 
Attenuation 

Correlation p(Q, 7) 
factor~ 

Energy Male Biomarker basedt 0.080 (0.025)t 0.199 (0.061) 

24HR based§ 0.230 (0.037) 0.437 (0.065) 

Female Biomarker based 0.039 (0.028) 0.098 (0.069) 

24HR based 0.128 (0.044) 0.261 (0.088) 

Protein Male Biomarker based 0.156 (0.034) 0.323 (0.067) 

24HR based 0.177 (0.043) 0.312 (0.074) 

Female Biomarker based 0.137 (0.041) 0.298 (0.088) 

24HR based 0.158 (0.046) 0.334 (0.098) 

Protein density Male Biomarker based 0.404 (0.066) 0.431 (0.063) 

24HR based 0.409 (0.066) 0.497 (0.077) 

Female Biomarker based 0.316 (0.084) 0.346 (0.087) 

24HR based 0.501 (0.060) 0.778 (0.117) 

* As estimated by the model accounting for the reference biomarker of intake or the 
common model accounting only for the 24-hour recall (24HR) as reference measurements. 

t Defined as model 2 in the text. 
:t: Numbers in parentheses, standard error. 
§ Defined as model 3 in the text. 

instrument, no more than six outlying values for men and 
four for women were excluded from the analyses. 

The estimates of the model parameters and their standard 
errors were obtained by using the method of maximum like•
lihood under the assumption of normality of the random 
terms in the models. Standard errors were checked for accu•
racy by using the bootstrap method. Comparisons of corre•
lated parameters (such as attenuation factors estimated by 
two models) were performed by comparing the ratios of their 
differences to the standard errors of the differences calcu•
lated by the bootstrap method with the standardized normal 
distribution. 

RESULTS 

The descriptive statistics for measurements taken by using 
the different instruments are provided in the companion 
paper (22). For energy-adjusted protein. the results for only 
nutrient density are shown since the results for nutrient 
residual were similar. 

Attenuation and correlation with true intake 

Table I displays the estimates of the attenuation factor '-1 
and correlation p(Q, 1) between the FFQ and true usual 
intake resulting from applying models 2 and 3 to energy, 
protein, and energy-adjusted protein. The table contrasts the 
estimated values when the common approach versus the 
biomarker-based model was used. 
Absolute intakes. The biomarker-based attenuation 

factors were distressingly close to zero. For example, for 
women, the attenuation factors for energy and protein were 
0.039 and 0.137, respectively. The attenuation factors esti-

Am J Epidemiol 2003;158:14-21 

mated by using the common approach were substantially 
higher (underestimating the corresponding attenuation) for 
energy at 0.128 (p = 0.05 when compared with the bio•
marker-based attenuation) and somewhat higher for protein 
at 0.158 (p = 0.73). Results for men showed a similar pattern. 
with the attenuation factor being statistically significantly 
overestimated (p < 0.001) when the common approach for 
energy was used. 

The correlations between the FFQ and true intake were 
also very low. The biomarker-based correlations for energy 
and protein intakes for women were 0.098 and 0.298, respec•
tively, while the common approach overestimated correla•
tions at 0.261 (p = 0.10) and 0.334 (p = 0.81). For men. the 
correlation estimated by using the common approach was 
statistically significantly biased upward (p < 0.001) for 
energy. 

Energy-adjusted intakes. For energy-adjusted intakes, 
the attenuation factors were somewhat higher (attenuation 
was lower) than for absolute intakes. For example, for 
women, the biomarker-based estimate for protein density 
was 0.316 compared with 0.137 for protein (p = 0.10). 
Results for men showed a similar pattern. with the highly 
statistically significant difference in attenuation between 
absolute and energy-adjusted protein intakes (p < 0.001). 

The attenuation factor estimated by using the common 
approach for women again appeared substantially more opti•
mistic than the biomarker-based estimate at 0.501 versus 
0.316 (p = 0.10) for protein density. For men. however. no 
marked difference was found between the attenuation factors 
estimated by using the two models. Correlations between 
FFQ and true intake for energy-adjusted protein displayed 
the same pattern as those for attenuation factors. 



250

18 Kipnis et al. 

TABLE 2. Variance of true intake and parameters of dietary measurement error in the food frequency questionnaire and 24-hour 
dietary recall,* the Observing Protein and Energy Nutrition Study, Maryland, September 1999-March 2000 

Variance of 
Slope in 

regression of 
FFOt-reported 
on true intake 

Slop: in Variance of Variance of Correlation ?! Vari~n~ of Variance of 
regression of person-specific pers~n- pers?n-sp~clftc withm- within-person 

Nutrient Gender Model true intake 
cYrx 102 

24HR-reported b' . FFQ spec1fic b1ases m person error in 24HR 
on true intake 1~ In 1 Q2 bias in 24HR FFQ and 24HR error in FFQ 2 102 

p"' Jlf1 ,x cr2sx1Q2 Pr.s cr2ex1Q2 OuX 

Energy Male Biomarker based:j: 2.6 (0.27)§ 0.49 (0.15) 

0.83 (0.15) 

0.24 (0.17) 

0.53 (0.20) 

0.67 (0.15) 

0.55 (0.14) 

0.65 (0.21) 

0.70 (0.25) 

0.66 (0.1 0) 12.2 (1.2) 3.2 (0.61) 0.45 (0.08) 3.2 (0.28) 5.3 (0.48) 

24HR based~ 4.4 0.68) 1 0 3.2 (0.28) 5.3 (0.47) 

Female Biomarker based 2.4 (0.29) 

24HR based 3. 7 (0.81) 

Protein Male Biomarker based 4.4 (0.57) 

24HR based 6.1 (1.0) 

0.46 (0.13) 

1 

0.70(0.11) 

1 

9.7(1.2) 

11.2 (1.3) 

10.3 (1.3) 

13.3 (1.4) 

13.5 (1.5) 

11.0 (1.5) 

10.7(1.6) 

3.2 (0.78) 0.28 (0.11) 3.9 (0.37) 7.9 (0.75) 

0 3.9 (0.37) 7.9 (0. 75) 

3.9 (0.94) 0.18 (0.10) 3.7 (0.33) 9.3 (0.82) 

0 3. 7 (0.33) 9.3 (0.82) 

Female Biomarkerbased 3.7(0.71) 0.60 (0.16) 2.6 (1.1) 0.24 (0.15) 4.8 (0.46) 12.0 (1.2) 

4.8 (0.46) 12.0 (1.2) 24HR based 3.9 (1.2) 

Protein 

density Male Biomarker based 3.1 (0.47) 

24HR based 2.4 (0.53) 

0.46 (0.08) 

0.60 (0.13) 

0.38 (0.11) 

1.2 (0.36) 

0.62(0.11) 

1 

1.6 (0.25) 1.2 (0.50) 0.40 (0.15) 1.2 (0.11) 5.8 (0.51) 

1.4 (0.30) 1.2 (0.11) 5.8 (0.51) 

Female Biomarker based 3.5 (0.72) 0.39 (0.13) 2.3 (0.36) 1.2 (0.60) 0.94 (0.19) 1.4 (0.13) 6.8 (0.65) 

24HR based 1.7 (0.59) 0.30 (0. 76) 0 1.4 (0.13) 6.8 (0.65) 

* As estimated by the model accounting for the reference biomarker of intake or the common model accounting only for the 24-hour dietary recall (24HR) as 

reference measurements 

t FFQ, food frequency questionnaire. 
t: Defined as model 2 in the text. 
§ Numbers in parentheses, standard error. 
11 Defined as model 3 in the text. 

Error structure of the FFQ and 24HR 

Intake-related bias. Table 2 demonstrates across-the•
board intake-related bias in both FFQ and 24HR measure•
ments. All biomarker-based estimates of slopes f3Q1 and f3p1 
were substantially smaller than the desired value of 1.0, 
leading to the flattened slope phenomenon. If anything, 
energy adjustment seemed to make this phenomenon even 
more pronounced. The flattened slope in the FFQ estimated 
by using the common approach is often not seen as clearly. 
For example, for males, the DL W -based estimate of f3Q1 for 
energy intake was 0.49, but the common estimate was 0.83. 

Person-specific bias. Table 2 also demonstrates the exist•
ence and importance of person-specific biases in reported 
intakes from the FFQ and 24HR. Compared with the true 
between-person variance a~, the person-specific biases a; 
and cr; were quite dominant for absolute intakes. For 
example, for females reporting protein intake, the FFQ 
person-specific bias variance was 0.110 and the 24HR 
person-specific bias variance was 0.026, quite large 
compared with the variance of true intake (0.037). Energy 
adjustment considerably reduced person-specific biases. 
Continuing with the example above, for protein density, this 
variance was reduced from 0.110 to 0.023 for the FFQ and 
from 0.026 to 0.012 for the 24HR, while the variance of true 
intake remained practically the same (0.035). However, even 
for energy-adjusted intakes, person-specific biases were still 
substantial and highly significantly different from zero. 

Table 2 also demonstrates substantial positive correlation 
Pr,s between person-specific biases in the FFQ and 24HR. 
The correlation increased after energy adjustment, especially 
for women. 

Within-person random error. For absolute intakes, 
within-person random variation a; in the FFQ was of the 
same magnitude as between-person variation a~ of true 
intake. Similar to person-specific bias, it was considerably 
reduced by energy adjustment. As expected because of day•
to-day variation in intake, within-person random variation a; in the 24HR was substantially greater. Interestingly, rela•
tive to variation of true intake, it was only moderately 
reduced by energy adjustment. In all cases considered, 
within-person random errors were not statistically signifi•
cantly correlated across instruments. 

"Nonprotein" intake. Using the measurements for protein 
and energy on each instrument, we also evaluated dietary 
measurement error for nonprotein-energy-contributed nutri•
ents ("nonprotein" for short), for both absolute nonprotein 
and energy-adjusted nonprotein intakes. The results for 
absolute nonprotein intake were similar to the results for 
energy, and the results for energy-adjusted nonprotein were 
similar to the results for energy-adjusted protein. 

DISCUSSION 

In this paper, we focused mostly on the attenuation factor 
because it directly affects the observed relative risks and the 
sample size necessary to detect diet -disease associations in 
epidemiologic studies. The critical requirement for our 
results that the adopted biomarkers represent valid reference 
instruments, that is, their errors are unrelated to true intakes 
and errors in dietary report instruments, is supported by 
accumulated evidence for both the adjusted urinary nitrogen 
(18) and DLW (30). The OPEN Study yielded the following 
conclusions. 

AmJEpidemiol 2003;158:14-21 



251

First, the impact of FFQ measurement error on total 
energy and absolute protein intakes was severe and in agree•
ment with the findings of Kipnis et al. (18) for protein intake. 
Attenuation factors were vexingly close to zero, as were the 
correlations with true intake. 

Second, the impact of measurement error seemed less 
severe after energy adjustment. As follows from expression 
4, the attenuation factor is inversely proportional to the vari•
ances of both person-specific bias and within-person random 
error relative to between-person variation of true intake. 
Since these relative variances decreased substantially after 
energy adjustment (table 2) because of correlated errors in 
reporting protein and energy, energy-adjusted protein was 
less affected by measurement error compared with absolute 
protein intake. However, the estimated attenuation factors 
for energy-adjusted intakes were in the range 0.32-0.41 
(table 1), indicating that measurement error still remained an 
important problem. 

Third, the 24HR was seriously flawed, suffering from 
intake-related bias and from person-specific bias that was 
correlated with person-specific bias in the FFQ. As a result, it 
violated both requirements for a valid reference instrument 
and in most cases substantially misrepresented the impact of 
measurement error in the FFQ. As follows from formula Al in 
the Appendix, bias in the attenuation factor 'J.., calculated by 
using the common approach depends on the sum of the values 
for slope ~FI and expression 

P,, ,Jr< cr-c;';-cr'~-)(-cr';-;-cr'~)/~QI . 

Table 2 reveals that, for absolute intakes, the relative vari•
ances of person-specific biases in the FFQ and 24HR and the 
correlation between them were sufficiently large to override 
the small values of f3F1 and to raise "AF above the true attenu•
ation factor A.1� The same remained true for energy-adjusted 
protein in women, where the effect of reduced person•
specific biases was compensated for by the increased corre•
lation between them. As a result, the 24HR underestimated 
true attenuation. On the other hand, for energy-adjusted 
protein in men, the two effects essentially cancelled each 
other, demonstrating that a flawed reference instrument may 
sometimes produce a good estimate. 

Our results are in line with previous data presented on 
protein intake. For women in the British Medical Research 
Council study (18), the urinary-nitrogen-based attenuation 
factor for protein was 0.187, while the common approach 
based on a 4-day weighed food record produced an overly 
optimistic estimate of 0.282. The former is slightly larger 
than the 0.137 obtained in the OPEN Study, while the latter 
is noticeably more optimistic than our 24HR-based estimate 
of0.158 (p = 0.08). The correlations ofFFQ with true intake 
were 0.284 (urinary nitrogen based) and 0.432 (record 
based) compared with our values of 0.298 (urinary nitrogen 
based) and 0.334 (24HR based), respectively. Neither differ•
ence approaches statistical significance. 

An important consideration is whether our results could be 
affected by the fact that biomarkers in the OPEN Study were 
collected mostly over one season. We analyzed 24HRs taken 
in different seasons in cross-sectional national survey data 
(Continuing Survey of Food Intakes by Individuals 1994-
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1996) by region and gender, and we found no seasonal fluc•
tuations in energy or protein intakes. However, if seasonality 
were to exist, it would affect only the estimated mean usual 
intake and would not change the higher-order parameters 
presented in tables I and 2. 

Since DLW measures total energy expenditure, it would 
be important to adjust the data for long-term weight change 
to enable DLW to truly represent usual energy intake. Doing 
so over the 2-week DLW period may introduce only more 
random error, however, since only a small amount of within•
person week-to-week fluctuations in energy balance can be 
explained by contemporary changes in weight (31). Even 
using the 3-month OPEN Study period may not adequately 
represent long-term weight changes, especially given 
protocol differences in fasting conditions between the first 
and last visits (22). Nevertheless, when we adjusted indi•
vidual DLW measurements for the weight change over either 
the 2-week or 3-month period, the results did not change 
materially for either absolute or energy-adjusted nutrients. 

Recently, Willett (20) suggested that any evaluation of a 
FFQ would be invalid unless heterogeneity in the study 
population due to gender, age, and body size was adjusted 
for. To address this issue, we performed further analyses that 
included age in 5-year groups and the logarithm of body 
mass index as covariates in the models. The results did not 
change substantially except for energy in women; the atten•
uation factor and correlation of the FFQ with true intake 
became even closer to zero. 

Our results have important implications for nutritional 
epidemiology. First, they question the ability of FFQs to 
detect diet -disease associations for absolute nutrient intakes. 
While some journals have recently required that energy 
adjustment be used in the analysis of nutrient-disease associ•
ations, the practice has been controversial (32, 33). Our data 
clearly document failure of the FFQ to provide a sufficiently 
accurate report of absolute protein, nonprotein, and energy 
intakes to enable detection of their moderate associations 
with disease. For example, with the attenuation factors of 
0.08 for energy intake for males and 0.04 for females, a true 
relative risk of 2.0 would appear as 1.06 and 1.03, respec•
tively, using the FFQ data. Needless to say, such small rela•
tive risks are not detectable in epidemiologic studies since 
their signal is smaller than the noise caused by confounders. 
It is plausible that similarly small attenuation factors would 
be found for many other nutrients, although it would require 
a suitable reference biomarker for each nutrient to confirm 
this possibility. 

Second, it appears that FFQ-based energy-adjusted 
nutrient intakes may just be sufficiently accurate to use in 
large cohort studies to detect moderate diet-disease associa•
tions; a relative risk of 2.0 would appear close to 1.3, which 
could be at the limits of detection. The benefits of adjusting 
for energy intake have been discussed previously at the 
general level (19, 32). Our conclusion is necessarily a quali•
fied one, since our study was restricted to energy-adjusted 
protein and nonprotein intakes. There is no guarantee that the 
results will be as favorable for nonprotein components such 
as energy-adjusted fat intake. Even less could be speculated 
about the effect of energy adjustment for non-energy•
contributing nutrients. Nevertheless, until further evidence 
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becomes available on other nutrients, use of energy-adjusted 
intakes seems the best working approach for nutritional 
epidemiology, at least under the assumption that energy is 
not related to disease. Note, however, that biomarker-based 
attenuation factors for energy-adjusted protein intake are 
between 0.32 and 0.41, indicating that measurement error 
has a substantial negative impact on the statistical power of 
observational epidemiologic studies. 

Third, our results throw into question use of the 24HR as a 
reference instrument for validation/calibration studies. In the 
OPEN Study, such use substantially overestimated perfor•
mance of the FFQ for absolute intakes of energy and nonpro•
tein. The results also cast some doubt on the performance of 
the 24HR as a reference for energy-adjusted intakes. For 
example, for protein density in women (table 1), the bio•
marker-based attenuation factor was estimated as 0.3 com•
pared with the 24HR-based estimate of0.5. Use of the latter 
would lead to underestimation of the required sample size by 
a factor of 2.8 = 0.52/0.32, with profound effects on the 
power to detect diet-disease associations. 

The OPEN Study provides solid evidence of measurement 
errors in a FFQ as they pertain to energy intake and both 
absolute and energy-adjusted protein and nonprotein intakes. 
Further studies of a similar design are needed to confirm our 
results, especially to clarify whether 24HRs or multiple-day 
food records can be used reliably as reference instruments in 
validation/calibration studies, at least for energy-adjusted 
intakes. Unfortunately, few dietary biomarkers qualify as 
valid reference instruments; that is, they have errors unre•
lated to true intakes and errors in dietary report instruments. 
Most other biomarkers, such as vitamin C or beta-carotene, 
measure concentrations of related constituents for which the 
quantitative relation to dietary intake is unknown and 
depends on individual characteristics (e.g., concomitant 
intake of other nutrients, obesity, or smoking habits) (34). 
Therefore, such concentration-based biomarkers cannot 
provide valid reference measurements and at best can serve 
only as correlates of intake. Further work should explore 
whether a combination of data from dietary report and bio•
marker measurements for energy or protein can be used to 
assess dietary exposure variables for which no reference 
biomarkers exist. 
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APPENDIX 

Derived Reference Measures Based on the Observed 
Biomarkers 

In the OPEN Study, replications of the DLW measurement 
were available for only a small sample of25 persons (14 men 
and 11 women). This fact did not affect the results for total 
energy intake since the DLW measurements were remark•
ably consistent across replications. The coefficient of varia•
tion in the DLW measurements was only 5.1 percent, in 
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effect indicating that energy expenditure was measured with 
very little error. 

However, a technical difficulty arose in the analysis of 
nonprotein and energy-adjusted nutrients. The error in the 
biomarker-based derived reference measures was almost 
entirely influenced by the error in the urinary nitrogen 
measurements, where the coefficient of variation was 17.6 
percent. As a result, attempting to estimate the within-person 
variance of the derived reference measurements as a param•
eter in the modelled to relatively large standard errors in the 
main analysis and to instability in the procedure for boot•
strap calculations. 

On the basis of these facts, in dealing with the derived 
reference measurements for nonprotein and energy-adjusted 
protein and nonprotein intakes, we used the following 
convention. When defining biomarker-based reference 
measures for nonprotein as well as nutrient density and 
nutrient residual, we used the first DLW observation with 
both the first and second repeat urinary nitrogen observa•
tions. In theory, doing so induced some correlation between 
repeat biomarker-based reference observations, but the 
DLW measurement error was so small that this correlation 
could be ignored in practice. 

Bias in the Attenuation Factor Based on the Dietary 
Report Reference Instrument 

For a valid reference biomarker M, the attenuation factor is 
expressed as 'lcM = cov(M, Q)/var(Q) = cov(T,Q)/var(Q) (18). 

Thus, the biomarker-based attenuation factor AM is equal to 
the true attenuation factor 1..1� However, the attenuation 
factor 'Ap based on the common approach with a dietary 
report ref~rence instrument is given by 'lc, = cov(F,Q)/var(Q) = 
([3FI[3Q1 aT + cov(r,s))/var(Q). 

Taking into account expression 4 for the true attenuation 
factor 1..1, we can rewrite this expression as 

Thus, the attenuation factor I..F is generally biased. The 
relative bias, defined by the expression in parentheses, 
depends on intake-related biases in the FFQ and dietary 
report instrument F, reflected by slopes f3Q1 and [3Fl• respec•
tively; the variances of their person-specific biases relative 
to variation in true intake, a;/ a~ and a;/a~. respectively; 
and the correlation Pr,s between person-specific biases. 
Values of slope ~FJ less than one decrease Ap relative to true 
attenuation factor 'A1, whereas positive values of 

P,,,j(cr;/cr~)(cr;/cr~). 

as well as values of slope ~QI less than one, increase I..F. 
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SUMMARY 

We consider the problem of maximum-likelihood estimation in case-control studies of 
gene-environment associations with disease when genetic and environmental exposures 
can be assumed to be independent in the underlying population. Traditional logistic 
regression analysis may not be efficient in this setting. We study the semiparametric 
maximum likelihood estimates of logistic regression parameters that exploit the gene•
environment independence assumption and leave the distribution of the environmental 
exposures to be nonparametric. We use a profile-likelihood technique to derive a simple 
algorithm for obtaining the estimator and we study the asymptotic theory. The results 
are extended to situations where genetic and environmental factors are independent con•
ditional on some other factors. Simulation studies investigate small-sample properties. 
The method is illustrated using data from a case-control study designed to investigate the 
interplay of BRCA1/2 mutations and oral contraceptive use in the aetiology of ovarian 
cancer. 

Some key words: Case-control study; Gene-environment interaction; Genetic epidemiology; Logistic regression; 
Population stratification; Profile likelihood; Retrospective study; Semiparametric method. 

1. INTRODUCTION 

The case-control study design gives an efficient way of collecting covariate information 
for epidemiological studies of rare diseases. Cornfield (1956) showed that the prospective 
odds ratio of a disease given a covariate is equivalent to the retrospective odds ratio of 
the covariate given the disease and thus prospective odds ratios are estimable from case•
control designs. For discrete covariates, Andersen (1970) and then more generally Prentice 
& Pyke (1979) showed that fitting a standard prospective logistic regression that ignores 
the retrospective sampling nature of the design yields the maximum likelihood estimates 
of the regression parameters under a 'semiparametric' model that allows the covariate 
distribution to be nonparametric. More recently, Rabinowitz (1997) and Breslow et al. 
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(2000) used modern semiparametric theory to show that the prospective logistic regression 
analysis of case-control data is efficient in the sense that it achieves the variance lower 
bound of the underlying semi parametric model. 
It is now believed that the risks of many complex diseases are determined by the 

combined effects of genetic susceptibility G and environmental or non-genetic exposures E, 
and, since studies of interactions, especially for rare exposures, typically require a large 
sample size, efficient designs and analytical methods for gene-environment interaction 
are vital. 

A special feature of the gene-environment interaction problem is that it may often be 
reasonable to assume that a subject's genetic susceptibility, a factor which is determined 
from birth, is independent of his/her subsequent environmental exposure. Standard 
logistic regression analysis, being the semiparametric maximum likelihood solution for 
the problem that allows an arbitrary covariate distribution, clearly remains a valid option 
for analysing case-control data. However, the method may not be efficient because it fails 
to exploit the gene-environment independence assumption. In general, under the case•
control design, the variance lower bound for estimators of the regression parameters under 
particular constraints or models for the covariate distribution will be lower than that of 
the more general model that allows a completely nonparametric covariate distribution. 

In the past, several researchers have presented analytical methods that exploit the 
gene-environment independence assumption. Piegorsch et al. (1994) noted that, under 
gene-environment independence and the rare disease assumption, the multiplicative inter•
action parameter in the logistic regression model can be estimated as the odds ratio 
between G and E among cases alone. Moreover, they observed that the corresponding 
case-only estimator of interaction is more precise than the estimator of the interaction 
parameter from traditional logistic regression analysis involving both cases and controls. 
When data on both cases and controls are available, assuming rare disease and categorical 
exposures, Umbach & Weinberg (1997) showed that maximum-likelihood estimators of 
all the parameters of a logistic regression model can be obtained in a fairly general setting 
by fitting a suitably constrained log-linear model to the data. They showed that, for simple 
scenarios that involve dichotomous G, dichotomous E and no confounder, the log-linear 
model and case-only analysis approach yields the same estimator of the multiplicative 
interaction parameter in the logistic regression model. Modan et al. (2001), in a specific 
application, noted that, under gene-environment independence and the rare disease 
assumption, pr(EJG, D = 0) = pr(EID = 0), where D = 0 corresponds to disease-free, i.e. 
control, subjects. Based on this, they argued that the disease odds ratio associated with 
E among subjects with genotype G = g can be estimated by a logistic regression analysis 
that compares the distribution of E among all controls, pr(EJD = 0), with the exposure 
distribution among cases with G = g, pr(EID = 1, G =g). 

The methods have some limitations. First, they all require the risk of the disease to be 
small for all levels of both genetic and environmental exposures. This assumption can lead 
to substantial bias in the estimation of the odds ratio parameters even for diseases like 
cancer, for which the marginal probability of the disease may be small in the population 
but the disease risk may be high for certain combinations of genetic and environmental 
exposures (Schmidt & Schaid, 1999). Secondly, the methods of Piegorsch et al. ( 1994) and 
Modan et al. (2001) allow estimation of some, but not all, of the parameters of interest 
in the general logistic regression model. Thirdly, some of the above methods have been 
described in very simple settings involving only two factors G and E, and it is often not 
clear how to exploit the gene-environment independence assumption in the most general 
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setting that will, for example, allow for potential confounders or account for factors that 
could induce association between G and E. The log-linear model framework described by 
Umbach & Weinberg (1997) for categorical co-factors gives the most general method to 
date for exploiting the gene-environment independence assumption and can handle some 
of these issues. For a rich model with many co variates, however, the log-linear modelling 
approach can easily become cumbersome and intricate. Moreover, in a rich model, the log•
linear specification would typically involve a large number of 'nuisance parameters' that 
characterise the covariate distribution among the controls. When continuous covariates 
are involved, the number of such nuisance parameters would even increase with the sample 
size. The asymptotic theory for the lower-dimensional regression parameters of interest 
in the presence of the high-dimensional nuisance parameters is nonstandard and has not 
been studied rigorously under the underlying semiparametric setting. 

In this paper, we develop a general framework for maximum-likelihood estimation 
under the gene-environment independence assumption. The proposed method has 
several unique aspects. First, it is exact in not requiring any rare-disease assumption. 
Secondly, we develop the methodology in a very general setting so that it retains all the 
flexibility of traditional logistic regression analysis, such as adjustment for confounders, 
incorporation of continuous exposures and/or confounders and complex modelling of 
the regression effects of the risk factors. Thirdly, we show how to incorporate external 
information about the marginal probability of the disease in the population and hence 
improve efficiency of parameter estimation. Fourthly, we show how to adjust for bias that 
may arise when G and E may be related because of their dependence on other common 
measured factors. Finally, we develop the methodology in a semiparametric framework 
that allows the distribution of the environmental factors F(e) to be completely non•
parametric. Given that in a typical application E might include many factors, both discrete 
and continuous variables, nonparametric treatment of F(e) is attractive both for avoiding 
complex modelling and for robustness. 

2. ESTIMATION THEORY AND METHODOLOGY 

2·1. Model and identification 

Let D be the binary indicator of presence, D = 1, or absence, D = 0, of a disease. 
Suppose the prospective risk model for the disease given a subject's genetic factors, G, and 
environmental risk factors, E, is given by the logistic regression model pr(D = 11G, E)= 
H{P0 +m(G,E;Pd}, where H(x)={1+exp(-x)}- 1 is the logistic distribution function 
and m(.) is a known but arbitrary function. Typically, in the standard logistic regression 
model, one has m(G, E, P1 ) = (G, E, G* E)P1 with the exponents of the parameters in P1 

having the standard exposure odds ratio interpretation. However, more general forms 
of m(.) could be of interest, especially for interaction studies where different forms of m(.) 
can be chosen to assess interaction at different scales; see Khouri et a!. ( 1993, § 5.5.3 ). 
We assume that the joint distribution of G and E is given by the product form 
Yl'(e, g)= Q(g)F(e), where Q and F are the marginal distribution functions of G and E, 
respectively. Suppose that N 0 controls and N 1 cases are sampled from the conditional 
distributions pr(G, EID = 1) and pr(G, EID = 0), respectively, and let (Gi, E;)f~iN• denote 
the corresponding covariate data of the N 0 + N 1 study subjects. 

Before we describe estimation, it is useful to study the identifiability of the parameters. 
In a nonparametric setting where no assumption is made about the form of the covariate 
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distribution £, it is well known that neither :Ye nor the intercept parameter Po is identi•
fiable from case-control data (Prentice & Pyke, 1979). Under the assumption of gene•
environment independence, however, these results may not necessarily be true. Let f?l 
denote the parameter space for fJ1 and let f?4° c f?l denote the values of fJ1 so that m(G, E, fJd 
depends only on G or only on E, but not both. For example, suppose that m(G, E, fJ1 ) 

corresponds to a standard logistic regression model with fJ1 = (fJG, fJE, fJGE), where fJG, fJE 
and fJGE denote the main effect of G, the main effect of E and the interaction between G 
and E, respectively. In this case, the set f?4° would consist of parameter values of the form 
{J1 = (fJG, 0, 0) or {J1 = (0, fJE, 0), which correspond to either only the main effect of G or 
only the main effect of E, respectively. Since fJ1 is well known to be identifiable from 
case-control data under general nonparametric :Ye, it follows trivially that fJ 1 remains 
identifiable when His assumed to be of the form :Ye = Q x F. The identifiability result for 
the remaining parameters can be stated as follows. 

LEMMA 1. For all {J1 rf= f?l0 , 

pr(E = e, G = gJD = d, {J0, {J1 , Q, F)= pr(E = e, G = gJD = d, fJ~, {J1 , Q*, F*) 

if and only if Po= fJ~, Q = Q* and F = F*. 

The proof of Lemma 1 is given in the Appendix. Thus, we note that a somewhat 
surprising consequence of the gene-environment independence assumption is that, except 
for some boundary situations, the intercept parameter of the logistic regression model Po 
is theoretically identifiable from the retrospective likelihood of case-control data. Although 
this may seem counter-intuitive, it is easy to see from the proof of Lemma 1 that in general 
the identifiability of flo is intrinsically related to the class of :Ye that is under consideration. 

2·2. Profile likelihood estimation 
We begin with the following parameterisation of the exposure distributions Q 

and F. We assume that the genetic factor G for a subject can take values in a fixed 
set {g0 , ••• , gJ }. Thus the distribution Q can be parameterised by the corresponding 
probability masses {q 0 , ... , qJ}. Moreover, using population genetics theory, in many 
situations the probabilities qi (j = 1, ... , J) can be further modelled as qi = qi(IJ), for some 
known function qi and some parameter vector e. For example, if G represents one of 
the three possible genotypes a subject can have corresponding to a bi-allelic locus, the 
population frequencies of the three genotypes could be specified in terms of the allele 
frequency of one of the alleles under the Hardy-Weinberg equilibrium assumption for the 
underlying population. If no population genetics model assumption is made to specify 
the q/s, we will assume in the above notation that IJ represents the vector of q/s themselves. 

For parameterisation of the environmental covariate E, we first assume that the non•
parametric maximum likelihood estimator ofF can allow positive masses only within the 
set If= {el> ... , eK} that represents the unique values of E that are observed in the case•
control sample of N 0 + N1 study subjects. Thus, for obtaining the maximum likelihood 
estimator it is sufficient to consider the class of discrete F that have support points within 
the set If. Any Fin this class can be parameterised with respect to the probability masses 
{b1 , ... , bK} that it assigns to the points {e1 , ..• , eK}. Let niik denote the number of 
subjects with D = i, G = gi and E = ek. Let the corresponding marginal frequencies for the 
ith category of disease be ni++ = Ni, for the jth category of G be n+ i+ and for the kth 
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category of E be n++k· The loglikelihood for the case-control data is then 
No+Nt 

L =log {t'cdf3o, fJ1o 8, 6)} = L: log {pr(DuiGu, Eu) pr(Gu) pr(Eu)fpr(Du)} 
u=l 

= L: niik log{P;j(ek> /30 , /3d}+ L: n+ i+ log{qi(8)} + L: n+k+ log(6k) 
~ k 

where P;j(ek, /30 , fJd = pr(D = iiG = j , E = ek). 

403 

(1) 

When the dimension of 6 is large, as could be expected when E consists of multiple 
covariates and/or some of its components are continuous, direct maximisation of the 
loglikelihood with respect to ({30 , {31 , 8, 6) may be numerically challenging or even 
infeasible. An alternative approach is first to derive the profile likelihood of the data that 
is obtained by maximising the likelihood with respect to 6 for fixed values ofy = ({30 , /31 , 8) 
and then to maximise the profile likelihood with respect to y. If b(y) denotes the value of 6 
that maximises the likelihood for fixed y, the profile loglikelihood is then L(y)(y)}. In 
Lemma 2, we state an equivalent representation of L{y, b(y)} that is computationally useful. 

LEMMA 2. Define the parameters J.li = n;++/{N pr(D = i)} fori= 0, 1 and let 

* { . _ ( )} _ Pii(ek; f3o, f3dJ.liqi(8) 
pii ek> y, J.l- J.lo, J.lt - "." P .. ( . f3 f3 ) . .(8). 

L.,, L., i '1 ek> o, t J.l,qJ 

The profile loglikelihood L{y, b(y)} can be computed as L*{y, jl(y)}, where 

L*(y, J.l) = L: niik log Pt(ek; y, J.l), 
ijk 

and jl(y) = { jl 0 (y), jl1 (y)} is defined by the solution of the equations 

n;++ = L: L: n++kP0(ek; y, J.l) (i = 0, 1). 
k j 

(2) 

(3) 

(4) 

The proof of the lemma is given in the Appendix and is developed following tech•
niques in Scott & Wild (1997). The main consequence of Lemma 2 is that L{y, b(y)} can 
be computed without having to maximise the likelihood L(y, 6) numerically with respect 
to the potentially high-dimensional nuisance parameter 6. Instead, L{y, b(y)} can be 
obtained in closed form up to only two additional parameters J.1 = (J.10 , J.ld, which in turn 
are defined as the solution of two equations given in ( 4 ). The result of this lemma can 
also be compared to the classical result of Prentice & Pyke (1979) that, when the exposure 
distribution is unspecified, maximisation of the retrospective likelihood can be achieved 
by simply fitting the prospective logistic model to the data ignoring the retrospective 
design. Lemma 2 gives the corresponding simplification for maximum-likelihood esti•
mation under the gene-environment independence assumption and unspecified distribution 
of E. Prentice & Pyke (1979) also essentially showed that the maximum likelihood esti•
mator of the logistic regression parameters can be obtained by maximising the prospective 
likelihood of the form pr(DIX, 6 = 1 ), where 6 is the indicator of whether or not a subject 
has been selected in the case-control sample and pr(6 =liD), the probability of selection 
of a subject given his/her disease status, is fixed at its asymptotic value, which in turn is 
proportional to J.lv· Similarly, Lemma 2 shows that the maximum likelihood estimator 
of the regression parameter under the gene-environment independence assumption can 
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be obtained by solving score equations corresponding to the prospective likelihood 
P'j) 0 (E) = pr(D, GJE, (5 = 1 ). For derivation of the asymptotic distribution theory, however, 
we will show later that P'j) 0 (E) cannot be treated as an ordinary likelihood. 

For computational convenience we consider further reparameterisation of the problem. 
Let G = g0 define a reference category for the genetic exposure G. We can now write 

P*( )- exp{8ii(ek;y,,u)} 
ii ek, y, .U - 1 " {8 ( )} , + L-ij:(ii)+(O,o) exp ii ek; y, .U 

(5) 

where 

= i{f3o + Iog(.ud.uo)} + im(gi, ek; f3d +log {qj(8)fqo(8)} 

I [ 1 + exp {/30 + m(go, ek; fJ1)} J + og . 
1 + exp{/30 + m(gi, ek; /3d} 

(6) 

Thus, L*(y, .u) = I:iik niik log Pt(ek; y, .u) depends on .Uo and ,u1 only through the parameter 
K = /30 + Iog(.ud ,u0 ). Moreover, since 

a 
-a L*(y, K) = n1++- I I n++kPUek, y, .u), 
K k j 

it follows that R(y) = /30 +log { jl 1 (y)/ jl0 (y)}, where jl1 (y) and jl0 (y) are defined in equation ( 4 ), 
will satisfy the equation (ajaK)L*(y, K) = 0. Thus, the semiparametric maximum likelihood 
estimate of y can be obtained by solving the equation aL*(y, K)ja(y, K) = 0 jointly with 
respect to y and K. 

Estimation of f30 in the above approach requires special attention. From the expression 
for 8ii(ek; y, .u) given in (6), it can be seen that the intercept parameter /30 is involved in 
L*(y, K) not only through K but also through the term 

[ 
1 + exp{/30 + m(g0 , ek; fJ1)} J 

c(eb gi, /30 , fJ1) =log 1 + {/3 + ( . . f3 )} . exp 0 m g1 , ek, 1 

Thus, in principle, /30 is identifiable from L *(y, K) independently of the parameter K. How•
ever, for diseases that are rare for all combinations of gi and ek> that is c(ek> gi, /30 , f3t)=:=O 
for allj and k, there would be little information about /30 from L*(y, K) that is not absorbed 
in K. Since the corresponding information matrix is nearly singular, direct optimisation 
of L*(y, K) with respect to /30 using standard methods such as Newton-Raphson can be 
numerically unstable. To overcome this problem, one strategy that we have found useful 
is to consider the profile likelihood of Po obtained as L*{f3o, [31(f3o), e(f3o), R(f3o)}, where 
{/31 (f3o), e(f3o), R(f3o)} denotes the solution of the equation aL*(f3o, /31, 8, K)ja(p1, 8, K) = 0 
for fixed /30 . One can then perform a one-dimensional grid search for the optimal value 
of Po that maximises L*{f3o, [31(f3o), e(f3o), R(f3o)}, possibly on a fixed interval of values. 

In the above approach, for rare diseases, the estimate of the parameter /30 itself can 
be expected to be imprecise because of intrinsic noninformativeness of the retrospective 
likelihood. Much more precise estimation of /30 is possible when the marginal probability 
of the disease, pr(D = 1 ), in the underlying population is known. We can then fix the 
parameters .Ui for i=O, 1 in L*(y,,u0 ,,ut) at their true values ni++/{Npr(D=i)} for 
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i = 0, 1, respectively. In the corresponding expression for 8i'j(eb y, fl) given in (6), log(fldflo) 
will be fixed and {30 will be identifiable from the first term of ( 6) itself. In this case, 
the parameterisation rJ = {{30 , /31 , 8, K = {30 + 1og(f1df1o)} is unnecessary and instead the 
original parameterisation rJ = ({30 , {3 1 , 8) should be used. Hereafter, we will use the generic 
notation rJ so that our results are valid for both the cases of pr(D = 1) being known and 
pr(D = 1) being unknown. 

2·3. Asymptotic theory 
In this section, we study the asymptotic properties of the semiparametric maximum 

likelihood estimator of rJ. Since we have shown that the estimator can be obtained by 
solving the equation oL*(rJ)/orJ = 0, the asymptotic properties can be studied by estimating•
equation theory. Since L*(rJ) = L:iik niik log Pi'j(eb rJ), where Pi'j(eb rJ) is defined in (5), the 
estimating function oL*(rJ)/orJ can be expressed as 

oL* =I nijk [a8ij(ek; rJ)- I exp{8;'j'(ek; rJ)} o8;'j'(ek; rJ)J 
orJ ijk orJ i'i ' L:i"f' exp { 8i"r(ek; rJ)} orJ 

f [o8n"6 .(E.; rJ) _ E'J)G {o8nG(E; rJ) \E =E.}], (7) 
.~1 orJ orJ 

where E'J)6 (.1E) denotes expectation with respect to the joint probability distribution for 
D and G given E that was defined by P* in (2). Define 'P(Du, G., Eu; rJ) to be the summand 
in the second expression of formula (7). We will develop the asymptotic theory in a 
scenario in which the total sample size N = N 0 + N1 goes to infinity, but the sampling 
proportions for the cases and controls, namely N0 /N and NdN, remain fixed at n: 1 and 
n 0 = 1 - nb respectively. We first state a lemma, proved in the Appendix, that will be used 
repeatedly in the development of the asymptotic theory, because in various places we will 
need to compute expectations and limits of functions in the case-control sampling scheme. 

LEMMA 3. Under the case-control sampling design described above and for any measurable 
function Q(D, G, E) of data (D, G, E), 

N- 1 .t
1 

Q(D., G., E.)-> I E'J)dQ(D, G, E) IE= e}h(e)dF(e), 

where the convergence is in probability and h(e) = L:ii Pii(e; {30 , f3df1;qi(8), if we assume that 
the integral in the above equation exists. 

At this point, we note an important subtlety of studying asymptotic theory under 
the case-control sampling design when the assumption of gene-environment independence 
is made. If no assumption is made about the joint distribution of (G, E), that is the 
form of Jlf(g, e) is left completely unspecified, then from standard case-control sampling 
theory it follows that N- 1 L.:~~ 1 Q(D., G., E.)-> En.G.E {Q(D, G, E)}, where the con•
vergence is in probability and where En.G.E corresponds to expectation with respect to a 
joint distribution function pr(D, G, E), so that pr(G, EID) = pr(G, EID) and pr(D) = Nn/N. 
This follows because, when the form of Jlf is left unspecified, one can vary the para•
meters {30 and Jlf without changing the value of the retrospective likelihood pr(G, EID) 
(Roeder et a!., 1996, Lemma 1). In particular, one can choose Po and ff so that 
prp0 .p,.ff(G, EID) = prp0 .p,.k(G, EID) and prp0 .p,.k(D) = N n/N. However, these results do 
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not hold when one assumes ; ! { ' to be of the form Q x F as in this case we have shown 
that a and ; ! { ' are uniquely identifiable from the retrospective likelihood, except for some 
boundary parameter values. Similarly, other standard theories for case-control sampling 
may not be applicable under the gene-environment independence model. 

In Lemma 4, proved in the Appendix, we state the limiting form of the second derivatives 
of L*(11). 

LEMMA 4. We have that 

..!_ fPL* f * {a8vdE; 11) I _ } _ 
N all aliT..... v DG all E- e h(e)dF(e) = §, 

in probability, where VtG(-lE) denotes variance with respect to the joint probability 
distribution forD and G given E that is defined by P*. 

Finally, we state the main asymptotic limiting results, proved in the Appendix. 

PROPOSITION 1. Under suitable regularity conditions, the following results hold: 
(i) the estimating equations aL*jall = I:~=l 'I'(D;, G;, E;; 11) = 0 have a unique, consistent 

sequence of solutions, {~Nh;;, 1 ; 
(ii) ifQ = L~=o tld[E{'I'(D, G, E)JD = d}]®2, then N"(~N- llo)--> N(O, L) in distribution, 

with 

(8) 

3. EXTENSIONS 

3·1. Population stratification 

Although genetic susceptibility and environmental exposures are unlikely to be causally 
related at an individual level, these factors may be correlated at a population level because 
of their dependence on other factors, such as ethnicity. In this section, we briefly describe 
how to generalise our methods to handle 'population stratification'. Most of the details 
and proofs of the theoretical results follow from straightforward generalisation of the 
results derived in § 2. 

We will assume that G and E are independent conditional on a set of variables S 
so that the joint distribution of G, E and S is given by the product form H(g, e, s)= 
Qs(g) x F(e, s), where Qs(g) corresponds to the distribution of G given S = s and F(e, s) 
denotes the joint distribution of E and S. The distribution function F(e, s) will be treated 
nonparametrically. Let pr(G = giJS = s) be denoted by qi(s; 8) with 8 being a fixed set of 
parameters characterising the conditional distribution. If S involves only discrete variables 
that define a relatively small number of strata, then no modelling of pr(G = giJS = s) is 
necessary and 8 may denote the vector of conditional probabilities themselves. If S involves 
a relatively large number of variables, possibly including continuous ones, parametric 
modelling of the distribution pr(GJS) will be necessary. When G is a binary variable 
indicating the presence or absence of a certain genetic variation, for example, pr(GJS) 
can be parametrically specified through a logistic regression model. We further assume 
that the disease-risk model is given by pr(D = lJG, E, S) = H{/3 0 + m(G, E, S; fJd}. Thus, 
we allow the stratum variables S to be covariates of interest in the disease model. 
Let (ek, sk), for k = 1, ... , K, be the unique observed values for (E, S) and let niik denote 
the number of subjects in the data with D = i, G = j and (E, S) = (ek> sd. As before, let 
/l; = ni++I{N pr(D = i) }. 
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With this notation, the results of Lemma 4 can be generalised to show that the semi•
parametric maximum likelihood estimator of y = ({30 , /31> 8) can be obtained by solving 
the equation 8L*(y, /1)/8(y, /1) = 0 jointly with respect to (y, fl), where 

L*(y, 11) =I niik log Pt(eb sk; y, 11) 
ijk 

and P0(eb sk; y, /1) is defined by formula (2) with Pii(eb {30 , f3d and qi(8) replaced by 
Pii(ek, sk, {30 , /31 ) and qi(s; 8), respectively. Moreover, P0(ek, sk; y, /1) can be written in 
the form of expression (5) with 8ii(ek; y, /1) replaced by 8ii(ek, sk; y, fl), which in turn 
is defined by equation (6) with qi(8)jq0 (8) and m(g, ek; f3d replaced by qj(s; 8)jq0 (s; 8) 
and m(g, ek, sk; {3 1), respectively. All the theory that we developed in § 2·3 can now be 
generalised by replacing E with E' = (E, S) and qi(8) by qi(s; 8) everywhere. 

3·2. Frequency-matched case-control studies 

In this section, we comment briefly on the modifications needed for the proposed 
methodology while dealing with frequency-matched case-control studies in which controls 
are selected in numbers proportional to the number of cases within strata defined by some 
matching variables W. The problem of individually-matched case-control studies is 
addressed in a separate article (Chatterjee et a!., 2005). Let W = wm (m = 1, ... , M) 

denote M strata used for matching. To allow for factors, such as race, which may be 
candidates for both matching and population stratification, we write W = (W8 , W8 ), so 
that W 8 represents the elements of W that are included in S, the factors for population 
stratification. Similarly, we write S = (Sw, Sw), so that sw denotes elements of S that are 
included in W. We will assume that G is independent of (E, W 8 ) conditional on S. We 
further assume that the regression model is given by 

pr(D = 11G, E, Sw, W) = H{f3ow + m(G, E, Sw, W; /3d}, 

so that it corresponds to the standard practice of allowing for an independent intercept 
term for each level of the matching variable W = w. Let {30 = (/30 1> ... , f3oM) be the vector 
of intercept parameters corresponding to the M different values of W. 

With the above notation and definitions, the retrospective likelihood for the matched 
case-control design can be written as 

No+Nl 

tMcc = TI pr(Gi, Ei, SfiDi, W;), 
i=1 

where the conditioning on (D, W) represents the fact that in a matched case-control 
design subjects are selected into the study based on both the disease status D and the 
matching variable W. The semi parametric maximum likelihood estimator of y = ({30 , {3 1 , 8) 

that leaves the joint distribution of (E, S, W) completely unspecified can be derived by 
following techniques of§§ 2·2, 2·3 and 3·1, with /li replaced throughout by flwi• where 
flwi=nwi++f{Npr(D=iiW)}, in which nwi++ is the number of subjects with D=i 
and W = w in the sample. In particular, we can show that the semi parametric maxi•
mum likelihood estimate of y can be obtained by jointly solving a set of equations 
of the form 8L*(y, K)/8(y, K) = 0, where K = (K 1, ... , KM) with Km =/3om+ log(f11m/flom) and 
L*(y, K)= Lijwk nwijk log P~ii(eb sk; y, fl), in which P~ii(eb sk; y, /1) is defined by formula (5) 
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(9) 

Using the structure of Bw;j(.) we observe that f3ow is involved in L*(y, K) not only 
through Kw but also through the last term of expression (9), which we will denote by 
c(gi, eb sf, w; f30w, f3t}. For rare diseases, however, for which c(gi, eb sf, w; f30w, /3 1 )===0 
for all values of j and k there would be little information about f3ow from L*(y, K) that is 
not absorbed in Kw. In most case-control studies the matching factor W consists of basic 
demographic factors such as race, sex and age-groups, for which pr(D = 1[W) is available 
externally, for example from a population registry. In this case, Jlwi can be treated as a 
fixed parameter in the definition of Kw and hence f3ow can be identified through Kw itself. 
Use of external information about pr(D = 1[W) is recommended as it would not only 
resolve any numerical problems that may arise with estimation of the barely identifiable 
parameters, but would also improve efficiency of estimation of the other regression 
parameters of interest. An alternative solution for diseases that are extremely rare, 
such as the example of ovarian cancer we consider in § 5, is to ignore the term 
c(gi, eb sf, w; f30w, /3 1 ) in the calculations. Under the rare-disease assumption, we note 
that the functional form of L* becomes exactly the same under frequency-matched and 
traditional unmatched case-control sampling designs, and thus the estimates under the 
matched design can be obtained by the method described in§ 2 for the traditional case•
control design with a disease risk model that allows for an independent intercept term for 
each level of the matching variable W. The estimator for the main effects for W would 
yield an unbiased estimator not of f3ow but of Kw. 

4. SIMULATION STUDY 

4·1. The factors G and E are independent 

In the first experiment, we study the relative performance of the standard logistic 
regression analysis and the proposed semi parametric maximum-likelihood estimator under 
the gene-environment independence model. We assumed that the genetic covariate G is a 
binary variable, where for example G = 1 or G = 0 corresponds to presence or absence of 
a genetic mutation, respectively. We considered two scenarios: (a) pr(G = 1) = 0·065 and 
(b) pr(G = 1) = 0·26, corresponding to a rare and a common genetic mutation, respectively. 
We generated the environmental covariate as E =min( 10, X) where X follows the log•
normal distribution for which the mean and variance of the underlying normal distribution 
are 0 and 1. Given the values of (G, E), we generated a binary disease outcome D 
from the logistic regression modellogit {pr(D [ G, E)} = {30 + f3a G + f3EE + f3aEG x E, with 
(f3a, f3E, f3aE) = (0·26, 0·10, 0·3). We choose the intercept parameter {30 to be, respectively, 
- 3·2 and - 3·45 for scenarios (a) and (b) so that in both cases the marginal probability 
of the disease in the population is 0·05. The parameter values were chosen to reflect modest 
main effects for both G and E, but strong interaction between G and E. For example, the 
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odds ratio associated with the lower versus the upper quartile of the distribution of E was 
1·3 for G = 0 and 3·1 for G = 1. The marginal odds ratios for G and E were 2·6 and 2·5, 
respectively. In each replication of our simulation experiment, we generated data for 
500 cases and 500 controls from the above model by sampling the cases and controls 
from a larger random sample of subjects. We analyse each such case-control dataset using 
three procedures: standard logistic regression; SPMLE 1, which denotes the proposed semi•
parametric maximum likelihood method under the gene-environment independence model 
when pr(D = 1) is known; and SPMLE2, which denotes the same procedure but with 
pr(D = 1) unknown. 

Table 1 summarises the simulation results for scenarios (a) and (b). Based on these 
simulation results we make the following key observations. First, as expected from theory, 
both the logistic regression and the semiparametric maximum likelihood estimators under 
the correct conditional independence assumption provide essentially unbiased estimators 
of all regression parameters. Secondly, the variance ratios of the semiparametric maxi•
mum likelihood and logistic regression estimator show that when the gene-environment 
independence assumption is exploited there is a major efficiency gain for the estimation 
of fJG and fJGE; the gain is quite dramatic for estimation of the interaction parameter fJGE 
and is larger for the study of the rare mutation than for the common mutation. Thirdly, 
under the gene-environment independence model, incorporating the known pr(D = 1) 
in the estimation leads to major efficiency gains in the estimation of the regression para•
meters, the gain being particularly striking for fJGE· This observation is particularly 
interesting given that it is well known that in the standard logistic regression setting, 
when no assumption is made about the exposure distribution, use of the known marginal 
probability of the disease in the population only identifies the intercept parameter of the 
logistic regression model, but does not have any effect on the efficiency of the estimators 
of the other regression parameters of interest. Fourthly, comparison of the empirical 
standard errors and the means of the estimated standard errors of the semiparametric 
maximum likelihood estimator shows that the proposed sandwich variance estimator 
performs well for realistic parameter values and modest sample sizes. 

Table 1. Simulation study for studying bias and efficiency of semiparametric maximum•
likelihood estimators when G and E are independent: SPMLE~> the proposed method when 
the marginal probability pr(D = 1) is known; SPMLE2, the proposed method when pr(D = 1) 

is unknown 

Bias Var ratio 

Logistic SPMLE1 SPMLE2 Empirical SE Estimated SE 

regres. SPMLE1 SPMLE2 Logistic Logistic SPMLE1 SPMLE2 SPMLE1 SPMLE2 

Scenario (a): pr(G = 1) = 0·05 
f3G 0·033 0·021 0·034 0·629 0·818 0·282 0·322 0·275 0·327 
f3E -0·002 0·000 0·002 0·900 0·991 0·035 0·037 0·034 0·035 

f3GE -0·032 -0·009 -0·023 0·264 0·535 0·090 0·128 0·087 0·126 
e 0·020 0·021 0·164 0·187 0·167 0·194 

Scenario (b): pr(G = 1) = 0·2 
f3G 0·016 0·004 0·015 0·709 0·905 0·175 0·198 0·171 0·195 
f3E 0·001 0·002 0·001 0·769 0·987 0·038 0·043 0·037 0·041 
f3GE -0·013 -0·006 -0·011 0·360 0·717 0·053 0·075 0·052 0·074 
e 0·003 -0·001 0·092 0·105 0·095 0·108 

regres., regression; Var, variance; SE, standard error. 
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The above simulation set-up also allows us to study bias in parameter estimation in 
existing approximate methods that rely on the rare-disease assumption. Schmidt & Schaid 
(1999) noted that, even for rare diseases like breast cancer, the 'case-only' analysis 
approach to interaction that is based on the rare disease assumption can seriously under•
estimate the logistic regression interaction parameters for studying major susceptibility 
genes such as the BRCA1 and BRCA2 genes, which are known to confer a very high 
risk of breast and ovarian cancer. Our simulation gives an alternative relevant scenario 
involving a continuous environmental exposure variable where the gene or the environ•
mental exposures themselves do not pose a very high risk of the disease, but among the 
mutation carriers there is a strong dose-response relationship between the risk of the 
disease and the continuous exposure. We examined the bias in estimation of the interaction 
parameter fJGE in two approximate methods, the case-only analysis (Piegorsch eta!., 1994) 
and the combined control group approach of Modan eta!. (2001). We did not implement 
the log-linear model approach for categorical covariates (Umbach & Weinberg, 1997) as 
in our simulation the environmental covariate E was continuous. We found that on average 
the case-only estimates of fJGx were 0·189 and 0·212 in scenarios (a) and (b), respectively. 
The corresponding average estimates obtained from the approach of Modan et a!. are 
0·194 and 0·229, respectively. Given that the true value of the interaction parameter 
was 0·30, in each of the scenarios we considered, the approximate methods seriously 
underestimate the odds-ratio interaction parameter. 

4·2. Factors G and E are independent conditional on S 

We considered a second simulation experiment in which the independence assumption 
between G and E holds only within subpopulations defined by a stratum variable S. As 
before, we considered two scenarios, one for a rare mutation and one for a common 
mutation, but in each situation we now assume that the gene frequency differs across 
strata defined by S: we took 81 = pr(G = 1[S = 1) = 0·05 and 82 = pr(G = 1[S = 2) = 0·1 in 
scenario (a) and 81 = pr(G = 1[S = 1) = 0·2 and 82 = pr(G = l[S = 2) = 0·4 in scenario (b). 
We assumed that pr(S = 2) = 0·3. Also, as before, we generated the environmental covariate 
as E =min( 10, X), where X follows a log-normal distribution, but we allowed the mean 
parameter for the underlying normal distribution to be different across strata defined 
by S. In particular, we used the values of fl1 = 0, fl2 = 0·67 and u1 = u2 = 1 so that the 75th 
percentile of the distribution of X[S = 1 corresponds to only the 50th percentile of the 
distribution of X[S = 2. We also assumed that the stratification variable S is a risk factor 
for the disease and hence is part of the risk model. We allowed both a main effect, {38 , and 
an interaction of S with G, fJGs• in the disease risk model with the true parameter values 
being log(2) and log(3), respectively. As before, we assumed (fJG, fJx, fJGx) = (0·26, 0·1, 0·3). 
We generated 500 simulated datasets, each dataset consisting of observations on (G, X, S) 
for 500 cases and 500 controls. We analysed each such case-control dataset using three 
procedures: standard logistic regression; SPMLE(cs), which denotes the proposed method 
under the correctly specified independence model that assumes G is independent of E 
given S; and SPMLE(Ms), based on a misspecified independence model that assumes of G 
is independent of (E, S). For both of the latter two procedures, we assumed pr(D) was 
known. 

The results in Table 2 stimulate the following key observations. First, when the correct 
model is that G and E are independent given S, but we assume the misspecified model in 
which G is independent of both E and S, estimators of fJG, fJs and fJGs can be seriously 
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Table 2. Simulation study for studying bias and efficiency of semiparametric maximum•
likelihood estimators when G and E are independent conditional on a stratification variable S: 
SPMLE(cs), our method when the probability model for G and E givenS is correctly specified; 

SPMLE(Ms), our method when this model is misspecified 

Bias MSE ratio Empirical SE Estimated SE 

Logistic SPMLE SPMLE SPMLE(CS) SPMLE(MS) SPMLE SPMLE SPMLE SPMLE 

regres. (cs) (MS) Logistic Logistic (cs) (MS) (cs) (MS) 

pr(G = 1[S = 1) = 0·05 and pr(G = 1[S = 2) = 0·1 
f3G 0·036 0·016 0·518 0·680 1·605 0·397 0·323 0·393 0·338 
f3E -0·002 -0·001 0·008 0·827 0·847 0·030 0·029 0·029 0·029 
f3s -0·008 -0·009 0·078 0·981 1-195 0·153 0·150 0·154 0·150 
f3GE -0·044 -0·021 -0·026 0·273 0·242 0·088 0·081 0·088 0·085 
f3Gs -0·005 0·018 -0·940 0·879 3·386 0·508 0·338 0-481 0·343 

pr(G = 1[S = 1) = 0·2 and pr(G = 1[S = 2) = 0·4 
f3G 0·014 0·017 0·473 0·874 3·292 0·278 0·263 0·269 0·252 
f3E -0·002 0·001 0·016 0·736 0·865 0·037 0·036 0·039 0·038 
f3s 0·003 0·003 0·342 0·976 3·235 0·221 0·213 0·222 0·211 
f3GE -0·007 -0·007 -0·025 0·472 0·569 0·054 0·054 0·054 0·056 
f3Gs -0·025 -0·025 -1·101 0·953 11·468 0·326 0·273 0·337 0·269 

regres., regression; MSE, mean squared error; SE, standard error. 

biased, with the bias of the interaction parameter being the most striking. Secondly, the 
ratio of the mean squared error for SPMLE( cs) and for the logistic regression analysis 
shows that when the correct conditional independence model was exploited there was a 
major efficiency gain in estimating fJG, fJE and fJGE, the gain being most dramatic for 
estimation of fJGE· The corresponding ratio of the mean squared errors for SPMLE(Ms) 
shows that for those parameters, where SPMLE(Ms) produces large bias, the mean squared 
error for SPMLE(Ms) tends to be much larger than that for the logistic regression analysis. 
For the parameters fJE and fJGE, however, where there is very little bias in SPMLE(Ms), 
both SPMLE(Ms) and SPMLE( cs) have similar mean squared errors. Thus, if we adjust 
properly for the stratification variable S in the independence model, we can correct for bias 
in estimating fJG, fJs and fJGs and yet can retain the efficiency advantage resulting from 
the gene-environment independence assumption. Thirdly, comparison of the empirical 
standard errors and the means of the estimated standard errors of the semiparametric 
maximum likelihood estimators shows that the proposed variance estimator performs well 
under the population-stratification model. 

5. ISRAELI OVARIAN CANCER STUDY 
In this section, we apply the proposed methodology to data from a population-based 

case-control study based on all ovarian cancer patients identified in Israel between 1 March 
1994 and 30 June 1999 (Modan et a!., 2001). For each case, two controls were selected 
from the central population registry matched by age within two years, area of birth and 
place and length of residence. Blood samples were then collected from the cases and the 
controls in order to test for the presence of mutation in the two major breast and ovarian 
cancer susceptibility genes BRCA1 and BRCA2. In addition, the subjects were interviewed 
to collect data on reproductive/gynaecological history such as parity, number of years of 
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oral contraceptive use and gynaecological surgery. The main goal of the study was to 
examine the interplay of the BRCA1/2 genes and known reproductive/gynaecological risk 
factors of ovarian cancer. 

Modan et a!. (2001) studied the interaction between BRCA1/2 mutations and two 
known reproductive risk factors for ovarian cancer, namely oral contraceptive use and 
parity. They pointed out that, since BRCA1/2 mutations were very rare among ovarian 
cancer controls, traditional logistic regression analysis would yield very imprecise estimates 
of the various regression parameters of interest. Thus they considered alternative efficient 
methods of analysis that exploit the likely scenario that the status of BRCA1/2 mutations 
is independent of the reproductive risk factors. In particular, they estimated the odds ratio 
of ovarian cancer associated with the reproductive risk factors separately for carriers and 
non-carriers by using the combined common control group approach that we described 
in § 1. In addition, to test if the effects of the reproductive risk factors are different for 
BRCA1/2 mutation carriers and non-carriers, the authors performed the 'case-only' 
analysis of interaction (Piegorsch et a!., 1994 ). 

We reanalysed the data using the proposed maximum likelihood method under the gene­
environment independence assumption. Our analysis included 832 cases and 747 controls 
who did not have bilateral oophorectomy, were interviewed for risk factor information 
and successfully tested for BRCA1/2 mutations. There were 240 carriers, but only 12 among 
the controls. Similarly to Modan et a!., we coded reported parity values greater than 10 to 
be 10. In addition, we deleted three women with extreme oral contraceptive use, of at 
least 250 months, as they became highly 'influential' for the estimation of regression 
parameters. We considered the following logistic regression model for risk of ovarian 
cancer: 

logit {pr(D = 1)} = {30 + fJBRCAl/2J(BRCA1/2) + fJocOC + fJrarParity 

+ fJBRCA1/2•ocl(BRCA1/2)*0C 

+ fJBRCA1/2•Pari(BRCA1/2)* Parity+ yT Z, 

where J(BRCA1/2) denotes the 0-1 indicator of carrying at least one BRCA1/2 mutation, 
oc denotes years of oral contraceptive use, Parity denotes the number of children and Z 
denotes the set of all co-factors that Modan et a!. used to adjust their regression analysis; 
Z included the main effects of age, as a categorical variable defined by decades, ethnic 
background, being Ashkenazi or non-Ashkenazi, the presence of personal history of breast 
cancer, PHB, history of gynaecological surgery, and family history of breast or ovarian 
cancer, FHBO, where 0 corresponds to no history in the family, 1 to one breast cancer case 
in the family and 2 to ovarian cancer or two or more breast cancer cases in the family. 

Next we considered an appropriate model for gene-environment independence. Clearly, 
a personal history of breast cancer and family history of breast/ovarian cancer cannot be 
assumed to be independent of BRCA1/2 status as mutations in these genes are known to 
increase dramatically the risk of these familial cancers. Moreover, BRCA1/2 mutation 
frequency has been reported in the past to vary by age and ethnicity. Given that some 
of these factors can also be related to oral contraceptive use and parity, we make the 
assumption of independence between mutation and reproductive risk factors only con­
ditional on S =(Age, Ethnicity, PHB, FHBO). Given that the total number of strata defined 
by S is large, estimation of the genotype frequencies individually for each stratum would 
be imprecise. Thus, we considered the following parametric model for specification of the 
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carrier frequencies: 

logit{pr(G = 1[S)} = 80 + 8Agel(Age ~50)+ 8EthJ(Non-Ashkenazi) 

+ 8pHJ(PHB = 1) + 81FHJ(FHBO = 1) + 82FHJ(FHBO = 2). (10) 

Modan et a!. had reported a total of 1326 cases of peritoneal or epithelial ovarian 
cancer during the five-year study period, in a baseline population of approximately 
1·5 million. Thus, the marginal probability for the disease for the underlying population 
is small, at about pr(D = 1) = 8·7 x 10-4• Therefore, based on the discussion in§ 3·2, we 
note that we can analyse data from this age-matched case-control study using methods 
developed for ordinary case-control studies as long as we allow for an independent 
intercept term for each of the age-strata that were used for matching. Although the cases 
and controls were matched to within two years, to avoid problems with sparse cells we 
allowed an independent intercept term only for every 10-year interval. This approximation, 
the validity of which requires assumptions similar to those required for unconditional 
logistic regression analysis of matched data, is reasonable for this study. 

Table 3 shows the estimates and 95% confidence intervals corresponding to the 
regression parameters associated with the main covariates of interest: BRCA1/2, oral 
contraceptive use and parity. Two sets of estimates and confidence intervals are shown, 
one corresponding to an ordinary logistic regression analysis of the case-control data and 
the other corresponding to our method estimated under the conditional gene-environment 
independence model. Based on the ordinary logistic regression estimates of the main 
effect parameters, we first observe that, among childless women, for whom Parity= 0, and 
who never used oral contraceptives, BRCA1/2 mutation is associated with a dramatic 
increase in risk of ovarian cancer, with odds ratio exp(3·58) = 35·87. Among BRCA1/2 
non-carriers, both higher parity and longer use of oral contraceptives are associated 
with decreased risk of ovarian cancer, with the associated odds ratio parameters esti•
mated to be respectively 0·95 and 0·94 for Parity; both of these results are borderline 
statistically significant at the 5% level. The estimates of the interaction parameters 
from the logistic regression analysis suggest that, among BRCA1/2 carriers, the risk of 
ovarian cancer decreases even more strongly with increasing parity, with odds ratio 
exp(-0·058) x exp(-0·199)=0·77, but increases slightly with longer oral contraceptive 
use, with odds ratio exp(-0·047) x exp(0·056) = 1·01. However, the confidence intervals 
for the interaction parameters are very wide, suggesting that the point estimates are 
imprecise and hence hard to interpret. 

Table 3. Parameter estimates and confidence intervals for the risk model in the 
Israeli ovarian cancer study 

Ordinary logistic regression MLE with G-E independence given S 
Estimate 95% C! Estimate 95% C! 

BRCA1/2 3·58 (2·27, 4·89) 3-15 (2·51, 3·79) 
oc use -0·047 (- 0·098, 0·003) -0·051 (-0·102, -0·001) 
Parity -0·058 (-0·121, 0·004) -0·061 (-0·125, 0·002) 
oc•BRCA1/2 0·056 (-0·149, 0·260) 0·089 (0·021, 0·150) 
Parity•BRCA1/2 -0·199 (-0·626, 0·229) -0·036 (-0·141, 0·068) 

MLE, maximum likelihood estimate; G-E, gene-environment; cr, confidence interval; 
S =(Age, Ethnicity, Personal history of breast cancer, Family history of breast/ovarian cancer); 
oc, oral contraceptive. 
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Inspection of the parameter estimates from the semiparametric maximum likelihood 
method with the gene-environment independence model suggests similar types of associ•
ation to those from the logistic-regression analysis. However, the precisions of the estimates 
are greater for all the terms involving BRCAl/2, the gain being particularly striking 
for the interaction terms. In particular, under the gene-environment independence model, 
the interaction between BRCAl/2 mutation and oral contraceptive use is statistically 
significant, suggesting that, unlike for non-carriers, the risk of breast cancer for carriers 
did not decrease with increasing oral contraceptive use. For carriers, the association 
between oral contraceptive use and risk of ovarian cancer, if any, is positive, with odds 
ratio exp(-0·051 + 0·089) = 1·034, and 95% confidence interval (0·977, 1·095). The inter•
action estimate between Parity and BRCAl/2 suggests that the decrease in risk of ovarian 
cancer associated with increased parity is modestly larger for carriers than for non-carriers, 
but this difference is not statistically significant. 

Table 4 shows the maximum likelihood estimates corresponding to the model for carrier 
frequency pr(G =liS). Although these parameters do not have any causal interpretation 
and are not generally of biological interest, they can be useful for descriptive purposes. 
For example, as expected, prevalence of a BRCAl/2 mutation is significantly higher among 
women with either a personal history of breast cancer or family history of breast/ovarian 
cancer. Moreover, we observe that BRCAl/2 mutation frequency is significantly lower 
among non-Ashkenazi Jewish women compared to Ashkenazi women. There is also some 
evidence, with p-value = 0·05, that carrier frequency was smaller among women older than 
50 than among younger women. 

Table 4. Parameter estimates and confidence intervals for the logistic regression model 
for pr(G =liS) in the Israeli ovarian cancer study, with risk factors ethnicity, age, 
personal history of breast cancer, family history of breast cancer and family history of 

breast/ovarian cancer 

llo BEth BAge II PH IJlFH IJ2FH 

Estimate -3·78 -1·31 -0·28 1·59 0·71 1·32 
95% CI (-4-40, -3-16) (-1·74, -0·890) (- 0·638, 0·071) (1·01, 2-18) (0·20, 1·21) (0·74, 1·90) 

CI, confidence interval. 

A version of the dataset is available together with the software from the website 
http:/ /dceg.cancer.gov jpeople/ChatterjeeNilanjan.html under the software link. This data•
set consists of the real data on disease status, D, and non-genetic co-factors, X. For reasons 
of privacy, however, the real genetic data are not publicly available. Instead, the data 
consist of simulated genetic data, G, generated using the conditional distribution of 
[GID, X] as specified by the parameter estimates obtained from the real data. 

6. DISCUSSION 

Case-control studies with modest sample sizes often have very little power for studying 
interaction and other hypotheses of interest using the standard logistic regression analysis. 
In such situations, epidemiological researchers currently have been prone to exploit the 
efficiency advantage from the gene-environment independence assumption through the 
case-only approach that yields estimate of the multiplicative interaction parameter in 

http:/ /dceg.cancer.gov/people/ChatterjeeNilanjan.html
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the logistic regression model under the rare disease assumption (Piegorsch et al., 1994 ). 
This analysis, however, is limited. It discards all the information from controls and hence 
loses the ability to estimate the main effect parameters of the logistic regression model 
which are required for deriving the various alternative scientific parameters of interest. 
In this paper, we have considered estimation of regression parameters under the gene­
environment independence assumption in a very general logistic regression model that 
uses data from both cases and controls and hence can estimate all of the parameters of 
interest. 

However, we recommend cautious use of the gene-environment independence 
assumption. Simulation studies reported in§ 4·2, as well as those in Albert et al. (2001), 
show that methods that use the gene-environment independence assumption when the 
assumption is not true may produce severe bias in parameter estimation. We have pro­
posed a possible remedy for minimising such bias by explicitly accounting for observable 
factors, denoted by S, that can potentially be related to both G and E. 

Methods for exploiting the gene-environment independence assumption could be 
practically useful without concerns about bias in many important situations. For 
'randomised exposure' such as the treatment assigned in a randomised trial, the gene­
environment independence assumption would be satisfied by the definition of random­
isation. The assumption of gene-environment independence is also very likely to be 
satisfied for external environmental agents, e.g. carcinogens from a nearby chemical 
factory, exposure to which is not directly controlled by an individual's own behaviour. 
When an exposure depends on subject's individual behaviour, on the other hand, the 
independence assumption should be used more cautiously. There could be spurious 
association between G and E for established risk factors such as smoking because family 
history of lung cancer, which is associated with G, may also influence a subject to change 
his/her smoking behaviour. There could also be direct association. For example, genetic 
polymorphisms in the smoking metabolism pathway may not only modify a subject's risk 
from smoking, but may also influence a subject's degree of addiction to smoking. 

When violation of the gene-environment independence seems plausible, because of direct 
or indirect association, effort should be made to validate the assumption empirically. 
However, tests for independence within a given study may have very little power, and 
empirical evidence from external data sources should be investigated. When substantial 
uncertainty remains about the validity of the assumption because of lack of empirical 
data or for other reasons, positive findings based on proposed methodology should be 
considered as preliminary screen which should be pursued with high 'priority' in future 
epidemiological studies. 

In practice, genetic and/or environmental exposure data can be also missing on certain 
study subjects, by design or by change. Umbach & Weinberg (1997) described a number 
of alternative designs in which genetic and/or environmental exposure data are collected 
only on a subset of controls. They showed how different parameters of interest can be 
estimated under different designs using the approximate log-linear model approach for 
categorical variables. Further research is warranted to extend the proposed maximum­
likelihood methodology to handle missing data in genetic as well as environmental 
exposures. Such extensions will also be useful to haplotype-based associated studies where 
genetic effects are modelled in terms of 'haplotypes', the combinaton of alleles at multiple 
loci in a single chromosome, but the exact haplotype configuration in two chromosomes 
of some subjects cannot be derived with certainty from available locus-specific genotype 
data. 
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APPENDIX 

Proofs 

Proof of Lemma 1. By Lemma 1 of Roeder eta!. (1996), it follows that the probability equality 
of our Lemma 1 holds only if 

d.Yf'*(G E)= [1 + exp {f3t + m(G, E; /3tl}J/[1 + exp {/30 + m(G, E; f3d}]d£'(G, E) 
' Lg L [1 + exp{/3~ + m(g, e; /31 )}]/[1 + exp{/30 + m(g, e; /31 )}]d£'(g, e)· 

If£' is of the product form Q x F, £'* =F £' could be of the product form only if /31 E f!4°. Thus, 
if /31 ¢ r14°, then F = F* and Q = Q*. Moreover, since £'* = £', it also follows that /30 = /3*. D 

Proof of Lemma 2. By equating the partial derivatives of the loglikelihood given in equation ( 1) 
with respect to .5~> ... , 6K, we can easily show that 3.(y) will satisfy the equation 

6 - n++k 
•- Lu Pii(e"' f3)(1,qi(fJ)' 

(A1) 

where 

(A2) 

If we now substitute the left-hand side of (A1) for .5• into the loglikelihood of the data defined 
in (1), we obtain 

L{y,$(y)} =I nu• log Pu(e., /30 , /31 ) +In+ i+ log qj(fJ) 
ijk 

n++k ni++ 
+ In+k+ log I: A -In,++ log-A-, 

• i/ Pij'(e.; f3o, f3tlJ.l;(qj'(fJ) ' {l;(y) 

which is equivalent to L*{y, (l(y)} up to constant terms. Moreover, if we substitute (A1) into (A2) 
it can be seen that (l,(y), for i = 0, 1, are given by solutions of the equations 

Lf Pi/( e.·; f3)qi(fJ)J.l; . 
n,++ =I n++k'" p ( . /3) (fJ) (1 = 0, 1), 

k' L..ii ii ek', qi f.li 

which are in turn equivalent to the equations given in (4). Thus Lemma 2 is proved. D 

Proof of Lemma 3. First, we note that, by the law of large numbers, 

1 N N 0 1 No N 1 1 N, 

N I Q(Du, G., Eu) = N No u~l Q(D., Gu, Eu) + N N, I Q(Du, G., Eu) 

=flo pr(D = O)E{Q(D, G, E)ID = 0} 

+ J.l1 pr(D = 1)E{Q(D, G, E)ID = 1} + op(1). (A3) 

Using Bayes' rule we can write 

pr(D = d)E{Q(D, G, E)ID = d} = f [ ~ {Q(d, gi, e)qj(fJ)} J dF(e). 
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Thus, we can write the limiting expression in (A3) as 

I {I Q(i, gi, e)Pii(e; fJo, fJ1)Jl,qi(fJ)} h(e)dF(e). 
J. ii h(e) 

The proof of Lemma 3 follows if we note that Pt(e; y, Jl) = Jl;Pii(e; {J 0 , fJ,)qi(fJ)jh(e). 

Proof of Lemma 4. By applying the chain rule of derivatives to formula (7) we have 

1 iJ2L* N [a 28n"G)E.,11) _ * {a 28nG(E,11)1 _ } ] 
N an an' - I a a ' E DG a a ' E - E � 

• , ., u~1 11 11 11 11 

~ " afJij(E., 11) a 
- L... L... a, -a Pt(E.;11l· 

u~1 ij 11 11 

417 

D 

Using Lemma 3, we can now show that the first term in the above expression goes to zero in 
probability. Furthermore, with some algebra it can be shown that 

" afJ,)E., 11) ~ P'!'.(E . ) = V* {afJvG(E., 11) IE= E} 
L... a a '1 "' 11 a " . ij 11 11 11 

The proof of Lemma 4 now easily follows from the result of Lemma 3. D 

Proof of Proposition 1. (i) The main condition for consistency, that is the asymptotic unbiasedness 
of the score equation I:~~ 1 'P(D,, G., E,; 11) = 0, follows from direct application of Lemma 3. In 
Lemma 4, we have further shown that -a1a11{N- 1 2:~~ 1 'P(D;, G;, E;; 11)}-> § in probability, 
where § is a positive definite matrix. Moreover, from ( 6) it is easy to see that the first and second 
derivatives of fJii(E; 11) with respect to 11 can be uniformly bounded in an open neighbourhood of 
11o· This can be used to show that the convergence in Lemma 4 holds uniformly in an open 
neighbourhood of 11o· The proof now follows using results of Foutz ( 1977). 

(ii) The asymptotic normality of the estimator follows from standard application of the central 
limit theorem. To derive the form of the asymptotic variance, we need to prove that 

N 

f"=covN- 1' 2 I 'P(D,,G,,E,;11)=.f-Q. (A4) 
u=1 

Let ct>(D; 11) = E{'P(D, G, E; 11)[D} and 'i '(D, G, E; 11) = 'P(D, G, E; 11)- ct>(D; 11). We can now write 

Nd Nd -r =I- cov{'P(D, G, E; 11)[D = d} =I-E{'P02(D, G, E; 11)[D = d} 
d N d N 

= I Jld I f 'i'02(D, G, E; 11) pr(D = d[ G = gi, E = e)qidF(e). 
d j 

By reordering the sums and the integral in the last expression we can easily show that 

1 = f E*{'f02(D, G, E; 11)[E = e}h(e)dF(e). 

Since 

'f02(D, G, E; 11) = 'P02(D, G, E; 11) + ct>02(D; 11)- 2'P(D, G, E; 11)ci>(d; 11)T 

and E*{'P(D, G, E; 11)02 [E = e} = V*{'P(D, G, E; 11)[E = e}, the proof of formula (A4) will follow if 
we can show that 

~ Jldcl>(d; 11)02 = f E*{'P(D, G, E; 11)ci>(D; 11)T[E = e}h(e)dF(e), 

~ Jldcl>(d; 11)02 = f E*{ct>(D; 11)02 [£ = e}h(e)dF(e). 

(A5) 

(A6) 
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To prove (A5), we first define 

W(D, E; t~) = E{'P(D, G, E; t~)[D, E} = E*{ 'P(D, G, E; t~)[D, E} 

and note that E{W(D, E; t~)[D} = <I>(D; f~). It is easily seen that the right-hand side of (A5) can be 
written as 

f E1){<1>(D; t~)W(D, e; t~)[E = e}h(e)dF(e). (A7) 

Now we observe that pr*(D[E) = pr(D[E)J-tn/h(E) and write (A7) as 

f f W(D, e; t~) pr(D[E = e)dF(e) 
I J-tn pr(D[E = e)<I>(D; t~)W(D, e; ry)dF(e) = I J-tn pr(D)<I>(D; ry) ( ) 
n n pr D 

=I J-tn<l>®l(D; q). 
D 

This proves (A5). The proof of (A6) follows from similar steps. D 
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INTRODUCTION 

The risks of many complex diseases are deter•
mined by a combination of the effects of genetic 
susceptibilities and environmental exposures. Ad•
vances in human genome research have thus led 
to epidemiologic investigations not only of the 
effects of genes alone, but also of their effects in 
combination with environmental exposures. The 
risk of a disease in relation to two exposures can 
be studied at various scales including statistical 
interaction (multiplicative or additive), joint ef•
fects, and the subgroup effect of one exposure 
within strata defined by the other exposures. 

© 2004 Wiley-Liss, Inc. 

Although the utility of a specific risk parameter 
depends on the scientific context and is sometimes 
a matter of debate, collectively various risk 
parameters of interest involving genetic and 
environmental exposures can be important for 
understanding biological and public health effects 
of the exposures, for targeting high-risk subjects 
for intervention, for individual risk prediction, 
and for enhancing the power to detect the 
association of the disease with one exposure 
(e.g., a gene) by selecting subjects to study based 
on the other exposure (e.g., the environment). 
Studies of genetic and environmental exposures 
together, whether designed to evaluate statistical 



275

Gene-Environment Independence 139 

interactions or other parameters of scientific 
interest, can be cost-prohibitive due to the typical 
requirement of large sample sizes to achieve 
reasonable statistical power. Thus, efficient de­
signs as well as efficient analytic methods that can 
reduce required sample size have become an 
important area of genetic-epidemiologic research. 

Case-control study designs, in which diseased 
(cases) and non-diseased subjects (controls) are 
compared with respect to their exposure history, 
are now increasingly being used to study the role 
of genes and gene-environment interactions in the 
etiology of rare diseases. In population-based 
case-control designs, cases and controls are 
randomly selected from the diseased and non­
diseased subjects that arise in an underlying 
population. Typically, the cases and controls in 
such designs are unrelated. In contrast, in family­
based case-control designs, controls are selected 
from families of the cases. Both population- and 
family-based designs have advantages and dis­
advantages [Witte et al., 1999; Gauderman et al., 
1999; Weinberg and Umbach, 2000]. While selec­
tion of population-based controls may be logisti­
cally more convenient, family-based designs can 
offer protection against spurious association in­
duced by population stratification or admixture. 
Even when bias due to population stratification or 
admixture is not a concern, for efficiency reasons 
family-based designs may be preferred in studies 
of gene-environment interaction involving rare 
genetic variants [Witte et al., 1999; Gauderman, 
2002]. 

The focus of this report is family-based designs 
where data on both genotype and environmental 
exposures are available on cases and related 
matching controls within families. Such designs 
may include, for example, designs where healthy 
siblings [Curtis, 1997; Spielman and Ewens, 1998] 
or cousins [Witte et al., 1999] of diseased subjects 
are selected as controls. Traditional analysis of 
such family-based studies involves conditional­
logistic regression that restricts comparison of 
cases and controls to be within the family. The 
underlying theory of this approach relies on the 
conditional likelihood of the observed disease 
configuration data within matched-sets (family) 
given the risk factor information of the individual 
subjects. This method does not require any 
assumptions on the distribution of the risk factors 
in the underlying population. 

In this article, we develop a new paradigm of 
conditional likelihoods for efficient analysis of 
family-based case-control studies when genetic 

susceptibility and environmental exposures can be 
assumed to be independently distributed of each 
other within families in the source population. 

The efficiency advantage of methods that can 
exploit the gene-environment independence as­
sumption was first observed in the context of 
population-based case-control studies. If genetic 
(G) and environmental (E) risk-factors can be 
assumed to be independently distributed in the 
underlying population, then the multiplicative 
interaction (also known as statistical interaction) 
between G and E for a rare disease can be 
estimated as the odds ratio between G and E 
among cases alone: the corresponding case-only 
estimate of interaction can be much more precise 
than the corresponding estimate of the interaction 
parameter from standard logistic regression ana­
lysis that involves both cases and controls but 
does not exploit the independence assumption 
[Piegorsch et al., 1994]. For discrete covariates, 
Umbach and Weinberg [1997] and then more 
generally Chatterjee and Carroll [2005] have 
developed efficient methods for estimating all of 
the parameters in a logistic regression model 
using data from both cases and controls and 
utilizing the G-E independence assumption. 

The G-E independence assumption has been 
exploited also for the case-parent-trio design, an 
alternative family-based design that is known to 
be powerful for studying the effects of genes 
alone. The assumption was first used implicitly to 
show that the multiplicative interaction between G 
and E can be estimated from a case-parent-trio 
design that genotypes cases and their parents and 
determines environmental exposures of the cases 
[Schaid, 1999]. In particular, the likelihood based 
methods for analysis of such data rely on the 
assumption that conditional on parental geno­
types, an individual's exposure status is indepen­
dent of his/her genotype, a relatively weak 
independence assumption that is not affected by 
spurious association between genotype and ex­
posure status in the general population that may 
be created due to hidden substructure [Umbach 
and Weinberg, 2000; Thomas, 2000]. 

Within the context of family-based studies, the 
choice of the case-control or the case-parents 
design for studies of gene-environment interac­
tion depends on a number of different considera­
tions [Weinberg and Umbach, 2000]. Besides 
various practical issues such as the availability 
of parents in the case-parent-trio design and 
availability of sibling/ cousin for case-control de­
signs, an important consideration is the relative 
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efficiency of these designs for estimation of 
various parameters of interest. Efficiency compar•
isons for estimation of the multiplicative inter•
action parameter have revealed that either the 
case-control design or the case-parent design can 
be superior depending on whether the effect of 
the gene under study is dominant or recessive, 
respectively [Witte eta!. 1999; Gauderman, 2002]. 
It is worth noting that in all of these previous 
efficiency comparisons, the conditional likeli•
hood method that is used for analysis of case•
parent designs relies on the G-E independence 
assumption, while the traditional conditional 
logistic regression method used for analysis of 
case-control design does not exploit any such 
assumption. 

In this article, we develop an alternative condi•
tional likelihood framework for analyzing family•
based case-control studies. Our approach relies on 
the assumption that genetic and environmental 
exposures are independently distributed within 
families. This family-level independence assump•
tion, similar to the G-E independence assumption 
required for the case-parent design, is relatively 
weak in the sense that it is less likely to be affected 
by spurious association between G and E in the 
population. We show that when the underlying 
independence assumption is valid, the method 
can lead to major efficiency gains over traditional 
conditional logistic regression analysis of family•
based case-control studies. 

We also show that our conditional likelihood 
framework can be used to analyze data from a 
novel hybrid design that obtains genotype data of 
parents in addition to collecting genotype and 
environmental exposure data on cases and family•
based controls. In particular, we show that a 
sibling-case-control design with parental geno•
type information, when analyzed using our new 
conditional likelihood approach, can be far super•
ior to the sibling-case-control, case-parent, or 
population-based case-control design for estima•
tion of different parameters of interest, and in a 
wide variety of situations. Various extensions of 
the methods for general family-based studies are 
also described. 

BACKGROUND OF CONDITIONAL 
LOGISTIC REGRESSION (CLR) 

MODEL AND NOTATION 

For a major part of this article, we consider 
designs with 1:1 case-control matching. Later, we 

discuss how the methodology can be extended to 
more general types of family studies that may 
involve more than one case and/or control per 
family. We first describe a set of model assump•
tions that are required for traditional CLR 
analysis. Let (D1,D2), (G1,G2), and (E1, E2) denote 
the 0-1 disease indicators, genotypes, and envir•
onmental exposures for a pair of relatives. We 
assume that within a given family F, the risk of 
disease for two relatives is conditionally indepen•
dent given their covariate information, and that 
the prospective risk model for the disease for the r (j = 1 or 2) relative is given by the logistic 
regression model 

pr(Dj = 1IGj,Ej,F) = H{IXF +m(Gj,Ej;p)}, (1) 

where H(x) = {1 + exp( -x) } -I is the logistic dis•
tribution function and m( �) is a known but 
arbitrary function. Let RF(G1, Gz, E1, Ez) denote 
the joint distribution of (G1,G2) and (E1,E2) 
within family F. Standard CLR analysis allows 
RF( G1 , G2, E1 , E2) to be completely arbitrary. 

There are two important features of the above 
model that need special attention. First, model (1) 
allows the family-specific intercept parameter IXF 
to account for potential heterogeneity in disease 
risk between different families. Such heterogene•
ity may arise, for example, if there are other 
sources of familial aggregation that cannot be 
explained by the genetic and environmental 
exposures under study. 

Second, the model (1) allows the joint log-odds•
ratio (log-relative-risk assuming rare disease) 
function m( G, E, P) to be of very general form, so 
that it can include many different kinds of 
interaction models. The standard logistic model 
corresponds to m(G, E, P) =PeG+ PEE+ PeEG * E, 
where exp(Pe) is the relative-risk (assuming rare 
disease) associated with the gene variant in the 
absence of the environmental exposure (the main 
effect of G), exp(PE) is the relative-risk associated 
with the exposure in the absence of the gene•
variant (the main effect of E), and exp(PeE) is the 
multiplicative interaction between G and E, which 
measures how the relative-risk associated with 
exposure changes with genotypes, or, equiva•
lently, how the relative-risk associated with the 
gene variant changes with the exposure, with the 
changes being measured in the ratio scale. Many 
studies of gene and environment focus on estima•
tion of the multiplicative interaction parameter 
PeE' but estimation only of such statistical inter•
action may not necessarily contribute to an 
understanding of the biological or public health 
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effects of the two exposures [Thompson, 1991; 
Clayton and McKeigue, 2001]. Thus, when genetic 
and environmental factors are being studied 
together, it is important to consider modelling 
and estimation approaches that allow flexibility 
of estimation of various different parameters 
of interest. Examples of such parameters include 
the joint effect of the exposures G and E, the 
effect of E in sub-groups of subjects with diffe•
rent genetic exposures, the effect of G in sub•
groups of subjects with different environmental 
exposures, and interaction between G and E 
at various different scales [Khoury, et al., 1993]. 
We will describe all of our methodologies in 
the general setting of model (1), which allows 
testing and estimation of all the risk-parameters 
of interest. 

We assume M relative pairs are sampled 
into the study so that each pair has one diseased 
(case) and one non-diseased (control) subject. 
For the i'h such matched set, let D;o, G;o, and E;o 
denote the disease status, genotype, and envi•
ronmental exposure for the control and Di!, Gil 
and Ei! denote the corresponding values for 
the cases. 

TRADffiONAL CONDITIONAL LIKELIHOOD 

We now describe the conditional likelihood 
that forms the basis for traditional CLR analysis 
of family-based or other types of individually 
matched case-control studies. In the context of our 
model and notation, this conditional likelihood for 
the i'h matched set is given by 

L;,CLR =Pr(Di! = 1, D;o = OIDi! + D;o = 1, 

Gn,Gw,En,E;o) 
exp{m(Gi!,Eil;P)} 

exp{m(Gi!,Eil;P)} +exp{m(G;o,E;o;P)} · 

(2) 

In (2), conditioning on the set event Di! + D;o = 1 
reflects the constraint that by design the total 
number of cases in each matched set is exactly 
equal to one. For each matched set i, the 
conditional likelihood is formed based on the 
probability of the observed disease configuration 
for the members of the matched set, conditional 
on their risk factor information G and E and the 
ascertainment event Dil + D;o = 1. We observe 
that for studying the effect of genes alone using 
the sibling-case-control design, Spielman and 
Ewens [1998] previously proposed a Monte Carlo 
test-procedure, known as Sib-TOT (SDT), based 

on within-family permutation of genotypes. The 
CLR method can be viewed as an alternative 
likelihood-based analysis approach that is effi•
cient as well as flexible in the sense that it allows 
both testing and estimation of risk parameters, can 
adjust for co-factors, and can be used to study 
gene-environment interaction. 

There are several features of the above condi•
tional likelihood that make the CLR analysis very 
flexible. First, computation of the CLR likelihood, 
as shown in the second line of formula (2), is free 
of the family-specific intercept parameters <J.F, and 
hence does not require any modelling assump•
tions about possible mechanisms of heterogeneity 
in disease risk between different families that 
cannot be explained by the genetic and environ•
mental risk factors under study. Moreover, the 
likelihood in formula (2) is constructed based on 
probabilities that condition on all the risk factor 
information in a matched set and, hence, is free of 
any assumption about RF(G~oGz,E~oE2), the joint 
distribution of the risk factors in pairs of relatives. 
At the same time, however, the method, being 
distribution free, cannot exploit the gene-environ•
ment independence assumption when it is reason•
able to do so. 

PROPOSED METHODOLOGY 

A NOVEL CONDITIONING PRINCIPLE 

We propose to exploit an appropriate G-E 
independence assumption based on a conditional 
likelihood that does not condition on all of the 
genotype information of the individual subjects in 
a matched set. The straightforward choice for such 
a conditional likelihood is Pr(Dil = 1, D;o = 0, 
Gi!,GmiDi! +D;o = 1,Ei!,E;0). However, a compli•
cation with such a conditional likelihood is that its 
computation depends on the joint genotype 
frequencies for pairs of relatives. In the presence 
of population substructure, genotype frequencies 
may vary across families and estimation of the 
regression parameters in the presence of family•
specific genotype/allele frequency parameters is 
not possible without a strong modelling assump•
tion about the distribution of the gene in different 
families. Since a major motivation of family-based 
designs is to avoid making this kind of assump•
tion, we propose an alternative conditional like•
lihood that does not involve the genotype•
frequency parameters and yet can exploit the 
G-E independence assumption. The most general 
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form of such a conditional likelihood is given by 

Li,general = Pr(Dn = 1, Dm 

=0,Gii,G.u[Di!+D;o=1,Q;,Ei!,E;o), (3) 

where the conditioning event Q; denotes a variable 
that contains partial, but not all, information about 
the genotypes of the subjects in the matched set i, 
chosen in such a way that L;,gene<al remains free of 
genotype-frequency parameters. Similar ideas for 
conditioning on partial genotype information to 
remove distributional assumption on genotypes 
have been previously used in the context of case•
parent-trio studies of genetic association [Clayton, 
1999; Cordell and Clayton, 2002; Rabinowitz and 
Laird, 2000]. In what follows, we will show how 
such an idea can be utilized for efficient analysis 
of gene-environment interaction in the context of 
case-control studies. 

THE NEW CONDITIONING 
PARADIGM IN THE STANDARD 

CASE-CONTROL DESIGN 

We now describe how the conditioning princi•
ple outlined above can be applied to analyze data 
from standard family-based case-control designs 
where genotype and exposure data are available 
only for selected cases and related matching 
controls. The required G-E independence as•
sumption for this design is that the joint genotype 
and exposure status are independent for pairs of 
relatives within each family in the source popula•
tion. Formally speaking, this assumption for a 
given family F implies that the joint genotype and 
exposure distribution RF(G~, Gz, E~, Ez) can be 
expressed as 

RF(GJ, Gz,EJ, Ez) = QF(GJ, Gz)xVF(EJ, Ez), (4) 

where QF and VF are the family specific distribu•
tions of (G1 , G2 ) and (E~, E2 ), respectively. We also 
assume that the joint genotype distribution for 
any pair of relatives is symmetric, that is 
QF(gJ,gz) = QF(gz,g1), an assumption that auto•
matically holds under the Mendelian law of 
inheritance within families. Hereafter, we will 
describe the assumption stated in (4) as "Type-! 
Independence" to distinguish it from an alter•
native independence assumption that we will use 
later for case-control designs with parental geno•
type information. 

Observe that independence assumption (4) is 
much weaker than the population-based G-E 
independence assumption that is required for 

the case-only design. The population-based in•
dependence assumption, for example, may be 
violated due to the effects of a hidden population 
substructure [Umbach and Weinberg, 2000] or the 
influence of family history, a factor that is clearly 
related to susceptibility genes, on lifestyle factors 
such as smoking [Thomas, 2000]. Since related 
subjects share both ethnic and family history 
background, the within-family independence as•
sumption (4) is much less likely to be affected by 
spurious association due to these factors. In 
particular, the assumption is the weakest for the 
sibling-case-control design, because siblings share 
ethnic and family history background. Cousins, 
on the other hand, only partially share these 
factors and thus the required assumption for the 
cousin case-control design is stronger. Possible 
ways for further relaxing this assumption based 
on a conditional independence model will be 
discussed later. 

In the setting of the standard case-control 
design, we propose the conditioning event Q; in 
the likelihood (3) to be g{, the set of genotypes that 
is observed in the t1h matched pair. For matched 
pairs where observed genotypes are discordant, Q; 
contains the information on the two different 
types of genotypes that are observed for that pair, 
but does not specify the individual genotype of 
the case (Gil) and the control (G;0). In the 
Appendix, we show that under a rare disease 
assumption, with this definition of Q; the pro•
posed conditional likelihood (3) can be computed 
as 

L;,cc = 
exp{m(G;J,Eil;tl)} 

LJ~o [exp{m(Gij, Eil; P)} + exp{m(Gij, E.u; P) }]. 
(5) 

The sum in the denominator of L;,cc essentially 
constitutes four subjects corresponding to the 
four genotype-exposure configurations: (G;0 , E;o), 
(Gi!,Ei!), (G;o, Ei!), and (Gi!,E;o). Thus, L;,cc is the 
same as the standard conditional likelihood for 
a 1:3-matched design, where the two additional 
subjects with genotype-exposure configuration 
(G.u,Eil) and (GiJ,E;0 ) can be viewed as "pseudo" 
family members obtained by exchanging the 
genotypes of the observed family members: under 
the G-E independence assumption, such "pseudo" 
subjects are as equally likely to appear in a family 
as the observed subjects in that family. In this 
spirit, the proposed methodology has an intri•
guing similarity with the conditional logistic 
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regression analysis of case-parent trio designs 
[Self et a!., 1991], which is also based on pseudo•
sibs for the observed case that could have been 
observed given the genotype of the parents. 

Several other observations can be made from 
the final form of the conditional likelihood (5). 
First, similar to the standard conditional like•
lihood, L;,cLR in (2), L;,cc is free of the family•
specific intercept parameters IXf;· Second, although 
L;,cc relies on the assumption of independence 
between G and E within each family, it is 
otherwise quite flexible in the sense that it does 
not depend on any assumption about VF(£ 1, £2), 
the family-specific distributions of joint exposure 
status for two relatives. Finally, because of the 
standard CLR form, estimates of the regression 
parameters {J that maximize L;,cc, as well as 
corresponding asymptotic variance estimates, 
can be obtained by using standard and widely 
available CLR software. 

In the Appendix, we derive standard errors for 
the estimates of {J for a general class of designs 
that include all the designs described in this 
report. The relevant formula is (A.5). Also, in the 
Appendix we show that the proposed method is 
asymptotically at least as efficient as standard 
CLR. Indeed, what we show is that the asymptotic 
covariance matrix of estimates of {J that maximize 
L;,cc can be written as 

where h ({J) is the information matrix correspond•
ing to the standard conditional likelihood (2) 

and I2 ({J) is a non-negative definite matrix. 
This automatically proves that {h ({J) + I2({J)} -I ::; 
{h({J)r1 inthesense{h(fJ)+h({J)r1 -{h({J)r1 
is always a non-positive-definite matrix, thus 
implying that the proposed method is asymptoti•
cally at least as efficient as standard CLR. 

Finally, we observe that the within family G-E 
independence assumption can be also exploited 
to construct powerful permutation-based methods 
for testing a global null hypothesis of no associa•
tion. The pivot statistics could be given by any 
measure of distance, such as the sum of square 
differences, between the joint genotype and 
exposure frequencies of the cases and those of 
the controls. The permutation distribution of the 
statistics can be then generated by randomly 
switching G and E status within matched pairs 
of cases and controls. Unlike standard permuta•
tion tests, where covariates are permuted together, 
under the G-E independence assumption the two 

type of exposures should be permuted indepen•
dently of one another. 

THE NEW CONDITIONING 
PARADIGM IN CASE-CONTROL 

DESIGN WITH PARENTAL 
GENOTYPE DATA 

For simplicity of notation, we will describe the 
proposed method in the context of a case-sibling•
control design with parental genotype informa•
tion. The method easily extends to alternative 
types of matched case-control designs as long as 
genotype data are available for parents of both 
cases and controls. 

We assume M matched case-control sibling•
pairs are sampled into a study. We use the same 
data structure and notation that we have intro•
duced earlier for the standard family-based case•
control designs. In addition, we define gf = 
(G;M, GiF) to be the parental (mother and father) 
genotype data for the t"h matched pair. The key 
assumption we exploit in this design setting is that 
genotype and exposure status for pairs of relatives 
in the source population are independently dis•
tributed conditional on their parental genotype 
information. Thus, if (G1,G2) and (£1,£2) denote 
the joint genotype and exposure status for a pair 
of siblings and gP denotes their parental genotype 
information, the required independence assump•
tion can be stated formally as 

pr(G1, G2,E1, E2lgP) = pr(G1, ~~gP)xpr(£1, E2lgP). 

(6) 

Moreover, assuming a Mendelian mode of 
inheritance given parental ~notypes, we can 
write pr(G1,~IgP) = pr(G1Ig )xpr(G2IgP). The 
family-based independence assumption stated in 
formula (6) is very weak in the sense that it is 
robust to the effects of various factors such as the 
presence of hidden population sub-structure or 
the influence of family history on lifestyle-related 
exposures. We will describe the assumption stated 
in (6) as "Type-II Independence". 

In the setting described above, we propose to 
use the conditioning event (g;) in the general 
conditional likelihood (3) to be the parental 
genotype information Wf). We observe that gf is 
a larger event than gf, the set genotype informa•
tion in a case-control pair, in the sense that gf 
contain the information of all possible values for 
gf. Thus, it is expected that when parental 
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genotype data are available, conditioning on gf 
will be more efficient than the conditioning on gf. 
The general conditional likelihood (3) with y; = gf 
can be computed as 

status) of the individual offsprings. As a result, 
in these methods, unaffected subjects (controls) 
are only indirectly informative, in the sense that 
they can be utilized to infer missing parental 

L _ exp{m(Cn,En;P)}pr(Cnl9f)pr(Cwl9f) (7) 

,,ccGP- I:c;,EH•r exp{m(C:,,En; P) }pr(C:,I9f) + I:c;,EH•r exp{m(C;0 ,E;o;/J) }pr(C;019f)' 

where HgP denotes all possible offspring geno•
types associated with the parental genotypes cr. 
The quantities pr(C;il9f), the genotype probability 
of an offspring given the genotype of the parents, 
can be computed as fixed constants assuming a 
standard Mendelian mode of inheritance within 
family. Derivation of formula (7) follows assum•
ing rare disease and calculations similar to those 
for the derivation of formula (5), and is given in 
the Appendix. In terms of computation, estimates 
of P maximizing L;,ccGP and associated standard 
errors can be obtained using standard CLR soft•
ware that allows incorporation of offset terms. 
The general form of the covariance matrix of the 
parameter estimates is given in equation (A.5) in 
the Appendix. 

There are connections between LcccP and the 
traditional conditional-likelihood for case-parents•
trio (CPT) data [Self et a!., 1991; Schaid, 1999], 
which is given by 

exp{ m( Cn, En, P) }pr( Cn l9f) 
L· CPT - =----'--'---'-;.:-'-;-:'C..:...:~-::'-:-.:..:.:..:;-":!:-,.-::n;-'· - LG' EH exp{m(C:,,En,fJ)}pr(C:,I9f) · 

l1 9f 

(8) 

The numerators of both L; ccGP and L; CPT 
correspond to the ith case, with the expressi~ns 
being the same up to a constant term. However, 
there are differences in the denominator. While 
the denominator of L;,cPT consists of all possible 
offspring the i'h pair of parents could have had 
with the offsprings' environmental exposure the 
same as that of the observed case (En), the 
denominator of L; ccGP consists of those of L; CPT 
plus all possible ~ffspring the t"h pair of par~nts 
could have had with the offsprings' environmen•
tal exposure the same as that of the observed 
control (E;o). 

In recent years, various extensions of L;,cPT 
have been developed for utilizing data on multi•
ple offspring in nuclear families [Clayton, 1999; 
Cordell and Clayton, 2002; Cordell et a!., 2004; 
Kraft et a!., 2004]. All of these methods, how•
ever, condition on the exact phenotype (disease 

genotype data, but once the parental geno•
type information is available/inferred, the un•
affected subjects are ignored in the respective 
conditional likelihoods. In contrast, L;,ccGP condi•
tions only on the set of phenotypes defined by 
the event D1 +Do = 1, instead of the individual 
phenotypes D1 and Do themselves. In this 
approach, the unaffected offspring remain infor•
mative even when complete parental genotype 
information is available. The environmental ex•
posure status (E0) of the unaffected subject allows 
estimation of pE, the main effect parameter 
associated with E, which cannot be estimated 
from L;,cPT. Moreover, incorporation of the un•
affected subjects leads to major increase in 
efficiency for estimation of the multiplicative 
interaction parameter <PeE) and other related 
quantities (see Tables I and II). It is, however, 
important to note that L;,ccGP, similar to L;,cc, 
requires the assumption that the selection of a 
case-control pair of relatives does not depend on 
the individual C and E status of the relatives [Hsu 
et a!., 2000]. 

SIMULATION STUDIES INVOLVING 
DIFFERENT DESIGNS AND 

ANALYTIC METHODS FOR FAMILY•
BASED CASE-CONTROL STUDIES 

In this section, we report simulation studies of 
the relative efficiency of different study designs 
and analytic methods for estimation of various 
risk-parameters of interest using data from nucle•
ar families. In particular, we considered three 
designs: (A) the Sibling-Case-Control (SCC) de•
sign with C and E available on the matched cases 
and controls; (B) the Case-parent-trio (CPT) design 
with C available on cases and their parents and E 
available on the cases; and (C) the Sibling-Case•
Control design with genotyped parents (SCCGP). 
The analytic methods we compared are: (1) 

Traditional conditional likelihood (L; CLR) for de•
sign (A); (2) the proposed conditio~llikelihood 



281

Gene-Environment Independence 145 

TABLE I. Dominant Gene: Bias and efficiencies of alternative family-based designsa and analytic methodsm for 
evaluation of different risk parameters 

sec" 

cPT"'t:LCh L2' LR 
Lm3 cc sccGpd3: LC~cr 

ipG, p£ib 
IPG.Pd' Risk-parametersd Bias"' RE' Bias"' RE' Bias"' RE' Bias"' RE' 

0.01, 0.2 OR(GIE~1) 0.09 1.13 -0.01 1.62 0.03 2.30 0.08 3.49 
1og(7), log(l.3) OR(EIG~1) NA NA -0.02 2.89 0.09 5.52 0.10 5.67 

MicE 0.18 0.81 -0.02 2.90 0.11 5.52 0.13 5.67 
AleE NA NA -0.02 2.90 0.09 5.56 0.11 5.64 

0.2, 0.2 OR(GIE~1) 0.05 1.04 0.00 0.82 0.02 1.04 0.04 1.52 
1og(l.3), log(l.3) OR(EIG~1) NA NA 0.00 0.93 0.02 1.19 0.03 1.40 

MicE 0.06 0.94 -0.00 1.05 0.02 1.34 0.04 1.64 
AleE NA NA 0.00 1.05 0.02 1.40 0.04 1.72 

0.01, 0.5 OR(GIE~1) 0.09 0.82 -0.01 0.66 0.02 0.78 0.08 1.38 
log(7), log(l.12) OR(EIG~1) NA NA -0.01 2.49 0.09 3.89 0.10 4.18 

MicE 0.19 0.70 -0.01 2.39 0.10 3.58 0.12 3.83 
AleE NA NA -0.01 2.48 0.09 3.91 0.11 4.18 

0.2, 0.5 OR(GIE~1) 0.04 0.79 -0.00 0.56 0.01 0.63 0.03 1.05 
log(1.3), log(l.12) OR(EIG~1) NA NA 0.00 0.94 0.02 1.14 0.02 1.34 

MicE 0.05 0.79 0.00 0.96 0.02 1.16 0.03 1.37 
AleE NA NA 0.00 0.94 0.02 1.17 0.03 1.38 

aDesigns: d1Case-parents trio, dZSibling case-control, and d3Sibling case-control w. genotyped parents. Methodsm: Conditional-likelihoods 
described in formulae m1(8), m2(2), m3(5), and m 4(7). 

bGenotype (G=Aa/aa) and exposure (E=1) frequencies. 
<True values for main effects of G and E. 
dOR(G I E=1): OR for G among subjects with E=1; OR(E I G=1): OR forE among subjects with G=1; MicE; multiplicative-interaction; AleE: 
additive interaction. 
"'Relative bias evaluated as (true value- mean estimated value)/true value. 
fR_elative efficiencies compared to a population-based case-control design with the same number of cases and 1:1 case-control ratio. 

(L;,cc) for design (A) ; (3) the efficient conditional 
likelihood (L;,cPT) method for analysis of designs 
(B) [Self et a!., 1991; Schaid, 1999]; and (4) 

the proposed conditional likelihood (L;,ccGP) for 
design (C). 

THE SIMULATION DESIGN 

We assumed that the gene variant of interest is a 
bi-allelic locus with the wild and variant-type 
alleles being denoted by A and a, respectively. We 
considered two distinct settings of interest, one for 
rare variants and the other for common variants. 
Within each setting, we considered dominant and 
recessive models for the effect of the gene-variant. 
We also assumed a binary environmental expo•
sure and considered two scenarios, one involving 
a common exposure and the other involving a rare 
exposure. 

We simulated data for nuclear families consist•
ing of two siblings and their parents using the 

following setup. We simulated a family-specific 
allele frequency parameter to allow for popula•
tion-substructure. For each family (F), we simu•
lated an allele frequency parameter (OF) by first 
generating a random variable UF from the normal 
distribution with mean parameter fl. and variance 
rr and then transforming UF to the 0-1 scale as 
0F=exp(uF)/{1+exp(uF)}. We chose the var•
iance parameter rr to be 0.5 so that the ±2u limit 
of this distribution corresponds to approximately 
15-fold variation in allele frequency across differ•
ent families. We chose the mean parameter fl. in 
such a way that the marginal probability of the 
genotype variant of interest (Aa or aa for the 
dominant model and aa for the recessive model) in 
the underlying population is fixed at O.Dl for the 
setting of a rare variant and 0.2 for the setting of a 
common variant. Given the allele frequency 
parameter OF for a family, we generated the 
genotype data for the parents assuming Hardy•
Weinberg-Equilibrium and that the parents are 
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TABLE II. Recessive gene: bias and efficiencies of alternative family-based designsa and analytic methodsm for 
evaluation of different risk parameters 

seen 
CP'I"':L'/'1-r Lm2 

CLR LCl SCCGP"3: L<'f:GP 

!pG, p,}b 

lPG, p,J' Risk-parametersd Biase RE' Biase RE' Biase RE' Biase RE' 

0.01, 0.2 OR(GIE~l) 0.11 2.81 -0.02 1.69 0.04 2.74 0.10 5.43 
log(7), log(1.3) OR(EIG~l) NA NA -0.03 2.49 0.12 4.62 0.14 5.74 

MicE 0.21 2.04 -0.04 2.49 0.14 4.09 0.18 5.12 
AleE NA NA -0.03 2.51 0.12 4.67 0.15 5.78 

0.2, 0.2 OR(GIE~l) 0.05 1.28 0.00 0.69 0.02 0.95 0.04 1.73 
log(1.3), log(1.3) OR(EIG~l) NA NA 0.00 0.92 0.02 1.26 0.03 1.45 

MicE 0.06 1.13 -0.00 0.96 0.03 1.40 0.04 1.80 
AleE NA NA 0.00 0.93 0.02 1.39 0.04 1.86 

0.01, 0.5 OR(GIE~l) 0.10 2.06 -0.01 0.90 0.02 1.14 0.09 2.99 
log(7), log(1.12) OR(EIG~1) NA NA -0.01 2.26 0.11 4.33 0.13 5.26 

MicE 0.20 1.77 -0.01 2.26 0.13 3.93 0.15 4.83 
Ale, NA NA -0.01 2.26 0.11 4.33 0.14 5.28 

0.2, 0.5 OR(GIE~l) 0.04 1.14 -0.00 0.59 0.01 0.70 0.04 1.29 
log(1.3), log(l.12) OR(EIG~l) NA NA 0.00 0.79 0.02 1.05 0.02 1.13 

MicE 0.05 0.80 0.00 0.73 0.02 0.95 0.04 1.13 
Ale, NA NA 0.00 0.72 0.02 0.98 0.03 1.17 

aDesigns: d1Case-parents trio, d2gibling case-control, and dJsibling case-control w. genotyped parents. Methodsm: Conditional-likelihoods 
described in formulae m1(8), m2(2), m 3 (5), and m4(7). 
bGenotype (G=aa) and exposure (E=l) frequencies. 
crrue values for main effects of G and E. 
ctoR(G I E=l): OR for G among subjects with E=l; OR(E I G=l): OR forE among subjects with G=l; MIGE; multiplicative-interaction; AleE: 
Additive interaction. 
eRelative bias evaluated as (true value-mean estimated value)/true value. 
~lative efficiencies compared to a population-based case-control design with the same number of cases and 1:1 case-control ratio. 

independent. Given the genotype of the parents, 
we generated the genotypes for a pair of siblings 
based on a standard Mendelian mode of inheri•
tance. We generated the environmental exposures 
for a pair of siblings by first generating a pair 
of correlated random variables (Ej, E2) from a 
bivariate normal distribution with marginal 
means zero, marginal variances one and a 
correlation parameter p. We then dichotomized 
Ej and E2 into two binary 0-1 exposure variables 
E1 and E2 so that the marginal probability of 
exposure (E = 1) for the underlying population is 
0.2 for the setting of a rare exposure and 0.5 for the 
setting of a common exposure. In our basic 
simulation setting (fables I and II), we fixed the 
correlation parameter p = 0.3 so that it represents 
only a modest correlation between the environ•
mental exposures for a pair of siblings. Later (Figs. 
1 and 2), we explore the effect of varying p on the 
efficiencies of different designs and analytic 
methods. 

We simulated the family-specific intercept term 
(ap) to allow for heterogeneity in disease-risk 
between families that cannot be accounted for by 
G and E. For a given family F, we generated ap 
from the normal distribution with mean a and 
variance r2. We chose r2 = 1 so that the ±2a limit 
of this distribution corresponds to an approxi•
mately 50-fold variation in disease risk between 
families due to unknown factors. We fixed the 
mean parameter a at different values for different 
settings so that the marginal probability of the 
disease in the population, pr(D = 1), is always 
fixed at 0.01. Given ap, we generated the disease 
outcome for each sibling, independent of the 
other, using the logistic regression model 

pr(Dj = 1]Gj,Ej,aF) 

exp{ap + Pcf(G) +PEE+ PcFf(G) * E} 
1 + exp{ ap + Pcf(G) +PEE+ PcFf(G) * E}' 

(9) 
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where f (G) is a bina ry 0-1 function reflecting 
the mode of effect of the gene: f(Aajaa) = 1 for 
dominant and f(aa) = 1 for recessive. In the basic 
simulation setting (Tables I and II), we chose 
the mai n effect parameters Pc to be log(7) 
when pr{f(G) = 1} = O.Ql and Jog(1.3) w hen 
pr{f(G) = 1} = 0.2, so that the two settings corre­
sponds to a high-penetrance rare variant and a 
low-penetrance common varia nt, respectively. 
Similarly, we chose PE to be log(1.3) w hen pr(£ = 
1) = 0.2 and Jog(1.12) when pr(£ = 1) = 0.5, so 
tha t the main effect of £ is stronger when the 
exposure is rare. We fixed fleE to be log(3), which 
corresponds to a strong multiplica tive interaction 
between G and £. 

Following this scheme, we first generated data 
for a large number of randomly sampled nuclear 

families. Treating these randomly selected fa milies 
as the underlying population, we then selected 
5,000 famili es with one diseased and one non­
d iseased sibling. Durillg ana lysis of data from 
each design, we only retained the appropriate 
genotype and environmental exposure in forma­
tion for that design and discarded the rest of the 
information. 

In the above s imulation setti ng, we used two 
types of random effects, nam ely ur and rxF, to 
generate variations in genotype frequencies and 
d isease-risk. respectively, across families. We 
chose these ra ndom effects to be ullcorrelated 
with each o ther so that there is no population­
level association between genetic exposure and 
disease risk that cannot be explailled by the direct 
effect of the gene on risk of the disease other than 
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Fig. 2. Recessive gene: Relative efficiency (RE) of alternative family·based designs and analytic methods as a funcl icm of s ibling· 
correlation (p) in exposure(£). 1·he top ax is shows the correlation in the binary Ott scale. The methods compared are Ccu (solid line), 
4:_c (dashed line), £cp,. (dott'ed line), and £cccp (dashed/dotted line). Mice and AIGt; ind icate multiplicative and additi ve intc.radion 
parameters, respectively. Values of the relative efficiency are evaluat-ed based on 500 simulat'ions. In each simulation, data for different 
designs are gener.1ted based on 5,000 case§ .. 

through the parameters Pc and Pee in the risk 
mod el (9}. Thus, in this setting, bias due to 
population-stratification not bcLng a concern, a 
case-control study based on unrelated subjects is 
an alternative va lid design. We chose the popula­
tion-based case-control design (PCC}, analyzed 
with s tandard logistic regression, to be the 
common reference point for evaluating the rela­
tive efficiencies of va rious family-based designs 
and analytic methods. To simulate data for this 
design, we first generated data for a large number 
of randomly sampled nuclear fa milies and then 
selected 5,000 cases and 5,000 contTols from 10,000 
independent families. 

For evaluating the efficiencies of d ifferent 
designs and methods, we cons idered four d if­
ferent parameters of epidemiologic interest: (1} 

OR ( GIE = 1) = exp(Pc + Pee): the odds ratio asso­
ciated with the gene variant among subjects 
with envLronmental exposure (E = 1} ; (2} OR ( EIG 
= 1) = exp(Pc + Pee): the odds ratio associated 
with the environmental exposure among subjects 
with a variant genotype (G = 1}; (3} Mice 
= exp (PcE): the multip licative Lnteraction between 
G and E; and (4} Alee =exp(Pc + fJ E + fJcd�
exp(Pc)- exp(Pe) + 1: the additive interaction 
between G and E [Khoury et al., 19931. All of the 
designs except the case-parent-trio design yield an 
estimate of all of the four types of association/ 
interaction parameters; the case-parent trio d esign 
cannot estimate the main effect of E ({JE} and 
hence a lso cannot estimate OR (EIG =1} and Ale£ . 

Strictly speaking, estimates for a particular 
type of association/ interaction parameter from 
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different designs are not directly comparable due 
to differences in scale of measurement. That is, 
while the model for analyzing the CPT design is 
defined in terms of within family relative risk 
parameters, those for family-based and popula•
tion-based case-control designs are defined in 
terms of within- and between-family odds-ratio 
parameters, respectively. In spite of such differ•
ences, one common goal of all of the designs is to 
test for hypotheses about different types of 
association/ interaction parameters. Thus, we 
evaluated different designs based on their relative 
powers for rejecting the null hypothesis about 
different association/interaction parameters in 
the respective underlying scales. For each type of 
association/interaction parameter of interest 111), 
we evaluat~d the quantity,< = log( IJ) / sd {log( IJ)}, 
where log(IJ) and sd{log(IJ)} are the empirical 
mean and the standard error of the estimate of IJ 
from a given design over different simulated data 
sets. The ratio of <2 for two designs estimates the 
asymptotic relative efficiency of the two designs, 
i.e., the inverse-ratio of the sample sizes required 
by the two designs to reject the null hypothesis of 
no association/interaction, i.e., log(IJ) = 0. For rare 
diseases, such as the one considered in our 
simulation setting, the difference'?_ between the 
mean estimates of parameters log( IJ) from differ•
ent designs are small and thus the relative 
efficiencies of different designs are mostly deter•
mined by }he precision of parameter estimates 
1 /var{log( IJ)}. 

RESULTS: BIAS AND EFFICIENCY 

Table I (dominant gene) and Table II (reces•
sive gene) show the results of simulation experi•
ments with fixed sets of parameter values. We 
make several key observations from Tables I and 
II, as follows. For the scenario of "low penetrance 
common variant" (f3e = log(1.3),pr{f(G) = 1} 
= 0.2), all of the proposed analytic methods had 
negligible percentage bias in estimating the "true" 
parameters of the underlying disease-risk model. 
For the scenario of "high-penetrance rare variant," 
the novel methods produced noticeable, but 
modest (:'0 15%), bias in parameter estimates. 
The bias likely arises due to the rare disease 
approximation, because in this setting the risk of 
disease for subjects with both the genetic and the 
environmental exposure was as high as 30%. 
Comparison of the traditional (Lc:LR) and the 
proposed method (Lecl of analyzing the SCC 
design shows the major efficiency advantages of 

the latter approach for all of the four different 
parameters. Comparison of the CPT design and 
the sec design shows that the latter design, when 
analyzed using our new method (Lee), was 
superior for estimation of the multiplicative 
interaction term. For estimation of OR(G[E = 1), 
however, the CPT design was generally more 
efficient. The SCCGP design, when analyzed 
using our approach (Lcecp), had the highest 
efficiency among all of the designs for all of the 
four different association/interaction parameters. 
The efficiencies of all of the family-based designs 
relative to the PCC design decreased as either the 
genetic or the environmental exposure becomes 
more common. 

Figures 1 (for dominant gene) and 2 (for 
recessive gene) show the effect of varying the 
parameter p that determines the correlation 
between the exposure variables in a pair of 
siblings. For these graphs, we chose other para•
meter values of the simulation in such a way so 
that they reflect an intermediate situation between 
the "high-penetrant rare gene" and "the low•
penetrant common gene" scenarios we considered 
for Table I and Table II. In particular, we fixed 
Pr(G = 1) = 0.1, Pr(E = 1) = 0.3, f3e = log(1.6), 
PE = log(1.12), and PeE = log(3). 

Overall, for all of the four types of parameters, 
the efficiencies of the sec and SCCGP designs, 
relative to the PCC design, decreased as p 
increased. The efficiency of the CPT design did 
not depend on p as this design does not involve 
the sibling controls. Comparison of the traditional 
(LCLR) and novel conditional likelihood method 
(Lecl for analyzing the sec design shows that the 
efficiency advantage of the latter method re•
mained fairly constant over a wide range of value 
of p: only at very high values of p did the 
difference between the two method starts dimin•
ishing. When p = 1, which corresponds to two 
siblings having identical exposures, the two 
methods are identical and hence had the same 
efficiency. The efficiency of the SCCGP design 
also remained substantially higher than all the 
other designs except for extremely high values of 
p. At p = 1, the SCCGP and CPT design are 
identical. At p = 1, none of the family-based 
designs can estimate the association parameter 
OR(E[G = 1) and the additive interaction para•
meter AleE· 

Inspection of the efficiencies of the family-based 
designs relative to the PCC design suggests that in 
our simulation setting, where the gene-variant is 
moderately common, i.e., Pr(G = 1) = 0.1, the 
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sec design, when analyzed using the traditional 
method (LeLR), had a lower efficiency than the 
PCC design for high values of p (p>O.S). In 
contrast, when analyzed with the novel method 
(Lee), the efficiency of the SCC design remained 
higher in a wider range of p. The efficiency of the 
SCCGP design remained higher than that for the 
PCC design for almost all values of p. 

RESULTS: TYPE-I ERROR RATE 

Under a global null hypothesis of no association 
of the disease with either G or E, the conditional 
probabilities Pr(D11 = 1, Dm = O,G11 ,Gm]Di! + 
DiD= 1,G,,Ei!,Eio) become free of the intercept 
parameters irrespective of whether the disease is 
rare or not. Thus, the tests based on our proposed 
likelihood will be valid under this global null 
hypothesis whether the disease is rare or not. We 
evaluated the empirical type-I error rates of the 
proposed methods for testing weaker null hy•
potheses that specify only certain parameters of 
interest to be null, but leave the other parameters 
unspecified. 

We consider the simulation setting of a high•
penetrant dominant rare gene, a scenario where 
we had observed modest bias in parameter 
estimation due to violation of the rare disease 
assumption. We simulated data under four types 
of null hypotheses corresponding to (1) MicE = 1, 
(2) OR(G]E = 1) = 1, (3) OR(E]G = 1), and (4) 
AleE = 0. For generating data under (1), we chose 
Pc to be log(7) and PE to be log(1.3) as before, but 
set PeE = 0. For generating data under (2), we 
chose PeE = -Pc = -log(7) and PE = log(1.3). 
Similarly, for generating data under (3), we chose 
PeE = -PE = -log(1.3) and Pc = log(7). Finally, 
for generating data under (4), we chose Pc = 
log(7) and PE = log(1.3) and then solved for 
that value of PeE so that exp(Pc + PE + PeE)•
exp(Pcl- exp(PE) + 1 = 0. Table III shows the 
empirical type-I error rates of the Wald tests (5% 
significance level) associated with the likelihoods 
Lee and LceGP· We observe that for each type of 
null hypotheses, the test procedures maintained 

TABLE III. High-penetrant rare dominant gene: 
empirical type-1 error rates of wald-tests with 5% 
significance levels 

Ho' Ho' Ho' Ho' 
Methods MlcE~l OR(G I E~l)~l OR(E I G~l)~l AlcE~O 

Lee 

Lcccr 
0.042 
0.040 

0.048 
0.052 

0.040 
0.056 

0.036 
0.030 

the nominal ex -level very well. We also found 
the tests to be unbiased in extensive simulation 
studies in the other settings of Tables I and II 
(data not shown). These results are also consis•
tent with the fact that in all of the scenarios in 
Tables I and II where we had observed modest 
bias in parameter estimation, the direction of 
bias was always towards the null value of the 
parameters. 

GENERAL FAMILY DATA WITH r AFFECTED 
AND s UNAFFECTED SUBJECTS 

In this section, we briefly outline how the 
proposed methods for analyzing 1:1 family•
matched case-control studies can be utilized for 
more general family studies that collect genotype 
and environmental exposure data for more than 
one affected and/ or unaffected family members. 
Suppose there are M families sampled into a study 
and each family defines a matched set consisting 
of comparable cases and controls in the family, all 
of whom have data on both G and E. Suppose the 
i'h family defines a matched set consisting of n 
cases and s, controls with a total of n, = r, + s, 
subjects. Let Dm and D11 denote the set of controls 
and cases, respectively, for the i'h family. 

Liang [1987] proposed a pairwise pseudo-like•
lihood approach for analysis of matched case•
control studies in which the contribution of a 
matched set of r, cases and s, controls is given by 
the product of the usual conditional likelihoods 
(Li.eLR) for 1:1 matched studies for all possible 
r, xs, case-control pairs within that matched set. 
Under the gene-environment independence as•
sumption, we propose to use a similar pseudo•
likelihood approach based on case-control pairs, 
except that for each pair we use an appropriate 
efficient conditional likelihood instead of the 
traditional conditional likelihood. More explicitly, 
the pseudo-likelihood for the data can be written 
in the general form 

M 

L = II II LUk);." (10) 
i=l jEviO,kEvi1 

where LUk);.• denotes an appropriate conditional•
or pseudo-conditional likelihood for the (j, k) th 

case-control pair within the i'h matched set: the 
likelihood should be chosen efficiently according 
to whether and what kind of parental genotype 
data are available for that pair. In particular, when 
parental genotype data (both parents) are avai•
labl.e for both subjects in the pair, LUk);,• can be 
defmed to be the conditional likelihood LUk);,eeGP 
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(formula 8). When parental genotype data (both 
parents) are available only for the case in the pair, 
L(jk),,� can be defined to be Lljk),,cc-cPT = L(jk),,cc 
xL(jk),,cPT, a pseudo-likelihood that efficiently 
combines information from case-control and case•
parents-trio data. In all other cases, we propose to 
use Lljk),,Cc (formula 5). Finally, we observe that if 
for some families only cases and their parents, but 
no matching controls, are available, the contribu•
tion of these families in the above pseudo-like•
lihood can be defined by L;,cm the usual 
conditional-likelihood for case-parents-trio data. 

In the pseudo-likelihood (10), the contribution 
of a matched set is obtained by taking the product 
of the contributions of all different case-control 
pairs within the set pretending that the different 
pairs from the same family are independent. From 
the theory of estimating-equations [Godambe, 
1991], it is well known that such pseudo-like•
lihood methods produce consistent estimates of 
regression parameters even if in truth there is 
correlation among paired units within the same 
family. For variance estimation, however, the 
correlation within a family needs to be accounted 
for. A sandwich covariance matrix estimator that 
can account for such correlation is given in the 
Appendix: the formula is (A.9). In addition, 
bootstrap sampling with matched-sets as the 
sampling units can be used to obtain covariance 
matrix estimates that can account for within•
family correlation. 

DISCUSSION 

We have proposed a new paradigm of condi•
tional likelihood for analysis of family-based case•
control studies. This approach, with a rare disease 
approximation, leads to a variety of simple but 
highly efficient methods of estimating statistical 
interaction and other risk parameters of interest 
involving genetic and environmental exposures. 
These methods exploit within family G-E inde•
pendence assumptions that are much less strin•
gent than the G-E independence assumption that 
has been previously utilized for case-only and 
population-based case-control studies. To the best 
of our knowledge, the proposed method involving 
the likelihood L;,cc represents the first successful 
effort for exploiting the within-family "Type-! 
independence" assumption in the context of 
family-based case-control studies. Moreover, the 
likelihood L;,cc can be used for efficient analysis 
of any other type of matched case-control study, 

the required assumption being that G and E are 
independent within "matched subjects" in the 
population. The proposed method involving the 
likelihood L;,ccGP, exploiting the "Type-II inde•
pendence" assumption, represents the first ap•
proach to a unified analysis of data from family•
based case-control studies that include parental 
genotype information. 

An important aspect of the proposed general 
conditional likelihood (L;,genemil is that it simulta•
neously conditions on a set phenotype event 
<D1 +Do) and a set genotype event (G). Histori•
cally, the idea of conditioning on a set phenotype 
event has been used in the setting of traditional 
conditional logistic regression (L;,CLR) analysis of 
matched case-control studies. In this approach, 
however, one conditions on individual covariate 
information of the case-control subjects. The idea 
of conditioning on a set genotype event has also 
existed for a while in the literature of family 
studies. The well known likelihood (L; CPT) of case•
parent-trio design is formed by conditioning on 
the parental genotypes ((;F) of the cases, which 
yield the set of all possible genotypes for the 
offspring. Recent extensions of L;,cPT for dealing 
with missing parental genotype information has 
also been based on conditioning on various types 
of set genotype events [Clayton, 1999; Cordell and 
Clayton 2002; Rabinowitz and Laird, 2000]. All of 
these methods, however, condition on individual 
phenotype information of the family members. In 
this article, we show how the two approaches of 
conditioning on a set genotype event and con•
ditioning on a set phenotype event can be unified 
through the general conditional likelihood 
(L;,genemJl, resulting in novel and efficient methods 
for analysis of matched case-control studies with 
or without parental genotype information. 

Our simulation studies clearly demonstrate the 
efficiency advantage of our methods (L;,cc and 
L;,ccGP) over the traditional conditional logistic 
regression method for analysis of family-based 
case-control and case-parents studies. These re•
sults also reveal some intriguing design implica•
tions. Several previous studies have compared the 
relative efficiencies of sibling-case-control (SCC) 
and case-parent trio (CPT) designs for estimation 
of the multiplicative interaction parameter: they 
generally concluded that while the former design 
tends to be superior for dominant genes, the latter 
design is more efficient for recessive genes [Witte 
et aL, 1999; Gauderman, 2002]. However, in these 
studies the method employed for analysis of the 
CPT design implicitly assumes G-E independence, 
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but that for the sec design does not exploit any 
such assumption. In our study, when we analyzed 
both designs using similar independence assump•
tions, we found not only that the efficiency 
advantage of the SCC design over CPT design 
for dominant genes is even greater than reported 
before, but also that the sec design can be more 
efficient than the CPT design even for recessive 
genes. In terms of other parameters of interest, a 
weakness of the CPT design is that it cannot be 
used to estimate either the additive interaction or 
the association parameter for the environmental 
exposures. This design, however, is quite efficient 
for estimation of the genetic association para•
meter. The sec design, on the other hand, 
although it produces an estimate of all different 
parameters of interest, was inefficient for estima•
tion of the genetic association parameter 
OR(GIE =1). 

Our simulation studies also demonstrate the 
optimality of the family-based case-control design 
that includes parental genotype information. 
Although the potential promise of such a hybrid 
design has been discussed previously [Weinberg 
and Umbach, 2000], the actual efficiency of such a 
design has not been evaluated. It is worth noting 
that we compare efficiencies of different family•
based designs with a fixed number of families, 
but different designs require different amounts of 
data collection within a family. The sibling-case•
control design with parental genotype informa•
tion, for example, requires one additional gena•
typing compared to an ordinary sibling-case•
control design: note that the sibling control need 
not be genotyped if parental genotype data are 
available. It also requires one additional exposure 
assessment compared to an ordinary case-parents 
design. Given that family members of cases are 
usually well motivated, the effort required for 
such additional data collection may be worth•
while, considering the potential for large effi•
ciency gain. 

Comparison of the efficiency of the sibling-case•
control designs (seC and SCCGP) with that of the 
population-based case-control (PCC) design 
shows that our methodology increases the utility 
of the former design for a wider set of situations. 
Previous studies, as well as our simulations, 
demonstrate that the sec design, when analyzed 
with traditional methods, generally tends to be 
less efficient than the PCC design, except when 
the genetic variant under study is rare and/ or 
sibling correlation in the environment exposure is 
modest. When analyzed with our methods, the 

sec design retains the efficiency advantage over 
the PCC design for estimation of interaction and 
some of the other parameters of interest in a wider 
range of values for the gene-frequency and the 
sibling-correlation parameters. The seCGP design 
retained the efficiency ad vantage for an even 
wider range of parameter values. Of course, one 
can also increase efficiency of the PCC design, 
based on methods that can exploit G-E indepen•
dence. The required population level indepen•
dence assumption, however, is much stronger and 
more likely to be violated due to spurious 
association as described below. 

Although exploiting G-E independence leads to 
major efficiency gains, some caution is needed for 
use of this assumption. The case-only estimate of 
interaction, which relies on a population-based G•
E independence assumption, has been shown to 
be severely biased when the assumption is 
violated [Albert et a!., 2001]. Even if no direct 
association exists, association between G and E in 
the population may arise, for example, due to 
hidden population sub-structure across which 
genotype and exposure frequency may vary or 
by influence of family history on an individual's 
behavior regarding established risk factors such as 
smoking. 

Although the family-based independence as•
sumptions we exploit are much less stringent in 
general, it is important to realize that the Type-I 
independence assumption we exploit for case•
control studies is robust to spurious association 
only for the sibling-case-control design. If cousins 
are selected as controls, they may partially but not 
completely share ethnic and family history back•
ground with the cases; thus, the possibility of 
spurious association remains. One possible reme•
dy for minimizing such bias is to consider a 
conditional G-E independence model that can 
adjust for co-factors S, such as the ethnic origins of 
the unrelated parents, by specifying the difference 
in genotype-frequencies between a pair of rela•
tives as a parametric function of the differences in 
S between the relatives. We have found that under 
this relaxed independence assumption, the gen•
eral conditional likelihood in formula (3) can be 
used with 9 = (f, the unordered genotype in•
formation in a matched pair, to jointly estimate the 
regression parameters of interest and the addi•
tional parameters of the conditional independence 
model. 

The G-E independence assumption can be 
violated also due to direct association between G 
and E. Genetic polymorphisrns in the smoking 
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metabolism pathway, for example, may not only 
modify a subject's risk from smoking, but also can 
influence his/her level of addiction to smoking. 
When the plausibility of such direct association 
exists, the advantage of the case-control design is 
that it has the option of being analyzed by the 
standard conditional logistic regression method 
that does not require the independence assump­
tion. The case-parents design, however, intrinsi­
cally relies on the independence assumption and 
thus can lead to biased parameter estimates. 

Our novel conditional likelihood framework 
opens several areas of further research. We have 
assumed rare disease for the simplification of 
conditional likelihood calculations. From the 
derivation shown in the Appendix it can be seen 
that the precise assumption required here is that 
the probability of at least one disease occurrence 
in a pair of individuals is small for all combina­
tions of risk factors, a slightly stronger assumption 
than that is typically made for an individual 
subject in population-based case-control studies. 
In our simulation study, where overall disease 
prevalence was 1% in the population, we ob­
served no bias in testing and only modest bias in 
parameter estimation even in situations where the 
disease-risk was high for certain combinations of 
G and E. Future work, however, is needed to 
study the impact of the rare disease assumption 
for more common diseases. The general condi­
tional likelihood of the form (3) is valid whether 
the disease is rare or not: for common diseases, 
however, these likelihoods would involve the 
family-specific intercept parameters (IXp). Thus, 
one way of relaxing the rare disease assumption 
would be to assume a parametric random effect 
model for the distribution of IXp across families 
and estimate the corresponding parameters from 
the conditional likelihoods themselves [Pfeiffer et 
a!., 2002]. 

Similar to the traditional conditional-logistic­
regression (CLR) analysis, the proposed condi­
tional likelihood procedures assume disease status 
is conditionally independent within families. 
However, if the locus under study is in linkage 
disequilibrium with another disease susceptibility 
locus, such a conditional independence model 
may not capture the correlation within a family 
that contributes more than two members in the 
study [Weinberg and Umbach, 2000]. In such a 
situation, the proposed pair-wise pseudo-like­
lihood (10) together with the robust variance 
estimator (A.9) still remains a valid method for 
analysis of the data. Alternative methods for 

dealing with residual correlation that have been 
previously developed in the context of traditional 
CLR [Siegmund et a!., 2000; Rieger et a!., 2001], 
also could be adopted in the setting of the novel 
conditional likelihoods. 

When studying the effect of a gene through 
haplotypes is of interest, the proposed methodo­
logies can be applied for studying haplotype­
environment interaction, but some extensions 
are required to deal with phase ambiguity. We 
have demonstrated how to exploit parental 
genotype information on case-control subjects 
when both parents of a subject are available to 
be recruited. In practice, however, genotype 
information may be available only for one parent 
for some case-control subjects. One way of 
efficiently utilizing incomplete parental genotype 
information would be to choose the conditioning 
event g in L;,general (formula 3) to be the minimal 
sufficient statistics for the gene-frequency para­
meters [Rabinowitz and Laird, 2000]. Various 
alternative strategies, such as modelling mating­
type parameters [Kraft et a!., 2004], that have been 
proposed in the past for dealing with missing 
parental genotypes in case-parents studies, could 
be also useful for developing extensions of the 
proposed methodologies. These and other exten­
sions of the methodologies will be studied in 
future publications. 
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APPENDIX 

DERIVATION OF PROPOSED CONDITIONAL LIKELIHOOD IN THE GENERAL CASE 

Recall that (D;0 , G;0, E;o) and (Dil, Gil, Eil) are the data for the control and case, respectively. In addition, 
Q; is the conditioning event, and Jig, is the set of ordered pairs (Git,G;o) that are consistent with the 
information in Q;. We also denote by F; the ith family. Note that for the ith pair, 

.C;,general =pr(Dil = 1,D;o = O,Gil,G;o]Dil + D;o = 1,Q;, Eil,E;o,F;) 

=pr(Dil = 1,D;o = O]Dil +D;o = 1,Gil,G;o,G;,Eil,E;o,F;) 

xpr(Gil,G;o]Dil +D;o = 1,Q;,Eil,E;o,F;) 

=pr(Dn = 1,D;o = O]Dil +D;o = 1,Gn,G;o,En,E;o,F;) 

xpr(Gil,G;0 ]Di1 + D;0 = 1, Q;,Eil, E;o,F;) = .Cil x.C,.,. 

The term .Cil is given in equation (2). It is easily seen that 

.C _ pr{Dil +D;o = 1]GH,G;o,Eil,E;o,F;}pr(Gil,Gm]9;,Eil,Em,F;) 
a- L:rc;,,c~)EHc, pr{Dn + D;o = 1]Gj1, Gj0,Eil,E;o,F;}pr(Gj1,Gffi]Q;,Eil,Em,F;). 

By assumption, G and E are independent given Q; and F;, and in addition the conditioning event removes 
the family effect, so that pr(GH,G;0 ]Q;,EH,E;o,F;) = pr(Gil, G;o]Q;). We thus have that 

(A.1) 
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In addition, using (1), we have that 

pr(Dn +Dw = 1IGn,G;o,En,E;o,F;) 

= pr(Dn = 1,D;o = OIGn,G;o,En,E;o,F;) + pr(Dn = O,D;o = 1IGn,G;o,En,E;o,F;) 

exp(1XF.)x [exp{m(Gn, En;/i)} + exp{m(G;o, E;o;fi)}] (A.2) 

[1 + exp{1XF; + m(Gn, En;fi)}] x [1 + exp{1XF; + m(G;o, E;o;fi)}] 

"'exp(iXF.)x [exp{m(Gn,En; fi)} + exp{m(G;o, E;o; fi)}], 

where the approximation in the last step is based on the assumption of rare disease. Thus, combining (A.1) 
and (A.2), we see that 

[E]~o exp{ m(Gij,Eii,fi)} ]pr(Gn, G;ol9;) 
(A.3) 

Combining (2) and (A.3), we find that 

.C exp{m(Gn,En,fi)}pr(Gn,Gml9;) 

i,general = L(Gj,,Gio)E1tg; [ E}~o exp{ m(c;j,Eij, {i) } ]pr(%, c:ol9;), 
(A.4) 

which is the natural generalization of (7). 
For the standard matched family-based case-control design where we set 91 to be the set of genotypes for 

the i'h case-control pair, under the assumption that pr(Gn = g1, G;o = gol9;) = pr(Gn =go, G;o = gii9;), we 
have that pr(Gn, Gml9;) = 1/2, thus verifying (5). For the parental genotype case-control design, we have 
already verified (7) simply by setting 9; = gf, the full parental genotype information for the 11h case•
control pair. 

STANDARD ERROR ESTIMATION 

In this section, we show that the asymptotic covariance matrix of the estimate, {i, that maximizes (A.4) 
can be estimated as follows: 

(A.5) 

where if mp(G, E, fi) and mpp(G, E, fi) are the vector and matrix of first and second partial derivatives of 
m(G, E, fi) with respect to {i, then 

A;({i) = 4= [t exp{ m(gj, Eij, fi) } ] pr(Gn = i,, G;o = iol9;); 
(i, ,g0)E'Itc; ]~O 

C;(fi) = L [t mp(gj, Eij, fi) exp{m(gj, Eij, fi) } ] pr(Gn = i,, G;o = iol9;); 
(it,to)E7tGi j=O 

R;([i) = 4= [t mp(gj, E;i, fi)m~(gj, E;i, fi)exr{ m(gj, E;i, fi) } ] 
(i, ,g0)E'Itc; ]~O 

xpr(Gn =i,,Gm =g~l9;). 

To show (A.5), an alternative formulation of (A.4) is useful. No longer insisting that Dn is the case, so that 
(Dn,D;o) = (1,0) or (0, 1), equation (A.4) actually shows that 
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pr(Dn = d1,Di0 =do,Gn =g1,G;o = goiDn + DiO =d1 +do= 1,9;,En,EiQ,F;) 
exp{d1m(g1,En,f3) +d0m(g0 ,EiO,f31)}pr(Gn =g~oGiO =g0 l9;) (A.6) 

A;(/3) 
This means that the derivative with respect to f3 of the loglikelihood for the ith observation is 

f;(/3) = -C;(/3)/A;(/3) +Dnm~(Gn,En,/3) + DiOmp(G;o,Ei0,/3). (A.7) 

It is easily seen that the Hessian is 

R;(/3) C;(J3)Cf(J3) 
f;.~(/3)=- A;(/3)+ Af(/3) +Dnm~~(Gn,En,J3)+Di0mp~(G10 ,E10 ,J3) 

L(t,,g(,)E1ig, [L:J~o m~~(gj, Eq,/3)exp{ m(gj, E;j,/3)} ]pr(G, = g\,GiO = g'0 l9;) 

A;(/3) 
Using (A.6), it is easy to see that the expectation of the sum of the last three terms conditional on 
(Dn+D10 =1,9;,E11 ,E10 ,F;) equals zero, and hence that the expected Fisher information for the t1h 

observation is R;(f3)/A;(f3)- C;(f3)Cf(f3)/Af(J3), thus proving (A.S). 

ASYMPTOTIC EFFICIENCY THEORY 

Both .Cn and .C;2 are conditional distributions depending on the parameter p. Hence the derivatives of 
their logarithms .Cn,~(/3) and .Ci2,p(f3) behave as if they are log-likelihood scores, and when summed over 
the data each have information matrices h (/3) and h(/3), respectively. The claim that our method is 
asymptotically more efficient than conditional logistic regression then follows if we can show that 
E{ .Cn,p(f3).C~.~(f3)} = 0. To see this, note that by their definitions as derivatives of logarithms of conditional 
probabilities, and making the rare disease assumption, we have that 

0 =E{.Cn,~(f3)1Dn + D;o = 1, Gn,G;o, 9;, E,,E10,F;}. (A.S) 

Of course, 

E{ .C11 ,~(f3).C~.~(J3)} = E [ E{ .C11 ,~(/3).C~.~(J3)ID11 + D.u = 1, G11 , G;0 , 9;, En, E.u,F;}], 

where the interior expectation is with respect to the distribution of (D11 , D;o) given Dn + D.u = 1. However, 
.C;2,~(f3) is a function only of (Dn + D;o = 1,Gn, G10 ,G;,En,E10 ,F;), and does not depend otherwise on 
(Dn,D,u), so that by (A.S), 

E{ .Cn,p(f3).C~.~(J3)} = E[E{ .Cn.~(/3)1Dn + DiO = 1, Gn, G;o, 9;, En ,EiQ,F;}.C~.~(/3)] = 0. 

This verifies the claim. 

SANDWICH VARIANCE ESTIMATOR FOR PAIRWISE PSEUDO-LIKELIHOOD 

Let l(jk),(f3) =a log.C(jk),,,jap and V(jk),(f3) =a log.C(jk),,,japapT denote the vector of first-derivatives and 
matrix of second-derivati~s, respectively, of the log-pseudo-likelihood for the (jk)th pair of the l1h family. 
The covariance matrix of f3 then can be estimated by the sandwich estimator defined as follows: 

M 

covl(/l) =Q;;1(P)Q4(P)Q;;l(p);Q3(/3) = 2::: 2::: V(jk),(/3); 
i=l jEoi0 ,kEofl 
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Consider the linear model

yi D xT
i ˇC�i"i ; i D 1; � � � ;n;

where ˇ is an unknown parameter vector and the f"ig are i.i.d. errors. It is well
known that ordinary least squares (LS) estimators are unbiased and consistent, but
are not efficient when errors are heteroscedastic, and the usual standard error es-
timators of LS estimators are biased. Hence the usual confidence intervals and test
statistics are biased and may lead to incorrect conclusions. Weighted LS estimators
with weights that are inversely proportional to the �2

i yield the most efficient esti-
mators of ˇ. Because the �2

i are rarely available in real applications, an immediate
question is how to estimate them.

Prior to Carroll (1982 [NSRI-1]), it was generally assumed that �2
i D H.xi ;�/

or H.xT
i �/, where H is a known parametric function with an unknown parameter
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vector �: One therefore needs only to estimate the parameter vector � . The para-
metric model H.�/ might be misspecified. The parametric variance estimator may
be also sensitive to outliers. As shown by Carroll and Ruppert (1988), potential
outliers are likely to have a negative impact on estimation of ˇ. It is therefore of
substantial interest to develop robust estimation for the variance function.

Carroll (1982 [NSRI-1]) filled this gap by extending the parametric variance
function H.xi ;�/ to a nonparametric/semiparametric function as �2

i DH.ci / with
xi D .1;ci /

T and ci being a scalar, or �2
i D H.xT

i ˇ/, where H.�/ is an unknown
and smooth function. He used nonparametric regression to estimate H.�/ and, most
importantly, theoretically proved that one can still get full efficiency for estimating
linear regression parameters, that is, the corresponding estimators of ˇ are adap-
tive (Stein, 1956; Bickel, 1982). Its numerical superiority over its competitors was
demonstrated by Matloff, Rose, and Tai (1984). After 30 years, one may feel that
this idea is simple and the results are trivial. However, at that time, the associate
editor did not believe the results and insisted that the author provided a detailed
proof. The paper was written before the Latex era, and hence the proof was written
by hand for over 100 pages.

Since this pioneer work, a lot of research has been done in this direction. For
example, Müller and Stadtmüller (1987) studied nonparametric regression with het-
eroscedastic errors; Davidian and Carroll (1987) developed a general theory for
variance function estimation with emphasis on estimation of structural parameters.
Robinson (1988) investigated the effects of heteroscedasticity in semiparametric
models. More recently, Ma, Chiou, and Wang (2006) studied efficient estimation
for heteroscedastic semiparametric models.

A second area that Ray has made a pioneer contribution is nonparametric and
semiparametric regression with covariates measured with errors. For parametric
measurement error modeling, various methods have been developed to correct
bias for measurement error, and several consistent estimators of the parameters of
interest have been derived when validation data are available. Carroll and Wand
(1991 [NSRI-2]) considered semiparametric estimation and inference in a logistic
measurement error model: P.Y D 1jX D x/ D G.ˇ0 C ˇ1x/ with G.t/ D f1C
exp.�t/g�1. One does not observe X , but instead observes its surrogate W . The
likelihood method or its variations were traditionally applied to estimate ˇ0 and ˇ1.
Consider the Y jW model

P.Y D 1jW /D
Z

G.ˇ0 Cˇ1x/fxjw .xjw/dx; (4.1)

where fxjw .xjw/ is the conditional density of X given W . If this density can be
parameterized with a nuisance parameter 
, one may use validation data to estimate
this nuisance parameter, and plug the estimated value in fxjw .xjw/. Then .ˇ0;ˇ1/

T

can be estimated using (4.1). However, this parametric method is difficult to im-
plement and has poor numerical performance for moderate sample sizes or when
the conditional density fxjw .xjw/ is misspecified.

Carroll and Wand (1991 [NSRI-2] proposed to estimate the probability P.Y D
1jW / by nonparametric regression using the validation data. Suppose there are n1
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observations of the validation data f.Yi ;Xi ;Wi /I i D 1; � � � ;n1g, and n2 observations
of the primary data f.Yi ;Wi /I i D 1Cn1; � � � ;n1 Cn2g. Write

B.x;y;ˇ/ DGy.ˇ0 Cˇ1x/f1�G.ˇ0 Cˇ1x/g1�y ;

OfW .w/D 1

n1h

n1X

iD1

Kh.w�Wi /;

Dn.y;w;ˇ/ D 1

n1h

n1X

iD1

B.Xi ;y;ˇ/Kh.w�Wi /;

Cn.y;w;ˇ/D 1

n1h

n1X

iD1

Bˇ .Xi ;y;ˇ/Kh.w�Wi /;

where Bˇ is the derivative of B.x;y;ˇ/ with respect to ˇ, Kh.�/ D K.�=h/ with
K.�/ being a kernel function and h being a bandwidth. Then they estimated ˇ by
solving

n�1=2

n1X

j D1

U.Yj ;Xj ;ˇ/Cn�1=2

n1Cn2X

iDn1C1

Dn.Yi ;Wi ;ˇ/

Cn.Yi ;Wi ;ˇ/
D 0;

where U.y;x;ˇ/ is the likelihood score for .Y;X/D .y;x/. Under mild conditions,
the resulting estimators were shown to be asymptotically normal and numerically
superior to their alternatives such as the estimators developed by Rosner et al.
(1989) and a modification of the Stefanski and Carroll (1985) estimators in most
situations.

A third area that Ray has made a major contribution is estimation in semiparamet-
ric single index models. Carroll et al. (1997 [NSRI-3]) studied generalized partially
linear single-index models (GPLSiM) of the form:

g f�.x;z/g D �0.˛
T
0 x/CˇT

0 z; with k˛0k D 1; (4.2)

where �.x;z/ D E.Y jx;z/, g.�/ is a known link function, �0.�/ is an unknown
smooth function, ˛0 and ˇ0 are p� 1 and q � 1 parameter vectors of primary in-
terest. Model (4.2) presents a novel and very general structure for the conditional
mean of Y given x;z, and is flexible to cover various commonly used models. For
instance, if g.�/ is an identity function, (4.2) reduces to partially linear single index
models (Liang et al., 2010; Wang et al., 2010); furthermore, if ˇ0 � 0, (4.2) reduces
to single index models (Ichimura, 1993). More generally, when ˇ0 D 0, (4.2) is
simply a generalized linear model with an unknown link function (Weisberg and
Welsh, 1994). If x is scalar, (4.2) is a generalized partially linear model (Severini
and Staniswalis, 1994), which can be further simplified to popular partially linear
models when the link function is identical. For more details, see Wahba (1984),
Engle et al. (1986), Speckman (1988), Mammen and van de Geer (1997), Liang,
Wang, and Carroll (2007). Härdle, Liang, and Gao (2000) give a fairly comprehen-
sive survey for partially linear models.
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Carroll et al. (1997 [NSRI-3]) suggested the use of the semiparametric profile
likelihood principle to estimate ˛0, ˇ0 and �0.v/ by locally approximating �0.v/

by a linear function �0.v/� �0.u/C�0
0.u/.v�u/� aCb.v�u/, for v in a neigh-

borhood of u, where a D �0.u/ and b D �0
0.u/. Let K be a symmetric probability

density function, and Kh.t/DK.t=h/=h be a rescaling of K . Give an initial esti-
mator . Ǫ 1; Ǒ / and set Ǫ D Ǫ 1=k Ǫ 1k. Denote by Q.w;y/ the quasilikelihood func-
tion (Severini and Staniswalis, 1994). The estimation procedure for estimating ˛0,
ˇ0 and �0.�/ is described in the following algorithm.

STEP 1: Find O�.uIh; Ǫ ; Ǒ /D Oa by maximizing the local quasilikelihood

nX

iD1

Q
h
g�1

n
aCb. Ǫ T Xi �u/C Ǒ T

Zi

o
;Yi

i
Kh. Ǫ T Xi �u/; (4.3)

with respect to a and b.
STEP 2: Update . Ǫ ; Ǒ / by maximizing

nX

iD1

Q
h
g�1

n
O�.˛T Xi Ih; Ǫ ; Ǒ /CˇT Zi

o
;Yi

i
; (4.4)

with respect to ˛ and ˇ.
STEP 3: Continue Steps 1 and 2 until convergence.
STEP 4: Fix .˛;ˇ/ at its estimated value from Step 3. The final estimate of �0.�/
is O�.uIh; Ǫ ; Ǒ /D Oa where . Oa; Ob/ is obtained by maximizing (4.3).

The resulting estimators are called fully iterated estimators. They also proposed an
alternative algorithm for implementation simplicity, which was referred to as the
one-step estimator; i.e., given value Ǫ , find O�.uIh; Ǫ /D Oa by maximizing the local
quasilikelihood

nX

iD1

Q
h
g�1

n
aCb. Ǫ T Xi �u/CˇT Zi

o
;Yi

i
Kh. Ǫ T Xi �u/; (4.5)

with respect to a, b, and ˇ. Given Ǫ and the estimator O�.uIh; Ǫ / one estimates Ǒ by
maximizing

nX

iD1

Q
h
g�1

n
O�. Ǫ T Xi Ih; Ǫ /CˇT Zi

o
;Yi

i
: (4.6)

Under general conditions, the fully iterated estimators of ˛0 and ˇ0 were shown to
be semiparametrically efficient, while the one-step estimators are not efficient and
need undersmoothing but is easier to implement. This is a substantial addition to
the semiparametric profile likelihood literature. Since then, semiparametric profile
likelihood methods have been developed in various partial linear model settings, for
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example, Lin and Carroll (2001, 2006) for longitudinal data, Li and Liang (2008)
and Liang et al. (2010) for variable selection in semiparametric models.

Generalized estimating equations (GEE) (Diggle et al., 2002) is a popular tech-
nique for modeling longitudinal data because it relies on specification of only the
first two moments, and under mild regularity conditions, parameter estimators using
GEEs are consistent. Suppose there are independent observations .Y1;Y2; : : :Yn/,
with the Y’s possibly vector-valued. Let  .Y;�/ be a parametric estimating func-
tion for � that has the same dimension as � and satisfies E .Y;�/ D 0, where �
is a parametric vector of interest. Then the GEE estimators of � can be obtained by
solving the estimating equation

0D
nX

iD1

 .Yi ;�/: (4.7)

Carroll, Ruppert, and Welsh (1998 [NSRI-4]) extended the parametric model
to allow � to depend on a predictor nonparametrically as �.x/. They used local
polynomials to approximate �.x/; that is, �.x/� Pp

j D0 bj .x�x0/
j in a neighbor-

hood of x0 for some p � 0, where bj D � .j /.x0/=j Š. They proposed to solve for
.b0; : : : ;bp/ using q� .pC1/ equations

0D
nX

iD1

wh.Xi ;x0/ŒGp .Xi �x0/˝ fYi ;

pX

j D0

bj .Xi �x0/
j g�; (4.8)

where GT
p .v/D �

1;v;v2; : : : ;vp
�
, wh.x;x0/ is a local weight, which can be a ker-

nel function, with h being a tuning constant. The final estimates are O�.x0/ D Ob0.
This framework covers most general estimation methods. For example, in ordinary
nonparametric regression, the response is Y D Y and  .Y;v/D Y �v; in general-
ized linear models with the mean function �.x/, and variance proportional to V.x/,
the response is Y D Y , and  .Y;�/D fY ��.�/g�.1/.�/=V.�/, where �.1/.�/D
.@=@�/�.�/; and in varying coefficient generalized linear models, Y D .x;Y;Z/,
� D .�0;�

T
1 .x//

T and the mean function is �.�0 C�T
1 .x/Z/. The estimating func-

tion is  .Y;�/ D
h
fY ��.�0 C�T

1 .x/Z/g�.1/.�0 C�T
1 .x/Z/=V .�0 C�T

1 .x/Z/
i

.1;Z/T :
It is worth mentioning that this approach ignores within-subject correlation; i.e.,

the resulting estimator is equivalent to that given by Lin and Carroll (2000) with
the working independence structure. The idea of local estimating equation has been
further applied to model longitudinal data with semiparametric models. See, for
example, Lin and Carroll (2001, 2006).

The fourth area Ray has made a major contribution is the use of penalized splines
(P-splines) for estimation in semiparametric models. Consider the nonparametric
model Yi D m.Xi/C ei for i D 1; � � � ;n, where Xi is univariate. The basic idea of
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a P-spline (Eilers and Marx, 1996) is to approximate a nonparametric function
m.�/ by a regression spline with a moderate number of knots and estimate m.�/
by incorporating penalties of regression coefficients. Specifically, let m.xIˇ/ D
ˇ0 Cˇ1xC �� � Cˇpx

p C PK
kD1 bk.x� �k/

p
C, where p � 1 is an integer and �1 <

� � � < �K are fixed knots, aC D max.a;0/. Estimators Ǒ .�/ of ˇ are defined as the
minimizer of

nX

iD1

fYi �m.Xi Iˇ/g2 C�

KX

kD1

b2
k; (4.9)

where � is a smoothing parameter. As a consequence,m.x/ is estimated bym.xI Ǒ /.
Ruppert and Carroll (2000 [NSRI-5]) creatively modified the penalty term in (4.9)
to

PK
kD1�.
k/b

2
k

, where �.�/ is a penalty function with knots at 
1; � � � ;
K rather
than a constant (Eilers and Marx, 1996). This generalization makes P-splines per-
form well for functions that rapidly oscillate in some regions, and smooth in other
regions. The resulting P-spline estimators are competitive with regression splines
that adaptively select knots especially for regression functions with significant spa-
tial inhomogeneity. An attractive feature of P-splines is that they reduce compu-
tational complexity by using a smaller number of knots compared to smoothing
splines especially when used to fit additive models, for which the backfitting algo-
rithm is generally used. They are also more flexible than regression splines and are
less sensitive to knot allocation.

We expect that this local penalty spline can be implemented through fitting a
linear mixed model (Laird and Ware, 1982). As shown by Brumback, Ruppert, and
Wand (1999), y D XˇC Zb C ", where X is an n� .pC 1/ matrix whose j th col-
umn is .Xj �1

1 ; � � � ;Xj �1
n /T for 1	 j 	 pC1, and Z is an n�K matrix whose j th

column is f.X1 ��j /
p
C; � � � ; .Xn ��n/

p
CgT for 1	 j 	K . Selection of �.�/ is equiv-

alent to selecting the covariance structure of the random efforts b, and calculations
can be easily implemented through use of linear mixed model functions available
in Splus/R and SAS. Ruppert, Wand, and Carroll (2003) provide a comprehensive
survey on P-splines for semiparametric models.
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ADAPTING FOR HETEROSCEDASTICITY IN LINEAR MODELS1 

BY RAYMOND J. CARROLL 

University of North Carolina at Chapel Hill 

In a heteroscedastic linear model, it is known that if the variances are a 
parametric function of the design, then one can construct an estimate of the 
regression parameter which is asymptotically equivalent to the weighted least 
squares estimate with known variances. We show that the same is true when 
the oniy thing known about the variances is that they are determined by an 
unknown but smooth function of the design or the mean response. 

1. Introduction. We are interested in efficient regression parameter estimation in a 
heteroscedastic linear model given by 

(1.1) ¥, 1 = x:/3 + Orf.11 , i = 1, o o o , n,j = 1, o o o , m,, ~m, = N. 

Here Y,, is the response of the jth replicate at the design point x, (a p-vector), f3 is the 
unknown regression parameter of interest, { rr,} express the heteroscedasticity in the model 
and { r,,} are i.i.d. with variance one and distribution function F assumed symmetric about 
zero but otherwise unknown. Theoretical analysis of the model (1.1) has traditionally fallen 
into one of the two areas we describe below. 

The parametric approach generally assumes 

(1.2) <J~ = H(x., (}) or H(xi/3, 8), Hknown. 

See Hildreth and Houck (1968), Froehlich (1973), Dent and Hildreth (1977), Box and Hill 
(1974), Jobson and Fuller (1980) and Carroll and Ruppert (1982). Once a parametric 
assumption such as (1.2) is made, one computes estimates of the r X 1 unknown parameter 
(}, next estimates 

a;= H(x,, 0) or H(x;{J, 8), 

as appropriate, and then constructs a weighted estimate of {3. If we denote the weighted 
least squares estimate based on the true weights by Pr and the weighted estimate based on 
the estimates {8,} by {3", we get a well-known result: 

RESULT 1. For the parametric approach, in large samples there is no cost due to 
estimating {rr,}, i.e., Pr and {JE have the same limiting normal distribution. 

This result is proved rigorously and extended to robust estimation by Carroll and Ruppert 
(1982); Carroll (1982) shows it holds even if the dimension p of f3 increases with N, e.g., 
p 2 /N---> 0 generally suffices. See also Williams (1975). 

The nonparametric approach differs quite radically. Here, 

(1.3) rrf = H(x,) or H(xi/3), Hunknown. 

Since H ( ·) is assumed completely unknown, the standard method is to get information 
about H( ·)by replication (m, > 1). Fuller and Rao (1978) consider the situation often seen 
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in practice that the number of design points n ---> oo, but each m, stays bounded. Their 
method is to fit least squares estimates ({h) to the data, compute predicted values (t, = 
xiPd and residuals (r,i = ¥, 1 - til and estimate 

(1.4) 
,, 1 '\' 2 
Gi =- Ldri;· 

m, 

With these estimates one then performs weighted least squares, obtaining what we shall 
denote by PFR· By delicate and very interesting calculations, they obtain an important 
result which had not been previously known or appreciated: 

RESULT 2. In the nonparametric approach, there is a cost due to not knowing {ai}, i.e., 
Pr and PFR have different limiting distributions. 

We explore here the possibility of closing the wide gap between Results 1 and 2, at least 
in an asymptotic sense. Specifically, we explore methods for which the nonparametric 
approach (1.3) is used but for which Result 1 obtains. In other words, we will show that 
situations exist in which nothing specific is known about the variance function, but 
estimation of f3 can be done asymptotically as well as if the variance function were 
completely known. 

A key feature of many-but as Fuller and Rao (1978) note, not all-heteroscedastic 
regression problems is that the variances appear to be smooth functions of the design or 
mean response; we use the term "smooth" loosely here, but generally will mean that the 
variance function H ( ·) has a continuous first derivative. This smoothness suggests that if 
x1 and x2 are very close, so too should be H(xd and H(x,). This suggests that information 
about H(xd can be obtained from data at x,. Hence, we will study the nonparametric 
models 

(1.5) a~= H(x,) or H(x:f3), Hunknown but smooth. 

This approach of sharing information contrasts with that of the nonparametric method 
(1.3)-(1.4), which only uses data at x1 to estimate H(xd. By sharing information we 
should now get good consistent estimates of H (·),which enables us in certain circumstances 
to get better estimates of f3 for which Result 1 holds. 

We specifically consider only two cases. In Section 2 we discuss simple linear regression, 
while in Section 3 we assume that the variance is a smooth function of the mean. The 
technical details are not trivial and the notation is rather messy, but the basic idea is 
simple and can be described as follows. Under the second part of (1.5) for example, we 
have 

E(Y"- x:f3)' = H(xi/3). 

Thus, for the residuals r,1 we have 

(1.6) 

Equation (1.6) puts us in the realm of non parametric regression of squared residuals on a 
function H( ·).Even if one goes no further, there is already a huge literature which can be 
exploited to define nonparametric regression estimates (Watson, 1964; Rosenblatt, 1969; 
Stone, 1977; Mack and Silverman, 1980; Johnston, 1982); this we do. If one goes further 
and makes the often reasonable assumption that H( ·) is monotone, isotonic regression 
could be used (Wright, 1978). Such isotonic estimates should work well in practice but we 
have been unable to develop a theory for them. 

Throughout this paper, x and f3 refer to p-vectors, while a and c are scalars. For 
example, the heteroscedastic simple linear regression model is, with xi = (1, c;) and {3' = 
(ao, a1), 

(1.7) 
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NoTE ADDED IN PROOF. After this paper was accepted for publication, I was informed 
by Professor N. Matloff (Department of Statistics and Electrical and Computer Engineer•
ing, University of California at Davis) that in 1978 his student Dr. Robin Lawrence Rose, 
in an unpublished dissertation, proposed methods of estimation similar to those investi•
gated here, and performed Monte-Carlo experiments for these methods. 

2. Simple linear regression. We first consider simple linear regression. This is the 
only case for which we have been able to obtain results in which the variance is a function 
of the design alone, as would be the case in the random coefficient model of Hildreth and 
Houck (1978). In the next section, we discuss the situation in which the variance is a 
function of the mean response. 

Thus, in this section, the model is given by (1.7), where 

u~ = H(c,), H(·) unknown. 

Much of the literature for the nonparametric regression problem assumes that the 
independent or predictor variables are themselves random. In order to make the most 
efficient presentation, we will follow this lead, making the assumption for model (1.7) that 
{ e,1 } and { c,} are sets of i.i.d. random variables independent of one another. After the 
statement of Theorem 1, we will discuss the case that { c,} is a set of fixed constants. We 
will first present and discuss the assumptions, and then state the first result. 

First, from Watson (1964) and Johnston (1982), a plausible kernel-type estimate of His 

(2.1) ...... - 11 ml 2 c, - C n m, C, - C ( ) { ( ) }

-1 

HN(c)- L•~I L~1 r,1K b(N) L•~I LFl K b(N) 

The weighted estimate p.,. is formed by setting 

a~= bN(c,> 

and then performing weighted least squares. 
In order that information about the scalar function H( ·) can be shared and in order to 

avoid being subject to the Fuller and Rao Result 2, we need the design to be eventually 
dense in a set such as an interval. This will enable us to estimate H( ·) uniformly well. One 
can do this under the following assumption. 

AssuMPTION 1. {x,} have density function [positive on its compact support .F. Further, 
on $, f has two continuous derivatives. 

Note that Assumption 1 is really designed for regression probleins and not for factorial 
designs. Naturally, we also require that H be smooth: 

AssUMPTION 2. II and its first derivative are continuous on~ 

In order to make sure that no infinite weights occur in our weighted regression, we need 

AssuMPTION 3. II has a positive infimum on ~ 

We also need some assumptions on the kernel K(·) and bandwidth b(N) in (2.1). 

AssuMPTION 4. K ( ·) is a symmetric density function. It has compact support, three 
continuous derivatives, and its support includes an open set containing .F. 

AssuMPTION 5. The bandwidth b (N) satisties Nb (N)4 - > 0. 

AssUMPTION 6. The bandwidth b(N) satisfies N'14b(N)4 - > oo. 



304

HETEROSCEDASTICITY IN LINEAR MODELS 1227 

Finally, we make assumptions relating to the uniqueness of the design; these are 
reasonably standard assumptions even in the parametric approach. Recall x' = (1, c). 

AssUMPTION 7. E(xx') and E {xx'H-1(c) } are positive definite. 

THEOREM 1. Under Assumptions 1-7 and the condition that Er~ < oo, Pw and fir 
have the same normal limit distribution, with mean f3 and covariance N- 1Exx'H- 1(c). 

The proof is in Section 5. Assumptions 5 and 6 probably can be weakened. 

REMARKS. The problem discussed in this section is a special case of one in which the 
variance is a function of the design and p ~ 2; when p ~ 3, H is a function of a vector 
argument. For larger values ofp, the rate of convergence to H of the estimator (2.1) will be 
slower and the proof given in the appendix will break down, since Theorem 5.1 will not be 
true. We believe brute force (Taylor series) can be used to extend Theorem 1 to the case 
p ~ 3, but an alternative approach would be preferable. 

Theorem 1 can be extended to the case where the predictor variables {c,) are fixed 
constants by assuming that they "act i.i.d." in all essential aspects; this is rather untidy. 
Alternatively, one could replace (2.1) by the Priestley-Chao estimator studied by Benedetti 
(1977). For this estimator, certain technical difficulties can be avoided because there is no 
random denominator term as in (2.1); the assumptions, however, remain basically un•
changed with the exception of Assumption 1. 

3. Variance a function of the mean. Here we consider the model (1.1) with 

(3.1) or= H(x;/3) = H(-r;), Hunknown. 

The variance is often considered a function of the mean as in (3.1) because residual plots 
fall in a fan-shaped pattern; see Box and Hill (1974), Bickel (1978), Jobson and Fuller 
(1980) and Carroll and Ruppert (1982). 

Note that 

r, =true mean response= x;{3 

and define the predicted values as 

where {JL is least squares estimator. Following the same reasoning as in the previous 
section, the estimator of H becomes 

HN(s) = {Nb(NW' L7~1 L~l TTjK(~(~;) [ {Nb(NW' L7~1 LJ'.;, K(~(~;) r. 
and the estimated variances are {HN(t,) }. 

THEOREM 2. Under the assumptions of Theorem 1, but in Assumption 7 replacing 
H(c) by H(x' {3), fiw and Pr have the same normal limit distribution with mean f3 and 
covariance N-'E {xx' H- 1(x' {3)}. 

The proof is in Section 5. 

4. A Monte-Carlo study. We performed a small Monte-Carlo experiment to see if 
the previous results make any sense even in an ideal situation. We took the model to be 
simple linear regression. 

(4.1) i = 1, · • ·, N = 60. 

Here {r,} are standard normal random variables, (ao, ad = (50, 60), and {c,} are i.i.d. 
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uniform on the interval (-V2, Y2). The normal random numbers were generated by the 
IMSL routine GGNPM, while the uniform numbers used GGUBS. The number of Monte•
Carlo simulations for each situation was 500. 

We estimated the function H by fiN of (2.1), with 

(4.2) K(u) = {3(1 - I u I ) 2 /21 u I ::s 1, 
0 I vi~ 1, 

(4.3) b(N) = 0.13. 

The particular choice for b(N) was arbitrary, although on average approximately 8 
observations are used in constructing fiN at each design point. While K( ·) does not strictly 
satisfy Assumption 5, it does have a continuous first derivative which should suffice. In 
Table 1, the weighted least squares estimate with weights generated by fiN is denoted 
NONPAR. The least squares estimate is LSE. 

Three models for the variances were considered. The first, given by Jobson and Fuller 
(1980), is 

(4.4) 

For our simulations we chose a, = 100, az = 0.25. Our second model is one of more severe 
heteroscedasticity, 

(4.5) 

where a, = 0.25 and a2 = 0.04. This type of model is mentioned by Bickel (1978). The third 
model is one of severe heteroscedasticity 

(4.6) 

where 

We also constructed a third estimator PARM based on the parametric model (4.4). Our 
intentions in doing this were (a) to see if the nonparametric estimate is at all reasonable 
when compared to an estimate based on a correct parametric model (4.4) for the variances, 
and (b) to see if the nonparametric estimate is more robust than the parametric estimate 
if the variance model is badly misspecified, i.e., (4.6) holds but estimation is done as if (4.4) 
holds. 

TABLE 1 

Results of the Monte-Carlo Study of Section 4 for the model T, = EY, = 50+ 60 c, c, Uniform 
(-\-2, Y2). ThemodelsforVar(Y,) =a? are: Modell a?= a1 + a,T;, (a1, a,)= (100,0.25);Model2a, 

= a1exp(a,j T, j), (a1, a,)= (0.25, 0.04); Model 3 a,= alexp(a,T?), (a1, a,)= (0.25, 1/3200). 

<>o =50 "'' = 60 

Estimator 
Variance 

Bias MSE* Bias MSE* 
Model 

LSE .052 13.27 .925 172.o7 
PARM .040 13.27 .711 138.58 
NONPAR 1 .066 14.80 .727 144.46 
LSE 2 .016 12.87 .106 231.20 
PARM 2 .011 11.45 .049 100.00 
NONPAR 2 .007 10.18 .037 80.34 
LSE 3 .004 10.98 .032 200.41 
PARM 3 .003 9.85 .016 96.09 
NONPAR 3 .002 9.19 .014 88.88 

* The actual MSE for Model2 is the figure given divided by 102, while the figure for Model3 should 
be divided by 10". 
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The estimate P ARM is constructed as follows: 
(i) Define Pas in Jobson and Fuller (1980). 
(ii) Let {JL = LSE, with {JL = (ao, ad. 
(iii) Let r 2 be the vector of squared residuals, i.e. squares of Y,- x:(JL. 
(iv) Minimize (r2 - Pa)'(r 2 - Pa) for a~ 0, where a'= (a 1 , a2 ) 

(v) Define a?= a, +a,(&,+ a1c,) 2 

1229 

(vi) Compute a weighted estimate {Jp and residuals r,w = Y,- x:(Jp = Y,- aop- a1pc,. 

(vii) Repeat steps (iv) and (v), replacing (ao, ad by (aop, a,p) in (v). 
(viii) Recompute a weighted estimate, call it PARM. 
The outcomes of the simulations are given in Table 1. The results are quite encouraging 

and suggest that there are instances where our nonparametric estimation of the variances 
can work well, particularly for larger sample sizes. 

5. Proof. Because the details are lengthy, we sketch the proofs only for the case m; 

= 1. As a shorthand notation, identify Assumptions 1-7 as A1, A2, .. ·, A7. Consider first 
simple linear regression in Section 2. We have the following. 

THEOREM 5.1. If the supremum is taken over the support of the design J (assumed 
compact), then 

PRooF OF THEOREM 5.1. Rewrite (2.1) as fiN= GN/fN and 

GN(c) = GNl (c) - 2GNz(c) + Gn3(c) 

= {Nb(NW' I~' [arr7- 2a,e,x:({JL- /3) + {x:({JL- /3l}'JK( ~(~n . 
Because both K(.) and the support of the design are bounded and (JL = f3 + Op(N-112 ), we 

have 

N 114sup I GN3(c) 1->p 0. 

Routine but detailed weak convergence arguments using Theorem 12.3 of Billingsley 

(1968), A4-A7 and Ee 6 < oo can be used to show that 

(5.1) 
N 114sup I Gm(c) I ->p 0, 

N 114sup I GN! (c) - EGN, (c) I ->p 0, 

N 114sup I fN(c) - EfN(c) 1->p 0, 

N 114supl EGNdc)/EfN(c)- H(c) 1--. 0. 

The first part of (5.1) is simple enough. It follows from direct weak convergence arguments 

after one shows that, from the central limit theorem, one can replace (JL - f3 by 

{E(xx')}-'N-' L~' x,a,r,. 

The second and third parts of (5.1) can be shown directly by weak convergence arguments, 

but they are also essentially known from the nonparametric regression literature. The 

fourth part of (5.1) is merely tedious algebra; one has to be quite careful with end points. 

Now recall once again that the model for Theorem 1 is 

Var(r,) = 1. 

PROOF OF THEOREM 1. First note because Er 2 < oo and A7 holds, N'1'((1r- {3) has the 

normal limit distribution claimed in Theorem 1. It thus suffices to show that 

N 112 ({Jw - {JT) ->p 0. 

Recall, (Jw is the weighted estimator based on the adaptive weights (2.1). Because (JT is 

asymptotically normal, the design is bounded, H(c) > 0 and Ee 6 < oo, one can use Theorem 

5.1 to see that it suffices to show that 
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(5.2) 

where x: = (1, c;) as before. By the proof of Theorem 5.1 it suffices to show 

(5.3) N- 112 L x,e, [GN(c,)- EGNI(c,)]/G~EfN(c,) -+p 0, 

(5.4) N- 112 L x,e,EGNI(c,) [ {N(c,)- EfN(c,)]/G~(EfN(c,))2 -+p 0, 

(5.5) 

In the expressions above, EGNI(c,) refers to EGN 1 (c) evaluated at c = c,, and similarly for 
EfN(c,). We will only sketch (5.3) as (5.4) and (5.5) are much easier. Rewrite (5.3) as 

{N3/2b(N)}-I L• L 3 x:e, {G;K(c~(~c),)- EGNI(c;)} 
G,E{N(C,) 

+ {N3/2b(N)}-l ~, ~, 3 Xi£, 
(5.6) t... t... GiE{N(C,) 

2 2 ' • ' • 2 (c, - c,) 
. (Gj(E 1 - 1)- 2G 1E1X1 ( {3L- {3) + {Xj( {3L- {3)} ]K b(N) · 

Each term in (5.6) converges in probability to zero. The first term and the first part of 
the second term only require computing second moments, remembering that {x,} and {Gi} 
are uniformly bounded and noting that {EfN(c;) } are bounded away from zero. The third 
part of the second term is easy. For the second part of the second term, it suffices to prove 
the result when we replace PL - f3 by 

(5.7) 

Having done this, one then computes second moments. In these steps the full strength of 
the assumption Ee 6 < oo is used. 

We next sketch the proof for Theorem 2. The first step is a version of Theorem 5.1. 
Recall that -r, = x:{3 = EY,, t, = x;pL. The definitions of fiN and Pw are given in Section 3, 
while fN is the inverted term in the definition of fiN. 

THEOREM 5.2. 

N 114sup I fiN(s) - H(s) 1--+p 0. 

PROOF OF THEOREM 5.2. It is first of all possible to show by weak convergence 
techniques that 

(5.8) 

where f( ·) is the density of { x: f3}, 

fN(S) = {Nb(NW 1 Lf-1 K( ~(~;) . 

E.fN(s) = E{Nb(N)}-1 L~I K(~(~~); 
i.e., E. means we replace t, by Ti = x;{3 and then take expectations. To show (5.8), first 
recall that the support of the design is bounded, so that 1 t,- -r,l = Op(N- 112 ) uniformly in 
i. This means that, uniformly in i, 

{ (ti- -r;)/b(N)}3 -+p 0. 

Using this and compactness, one expands to get 

h<s) = {Nb(N)}-1 L~I 

(5.9) 

{ ( ) ( ) ( ) ( ) 2 ( ) } 
K 'Ti- s ti - 'Tt , 'Tt - s 1 t, - Tl fl 'Tt - 8 

b(N) + b(N) K b(N) + 2 b(N) K b(N) + Op( 1). 
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That the third term on the r.h.s. of (5.9) convergences in probability to zero at rate N 114 

follows directly from A6. Denote the first term by VNI(s) and the second by VN2(s). The 
same weak convergence argument used in Theorem 5.1 shows N 114 { VN 1 (s)- E.fN(s)} 

converges in probability to zero uniformly on compacts. Dealing with VN2 (s) is quite tricky. 
One first shows that it suffices to make the substitution (5.7) for {3L- {3. Then, a simple 
second moment computation shows that the finite dimensional distributions of the result•
ing modified process 

VX,.(s) = {N2b 2(N)} -I L• L1 x: {E(xx') } - 1X1ohK'( ~(~;) 
converge in probability to zero; here, as in the tightness argument to follow, we use the 
fact that the support of K strictly includes the support of {x ; /3} and, since K is a symmetric 
density, J K'(y) dy = 0. Finally, tightness can be proven by using Theorem 12.3 of 
Billingsley (1968) (use his equation (12.51) with y = 2 and o: = 1 + a, a very small); in 
doing this calculation, one must separate the cases I t2 - t1 I ~ db(N) and < db(N) for a 
large constant d (li and t2 refer to Billingsley's notation). Because of (5.8) and Theorem 
5.1, we now only need to prove Theorem 5.2 for 

( * ( { b( )}-I '<:'N 2 (t,- s) -I "'N 2 2 (x;p- s) 5.10) HN s) = N N .:.•~I r,K b(N) - {Nb(N)} E .:.•~I e,a,K ~ . 

One first makes the expansion of (5.10), as in (5.9), aboutK((T,- s)/b(N)), and then argues 
as above and in the proof of Theorem 5.1; the assumption Ee 6 < oo is again vital here. 

PROOF OF THEOREM 2. As in the proof of Theorem 1 we must show 

(5.11) N- 112 L x,e, {HN(t,) - H(T;)} /a~ -"p 0. 

The proof parallels that of Theorem 1. Here, the difficult case is to show 

(5.12) 

where 

Rewrite (5.12) as 

(5.13) 

+ {N312b(N)}-1 L• L1 3 X;E, {r;K(T~(~T),) - b(N)QN(Tn)}. 
a,E{N(T.) 

By a messy argument similar to that of (5.10), the second term in (5.13) can be shown to 
converge in probability to zero. For the first term, it suffices to show that for every M > 0, 

(5.14) 

where 

Because, uniformly in i, 
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by A6 we must merely show (5.14) for the process VN·(.::l) which, in VN(.::l), replaces r7by 

rr'je'j- 2u1e,x5(PL- /J). 

Divide V N' into the two processes 

VN·(.::l) = V}.H(.i) + V~l(.::l). 

We now invoke the results of Bickel and Wichura (1971) on multiparameter stochastic 
processes, changing their equation (3) to 

E jX(B) j 2 s ll(B)l+Y, 

for some y > 0. This shows (in order) that it suffices to show the results when we replace 

in the definition of PL - fJ byE (xx'), and then that v~\ is tight with finite dimensional 
distributions converging in probability to zero. This proves (5.14) and completes the proof 
of Theorem 2. 

NoTE. Handwritten detailed proofs are available from the author. 
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SUMMARY 
We describe semiparametric estimation and inference in a logistic regression model with 
measurement error in the predictors. The particular measurement error model consists of 
a primary data set in which only the response Y and a fallible surrogate W of the true 
predictor X are observed, plus a smaller validation data set for which (Y, X, W) are 
observed. Except for the underlying assumption of a logistic model in the true predictor, 
no parametric distributional assumption is made about the true predictor or its surrogate. 
We develop a semiparametric parameter estimate of the logistic regression parameter 
which is asymptotically normally distributed and computationally feasible. The estimate 
relies on kernel regression techniques. For scalar predictors, by a detailed analysis of the 
mean-squared error of the parameter estimate, we obtain a representation for an optimal 
bandwidth. 

Keywords: BANDWIDTH SELECTION; DENSITY ESTIMATION; ERRORS IN VARIABLES; 
GENERALIZED LINEAR MODELS; KERNEL REGRESSION; LOGISTIC REGRESSION; 
MAXIMUM LIKELIHOOD; MEASUREMENT ERRORS MODELS; NONPARAMETRIC 
REGRESSION; PROBIT REGRESSION 

1. INTRODUCTION 

1.1. Motivation and Literature 
This paper describes semi parametric estimation and inference in a logistic regression 
model with measurement error in the predictors. The primary concern is the 
univariate predictor case, although our main asymptotic normality result can be 
extended to higher dimensions. We first describe the example which motivated this 
work, and then the general model. 

In the Nurses Health Study described by Rosner et at. (1989), the relationship 
between breast cancer (Y, a binary variable) and long-term dietary saturated fat (X) 
was examined prospectively. The primary data set consisted of a cohort of 89538 
women, but instead of observing X, a surrogate W was observed, namely a self•
administered quantitative food frequency questionnaire. To understand the relation•
ship between X and W, 173 nurses became part of a validation study, in which Y, 
W and X were observed. X was not observed exactly but diet was measured 
sufficiently often in the validation data set, for one week at four different points 
in the year, that we may assume that X is known. The question to be addressed 
is how to use the validation data to obtain good estimates of logistic regression 
parameters. 

t Address for correspondence: Department of Statistics, Texas A&M University, College Station, TX 77843-3143, 
USA. 

© 1991 Royal Statistical Society 0035-9246/91/53573 $2.00 
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The logistic model is pr(Y=1IX=x)=F({30 +{3,x), where F(v)={1+ 
exp( -v) }-'. We assume that Y and Ware independent given X. If fx

1
w is the 

conditional density of X given W, then in the primary study the observed data follow 
the model 

pr( Y = 11 W = w) = J F({30 + {3,x) fx 1w(xl w) dx. (1.1) 

It is well known that a logistic regression of Y on W leads to inconsistent estimates 
of {30 and {3, (Stefanski and Carroll, 1985). In the Nurses Health Study, the mea•
surement error is large and the asymptotic bias considerable; see Rosner eta/. (1989). 

The topic of binary regression when predictors are measured with error has been 
the subject of several recent papers. In this literature, Y has been unobserved in the 
validation data although extensions to our case are straightforward. The methods 
can be categorized as 

(a) fully parametric, 
(b) efficient semi parametric and 
(c) approximate corrections for attenuation. 

Carroll et al. (1984) and Schafer (1987) parameterize fx 1w with a nuisance vector 
~. They compute a pseudo-maximum-likelihood estimate, using the following 
algorithm: 

(a) estimate ~ from the validation data; 
(b) pretend that in model (1.1) ~is known and equal to its estimated value, thus 

yielding a pseudolikelihood function; 
(c) estimate {3 = ({30 , {31Y by maximizing the pseudolikelihood over the primary 

data. 

This method in the logistic case is difficult to compute, performs poorly in moderate 
sample sizes and is non-robust to misspecification of the conditional density 
fxJw• 

Stefanski and Carroll (1987) take a semiparametric approach. Specifically, W 
given X is assumed to be normally distributed with constant variance and mean linear 
in X; the mean and variance parameters are denoted by ~. The marginal density of 
X, fx, is assumed unknown. A sufficiency argument gives rise to a set of estimat•
ing equations depending on~ and {3. Again,~ is estimated from the validation study 
and {3 is then estimated from the primary data assuming that ~ is known. This method 
makes fewer assumptions than the previous method, and works well for even 
moderate sample sizes, but the robustness against non-normal measurement error 
has not been explored. 

A third approach is based on small measurement error asymptotics; see Stefanski 
and Carroll (1985), Stefanski (1985), Whittemore and Keller (1988) and Rosner 
eta/. (1989). These methods pretend that the difference between X and W is 'small', 
which gives rise to estimates of {3 which partially correct for measurement error. 
There are again nuisance parameters ~. which are estimated from the validation 
study. These methods work very well in practice, even though they are only partial 
corrections for attenuation. An asymptotic theory is given in Carroll and Stefanski 
(1990). 

In this paper, we consider a fourth approach, namely using nonparametric kernel 
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regression methods in the validation data to estimate the probability function (1.1). 
A semiparametric estimate of {3 results from this method, with an estimated band•
width and an asymptotically normal limit distribution. The next subsection outlines 
this approach. Independently, Pepe and Fleming (1991) consider a problem similar 
to ours with W a discrete random variable. 

1.2. Description of Method 
We assume throughout the paper that the joint, marginal and conditional densities 

of X and W have two bounded and continuous derivatives. 
Define 

B(x, y, {3) = F({30 + f11x)Y[ I- F({30 + {31x)] H. 

The likelihood function for Y = y given W = w is given by 

L(y, w, {3) =E[B(X, y, {3)! W= w]. 

(1.2) 

(1.3) 

Equation (1.3) describes a nonparametric regression problem: regressing B (X, y, {3) 
on W. No numerical integration is required to obtain an estimate of the likelihood 
function. We propose to estimate equation (1.3) by a kernel regression. 

In what follows, n1 is the size of the valida:tion data set, n1 the size of the 
primary data set and n1 /n 1 =A. Derivatives with respect to {3 are denoted by 
subscripts. 

Let Kbe a symmetric density function, and let h be a bandwidth or window width. 
Define 

., 
fw(W) = (n 1h)- 1 ~ K[(w- w;) /h ], 

I 

D.(y, w, {3) = (n 1h}- 1 ~ B(X;, y, {3)K[(w- w;) /h ], 
I 

C.(y, w, {3) = (n 1h}- 1 ~ B~(X;, y, {3)K[(w- w;) /h ]. 
I 

The estimated likelihood function for Y = y given W = w is L. (y, w, (3) = 
D.(y, w, {3)1/w ( w), while the estimated likelihood score is H. (y, w, {3) = 
C.(y, w, {3)/D.(y, w, {3). Let /(y, x, {3) = (1, x)T{y-F({30 +{31x)J be the 
likelihood score for ( Y, X) = (y, x). 

In principle, there is information about {3 in both validation and primary data sets. 
The validation data contribute terms to the likelihood based on ( Y, X), while the 
primary data are values of ( Y, W). We use both types of information in our estimate. 

Recall that n = n1 + n1 � We propose that we estimate {3 by /3, the solution to 
~ n 

n-112 ~ /(}), ~. {3) + n-112 ~ H.(Y;, W;, {3) =0. (1.4) 
j=l i=n,+l 

If fxr w were known, then we would replace H. by H in equation (1.4) to obtain the 
likelihood equations. We shall quantify how much would be gained by making this 
replacement, in effect considering the cost due to estimating H by nonparametric 
regression. 
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In solving equation (1.4) we can use a scoring method with the starting value of 
f3 taken to be ~<01 , the maximum likelihood estimate based on the validation data. 
An alternative estimator can be found for f3 by performing just one iteration of 
Newton's method with ~<01 as the starting value. Let ~<IJ be this estimator. It may be 
shown that ~ and ~<IJ have the same limit distribution. 

An interesting feature of this problem is that when {3 1 = 0, for i ~ n1 + 1, it can 
be shown that the estimated score is unbiased, i.e. EH" ( Y1 , w;, f3) = 0. Thus, the 
classic bias-variance trade-off that we associate with nonparametric regression 
disappears when {31 = 0. 

1.3. Arrangement of Paper 
In the next section, we summarize the asymptotic behaviour of ~ and ~<IJ when 

h --+ 0, where his deterministic. In Section 3, we indicate methods for selecting h from 
the validation data, one of which is easy to implement. Section 4 describes the results 
of a simulation study. 

2. ASYMPTOTICS FOR DETERMINISTIC BANDWIDTHS 

2.1. Introduction 
A practical problem occurs with this method as a result of edge effects. The 

estimated likelihood H" (y, w, {3) will be unreliable near the boundaries of the 
validation data, where there are few observations and the weighted averaging of 
kernel regression becomes asymmetric. In addition, the primary data set, being 
larger, is expected to have observations w; outside the range of the primary data. 
Used blindly, this would mean extrapolating the kernel fit Hn (y, w, {3) outside the 
range of the data used in its construction. Such extrapolation is dangerous, and 
robustness considerations dictate that it be avoided. 

One method for overcoming this is to evaluate H" (y, w, {3) only for those win 
a fixed set interior to the support of W. Such a restriction is similar in spirit to the 
so-called Mallows method of robust regression, which downweights observations on 
the basis of leverage. 

What follows are formal calculations, rather than detailed proofs. These calcula•
tions can be justified if the summations for i ~ n 1 + 1 in equation (1.4) are taken 
over those w; in a fixed set interior to the support of W. 

2.2. Main Result 
Make the following definitions: 

C(y, w, f3) =fw(w)E[B~(X, y, {3) I W= w]; 

D(y, w, {3) =fw(w)E[B(X, y, {3) I W= w]; 

H(y, w, {3) = C(y, w, {3)/D(y, w, {3); 

M~(f3) =(I+ }..)- 1 E[/~(Y, X, {3) + }..H~(Y, W, {3)]. 

Also, let ~* stand for either ~or ~(1 1 • Since H"--+ H, by a Taylor series argument 

n112 (~*- {3) ""' - [ G1 (n, {3) + G2 (n, {3)] -I n 112 [ G3 (n, {3) + G4 (n, {3)], (2.1) 
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for random variables G;(n, (3), i= I, ... , 4, specified in equation (A.2) of 
Appendix A. If we assume that h4n--+ 0 and nh 2 --+ oo, then calculations outlined in 
Appendix A indicate that n112 ({3* - (3) is asymptotically normally distributed with 
mean zero and covariance matrix given by 

n cov( 13*- (3) --+ M~( (3)- 1 r ((3)M~( (3)- 1, (2.2) 

where 

r((3) =(I+ }-.)-1 [E[l( Y, X, (3) l(Y, X, (3)TJ + }-.E(H(Y, W, (3)H( Y, W, (3)T] 

+}\2 r(f3)J (2.3) 
I I 

r(f3) = ~ ~ E(L(z, W, (3)L(y, W, (3)Q(X, z, W, (3)Q(X, y, W, (3)Tja,(W)J 
y=O z=O 

Q( (3) _ B~(x, y, (3) D(y, w, (3)- B(x, y, (3) C(y, w, (3) (2.4) 
X, y, w, - D2(y, w, (3) 

We indicate in Section 5 and Appendix A that this result can be extended to arbitrary 
dimensions for X and W. 

Remark 1. Each term in equation (2.3) has a distinct source. The first is the 
contribution of the validation data set: the Fisher information for (3 from validation. 
The second term is the Fisher information from the primary data set if fx 1 w were 
known. The third term represents the cost due to not knowing fx

1 
w· For the Nurses 

Health Study, if we assume that (X, W) are jointly normally distributed, then from 
information in Rosner et a/. (1989) we conclude that X and W have standard 
deviations 4.6 and 5.9 respectively, and that, given W, X has a mean linear in W 
with slope 0.47 and standard deviation 3.7. Rosner eta/. (I989) conclude for this 
example that the slope estimate obtained by regressing Yon W approximates 0.5f3u 
not {31 itself; this is the effect of the measurement error. We also assume that X 
and W have the same means, which we take to be zero by centring. If we choose 
{30 = -5.0 and, following Rosner et al. (1989), (3 1 = -O.OI8, then the contribution 
due to estimating His less than I OJo of the total standard error of {3 1 � If, however, 
{3 1 = -0.3, then nearly 70% of the standard error is due to estimating H. This latter 
value of (3 1 is used merely as an illustration, as it is much larger than would be 
expected in this study. 0 

Remark 2. In most applications, the primary data set is large relative to the 
validation data, i.e. }-.is large. In the Nurses Health Study, }-. = 5I7 .6. In such cases, 
there is little information about (3 in the validation data set, and there will be little 
difference between solving equation (I.4) and solving 

n 

n- 112 ~ Hn(Y;, W;, (3) =0. (2.5) 

The changes in the asymptotics when solving equation (2.5) is that M~ ((3) = 
E { H~ ( Y, w, (3 ) }, r ( (3) = E { H ( Y, w, (3 ) H ( Y, w, (3 ) T l + }\ n (3) and n = n2 in 
expression (2.2). 0 

Remark 3. When}-. is extremely large, the main component in covariance (2.2) 
is r ((3)' which comes from the uncertainty in nonparametric estimation in the valida•
tion data. This gives one motivation to make the validation data set sufficiently 
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large that the randomness incurred by the nonparametric regression does not 
dominate. 0 

Remark 4. Equations (2.2) and (2.3) give some insight into the design of a study, 
in particular the choice of size of the validation study. If we assume that (X, W) 
are jointly normally distributed, then we can compute covariance (2.2) for various 
values of ({3, A.) to obtain a sense of an acceptable A.. For the Nurses Health Study, 
following the assumptions of remark 1, with {30 = -5 and {31 = -0.018, we estimate 
that the effect of using a validation sample size n1 = 3750 instead of the actual 
size n1 = 173 is to decrease the standard error for estimating {31 by less than 50Jo. 
The standard error can be reduced by approximately 40% by observing X for 
all study participants. However, if {3 1 = -0.3, these figures are 73% and 88% 
respectively. 0 

Remark 5. If we model fx1 w parametrically, a result similar to equations (2.2) 
and (2.3) occurs: an extra component in covariance due to estimating parameters via 
the validation study. See Section 4 for details. 0 

Remark 6. The covariance matrix (2.2) can be estimated by replacing M~({3), 
r({3) and t({3) by their method-of-moments estimators. 0 

3. BANDWIDTH SELECTION 

The proof of asymptotic normality with covariance (2.2) is sketched in Appendix 
A, under the condition that nh 4 + (nh2 )- 1 -+ 0. Unfortunately, this tells us nothing 
about selection of the bandwidth h. We might take the view that h should be varied 
over a wide range to see whether the estimates and inference are sensitive to h. We 
have sympathy with this data analytic viewpoint, but there is also value in letting 
h be determined by the data. In this section, we discuss automatic bandwidth 
selection. As a first step we derive a higher order expansion of the covariance of an 
asymptotically equivalent form of n 112 (/3- {3). 

Define 

A. 1 

a1 = 2(1 +A.) J Z2K(z) dz y~ E[L(y, W, {3) Q(X, y, W, {3)fw(W)j 2 (X, W)j 

(3.1) 
1 

a2 =A. J K 2 (z) dz ~ E[L (y, W, {3) Q(X, y, W, {3) j w( W) B(X, y, {3)/D(y, W, {3)] 
y=O 

(3.2) 

/2 (x, w) = [(a2/aw) fx. w(x, w)jlfx. w(x, w) (3.3) 

a3(n, h) =M~(f3)- 1 [(nh4) 112a 1 - (nh2)- 112 a2 ). 

In Appendix B, we outline a result showing that, for some random variable Z.* and 
matrix A, n 112 (/3*- {3) = Z.* + oP ( (nh 4 ) 112 + (nh 2 ) - 112 }, where 

E z.* (Z.*)T =M~({3)- 1 r({3) M~(f3)- 1 + a3(n, h) a3 (n, h)T + (nh)- 1A. (3.4) 

Equation (3.4) shows that the bandwidth does not affect the covariance except to 
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smaller order terms. However, our second-order expansion does suggest a plug-in 
method for bandwidth selection; see below. 

At the end of Section 1.2, we discussed the fact that E H. ( Y, W, fJ) = 0 when 
fJ 1 = 0. We can show in this case that a1 = a2 = a3 (n, h) = (0, O)T. Hence, equation 
(3.4) leads to choosing h = oo, which suggests one reason why reliable automatic 
bandwidth selection based on plugging into equation (3.4) will be difficult, in general. 

Remark 7. In terms of rates of convergence for estimating the linear combina•
tion -yTfJ, the 'optimal' h minimizes ('YT a3 (n, h) )2 • Except when fJ 1 = 0, this his of 
the order n- 113 , much smaller than the usual order of n-us common in nonpara•
metric regression. In fact, the usual rate is prohibited in our calculations, if we are 
to estimate fJ at the rate n112 • D 

The matrix A in equation (3.4) is complicated. For example, the contribution to 
A from the first-order linear expansion of H. about His M~(fJ)- 1 J2 M~(fJ)- 1 , 
where 

I 

l 2 =A J _K2(z)dz ~ E[L(y, W, fJ) Q(X, y, W, fJ) QT(X, y, W, fJ)fw(W)]. 
y-O 

(3.5) 

The higher order terms are even more complex, perhaps too much so to be useful 
in plug-in bandwidth selection. 

In the simulations to follow, we used a simple ad hoc bandwidth selection method. 
We took h = &wn- 113., where &w is the estimated standard deviation of Win the 
validation data set; a robust scale could be used as well. This method, while ad hoc, 
does have the correct rate of convergence and is easily programmed. Unlike plug-in 
rules based on equation (3.4), it has the virtue of being stable even when fJ 1 = 0. 

4. PARAMETRIC PROBLEMS 

In parametric problems, the form of the limit distribution of P is the same 
as equation (2.2). Writing the densities as fx1w (xi w, 71) and fw (wl71 ), the like•
lihood of an observed ( Y, X, W) = (y, x, w) in the validation data is 
B(x,y, fJ)fxlw(xlw, 71)fw(WI71)· If 

L(y, w, fJ, 71) = J B(x, y, fJ)fxlw(xl w, 71) dx, 

then L.(y, w, fJ, 71)=/w(w171)L(y, w, fJ, 71) is the likelihood of an observed 
( Y, W) = (y, w) in the primary data set. The full maximum likelihood estimate of 
(fJ, 71) follows standard lines. 

Let H(y, w, fJ, 71) = (olofJ) logL (y, w, fJ, 71). Let~ be the maximum likelihood 
estimate of 71 in the validation data and define 

1/;(x, w, 71) = (olo71) log[fx1w(xl w, 71)/w(wl71)]. 

If P is the pseudo-maximum-likelihood estimate obtained by replacing 71 by ~ and 
maximizing the pseudolikelihood in fJ, then P has the limit distribution (2.2), with 
the exception that in equation (2.3) we replace !;(fJ) by 

!:parm (fJ) =E H,(E1{;,)- 1 E1{;1{;T(E1{;,)- 1E~. 



318

580 CARROLL AND WAND [No.3, 

5. MONTE CARLO STUDY 

To understand the performance of the method when applied to data, we undertook 
a small Monte Carlo study. 

The performance of our method was assessed in comparison with some other 
standard methods. The first was the usual logistic coefficient replacing X by W. 
Second was the estimate of Rosner et at. (1989), which divides the usual estimate 
by the slope of the regression of X on W in the validation data. The third was a 
modification of the Stefanski and Carroll (1985) estimate; see Stefanski (1989). We 
modified this slightly by applying the method not to W but to W* = ( W- v0 )/v1, 

where v0 and v 1 are the least squares intercept and slope from the regression of W 
on X. The final estimate was that of Whittemore and Keller (1988), p. 1060. Their 
parameters A and 0 were estimated from the validation data by assuming a linear 
regression of X on W. 

The method proposed here started with the usual logistic regression estimates and 
used five iterations of the scoring method. The functions fw, c. and D. were 
assessed on a grid of 41 points covering the range of the validation data, with grid 
points being the equally spaced percentiles of W, i.e. the minimum, 0.025 percentile, 
0.05 percentile, etc. Between grid points, linear interpolation was used. The sums 
over i in the formulae for these functions were assessed only for those W; in the 
primary data which were in the range of the validation data. 

The competing estimates are all parametric in nature and are based on specific 
parametric assumptions. If these assumptions hold, then we expect that these 
methods will outperform our method. Our simulations were based on the idea of 
calibrating our method in situations ideal for the parametric methods, i.e. linear 
additive normal measurement error. We also tested the methods against two 
moderate model departures, and against a severe model departure. 

We took the primary data set to be of size n2 = 2000 with the validation study of 
size n 1 = 250. We took {30 = -1.10, - 2.20, -3.66 and {31 = 0.80. The three choices 
of {30 represent cases where the expected numbers of times Y = 1 are 500, 200 and 
50 respectively. 

There were three sampling situations. In the first, the random variables (X, W) 
were normally distributed according to the model W =X+ U, where (X, U) are 
independent with zero means and standard deviations 0.50. 

The second sampling situation consisted of W =XU, where X is as in the previous 
example and U is the negative exponential distribution, so that the variance of W 
is twice that of X, as in the previous case. This is only a moderately heteroscedastic 
situation. However, a plot of X against W for a single data set, given in Fig. 1, 
suggests that the semiparametric method might do poorly in this case, because of 
the rapid change of the regression near W = 0. 

The third sampling situation is of a moderate model breakdown for the parametric 
methods. We took X to be uniform on the interval (0, 5), and W=X2/15. The 
values of {30 were -2.7, -3.8 and -5.26. We say that this is a moderate model 
breakdown because the plot of X against W is reasonably linear for much of the range 
of W. 

The fourth model situation represents severe model breakdown. We took W to 
be uniform on the interval ( - 1r 12, 57r 12), and X= cos W. 

Clearly this last choice can be criticized on the grounds that the parametric 
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3.5 

Fig. 1. Plot of X against W for a randomly generated sample of size 250: here, X is normally 
distributed with mean zero and standard deviation 0.5, while W =XU and U follows a negative 
exponential distribution with unit mean 

methods are inappropriately applied. However, if we only simulated situations where 
the parametric assumptions were appropriate, then we would find the unsurprising 
result that parametric is better than semiparametric in practice. What is of interest 
here is to see whether the semiparametric method does reasonably well in straight•
forward cases, and better in cases of model breakdown. 

There were 100 iterations of the experiment. The results are given in Table 1, where 
we report median values for /310 the median absolute error (MAE) and the 90th 
percentile of the absolute errors. The semiparametric method does remarkably 
well in the normal model and is the clear winner in the quadratic and cosine models. 
As expected, its performance for rare events in the heteroscedastic model is rela•
tively poorer compared with the method of Rosner eta/. (1989), but it is still not 
unacceptable. 

6. GENERALIZATIONS AND DISCUSSION 

Most applications of logistic regression involve non-scalar predictors. One impor•
tant example consists of the case where the predictors are (Z, X). Here Z is 
observable, X is scalar and unobservable, and W is the scalar surrogate for X. 
If the distribution of X given W is independent of Z, then our results apply with 
only the following minor modifications. In equation (1.2), define B(x, z, y, fj) = 
F(fj Jz + {j1x)Y { 1-F(fj Jz + {j1x) p-Y, while in equation (1.3) define L(y, z, w, fj) = 
E{B(X, z, y, fj) I W = w}. These changes lead to redefined functions such as 
D.(y, z, w, fj), D(y, z, w, fj) and /( Y, X, Z, fj). Otherwise, the results are 
unchanged. 
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TABLE I 
Results of a simulation studyt 

Estimate Results for the following values of P: 
P0 =-1.09 Po= -2.20 Po= -3.66 

Median MAE 90th Median MAE 90th Median MAE 90th 

Additive normal 
Usual 0.39 0.413 0.496 0.40 0.404 0.532 0.36 0.436 0.680 
W-K 0.78 0.100 0.259 0.80 0.135 0.362 0.72 0.314 0.688 
R-W-S 0.78 0.096 0.244 0.78 0.126 0.340 0.72 0.312 0.726 
S-C 0.77 0.164 0.376 0.82 0.153 0.467 0.78 0.333 0.757 
Semi-p 0.79 0.099 0.309 0.80 0.135 0.380 0.72 0.314 0.688 

Heteroscedastic normal 
Usual 0.41 0.395 0.508 0.40 0.404 0.524 0.40 0.401 0.685 
W-K 1.36 0.563 1.052 1.25 0.453 0.805 1.09 0.421 0.871 
R-W-S 0.79 0.137 0.311 0.78 0.152 0.370 0.77 0.255 0.606 
S-C 0.55 0.289 0.462 0.53 0.290 0.483 0.48 0.331 0.653 
Semi-p 0.88 0.109 0.245 0.90 0.133 0.405 0.91 0.329 0.776 

Cosine model 
Usual 0.00 0.800 0.803 0.00 0.800 0.806 0.00 0.800 0.807 
W-K -0.01 0.806 0.856 -0.01 0.812 0.879 0.00 0.801 0.928 
R-W-S -0.29 1.975 8.926 0.31 2.183 14.949 0.30 4.765 20.277 
S-C 0.00 0.800 0.803 0.00 0.800 0.806 0.00 0.800 0.808 
Semi-p 0.90 0.101 0.214 0.90 0.133 0.307 0.92 0.217 0.513 

Po= -2.70 Po= -3.80 Po= -5.26 

Quadratic model 
Usual 0.67 0.131 0.191 0.63 0.173 0.235 0.64 0.158 0.288 
W-K 1.92 1.116 1.615 0.86 0.154 0.423 0.53 0.300 0.536 
R-W-S 0.74 0.064 0.126 0.69 0.109 0.177 0.70 0.101 0.238 
S-C 0.67 0.127 0.188 0.63 0.170 0.232 0.65 0.155 0.286 
Semi-p 0.80 0.035 0.095 0.80 0.045 0.116 0.82 0.091 0.213 

t Median is the median of the estimates, MAE is the median absolute error and 90th is the 90th percentile of the 
absolute error. Usual is the ordinary logistic regression estimate, W-K is the Whittemore and Keller (1988) estimate, 
R-W-S is the estimate of Rossner et al. (1989), S-C is the modified Stefanski and Carroll (1985) method discussed 
in the text and Semi-pis the semiparametric method. The models are as discussed in the text. 

If W is non-scalar or if X given W is not independent of Z, then nonpararnetric 
regression must be performed in more than one dimension. We show in Appendix 
A that if W has dimension d, if all densities have p bounded and continuous 
derivatives and if K is a pth-order kernel function, then result (2.2) holds as long 
as nh2p -+ 0 and nh2d-+ oo. The case discussed in Section 2 is d = 1 and p = 2. Note 
that the dimension of W need not be the same as the dimension of X. However, such 
a method is hardly practical if d = 10. The problem of suitable methods for higher 
dimensional surrogates remains open. 
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APPENDIX A 

This section discusses asymptotic normality of the estimates of {3. We shall assume 
that W is of dimension d, that the kernel K is a pth-order kernel, that nh2d-+ oo and that 
nh2P -+ 0. The case discussed in Section 2 is p = 2 and d = 1. 

Since the size of the validation data set is O(n), n 112-consistent estimates {3< 0 ) of {3 are 
already available from the validation data. Thus, the analysis of the estimate {3<1) will follow 
standard lines of argument, as will that of /3. Rather than to use considerable space in tedious 
but standard arguments, we have chosen to take approximation (2.1) as our starting point. 

Dropping the dependence on {3, define Q(x, y, w) by equation (2.4) and 

Q.(x, y, w) = Q(x, y, w)ID(y, w, {3). 

Where appropriate, we shall suppress arguments to individual terms, e.g. H �. ; for 
H.( Y;, W;, {3). In the subsequent calculations, we shall also use the notation 

Q.,;=(n1hd)- 1 ~K[(Jfj-W;)Ih]Q(Xj, Y;, W;). (A.1) 
j=l 

An analogous definition is ascribed to Q.,n,i• Let 'r/n=nh2P+ (nh2d)- 1 � To order op('r/~2 ), 
we can show that 

Note that G;(n, {3), i= 1, ... ,4, from approximation (2.1) are the four normalized sums 
iJ! this expression. Except for terms of order oP ( 'r/~12 ), we can write H •. ;= H; + Q �. ; �
Q., n,; (D •. ;- D; ). Making this substitution and then taking derivatives with respect to {3, we 
can show by computing first and second moments that 

n- 1 ~ l;.~+n- 1 :t Hn,i,~-M~(f3) =op('r/~12). (A.3) 
n1+l 

We shall use equations (A.2) and (A.3) in Appendix B. 
Since H �. ; - H;- Q •. ; = oP (n- 112 ) under our conditions on the bandwidth h, for result 

(2.2) we need to show that z. is asymptotically normal with mean zero and covariance 
r ({3), where 

z. = n-112 L~ lj + ;~t+l (H; + Q �. ;)J. 
Let S., _denote the observations in the validation data, i.e. (X;, W;, Y;)~'. Define 
a.= E( Q �. n IS.,). A standard bias calculation shows that, except for terms of order 
Op (1 ), 

where 

O!n = (>-./n2) ~ sj, 
j=l 
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I 

Sj=~L(y, Uj,/1)Q(~,y, Uj)fw(UJ). 
y=O 

It is easy to show by a covariance calculation that 

n 

n-112 ~ (Q.,;-a.) =op(l), 
n1+l 

and hence that 

z. = n- 112 L~ (lj + ASj) + ;~t+ 1 H; J + oP(1). (A.4) 

The right-hand side of equation (A.4) has covariance r(/1), and it is clearly asymptotically 
normally distributed. 

APPENDIX B 

The purpose of this section is to verify equation (3.4). We are taking the dimension of 
Wand X to be d = 1, and the order of the kernel to be p = 2; see equation (A.1 ). On the 
basis of the introductory comments in Appendix A, specifically equations (A.2) and (A.3), 
it suffices to compute the mean and covariance of 

Obviously, since they are scores, E (I;) = E (H;) = 0 = E ( U1.) = E ( U2.). 

Define / 2 (x, w) as in equation (3.3). Standard bias calculations show that to order 
0 ( 11~12 ) 

E( U3.) = n112h2al 

E(U4.) = (n112h)-1a2, 

where a1 and a2 are given by equations (3.1) and (3.2) respectively. 

(B.1) 

The covariance terms take some effort to compute. Of course, E ( U1� U"[,) = ( 1 + 
A) -IE (liT), E ( U2n Ui,) = AE (HHT )/ (1 +A) and E ( U1n U2.) = 0. By direct and fairly 
easy calculation, to order o ( 1/n), E ( U1� U3.) = E ( U1� U4.) = 0. 

Define c1 (K) = f K 2 (z) dz. It is also relatively easy to show that E ( U 2• UJ,) = 0 ( h2 ), 

and that to order o ( 11.) 

E(U2.UJ,) = Ah c1 (K) ± E[L(y, W,/1)H(y, W,/1) Q!(X, y, W)B(X, y, W)fw(W)]. 
n y~o 

(B.2) 

A somewhat lengthier calculation yields that 

I 

x~E[L(y, W,/1)Q(X,y, W)QT(X,y, W)fw(W)]. (B.3) 
y=O 

We can show that E ( U2• UJ. ) = 0 ( h2 ) , and that E ( U3• UJ, ) can be written as 
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I 

E(U3.UJ..) =X.2(nh)- 1 c1 (K) ~ E[L(y, W, {3)L(z, W, {3)f~(W) 
y, z=O 

X B(X, z, {3) Q(X, y, W)Q.(X, z, W)TJ + 0(71.). (B.4) 

Finally, we note that E ( U4• UJ..) is, to order o ( 11.), the sum of the following two terms: 
I 

X?(nh)- 1a(K) ~ IL(z, w,{j)L(y, w,(3)Q.(x2 ,z, w)Qi(x2 ,y, w)B(x"z,{3) 
y,z=O 

xB(x1 ,y, f3)fx.w(x" w)fx.w(x2 , w)fMw)dx1 dx2 dw; (B.5) 
I 

X?(nh)- 1 a(K) ~ I L(z, w, f3)L(y, w, {3) Q.(x 1 , z, w) QHx2 , y, w)B(x1 , z, {3) 
y, z=O 

(B.6) 

where 

We can collect terms to compute equation (3.4). The matrix J 2 in equation (3.5) comes 
from the second part of equation (B.3). The terms (B.2), (B.4), (B.5) and (B.6) arise from 
U4n, which is the error in linearizing H. about H. 
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Generalized Partially Linear Single-Index Models 
R. J . CARROLL, J ianq ing FAN, Irene G IJ BELS. and M. P WA ND 

The typic.a1 generali1,A'.d boeu modt.llcr .a ccgression o( a ce~pon$C. Yon prcdjccors (X, l ) itas c.oodmona_l mean (u.ncuon based on 
:a lineae comblQation o£ (X. Z) We genenli.te these models to ha\'e a nonpar:ame:.ric comp<>oent, repbcing: cbe lineae combination 
<?X + Ji[Z by ~(oJ'X) + ti[ Z. where ' ) ) { ·} ls a:n ullkr.OINn function. We ea..ll tbese gt nuaiir.td parti4Uy lmt.or siJtgle·index 
11'-0lifl.r (GPI..SIM}. n·.e models ind cde t_he .. single-index" mo<!ets .. Whi.Oh h.·we JkJ = o. us~ng IOC21 hne.ar methods. we pt0po6e 
estimues of ~be unknown parameter$ (ern, fJo) and c.he unknown funet10n r»(·) and <lbtain their asympto.ti~ distributions. Bxamp!es 
1Uuscnte ehe. models a-"d rhe proposed escimal.io:a metbodology. 

KeY WORDS: 1\symp<oc-ic theory; Gu,eralized li!lear models·; Kernel regres.s!on; Lor.:aJ ~.Miml!lion; l,..()c:!J polynomial regressjoo; 
Nonpara(Oelric rez:rc.ssio!l.; Quu i-hkcl1hood. 

1. INTROD UCTION 

1.1 Motivation 

The Framingham Hean Study (Kannel et al. 1986) com­
prises a series of exams taken 2 years apart. For the purpose 
of illustration, we use Exam #3 as tbe baseline. The dataset 
includes 1,615 men age 31-65, with tbe outcome indicat­
ing the occurrooce of coronary heart disease (CHD) within 
an 8-year period following Exam #3; there were 128 such 
cases of CHD. Predictors used in this example are patient's 
age, smoking status, and serum cholesterol level, in addi ­
tion to systolic blood pressure (SBP) at Exam #3, the latter 
be.iug tbe avetage of two measurements taken by different 
examiners during the same visit. 

For these data, let tbe response Y be the incidence of 
CHD and let Z be the indicator of smoking status. The other 
covariates used are a vector, denoted by X, consisting of tile 
three variables X1 (age of patient), X2 ( : log(SPB - 25)), 
and X3 ("'log( cholesterol level)). An ordinary logistic re­
gression model says tnat tile logit of CHD probabilities sat­
isfies 

logit{P(CHD)X, Z)} = 'Yo +%X + Po Z (I) 

Tbe advantage of the linear-logistic model lies not only in 
its computational convenience, but also (and more impor­
tantly) iu tbe ease of interpretation of the model parameters 
and our ability to make inference about tbem. 

As we discuss in Section 3.2, some curvature is not cap­
tured by this linear-logistic model. This article is concerned 
with simple scmiparametric alternatives to Lhc fully para­
metric model (I) that allow for such curvature but yet retain 
the ease of interpretation of parameters such as <>o and fJo . 

R.. J Ca.rroll it Pro(esso : af Stacistics., Nutritioo aod 1Q"jcology, De:•
partme:nt of Scati.stics., Texas A&M Universjcy, College Station, TX 71843. 
Jianqtng Fan is Associate Professor, Oepamnent of Scatistics, Univecsjcy 
o ( North Carolin-a, Ct.ape.l Hill. NC 'l1599.1.rtnc.Oij~tsJS A~at~ Pro· 
fe.uoc, (nSLitut de Su tisttque. Universitt C~uholi<!,Ue de Lou vain, B· J 348 
Lou~tn·l~·£\'euve) Belgium. M P. Wand is Senior W.ture.r, Austnlia.n 
Or.tduate School of Managtn:enf, Un1'1ersity of New Sooth Wal~.s., Syd­
ney 2052. Austrtba_ Carroll's rese3rcb was supported by N.uicnal Cal"'«f 
ln.$tlfute gr~<nt C~-57030.. Fa.n'$ rG$<'.Jircb was supponed by Natton.aJ Sci­
eoce F<lundation {NSF) grut DMS-9203135 and .an NSF postdootmat fc:l~ 
lowsh.ip. Gijbel,,. r(.$(.arch was suppotted by tM PcQ&u.mroe d' Action <le 
Rt.etecch~ Conoo:tttk, No. 93-98· 164. The aulho~$ lb.an_k the cC'.[u-ee and 
associate editor for r.iany helpful cc:>mmc:nLS lhal sigr.iflcaady improved 
the ~ticle. 

In this particular example, our gcnerati7.ation consists of 
two parts: (a) the linear combination <>o 1'Jc enters the model 
via a nonparametric link funC(ion, and (b) smoking status 
{3 0 Z enters tbe model as a Logistic offset. Combirung (a) and 
(b) suggests the simple model 

logit(P(CHDIX, Z)} = fJo(<>fX} + PoZ (2) 

for some completely unkuowu function fJo. Model (2) re�
tains much of the ease of imerprelation of model (l ), in 
the sense that nonzero compouents of <>o or f3o indicate a 
''significant" predictor of CHD, but model (2) allows for 
curvature in tbe Logit. 

The purpose of th.is article is to inuoduce version.s of 
(2) for generali7M linear and quasi-likelihood models, de­
scribe a way co tit such models, ancl derive an asymptotic 
t.beory that allows inference about the parameters (<>o, iJo). 
In the rest of this sect ion, we describe the general class of 
models of intere..st tO us here. which we call genera filed par· 
riaUy lit~ear single· index models (GPLSIM). We show that 
these models are a natural combinat ion and generalization 
of simpler models already in the literature, namely single­
index models and part ially linear models. Further sections 
deal with fitting and making inference about GPLSIM. In 
particular, we present a class of asymptOtically optimal es­
timators of the unknown paramecers. 

1.2 The Models 

We consider semi parametric versions of generalized lin­
ear models where a response Y is to be prediC(ed by co­
variates (X, Z), where X and Z are possibly vector-valued 
predictors of lengths p and q. Generalized linear models 
are derived as follows. The conditional density of Y given 
(X, Z) = (x , z ) belongs to a canonical exponential family 

!Ytx,z(y)x , z) = exp[yO(x, z} - 13{8(x , z}} + C(y)j (3) 

for known functions 8 and C. In parametric generalized 
tinear models. the unk1town regression function ll(X, z} = 
E( YIX = x, Z = z) = 8' (O(x, z)} is modeled linearly via 
a link function 9 by 

9{1l(x, z)} ="Yo + a&x + 11r z. (41 
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If 9 = (13')- 1 (the inverse function of 6' ), then 9 is the 
canonical I ink function (see McCullagh and Neider 1989 
for more details). 

In many practical situations, however, the linear model 
(4) is not complex enough to capture the underlying rela· 
t ionship between the response variable and its associated 
covariates. Indeed, some components can he highly nonlin•
ear. A natural generalization of (4) is to allow only some 
of !he predictors to he modeled linearly. with others being 
modeled nonlinearly. This leads us to consider the class of 
GPL.SlM, 

g{J.I(X, 2)} = tJo(Or x) + /J~ Z, With Jl&oll = 1. (5) 

The restriction llaoll = 1 is required ior idcntiJiabitity. 
Model (5) is tlcxiblc enough to cover a variety of sit•

uations. When /J 0 = 0 or, equivalently, there are no pre•
dictors Z, (5) is simply a generalized linear model with an 
unktUJWII link function. The problem of the "missing link." 
function in generalized lineai models bas been considered 
previously by Weisberg and Welsh (1994). In other contexts, 
wben only lbe mean function is specified, tbis problem is 
known as tbe nonparametric single-index model (Hardie, 
Hall, and lclJimura 1993). Tbe appeal of these models is 
that by focusing on ao index o~X. the so-called "curse 
of djmensionalitt' in 6uing rouJtivariate nonparametric re· 
gression functions is avoided (albeit at !he cost of some 
loss in flexibility). Other recent work on estimation in the 
framework of single-index models was done by Bonneu, 
Delecroix, and Hristacbe (I 995). 

The meaning of !he single-index parameter lko deserves 
a short explanation. Here we basically follow the lead of Li 
(199 I), who noted thr<.c points: 

a. Clearly, as a practical mauer, lowering dimensionality 
before fitting data is importam (Li 's remark 1.2 goes 
even further aod suggests that in many cases this is the 
crucial step). and !he appeal of single-index models 
is that they provide a readily interpretable means of 
performing this reduction. 

b. If 'l00 is monotone, then a takes on the same gen•
eral meaning as "effect" parameters as would occur in 
ordinary linear models. 

c. Given an estimated ;'direction" a0, model criticism be•
comes a more manageable proposition. 

Severini and Staniswalis (1994) considered model (5) but 
with T)O(&~ x) replaced by "Y(x), a p-variate function. Huns•
berger (1994) considered model (5) but with X scalar, so 
that p = I and o0 = I. In this case model (5) becomes 

9{14(x , z)} = 'lo(x ) + f.lr z . (6) 

Model (6) is part icularly popular in the spline literature. 
(See, e.g., Chen 1988, Cuzick 1992, Heckman 1986, Speck•
mao 1988, nod Wahba 1984, where it is called the par•
tial SJ>line model or the panially linear model.) Recently, 
Mammen and van de Geer (I 995) studied penalized quasi•
likelihood estimation in partially linear models. 

A different approach to modeling (and coping with the 
"curse of dimensionality") is through generalized additive 
models (GAM's) (see Hastie and Tibshirani 1990). These 
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models replace the oonparametric component of (5) by a 
sum of nonparametric functions over the components of X. 
When they adequately fit the data, the GPL.SfM (5) have the 
obvious advantage o f being more parsimonious, although 
they are clearly more di fficult to compute given the exi&•
tence of commercial software for GAM's. We have in our 
own work combined the two to fi t models of the form (5), 
wilh an estimator II of o0 obtained usjng ouo· techniques 
and then GAM applied to Z and II T x_ In this context, one 
can think of our techniques as providing a preliminary di•
mension reduction. Clearly, an important issue for future 
work is to test for model misspecification of lhe GPL.SlM 
against a richer class of models. 

There are also various schools of thought about the oeed 
to use parsimonious parametric models (see Royston and 
Altman 1994, and the discussions therein). OPI..SIM fall 
somewhere between tbe fully parametric flexible models of 
Royston and Altman (1994) and the almost fully .noopara•
mctric models of Hastie and Tibshiraoi (1990). 

1.3 Aim and Outline 

In lhe context of the unknown link function, the single•
index model. or the model with o-o = I, our method differs 
from those methods previously cited in· that we use local 
linear rather than simpl e kernel regression methods. Our 
aim is to estimate the u.nknown J)arameters lko and {1 0 and 
the unknown function '7o0 in the full model (5), thus gen•
erali zing both the s ingle-index model and the partially lin•
ear model. Our work also applies to quasi-likelihood mod•
els, wbere only the relationship between tb.e mean and the 
variance is specified. In litis situation estimation of the 
mean can be achieved by replacing tbe conditional log•
likelihood In Jy1x,z(y!x , z) by a quasi-/ikelilwod junclion 
Q{l'(x , z), y) . lf the condition.1l variance is modeled as 
var(Y!X = x, Z ~ z) ~ a,V {J.<(X, :t)} for some known pos•
itive function V , then the corresponding quasi-likelihood 
function Q (w, y) satisfies 

8 
ow Q( w, y) = (y - w ) / V (w ) (7) 

(McCullagh and Neider 1989, chap. 9). The quasi-score (7) 
possesses properties similar to those of the usual likelihood 
score function. 

In Section 2 we propose estimation procedures, and in 
Section 3 we illustrate their performance via simula.tion and 
examples. In Sections 4 and 5 we describe distribution the•
ory. In Section 6 we present the result showing asymptotic 
efficiency of the parametric estimators (in tbe semi paramet•
ric sense). In Section 7 we provide methods for eslimtting 
the standard errors of lhe parametric and nonparametric 
parts of !he model. The usual method for estimating stan· 
datd errors is to derive a formula for the asympto<ic co· 
variance matrix, and tben plug into this formu la to obtain 
an estimated covariance matrix. Unfonuoately, as a general 
principle this has the drawback that the formula for the 
asymptotic covariance matrix requires additiooal nonpara· 
metric regression. We derive consistetll covariance mau-ix 
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estimates tllat avoid these additiona I non parametric regres­
sions. We give some implememation details in Sections 3.2 
a.nd 8, and discuss the issue of incorporating interactions in 
tbe model in Sectioo 9. Proofs are givco in tbe Appendix . 

2. MAXIMUM OUAS I-LIKELJHOOO 

2 .1 The Es!ima!ron Melhod 

Onder model (5), the primary interest is to estimate cc0, 
{J 0 , and •Jo(· ). Because '10(·) is modeled oonpa~ametrical ly, it 
is natural to consider IOCIJ! quasi-likelihood. However, effi­
cient cstirnalion of the global parameters a0 and Po requires 
using all data points and hence should rely on the global 
quasi-likelihood. In local quasi-likelihood, we approximate 
•1oO locally by a linear function 

rl<l(v) "''11J(u) + fl~(u)(v- u) =a+ b( v- u) 

for v in a neighborhood of u, where a = •lo( u) and b = 
•1~(u). Let [( be a symmetric probabilit y density funeti<rn 
and let J <h(t) = J< (t/h) /h be a rescaling of J<. The function 
K is \ISually called a kernel function, and the parameter h is 
called the bandwidth. For i= l, ... , n, a S2rople (Y,, X 1, Z, ) 
is observed. The local quasi-likelihood is really a weighted 
quas i-likelihood. with weights T<h(cc1' X , - u). 

The estimation procedure for estimating cc0 , Po and '10(·) 
is as follows: 

Step 0 (Initialization step). Fit a parametric generaliz.ed 
linear model to obtain initial values (&,jJ), and set / j ~ 

4 79 

The estimation procedure irtvolves choosing a smoothing 
parameter on two quite different levels. In Steps 1 and 2 of 
the algorithm the aim is estimation of the parametric part 
(o-0 , {J 0), and hence here the bandwidth h should be optimal 
for this task. In Step 4 , however. the goal is to estimate the 
non parametric part '10( ·), and hence the bandwidth h should 
be optimal in this respect. 

Finally, we metttion that fol lowing work of Severini and 
Staniswatis (1994), maximizing 

" LQ[g- 1 { i)( ar X ,;h, a,{J) + prz ,) , Y, j (10) 
r= J 

instead of (9) leads to estimates that are asymptotically 
equivalent to those resulting from the foregoing algorithm. 
We make use of this fact later, but for brevity we do not 
provide the calculations. The statement is true wben work­
ing with the function Q as in (7), but it does not hold for 
completely arbitrary functions Q. 

2.2 Alternatives 

Th.e algorithm suggested here uses local linear weighted 
fits based on kemel weights with a fixed global bandwidth . 
One may replace these by more sophisticated smoothers, 
such as those using hig)ter-de(lree polynomials, locally vary­
ing bandwidths, nearest neighbor weights, and so on. Other 
nonkernel smoothers, s11ch as splines, also may be used. 

&t /lloJI I. 3 .1 
Step I. Find q(u;h, 0. , /1 ) =a by maximizing the local 

quasi-likeUbood 

3 . NUMERICAL EXAMPLES 

Simulation 

tQ{g-'{" + b(& :rX ; - u) + fl Z,), Y,j J<h ( irTX , -u) 

We ran a small simulation study with n = 200 and data 
generated according to the ''sine-bump" model 

Y1 = sin( .. (o? X,- A)/(B - A))+ {J Z1 + £;, 

l= l 

with respect to a and b. We take h to be an estimate of tbc 
bandwidth that is optimal for estimation of (a 0 ,60 ) . 

(S) where the X 1 are trivariate with independent uniform (0, I) 
components, Z, = 0 for i odd and Z, = I for i even, and 
the e1 are normally distributed with mean 0 and variance 
.01. The parame1ers were a = (1, 1, 1)/./3 and {J ~ .3. We 
took A = ./3/2- 1.645/v'i2 and B = ./3/2 + 1.645/ v'i2 
to ensure that the design was relat ively thick in the tails. 
The number of replications was I 00. 

Step 2. Update (&, /J) by maximizing 

tQ(g- 1(7j(cc:rx,; h,o,{J) + prz ,), V.l (9) In this particular simulati on, the OPLSIM estimates are 
� � l 

with respect tO a and p. 
Step 3. Continue SLeps l and 2 until convergence. 
Step 4. Fix (cc,{J) at its est imated value from Step 3. 

The final estimate of '100 is rj(u.;h, O.,PJ =a, where (a, b) 
is obtained by maximizing (8). At this final step, we take 
h to be au estimate of the bandwidth. that is optimal for 
estimaLiou of '10( ·) when ceo and Po are known. 

The basic idea behind the foregoing algorithm is simple: 
estimate '10(·) locally via (8), and then use all of the data 
and (9) to estimate (cco.P0 ), with liO replacing IJO(·). We 
brieBy diSGuss an alternative estimator in Section 4.1. We 
recommend calculating li(·;h,&,/3) at afixed butfinegrid of 
points and using linear interpolation to calculate the other 
values of ~(·; h, &, PJ when needed. 

far more accurate than the ordinary least squares (OLS) esti· 
mates, which are badly biased, and comparable to estimates 
obtained using nonlinear least squares based on the sinu-
soidal modeL Table 1 displays the results of five randomly 
selected outcomes of the simulations. Note that although 
OPLSlM estimates are asymptotically efficient in the semi­
parametric sense (see See. 6), asymptotically they are more 
variable than fully parametric estimators compmed at the 
correct model (see Theorem 4, Sec. 5.2), and this intri<tsic 
difference between semiparametric and (correctly specified) 
parametric modeling exhibits itself bere in tlle coefficient 
for Z. Not only are the GPLSIM estimates better than the 
OLS estimates, but they also do a reasonably effective job 
of fi tting the data; see Pigure 1. 

Finally. we evaluated the accuracy of the estimated stan­
dard errors (defined iu See. 7). Iu tlJis simulation the cov-
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Tabltl I fl<tsulr3 ffom F...., Randomly Orose.� Samples Ffom iiHJ Sd>a-&mp Sun\M'""' SR/d)' 

OtrHtMy ,.,,lqVJlll$ ~YJ.ast$.t1:Rff1S QPI.SrM 

Xr x, x, z x, x, x. z x, x, x, z 
Est .58< <96 659 <03 ..595 .571 ..565 .286 .595 - ~g 27• ... 361 .368 298 069 012 .013 .0'2 012 .013 0 13 .013 026 
E5t. .218 1•2 - .216 5E8 .5E8 .595 .277 563 57< 595 28 1 ... 766 .781 .:lo07 OS< .010 .009 009 .010 .010 010 010 = 
ESL .126 512 8!i .263 ..578 .- 572 .3'0 581 S80 571 .liO ... 1.137 .97 596 059 .1)10 .01 0 .Q09 .oro 011 0 11 0 10 023 
E5! 851 - 26< - •sJ 351 ..567 .590 .575 .300 .565 599 568 307 

�� .796 136< 1.3<9 068 .01 0 011 .0 11 .011 .012 013 013 .023 
Esa. - .881 .396 - 261 323 ..587 .57< .570 .283 .59? 569 5 71 291 .... 697 l.l09 1,496 06< .010 .010 .o·o .010 .0 11 010 .010 .020 

MSE 87 · 19 78 39t- 3 t.l t-.. 1.2•-.. 1 .18~ f .f. _ .. 1 <6~ t 6e- £ l.lo � 2.7t 
MAE 89 75 .7< 5oe- 2 85e-3 8.6e-3 8.5e-3 90e-3 966- 3 99e- 3 900- 3 1 3o 
mdE 89 78 78 386- 2 7.9e-3 7.5e-3 6.9e-3 8.6e- 3 866- 3 88e- 3 82t 3 I It 

•ot• ~" M""' ......... ('.IS(), "Mao!~ .. .,.... (U.A.£ .. 6"4 ~JillWW.,"tt'(mciE} ..,._ b N:~~ .... ,. ,. .WOC.._, 

erage l>robabilities for norninal 95% confidence inrervals 
were 94%, 96%, nnd 98% for !he rhree components of X, 
aud 9491\ for z. AI least for this sample size and this model, 
rhe srandard error esrjma1c_~ seem reasonably accurate. 

3.2 Exam ple: Framingham Onta 

The Framjngham data were described in Section l.l; Y 
corresponds to incidence of CHO and Z to smoking sta· 
rus. In cJojs discussion we u<e disease and smoker to denote 
these variables. For covariares we used X 1, X 2, and X 3 as 
desenbed on Sectoon 1.1, wirh each variable scaled tO lie be· 
rween 0 and J. To avoid problems wirh sparse data near the 
boundaroes, after some experimentation we used only those 
data wtlh a sing,le ondex value in range (.4, I 21 for curve 
esumatton. Tius excluded 45 of the I ,615 observations. We 
applied our n~ethodology to the model 

I S 

ID 

�� 
I 
�� 

�� I C 

tl~lnde.IC 

1.5 

F~gilfo t. CufWJ Csrimar~s tor a Slngt• Rcplkstion of rna SlnB·&mp 
SitTIUIIJit<JIJ Study. Tfl.4 di.ftM ar• shewn by opl)n clrcltts /(JI Z c 0 and 
CI06od cJrdos lor Z t. 1 ho 101Jll cu,.,_, ootr44p0n(J to the os t,mattM 
()f the untkJtfyillg mcatt lv~tlon whon Z • 0 and Z • 1. TM dashed 
CUMt$ ltiQ tltO tru• m•an lunct;onfl fht dotttd Ct.Jtvt: i$ 1118 k/lln~f weigfu 
(JSC(J m rh<J loCAl Mtl'ri{J PfOCIJU. 

logit{P(disease = lfage, trblood, logchol. smoker)} 

= '1o{aot (age) + <>Q2{1rblood) 
+ Cl'o3(Jogchol)} +Po( smoker). 

We used lbe baodwidrh h,p, defined in (17), obtain'ong nearly 
idemical resulls with or without !he modification suggested 
in the discussion cenrc.ring on ( 18) 1'able 2 dJsplays the 
resulrs of our analysis. For the purpose of illustration. we 
have compared these results to those obtained by ordinary 
logistic regression, wbich on thi s context JS simpl y another 
way of estimariog the "direction" a-0• We made rhe ordinary 
logistic regression coefficients for age. trblood and logchol 
comparable 10 !.he singlc·ondex analysis by makong, their 
Euclidean norm equal to 1.0, and adju~ted theor ~tandard 
error estimates accordingly. 

Figure 2 shows rhe esrimAtes of (a) 11n and (b) the oon· 
diuooal probabiliry of heart dasease for both smokers and 
noosmok.ers. An intecesaing feature of this figure os the eur· 
v:!rure of '7 when the ~•ogle index becomes greater !.han .8 
We checked t1us curvatwe to two ways Forst. we used the 
ondinary logiStic regression estimates to define a single on 
dex, and !.hen to this ondex aod the smokong 1ndoca1or fir a 
partially linear model 10 !be data using tbe GAM procedure 
of S-PLUS. The resulting esumate also ShoiAied curvature, 
of !.he same form as dosplayed on Figure 2 We also fit an 
ordinary GAM wilh nonparametnc components on age, lr· 
blood, and logcbol. aod found a nonlinear structure wilh rhe 
"Batness" of Figure 2 for age. 

We compared the GPLSlM lit to olhers as follows First, 
we formed the estimared single-wdcx U ol X, then ran 

=====~Tsbi~'•,;2,. =="==""";;:: in.;.pl!am 1140/t Study 

�Q� ,,_ k>gchot &:mOkfl 

Ordinary lcgisb( .• 3 57 .Gil .57 .... .10 13 .II .~5 
GPLSIM .37 .65 .68 .59 .... .086 .II .12 .2 < 

NOTe •ll'bloOd'alfan.tlr.ti'Mdsyt!O!ICalooclr.t•.t-~'10fC~ IIIIMIOfflltrt~V'!~OI, 
&lld .. I'Uiker" ld S~f'IO 6.!0~ The Cf'd'fl~ 101)160~iti'IIS Joo' toe !ltiOOCI, II'ICIIoQCN)I 
.. ..._.... bll•n flell'l'el.i16Cf • ~~~ Ei'Cf'.C.tn ~1m~~~ Ia l 0 Mid H t.141roc»td ,..,.,.,..,....Of:'"' 
~~tccllq)l'~. 
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( a) (b ) 

P;g:~re 2. CuNIJ &t1ma:os fer the FrMttflg!)am Heart Study Dara . (~) 
Sol.ld cu.f'IIM C.OJf{)S/X}Ilt:/ ro e.sllmates ollogit P (IICBtt dlseasa ) lot smok •
fHs (upper a;rvc) and ftOf)Smok.erS {lowet c u1V6 ) aaainst rt+IJ 6St.ifll8 :cd 
sln{;!O •/ndex. deSI7.:becf in lhil u;;d . The dotted CUt>.'<) Is lhe k~rnel W/Hght 
used in !fltJ local liMllJ fl'lring process. (b) Estima:cs of P (l'wa1t d•S· 
tJase) for smokers (vpper Qi!'VO ) and nor.srr.okMs (lower QJtV<J } agains: 
the sing!C index described in the text. ThtJ sc .'ld dcr d6n0 t8S smoker:;. 
fhe hollo w de:. nonsmoker~ 

a panially linear model in U (nouparametric) and Z (para­
metric) using the default "GAM" procedure inS-PLUS. We 
also ran a standard GAM with smoo•hers for each of X 1, 

x,, and x 3. with z entering as a parametric offsel.. ]Jl this 
case, surprisingly the GPLS IM had a smaUere.~ti ma!ed de­
viance than the GAM, even though it had "' 8 more degrees 
of frecdortL 

One can also view this example as an informal model 
diagnos1ic of the logistic linear regression model via em­
bedding it into the GPLSIM. Our result indicates certain 
departures from the logistic linear regression model; using 
the same informal method described in the previous para­
graph. the linear logistic and the full GAM are not statis­
ticaUy significantly different, but the linear logistic and the 
GPLSIM are statistically signi ficantly different. 

3.3 Example: Dust Irritation Data 

In occupational medicine one important issue is the as­
sessment of the health hazard of specific harmful substances 
in a working area. We COitSider here the specific problem of 
estimating risk of bronchitis in a dust-burdened mechanical 
engineering plant in Munich. 

The regressor variables X are X1, ~1e logarithm of l.O 
plus the average dust concemration in the working area 

TabitJ 3 . Mom lch Dust St'tld}' 

rrdust duration smol<br 

Ord na1y IOSJISCt¢ .403 .915 .68 
s.e. 103 .045 .176 
GPLSIM .222 .975 .668 
s.e. .089 .02 1 .!78 

NOTE '1rdutf" Is :rtMfo,mltd «M conr:enlr.allc.,, '"d!AIJCI'I~ i;t. ~ dutCOI\41 ~-!. an,:, 

... ,..llllof'" a~ lti!\1 .. nsc Ote.n&ry loOi~ COt!!~ lor ~~~ and d.nii'Oll " ..... beet'~ 
t1Ci!'M41tle<l 10 ....... Cud~CMcan norm 'OQI.III lo 1..0, 11'1C .,.,. ~ard &rors Mw bec:n •t\ur.Ofd 
~~·Mt'fr 
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Figure 3. CI.JrV(J Es tima tes for t rre M~nidl Dvst Stl.ldy Data. (S ) &!id 
curvt~s (X)ffOS{XH'Id 10 dS!unat& ollogi : pr (Bronchrtis ) for s~s (uPIJ(Jr 
Ct.tr'l/8) tJnd n()flsmokcrs (t~r CtJI\I(Jj 1J9ainst th e t~St;·mated singkH flddx 
desc,rfbed in fM t8Xi Tlla CI<Jl!Od cvrve is t/IIJ kernel weight used !n lM 
localline.or lrtttng prOCIJs.s. (b) Est,mat es tJI p1 (eron<:Jlltls) lor smOkCJs 
(uppe r ctJrvc) and r.onsmok(lfS (kJWBr wrve) against tiUJ s/tl(Jle index 
diJSCtt'bed In t.hiJ text The StJ !ld del donotes sm okers : m<J hOltoN dOt , 
ntJnsm tJ kers. 

over the period of time in question, and x2. the duration of 
exposure. Also available was smoking sta!us, Z . Tbe data 
were described by Ulm (1991) as a possible example of a 
threshold regression model and were further analyzed by 
Kiicbenhoff and Carroll (1997). There were 1,246 observa­
tions. Little correlation among the vari ables w?.s observed. 

Table 3 displays the resultS of an ordinary logistic and 
GPLSfM fit co the data, and Figure 3 shows the logit 
and probability of bronchitis for smokers and nonsmokers. 
There is an impor!an! curvature in these data, which are not 
well fitted by an ordinary logistic model. As suggested by 
Kuchenhoff and Carroll ( 1997), this curvature may reflect a 
!hre.<hold effect on concentration. Tbe single-index model 
provides a slightly worse fie !han a full GAM, although not 
a statistically significant one; we compared these using the 
deviances from GAM as implernenced inS-PLUS, ignoring 
the e ffect of estimation of !he single index. When compared 
tO cbe GAM, an ordinary logislie model had an observed 
level of significance < .OOtll . 

4. DISTRIBUTION THEORY : NONPARAMETRIC PART 

4.1 IntrOduction 

When <> o is given as is the case in parLially linear mod­
els or ean be estimated at reasonable accuracy (e.g., by 
the average derivative method or sliced inverse regression). 
tbe following simple estimator is au.ractive from an im­
plementatiOil viewpoint. With the given value of &, find 
lj(u;h, a ) =a by maximizing !he local quasi-likelihood 

" L Q(g- 1 (a + b(arx, - u) + pr z,}, l',JKh(ar x ,- u), ,_, 
(II) 

wi1h respect 10 a, b, and {J . Because jJ here is obtained 
locally, it can be improved to use all of the data, as follows. 
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Given o and the estimator ij(u; It, a ), one estimates iJ by 
maximizing . 

LQ[g - ' (>i ( oTx ,; h,a ) + prz.}. Y,! 02l 
1=1 

wi1h respect to {J . We caU this nooiterative procedure the 
one-step estimator and the algorithm of Section 2.lthefu/ly 
ilerated algoritlmL Based on he distribmion theory provided 
in th.is and the next section, it is clear that bolh algorithms 
have thcir own merilS. The fully iterated algorithm is at 
least as efficient as the one-step algorithm, but the one-s1ep 
estimator achieves the same efficiency in some important 
applica1ions with added computational convenience. 

Note IJJat in (II) we are maximizing the local quasi­
likelihood witb respect to (a, b, {J ). This reneciS the main 
difference from the estimation algorithm of Se<:tion 2.l. 
where we maximize with respect to (a, b) only. Tbe fore­
going idea can also be expanded to lhe case where" is un­
known by iteratively maximizing ( II) and (12); oue needs 
only to replace lhe fi rst & in (12) by o and maximize !he 
modified (12) with respect to or and p, See an earlier ver­
sion of tb.is article (Carroll, Fan, Gijbels, and Wand 1995) 
for details. 
ill litis section we investigate properties of tbe estima­

tors of lhc nooparamelric pan !)() (') of (5) when o-0 is ei­
lher known or estimated 10 the ordet Op(n- 112 ) (i.e .. at the 
usual parametric rate). The distribution lheory depends oo 
two cases: (a) the one-step approach, where {]0 is estimated 
locally M in ( II) ; and ( b) the fully iterated approach (8 ) , 
where {)0 is estimaled at parametric rates and tbus 11oO eao 
be estimated asymptotically as well as if Po were known. 

4.2 One-S!ep Eslimate of the Nonparametric Part 

Let p,(t} = { dg- 1(t)/dt}1/[a 2 V{g-1(t)}j, t = 1, 2, and 
denote the marginal density o( U = o-J'X by / (· ). For tbe 
model (3) will! the canonical link funCiion g = ( B' )- 1, we 
have P:!{9(14) ) = a 2 V(i'l· Define "J = J tJ f(( t)dt, v; = 
1 t' K 2 (t) d.f,, and 

E(14) = E [P:!{!)(J(U} + ,il~Z) 

xU zz;r ) lu =14], 03) 

q,(x,y) = { !i- g- ' (x)}p1(o:), 

m, = "'<(U;) = 17o(U,) + p~z., 

W, = first clement of the vector q1(rn., Y,):£ - 1(u}(t , Zf)T, 

and 

d(u) = fi rst diagonal element of the m.atrix E - ' (u). 

Theorem / . Consider tile maximi zer of the local quasi­
likelihood (J 1). Then, as n ~ oo. h ~ 0, and nh ~ oo, 

Joumal o f the Amedcan Stattstic.al Assooation, June 1997 

under Coodilioo l in the Appendix, 

(nh) 112 ( [ t] (u! - >)O (u) ] - ~ tl({(u)h 2 E - ' (u)E 
p - Oo 2 

x [P2 {!)()(U)+ Q~Z} ( ~ )lu=uJ) _£ 

normal [o. ~~~} I:- 1(u)]. 

ln (act. we have the asymptO!ic expansion 

~(u)- 'lo(u) = (">/2J./0(u)h 2 

and hence 

( nh)
112 

{ ~(u)- •~o(u)- ~ 'lo(u)1•2} E. 

(14) 

normal [ 0, ;{~) d( u) l· ( 16) 

Remark I. Consider the siJuatiou where o2V(Il) = o2 

and E (ZfX) = 0. For this normal model with the identity 
link, the quasi-likelihood estimates are the OLS estimates. 
It is easily seen that d(u ) = al. Hence in this pa.cticularcase, 
even though Po is estimated loc.ally, the. bias and variance 
of ij(u) are the same as if /30 were kuown. 

Remark 2. Tbe rate results in Theorem I continue tO 
hold wben the variance function is misspecified; that is, 
var(YIX, Z) 'f a1 V {14(X, Z)}. One must change the matrix 
E(u) to reftect the misspecification of the variance function. 
(S•.e Fan, Heckman. and Wand 1995 for such a modi6ea­
tion.) 

4 .3 Fully Iterated Estima1e of the Nonparamelric Part 

For the fully iterative estimator, .the parametric com­
ponent can be estimated at rOOH> rate. Thus in Step 4 
the local smootbjug is carried out as if oo and Po were 
known. The re."Jits for !he nonparameuic contponem are 
easy: (16) continues to hold, replacing d(u) by d.(u} = 
(E[P2{'70(u) + P~Z)IU = ul)-1• This result coincides with 
lhe univariate result given by Fan et at. (1995). 

4.4 Bandwidth Selection 

The results in the previous section sugges1 bandwidth es­
timators in the spi rit of that of Rupper~ Sheather, and Wand 
(J 995). For example, consider estimation of '1o(·) at the final 
step. For a given function wO with compaCI support, min­
imizi ng the asymptotic weighted mean squared error with 
weight f OwO yields tbe optimal global bandwidlh 

h,, = C( r<)n_ 116 { [ d. (u)w(u}du } t/S (l7) 
0 1 1!1;(u)2 / (u)w(u.)du ' 
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where C(K) = (Uo4'l'' '· 
The Framinghan: example in Secoon 3.l trcats the case 

where both Y and Z are 0 - l vanables. so we brtelly de· 
scnbe a rough rule for choosing the bandwidth in thts con•
text. Extension tO other conteXtS is straightforward. For the 
Bernoull i li kelihood with Jogjt link, 

-t _ e .. <~l{l-(o(u)} e""1"l~(o(u) 
d.(u) - {l +e""<•lp +{ I t e""(•l+lla)l' 

where (o(u) = P(Z = liU = u). Let r~q{-) be the quadratic 
and (t.(-) be the linear logistic regression estimates of 1Jo0 
and (o(·). Let iJ be the estimate of {J 0 from the previous 
iterauon. Then the integral oo the numerator of (17) can 
be estimated by direct replaccruent of IJo( • ). ~( ), and /J0 
by lj(·), (L(·). and iJ . An estimate for the integral on the 
denomtnalOI' is ,.- � L :'-t ,Ya(U,) 1w(U,). A <en<ible choice 
for w is the indicator function on the range of the U., wttb 
approxtmately I 0% clipped off each end <o avoid IJ!>undary 
problems. This results in an estimated bandwidth, h...,. for 
use in Step 4 of the fully iterated algorithm. T he rule w1ll 
give dose to optimal 31Jswers when the true logit{ �roO} 
and log.it { (o( ·)} are approximated reasonably well by a 
quadratic and a suaigh1 line. 

A sensible rule for choice of h in Step I is more dJfficult. 
A relatively ad hoc possibility IS 

h...,/ n.''' y n.-l/3 = hor,. )( n. ·1/t\ (18} 

bocau~ this guarantees that the required bandwtdth has cor•
rect order of magnitude for the COOJe<tured op<1mal asymp· 
totic performance. (See Remark 3 tn Sec. S.l for more de· 
tails.) 

5 . DISTRIBUTION THEORY: PARAMETRIC PARTS 

We now study estimation for the parame~r~c components 
o0 and {J0• We treat the one-dimensional case (p- 1), for 
which a, - 1 and a &' X = X , separately. Because in this 
case the one-step estimatOr has the advantage of being non•
iterative, we also provide its distribution theory. 

5.1 Tho Scalar X Case : Parlially linear Moaels 

The following theorem for the one step estirnate shows 
that one tterallon leads already to a rOot ·n. consistent esti•
ma(or. 

Tluo"m 2 Let iJ be the one-step esttmate that max· 
uT.I:t.es the quasi-likelihood ( Ill with a I. Because. 
U o'[X = X. write E (U) = I:( X ) in T heorem I. Under 
Condlltons I and 2 in tbe Appendix, as n - oo, nh' - 0. 
and n.h1 / log( l/h) - oo, 

n'l'rjJ- {J 0 ) E. N(O, B 1 I:tD t), (19} 

where B = E[p, ( 'IO ( X} + orz}zZrl. E t B + E{'y ( X ) 
..,r(XJeTE- '(X)et}. 1(u) = E[po{•ro(u) + {J rz} ziX 
uj, and e 1 is the unit vector with I in the fim llOSition. 

Tlteor~m 3. Under the conditions of Theorem 2, for the 
fully iterated estimator defined by (9) with a L, with 

483 

.,,,. 1., P2{'10cx1 Prz>. 
n1

'
2(iJ Pol 

0
• N (O, B21

). (20} 

provided that {J is maximized in a consiStent neighborhood 
of {J 0• Here 

E [ E{Zp,(· JI X}B{zr .o>(·)IX}l 
E{p,(-)IX} . 

The same result holds for the estimator defined by (9) uodtr 
the weaker condition that nh4 - 0. 

Renrark 3. Theorem 2, which concerns the one-step es•
timator. has an important restricuon on the bandwtdth It, 
which pnecludes the nearly universally familiar optimal 
bandwidth rates for nonparametnc regression, in w:ticb h 
ts proportional to n •ts Basically, our conditions require 
that to estmlate (a, , {J 0 ) at the rate n.-•t•, one must uo· 
dersmooth the oooparametric pan '100- Tbe need to un· 
dcrsmooth to obtain usual rates of convergence is standard 
in the kemel literature and has analog,s io the spline liter 
ature (Hastic and Tibshiran• 1990, pp. 154-155). This un· 
dersmoothing is required for the estimator defined by (9}. 
However, for tbc es1ima1or defi ned by (10), in the linear re· 
gression single index model with no Z, ordinary bandwidth 
rates are permissible, as shown by l lardle et al. ( 1993), who 
suggested maxmuzing (10) simuhanoously in the bandwidth 
and the parameters. Hunsberger (1994) and Severini and 
Staoiswalis (1994) showed the same thing for the partially 
linear model (see also SeverinJ and Wong 1992). Because 
ordinary bandwidths ''Work" for single-index models and 
also for panially hncar n:odcls. it is reasonable to sup•
pose that they also work for the combination, namely our 
GPLSfM's. A bnef sketcll of an argument was provided in 
an appendix of an earlier •=•on of this anide (CuroU et 
al. 1995). verifying that ordinary bandwiddt rates are pos· 
sible for full GPLSIM when ( 10) is maximized. 

Rtnrark 4. In the normal model with identity link func· 
tiou, an interesting simplification occurs. We set E(Z) = 0 
without loss of generality and define q(X ) = E (Z IZ). T hen 
B 2 = q - 2 E{var( ZIX )}, whereas the asymptotic variance 
(19} for the one-step estimator is 

a 2 ({ E ZZT}-t + Eq( X )q(Xl 
.- {I q(X)T(I;;zzr)- 1q( XW'I· 

Because Bi 1 - a1{£ zzT q(X)q(X)r }-' . one can eas•
ily see that L~e fully 1terated esttmator is uniformly as effi•
cient or more efficient than the one-step estirr.ator. However, 
when X and Z are Independent, the one step estimator is as 
efficient as the fully iterated estimator. lienee the one-step 
estimator is preferable when X and Z are weakly corre· 
lated, bec"use 11 rc:qutres no iteration. 

5.2 The Mulllvarialo X Case : General Model 

For a given •i. let o rtnd /J maximi?'e the global quasi· 
likelihood (9). We assume I hat & and flare in a Jri neigh•
borhood of ll() and {J 0 ; that is, (> - o 0 = Op(n.- •12 ) and 
iJ - IJo = Op(n. 112). Denote a generalized inverse of a 
square matrix A by A - t . 
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Tl~ortm 4. Under Conditions I and 2 in the Appendix, 
the foregoing assumptions, and the restrictions on the band•
widths as stated in Theorem 3, for the estimators defined 
by (9) and (10), 

n1
1
2 

( b = ~) E. normal (O, Q- 1
), (21) 

where, if P2 0 = P:!{tJo(oaXJ + t~rz}, 

Q = E [P•(·) { X.f~(U) } { XTJ~(U) } TJ 

-E (P:!(·) { X'I~(U)} 

X [ E{X•I<S(U)p,(-)IU}/E{P:!(·)IU} ]T). 
E{Zp,(·)IU}/ E{po (-)IU} 

Rtml!Yk 5. When a'V(I') = a 2
, with identity link and 

no J1 component, Theorem 4 reduces to the result of Hardie 
et al. (1993) for the s ingle-index model. 

Remark 6. Consult Remark 3 after Theorem 3 for dis•
cussion of the bandwidth conditions. 

6 . ASYMPTOTIC EFFICIENCY IN THE 
SEMI PARAMETR IC SENSE 

lo this section we derive the information bound for the 
semiparametric model (3) and (5) . This information bound 
tums out to be the matrix Q given in Theorem 4. Thus the 
estimator from Theorem 4 acbieves the inforroatjon lower 
bound and is effi cient in the sentipararnetric seuse. 
To State the information bound, let us define the parame•

ter space. Assume t!tar '10 is a completely unknown function 
with a continuous second derivative and tha.t clle joint den•
si.ty of X and Z with respect to some measllre exists and is 
comple.tely unknown. 

Theorem 5. Under the foregojng assumptions, the infor•
ruation matrix for the semi parametric model (3) and (5) is 
Q given in Theorem 4. 

7. INFERENCE AND STANDA RD ERR O RS 

A consistent estimate of a• is the weighted mean squared 
error of the residuals Y( against their predicted mt.an, wicll 
weights 1/ V{A{X;, Z,)}: one can use n - I.- p - q df. 
where 1, is the e ffective number of parameters used in es•
tinJa!ing 7Jo( ·). The rest of this section discusses estimating 
the other variance terms. 

7 .1 Estimation in Partially Linear Models: Scalar X 

When X is scalar, so that ao = l is known, each of 
the terms in the limiting covariance ntatrices (19) and ( 20) 
can be estimated by nonparametric regression tecbniques. 
We (ocus on (20), for which tllis fairly tedious process can 
be replaced by a simple consistent alternative based on the 
usual expansions for quasi-likelihood. The derivations are 

JoumaJ ot !he Ameri~n Slatistlca! Assoclatlon • .)Jne 1997 

based on the stmple form (9), instead of taking derivatives 
in (10), because these are more complex to compute. 

Set u, = a~X. = X, and z = ( Z1 , ... , z.)'r and let A 
be diagonal with elemen.ts p1 , where Pl� "' P:!{J?{U,) + 
prz, ) . Further, set fJ = {J?(Ut), ... ,!J( Un )r and let e 
be the vector with ith element J? (U,) + P Z, + (Y( -
IL<)f(a1V,p., ) , where p.. = g-• (TJ(U,) + prz, } and v , = 
V(!Lt)- The smoothing matrix. is then x n matrix 

S = [ ef{U(UtfAl<(U1 )U(~t)}-1 U(Ut)TA.I<(Ut) ]' 

ef { U (U. )T AI<(U.)U (U.W ' U (U.)T AK{U.) 

(22) 

where U (ll<l) is the n x 2 matrix with the fi rst colu mn all 
l's and the second column with the terms (U, -'ll<J ) / h, and 
K (ll<!) is diagonal wicll elements f<A(U,- ll<J) . 

Here is the motivation for S. Por fixed fJ and""' note that 
tbe intercept o.(ll<!} aQd h times the slope b{ll<l) from the 
local quasi-likelihood regression are the iterative solutions 
to tbe equation 

[ :1~) 1 
~ {~ U•(~)U<(Il<lf K,.(Ut-~)A<(loo) } _ , 

n 

)( LU•(Il<I)/(,.(U. - ll<!)A~o(ll<l) 
� � � 

x {a(ll<J) + b(ll<!)( U,- ll<l) + (Y,- Jk,)f ( a2 V ,p.,) } , 

(23) 

whcte U~o("") = {1, (U:. - ll<!)/h}T and A~o('ll<J) = 
P:!{!J('Il<J) + tl z.}. Setting 'I1<J = Ut for i= l , .. . ,n and 
multiplying botb sides of (23) by ef yields (22). 

The following argument has similarities to equation 
(6.22) of Hastie and Tibshirani (1990, p. 154). Because of 
the local nature of the fit, the .term b(ll<J)( U, - ll<l) in the 
last part of (23) can be ignored asymptotically. This means 
that the local quasi -li keli hood algorithm is asymptotically 
equivalen.t to solving in {;I aud '1 the equations 

and 

fJ = S(e - ZfJ ). 

This means that the estimate of Po is asymptotically 
equivalent to solving P = fl 1£, where 

Because e has covariance matrix A-t' an approximate CO· 

variance matrix for iJ is H1A -� Iff. One can show this 
es.timate yields asymptotically consistent s.tandard eiTors 
for iJ . 
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7 2 Est•mation in General Model$: MutltVartate X 

When o0 is unknown, d•ereareagatn two strategtes: Non· 
paramelric regression techniques can be used to estimate the 
terms in (21), or we can again develop di tealy a consiStent 
estima1e of (21). We build on me notation in Section 7.1. 

Lei Q be the n x 'P matrix with the ith row given as 
•J'(U,)x;, and let R = (Q, Z). Let 

p � _ [ I - QQ T 0 l 
o - 0 I ' 

and let i be the vector with tlh element 11(U,) + 
tf(U,)(or x ,) + (/FZ, ) + (Y. p,)/{a2 V.p11 ) . Remember· 
•ng that we must ha\'e o = 1 for tdenttfiability, II()(C that 
we find ( o , /J ) by solving 

o = ftT A. (i- ~~- ftT A.it ( fl ) + ( 6; ) , 

where 8 is a Lagrange multiplier associated with the 
constratnt o To = 1. Of cou~. the same argument 
used in deleting a term explained following (23) is used 
nere. Mulu.J?Iying bolb _sid~. by P~. an~ solving, we find 
that (or, p )T = (P;_R1' AR)-P~R.T A(c ij). Remem· 
ben ng 1hat ~ = S(l- Qa - Z/1), we find after some alge­
bra that (or, pTf = H2£ and 

i l2 = {P~IF A(l - S) ft}-P~fi.T,\( 1 S). 

The estimated (and consistent) covananee nuurix is 
ti,A-'Hr. 

8 . IMPLEMENTATION 

To cut down on the computational llbor at 1he curve 
es1imation stages. we used fast binned approximations 
(see. e.g.. Fan and Marron 1994 and lliirdle and Scou 
1992). Dinning methods can also be used for fast. com· 
pulation of the standard error estimates. Details of such 
calculations ere gtven by Turlach and Wand (1995). An 
S·PLIJS/Fortrao module for fitt ing GPLSIM in certain 
specia l cases is available from World Wide Web site 
http./ /www.agsm.unsw.edu.au/- wand /softwnre.html. 

9. DISCUSS ION 

Model (5) does oor explicitly deal with interacuons be· 
tween X and Z; for example, of the form 

g(,.(x, z)} = '~•• Co.J' x) + Pr ~. (24) 

where z - ( : 1, z2 ) with : 1 binary. However, our methods 
can be modified to handle (2-1). The local quasi·hkchhood 
(8) should be replaced by 

n 

2:Q[g- 1 (Cl<J + /Jo(&TX, u) +fz,,,}, l',} 

>' J<,. ( o.Tx ,- u)J(Z,,, O) . 
+ L;Q19-'(a, +b,( orx, u) 1 j{z2,,},Y.l 

·-· 

<85 

where ho and h 1 arc Nndw1dlhs for 1)3 and J)1• The esuma· 
tors for 1)3 and f)1 are tjo(u) do and tj1(u) = it1• One <:an 
modify Lbe global quas1 likelihood analogously. 

Model (5) also allows modeling interactions of tbe form 

g(l'(x,zl} = 'lo(og'x t {l<r, zr)A(xr, , Tfl + flrz, 
where A is the parameter matrix for interactions. This 
model is included in (5) by forming a new and longer X 
vector. One can also mcorporate partial interaction terms in 
(5), which would reduce the number of effective parameters. 

APPENDIX: PROOFS 

Hete we ouUne the key tdea! for P<OVlD8 Theorems l , 2, <,and 
5. Dewls cu be found tn ao earhu chft of this utiele (Carro~ 
el a!. 1995). The mctboclt ror prov:na Theorem 3 an: surular. 

AI Condittons 

Fol sunpheity of noc.auon, here \Ire absorb a1 into V(·). so lhal 
the var:aoceof Y &IV<n (Z, X ) IS V{p(Z, X )}. Denote q,(:,y) = 
(o 1/or 1)Q{g '(:). ~}. i 1, 2. 3. Then 

q,(x.v) (y - g 
1 (:>:) )p,(z) 

and q,(:,y) {11 g - 1(o:)}p;(.:) - />2(Z), (A. I) 

wherept(t) = {dg ' 1(1)/dt}1/ V{g 1(t)) IS introduced in Section 
4.2. In Condiuon I, u. 1.S a generic argument (ot Theorc.m I, and 
lhe condiucn rmat hold un1formly in u for Theorems 1-4. 

Cbnditll)n I. 
a. The f\JICtioo q,(:, y) < 0 for :r E IR a:ld y in lhe raoge of 

the r<&pC)<lSC varioble. 
b. The margtnal dcn!tly or ..rx •• post:ive and co:>tinuOU> lt 

tbe pomt u.. 
c. Tbe funcocn "0 tS conun.OO$ a1 lhe point u. 
d. g"() and V (·) arecondnuou.s funcoO<U. 
e. Wtth R � 'lO(oJ"X ) + pfz, E(q/(R,Y) J U = t), 

e(I,(R, Y)Z u • t) and E(q1(R, Y)Zz,.:u = t) are 
conunuous tnt at 1he point u. Moreover, EJqlf'lO(oJ"X) + 
pfz, Y)J < oo and Biq1�'{'l0 (0:XJ +PfZ,Y)I < oo, for 
some 6 > 2. 

C. The kernel /( is • symmetrre densi1y function with bounded 
supporl. 

g. Ttte random voc:~or Z tS assumed 10 have a bounded support. 

Comi1rilHt 2. 
._ The 11'.1lg.tnal dc.n~ny of oTX ts posmvc and umformly con· 

tinuous Cot o Ill a oe t&flbothood of<»· FU<'lber, o]X lw a 
pos1tive de.' \Stty on tiS '"pporl D. 

b The functicn flO() is conunucus in "E D. 
c.. The. derutty funct)()(l of X hu a coo:iouous .!econd denva­

tive. 
d. The funetJOu V"() end gm(·) are conun;lOUS. 
e. With R ~ 'lO(oJX ) + PfZ. E(qUR. Y)I X = u), 

E(qi (F~>(R. Y)ZJX u} and E(q/(R, Y)ZZT ;X ; u} arc 
1wice ditrecenuable in u E.: D. 

Proof of Theorem 1 

Lel c... • {nh)- 112, Uc- of Xu 

x; .. ( (U, ;,u)/1> ) , 

http://www.agsm.unsw.edu.au/~wand /software.html
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and 

( 

c; ' ( 4 - l)l(U)} ) 
if= c;'h

1

{b_- .,O(u)} , 
c; (/J - Po) 

and I., 10 denore r]le detJ,lity funerion of u, = <>J'X,. Denote 
further ;j, = ~.(u) = llo(u) + p;;z , + .,0(u)(Ut - u). If (d,b,iiJT 
maxomizes (l l), tben lf rnaximiZ<S . 
z.(.ll'l =;.I: (Q( 9- '(c. P·Tx ; + .;. ), Y, ) 

- Q{g-1 (~.). Y, ) ] J <, ( U, - u ) 

with respect to p· . The concavity o( the (unction 1,(/J") ~ en· 
sured by Condition La. By a Taylor expansion of the function 
Q(g-'(-), Y, ) we obtam that 

1,(/J' ) = W~.{j' + ~ fJ' 7 A,p·(l +op(l)}, (A.2) . 
W , = he. Lq,('i., Y, ) X;K ,(U,- u), 

·-· and 

A. = he! L q,(>]., Y,) X;x ; 7 K,(U,- u). 

""' Define 

and 

B(Z) = ( ~ "> vo;r ) . 
<-13 Z 0 <-13 ZZT 

It can be shown th2l A. --f(u)B(P> (I)l(U) + P~Z)A (Z)fU = 
u] +op(l) E -A+ op( l). Therefore, by (A. I), 

l.(J J ') = w::rr - ~ p·T.Ail' + op(l). (A.3l 

By applying <he eonvexi<y lemma (see Pollard 1991), we obtain 
that jf = A-' w. + op(l ). Hence !he asymptotic normali.ty of 
if will follow (rom that of W •• which we establish nexL By tl>e 
definition of W ,., it can be sbowo that 

E W . • c;'4 'lij(u)h' f(u)E 

x (P>{Ilo(U) + P~Z}(,.,,o, ,.. zrfiU = ul 

Journal of the American Statlsttcal Associaton, .rune 1997 

Proof of Theorem 2 

First, we note that under Condicion 2, by 3 resull of Mack aod 
Silverman 0982), (A.3) holds uniformly in u E 0 . By the con· 
vexity lemma, it also holds untfonnly in p~ E C and u € D ro, 
any eompact seJ C. umma A. I then yields 

sup(O' (u) - A-' W.(u)I.!:•O, (A.5) 
uEO 

where O'(u) and w .(u) are defined in the proof of Theorem I, 
except (hat here we.stcess the dependence O!i u.. So, by considering 
the first element of the vectors in {A.S), we have 

!~g ~~(u) - � lo(u )- nf~u) t W,J<, ( X, - u} l = Op{c.) , ... 
where [(u) is the density of x, and W 1 JS the fi rs: element of 
<be vwor q,(". ., r;p.: -'(u)(l, z;y, with ij, ~ t?<(u) • !JO(u) + 
pf z , + .,O(u)(U, - u). Moreover, the following stronger result 
holds: 

sup ~~(u) - •JO(" ) - -/
1
( ) t W ,K ,( X,- u)l 

ueD t~ u ,_, 
= Op{h'c. + c! Jog112 ( J /h) }. (A.6) 

Let iJ = n ' l'r j J - Pq). ,;., !) ( X,) + PfZ, and 
m, ~ !JO(X,) + pfz,. Tuen 0 muimius 

!.(OJ= ,L [Q{g - ' (m, +n-'"oTz ,).Y<)-Q (9-• (m,), Y. }]. 
� �I 

(A.7) 

By Taylor's expansion, we bave 

l.(O) = ,_- >/! t </1 (m,, Y, )OTZ , + ~ OT B,O (A.8) 

~· 
and 

a. =~ t (Y.Pi(g- '(.n. H •• )}- p,(g-'(•1\t +f..,) }lz. z;, 
~t 

with {n.• aOO (~'" between 0 a.nd n-tJ2: oTz r, independent of Y •• 
+c(c;'h') (A.4) and with p,(:z:) = - g- 1 (:z:)p; (z)- P>(:t). It can be shown <hat 

and that var(W.) = / (u)E(P>{Ilo(U) + P;('Z)B(Z)(U = u] + 
o(I) = B + o(l). Usiug C<lrtdition le, it can be shown that 
U3pOunov's condition is satisfied and hencx}l is asymplo<icaUy 
no:mal. This escabli.shes Th.eorem I. 

Proof of Theorem 2 

Lemma A. I . Let C and D be compact sets in Rd and fitP and 
let f( x, 0 ) be a continuous function in 0 E C and x E D . Assume 
that O(x) E Cis con(inuous in x E D and is the unique maximizer 
of f(x ,O). ut iJ.(x) E C be a maximizer of /.(x, O). If 

<ben 

sup 1/.(x, O)- f( x,O)f ... 0, 
8eC_xED 

sup (O,(x) - iJ(xJJ ... 0, as n - oo. 
XED 

a. - EP>( � )>( X) + pfx } zzT +op(l) 
_ - B +op(l). 

Using similar argument.! as for obtaining {A.9), we get 

. 
n-'1' ,Lq1 (m, Y,) Z , ... 

n 

-n-•n Lql(mhX)Zt .. , 

(A..9) 
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C4rro! , Fan. C jbot&. at\CI Wand Parcty UneaJ Mode:s 

By (,\ 6). che SOGOnd cerm en the foregocng c.xpresscon '"" be OJ<· 
pressed as . . 

" 11' L q,(m, Y,Jf(X.) I L w,K.(X,- Xc)Z. 
•-1 , .. 

.. o,. {n ' 12<!. ~<>s'"<•l"ll 

z To~ + O,.fn·12<!, ~g112(1/")}. 

Now define ..,J vex,, Y,, 'Z I) as the first element of 
q,(m,, Y1) l:" 1(1 zJY Usmathedefinilionof ~,(X,), 11-eobtain 
. j 1 (X,)- m 1 - O(( X1 X,) '), and thus 

T.1 � n· '" t t q,(m,. Y.JIU<.) 1
v 1K.( X1 - Xc)Z, 

, .. , J•l 

+0,.(n1 ~'h') 

T., 'o,.c .. ~""'l· 
ll can be .shown v.a calcu13tina the .seeond moment da t 

T., - T., !. 0 , (A.IO) 

where T,, - n l/2 f.; 1 -y(X,) v 1 wich -y(u) • E[p,{fJO(u) 
+ prz }ZJX uJ. Combcnina (A.7)- (A.IO), we obtain that 
1.( 0 ) � " 

1
" L:'.., fl(Xc, V.. Z,) - ;or no + op(l), where 

S'l( X ,, Y,, Z,) • qc (rn ,. I',IZc -y(X,)v,. By the eooveJ<ity 
lemnu., we find Uat 0 • U . n ·O/I t;;',.

1 
O(X,. Y, , Z , ) + op(l). 

from whteh il follow! that n1" (/J Pol E. N(O. a· • :~:, a-•). as 
claimed 

Proof of Thaorem 4 

We use the nouuon U <> J X , 0 - oTX and/() for tbedeo-
s.ity function of U The. proof rche.t on t\loiO s1cps, v..hkh we state 
first and prove aft.cr~~<lrd. The firsc Step conSIStS of ao expans:on 
for~ (at an •r&ument 11o). We $hall< that 

ti(uo;h, o .Jl J 'lo(uo) 

We•how that 

P<>Qn''' ( o- Oo ) 
P- P. 

: n-1/2 E:'-1 £, Po- [A, 

Because£, has vananc:e "'" the nght scde of (36) hu the COYVI· 

ancc rmtrut P<>QPo. v<rifyina the Statement of Theomn 4 

P roo! o! (A. 11) 

Let " = ?>(uo) and II ,. h~'(,. ). The loc:ol hnur esumates 
.so:vc 

0 = ,, - � t.K�(li,- ..,) [ (iJ, _
1
u.)/h] {Y,- ~<(·)}~>t( ), 

whee< .<(·) = I'( a + £(0, .,.)/h. + PT Z,), and acmclarly 
for _.;, (· ). Via Taylor sui<$ and usina the oondctions on h, we 
obtahl 

0 = ,.- 1 
t K, ( U, - uo) [ (U, _

1
.,. ) / h l {Y, 1'·0}p, . (· ) ... 

( 0.-o) 
- 8"' S-b 

+ op(n · 'fl) + O,. (h' ), 

where 1'-(·) • l'(a+b(U, -uol/" + flf Z,) ond Pc·(·) i•def•
ined sinularly. Here BA J ( ; � 1. 2. 3) are tl>e resulting sample 
matrices of kernel form. Solving the foregoing linearl.7ed equa 
uon and substituting 8,. 1 wnh thcu asympc.ouc: eounterpans, we 
obtain (A. II). 

Proof oj(JL/2). Recoil that (9) and (I OJ lead to uympcoueally 
equivalent esticmtc:.s Consider (9) and use the eJ<panscon 

iiCo>rx.,a,b) - 'locarx.) 

= � i(oTX. ; o ,PJ- ~(~X �. o Pl 

+ ti(arX,;o,PJ- >Jo(orX,) 

- ti'carx.:o,PJCor - arJx, + .,c,rx .. o. iJ 1 

- fJO(OTX,) +oi'(J\·I/2) 

= r;;carx,J(or - ofJx, + .,carx,.o,/JJ 

- '))carx.J + .,,., .. "'">. (A 13) 

_(or _ h ; ) eiXP>()'JOO.U uo) +o,.cn·I/>J 
~ e(p,( ),U. Uo} > w here we dro?ped the dependence on h fO< !IO!AUOn&l•imphccty. 

(A. I J) Th.e second term is handled by (A.I3). With 8 u the Lasrange 
muloplier. we know that (o ./J) is lhe sohJC10n to 

where .. " denotes the arauntent 'lO(U) ~ llfZ and c, - {Yo•
,..(-)}p, 0 wilh a similar eonvention. 

The second s1ep ts as follows lntroduce the sJ1onhand no!ation.s 

"· 
and 

[ 
1 - ooc:.J' o] Po 

0 1 
+ op (l). 

0=8(~) 
+ n"''' t [ X,i{(o~~·; o, P)] 

,., 
x !Y,- ,..(~(o.-X,; ir,h) + PT Z,)J 

x P• {ti( <> TX , ; o ,P) + flr z ,). 
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We can expand •10 l.bout '100 usmg (i\.11) Write I'< = >:><! 
Jr.('lO(U,).,. PfZ,)}. and son>.larly lor p,, Make che further ddi· 

p, ={Model (/1.16) with ai•-en oo, J70 a.'ld '~>0} nmon 

By the Taylor senu, and wong (,\ .13), ... have that (w:ng that 
nA' -oJ 

0 8 ( ~) + .. - ,, f>··'· .. -•12 

·-· 

. 
- .. -•t• L "'·"�(il( & "x ,; o,iJ) - 'lO(oJ"X, )} +oP(l ) 

·-· 
.. s( 6 ) rn·' 1' ~A t- A n'' '("' - "") 0 '{-( •, o.P iJ - Po . 

- " ·l /2 L "'"' ,(ij(oJ' X., I>,iJ) 'lO(oJ'X ,)} +<>P(l). ... 
We now invoke (A I I), which implie.1 thtl 

o o(n +n 1" t. "·'·-Qn1" (b :~) 
- n- 111 t A.ps~n-1 t K~t.(UJ U.) 

� �I J•) 

Y.L::..d~iU,) +P~.L) T 
� I (U,)E ( ; ; ;c),u,) "' ('IO(U,) + Po z,). (A.t4) 

Only the last term cs of cntucsc, and ~ we locus on it. lncer•
cha'lgtng c.hc. .wmnu.uon<. ,.,.e gee 

,.-I/> t [n-1 t A 1t», K�(U,- U,) 
, _, J•t 

Y. -Jr.(110(U1 ) + IJ[ z,} ( ( Tz }] 
Y / (U,)E(t»()IU,} PI 'lD U,) + flo • . 

The term en the sqwe broc:kcu. ~;ng a nonparamctrie regn:MCon, 
.s eucncially chc .. me as 

-1/2 ~ E(AP>(·I U,) ( � IS) 
" ~'· EIP>ou.r · ~ 

lor a symmetric kernel Combinmg (i\.14) aad (A.I5), and m" lci�
plycns by Po, we ob!a1n (A I I). 

A 5 Proof of Theorem 5 

Lee h(x,z) be chejointdensity of (X, Z). Then, under thesenti•
parametne model (3) and (5), the JOIIII density or (X , Y, Z ) is given 
by 

f (x, y,z) • oxp[yO(x ,z)- 8{0(x, z)} +C(y)lh(x, z), (A. L6) 

where9(x,z) goog-1 ('10(<>f x)+(JJ'z) with 11<>411 = 1 and go 
as the eanOn!cal lmk (Unction. ~fi ne 

F\ (Model (A.L6) wcth f,lven 'lO(·), and "}, 

I\ r (Model (/1.16) with giveo oo , tJ0,and h(·)}, 

The:> the score luncuon for~ and n. under chc param<lne modd 
F\ cs gcven by 

i = { Y - p( X , Z )}g: (~(oJ'XJ + l{z } ( 'lli(o~X)X ) 

llo'hett 91 - goo g-•. The tangenc space (01elo.el ct al 1993, p 
50) of the Mnparamctric model P, can ~ sho\l.n to ~ P, 
[ ( Y - .«(X , Z)}g;(-)a(oJ' XJ, lot �II 4 E L.J and the t.tnJent 
space of the nonparamctrie model P, IS &J\en by P, 
(b(X. , Z) E L. Sb( X , Z ) Ol Then, by theorem 
3.4 I of B1ektl ec al ( L 993), the e!fic.icnt ...,.. luncllon 
of (~.P,) under model (A 16) cs the pro;ecc.lon or I into c~c 
OrlhogonaJ complement or the linear $p.1CC (>, + P,-namely, 
i· = L- [ [(iff\ - P,) . Tbe Information natnx for oo and (J0 
<S JUSl E(i' )(i')". where n olA t Al 15 the projeccion of I 
cnto A + A. Beeause f\ .l A and I .L A. ct1e pro;cctlon 
n<ttP, + Al = n CiiP, l is co find � vecw runetlon ot torrn 
( Y -l')g[(·)<>(oJ'X ) such chat El i - (l' - Jr.)g:( )a(,ZX JII' cs 
minimized. By conditioning on a[x . one can e~ily tind chat 

n(iiA) = (Y _ Jl( ·) [ E( XIlO(U)p,(·)IU}/E(p,(·)IU ) l 
I' I S(ZP>( )IU } /E(P>(·)IU } �. 

where U = o[x . Using 1tus, it J.S now ea_.y to verify that Q 
E(i' )(i· f. 

[R«tiwd A.pnlJ99j Re•mc.l At.IMJI 1996} 
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Local Estimating Equations 
Raymond J. CARR OLL, David R UPPERT, and Alan H. W ELSH 

Bstimaling equ.ations h.avc. found wide popul.arity re.ccntly in parametric. probl:.m.s, yielding consistent estimators with u ymp!Olt· 
cally valid infu crHx.s otxair.e<l VL3 the sandwich formu!a. Mouvated by a problem tn nutra:ion.al epidemiology, we us.e esli tnali~ 

eqnatt0fl$lo derive nor.p.aram~ne esttmators of a "p arameter" depending on ~ predtctor. "fhe nonparameuic component IS esttmated 
vit local polynomials "'ith loes.s or kctntl wttight1ng; uymptotic theory tS dui ... ed for tile b tter In keeping with th-e estimarin& 
eqlJ.ation par2di,gm, varian<:(.$ Q( tke nonpmmernc function e$\imatc are estim.aled usmg the sm~dwicb mect.od, in an automt t1C 
f.t.shion. without the need (typical in the lueralUre) to de.nve asymptotic formulas .1nd plug-m an c,stirmteof a density t'uOO!on. The: 
wr.e philosophy is used ln tStim., cingthe bias of th~ r.onparlimc.rric func.tioo. that is. ~n ~mpirit1l method is used wilhoJt detivi~g 

asymptotic lb(;(M')' on a casc.-by·case ~sis The methods are applied co 2 &eries of examples. 'Ole appliC2tJon co DU!Ii_cion i.s c.alled 
··nonpa.ratnetnc calibrat:on" .tftet che «crm U!lt.d for studJC:S in that fidd. Other ap-pi:C:..t tio:u mclude local polynomtal regtcssion 
for genecahtt<lltt'lut models, robust local regression, and IOC21 cr2tl.Sformauon$ in $1 l:i.!el.'lt vari2b!e model Extea:uons to pauJ:~.IIy 
p.ar1metric moc:kls are ctisc.ussed, 

KEY WORDS. Asymptotic theory. Bandwidth sdecuon: LoeaJ polyM•md regfesstoo. Logi.stie rcgrc.sslon: Me:uucemcnt errc~ 
Missmg d2ta, Nonlin~r regre»tofi; Partial linear n:odels; S.zndw•ch e.surnaooo 

1. INTRODUC TION 

A general methodology tbat has found wide popularity 
recently, especially in biostatistics, is 10 estimate param­
ettJ:s via estimating t4uations. Maximum likelihood esti­
mates, robust rcgJ:ession estimates (Huber 1981 ), variance 
function estimates (Carroll and Ruppert 1988), generalized 
estimating equation (GE E) estimates (Diggle, Liang, and 
Zeger 1994), marginal methods for nonlinear mixed-effects 
models (Breslow and Clayton 1993), and indeed most of the 
estimators used in non-Bayesian parametr ic statistics are all 
base~ on the same technology. [f the data are independent 
observations (Yt.Y2 , ••• , Y.,), with 1be Y s possibly vec­
tor valued, then a parameter e is estimated by solving the 
estimating e.quation 

" o= l::.P<Y .. e ) . (l) 
p::} 

We allow e to be vecwr valued, and .p must have the same 
dimension as e . For example, maximum likelihood esti­
mates are versions of ( I) when ,P(-) is the derivative of the 
log-likelihood function. 

One of the rea.soos that estimating equation methodology 
has become so popular is lhat for most estimating equa· 

Raymond J. Ca.rroU ts Oi.sungu1shed Uruver$lcy Professor of Stati5-tic.s 
and Professor of Nutrition and Toxu:~ology. Otparcmeru of Sttt1SltCS.. Tcus 
A&M Univenity, College St~tion. TX 77843. O<lVld Ruppert is Professo:, 
School of Operanons R('..scarch and lndwm.al Engir.eenng. Cornell Uni· 
vers1ty, Ithaca, NY I 4853. Abn H We.l.sh is Reader, CMA, Australi~n Na­
tlon31 Umversity. Canberra AC'f2601. CaJYoll'srescarcb was:n.:pported by 
grant CA·S7030 (com the NJtional Cat'lce.r Jos.tlt\lle CarroiJ's res.e1cc.h was 
pl.rttally completed while visiung the fnsticute for Stalislics and Oi.::ono m c:.· 
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tions, the C<lvariance matrix of the parameter estimate can 
be C<lusisteutly aod nonparameuically es1 imated using the 
so-called "satldwich formula" Oiuber 1967) described in 
detail in Sect iou 3.2. 

The combination of e-stimating equations aod sandwich 
covariance ma11ix est imates thus form a powerful general 
methodology. In this article we pose the following simple 
question: How doc.s one proceed if e depends io an un­
known way on an observable variable Z, so tbat e = El( Z)? 
The que.stioo arises naturally in the context of calibration 
studies in nutritional epidemiology; Section 2 provides a 
detailed discussion. 

Our aim is to provide methods with the same general­
ity as parametric estimating equations aod the saodwich 
metbod. Starring only from the parametric e.stimating C4ll3-

tioo (I), we propose to develop estimates of El(Z) and use 
the sandwich method to form consistent and nonparamelric 
estimates of the covariance ma1rix. 

T he method that we proposed, called /ccal estimating 
equauons, essentiall y involves estimating El(Z) by local 
polynomials with local weighting of the estimating equa­
tion. The specific application in nut rition is called non­
parametric calibration because of its roots in nutritional 
epidemiology calibration studies. This article is concerned 
primarily with the case where Z is scalar, although io Sec­
tion 4.2 we descn be extensions 10 the multivariate case and 
w esenl a numerical example. 
In praetic:e, it is often the case that e (z) is a q­

dimensional vector, whereas we are often io1crested in a 
scalar funetion of il, say o (z) = 7 { 9 (z)}. For example, 
in the nutmion example motivating this research, 9 {z) is 
a q = 6 dime<Jsional vector of conditional mome.n1s of Y 
given Z = z, and a{z) is the correlation between a compo­
nent of Y and another, unobservable random variable. 

Our basic method for estimating El(-) involves local 
polynomials. With superscript ( j ) denoting a j lh deriva­
tive with respect to z and with b 1 = e ul(zo) / j ! , the 
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local polynonual of order p in a neighborhood of zo is 
El(t) "' 1:;.0 b1(• zo)'. Tbe local we.oght for a value 
of > near zo is deno!ed by w( z, zo). We then propose 10 
solve in (ho, . , b, ) the q ,.. (p + I) equations 

0 tw(Z~o:olob {v ,,tb,(Z,- ::ol'} G!(Z,- ::o), 
... 1 J•O 

(2) 

where C~(u) (l,u, v 1,. , v ' ). Tbe final estunates are 
9 (::o) board 6(oo) T{bo}. 

Equations such as (2) ate already in common use when 
El(•) is sc.1lar. although nOl at the level of generality given 
here (not beong denved from estimating functions). Here 
are a few e~amples: 

a. Ordinary multivariate-response Nadaraya-Watson ker· 
nel regression has p c 0, ,P(Y, v) ~ Y - v, and 
w(z, >o) chosen to be a kernel weight. 

b. Local li near regression has 11 m 1 and ¢ (Y, v ) = Y ­
v, and if w(>, >o) is a nearest-neoghbor weight, tben 
1he rcsull is the loess procedure in S-I'LUS (Chambers 
and llastie 1992). 

c. When the mean and varoance of a univariate re­
sponse Yare related through E(Y ! Z ) = ,u(EI(Z)} and 
vnr(YIZ) a1 V(6 (Z)} for known functions It and 
V , loeal quasi likelihood regression is based on 

With kernel weights, thos is the method of Weisberg 
and Welsh (1994) when p - 0 and of Fan. Heckman, 
and Wand ( 1995) when p ~ 1. 

This article is or&ani7ed as follows. Section 2 describes 
in detail a problem from nutrition that rnotivatedlhis work. 
Tius problem is easily analyzed rn our geoerallocal estimal· 
ing eq112cion framework. Section 3 indicates tbat local poly­
nomial methods usually have tUnll'g constants that must be 
SCI or estimated I( they are 10 be wimated. then the typical 
approach is to mininuze mean squared error (MSE) wluch 
in turn requires escimauon of bias and •ariance functions. 
It i< possible co derive asymptOlie theOleticaJ expressions 
for these funellons (indeed. we do so for kernel re&res­
sion in the Appendix) and then do a "plug-in" operation 
to obtain an csumatc. But followtng chis approach in prac­
tice requires density estimation. estunauon or higher-order 
derivacives. and so on, and these complocations would limit 
the range or applicauons lnscead, we estrnJate tbe bias aud 
variance functions empirically, without apUcit use of the 
asymptotic formulas. Oins estrmatton uses a modification of 
Ruppert 's (1997) empirical bins method, whereas variance 
estimation can be done by adapung the sandwich formula 
of Huber (t 967) 10 thil context. Tloat the sandwich formula 
provides consistelll variance estimates in this conrexr is not 
obvious, but in the Appendix we prove this to be the case. 

Section 4 dea ls with a series of examples, including the 
analysis of nutrient intake data. Section 5 discusses modi­
fications of the a Igor itlrm (2). Section 6 presents some con-
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eluding remarks All theoretical detatls are collected "' an 
Appendtx. 

Local eslimatioo of parameters for likelihood problems 
has be.en previously considered i.n important "'ork by such 
authors as Fan and Gijbels (1996), Fan et al 0995). Hastie 
and Tibshirani ( 1990), Kacermann and Tutz (1997). Sevenru 
and Staniswallis (1994). Staniswallis (1989), and Tibsbrraru 
and HaS(ie (1987), ar:d lllese techniques are implemented m 
S-PLUS for generalized linear models (Gl.Ms). Our meth· 
ods and this article d1lfa from llle local likelihood lrterature 
in several ways: 

We do llOl reqc<re a likeljhood, bot only an unbrascd 
estimating fur.ction. GIVen cbe populanty of estimat­
ing funcnoos rn recent statistical work, such work 
would appear to be of some consequence. Estimacmg 
fuoctjoos allow us to use such techniques as method 
of momencs, robust mun and variance functiou es· 
timation, Horvitz and Thompson (1952) adjustments 
for missing dara, GEE-type mean and variance func­
tion modeling, and so on. A number or our e~amples. 
both munerical and cheoretica l, illustrate the use of 
nonlikdihood estimation functions. 
Our estimates of variance are straightforward, being 
nothing more than estimates based on rhe sandwkh 
method from parametric problems. In !>articular, one 
need n01 compu1e asymptotic variances m each prob­
lem and then est ima1e the terms 1n the resulcil\8 (ofcco 
compla) expressions. To ohe best of our knowledge 
the use of the parametric sandwich method on gen­
eral nonparametric •eg•ession contexts has not been 
previously advoczted, nor has it been shown theof'Cl­
ically 10 give consistent estimates of variances. We 
prove such consi<rency and derive express1ons for bias 
and variance for kernel wei&hling. 'There have been 
earlia- uses of the sandwich formula in special cases 
of nonparametric re&ression, however. ror c.arnple. 
Ruppert and Wand (199-1) gave a sandWICh formula 
foe the V2nar.ee of local polynomial regression es11ma 
tors, and Gozalo and Linton (1995) !..Sed the andwtch 
formula for an interesting approach 10 nonparametrrc 
reJ~,ression-loeal nonhnear regresSIOn. 
Our methods allow for esumauon of tuning constants 
sucb as the span in loess or local bandwidt.bs in ker· 
oel weighting. The methods apply at least rn pnnciple 
to all local estimating function-based estimates and 
hence can be applied in new problems without the 
need to use asymptotic theory to dertve a bias expres­
sion, to use additional nonpararnetrie regress1ons to 
estimate this expression, or 10 develop case-by-case 
tricks to get started. 

2 . MOTIVATING CXAMPLE 

ln this section we demonstnue an important problem 
where El (z) is a vector a11d ¢( ·) arises from a11 est imat ­
ing funcrion framework. The assessmOJit and quantification 
of an individual 's usual diet is a difficult e~crcise but is 
fundamental to discovering relationships between diet and 
cancer and to monitoring dietary b<:havior among individu-
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als and populations. Various dietary assessment instruments 
have been devised, of which three main types are most com•
monly used itt contemporary nutritional research. The in•
strument of choice in large nutritional epidemiology studies 
is tbc food frequency questionnaire (FFQ). For proper in•
terpretation of epidemiologic studies that use fFQs as tbc 
basic dietary inst.rumen(, one needs ( O know the relationship 
between reported intakes from the PFQ and true usual ill•
take. Such a relationship is ascenained through a substudy, 
commonly called a calibration study. 

The primary aim of a calibration study may vary from 
case 10 case. liere we focus on the estimation of the corre•
lation between FFQ intake and usual intal<e. The variable 
we use is the% of calories from fat. This correlation ca11 be 
of crucial interest if the FFQ has been modified extensively 
from previous versions or is to be used in a new 'populatiou 
from which litlle previous data have been obtained. Very 
low correlations might persuade the investigators to post· 
pone the main study, peoding improvements in the design of 
the FFQ or in the way it is presented 10 study participants. 

FFQs are thought to often involve 2 systematic bias (i.e., 
uoderreparting or overreporting at the level of the individ•
ual). The Other two commonly used inslJ:umeuts are the 24-
hour food rocaU aod the multiple-day food record (FR). 
Each of these FRs is more work-intensive and more coslly 
but is thought to involve considerably less bias than a FFQ. 
At the end or Section 4.1 we comment on this and other 
issues iu nutri Lion data. 

For the tth individual (i = 1, ... , n ) , lct Q, denote 
the intake of a nutrient reported on a FfQ. For the j th 
(j = 1, . . . , m ) replicate on the zth person, let F,1 denote 
the imake reported by a FR, and let T, denote long-term 
usual intake for the ith person. A simple model (Freedman, 
Carroll, and Wax 1991) relating these thrc.e is a standard 
linear errors-in-variables model, 

( 4 ) 

J = l , .. . , m. (5) 

In model (4) deviations from fJo = 0 and {31 = I represent 
the systematic bias of FFQs, and the U;1 are the within 
individual variation in FRs. All random errors (i.e., cs and 
Us) are uncorrelated for purposes of this article; see the end 
of Section 4.1 for more details and further comments. 

In measurement error models one wishes to relate a re•
sponse (in our case, Q) to a predictor (in our case, T). Be•
cause of measurement error and other sources of variability, 
one cannot observe T . lnstead, one can observe only a vari•
able (in our case, F) related to T. Tbe measurement error 
model literature was recently surveyed by Carroll. Ruppert, 
and Stefanski ( L995). 

Two studies that we aMiyze he.rein tit exactly into this 
design. The Nurses' Health Study (Rosner, Willeu , and 
Spiegelman 1989), hereafter denoted by NHS, is a calibra•
tion study of 168 women, all of whom completed a single 
FFQ and four multiple-day food diaries (m = 4 in our no•
tation). T he Women's Intcrv•cw Survey of Health (W ISH) 
is a calibration study with 271 participants who completed 
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a FFQ and six 24-hour recalls on ra.ndomly selected days at 
least 2 weeks apart (m = 6 in our notation). Although differ•
ent FPQs are used in the two srudies, the maj or difference 
between them is that the diaries have considerably sma.ller 
within-person variability than tbe 24-hour recalls. for in•
stance, using % calories from fat, a simple component-of•
variance analysis suggestS that the measurement error in 
the mea11 of the four diaries in the NI-lS has vari.ance 3.43 
and the variance of usual intake is al = 14.7; the numbers 
for the si.x 24-hour recalls in WJ.Stl are 12.9 and 10.8. Thus 
one can expect that the NHS data will provide considerably 
more power for estimating effects than the WJSH data. 

For ao ioit ial analysis, we computed PQT for each sub•
population formed by the quintiles of age; Section 4.1 pro•
vides the computational details. The five estimated cor•
relations were roughly .4, .6, .4, .5, and .8. The ti ve es•
timated correlations are statistically significantly different 
(p < .01) using a weighted test for equality oi means. Note 
that the highest quintile of age has tbe highest value of 
PQT· Thest31tdatd errocs of the est imates are approximately 
.13, except for the highest qu intile, for which it is approxi•
mately .07. 

Such stratified analysis (i.e .. defini ng the strata by age 
quintiles) can be considered from the viewpoint of non•
parametric regression. In each straLUm we are estimating a 
parameter a (often multidimensional) and through it a cru•
cial parametric function such as PQT· Because these both 
depend on the stratum, they are more properly labeled as 
6 ( 2 .) and pqr( Z. ), where z. is the stratum level (or z. 
Looked at as a fimcJiott of z. this method suggests that 
Par(Z ) is a disconri11uous function of Z . To avoid the ar•
bitrariness of the categorization, we propose to estimate 
pqr(Z ) as a smooth function of Z. Our analysis suggests 
that at least for the NHS, Lite correlation between the PFQ 
and usual intake increases wi<h age in a nonlinear fashion. 

3 . TU NING CONSTANTS 

To implement (2), we need a choice of the weight func•
tion w( z, >o). Usually, this weight function will depend on a 
tuoing coostant h, and we will write it as w(z,zo,h). For ex•
ample, in global bandwidth local regression, h is the b31td•
width and w(z,>o ,h) = h-1H{ (z- >o)/h} , where K (· ) 
is the keroel (density) functiou. For nearest-oeighbor lo•
cal regression such as loess (Chambers and HasLie 1992, 
pp. 312-316), h is tite span (tite percentage of the data to 
be cour,ted as neighbors of zo ), and w(z,>o, h) = H {lz�
>o l/ a( h)d ( >o )) , where d(zo) is the maximum distance from 
-'0 to the observations in the neighborhood of -'0 governed 
by the span and a.( h)= I if h < 1 and a( h)= h otiterwise. 

Jo practice one has two choices for the tuning constant: 
(a) fixed a priori or determined randomly as a function of 
1 he data, and (b) global (iodependent of zo ) or local. If the 
tuning constant is global, then one also has Lhe choice of 
whether it is the bandwidth or the span; for local tuning 
constants, the.rc is often no cssenLial difference bet wc.en us•
ing a bandwidth and a span. For example., in loess the span 
h is typically fixed and global; tbis makes sense, because 
the nearest-neighbor weighting of loess imposes locality in-
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dm:cdy. In kernel and local polynomial rcgrc.SSIOn, there is 
a substanLialliLeracure for estimating a global bandw1dth h, 
and some work on esumacing local bandwidths. 

For the purpose of specificity, he.re we consider local 
estimation of the tuning constant If we could determine 
tile bias and variance functions of &(zo), say bias(<o,h,a) 
and var( ZQ, h, a), then we might r<asonably choose h = 
h(zo) to minimize Lite mean squared error (MSE) function 
MSE(zo,h, a) = var(zo, h,et) + bias2(zo, It,<>). To imple­
ment !his idea. one needs e.st1ma1.es of the bias and vari· 
anee functions. An associate editor ra1sed the question of 
whether one would have enough data 10 estimate a local 
bandw1dlb. The answer is often "strictly speaking, no." but 
!here is a compromise between truly local bandwidlhs and 
a global bandwidth. Ruppert (1997) proposed smoolhing of 
the MSB funeuon before nunucizing 10 ob<am a local band­
width and then smoolhing the local bandwidth. This type 
or procedure was called a ··partial local smootbmg rule'' by 
Hall, Marron, and Tiuerington (1995). Simulation sL~dies 
by Ruppert (1997) for the smoothed empirical bias band­
width selection local bandwidth and by Fan and Gijbels 
(1995, 1996) for another local bandwidth estimator show 
tbat local bandwidths can outperform global bartdwidths 
even for moderately small datasets. 

The kernel regression !i1eramre abounds with ways of 
es1ima1 ing the bias and variance functions, U.\ually based 
on asymplotic expansions. We digress here brieRy to dis­
cuss tbis issue; the Appendix contains details of the alge­
bratc argumenlS. In our general context, the b1u and vari­
ance of e (:) using kernel regression :are quahlUJ\dy the 
same as for ordinary local polynonual regresstoo. There are 
functions !J.{z, K, S (z),p} and <;,{>, K,6 (a), p} w1Lh the 
property that'" the interior of the support or z. 

and 

btas{EJ(z)} ~ h"T1Q.{ z, K, 6 (z),p} If pIS odd 
~ h"T2Q,{ :, K, S (z),p} 1f p ts even 

cov{e(z)} ~ {nhfz(zW 19,(z , J < , EJ(z),p}. 

The function (i, does not depend on the design density. 
The same is Lrue of g, if p is odd, but not if pis even (see 
Ruppert and Wand 199 4 for the case of local polynomial 
regression and also (A.4) in Lhe Appendix). The actual for­
mulas are given in tbe Appendix. Results similar to what is 
kno"'o to happell at the boundary in ordinary local polyno­
mial regression can be derived in our context 

For example, if p = 1 and .P(y , v) y v (ordinary 
multivariate-response local linear regression), then 

(i•{z, K, 6 (z), I}= ( 1/ 2)6 <11(:) J •2K(•)d.s 

and 

(i,{:, f<, 6 (z), I} 

= { ! K
2(s)ds} (B(:)} 1C(z)(O' (zW1

, 

where 

B(•) = E{(ofov ),P(Y, v)IZ - •} 

and 

C(z) E{.P(Y, v),P'(Y, v)IZ = .z}, 

with both B(z) and C(z) evaluated at v = EJ(z). In this 
speci6c example, if 1 is the t<lentity matrix. then B(z) = - I 
and C(z) = cov(YfZ = z). 

We now return tO tuning constant estimation. For local 
regression, one could in principle use Lhe asymptotic ex­
pansions to derive b1as and vari ance formulas for O:(zo). 
Tbis is complicated by the facts tbat (a) the bias depends 
on higher-order derivauves of EJ(:.,), (b) if pis even then 
!be bias depends on the design density, and (c) lbe vari­
ance depends on the densuy of the Zs. Instead of carrying 
through th1s hne of argument. we ir..stead propose oethods 
that avoid direct use of asymptotic formulas and that are 
applicable as well to methods other than local regression. 
Such a goal has already been achieved m the kernel litera­
ture for ordinary local polynomial estimation. (See Fan and 
GiJbels (1995) and Ruppert (1997), the Iauer of which we 
use in our more general context. I 

3.1 Empi rical Bias Es!lmatlon 

Ruppert ( 1997) suggested a method of bias estimation 
that avoids direct estimation of higher-order derivatives 
arising in asymptot ic bias formulas. He termed this the 
me<hod empirical bias bandwidth selection (EBBS) . 

The basic idea is as follows. Fix i1<J and zo, and use as 
a modd for tbe bias a funeuon / (h, 'Y) known except for 
the parameters 'Y - (')'), ... ,..,,). for example, /(h.'Yl = 
'YlnPt-1 T • • • + "f�h�+-�, "'here t ~ I. for local pth degree 
polyoomial kernel regress1on. The model j (h, -y) comes 
from asymptOitc theory, which shows that the asymptotk 
bias has an expans1on 1n powers of h. beginning with power 
p+ I, assuming that 9 has at least p +I continuous deriva­
tives. For any h<J. form a neighborhood of tuning constants 
'It;, . On a suitable grid of tuning constants h. in 'It;,, say 
{h.., . .. , hK }. where K ~ t + l, compute the local poly­
nomial estimator &(zo,h), which should be well described 
as a function of h. by &(zo, It} 'Yo+ f(h, -y) + op( hP+'j. 
the value 'l'o = e>(:.,) in the limit. Then let (.Yo, t) minimize 

r::=1{0:(to,hk ) - ("to~ / {lt,,.Y ))P, Appealing to asymp· 
totic theory, and if ?to is sma ll enough, the bias should be 
well estimated at il<J by /(h;, , t). 

In practice, the algorithm is defined as follows. For any 
fixed :.,, set a raoge lh. .. ~I for possible local tuning con­
stanlS. For example, h., and ~ could bed(zo) correspondmg 
to spar.s of . I ar.d 1.5. Our experience is that the Optimal 
local bandwidth is generally 1n this range. Then form age­
oroelrically spaced gnd of M po1nts, 

?-1.1 = {hJ : J I , . ' M ,ht = h.,,hM =it,}. 

We have not tried spacmg other than geometric, because it 
seemed intuitive that smaller bandwidths should be more 
closely spaced. 

Fix constants (J~o J 2) suc.h that J 1 + J 2 ~ L For any 
j = I + J1 , . .. , M - J2, apply the procedure defined in 
the pre.vious paragraph with 14) - h1 and ?tt, = {hk,k = 
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1 - J " . . , j + J2 }. This defines biiiS{&(zo , h1)}. For tuning 
constattts not on the grid 7th interpola tion via a cubic spline 
is used. 

Note that we muse se1 the lirnit.s of int.eresting wnjng con· 
stams [h.., ho i and the four tuning constants {t, M, J 1 , J 2 ) . 

Ruppert (1997) found that J 1 = 1, (t, J 2 ) = ( 1, I ) o r (2, 2), 
and M betwce.n 12 and 20 give good numerical behavior in 
the ex.amples that he studied using local polynomial kernel 
regression. 

3.2 Empirical Variance Estimation: The Sandwich 
Method 

It is useful to rememberthat q is the d imension of €l,p is 
the degree of the local polynomial, and G 0 is delined just 
after (2) . A t this level of generality, the sandwich formula 
can be used co dcri vc an estimat.e of (be covariance ma(rix 
of {bo, . .. , ll. J . In parametric problems the solution 8 to 
(l) bas sandwich (often called .. robust") covadance matrix 
estimate B;tC.(B~)- 1 , where 

n 

C n = L 1/I ( Y, El) ¢ 1( Y., 8 ) 

·~· 
and 

n 

B" = L (fJ/ fJ El' ) .P(Y ; , El). 

The analogous formulas for the solution to (2 ) are defined 
as follows. In what follows, if A Ls I x q and B is r x s, 
then A ®B is the Kronecker product, defined as the lr x qs 
matrix fanned by multip lying i.ndividua.l e lements of A by 
B ; for example, if A is a 2 x 2 matrix, then 

A®B =[a" a,,J®B=[a11B a12B]. 
a21 a,2 a 21 B a22B 

Let x(y, v ) = (fJ{ fJv ') .P( y, v). Then the asymptotic co­
variance matrix of (b0 , . .. ll. J is estimated by (8,.(~0 )}- 1 

Cn(>o){B~(Z<JW '. where .. 
Cn(zo) = :Lw2( Z,,zo) 

(= I 

x ((G,(Z, - zo)G~(Z, - zo)} ® ( oi> ,.).: JI (6) 

and 
n 

Bn(Z<J) = L w( Z., to) 

x [(G. (Z, - "")G~(Z,- zo)} ® x.J, (7l 

wher~ ~. = 1/1{ Y,, I:~=O b1 ( Z, -z0)' ) and analogous ly for 

;\:,. In practice, we replace I:~=O b1( Z, - zo)' by S (Z,). 
An argument justifying these formulas is sketched in the 
Appendix. ln practice, we multiply the sandwich covari­
ance matrix estimate by ·~/ (n - (p + l)q}, an empirical 
adjustmem for loss of degrees of freedom. J.n a variety 
o f problems that we have investigated (see, e.g., Simpson, 
Guill, Zhou. Carro ll 1996), this empiric~l adjustment im· 
proves coverage pro babili ties of sandwich-based cooJidence 
intervals, when combined with t percent iles with n -{p+l )q 
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df. There is no theoretical justificat ion for this adjustment, 
however. In specific problems, bias adjustments for the 
sandwich estimator may be more or less easy to construct 
In the case for GLMs. covariance matrix estin"ltors that 
automatically adjust for leverage and tile like already exist 
(see Hastie and Tibsbi rani 1990, sec. 6.8.2, and Kaueml3lln 
and 'l'utz 1997). 

In some problems the sandwich term C ,.(zo) can be im­
proved on because the covariance matrix of •/1(·) is known 
partially or fully. For example, if 1/10 is g iven by (3), then 
E ( .P.P') = a2 (1PI) 2fV, and one would replace (<i>,ri>'l 
in (6) by a2 {P.~1) }" j ( l,. ln addition, using score-type ar­
guments, one bases work on xO = - (sPl(·)} 2 / V and 

would replace x. in (6) by -{~'1F tV.. We suggest using 
sucb additio nal information when it is avai.lable, because 
the sandwich estimator can be considerably more variable 
than model-based altetna tives. Fo' example, in simple lin­
ear regression, sandwicb-based estimates of precision are 
typically a t least three times more variable than the usual 
precision estimates. 

The S3lldwich method in parametric problems does not 
work in all cjrcumstanccs, evt:n asymptotically, 1he ntOSl 

notable exception being the estimate of the median. In this 
case, if Y is scalar, then 1/J(Y, x) = J ( Y ~ x)- l / 2. where 
J is the indicator function. Tbis cho ice of ¢(·) has zero 
derivative, and thus (7) equals 0. Alternatives to the sand­
wich estimators do exist, however, although their imple­
mentation and indeed the theory itSelf needs furtber inves­
tigation. A sandwich·type method was described by Welsh. 
Carroll, and Ruppert {1994), wbo used a type of weighted 
d ifferencing. Alternatively, one can nse the so-called "m out 
of n" resampling method as defined by Politis and Rom.ano 
0994), a lthou&h application of this latter tecboique requires 
that one know the rate o f convergence of the non paramet­
ric estimator, this being theoretically ( nh) ' / 2 for local l in­
ear regression. How to choose the level of s~•bsampling m 
remains an open q!.1estion. 

4. EXAMPLES 

ln this section we present three example of local es­
timating equations. Other examples can be found in ao 
early version of this article, available via anonymous ftp at 
stat.tamu.edu in tbe directory/pub/rjcarrolljnonparametric. 
calibra tion in the file npcall5.ps. 

4.1 Nutrition Calibration: NHS and W ISH 

We used the NHS and WISH data described io Section 
2 to understand whether the correlatio n between a FFQ 
and usual intake, PQr, depends on age, based on the nutri· 
enl %calories from fat. Nutrition data with repeated mea­
surements typicall y have the (eature of time trends in total 
amounLS and sometimes in percemages, so that. Cor exam•
ple, one might expect reported caloric in take (energy} to 
decline over time. To take (bjs inlo accoun4 we ralio ad•
justed all measurements so that the mean of each. FR equals 
tbe firsL (Fo r ao example of ra1io adjustment, SR.<: Nusser, 
Carriquir y, Dodd, and F •lller 1996.) 
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lis described previously, t denoces the ind•v•dual. Q, and 
1i arc the nutrieol intakes as reported on the FFQ and usual 
intake, and F,, is the j tb replicated FR for the ilh individ•
ual The mean of the replicated FRs IS F',. The unknoWll 
parameters in the problem are conveniently char•cterized 
a< e ~ (81, •.. , 06 ), where 01 ~ E(Q ) , 02 • E( I")~ E { T), 

63 m var(Q), IJ, = cov ( Q, 1") - cov (Q , T). 0& "' var(U), 
and e. ~ var(T). Note that ror any lWO ··eplicates F,, and 
~-~ ~ for J 'f k, Oe = cov ( F' ;,, F,. ) . Letting Y, (Q .. 
I";,,. , Jo~.,) be the observed dat.a (m 6 in WISU, m = 4 
in NilS). the usual method-of-moments estimat ing func•
lion •s 

,P(Y,, 9 ) 

Q, 

F, 

{Q,- Ot)' 

(Q ,- Ot)( Jo;- II,) 

(m - q-• I;;':.1(F,1 - P,)2 

{m. ( m. - lW' I:;". , I;;'~1 (F,1 - 02 )( F,� - o,) 
- e . ~ 

Numerically, the solution to (2) is ea<ily obtained. Local 
estimates of 81(z) and O,(z) use nothing more than direct lo•
cal regression or Q; and fr, on Z, and once tlley are plugged 
Into the third-sixth components or ,P, {83(:), .. , 06(z)} 
ean also be computed by local lea<t S<jiLtres, for exam�
ple, by regressmg (Q , - B,) 2 on Z, tO obtam 63• The 
mam parame:er or io:erest is the correlation between Q and 
T PQT(zo) ll.(zo){O,(zo)Oo(zol} -•12 

In lhts example we csed nearest-ne>ghbor weight$ based 
on the span, as described at the start or Scct•on 3. /Is m the 
S-PLUS lmplemectation or loess, we u<ed the tricubed ker•
nel functjoo, which is propoJtional to (l-lv Jl ) 3 for luiS I 
and equals 0 elsewhere. For a fixed value of the span, we 
assessed standard errors by two means f'irst, we obtained 
an estimated covariance matrix for El(:o) using the sand•
wich formula, and then used tile delta mclhod to obtain an 
cs<imatcd variaoce (or PQr(zo ) ,,8 1 ( : 0), etc. We based the 
second stancL1rd error estimates on the nonparametnc boot•
strap, w1U1 the pairs (Y, Z ) resampled from the data with 
oeplacement; we used 500 boomrap samples. For a range 
or spans and for a variety or data<ets and nutricn1 variables, 
the sandw1ch delta 3Jid the boot<trap scandard enors were 
very nearly the same. This is not unexpecced, gl\en that 
the <pans used are fairly large. As a theoreueal JUStofica•
liOo, cote that if che span is bounded away from 0, then 
the estnrunor El(z) converges al parameltlc rnces (allhough 
to a biased estimate), ar.d the bootstrap and sandwich co•
vanance mawx eslimates are asymptoucally esumaung the 
same quanti1y. 

f'Jgure I shows the value or PQr(age) for the NHS % 
calories from fat for various spans in the range .6-.9 using 
local quadratic regression. To undctSiand 1he age distribu•
lion •n this study, we have also displayed che 10111, 25th. 
S01h, 75th, and 901h sample percen1iles or age. Although 
there is some variation between the cuoves for the differ-
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ent values of the span, 1he essential feature 1s consister.t•
ll<llnely, that those ucdcr age 50 have sigr.i.ti.cantly (in tlle 
praccical sense) lower corre.laoons than do those over age 
50. The statisttcal s:gn,liance or thlS finding can be as•
sessed in vanous way. The simplest is to split the data 
into two populations on the basos of age groups and sim•
ply compute PQT for each population; the estimates are 
statistically significantly difrerem at a significance level 
below .02. 

A second test is sligh1ly more involved. We computed 
the estimate of PQT(age) foo 16 equally spaced points on 
the range from 34-59, nlonc wuh tbc bootstrap covariance 
maiiix of rhese 16 es1 ima1es. We Lllen tested whether the 
es1imates were the same using llotelloog's T" test and tests 
for Eoear and quadrauc trend usong weighled leas1 squares. 
lis expec1ed after iOSpecllOII of Figure I, the linear and 
quadratic les!s hzd sogniticance levels below .05 for spans 
in (.7, .91. 

We also esumated the span, on the (oUowmg manner. For 
computational purpo<es. we u~ e1ght values of age, and 
using the methods of Section 3 we compuled an estimate 
of the MSE using emp1ncal b1as estimalioo (J1 = Jz -
S, M = 4l, h0 = .G, ~ I 0) a11d the sandwich method; we 
chose lhe estimated span to minimize the sum over the eigh< 
ages of the estimated MSIZ. Tilt. estomated span was .78 for 
local linear regression and .90 ror local quadratic regression. 
We theo bootstrapped this process, includinglheestimation 
of lhe span, and round that although the significance level 
was slightly greater than lhat for a fixed span, it was still 
below .05. 
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Because the empirical bias estimate has the tuning con•
stants (M,J 1 , J,) , there is still S<)me art tO estimating the 
span. We studied the sensitivity of the estimated span and 
the estimated average MSE to these tuning constants, and 
fou nd that the results did no: depend too heavily on them 
as long as J 1 and J, were increased with increasing values 
of M. For example, the estimated average MS Es for local 
line.11 regression in three cases-(M,J1, J2) = (41,5,5), 
(101, 13, 13), and (201,25, 25)-were calculated, ancl lb.ere 
was little difference between the tbree MSEs. However, fix•
ing J 1 and J 2 while increasing M resul ted in quite variable 
bias estimates. 

We repeated tbe estimation process for WISH. There is 
no evidence of an age elft.et on PQT in WISH. This may 
be due to the different population or tile different FFQ. but 
may just as well be due to the much larger measurement 
error in the FRs in WlSII than in NHS. 

Finally, we investigated local average, linear, quadratic, 
alld cubic regression. with a span of .8: see Figure 2, where 
we also display the fi ve estimates of PQT based on the qui•t•
tiles of the age distribution. Given the variability in tbe esti•
mates, the maio difference in the methods occurs (or higher 
ages, where the local average regression is noticeably dif•
ferent from the others and from the quinti le analysis. Our 
belief is that this difference arises from the well-known bias 
of local averages at endpoints. 

We redid this analysis using kernel instead of loess 
weights with locally estimated bandwidths. T he results of 
the two analyses were s imilar and are not displayed here. 

F inally, we comment on issues specific to nutrition: 
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We have assumed that the errors c1 are independent of 
U,3 • This appears to be roughly the case in these two 
datasets, although it is not true in other datasets lb.at 
we nave studied; for example, the Women 's Health 
Trial data studied by Freedman et al. ( 1991 ). The 
model and the estimating equation are easily modi•
fied in general tO accou.nt for such correlation when it 
occurs. Similarly, the model and the estimating equa•
tion can be modified tO take into account a parametric 
model for correlation among the U, 1 s; for example, 
an AR(I) model. Although such correlations exist in 
these datasets, they are relatively smaJI and should not 
have a signi ficant impact on the results. 
The method of mon•ents (8) is convenient and easy to 
compute. In various asymptotic calculations and nu•
merical examples, we have found that it is effectively 
equivalent to •tormal-theory maltimum likelihood. 
There is emerging evidence from biomarker studies 
that food rer.ords such as those used in NHS are bi· 
ased for total caloric intake, with. those having high. 
body mass index (BMJ) underreporting total caloric 
intake by as much as 20% (see. e.g., Martin, Su, Jones, 
Lockwood, Tritchler and Boyd 1996). The bias is less 
crucial for log(lOtal calories) and J>resumably even less 
so for the variable us..:l in our analysis, % calories 
from fat , although no biomarker data exist to verify 
our conjecture. Despite our belief that this variable is 
not much subject to large biases explainable by BMl , 
we have performed various sensitivity analyses that 
allow for bias. For example, we changed the FFQ and 
food record data for those with 22 ::; SM! ::; 28 
by adding on average 4 to their %calories from fat 
(a 10% change), whereas for those with BMI > 28 
we added on average 7 to lb.eir % calories from fat 
(a 20% increase). T he adjustments were proportiona l 
to FFQs and food records. and the same adjustment 
was added to all food records of an individual. These 
adjustment in effect simulate adj ustments to the data 
that would be made if a Stroug bias were found in % 
calories f rom fat for food records. The analysis of the 
modlfied data gave correlations very siutilar to those 
sl!own in our graphs; that is, the effect of bias on the 
correlation estimales was small. 
If one bad replicated FFQs, then many modifications 
10 the basic model could be made. One might conjec•
lure an entirely di fferent error S(ructure; for example, 

a~= a~. 
This model is idemifiable only if corr(r,s) is known. 
We have fi t such models using local method of mo•
ments to a large (n > 400) dataset with repeated 
FFQs and us ing 24-hour recalls fo•· various choices of 
corr(r , s) $ .5. The net effect was that such analyses 
are very different from those based on model (4)-{5); 
PQT increased by a considerable amount, whereas the 
local estimates of var(T) as a function of age became 
much smaller. Of course, the point is that analyses 
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of such complex models are relatively easy using our 
local estimating function approach. 

4.2 Multivariate Z: lung Cancer Mortality Rates 

The methods of this article ca11 be extended to the mul­
tivariate Z case. Suppose that Z , = (Z,~. ... , Z,,.)', where 
the Z,1 are scalar. Then, following Ruppert and Wand 
(1994), local linear functions are S (z) = bo + b 1( z- z0), 
where b0 is a p x 1 vector and b 1 is a p x m matrix. Tbe 
generalization of (2) is to solve 

n 

0 = L w( Z., zo).P{Y., bo + b,(Z,- .:o)}G,.(Z,- zol. 
> :1 

(9) 

whore G:.,(v) = (1, v'). When Z is mullivariate and using 
kernel weights, tbe kernel /( is multivariate and the band· 
width h. is replaced by a posit ive·definite symmetric ma­
trix H . The simplest choice is [() restrict H to equal Ill for 
h > 0 and with l the idMtity matri x, and in this situation the 
methods we have discussed for empirical bias and variance 
estimation apply immediately to the estimates El(z0 ) = b.,. 
The application of empirical bias modeling to more general 
bandwidth matrices is currently under investigation. 

Extensions to higher-order local polynomials require 
more care. Completely nonparametric functional versions 
are easy in principle, but the notation is complex and prac­
tical implementation difficult (see Ruppert and Wand 1994, 
sec. 4). It is much easier to fi t "local additive" models, so 
that if z = (z.,.,., > ,.) ' and zo = (>o~o ... , •o .. )'. then 
El(z) = b., + I:::'~, I:~~~ b01 (z~ - Zo•)i; th is is identi­
cal to (9) w!:eo p =. 1, and the extension of (9) to p > 1 
is immediate. We use the term "loeal additive" to warn 
the reader tbat we are tJOt considering a globally additive 
model in the sense of Hastie and Tibshirani (1990), where 
8 ( z) = 8 1 (z,J + ... + e ,.(z,.) for all z and some func­
tions e ., ... , 8 ,.. Globally additive models are outside the 
scope of this article but would be quite useful when m is 
larger than 2 or 3 and the "curse of dimensionality" comes 
imo play. 

For an example of (9), we consider a problem in which 
Y = 10 +1og[(R + .5)/(IO•-R+.5JI, wbereR is the mor­
tality rate per lOS males for males dying of lung cancer, 
as a function of Z = (age class, year). We call Y the "ad­
justed" logtt because of the .5 offset. Tbc data come from 
!he Australian Institute of Health and are publicly available. 
Tbe age classes are represented by their midpointS, which 
are (2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 62, 67, 72. 
77, 82, 87), and the years run from 1950- 1992 inclusive. 
For each age class and year subpopulation, we can treat 
tbe number of deaths per 105 males as being (d/N) x 10•. 
where d, the total number of deaths in the subpopulation 
due to Lung cancer, is binomial (N ,1r) with "' the proba­
bility of death for an individual and N is the size of tbe 
relevant subpopulation. The values of the Ns are known 
and are used .later. Because p is small, d is approximately 
Poissoo(Np) and var(R)"' ( lOs/N)E(R). bt t.bis case, the 
logit and !he log transformation are similar; we use the for-

22 1 

mer to maintain comparabiEty with other work curremly 
being done on these data. We could model the variaoce of 
Y as a funct ion of its mean and of N . Alternatively, we 
could model tbe variance o( Y as a function of Z. We stan 
with the second possibility. lf El ., (IJ~o Oz)'. then the es­
timating function for mean and variance estimation is just 
,P(Y, e ) = { Y -8, (Y - 0 ,)1 - 82}'. There are two good 
reasons for considering a robust analysis, however. First, 
there may be concern over the potential for outliers ia 
the response; second, a robust analysis may be numerically 
more stable. We treat r = log(01 ) as the spread parameter 
(to ensu re nonnegativity) and use the estimating equation 

y El) _ [ g((Y- Ot)/ exp(r)} l 
1/>( ' - g1 ((Y- 8t)f exp(T)}- f g1(v)ql(v) dv ' 

where g(v) = g(- v) = v ifO :5v:5 cand=cifv>c,ql(v) 
is the standard normal density (unction and c is a tun­
ing constant controLUng tbc amount of robustness desired; 
c "" 1.345 is standard. In the robuslJlesS literature, !he pa­
rameter estimator is known as ·'proposal 2" (Huber 198 1). 
The spread estimating function can be rewritten as 

g'{exp(log J Y - 8d - r)}- j g1 (v)ql(v) dv, 

wbich expresses tbe spread equation in the form of a loca­
tion equation. Consideration of the function g1(exp(x)}­
f g1 (v)ql(v) dv suggestS that we s implify tlte procedure fur­
ther by replacing it by the •nuch simpler function 9 with 
c = 2 to increase the efficiency of spread est imation. This 
is in accordance with the procedure developed by Welsh 
(1996). 

Tbe response and spread surfaces, €) , (z) and e, (z), for 
the lung cancer mortality data are shown in Figures 3a and 
3b as surface plots and as contour plotS. After some experi­
mentation, the bandwidth matrix was restricted to be of the 
form h diag(2, I), and then h was chosen empi rically as in 
Section 3, with a backfilling modification to the basic al­
gorithm (2) described in Section 5. But the results reported 
here are stable over a range of bandwidth matrices, tlte main 
effect of substantial increases in bandwidths being to reduce 
the ripple and peak in the response and spread surfaces at 
high ages and early years. Local linear fi tting was used in 
Figures 3a and 3b; local quadratic estimates are similar bm 
with somewhat higher peaks in the spread surface. It is 
clear that the logit of mortality increases nonlinearl y with 
age class and that there is at best a very weak year effect 
that shows increased mortality io recent years in the highest 
age classes. The spread surface shows a ridge of high vari · 
ability in age classes 2{)-4() with generally lower variability 
at both extremes. A dclta-metbod analysis shows that this 
ridge is due to the logit transformation (wJth !be .5 offset) 
and tbe near-Poisson variability of R; see the discussion in 
the final paragraph of this section, There is also high vari­
ability in the highest age classes for the earlier years. Tbis 
is also the only evidence of a year effect on t11e variabil­
ity. Tbe roughness o( tbe spread surface is due mostly to 
variation in th.e values of N . 

We also modeled tbe variance of Y as a function of N 
and !he mean of Y. Let N ' be the value of N for a given 
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age class and year divided by the mean of all the N's. Let 
e· be the "population size-adjusted residual," defined as the 
residual for that age class and yeartimes (N ' )112 . Figure 3c 
plots t.be absolute values o f the e·s versus the fitted values. 
Figure 3d plots a local linear fi t to the data in 3c. To estimate 
t.be spread for a given age class aud year, one divides the 
fit ted value from 3d by ( N' ) 111 . The peak in 3d corresponds 
to the r•dge in 3a. 

As mentjoued earlier, if we assume that 

var(R) = ( 105 / N )E(R), (JO) 

t.ben this ridge can be explained by a delta-method calcula· 
tion showing that 

to• + 1 $ 

SO{Y)"' (E( R ) + .S)(W- E(R) + .5) {10 E(R)/N}. 

(ll) 

We checked (10) by dividing the residuals by the right side 
of ( II) , squaring, and then smoothing these squared "stan· 
dardized residuals" against the litted values and N . There· 
suiting surface, not included here to save space, was nearly 
constantly equal to I, supporting (10). 

4.3 Variance Functions and Overdispersion 

Problems involving count and assay data are often con· 
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cerned with overdispersion. For example, if Y = ( Y, X ) , 
then the mean of Y might be modeled as 1'(8, X ) and its 
variance might have the form 

var(YIX) = exp!O, + 8, log{J"(I'1, X)}l. (12) 

Here we assume that the mean function is properly detec· 
mined so that/3 is to be estimated parametrically. [f 8z = l 
and 81 > 1, then we have overdispersion relative to the 
Poisson model, whereas 82 # 2 means a depanure from 
the gamma model. [n general, we are asking how the vari· 
ance function depends on the logarithm of the mean. For 
given Ol, /3 is usually estimated by general.iz.ed least squares 
(quasi-Ukelihood). Consistent estimates of 13 ean be ob· 
tained usmg quasi-likelihood assuming that 02 is a fixed 
value, even if it is noL This well -known fact is often re· 
ferred to opc.rationally by saying that (12) with fixed 01 is 
a ··workmg" variance model (Diggle et al. 1994). 

The problem then is one of vanance function estimation, 
where if q(l3 , X ) = log{ iL(6, X)} , then we believe that the 
variances are of the form exp[6{11(8,X)}I for some func· 
tion eo. Our Object ive now is to fine:! a suitable estimator 
of <3 (-). In a population the variance is exp(e), which is 
estimated using the estimating func11on 

¢( Y, e , 8 ) = (Y - p.(B,Xl} 2 exp( - e ) - 1. 031 

Estimating e as a function of Z = 11(B, X ) is accomplished 
by using (2) in the obvious manner, namely 

n 

0 = L w(Z., zo)!/! 

X { Y, t bJ(Z, - zo)j, a} G~(Z,- zo, U), (14) 
j•O 

with ¢ given by ( 13). Because B estimates 13o at parametJ'ic 
rates, asymptotically there i.s oo effect due to estimating 6o 
on the estimate of S(z). 

We applied this analysis to three datasets, the esterase 
assay and hormone assay datasets described by Carroll 
and Ruppert (1988 , chap. 2) and a simulated dataset with 
E>{11(8,X)) = 1.6 + sin{•l(/3, X)}, usi11g the same Xs and 
estimates of /3 as in the esterase assay. The model for the 
mean 10 all three cases is linear. Previous analyses sug­
gested that the esterase assay data were reasonably well 
described by a gamma model, with the hormone assay less 
well described as such because 92 "' 1.6. We used 01 = 2 
as our working vananee model to obtain B for these three 
datascts. We fit local linear models weighted using loess 
with the span allowed to take on values between .6 and 
2.0 and estimated by the techniques of this article. Fig· 
ure 4 compares the fitted variance functions divided by the 
gamma model variance function and rescaled on the hori· 
zontal axis to fit on the same plot. Through the range of the 
data, l.he deviation from the gamma function is onl y a factor 
of about 35% for the esterase assay, indicating a good fit for 
U•is model. The hormone assay deviates from the gamma 
model somewhat more, with variances ranging over factors 
of two. Both have esumated spans greater t.ban l.O, indieat· 
ing that the linear model is a reasonable fit; the hormone 
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data simp I y have a value 82 < 2. The simulated data show 
the sine-type behavior from which tbey were generated. aod 
a much smaUer estimated span (. 7). 

4.4 Partially Parametric Models 

Tbe overdispersion example in Sec. 4.3 contained a para­
metric pan Bo and a nonparametric part 8 (-) . The ·•work­
ing" estimatiOil method used for tbe parametric part was 
chosen so tbat B was consistem and asymptotically nor­
mally distributed with variance of o rder n-l eve .. if e o 
was completely misspecified. In o ther problems, an estima­
tiOll method for 80 is chosen whose validity depends on 
correctly specifying o r consistently estimating e (-). An al­
ternative estimator for 13() g iven a version eo is to solve 
in B tbe estimating equation 0 = L~.1 A{Y ., B,El(·)}. The 
natural approach to use then is tO solve the equations 

" 
0 = I>(Y,,S , El(-)} (IS) 

i= l 

and 
~ 

0 = L w( Z.,"') ¢ { Y., I3, e(-)}G~(Z, - zo) (16) 
•=I 

fo t' "0 = z, , .. . ,Z", where e {zo) = L~.o b,(Zt-zo)i. 
As we bave described it. solving ( ISH 16) simultaneous! y 

is a form of backfilling. One fixes the current estimate of 
llo and obtains an updated c>timatc of e o . reverses the 
process, and then iterates. Asymptotically valid inferences 
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for EJ(z) are obtained using only (16) and assuming that t3 is 
fixed at its estimated value. Asymptotically valid estimate.~ 
of the covariance matrix of B remain an open problem. 
although in some cases they can be derived (see Carroll, 
Fan, Gijbels, and Wand 1997 for single-index models and 
Severini and St.aniswallis 1994 for partial linear models). 

The backfitting algorithm has a well-known feature. We 
confine our remaiks to Local regression, but these remarks 
hold for other types of fiuing methods as well (Hastie and 
Tibshirani 1990, pp. 154--155). Specifically, in Local linear 
regression, if the bandwidth is h, theo n 112 (B - 13()) has 
variance of o rder l bot has bias of the order (flh' )'12, so 
that get ting an asymptotic normal Limit d istribution with 
zero bias requ ires that nh4 -> 0. Unfortunately, "optimal" 
kernel bandwidth selectors for given 8 arc typically of the 
o rder h ~ n115 , in which case nh' -> oo and the bias in 
me asymptotic distribution of B docs not disappear. If one 
is even going to worry about lhis problem (we know of no 
commercial program that does, nor of any prac.tical exam �

ples in which the bia.s problem is of real concern), then the 
usual sohu ion is to undersmooth in some way. 

Some problems allow for a somewhat more elegant so­
lution to the bias problem, specifically when ( I SHI6) are 
formed as the derivatives of a single optimization cri terion. 
None of the estimators that we have described in this article 
has this form. Optimization of a single critetion basically 
m~ns a likelihood specification. When th is occurs, non­
parame.llic likelihood as deseribed by Severini and Wong 
(1992) can be applied 10 ma.ke the bias problem disappear, 
at least in principle, as follows. Let tbe data likelihood be 
! ( B , e (-) ). For fixed B , let e ('. B) be the local estim.ator de �
rived by maximiting the U.kelihood in e with B fixed. Non· 
parametric LikeUhood maxirniu.s l( B, El(·, B )} as a function 
of 6 . In contrast, backtitting fixes the current 0 (-. 13) and 
updates tbe estimate of 13 by maximizing l{ .:t, e ( -, 8 ) } io 
"'· Nonparamctric likelihood can be more diJ)jcult tO im­
plement than backfitting, especially in our context when 
eo is multivariate. But it is C.1Sy lO implement if e is 
scalar, Y = ( Y, X , Z ), and Y follows a GLM with mean 
f ({e ( Z) + X ' 6 }. (See Severini and Staniswallis 1994 for 
the o rdinary kernel regression case.) 

5. MODIFICATIONS OF THE ALGORIT HM 

The meiJlod suggested in (2) requires that all components 
of e (zo} be estimated simultaneously. Tltis may be uode· 
sirable in some contexts. For example, when estimating a 
variance function nonparameuically, one often would first 
estimate the mean function, say e ,(z), form squared resid­
uals {Y - El t(Z1)}', and tben regress these squared resid· 
uals on Z nonparametrically tO Obtain El2(zo), the variance 
estimate at a given zo. In th is context strict application of 
(2} is d.i tferen~ because it is based on squared pseudoresid­
uals { Y - L~~o 9 fJl(z.,)(Z1 - zo)' / j ! } ' . In addition, one 
would often use different tuning constants at each step, but 
{2) assumes use of the same tuniog constanL 

Tbe aforementioned example, as well as the nonpara· 
metric calibration problem, are examples or a mult istage 
process, where components of 8 0 arc estimated fi rs! and 
then plugged into the estimating equation for further com-
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ponents. Such problems are easi ly handled by a slig)lt mod•
ification of our approach.. 

We illustrate the idea in a two-stage context. so that 
e = (EI, ' e ,). By the tWO-stage process we mean tbat the 
first component can be estimated without reference to the 
second, with weight function w 1 and estimating functiou 
.p1, so that we solve 

x { Yt.; b1,t(Z,- zo)1 } G; (z,- zo). (1 7) 

Tb.eestimate is S1(zo) = bo,,(zo). 
Attbe second stage there is a second weight function w2 

and a second estimating function .P,, and we solve 

n 

0 = I.; w,(Z.,zo).P, 
!at 

X {v .. e ,(Zi}, t bj,l(Z, - zo)'} G~(Z. - Z<l) · (18) ,.o 
The estimate is e,(zo) = bo,>(zo). 

The asymptotic covariance matrix of {a, (zo), e,(zo)} 
defined by (17Hl8) is estimated by applying the sandwich 
method to the estimatiog equation 

n [ w1(Z;,Z<J).Pt { Y.,:L;. o b1,1( Z;- zo)f} l 
0 = 'L w,(Z;,zo).P> { Y1,:Lj.0 bJ,, (Z, - zo)f, 

•• 1 L~=O b,,>( Z, - -'<))'} 
x G~(Z, - zo). (191 

If c,. . = G. ( z1 - Z<l) G~(Z1 - zo) . the sandwich formulas 
are 

and 

I 
wf(Z.,zo)cp.,® ~.t .J,;1 l 

Cn(Z<l) = t w, (Z,,Z<l)W>(Z.,'<))Cp o~ .j,!,.j,h 
•=I Wt ( Z., zo)w,(Z,, Z<l)C•·! 0 of;;2¢:, ' 

w~( Z., Z<l )c •. ; ® .p,2.p,2 

where x. is made up of the elements Xv~ for j,k = 1, 2. In 
practioe, one might replace :L:.o b J,k( Z, - Z<l)' by e~(Z,). 

Thning constant estimation in multistage problems also 
may oeed adjustment. For example. using kemels witb. 
bandwidth h~ at stage k, for odd-powered polynomials the 
bias at stage 1 is of course of tile order hf+ 1, whereas at 
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stage 2 it is Ct(Z<l)hf+' +c,(zo)hJl+t . Standard EBBS can be 
used to estimate h1 at stage l , whereas in general estimat•
ing lv, requires a two-dimensional EBBS. But in both the 
variance function problem and nonparametric calibration, 
the effect on 9 2 due to estimating 9 1 is nil asymptotically, 
and standard EBBS can be used at each stage without mod•
ification . 

In general problems, via back fitting one can use. different 
weight functions and tuniog constants to estimate each com•
ponent of C3(z). For example, one might iterate between 
solving tbe two equations (with estimated tuning constants) 

and 

x .;,, {v .. e 1cz,), f b,,,(z,- ><lP} G~(z,- Z<l}· 
J=O 

Tltis is the procedure that we used in the lung cancer mor•
tality example. 

We conjecture that the asymptotic variance of these back•
titted estimates can be estimated consistently by applying 
the sandwich formula to the equations 

0 = t w,(Z.,Zo) 
l= l 

and . 
o = I.; w,( Z.,zo) 

i=l 

x .;, , { Y., E b,,,(Zt- zo)i, E bj,,(z ,- Z<l)' } 

X G~(Z; - '<)) . 

This idea can be shown to work in the case of robust es•
timation of a mean and varianoe fu nclion, as in the lung 
cancer mortality example. 

6. DISCUSSION 

We have exteJ1ded estimating eq_uation theory to cases 
where the param&et: vecior 0 is not constant but tather 
depends on a covariate Z. The basic idea is to solve tb.e 
estimating eq_uation locally at each value of z using weights 
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that for the itb case decrease with the distance between 
z and the observed Z, . The weights depend on a tuning 
parameter; for example, 2 bandwidth h. A suitable value of 
h can be found by minimizing an estimate of the MSE. The 
Iauer if found by estimating variance using the .. sandwich 
formula" (or more efficient modifications described earlier) 
and estimating bias empirically (as in Rup~·t 1997). 

We have appli ed this methodology tO nonparametric cal­
ibration in nutritional studies, robust modeling of lung can­
cer mortality rates, and overdispersion. We have focused 
on local weighted polynomials. Regression spliues could 
also be used in this comext aud appear to have consider­
able promise. Given a set of knots ({" . . . ,~.).a regression 
cubic spline has the form 

� 
= hD + b l% + blz2 + b3z3 + L b,+3(Z- (,)~. 

j=l 

where v+ = v if v > 0 and equals 0 otherwise. If regression 
splines are used, then (2) becomes 

n 

o = :L: .P(Y, 0 (Z., 1Jo, . .. , hp+3)}c .,,(Z,), 
� = > 

where G~ .• (z} = (1, .>, z2
, z3 , (z-~t)~, ... ,(z -~.lH· The 

interesting issue here is the sdection of the knots, a prob· 
lorn of considerable interest in the broad context and one on 
which we are currently working for estimating functions. 
The regression splines outlined eadier may have an advan· 
tage, because the knots can be chosen on a component wise 
basis. An alternative to kno> selection would be tO penalize 
the knot coefficients, as Eilers and Marx ( 1996) and Rup· 
pert and Carroli (1997) have suggested for oonparametric 
regression. 

The associate editor has noted that the estimating equa­
tion (2) is implicitly adapting to the component of e (z) 
that has the least amount of smoothness. In principle, one 
could allow different bandwidths for each component, or 
even different orders of the local polynomial, and the sand· 
wich variance estimator would still apply. Also, in princi­
ple, the EBBS methodology can be used to estimate many 
different bandwidths. It is not at all c lear to us, however, 
how to decide which components of 0 (z) are more or less 
smooth. 

Finally, a referee has noted that local polynomial meth· 
ods need uot be range preserving. For exantple, consider 
the case where the Ys are al l positive and thus the regres· 
sion function of Y on Z is necessarily positive. Even in 
ordinary nonparametric local linear kernel estimation, the 
fitted regression function need 110t be positive, whereas for 
local averages the fi tted funct ion will be positive. In many 
cases, appropriate reformulation of the model will preserve 
ranges. For example, consider binary regression. If one runs 
an ordinary local Gnear regression of Y on Z ignoring the 
binary nature of Y, then it may happen tbat fitted proba· 
bil.ities do not fall in tbe unit interval. But if the binary re. 
gression is based on the likelihood seore (3) where f.l is the 
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logistic function (i.e .. local logistic regression as in Pan et 
al. 1995), then the fitted probabilities will necessarily fall 
in the unit interval. Similarl y, for positive Ys, one could 
use the local model where the log of the mean function is 
a polynomial. 

APPENDIX; ASYMPTOTICS 

A. 1 Bias and Vanance for Local Polynomial Estimauon 

Here we give a. brief deriva(Jon of bias and vari~mc.e formulas 
fo:- local poly•tomial estim:Hion of ordet p in the intcdor of the 
suppon of Z T11e methods use to derive tbe calculations roughly 
parallel those of Fan <1 :>J. (1995) and Ruppel! and Wand (1994). 
The regularity conditions necessary include 1he smO()(hllC.SS condi· 
uons on 0 (:) and f�() of Fat1 e< al. (19951, with the smoothness 
condition~ on ?V{ ·} gu3nmteelng that it I.S at least twice eominu­
ously differentiable and the regularity conditions fro•n estimating 
func.Lion theory assuring that a co11sistent sequence of solurions to 
(2) exists. A use.ful StmpiJfic:atjon is co lee che tmknown pa£amere.rs 
be a, = l,,e bl(zo)/1! (see tile appelldlx of Pan et al. 1995). 

F<Jr any p x q ma(rix C = (c1, • • • ,c()t, where c1 is a q x 1 
VCC(()r, define vee( C) "'"' {cL .. I cnt. Define J.'K(r) -= 
f r K(z ) d% and "fK(r) = J z' K1(z) d% . As.ume that K is sym· 
mc:tcic about 0, so tim I'K ( r) = "fK(r) = 0 if r is odd 

Let C(zo) = B(,P{Y, e (=o)}.P' (Y, e (=o )} IZ = zol alld 
B(zo) = E!x(Y, El(zo)}IZ = zo[, where x( Y, v) = (aja v ' ) 
.p(Y , v). Define 

L,( .. , .. . , a,) . 
= n-• L K. (z,- >o) 

x vec[c, .• (Z, - ,..) 0 ¢' { Y:, t.a1(Z,- .zo)' fh' } ] , 

where G,,,(v) = ( t, vf h, v 1 fh', ... ,v�Jh')' . We are sotvmg 
0 = £:..(3,, ... ,a,), with a1 = hi€JCII("' )Ii' By • Taylor scrie.~ 
ex:pansion, we tind thal (ht e.sumates are asymptoticall y equivalent 
10 

where 
/ ) 

B.(.zo) • a(~ ... ,a~) Ln(ao , . ,a,). 

It is h.elp{ul 10 k~ep jn nund «he (oltowtng aspect: 

C.(ao . .. , a,) 

= n-' L K•(Z, -.to) 
<-I 

X 

1/J { v,, L~-o a,(Z,- .zol' j hi } 

((Z, - J:o)/h } .P { Y., L:~.0 a1(Z,- .zo)' Jhi} 

(A I) 

(A.2) 
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Also DOle that the as are vecc:ors, of the same le!l&lh as 19 and 
1/J. The calculations are easier to follow if this expanded form is 
= d . 

[t is easjly seen thal 

B.(zo) ~ /zC'<l)(O, (u)0 B (zo)} , (A.Jl 

where O,(J.) is the (p + I) x (p + 1) ma<rix with ( j, k)th element 
p.K(; + k- 2). It is also easily si>own that 

cov(C,(Oo, ... a,)}~ (nlt)-1/z('<ll(D.(-r) 0 C(Z<>)), 

where 0 ,(-y) is the (P+ I) x (p+ I) llllltrix with (J,I<)th element 
' (K(i + /.:- 2). 

Finally, n01e !hat because E [.P(Y , El(Z)I[Zj = 0, 

EC,(Oo , ... ,a,) 

= - j I<,(z - .:o)/nz(YI•l/z(z) 

x ve{ G,,, (z- zol 0 [1/l(y, EJ(z)} 

- .P {Y·t.•l(z-:o)'lh' }]') d.yd.z 

"' - J K,(z- Z<>)fYiz(yjz) /.2(:) 

X ve{ C p,h(> - zo) 0 [~:(y, El(z)} 

x { El( �) - t.(:- zo)'e U>(.to )/i!} ]') dy dz. 

But El( ') -2:~.0(z- zo)le v>(.ro)f;! = (z- zo)•>~et•• ''(zo)/ 
(p + 1)1 + (z- zo)•"e c ... •l(zo )/{p + 2)! + O ((z- zo)•+> J. 
Hence. to terms of order {I + O(h)}, 

EC.n(3o, .. , a,)"' A,.+ A,., 

where 

h,... . J 
=- (p+ k)! K (x) fYI2(YJzo +xh)fz (zo +x h ) 

x vcc(G,,,(x) 0lx (y , El(zo + xh))e<•"l(.:o):z:>+•j')dy dx 

h··· J =- (~ + k) ! K (x)!z (zo + xh) 

x vecjG,,,(x) 0 (B ("' + hx)e <•••1(zo)x"'J'j d.z. 

Clearly, 

A 2,"' -h;;~~."") v•.c{O~(p+ 2)0 {B(zo )e '"''1(zo)}'), 

where D.(L) � (P.K( L ),P.K( L + 1), .. . ,p.K(L + p))'. If we 
define Q (z) = fz(z) B (>) with first derivative Q(ll(z), then it 
also follows that 

JOtJtnal of rho Amt f.can StatiStiCal Association, March f998 

® {Q (ro + h.J;)e <• " 1(zo) ) 'l d.z 

"' - "'(:·~·~\~) veciD .(p + 1) ® {B(Z<~)e1 .. ' 1(;o,))'l 

h""' J , - (p + 1)
1 

K(x)vecjx"' G p,o(x) 

0 {Q''1 (zo)e<•+~>(zo)}'l dz 

hp+l 

"' - (p + l)' vec{D.(p + t) 0 {/z(zo) B(zo)e <••'>(zo)}') 

- h,.., vecjD (1'+2)0 { Q1' 1(zo)e 1• •'1( .. ))'}. 
(p+()l " 

Thus we have shown that asymptotically, 

bias(~,a~ •. . . ,~ )' 

= h•• ' (O.(!') 0 B(zo)} -• 

x veciD .(p+ l)® {B (zo)e <•••>(zo)}'l/(p+ I )! 

+ h0+2 (0,(~<) 0 B(zo)}-' s (zo) + O(h'+ 3), (A.4) 

where 

s(zo) 

vee[ o .( v + 2) 

{ 
B (zo)e <,..'l{zo) Q"l(zo)e <•• l)(;:o) }'J 

0 (P + 2)1 + t.{zo)(p + l)! · 

The variance is 

{nh/2 (zo)}-' ( O.(P) 0 B (:o) } - � 

x {O,(p) ® C (>o)}(D.(p) 0 B (ao)} - • {I + o(l )}. 

The cnly thing left to show is that if pis even, then the bias is of 
order O(~t••')-th.at is, the fi rst element in 

equ>Js 0, wl\ich is clearly the case bec~use p.g ( r·) = 0 if r cs odd . 
!'or zo on the boundary of the support of Z, the terms of order 
hP+ 1 dominate, and the bias is of that order. 

h is use.ful fof tht-ore:ticat purposes to note Lhat we have actually 
shown the following. Denote (A.2) by J'(zo), (A.J) by T (zol and 
(A.4) by S (zo). Then we have shown that 

( 
.. -3() ) 

: • "'S(zo) - {T(zoW'.I'(zo). 

a, - ap 

(r\5) 

Remark. In the application of paramernc eS:(im3tmg equarions. 
unless che e-.quarions are Line-ar tn 1he paramerer ch.ere is typ1cally a 
bias of order n. - I, whtch., however, is neghgtble compared to the 
standard deviation. Similarly. there will be a bias of order (n.h)-1 

here that stems from lenns ignored in Lhe linearizing apprOXJ· 
mouio11 (A.l). Because h is chosen so thai the squaTtd bias from 
smoothing is of order (nh)- ', bias terms of order (nh)-1 are 
ignored here. (However, see Rupper~ Wand, Holsr, and Hos.sjer 
1995 for a method of oort<eting the order ( 'til)- ' boas due to 
estima1ion of the mean when ;: variance funcricn i.s esumated.} 
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A2 Tt>e Sandwich FQrmula 

ll<re we sl<<tcll a jllSfificauon for tn< <andwieh formul• (6)•

(7). wmg the notation established prevoously in thu Apper.dix. 
Weco•lhnue 10 work w1th the p3r:unetcnuuon (no, .. , o,). Not· 
on& thJI B. (...,) in (A. I) equals n"1B,(:o) i ll (7). it sulli= to 

ilhow 11\at ,.-• C,(...,) defined'" (6) ha< limitin& eovariance m•· 
<nx (r>h)"1 f•(:o){D, (-y) 0 C (>o)}. which os easily established . 
ThiS compltles the a rgumenL 
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SPATIALLY-ADAPTIVE PENALTIES FOR SPLINE FITTING 

DAVID RUPPERT1* AND RAYMOND J. CARROLL 2 

Cornell University and Texas A & M University 

Summary 

The paper studies spline fitting with a roughness penalty that adapts to spatial heterogene•
ity in the regression function. The estimates are pth degree piecewise polynomials with 
p - 1 continuous derivatives. A large and fixed number of knots is used and smoothing is 
achieved by putting a quadratic penalty on the jumps of the pth derivative at the knots. To 
be spatially adaptive, the logarithm of the penalty is itself a linear spline but with relatively 
few knots and with values at the knots chosen to minimize the generalized cross validation 
(GCV) criterion. This locally-adaptive spline estimator is compared with other spline esti•
mators in the literature such as cubic smoothing splines and knot-selection techniques for 
least squares regression. Our estimator can be interpreted as an empirical Bayes estimate 
for a prior allowing spatial heterogeneity. In cases of spatially heterogeneous regression 
functions, empirical Bayes confidence intervals using this prior achieve better pointwise 
coverage probabilities than confidence intervals based on a global-penalty parameter. The 
method is developed first for univariate models and then extended to additive models. 

Key words: additive models; Bayesian inference; confidence intervals; hierarchical Bayesian model; 
regression splines. 

1. Introduction 

In this paper we study a variant of smoothing splines that we call penalized splines or, 
following Eilers & Marx (1996), p-splines. What is new is that we allow the penalty to vary 
spatially to adapt to possible spatial heterogeneity in the regression function. This spatial 
adaptivity can result in improved precision and also better confidence bounds on the regression 
function. 

Suppose that we have data (xi, Yi) where the Xi are univariate, 

Yi =m(xi)+Ei, 

m is a smooth function equal to the conditional mean of Yi given Xi, and the Ei are inde•
pendent mean zero errors with a constant variance a 2 . The extension to additive models is 
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straightforward and is mentioned in Section 7. To estimate m we use a regression spline 
model 

K 

m(x; {J) = f3o + fhx + · · · + {3pxP + L /3p+k(x - Kk)~, (1) 

k=i 

where p:::: 1 is an integer, {J = (f30, ... ,{3p,/3p+i·····f3p+K/ isavectorofregression 
coefficients, (u)~ =uP I (u :::: 0), and KJ < · · · < KK are fixed knots. 

When fitting model (1) to noisy data, care is needed to prevent overfitting because that 
causes a rough fit tending interpolate the data. The traditional methods of obtaining a smooth 
spline estimate are knot selection, e.g. Friedman & Silverman (1989), Friedmao (1991) and 
Stone et al. (1997), and smoothing splines (Eubank, 1988; Wahba, 1990). With the first set of 
methods, the knots are selected from a set of caodidate knots by a technique similar to stepwise 
regression and then, given the selected knots, the coefficients are estimated by ordinary least 
squares. Smoothing splines have a knot at each unique value of x aod control overfitting by 
using least squares estimation with a roughness penalty. The penalty is on the integral of the 
square of a specified derivative, usually the second. The penalized least squares estimator 
has the form of a ridge regression estimate. Luo & Wahba (1997) proposed a hybrid between 
knot selection and smoothing splines- they follow knot selection by penalized least squares 
estimation. Recently, there have appeared Bayesian methods that yield weighted averages of 
(essentially) least squares estimates. The averages are over the sets of possible knots, with 
a set's weight given by the posterior probability that the set is the 'true set' (Smith & Kohn, 
1996; Denison, Mallick & Smith, 1998). 

In this paper we use a penalty approach similar to smoothing splines but with fewer knots. 
We allow K in (1) to be large but typically far less than n. Unlike knot-selection techniques, 
we retain all candidate knots. As with smoothing splines, a roughness penalty is placed on 
{/3p+klf=1 which is the set of jumps in the pth derivative of m(x; {J). We could view this 
as a penalty on the (p + 1)th derivative of m(x; {J) where that derivative is a generalized 
function. Eilers & Marx (1996) developed this method of p-splines, though they have traced 
the original idea to O'Sullivan (1986, 1988). Eilers and Marx use equally-spaced knots and 
they use the B-spline basis, whereas we use sample quantiles of x as knots and the truncated 
power function as basis. Also, they consider a somewhat more general class of penalties than 
we need here. 

Because smoothness is controlled by a roughness penalty, once a certain minimum num•
ber of knots is reached, further increases in the number of knots cause little noticeable change 
in the fit given by a p-spline. In applications we have seen to actual data, use of between 5 
and 40 knots works well. In some difficult problems used in simulation studies, more than 40 
knots are needed; see Section 5. However, in the example of that section, use of more than 80 
knots is not better thao use of 80 knots, and 80 knots is still far less than the number of knots 
used by a smoothing spline which has the sample size of 400. We recommend letting Kk be 
the k/(K + 1)th sample quaotile of the x;, which we call 'equally-spaced sample quantiles'. 

We treat the number of knots as a user-specified tuning parameter. Although the exact 
choice of the number of knots is often not crucial, for each dataset there exists a particular 
minimum number of knots needed to obtain a good fit. Therefore, some users may want a 
completely automatic algorithm, aod we propose such a procedure in Section 3. 
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We define ft(a) to be the minimizer of 

n K 

L (y; - m(x; fl) )2 + L a(Kk){ J ;+k, (2) 
i=l k=l 

where a(·) is a penalty function. Eilers & Marx (1996) use a constant a; that is, their a is 
the same for all knots, though its value depends on the data. A constant penalty weight is 
also used in the smoothing spline literature. We call a spline fit with a constant value of a a 
global-penalty spline. Local penalty splines are those with a varying across the knots. 

A single penalty weight is not suitable for functions that rapidly oscillate in some regions 
and are rather smooth in other regions. In a simulation study, Wand (2000) shows that splines 
having a single smoothing parameter are inferior in terms of mean squared error (MSE). In 
that study, p-splines do not compete with knot-selection methods for regression spline fitting 
for regression functions with significant spatial inhomogeneity. 

Another problem with having only a single smoothing parameter concerns inference. 
Smoothing splines and p-splines are both Bayes estimates for particular priors. A single 
smoothing parameter corresponds to a spatially homogeneous prior. For example, for a p•
spline, the prior is thatthe {fJpH}f=1 are independent and identically distributed (iid) N (0, r 2) 
where r 2 equals a 2 ja ; see Section 4. The polynomial coefficients, fJo, ... , {Jp, are given 
an improper prior, uniform on p + 1 dimensional space. Such priors on {fJpH}f=1 are not 
appropriate for spatially heterogeneous m. Consider confidence intervals based on the poste•
rior variance of m(·) as in Wahba (1983) and Nychka (1988). As Nychka shows, the resulting 
confidence bands have good average (over x) coverage probabilities but do not have accurate 
pointwise coverage probabilities in areas of high oscillations of m or other 'features'. 

Section 2 describes our method. Section 3 presents a fully automatic estimator with all 
tuning parameters selected by the data. Section 4 discusses Bayesian inference and Section 5 
gives Monte Carlo simulations. Section 6 contains an example using data from an experiment 
where atmospheric mercury is monitored by LIDAR. In Section 7 we extend our method to 
additive models, and we give final discussion and conclusions in Section 8. 

2. A local-penalty method 

Here is a simple approach to spatially varying a. Choose another set ofthe knots, { K%}~ 1, 
where M is smaller than K and such that {K~ = K1 < · · · < K;& = KK }. The penalty at 
one of these 'subknots' (or 'a-knots'), say Kk, is controlled by a parameter a'k. The penal•
ties at the original knots, {Kk}f=1, are determined by linear interpolation, say, of the penal•
ties at the {Kk}~ 1 . The interpolation is on the log-penalty scale to ensure positivity of the 
penalties. Thus, we have a penalty a(Kk) at each Kk but these penalties depend only upon 
a* = (ar, ... , a,:&)T. Therefore, (a(KJ), ... , a(KK )) is a function of a*. This function is not 
derived explicitly but rather is computed by using a linear interpolation algorithm; we used 
MATLAB's built-in linear interpolator. One could, of course, use other interpolation methods, 
e.g. cubic interpolation. If linear interpolation is used, then log(a(·)) is a linear spline with 
knots at {K%}~ 1 . 

Let Y = (y,, ... , Yn) T and X be the 'design matrix' for the regression spline so that the 
ith row of X is 

X;= [1 x; ·· · xf (x; -KJ)~ ··· (x; -KK)~]. 
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Let D ( ot*) be a diagonal matrix whose first ( 1 + p) diagonal elements are 0 and whose 
remaining diagonal elements are a (KJ ), ••• , a (K K ), which depend only on ot*. Then standard 
calculations show that P<ot*) is given by 

This is a ridge regression estimator that shrinks the regression spline towards the least squares 
fit to a pth degree polynomial model (Hastie & Tibshirani, 1990 Section 9.3.6). 

The smoothing parameter ot* = (a~, ... , a1t) can be determined by minimizing the 
generalized cross validation statistic 

* IIY-X P<ot*)ll2 

GCV(ot ) = (1 - df(ot*)/n)2 . 

Here 
(3) 

is the degrees of freedom of the smoother which is defined to be the trace of the smoother 
matrix (Hastie & Tibshirani, 1990 Section 3.5). The right-hand side of (3) is suitable for 
computing because it is the trace of a matrix whose dimension is only ( 1 + p + K) 2 . 

A search over an M -dimensional grid is not recommended because of computation cost. 
Rather, we recommend that one start with a~, ... , a1t each equal to the best global value 
of a chosen by minimizing GCV. Then each a'k is varied, with the others fixed, over a one•
dimensional grid centred at the current value of a;. On each such step, a'k is replaced by the 
a-value minimizing GCV on this grid. This minimizing of GCV over each a'k is repeated a 
total of Nuer times. Although minimizing GCV over the a; s one at a time in this manner 
does not guarantee finding the global minimum of GCV over a~, ... , a1t, our simulations 
show that this procedure is effective in selecting a satisfactory amount of local smoothing. 
The minimum GCV global a is a reasonably good starting value for the smoothing parameters 
and each step of our algorithm improves about this start in the sense of lowering GCV. Each 
a'k controls the penalty only over a small range of x, so the optimal value of one a'k should 
depend only slightly upon the other a'k s. We believe this is the reason that our one-at-a-time 
search strategy works effectively. 

3. A completely automatic algorithm 

The local-penalty method has three tuning parameters: the number of knots K, the 
number of subknots M, and the number of iterations Nuer. The exact values of the tuning 
parameters are not crucial provided they are within certain acceptable ranges. The crucial 
parameter is ot* which is selected by GCV. However, users may want a completely automatic 
algorithm which requires no user-specified parameters, and which attempts to ensure that the 
tuning parameters are within acceptable ranges. It must choose tuning parameters that are 
large enough to obtain a good fit but not so large that the computation time is excessive. 
(Overfitting is not a concern because it is controlled by ot* .) 

In this section, we propose such a procedure based on the following principle: as the 
complexity of m increases each of K, M, and Nuer should increase. The algorithm uses a 
sequence of values of (K, M, Nuer) where each parameter is non-decreasing in the sequence. 
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The algorithm stops when there is no appreciable decrease in GCV between two successive 
values of (K, M, Niter). Monte Carlo experimentation discussed in Section 5.2 shows that the 
values of Nuer and M have relatively little effect on the fit, at least within the ranges studied. 
However, it seems reasonable to increase Nuer and M slightly with K. On the other hand, 
for a given K, computation time is roughly proportional to M x Nuer• so we avoid Nuer > 2 
and M > 6. 

Specifically, we use this sequence of values of (K, M, Nuer): (10, 2, 1), (20, 3, 2), 
(40, 4, 2), (80, 6, 2), (120, 6, 2). We compare GCV, minimized over «*, using (10, 2, 1) 
and (20, 3, 2). If the value of GCV for (20, 3, 2) is more than a constant C times the GCV 
value of ( 10, 2, 1) we conclude that further increases in the tuning parameters will not appre•
ciably decrease GCV. (In the simulations we used C = 0.98 and that choice worked well.) 
Therefore, we stop and use (20, 3, 2) as the final value of the three tuning parameters. Oth•
erwise, we fit using (40, 4, 2) and compare its GCV value to that of (20, 3, 2). If the value 
of GCV for (40, 4, 2) is more than C times the GCV value of (20, 3, 2), we stop and use 
(40, 4, 2) as the final value of the three tuning parameters. Otherwise, we continue in this 
manner, comparing (40, 4, 2) to (80, 6, 2), etc. If very complex m were contemplated, then 
one could, of course, continue using increasingly larger values of the tuning parameters. 

Note that the final tuning parameter vector is one of (20, 3, 2), (40, 4, 2), (80, 6, 2) and 
(120, 6, 2). The vector (10, 2, 1) is used only to check if one can stop at (20, 3, 2). 

4. Bayesian inference 

The p-spline method has an interpretation as a Bayesian estimator in a linear model. See 
Lindley & Smith (1972) and Box & Tiao (1973) for a discussion of Bayesian linear models. 
Suppose that E1, ... , En are iid N(O, a 2 ) and that the prior on p is N(O, l:(«*)), where 
l:(«*) is a covariance matrix depending on «*. Here N(p,, l:) is the multivariate normal 
distribution with mean and covariance matrix p, and l:. For now, assume that a 2 and «* are 
known. Then, up to an additive function of Y and (a 2 , «*), the posterior log density of p 
given Y is given by 

(4) 

The maximum a posteriori (MAP) estimator of p, i.e. the mode of the posterior den•
sity, maximizes (4). Now let f3o, ... , {3p have improper uniform(-oo, oo) priors and let 
{f3p+k)f=1 be independent with {3p+k having anN (0, a 2 fak) distribution. Then 

l:-1(«*) = a 2 diag(O, 00., 0, a1, 00., aK) (5) 

and the MAP estimator minimizes (2). (More precisely, we let f3o, ... , {3p have anN (0, a~) 
prior and then (5) holds in the limit as O'J -+ oo.) 

The ak are not known in practice. Empirical Bayes methods replace unknown 'hyperpa•
rameters' in a prior by estimates and then treat these hyperparameters as fixed. For example, if 
{akJ~ 1 are estimated by GCV and then considered fixed, one is using empirical Bayes infer•
ence. Standard calculations show that when «* and a 2 are known, the posterior distribution 
of pis 

N(fi(«*), a2{XTX + l:(«*)}-1 ). 

Also, the posterior distribution of m = {m(xJ), ... , m(xn))T is 

N(Xfi(«*), a 2X{XTX + 1:(«*)}-IXT). 
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An approximate Bayes posterior replaces a* and a 2 in (6) and (7) by estimates. If a* has 
been estimated by GCV, one need only estimate a 2 by JIY- XP(&*) 11 2 /(n- df(&*)) where 
df(a*) is defined by (6). Then the approximate posterior distribution for m is 

(8) 

The approximate Bayes 100(1- y)o/o confidence interval for m(x;) is 

m(x;) ± <1>- 1(1- !v)se(m(x;)) 

where m(x;) = X;P(a) is the ith element of the posterior mean in (8), se(m(x;)) is the 
square root of the ith diagonal of the posterior covariance matrix in (8), and <I> is the standard 
normal cumulative distribution function. 

Hastie & Tibshirani (1990) make an interesting and cogent argument against using con•
fidence bands about the regression line; instead they suggest plotting a sample of curves from 
the posterior distribution. By following their recommendation, one gets a much better sense 
of what the true regression curve might look like. Regardless of whether one samples from the 
posterior or looks at confidence intervals (or does both!), a posterior that reflects any spatial 
heterogeneity that may exist gives a more accurate picture of the true function. 

These approximate Bayesian methods estimate hyperparameters but then pretend that 
the hyperparameters were known so they do not account for extra variability in the posterior 
distribution caused by the estimation of hyperparameters in the prior; for discussion see, e.g., 
Morris (1983), Laird & Louis (1987), Kass & Steffey (1989) or Carlin & Louis (1996). Every•
thing else held constant, the underestimation of posterior variance should become worse as 
M increases, because each a;:. is then determined by fewer data and is therefore more vari•
able. As Nychka (1988) has shown empirically, this underestimation does not appear to be a 
problem for a global penalty which has only one hyperparameter. However, the local penalty 
has M hyperparameters. We have found for local-penalty splines that the pointwise approx•
imate posterior variance of m is too small in the sense that it noticeably underestimates the 
frequentist's MSE. 

A simple correction to this problem is to multiply the pointwise posterior variances of the 
local-penalty m from (8) by a constant so that the average pointwise posterior variance of m 
is the same for the global- and local-penalty estimators. The reasoning behind this correction 
is as follows. As stated above, the global penalty approximate posterior variance from (8) is 
nearly equal to the frequentist's MSE on average. The local-penalty estimate has an MSE that 
varies spatially but should be close, on average, to the MSE of the global-penalty estimate 
and therefore also close, on average, to the estimated posterior variance of the global-penalty 
estimator. We found that this adjustment is effective in guaranteeing coverage probabilities 
at least as large as nominal, though in extreme cases of spatial heterogeneity the adjustment 
can be conservative; see Section 5.4. The reason for the latter is that in cases of severe spatial 
heterogeneity the local penalty MSE is less, on average, than the MSE of the global-penalty 
estimate. Then, there is an over-correction and the local penalty MSE is overestimated by this 
adjusted posterior variance. The result is that confidence intervals constructed with this ad•
justment should be conservative. The empirical evidence in Section 5 supports this conjecture. 
In that section, we refer to these adjusted intervals as local-penalty, conservative. 

Another correction would be to use a fully Bayesian hierarchical model, where the hyper•
parameters are given a prior. Deely & Lindley ( 1981) first considered such Bayesian empirical 
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Bayes methods. An exact Bayesian analysis for p-splines would seem to require Gibbs sam•
pling or other computationally intensive techniques. Given the number of parameters involved 
and the model complexity, an accurate Monte Carlo Markov chain analysis (MCMC) could 
take days or weeks of computer time. In contrast, our algorithm with the adjustment above 
can be computed in a matter of seconds. 

There are intermediate positions between the quick ad hoc conservative adjustment just 
proposed and an exact fully Bayesian analysis. One that we now describe is an approximate 
fully Bayesian method that uses a small bootstrap experiment and a delta-method correction 
adopted from Kass & Steffey's (1989) 'first order approximation'. (Kass and Steffey con•
sidered conditionally independent hierarchical models, which are also called empirical Bayes 
models, but their ideas apply directly to more general hierarchical Bayes models.) 

The Kass and Steffey approximation is applied top-splines as follows. Let m; = m(x;) = 

X; {:J. The posterior variance of m; calculated from the joint posterior distribution of ({:J, «*) 
and by a standard identity is 

var(m;) = E( var(m; I «*)) + var (E(m; I «*) ). 

E(var(m; I«*)) is well-approximated by the posterior variance of m; when «* is treated as 
known and fixed at its posterior mode (Kass & Steffey, 1989). Thus, var(E(m; 1 «*)) is the 
extra variability in posterior distribution of m; that the approximate posterior variance given 
by (8) does not account for. We estimate var(E(m; I«*)) by the following three steps and add 
this estimate to the posterior variance given by (8). 

1. Use a parametric bootstrap to estimate var(log(&*)). (Here the log function is applied 
coordinate-wise to the vector «* .) 

2. Numerically differentiate XP(«*) with respect to log(«*) at«* = &*. We use one•
sided numerical derivatives with a step-length ofO.l. 

3. Put the results from points 1 and 2 into the delta-method formula: 

( axP<«*))T , (axP<«*)) var (E(m; I «*)) ~ var (log(«*)) . 
a log(«*) a log(«*) 

(9) 

When (9) is added to the approximate posterior variance from (8), we call the correspond•
ing confidence intervals 'local-penalty, corrected'. Since the correction, (9), is a relatively 
small portion of the corrected posterior variance, it need not be estimated by the bootstrap with 
as great a precision as when a variance is estimated entirely by a bootstrap. In our simulations, 
we used only 25 bootstrap samples in step 1. 

In the simulations of the next section, the local-penalty, conservative intervals are close 
to the more computationally intensive local-penalty, corrected intervals. Since the latter have 
a theoretical justification, this closeness is some justification for the former. 

5. Simulations 

5.1. Mean squared error comparison 

We performed a small Monte Carlo experiment using the 'spatial variability' scenario in 
Wand (2000) so that our results could be compared with his. The x s were equally spaced on 
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[0, 1], n was 400, and the E; were independent N(O, 0.22). The regression function, whose 
spatial variability was controlled by a parameter j , was 

. . (27!'(1 + 2(9-4j)f5)) 
m(x;J)=Jx(l-x)sm x+ 2(9_ 4j)/S . (10) 

We used both j = 3 which gave low spatial variability and j = 6 which gave severe spatial 
variability; see panels (a) and (b) of Figure 1. We used both 40 and 80 knots. When we used 
40 knots, {Kk(j) : j = 1, 10, 20, 30, 40} were the subknots used for the local penalty. For 
80 knots, {Kk(j) : j = 1, 20, 40, 60, 80} were the subknots. In all cases, Nuer was 1 and 
quadratic splines were used. For each of the four combinations of j and K, we simulated 
250 datasets and applied the global- and local-penalty function estimators to each. Figure 1 
shows boxplots of 

log10(RMSE) = log 10 (~ t (m(x;)- m(x;)) 2). 

1=1 

From the results in Figure 1 we can draw the following conclusions. 

• Locally varying penalties are as effective as a global penalty when there is little spatial 
variability. There appears to be little or no cost in statistical efficiency when a local 
penalty is used but not needed. 

• For severe spatial variability, the local-penalty approach is far superior to a global penalty. 
• There is little difference between using 40 and 80 knots except in one important situation. 

If one uses a local penalty and j = 6, 80 knots is significantly better than 40 because 
80 knots allows the spline to track the rapid oscillations on the left, but only if a local 
penalty is used. 

Also, comparing the results in Figure 1 to the results in Wand (2000) for j = 6, the local•
penalty approach is somewhat better than the Bayesian method of Smith & Kohn (1996) and 
the stepwise selection method of Stone et al. ( 1997). However, Wand's simulations used code 
provided by Smith that had 35 knots 'hard-wired' into it (Wand, personal communication). 
With more knots, the Smith and Kohn method could very well be competitive with the local•
penalty method. 

We have also looked at moderate spatial variability (j = 4 or 5). There the local-penalty 
estimator is better than the global-penalty estimator, and again the local-penalty estimator is 
as good as the Bayesian and stepwise methods studied by Wand. 

To compare the local- and global-penalty splines with other smoothers besides those in 
Wand's (2000) study, we used one of the sampling situations in Luo & Wahba (1997 Case 6). 
The regression function there is 

m(x) =sin (2(4x- 2)) + 2exp (- 162(x- 0.5)2). 

We used the same values of a 2 and n as Luo and Wahba (n = 256 and a = 0.3) and used 
equally spaced xs on [0, 1] as they did. Table 1 gives results for local- and global-penalty 
splines, and results of Luo and Wahba for their hybrid adaptive spline (HAS), smoothing 
splines (SS), the SureShrink of Donoho & Johnstone (1995), and MARS of Friedman (1991). 

Denison et al. (1998) tested their Bayesian splines on the same example as Luo & Wahba 
( 1997), but they used n = 200 instead of 256 and reported MSE values instead of medians of 
squared errors. They found MSE values of 0.0096 and 0.0087 for linear and quadratic splines, 
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Figure I. Comparison of global- and local-penalty parameters under low ( j = 3) and severe ( j = 6) 
spatial variability in tbe oscillations oftbe regression function: (a) tbe regression function (solid) and 
one sample (dots) when j = 3; (b) same as (a) but j = 6; (c) boxplots of log 10 (RMSE) for 250 
simulated samples using global- and local-penalty parameters, 80 knots, quadratic splines, and j = 3; 

(d) same as (c) but j = 6; (e) same as (c) but 40 knots. (f) Same as (e) but j = 6. 
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TABLE 1 

Median of squared errors (interquartile range of squared errors) for six smoothers. 
The results for HAS, SS, SureShrink, and MARS are from Luo & Wahba (1997). 

HAS SS SureShrink MARS Local PS Global PS 

0.007 0.006 O.oJ 8 0.007 0.0053 0.0061 
(0.006) (0.003) (0.004) (0.004) (0.0035) (0.0029) 

while for the same sampling situation we found MSE values of 0.0075 and 0.0083 for the 
local- and global-penalty quadratic splines. 

We also tried cubic p-splines with both global and local penalties, but we found cubic 
p-splines somewhat inferior to quadratic p-splines. 

5.2. Effects of the tuning parameters 

We conducted a Monte Carlo experiment to learn further how the tuning parameters affect 
the accuracy of the local p-spline. The regression function (1 0) was used with j varying as 
a factor with levels 3, 4, 5 and 6. The sample size and values of x and a were the same as 
in Section 5.1. There were three other factors: K with levels 20, 40, 80 and 120; M with 
levels 3, 4, 6 and 8; and Nuer with levels 1, 2 and 3. A full factorial design was used with two 
replications for a total of 384 runs. 

The response was log(MSE). First, a quadratic response surface with two-way interactions 
was fitted to all four factors. Then, to look at the data from a slightly different perspective, 
we fitted quadratic response surfaces in the three tuning parameters with j fixed at each of its 
four levels. This second perspective was more illuminating. We found that for j = 3, 4, or 
5, the tuning parameters had no appreciable effects on log(MSE). For j = 6, only the number 
of knots, K, had an effect on log(MSE). That effect was nonlinear - log(MSE) decreased 
rapidly as K increased up to about 80 but then log(MSE) levelled off. 

In summary, for the scenario we simulated, of three tuning parameters only K has a 
detectable effect on log(MSE). It is important that K be at least a certain minimum value 
depending on the regression function, but after K is sufficiently large further increases in K 
do not affect accuracy. 

5.3. The automatic algorithm 

We tested the algorithm in Section 3 that chooses all tuning parameters automatically. As 
just mentioned, it is important that the number of knots, K, is large enough that all significant 
features of the regression function can be modelled. Thus, the main function of the automatic 
algorithm is to ensure that K is sufficiently large. As reported in Section 5.2 the number of 
subknots and the number of iterations did not appear to affect accuracy, but in our proposed 
algorithm we allowed them to increase slightly with K. 

For each of j = 3 and 6 we used the algorithm on 250 datasets, with n = 400 and 
the standard deviation of the E equal to 0.2 as before. Recall that the algorithm can choose 
as the final value of (K, M, Nuer) one of the vectors (20, 3, 2), (40, 4, 2), (80, 6, 2) and 
(120, 6, 2). With j = 3, the first vector was chosen 249 times and the second vector once. 
The tuning parameter vector (20, 3, 2) gave MSE values quite similar to larger tuning param•
eter values, so stopping at (20, 3, 2) was clearly appropriate. With j = 6 the fourth tuning 
parameter vector was chosen 247 times, while the third vector was chosen the remaining three 
times. As we saw in the last section, 80 knots was preferable here to a lesser number of 
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Figure 2. Typical data in the Bayesian inference study; local- and global-penalty splines 
with 95% confidence intervals based on the local spline (dots =data; dashed curve= 

global-penalty estimator; solid =local-penalty estimator; dotted= true function) 
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knots. However, use of 120 knots offerred no improvement over 80 (but was no worse either). 
Therefore, selection of either of the two largest possible values of the tuning parameters, as 
happened in all 250 trials, was the appropriate choice in this situation. 

We conclude that the automatic algorithm can supply reasonable values of the tuning 
parameters when the user has little idea of how to choose them. The automatic algorithm 
is, of course, slower than using a fixed, user-specified tuning parameter vector because the 
automatic algorithm can require up to five fits. This slowness is not a serious problem when 
fitting a few datasets, but it slows down Monte Carlo simulations. Therefore, for the remainder 
of the study we use fixed values of (K, M, Nuer). 

5.4. Bayesian inference 

To compare posterior distributions with and without a local penalty, we used a spatially 
heterogeneous regression function 

m(x) = exp ( -400(x- 0.6)2) + j exp (- 500(x -0.75)2) +2 exp (- 500(x -0.9)2). (11) 

The x; were equally spaced on [0, 1], the sample size was n = 300, and the E; were normally 
distributed with a = 0.5. We used quadratic splines with K = 40 knots and we had M = 4 
subknots, and the number of iterations to minimize GCV using the local penalty was Nuer = 1. 

Figure 2 shows a typical dataset and the global- and local-penalty estimates. The global•
penalty estimate has a small penalty chosen by GCV to accommodate the oscillations on the 
right, but the unfortunate side effect is the undersmoothing on the left. The local penalty re•
moves this problem. Figure 3 shows the pointwise MSE and squared bias of the global-penalty 
estimator calculated from 500 Monte Carlo samples. Also shown is the pointwise posterior 
variance given by (8) averaged over the 500 repetitions. The posterior variance should be es•
timating the MSE. We see that the posterior variance is constant, except for boundary effects, 
and cannot detect the spatial heterogeneity in the MSE. Figure 4 is a similar figure for the 
local-penalty estimator. Two posterior variances are shown, the conservative adjustment and 
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Figure 3. Bayesian inference study: behaviour of the global-penalty estimator- graphs of point•
wise MSE, squared bias, and average (over Monte Carlo trials) posterior variance; the MSE and 
the posterior variance have been smoothed to reduce Monte Carlo variance; the posterior vari•
ance assumes that o:* is known, so the variability in &* is not taken into account (solid line = 
MSE; dashed = squared bias; dashed-and-dotted = posterior variance; asterisks = knot locations) 
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Figure 4. Bayesian inference study: behaviour of the local-penalty estimator - graphs of 
pointwise MSE, squared bias, and average (over Monte Carlo trials) posterior variance; the 
MSE and the posterior variance have been smoothed to reduce Monte Carlo variance (solid 
line = MSE; dashed = squared bias; dashed-and-dotted = posterior variance with conservative 
adjustment; dotted= posterior variance with Kass-Steffey correction; asterisks =knot locations) 

the Kass-Steffey type correction. The MSE looks somewhat different from Figure 3 because 
the estimator adapts to spatial heterogeneity. Also, the posterior variance tracks the MSE 

better than for the global-penalty estimator and the corrected version of the posterior variance 
tends to be a little closer to the MSE than the adjusted version. 
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Figure 5. Bayesian inference study using function (II): pointwise coverage probabilities of 
95% Bayesian confidence intervals for m(x;) using global and local penalties- the proba•
bilities have been smoothed to remove Monte Carlo variability; the local-penalty intervals use 
the conservative adjustment to the posterior variance (solid) and the Kass-Steffey correction 

(dashed-and-dotted); the dashed curve is the global-penalty estimate 
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Figure 6. Bayesian inference study using function (II); expected lengths of 95% Bayesian 
confidence intervals for m(x;) using global and local penalties- the average (over Monte 
Carlo trials) lengths have been smoothed to remove Monte Carlo variability; the local-penalty 
intervals use the conservative adjustment to the posterior variance (solid) and the Kass-Steffey 

correction (dashed-and-dotted); the dashed curve is the global-penalty estimate 
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In Figures 5 and 6 we present the Monte Carlo estimates of the pointwise coverage 
probabilities and average lengths of nominal 95% Bayesian confidence intervals based on 
the global- and local-penalty estimators. These coverage probabilities have been smoothed 
by p-splines to remove some of the Monte Carlo variability. All three confidence interval 
procedures achieve pointwise coverage probabilities close to 95%. Because the local-penalty 
methods are somewhat conservative, the global-penalty method is, on average, the closest to 
95%, but the local-penalty methods avoid low coverage probabilities around features in m. 
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Figure 7. LIDAR data: a global-penalty quadratic spline fit has been added 

6. An example 

The LIDAR (Light Detection And Ranging) uses the reflection of laser-emitted light to 
detect chemical compounds in the atmosphere; see Sigrist (1994). 

A typical LIDAR dataset, shown in Figure 7, was taken from Holst et al. (1996). The 
horizontal variable, range, is the distance travelled before the light is reflect back to its source. 
The vertical variable, log-ratio, is the logarithm of the ratio of received signals at frequencies 
on and off the resonance frequency of the chemical species of interest, which is mercury in 
this example. 

For this example there is scientific interest in the first derivative, m', as well as our interest 
in m itself, because -m'(x) is proportional to concentration at range x; see Ruppert et al. 
(1997) for further discussion. For the estimation of m a global penalty works satisfactorily. 
Figure 7 shows the global-penalty fit. The local-penalty fit was not included in that figure, 
because it would be difficult to distinguish from the global-penalty fit. 

However, for the estimation of m', a local penalty appears to improve upon a global 
penalty. Figure 8 shows the derivatives (times -1) of fitted splines and their confidence inter•
vals using global and local (spatially-adaptive) penalties. Notice that the confidence intervals 
using the local penalty are generally narrower than for the global penalty, except at the peak 
where the extra width should be reflecting real uncertainty. The local-penalty estimate has a 
sharper peak and less noise in the fiat areas. 

A referee has made the valid point that it is a common, but questionable practice to choose 
«* to estimate m and then to use this «* to estimate m'. We intend to investigate methods 
that choose«* to estimate m', but not in this paper. The GCV, though it targets m, seems to 
be effective in choosing the right amount of smoothing for estimating m' in this example. 

7. Additive models 

7.1. An algorithm for additive models 

Until now, we have confined our attention to univariate splines, but our ideas can be 
easily extended to additive models. Suppose we have L predictor variables and that x; 
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As discussed in Marx & Eilers (1998), one need not use backfitting to fit an additive spline 
model. Rather, all L components can be estimated simultaneously. 

Consider three levels of complexity of the penalty: 

1. aeO =a (a common global penalty), 
2. aeO = ae (separate global penalties), 
3. aeO is a linear spline (separate local penalties). 

The following algorithm allows one to fit separate local penalties using only one-dimensional 
grid searches for minimizing GCV. First one minimizes GCV using a common global penalty. 
For this penalty to be reasonable, one must standardize the predictors so that they have com•
mon standard deviations, say. Then using the common global penalty as a starting value, one 
minimizes GCV over separate global penalties. During minimization, the L penalty param•
eters are varied one at a time, with the rationale that the optimal value of ae depends only 
slightly on the ae, e' =/= e. Finally, using separate global penalties as starting values, one 
minimizes GCV over separate local penalties. The £th local penalty has Me parameters so 
there are a total of M1 + · · · + ML penalty parameters. These are varied in succession to 
minimize GCV. 

7.2. Simulations of an additive model 

To evaluate the practicality of this algorithm we used a variation of the simulation ex•
ample in Section 5.4 where we added two spatially homogeneous component functions to the 
spatially heterogeneous function (11). Thus, there were three predictor variables which for 
each case were independently distributed as uniform(O, 1) random variables. The components 
of m were m1(xi) = sin(4rrxi) and mz(xz) =xi, and m3(x3) was the same as m(x) in 
(11). As in Section 5.4, n = 300 and the E s were iid N (0, 0.25). We used quadratic splines 
and 10, 10 and 40 knots for m1, mz and m3, respectively. The local-penalty estimate had 
four subknots for all four functions. 

First consider computation time. For a single dataset and using our MA'ILAB program 
on a SUN Ultra 1, the common global-penalty estimate took 2.1 seconds to compute, the 
separate global-penalty estimate took an additional1.5 seconds to compute, and then separate 
local-penalty estimates took an additional 10.4 seconds to compute. Thus, local penalties 
are more computationally intensive than global penalties, but still feasible for small L. Now 
consider larger values of L. Everything else held constant, the number of parameters of an 
additive model grows linearly in L and, since matrix inversion time is cubic in dimension, the 
time for a single fit should grow cubically in L. The number of fits needed for the sequential 
grid searching described above grows linearly in L, so the total computation time for local 
penalties should be roughly proportional to L 4 . To test this rough calculation empirically, 
we found the computation time for fitting additive models with 300 data points, 10 knots per 
variable, and four subknots per variable. L took five values from 1 to 15. Figure 9 is a log-log 
plot of computation time versus L. A linear fit on the log-scale is also shown; its slope is 
2.45, not 4 as the quartic model predicts. The actual data show log-times that are nonlinear in 
log(L) with an increasing slope. Thus, a quartic model of time as a function of L may work 
for large values of L, but a quadratic or cubic model would be better for L in the 'usual' 
range of 1 to 15. It is possible that the quartic model's poor fit for smaller L is because the 
quartic model ignores parts of the computation that are linear, quadratic and cubic in L. The 
computation time for eight variables is about 1.5 minutes, but for 15 variables it is about 10.5 
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Figure 9. Log-log plot of the computation time for fitting an additive model with local penalties as a 
function of the number of variables L; a linear fit is also shown; the slope of the linear fit is 2.45 

minutes. It seems clear that local additive fitting is feasible up to at least 8-10 variables and 
maybe 15 variables, but is only 'interactive' up to three variables. 

An important point to keep in mind is that computation times are largely independent of 
the sample size n. The reason for this is that once XTX and XTY have been computed, all 
computation times are independent of n and the computation of XT X and XTY is quite fast 
unless n is enormous. 

Now consider statistical efficiency. The MSEs computed over 500 Monte Carlo samples 
for the separate local penalties estimator were 0.010, 0.0046, and 0.0165 for mt. mz and 
m3 , respectively. Thus, m2 is relatively easy to estimate and m 3 is slightly more difficult 
to estimate than m 1. The ratios of the MSE for common global penalties to separate local 
penalties were 1.26, 2.36, and 1.23 for m 1, m2 and m3 , respectively. The ratios of the MSE 
for separate global penalties to separate local penalties were 0.85, 0.88 and 1.20 for m 1, m2 

and m3 , respectively. Thus, for all three component functions, the common global-penalty 
estimator with a single smoothing parameter is less efficient than the fully-adaptive estimator 
with separate local penalties. For the spatially homogeneous functions m1 and mz, there is 
some loss of efficiency when using local penalties rather than separate global penalties, but the 
spatially heterogeneous m3 is best estimated by a local penalty. These findings are somewhat 
different from those we found for univariate regression, where no efficiency loss was noticed 
when a local penalty was used where a global penalty would have been adequate. There 
may be practical situations where one knows that a certain component function is spatially 
heterogeneous but the other component functions are not. Then greater efficiency should be 
achievable by using global penalties for the spatially homogeneous component functions and 
local penalties for the spatially heterogeneous ones. 

The results in this section provide evidence that sequential one-dimensional grid searches 
to find the smoothing parameter vector are effective. This is because the optimal value of one 
tuning parameter depends only weakly upon the other tuning parameters. The result is that 
searches over a rather large number of tuning parameters (up to 60 when L is 15 and there 
are four subknots per variable) appear feasible. 

A study of Bayesian inference for additive models is beyond the scope of the present 
paper. 
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8. Summary aud conclusions 

Spatial adaptivity is important for improved precision of point estimators and improved 
accuracy of confidence intervals. 

The local-penalty spline is effective in increasing efficiency as measured by MSE when 
the regression function is spatially heterogeneous in complexity. The local-penalty method 
of Bayesian inference has good coverage probability throughout the range of the predictor 
variable, though it is somewhat conservative with coverage probabilities typically a bit higher 
than nominal. This conservativeness may be due to the ad hoc 'adjustment' we make for 
estimation of multiple smoothing parameters. The adjustment is to multiply the pointwise 
posterior variance of the local-penalty m by a constant so that its average posterior variance 
is the same as the global-penalty spline. We also considered a more theoretically justified 
'correction' based on the work of Kass & Steffey (1989). This correction is slightly less 
conservative than the ad hoc adjustment and would be recommended in preference to the 
adjustment except that the correction increases computation cost considerably because one 
step involves a small bootstrap. 

For the test cases we have studied that have a moderate spatial heterogeneity, local-penalty 
splines with knots at equally-spaced quantiles of x perform as well as, and perhaps a bit better 
than, estimators using sequential knot selection. 

In practice, reasonable values of the tuning parameters (K, M, Nuer) can often be spec•
ified by the user. However, an automatic algorithm that selects these tuning parameters by 
GCV has proved effective. 

When a global penalty is appropriate, there seems to be little or no loss of efficiency in 
using local penalties, at least in the univariate case. For additive models, there can be some 
loss of efficiency when using a local penalty where a global penalty is appropriate. 
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AIDS research, cancer studies, finance, image analysis, proteomics, and genomics.
We anticipate future new applications of the methods and theory Ray developed

M. Davidian et al. (eds.), The Work of Raymond J. Carroll: The Impact
and Influence of a Statistician, DOI 10.1007/978-3-319-05801-6 5,
© Springer International Publishing Switzerland 2014
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that are represented in these papers. We appreciate this opportunity to discuss Ray’s
contributions to non- and semiparametric longitudinal and functional data analysis.

Nonparametric and Semiparametric Regression for Longitudinal/Clustered Data

Ray’s work on nonparametric regression problems for clustered data started with
the paper he developed with Xihong Lin, which was published in the Journal of the
American Statistical Association (JASA) in 2000. As Ray later shared with us, this
work was motivated by a measurement error problem in nonparametric regression.
Their original plan was to apply Len Stefanski’s SIMEX method to some existing
local polynomial estimators to reduce the bias caused by the measurement errors.
The data they considered happened to be repeatedly measured. As they worked out
the technical proofs, they found an astonishing result, which showed that the classi-
cal kernel method performed worse than the method that totally ignored the within-
cluster correlation. This finding opened the door to a series of research papers on
how to efficiently perform nonparametric regression when correlation among the
data exists. In the 10 years since their publication, these two papers (2000 [NSRD-
1], 2001a [NSRD-2]) have been cited 155 and 130 times, respectively, which are
excellent citation rates in statistics.

The data considered in Lin and Carroll (2000 [NSRD-1]) are from n independent
clusters with mi observations in the i th cluster. The j th observation within the i th
cluster is a pair .Yij ;Zij /, where Yij is the response variable and Zij is a covariate.
The conditional mean of Yij given Zij is given by �ij DE.Yij jZij / with

�ij D �f�.Zij /g; (5.1)

where �.�/ is a known link function and �.�/ is an unknown nonparametric function.
The response variables within the i th cluster are correlated, with the conditional co-
variance matrix defined as˙i D cov. QYi j QZi /, where QYi and QZi are vectors collecting
Y and Z’s within the i th cluster. The covariate Zij can be observed either with or
without measurement error. When Z is measured with error, Lin and Carroll show
that the biases caused by measurement errors can be overcome by SIMEX methods.

In the case where Zij is measured without error, Lin and Carroll (2000 [NSRD-
1]) consider two sets of kernel estimating equations to estimate �.x/,

nX

iD1

Gip.x/
T�i .x/V2i .x/

�1Kih.x/f QYi ��i .x/g D 0; (5.2)

or
nX

iD1

Gip.x/
T�i .x/K

1=2

ih
.x/V2i .x/

�1K
1=2

ih
.x/f QYi ��i .x/g D 0; (5.3)

where V2i D S
1=2
i R2iS

1=2
i , R2i is the working correlation matrix, Si is a diagonal

matrix of the conditional variances, Kih is a diagonal matrix containing the kernel
weights, Gip.x/ is the design matrix for the local polynomial, and �i contains the
derivatives of the link function. The most striking result derived by Lin and Carroll
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(2000 [NSRD-1]) is that, for both estimators defined in the Eqs. (5.2) and (5.3), the
asymptotic variance of O�.x/ is minimized when correlation is ignored, i.e.,R2i D I .

Lin and Carroll (2001a [NSRD-2]) further extend this investigation to the semi-
parametric setting, where they considered a generalized partially linear model

g.�ij /DXT
ij ˇC�.Zij /; (5.4)

with g.�/D��1.�/ andXij being a covariate vector. They proposed a profile estima-
tion scheme. For a fixed value of ˇ, an estimator for the nonparametric component
O�.´Iˇ/ is obtained by solving either Eq. (5.2) or (5.3). An estimator of the paramet-
ric component Ǒ is obtained by solving

nX

iD1

@�f QXiˇC O�. QZi Iˇ/gT

@̌
V �1

1i .
QXi ; QZi /Œ QYi ��f QXiˇC O�. QZi Iˇ/g�D 0; (5.5)

where QXi D .XT
i1; : : : ;X

T
i;mi

/T . The working covariance matrix V1i could be dif-
ferent from V2i which is used in nonparametric estimation. Under this estimation
scheme, Lin and Carroll (2001a [NSRD-2]) show that Ǒ is in general root-n incon-
sistent, unless working independence is assumed or O� is undersmoothed. They also
investigated the semiparametric efficient score for this problem, and showed that,
even when undersmoothing is applied, Ǒ is semiparametrically inefficient. How-
ever, in the special case when X and Z are independent, R1i is equal to the true
correlation and R2i D I , Ǒ is root-n consistent and semiparametrically efficient.
Lin and Carroll (2001b) study the same framework, but concentrate on the special
case in which Z is a cluster-level variable, i.e., Zij D Zi . Under this special case,
they show that the estimators above are semiparametrically efficient.

The work of Lin and Carroll became a heated topic of discussion after it was pre-
sented at the second Seattle Symposium of Biostatistics. It inspired a lot of research
on the use of within-cluster correlation to improve the efficiency of a nonparametric
kernel estimator. Among others, Wang (2003) proposed a kernel regression estima-
tor that leads to a fully efficient estimator in the setup of Lin and Carroll (2000)
when the true correlation structure is used. Lin et al. (2004) study this estimator
further. Ray named this estimator as the seemingly unrelated (SU) kernel estimator
to indicate the underlying principle of how correlated errors are utilized. They show
that this estimator is asymptotically equivalent to a smoothing spline estimator, and
the equivalent kernels of both estimators are nonlocal. The original proposal of this
estimator was an iterative procedure that is applicable to generalized linear models,
and Lin et al. (2004) show that a non-iterative closed-form solution to this estimator
exists when the link function is an identity link function. Wang et al. (2005) re-
visit the semiparametric regression problem in Lin and Carroll (2001a [NSRD-2])
and propose an estimation procedure that combines the SU kernel estimator with
the profiling technique. They show that this profile procedure is semiparametrically
efficient.
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Lin and Carroll (2006 [NSRD-3]) extend the techniques invented in this series
of works to a general framework, which covers an impressively wide range of semi-
parametric regression problems for data with repeated measures. In summary, the
examples under this new framework covered problems from matched case–control
studies, finance, and many widely used statistical models in biological and medi-
cal research, such as generalized linear mixed models and generalized partially lin-
ear models. The data are described in terms of a criterion function L . QY ; QX; Q�;B/,
where QY and QX are the vector and matrix collecting the m repeatedly measured re-
sponses and covariates within the same cluster, and Q� D f�.Z1/; : : : ;�.Zm/gT and
B are the nonparametric and parametric components in the model, respectively. The
criterion function needs to satisfy

EŒf@L . QY; QX; Q�0;B0/=@. Q�;B/g j QX; QZ�D 0:

Examples of such criterion functions include the quasi-likelihood and the likelihood
functions as special cases.

For a given B, Lin and Carroll (2006 [NSRD-3]) propose to estimate �.´/ by
O�.´;B/ which is the solution of

0 D 1

n

nX

iD1

mX

j D1

Kh.Zij �´/Gij .´;h/Lj� f QYi ; QXi ; O�.Zi1;B/; : : : ;

O�.´;B/C O� .1/.´;B/.Zij �´/; : : : ; O�.Zim;B/;Bg; (5.6)

K.�/ is a kernel function,Gij .´;h/ is the design matrix of the local polynomial and
Lj� D @L =@�j . The estimating equation is solved in an iterative fashion.

To estimate the parametric component, they proposed two schemes—profiling
and backfitting. The profile estimator OBp maximizes

nX

iD1

Lif QYi ; QXi ; O�.Zi1;B/; : : : ; O�.Zim;B/;Bg:

The backfitting algorithm requires updating B iteratively by maximizing

nX

iD1

Lif QYi ; QXi ; O�.Zi1;B�/; : : : ; O�.Zim;B�/;Bg;

where B� is the value of B from the previous iteration. At convergence, the final
estimator is denoted as OBb .

Lin and Carroll (2006 [NSRD-3]) study the asymptotic properties for O�.´/, OBp

and OBb . They investigate the semiparametric efficiency bound for these general
semiparametric regression problems and show that the asymptotic variance of OBp

can achieve this information bound if L is the likelihood function. They also show
that, under an undersmoothing scheme, the backfitting estimator OBb is asymptot-
ically equivalent to the profile estimator OBp . In addition, they discuss a variety
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of statistical issues that may occur when working with real data; for example, the
existence of nuisance parameters that need to be estimated, and extension to mea-
surement error problems.

Ray has had some important work in this area published more recently. In
Carroll et al. (2009), Ray and his coauthors investigate additive models for repeat-
edly measured data. They propose a smooth backfitting algorithm, which allows for
a working covariance. They show the method is most efficient when the true co-
variance matrix is used, and in that case each component function in the additive
model achieves the known asymptotic variance lower bound for one-dimensional
smoothing. In Maity et al. (2009), Ray and his coauthors propose a new class of
semiparametric models that can be used to model gene–environment interactions.
They investigated the cases with or without repeated measures and show that some
of the general methods and results in Lin and Carroll (2006 [NSRD-3]) are appli-
cable. The focus of this paper is on developing a score test to test the interaction
between gene expression levels and environmental variables.

Functional Data Analysis

Functional data analysis is one of the fastest-growing fields in statistics at this
time. Technological advances in scientific and medical research have resulted in
large data sets, in which each datum is a function (e.g., a curve or an image) and the
whole data set consists of collections of such functions sampled on a fine grid. Ray
and his collaborators developed theory and methods for such data that have made
high-impact contributions to functional data analysis.

Ray’s collaboration with Jeffrey Morris on hierarchical functional data started in
Morris et al. (2003) as a discussion paper in JASA. The proposed functional mixed
model framework was later perfected in Morris and Carroll (2006 [NSRD-4]). The
model they consider is given by

Y.t/DXB.t/CZU.t/CE.t/; (5.7)

where Y.t/D fY1.t/; : : : ;YN .t/gT is a vector of observed functions,B.t/D fB1.t/;

: : : ; Bp.t/gT is a vector of fixed effect functions with design matrix X , U.t/ D
fU1; : : : ;Um.t/gT is a vector of random effect functions with design matrix Z,
and E.t/ D fE1.t/; : : : ;EN .t/gT is a vector of error processes. Both U.t/ and
E.t/ are assumed to be independent multivariate Gaussian processes with distri-
butionMGP.P;Q/ andMGP.R;S/, where P and R are covariance matrices and
Q.t1; t2/ and S.t1; t2/ are covariance surfaces.

The proposed modeling framework is very flexible and can be applied to a variety
of problems. The fixed effects may include the mean function, functional main ef-
fects, functional interactions, functional liner coefficients for continuous covariates,
and interactions of functional coefficient with other effects. The functional random
effects induce different covariance structure among the data and can be used to
accommodate functional data from nested designs, split-plot designs, subsampling
designs, and other designs involving repeated measures over time or space.
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Morris and Carroll (2006 [NSRD-4]) propose modeling all functions in Eq. (5.7)
by wavelets, which are popular basis functions for nonparametric regression that are
especially suitable for spatially adaptive smoothing. Wavelets are a set of orthonor-
mal basis function indexed by location and scale. By taking wavelet transformation
on both sides of Eq. (5.7), the model is translated into a mixed model in wavelet
coefficients

D DXB� CZU � CE�; (5.8)

where D D YW T , U � D UW T , and E� D EW T , with W being the projection
matrix corresponding to the discrete wavelet transformation. The random terms
in the wavelet domain model (5.8) are the zero-mean Gaussian matrices, D 

MN.P;Q�/ andE� 
MN.R;S�/, whereQ� DWQW T and S� DWSW T . One
great benefit of using wavelets is that one can take advantage of whitening property
of the wavelet transformation Johnstone and Silverman (1997). Even though the
processes U.t/ andE.t/may have serial correlation in t , the corresponding wavelet
coefficients tend to be decorrelated. Thus, one can model Q� and S� as diagonal
matrices and achieve parsimony in the model while still accommodating a flexible
class of nonstationary covariance matrices Q and S . This results in huge gains in
computational efficiency, especially when the data set is gigantic.

Morris and Carroll (2006 [NSRD-4]) adapt this problem into a Bayesian frame-
work, where the fixed effectsB� are assigned mixture priors with shrinkage effects,
and variance components in P , R, Q�, and S� are assigned with vague proper pri-
ors. To achieve adaptive smoothing of the functions, Morris and Carroll propose esti-
mating the hyperparameters by using an empirical Bayes method, where the amount
of smoothing is estimated directly from the data. To estimate the parameters in the
model, they proposed an efficient MCMC algorithm. The Bayesian framework also
provides automatic devices for inference and prediction in the model.

The work of Morris and Carroll (2006 [NSRD-4]) introduces a very successful
framework, which has had a huge impact through its eventual application by Jef-
frey Morris and collaborators to the realms of proteomics, genomics, forestry, neu-
roimaging, and ophthalmology. Ray and his coauthors have continued to work on
extensions and generalization of hierarchical functional modeling. Baladandayutha-
pani et al. (2008) study spatially correlated hierarchical functional data using pe-
nalized splines, where a more flexible Matérn spatial correlation is considered. The
assumption of Q� being a diagonal matrix from Morris and Carroll (2006 [NSRD-
4]) has provided a large computational advantage, but may not be suitable for all
functional data. The latest advance in related methodology is to model the within-
function covariance structure by functional principal component analysis (FPCA).
Unlike Morris and Carroll (2006 [NSRD-4]) and Baladandayuthapani et al. (2008),
who use pre-determined basis functions (wavelets or splines), FPCA provides a set
of data-driven orthonormal basis functions. Zhou et al. (2008) study joint model-
ing of paired functional data using spline-based FPCA. Staicu et al. (2010) propose
a multi-level FPCA approach for spatially correlated hierarchical functional data.
However, like Morris and Carroll (2006 [NSRD-4]) and Baladandayuthapani et al.
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(2008), Staicu et al. (2010) assume a separable structure for the within-curve covari-
ance and the between-curve spatial correlation. The latest work from Ray’s research
group is Zhou et al. (2010), which so far provides the most general framework for
hierarchical functional modeling. In this work, the data are modeled by multi-level
FPCA, and FPCA scores are spatially correlated. The within-curve covariance and
the between-curve correlation are not necessarily separable and can thus accommo-
date more general data.

In addition to hierarchical functional modeling, Ray made other important con-
tributions to the literature on functional data analysis. Li et al. (2010) propose a new
class of semiparametric regression models for a scalar response, with multivariate
and functional predictors. The model can accommodate interactions between mul-
tivariate and functional predictors. To avoid the curse of dimensionality, the authors
proposed an innovative single-index structure for the interactions. This approach
strikes a nice compromise between model flexibility and practical feasibility in com-
putation and stability.

This article is limited to a brief summary of only part of Ray’s ample contribu-
tions to this important research area. We are confident that Ray’s high energy and
devotion will propel him to generate new directions of research focus and will in-
trigue more researchers of all levels to be involved in this area of work. We look
forward to seeing continuous growth of this research area that Ray has inspired.
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Nonparametric Function Estimation for Clustered 
Data When the Predictor is Measured 

Without/With Error 
Xihong LIN and Raymond J. CARROLL 

We consider local polynomial kernel regression with a single covariate for clustered data using estimating equations. We assume 
that at most m < oo observations are available on each cluster. In the case of random regressors, with no measurement error 
in the predictor, we show that it is generally the best strategy to ignore entirely t11e correlation structure within each cluster and 
instead pretend that all observations are independent. In the further special case of longitudinal data on individuals with fixed 
common observation times, we show that equivalent to the pooled data approach is the strategy of fitting separate nonparametric 
regressions at each observation time and constructing an optimal weighted average. We also consider what happens when the 
predictor is measured with error. Using the SIMEX approach to correct for measw·ement error, we construct an asymptotic theory 
for both the pooled and the weighted average estimators. Surprisingly, for the same amount of smoothing, the weighted average 
estimators typically have smaller variances than the pooling strategy. We apply the proposed methods to analysis of the AIDS 
Costs and Services Utilization Survey. 

KEY WORDS; AIDS; Asymptotic bias and variance; Clustered data; Efficiency; Errors in variables; Estimating equations; Gener~ 
alized linear models; Kernel regression; Longitudinal data; Measurement error; Nonparametric regression; Panel 
data; SIMEX. 

1. INTRODUCTION 

A vast literature has developed in the past decade on 
parametric regression for clustered data using estimating 
equations (Liang and Zeger 1986), where generalized lin•
ear models are a special case. Such parametric assump•
tions may not always be desirable, as appropriate functional 
forms of the covariates may not be known in advance, and 
the outcome may depend on the covariates in a compli•
cated manner. There has been substantial recent interest 
in extending the existing parametric models to allow for 
nonparametric covariate effects (Severini and Staniswalis 
1994; Wild and Yee 1996; Zeger and Diggle 1994). Such 
nonparametric regression allows for more flexible func•
tional dependence of the outcome variable on the covariates 
and also can be used to investigate whether an appropriate 
parametric function can be developed to describe the data 
well. 

Another complication in the analysis of clustered data is 
the presence of covariate measurement error. For example, 
it has been well documented in the literature that covari•
ates such as blood pressure (Carroll, Ruppert, and Stefan•
ski 1995) and CD4 count (Tsiatis, Degruttola, and Wulfsohn 
1995) are often subject to measurement error. We consider 
here data from the AIDS Costs and Services Utilization 
Survey (ACSUS) (Berk, Maffeo, and Schur 1993). The AC•
SUS sampled 2,487 subjects in 10 randomly selected U.S. 
cities with the highest AIDS rates. A series of six interviews 
were conducted for each respondent every 3 months from 
1991 to 1992. A main outcome of interest was whether 
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tal Health Sciences grant P30-ES09106. 

an interviewee had had hospital admissions (yes/no) dur•
ing the past 3 months. The collected covariates in•
cluded demographic variables, IUV status, CD4 count, and 
treatments. 

A question of interest in this study is how CD4 count 
affects the risk of hospitalization. Analysis of this dataset 
entails two major complications. The first complication is 
that even though it is believed that a lower CD4 count is as•
sociated with a greater risk of hospitalization, the functional 
form of this relationship is not known. We are interested in 
whether the relationship is simply linear, or whether there 
is a changepoint, or whether the relationship has a com•
plex form. The second complication is that CD4 count was 
measured with error. One source of error came from its sub•
stantial variability; for example, the coefficient of variation 
could be as large as 50% (Tsiatis et al. 1995). The other 
source of error came from the fact that CD4 count was not 
measured at the time of each interview, but rather the most 
recent CD4 count was abstracted from each respondent's 
medical record using his or her usual source of care. In 
view of these complications. we are interested in modeling 
the effect of CD4 count nonparametrically and accounting 
for its measurement error. Our nonparametric approach al•
lows us to model the relationship between hospitalization 
and CD4 count using a flexible function without restricting 
any particular functional form and to investigate whether 
we can identify a simple parametric function to capture 
this relationship. Another advantage is that nonparametric 
regression can often help recover unexpected patterns of 
the relationship. 

We consider nonparametric regression estimation for 
clustered data with a single covariate using estimating equa•
tions when the covariate is measured accurately or with er•
ror. We estimate the nonparametric function using the local 
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polynomial kernel methods and extend these methods to the 
measurement error case using the simulation-extrapolation 
(SIMEX) method (Cook and Stefanski 1994). We study the 
asymptotic biases and variances of the proposed estimators. 

We develop two main striking results: 

When the Covariate is Measured Accurately. Several 
authors have tried to account for within correlation when 
constructing an estimator for the nonparametric function 
(Severini and Staniswalis 1994; Wild and Yee 1996; Ver•
byla, Cullis, Kenward, and Welham 1999). We show that 
generally the best strategy is to ignore the correlation struc•
ture entirely, and pretend as if the data within a cluster 
were independent (i.e., the working independence model in 
generalized estimating equation terminology). Furthermore, 
correctly specifying the correlation structure in estimating 
the nonparamettic function in fact has adverse effects; that 
is, it results in an asymptotically less efficient estimator. 
This result is dramatically different from the parametric re•
gression situation for clustered data, where correctly spec•
ifying the correlation structure gives the most efficient es•
timators of regression coefficients (Liang and Zeger 1986). 
Although the result was a surprise to us, it may result from 
the local property of local polynomial estimation. As the 
bandwidth becomes smaller, the chance that correlated ob•
servations from the same cluster fall in the same bandwidth 
vanishes and the observations essentially behave indepen•
dently. 

"Panel Data" With Measurement Error. In "panel 
data," observations for different subjects are obtained at a 
series of common time points during a longitudinal follow•
up. We show that it is preferable to fit separate func•
tions to each time period and then combine the methods 
via weighted averaging, rather than try to perform a sin•
gle measurement error analysis by pooling all of the data 
from different panels. This result is also dramatically differ•
ent from parametric measurement error regression, where 
pooled analysis gives an asymptotically efficient estimator. 

The article is organized as follows. In Section 2 we in•
troduce the model. In Section 3 we consider local poly•
nomial methods for nonparamettic regression in clustered 
data when the predictor is observed exactly. We study the 
asymptotic biases and variances of the local polynomial ker•
nel estimators. Ruckstuhl, Welsh, and Carroll (1999) have 
investigated this issue in the Gaussian model when the co•
variance structure of observations within a cluster is that 
of the usual one-way random-effects analysis of variance 
model. One part of this article consists of extending their 
work to generalized linear models, allowing for an arbi•
trary correlation structure and working correlation models. 
The results of the generalization are surprising to us and 
much in line with those of Ruckstuhl et al. Specifically, we 
show that the asymptotically most efficient estimator of the 
nonparametric function is obtained by entirely ignoring the 
correlation within each cluster. This result has by the way 
been conjectured in the Gaussian case by Hoover, Rice, Wu, 
and Yang (1998) and Wu, Chiang, and Hoover (1998) and 
used as the basis for their methods. 
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Two methods emerge from our analysis. The first simply 
pools the data and runs a standard nonparamettic regression 
analysis, possibly with weighting for variability. The sec•
ond method applies to the "panel data" problem, in which 
case it makes sense to compute regression estimates sepa•
rately for each time point and form a weighted average of 
the resulting estimates. We show in Section 3 that the meth•
ods of pooling and weighted averaging yield asymptotically 
equivalent estimates. 

In Section 4 we take up the issue of measurement er•
ror. We consider the behavior of the SIMEX methodology 
(Cook and Stefanski 1994) for correcting measurement er•
ror, obtaining asymptotic theory for the pooling method 
and for the weighted average method. Surprisingly, the 
two methods are no longer asymptotically equivalent in the 
"panel data" context, where the weighted average method 
can have a smaller variance. We apply the proposed meth•
ods to the analysis of the ACSUS data in Section 5, followed 
by discussion in Section 6. 

2. THE MODEL 

Suppose that the data consist of n clusters with the ith 
(i = 1, ... , n) cluster having m, observations. Let Y;; and 
(X;;, W;;) be the response variable, the true unobserved 
covariate, and the observed X -related error-prone covariate 
of the jth ( j = 1, ... , m,) observation in the ith cluster. The 
observations within the same cluster might be correlated. 
Given the true covariate Xij' the mean and variance of Yii 
are E(Yi;IX,;) = P,;; and var(Y;;IX;;) = </J;wij 1V(p,;;), 
where </J; is a scale parameter, w;; is a weight, and V(·) is a 
variance function. The marginal mean I'<; depends on X,; 
through a known monotonic link function p,(·), 

!'<; = p,{B(X,;)}, (1) 

where B(·) is an unknown smooth function and the link 
function p,( ·) is differentiable. Note that so far we have not 
specified a within-cluster correlation structure for the ob•
servations "Yij. 

The model is completed by assuming that the unobserved 
covariate X;; is related to the observed covariate W;; by an 
additive measurement error model 

(2) 

where Uij is a measurement error and Ui = (Uit, ... , Uimi)T 

follows normal(O, E;,uu). Note that we have not assumed a 
distribution for the X;;, and they may be correlated within 
the same cluster. 

In some examples, the index j takes on a special meaning. 
For example, there could be j = 1, ... , m sampling times at 
which an individual is measured (e.g., in a panel study), or 
j could refer to a family member (e.g., mother, daughter). 
With some abuse of terminology, we call such situations 
"panel data" problems. In this special case it makes sense 
to distinguish among the values of j ; for example, allow•
ing different scale parameters, different density functions 
for the X's, or even different measurement error variances. 
Outside of this special case, with no meaning attached to j , 
it makes more sense to let the scale parameters, densities, 
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and so on be independent of j . In what follows we do our 
calculations as if special meaning was attached to j , but all 
calculations cover the general case. 

3. ESTIMATION WHEN THERE IS NO 
MEASUREMENT ERROR 

3.1 Local Polynomial Kernel Estimators 

For independent data, local polynomial kernel smooth•
ing has been widely used in nonparametric regression. 
We now extend local polynomial kernel smoothing to 
model (I) for clustered data. To motivate the estimat•
ing equations for the kernel estimators of the nonpara•
mettic function 8(-), we first consider estimating equa•
tions when 8(.) is a parametric pth polynomial function 
8(·) = Gv(-JTfJ, where Gp(z) = (l,z, ... ,zP)T and 
fJ = (f3o, ... ,(Jp)T. Let Y; = (Y;,, ... , YimJT and G;p = 
{Gp(Xi1), ... ,G.(X;mJ}T. The regression coefficients fJ 
can be estimated using the conventional generalized esti•
mating equations (GEEs) (Liang and Zeger 1986), 

n 

I;a;,;a,v;-'(Y, -11-,) = o, (3) 

i=l 

where 1-'< = E(Y;) with its jth component p;; = 
p{G~(X;;)fJ}, a, = diag[p< 1l{G~(X;;)fJ}],p(ll(·) is the 

first derivative of p(·),V, sil2R;(8)Si/ 2 ,S; 
diag[¢;w;:;'V{p;;}], and R, is an invertible working cor•
relation matrix, possibly depending a parameter vector 8, 
which can be estimated using the method of moments. 
Liang and Zeger (I 986) showed that the GEE estimator i3 
is asymptotically consistent if the mean function p;; is cor•
rectly specified even when the working correlation matrix 
R; is misspecified. The most efficient estimator of fJ is ob•
tained by correctly specifying R;. 

We now consider how to extend the parametric GEE (3) 
to (I) when 8( ·) is a nonparametric function using the kernel 
method. In what follows, the order of the local polynomial 
is p, the bandwidth is h, and the symmetric kernel density 
function is K(·), normalized without loss of generality to 
have unit variance. Let Kh(v) = h- 1 K(v/h). The idea is to 
approximate 8(·) at any given x using a local polynomial 
satisfying 8(X) = {Gp(X- x)VfJ. where G.(·) and fJ are 
as defined earlier. Having estimated fJ at x, the estimated 
8(x) satisfies O(x) =So. 

Let G;p(x) = {Gp(X;1 -x), ... , Gp(X;m, -x)}T Kernel 
estimation of the nonparametric function 8( ·) at any given 
x requires incorporating the kernel weight function Kh(·) 
in GEE (3). Two ways are possible, and they give two sets 
of kernel estimating equations for 8(x), 

n 

LG;p(xf a,(x)V,(x)- 1K;h(x){Y; -1-';(x)} = 0 (4) 
i=l 

or 

n 

L G;p(xf a,(x)Ki{2 (x)Vi 1(x) 
i=l 

x KiC(x){Y; -1-';(x)} = 0, (5) 
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where K;h(x) = diag{Kh(X;;- x)}, and {1-';(x),a,(x), 
V;(x), S,(x)} are the same as those in (3) except that they 
are evaluated at p;;(x) = p{G~(X;;- x)fJ}. The working 
correlation matrix R; in V, ( x) may depend on a parameter 
vector 8, which again can be estimated using the method of 
moments. 

One can easily see that the two estimating equations (4) 
and (5) are often different except when V;(x) is a diagonal 
matrix (assuming independence). Equation (5) weights the 
residuals {Y; -1-';(x)} symmetrically, whereas (4) does not. 
They hence often give different estimators of 8( x). We let 
Op ( x; h) denote the local pth-order kernel estimator using ( 4) 
and let o;(x; h) denote the local pth-order kernel estimator 
using (5). These two estimators are identical when V;(x) 
is a diagonal matrix. We show in Sections 3.2 and 3.3 that 
the symmetric property of (4) and (5) results in different 
asymptotic properties of Bv(x; h) and o;(x; h). 

We have allowed the scale parameters ¢; to depend 
on j . In many problems it is reasonable to suppose that 
they do not depend on j ; then we can set S; ( x) = 
diag[w~ 1 V{p;;(x)}]. If the ¢; do depend on j , then 
they will have to be estimated, again by the method of 
moments. 

Application of the Fisher scoring algorithm to (4) shows 
that the estimator i3 can be updated using iteratively 
reweighted least squares, 

[t,a,.(xfC,(x)G;p(x)] i3 = t,G;p(xfC,(x)y;, (6) 

where C,(x) = a,(x)Vi 1 (x)K;h(x)a,(x) is a working 
weight matrix andy;= G,.(x)TfJ + a;-1(x){Y, -1-';(x)} 
is a working vector. The variance of o.(x; h) is equal to 
var{So(x)} and can be estimated using a sandwich estima•
tor, which takes the form cov{O.(x; h)}= ern;-1 !12!11 1e, 
where e = (1, 0, ... , O)T and 

n 

!1, = L G;p(xf a,(x)Vi 1 (x)K,h(x)a;(x)G;p(x) 
i=l 

and 
n 

!12 = L G;p(x)T a,(x)Vi 1 (x)K;h(x){Y; -1-';(x)} 
i=l 

x {Y, -!-';(x)}rK,h(x)Vi 1 (x)a;(x)G,.(x). 

A similar Fisher scoring algorithm can be constructed 
to solve (5) for o;(x; h) and to calculate its vari•
ance. Specifically, one simply replaces V,(x)K;h(x) by 

KiC(x)V,(x)Ki{2 (x) in (C,, n,, !12). 
Some versions of (4) have been proposed earlier. There 

are three obvious choices: (I) let R, be an estimator of the 
actual correlation matrix; (II) let v;-' be the diagonal val•
ues of the inverse of the covariance matrix of Y,; and (III) 
let R, be the identity matrix, thus effectively ignoring the 
correlation structure within clusters. We call method (III) 
the weighted pooled estimator. Method (I) was proposed 
by Severini and Staniswalis (I 994) in their equation (I 8) 
for average kernel p = 0. Method (II) is a generalization, 
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from the Gaussian case to generalized linear models, of 
the modified quasi-likelihood proposal of Ruckstuhl et al. 
(1999). Method (III) is a generalization and modification, 
from the Gaussian case to generalized linear models, of the 
"pooled" method of Ruckstuhl et al. (I 999), allowing for 
different values of ¢ depending on the value of j . In Sec•
tion 3.5 we consider another estimator called the "weighted 
average estimator." 

Ruckstuhl et al. (1999) considered (4) for Gaussian data; 
that is, w;; = 1 and V (!-';;) = 1. They showed that under 
the simple variance component model V; = ¢I+ JJ, where 
I is an identity matrix and J is a matrix of 1 's, when mi = 
m,p = 1 so that local linear regression is used and the Xii's 
are iid, methods (II) and (III) are asymptotically equivalent 
and have uniformly smaller asymptotic mean squared errors 
than method (!). Methods (II) and (III) can also be shown 
to have faster rates of convergence for local quadratics, 
p= 2. 

We study in the next two sections the asymptotic biases 
and variances of the general kernel estimators Bp(x; h) and 
fi;(x; h) under the kernel GEEs (4) and (5). This investiga•
tion will allow us to compare the asymptotic performance of 
methods (!)--(III) and to identify an optimal working corre•
lation matrix R;. Ourmain conclusions from the asymptotic 
analyses are as follows: 

1. The two kernel estimators Bp(x; h) and e;(x; h) of•
ten have different asymptotic properties, and the asymptotic 
properties of Bp(x; h) is much harder to study. 

2. Unlike the parametric GEE estimator in (3), if e(x) is 
a nonpararnetric function; the asymptotically most efficient 
estimators of both e"(x; h) and e;(x; h) are obtained when 
ignoring the within-cluster correlation entirely; that is, as•
suming working independence R; = I;. Correctly specify•
ing the correlation matrix in fact results in an asymptoti•
cally less efficient estimator of O(x). 

3.2 Asymptotic Theory for the Kernel Estimator llp(x; h) 
From (4) 

Asymptotic bias and variance analysis of Bp(x; h) under 
(4) is often difficult for general local pth polynomial esti•
mation, a general working correlation matrix R and non•
Gaussian data. Hence for general working correlation ma•
trix R;, we first focus on average kernel estimation (p = 0) 
for both Gaussian and non-Gaussian data (Theorem 1), and 
then study local linear kernel estimation (p = 1) for Gaus•
sian data (Theorem 2). If working independence R; = I 
is assumed, then asymptotic bias and variance analysis of 
general local pth polynomial estimation for botb Gauss•
ian and non-Gaussian data is simple and is presented in 
Theorem 3. 

In what follows, let m; = m < oo. We allow X; = 
(X,1 , ... , X;m)T to be correlated unless stated otherwise, 
and let f; ( ·) denote the marginal density of X;;. We further 
assume that the (Y;,X;) (i = 1, ... ,n) are iid pairs with a 
continuous density function, and V;(J-1.;, li) = V(J-1.;, li). Let 
g(r)(·) denote the rth derivative of g(·), and let v ;k denote 
the (j, k)th element of v- 1 (·). Let CK(r) = f zr K(z) dz, 
with cK(O) = cK(2) = 1, "!K(r) = J zr K 2 (z) dz, E,(L) = 
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{cK(L),cK(L+ 1), ... ,cK(L+p)V, and Ep(c) and Ep('Y) 
the (p+1) x (p+l) matrices with (j, k) element cK(j+k-2) 
and 'YK(j + k- 2). We further assume that nh -+ oo as 
n -+ oo and h -+ 0. 

Theorem 1. Let B0 (x; h) be the solution of (4) for p = 0 
and for any given weight matrix V;. 

a. The asymptotic bias and variance of 00 (x; h) are given 
by 

bias{00 (x; h)} 

""h2 {e(ll(x) 2::;,1 v;·(x)Jj'l(x) + 0(2l(x)} 
I:;=l vJ (x)f;(x) 2 

and 

var{Bo(x; h)} 

'YK (0) __ I:~;',__·=~l {_v_;.-:(x_)_p_CJ~;,_(x_)_J,~(_x )---co 

""---:;;:;;:-- [l-'(l){O(x)}]2 { I:j:1 v;·(x)f;(x)} 2' 

where CJ;;(x) = var(Y;;]X;; = x) = wj 1¢;V[I-'{O(x)}], 
and v;·(x) = 2::;"; 1 ~'(x). If!;(·)=!(·), the bias of 
Bo(x; h) is free of V. 

b. The asymptotic variance of B0 (x; h) is minimized 
when one assumes the working correlation matrix 
R = I (independence), and is equal to 

m~n[{var{Bo(x;h)}] ""{ 'YK(O)/nh} 

x ([1-'(l){O(x)}F t, {f;(x)/CJ;;(x)}) -l 

The proof of Theorem I is given in Appendix A. I. We dis•
cuss the implication of Theorem 1 after presenting The•
orem 2. For linear kernel estimation (p = 1 ), it is dif•
ficult to study asymptotic properties for general V and 
non-Gaussian data. This is because for any given weight 
matrix V, asymptotic bias and variance analysis depends 
on the forms of!-'(·) and V(·). We hence concentrate on 
the Gaussian case and study in Theorem 2 its asymptotic 
bias and variance. The proof of Theorem 2 is given in 
Appendix A.2. 

Theorem 2. Let e,,a(x; h) be the solution of (4) for 
Gaussian data with V(·) = 1, w;; = 1, and p = 1 and any 
given weight matrix V. 

a. The asymptotic bias and variance of e,,a(x; h) are 
h20(2l(x)/2 and cj(nh), where the expression of c 
is complicated and is given in Appendix A.2 and 
Ruckstuhl et al. (1999). Note that the asymptotic bias 
of O,,a(x; h) is free of the distribution of the X;; 
and V. 

b. If the X;; are iid with common density f(·), the 
asymptotic variance of e,,a(x; h) is minimized when 
one assumes the working correlation matrix R = I 
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(independence) and is equal to 

mJn[var{B1,a(x; h)}] 

"'{'l'K(O)/nh}[f(x) t, {1/a;;}] -
1 

where a;;= var(Y;;[X,; = x) = </>;. 

Part (b) of Theorems I and 2 are the most important 
results. They suggest that at least for average kernel es•
timation p = 0 (Gaussian and non-Gaussian data) and for 
local linear kernel estimation p = 1 (Gaussian), it is optimal 
to simply assume independence for kernel regression using 
(4) for clustered data, and method (III) dominates meth•
ods (I) and (II). In other words, the asymptotically most 
efficient estimators B0 (x; h) and B1,a(x; h) are obtained by 
completely ignoring the within-cluster correlation and cor•
rectly specifying the correlation results in less efficient 
estimators. 

Study of the asymptotic properties of general local pth 
polynontial estimation under a general working correlation 
matrix R in (4) is difficult, even for Gaussian data. However, 
such calculations are possible when assunting independence 
R = 1-that is, for the weighted pooled estimator [method 
(III)]. These results are stated in Theorem 3, whose proof 
is given in Appendix A.3. 

Theorem 3. Let Bp,wpe(x; h) be the weighted pooled es•
timator; that is, the solution of (4) for any given p and R = I 
(working independence). Then 

a. The asymptotic bias of Bp,wpe(x; h) is 

ifp = 0, 

bias{Bo,wpe(x; h)} 

""h2{e(ll(x) E'l'::,1 Jj')(x)/a;;(x) + e(2)(x)}; 
L;~1 f;(x)/a;;(x) 2 

if p =odd, 

bias{Bp,wpe(x; h)} 

= hP+l O(P+1l(x) eTE-1(c)E {p + 1)· 
(p+ 1)! p e ' 

ifp=evenandp>O, 

bias{Bp,wpe(x; h)} 

"' hp+2{ O(P+1l(x) E;:1 8{L;(x)f;(x)}f8x 

(p + 1)! E;:1 L;(x)f;(x) 

O(P+2l(x)} 
+ (p + 2)! eTE;1(c)E,(p + 2), 

where L;(x) = [!J.(l){O(x)}]'/a;J(x) and a;;(x) 
var(Y;;[X;; = x) = wj1¢;V[!J.{O(x)}]. 
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b. The asymptotic variance of Bp,wpe(x; h) is 

var{Bp,wpe(x; h)} 

"''Y:~O) ([IJ.(1){0(x)}] 2t,f;(x)/a;;(x)) -
1 

(7) 

Using the results in Theorem 3, one can easily show that, for 
example, the asymptotic bias and vatiance of the weighted 
pooled local linear kernel estimator B1,wpe(x; h) are 

bias{B1,wpe(x; h)}"" h20(2l(x)/2 

and 

var{B1,wpe(x; h)}"' bK(O)/nh) 

x ([!J.(1){0(x)}] 2 t, {f;(x)/a;;(x)}) -
1 

3.3 Asymptotic Theory of the Kernel Estimator o; (x; h) 
Using (5) 

We study in Theorem 4 the asymptotic bias and vatiance 
of e;(x; h), the solution of the estimating equation (5), for 
a general local pth-order polynontial and a general weight 
matrix Vi for both Gaussian and non-Gaussian cases. Un•
like Bp(x; h), whose bias and variance analysis under this 
general condition is difficult, such a general analysis is fea•
sible for e;(x; h), and the results are much simpler and are 

different from those of Bh(x; h). This is due to the sym•
metric nature of the estimating equation (5). These results 
allow us to easily study the optimal choice of the working 
correlation matrix Ri. 

The key result in Theorem 4 is given in prut c; that 
is, the asymptotically most efficient estimator e;(x; h) is 
obtained by entirely ignoring the within-cluster conela•
tion and assunting that the data were independent. Note 
that '!nder workin$ independence, the two kernel estima•
tors Ov(x; h) and e;(x; h) are identical and have the same 
asymptotic properties. The proof of Theorem 4 is given in 
Appendix A.4. 

Theorem 4. Suppose that I sr K 112 ( 8) ds < 00 for inte•
gers r::; p. Let e;(x; h) be the solution of (5) for any given 
p and any given weight matrix V. 

a. The asymptotic bias of e;(x; h) is 

if p= 0, 

bias{B0 (x;h)} 

~ h2{e(ll( l E'l'~1 vii(x)Jj'l(x) e(2l(x) }· 
~ x E;:, vii(x)f;(x) + 2 ' 

if p =odd, 

� e(v+l)(x) 
bias{e•(x· h)}~ h"+1 --- eTE-1(c)E (p + 1)· 

P ' ~ (p + 1)! P e ' 
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(note that bias {e;(x; h)} for odd pis free of v, and 
J,(x)); and 

ifp=evenandp>O, 

bias{e;(x; h)} 

"'hP+2 {B(p+ll(x) L:}~1 8{T;(x)f;(x)}f8x 
(p + 1)! L:}~1 T;(x)f;(x) 

fl(P+2l(x)} 
+ (p + 2)! eTE; 1 (c)Ec(p + 2); 

where T;(x) = [~tlll{B(x)}] 2vii(x). 

b. The asymptotic variance of e;(x; h) is 

var{e;(x; h)} 

'Y K ( 0) _.=L;=.ejc...· ~-=-' {'-v_ii-:c( x-'-)'-}2_a-'-';,'--( x_)_J,'--(_x )----:-o 

nh [~tlll{B(x)}J2 [L:}~ 1 vii(x)f;(x)r 

X eTE; 1 (c)E.('Y)E; 1 (c)e. 

c. The asymptotic variance of e;(x; h) is minimized 
when one assumes the working correlation matrix 
R = I (independence), and is given in (7). 

Part (c) of Theorem 4 gives the most important results. It 
suggests that under estimating equation (5), for any given 
local pth-order polynomial, the most efficient kernel estima•
tor o;(x; h) is obtained by simply assuming independence 
for kernel regression, and method (III) dominates methods 
(I) and (II). It is also interesting to notice that unlike esti•
mating equation (4), methods (I) and (II) behave the same 
asymptotically under estimating equation (5). If R = I, then 
the results in Theorem 4 reduce to those in Theorem 3. 
It is of interest to compare the asymptotic perfor•

mance of o.(x; h) and o;(x; h) when a general weight 
matrix V is specified. Such a comparison is difficult 
for any given local pth-order polynomial. We hence re•
strict our attention to average kernel estimation (p = 0). 
The results in Theorems I and 4 suggest that B0(x; h) 
replaces vi· ( x) in the bias and variance expressions of 
B0(x;h) by vii(x). Consider the case when f;(-) = f(·) 
and a;;(x) = a(x). If L:}~ 1 {vii(x)}2f{L:j~1 vii(x)}2 < 
L:}~ 1 {vi·(x)}'f{L:j~ 1 vi (x)}2 , then it is better to use 

B0(x; h), which has a smaller variance. If vii(x) and &·(x) 
do not depend on j (e.g., under exchangeable working cor•
relation or AR(q) working correlation assumption), then 
80 (x; h) and B0(x; h) have the same asymptotic variance. 
Furthermore, when V is a diagonal matrix [e.g., under 
methods (II) and (III)], o.(x; h) = o;(x; h), and they have 
the same asymptotic properties. 

3.4 Selection of the Bandwidth Parameter 

An important step in kernel smoothing is to choose the 
bandwidth parameter h. One approach is to use cross•
validation by deleting one cluster datum at a time, and then 
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choose h to minimize 

CV(h) = :t'E {Yi;- Plj'\X,;)}' 
,~, ;~1 ¢ ;w; j 'V {PL ' 1(X,;)}' 

where Plj'\) is the estimate of !";; ( ·) calculated from the 
data leaving out the ith cluster. A difficulty in using cross•
validation is that it is computationally intensive. 

An alternative approach is to extend the Ruppert (1997) 
empirical bias bandwidth selection (EBBS) method to clus•
tered data. Specifically, one calculates the empirical mean 
squared errors EMSE(x, h) of B(x; h) (either Bp(x; h) or 
iJ;(x; h)) at a series of values of X and h and chooseS 
h to minimize EMSE(x, h) for each x. Calculations of 
EMSE(xo, ho) at any given value of xo and ho proceed 
by EMSE(x0 , h0 ) = bias2{B(x0 ; h0 )}+Va:r{B(x0 ; h0 )}. Here 
hla's{B(x0 ; h0 )} denotes the empirical bias of B(x0 ; ho) at x 0 

and h0 and is estimated by fitting a polynomial regression, 

E{B(x0 ; h)}= v0 + v 1hp+1 + · · · + v,h•+<, (8) 

using the "data" {h,B(x0 ;h)} in a neighborhood of ho 
for a given integer t (e.g., t = 1 or 2). The empirical 
bias, hla's{ B(x0 ; h0 )}, is calculated as the estimated value 
of v1h[;+ 1 + · · · + v,h:;+'. The variance, Va:r{B(x0 ; h0 )}, can 
be easily calculated using the sandwich estimator in Sec•
tion 3.1. We use this method in Section 5 to choose h when 
analyzing the ACSUS data. 

3.5 Summary of Nonparametric Regression for 

Clustered Data 

Our results in Sections 3.2 and 3.3 suggest that it is the 
best strategy to use (4) or (5) with R = I; that is, entirely 
ignoring the within-cluster correlation. The proposal is ex•
tremely easy to compute: simply pool the data and compute 
a standard local polynomial kernel estimator in generalized 
linear models (GUMs), with weights depending on the clus•
ter if the scale parameters ¢; are not constant. 

In the "panel data" problem with m; = m, another esti•
mator can be considered-to compute B;(x; h) based only 
on the (Yi;,X;;) for fixed j , and then construct an opti•
mal weighted average of the resulting estimators, where 
the optimal weights are the reciprocal of the var{B;(x; h)}. 
We call such an estimator the weighted average estima•
tor. A simple generalization of the results of Ruckstuhl 
et al. (1999) shows that this estimator is asymptotically 
equivalent to method (III), the weighted pooled estima•
tor. The key step in proving this result is to show that 
cov{O;(x;h),B;·(x;h)} = O(n- 1 ) (j # j') is of smaller 
order compared to var{O;(x;h)} = O{(nh)- 1 }. In other 
words, for asymptotic arguments, the individual estimators 
O;(x; h) are independent. 
It seems that the technique of constructing separate es•

timators and then pooling them could be complex, because 
asymptotically the optimal weights depend on the density 
functions of X;; for j = 1, ... , m, which must then be 
estimated separately. In practice, this is not really that im•
portant an issue, because standard kernel methods allow 
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estimation of variances (and hence weights) via such tech•
niques as the sandwich method. As we show later, the extra 
complication in the no measurement error case of having to 
estimate weights can be worthwhile when there is measure•
ment error, as the weighted average estimator is asymptot•
ically more efficient than the weighted pooled estimator. 

4. SIMEX LOCAL POLYNOMIAL ESTIMATION WHEN 
THERE IS MEASUREMENT ERROR 

In this section we discuss extending the kernel methods 
in Section 3 to the case when the covariate X is measured 
with error under the additive measurement error model (2). 
We use the SIMEX method (Cook and Stefanski 1994) to 
correct measurement error. The results in Section 3 show 
that when X is accurately measured, it is the best strategy 
to entirely ignore the correlation and assume independence 
when calculating the kernel estimator of O(x). In view of 
this result, we propose calculating the naive kernel estima•
tor by assuming independence in the simulation step of the 
SIMEX method. 

This approach leads to two SIMEX estimators of O(x): 
the SIMEX weighted pooled estimator and the SIMEX 
weighted average estimator. The former calculates the naive 
weighted pooled estimators in the simulation step, whereas 
the latter calculates the naive weighted average estimators 
in the simulation step and can be applied only to the "panel 
data" case. The most interesting result we have found is 
that unlike in the no measurement error case, where the 
two estimators have the sarue asymptotic properties, the 
SIMEX weighted average estimator has a smaller asymp•
totic variance than the SIMEX weighted pooled estimator 
in the presence of measurement error. We describe local 
polynomial kernel estimation using SIMEX and propose 
the SIMEX weighted pooled estimator in Section 4.1, and 
study the asymptotic properties of this estimator in Section 
4.2. We discuss the SIMEX weighted average estimator in 
Section 4.3. 

4.1 The SIMEX Kernel Estimator 

The SIMEX estimator was developed by Cook and Ste•
fanski (1994). The idea behind the SIMEX method is seen 
most clearly in simple linear regression when the inde•
pendent variable is subject to measurement error. Suppose 
that the regression model is E(YJX) = a + { JX and that 
W = X+ U, rather than X, is observed where U has mean 
0 and variance a~ and the measurement error variance u; 
is known. It is well known that the ordinary least squares 
estimate of the slope from regressing Y on W converges to 
fJai(ai + a~)- 1 , where ai = var(X). 

For any fixed .\ > 0, suppose that one repeatedly "adds 
on," via simulation, additional error with mean 0 and vari•
ance a~.\ to W, computes the ordinary least squares slope 
each time, and then takes the average. This simulation esti•
mator consistently estimates g(.\) = fJai/ {ai +a~(l + .\)}. 
Because, formally at least, g( -1) = {3, the idea is to plot 
g(.\) against.\ 2: 0, fit a model to this plot, and then extrap•
olate back to.\= -1. Cook and Stefanski (1994) showed 
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that this procedure will yield a consistent estimate of f3 if 
one fits the model g(.\) ='Yo+ 'l'l (1' 2 + .\)-1 

The SIMEX estimator for nonparametric regression is 
constructed as follows. We discuss only the case where 
measurement error covariance matrices :Ei uu are known, 
and we keep track of these variances by me~s of the short•
hand "Euu·" In practice, the Ei,uu will have to be estimated, 
but estimating such parameters occurs at a parametric rate 
faster than the rate of convergence of any nonparametric es•
timator. Thus the theory is unchanged by estimating Euu· 

Fix D > 0 to be a large but finite integer (50-200 
in practice), and consider estimation of O(x) in (1). For 
d = 1, ... , D and any.\> 0, let (o;;d)f be a set of indepen•
dent standard normal random variables that are then trans•
formed to have saruple mean 0 and variance I and to be un•
correlated with the Y's and theW's. Let Ei(~ be the matrix 
square root of Ei,uu· Define {Wild(. \), .. .', Wim;d(. \)V = 

{Wil, ... ' Wi,m.}T + ,Vf2~i~u{cild, ... ,Cimid}T. We cal•
culate the GEE kernel estimator, which solves either (4) or 
(5), from these simulated data and denote it by Bd{x, (1 + 
.\) Euu}. The average of these estimates over d = 1, ... , D 
is denoted by B{x, (1 +.\)E •• }. We run the SIMEX algo•
rithm with D simulation replications at each value .\ in a 
finite set A. We extrapolate B{x, (1 + .\)Euu} using a poly•
nomial of order q, back to .\ = -1. This gives the SIMEX 
local polynomial estimator B,x(x). 

In view of the results in Section 3, we propose calculating 
the naive estimators B d { x, ( 1 + >.) Euu} using the weighted 
pooled estimator by assuming independence of observations 
within a cluster. The resulting estimator, called the SIMEX 
weighted pooled estimator, is denoted by Bsx,wpe(x). 

4.2 Asymptotic Theory for the SIMEX Weighted 
Pooled Estimator 

The SIMEX estimator has a more complex theory for 
the weighted pooled estimator than in the independent data 
case where m; = 1, because the marginal distributions of 
W;; and the conditional distributions of Xi; given W,; may 
depend on j , for exaruple, because the distributions of X,; 
or the measurement error may depend on j . This means that 
the "naive" regression for YiJ on Wij ignoring measurement 
error may have a mean (;(w, Euu) = E(Yi;IW<; = w) de•
pending on j. 

In the case where m; = m, the following is easily 
shown. Let f;w(·, Euu) be the marginal density of W,;. 
Let ¢;(Euu) be the limiting value of estimates of ¢; ig•
noring measurement error. Then the naive estimate of 8( w) 
converges to ON(w, Euu) given by 

p{ON(W, Euu)} = {t,(;(w, Euu)f;w(w, Euu)/¢;(Euu)} 

X {t,J;w(w,Euul/¢;(Euu)} -l (9) 

Lets(.\) be the (q, + 1)-vector with jth element .\;-', let 
E, be the ( q, + 1) x ( q, + 1) matrix whose elements are 0 
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except that the first element equals I, and let qT (A) 
s(-ljY{2:::;,EAs(.\)sr(.x)}- 1 The results are unchanged, 
and the theory simplifies tremendously, if we assume that 
for each.\, the same bandwidth h, for all SIMEX replicates. 
In our theory we also require that the polynomial extrapola•
tion is exact; that is, qT(A) z:;,EA ON{x; (1+.\)Euu}s(.\) = 
O(x). Hence the extrapolation results in a consistent esti•
mate of O(x). This is exactly true, of course, only in special 
cases. The bias that results from the extrapolation changes 
only the bias expression in the results given later, but not 
the variance expression. 

Let the SIMEX weighted pooled estimator at x be de•
noted by ii.x,wpc(x). The naive weighted pooled estimator 
that ignores measurement error is given by iiN,wpc(x). Fi•
nally, define 

Q(w,Euu) 

2::::7~1 {U;(w, Euu) + r,(w, Euu)} 
X f;w(w, Euu)!¢](Euu) 

[p( 1l{ON(w, Euu)} Z::j': 1 f;w(w, Euu)/¢j(Euu)J2' 

where u,(w, Euu) = [(,(w, Euu) - p{ON(w, Euu)}]2 and 
f;(w,Euu) = var(Y;;[W;; = w). In Appendix A.5 we 
sketch an argument that gives the following approximate 
bias and variance expansions, assuming that the number of 
SIMEX replicates D is large. For simplicity, the bias ex•
pressions given here assume that p is odd: 

bias{iiN,wpc(x)} "'ON(x, Euu)-O(x)+hg+>e~+l){x, Euu} 

X {eTE;1 (c)Ec(P + 1)}, 

bias{ii,x,wpc(x)} 

"' qr(A) L hv+>e(v+>l{x (1 + .\)E }s(.\) 
(p+1)!AEA A N ' uu 

X {~TE; 1 (c)Ec(P+ 1)}, (10) 

var{iiN,wpc(x)} 

"'(nho)- 1Q(x, Euu){eTE; 1 (c)Ep('y)E;1 (c)e}, (11) 

and 

var{ii,x,wpc(x)}"' (nho)- 1Q(x, Euu) 

x {eTE;1 (c)Ev('y)E; 1 (c)eqT(A)E,q(A)}. (12) 

Equations (II) and (12) are the most surprising, be•
cause they say that the variance of the SIMEX estimate 
is asymptotically the same as if measurement error were 
ignored, but multiplied by the factor qr (A)E,q(A), a fac•
tor that is independent of the problem. Thus we can eas•
ily compare the various extrapolants on the basis of vari•
ance. For instance, suppose that the set of possible values 
of A = {0, .5, 1.0, 1.5, 2.0}. Then direct calculation shows 
that use of the quadratic extrapolant leads to an estimator 
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that is 9 times more variable than that based on the lin•
ear extrapolant, whereas the cubic extrapolant is 52 times 
more variable than the linear extrapolant. Of course, such 
increases in variance have to be balanced by decreases in 
bias, and it is our experience in other problems (Carroll, 
Maca, and Ruppert 1999) that the excess bias of the lin•
ear extrapolant is sufficiently large so that many times the 
quadratic extrapolant is preferred in terms of mean squared 
error. 

Variance estimation of the SIMEX regression function 
can be performed in two ways. First, one can use the sand•
wich formula described previously to estimate the variance 
for the naive estimator which ignores measurement error, 
and then multiply it by the factor qr(A)E,q(A) in (12) to 
account for the extrapolation. An alternative method uses 
the sandwich formula and the SIMEX replicates (see Ste•
fanski and Cook 1995, sec. 5.4). 

4.3 The SIMEX Weighted Average Estimator 

The weighted pooled estimator in Section 4.2 is applica•
ble in great generality. In particular, different cluster sizes 
are easily accommodated, and a natural ordering is not re•
quired, so that the jth observation in one cluster is somehow 
linked with the j observation in any other cluster. However, 
when such a natural ordering exists, the fact is that the vari•
ance of the SIMEX weighted pooled estimator is inflated 
by the terms U;(-). These terms are an artifact, arising only 
because that although the regression of Yi; on X;; does not 
depend on j in the presence of measurement error, the re•
gression of Yi.; on W,; may exhibit such a dependence. It 
seems sensible, therefore, to explore circumstances under 
which less variable methods can be constructed. 

One such circumstance occurs in the "panel data" prob•
lem with mi = m; for example, in a panel study where 
subjects are observed at the same time points. In such a sit•
uation, one could instead estimate the regression function 
O(x) separately using SIMEX for each of j = 1, ... , m, 
and then average the estimates using some weights. Be•
cause each SIMEX estimate is an approximately consistent 
estimate, this device should in principle help us avoid an 
artificial variance inflation. We term the resulting estimator 
the SIMEX weighted average estimator and denote it by 
Bsx,wae(x). 

To see how this might work, suppose that the band•
widths in the jth observation are h,, the same as for the 
weighted pooled estimator. Then applying (12) but for a 
single observation, the asymptotic variance in the jth ob•
servation of the SIMEX estimate ii,x,;(x), is proportional 
to (nho)- 1 f;(x, Euu){[p(1l{O;(x, E •• )}j2 f;w(x, Euu)} ->, 
where O;(x, Euu) = p- 1 {~;(x, Euu)}. The constant of pro•
portionality is enclosed in brackets in (12). We construct 
the SIMEX weighted average estimator ii,x,w~(x) as the 
optimal linear combination of the individual estimators as 

m 

ii,x,w~(x) = L"';ii,x,;(x), 
j=l 

(13) 

where <>; ex {[p( 1l{O;(x, Euu)JI2 f;w(x, Euu)}{f;(x, 
Euu)} - 1 and 2::::7~ 1 <>; = 1. Assuming that the poly-
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nomial extrapolation is exact for each j-that is, 
qT(A) L>EA Bj{x; (1 + -')Euu}s(A) = B(x)-the asymp•
totic bias of B,x,w~(x) is 

bias{B,x,wae(x)} 

"" qr(A) f I> hP+>e(p+1J 
(p + 1)! j~lAEA J A J 

X {x, (1 + A)Euu}s(-'){eTE; 1 (c)E,(p + 1)}. (14) 

It is difficult to compare its bias with the bias of the SIMEX 
weighted pooled estimator B,x,wpe(x). However, if h, = h, 
assuming that the q,th order polynomial extrapolation is 
exact for both B,x,wpe(x) and B,x,w..,(x), then (10) and (14) 
are identical and are simplified as 

bias{B,x,wpe(x)} = bias{B,x,wae(x)} 

::::::: hP+l B(p+l)(x){eTE-1(c)E (p+ 1)} 
(p+1)! p ' . 

This means that the asymptotic bias of the SIMEX estima•
tors B,x,wpe(x) and B,x,w..,(x) is the same as that when X 
is observed. 

The variance of the weighted average estimator 
Bsx,w~(x) is proportional to 

var{B,x,wae(x)} 

oc (nho)- 1 {t, [IPl{B;(x, Euu)}] 2 

X f;w(x, Euu)[rj(X, Euu)]- 1 } -

1 

(15) 

where again the constant of proportionality is enclosed in 
brackets in (12). The proof of (15) again has used the fact 
that the covruiance cov{B,x,;(x),B,x,;'(x)} = O(n- 1 ) for 
( j oJ j'), which is of smaller order than var{B,x,;(x)} = 
O{(nh0 )- 1 }. In other words, the individual SIMEX esti•
mates B,x,j(x) are independent asymptotically. In Appendix 
A.6 we show that the variance of the SIMEX weighted 
pooled estimator B,x,wpe(x) is greater than or equal to 
the variance of the SIMEX weighted average estimator 
B,x,wae(x). Of course, in the case that the distribution of 
(Y, W, X) is independent of j , the two expressions are equal. 

Because of the complex nature of the bias expressions 
for SIMEX estimators, it is generally not possible to com•
pare the SIMEX weighted pooled estimator and the SIMEX 
weighted average estimator in terms of mean squared error. 
However, when h, = h, such a comparison is possible, and 
our calculations suggest that the latter should be used if 
there are major observed differences as a function of j in 
the regression functions. 

Because the weights used to calculate the SIMEX 
weighted average estimate B,x,wae(x) depend on the un•
known density functions f;w(x, E) and the unknown 
conditional variances rj(x, Euu), it is difficult to cal-
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culate e,x,wM(x) using (13) in practice. We hence pro•
pose the following procedure, which yields an asymptot•
ically equivalent estimate. For the dth simulated SIMEX 
dataset, we first calculate the naive weighted average esti•
mate BN,wae,d{x, (1 + A)Euu} = LJ~1 ajdON,jd(x){x, (1 + 

-')Euu}, where BN,;d{ x, (1 +-')Euu} is the naive kernel esti•
mate using the simulated jth observation data W;;d(A), and 
ajd is the reciprocal of the variance of BN,jd{x, (1 +-')Euu} 
obtained from standard kernel regression (e.g., the sand•
wich estimate). We then calculate the average of these esti•
mates over d = 1, ... , D and extrapolate it back to A = -1. 
To compute the variance of the resulting estimate, we only 
need to calculate the variance of the weighted average es•
timate BN,w~,d{x, (1 + A)Euu} using the sandwich method 
(see Sec. 3.1) and then apply the SIMEX standard error 
method of Stefanski and Cook (1995). 

5. APPLICATION TO THE ACSUS DATA 

We applied the proposed SIMEX local polynomial kernel 
method to analyzing the ACSUS data described in Section 
1. Because the risk of hospitalization depends on various 
covariates, such as HIV status, treatments, race, and gen•
der, and we allow only a single covariate in model ( !), we 
limited our analysis to a subset of homogeneous subjects. 
Specifically, we restricted our attention to 273 white male 
patients who were HIV positive at entry into the study and 
were treated with antiretroviral drugs. The study partici•
pants were interviewed about every 3 months for about 18 
months and were asked whether they had had hospital ad•
missions (yes/no) during the interviews. The question of 
main interest was how the CD4 counts affected the risk 
of hospitalization. The total number of observations was 
1,059, with each patient contributing from I to 6 observa•
tions over time. The major covariate of interest, CD4 count, 
ranged from I to 2,131, and 90% of these patients had CD4 
count below 500. As discussed in Section I, the CD4 counts 
were measured with error, because the most recent CD4 
counts prior to each interview were subject to substantial 
lab errors. Because the investigator does not know in what 
fashion the risk of hospitalization decreases with the CD4 
counts and is interested in identifying the form of the func•
tional dependence (see Sec. I for discussion), we would 
like to make such dependence as flexible as possible by as•
suming a nonparametric function to properly identify the 
functional form. Note that the other covariates included in•
terview time and age. Examination of the data suggests only 
slight dependence of the risk of hospitalization on time and 
age, and we did not include them in the model. 

We fit model (I) using the logit link with a single co•
variate W defined as W = log (CD4/IOO), a transforma•
tion that reduces the marked skewness of CD4 counts. We 
assumed the measurement errors Uij were independent and 
normally distributed with mean 0 and variance a~. How•
ever, W itself is left skewed, and so an assumption that X 
is normally distributed would be inappropriate. The power 
of the SIMEX idea is that no assumptions need be made 
about the distribution of X. To estimate the measurement 
error variance a~, one needs either a validation study or 
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replicates of CD4 count measures. But these were not avail•
able in the ACSUS, and hence we were not able to estimate 
a~ using the ACSUS. We thus conducted a sensitivity anal•
ysis by assuming a~ equal to 1/4 and 1/2 of the variance 
of W; that is, assuming a~ = .34 and a~ = .68. Wulfsohn 
and Tsiatis (1995) estimated the measurement error vari•
ance of log(CD4) as "~ = .39 using data from a clinical 
trial conducted by Burroughs-Wellcome. Our assumption 
of a~ = .34 is similar to their finding. Following Wulfsohn 
and Tsiatis (1995), we assumed that the measurement errors 
were independent and the measurement error variance a~ 
was a constant. If we had validation or replication data, then 
we could of course assess the possibility of correlated mea•
surement errors, additivity, constant measurement variance, 
and whether a different transformation of CD4 counts is 
required by using the techniques of Nusser, Carriquiry, 
Dodd, and Fuller (1996) and Eckert, Carroll, and Wang 
(1997). 

Because different subjects had different numbers of ob•
servations, calculation of the weighted average estimate 
of B(1:) was difficult. We calculated the SIMEX weighted 
pooled estimate of B(x), letting .\ = (0, 1.0, 1.5, 2.0). We 
used the EBBS method discussed in Section 2.4 to select 
the bandwidth parameter h for each simulated dataset and 
assumed t = 2 in (8). We further treated a~ as fixed and 
known. We used a quadratic extrapolation function in the 
SIMEX procedure and calculated the standard errors of the 
SIMEX estimates using the standard error esti•
mation method of Stefanski and Cook (1995). The SIMEX 
method was applied with D = 100. Analysis of each simu•
lated dataset including estimating the bandwidth parameter 
h took only 16 seconds on a SPARC Ultra. 

Figures 1-3 plot the estimated B(x) against x = 

log(CD4/100) with it 95% confidence intervals assuming 
a~ = 0 (naive estimate ignoring measurement error), a~ = 

'1 
g 
~ 
£; 1 

'I' 

-3 -2 -1 
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Figure 2. Estimated SIMEX!Kernel Estimate ?!(x) Assuming a~ 
.34, Where x = ln(CD41100) for the ACSUS Data and Its 95% Pointwtse 

Confidence Intervals. -- 0(x} ; --- Cl. 

.34 and .68. The results suggest that the risk of hospital•
ization decreases as the CD4 count increases, but not in a 
linear fashion. It decreases more quickly when CD4 count 
is relatively low (CD4 < 14, log(CD4/100) < -2) or high 
(CD4 > 100, log(CD4/100) > 0) and is fairly stable when 
CD4 count takes middle values, for example, between 14 
and 100. Ignoring measurement error clearly affects the es•
timated risk of hospitalization. The naive curve is attenu•
ated toward 0 compared to the SIMEX curves, especially 
for small and large values of CD4 counts. As expected, an 
increase in the measurement error variance leads to more 
change in the SIMEX estimate. 

As a further check on the results, instead of kernel regres•
sion, we fit the model by smoothing splines with the GAM 
procedure in S-PLUS by assuming independence for each 
simulated SIMEX data and calculated the SIMEX estimate 
of B(x ). The fitted model ignoring measurement error, as 
well as the two SIMEX fits, were well within accord with 
Figures 1-3 . 

....... 
'-....., 

-3 -2 -1 

x=ln(CD4/1 00) X=log(CD4/1 00) 

Figure 1. Estimated Naive Kernel Estimate ?!(x) That Ignores Mea- Figure 3. Estimated SIMEX/Kernel Estimate ?!(x) Assuming a~ 
surement Error, Where x = fn(CD41100) for the ACSUS Data and Its .68, Where x = ln(CD4!100} for the ACSUS Data and Its 95% Pomtwise 
95% Pointwise Confidence Intervals. -- ii(x) ; --- Cl. Confidence Intervals. -- B(x} ; --- Ct. 
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To examine whether a simple parametric model can fit the 
data as well as the nonparametric model, we fit a simple lin•
ear model and a quadratic model using the GEE method as•
suming working independence (Liang and Zeger 1986) and 
calculated the SIMEX estimates to account for measure•
ment error. For illustration, Figure 4 compares the SIMEX 
kernel estimate with the SIMEX linear and quadratic es•
timates when a~ = .34. Figure 4 shows that the SIMEX 
local polynomial kernel estimator seems to have nonlinear•
ity detected neither by the linear model nor by the quadratic 
model. To test whether this extra nonlinearity is simply a 
figment of noise, we fit a cubic model to the data. Table 
I shows the naive and the SIMEX regression coefficient 
estimates of the cubic model assuming a~ = (0, .34, .68), 
along with 95% bootstrap confidence intervals based on 
2,000 bootstrap samples. The coefficient of the cubic term is 
marginally statistically significant in naive regression when 
measurement error is ignored, and it is statistically signif•
icant for both SIMEX analyses after accounting for mea•
surement error. 

6. DISCUSSION 

We have discussed local polynomial kernel regression 
methods for clustered data in the absence/presence of mea•
surement error. We have emphasized that our work is spe•
cific to the case of random regressors with a bounded num•
ber of observations per cluster, while the number of clus•
ters becomes large. We developed two main results. First, 
in the absence of measurement error, methods based on 
ignoring within-cluster correlations generally improve on 
methods that attempt to use these correlations. Furthermore, 
correctly specifying correlation in estimation results in an 
asymptotically less efficient estimator. This is due mainly 
to the fact that kernel methods, being local, then essentially 
act as if the data were independent. A referee suggested 
that one might gain additional insight into the explanation 
of this result by considering a sequence of models wherein 

-3 -2 -1 

x=log(CD41100) 

Figure 4. Comparison of the 5/MEX Kernel Curve Estimate and the 
Linear and Quadratic Curve Estimates When a~ = .34. -- SIMEX 
kernel estimate; --- S/MEX linear curve estimate; --- SIMEX 
quadratic curve estimate. 
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Table 1. Naive and S/MEX Estimates of the Regression 
Coefficients of the Cubic Models for the ACSUS Data 

Naive SIMEX(a~ = .34) SIMEX(~ = .68} 

Intercept -2.19 -1.84 -1.66 
Linear -.54 -.65 -.75 
Quadratic -.29 -.65 -.78 
Cubic -.06 -.14 -.17 
Cubic, 2.5% bootstrap 

quantile -.17 -.38 -.45 
Cubic, 97.5% bootstrap 

quantile .007 -.02 -.02 

NOTE: The4% and 96% bootstrap quantllesof the naive cubic term are -.153 and -.001. 

the within-cluster correlation approaches I as n -; oo. It 
should be noted that our results in this article assume that 
the working covariance matrix V is invertible and distri•
butions of Y, and X, are continuous, and they might not 
be applied directly to this situation. Our second main re•
sult is in the "panel data" context with measurement error, 
where it can be preferable to fit separate functions to each 
time period and then combine the methods via weighted 
averaging, rather than try to perform a single pooled mea•
surement error analysis. For simplicity, we assume a single 
nonparametric function. We conjecture that our results are 
applicable to models involving several continuous nonpara•
metric functions; for example, in the generalized additive 
model context. 

Our results may have implications outside the realm 
of kernel smoothing-for example, to spline smoothing•
because of the well-known "equivalent kernel" results of 
Silverman (1984). These results say that linear and cubic 
smoothing splines behave away from the boundary like a 
Nadaraya-Watson kernel regression estimator with a lo•
cally chosen bandwidth and a higher-order kernel. Using 
this equivalent kernel, our results on kernel smoothing sug•
gest that even for splines, it may be more efficient statis•
tically, and is certainly easier computationally, to ignore 
the correlation structure within clusters and simply com•
pute a weighted smoothing spline for GLIMs with weights 
inversely proportional to the ¢;. 

Our results thus may have a direct impact on recent very 
active developments in modeling longitudinal curve data 
using smoothing splines via a linear mixed-effects model 
formulation (Brumback and Rice 1998; Verbyla et al. 1999; 
Wang 1998). These authors account for the within-cluster 
correlation using random effects while estimating the non•
parametric function using a smoothing spline. An advan•
tage of this approach is that the smoothing spline esti•
mators can be written as a linear combination of fixed 
effects and random effects, and hence an enlarged linear 
mixed model can be used to fit a linear random-effects 
smoothing spline model. But our results show that the 
smoothing spline estimator obtained in this way possibly 
could be asymptotically less efficient than that obtained 
by ignoring correlation. These suggestions are, of course, 
all conjectures, based on an equivalence in the nonclus•
tered framework between local polynomial estimation and 
smoothing spline estimation. But it would appear impor•
tant for smoothing spline methodologists to show explicitly 
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that accounting for correlation within clusters is a worth•
while endeavor. We would not expect our results to ap•
ply to nonlinear random-effects smoothing spline models, 
such as generalized additive mixed models (Lin and Zhang 
1999). 

Our results do not, of course, apply to the time se•
ries context, where the predictors are the fixed observation 
times, with the number of such times converging to infin•
ity. It is well known that one can construct estimators that 
take advantage of the autocorrelation structure in this case 
(Hart 1991), and the asymptotic variance of the estimator 
of the nonpararnetric function depends on the correlation 
function. 

In view of the no measurement error results, we have 
considered in the measurement error case estimation of 
the nonparametric function using the SIMEX approach by 
ignoring the within-cluster correlation in calculating the 
naive kernel estimators in the simulation step. It is unclear 
whether this strategy is the best strategy; that is, whether 
ignoring correlation yields the most efficient SIMEX es•
timator. More research is needed, although we expect the 
theory to be extremely difficult. 

An advantage of the SIMEX method is that it makes no 
distributional assumption on the unobserved covariate X. It 
is clearly of substantial interest for future work to develop 
methods that allow for an assumed parametric distribution 
for X. It is known (in models without correlated responses) 
that correct specification of a distribution for X can allow 
substantial gains in efficiency (Carroll eta!. 1999), albeit at 
the price of a loss of robustness to misspecification of the 
distributions of X. 

APPENDIX: THEORY FOR KERNEL METHODS 

A.1 Proof of Theorem 1 

For p = 0, a simple Taylor expansion of (4) shows that its 
solution /3o = Oo(x; h) satisfies Oo(x; h) - O(x) "'B; ;: 1 A., where 

Bn = n- 1 L lT .O.;(x)Vj1 (x)K;h(x).O.,(x)l 
i=l 

and 

and 1 is an m X 1 vector of l's. Let B = limn-+oo Bn. The asymp•
totic bias of Oo(x; h) is s- 1 E(An) and the asymptotic variance 
of 00 (x; h) is var(An)/ B 2 . 

Specifically, some calculations give 

B = E {t, [I'('){O(x)}['v''Kh(X; -x)} 

[1'(1){0(x)}] 2 L v''J;(x) + O(h), 

E(An) E {t,l'( 1 ){0(x)}v''Kh(X;- x)[~t{O(X;)} 

- ~t{O(x)}]} 

and 

h2 [1'(1){0(x)}]2 L v' uj'>(x)O(')(x) 
j=l 

+ f;(x)e('\x)/2} + o(h2 ), 

var(An) "' n- 1 E {t, t, [l'(l){O(x)}]2v''v1'a;L 

x Kh(X; - x)Kh(X, - x)} 

'YK(0)[1'('){0(x)}] 2 ~ { ;.}2 .. /·( ) 
nh L-. v aJJ J x 

j=l 

+ o{(nh)-1 }, 
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where E = cov(Y;) and"'' is the (j, l)th element of E. Part (a) 
follows immediately. A direct application of the Cauchy-Schwartz 
inequality leads to part (b). 

A.2 Proof of Theorem 2 

For part (a), see theorem 2 of Ruckstuhl eta!. (1999). Here we 
prove part (b). The results of appendix A.3 of Ruckstuhl et a!. 
(1999) show that when the Xj are independent with density / j (·), 
the asymptotic variance of iJ 1 ,a(x) is the first diagonal element of 
B-1cov(An)(B-1)T, where 

B= [ ~oo hB"] h- Bm Bn 

and 

Here 

Boo Lv''J;(x) B01 = L v'"Jj'\x) 
j=l j=l 

j=l l::;6j 

m 

Bn = LLv'1E(X,-x)Jj')(x) + Lv''J;(x) 
d=l l::;6j d=l 

and 
m 

Aoo L {v''}2 a;;/;(x) 
j=l 

A01 L v''a;;!;(x) L v'1E(X1 - x) 
j=l l::;6j 

An ta;;!;(x) [2:: {v'1} 2 E(X1 -x)2 

J=l l#-j 

Some calculations show that var{iJ1,c(x; h)}"' M-yK(O)/nhH2 , 

where M = AooBf1 -2Ao1BnBo1 +AuB51 and H = BooBn-
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B10Bo1, which is 

H ~ {t,v;f;} {t,v;;f,} + {t,v; Jj')} 

X {t,vjj J,}- {t, v;f;} {t, v;; Jj')}. 

If the Xj are iid with common density f( · ), some calculations 
show that H and M can be simplified as 

M ~ f(x) [ (t, {v; }2o-,;) (t, vjj) 2 
{f(x)- aj<1l(x)}2 

+ (t, {d;}2o-;;) (t, d) 
2 

{nj<1l(x)}2 

- 2 (t, v;) (t, vh) (t, v; vi'o-,;) 

x {f(1\x)}2 E(X- x) 2] , 

where a ~ E(X - x). Noting that the last term of 
M is nonnegative, and using the Cauchy-Schwartz inequal•
ity for the first three terms, some calculations show that 
M 2 / 3(x)[ 2:;:1 v';ll 2:;:1 v;-1{2:;:11/o-;;} - 1. It follows 

that var(01,a(x;h)) 2 'YK(O){nhf(x) 2:;"~ 1 1/o-;;} - 1. This com•
pletes the proof of part (b). 

A.3 Proof of Theorem 3 

For simplicity, we provide the proof by assuming that p is 
odd. When p is even, bias calculations are similar but more com•
plex (see App. A.4 and Carroll, Ruppert, and Welsh 1998). Let 
w(Y,s) ~ {Y -f.'(s))l'<1l(s)/V(s). Then, using the techniques 
of Carroll et al. (1998), it can be shown that Bp,wpo(x; h) has the 
expansion 

Op,wpo(X, h)- B(x) 

"'hP+1 e<•+1) (x) eTE-1(c)E (p + 1) 
(p + 1)! p ' 

+ {rl'<1l{e(x)}[2t,J,(x)/o-;;} -
1 

x n- 1 LLeTE;1 (c)¢j 1 Kh(X~j- x) 
i=l j=l 

x Gp{(X;;- x)jh)'li{Y;,, B(X,,)), (A.l) 
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where o-;; ~ ¢;wj1V[!'{B(x))[. The bias of Bp,wpo(x,h) is the 
first term in (A.l), and the variance is 

var{Op,wpo(x, h)) 

"' 'YK(O)(nW 1 { [!'{B(x)}[2 t,f;(x)/o-;;} -1 

A.4 Proof of Theorem 4 

Repararneterize Gp(X;;-x) in (5) as Gv{(X;;-x)jh) and/3 as 
a: whose jth component ai = hj(}(j)(x)fj!. Then 8;(x; h)= & 0 . 

A Taylor expansion of (5) gives a- a= B~ 1 An. where 

and 

An~ L Gi,(x)i!i.;(x)Ki,(2(x)Vi1(x)Ki{'(x)(Y; -f.';). 

Because (Y i, Xi) are iid, we suppress the subscript i. Let B = 
limn~= Bn ~ E{Gi'(x)i!i.(x)K~12 (x)V- 1 (x)Ki/2 (x)i!i.(x) 
Gv(x)). The (r,, r2)th component of B is 

Bc,,r, ~ E {~~1')1ll')'ld'K~/2 (X;- x)K~/2 (X1 - x) 

where 1-')'l ~ 1-')'liGi'{(X;- x)jh)a[. Some calculations give 

Bc,,c, ~ f j {I'J1)} 2d; K(s,)J;(x + s;h)sj'+"'-2 ds, + o(h) 
j=l 

~ [!'(1l{e(x)}]2 L v;' f;(x)cK(r1 + r2 - 2) + o(h). 
j=l 

It follows that B ~ [!'(1l{B(x))]2 2:;"~ 1 v" f;(x)Ep(c) + o(h). 
The rth component of E(An) is 

E[t,t {1')1 lJ'd'K~;2 (X; -x)K~~2 (x, -xl(x; h-xr-1 

{ 
hPHo(v+I)(x) (Xl- x)"+l 

X (p+1)! h 

hv+2o(v+2>(x) (X1- x)"+2}] v+2 
+ (p+ 2)! -,- +o(h ) 

~ f j {1')1l}2v;; K(s;)/;(x + s,h) 
j=l 

(A2) 
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If p = 0, then, noting that cK(2) = 1, some calculations show that 
(A.2) becomes 

h2 [1'( 1) {O(x)}]2 

{ 
m . (2) m } 

X 0( 1)(x) ~ ,)3 Jj'\x) + O 2(x) ~vii f;(x) + o(h2 ). 

If p > 0, then (A.2) becomes 

otp+1)( ) m 

h"+l (p+ 1~ [1'( 1){0(x)}['L,J;j;(x)cx(r+p) 
J=l 

+ h"+' {o<•+ 1l(x) t a[T;(x)f;(x)J 
(p + 1)! j=1 ax 

o<•+'l(x) ~ } 
+ (p + 2)! f:; T;(x)f;(x) cx(r + p + 1), 

where T;(x) = [1'( 1l{O(x)}]2v;;(x). Noting that cx(s) = 0 and 
that the (1, s + 1) elements of Band B- 1 are 0 if sis odd, using 
bias{B;(x; h)}= eTB- 1 E(An). some calculations give the bias 
expressions of B;(x; h) stated in Theorem 4. 

To calculate the asymptotic variance of B;(x; h), we first calcu•
late cov(An) as 

cov(An) = ~ E(G~ ..:I.K~12V- 1 K~12 EK~i'v- 1K~/' ..:I.Gv) 
n 

+ o{(nh)- 1 ), 

where :E = cov(YiiXi = xl) and aik is the (j, k)th element of 
:E. The (r1 , r 2 )th component of the first term is 

(nh)- 1 t J {~tJ1))2 {v;;)2<7;;K2 (s;)J;(x + s;h) 
j=1 

= (nh)- 1 [~t( 1 ){0(x)}] 2 L {v;;} 2<7;;f;(x)'yx(r1 +r2- 2) 
j=1 

+ o{(nh)-1 }. 

Using cov{O;(x;h)} = eTB-1cov(An)B-1e, we have the ex•
pression of cov{ e; (x; h)} as that given in part (b). A direct appli•
cation of the Cauchy-schwartz inequality gives part (c). 

A.5 Distribution of the Weighted Pooled Estimator Under 

Measurement Error 

To develop the SIMEX theory, we need an asymptotic expansion 
for the naive estimator. In the expressions that follow, the argu•
ment 0 refers to Gj; {(W,,- w)/h}/3, the argument (•) refers to 
ON(WiJ,:Euu), and the argument (o) refers to BN(w,:Euu). The 
first p + 1 terms of the Taylor series expansion of ON(Wij, :Euu) 
about ON(W, Euu) are given by c;; {(w,,- w)/h)/3. We solve j3 
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by 

-1~~ Yi;-1'0 (1)() ( ) 
n ~ ~ ¢;(Euu)V(·) I' · Kh W;;- w 

1=1 j=1 

x Gp{(W;;- w)/h} = 0. 

It is easily seen by a first-order Taylor expansion and using (9) 
that f3- {3 = B~ 1 An, where 

-1 n m {1'(1)(·)}' 
Bn = n L L <f;(Euu)V(·) Kh(W;;- w) 

i=l j=1 

x Gv{(W;;- w)/h)Gi {(W;;- w)/h} 

"' Ep(c)[{l'(1 ) {o) } 2 /V(u)] L f;w(w, Euu)/¢;(Euu) 
j=1 

+ Op(1) = B + Op(1), 

An= Anl + An2 1 

-1~~ Yi;-~t(•) (1)() 
An1=n ~~q\;(Euu)V(·)I' · 

1=1 j=l 

x Kh(W;;- w)Gp{(W,,- w)fh), 

and 

It is easily seen that 

X E,(p+ 1) LJ;w(w,Euu)/¢;(Euu), 
j=l 

and hence that 

ON(w)- ON(w) "'h"+1oii+1)(w)eTE;1(c)E,(p + 1)/{p + 1)! 

+ eTB-1 An1· (A.3) 

Remembering that E(Yi;[W;; = w) = (;(w) and using (9), a 
tedious but straightforward calculation shows that E(Ant) = 0. 
Hence the first term in (A.3) is the bias expansion for the naive 
estimate. 

It is also easily seen that we can replace the argument ( o) by ( •) 
in the definition of An1 leading to the expression Anl = Ann + 
An12. where 

A _ -1 ~~ Yi, -(;(W,,,Euu) (1)( )K (W _ ) 
nn- n ~ f:; ¢J(:Euu)V(•) J.t • h ,1 w 

x Gv{(W;- w)/h) 

and 

Because An12 is a function only of the W's, these two terms are 
unconelated. 
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A direct calculation shows that An1 has variance asymptotically 
equivalent to 

{!Pl(o)}2 Ep('1') 
nhV 2 (o) 

XL {U;(w,Euu) + E;(w,Euu)}f;w(w,Euu)/4>J(Euu)· 
j=l 

We have thus shown (11), namely that the variance of @N(w, Euu) 
is asymptotically 

var{ON(w,Euu)}"" (nh)- 1Q(w,Euu)eTE;1 (c)Ep('l')E; 1 (c)e. 

In the case where the {Y, X, W)'s are marginally identically dis•
tributed, although not necessarily independent, simplification oc•
curs because U3 ( w, Euu) = 0, ( j = J.L( () N) and none of the terms 
rj,¢ j. or fjw depends onj. 

We are now in a position to verify (12). The expansion (A.3), 
with An1 replaced by An11 + An12, can be analyzed using the 
same techniques as used by Carroll et al. (1999). Because the 
calculations are similar, although tedious, in the interest of space 
we have chosen not to provide them here. The key step in the proof 
is to show that var{ON(x; (1+-')E •• )} ~ O{(nhD)- 1 }+O(n-1 ) 

for ).. > 0, which is of smaller order than var{BN(x; Euu)} = 
O{(nh)-1 }. 

A.6 Comparison of the Variances of Bg,.,.(x) and 

Bsx,wae{X} 

Using the Cauchy-schwartz inequality, we have 

2 {t l1i'l{8;~}1/;w(·) r 2 {t ~"<'l{8;~}/;w(·) r 
Using equation (9) and noting.;;(·) ~ !"{8;(·)), the last term is 
[!.< 1l{8N(·)} 2::;:, f,w(-)1¢3 ]2 . We have 

I:;:, f;(·)f;w(·)/<1>] 

{1"(1J{8N(·)} I:;"=l f;w(·)/<1>;} 2 

> 1 
~ I:;"=1[1"(1l{8;0}]' f;w(·)/f;(-) · 

Further noting that U;(·) 2 0, we have var{O,.,wp•(x)} 2 
var{O,",w~(x)}. 

[Received November 1998. Revised October 1999.] 
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Semiparametric Regression for Clustered Data 
Using Generalized Estimating Equations 

Xihong LIN and Raymond J. CARROLL 

We consider estimation in a semi parametric generalized linear model for clustered data using estimating equations. Our results apply to 
the case where the number of observations per cluster is finite, whereas the number of clusters is large. The mean of the outcome variable 
p, is of the form g(JL) = XT P+O(T), where g(.) is a link function, X and T are covariates, pis an unknown parameter vector, and 
8(t) is an unknown smooth function. Kernel estimating equations proposed previously in the literature are used to estimate the infinite•
dimensional nonparametric function O(t), and a profile-based estimating equation is used to estimate the finite-dimensional parameter 
vector fJ. We show that for clustered data, this conventional profile-kernel method often fails to yield a ..{ti-consistent estimator of fJ 
along with appropriate inference unless working independence is assumed or O(t) is artificially undersmoothed, in which case asymptotic 
inference is possible. To gain insight into these results, we derive the semiparametric efficient score of fJ, which is found to have a 
complicated form, and show that, unlike for independent data, the profile-kernel method does not yield a score function asymptotically 
equivalent to the semiparametric efficient score of fJ, even when the true correlation is assumed and 8(t) is undersmoothed. We illustrate 
the methods with an application to infectious disease data and evaluate their finite-sample performance through a simulation study. 

KEY WORDS: Asymptotics; Clustered data; Consistency; Efficiency; Generalized estimating equations; Kernel method; Longitudinal 
data; Nonparametric regression; Partially linear model; Profile method; Sandwich estimator; Semiparametric efficient 
score; Semiparametric efficiency bound. 

1. INTRODUCTION 

Clustered data arise in many fields of biomedical research, 
including longitudinal studies, intervention studies, and clini•
cal trials. Parametric regression using generalized estimating 
equations (GEEs) (Liang and Zeger 1986) has become a pop•
ular practice for analyzing such data. It is well understood 
that the GEE estimators of regression coefficients are consis•
tent when the mean function is correctly specified even when 
the within-cluster correlation structure is misspecified, and that 
the most efficient estimator is obtained by correctly specify•
ing the within-cluster correlation. To allow for more flexible 
dependence of an outcome variable on covariates, there has 
been substantial recent interest in modeling covariate effects 
nonparametrically (Lin and Carroll 2000. Hoover. Rice. Wu. 
and Yang 1998; Wild and Yee 1996). Lin and Carroll (2000) 
showed that in contrast to parametric GEEs, when standard 
kernel methods are used, typically the most efficient estima•
tor of the nonparametric function is obtained by completely 
ignoring the within-cluster correlation; correct specification of 
the correlation structure generally results in an asymptotically 
less efficient estimator. 

In many instances, a semiparametric partially generalized 
linear regression model is more desirable than modeling every 
covariate effect nonparametrically. This model assumes that 
the mean of the outcome variable JL depends on some covari•
ates X parametrically and on some other covariate T non•
parametrically in the form g(l-') = xrp+ O(T), where g(·) is 
a link function, P is an unknown parameter vector, and 0(-) 
is an unknown smooth function. This model specification is 
particularly appealing when the effects of X (e.g., treatment) 

Xihong Lin is Associate Professor, Department of Biostatistics, Univer•
sity of Michigan, Ann Arbor, MI 48109 (E-mail: xlin@sph.umich.edu). 
Her research was supported by National Cancer Institute grant CA-76404. 
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National Cancer Institute grant CA-57030, and by the Texas A&M Center 
for Environmental and Rural Health via National Institute of Environmental 
Health Sciences grant P30-ES09106. The authors thank the editor, the asso•
ciate editor, and two referees for their helpful comments and suggestions. 

are of major interest and the effects of T (e.g., confounders) 
are nuisance. This is because one can make inference on the 
effects of X while making minimal assumptions on the effects 
of T using a fully nonparametric function. 

One example is the longitudinal infectious disease study 
considered in Section 8. This study involved 275 preschool•
age children who were reexamined every 3 months for 18 
months for the presence of respiratory infection (yes/no) 
(Diggle, Liang, and Zeger 1994). The primary interest is to 
study the association between respiratory infection and vita•
min A deficiency (yes/no), while accounting for several con•
founders including age. Examination of the distribution of the 
vertical strokes in Figure 3 suggests that the age effect departs 
dramatically from linearity; the vertical strokes indicate the 
ages for yes (top) and no (bottom). 

Because the binary exposure of vitamin A deficiency is of 
main interest and the age effect is nuisance, we are interested 
in modeling the vitamin A deficiency effect while allowing 
the nuisance age effect to be modeled nonparametrically. 

Several authors have considered such semiparametric 
regression models. A key challenge of estimation in this model 
is that it is composed of a finite-dimensional parameter vector 
P and an infinite dimensional parameter 0(-). Estimation for 
independent nonclustered data has been considered by Carroll, 
Fan, Gijbels, and Wand (1997), Hastie and Tibshirani (1990), 
and Severini and Staniswalis (1994). These authors used the 
kernel method to estimate O(r) and the profile likelihood•
based method to estimate p. They showed that the estimator 
of P is ,.fii consistent and semiparametric efficient (Bickel, 
Klaassen, Ritov, and Wellner 1993). For longitudinal data, 
Zeger and Diggle (1994) considered a semiparametric model 
with a nonparametric time trajectory and parametric covari•
ate effects. They estimated O(t) using a kernel method by 
ignoring the within-cluster correlation, and estimated P using 
weighted least squares by accounting for the within-cluster 
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correlation. They did not study the asymptotic properties of 
their method. Severini and Staniswalis (1994) extended their 
independent data results to clustered data using profile-kernel 
GEEs. They claimed that the estimator of P is ,Jn consistent 
for any working correlation matrix specification. Zhang, Lin 
Raz, and Sowers (1998) considered a semiparametric linear 
mixed model and estimated the nonpararnetric function using 
a smoothing spline. 

In this article we consider a marginal semiparametric regres•
sion model for clustered data with O(t) estimated using ker•
nel estimating equations and (3 estimated using profile-based 
estimating equations. Our estimating equations are similar to 
those of Severini and Staniswalis (1994) except that differ•
ent working correlation matrices are allowed in the two sets 
of estimating equations, and local linear regression is used 
instead of local average kernel regression. The main focus of 
this article is to investigate whether it is possible to construct 
a .Jn-consistent and efficient estimator of fJ using the profile•
kernel method. This work is motivated by our observation of 
the diametrically opposed asymptotic properties of parametric 
and certain nonparametric GEEs in terms of how to obtain the 
most efficient estimators, the former requiring correctly speci•
fying the correlation and the latter requiring completely ignor•
ing the correlation. Hence we are interested in investigating 
whether such different asymptotic behavior affects consistency 
and efficiency of the estimator of fJ in the semiparametric 
model using the conventional profile-kernel method. In par•
ticular, does correct specification of the within-cluster corre•
lation still yield a ../ii-consistent and semiparametric efficient 
estimator of fJ? 

The results that we have obtained are surprising. To obtain 
a .Jn-consistent estimator of (J using the conventional profile•
kernel method, one generally must either artificially under•
smooth O(t) or completely ignore the within-duster correla•
tion by assuming working independence in the profile-kernel 
estimating equations. Thus, if one accounts for within-cluster 
correlation using the profile-kernel method, then the standard 
bandwidth selection methods used for estimating O(t), such as 
cross-validation, fail, the sandwich covariance estimator of the 
estimator of (J fails, and the conventional hypothesis tests on 
fJ such as the Wald and Score tests fail. With undersmooth•
ing or working independence, asymptotically correct inference 
about (J becomes possible. To gain insight into these results, 
we derive the semiparametric efficient score of (J, which is 
found to have a complicated form, and show that unlike for 
independent data, the profile-kernel method does not yield a 
score function that is asymptotically equivalent to the semi•
parametric efficient score for (J, even when the true correlation 
is assumed and O(t) is undersmoothed. Our main conclusion 
is that, unlike for independent data, the conventional profile•
kernel method is not semiparametric efficient and must be 
modified in ad hoc ways (undersmoothing) or to be made 
less efficient (working independence) to even be made ,Jn 
consistent. 

The article is organized as follows. In Section 2 we state 
the semiparametric model for clustered data and in Section 3 
discuss estimation of O(t) using kernel estimating equations 
previously proposed in the literature and of fJ using profile 
estimating equations. In Section 4 we study the asymptotic 
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properties of the profile-kernel estimators of fJ and O(t). In 
Section 5 we derive the semiparametric efficient score of fJ 
within a likelihood framework, and show that the conventional 
profile-kernel estimating equations of fJ often do not yield a 
score equation that is asymptotically equivalent to the semi•
parametric efficient score of (J. In Section 6 we discuss practi•
cal implications of our results. We illustrate the methods with 
a simulation study in Section 7 and an application to infec•
tious disease data in Section 8. We conclude with a discussion 
is Section 9. 

2. A SEMI PARAMETRIC MARGINAL MODEL 

In this section we present the semiparametric regression 
model for clustered data. Suppose that the data consist of n 
clusters with the ith (i = 1, ... , n) cluster having m; obser•
vations. Let Y1j and (X1j, T1j) be the response variable and the 
covariates of the jth U = 1, ... , mi) observation in the ith 
cluster, where X1j is a p x 1 vector and Tij is a scalar. Given the 
covariates Xij and Tij• the mean and the variance of the out•
come variable Y;1 are E(Y;1) = p,11 and var(Y;1) = <f>wij 1 V(p,1), 

where t/1 is a scale parameter, w1j is a known weight, and V(·) 
is a known variance function. The marginal mean JLij depends 
on X1j and T1j through a known monotonic and differentiable 
link function g(-), 

(I) 

where fJ is a p x 1 vector and 8( ·) is an unknown smooth 
function. We model the effects of X (p x I) parametrically and 
the effects of T nonparametrically, and treat the within-cluster 
correlation parameters as nuisance parameters. In particular, it 
is important to note the assumption (Pepe and Couper 1997) 
that 

an assumption also made implicitly by Lin and Carroll 
(2000). In matrix notation, denoting by p.1 = (p, 11 , ••• , !"1mY• 
g(p.,) = {g(p,il), ... ,g(P,;m,W• Y, = (Y;,, ... ,Y,m)', ~nd 
X,, and T, sintilarly, we have g(p.;) = X,{J+ 8(T1). If model 
(1) does not include 8(T1), then it reduces to the paramet•
ric generalized linear model considered by Liang and Zeger 
(1986). If model (I) does not include X~{J. then it reduces 
to the nonparametric model considered by Lin and Carroll 
(2000). Severini and Staniswalis (1994) considered a model 
sintilar to (I )-(2). 

It is important to emphasize that we are considering a 
marginal model for the clustered data through specification of 
mean and variance functions. This is in the spirit of GEE-type 
models (Liang and Zeger 1986). Except for Gaussian data, our 
marginal models need not be a full semiparametric likelihood 
specification. 

3. PROFILE-KERNEL ESTIMATING EQUATIONS 

In this section we develop kernel estimating equations for 
0( t) and profile estimating equations for (J. The formulation of 
the profile estimating equation is similar to the score equation 
calculated using the conventional profile likelihood approach 
in parametric regression. We give the motivation of these esti•
mating equations in Section 3.1, and describe their forms in 
Section 3.2. 
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3.1 Motivation of the Profile-Kernel 
Estimating Equations 

To motivate the profile-kernel estimating equations for p 
and O(t) under the semi parametric model (1), we first consider 
the GEEs for the parametric model 

(3) 

Of course, (3) is a special case of (I) when 6(t) = 0. Liang 
and Zeger (1986) proposed estimating P using the estimating 
equations 

= L,Xi a,v~ 1 (Y,-p.;) =O, (4) 

where p.1 = E(Y1) = JL(X 1P) with the jth component J.I.;J = 
JL(X~fJ) = g- 1 (X~P). a,= diag{JL~jl), JLC 1>(-) is the first 
derivative of JL0, V1 = si12 R 1(T)Si 1', S1 = diag[</>wij1 V{JL11 }] 

contains the marginal variances of the r;j, and R1 is an invert•
ible working correlation matrix, possibly depending a param•
eter vector 1', which can be estimated using the method of 
momen~s. Liang and Zeger (1986) showed that the GEE esti•
mator P is asymptotically consistent if the mean function 
ILu is correctly specified even when the working correlation 
matrix R; is misspecified. The efficient kernal estimator of fJ 
is obtained by specifying R1 as the true correlation matrix. 

Now consider kernel estimating equations for the nonpara•
metric model 

(5) 

Lin and Carroll (2000) considered the pth local polynomial 
kernel estimating equations for 6(t). We consider here the 
local linear kernel estimator, that is, p = 1. Let h denote the 
bandwidth parameter, and let K(·) denote the symmettic ker•
nel density function. Let K,(v) = h- 1K(v(h) and T;(t) be 
an m1 x 2 mattix with the jth row {I, (T11 - t)(h). Lin and 
Carroll (2000) considered two kernel (symmetric and asym•
metric) estimating equations for 6(t) at any t, 

L_T,(t)T a,(t)Ki£'(t)V~ 1 (t)Ki£'(t){Y1 - p.1(t)) = 0 (6) 
i=! 

and 

L_T;(I)r a1 (1)V~ 1 (1)Kih(1){Y1 - p.1(1)} = 0, (7) 
I= I 

where K"(1) = diag{K,(T,1 - 1)} and [p.;(l), a,(l), V;(1), 
S1(1)} are the same as those defined in (4) except that they are 
evaluated at JL 11 (1) = JL{a0 +a1 (Tu- I)( h), and a= (a 0, a 1)' 

is a 2 x 1 vector of unknown parameters. Equation (7) was 
also considered by Severini and Staniswalis (1994) using the 
local average kernel (p = Ot Having estimated a at I as a, the 
kernel estimator of 6(1) is 6(1) = a0 • The working correlation 
matrix R; in V1(t) may again depend on a parameter vector T, 

which again can be estimated using the method of moments. 
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The kernel estimators under (6) and (7) are different except 
when working independence is assumed; that is, R1 = l 

Lin and Carroll (2000) showed that the two estimators under 
(6) and (7) have different asymptotic properties; asymptotic 
properties of the kernel estimator under (7) are much harder to 
study. The most important results of Lin and Carroll (2000) are 
that, unlike the parametric GEE estimator in (4), typically the 
asymptotically Illost efficient kernel estimator of the nonpara•
metric function 6(1) using (6) and (7) is obtained by entirely 
ignoring the within-cluster correlation and pretending that the 
observations within the same cluster were independent; that is, 
assuming working independence R1 = l Correctly specifying 
the correlation matrix in fact typically has adverse effects and 
results in an asymptotically less efficient estimator of 8(t). 

In view of the opposite asymptotic behaviors of parametric 
and nonparametric regression, we are led to ask whether using 
the conventional kernel method to estimate O(t) will affect ,Jri 
consistency and efficiency of the estimation of {J. For exam•
ple, is it still possible to specify an appropriate working cor•
relation matrix in estimating equations in the semiparametric 
model (I) to obtain consistent and efficient estimators of P and 
8 ( t)? The various combinations of working independence and 
true correlation structure can be entertained for the separate 
estimating equations for p and 6(1). We pursue this question 
using profile likelihood ideas. We propose the profile-kernel 
estimating equations for the semi parametric model (1) in the 
next section, and answer these questions in Section 4 by per•
forming asymptotic analysis. 

3.2 Profile-Kernel Estimating Equations for 

Semiparametric Model (1) 

In this section we develop estimating equations for /3 and 
6 ( 1) in the semipararnetric model (I). A main feature of (I) is 
that fJ is a finite-dimensional parameter vector and (J ( t) is an 
infinite-dimensional parameter. For independent data when the 
mean and variance functions determine a distribution, (e.g., 
generalized linear models), if the kernel method is used to esti•
mate 6(1), then the profile method yields a v'n-consistent and 
semipararnettic efficient estimator of P (Carroll et a!. 1997; 
Severini and Staniswalis 1994). We hence use kernel estimat•
ing equations similar to (6) and (7) to estimate 6(1), and use 
profile estimating equations to estimate fJ by modifying (4). 
We call the resulting estimating equations profile-kernel esti•
mating equations. In the light of the discussion at the end of 
Section 3.1, we allow the working correlation matrices to be 
different in the two sets of estimating equations. In the same 
spirit of parametric GEEs, our primary goal is to investigate 
whether we can construct a v'n-consistent and semiparamet•
ric efficient estimator of P by assuming the true correlation 
matrix. Our secondary goal is to investigate whether we could 
also construct a consistent and efficient estimator of O(t) at 
the conventional nonparametric rate. 

If Pis known, then we estimate 8(t) using one of the fol•
lowing estimating equations: 

L_T,(1)' a,(X,, I)Kii'(I)V;' (X" 1)Kik2 (1) 
I= I 

X {Y,-p.;(X,,I)}=O (8) 
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or 

L;T,(t)r J.;(X,, t)V~/ (X,, t)K,,(t){Y,- ,.,(X,, t)} =0, (9) 
/= J 

where K,,(t), ,.;(x,, t), J.,(X,, t), V,;(X,, t) = s:12 (X,, t) X 

R21S:12 (X1, t) are the same as those in (6) and (7) except 
that they are evaluated at JL 1j(Xii, t; {J) =.p,{X~{J + a 0 + 
aJT,j- t)/h}. Havi!;'g estimated a at t as a({J), the kernel 
estimator of 8(t) is 8(t; fJ) = a0 (fJ). The working correlation 
matrix R 21 in V 21 (t) may again depend on a parameter vec•
tor T 2 , which can be estimated using the method of moments 
(Liang and Zeger 1986). 

Estimation of fJ proceeds by solving the profile estimating 
equations obtained by modifying the parametric GEEs (4) and 
solving 

t oJL{X,{J + ii(T,; {J)}' v-' (X. T) 
i~I o{J I< " ' 

X [Y,-,.{X,{J+tl(T,;fJ)}]=O, (10) 

where ii(T1; {J) = {tl(Til; {J), ... , tl(T1m; {J)}r, Vu(X1, T;) = 
s:''(X,, T;)!l-lis:''(X,, T;), and S;(X,, 'TJ = diag{ c/Jw;/ V 

[p,{X~{J + 8(T,j; fJ)}]}, where Rli is a working correlation 
matrix depending on a parameter vector T 1 that could be esti•
mated using the method of moments (Liang and Zeger 1986). 
For example, in panel data R 11 = R can be "estipated" by 
n- 1 L:7~ 1 S~ 112 r,rJ'S~ 112 , where r, = Y,- JL{X,{J + 8(T,; {J)}, 

where {J is computed from working independence. The est•
imators {{J, tl(t)} jointly solving (8) or (9), and (10) are 
termed profile-kernel estimators. 

Our asymptotics assume that ( T 1, T 2) are known, but in fact 
it can be shown that the results apply when they are esti•
mated. Note that we allow the working correlation matrices 
R21 in (8) or (9) and Rli in (10) to be different. The estima•
tor of Zeger and Diggle (1994) can be viewed as a special 
case of our profile-kernel estimators. They considered longitu•
dinal Gaussian data and assumed working independence when 
estimating lJ(t); that is, R21 = I and Ru equal to the true cor•
relation matrix when estimating fl. Severini and Staniswalis 
(1994) used (8) and (10) assuming the same working cor•
relation matrices; that is, Ru = R21 = R 1 or, equivalently, 
Vii= V21 = V1• Note that these authors considered local aver•
age kernel estimation instead of local linear kernel estimation 
as in (9). We study the asymptotic properties of the general 
profile-kernel estimators and these special cases in Section 4. 

Our results are unexpected. Specifically, the key conclusions 
from our asymptotic analyses are as follows: 

I. If standard smoothing is used, only when Ru = R21 = 

l i.e., assuming working independence, {3 is ,Jn-
consistent. 

2. For other specifications of the working correlations 
{Ru, RzJ, including the case when Ru is the true cor•
relation matrix,.and any specification for R21 , except for 
special cases, f3 is ,Jn-inconsistentunless lJ(t) is under•
smoothed. When 8(t) is undersmoothed and the true cor•
relation m~trix is assumed, the resulting profile-kernel 
estimator f3 is not semiparametric efficient. 
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3. Calculation of the semiparametric efficient estimator of 
f3 is complicated even in the multivariate Gaussian 
case: construction of the semiparametric efficient score 
requires solving a complicated Fredholm integral equa•
tion and estimating the multivariate joint distribution of 
(X,T). 

4. ASYMPTOTIC RESULTS 

In this section we study the asymptotic properties of the 
profile-kernel estimators {p, tl(t)}. We focus on the symmet•
ric local linear kernel estimating equations (8) and the profile 
estimating equations (10). The reason that we focus on (8) 
instead of (9) in our asymptotic analysis is that the asymp•
totic properties of the estimators under (9) are difficult to 
study because of the asymmetric nature of (9) (Lin and Carroll 
2000). However, we show that if one uses in (9) the local aver•
age kernel, which includes the existing estimators (Severini 
and Staniswalis 1994; Zeger and Diggle 1994) as special 
cases, then the resulting estimators paye qualitatively similar 
asymptotic properties to those of {{J, 8(t)}. In what follows, 
let m1 = m < oo, (i.e., assuming finite cluster size) and letT be 
a continuous observation-level covariate (e.g .• a time-varying 
covariate in longitudinal studies). 

We allow the m components of X1 and T1 to be corre•
lated unless stated othetwise and assume the density of T1 to 
be continuous. We further assume that the (Y1, X1, T;) (i = 
I, ... , n) are iid triplets and that both V ii(JL1, T) = V 1 (JL1, T) 
and V,;(,.,, T) = V2 (JL1, T) are invertible. Let d(d(·) denote 
the rth derivative of any function d(·), let vlk denote the 
(j,k)th element of a matrix v - 1, and let fj(t) denote the 
marginal density of T11 � Suppose that the kernel density func•
tion K(·) has mean 0 and unit variance; that is, J sK(s)du = 0 
and J s2 K(s) =I. 

We first rewrite the profile estimating equations for f3 in 
(10) as 

L;XJ J.(X,, T;)V~ 1 (X,, T;) 

X [Y,- JL{X,{J+tl(T,; {J)}] = 0, (II) 

where X,= X,+ otl(T,; fJ)ja{Jr and J.(X,, T;) = diag[p,<O 
{XijfJ + tl(T,j; fJ)}]. c;:alculations in Appendix A show 

that, asymptotically, o8(t; {J)fo{J = -w,- 1 (t)W~(t) + op(l), 
where, suppressing the index i denoting p,1 = p,{Xj{J+ 8(t)} 
(l=l, ... ,m), 

W 2(t) = ~E [ ~IL~l) r v~1 [T1 = t] f1(t) 

and 

W~(t) = ~E [ !p,?1 r v~'X,[T, = t] j,(t). 

1t follows that Xi= (i11 , ••• • XimY. where i 11 = X;1 -

w,- 1 (T,)W~(T1). Using these r:sults1 in Result I we study 
the asymptotic distributions of {8(1), fJ}. A sketch of its proof 
is given in Appendix A. 
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Result 1. Let {ll(t).p] denote the solutionpfthe profile•
kernel estimating equations (8) and (10), where 8(t) = 8(t; (J). 
Suppose that hex n-•. 1/5 :Sa :S 1/3 and n--+ oo. We then 
have the following: 

a. If pis vii consistent, [i.e., vli<P- p) = Op(I)], then 
there is an asymptotically equivalent random variable 
such that 

bias{tl(t)}"" h2 81 2)(t)f2 (12) 

and 

var{tl(t)} 

"Y L7~ 1 E[ { !Lj ' )) ' { v1) 'u 11 [T1 = t]Nt) 

""nh { L7~ 1 E[ { !Lj ' )) ' v1 [T 1 = t]J1 (t) ) 2 ' 

(13) 

where u1~ = var(Y 1 [Xi' T1 ) = <f>wj 1 V(!L 1 ). It follows 
that var{O(t)} is minimized when assuming working 
independence R2 = I and is 

var{tl(t)) 

""-!,; {tE[H) J 'u 1j 1 [T1 =t]t1(t) r 
(14) 

b. The estimator J1 converges in distribution: vli!P- p�
h2b((J, 8)/2)--+ N(O, Vp). where, suppressing the sub•
script i in each term inside the expectations, 

b((J, 8)= {E(Xr 4V~ 1 4XJr 1 E{Xr 4V~1 a812)(T)), 

Vp = {E(Xr 4V~ 1 4XJr 1 E{(Z 1 - Z2)rl:(Z1 -Z 2 )} 

X {E(XT 4V~ 1 4XJr 1 , 

l: = cov(Y[X, T) and Z 1 = V~ 1 4X, and the jth row of 
z2 is 

Z,1 = !Lj') vf { ~~E[X,1Ll1 )v:'IL?)!Tt = T1) ]) 
X W2-

1 (T;)f1(T;). 

c. ff these two conditions-working independence is 
assumed in both (8) and (10), (i.e., Rli = R21 = I) 

and (X1i, Tii) have the same marginal densi!Y· [i.e., 
! 1(Xu, T,;) = f(Xu, T,;)]-are satisfied, then fJ is yn 
consistent; that is, the bias term b((J, 9) = 0 and vli{(J•
fJ}--+ N(O, V p) in distribution, where, suppressing the 
subscript i in each term inside the expectations, 

vp = {E(XT al:; ; 1aXJr 1E{XT al:; ; 1II;; 1aXJ 

x {E(xral:; ; 1aX)J- 1, 

and Id is a diagonal matrix with the diagonal elements 
of l:, (i.e., u 11 ) on the diagonal. 
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d. For other specifications of the working correlation matri•
c .... es R 11 and R 21 , including the true correl~tion matrix, 
fJ is often vii inconsistent; that is, vli(fJ - (J) --+ 00 

in distribution. However, if one assumes that nh4 -+ 0 
[i.e., undersmooths 8(t)], then for any specification of 
the working correlation matrices R 11 and R 21 , P is Fn 
consistent and vli(( J - (J) --+ N (0, V p) in distribution. 

In general, V p can be estimated by replacing terms in its 
expression by estimates of those terms. We conjecture that the 
bootstrap can also be used. The results in part a of Result 1 are 
similar to those of Lin and Carroll (2000) when the covariate 
X is absent in model (1), except that the variance of iJ(t) now 
involves conditional expectations of Xi given Ti. These results 
~uggest that if the profile estimator of fJ is ,Jn consistent, then 
8(t) is consistent and asymptotically normal at the 1:0gular 
nonparametric rate. The most efficient estimator of 8(t) is 
obtained by completely ignoring the within-cluster correlation. 

To see why the bias term b((J, 8) # 0 for non-identity 
working correlation matrices, consider linear models for 
multivariate normal Y;. Suppose that the marginal den•
sity of {Xu� Tu} ( j = I. ... , m) is the same. Then the 
jth component of X is xj = X}- E(X)T;). l follows 

that the second term of b(fJ, 8) is E{XTV~ 1 812)(T)} = 
L7~I L;~I E{Cj,(T,) v { '8(T,)), where cj,(T,) = E(X)T,) �
E{E(Xj [Tj) [T,)) is generally not equal to 0 except when 
j = k. This means that the bias term b(fJ, 8) # 0 unless 
we assume working independence, (i.e., R 1 = 1), or 
E(X)T 1, T,) = E(X 1 [T;) for any j , k (e.g., when X and Tare 
independent). 

Simple calculations show thatJor multivariate normal Y, if 
X and T are independent, then fJ in fact is ,Jn consistent for 
any arbitrary working correlation matrices R 1 and R 2• Fur•
thermore, as shown in Section 5, if one assumes Ru equal to 
the true correlation m~trix in (1 0) and working independence 
R 21 = I in (8)). then fJ is ,Jn consistent and semiparametric 
efficient, and 8(t) is efficient as well. The foregoing indepen•
dence assumption of X and T is strong and difficult to satisfy 
in practice if both covariates X and Tare time-varying covari•
ates. But if X contains only one-time covariates and T is time 
in longitudinal studies, then this condition is satisfied. Note 
that the outcome needs to be normally distributed for the fore•
going results to hold. For non-Gaussian data, if the true cor•
relatiqn matrix is used, even when X and T are independent, 
then fJ is still vii inconsistent. 

Result I assumes that 8(t) is estimated using the symmet•
ric local linear kernel estimating equation (8). Severini and 
Staniswalis (1994) and Zeger and Diggle (1994) proposed 
slightly different estimators. They estimated 8(t) by replac•
ing the symmetric local linear kernel estimating equation (8) 
with the asymmetric local average kernel estimating equa•
tion, which is obtained by letting !L(X, 1, t) = !L(X~fJ + a 0 ) 

and '!PI~cing T1(t) by 11 in (9). We denote these estimators 
by {fJ,, 8,(t)). Specifically, Severini and Staniswalis (1994) 
assumed the same working correlation matrix in both 8(t) 
and fJ estimating equations, that is, Ru = R 21 = R1� Zeger 
and Diggle (1994) considered Gaussian data and assumed Ru 
equal to the true correlation and R21 = ~ (working indepen•
dence). It can be shown that the asymptotic properties of 
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rfJ., e.(t)J are similar to those of {p, O(t)} in Result I, and 
that the conclusions are the same. 

Computation. A Fisher-Sivring algorithm for computation 
for the working indendence estimation is given in Appenix C. 

5. SEMIPARAMETRIC EFFICIENT SCORE 

It is of substantial interest to understand why the profile•
kernel estimator {J is ..f;i inconsistent when the true correla•
tion matrix is used unless O(t) is undersmoothed. One way to 
address this question is to define a likelihood function for Y1 

and compare how the profile-kernel estimating equation (1 0) 
differs from the semiparametric efficient score for fJ (Bickel 
et al., 1993). 

The motivation of this investigation is as follows. For inde•
pendent data, (i.e., the cluster size m = I), suppose that the 
distribution of the outcome Y belongs to the linear exponen•
tial family. If B(t) is smoothed using standard kernel meth•
ods (e.g., cross-validation), then the profile-kernel estimating 
equation of fJ is asymptotically equivalent to the semipara•
metric efficient score of fJ (Carroll et al. 1997; Seve_rini and 
Staniswalis 1994 ). The resulting profile estimator fJ hence 
is ,Jn consistent and semiparametric efficient. If one uses 
an estimating equation for fJ asymptotically different from 
the semiparametric efficient score [e.g., by simply replacing 
X, in (II)Jsimplified for m = I) by X,], then the resulting 
estimator fJ is .Jn inconsistent unless 8(t) is undersmoothed 
(Rice I 986). 

Our key findings in this section are as follows. First, the 
semi parametric efficient score of fJ for multivariate Gaussian 
data is complicated and requires solving the Fredholm integral 
equation of the second kind and estimating the joint distribu•
tion of X1 and T1• Second, if regular smoothing is used for 
estimating B(t), then the profile-kernel score of fJ estimates 
the semi parametric efficient score with a ... nonzero bias. This 
explains why the profile-kernel estimator fJ is often ,.Jii incon•
sistent. Finally, when B( t) is undersmoothed, the profile-kernel 
estimator of fJ is .Jn consistent but is still not semiparametric 
efficient, except for special cases. 

We first derive the semiparametric efficient score of fJ. We 
assume a constant cluster size 1 < m < oo and suppress the 
index i. To understand the fundamental issues involved, we 
considerY to be multivariate normal N{X{J+B(T}, V}, where 
B(T) = {B(T1), � � � , B(Tm)JT and Vis assumed known. 

In Appendix B we show that the semiparametric efficient 
score of 13 is 

{X- 10.(T)}'V-1{Y-X{J-B(T}), (15) 

where I".(T) = {IO.(T1), � � � , \".(Tm)J', \".(T) = {<p.JT), 
... , cp,..p(T)V. and pis the dimension of fJ. The semipara•
metric efficiency bound of fJ is E{[X -\".(T}YV- 1[X•
I".(T)]}. The function 10.(1) solves 

LLvl'E{[X1 - \".(T 1)j [T, = tJf,(t) = 0, (16) 
j=Ik=I 

where X= (X1, � � � ,X1 , � �. , Xm)r, vl' is the ( j, k)th element 
of y-I, and /,(t) is the density of T,. Simple calculations 
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show that (16) can be written as the Fredholm integral equa•
tion of the second kind (Bronshtein and Semendyayev I 985, 
sec. 8.4) 

\".(t)+ J H(t, s)\".(s)ds = q(t), (17) 

where H(t, s) and q(t) are defined as 

H(t s) = L;L;1~, vl' f(T1 = s, T, = t) 
' I:7~ 1 vJJ f(T1 = t) 

and 

where f(-) denotes a density function. 
If H(t, s} is square-integrable, then (I 7) has only one solu•

tion, except when the eigenvalues of (17) contain -1 and its 
solution can be written as 10.(1) =- Jr(t,s)q(s)ds+q(t), 
where r(t, s) is called the resolvent kernel and can be writ•
ten as the Fredholm series, r(t,s) = L:';91 H,(t,s)fi:"(;~0 8,, 
with 80 = 0, H0 (t, s) = H(t, s), 8, = k- 1 J Hk-l(t, t)dt, and 
H,(t, s) = H,_ 1 (t, s)8,- J H(t, u)H,_ 1 (u, s)du (Bronshtein 
and Semendyayev, 1985, sec. 8.4.7). An alternative expres•
sion of f( t, s) is given by the Neumann series (Bronshtein 
and Semendyayev 1985, sec. 8.4.6). The foregoing Fredholm 
series always converges but is of little use when numerically 
calculating tp,..(t), because in most cases the approximation is 
inadequate for small values of k. More useful is the NystrOm 
method (Bronshtein and Semendyayev 1985, sec. 8.4.8). 

The foregoing discussion suggests that construction of the 
semi parametric efficient score of fJ is complicated even in the 
multivariate normal case. One needs to solve the complicated 
integral equation (17), which requires estimating the pairwise 
joint densities of (T1, Tk) and the pairwise conditional expec•
tations E(X1[T,) when calculating H(t, s) and q(t). However, 
in the special case when the marginal density of (Xi' T1) is 
the same and E(X1 [T1 , T,) = E(X)T,) (e.g., when X and T 
are independent), simple calculations show that the solution 
of (16) has the closed form \".(t) = E(X1[T1 = t). 

We now study for multivariate Gaussian data how the semi•
parametric efficient score (15) asymptotically differs from 
the profile-kernel estimating equation of fJ in (1 0) when the 
working correlation matrix R is the true correlation matrix. 
Using the results in Appendix A, we can easily show that 
the profile estimating equation for fJ in (11) is asymptotically 
equivalent to 

where thejth component of X is X1 =X1- E(X)T) and Z2 is 
defined in Result I. A comparison between (15) and (18) sug•
gests that they are often different and that (18) is often subject 
to a nonzero bias. Even when (J(t) is undersmoothed [i.e., the 
second bias term in (18) is 0], some calculations show that the 
first term in (18) is still generally different from (15). In other 
words, the profile-kernel score (10) is often asymptotically dif•
ferent from the semiparametric efficient score (15). But when 
X and T are independent, they are the same asymptotically, 
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and the profile-kernel estimator of fJ hence is Jn consis•
tent and semi parametric efficient. Some calculations show thpt 
the SaiJ..le conclusion holds for the profile-kernel estimator fJ* 
when 8*(t) is the average kernel estimator obtained using the 
asymmetric kernel estimating equation (9); see Section 4. 

It is difficult to construct the semipararnetric efficient score 
directly using the complicated form of ~.(t) in (15), because 
this involves theoretical density functions and expectations. 
This raises an open question on how to construct a practi•
cal semiparametric efficient estimator of fJ. It is a reasonable 
conjecture that if such a construction is pushed through, then 
undersmoothing will not be required. 

6. PRACTICAL IMPLICATIONS OF THE THEORETICAL 

RESULTS AND COMPUTATION OF THE ESTIMATES 

Cross-Validation. Conventional bandwidth selection tech•
niques, such as cross-validation by deleting one cluster data 
at a time, fail unless working independence is assumed. 
Because the bandwjdth h chosen by cross-validation satis•
fies h = O(n-'1'), {J will be Fn inconsistent unless working 
independence is assumed (Result 1 ). Unfortunately, there is 
no generally accepted data-driven way to choose h to under•
smooth B(t), although ad hoc methods have been proposed 
(Brockmann, Gasser, and Herrmann 1993). In our experi•
ence, we have found that multiplying the bandwidth by n-2/15, 

which makes h ex n- 113, often works quite well in practice. 
Presumably, other methods (e.g., higher-order kernels, twic•
ing) can be used to eliminate the bias. 

Sandwich Method. The sandwich method, which is com•
monly used in calculating the covariance estimator of jJ in 
estimating equations (Liang \!fld Zeger 1986), will give an 
inconsistent estimator of cov(fJ) unless working independence 
is assumed. This is because it ignores the extra z2 term in 
V p in part b of Result 1. This is true even when one under•
smoothes B(t). We conjecture that the bootstrap can be used. 

Hypothesis Testing. One is often interested in testing H0 : 

fJ = 0 or part of fJ is 0. ff conventional smoothing techniques 
such as cross-validation are used, then the Wald test and the 
score test for H0 will be inconsistent unless working inde•
pendence is assumed or 8(t))s undersmoothed. For example, 
when the Wald test is used, P in fact estimates the true P plus 
the bias term b({J, B)h' /2. 

Functional Data Analysis. The simplest functional regres•
sion model (Ramsay and Dalzell 1991) is Y,(t) = B(t) +<,(t), 
where i indexes the ith subject, t indexes time t, and E1(t) is 
an error whose distribution is a Gaussian process with mean 0 
and cov{e(t), e(s)} = O'(t, s). Rice and Silverman (1991) con•
sidered estimating O(t) using a smoothing spline. The results 
of Lin and Carroll (2000) suggest that the most efficient esti•
mator of O(t) when the kernel method is used is obtained 
by entirely ignoring the correlation of the repeated measures 
of f;(t) over time. In the presence of covariates X1(t) = 
{Xn (t), ... , X1p(t)}r, a semi parametric functional regression 
model could be considered, 

Y1(t) =X1(t)r{J+B(t)+<1(t). (19) 

The semiparametric model (1) is a discrete version of (19). 
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Suppose that the profile-kernel method is used to estimate 
{{J, 8(t)). Our results suggest that (a) if X,(t) is a vector of 
one-time subject-level covariates (i.e., X1(t) =X, free of t), 
by specifying R1 as the true correlation matrix and ~ = I, 

P is Fn consistent and semiparametric efficient and B(t) is 
asymptotically efficient as well, and (b) ifX,(t) contains time•
varying covariates (i.e., X and T are not independent), then 
one must assume working independence (R1 = R2 = I) or 
undersmooth B(t) to obtain a Fn consistent (but inefficient) 
estimator of iJ. 

It is important to emphasize that our results assume that the 
number of observations per subject m is finite, as is common 
in longitudinal studies. With T being time, our asymptotic 
analysis thus assumes that observations from different subjects 
may be observed at different time points asymptotically, but 
the number of observations per subject remains bounded. 

Computation. A Fisher-Sivring algorithm for computation 
for the working indendence estimator is given in Appendix C. 

7. SIMULATION STUDY 

We conducted a simulation study to evaluate the finite•
sample performance of the profile-kernel method. Each dataset 
comprised n = 100 subjects and m1 = 3 observations per sub•
ject over time. The covariate vector X 11 was set at X11 = 

(X 111 , X21 )T, where X 111 a time-varying covariate and Xu is a 
subject level covariate that takes value I for half of the sub•
jects and 0 for the other half and mimics a binary treatment 
indicator. We generated Xu1 and TIJ according to the model 
XHJ = b 1+e11 and Tii = b 1+e;i' where b 1 "'"' uniform(-I,1) 
and e11 and e;1 are independent and follow uniform( -I, 1 ). 
This setup allows the Xu1 and the T11 to be correlated with 
each other and over time between their repeated measures 
with exchangeable correlation .5. Conditional on X11 and T11 , 

we generated the outcome YlJ from multivariate normal with 
mean }1-;i = {31X11i + {32X21 + B(T,), where {31 = {32 = 1.0 
and B(t) = sin(2t), and Yii has variance I and exchangeable 
correlation .5. 

We generated 200 datasets with N = 300 observations each 
and analyzed them using the profile-kernel methods. For each 
simulated dataset, we first assumed working independence 
when we calculated the profile-kernel estimate of fJ and 8(t) 
and estimated the bandwidth parameter h needed for the kernel 
estimate of B(t) using cross-validation by deleting one subject 
data at a time. We next calculated the profile-kernel estimate 
of fJ and 8( t) by accounting for the within-subject correlation. 
Specifically, we estimated the true covariance of Y1 using the 
method of moments and calculated the bandwidth parameter 
h by multiplying the cross-validation bandwidth estimate by 
n-2115 • This undersmooths 8(t) and eliminates the bias term 
(Sec. 6), at least theoretically. 

Table I gives the averaged estimated regression coefficients 
of {3 1 and {32, along with their empirical and estimated stan•
dard errors (SEs) when working independence is assumed and 
when the true covariance of Y1 is estimated. When ... assum•
ing working independence, we estimated the SEs of fJ using 
the sandwich estimate given in Appendix C. When assuming 
that the true covariance is estimated, we estimated the SEs 
of iJ using a finite-sample estimate of V p given in part b of 
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Table 1. Means and Standard Errors of Regression Coefficient Estimates Over 200 Replications 

Working independence True covariance 

Parameter Mean Empirical SE Estimated SE Mean Empirical SE Estimated SE 

/3, 1.005 .088 .084 1.002 .075 .070 
/3, 1.020 .160 .160 1.022 .161 .158 

NOTE: True values are f3t = 1 JJ and p1 = 1.0. 

Result l. Table I reports the averages of the estimated stan•
dard errors over 200 replications. The results in the table show 
that the profile-kernel method performs well in finite samples 
and that the biases in the profile-kernel estimates of fJ are min•
imal under both covariance assumptions. The estimate of fJ 1, 
the coefficient of the time-varying covariate X1, is more effi•
cient when the true covariance is estimated than when work•
ing independepce is assumed. However, no gain in efficiency 
is realized in /J2 by estimating the true covariance of Y;. This 
is because X2 is a subject-level covariate and is independent 
of Tu and the design is balanced with respect to X2 • The sim•
ulation t;.esults are consistent with the theory. The estimated 
SEs of P also agree well with the simulated SEs. 

Figure 1 compares the true nonparametric function B(t) to 
the kernel estimates of O(t) when assuming working indepen•
dence and when the true covariance is estimated. Both kernel 
estimates of O(t) are close to the true O(t). Figure 2 com•
pares the SEs of these two kernel estimates. It suggests that 
assuming working independence gives a more efficient kernel 
estimate of O(t) than that achieved when assuming the true 
covariance. These results agree well with the theory. 

8. APPLICATION TO THE INFECTIOUS 

DISEASE DATA 

In this section we apply the semiparametric model (1) to 
analyzing the longitudinal infectious disease data introduced 
in Section 1. A total of 1,200 binary indicators for the pres•
ence of respiratory infection (0 = no, 1 = yes) were collected 
on 275 preschool-age children examined every quarter for up 
to six consecutive quarters. The primary interest was to study 
the association between respiratory infection and the expo•
sure variable vitamin A deficiency, which was manifested by 
xerophthalmia status (0 = no; I = yes), while adjusting for 

Figure 1. True and Estimated Nonparametric Functions 9(t) Based 

on 200 RepUcations: (-True;---- assuming working independence; 

- - - assuming that the true covariance is estimated). 

several key confounders. These confounders include age in 
years, sex (0 =male, l =female), height for age, and stunt•
ing status (0 = no, I= yes). (For a detailed description of the 
covariates, see Zeger and Karim 1991.) 

Examination of the distribution of the vertical strokes in 
Figure 3 suggests that the age effect departs dramatically from 
linearity. To avoid possible confounding of misspecification of 
the age effects on estimation of the effect of the key exposure 
xerophthalmia, we consider a semiparametric logistic model 
for the jth observation of the ith subject as 

logit[Pr(Yii =I)} =X~{J+O(age;)• (20) 

where Xu comprises xerophthalmia status, seasonal cosine and 
sine, sex, height for age, and stunting, and O(ageu) is a smooth 
function of age. Examination of the data suggested that the 
height for age effect was linear, and hence we included it in 
Xu. 

We used the profile-kernel method assuming working inde•
pendence using the algorithm in Appendix C and calculated 
the SEs using the sandwich method. We chose the band•
width parameter h using the empirical bias bandwidth selec•
tion (EBBS) method (Ruppert 1997). Figure 3 shows the esti•
mated nonparametric function of age and its 95% confidence 
interval. The risk of respiratory infection increased slightly 
during the first 2 years of life and decreased thereafter. Table 2 
gives the estimated regression coefficients {j. The data provide 
no evidence for vitamin A deficiency on respiratory infection, 
but strong evidence for the association between respiratory 
infection and sex and season. 

To examine whether a simple parametric model can fit 
the data equally well as the semiparametric model, we fit a 
parametric GEE model with O(age) to be quadratic assuming 

./ \, 

Figure 2. Empirical Pointwise SEs of the Estimated Nonparametric 
Functions 9(t) Based on 200 Replications: (- assuming working 

independence;-- - -assuming that the true covariance is estimated). 
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Figure 3. Estimated Kernel Estimate 8(age) When Fitting the Semi�
parametric Model (20) to the Infectious Disease Data Assuming 

Working Independence and Its 95% Pointwise Confidence Intervals 
(- O(age); - - - - 95% confidence interval). The vertical strokes at 0 
and - 6 indicate the occurrence of 1 and 0 in the response. 

working independence. Figure 4 compares the semiparamet•
ric kernel estimate of O(t) to its quadratic counterpart (Diggle 
eta!. 1994, p. 161). The semiparametric kernel estimate sug•
gests that some excess nonlinearity may be undetected by the 
quadratic age model, a conjecture confirmed by the fact that 
a cubic age model fit using GEE had a statistically significant 
cubic age term (p value .02). Table 2 compares the regression 
coefficients fJ estimated using the semiparametric model and 
the parametric quadratic age model. The coefficient estimates 
of stunting were considerably different using the two meth•
ods, although the other coefficient estimates are similar. This 
difference was due mainly to misspecification of the quadratic 
age effect. 

9. DISCUSSION 

We have considered a marginal semiparametric partially 
linear generalized linear model for clustered data, where the 
effects of some covariates X are modeled parametrically as 
XfJ and the effect of some other covariate T is modeled non•
parametrically as O(t). Our results apply to the case where the 
number of observations per cluster is finite and the number of 
clusters is large. The profile-kernel estimating equations in the 
literature are used for estimation. The results are unexpected. 

We show that for clustered data, this conventional profile•
kernel method fails to yield a Jn consistent estimator of fJ 
unless working independence is assumed or O(t) is artificially 
undersmoothed. Under working independence, one may need 
to greatly sacrifice efficiency to achieve v'fi consistency of fJ. 

Table 2. Regression Coefficient Estimates in Analysis of the Infectious 

Disease Data Using the Semiparametric Model and the Quadratic 
Age Model 

Semiparametric model Quadratic age model 

Estimate SE Estimate SE 

Vitamin A .611 .529 .629 A13 
Seasonal cosine -.587 210 -.590 .172 
Seasonal sine -.161 .183 -.170 . 148 
Sex -.508 295 -A85 240 
Height -.026 .035 -.030 .029 
Stunting A63 .525 272 .417 
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Figure 4. Comparison of the Kernel Estimate 8(age) (-) and the 
Quadratic Estimate of Age (-- - -). 

When 8(t) is artificially undersmoothed, the profile-kernel 
estimator of fJ is still not semiparametric efficient, except for 
special cases. 

To explain why the profile-kernel method fails in clustered 
data, we have derived the semiparametric efficient score of fJ 
for multivariate normal semi parametric models. We show that 
unlike in the independent data case, the profile-kernel method 
fails to provide an estimated score equation that is asymptot•
ically equivalent to the semiparametric efficient score of fJ. 
Even in this simple multivariate normal case, the semi paramet•
ric efficient score of fJ is complicated and requires solving the 
Fredholm integral equation and estimating the pairwise joint 
distributions of all observations (X 1, X,, Ti' T,) in the same 
cluster. Direct estimation of such densities is complicated and 
could well be infeasible or cumbersome, especially when clus•
ter sizes vary from one cluster to another. For example, in 
longitudinal data, different subjects could have different num•
bers of observations, and these different observations might 
be observed at different time points. Estimation of the joint 
distribution of X and T is hence difficult. One strategy is to 
assume a parametric model for X and T to estimate the joint 
distribution of X and T. But this could lead to an inconsis•
tent estimator of fJ if such a parametric model for X and T 
is misspecified. This leaves an open question on how to con•
struct a semiparametric efficient estimator of fJ in practice for 
clustered data. Further research is needed. 

We should note that the results in this article assume that 
T1i varies within each cluster. If T1i is a cluster-level covari•
ate (i.e., T;i = T;), then, in contrast to the results reported in 
this paper, Lin and Carroll (2001) showed that the profile•
kernel method works as usual and yields a v'fi consistent and 
semiparametric efficient estimate of fJ if the true covariance 
is assumed and regular smoothing is used. 

APPENDIX A: PROOF OF RESULT 1 

A Note on Technical Conditions 

It is possible to write down detailed technical conditions that 
would allow rigorous proofs of the results that follow for panel data. 
We have chosen not to do so, both in the interest of space and 
also because similar details have been written down by other authors 
in similar situations, without any real impact on statistical practice . 
These authors include Carroll et al. (1997), Carroll, Knickerbocker, 
and Wang (1995), Carroll and Wand (1991), Severini and Staniswalis 
(1994), and Severini and Wong (1992). 
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However, there is one situation for which it is easy to write down 
technical conditions leading to precise proofs-namely, the Gaussian 
linear case with constant true and working covariance matrices inde•
pendent of p. Happily, this is the problem of most interest, because 
all of our global conclusions have been made using this problem as 
an illustration. 

To do this, one must first assume that, as in Carroll et al. (1995) 
and Severini and Staniswalis (1994), the (T;i); have common compact 
support over j and their marginal and joint densities are bounded 
away from 0 on this support. We assume that hex: n-a, where 1/5::; 
a:::; 1/3. Then, using the techniques of Mack and Silverman (1982) or 
Marron and Hiirdle (1986), one can show that (A.2) holds uniformly 
in t. In some cases, (as in Carroll et al. 1995), it is easier to prove 
this by restricting attention to (Tu)i that fall within a proper compact 
subset of the common support, in which case statements of results 
must be modified appropriately. In either case, the Gaussian linear 
problem means that nonparametric regressions are standard ones and 
do not involve solving nonlinear equations. 

We now note the other key features of the Gaussian case. For 
the Gaussian case, (A.3)-(A.4) are exact, with X1 defined just after 
(A.2) being independent of {J. In particular, the term op(l) in (A.3) 
equals 0. With the uniformity of (A.2), the calculations following 
(A.3)-(A.4) are then routine. 

Sketch of the Proof 

To prove part a, we first assume thjlt p is known and show that 
the asymptotic bias and variance of 0( t; {J) are given in (12) and 
(13). The proof is similar to appendix A.4 of Lin and Carroll (2000) 
and is hence omitted. Following that work, si111ple application of the 
Cauchy-Schwartz inequality shows that var{ 8( t; p)} is minimized 
'YhenAR2 = I a!._ld is given in (14). We next study the distribution of 
8(t; p) when {J is ..(;i consistent; that is, ..( ;i(p- p) ~ 0,(1). We 
write 

v';;i;{IJ(t; til-8(t)) 

~ v';;h{!i(t; til-o(t; mJ + v';;h(li(t; m- 8(t)J 

~ v'hl 8~ll{...rn(ti-ml 
+v';;i;{o(t; m- 8(t))+o,(1), (A.1) 

where O(t; m;apr ~ -w,-1(t)W;(t)+o,(1) ~ 0,(1), where w,(t) 
and w;(t) are defined in Section 4. Because ..( ;i(p-p) ~ 0,(1), 
the first term in (A.l) is op(l). Hence the asymptotic distribution of 
O(t; p) is the same as that of O(t; p). 

We now study the asymptotic distribution of {J. First, using part a 
of Result I and following Lin and Carroll (2000), we have 

+ 8''l(t)h' +o,{n-II'l· (A.2) 
2 

Define X1 as Xli ~Xii+BO(T1i; p)japr ~xii- w,- 1(T,i)W;(T1). A 
linear Taylor expansion of (I 0) gives 

,f,;{p-(J} ~D~1 {,f,;c.)+o,(1), (A.3) 

where 

D.~ 2_ txf <1,V~1 <1,X, 
n 1=1 
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and 

DenoteD= lim114""D11 = E(Xr 4 Vj14.X). Simple calculations show 
that en can be expanded as en= e,n -e2n + op(1), where, denoting 
,., ~ !L{X1{J+8(T1)) and Zf1 ~ Xj <1,V;/, 

cl. ~.!. 'tx; <1,v~ 1 (Yl-,.,) ~.!. 'tzf,(Yl-,.,) 
n 1=1 n 1=1 

and 

c,. ~ 2_ txf <1,V~/<1,{ii(T,;p)-8(T,)). 
n i=l 

Obtaining asymptotic distribution of ../ne 111 is simple. Now exam•
ine the distribution of ../ne 211 • Using the Taylor expansion (A.2), we 
have 

- 1 II m m """ (I) jk. (1)1[ -I 1 n m (1) / / 
--L:L:L;x,j,.,jv!i,., w, (T,,J-L:L:,.,.lv,. 

n 1=1 J=I t=I n ; '=I /=I 

- - J h' ,,) I x K,(TI'l T")(Yi'/ ,.,,/) + T8 (T,,) +o,(1) 

- 1 n m (I) / / 11 II m m """ (I) jk (I) -1 -;;if;l;tL;1j'v2i' ;;E~ExijiLij Vulht w2 (T;k) 

X K,(T,.- T,.l) 1(!~'/ -,.,./) 
h'II II m m """ (I) jk (I) (2) I 

+T -;; ~~{;;XijiLij V!i!Lik 8 (T,.) +o,(l) 

1 11 m h2 m m 

~-;; ~~z,p,j -,.,j)+ T ~{;; 

x E{iittTvttt~1 )8(2)(Tt.)} +op(l) 

1 " h2 -
~-;; ~Zi,(Y,-,.,)+ TE{Xr .1V~ 1 .18(2)(T)l+o,(!), 

where Z21 = {Z21 " � � � , Z 21 mV and 

z,ii ~ ,.~Jlv~~ f:f:E(X,,.~0 v:',.j 0 1r, ~ T1i)lw,-1(T,i)fi(T1). 

k=ii=I 

It follows that 

, I " 
,f,;(p- p) ~D- 1 t= L;(Zli -Z 21)(Y 1 -,.,) 

vn I=! 

+ J;/tib((J,8)f2+o,(l), (A.5) 

where the bias term b((J,8) ~D- 1E{Xr.1V; 1 .18(2)(T)). Equiva•
lently, 

,f,;{p- {J-h 2b((J, 8)/2)--+ N(O, Vp), 

whereVp ~D- 1E{(Z 1 -Z2)rl:(Z1 -Z2))D- 1 withl:~cov(YIX, T). 

One can see easily that the bias term b(fJ, 0) in (A.5) is gener•
ally nonzero. Under conventional asymptotics, n-+ oo, h-+ 0, and 
nh -+ oo, to obtain a .Jn consistent estimate of p, one must iden•
tify working correlation matrices R 1 and R2 to make the bias term 
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b(p, 0) = 0. Simple calculations show that this requires assuming which is (15), where cp*(t) satisfies 
working independence R1 = R2 = l and the same marginal joint 
density of (X1, T1); that is, j 1(X1, T1) = f(X1, T1). Under these two E{i~[A<P(T)/f112l) = E{[X -I',(T)]'V-1<P(T)) = 0 (B.l) 
assumptions, 

where XJ =xi- E[{l'j 11 }2uj:; 1XJITJ])-1 E[[I'?'J2uj?ITJW1. One 
can see easily that E[X 1{1'?'J 2uj ?IT 1 ] = 0. h follows ~atb(/1, 8) = 
0. Similar calcul~tions show tha!_,Z2; = 0. Th£1 implies p is .Jn con•
sistent and .. /ii(p- /3)---+ N(O, V 11 ), where V 11 is given in part c of 
Result 1 and can be estimated using a sandwich estimator. 

For any nonidentity working correlation matrices R 1 and R 2 , even 

when R 1 and R 2 are the true correlation matrices, under the foregoing 
conventionalasymptotics [e.g., with h chosen using cross-validation; 

i.e., h = O(n- 115 )], the bias term . J ;hib(p, 0)---+ oo. This means that 

{J is Jn inconsistent and ../n(/J- f;J)---+ oo. Furthermore, Z2; =/= 0, 

implying that the standard sandwich estimator will be an inconsistent 

estimator of Vp. because it estimates D-1 E{Z1 ~Zf}D- 1 and ignores 

the nonzero term Z2 • H' one undersmooths O(t) by letting nh 4 ---+ 0, 
then the bias term . J ;hib(p, 0) ---+ 0, and {J will be .. /ii consistent 

for arbitrary working correlation matrices (R1, R2). 

APPENDIX B: SEMIPARAMETRIC 

EFFICIENT SCORE 

We focus on the case where X1 and p are scalars (i.e., p = 1) 

and briefly discuss how to extend this result to the case where X1 
and p are vectors. Let f({3, 0) denote the multivariate normal den•
sity of Y- N{X/1+8(T), V) , where 8(T) = {8(T1), ... , 8(T.)V. 
Following Begun, Hall, Huang, and Wellner (1983), we first calcu•
late the Hellinger derivative with respect to 8(.). Suppose that the 
sequence {8,(r)) satisfies Jli{8,(r)- 8(t)) -l'(r)-> 0 as n-> oo for 
any given continuous function cp(t). The Hellinger derivative Acp(·) 
with respect to 0(·) is defined as 

2n1121jlf2(/l, 8,)- ji/2(/1, 8) j - ~-> 0 
j1/2((3,8) j1/2((3,8) , 

as n---+ oo, 

where A denotes a linear operator. Denote fn = f{/3, lin} 
and f = /{/1, 8), where 8, = {8,(T1), ... , 8,(T.)V and 8 = 
{8(T1), ... , 8(T.))'. Let i, =log!, and i =log!. A simple Taylor 
expansion shows that 

zJn{ JTFtv'J} = Jn{ /,; f }+o,(l) 

= Jn{t, -i) +o,(l) 

at 
= a8r!Jii(8,-8)l+o,(1) 

= I'(T)'V-1{Y- X{3-8(T)) +o,(l). 

h follows that 2A<P(T)/f 112 = <P(T)'V-1 {Y -X/1- 8(T)). Let fp = 
ae;a{3 = X'V-1 {Y- X/1- 8(T)). Then the semi parametric efficient 
score i~ of {3 is 

i.~ = fp-2A<P,(T)/ f112 (/l, 8) 

={X -I',(T)}'V- 1{Y- X/I-8(T)), 

for all functions <P(T)={I'(T1), ... ,1'(T.JV, where l'o(T)= 
{ cp*(T1), ••• , cp*(Tm)JT. The semiparametric efficiency bound of fl 
is E{[£~]2}. Equation (B.l) can be written as 

LL vi' E{[X; -I'.(Tj)]I'(T,)) 
J=I.I:=I 

= L:;L:;vi'E[E{E[X1 -<P,(T1 )1T,])<P(T,)] =0. 
}=ik=i 

Simple calculations show that this equation can be written as 

for any cp(t). It follows that cp.(t) must solve Lj=1 L;=1 x 
vi'{E[X1 -<P.(T1 )IT, = t])f,(t) = 0, which is (16). 

To extend the results to the case where Xi and f3 are vectors, we 
need to find cp. ( t) for each component of Xi using ( 16) (Begun et 
al. 1983). Specifically, we calculate l'•(r) = {<P.1(r), ... , \'.,(r))', 
where, letting Xir denote the rth component of X 1, 'P*r(t) solves 

L:;L:;vi'E[{X1,-<P.,(T1))1T, = t]f,(t) =0. 
j=l.t=l 

Hence semiparametricefficient score of pis given by (15) and (16). 

APPENDIX C: COMPUTATION ASSUMING 

WORKING INDEPENDENCE 

In this section we assume working independence (R 1 = R 2 = J) 
in the profile-kernel estimating equations (8) and (10), and discuss 
the use of the Fisher scoring algorithm to solve for {J and 8(t), 
where {J is .. /ii consistent. Specifically, under working independence 
(R 1 = R, = 1), (8) and (10) are solved in the following steps: 

1. Assume a parametric function for fJ(t), [e.g., 8(t) = a 0 + a 1 t], 
and fit a parametric generalized linear model, g(Jl-Jj) = x~p+ 
a 0 + a 1 T,i, to obtain an initial value of fl. 

2. Given the value of p, use the Fisher scoring algorithm to 
solve (8) (with R 2 = J) for t = T1" ••• , Tnm . This gives 

{O(Tll; IJ), ... , O(T,."; IJ}). " 
3. Update p using the one-step ~isher scoring algorithm to solve 

(10) (with R 1 =I) given the 8(T,1 ; /1) in step 2. 
4. Iterate between steps 2 and 3 until convergence. 

In step 2, it can be easily shown that the Fisher scoring algorithm 
updates a by 

= L:;L:;T,1(t)W,1(t)K,(T;1 - t)y,1(t), 
l=! j= J 

where W;j(t) = {JL~)(t)J2V;J 1 (t) is the generalized linear model 

working weight and y,1(t) = T,1(t)' a+ I'~J'(t){Y,1 -1',/t)) is the 
generalized linear model working vector. 

In step 3, the one-step Fisher scoring algorithm updates p using 
the weighted least squares, 
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\\<here w,, • (sz~')lv-•(sz.,) i'> tbe v.'Orlms v.c•ght. y., • X.~p + 
I':;'(Y• - I'.,);, the woli:ing \U<Or.jl,,• I'I X~P +B(T.:/l)l. 3Jld x.,- x,,+d8(T.,; JJ)>af!. To calculate XlJ. \\C need 10 OOft)lfUCt a 
con .. a,.tem ~umate of d8(1; (J))~(J . U1;mg the rt~ull\ m Section 4. 
"e cnn en .. ily ~ee that a consi~tcnt ~timmor of ~O(t: (J))iJ{J i~ 

!:7., r;;.:, llli1( r)K1 (7i1 - r) X11 
E;., E;.:, IV, 1(t) K, (1j 1 - t) . 

The rovarianceestimatorsof iJ and 8(t) at wn"eracncenre ,.andwich 
e .. ulnatol" give-n by 

eo,<Ji>· / f.x~w.x. ) -' / f.~ A,l. .. '<v.-1'.> -· ... 
"(v ,- l'.>' l. . .'A,x,l\ f.x'w,x.) ' 

lnd 
cov(B(t)) = �f n 1

1(1)fi2(1)fi1 
1(t)<1• 

where e 1 � (I~ O)_'. A, = diag(I':;'J. and ::::,, • doag( V ,11 and all are 
ev:oluale<lat(/1.8(r)) and . 

0 1(1)= L;T[(I)W,(I)K,,(I)T,(r) ,., 

n ,(l) • L; r ;(1)&,(1)::::;;_1K,,(1)(\', - 1',(1)1 

X( \', - jl,(I)I'K (1) ::0:,} .l. ,(I)T,(I). 

E."onution of 8(1) requi- cllooson' lhe b:and"'•<llh P""'""'"' h. 
One 1pproxh rs 10 use ctO$.S·\·aJJdauon by dch:ung one duun- at a 
tune Another approach tS to Cl;tcnd Ruppcn\ (1997) t:mp1nca1 btas 
bandwidth sclecoon (EBBS) melhcod to clu,tered data \\'e use the 
EBBS method to choose Ia for gm:n /J. (For deuul ... ~ee lin and 
Carroll 2000.) 

/R«d,~d Ftbmory 2Q(}(), Rtmnl Jmuttl'1 ' 2001./ 

REFERENCES 
Ot:iun. J. M .. H;~.ll. W, J .. Hu~ng. W,. anJ Wellner, J. A (1983), '"ll'lfurma• 

tion and A!>ympc.otie Effi<.iemy in PiltaJnttl'i<!•Nonp:.rameuic Model..," Tit' 
An1wlJ ofSmri.Jtks. I I. 432--4$2. 

Oid.tl. P. J .. Kb:bsen. C. J .. Ritov, Y .. and W~llnt'r, J (1991). f.Jlic•~nl and 
Adaptn~ &II"WJIIOtl{()r S<m.lpuftlntf"tric Mock/J.. 6.a.ltln-.,rc . John~ I klp .. ins 
Un"mit)'P're:». 

6nK:kMaftn. \ ·1 .. Gtiscr. T .. :and Hmmann. h. (199)). "'LA.~I)' Adap��'c 
Bad• idth Cboice for Kcteel R~aon Est•~ .. Jo.rttOI of tlw AMtr�
~Nif $tQIIJif(OI A.ucl(ioti-.. 88. 1.302-1309 

Jo1ma1 oflhe - SllliSliCII Assoclallon. September 2001 

B.,_sbtein.J.N .• Md Setnend)·a)C\, ~ A (198S). IIDifdbootll/ltlot1KmatK"I. 
New Y<rt: v., No.onnd R<ifthol.l 

Carroll. R. J. F.,., J. v •Jbel, I. w...r, M P. (1997). "Gmeralil.ed Ponioll~ 
linear Sin,k:·lnck\ Mo«l""" Jotl,-nal vftltr AI'IN'"ncon Stotislicol 1\U()(".ia· 
tion. 92. 477.....489 

Carroll. R. J �� K nid.e rbocll"r, K ~ , and Wana. C. Y. ( 1995). "Oimen<;;,ion 
Reduction in Seln ipan~melnc Me:bull":n..c•n l~lt Models," TM A.nll(l/.\' of 
Stati3.tks. 23. 161 181. 

C~rroll , R. J., and Wand. M. 1'. (19\tl ), "St.'11lipal'>\melriC Estimation in loii~tic 
Measurc~nl F . .rmr," Jmmurl l( t11r RtJ)¥11 Swri.ftilYJI Sociny. Scr. 6 , 53. 
573- 585. 

Di"!e. P. J.. Liane. ~. Y •. and 7.C"aer. S. L. ( 1994). Anol)'tis i'fl.orlj.illlllinal 
Daro. Oxron L UJ(: OArvnt Unher,hy Pre'!>. 

Hastic:. T .. and lib<>hlf'.uu, K (1990), Cirt~<rulhfd Adtli1i~~ MtXIrls. London: 
Cb3pman and HaiL 

HOQ'II'd". 0. R .� Rkr. J. A. V.\t, C 0. and Yltftl� Y. (19' } 8 ). -Nonpar:unr:tnc 
Smoothmg t..stun:.k.' o( Time· VIii) lAC Cad&.en1 Modeb With Longuudt· 
..r o..a.· ~.115. IIW-4122 

La.:. K.. y_ �d Zqc:r. S L. U9S6._ '1..bllptud•aiD3G Aa:al)-sas U~& 
Geocnlwd U... MOO.:b." -rnbJ. 73. U-22. 

U... X.. and Corroll. R. J 12000~ "Noftp••mru>< ~uoruoo E>Omoboo fur 
Clu!aacd Dab Whm the Jl'Mj!J(UW" \k~ \\ithouu'\\'ilh Error.- lo«r· 
110/ of/M Amtnnrll StututJNI AU«iDIIOA. 9.S • .S20-S34. 

- - (2001 ), "'StR'ItPif'llntU.. Rq_re..!-k\ft For Clu!ottred Dala. • Bromt1nlM. 
in pre». 

Mack. Y .. and Sih'CI 1na11, 8 ( 19&2), "'\\'cal; and Strong Uniform Coosis.1enq•
of Kernel Regr~on &tiJtwe\o'' kit.{c/mft jilr \\'ahrschtinlwhkrlu·rhrorif' 
rmd \'t-TM¥tndtf' Grbltlf', 60. 40S..41S. 

~h.rron. J. S .. and HUIJk:. w. (19lil6), ''Rt~t~do.n Appro-. im{ltions.�o Some 
Me:bu~ of AccutliC)' In Nt)flpnnunttric Cul' \e &timatiot'l."' Jourm.rl of 
Mllllln-lfl' <neA nlii)'#.S., 20,9 1 11 3. 

Pe~. M. S .. and Couper. 0 . ( 1 997). "Model ins Pnr•ly Omditional Mean$ 
Wilh Longitudinal l>.wta." Jtmrnal nflltf' Am«<,.,clm SU'I,..fJl'ct,l AJ4()CkllltJn, 
92.991-998. 

Ram"3y. J. 0 .• and O'JII.It'll. C. J (1991). "Sonte: Tools for Funaional D:l:a 
Aftal}·sis .. (~ith dtscu._~idn,). lotmwl t( 1M Ro )ttl Slm,..1lical SociftY, Ser. 
B. 53. 539-572. 

Rjcr, J. (1986). "'Ccm"UJef\\:C IWC\ r(lf Patualty Sphl'ltd Modds.- Suw.Jik'dl 
oltd PNbabl/11\ I.A'It~n. 4, 2t)\ Zt»t 

Ria'. J. A. •d S•h"UtnM. 8 W (1991). "1-..\ril'l'IMtn: lht: Mean and eo, .... 
ancr suuau.~ Nollp¥U~tttk"aU) \\'ltn lhe O.:.:t arr Cun""tS. .. )t)kt'fltli tJ/ 
1M R")UI StatmK'fll So+rtt-n·. Str 8 $3, 213--2·0. 

Ruppm. 0. (1997~ "l:m!>U><ai·Bo.., """"'-.dlh' f<>< Local l'l>l).......r .....,.._ 
paramdnC Rt~ and D:ft"C) I.~INI ........ loMI'JttllofrM~II 
S10tisli.co/ At.loc'whOA. 92. 11).19-1 062 

$c\·erini. T. A.. and StMU'"'IJ''J G. (1994). '"Qubt·ld .. dihood &limation rn 
St-mip~ MOOcl~- Jmmt.illl{ tit~ Amnioran S.wn_fJirol Af.rociatH.Ht. 
8~. 501-511. 

s.,·erini, T. A .. and Wong. W. II ( 1992), ., l~fik L.U..dihood and Coadhion• 
ally Pan.mclric Models."' 7'ilt Annt1l.' of Sum.mrs.. 20. 1768-1802. 

Wild. C. J .. and Yee. T. W. (1~). "Add11h•e Exlt"fl'·ions lo Gener.dized E.!.li• 
mating Equalion Mclh<nl,," Jmmwl nfrllt Hoyol Sratistical Sodtty. Srr, 0. 
58.7 11-725. 

~er. S. L. :a.nd Oit~glc. P. J. ( 19(}..1), .. Scmi·Plarall'ICtri<: Models fot Longitu· 
dina! Oaca Wilh Appli<:lUic>n to CD4 Cell Numbers in UIV Serocon,·eru:rs:· 
BtQnJdnc.·s. SO. 6~1j VN, 

Zqer, S. L .• and K'J11m. M R (1\1'91). "Generllli!ed l..ine¥ Models With 
R:lndom EIT«tS: A G•bb' S..unphna. APrroat.:h," Jolimtal of t.hc Am~nt'on 
Suuisricol A.uotia11oa. 86. 7'1-36 

lhan.s. D .• Lin. X . Ru. J � ud SO'foff\. M. ( 1998). "'Semi·Patlmetnc: 
S1~ Mntd MOOch.(,..,. l.»fta.•tll!.lut~ o..a.,- /vtii'JIUI qf tAc A-rnnr• 
Sratu~~n~/Au•riar .., 'l.l. 710. 71~ 



406

J. R. Statist. Soc. B (2006) 
68, Part 1 , pp. 69-88 

Semiparametric estimation in general repeated 
measures problems 

Xihong Lin 

Harvard School of Public Health, Boston, USA 

and Raymond J. Carroll 
Texas A&M University, College Station, USA 

[Received January 2005. Revised September 2005] 

Summary. The paper considers a wide class of semi parametric problems with a parametric part 
for some covariate effects and repeated evaluations of a nonparametric function. Special cases 
in our approach include marginal models for longitudinal or clustered data, conditional logistic 
regression for matched case--{;ontrol studies, multivariate measurement error models, gener�
alized linear mixed models with a semi parametric component, and many others. We propose 
profile kernel and backfitting estimation methods for these problems, derive their asymptotic 
distributions and show that in likelihood problems the methods are semiparametric efficient. 
Although generally not true, it transpires that with our methods profiling and backfitting are 
asymptotically equivalent. We also consider pseudolikelihood methods where some nuisance 
parameters are estimated from a different algorithm. The methods proposed are evaluated by 
using simulation studies and applied to the Kenya haemoglobin data. 

Keywords: Clustered and longitudinal data; Generalized estimating equations; Generalized 
linear mixed models; Kernel method; Marginal models; Measurement error; Nonparametric 
regression; Partially linear model; Profile method; Semi parametric efficient score; 
Semiparametric information bound; Time-dependent covariate 

1. Introduction 

This paper considers a wide class of semiparametric problems with some covariates modelled 
parametrically and repeated evaluations of a non parametric function of a covariate. We propose 
profile kernel and backfitting estimation methods for these problems, derive their asymptotic 
distributions and show that in likelihood problems the methods are semiparametric efficient. 

To obtain some sense of the generality of our approach, consider the following examples, all 
of which can be solved by using our approach. The first four are new, in the sense that neither the 
semiparametric efficient score function nor a constructive method of estimation and inference 
that achieve efficiency is known. In contrast, the fifth example has a large literature. 

1.1. Example 1 
One of the most common designs in epidemiology is the matched case-control study, which is 
a design that is attracting considerable interest in genetic epidemiology; see for example Schaid 
(1999). Matched case-control studies consist of groups that have discordant responses. Thus, in 
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the 1-1 matched study, we consider matched pairs of subjects, with disease responses (Yn, Y;z) 
that are constrained to be discordant, so that Yn + Y;z = 1. The underlying prospective semi•
parametric logistic regression model is that 

pr(Yij = liX;j, Zij) = H {b; + Xf;,6o + Oo(Zij)}, 

where H(v) = 1/ { 1 + exp( -v)} is the logistic distribution function, b; is a nuisance parameter 
depending on the matched set, X;j is a covariate vector whose effect is modelled parametrically 
and Z; i is a scalar covariate whose effect is modelled by using a non parametric smooth function 
OoO. Let X;=(Xn,X;z) and Z;=(Zn,Z;z). Because the data are constrained to be discor•
dant, and we do not want to model the stratum effects b;, inference is based on the conditional 
likelihood function 

pr(Yn =I, Yi2 =OIX;, Z;, Yn + Y;z = 1) = H{ (Xn- Xi2) T ,6o +Oo(Zn)- Oo(Zi2)}. (1) 

Note that in equation ( 1) the stratum effects have been eliminated, and that in the likelihood Oo( ·) 
is evaluated twice at different values of Z. In more complex matched studies, Oo(·) is evaluated 
more than twice, e.g. the 1-M matched design. 

1.2. Example 2 
Hafner (1998) and Carroll et a/. (2002) studied 

a model that arises in finance. The algorithm that was proposed by Carroll et a/. (2002) for 
this case is extremely unwieldy and difficult to implement, because it is based on an integration 
estimator (Linton and Nielson, 1995). Our methodology in this case is far easier to implement 
and has the advantage of being semi parametric efficient in the Gaussian case. 

1.3. Example 3 
Generalized linear mixed models (Breslow and Clayton, 1993) have become popular as a means 
of quantifying and understanding variability. The simplest such model for binary data is the 
random-intercept model 

pr(Y;j = 11X;j, Zij, b;) = J.L{Xf;,6o +Oo(Z;j) +b;}, 

where J.LO is the inverse of a link function and b; = normal(O, a5). Here the variance component 
a5 may be of interest in itself and may in some cases depend on components of X such as gender; 
see Heagerty and Kurland (200 1) for an example. 

1.4. Example 4 

As discussed in a data example in Section 5.1.2, consider problems in which family i has m 
children, each of whom have a base-line measure Z;j for j = 1, ... , m, but for whom there are 
repeated measures Yijk over time fork= 1, ... , Kanda possible repeated time-varying covariate 
Xijk· A reasonable marginal model for the Yijk is that their means are J.L{ Xljk,6o + Oo(Z;j)} for 
a known inverse link function J.L(·), and a covariance matrix I: reflecting the structure of the 
problem. In this case, note that the function Oo(·) is evaluated m times for different children per 
family. 
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1.5. Example 5 
Consider a repeated measures Gaussian partially linear problem where for the ith subject 
responses f; = (Yn, ... , Y;m) T and predictors X;= (Xn, ... , X;m) T and Z; = (Zn, ... , Z;m) T are 
observed, with Z; j scalar. The basic model is that, for a known function J.LO and a true but 
unknown function Bo(z), 

(2) 

where, given (X;, Z;), li; =(en, ... ,e;m) T has mean 0 and covariance matrix ~(To) for a param•
eter To. Note that the function Bo(·) is evaluated repeatedly, and thus this problem is very much 
different from the standard partially linear model (Severini and Staniswalis, 1994). This prob•
lem has a large literature, with many kernel-based methods (Zeger and Diggle (1994), Hoover 
et a!. (1998), Lin and Ying (200 I), Wu and Zhang (2002) and many others), all of them esti•
mating BoO while ignoring the correlation structure. Lin and Carroll (2000, 200 I) and Fan and 
Li (2004) made an effort to incorporate the correlation structure in the estimation procedure 
within the traditional kernel framework. However, Lin and Carroll (2000) showed that the opti•
mal estimator of BoO within the standard kernel framework requires ignoring the correlation. 
There is also an extensive spline-based literature (Wild and Yee, 1996; Zhang eta!., 1998; Wang, 
1998; Rice and Wu, 2001 ). Fixing~( To) and pretending normality, Wang eta!. (2004) developed 
kernel-based consistent and asymptotically normal estimators for f3o: these are semiparametric 
efficient when ii; is actually Gaussian. 

These examples can be placed into a common framework. There is a criterion function 
L.(Y, X, r;, B), where ii has m components representing B(ZI ), ... , B(Zm) and B is a vector of 
parameters. For true values iio and Bo, the criterion function satisfies 

0 = E[{aL.(Y, x, iio, Bo)/a(i;o, Bo) }IX, i]. (3) 

For example, consider the model that is given in equation (2). Here, Bo = (f3o, To) and the criterion 
function is the Gaussian log-likelihood 

-~ log[det{~(To)}]- ~(Y- Xf3o- iio)T~- 1 (To)(f- Xf3o- iio). 

The criterion function in example I is given in equation (1 ), and examples 2-4 also have explicit 
forms. 

In this paper, we show how to compute efficient estimators of the non parametric component 
Bo(·) for problems with and without the parametric component B0 . The method that is defined 
in Section 2 is based on a likelihood-type generalization of the basic kernel method of Wang 
(2003) to the general problem (3). The methods are applicable to likelihood and non-likelihood 
problems, the only constraint being that condition (3) holds. 

In Section 3 we take up estimation of the parameter B. In this context, we derive two general 
methods, one incorporating profile likelihood ideas and the other based on the often easier 
to compute backfitting algorithm. Lin and Carroll (2001) and Wang eta!. (2005) proposed 
estimating-equation-based profile kernel methods for a marginal generalized semiparametric 
model that was similar to the normal model (2) for clustered data. Hu eta!. (2004) proposed a 
backfitting method under the normal model (2). Our profile likelihood method and the backfit•
ting algorithm are likelihood-type extensions of the methods of Wang eta!. (2005) and Hu eta!. 
(2004) to the general setting in expression (3). We show that in our case, using the smoother 
of Section 2, profiling and backfitting have identical limit distributions. The folklore of course 
is that backfitting and profiling are in general asymptotically equivalent, independent of the 
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method of smoothing, but in general this is not so (Hu eta!., 2004). However, our use of an 
efficient smoother allows us to show that backfitting and profiling are asymptotically equiv•
alent. It should be noted that undersmoothing of the non parametric function is required by 
backfitting but not required by profiling. In this section, we also describe the semiparametric 
efficient score function when .C(·) is a likelihood function, and we show in our case that our 
method achieves the semiparametric information bound. 

In many problems, there are nuisance parameters that can be estimated relatively conveniently 
by alternative means. In the example that was considered by Wang eta!. (2005), the covariance 
matrix I:( To) depends on a parameter To. The parameter To is conveniently estimated by the 
simple device of ignoring the correlation of the data, forming residuals from the fit and then 
using the method of moments. This is a pseudo likelihood approach. In Section 4, we derive the 
limiting distribution of the pseudolikelihood estimator in the general case. 

Section 5 first describes example 4 in detail. We illustrate example 4 by using the Kenya 
haemoglobin data and a simulation study. The second case that is considered in Section 5 is a 
multivariate measurement error problem. The formulation of the measurement error model 
is new even in the parametric measurement error model literature. Sketches of the techni•
cal arguments are given in the appendices and detailed proofs can be found at 

and also at 
~carrolllpapers.php. 

2. The nonparametric case 

Before describing methods for the general semiparametric problem, we describe methods when 
there is no parametric component, which is a problem of interest in its own right. In the 
nonparametriccase, the criterion function is .C(Y, X, ij) =L:{Y, X, O(Zr), ... , O(Zm)} where 'l]j = 
O(Zj) ( j= l, ... ,m). Define L:jo(·)=8£(Y,X,rn, ... ,"f/m)/8ru and L:jw0=8 2L:(Y,X,"f/r, ... , 
"f/m)/8"f/j a"T/k ( j,k= 1, ... ,m). We assume that 0= E[L:jo{Y, X, li(Zr), ... ,O(Zm)}IX, Z]. Let K(·) 
be a symmetric density function with variance 1.0, and define Gij(Z,h) = {1, (Zij- z) /h }. Let 
h(z) be the marginal density of Zij· 

We propose to estimate 00 by solving the kernel estimating equation 
n m _ _ _ _ -(!) _ 

0= 2:: 2:: Kh(Zij -z) Gij(Z, h) Ljo{Yi, Xi, O(Zi!), ... , O(z)+ 0 (z)(Zij -z), ... , O(Zim)}, 
i=lj=l 

(4) 

where O(I) (z) denotes the first derivative of O(z). Following Wang (2003), we propose to solve 
the kernel estimating equation (4) for O(z) in the following iterative fashion. Suppose that the 
current estimate of 00 at the (l-l)th step is B[l-!J(·). Then B[IJ(Z) =ao, where (ao, ar) solve 

0 = t t Kh(Zij- z) Gij(Z,h) Ljo{Yi, xi, B[t-! ] (Zi!), ... , a.o + CY.j (Zij- z) /h, ... , { J [l-! j(ZimH· 
i=lj=l 

(5) 

At convergence, O(z) solves the kernel estimating equation (4). In Gaussian cases such as in 
examples I and 2, iteration is actually not needed, with explicit solutions being available; see 
Lin eta!. (2004) for example I, and see also Section 5.1 for another example. Define .C(·) = 
L:{Y, X, O(Zr), ... , O(Zm) }, and similarly for its derivatives. Make the definitions 

m 

f!(z)= 2:: h(z)E{L:j jo(·)IZj=Z} 
j=l 

http://www.bepress.com/harvardbiostat
http://www.bepress.com/harvardbiostat
http://www.stat.tamu.edu/~carroll/papers.php
http://lwww.stat.tamu.edu/~carroll/papers.php
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m m 
A(B,zJ,Z2)= I: I: h(zJ)E{Cjke(·)B(Zk,Z2)/rl(Zk)IZj=ZI}, 

j=lk#j 
m m 

Q(ZJ,Z2)= l:: l:: hk(ZJ,Z2)E{Cjke(·)IZj=ZJ,Zk=Z2} /rl(z2), 
j=lk#j 

m m 
A(g,z)= l:: l:: h(z)E{Cjw(·)g(Zk)IZj=Z}/rl(z), 

j=lk#j 

where h(z) is the density of Zj and hk(ZJ, Z2) is the bivariate density of (Zj, Zk). Let 9(ZJ, Z2) 
and b(z) be the solutions to 

9(ZJ,Z2) = Q(ZJ,Z2)- A(Q,Z],Z2), 

b(z) = o< 2l(z)- A(b,z). 

2. 1. Result 1: expansion for the non parametric part 

(6) 

(7) 

Suppose that the Zij have support on a compact set and that their joint and marginal densities 
are bounded away from zero on that set. Assume that the algorithm converges to a unique 
solution and that equations (6) and (7) have unique solutions. Let the bandwidth sequence sat•
isfy nh 2 ~ oo and nh 6 ~ 0. Let ¢ = J z2 K(z) dz. Denote by Bo (z) the true function. Then, at 
convergence, 

B(z)- Bo(z) = (h 2 j2)cf;b(z) -n- 1 f. f Kh(Z; j- z)e;j/rl(z) 
i=lj=l 

+n- 1 f. f e;j9(z, Z;j)/rl(z)+op(n-112), (8) 
i=lj=l 

where eij =Cje{Y;, X;, Bo(Zn), ... , Bo(Z;m)}. Thus, the asymptotic bias and variance ofB(z) are 

E{ B(z)}- Bo(z) = (h 2 j2)cf;b(z) + o(h 2), (9) 

- 1 'lj; m I 
var{B(z)}=--2- I: E(Dj jiZj=Z) / j (z)+o{(nh)- }, 

nh n (z) j=l 
(10) 

where 'l j ;= J K2(s) ds and Dj j is the jth diagonal element of cov(s;IX;, Z;), where 8; = (eil, ... , 
8im?. 

Remark 1. Equations (8)-(10) agree with the results of Wang (2003) in the special cases that 
were considered by her. In equation (8), since the first two terms are of order Op{h2 + (nh)-112} 
whereas the third is of order Op(n- 112 ), the first two terms dominate. The proof of result (8) 
is similar to that of Wang (2003) and is given in the technical report that was mentioned at the 
end of Section 1. 

Remark 2. Note that equation (9) has design-density-dependent bias. It is possible to remove 
this. Suppose that the algorithm is run with an undersmoothing bandwidth h 1 = o(n-114), thus 
obtaining B(z,h1) at convergence. Let 005 (z,h) be the estimator that is defined by doing one 
step of the iteration from B(z, hJ), but now with bandwidth h, where h/h1 ~ 0 as n ~ oo. Then 
result (8) still holds except that the bias term (h 2 j2)cf;b(z) is replaced by (h 2 /2)¢B<2l(z). The 
proof of this argument is a routine application of lemma 1 and equation (24) in Appendix A.1 
starting from expansion (8). 
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3. The semi parametric case: methods and results 

In this section, we formulate the profile kernel and backfitting estimation methods for Bo in 
the semi parametric model .CCY, X, i)o, Bo), state their asymptotic distributions and show that, 
when the criterion function£(·) is a log-likelihood function conditional on (Z, X), our method 
achieves the semiparametric information bound. 

3. 1. Estimation: profile kernel and backfitting methods 
To estimate B, we propose pr;_ofile kernel and backfitting m~tBods. For any B, we first obtain the 
modified kernel estimate of li(z, B) and its first derivative li (z, B) with respect to z by solving 

_ 1 n m _ _ _ _ 

O=n 2:::2::: Kh(Z; j-Z)G; j (Z,h).Cje{Yi,X;,li(Zn,B), ... ,li(z,B) 
i=1j=1 
-(1) -

+hli (z,B)(Zij-Z) /h, ... ,li(Z;m,B),B}. (II) 

To solve equation (II) we suggest the following iterative algorithm. Suppose that the current 
estimate in the iteration is 0[1-lJ(Z, B). Then we update to B[l](Z, B) by solving (no, n1) in the 
equation 

-1 n m - - " 
O=n 2:::2::: Kh(Z; j-Z)G; j (Z,h).Cje{Y;,X;,O[l-1J(Zn,B), ... ,no 

i=1j=1 

+ n1 (Z;j- z)/h, ... , B[I-1J(Z;m, B), B}. 

Set B[IJ(Z, B)= no. At convergence, for any fixed B, we have the kernel estimator O(z, B). 
We now define two methods for estimating Bo. The profile kernel estimator Bp maximizes 

n - - " ,.. 2::: .C{Y;, X;, li(Zi!, B), ... , li(Z;m,B), B}. 
i=1 

Maximization of the profile likelihood requires calculating the derivative 08 (z, B)= oO(z, B) joB. 

This can be computed by numerical differentiation: in addition, in Appendix A.6, we show how 
to use an algorithm that is very similar to equation (5) to compute OB(Z, B) by solving a kernel 
estimating equation. 

In some cases, the profile kernel method may be difficult to implement numerically owing to 
the additional required computation of BB(Z, B). Instead, a backfilling algorithm can be used. 
In the iterative backfitting algorithm, suppose that the current estimate is B*. The updated 
backfitting estimate then maximizes B in the function 

The fully iterated solution to this algorithm is denoted by Bb. It is somewhat more general to 
write the updated backfitting estimate as the solution in B to 

n 

0= 2::: iJ ! ; (B*,B) 
i=1 

(12) 

where 

.CB{Y;, X;,li(ZJ), ... , li(Zm), B} = o.C{Y;, X;, li(Z1), ... , O(Zm), B} joB. 
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In general problems of this type, Hu et a!. (2004) have shown that backfitting and profil•
ing lead to different asymptotic distributions. However, Hu et at. (2004) also showed that in 
example 5 and equation (2) the use of the smoother that is defined in equation (5) leads to 
profiling and backfitting being asymptotically equivalent. Thus we would conjecture that the 
same equivalence holds in our general problem, a conjecture which is verified in Section 3.3. 
It should be noted that, as shown in Section 3.3, to obtain a .Jn-consistent estimator of B, 
undersmoothing of the non parametric function O(z) is required by the backfitting method: no 
such undersmoothing is needed when the profile kernel method is used. 

3.2. Optimal semiparametric score 
To study the asymptotic properties of the profile kernel and backfitting estimators of B, we first 
derive the semiparametric efficiency bound and efficient semiparametric score function in the 
case that£(·) is a likelihood function. 

3.2.1. Result 2: semiparametric efficiency bound 
Assume that CY;, X;, Z;) are independent and identically distributed, and that£(·) is a likelihood 
function conditional on (X, Z). Then the optimal semiparametric score function is 

m 

L:s(·)+ I: L:je(·) Bs(Zj, Bo), (13) 
j=l 

where the argument is {Y, X, Bo(ZI), ... , Bo(Zm),Bo}, and Bs(Zj,Bo) is the asymptotic limit of 
Os(Zj, Bo) and Bois the true value of B. In addition, the asymptotic covariance matrix of the 
optimal semi parametric estimator is n-1 v- 1, where 

m 
V=cov {L:s(Bo,Bo)+ I: L:je(Oo,Bo)Os(Zj,Bo)}. 

j=l 

The proof of result (13) is given in Appendix A.2. 

3.3. Asymptotic distribution theory 

(14) 

We study in this section the asymptotic properties of the profile kernel estimator Bp and the 
backfitting estimator .Bb under a general criterion function£(-). To study the asymptotic prop•
erties of the profile kernel estimator Bp, we first provide the asymptotic properties of the kernel 
estimator of the derivative Os(z, B). Define L:jeB(·) = aL:je(Y, X, rn, ... , TJm, B) joB, and 

s~(O, B)= L:jes{Y;, Xi,O(Zn), ... , O(Zim),B} 

m - -
+ I; Ljke{Y;, Xi, O(Zn), ... , O(Z;m),B} Bs(Z;k,B). 
k=l 

As we show in Appendix A.4, Os(z,Bo) = Bs(z,Bo) +op(l), where Bs(z, Bo) satisfies 

Define 

where L:ssO = a2 £(-)foB 2 . 

m # 
0= L fj(z)E{s; /Bo,Bo)[Zj=Z}. (15) 

j=l 

F=E{L:ss+ t LjBB(·)O~(Zj,Bo)}, 
j=l 
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3.3.1. Result 3: profile kernel method 
Assume that CY;, X;, Z;) are independent and identically distributed, and that O=E{.CB(·)[Z} = 
E { .C jB ( ·) [ Z}. Suppose further that the bandwidth h ex n -c with ~ :;( c :;( 1- Then 

n 112(Bp-Bo)=-:F- 1n- 112 t{.CiB+ t t:;jBB(Z;j,Bo)}+op(l) (16) 
i=1 j=1 

~ normal(O, .r-1 V .r-1 ), 

where e;j = .C;1e() and Vis defined in equation (14). In the case that .CO is a log-likelihood con•
ditioned on (X, Z), :F =- V, the resulting asymptotic variance is v- 1, and the profile estimator 
is semiparametric efficient. The proof of result (16) is given in Appendix A.4. 

3.3.2. Result 4: backfitting method 
Make the same assumptions as in result 3, except that nh4 ~ 0 is required, i.e. undersmoothing 
is required. Then the backfitting estimator Bb has the same asymptotic distribution as does the 
profile estimator Bp. The proof is given in Appendix A.5. 

3.3.3. Result 5: covariance matrix estimation 
Consistent estimates of :F and V can be constructed as follows. Let C;B, fije, fiBB and C;jeB 
be the estimated versions of the quantities indicated. Let BB(Z;j, B) be the solution of the ker•
nel estimating equation (36) in Appendix A.6. Then a consistent estimator of V is the sample 
covariance matrix of the terms 

Further, a consistent estimator of :F is 
, -1 n , , ,T , 

:F =n I: {.C;BB + .CijBB BB(Z;j, B)}. 
i=1 

4. Pseudolikelihood with nuisance parameters 

In many problems, it is convenient to estimate a subset of parameters by alternative algorithms. 
For example, in the partially linear model problem of Wang eta/. (2004), the mean functions 
are X0f3o + Bo(Zij) and the covariance matrix is L:,o. In our notation, Bo = {!36, vee T (L:,o)} T. 

Wang eta/. (2004) provided an initial estimate L:,P ofi:,o, and then applied our algorithm only 
to j3 while pretending that L:,o is known and equal to f;,P. 

Problems such as this are easily handled in our context as follows. Suppose that BT = (~~; T, 1 T) 

and that we have a preliminary estimate ltprelim with the property that it has the asymptotic 
expansion 

1/2 , . _ -1/2 n . 
n (/prehm-IO)-n I;U,+op(l), 

i=1 

where E(U)=O. Lete1 = (/,0) sothatK=e1B and write (:F11,:F12) =e1:F. Then,inAppendixA.4 
at equation (31), we show that, for either profiling or backfitting, 

n m 
n 112(K:- Ko) = -:Fj j 1[n- 112 I: {.C;~< +I: .Cije 8~<(Z;j, Bo)} +F12n 112 (ltprelim -!o)]+op(l) 

i=1 j=1 
n m 

= -:Fj j 1n-112 I: {.C;~< +I: .C;jeB~<(Z;j,Bo) +:F12U;} +op(l), 
i=1 j=1 
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from which the covariance of the asymptotic distribution of n 1 12 (~ -1\:o) follows. In some cases, 
such as that investigated by Wang eta/. (2004), F12 = 0, in which case the asymptotic covariance 
matrix becomes FiJ 1 V11 FiJ 1. In either case, a consistent estimator of the asymptotic covariance 
matrix is easily constructed. 

5. Examples 

In this section, we provide two examples to illustrate applications of our methods in the general 
likelihood-type framework that was described in Section I. Our first example concerns multilevel 
hierarchical data where inference is based on a likelihood, whereas the second example is on 
longitudinal data with covariates that are measured with error where the likelihood inference is 
difficult and a non-likelihood criterion function is used. 

5. 1. Data with common Z -values 
In some situations, the Z;j have sets of common values in a way that the firstm 1 observations have 
common value Z~, the next m2 have common value Z~, etc. For example, consider problems in 
which there are n families, family i (i = I, ... , n) has L; children, the jth child (j = 1, ... , L;) has 
a base-line measure Z0 and repeated measures Yijk over time fork= I, ... ,m;j and a possible 
repeated time-varying covariate Xijk· Consider a three-level hierarchical model 

Yijk = Xljkf3o + Bo(Z0)+eijk, (I 7) 

where i = I, ... , n (e.g. the ith family), j = 1, ... , L; (e.g. the jth member in the ith family), 
k = 1, ... , m;j (e.g. the kth time point). Equation (17) models the effect of the base-line sub•
ject level covariate Z0 non parametrically and other covariates Xijk parametrically. Denote the 
covariance matrix of e; by~;, which is a ~t~ 1 m;j x ~t~ 1 m;j matrix. Assuming that ~i is known, 
the criterion function is 

CY;- X;/3- (B(Z~)e[;, ... , B(Z~L)e{L)T)T~j 1 CY;- X;/3- (B(Z~)e[;, ... , B(Z~L)el'r.) T), (18) 

where e;j is an m;j x I vector of Is. Let e;j = (eijl, ... , eijm;) T, e; = (e"J;, ... , e(L) T and E: = 
(eJ, ... , eJ)T. Now partition ~i as follows: the (jk)th block ~i.jk =cov(e;j,eik) and the dimen•
sion of ~i.jk is m;j x mik· Denote~~~= {~fk}, where the partition of~~~ is the same as~;. 
Chen and Jin (2005) considered a problem that was similar to our setting without the paramet•
ric component and proposed to apply Wang's (2003) smoothing algorithm, pretending that the 
repeated base-line values of Z0 from the same subject were distinct over time. Estimation based 
on our criterion function (18) effectively accounts for the nature that the data have common 
Z-values and would yield a more efficient estimator. 

Specifically, for any given {3, define Yijk = Yijk(/3) = Yijk - Xljk/3, and define Yij, Yi and Y in 
h " h' d- fi * * * T d -* * * T d t esa~e.as 10nase;j,e;an e.De neZ; =(Zn, ... ,Z;L) an Z =(Z11 , ... ,zm.L) an 

define X= (X 11, •.. ) T. Then, the linear kernel estimating equation at the lth iteration is 

n Li 
I: I: Kh(Z0 -z) G;j(Z)(O, ... ,0, elj, 0, ... ,0)~/ 1 {Y; -JL;(Z~, zo)} =0, (19) 
i=lj=l 

where G;j(Z) is defined in Section 2 and 

JL;(Z~ ,zo) = (0[1-!](Z~)e"J;, ... , { ao +a! (Z0 -z)}elj, ... ,0[1-!j(Z~L)e{L) T. 

In Appendix A. 7, we give an explicit closed form solution to equation (19): no iteration is nec•
essary, and equation (19) is only a descriptive device. Indeed, we derive an explicit form of a 
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smoother matrix S such that B(Z*, (3) = S Y((3) =SY- SX(3, where Sis given in equation (38). 
This means that the profile kernel estimator of (3 is also explicit, i.e. non-iterative, since it is 
the generalized least squares estimator in the model with responses(/- S*)Y and predictors 
(I- S*)X, where S* is the expanded version of S that is appropriate for the smoothing of all 
the responses by accounting for the common Z;j within the same subject, i.e. S* = ES, where 
E=diag(ell, ... ,enLn) is anN xI:?= I L; matrix and 

n Li 

N=I: I: m;j 
i=lj=l 

is the total sample size. The profile kernel estimator is 

J3= {XT (/-S*)Tf;-1(1-S*)Xr1 j(T (1-S*)Tf;-1(1-S*)Y, (20) 

5.1.1. Simulation study 
We applied our method to the case of n = 100 clusters with six observations per cluster, with 
Zil = Z;2 = Z;3 and Z;4 = Z;s = Z;6 , i.e. we fit the hierarchical model (17) with n = I 00 families, 
L = 2 subjects per family and m = 3 repeated measures over time per subject. We assume that the 
correlation structure is autoregressive with correlation 0.60 between repeated measures over 
time and common between-subject (within-family) correlation 0.20: let :E denote the resulting 
covariance matrix. The true function was Oo(z) = sin(8z- 2). The Z-values were generated as 
independent uniform distributions, whereas the X-values were bivariate independent uniform 
distributions minus the corresponding value of Z. The true value was f3o = (I, I) T. 

The Epanechnikov kernel was used. Working independence was based on bandwidths that 
were selected by using the method of Ruppert et at. (1995). The covariance matrix~ of the Bij 
was estimated as the sample covariance matrix of the residuals formed by a preliminary work•
ing independence regression spline fit. We used pseudo likelihood, with the estimated covariance 
matrix fixed as above. Both the method that ignored the fact that there were common values of 
Z and our method were applied with bandwidth selected via the following simple device. For 
a given (3 we formed Y; j- Xljf3 and then ~alculated B(·) by using the, closed form expression 
(38). With S as the smoother matrix, cov{O(·)} is estimated asS diag(:E)ST, and the estimated 
average variance of the fit follows directly. Bias was estimated as in Wang (2003). We then min•
imized the estimated mean-squared error as a function of the bandwidth. The estimator of the 
profile kernel estimator of (3 was calculated by using the closed form formula (20). 

In 1000 simulated data sets, both weighted methods achieved over 70% greater mean-squared 
error efficiency for estimating f3o than the working independence estimator. For estimating Oo(z), 
the method that ignored the common Z-values was 35% more efficient in mean-squared error 
than working independence, but our method was 65% more efficient. 

5.1.2. Analysis of the Kenya haemoglobin data 
We applied our method to analyse a subset of the Kenya haemoglobin data to study the changes 
in haemoglobin level over time in the first year since birth and the risk factors of haemoglobin 
among Kenyan children. This subset contained n = 68 families with L = 2 children per family 
and m = 4 repeated measures per child over time in the first year since birth. Haemoglobin level 
was measured at each visit and visit times varied from child to child. The risk factors of interest 
include the mother's age at child birth, child sex and placental parasitemia density PDEN, a 
marker for malaria, which could affect haemoglobin. Log-transformation was applied to PDEN 
to make the normality assumption plausible. A preliminary analysis showed that the effect of 
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mother's age was non-linear. We considered the semiparametric model (17) and modelled the 
mother's age effect nonparametrically, and sex, PDEN and time effects parametrically. Specifi•
cally, we set Z;j to be the mother's age at birth, Xijk = {sex, logpden, month, (month-4)+}, 
where sex= I if female and sex= 0 if male, logpden = log(PDEN +I), the function f+ = f if 
f> 0 and f+ =0 iff:;( 0. Note that the terms {months, (month-4)+} model the time effect 
as a piecewise linear function with a knot at 4 months. This trend is observed by preliminary 
analysis of the data. 

In our analysis, we used pseudolikelihood, with the following modifications from the sim•
ulation. We started with an estimate of 2: as obtained from a preliminary regression spline 
fit and then estimated the bandwidth by using leaving one mother out cross-validation, and 
thus obtained estimates of Oo(·) and f3o. From this, we formed residuals Y;j- X{j/J- e(Z;j, /J), 
re-estimated the covariance matrix, re-estimated the bandwidth, etc., repeating this process 10 
times. 

For numerical stability, we standardized the haemoglobin level. We obtained an estimated 
residual variance of 0.66, an estimated autocorrelation of 0.20 and an estimated between-child 
(within-mother) correlation of 0.13. The estimated cross-validation bandwidth was 0.23. The 
correlation was low or moderate in this example. In Fig. I, we compared the estimated non-
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Fig. 1. Estimated non parametric curve of the effect of mother's age at birth on child haemoglobin by fitting 
the semiparametric model (17) to the Kenya haemoglobin data: --, efficient estimate when common 
Z-values are ignored;-------, me1hod proposed;·······, working independence fit 
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Table 1. Profile kernel estimates regression coefficients of the sernipararnetric model (17) 
applied to the Kenya haemoglobin data 

Coefficients from the following models: 

Month 
(Month-4)+ 
Sex 
LNPDEN 

Working 
independence 

-0.418 (0.0378t) 
0.147 (0.028) 

-0.122 (0.072) 
-0.010 (0.013) 

Structured covariance 
(ignoring ties) 

-0.397 (0.039t) (0.043§) 
0.129 (0.028) (0.028) 

-0.122 (0.080) (0.087) 
-0.009 (0.015) (0.017) 

tNaYve standard error ignoring correlation. 
tModel-based standard error. 
§Sandwich standard error. 

Structured covariance 
(accounting for ties) 

-0.397 (0.039t) (0.043§) 
0.129 (0.028) (0.028) 

-0.122 (0.080) (0.087) 
-0.009 (0.014) (0.016) 

parametric curve estimates of the effects of mother's age at birth, using the working indepen•
dence kernel estimator and our proposed likelihood-based kernel estimator (with or without 
accounting for ties in mother's age). The estimated curves were similar. Children's haemoglobin 
increased with mother's age at birth for mothers who were younger than 22 years old, then 
decreased slightly with mother's age until at age early 30 years and then started decreasing 
quickly with mother's age, indicating that children are likely to have much lower haemoglobin 
levels if mothers give birth after early 30 years of age, i.e. giving birth after early 30 years is likely 
to increase children's risk of anaemia (low haemoglobin) considerably. 

As expected, since the correlation was not high, the estimates of the regression coefficients 
(3 were roughly the same for the working independence kernel fit with bandwidths selected by 
using the method of Ruppert et al. (1995), the method of Wang et al. (2004) ignoring the com•
mon Z-values and our method accounting for the common Z-values. Estimated standard errors 
were computed ignoring the correlation for the working independence methods, and using the 
sandwich method for our likelihood-based methods. These standard errors were roughly the 
same in all cases. The results are given in Table I. The haemoglobin level drops quickly after 
birth and decreases at a slower rate after month 4. Neither sex nor placental parasitemia density 
affects the haemoglobin level significantly. 

5.2. Measurement error models 
Here we consider the multivariate partially linear measurement error model 

Y; j =C0f3o +Oo(Z;j) +s;j, (21) 

where if; has covariance matrix ~eO· Instead of observing C;j we observe W;j = C;j + Uij· 
Define U; = (Un, ... , U;m) T. These measurement errors have mean 0 and the property that 
cov{ vec(U;)} = ~uo, which is assumed here to be known. There is to date no literature on this 
problem other than Lin and Carroll (2000), which came to unsatisfactory conclusions such as 
that in panel data it was better to ignore the correlation structure in the responses. 

Define G(~e, ~uo) = E(UT~;;- 1 U) and define KC~uo, (3) = E(U(3(3T(;T). Note that 

(3T G(~e, ~uo)f3 = tr{~;;- 1 E(U (3(3T(;T)} = tr{~;;- 1 K(~uo, (3) }. 

In equation (21), B= ((3, T, ~e) and the criterion function is 
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i log{ det(I:;-1)} + i,6T G(I:,, L:uo),6- iCY- W,6- B(i)) Tr;;- 1(Y- W,6- B(Z)). (22) 

Equation (22) is new even in the parametric measurement error literature. 
For symmetric matrices I:, a{log(JI:J)}jai: = 21:- 1 - diag(I:- 1) and a{tr(I:A)}jai: = 2A•

diag(A). It is readily seen that the derivative of expression (22) with respect to ,6, I:, and B 
evaluated at the true parameters has expectation 0, and thus expression (22) satisfies the essen•
tial condition (3). 

In this problem, the backfitting algorithm is computationally convenient. Of course, for given 
B = (,6, I:,), forming the estimate B(z, B) is easy since it is simply the estimate of Wang (2003) 
applied to the terms Y;j- WJ,6. Indeed, define Y = (f11, ... , Ynm) T, Z = (Z11, ... , Znm) T and 
W = (W11, ... , Wnm) T. Then as Lin et al. (2004) showed, there is a smoother matrix S =S(I:,) 
such that B(Z, B)= S(Y- W,6). If /Jc, Be and f:s.c are the current estimates, the updated esti•
matesare 

A -I n - T A -I - A -I -I n - T A -I - A - A 

,6new={n L W; 1:,,0 W;-G(L:s,c,l:uo)} n L W; I:,,c{Y;-B(Z;,Bc)}, 
~I ~I 

A _ 1 n _ _ A A _ A _ _ A A _ A T A 

l:s,new=n I;{Y;- W;,6c-B(Z;,Bc)}{Y;- W;,6c-B(Z;,Bc)} -IC(L:uo,,6c). (23) 
i=l 

Profile pseudolikelihood estimates are also easily constructed. Let f:, =In 181 I:,. Let W* = 
( / - S)W andY*=(/- S)Y. Then, for given I:,, the profile estimate of ,6 is given by 

{WJI:;-1W* -n G(L:,, L:uo)} -lwJf:;-1Y*. 

A simple estimate of I:, is to form the working independence estimate of ,6 and to apply equation 
(23). 

6. Discussion 

This paper has described nonparametric and semiparametric methods in cases where the non•
parametric function is evaluated repeatedly within a sampling unit. Examples discussed included 
old and new versions of marginal longitudinal and clustered data, matched case-control studies, 
generalized linear mixed models, common additive models that are linked by a parameter and 
multivariate measurement error models. The methodology is motivated by the use of a criterion 
function that would be used if the problem were a parametric problem: if the criterion function 
is a likelihood, then our methods are semiparametric efficient. We showed that backfitting and 
profiling gave asymptotically the same results, although undersmoothing is needed for backfit•
ting. We also showed how to use pseudolikelihood methods within our context when some of 
the parameters are more conveniently estimated by alternative algorithms. In a very different 
problem, namely non parametric regression of additive models, Mammen et al. (1999) proposed 
a 'smooth backfitting' algorithm that does not require undersmoothing. It is of future research 
interest to extend this method to our setting. 

Although we have motivated the methodology by basing it on criterion functions, the ap•
proach is considerably more general. Our approach really only requires the following. First, we 
need a set of unbiased estimating functions£ je{Y, X, Bo(ZI), ... , Bo(Zm), Bo} that satisfy con•
dition (3). Second, we need an estimating function ll!s{Y, X, Bo(ZI), ... , Bo(Zm), Bo, Bo} taking 
the place of equation (12) and also satisfying condition (3): the double argument in Bois meant 
to allow for the possibility of using backfitting. It is useful to use the symbols£ and 111 to empha•
size that the derivative of the former with respect to B need not be the same as the derivative of 
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the latter with respect to the jth component of B. It can be shown that result I and equation (8) 
still hold with the same notation, as does the fundamental identity (15). The basic backfitting 
expansion (30) in Appendix A.3, as well as the definition of :F in result 3, also holds with £ 
replaced by Ill. It then becomes straightforward to derive the asymptotic distribution of the 
estimate of Bo: note here, however, that :F, + :F2 need no longer be symmetric. The asymptotic 
covariance matrix of the resulting estimator B is more complicated than that given in equation 
(16), because it involves the implicitly defined function Q in equation (6). However, the boot•
strap method that bootstraps clusters can be used to estimate the covariance of B (Chen eta/., 
2003). 
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Appendix A: Sketch of technical arguments 

Detailed proofs are given in the technical report at 
and also at edul~carrolllpapers  

A. 1. A key technical/emma 

Lemma 1. Let 0[11 ( ·) be the estimate at the lth stage of the iteration. Then 

0 () O() h\ () -~~~Kh(Zu-z)eu -~~~~Kh(Zu-z) 
[fj z - o z = 2 [OJ z - n t[ f;:;I Q(z) - n t[ f;:;I t,.} Q(z) 

x .Cijte(· ){ 0[ 1-!](Z,.)- Oo(Z,.)} + op(n-112), (24) 

where h[oJ(Z) =8(2l(z), and the argument is {Y;, X;, O(zn) •... , a 0 +a1 (Z;j -z)/ R, ... , O(z;m)}. Here is a brief 
sketch of equation (24). By Taylor series expansion, we have 

O=n-1 t f_ Kh(Zu -z) Gu(z,h) .C;jBO +n-1 t f_ Kh(Zii -z) G;j(Z,h) G~(z,h) 
i=l j=l i=! i=l 

( &o-ao) -I/2 x .CijjB(·) & 1 _ a 1 +op(n ), 

where the argument is {Y;, X;, O[I-IJ(Z;1), ••• ,a0 +a1 (Zu- z)Jh, ... , O[I-IJ(Z;m) }. It is easily seen that the 
sum in the second argument converges at the appropriate rate to Q(z)h where h is the 2 x 2 identity 
matrix (again, this is because K has variance 1.0). Hence, 

-O(z)(&o -ao) =n-1 t f Kh(Zij -z).C;jB(·) +op(n-112 ) 
i=lj=l 

=A!n +A2n +op(n-112), 

A1n =n-1 t f Kh(Zij -z) .CjB{Y;.X;,Oo(Zn) •...• ao +a1 (Z;j -z)jh, ... , Oo(Z;m)}, 
i=li=l 

http://www.bepress.com/harvardbiostat/
http://www.stat.tamu.edu/~carroll/papers.php
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Some calculation shows that 

A1n =n-1 f. t Kh(Zij -z)eij +(h2 /2)b[oj(Z) rl(z) +op(n-112 ), 
i=lj=l 

and A2n is equal to the third term in equation (24). 

A.2. Proof of result 2: semiparametric efficient score 
We use Begun eta/. (1983). In their set-up, their 'f' is our exp(.C), their 'li' is our Band their 'g' is our e. It 
is easily derived that their '2p0 j f112 ' is our .CB. Similarly, for an arbitrary function')'(-), their '2Af3/ f112 ' is 
~j~ 1 .Cje(·)'Y(Zj). This means that their equation (3.1) is the following. The semi parametric optimal score 
is of the form 

m 

.CB(-)-I: .Cje(·) 'Y*(Zj). 
j=l 

where 'Y*(·) is such that, for all')'(·), 
m m 

0= E[ {.CB(·)-I: .Cjo(·)'Y*(·)} I: .Cko(·)'Y(Zt)]. (25) 
j~1 k~1 

We now show that 'Y*(·) =-liB(·) satisfies condition (25). To see this, interchange the indices j and k and 
note that condition (25) means that we must show that for arbitrary')'(·) 

m m m 
0= E{L: .CB(·) .Cje(·)'Y(Zj) +I: I: .Cje(·) .Cke(·) BB(Zk)'Y(Zj)}. 

j~1 j~1k~1 

Condition on (X, Z) and note that, because .CO is a likelihood function given (X, Z), 

E{.CB(·) .Cjo(·)IX, Z} = -E{ .CjeB(·)IX, Z}, 

E{.Cje(·) .CtoOIX, Z} = -E{.CiM(·)IX, Z}. 

Thus we must show that, for arbitrary')'(-), 

m m 

0= I: E['Y(Zj){ .CjeBO +I: .Cjto(·) liB(Zt)}] 
j~1 k~ 

= t E{ ')'(Zj) e~(lio. Bo) }. 
j~1 

(26) 

where e~(!i0 , B0) is defined in Section 3.3. This last step follows by conditioning the expectation in equation 
(26) on Zj and then applying equation (29) below. 

A.3. Sketch proof of equation (15): fundamental identity 
Since 

one can show that, for any B, 

n-1 f,{(z, -z)/h} Kh(Z;- z)=op(!) 
i=l 

0= f_ t Kh(Zii -z) .Cje{Y;, X;,O(Zil,B), ... ,O(Z;m, B), B}. 
i=lj=l 

Differentiating equation (27) with respect to B, we obtain 

(27) 

with argument {Y;, X;, O(Zil, B), ... , O(Zim• B), B}. Taking limits and evaluating at Bo yields equation (15). 



421

84 X. Lin and R. J. Carroll 

Recall the definition of s~(B, B) that is given in Section 3.3. Define 

Hj(Z) = E{ e~(Bo. Bo)IZi =z}. 

It follows from equation (15) that 0= 'Bj~ 1 fi(z) Hj(Z). and hence that, for any function B(·), 

0= E{ f: B(Zj) Hj(Zj) }· 
,~r 

We shall use this equality repeatedly. 

A.4. Sketch proof of result 3: asymptotic distribution for profiling 
Recall that F =Fr +F2. where Fr =E(.CBB) and F2=E{'Bj~1 .CjeBOB§(Zj. Bo)}. Also, define 

F3 = E{ f: f: .Cjke(·)BB(Zj.Bo) B§(Zk, Bo) }· 
j~lk~l 

It is an, easy consequence of equation (29) that F2 +FJ =0, so that F =Fr +2F2 +FJ. 

(28) 

(29) 

Let 08 (z. B)= ae(z. B) jaB, and let its limit as n--+ oo be 08 (z. B). Then the profile estimator solves the 
equation 0=A1(Bp.O)+A2(Bp. 0), where 

A Taylor series expansion shows that 

(30) 

where the symbol'.' here means evaluated ate and Bo. Similarly. we have that 

The first and third terms sum to (F2 +F3)n112(Bp- Bo) +op(l). Because E{.CijeOIZ;} =0, the second 
term is op(l). The last term can be decomposed, so that 

+n- 112t f: .CijeO{OB(Zij. Bo)- BB(Z;j)} +op(l). 
i=l j=l 

Recall that sii = .CiieO and Hj(Z) as defined in equation (28). If 
m 

Pii =.CijeBO+ "L, .Cijke(·)BB(Z;k), 
k~l 
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we have 

-:Fn112 (Bp -Bo) =n-112 t{.CiB + t e,jOB(Zj.Bo)}+n- 112 t t Hj(Zij){iJ(Zij.Bo)- O(Z; j) } 
i=l j=l i=l j=l 

1/2 n m " 
+n- I: L:{Pij- Hj(Zij)}{O(Zij.Bo) -O(Zij)} 

i=lj=l 

+n-112 t t .C;je(·){iJB(Z;j.Bo) -813(Z;j)} +op(l). 
i=lj=l 

(31) 

We can show that the last three terms of equation (31) are all op(l). The proof of the last term uses the 
asymptotic expansion 

-n-1 t 't Kh(Z;j -z)e~(Oo.Bo) 02(z) +n-1 t 't e;/f!(z. Zij) 
i=I j=l i=l j=l 

+n-1 t 't e~(Oo.BoHh(z. Zij)+op(n-112), 
i=I j=l 

(32) 

for some functions bj(·), Oj(·) and {]j(·) ( j= 1,2). The detailed proofs are given in the technical report 
that is mentioned at the end of Section I. 

A.5. Sketch proof of result 4: asymptotic distribution for backfitting 
Using the notation of Appendix A.4, for backfitting we are solving the equation 0= A 1 (~. iJ). Using the 
results in Appendix A.4, we have 

Since the profile estimator satisfies 

-:Fn112(Bp- Bo) =n-112 t {.CiB(-) + 't .C;je(·) OB(Z;j. Bo)} +op(l), (34) 
i=l j=l 

we see that we must show that the second terms in equations (33) and (34) are asymptotically equivalent. 
Make the definitions 

m 

O(zo)= I: /j(zo) E{.Cjje(-)IZj=Zo}. 
j=l 

m 

P1 (zo) =I: fj(Zo) E{.CjeB(·)IZj =zo}/O(zo). 
j=l 

P2Czo) =E [ t E{.CjeBOIZj} {I(Zj. zo)/O(Zj)]. 
J=l 

P3(Zo) = t t {fj(Zo)/O(zo)} E{.CjkB(-) 813(Z., Bo)IZj =zo}. 
j=l ki' j 

Recalling equation (15), we see that 

m m 

P1 (zo) =-I: I: {/j(zo)/O(zo)} E{.CjkB(·) OB(z •• Bo)IZj =zo} 
j=lk=l 
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P2(zo)= I Pr(z)g(z.zo)dz 

=-I Oa(z,Bo)g(z.zo)dz- I PJ(z)g(z.zo)dz. 

We now plug in result (8) into the second term of equation (33). Noting the assumption that nh4 -+ 0, 
some calculation shows that this second term is asymptotically equivalent to C.1 + C.2 , where 

Cnr = -n- 112 t t .C.ijoO Pr(Zij) +op(l), 
i=lj=l 

Cn2 =n- 112 t t .C.ijo(·)P2(Zij) +op(l). 
i=lj=l 

Collecting the expressions for P1 (z) and P2 (z), it thus follows that 

-F{n 112 (Bb -Bo)- n 1i2 (Bp -Bo) } =Sn +op(l) 

where 

Now, using the definition of Q(z1.z2 ) above equation (6) and the definition of AO just above equation 
( 6), one can show that 

I Oa(z,Bo)g(z.zo)dz=PJ(Zo)- I Oa(z,Bo)A(g.z.zo)dz. 

Hence 

We thus need to show that, for all z0 , 

0= I {Oa(z. Bo)A(g, z.zo)- P3(z)g(z. z0)}dz. 

Its proof is given in the technical report that was mentioned at the end of Section I. 

A.6. Computation ote8 (z, B) 
We first derive the first-degree polynomial kernel estimating equation for 08 (z; B). Differentiating equa•
tion (II) with respe\:t to B gives th~ linear kernel estimating equat~n for 88 (z;B). Let O(z,B) be the 
asymptotic limit of O(z,B). Let 8 1(Z1,B) = (8(Z11 ,B), ... , 8(Z1m, B)) and 8 18 (Z1, B)= (88 (Zi!, B), ... , 
88 (Z1m,B))T. Denote the estimating function 

eij(Y;, X;, e,, eiB)=.C.ijoBO + t .c.ijko08a(Z;t. B), 
k~I 

(35) 

where ·={Y1,X1,8(Zi!.B), ... ,8(Z1m.B)}. Equation (35) is the same as e~(O,B) that was defined in 
Section 3.3, but as shown below a slightly different notation is needed in our arguments. Then 

m 
2: E{e;j(·)IZ;j=Z} fj(z) =0; 
j~I 

see equation (29). The kernel estimating equation for Oa (z; B) can be written as 
_ 1 n m _ _ " _ ,.. _ 

R. =n L L Kh(Zij -z) Gij(z,h) e;j{Y;. x,, 8;j(Z. Z;, B), eijB(Z, z,, B)} =0, (36) 
i=lj=l 

where 
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e,j(Z. t,, B)= (O(Zii.B), ... ' O(z. B) +h 0( 1) (z. B)(Zij- z)fh, ... 'O(Z;m,B))T. 

eijB(Z. t,, B)= (OB(Zi!. B), ... ' OB(z.B)+h /}~) (z.B)(Zij -z)fh, ...• OB(Zim• B))T. 

Equation (36) can be used to show that 06 (z. B) has the asymptotic expansion (32), and it can be 
computed by a similar algorithm to that which was used to compute iJ(z. B). If we refer to equation 
(2) of Lin et af (~00~). w~ can make the followin~ sub~tftutions. First replace their B[{t)V-1 Y, by 
G;j(z,h) .CijeB{Y;, X;, ()ij(Z, z,, B), B}. Then replace Bij(t) V Jl;w(t) by 

Gij(z.h) t .cijkOB{Y;, X;,Oij(Z. t,, B),B} eijB(Z. Z;,B). 
k=I 

Although this is a vector form rather than the scalar form in Lin et al. (2004), their same method can be 
used to find an explicit, closed form solution for 06 (z. B). 

A. 7. Explicit algorithm for method in Section 5. 1 
Equation (I 9) can be rewritten as 

nLt T .. T TLt.k,. 
2::2:: Kh(Z~ -zo) Gij(Zo)[eijEfl{Yii- G;j(Zo) aeii} +e;j 2:: Ef {Yik- ()[t-1J(Z~)e;k}], 
i=l j=l k-:ftj 

where Yii = (Y;j 1, � � � , Yijm;;) T is an m;j x 1 vector and y, = (Y,j, ... , YJ.) T. It follows that 

n Lt .. 
{ 2::2:: Kh(Z~ -zo)G,j(Zo)e[Ef'e,jd[(zo) }a 

i=lj=l 

Denote by M = E?~ 1 E~~ 1 m;j the total sample size and L = E?.,1 L; the total number of family members, 
i.e. the number of levels of the second hierarchical level. Let G(zo) = (G 11 (z0), ..• , G.L.(Zo))T, which is 
an L x p design matrix, i = (Z(1, ... , z:L.) T be an L x 1 vector containing distinct observed values of 
Zs, Kdh(Zo) = diag{Kh(Z(1 -_zo) •... , Kh(z:L - zo)}, which is an L x L matrix, E_=diag(eii •... , e.L.). 
which is an MxL matrix, Ed.(Ffliag(Ef •.. ~.D,!). Ef=diag(E/1 •... ,Ef'L') and E=diag(E1, ... ,E.), 
Y = (Y!, ... , YJ)T. Note that () + (zo) = & 0• Writing equation (37) in a matrix form. simple calculation 
shows that 

0(1+ 1) (zo) = 8T { G(zo)T Kdh(zo)ETtd E G(zo)} - 1 G(zo)T K""(zo){ETt-1 Y +ET (td- t-1)EO[t-IJ(i*)}, 

where 8 = (1, 0, ... , O)T. Let 

K~h(zo) =DT { G(zo)T Kdh(Zo)ETtd EG(zo)} - 1 G(zo)T Kdh(Zo). 

and Kw= (Kwh(Z{1), � � � , Kwh(z:L.))T, which is an L x L matrix. Then we have 

0(1+ 1> (Z*) = Kw{ETt- 1 Y +ET (Ed- t-1)EO[t-IJ(Z*) }. 

Write O[q(Z*) =S[t]ETE-1 Y. Note that S[q is an L x L square matrix. At convergence S[q-+ S, where S 
satisfies 

It follows that 

Hence at convergence 

(38) 

Ifmii = 1 then E_=l. The sesults then reduce to those in Lin eta!. (2004). 
Note that E, E-1 and Ed are all block diagonal matrices. The above matrix calculations can then be 

greatly simplified. Specifically, partition Kw as an n x n block matrix with the (i, i')th block denoted 
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by Kwii' which is an L1 x L;• matrix. Write E=diag(£1 •••• , En) and Kdh =diag(K4/>.l• ... , K__dh.n), where 
E; =diag(e;I, ... ,e;n-) and Kdh,;(Zo) =diag{Kh(Z~ -zo) .... , Kh(Z:i_.- zo)}. Write G(zo) = (G;(Zo)T, ... , 
Gn(Zo)T)T. Then ' ' 

T T{ n - T T- - }-! - T - T Kwh(zo) =8 I: G;(zo) Kdh_;(zo)E1 t:f E; G;(zo) { G1 (zo) Kdh.l (zo) ..... Gn(Zo) Kdh.n(zo)}. 
1=1 

For equation (38), partition the matrix KwET ct-1 - f;d)E in the same fashion as Kw into an n X n block 
matrix and the computation can be simplified in a similiar way. 
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Summary. Increasingly, scientific studies yield functional data, in which the ideal units of obser�
vation are curves and the observed data consist of sets of curves that are sampled on a fine grid. 
We present new methodology that generalizes the linear mixed model to the functional mixed 
model framework, with model fitting done by using a Bayesian wavelet-based approach. This 
method is flexible, allowing functions of arbitrary form and the full range affixed effects structures 
and between-curve covariance structures that are available in the mixed model framework. It 
yields nonparametric estimates of the fixed and random-effects functions as well as the various 
between-curve and within-curve covariance matrices. The functional fixed effects are adaptively 
regularized as a result of the non-linear shrinkage prior that is imposed on the fixed effects' 
wavelet coefficients, and the random-effect functions experience a form of adaptive regulari�
zation because of the separately estimated variance components for each wavelet coefficient. 
Because we have posterior samples for all model quantities, we can perform pointwise or joint 
Bayesian inference or prediction on the quantities of the model. The adaptive ness of the method 
makes it especially appropriate for modelling irregular functional data that are characterized by 
numerous local features like peaks. 

Keywords: Bayesian methods; Functional data analysis; Mixed models; Model averaging; 
Nonparametric regression; Proteomics; Wavelets 

1. Introduction 

Technological innovations in science and medicine have resulted in a growing number of scien•
tific studies that yield functional data. Here, we consider data to be functional if 

(a) the ideal units of observation are curves and 
(b) the observed data consist of sets of curves sampled on a fine grid. 

Ramsay and Silverman (I 997) coined 'functional data analysis' as an inclusive term for the anal•
ysis of data for which the ideal units are curves. They stated that the common thread uniting 
these methods is that they must deal with both replication, or combining information across N 
curves, and regularity, or exploiting the smoothness to borrow strength between the measure•
ments within a curve. The key challenge in functional data analysis is to find effective ways to 
deal with both of these issues simultaneously. 

Much of the existing functional data analysis literature deals with exploratory analyses, and 
more work developing methodology to perform inference is needed. The complexity and high 
dimensionality of these data make them challenging to model, since it is difficult to construct 
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models that are reasonably flexible, yet feasible to fit. When the observed functions are well 
represented by simple parametric forms, parametric mixed models (Laird and Ware, 1982) can 
be used to model the functions (see Verbeke and Molenberghs (2000)). When simple parametric 
forms are insufficient, however, nonparametric approaches allowing arbitrary functional forms 
must be considered. There are numerous papers in the recent literature applying kernels or fixed 
knot splines to this problem of modelling replicated functional data (e.g. Rice and Silverman 
(1991), Shi eta!. (1996), Zhang eta!. (1998), Wang (1998), Staniswallis and Lee (1998) Brum•
back and Rice (1998), Rice and Wu (2001), Wu and Zhang (2002), Guo (2002), Liang eta!. 
(2003) and Wu and Liang (2004)). Some of these models are very flexible, with many allowing 
different fixed effect functions of arbitrary form and some also allowing random-effect functions 
to be of arbitrary form. Among the most flexible of these is that of Guo (2002), who introduced 
a functional mixed model allowing functional fixed and random-effect functions of arbitrary 
form, with the modelling done by using smoothing splines. All of these approaches are based 
on smoothing methods using global bandwidths and penalties, so they are not well suited for 
modelling irregular functional data that are characterized by spatial heterogeneity and local 
features like peaks. 

This type of functional data is frequently encountered in scientific research, e.g. in biomarker 
assessments on a spatial axis on colonic crypts (Grambsch eta!., 1995; Morris eta!., 2003a), in 
measurements of activity levels by using accelerometers (Gortmaker eta!., 1999) and mass spec•
trometry proteomics (Morris eta!., 2005). Our main focus in this paper is modelling functions 
of this type. In existing literature, data like these are successfully modelled in the single-function 
setting by using kernels with local bandwidths or splines with free knots or adaptive penal•
ties. However, it is not straightforward to generalize these approaches to the multiple-function 
setting, since the positions of the local features may differ across curves. It is possible for the 
mean functions to be spiky but the curve-to-curve deviations smooth, the mean functions to 
be smooth but the curve-to-curve deviations spiky, or for both the mean functions and the 
curve-to-curve deviations to be spiky. This requires flexible and adaptive modelling of both the 
mean and the covariance structure of the data. 

Wavelet regression is an alternative method that can effectively model spatially heteroge•
neous data in the single-function setting (e.g. Donoho and Johnstone (1995)). Morris eta!. 
(2003a) extended these ideas to a specific multiple-function setting-hierarchical functional 
data-which consists of functions observed in a strictly nested design. The fully Bayesian mod•
elling approach yielded adaptively regularized estimates of the mean functions in the model, 
estimates of random-effect functions and posterior samples which could be used for Bayesian 
inference. However, the method that was presented in Morris eta!. (2003a) has limitations that 
prevent its more general use. It can model only nested designs and hence cannot be used to 
model functional effects for continuous covariates, functional main and interaction effects for 
crossed factors, and cannot jointly model the effects of multiple co variates. Also, it cannot han•
dle other between-curve correlation structures, such as serial correlation that might occur in 
functions that are sampled sequentially over time. Further, Morris eta!. (2003a) made restrictive 
assumptions on the curve-to-curve variation that do not accommodate non-stationarities that 
are commonly encountered in these types of functional data, such as different variances and 
different degrees of smoothness at different locations in the curve-to-curve deviations (see Fig. 1 
in Section 4.2). Finally, Morris et a!. (2003a) did not provide general use code that could be 
used to analyse other data sets. 

In this paper, we develop a unified Bayesian wavelet-based approach for the much more gen•
eral functional mixed models framework. This framework accommodates any number of fixed 
and random-effect functions of arbitrary form, so it can be used for the broad range of mean 
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and between-curve correlation structures that are available in the mixed model setting. The 
random-effect distributions are allowed to vary over strata, allowing different groups of curves 
to differ with respect to both their mean functions and covariance surfaces. We also make much 
less restrictive assumptions on the form of the curve-to-curve variability that accommodate 
important types of non-stationarity and result in more adaptively regularized representations 
of the random-effect functions. As in Morris eta/. (2003a), we obtain posterior samples of all 
model quantities, which can be used to perform any desired Bayesian inference. We also pre•
sent a completely data-based method for selecting the regularization parameters of the method, 
which allows the procedure to be applied without any subjective prior elicitation, if desired, 
and these regularization parameters are allowed to differ across fixed effect functions. The addi•
tional flexibilities that we have built into the method that is presented in this paper has led to 
increased computational challenges, but we have tackled these and developed general use code 
for implementing the method that is sufficiently efficient to handle extremely large data sets. We 
make this code freely available on the Web (h ttp: I /biostat i stics .mdande r son org/ 
Morris/ papers  html), so researchers need not write their own code to implement our 
method. 

The remainder of the paper is organized as follows. In Section 2, we introduce wavelets and 
wavelet regression. In Section 3, we describe our functional mixed model framework. In Section 
4, we describe the wavelet-based functional mixed models methodology, presenting the wavelet 
space model, describing the covariance assumptions that we make and specifying prior distri•
butions. In Section 5, we describe the Markov chain Monte Carlo (MCMC) procedure that 
we use to obtain posterior samples of our model quantities and explain how we use these for 
inference. In Section 6, we apply the method to an example functional data set and, in Section 7, 
we present a discussion of the method. Technical details and derivations are in Appendix A. 

2. Wavelets and wavelet regression 

Wavelets are families of orthonormal basis functions that can be used to represent other func•
tions parsimoniously. For example, in L 2(91), an orthogonal wavelet basis is obtained by dilating 
and translating a mother wavelet '1/J as 

'1/Jjk(t) = 2j/2 'l j ; (2it- k) 

with j and k integers. A function g can then be represented by the wavelet series 

g(t) = 2:: djk '1/J jk(t), 
j.kE;:J 

with wavelet coefficients 

djk= J g(t)'I/ J jk(t)dt 
describing features of the function gat the spatial locations indexed by k and frequencies indexed 
by j . In this way, the wavelet decomposition provides a location and scale decomposition of the 
function. 

Let y = (YI, ... , YT) be a row vector containing values of a function that is taken at T equally 
spaced points. A fast algorithm, the discrete wavelet transform (DWT), exists for decomposing 
y into a set ofT wavelet and scaling coefficients (Mallat, 1989). This transform requires only 
0(1) operations when Tis a power of 2. The DWT can also be represented as matrix multipli•
cation by an orthogonal matrix W' = (W;, W~, 0 0 0, W~, V~) where J is the coarsest level of the 
transform. A DWT applied to the vector y of observations d = yW' decomposes the data into 

http://biostatistics.mdanderson.org/Morris.papers.html
http://biostatistics.mdanderson.org/Morris.papers.html
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sets of wavelet and scaling coefficients d= (d1,d2, •.• , d1 ,c1 ), where dj = yWj are the wavelet 
coefficients at level or scale j and c1 = yV~ are the scaling coefficients. For simplicity, we refer 
to the entire set of wavelet and scaling coefficients d as simply the wavelet coefficients. Each 
wavelet level j contains Kj coefficients. A similar algorithm for the inverse reconstruction, the 
inverse discrete wavelet transform (IDWT), also exists. 

Wavelet regression is a nonparametric regression technique that is useful for modelling func•
tional data that are spiky or otherwise characterized by local features. Suppose that we 
observe a response vector y, represented by a row vector of length T on an equally spaced 
grid t and assumed to be some unspecified function oft plus white noise, i.e. y = g(t) + e, with 
e ~ MVN (0, O"; Ir ). Wavelet regression follows three steps. First, the data are projected into 
the wavelet space by using the DWT. The corresponding wavelet space model is d = () + e*, 
where d =yW' are the empirical wavelet coefficients, 0= g(t) W' are the true function's wavelet 
coefficients and e:* =e:W' ~ MVN(O,CT;/r) is the noise in the wavelet space. 

Since the wavelet transform tends to distribute white noise equally among all wavelet coeffi•
cients but concentrates the signal on a small subset, most wavelet coefficients will tend to be 
small and to consist almost entirely of noise, with the remaining few wavelet coefficients being 
large in magnitude and containing primarily signal. Thus, we can denoise the signal and regu•
larize the observed function by taking the smallest wavelet coefficients and thresholding them 
or shrinking them strongly towards zero. This is done either by using thresholding rules (e.g. 
Donoho and Johnstone (1995)) or by placing a mean 0 shrinkage prior on the true wavelet 
coefficients (e.g. Abramovich eta!. (1998)). An effective prior in this context should give rise 
to a non-linear shrinkage profile, so that smaller coefficients are strongly shrunken whereas 
larger ones are left largely unaffected. This thresholding or shrinkage of the wavelet coefficients 
constitutes the second step of wavelet regression. Third, the thresholded or shrunken estimators 
of the true wavelet coefficients() are transformed back to the data space by using the IDWT, 
yielding a nonparametric estimator of the function. This procedure accomplishes adaptive reg•
ularization, meaning that the functional estimates are denoised or regularized in a way that 
tends to retain dominant local features in the function. With the exception of Morris et a!. 
(2003a), previous literature on wavelet regression for functional responses has focused on the 
single-function setting. 

3. Functional mixed model 

Here we introduce the functional mixed model framework on which we base our methodology. 
This framework represents an extension of Laird and Ware (1982) to functional data, where the 
forms of the fixed and random -effect functions are left completely unspecified. Other researchers 
(e.g. Shi eta!. (1996), Brumback and Rice (1998), Rice and Wu (2001), Wu and Zhang (2002), 
Guo (2002) and Wu and Liang (2004)) have worked with similar models, although none have 
made the same modelling assumptions that we describe here. 

Suppose that we observe a sample of N curves Yi(t), i = 1, ... , N, on a compact set T, which 
is assumed without a loss of generality to be [0,1]. Our functional mixed model is given by 

Y(t) =X B(t) + ZU(t) + E(t), (1) 

where Y(t) = (Y1 (t), ... , YN(t))' is a vector of observed functions, 'stacked' as rows. Here, B(t) = 
(B1 (t), ... , Bp(t))' is a vector of fixed effect functions with corresponding N x p design matrix 
X, U(t) = (U1 (t), ... , Um(t))' is a vector of random-effect functions with corresponding N x m 
design matrix Z and E(t) = (E1 (t), ... , EN(t))' is a vector of functions representing the residual 
error processes. 



430

Functional Mixed Models 183 

Definition 1. A set of N stacked functions, A(t), all defined on the same compact set T, is a 
realization from a multivariate Gaussian process with N x N between-row covariance matrix A 
and within-function covariance surface I: E TxT, denoted A(t) ~ M9P(A, I:), if the rows of 
A -l/2 A(t) are independent mean 0 Gaussian processes with covariance surface I:(t1, t2 ), where 
A -l/ 2 is the inverse matrix square root of A. This assumption implies that the covariance between 
A;(tl) and Ai'(t2) is given by Aii' L:(t1,t2). This distribution is the functional generalization of 
the matrix normal distribution (see Dawid (1981)). Note that a scalar identifiability condition 
must be set on either A or I:, since letting A= A/ c and I:= I:* c for some constant c > 0 yields 
the same likelihood. For example, we can set A 11 = I. 

The set of random-effect functions U(t) is assumed to be a realization from a multivari•
ate Gaussian process with m x m between-function covariance matrix P and within-function 
covariance surface Q(t1, t2), denoted by U(t) ~ M9P(P, Q). The residual errors are assumed 
to follow E(t) ~ M9P(R, S), which is independent ofU(t). 

This model is very general and includes many other models that are commonly used for func•
tional data as special cases. For example, it reduces to a simple linear mixed model when the 
functional effects are represented by parametric linear functions. When N =I, the model sim•
plifies to a form in which traditional smoothing spline and wavelet regression models for single 
functions can be represented. If we omit the random effects and assume a factorial structure on 
the fixed effects, we obtain functional analysis-of-variance models. Model (1) also includes the 
hierarchical functional model that was presented by Morris et al. (2003a) as a special case. 

This proposed model is very flexible. The fixed effects can be mean functions, functional main 
effects, functional interactions, functional linear coefficients for continuous covariates, interac•
tions of functional coefficients with other effects or any combination of these. The design matrix 
Z and between-curve correlation matrices P and R can be chosen to accommodate a myriad 
of different covariance structures between curves that may be suggested by the experimental 
design. These include simple random-effects, in which case P= 1, as well as structures for func•
tional data from nested designs, split-plot designs, subsampling designs and designs involving 
repeated functions over time. The random-effect portion of the model may be partitioned into 

H 
ZU(t)= I; Zh Vh(t) 

h=l 

with Uh(t) ~ M9P(Ph, Qh), e.g. to allow multiple hierarchical levels of random effects or to 
allow different random-effects distributions for different strata. 

This model is similar to the functional mixed model in Guo (2002), with a couple of key 
differences. Guo (2002) assumed independent random-effect functions ( P = R = 1 in our frame•
work), whereas our model, by introducing P and R, can accommodate correlation across the 
functions. Also, Guo (2002) assumed a structure on Q that is different from what we do here. For 
each level of random effects h, Guo assumed that Qh =Lh +L:/A.h, where Lh =a~M'DM is the 
covariance that is induced by random intercept and linear terms whose design matrix is M, D is 
a structured 2 x 2 covariance matrix (which was assumed diagonal in Guo's example) and a~ is 
a variance component that is estimated from the data. The parameter >..h is a scalar smoothing 
parameter that is estimated from the data, and the correlation matrix I: is fixed on the basis of 
the reproducing kernel for the chosen spline basis. Our assumptions on Q are described later in 
Section 4.2. 

Of course, we cannot directly fit model (1 ), since in practice we observe only samples of the 
continuous curves on some discrete grid. A discrete version of this model is given below, assum•
ing that all observed functions are sampled on a common equally spaced grid t = (tJ ... tr )'. 
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Recall that, by our definition of functional data (sampled on a very fine grid), this assumption is 
not especially restrictive, since, if the grid is sufficiently fine, interpolation can be used to obtain 
a common grid without substantively changing the observed data. The model is 

Y=XB+ZU+E, (2) 

where Y is an N x T matrix of observed curves on the grid t, B is a p x T matrix of fixed effects, 
U is an m x T matrix of random effects and E is an N x T matrix of residual errors. As defined 
above, X is an N x p matrix and Z is an N x m matrix, and the two are the design matrices for 
the fixed and random-effect functions respectively. Following the notation ofDawid (1981), U 
follows a matrix normal distribution with m x m between-row covariance matrix P and T x T 
between-column covariance matrix Q, which we denote by U ~ MN(P, Q). Another way to 
represent this structure is to say that vec(U') ~ MVN(O, P® Q), where vec(A) is the vectorized 
version of a matrix A obtained by stacking the columns and '®' is the Kronecker product, 
both defined as in Harville (1997). This assumption implies that the covariance between U;j and 
Ui'j' is Pii'Qjj'· The residual error matrix E is assumed to be MN(R, S). The within-random•
effect curve covariance surface Q and residual error covariance surface S are T x T covariance 
matrices that are discrete approximations of the corresponding covariance surfaces in TxT. 

4. Wavelet-based functional mixed model 

Having presented a conceptual functional mixed model for correlated functional data, we now 
describe our nonparametric wavelet-based approach to fit it. Our approach consists of three 
basic steps. 

(a) Compute the empirical wavelet coefficients for each observed curve, which we think of as 
projecting the observed curves from the data space to the wavelet space. 

(b) Use Markov chain Monte Carlo methods to obtain posterior samples for quantities in 
the wavelet space version of the functional mixed model. Projecting to the wavelet space 
allows modelling to be done in a more parsimonious and computationally efficient man•
ner and causes regularization to be performed as a natural consequence of the modelling 
through shrinkage priors placed on the fixed effects portion of the model. 

(c) Transform the wavelet space quantities back to the data space, yielding posterior sam•
ples of all quantities in the data space model, which can be used to perform Bayesian 
estimation, inference and prediction. 

The first step involves decomposing each observed function, sampled on an equally spaced 
grid of size T, into a set ofT wavelet coefficients. This projection from the data space into the 
wavelet space is done by applying the DWT to each row of Y and can be conceptualized as 
the right matrix multiplication D = YW', where W is the orthogonal DWT matrix. The N x T 
matrix D contains the empirical wavelet coefficients for all observed curves, with row i contain•
ing wavelet and scaling coefficients for curve i and the columns double indexed by the scale j 
and location k, with j = 1, ... , J and k = 1, ... , Kj. 

4. 1. Wavelet space model 
Right matrix multiplication of both sides of model (2) by the DWT matrix W' yields a wavelet 
space version of the model: 

D =X B* + ZU* + E*, (3) 
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where X and Z are the design matrices as in model (2), B* = BW' is a p x T matrix whose rows 
contain the wavelet coefficients for the p fixed effect functions on the grid, U* = UW' is an 
m x T matrix whose rows contain the wavelet coefficients for them random-effect functions and 
E* = EW' is an N x T matrix consisting of the residual errors in the wavelet space. Like D, the 
columns of B*, U* and E* are all double indexed by the wavelet coefficients' scale j and location 
k. The linearity of the DWT makes it easy to compute the induced distributional assumptions 
of the random matrices in the wavelet space, U* ~ MN(P, Q*) and E* ~ MN(R, S*), where 
Q* = WQW' and S* =WSW'. Note that the between-row covariance structure is retained when 
projecting into the wavelet space; only the column covariance changes. 

4.2. Covariance assumptions 
Before we fit model (3), it is necessary to specify some structure on the various covariance matri•
ces since their large dimensions make it infeasible to estimate them in a completely unstructured 
fashion. We model P and R by using parametrically structured covariance matrices as in linear 
mixed models, which can be chosen on the basis of either the experimental design or an empiri•
cal investigation of the data. The vectors of the covariance parameters indexing matrices P and 
Rare denoted by !lp and nR respectively. 

For Q and S, we propose a parsimonious structure in the wavelet space that yields a flexible 
class of covariance surfaces in the data space. As is frequently done in wavelet regression, we 
assume that the wavelet coefficients within a given curve are independent across j and k, making 
Q* and S* diagonal. The heuristic justification that is frequently given for this assumption is 
the whitening property of the wavelet transform, which is discussed in Johnstone and Silverman 
(1997). The diagonal elements are allowed to vary across both wavelet scales j and locations k, 
yielding Q* = diag(qjk) and S* = diag(sjk). For convenience, we denote these sets of variance 
components by nQ and ns respectively. 

This structure requires only T parameters instead of the T(T + 1)/2 parameters that would 
be required to estimate each of these matrices in an unstructured fashion, yet it is sufficiently 
flexible to emulate a wide range of covariance structures that are commonly encountered in 
functional data. For example, when T = 256, only 256 parameters are required instead of the 
32896 for the unstructured representation. Independence in the wavelet space does not imply 
independence in the data space unless the variance components are identical across all wavelet 
scales j and locations k, since heterogeneity in variances across wavelet coefficients at different 
levels induces serial dependences in the data. In general, larger variances at low frequency scales 
correspond to stronger serial correlations, and thus smoother functions. 

Further, since the variance components are free to vary across both scale j and location 
k, this structure accommodates non-stationarity, e.g. allowing the curve-to-curve variances 
and the smoothness in the curve-to-curve deviations both to vary overt. These types of non•
stationarities are frequently encountered in complex functional data but cannot be accommo•
dated when the variance components are allowed to vary only over j (see Fig. 1). It is typical 
in existing wavelet regression literature for the wavelet space variance components to vary over 
j , but not k (e.g. Abramovich et al. (1998), Morris et al. (2003a), Abramovich and Angelini 
(2003) and Antoniadis and Sapatinas (2004)). This may be a necessary practical restriction in 
the single-function case, but not in the multiple-function case, since the replicate functions allow 
the variance components to be estimable even when they also vary by k. To our knowledge, this 
is the first paper allowing these variance components to depend on both j and k. 

To illustrate the flexibility of these assumptions, we randomly generated 200 realizations 
from a Gaussian process with mean p(t) and covariance S(t1, t2 ) on an equally spaced grid of 
length 256 on (0, 1). From top to bottom, Fig. !(a) contains the true mean function p(t), the true 
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variance function v(t) = diag(S) and the true autocorrelation surface p8 (t1, t2 ) = v- 112 sv-112 � 
Figs !(b) and l(c) contain the posterior mean estimates of these quantities by using wavelet•
based methods. Both assume independence across wavelet coefficients, but Fig. l(b) allows the 
wavelet space variance components to vary across scale j and location k, and Fig. l(c) allows 
them to vary across j only, as assumed in Morris eta!. (2003a) and other work involving wave•
let regression. The framework that is used in Fig. l(b) is sufficiently flexible to pick up on the 
non-stationary features of S, whereas Fig. l(c) is not. Specifically, it can model the increasing 
variance in t, the extra variance near the peak at 0.5, the different degrees of smoothness in the 
region (0,0.4) and (0.6,1) and the extra autocorrelation from the peak at 0.5. Also note that it 
appears to have done a marginally better job of denoising the estimate of the mean function. 
These same principles apply to the covariance across random-effect functions. 

Another advantage ofthis independence assumption is that it allows us to fit the wavelet space 
model (3) one column (wavelet coefficient) at a time. This greatly simplifies the computational 
procedure and allows much larger data sets to be fitted by using this method. 

4.3. Adaptive regularization using a multiple-shrinkage prior 
To obtain adaptively regularized representations ofthe fixed effect functions B;(t), as is standard 
in Bayesian implementations of wavelet regression, we place a mixture prior on B;jk, the wavelet 
coefficient at scale j and location k for fixed effect i: 

B;jk = !;jk N(O, Tijk)+ 0-!;jk)Io, ( 4) 

10k = Bernoulli(7r;j), 

where Io is a point mass at zero and 1;\ is an indicator of whether wavelet coefficient ( j,k) 
is 'important' for representing the signa{ for fixed effect function i. The hyperparameter 1I'ij is 
the prior probability that a wavelet coefficient at wavelet scale j is important for representing 
the fixed effect function i, and Tijk is the prior variance of any important wavelet coefficient at 
location k and level j for fixed effect i. 

The quantities 1I'ij and Tijk are regularization parameters. For example, smaller 1I'ij will result 
in more attenuation in the features of fixed effect function i occurring at a frequency indicated 
by scale j . By indexing these parameters by i and j , we allow different degrees of regularization 
for different fixed effect functions and at different frequencies. See Morris et a!. (2003a) for a 
discussion of the intuition behind how this prior leads to adaptive regularization. It is possible to 
elicit values for these regularization parameters, taking into account some of the considerations 
that were discussed in Morris eta!. (2003a) or Abramovich eta!. (1998), or to estimate them 
from the data by using an empirical Bayes procedure. Section 4.4 describes one such procedure. 

In this modelling framework, the random-effect functions U;(t) are also regularized as a result 
of the mean 0 Gaussian distribution on their wavelet coefficients. Morris eta!. (2003b) described 
how the regularization of the random-effect functions in their wavelet-based hierarchical func•
tional model was governed by the relative sizes of corresponding variance components and 
residual errors. The same principles also apply here, although here our regularization is more 
adaptive than in Morris et a!. (2003a) since we allow the wavelet space variance components 
for both the random effects and the residual errors to depend on scale j and location k. To 
explain, wavelet coefficients that are indexed by (j, k) that tend to be important for representing 
even a small number of random-effect functions will have relatively large subject level variance 
components qjk· These large variances will lead to less shrinkage of these coefficients, and thus 
the features that are represented by these coefficients will tend to be preserved in the regularized 
random-effect function estimates. Wavelet coefficients that are unimportant for representing 
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the random-effect functions will be close to 0, leading to small variance components, strong 
shrinkage and regularization of the features corresponding to these coefficients. 

This regularization is sufficiently adaptive to model very spiky random-effect functions, 
as demonstrated in supplementary material that is available at  

. A major advantage of our approach is that the 
random-effect functions' regularization parameters are simply the variance components of the 
model, which are directly estimated from the data, and thus need not be arbitrarily chosen. Fur•
ther, in our Bayesian approach, the uncertainty of their estimation is automatically propagated 
throughout any inference that is done. 
It may be possible to obtain even more adaptively randomized random-effect functions by 

assuming a mixture prior like equation (4) on the wavelet coefficients for the random-effect 
functions. However, by doing so, we would lose some of the coherency that is evident in mod•
els (1)-(3), since the random-effect functions would no longer be Gaussian in the data space. 
Further, we would not be able to marginalize over the random-effect functions in our model 
fitting (see Section 5), which would increase the computational burden for implementing the 
method. Since we are satisfied with the degree of adaptiveness that is afforded by our Gaussian 
assumptions with variances depending on j and k, we do not further pursue this idea in this 
paper. 

4.4. Empirical Bayes method for selecting shrinkage hyperparameters 

Here we present a data-based procedure for determining the shrinkage hyperparameters for 
the fixed effect functions in the wavelet-based functional mixed model. We estimate these 
hyperparameters by using maximum likelihood while conditioning on consistent estimates of 
the variance components in the model. This method is an extension of the work of Clyde and 
George (2000), which they later adapted to the hierarchical functional framework (Clyde and 
George, 2003). 

First we introduce some notation. Consider the quantities 

.B~k.MLE = {x;(L:jk)- 1 X;} - 1 x;(L: jk)- 1(djk- X(-iJ.B~-iJjk,MLE), (5) 

(6) 

where X; is the ith column of the design matrix and X(-i) is the design matrix with column i 
omitted, and 

L:jk=ZP(f!p)Z'*qjk+R(f!R)*sjk (7) 

is the marginal variance of d jk· Note that .B~k.MLE is the maximum likelihood estimator (MLE) 
of Bijk conditional on the covariance parameters and the other fixed effects and ,JV;jk is the 
stanaard error of the MLE. Taking their ratio yields 

(8) 

which can be thought of as a standardized score for the wavelet coefficient at scale j and location 
k from fixed effect function i. 

We assume that Tijk = Vijk Y;j for some parameters T;j, allowing full flexibility in these regu•
larization parameters across different scales, but making the ratio of regularization parameters 
within a given scale proportional to the size of the variance of the MLE for that coefficient. This 
allows us to estimate Y;j from the data. Assuming knowledge of Vijk, it can be shown that the 

http://biostatistics.mdanderson.org /Morris/papers.html
http://biostatistics.mdanderson.org /Morris/papers.html
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likelihood for Y;j and 1rij can be represented by 

l(Y;j, 1rij) oc(l + Y;j)-E:~oijk12 exp{-1 t (/jk 1'tjdO + Y;j)} 
k=l 

EKj * K·-EKj "' 
X (7r;j) k~!'Yij7<(1-1r;j) J k~!'Yijk. (9) 

On the basis of this likelihood, local maximum likelihood estimates of 1rij and Y;j can be 
obtained by iterating through the following steps until convergence is achieved: 

A* _ oijk . 
lijk-I+O;jk' 

A - ir;j A -1/2 (I 2 Y;j )· 
Oijk--1 A .. <I+Y;j) exp -2 (ijk--A- , 

-1r,1 I+Yij 

Y;j =max(o, t ~'tjkc&kj t ~'tjk -1); 
k=l k=l 

K· A* 
A ~ lijk 
'lrjj= L.., -. 

k=l Kj 

This procedure can be applied while conditioning on consistent estimators of the variance com•
ponents, e.g. method-of-moment estimators or MLEs, giving V;jk of Vijk· Then the empirical 
Bayes estimates of 'lrij and Tijk are given by ir;j and V;jk * Yij respectively. 

5. Posterior sampling by using Markov chain Monte Carlo methods 

After specifying diffuse proper priors for the variance components, we are left with a fully spec•
ified Bayesian model for the functional data. Since the posterior distributions of parameters are 
not available in closed form, we use MCMC sampling to obtain posterior samples for all the 
parameters in model (3). We work with the marginalized likelihood where the random effects 
have been integrated out, which improves the mixing properties of the sampler over a naive 
Gibbs sampler. We alternate between sampling the fixed effects B* and the covariance param•
eters 0; then we later sample the random-effects U* whenever they are of interest. Following 
are the details of the sampling procedure that we use. 

(a) For each wavelet coefficient ( j,k), sample fixed effect i from f<B'tkldjk, B(-i)jk• 0), where 
B(_i)jk is the set of all fixed effects coefficients at scale j and location k except the ith. As 
shown in Appendix A, this distribution is a mixture of a point mass at 0 and a normal 
distribution, with the normal mixture proportion a.ijk and the mean and variances of the 
normal J.lijk and Vijk respectively given by 

a.ijk =Pr(/ijk = lldjk, B(-i)jb 0) 

= Oijk/( Oijk + 1), 

Oijk = 1rij / (1- 1rij)BFijk, 

BFijk =(I +Tijk/Vijk)-112 exp{1(fjk(l + Vijk/Tijk)}, 

J.lijk = Bijk,MLE(l + Vijk/Tijk)- 1' 

Vjjk = Vijk(l + Vijk/Tijk)- 1' 

(10) 

(II) 

(12) 

(13) 
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where .fJ~k,MLE, V;jk, I: jk and (ijk are defined as in equations (5)-(8) above. Oijk and 
BFijk have an interesting interpretation. They are the posterior odds and Bayes factor 
respectively for deciding whether wavelet coefficient (j, k) is important for representing 
function i, conditional on the covariance parameters n and other fixed effects. The pos•
terior means of the Bijk will be Bayesian model-averaged estimators that have averaged 
over models where Bijk is either 0 or not. Alternatively, a soft thresholding approach 
could be used whereby Bijk =0 if the estimated posterior probability that JBijkl > 0 (i.e. 
'Yijk =I) from the MCMC algorithm is less than some threshold. 

(b) For each wavelet coefficient (j, k), sample the elements qjk and sjk offlQ and fls by using 
a random-walk Metropolis-Hastings step. The objective function is 

f(qjk,sjkldjk. Bjk, flp, flR) ex JL: jkl- 112 exp{ -~(djk- XBjk)'L:]k1(djk- XBjk)} f(qjk,sjk). 

We use an independent Gaussian density, truncated at zero and centred at the previ•
ous parameter values, as the proposal for each parameter. We automatically estimate 
the proposal variance from the data by using estimates of the variance of the maximum 
likelihood estimates. Wolfinger et a!. (1994) provided details of how to compute maxi•
mum likelihood estimates and their standard errors in linear mixed models. The details 
of the Metropolis-Hastings procedure are available at  

(c) Sample the between-curve covariance parameters flp and nR by using a single random•
walk Metropolis-Hastings step. If the random-effects and residual errors are assumed to 
be independent and homoscedastic across samples ( P = I and R = I), then there are no 
parameters to update in this step. The assumption of independence between the wavelet 
coefficients allows the Metropolis-Hastings objective function to factor into the product 
of independent pieces for each wavelet coefficient: 

f(flp, flRID, B*, nQ, fls) ex II JL: jkl- 112 exp{ -~(djk- XBjk)'L:ji/ (djk- XBjk)} f(flp, flR), 
j,k 

where I: jk is given by equation (7) above. The details of implementation are similar to 
those for the previous step. Again, we use an independent truncated Gaussian distribu•
tion with mean at the previous parameter values for the proposal distribution, with the 
proposal variance automatically determined from the data. 

(d) SaJ?pl~ the ~and om effects ujk ~or e~ch _(j, k) fro~ their full ':'nditional f(ulk Jd jk, !1k' fl), 
whiChis_eas!lysee~ to beGaussiandistnbuted with mean {1lt j / + (qjk * P)- } - 11lt jk1uNs,jk 
and vanance {1lt jk1 + (qjk * P)-1} - 1, where 1It jk = { Z'(sjk * R)- 1 Z .t - 1 and 

DNS,jk = {Z'(sjk * R)- 1 zr1 Z'(sjk * R)- 1(djk- XBjk). 

If the random effects are not desired, we can omit this step and thus speed up the MCMC 
algorithm, since the previous steps work with the marginalized likelihood. 

Code for applying this method is available at http: 1 /biostatistics .mdanderson. 
org/Morris/papers.html. 

5.1. Bayesian inference and prediction 
The MCMC algorithm that was described above yields posterior samples for all quantities in 
the wavelet space mixed model (3). These posterior samples can then be projected back into 
the data space by using the IDWT, yielding posterior samples of the quantities in model (2). 
Specifically, posterior samples for each fixed effect function B;(t) on the grid tare obtained by 

http://biostatistics.mdanderson.org/Morris/papers.html
http://biostatistics.mdanderson.org/Morris/papers.html
http://biostatistics.mdanderson.org/Morris/papers.html
http://biostatistics.mdanderson.org/Morris/papers.html
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applying the IDWT to each posterior sample of the corresponding vector of wavelet coefficients 
B[ = (B~ 1, ••• , BfJK), and similarly for the random-effect functions. Further, posterior sam­
ples of the covariance matrices Q and S are obtained by applying the two-dimensional IDWT 
to the posterior samples of the diagonal matrices Q* and S*, following Vannucci and Corradi 
(1999). 

Given the posterior samples, we can then construct any Bayesian estimators and perform any 
desired Bayesian inference. See Gelman et a!. (2004) for an overview of Bayesian analysis and 
inference, and a description of the types of inference that are possible given posterior samples. 
For example, we can construct pointwise credible intervals for fixed effect functions or compute 
posterior probabilities for any hypotheses of interest. These can involve any transformation or 
combination of the parameters in the model. Since we have posterior samples for entire func­
tions, marginal inference can be done for single locations on the function or joint inference can 
be done over regions of the function. It is also straightforward to compute posterior predictive 
distributions f(Y* [Y) for a future observed curve Y* given data Y, since 

f(Y*[Y)= J f(Y*[B,U,O)f(B,U,O[Y)dBdUdfl, 

which can be estimated via Monte Carlo integration using the posterior samples as a-1 x 
'E9 f(Y* [B(g), u<g), f!(Y)), where the superscript (g) indicates the posterior sample from iteration 
g of the MCMC algorithm. This inference and prediction appropriately account for all sources 
of variation in the model. For example, they do not condition on estimates of the variance 
components as if they were known but automatically propagate the uncertainty of their estima­
tion throughout inference. This is one of the advantages of using a unified Bayesian modelling 
approach. 

6. Example 

Nutrition researchers at Texas A&M University conducted a rat carcinogenesis experiment 
to investigate whether the type of dietary fat (fish-oil or corn oil) plays a role in modulating 
important colon cancer biomarkers during the initiation stage of carcinogenesis, the first hours 
after exposure to a carcinogen. In this study, they fed 30 rats one of the two diets for 14 days, 
exposed them to a carcinogen and then sacrificed them at one of five times after exposure to 
the carcinogen (0, 3, 6, 9 or 12 h). They removed and dissected each rat's colon and then used 
immunohistochemical staining to obtain measurements of various cancer biomarkers, including 
the deoxyribonucleic acid (DNA) adduct level, a measurement of the amount of DNA damage 
occurring from the exposure to the carcinogen, 0 6-methylguanine-DNA methyltransferase 
(MGMT), a DNA repair enzyme that repairs this carcinogen-induced damage, and apopto­
sis, the selective elimination of damaged cells. 

They quantified each biomarker for a separate set of roughly 25 crypts in the distal region 
of each rat's colon. Crypts are finger-like structures extending into the colon wall in which all 
colon cells reside. A cell's relative depth within its crypt is related to its age and stage in the 
cell cycle, so it is an important factor to consider when assessing biomarker modulation. Using 
image analysis software, they quantified the MGMT levels on a fine grid along the side of each 
selected crypt, resulting in an observed curve for each crypt containing the biomarker quanti­
fications as a function of relative depth within the crypt. The relative depth in the crypt was 
coded such that an observation at the base of the crypt was relative cell position 0, whereas 
an observation at the lumenal surface was relative cell position 1. Fig. 2 contains the observed 
curves from two crypts from two rats. Note that these functions appear very irregular, with 
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Fig. 2. Sample cu rves of MGMT intensity leve ls as a function of relative depth within the crypts: (a) fish-o il 
d iet 12 h, rat 1, crypt 1; (b) fish-oil diet 12 h, rat 1, crypt 2 ; (c) corn o il diet 12 h, rat 1, crypt 1; (d) corn oil diet 
12 h, rat 1, crypt 2 

many spikes presumably corresponding to local areas in the crypt with high biomarker levels 
(Morris e1 a/., 2003a), e.g. the nuclei of the cells. The full data set consists of 738 such observed 
curves, each sampled on an equally spaced 256-unit grid. 

The MGMT data were analysed by Morris e1 a/. (2003a), and it was found that corn-oil-fed 
rats had lower MGMT expression near the lumenal surface at 12 h after exposure to the car­
cinogen than did fish -oil-fed rats. Our goal here is to relate the levels of the other biomarkers 
to the MGMT expression levels, and to see whether this 12 h-effect remains after adjusting for 
these other biomarkers as covariates. For each rat, we obtained measurements of the continu­
ous co variates mean DNA adduct level and apoptotic index (the percentage of cells undergoing 
apoptosis) across its crypts in the upper third compartment, i.e. the compartment that is closest 
to the lumenal surface. We would like to assess whether there is a relationship between the 
amount of D A damage and/or the amount of apoptosis near the lumenal surface of the crypts 
and the levels of MGMT, and whether these relationships depend on relative cell position 
and/or diet. These covariates were not considered in Morris et at. (2003a) and could not be 
accommodated by their hierarchical functional model. 

Our design matrix X had p = 14 columns, with the first 10 indicating the rat's diet by time 
group. Columns II and 12 contained the mean D A adduct level in the upper third of the crypt 
fo r rats fed the fish- and corn oil diets respectively. These columns were standardized to have 
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mean 0 and standard deviation 1. Columns 13 and 14 contained the apoptotic index in the upper 
third of the crypt for rats fed the fish- and com oil diets respectively. To model the correlation 
between crypts from the same rat, we included random-effect functions for each rat. The resid•
ual errors represented the sum of the crypt-to-crypt variability and any within-function noise. 
We assumed that rats and crypts within rats were independent and identically distributed, so 
we let P = R =I. We used the Daubechies wavelet with eight vanishing moments (Daubechies, 
1992) at J = 8 levels. Other wavelet bases yielded substantively equivalent results. After a burn•
in of 1000, we ran the MCMC algorithm for 20000 iterations, keeping every 10. The Metrop•
olis-Hastings acceptance probabilities for the variance components were all between 0.12 
and 0.39. Trace plots of the model parameters are available at http: I /biostatistics. 
mdanderson. org /Morris/papers. html and reveal thattheMCMCalgorithmconverged 
and mixed very well. 

Fig. 3 contains the posterior mean functional coefficients corresponding to the DNA adduct 
level and apoptotic index covariates for fish- and corn-oil-fed rats. The estimate for the DNA 
adduct level top coefficient was negative near the lumenal surface for rats that were fed fish-oil 
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Fig. 3. MGMT results: posterior mean and 95% pointwise posterior credible intervals for functional linear 
coefficients (for the corresponding continuous covariates in a functional mixed model that also includes cat�
egorical effects for the 10 diet-time combinations and random-effect functions for each rat): (a) DNA adduct 
level, top third of the crypt, fish-oil diet; (b) DNA adduct level, top third of the crypt, corn oil diet; (c) apoptotic 
index, top third of the crypt, fish-oil diet; (d) apoptotic index, top third of the crypt, corn oil diet 

http://biostatistics.mdanderson.org/Morris/papers.html
http://biostatistics.mdanderson.org/Morris/papers.html
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or com oil, meaning that animals with high levels of DNA damage near the lumenal surface 
tended also to have lower levels of MGMT near the lumenal surface. The posterior probabilities 
that the coefficient at the top of the crypt was less than 0 were 0.947 and 0.989 for fish- and 
com oil diets respectively. This negative relationship extended to the middle of the crypts for 
com-oil-fed rats, but not for fish-oil-fed rats, for whom the estimate was positive. The posterior 
probability that the fish-oil coefficient at the middle of the crypt (relative cell position 0.5) was 
greater than that for the corn oil coefficient was 0.9965. 

For fish-oil-fed rats, the apoptotic index top coefficient was positive throughout nearly the 
entire crypt, with the coefficient increasing in a roughly linear fashion moving up the crypt. The 
posterior probability that this coefficient was greater than 0 at the lumenal surface for fish- and 
com-oil-fed rats was greater than 0.9995 and 0.612 respectively, and the posterior probability 
that the coefficient for fish-oil-fed rats was greater than that for corn-oil-fed rats was 0.9815. 
The interpretation of these results is that the fish-oil-fed animals who had a large amount of 
apoptosis near their lumenal surface also had high levels of the DNA repair enzyme MGMT 
near their lumenal surface, meaning that the two major mechanisms for dealing with DNA 
damage were correlated. This relationship was not so strong for corn-oil-fed animals. 

With DNA adduct level and apoptotic index and their interactions with diet included in the 
model, the difference between the fish-oil and corn oil diets at 12 h near the lumenal surface 
that was found in Morris eta/. (2003a) was no longer evident (the posterior probability that the 
effect for fish-oil was greater than that for corn oil was only 0.674, whereas it was greater than 
0.9995 without co variates in the model). One interpretation of this result is that the differences in 
MGMT between diets at the lumenal surface may be explained by the previously observed DNA 
adduct level and apoptosis effects (Hong et a/., 2000), whereby rats on fish-oil diets had lower 
DNA adduct levels and higher apoptotic rates at the lumen surface than rats fed corn oil diets. 

7. Discussion 

Functional data are increasingly encountered in scientific studies, and there is a need for sys­
tematic methods for analysing these complex and large data sets and extracting the meaningful 
information that is contained inside them. In this paper, we have introduced a unified Bayesian 
wavelet-based modelling approach for functional data that is a vast extension over the hierar­
chical functional method that was introduced by Morris et a/. (2003a). Although applied to 
just one example here, our approach is sufficiently flexible to be applied to a very broad range 
of functional data sets and to address a large number of potential research questions. If we 
substitute higher dimensional wavelet transforms for the one-dimensional transforms that are 
described here, our methodology is immediately extendable to higher dimensional functional 
data, e.g. image data. 

The underlying functional mixed models framework is very flexible, allowing the same wide 
range of mean and covariance structures as in mixed effects models, while allowing functional 
fixed and random effects of unspecified form. We perform our modelling in the wavelet space, 
which provides a natural mechanism for adaptive regularization using mixture prior distribu­
tions, and also allows us to model the high dimensional covariance matrices Q and S describing 
the form ofthe curve-to-curve deviations in a parsimonious manner. As in much work in wavelet 
regression, we assume independence in the wavelet space, but unlike existing work in wavelet 
regression we allow the wavelet space variance components to vary across both scale j and 
location k. This provides a large amount of flexibility, accommodating various types of non­
stationarity that is commonly encountered in functional data, including heteroscedasticity and 
varying degrees of smoothness at different locations in the curve-to-curve deviations; see Fig. I. 



442

Functional Mixed Models 195 

This flexibility allows us to model many different types of functional data and also results in 
more adaptive regularization in the representations of the fixed and random-effect functions. 
This approach can effectively accommodate spiky fixed effect functions and/or spiky random­
effect functions. In our example, the fixed effect and rat level random-effect functions were 
smooth, but the crypt level deviations were spiky. 

After running an MCMC algorithm, we obtain posterior samples of the fixed and random­
effect functions and various covariance matrices in the model, which can be used to perform 
any desired Bayesian estimation, inference or prediction. Credible intervals can be constructed 
and posterior probabilities of hypotheses can be computed for any transformation or function 
of the model parameters, e.g. averaging over different intervals or looking at specific locations 
of interest. Also, predictive densities for future curves can be estimated. Although our method 
is Bayesian, the only informative priors that we use in our analyses involve the shrinkage hyper­
parameters, which can be estimated from the data by using the empirical Bayes method that we 
describe, if desired. Another advantage of the Bayesian approach is that there is a natural mech­
anism for handling measurement error or missingness, both in covariates and in the functional 
responses, since the missing or error prone data can simply be treated as parameters that are 
updated from their complete conditional distributions as part of the MCMC algorithm. Also, 
the structure of our framework makes it possible to consider functional hypothesis testing using 
Bayes factors or mixture priors with positive probabilities placed on zero functions. These ideas 
require further development, however, so are beyond the scope of this paper and are topics of 
future investigation. 

There is some recent and on-going related work on functional analysis of variance using wave­
lets. Unlike here, the major focus in these papers is on developing frequentist functional hypoth­
esis tests. Fan and Lin (1998) presented methods for functional testing using wavelets, although 
their framework did not include random effects. Abramovich and Angelini (2003) allowed 
functional random effects but only dealt with one-way analysis-of-variance mean structures. 
Antoniadis and Sa patinas (2004) also allowed functional random effects, and they described a 
functional mixed modelling framework that is similar to model (I), but they did not accommo­
date correlated random-effect functions. 

There are other important differences between our modelling framework and those which 
were used in Fan and Lin (1998), Abramovich and Angelini (2003) and Antoniadis and 
Sapatinas (2004). Whereas we let the wavelet space variance components depend on scale j 
and location k, they only allowed them to depend on j , which places strong restrictions on 
functional forms of the between-curve deviations (see Fig. 1), which we expect should affect 
any subsequent inference. Also, since we specify diffuse proper priors for the wavelet space 
variance components for the random effects and update them within the MCMC algorithm, 
we estimate these parameters from the data and propagate the uncertainty of their estimation 
throughout subsequent inference. These variance components both model the curve-to-curve 
variability and serve as regularization parameters for the random-effect functions. In Antonia­
dis and Sapatinas (2004), the user simply fixes the relative sizes of these variance components 
across different wavelet scales j and then only estimates a single scalar variance component 
from the data. Abramovich and Angelini (2003) described a data-based method for estimating 
them, but they condition on these estimates as though they were known, and thus the inference 
that they describe does not account for their estimation error. 

Antoniadis and Sapatinas (2004) and Abramovich and Angelini (2003) focused on functional 
hypothesis testing for fixed effect functions and, in Antoniadis and Sapatinas (2004), random­
effect functions. This is clearly of interest in many contexts but is not the only relevant question 
with functional data. For example, the primary interest in many applications is not simply test-
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ing whether the function is identically 0, but rather identifying specific regions or features of 
the curves that differ from zero. No inferential procedures for these questions are described by 
them. One example is mass spectrometry proteomics, where the functions are characterized by 
many peaks corresponding to different proteins in the sample. The primary goal is not simply 
to decide whether there are any systematic differences in the mean curves for different groups 
of patients, but rather to identify which regions of the curves demonstrate differences. These 
specific regions can subsequently be mapped to individual proteins that may serve as useful 
biomarkers in medical applications. 

We have developed easy-to-use code for implementing our method that we make freely 
available via http: I /biostatistics .mdanderson. erg/Morris/papers .html. The 
minimum information that a user needs to supply includes a matrix of observed functions Y, fixed 
and random-design matrices X and Z, and a specification of the desired covariance structures 
and wavelet bases to use. Method-of-moments and generalized least squares starting values, 
vague proper priors on the variance components and empirical Bayes values for the hyper•
parameters are all automatically computed by the program and can be used, if desired. The 
program also contains an automatic, data-based method for determining the proposal vari•
ances that are necessary for the Metropolis-Hastings steps that are used to sample the large 
number of covariance parameters in the model. This method appears to work very well with 
none of the fine tuning that is normally required when implementing random-walk Metropolis•
Hastings algorithms. This feature is key in making our method practically implementable for 
high dimensional functional data. 
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Appendix A: Conditional distribution for fixed effects 

Here we show that the conditional distribution (B~k ldjt. 8~-i)jk• 0) is a mixture of a point mass at zero 
and a normal distribution, with normal mixing proportion aijk given by equation ( 10) and the mean and 
variances of the normal Jl-ijk and Vi jk given by equations (12) and (13) respectively. 

Recall that, after integrating the random effects out of model (3), we have djk ~ MVN(XBTt. ~jk) where 

~jk =ZP(O.p)Z' *q;k +R(O.R) u;k 

as defined in equation (7). The prior for B~k is given by equation (4), which is a mixture of an N(O, Tijk) 
distribution and a point mass at 0. with 'Y;jk the indicator for the normal component of the mixture. which 
itself has a Bernoulli(7rij) prior distribution. 

We can write 

http://biostatistics.mdanderson.org/Morris/papers.html
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= f(B~ki'Y;~< =I, dit. B~-iJik' Q) Pr('Y,~k =lid it. B~-iJik' Q) (14) 

+ f(B~khi~k =0, dit. B~-iJik• Q) Pr('Y,~k =Old it. B~-iJik• Q). (15) 

We shall first show that f(B~k I'Y;jk =I. dik· B(_i)ik• Q) in expression ( 14) is normal with mean Jl-iik and vari•
ance viik· Second, we shall show that Pr('Y;jk =lid it. B(_i)ik' Q) in expression (14) is equal to o:iik·lt is trivial 
to show that in expression (15) f(B~ki'Y;jk =0, dit. B(-i)ik' Q) = Io and Pr('Y~k =01dik• B(-i)ik' Q) =I -o:iik· 
First note that 

f(B~ki'Y;jk =I, dit. B~-i)ik' Q) <X f(dikiB~k· B~-i)ik' Q) f(B,~ki'Y;~k =I) 

<Xexp{ -~(d1-X;B~k)'~ji/(d1- X;B~k)} (16) 

xexp(-~B~i/Tijk), (17) 

where d1 = (dik- XHJB\*-i)ik) are the 'residuals' after conditioning on the other fixed effect parameters. 
Multiplying expression ( 6 J by the constant term 

exp[ -~ tr{ (Xi~Ji/ X;)(Xi~]k1 X,)-1 (Xi~]k1 X;)(Xi~]k1 X,)-1} ], 

reorganizing the terms within the trace and simplifying yields 

exp[- ~ (B~k- B~k.MLE)'V,]i (B~k- B~<.MLE) } . 
where 

B~k.MLE =(Xi~;;/ X,)- [ x:~]k[drk 

(18) 

and V.ik = (Xi~]k1 X;)-1, as defined in equations (5) and (6). Combining the terms in expressions (18) 
and (17) and completing the square leaves us with exp{- ~ (B~k - ftijk) 2 fviik}, which is the kernel of an 
N(Jtiit. v;ik) distribution, thus proving the first part. 

For the second part, note that Pr('Y;jk =lid it. B(_i)ik' Q) can be written as 0;1,j(O;ik +I), where O;ik 
is the conditional odds of 'Y;jk = I versus 'Y;jk = 0, which can be written as a product of the prior odds 
7rii/(i-7r;j) and the conditional Bayes factor 

f(diki'Y;jk =I, B(_iJik' Q) 
BF;ik= d * * . 

f( ik I'Yiik = 0, B<-iJik' Q) 
(19) 

All that needs to be done is to show that BF;ik simplifies into expression (II). 
Consider the numerator of equation (19), which is 

f(djkhi~k =I, B~-i)jk•Q) =I f(djkiB;~· B~-i)jk• Q) f(B~khi~k = i)dB~k· 
Given that 

(dikiB~k· B~-ilik' Q) ~ MVN(X;B~k +X(-iJB~-ilik' ~it) 

and (B~khijk =I)~ N(O, Tijk). some algebraic rearrangements and simplifications followed by the integra•
tion with respect to B,jk reveal that 

(diki'Y~k =I, B(_iJik•Q)~ MVN(X(-iJB(_iJik• ~ik +X;XiTijk), 

or equivalently 

(dfoi'Y;jk= I, B(_,Jik' Q) ~ MVN(O, ~ik + X;XiTijk)· 

It is trivial to show that f(d1,1"f;jk = 0, B(_i)ik'Q) in the denominator of equation (19) is an 
MVN(X(-iJB(_;Jik• ~ik) density. Thus, we can wnte the conditional Bayes factor BF;ik as 

BF _l~ik+X;XiTiikl- 112 [ r(d*)'{(~ XX' )-I ~-r}d*] 
ijk- l~ikl r; 2 exp -2 ik ik + • ;Tiik - ik ik . (20) 

. Co~sider the first part of e3uation (20). Mu~tiplying the ~umerator an_d denominator by l~ji1 1- 1 '2 , this 
Simplifies to liN+ TijkX;Xi~"i r 1' 2• where IN IS anN X N identity matriX, and recall that N IS the num•
ber of observed functions. J:iy the properties of determinants, we can rewrite this as the scalar quantity 
(I +Tiikx;~jk1 X,)-112, which is the first part of equation (11). 
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Now consider the exponent in equation (20). Using the well-known identity 

E!1- E01 =-E01uv'E01 j ( ! +v'E01u) 

that holds whenever E1 =Eo+ uv', we can rewrite this expression and perform a series of simplifications 

=exp[(Tijd2)(1 +Tijkx;Ejk1 x;)-1{ (d7kl'(Ejk1 x,x;Ejk1)d7k}] 

=exp((Tiik/2)[(x;E]k1 x,)-1{(x;Ejk1 x,)' +Tiik} - 1(d7kl'Ejk1 x,x;Ejk1d7tD 

[
I (d7t)'Ejk1 X;(X;Ejk1 X;)-1 (X;Ejk1 X;)-1 x;Ejk1djkTijk] 

=exp 
2 (X;Eik1 X,)- 1{Tijk +(X;Eik1 X;)} 

=expg(B~:.MLE/Vijk)(l + V;jkfT;jd- 1}, 

which, by letting (ijk = B~k.MLE/ ,/Viik· gives us the second part of equation (II). 
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Trimmed Least Squares

Ray’s long and extremely fruitful collaboration with David Ruppert began with
a pair of 1978 technical reports on “trimmed least squares” estimation of the lin-
ear model that were eventually merged into a single 1980 Journal of the American
Statistical Association paper (Ruppert and Carroll, 1980 [ROB-1]). Their papers
consider two distinct approaches to constructing analogues of the trimmed mean
for linear regression. The first is a proposal made by Koenker and Bassett (1978)
in their “regression quantile” paper that had appeared earlier that year in Econo-
metrica. It is remarkable that this paper appeared on the Chapel Hill radar screen
at all, much less that it provoked such an immediate and profound response. Why?
Perhaps it was only an early portent of the extraordinary energy and insight of the
two collaborators, but the real explanation seems to have more to do with the ap-
peal of disproving the conjecture that the Koenker–Bassett proposal behaves like a
trimmed mean. Koenker and Bassett (1978) claim that in the classical linear model
with symmetric i.i.d. errors, the weighted least squares estimator

Q̌
˛ D .XTWX/�1XTWy

with diagonal weighting matrix, W D diagŒI fxT
i

Ǒ.˛/ < yi < x
T
i

Ǒ.1� ˛/g�, and
Ǒ.˛/D argmin

P
i �˛.yi �xT

i b/ with �˛.u/D uf˛� I.u < 0/g, satisfies,

n1=2. Q̌
˛ �ˇ/ N .0;�2.˛;F /.XTX/�1/;

where �2.˛;F / is the ˛-Winsorized variance of the error distribution, F . It is en-
tirely plausible that simpler estimators based on residuals from a preliminary fit of
the model by some form of M-estimator could achieve the same objective. Con-
trary to this contra-conjecture, Ruppert and Carroll demonstrate that residual-based
trimming has far less attractive asymptotic behavior than that of Q̌

˛ . Indeed, for
asymmetric error distributions, they establish an even more general link with the
limiting behavior of the trimmed mean. In the process, they provide a much more
elegant approach to the large-sample theory, including a Bahadur representation, for
the regression quantiles, Ǒ.˛/, that helped to stimulate an extensive body of subse-
quent research. It wasn’t until almost a decade later that Alan Welsh (Welsh, 1987)
showed that residual-based trimming, if replaced by Winsorization of the residu-
als, can also achieve similar asymptotic objectives, thereby vindicating the original
intuition that motivated their paper.

Robust Heteroscedastic Regression

Ray’s next several papers with David Ruppert consider estimation and inference in
heteroscedastic linear models. The role of heterogeneous scale in M-estimation was
often neglected in the early robustness literature; Ray’s papers confront the issue
head-on, developing robust tests and proposing weighted M-estimator methods to
achieve adaptive efficiency of the location component of the regression parameter.
Their 1982 Annals of Statistics paper (Carroll and Ruppert 1982 [ROB-2]) fore-
shadows several later papers on optimal weighting and may be seen as a precursor
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of subsequent work on adaptive estimation of the linear model and the more general
analysis of transformation models. While acknowledging the possible advantages
of joint estimation of the location and scale components, some cautionary remarks
about risks of misspecification inherent in such “feedback” methods are also made.
Although “robustness” was an active concern in the early 1980s, much of the re-
search had focused on location scale and had only just begun to make headway on
regression problems. [ROB-2] is the first of a number of Ray’s articles pushing the
robustness literature beyond the location-scale families that dominated much of the
1970s and early 1980s.

Optimal Robust Score Functions

Continuing the push to expand robust methods into important practical areas, two
key papers with Len Stefanski, David Ruppert, and Hans Künsch provide remark-
able extensions of Hampel’s constrained optimality theory for M-estimators to the
class of generalized linear models.

In his Berkeley PhD thesis, Hampel develops a univariate constrained optimality
result for censored maximum likelihood score functions (Hampel, 1968; Hampel
et al., 1986), constructing a Fisher consistent robust estimating equation by censor-
ing a shifted version of the likelihood score function and establishing that the result-
ing estimator had minimum asymptotic variance among M-estimators with the same
bound on the influence function, a measure of local sensitivity to outliers. For sym-
metric error models, Krasker and Welsch (1982) develop an extension of Hampel’s
optimality result to multiple linear regression in a widely cited paper. The consider-
able technical challenges entail addressing the potential for unbounded influence of
observations that are extreme in the design space as well as those that are outliers in
the response space while maintaining equivariance to affine transformations of the
regression variables.

In a tour de force generalization of both the Hampel result and the Krasker–
Welsch result, Stefanski, Carroll, and Ruppert (1986 [ROB-3]) consider robust es-
timation for generalized linear regression. They not only extend the constrained
optimality theory to the more general class of models, which necessitates treatment
of an implicitly defined location functional for the censored score function, but they
provide a simplified proof that encompasses the earlier result as well. This paper
also introduces a convenient one-step method to reduce the considerable computa-
tional burden. In a related work around the same time, Simpson, Carroll, and Rup-
pert (1987) solve a conjecture of Hampel’s regarding the asymptotic normality of
the optimal M-estimator under a discrete models when the censoring points have
positive mass.

In a remarkable follow-up paper, Künsch, Stefanski, and Carroll (1989 [ROB-
4]) resolve many of the technical and conceptual limitations of the earlier work by
introducing the concept of conditionally unbiased M-estimation, where the Fisher
consistency is required to hold conditionally over all possible designsX . This strong
concept implies the marginal Fisher consistency (averaged over the design space)
of the earlier paper. This results in a very clean general constrained optimality re-
sult for bounded influence estimating equations for generalized linear models. The
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theory provides justification for Mallow’s type leverage weights, which Ray ex-
panded upon in a number of different papers, including Carroll and Welsh (1989),
on the ability of generalized M-estimators (GM) to handle asymmetric errors, and
Carroll and Pederson (1993) on robust logistic regression with bounded influence.
In typical fashion for Ray’s publications, the latter paper demonstrates impressively
the performance of the proposed bounded influence estimator on a real and non-
trivial dataset, obtaining new insights into the data that are not obvious using other
methods.

Bounded Influence Regression with High Breakdown Point

The breakdown point is an appealing worst case measure of the stability of an
statistical function: determine the fraction of data replacement that could force the
statistical function to arbitrary values. The minimum such fraction is the breakdown
point. In the univariate setting the sample median is an example of a statistical es-
timators with breakdown point � 1=2, whereas the sample mean has a breakdown
point of 1=n, indicating its sensitivity to a single outlier.

In the late 1970s, it was discovered that a wide class of regression equivariant
M-estimators, which included the known bounded influence estimators, could not
achieve a breakdown point higher than 1=.pC 1/ asymptotically, where p is the
number of regression parameters (Maronna, Bustos, and Yohai, 1979). Following
this discovery, the search was on to find regression equivariant estimators as well as
multivariate location and scatter estimates that could achieve higher, dimension-free
breakdown points. The first practical implementation of a such a high-breakdown
regression estimator is the least median of squares (LMS) estimator of Rousseeuw
(1984), in which the elemental set sampling algorithm for computing is also in-
troduced. While this regression equivariant estimator has an impressive breakdown
point � 1=2, its rate of convergence is n�1=3, leading to inefficient parametric infer-
ences and an unbounded local influence function. Nonetheless, this proposal demon-
strates that a dimension-free lower bound on the breakdown point is possible in the
regression setting and provides a means for outlier resistent exploratory data anal-
ysis. In the multivariate setting, Rousseeuw and van Zomeren (1990) establish that
the minimum volume ellipsoid containing half the data (MVE) can be used to de-
fine location vector and scatter matrices that combine equivariance with breakdown
points � 1=2 in the multivariate setting.

Several further developments led to estimators with high breakdown points and
better root-n rates of convergence. However, by the late 1980s, it was still unknown
whether or not a regression equivariant estimator could have both a high breakdown
point and a bounded influence function. The one-step GM estimators of Simpson,
Ruppert, and Carroll (1992 [ROB-5]) are the first such estimators. The approach
is to employ the Bickel (1975) concept of a one-step Newton–Raphson adjustment,
which can improve the rate of convergence of an initial estimator, with a high break-
down starting estimator such as LMS. Using a one-step Mallows-type estimator
with design leverage downweighting, the asymptotics and breakdown point are es-
tablished as well as the heuristic bounded influence function. In order to insure high
breakdown regression equivariant design weights, the proposal is to downweight
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the regression score function inversely proportional to a power of the robust Ma-
halanobis distance of x from the robust center of the design distribution based on
a high breakdown scatter matrix such as the MVE. Ever concerned about practical
inferences, Ray also introduced the standard error breakdown concept, which led
to a recommendation for stronger leverage downweighting of extreme observations
than the standard Mallows weights in the literature. The resulting family of estima-
tors is relatively straightforward to implement on top of existing functions for LMS
regression and MVE location and scatter.

Simpson and Yohai (1998) follow up on this work, rigorously establishing the
influence function and breakdown point of the corresponding statistical functionals.
Following the publication of Simpson et al. (1992 [ROB-5]), the question remained
open for several years whether a fully iterated estimator could retain the high break-
down point while achieving a bounded influence function. This question was finally
answered in He, Simpson, and Wang (2000), which establishes that certain fully
iterated heteroscedastic t regression estimators can have high breakdown points as
well as bounded influence functions, and further, will be fully asymptotically effi-
cient under the corresponding heteroscedastic t error model. The key idea of highly
robust Mallows weights from [ROB-5] paper is central in this paper as well.
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Trimmed Least Squares Estimation m the Linear Model 
DAVID RUPPERT and RAYMOND J. CARROLL* 

We consider two methods of defining a regression analog to a 
trimmed mean. The first was suggested by Koenker and Bassett and 
~ their concept of regression qua.ntiles. Its asymptotic behavior 
IS completely analogous to that of a trimmed mean. The second 
method uses residuals from a preliminary estimator. Its asymptotic 
behavior depends heavily on the preliminary estimate· it behaves 
in generaJ., quite differently than the estimator proposed' by Koenk.~ 
and Bassett, and it can be inefficient at the normal model even 
if ~he perc~tage of trimming is small. However, if the preliminary 
estimator IS the average of the two regression quantiles used with 
Koenker and Bassett's estimator, then the first and second methods 
a.re asymptotically equivalent for symmetric error distributions. 

KEY WORDS: Regression analog; Trimmed mean; Regression 
quantile; Preliminary estimator; Linear model; Trimmed least 
squares. 

1. INTRODUCTION 

This article is concerned with the linear model 

y=X~+Z, (1.1) 

where y' = (y,, ... , y.), X is a n X p matrix of known 
constants whose ith row is x',, {J' = (p1, � � � , {jp) is a vector 
of unknown parameters, and Z' = (Z1, � � � , Z.) is a 
vector of independent, identically distributed random 
variables with unknown distribution function F. Despite 
the advantages, including efficiency when F is normal, of 
the least squares (LS) estimator of~. this estimator is in•
efficient when F has heavier tails than the Gaussian dis•
tribution, and the estimator poBSOBSOS high sensitivity to 
spurious observations. This inefficiency to heavy-tailed 
F has been amply demonstrated for the location sub•
model by a Monte Carlo study (Andrews et al. 1972) and 
by asymptotics (e.g., Table 1 of this article). The pres•
ence of spurious data can be modeled by letting F he a 
mixture of the distribution function of the "good" dsta, 
for example, standard normal, and that of the "bad" 
data, for example, normal with variance exceeding 1. 
Such an F will have heavier tails than a normal distribu•
tion, and inefficiency with heavy-tailed F appears to be 
closely related to sensitivity to outliers. Huher (1977, p. 
3) stated that "for most practical purposes, 'distribu~ 

tionally robust' and 'outlier resistant' are interchange•
able." For the location model, three classes of estimators 
have been proposed as alternatives to the sample mean, 

• David Ruppert is Assistant Professor and Raymond J. Carroll 
is Associate Professor, Department of Statistics, University of 
North Carolina, Chapel Hi!~ NC 27514. This research was sup•
ported by NSF Grant MCS71Hl1240 and by the Air Force Of!iee 
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AFOSR--80-0080. The present article is a. synthesis of two earlier 
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and M, L, and R estimators (see Huber 1977 for an in•
troduction). Among the L estimates, the trimmed mean 
is particularly attractive hecause it is easy to compute and 
is efficient under a variety of circumstances. 

As with M estimates, trimmed means can he used to 
form confidence intervals (Huher 1970). The Monte 
Carlo study by GraBS (1976) indicates that the validity 
(agreement of nominal and actual significance levels) of 
such confidence intervals will not he wholly satisfactory 
if n is small (GraBS studied n = 10 and n = 20), but with 
F nonnormal, they appear to be as valid as the standard 
confidence interval based on the sample mean and stand•
ard deviation and the t distribution. 

Hogg (1974) favored trimmed means for the previous 
reasons and hecause they can serve as a basis for adaptive 
estimators. Stigler (1977) applied robust estimators to 
data from 18th- and 19th-century experiments designed 
to measure basic physical constants. He concluded that 
"the 10% trimmed mean (the smallest nonzero trimming 
percentage included in the study) emerges as the recom•
mended estimator (p. 1070)." 

One might argue, of course, that although L estimates 
have desirable properties, they really offer no advantages 
over other estimators. After all, Jaeckel (1971) has shown 
that if F is symmetric, then for each L estimator of loca•
tion, there are asymptotically equivalent M and R esti•
mators. However, without knowledge of F it is not possi•
ble to match up an L estimator with its corresponding 
M and R estimators. 

We do not helieve that trimmed means are always pre•
ferable to M estimates but rather that they are worth•
while alternatives to M estimates, particularly to 
Huher's M estimate. 

For the linear model, Bickel (1973) has proposed a class 
of one-step L estimators depending on a preliminary esti•
mate of ~. but although these have good asymptotic 
efficiencies, they are computationally complex and are 
apparently not invariant to reparameterization. 

In this article we consider two other methods of defin•
ing a regression analog to the trimmed mean. In the loca•
tion problem, both estimates reduce to the trimmed mean. 
The first, which we call ~PE (a) for 0 < a < ! , requires a 
preliminary estimate, which is denoted by ~,. Suppose 
that the residuals from Go are calculated and that those 
observations corresponding to the [na] smallest and 
[na] largest residuals are removed. Then ~PE( = ~PE(a)) 

C Journal of the American Statistical Association 
December 1980, Volume 75, Number m 

Theory and Methods Section 

828 



454

Ruppert and Carroll: Trimmed Least Squares Estimation 

is defined as the LS estimator calculated from the remain•
ing observations. 

The definition of ~PE was motivated by the applied 
statisticians' practice of examining the residuals from a 
LS fit, removing the points with large (absolute) residuals 
and recalculating the LS solution with the remaining ob•
servations. Generally, there is no formal rule for deciding 
which points to remove, but ~PE is at least similar to this 
practice. 

The second method of defining an analog to the 
trimmed mean was proposed by Koenkcr and Bassett 
(1978), who extended the concept of quantiles to the 
linear model. Let 0 < 0 < 1. Define 

.p,(x) = 0- I(x < 0) , (1.2) 

there l(x <a) is the indicator of the set {x: x <a}, and 

p,(x) = x.p,(x) . 

Then they called ~ (0) any value of b that solves 

I: p6 (y,- x,b) = min! , (1.3) 

a Oth regression quantile. (Recall that x'; is the ith row of 
X.) Koenker and Bassett's Theorem 4.2 states that re•
gression quantiles have asymptotic behavior similar to 
that of sample quantiles in the location problem. (Since 
~(0) is an M estimate, its large-sample behavior can also 
be deduced from standard M estimate theory, as we show 
later.) Therefore, L estimates consisting of linear com•
binations of a fixed number of order statistics-for ex•
ample, the median, trimean, and Gastwirth's estimator•
are easily extended to the linear model and have the same 
asymptotic efficiencies as in the location model As 
Koenker and Bassett pointed out, regression quantiles 
can be computed by standard linear programming tech•
niques. They also suggested the following trimmed LS 
estimators (~Ks): Remove from the sample any observa•
tions whose residual from ~(a) is negative or whose resi•
dual from ~(1 -a) is positive, and calculate the LS 
estimator using the remaining observations. They con•
jectured that if limn •• n-'(X'X) = Q (positive definite), 
then the asymptotic covariance of ~KB (a) is n-1u2 (a, F)Q-1, 
where n-1u2 (a, F) is the variance of an a-trimmed mean 
from a population with distribution F. 

In this article we develop asymptotic expansions for 
~(0) and ~KB (a) that provide simple proofs of Koenker 
and Bassett's Theorem 4.2 and their conjecture about 
the asymptotic covariance of ha (a). 

The close analogy bet wen the asymptotic distributions 
of trimmed means and the trimmed LS estimator ~KB(a) 
is remarkable. Perhaps even more surprising is that the 
distribution of the estimator ~PE depends heavily on that 
of the preliminary estimator ~o. In particular, if the pre•
liminary estimate is either the LS or least-absolute-devia•
tion (LAD) estimator, then ~PE is inefficient at the 
normal model (for LS this was surprising) and is not a 
regression analog to the trimmed mean. 

Our results are such that we are able to find a choice of 
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~o so ~PE corresponds to a trimmed mean when the error 
distribution F is symmetric. The "right choice" for §u is 
the average of the ath and (1 - a)th regression quantiles 
(i.e., ~o = t(~(a) + ~(1 -a)). 

Hogg (1974) mentioned that adaptive estimators can 
be constructed from estimators similar or identical to 
~PE(a) with a a function of the residuals from ~0 • The 
advantage of this class of adaptive estimators, he felt, 
was that they "would correspond more to the trimmed 
means for which we can find an error structure" (p. 917). 
However, from the previously described results, we can 
conclude that even if a is nonstochastic, estimators of the 
type suggested by Hogg will not necessarily have error 
structures that correspond to the trimmed mean . 

Besides its nice asymptotic covariance, ~KB has another 
desirable property. In the location model, if F is asym•
metric then there is no natural parameter to estimate. 
In the linear model, if the design matrix is centered so one 
column, for example, the first, consists entirely of ones 
and the remaining columns each sum to zero, then our 
expansions show that for each 0 < a < t, 

nl(~Ka(a)- ~- o(a)) ~ N(O, Q-'u2 (a, F)) , 

where O(a) is a vector whose components are all zero ex•
cept for the first. Therefore, the ambiguity about the 
parameter being estimated involves only the intercept 
and none of the slope parameters. However, this is also 
true forM estimates (see, e.g., Carroll and Ruppert 1979 
or Carroll 1979). 

We present a large-sample theory of confidence ellip•
soids and general linear hypothesis testing that is similar 
to that of LS estimation. The same theory holds for ~PE 
when ~ 0 = (~(a) + ~(1 - a))/2, but only if F is sym•
metric. 

The methods in this article can be applied to other 
estimators. For example, let ~A (a) = ~A be the LS esti•
mate, after the points with the [2aN] largest absolute 
residuals from §0 are removed. In Section 6 we state re•
sults for ~A· Their proofs are omitted but are similar to 
the proofs of analogous results for ~PE· 

In Section 2 we give notation and assumptions. In 
Section 3, asymptotic representations of ~P E are de•
veloped, and their significance is discussed in Section 4. 
Section 5 contains asymptotic results for ~Kll, and Section 
6 discusses conditions under which ~KB and ~PE are 
asymptotically equivalent. In Section 7, we compare the 
asymptotic behavior of ~PE for several choices of ~o· 
Large-sample inference is the subject of Section 8. Several 
examples with real data are considered in Section 9. All 
proofs are found in the Appendix. 

2. NOTATION AND ASSUMPTIONS 

Although y, X, and Z in (1.1) depend on n, this is not 
made explicit in the notation. Let e' = (1, 0, ... , 0) 
(1 X p), and let I. be the p X p identity matrix. When•
ever r is a scalar, r = re. For 0 < p < 1, define n(p) 
= F-'(p). Suppose 0 <a, < ! < a2 < 1, and define 
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~~ = ~(a,) and <� = ~(a,). Let N ,(,, :!:) denote the 
p-variate Gaussian distribution with mean J1. and covari•
ance:!:. We make the following assumptions throughout. 

1. F has a continuous density f that is positive on the 
support of F. 

2. Letting (xil, ... , Xip) = x' i be the ith row of X, 
Xil = 1 for i = 1, ... , n and 

L Xii = 0 , for j = 2, ... , p 

3. lim ( max (n-llx;;l)) = 0 . 
,. ..... OIJ j:5pandiSn 

4. There exists positive definite Q such that 

lim n- 1 (X'X) = Q 

5. (~0 - ~ - 8e) = O,(n-1) for some constant 8. 

We assume that ~~ = 0. By Assumption 2, this involves 
no loss in generality. Assumption 5 is satisfied by many 
estimators, including the LAD or median regression (see 
Corollary 2) and, if Ee 12 < oo, the LS estimators. 

The residuals from the preliminary estimate ~0 are 

r; = y,- x',~o = z,- x',(~o- ~) . 

Let r,. and r2 • be the [na]th and [n(1 - a)]th ordered 
residuals, respectively. Then the estimate ~PE is a LS 
estimate that is calculated after all observations are re•
moved that satisfy 

(2.1) 

Because of Assumption 1, asymptotic results are unaf•
fected by requiring strict inequalities in (2.1). Let 
a; = 0 or 1 according to whether i satisfies (2.1) or not, 
and let A be the n X n diagonal matrix, with Aii = ai. 
The matrix A indicates which observations are not 
trimmPd. Thus 

~PE(a) = (X'AX)-X'Ay , 

where (X' AX)- is a generalized inverse for X' AX. (Later 
we show that 

n- 1 (X'AX) _.:; (1 - 2a)Q ; 

thusPr((X'AX) is invertible)--> 1.) 
Since ~KB behaves similarly to a trimmed mean, even 

for asymmetric F and for asymmetric trimming, we do 
not restrict ourselves to symmetric trimming when de•
fining ~KB· 

Let a = (a,, a,) and define ~KB (a) to be a LS estimator 
calculated after all observations are removed that satisfy 

y,- x',~(a 2) :;:: 0 or y, - x',~(a 1) ::; 0 . (2.2) 

(Again asymptotic results are unaffected hy requiring 
strict inequalities in (2.2), which is Koenker and Bassett's 
suggestion.) Let b, = 0 or 1 according to whether i satis•
fies (2.2) or not, and let B be the n X n diagonal matrix 

with B,, = b;. Then 

~Kn(a) = (X'BX)- (X'By) , 

where (X'BX)- is a generalized inverse of (X'BX). (Again, 
for n sufficiently large, X'BX will be invertible.) Let 

Define 

q,(x) = 6/(a,- a,) if X< 6 , 

= xj (a, - a 1) if ~ 1 ::; x ::; ~2 

= ~,j(a2 - a 1) if ~2 <X 

o(a) = (a,- a 1)-'f'' xdF(x) 

" 
and letting K; = (~1 - o(a)), define 

(2.3) 

u2 (a, F) = (a2 - a,)-2 (J'' (x- o(a))' dF(x) 

" 
+ a 1K12 + (1 - a 2)K 22 - ((1 - a 2)K2 + a 1K1)') 

By, for example, de Wet and Venter (1974, Equation (6)), 
o-2 (a, F)/n is the asymptotic variance of a trimmed mean, 
with trimming proportions a 1 and 1 - a2 from a popula•
tion with distribution F. 

3. MAl N RESULTS FOR ~PE 

First we will find relationships of the form 

nl(~PE- ~) = n-1 L G(x,, Z,) + n!H(~o- ~) , (3.1) 
i=l 

where G and H arc given functions. We then show that in 
many special cases (including LS and LAD) the latter 
term in (3.1) can be further expanded so that 

" n 
ni(~PE-~)=n-l L G(x,, Z,)+n-l L H*(x,, Z,) (3.2) 

i=l 

for some function H*. It is then a simple matter to obtain 
the limit distribution of nl (~PE - ~) from (3.2). 

In this section we only consider symmetric trimming, 
so we assume a, = 1 -a, =a. Now define a = ~,f(~,) 

- 6/(1;,) and c, = (I - ee')x, = (0, x", ... , x,,)'. The 
specific relationship of form (3.1) is the following: 

Theorem 1: As n ~ oo, 

nl(~PE- ~) = (1 - 2a)-1n-l L Q-�c,Z,I(6::; z,::; ~2) 

+ (1- 2a)-1anl(I- ee')(~o- ~) 

We call the first entry of ~ the intercept, and the re•
maining entries are called the slopes. Since premultiplica•
tion of a vector by (I - ee') simply replaces the first co•
ordinate by 0, the first two terms on the right-hand side 
(rhs) of (3.3) represent the slope estimates. Note the 
similarity (and the difference) between the first term and 
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a representation of the (untrimmed) LS estimate, ~; 
since 

(~ - ~) ~ (X'X)- ' X'Z , 
and 

(n- ' X'X) --> Q 
it follows that 

The second term indicates the contribution of the pre•
liminary estimate to the trimmed LS estimate ; this con•
tribution is only to the slope estimates. Since only the 
first coordinate of e is nonzero, the third term on the rhs 
of (3.3) is a representation of the intercept estimate and is 
identical to a representation of the trimmed mean in the 
location model (cf. Corollary 1). 

To specify the relationship of form (3.2), we make the 
following assumption: 

6. For some function g, 

As indicated, Assumption 6 holds with g(x) ~ x if ~o 
is the LS estimate. By Theorem 5.3, Assumption 6 holds 
with g(x) ~ (J(O))-'(! - I(x < 0)) if ~o is the LAD 
estimate. As an immediate consequence of Theorem 1, 
we have our main result. 

Theorem 2: 

nl(~p.-~) 

~ (1-2a)->n-1 ~ Q-'c.(Z;l (<,<:Z;<: t2)+ag(Z,) I 

+n-l ~ e.p(Z,)+o,(1) . (3.4) 
i=l 

In the next section, limit distributions arc obtained 
from (3.4) for various special cases. Both (3.3) and (3.4) 
show how the preliminary estimate influences the asymp•
totic behavior of ~PE· 

As a special case of Theorem 2, we obtain 

Corollary 1: In the location model (p ~ 1 and x1 ~ 1 
for all i) 

The key technical step in the proofs is an asymptotic 
linearity result for ordered residuals, which generalizes 
work of Bahadur (1966) and Ghosh (1971) for the loca•
tion model. 

Lemma 1: For 0 < 6 ( 1, let r,. be the [n6]th ordered 
residual from ~o. Then 

i=l 

- e'nl(~o - ~) + o,(1) 

(Recall that y,,(x) ~ 6 - l(x < 0).) 
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4. ASYMPTOTIC BEHAVIOR OF ~eE 

In this section we show that Theorem 2 leads to these 
basic conclusions about ~PE: 

1. The intercept estimate is asymptotically unbiased if 
F is symmetric; 2. The slope estimates are asymptotically 
unbiased even if F is asymmetric; 3. The asymptotic 
variance of the intercept, which does not depend on the 
choice of ~u, is that of the trimmed mean in the location 
model; and 4. The asymptotic covariance matrix of the 
slopes depends on ~o and in general will be difficult to 
estimate. 

Let 0 be a (p - 1) X 1 vector of zeros. By Assumption 
2, there is a Q such that 

Q ~ G ~] and Q-> ~ [~ ~-l 
Moreover, 

lim n-' i_ c;c', ~ [0 0Q~J , 
n-o.oc <=1 0 

and 

Qi_c,~[OJ· 
•=1 0 

(4.1) 

If we estimate ~with ~PE, then the asymptotic bias of the 
intercept is 

!" E.p(Z,) ~ (1 - 2a)-' xdF(x) , 

" 
which is zero if F is symmetric about zero. By (3.4) and 
(4.1), the slope estimates are asymptotically unbiased, 
even if F is asymmetric. The asymptotic variance of the 
normalized intercept is 

<r'(a, F) ~ var¢(Z1) , 

the asymptotic variance of the normalized a-trimmed mean 
in the location model. The intercept is asymptotically 
uncorrelated with the slopes, and the asymptotic covari•
ance matrix of the normalized slopes is Q-1u2 (a, g, F), \Vhere 

u'(a, g, F) 
~ (1 - 2a)-' var(Zd(h <: z, <: t1) + ag(Zr)) . 

We see that the asymptotic distribution of the inter•
cept estimate does not depend on the choice of ~ 0 , pro•
vided (~o - ~) ~ O,(n-l). On the other hand, we see from 
(3.4) that the slope estimates depend upon ~0 , since the 
unusual situation in which a = 0 is ruled out by Assump•
tion 1. Using the Lindeberg central limit theorem and 
Theorem 2, it is easy to show that under Assumptions 
3 and 4, nl(~eE - ~ - eE.p(Z,)) converges in distribu•
tion to a normal law. 

In general, large-sample statistical inference based on 
~PE will be a challenging problem because of the difficul•
ties of estimating a ~ (<zf(<,) - h/(h)). Obtaining rea•
sonably good estimates of the density f might take very 
large sample sizes. 
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5. MAIN RESULTS FOR ~. 

In Section 1, we defined a lith regression quantile to he 
any value of b that solves (1.5). There may be multiple 
solutions, though in our few examples we found that the 
solution was always ullique. However, the asymptotic 
results we present do not depend on the rule used to select 
one. We suppose, then, that a definite rule has been used, 
and we denote this solution by ~(8). 

For ~KB we obtain an asymptotic representation that 
is similar to those for ~PE but perhaps simpler. 

Theorem 3: The estimator ~KB satisfies 

nl(eK 8 (a) - ~) = Q-In-1 

N 

·II: x';(</>(Z,)- E<t>(Z;)) + &(a)l + o,(1) , (5.1) 

and therefore 

ni(~K8 (a) -~-&(a))~ N ,(0, u'(a, F)Q-I) . (5.2) 

Expression (5.1) is similar to a result of deWet and 
Venter (1974, Equation (5)). Note that (5.2) verifies 
Koenker and Bassett's (1978) hypothesis on the covari•
ance of ~KB· Moreover, the bias of ~KB for~ involves only 
the intercept /3I and not the slopes. Also, ~KB is asymp•
totically unbiased if F is symmetric. 

Theorem 3 requires the next result on regression 
quantiles. Define ~(8) = ~ + ~(8). The next theorem, 
which is a special case of a general result for M estimators, 
shows that <G (8) - ~ (8)) is essentially a sum of independ•
ent random variables. 

Theorem 4: The following representation holds: 

nl (G (8) - ~ (8)) 

= n-1(!(~(8)))-IQ-I l: X;>/ls(Z; - ~(8)) + o,(1) 
i=l 

Theorem 4 and the Lindeberg central limit theorem 
provide an easy proof of Koenker and Bassett's (1978) 
Theorem 4.2, which we state as a corollary. 

CoroUary S: Let 0 = 0 (8I, .. � , 8.; F) he the sym•
metric m X m matrix defined by 

8;(1- 8;) . . 
!l ; ; = !(~(8,))!(~(8;))' 1 :<:; • :<:; J :<:; m . 

Then 

n1(~(8I)-~(8I), .. . , ~(8.)-~(8.)) ..=. N.,(O, o QS>Q-I). 

6. A CHOICE OF ~. FOR WHICH GKB AND G •• 
ARE ASYMPTOTICALLY EQUIVALENT 

We have seen that ~KB is a close analog to the trimmed 
mean, but the behavior of G•• depends on ~o and is in 
general not similar to that of a trimmed mean. One might 
ask whether ~o can he chosen so that 3•• has the same 

asymptotic distribution as ~KB· The answer is yes, pro•
vided that F is symmetric and that we allow only sym•
metric trimming. 

Let ~PE(RQ, a)(= ~PE(RQ)) he ~PE when Go is the 
average of the ath and (1 - a)th regression quantiles 
(i.e., Go = (~(a) + ~(1 - a))/2). Then, by Theorem 4, 
this Go satisfies Assumption 6 with 

g(x) = (2/(~I))-ty,.(x- ~I) + (2/(~2))-I"'I-•(x- ~2) • 

If F is symmetric, then ~I =- ~'' f(~I) = f(~,), and 
therefore 

ag(x) = ~d(x :<:; ~I) + ~,I(x;:: ~) 
By (3.4) and (6.1), 

(6.1) 

ni(GPE(RQ) - ~) = n-1 I: (Tix;</>(Z,) + o,(l) , 
"=I 

and therefore, since &(a) = 0, (5.1) implies 

ni(GKB - ~PE(RQ)) _:, 0 , (6.2) 

so that asymptotically there is no difference between 
trimming with this preliminary estimate and using Koen•
ker and Bassett's (1978) proposal. (However, (6.2) does 
not necessarily hold if F is asymmetric.) 

Notice that (5.1) and (6.2) imply that 

nl(GPE(RQ) -G)_:, N(O, Q-Iu'(a, F)) 

7. COMPARISONS OF SEVERAL CHOICES OF ~. 

The choice of ~o should he based on the efficiency of the 
resulting ~PE, not on its similarity to GKB· In this section 
we find further support for using ~PE(RQ) by comparing 
~PE(RQ) with two other estimators, ~PE(LS) and 
~ •• (tAD), which are ~PE with ~o equal to the LS esti•
mator and ~(.5), respectively. Comparisons are made 
within the family of contaminated normal distributions, 
which has long been used to study the hehavior of statisti•
cal procedures under heavy-tailed distributions. (Stigler 
1973 represents an interesting account of its early use.) 
These distributions have the form 

F(x) = (1 - �)'l>(x) + E'l>(x/b) , 

where 0 < • < 1 and 'I> is standard normal distribution. 
Typically, b > 1 and 'l>(x/b) is the distribution of the 
"bad" data, whereas E is the proportion of "bad" observa•
tions. Recall that the asymptotic variance of the inter•
cept does not depend on ~o and that the asymptotic co•
variance matrix of the slopes is (J-Iu'(a, g, F), where 
(J-I depends only on the sequence of design matrices. 
Therefore, we can compare the estimators by using only 
u'(a, g, F). Table 1 displays u'(a, g, F) for several choices 
of a, •, and b, and for g corresponding to ~PE(LS), 
GPE(LAD), and ~PE(RQ). For comparison, we include 
the standardized asymptotic variance (i.e., u' where u'(TI 
is the asymptotic covariance matrix) for the LS estimate 
and two M estimates, a Huher and a Hampel. Both of the 
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1. Variances of the Asymptotic Distribution of Slope Estimators of Contaminated Normal Distributions 

.. b' Estimator 

Trimmed Least Squares 

jl,..(LS) 
jl,..(LAD) /l...(RQ) 

(Least Absolute (Average of ath and 1-ath 
Huber (Least Squares As Deviation As Regression Quantlles As 
Pro- Hampel Preliminary Estimate) Preliminary Estimate) Preliminary Estimate) 

Least posal One 
Squares 2 Step a=.05 a=.10 a=.25 a =.05 a=,10 a=.25 a=.05 a=.10 a=.25 

Normal 1.00 1.04 1.04 1.30 1.36 1.26 1.54 1.83 2.14 1.03 1.06 1.19 
.05 3.0 1.40 1.16 1.17 1.38 1.51 1.58 1.54 1.88 2.26 1.18 1.17 1.29 
.05 5.0 2.20 1.20 1.23 1.43 1.71 2.15 1.51 1.87 2.28 1.20 1.20 1.31 
.05 10.0 5.95 1.23 1.28 1.68 2.66 4.81 1.46 1.85 2.30 1.25 1.23 1.33 
.10 3.0 1.80 1.30 1.32 1.44 1.84 1.88 1.56 1.93 2.39 1.32 1.30 1.39 
.10 5.0 3.40 1.40 1.47 1.45 1.96 2.99 1.46 1.90 2.44 1.46 1.38 1.45 
.10 10.0 10.90 1.49 1.61 1.48 3.32 8.09 1.34 1.85 2.47 1.65 1.45 1.49 
.25 3.0 3.00 1.90 1.94 1.79 1.97 2.74 1.82 2.12 2.87 2.14 1.85 1.80 
.25 5.0 7.0 2.46 2.68 2.49 2.09 5.13 2.37 1.92 2.99 4.11 2.39 2.01 
.25 10.0 25.75 3.20 4.26 6.50 1.88 15.66 5.51 1.65 3.06 13.65 3.69 2.19 

� Proportion of contamination. 
b Standard deviation of contamination. 

NOTE: The asymptotic covariance matrix is ~-· multiplied by the displayed quantity. 

M estimates use Huber's Proposal 2 to obtain scale equi•
variance. The Huber uses 

'f(x) = min(2, I xI) sign(x) , 

and the Hampel uses 

'f(x) = x if 0 ;<::; X ;<::; 1.5 , 

= 1.5 if 1.5 ;<::; X ;<::; 3.5 

= (8- x)/3 if 3.5 ;<::;X;<::; 8 , 

=0 if 8 ;<::;X , 

and 'f(- x) =- 'f(x). (For discussion of Huber's Pro•
posal 2, see Carroll and Ruppert 1979.) Several conclu•
sions can be drawn from Table 1. 

1. ~PE(LS) and ~PE(LAD) are inefficient at the normal 
distribution. 

2. ~PE(RQ) is quite efficient at the normal model. 
3. Under heavy contamination (b large or • large) 

~PE(LS), ~PE(LAD), and ~PE(RQ) are relatively efficient, 
compared with LS. Also, ~PE(RQ) and ~PE(LAD) com-

pare well with the M estimates, but ~PE(LS) does poorly 
compared with the M estimates, if � = .25, b = 10, and 
a = .25. (Intuitively, one can expect that when a = .25, 
~PE(LS) will be heavily influenced by its preliminary 
estimate, which estimates ~ poorly for these b and <.) 

4. For a fixed distribution, the asymptotic variance of 
~PE(LS) is not necessarily a monotone function of a, 
0 <a<!. 

Because of Conclusions (1) and (3), the practice of 
fitting by LS or LAD, removing points corresponding to 
extreme residuals, and computing the LS estimate from 
the trimmed sample is not an adequate substitute for 
robust methods of estimation. 

Conclusion (4) seems surprising at first but has an in•
tuitive explanation. If a = 0, then ~PE is the LS estimate, 
and as a~!, ~PE converges to the preliminary estimate. 
Thus ~PE(LS) should be virtually equal to the LS esti•
mate for a close to 0 or j. Consequently, letting 
u'(a, LS, F) equal u'(a, g, F), where g corresponds to 
~o = LS, we might expect that u2 (a, LS, 4') will decrease 

2. Finite and Asymptotic Variances of n 11' /JA(LS) in the Location Model (a= .10) 

n ~50 n ~100 n =200 n=300 n =400 .. b' Nl ~ 1,000 Nl~1,000 Nl ~500 Nt ~soo Nl ~850 Asymptotic 

Normal 1.31 1.36 1.37 1.32 1.35 1.36 
.05 3 1.47 1.49 1.50 1.47 1.48 1.51 
.05 5 1.57 1.65 1.70 1.66 1.65 1.71 
.05 10 2.10 2.36 2.54 2.51 2.40 2.66 
.10 3 1.58 1.58 1.65 1.63 1.60 1.64 
.10 5 1.74 1.83 1.97 1.90 1.90 1.96 
.10 10 2.24 2.51 2.92 2.99 3.03 3.32 
.25 3 2.01 1.93 1.94 1.96 1.96 1.97 
.25 5 2.12 2.05 2.06 2.11 2.07 2.09 
.25 10 2.98 2.42 2.14 2.13 2.11 1.88 

a Proportion of contamlna1ion. 
~Standard deviation of contamination. 

NOTE: n ""'sample size: Nl "" no. of Monte Carlo simulations. 
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as a ! 0 or a it. For F (a heavy-tailed distribution), we 
might expect that a' (a, LS, F) will increase as a ! 0 and 
as a H. 

If, instead of removing those observations with the 
[na] smallest and [na] largest residuals from ~ •• we re•
move those observations with the [2na] largest absolute 
residuals, then the asymptotic variance of the intercept 
is the same as that of the slopes. Specifically, let ~A(<>) 
( = BA) be the estimate formed in this manner. Then if 
F is symmetric, 

(1-2a)ni(~A-~) 

and if Assumption 6 holds, then 

(1-2a)n1(3A-~) 

=n-1 I: Q-1x;{Z;I(6~Z,~~.)+ag(Z,)}+o.(1) , 
i-1 

which in the location case reduces to 

. 
= n-1 I: {Z;I(~1 ~ z, ~ ~,) + ag(Z,)} + o.(1) 

i-1 

The proofs are similar to those of Theorems 1 and 2 and 
are omitted. 

Since e A is particulsrly easy to compute in the location 
model, it is very suitable for Monte Carlo studies. It is 
hoped that such studies will indicate the degree of agree�
ment between the asymptotic and finite sample variances 
of Bn as well as BA· Table 2 displays the variance of 
BA(LS) (i.e., BA with~. the LS estimate, for n = 50, 100, 
200, 300, and 400). Throughout a = .10. The Monte 
Carlo swindle (Gross 1973) was used as a variance reduc•
tion technique. One sees from Table 2 that convergence 
of the variance to its asymptotic value can be extremely 
slow for some distributions (e.g., b = 10 and • = .10 or 
.25). 

8. LARGE-SAMPLE INFERENCE 

Here we sketch a large-sample methodology of con•
fidence ellipsoids and hypothesis testing based on ~KB· 
For symmetric trimming and symmetric F, the theory is 
applicable to BPE(RQ) as well. The asymptotic covariance 
matrix a'(a, F)Q-1 can be consistently estimated, since 
n-1 X'X-> Q and a consistent estimate of a'(a, F) is 
provided by Theorem 5. 

Thoorem 5: Let S be the sum of squares for residuals 
calculated froJt!. the trimmed sample, that is, 

S = y'B(I. - X(X'BX)-X')By . 

Let c; = e'm(a;) - ~KB(a)] for j = 1, 2, and 

s'(a, F) = (a2 - a 1)-2((n - p)- 1 S 

+ a 1c12 + (1 - a 2)c,• - (a1c1 + (1 - a,)c,)') 

Then 
s'(a, F) -". a'(a, F) . 

Thoorem 6: Suppose m is the number of observations 
that have been removed by trimming. For 0 ·< � < 1, 
let F(n1, n,, �) denote the (1 - �) quantile of the F dis•
tribution, with n1 and n, degrees of freedom, and let 

d(n1, n,, �) = (a, - <>1)-1 S'(a, F)n1F(n., n,, �) . 

Suppose for some integer (, K and c are matrices of sires 
t X p and (X 1, respectively, and that K has rank(. If 
K'(~ +&(a)) = c, then 

· (K'~KB(a) -c) ~ d(l, n- m- p, �)I = • . 

Letting K = I. and c = ~ - &(a), the confidence 
ellipsoid 

(GKB(<>) - ~ - &(a))'(X'AX)(~KB(<>) - ~ - &(a)) 
~ d(t, n - m - p, �) (8.1) 

for ~ + & (a) has an asymptotic confidence coefficient of 
(1 - •). Moreover, if we test 

Ho: K'(~ +&(a))= c 
versus 

H1: K'(~ +&(a))= c 

by rejecting H, whenever 

(K'~KB(a) - c)'[K'(X'AX)-1K]-1 (K'(~KB(a) -c) 
~ d(l, n - m - p, �), (8.2) 

then the asymptotic size of our test is •· 
Of course, in the special cases in which a1 = O, a2 = 1 

(so m = 0 and A = 1), and F is Gaussian, (8.1) is an 
exact 1 - • confidence ellipsoid and (8.2) is an exact 
size E test. 

9. EXAMPLES 

In this section we contrast the results obtained for 
different estimates when applied to two data sets: (a) the 
stackloss data set given by Brownlee (1965) and further 
analyzed using M estimates by Andrews (1974) and (b) 
a set of measurements of water salinity and river discharge 
taken in North Carolina's Pamiico Sound (see Table 3). 
In the first case, stackloss was regressed against air flow, 
temperature, and acid; salinity was regressed against 
salinity lagged two weeks, river discharge, and a linear 
time trend using the second data set. The estimates we 
consider are listed in Table 4. Both Huber and Andrews 
are M estimates and are calculated by the iterative 
solution to 

N 

I: Y,((y,- x',~)/s)x, = 0 , 

where s = MAD/C, Cis a constant, and MAD is the 
median of the absolute values of the residuals. For Huber, 
C = .6745 and Y,(z) = max(-1.25, min(z, 1.25)). This 
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3. The Water Salinity Data Set 

OBS SALINITY SAL LAG TREND H20FLOW YEAR 

1 7.6 8.2 4 23.005 72 
2 7.7 7.6 5 23.873 
3 4.3 4.6 0 26.417 73 
4 5.9 4.3 1 24.868 
5 5.0 5.9 2 29.895 
6 6.5 5.0 3 24.200 
7 8.3 6.5 4 23.215 
8 8.2 8.3 5 21.862 
)L 13.2 10.1 0 22.274 74 

10 12.6 13.2 1 23.830 
11 10.4 12.6 2 25.144 
12 10.8 10.4 3 22.430 
13 13.1 10.8 4 21.785 
14 12.3 13.1 5 22.380 
15 10.4 13.3 0 23.927 75 
16 10.5 10.4 1 33.443 
17 7.7 10.5 2 24.859 
18 9.5 7.7 3 22.686 
19 12.0 10.0 0 21.789 76 
20 12.6 12.0 1 22.041 
21 13.6 12.1 4 21.033 
22 14.1 13.6 5 21.005 
23 13.5 15.0 0 25.865 77 
24 11.5 13.5 1 26.290 
25 12.0 11.5 2 22.932 
26 13.0 12.0 3 21.313 
27 14.1 13.0 4 20.769 
28 15.1 14.1 5 21.393 

NOTE: The values are biweekly averages of SALINITY at time period i. SALLAG 

=salinity lagged 2 weeks, i =TREND= one of the six biweekly periods in March-May, 

and H20FLOW =river discharge in time i. (Since only spring data are used. SALLAG 

is not always the previous value of SALINITY.) 

choice of if; should give results for normal data similar to 
those for the regression analogues of a 10% trimmed 
mean. The Andrews estimate uses C = 1 and Y,(z) 
=sine (Z)I( jZ I S ,;). 

We defined ~KB a bit differently than in Section 2. Both 
data sets have four independent variables, and each re•
gression quantile hyperplane passes through four observa•
tions. Therefore, if one defines ~Kl:l as in Section 2, at 
least eight observations are trimmed. Instead, we defined 
~KB by requiring strict inequality in (2.2). If a = (.1, 
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.9), this leads to no trimming for the stackloss data and 
only two observations trimmed for the salinity data, so 
we use a = (.15, .85). Then observations 4, 9, and 21 are 
trimmed in the stackloss data, and observations 1, 13, 
15, and 17 arc trimmed in the salinity data. 

An important advantage of ~PE(RQ) over ~KB is that 
residuals from a preliminary estimate are rarely tied (at 
least in these data sets), and with ~PE(RQ) one can have 
the actual percentage of trimming close to any specified 
a. The observations deleted when calcylating ~PE(RQ, 
.10) are 1, 3, 9, and 21 for the stackloss data and 1, 11, 
13, 15, 16, and 17 for the salinity data. 

Since both data sets have outliers, asymptotic theory 
and Monte Carlo studies for the location problem (An•
drews et al. 1972) lead us to expect that LS estimates will 
be worst, that Andrews will do very well, and that Huber, 
~PE(RQ), and ~KB will have roughly comparable per•
formances. Of course, with these data the true param•
eters are unknown, and we can only measure performance 
by closeness of fit to the bulk of the observations, for 
example, with MAD or interquartile range of the resid•
uals (IQR). Using either MAD or IQR as criteria, our 
study does seem to agree with our expectations. The re•
descending M estimator (Andrews) appears to be best 
overall. 

Also, we have included ~(.5), the LAD estimate. Its 
performance was quite good here, but of course it is 
known to have poor efficiency at the normal model. 

In Table 4, we list the regression coefficients, MAD, 
and IQR for each estimator. The figure shows box plots 
of the residuals and was obtained from the SAS package. 

LS computations were performed on SAS. Regression 
quantiles were computed using MPS/360, a linear plo•
gramming package, and LPMPS, a preprocessor for 
MPS/360 (McKeown and Rubin 1977). 

10. SUMMARY 

We have considered two methods of defining a 
trimmed LS estimator: ~KB, which uses Koenker and Bas-

4. Regression Coefficients, MAD, and IQR for the Stackloss Data 

Code Intercept Air Flow Temperature Acid MAD lOR 

LSE 39.92 -.72 -1.30 .15 1.92 3.12 
~(.50) 39.69 -.83 -.57 .06 1.18 1.71 
~ .. (.15) 42.83 -.93 -.63 .10 1.60 2.49 
p,(RQ,.10) 40.37 -.72 -.96 .07 1.37 2.59 
Huber 41.00 -.83 -.91 .13 1.63 3.07 
Andrews 37.20 -.82 -.52 .07 .99 1.50 

Water Salinity Data 

Code Intercept SALLAG TREND H20FLOW MAD lOR 

LSE 9.59 .777 -.026 -.295 .72 1.38 
~(.50) 14.21 .740 -.111 -.458 .50 .98 
~ .. (.15) 9.69 .800 -.128 -.290 .67 1.36 
~,(R0 .. 10) 14.49 .774 -.160 -.488 .60 1.05 
Huber 13.36 .756 -.094 -.439 .56 1.02 
Andrews 17.22 .733 -.196 -.578 .47 .83 
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Box Plots of Residuals tor the Stackloss Data 
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sett's (1978) regression quantiles, and ~PE, which uses a 
preliminary estimate. 

Despite its intuitive appeal, ~PE(LS) may not be very 
satisfactory when based on an arbitrary preliminary 
estimate. Its behavior will depend heavily on the choice 
of the preliminary estimate. Some choices (e.g., median 
regression) result in very inefficient trimmed estimates at 
the normal distribution, even if the trimming proportion 
is small. Other choices (e.g., LS) can lead to low effici•
ency for heavy-tailed distributions, especially if the trim•
ming proportion is high. Moreover, the contribution of 
the preliminary estimate to the variance of ~PE depends 
on the density of the error distribution and might be 
difficult to estimate in practical situations. 

The estimate ~KB behaves analogously to a trimmed 
mean. Also, for a particular choice of preliminary esti•
mate, namely, the average of two regression quantiles, 
~PE (which for this preliminary estimate we call 
~PE(RQ)), is asymptotically equivalent to ~Ka, provided 
the error distribution is symmetric. 

For moderately sized data sets, ~PE(RQ) has one 
major advantage over ~KB; with ~PE(RQ) the proportion 
of observations rejected can be made quite close to any 
specified a. Since the number of observations lying on a 
regression quantile hyperplane is typically equal to the 
number of independent variables, ~KB does not share this 
property with ~PE(RQ). 

The trimmed estimates ~KB and ~PE(RQ) seem to be 

worthwhile alternatives toM estimates based on Huber's 
¥, but they are not necessarily adequate substitutes for 
redescending M estimates. 

APPENDIX 

Lemma A.1: With probability one there exists no vector 
b and p + 1 rows of X, Xi< I), ••• , Xi<p+l>, such that Y• 
= x'i<;lb for j = 1, ... , p + 1. 

Proof: Routine; use the continuity of F. 

Lemma A.2: Let r1, ... , r,. be the residuals from ~0, 

suppose 0 < 8 < 1, and let ~n be a sequence of solutions to 

L pe(r;- !'n) ~ min . 

Then 

n-l E if;e(r, - !'n)-> 0 almost surely (A.l) 
i-1 

In addition, the sequence of solutions ~(6) of (1.5) satis•
fies 

n-l E x;if;e(y,- x',~(6))-> 0 almost surely . (A.2) 

Proof: We prove only (A.2) because (A.l) can be 
demonstrated in a similar manner. 

Let {e;l~~ 1 be the standard basis of R•. Define 

G;(a) ~ E p,(y,- x',(~(6) + ae;)) , 
i=l 

and let H;(t) be the derivative from the right of G;, so 
that 

H;(a) ~ E X;;if;e(y, - x',(~(O) + ae;)) 
i=l 

Notice that H;(a) is nondecreasing. Therefore, for , > 0 

H;(- �) S H;(O) S H;(<) , 

and because G;(a) achieves its minimum at a = 0, 

H;(- �) S 0 and H;( �) 2:0. 

Consequently, 

IH;(O) I s H;( �) - H;(- �) (A.3) 

Letting '-> 0 in (A.3), we see that 

IH;(OJ I s E jx, ;II(y,- x',~(e) ~ O) 

Now (A.2) follows from Lemma A.l. 

Lemma A.S: For A E R•, define 

Then for all L > 0 

sup IIM(A)-M(O)+ f(~(6))QAII ~o.(l) (A.4) 
O~II4.11:::;L 
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Proof: The result follows from Lemma 4.1 of Bickel 
(1975) because 

E(M(4) - M(O))--?- f(~(8))e' 4 . 

Remark: Equation (A.4) is a special case of the con•
clusion of Jureckova's (1977) Theorem 4.1, which she 
proves under conditions different from ours. Her C ;i is 
our xi,-n-l. 

Proof of Lemma 1: Since ~ = ro. is a solution to . 
L: p,(r,- ~) = min! , 
i-1 

(A.1) implies that 

n-1 L: y,,(z, - ~(8) - x',((~, - ~) 

+ e(r1, - ~(8))))--> 0 almost surely . (A.5) 

Define V(4) = n-l :L~- 1 y,,(z,- :r';4n-l- ~(8)). Us•
ing the method of Jureckova (1977, proof of Lemma 5.2) 
and (A.4), we can show that for all • > 0 there exists 
~, K, and no such that 

Pr( inf IV(4)1 < ~) < � for n 2:: no. (A.6) 
le'.4!>K 

Next, (A.5) and (A.6) allows us to conclude that 

nl(e'(~o - ~) + r1, - ~(8)) = 0,(1) . (A.7) 

837 

and 

W(4) =n-1 L: x,zJI~1+x';41n-!:::;z,:::;~,+x',4,n-11 
i-1 

Using Lemma A.4, it is easy to show that for all M > 0, 

sup IU(4)- (1- 2a)QI = o,(1) (A.S) 
OSJj.A.JJ.SM 

and 

sup IW(4)- W(O)- Q(4,~,f(~,)- 41~d(6))1 
0:5JJ4j]:$.M 

= o,(1) . (A.9) 

Then, using the fact that x'ie = 1, we have 

Ilr1.::::; r,::::; r,.l = Il~1 + x',((~,- ~) + e(r,.- ~1)) 

::::; z, ::::; ~' + x';((~o- ~) + e(r,, - ~,))I , 

and so replscing At by nl((Go - ~) + e(r1 , - ~,)) for 
t = 1, 2 in (A.8) and (A.9), we have 

n-1(X'AX) = (1 X 2a)Q + o,(1) 

and 

n-IX'A(y-AX~) 

= W (O)+Q I ~,f(~,)n1(~0 -~+e(r2,- ~2)) 
- 6f(~1)nl(~,- ~+e(r1.- ~1)) I +o,(1) 

By (A.lO), 

nl(X'A(y -AX~)) 

(A.lO) 

(A.ll) 

= (1 - 2a)n1Q(~PE- ~) + o,(1) . (A.12) By (A.7) and Assumption 5 we may substitute nl(~o- ~ 
+ e(r,, - ~(9))) for 4 in (A.4) and complete the proof 
by examining first coordinates, using Assumption 2. By (A.ll), (A.12), and Lemma 1, 

Lemma A.4: Let D,,( = D,) bear X c matrix. Suppose 

sup (n-1 L: IID•II') < "" , 
i-1 

where IID,II' = TrD',D, is the Euclidean norm of D,. 
Let I be an open interval containing ~1 and ~' and let the 
function g(x) be defined for all x and Lipschitz continu•
ous on I. For 4.t, A.2, and .A.a in R 11 and 4. = (At, ..:12, 
4a), define 

·116 + x',41n-1 < z, < ~. + x',4,n-11 

Then, for all M > 0, 

sup !T(4) - T(O) - E(T(4) - T(O)) I = o,(1) 
ll.:1!!SM 

Proof: The proof is very similar to that of Bickel's 
{1975) Lemma 4.1 and is omitted here, but it can be 
found in Ruppert and Carroll (1978). 

Proof of Theorem 1: For 4, 4, in R• and 4 = (..11, 
4,), define 

U(4) =n-1 L: x,x' J(6+x',41n-1:::;z,:::;~,+x',4,n-11 
i=l 

(1 - 2a)n!Q(~PE- ~) = W(O) 

+ nla(l - ee')(~, - ~)I + o,(1) 

Then (3.3) follows from the definition of W (0). 

Proof of Theorem 4: Using (A.4) and the method of 
Jureckova (1977, proof of Lemma 5.2), we can show that 

nl(~(&) - ~(&)) = 0,(1) . 

Therefore, we can substitute nl(~(&) - ~(&)) for 4 in 
(A.4) and use (A.2) to obtain 

4(0) = f(~(8))Qn1(~(8) - ~(8)) + o,(l) , 

and Theorem 4 follows easily. 

Proof of Theorem 3: The proof is quite similsr to the 
proof of Theorem 1 and can be found in Ruppert and 
Carroll (1978). 

Proof of Theorem 5: For A1, 4,, 4a in R•, define 4 
= (41, 4,, 4a) and 

V(4) = n-1 L; (Z;- x',4 1n-1- a(a))' 
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We see that 

8 = nV(v'n(~KB(a) - (~ + 8(a)), v'n(B(a,) -~(a,)), 
y'n(~(a2) - ~(a2))) • 

Applying Lemma A.4 with g(x) = x' and D, = 1, we have 
forM> 0 

sup IV(A)- V(O) -E(V(A)- V(O))I = o,(1). 
j4!5M 

By a Taylor expansion ofF and additional simple calcula•
tions, 

whence 
E(V(A)- V(O)) ~o, 

sup I V(A) - V(O) I = o,(1) 
!"'-15M 

Therefore, by Corollary 2 and (5.2), we have 

8 = V(O) + o,(1) . 

Now VIU" V(O) ~ 0, so by Chebyshev's inequality, 

8 = EV(O) + o,(1) 

= E(Z, - &(a))'J(~, :$ z, :$ ~,) + o.(1) 

Furthermore, for j = 1, 2, 

c; = ~; - &(a) + o,(1) 

by CorollllJ"Y 2 and (5.2), and Theorem 5 follows. 

Proof of Theorem 6: This follows in a straightforward 
manner from (5.2), Theorem 5, and Theorem 4.4 of 
Billingsley (1968). 

[Received July 1978. Revised May 1980.] 
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ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR MODELS 

BY RAYMOND J. CARROLL1 AND DAVID RUPPERT2 

We consider a heteroscedastic linear model in which the variances are 
given by a parametric function of the mean responses and a parameter fJ. We 
propose robust estinlates for the regression parameter p and show that, as 
long as a reasonable starting estinlate of () is available, our estinlates of p are 
asymptotically equivalent to the natural estinlate obtained with known vari•
ances. A particular method for estinlating fJ is proposed and shown by Monte•
Carlo to work quite well, especially in power and exponential models for the 
variances. We also briefly discuss a "feedback" estinlate of p. 

1. Introduction. We consider the heteroscedastic linear model 

(1.1) Yi == Ti + t1i£i, Ti == Xi/3, i= 1, ••• ,N, 

where {x;} and 1 x p design constants, p is a p X 1 regression parameter, {e;} are 
independent and identically distributed with mean zero and unknown symmetric distri•
bution function F, and { o;} are scaling constants which express the possible heteroscedas•
ticity. Our primary interest is in inference about the unknown regression parameter p. 

Of course, one could ignore the { o;} and use classical methods such as least squares or 
M-estimation (Huber, 1981), but such estimates are not efficient. In order to make more 
efficient inference about p, it is necessary to get information about the {o;}. In one 
approach to the problem, the { oi} are assumed completely unknown, but replication is 
assumed feasible so that the { Y;} occur in groups of equal varisnce. Recent results in this 
direction are due to Fuller and Rao (1978). Their results are complicated, and the delicate 
calculations involved seem to depend very heavily on an assumption of Gaussian errors, 
which is undesirable from the viewpoint of efficiency robustness; see Huber (1981) for 
details and further references. 

The second approach to the estimation problem for (1.1) avoids the replication assump•
tion by positing a known form for the error varisnce, i.e., 

(1.2) o; = H(x;, p, 8), 

where 8 is an r X 1 vector of unknown coefficients and H is smooth and known. A model 
such as (1.2) is behind the tests for homoscedasticity developed by Anscombe (1961), 
Bickel (1978), and Carroll and Ruppert (1981). Of course, in many real problems we suspect 
a heteroscedastic model because the dispersion of the residuals increases with the magni•
tude of the fitted values. Thus, it has become quite common to simplify (1.2) by assuming 
o; is a function of -r; or I T; 1. e.g., 

o; = ol -r; lA (Box and Hill, 1974); 

(1.3) o; = o exp(A.-r;) (Bickel, 1978); 

o; = o(1 + A.-rf) 112 (Jobson and Fuller, 1980). 

(See also Dent and Hildreth, 1977.) Following these examples, we will thus assume that for 
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some known H, 

(1.4) cri = crH*(Ti, .\) = H(Ti, 8) with 8 = (cr, .\). 

Our results can be generalized to the model (1.2), but the statements of results and 
assumptions then become extremely complicated. 

Box and Hill (1974) and Jobson and Fuller (1980) both suggest a form of generalized 
weighted least squares. One obtains estimates of (8, {:J), constructs estimated weights ai, 
and then performs ordinary weighted least squares. Their methods are constructed from 
a normal error assumption, and their efficiency depends on this assumption. The maximum 
likelihood estimates for 8 under the normality assumption have a quadratic influence curve 
and may be particularly non-robust. As argued above, the recent literature demonstrates 
some acceptance to the notion that estimators should be robust against departures from 
normality. One purpose of this article is to provide a set of such robust estimates. 

Implicit in the work of Box and Hill (1974) and Jobson and Fuller (1980) is the notion 
that this problem is adaptable, i.e., the generalized weighted least squares methods are 
asymptotically equivalent to the "optimal" weighted least squares estimate for the true 
{ CJi}. Our second major aim is to show that there is a wide class of robust estimates of fJ 
which are adaptable for many distribution functions F and models (1.4). 

2. A class of weighted robust estimates. Suppose we have estimates of (8, /3) 
which are N 112-consistent, i.e., 

(2.1) 

The existence of such estimates is discussed in the next section. We then form the 
estimated CJi as follows, 

(2.2) ai = H(t;, 0), ti = Xi/k. 

If the { cri} were known, robustness considerations discussed by Huber (1973, 1981) 
suggest a general class of weighted M-estimates formed by solving the minimization 
problem in {:J; 

(2.3) ~ {Yi-Xi{:J} .. -"P =nnmmum. 
C1i 

Here pis taken to be a convex function. If, for example, p(x) = x 2/2, we get the "optimal" 
weighted least squares estimate with known weights. In general, the unknown solution to 
(2.3) is denoted f3opt· 

The class of estimates we suggest are very simply generated by substituting {a;} into 
(2.3). Taking derivatives, we suggest solving the equation 

(2.4) L~I (~;).p{Yi ~iXi{:J} = 0, 

with solution denoted by p. Throughout we take I{; to be an odd, continuous function. The 
non-robust generalized weighted least squares estimates suggested by Box and Hill (1974) 
and Jobson and Fuller (1980) fall under the special case of (2.4) when l{;(x) = x; both 
propose possibilities for Po and 0 of (2.1). As suggested by the literature, choosing a 
bounded I{; can result in reasonably efficient and robust estimates of {:J. 

Defme di = Xi/ CJi and assume that for a positive definite matrix S, 

(2.5) 

Then by formal Taylor series arguments, the optimal robust weighted estimate PoP•• which 
solves (2.3), satisfies 

(2.6) N 112 ({J. - {:J) = N- 112 ~l'l s- 1 d~ I{;(E;) + o (1)-+ N(O E·1·2S- 1(E·,)- 2) 
opt -"'-I � EI{;'(EI) p !£' ' 'I ' 'I ' � 
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Our main result concerning adaptation is that when (2.1) holds, and hence we have a 
reasonable estimate of 8, then our estimate Pis asymptotically equivalent to Popt· In stating 
assumptions and proofs, we simplify (1.4) to 

(2.7) CTi = exp{h(Ti)8}, 

where his a function from R toR'. The model (2. 7) includes the first three models in (1.3), 
but it is not strictly necessary for the validity of our results. Our reason for considering 
only (2. 7) in the formal aspects of this section is to avoid making already cumbersome 
notation needlessly complicated. Generalizations to the model (1.4) required that H( ·, ·) 
be smooth. Formally, we have the following. 

THEOREM 1. Assume (2.1), (2.5), (2.7), the smoothness conditions B6 through B8 
listed in Section 7, and 
Bl. .p monotone and odd, F symmetric, 0 < EY,2(e1) < co, EY,' > 0. 
B2. limN~~supi,;;N(II Xi II + II h(Ti)II)N-112 = 0. 
B3. supN{N-1 Lr-.1 <II Xi 112 + 11 h(Ti>lm <co. 
B4. The u; are bounded away from zero. 
B5. On an open interval I (possibly infinite) containing all the {T;}, h is Lipschitz 

continuous. 
Then 

(2.8) 

That p is robust against outliers in the errors when .p is bounded can be seen by 
combining (2.6) and (2.8). The resulting influence curve is strikingly similar to the 
unweighted case in homoscedastic models. 

The proof is given in Section 7. Conditions B1 through B3 and B6 through B8 are 
similar to those used by Bickel (1975) in his study of one-step M-estimates in the 
homoscedastic model. Condition B4 ensures that we do not have infinite weights, and 
condition B5 assures us that when u; = H (T;, 8) = exp{ h( T;)8}, the function His sufficiently 
smooth. 

3. Estimation of 8. In the previous section we have shown that, except for certain 
technical conditions, one can construct robust weighted estimates of fJ as long as one has 
available estimates of 8 and fJ which satisfy (2.1). Preliminary estimates Po satisfying (2.1) 
are readily available and include (under reasonable assumptions) ordinary least squares 
estimates and ordinary M-estimates; details of sufficient conditions for this are available 
from the authors. Bounded influence regression estimates could also be used; see, e.g., 
Krasker and Welsch (1981). In this section, we propose a class of estimates of 8 which are 
robust and satisfy (2.1). There are, of course, many possible ways to construct such 
estimates, but our method has the necessary theoretical properties as well as encouraging 
small sample properties; see the next section for details. 

To motivate our estimates, suppose that the { Ti} were known, that the { u;} satisfy (1.4), 
and that the density {is proportional to exp{-p(x)}, where p and p' = Y, are as in the 
previous section. This device is common in robustness studies; see Huber (1981), Bickel 
and Doksum (1981), and Carroll (1980) for examples. In this instance, the log-likelihood 
for 8 is, up to a constant, 

(3.1) N 'i ;"N { Y;- Ti} t(8) = Li-1log H(T;, 8)- L.i-1 p H(T;, 8) . 

Taking derivatives in 8 suggests that we solve 

(3.2) 0 = t'(8) = Lf-1 [z,(8)Y,{z,(8)} - 1] aa8 H(T;, 8)/H(T;, 8), 
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where z,(8) = ~~'T~ ; � :. Because the term in square brackets in (3.2) is not bounded and 

hence would, in general, lead to an unbounded influence function for the estimated 8 and 
an overall lack of robustness in our estimation procedure, we follow the common device 
used in the homoscedastic case by Huber (1981) and Bickel and Doksum (1981) of replacing 
xl[;(x) - 1 by a function x< ·),as well as replacing 'Ti by t, = x,/io, thus leading to estimates 
obtained by solving 

(3.3) N { Yt-ti} i1 o = GN(8) = ~·-~ x H(t,, 8 ) a8 H(t,, 8) /H(t., 8). 

Probably the most common choice of x ( ·) in the homoscedastic case is 

(3.4) x(y) = x 2(y)- J o/ 2(x)<f>(x) dx. 

This choice of x(.) gives bounded influence to our estimates of 8, and thus might 
reasonably be preferred in our problem to y>[;(y) - 1, just as it is in the homoscedastic 
case; see Huber (1981, Section 11.1) for certain optimality properties of this choice. In the 
case of the special model (2. 7), we have 

(3.5) GN(8) = ~f-1 x{(Y;- t,)e-h(t,)O}h(t;). 

We make the assumptions that x(·) is an even function with x(O) < 0, x(co) > 0. In the 
model (1.4), a is a free parameter defined so that 

(3.6) Ex(Y1
; 'TI) = o. 

In the first model of (1.3), we have 

h(T) = log(1 + IT 1). 
In many models (such as the first three models in (1.3), the third with Tt > 0), one can 

show that solutions to the equation GN(8) = GN(a, A)= 0 exist. We have been unable to 
show that the solutions are unique, although in all of our examples, unique solutions have 
been obtained. More importantly, one may not wish to consider all possible values of 8, 
e.g., in the first three models of (1.3), one may reasonably wish to restrict 181 :S 1.5 if one 
assumes that the variances will be no larger than the cubes of the means. For these 
reasons, we suggest the following procedure: 

(3.7) Minimize II GN(8)11 =II GN(a, >-)II on the interval A E J. 
If the solution is not unique, choose the one with smallest II A II· 

The solution to (3. 7) is thus well-defined. In all of our examples when 8 is unrestricted, the 
solutions to (3.3) and (3.7) have coincided. In the examples in which we have restricted 8, 
(3. 7) has always had a unique solution even when (3.3) has not had a solution in the 
restricted space. 

An appealing feature of these estimates is that they are natural generalizations of the 
classical Huber Proposal 2 for the homoscedastic case. 

THEOREM 2. Assume (2.5), (2.7), (3.6), and B2 through B5. Further assume that 
N 112(Po - /J) = Op(1). Finally, make the assumptions 
Cl. 0 < Ex2(EI) <co, and xis non-decreasing on [0, co). 
C2. As r, s-+ 0, for A(x) > 0, Ex((ei + r)(1 + s)} = A(x)s + o(l r I+ Is 1). 
C3. Condition B7 holds for X· 
C4. Condition B8 holds for X· 
C5. If AN is the minimal eigenvalue of HN = N- 1 ~f-1 h(T,)Th(T;), then lim inf AN= Ao.. 

>0. 
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Then if 0 solves (3. 7), we have 

(3.8) 

The proof is given in Section 7. The conditions are similar to those of Bickel (1975), 
with only C5 affected by hetreroscedasticity. Further details of implementation are 
discussed in the next section. 

One can also introduce redescending M-estimates by using 1/t redescending to zero. 
Estimates for 0 and P can be obtained by doing one or two steps of Newton-Raphson for 
(2.4) and (3.3) from any estimate satisfying (2.1). Proofs are similar to those given in the 
appendices. 

4. A Monte-Carlo study. Because Theorem 1 is an asymptotic result, we performed 
a small Monte-Carlo study to assess the small sample properties of P. The model was 
simple linear regression, given by 

(4.1) Y; =Po+ p,c; + cs;E; = T; + cs;E;, i = 1, • • ., N. 

In the study, the {c;} were equally spaced between -2 and +2, and we chose to study the 
model 

cs; = cs(l + I T; I )~. 

The experiments were each repeated two hundred times under the following circumstances: 

(a) N = 21, {E;} are N(O, 1), u = .25, Po= 2, p, = 1. 

(b) N = 41, {E;} are N(O, 1) with probability p = .90 and N(O, 9) withp = .10, u = .25, 
{Jo = 4, p, = 2. 

We made two choices for ..p. First was 1/t(x) = x, which yields the usual weighted least 
squares estimate PL. and the second was Huber's 1/t(x) =max{ -2.0, min(x, 2.0) }. This gives 
a version Pn of our robust weighted estimates. In constructing a;, we defined x as in 
equation (3.4). 

Both PL and Pn were constructed as follows: 
Step (i). Let p. be the unweighted Huber Proposal2 estimate (,\ = 0) with x given by 

(3.4) and 1/t(x) = max{-2.0, min(x, 2.0)}. 
Step (ii). Solve (3.7) for (cs., >...)and form inverse "weights" 

w~ = (1 + I t;! )~, t; = x;p •. 

Step (iii). Solve a weighted Huber Proposal 2 by simultaneously solving (2.4) with the 
desired function ..p and the part of (3.6) given by 

(4.2) 

The result is fio. 

.._.1.'1 (Y;- x;P) _ 0 
"''~IX - · awi 

Step (iv). Repeat steps (ii) and (iii) to obtaint; = xJj0, X, u, p. 
The algorithm given here was chosen so as to reproduce Huber's Proposal 2 in the 

homoscedastic case A = 0. Direct application of the results of Section 2 involves only 
solving (2.4) in Step (iii) and gave results essentially indistinguishable from those reported 
here. In solving for (A, c7), we used the subroutine ZXGSN of the IMSL library. 

In Table 1, we list part of the results of the study. The values listed are ratios of mean 
square errors for estimating p, in model (4.1), the ratio being with respect to the "optimal" 
robust method one would use if wf = (1 + I -r,l )~ were known, i.e., solve (2.4) and (4.2) 
simultaneously with the known weights. The study is fairly small, but it does seem to 
indicate that our robust weighted estimate will work in situations in which heteroscedas•
ticity is suspected. 
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TABLE 1 

Monte-Carlo MSE ratio for simple linear regression under (6.1). 

Sample Size N = 21 Sample Size N = 41 
Po = 2.0, p, = 1.0 Po = 4.0, p, = 2.0 

Nonnal Errors Contaminated Errors 

Estimator i\ =0.0 i\ = .5 i\ = 1.0 i\ = 0.0 i\ = .5 i\ = 1.0 

Unweighted LSE .98 1.18 1.67 1.24 1.51 2.31 
"Optimal" WLSE, .98 .98 .98 1.24 1.19 1.18 

known weights 
Our WLSE, esti- 1.14 1.13 1.11 1.29 1.25 1.26 

mated weights 
Unweighted robust 1.00 1.18 1.66 1.00 1.21 1.79 

estimate 
Our weighted robust 1.14 1.13 1.10 1.03 1.04 1.07 

estimate, esti-
mated weights 

It is important to note that our estimate has MSE never more than 15% larger than the 
unknown estimate formed with the correct weights and seems to do better than unweighted 
estimates when A -F 0. Note also the robustness feature; the efficiency of the weighted least 
squares estimates (even the "optimal" one) depends heavily on the normality assumption 
and is not very high in the contaminated case. All of the results tend to support the 
applicability of Theorem 1. 

We repeated the experiment, but with the model 

o; = o exp(AI -rd ), 
and obtained similar results, which seem to indicate that our theory is applicable for a 
variety of models for the { o;}. 

For testing and interval estimation, we use the following generalization of methods 
suggested by Huber (1973) for the homoscedastic case. Using (2.6) and Theorem 1, we 
estimate the covariance ofN1/ 2 (/ J- {1) by 

~ ~ ~ 

(4.2) K(Eo/2)S-'(Eo/T2, 

where 

E":;,, = ~1 "i:.· 1·'(y'- x;p) K = 1 + (p + 2) 1 - A S = ~1 "i:.x1x·6=-2 "' '~' a; ' NA' ''' 

~ ~ 

and Eo/2 is defined similarly to Eo/'. In our Monte-Carlo experiment, we constructed 
confidence intervals for the slope parameter {11 in (4.1), using (4.3) and t-percentage points 
with N - p - r = N - 4 degrees of freedom. The intended coverage probability was 95%. 
In none of these cases did the achieved coverage probability fall below 92%, and in the 
majority of the cases it was at least 94%. 

We also attempted to solve equations (2.4) and (3.5) simultaneously using the IMSL 
routine ZSYSTM. Our experience was much like that of Froehlich (1973) in that the 
algorithm converged most of the time but not always. Dent and Hildreth (1977) were able 
to show that the difficulties experienced by Froehlich could be overcome by sophisticated 
optimization techniques. We suspect that the same holds for our problem. 

The particular method for estimating 8 = (o, A) outlined in Section 3 and explored in 
this section is recommended for models such as the first three in (1.3), which satisfy (2.7). 
In the fourth model of (1.3), an alternative procedure is preferable because we can exploit 
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the relationship 

Here one would obtain initial estimates of (a,, a2) by robust regression techniques, as long 
as the lines of Jobson and Fuller (1980), working with the squares of the residuals from a 
preliminary fit. One would then do one-step of a Newton-Raphson towards solving versions 
of (3.3) which are obtained by working with (a,, a2) and following the line of reasoning in 
(3.1) through (3.3). Monte-Carlo work, which will be reported elsewhere, indicates that 
this technique can be quite successful. 

5. Feedback. In the case of normal errors, Jobson and Fuller have suggested using 
the information about fJ in the terms o1 = H( Tj, 8). This essentially reduces to maximizing 
(3.1) jointly in (8, fJ). In a very nice result, they show that if the error distribution is 
exactly nortnal and if (1.2) is exactly correct, then improvement over the weighted least 
squares estimate can be achieved. It is clear that such feedback procedures will be 
adversely affected by outliers or non-nortnal error distributions, and it is not clear how to 
robustly modify them. 

In cases where using feedback is contemplated, a second form of robustness must also 
be considered, i.e., robustness against misspecification of the functions H in (3.1). Carroll 
and Ruppert (1981, unpublished) have shown that as long as H is correctly specified to 
order O(N-112 ), the asymptotic properties of the' weighted estimates ( (2.4), (3.5)) are the 
same as if H were correctly specified; in this sense, our weighted estimates are robust 
against small errors in specifying H. They also show that such robustness is not the case 
for feedback estimates. In fact, any gain from feedback can be more than offset by slight 
errors in specifying H. Since our primary interest is in /J, and a,= H(Ti, 8) is at best an 
approximation, we suggest that feedback should not be automatically preferred in practical 
use. 

6. An example. In Figure 1, we plot the outcomes of 113 observations of Total 
Esterase {C,} and Radioimmunoassay - RIA {Y,}, made available to us by Drs. D. 
Horowitz and D. Proud of the National Heart, Lung and Blood Institute. The data are 
clearly heteroscedastic, so we fit the model (4.1) with variance model 

(6.1) 

and estimation done as in the previous section. The results are summarized in Table 2. 
Since A appears to be fairly large, the results of the Monte-Carlo indicate that weighting 
should be of real benefit. The confidence limits on A were obtained by bootstrapping 
(using 60 simulations). In the weighted cases, the standard errors for Po and p, were 
obtained from (4.3); similar standard errors not reported here were found by bootstrapping. 
The weighted results are fairly close together. While our purpose in presenting the numbers 
is merely illustrative, we note that the values of A suggest that a logarithmic or square root 
transformation might stabilize the variances (Box and Hill, 1974). A random coefficient 
model might also be contemplated (Dent and Hildreth, 1977). We fit a quadratic model to 
the data with little change. 

A program has been written by Neal Thomas to solve equations (2.4) and (3.5) 
simultaneously when the second model in (1.3) is used. Since the program utilizes the 
IMSL package's Levenberg-Marquardt algorithm, it can be used on non-linear regression 
models. The program is now being tested on simulated data and has been used in a study 
of migration patterns of the Atlantic menhaden, where it was tried on a data set exhibiting 
heteroscedasticity and numerous outliers. There it produced estimates which, from a 
biological viewpoint, seemed more credible than estimates from three other procedures: 
least squares, least squares after a log transformation applied simultaneously to both the 
dependent variable and the regression function, and Huber's M-estimator with the MAD 
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estimate of scale (Deriso, Reish, Ruppert, and Carroll, manuscript in preparation). Since 
menhaden are relatively rare in the northern part of their range (New England), catch 
data from that region exhibit small values but also low variability. Apparently, a weighted 
estimator is needed in order to obtain reasonable estimates of migration rates to and from 
northern waters. 
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FIG. 1. Scatterplot of 113 observations on x = total esterase andy = radioimmunoassay RIA. 
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TABLE 2 

Results of the analysis on the data for Figure 1 assuming (6.1). 

Method Po Standard iJ Standard i 90% Confidence 
Error Error Limits forA 

Unweighted -6.30 20.0 16.73 .89 
least squares 

Our weighted -19.22 14.1 17.42 .94 .68 (0.4,0.9) 
least squares 

Unweighted -6.54 17.4 16.67 .77 
robust 

Our weighted -26.99 11.8 17.73 .88 .85 (0.7,1.1) 
robust 

Proofs of theorems. The smoothness conditions mentioned in Sections 2 and 3 are 
as follows: 

B6. Asr-+ 0 and s-+ 0, E.p{(e1 + r)(1 + s)} = rEI[t'(ed + o(lrl +lsi). 

B7. There exist K > 0 and Co > 0 such that when 0 < 6 < 1, I r I ::s K, and Is I ::s K, 

E sup[ll[t{ (e1 + r)(1 + s)} - H (ei + r')(1 + s') }: I r- r' I ::56 and Is-s' I ::s 6] ::5 COS. 

BB. lim8--+0 E sup([.p{ (ei + r)(1 + s)} - l[t(ed ]':I rl, Is I ::s 6) = 0. 

The following general theorem will be used when studying /Jo, iJ, and {J. 

THEOREM 7.1. Let g;, k;, and A(cp, l) standing for giN, kiN, and A(.p, i, N), be 
sequences of positive constants such that 

(7.1) 

and 

(7.2) 

Let </>; be a function from R3 to R1 satisfying 

(7.3) E.pi(EI, 0, 0) = 0 for all i. 

Suppose that there exists K > 0 and Co > 0 such that for all i, 

(7.4) Esup{I.Pi(EI, r, s) -cp;(e~o r', s')l: lr- r'l,ls- s'l::s 6} ::5 Cog,.S 

whenever 0 < 6 < 1, I r I ::s K, and Is I ::s K, 

(7.5) SUpNsup;,.Ngi1E{.Pi(EI, r, s) - cp;(e~o 0, 0) - A(.p, i)r} = o( I rl +Is I) as r, s,-+ 0, 

(7.6) lim,....o SUpN SUp;,.NE[suplrl,;&,lsi,;Bgi2 {cp;(EI, r, s) - cp;(E~o 0, 0) }2] = 0, 

and SUPN sup;,sNgi2 E.p~(e;, 0, 0) < oo. Let aPl, al2l, and al"l be functions from R"' toR\ R\ 
and Rn respectively, and let z; ( =ziN) be elements of Rn satisfying 

(7.7) a)n(O) = 0, t= 1, 2, 3, 

and for each compact set S there exists K such that 

(7.8) 

and lla:3)(x) - a) 3l(y) II ::5 k; II Z; 1111 X- y II K for all X andy ins, i = 1, •••• N, and 

(7.9) N-112 llzdl ::5 k;. 
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For 4 E Rm, define the process 

UN(4) = N-l/2 :E~1 </>i{Ei, a)u(4), a,<2)(4)} {z, + a)3)(4)}. 

Then, for all M > 0, 

(7.10) SUPIIAIIsMII UN(4)- UN(O)- N- 112 :E~1 A(</>, i)a)1)(4)z,ll = Op(1). 

PROOF oF THEOREM 7.1. For convenience, take M = 1. For 0 < ll < 1, define 

We will show that 

(7.11) E { UN(4) - UN(O)} = N- 112 :E~~ A(</>, i)a)1)(4)z, + o(l), 

(7.12) UN(4)- UN(O)- E{UN(4)- UN(O)} = Op(1) 

for each fixed 4, and that there exists K depending upon M but not ll such that for all 0 
< ll < 1, all N, and all II All :5 1, 

(7.13) SN(4, ll)-ESN(4, ll) = Op(1) and ESN(4, ll) :5 Kll, 

where K does not depend upon ll. Since for any ll, we can cover the ball of radius 1 in Rm 
with a finite number of balls of radius ll, (7.11), (7.12) and (7.13) prove the theorem. 

To prove (7.11), note that by (7.3), 

E( UN(4)- UN(O)) = N- 112 :E~1 E[</>i{Ei, a)1)(4), a)2)(4)}- </>i(Ei, 0, O)]{z, + a)3)(4)}. 

We next have by (7.1), (7.7) and (7.8) that, for all large N, 

(7.14) liz• +a)")(.&.) II :5 2llzdl 

(for simplicity, take K = 1 in (7.8)), and also by (7.5), (7.7) and (7.8), 

E[<J>,(e,, a)1)(4), a)2)(4)} - </>i(Ei, 0, 0)] = A(<J>, i)a)1)(4) + o(g,k;) 

uniformly in i. Therefore, 

E{UN(4)- UN(O)} = N- 112 :E~1 A(<J>, i)a)U(.&.)z, + o{N- 112 :Ef-1 g,k,llzdl 

+ N- 112 :E~1 A(</>, i)aJI)(4)a)3)(4)}. 

By (7.1), (7.7), (7.8), and (7.9), the last term on the RHS is o(1). By (7.2), (7.9) and the 
Cauchy-Schwarz inequality, the second term is bounded by 

o(:E~~g,M) = o(1), 

so that (7.11) holds. Then, using (7.14), we have that for N large, 

'h Var{ UN( A) - UN(O)} :5 (2N-1 :E~1 g~IIZill 2)sup.,.Ngi2E[<J>,{e,, a)1)(4), a)2)(4)} 

- </>;(e~, 0, 0)]2 + EIIN-112 :E~1 <J>;(e;, 0, O)a)3)(4)112. 

The second term on the RHS is o(1) by (7.7) and (7.8). It also follows from (7.6) through 
(7.8) that 

SUPisNCi2E[</>i{E;, a)1)(4), a)2)(4)}- </>i(Ei, 0, O)f = o(1). 

Therefore, (7.12) is proved by applying (7.2) and (7.9). Finally, by (7.14) ESN(4, ll) is less 
than or equal to 

2N112 :E~1 E supn.>-A'II"'al</>•{e~, a)1)(4), a)2)(4)} - </>i{E~o a)u(4'), a)2)(4')} lllzdl 

+ N- 112 :E~1 SUPUA-A'II"BII a/3)(4) - a)3)(4'>IIE l</>i{E~o a)u(4'), a)2)(4')} I· 
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Thus by (7.2), (7.4), (7.6), and (7.9), 

ESN(Ii, 8) :s K8 

for some K which is independent of 8. By (7.1), (7.2), (7.6), (7.8), and (7.9), 

Var SN(Ii, 8)-> 0. 

Therefore, (7.13) is verified. 

439 

PROOF OF THEOREM 1. For l11 and 11 3 in RP, 112 in R', and 11 = (11, 11 2, 113), defme 

a)1I(J1) = N-1f2d;l11 

h;(li) = h(r; + X;liaN- 112 ) 

a)21 (11) = exp[-h;(I1)112N-112 + {h;(O)- h;.(i1)}8]- 1 

and 

Define the process 

UN(Ii) = N-112 L~1 ,P[{e;- a)'1(11)} {1 + a)21 (11)}]{d; + a)31 (11)}. 

Note that (2.4) can be rewritten as 

(7.15) 

Letting g; = 1, k; = N-112{1 +II d;IJ +II h(r;)ll}, </>;(£;, r, s) = .f{(e;- r)(1 + s)}, d; = Z;, and 
A (cf>, i) =A (.f) = E,P', the conditions of Theorem 7.1 are implied by (2.5) and B1 through 
B8, so for all M > 0, 

(7.16) 

Now by Chebyshev's theorem, B1 and B2, 

UN(O) = Op(l). 

In proving the theorem, we will not assume that /1 actually solves (2.4), but rather that the 
l.h.s. of (2.4) evaluated at /1 is less than twice its infimum over all fJ. However, as noted by 
Huber (1981, page 165), (2.4) will have a unique solution if ,Pis strictly monotone. From 
the last equation, we have that if 

lit= -{A(,P)S}-1 UN(O) = 0p(l), 
then by (7.16), U(li*) = op(1). Consequently, by the equivalence of (2.4) and (7.15), 

(7.17) II UN(N 112(/J- /3), N 112(0- 8), N 112(/Jo- /3))11 :S 211 UN(Ii*)ll = o,(1). 

By (2.1), we need only establish that 

(7.18) /J- fJ = Op (N-112) 

to conclude from (7.15) and (7.16) that (2.8) holds. But by (7.17), (7.18) holds if for each '17 
> 0, e > 0 and M, there exists M2 satisfying 

(7.19) 

Now (7.19) follows from (7.16) in a manner quite similar to Jureckova's (1977) proof of her 
Lemma 5.2. D 

PROOF OF THEOREM 2. For l11 in RP, l12 in R �, and 11' = (11[, 112), define 

h;(li) = h(r; + x;I1 1N- 112 ), 
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(7.20) a)u(4) = exp[-h,(4)42N-112 + {h,(O)- h,(4) }8 ] -1, 

(7.21) a)2l(4) = N-112d,4~, 

and 

(7.22) aj3l(4) = h;(O)- h,(4). 

Then let cf>(x, y, z) = x{(x- z)(l + y)} and define the process 

WN(4) = -N- 112 L~1 cf>{e,, a)'l(4), a)2l(4)} {h(r,)- a)3l(4)}. 

Note that (3.7) can be written as 

II WN{N 112(,8o- {3), N 112(B- 8)}11 =minimum. 

However, by (3.6), Cl and Chebyshev's inequality, 

(7.23) 

so that 

WN{N 112(,8o- /3), N 112(B- 8)} = Op(l). 

We can therefore prove (3.8) by showing that for each M1 > 0, e > 0 and Q > 0, there exists 
M2 > 0 such that 

(7.24) P[inf{ll WN(4lll: ll4dl :S M~, 114211 '2: M2} > Q] '2: 1- e. 

We will prove (7.24) by modifying the proof of Jureckova's (1977) Lemma 5.2. We first 
apply Theorem 7.1 with Zi = h,(O), g, = 1, A (cf>, i) =A (x), and k, = N-112{11 h(r;) II + II xdl 
+ llddl}. Then 

supll"llsMII WN(4)- WN(O) + A(x)N-112 L~1 h(r,)af'l(4)11 = Op(1). 

By a Taylor series expansion, 

a)l)(4) = -N- 112h(r;)4 2 + (h,(O)- h,(4)}8 + o(N-112). 

Thus, by C5 setting 

we obtain 

Now fixe> 0, M1 > 0, Q > 0. Use C1 to choose y such that 

P{ll WN(O)II '2: y/2} < e/2. 

Define 

D = SUPNSUPii<>Iii"MJII GN(4lii-

ThenD< oo (GNdependsonlyon41). DefineM2 by {A(x)>.ooM2/2- y- D} = Q. Using 
C5 and (7.25), find N 0 such that AN '2: Aoo/2 and 

P{supu,, 11 -M.u<>¥MJII WN(4)- WN(O)- A(x)4[HN- GN(4lll 
< y/2} '2: 1- e/2 (N '2: No). 

If 114211 = M2, 1141 II :s M~, and N '2: No, then with probability at least 1 - e, 

WN(4)42:;::: -M2II WN(Olll + 4[HN42A<xl- M2D- M2y/2 

:;::: {A(x)>.ooM2/2- y- D}M2 = QM2. 
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Since xis nondecreasing on [0, co) by C1, WN(~~, ~.s)~. is a nondecreasing function of s. 
Thus, II ~.112:: M. implies 

wN<~>~. 2:: <11~·11/M.HM·II~·II-IWN<~~, M.~.~~~·lr~>~.} 2:: II~·IIQ. 

Thus, 

{ . WN(~)~. } 
P infg<~.,II"Muii<~.,U;,M, ~~~•II > Q 2::1 -e, 

which with the Cauchy-Schwarz inequality proves (3.8). D 
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SuMMARY 

We study optimally bounded score functions for estimating regression parameters in 
a generalized linear model. Our work extends results obtained by Kra"Sker & Welsch 
(1982) for the linear model and provides a simple proof of Krasker & Welsch's first-order 
condition for strong optimality. The application of these results to logistic regression is 
studied in some detail with an example given comparing the bounded-influence estimator 
with maximum likelihood. 

Some key words: Bounded influence; Generalized linear model; Influential point; Logistic regression; Outlier; 
Robustness. 

1. INTRODUCTION 

In this paper we study robust estimation of(} in generalized linear models (McCullagh 
& Neider, 1983, Ch. 2) when the conditional density of Yl X has the form 

f(y I x) = exp [ {y- h(xT O)}q(xT O) + c(y)], 

where h(. ), q(.) and c(.) are known functions and(} is a vector of regression parameters. 
Models of this type include logistic and probit regression, Poisson regression, linear 
regression with known variance, and certain models for lifetime data. 

Our motivation for seeking robust estimators is the same as that in the linear model; 
maximum likelihood estimation is sometimes sensitive to outlying data. For logistic 
regression, Pregibon (1981, 1982) has documented the nonrobustness of the maximum 
likelihood estimator and expounded the benefits of diagnostics as well as robust or 
resistant fitting procedures; see also Johnson (1985). 

Much of the work on robust estimation concerns finding estimators which sacrifice 
little efficiency at the assumed model while providing protection against outliers and 
model violations. We follow this course finding bounded-influence estimators minimizing 
certain functionals of the asymptotic covariance matrix. Related work includes that of 
Hampel (1978), Krasker (1980) and Krasker & Welsch (1982). 

When fitting models to data, two important issues are identification of outliers and 
influential cases and accommodation of these observations. Frequently when influential 
cases are present, the fitted model is not representative of the bulk of the data. To rectify 
this, one can simply delete influential cases and refit via standard methods, but this 
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approach lacks a theory for inference and testing; the effects of case deletion upon the 
distributions of estimators is not well understood, even asymptotically. 

The robust techniques studied here provide a method of accommodating anomalous 
data. They allow continuous downweighting of influential cases and are amenable to 
asymptotic inference. Also, together with more direct diagnostics, residuals and weights 
from a bounded-influence fit can be used to detect exceptional observations. 

In § 2 we present some general theory; this is specialized to the case oflogistic regression 
in § 3; proofs of theorems are given in an Appendix. 

2. THE GENERAL THEORY 

2 ·1. The regression model 

We study regression models in which the dependent variable Y and explanatory 
p-vector X have a density of the form 

g(y, x; 8o) = f(y; x T 80 )u(x ). (2·1) 

The conditional density of Y given X = x is f(y; x T 80 ) and depends on the unknown 
parameter 80 only through xT80 ; u(x) is the marginal density of X. Expectation with 
respect to g(y, x; 8) is denoted by E 9 while E9,x indicates conditional expectation 
corresponding to f(y; xT8). Model (2·1) includes many generalized linear models 
(McCullagh & Neider, 1983, Ch. 2). 

Suppose ( Y;, X,) ( i = 1, ... , n) are independent copies of ( Y, X). Under regularity 
conditions the maximum likelihood estimator of 80 satisfies 

i:. I( Y;, x,, BMd = 0, (2·2) 
i=l 

where l(y, x, 8) = (i1/i18)[log {f(y; xT8)}] and n1(8ML- 80 ) converges in distribution to a 
p-dimensional normal random variate with mean zero and covariance matrix V( 80 ) = 
[E~~o{l( Y, X, 80W( Y, X, 80)}]-1• 

2·2. M-estimators and their influence curves 
We generalize (2·2) by considering estimators B.p satisfying 

i:. 1/1( Y;, X,, B.p) = 0, 
i=l 

for suitably chosen functions ljl from R x RP x RP to RP. We require that ljl be unbiased, 
i.e. 

E9 {1/1(Y,X, 8)}=0. (2·3) 

Under regularity conditions (Huber, 1967), B.p is consistent and asymptotically normal 
with influence curve 

IC.p(y, X, 8) = D; 1(8)1jf(y, X, 8), (2·4) 

where 

(2·5) 
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Write 1/1( 0) and/( 0) for 1/1( Y, X, O) and/( Y, X, 0) respectively. Assuming that integration 
and differentation can be interchanged in (2·3) and (2·5) it is easy to show that 

D.p( 0) = E8 { 1/1( oW( o)}. (2·6) 

Now let 

W.p(O)=E8 {1/1(0)1/!T(O)}. (2·7) 

It then follows (Huber, 1967) that the asymptotic variance of n!( O.p- Oo) is 

V.p( Oo) = D;1 ( Oo) W.p( Oo){D; 1( OoW-

For robustness we want IC.p to be bounded; for efficiency V.p should be small. In§ 2·3 
we define a norm for IC.p and outline a theory which suggests efficient bounded score 
functions. 

2 · 3. A scalar measure of influence and an optimal score function 
As a scalar measure of maximum influence we employ a definition of sensitivity 

introduced by W. A. Stahel in his Swiss Federal Institute of Technology Ph.D. thesis, 
and by Krasker & Welsch (1982). The self-standardized sensitivity of the estimator O.p is 
defined as 

IATIC.pl 
s(I/J)=supsup( TV )1 sup(Ic~V; 1 IC.p)!=sup(I/JTW; 1 1/J)( (2·8) 

(y,x) A* 0 A .pA 2 (y,x) (y,x) 

For a generalized linear model s(l/1) has a natural interpretation in terms of the link 
function, e.g. in logistic regression s(l/1) measures the maximum normalized influence of 
(y, x) on an estimated logit in that A TIC.p is the influence curve for A TO.p and A TV.pA is 
the asymptotic variance of AT 8 ... Although this paper studies only the self-standardized 
sensitivity we believe that useful estimators can also be obtained by bounding other 
measures of influence, such as fitted values; see Johnson (1985) for measures of influence 
relative to the determination of fitted values in logistic regression. 

For maximum likelihood 1/J =I and, in general, s(l) = +oo. To obtain robustness we 
limit attention to only those estimators O.p for which s( 1/J) ~ b < oo. Such an estimator is 
said to have bounded influence with bound b. 

Consider the score function 

(2·9) 

where I= l(y, x, 0) and the p x 1 vector C = C(O) and the p x p matrix B = B( O) are 
functions of () defined implicitly by the equations 

E8 {1/!si(Y,X, 0)}=0, B(O)=E8 {1/181 1/!~I}. (2-10) 

With C( 0) and B( 0) so defined, 1/181 is unbiased and W.p8 ,( 0) = B( 0), so that, by (2·8), 
!/lsi has bounded sensitivity. 

The vector C( 0) and matrix B( 0) are analogous to robust multivariate location and 
scatter functionals for/( Y, X, O) (Maronna, 1976). For sufficiently large b solutions C( 0) 
and B(O) satisfying (2·10) exist, and as b tends to infinity these tend to zero and E(W) 
respectively. Equation (2·9) shows that 1/Jsi is similar to a weighted maximum likelihood 
score with weights depending on the distance (1-C)TB-1(1-C); as b tends to infinity 
the weighting factor tends to one and !/lsi to I. 

For the normal theory linear model 1/181 is the score function found by Krasker & 
Welsch (1982), who show that if there exists a score I/! opt satisfying (2·3) and s(l/1) ~ b < oo 



480

416 L. A. STEFANSKI, R. J. CARROLL AND D. RUPPERT 

which minimizes v., in the strong sense of positive-definiteness, that is v., - v.,op< ~ 0 for 
all 1/1, then it must be of the form (2·9). That 1/181 possesses similar optimality properties 
is seen in Corollary 1·1 below. 

THEOREM 1. If for a given choice of b>O equations (2·10) possess the solution 
{ C( 0), B( 0)}, then 1/181 minimizes tr ( v., v;;)) among all 1/J satisfying (2·3) and 

sup (rcJ v ; ; )rc.,),: b2 • (2·11) 
(y,x) 

With the exception of multiplication by a constant matrix, I/J 81 is unique almost surely. 

Any score function I/! opt for which v.,- v.,op< ~ 0 for all 1/J will be called strongly efficient; 
we now state the following corollary. 

CoROLLARY 1·1. If there exists an unbiased, strongly efficient score 1/Jopt satisfying 
s( 1/1),: b < oo, then 1/Jopt is equivalent to 1/181 whenever the latter is defined. 

In Theorem 1 the conditions for optimality of 1/181 depend on 1/181 itself through VB). 
This is somewhat disconcerting. Nevertheless 1/181 does satisfy an optimality property and 
this result allows us to prove Corollary 1 ·1. 

Working within the class of score functions of the form l(y, x, O)w(y, x, 0) where w is 
a scalar weight function, Krasker & Welsch (1982) find the optimal form of w. Theorem 
1 and its corollary show that 1/181 is optimal over a much larger class of functions and 
hence yield a technically stronger result than Krasker & Welsch's. Also our proof is 
somewhat simpler than Krasker & Welsch's. 

Ruppert (1985) has shown that a strongly efficient score need not exist, in which case 
Corollary 1·1 is vacuous. In fact, we know of no case with p ~ 2 where a strongly efficient 
score has been shown to exist. However, the result given in Corollary 1·1 is still of 
interest; Ruppert (1985) uses it in his counter-example. 

The proofs of Theorem 1 and its corollary are presented in the Appendix. 

2·4. A one-step estimator 

Write o/BI = p81 (y, x, 0, B, C) to indicate dependence on B and C. Theorem 1 suggests 
the estimator 081 obtained by solving 

I $i( Os,) = 0, (2·12) 
i=l 

where $i( 0) = ifJBI{ ¥;,Xi, 0, B( 0), C( O)} and C( 0) and B( O) are defined implicitly by 
the equations 

I E9,x,{$i(O)}=O, B(O) = n- 1 I E9,x,{$i(o)$J(o) }. (2·13) 
i=l i=l 

In general the task of simultaneously solving (2·12) and (2·13) is formidable. For the 
linear model with known variance, B(O) does not depend on 0 and symmetry implies 
C( O) = 0, thus solving for 081 is greatly simplified. The case with variance unknown is 
only slightly more difficult (Krasker & Welsch, 1982). Our attempts at solving (2·12) and 
(2·13) for logistic regression have not yet been sufficiently successful to recommend a 
general computational scheme. When an M-estimator is difficult to compute, it is a 
standard practice to substitute a one-step approximation. Under mild regularity condi•
tions, using a one-step approximation is asymptotically equivalent to iterating until 
convergence. Thus, the following one-step approximation to 081 will have the same 
asymptotic optimality properties as 08 ,. 
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Let 0 be an initial root-n consistent estimator of IJo and suppose B( 0) and C( 0) satisfy 
(2·13). Define 

oW=o+n-1 f .D-1(0)$,(o), 
i=l 

where 

D( 8) = n-1 f Eo,x,{ $,(owe Y,, X,, 8)}. 
i=l 

This construction is similar to Bickel's (1975) type II one-step procedure. Under regularity 
conditions oW is consistent and asymptotically normal with covariance matrix V81 ( 80 ) = 

D8f( 80 )B( 80 ){D8f( 80W, which is consistently estimated by V = .8-\ O)B( O){D- 1( oW. 
To implement the one-step procedure a method of solving (2·13) for C(O) and B(8) 

when 8 remains fixed is required. Define 

( ) _I Eo,x,(/;,o min! [1, b 2 / { ( / 1.o- C)TB-1(/1, 0 - C)}]) 
11 C,B- IEo,x,(min~[l,b2/{(11• 0 -C)TB \1;, 0 -C)}]) ' 

12 ( C, B)= n-1 I Eo,x,{l/tBI( Y,, X,, 8, B, C)o/~1 ( Y,, X,, 8, B, C)}, 

where the sums are over i=l, ... ,n, and where 1, 0 =l(Y,,X,,8). Then (2·13) are, 
equivalently, C = 11( C, B) and B = 12 ( C, B). Let ( C0 ,'B0 ) be an initial guess and define 
recursively Ck+1 =11(Ck. Bk) and Bk+l =liCk, Bk)· If the sequence (Ck. Bk) converges 
the limiting value is {C(O), B(8)} satisfying (2·13). Alternatively {C(O), B(8)} can be 
computed using the iteration employed by Maronna (1976). Neither iteration is guaranteed 
to converge. Using the former method to compute one-step estimates in logistic regression 
the algorithm's success depended on the magnitude of the bound b; for larger choices 
of b no problems were encountered. However, computational difficulties did arise for 
small values of b. Particular choices for b in logistic regression are discussed in the next 
section. For the initial guess ( C0 , B0 ) we took C0 = 0 and B0 ~ n- 1 I l;,olT.o· 

Since robustness is our primary concern the initial estimator 8 employed in the one-step 
approximation to 081 should also be resistant to outliers. In the next section an appropriate 
initial estimator for logistic regression is presented which is computationally simpler and 
has some interesting optimality properties of its own. 

3. APPLICATION TO LOGISTIC REGRESSION 

3 ·1. The logistic model 
Logistic regression is a special case of (2·1) in which Y is an indicator variable such 

that 

pr ( Y = lJ X= x) = F(xT80 ), F(t) = (1 + e-T1• 

The general applicability of this form of binary regression is discussed by Berkson (1951), 
Cox (1970) and Efron (1975). The likelihood score is l(y, x, 8) = {y- F(xT 8)}x and the 
maximum likelihood estimator is consistent and asymptotically normal with covariance 
matrix V( 80 ) = [E00{F(l)(XT 80)XXT}r', where p<n(t) = (d/ dt)F(t). 

3·2. A bounded-leverage estimator for the logistic model 
The one-step approximation to OBI requires a more easily computed, robust, root-n 

consistent estimator to initiate the one-step procedure. Although many such estimators 
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are possible, with some being computationally simpler than others, we solve this problem 
by finding an efficient estimator from among a class of estimators chosen to facilitate 
computation. As a result we obtain an estimator which is not only appropriate for use 
in the one-step procedure but which is optimal within its class, thus making it a reasonable 
competititor to 081 � More specifically we find an optimal score function from among 
the class, 

At= [l/f: l/f(y, x, 9) = {y- F(xT9)}w(x, 9)], 

where w(x, 9) is a p x 1 vector-valued function of x and 9 but not of y. The advantage, 
in terms of computational simplicity, of restricting attention to score functions in At is 
that condition (2·3) is automatically satisfied and it is not necessary to estimate a robust 
location functional. 

The estimator we propose, and call a bounded-leverage estimator, corresponds to the 
score 

o/sL = {y- F(xT9)}x min~ [1, b2/{m 2(xT9)xTQ- 1( 9)x}], (3·1) 

where Q = Q( 9) is an implicitly-defined p x p matrix function of 9 satisfying 

Q( 9) = E8 (F< 1>(xT 9)XXT min [1, b2 / {m2(XT 9)XT Q-1 X}]), (3·2) 

and m(t) =max {F(t), 1- F(t)}. In the first author's University of North Carolina Ph.D. 
thesis it is shown that in order for (3·2) to possess a solution Q > 0, it is necessary that 

b2 > p/ E8{F< 1>(xT 9)/ m2(XT 9)}. (3·3) 

Condition (3·3) is generally not sufficient however. Note that with Q satisfying (3·2), 
w<io!L = Q and, by (2·8), OsL has bounded influence. 

We are able to restrict attention to scores in At and still obtain bounded influence 
simply because the absolute residual Jy- F(x T 9)J is bounded. However, lflsL takes a 
pessimistic view in downweighting observations in accordance with their maximum 
potential influence determined by their position in the design space and by 9. The term 
leverage is often used to denote potential influence (Cook & Weisberg, 1983) and hence 
the name bounded leverage. Potential influence is often far greater than the actual 
influence when the observation is well fit by the model. Although downweighting such 
points results in a loss of efficiency for 08 L this vvill not affect the efficiency of our one-step 
estimator. Also, as the following results show, o/sL is the most efficient score in At. 

THEOREM 2. If for a given choice ofb>O equation (3·2) possesses the solution Q>O, 
then lflsL minimizes tr ( V.p VilD among all l/1 in At satisfying 

sup (Ic~Vilbc.p).;;; b2• 
(y,x) 

With the exception of multiplication by a constant matrix, lflsL is unique almost surely. 

CoROLLARY 2·1. If there exists a strongly efficient score o/opt in At, then o/opt is equivalent 
to o/sL whenever the latter is defined. 

Proofs are similar to those of Theorem 1 and its corollary and will not be given. The 
extent to which Theorem 2 generalizes to other regression models is limited, since it 
requires that l(y, x, 9) be a bounded function of y. _ 

The bounded-leverage estimator is obtained by solving ~ o/sd Y;, X;, 9, Q( 9)} = 0, 
where the sum is over i = 1, ... , n, and where o/sL is given in (3·1) and Q(9) satisfies 

Q(9) = n-1 f p<1>(Xf9)X;XJ min [1, b2/{m2(Xf9)XJQ-1(9)X;}]. (3·4) 
i=l 
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The algorithm used to compute BaL for the example in§ 3·3 is now described. Let 80 

be an initial guess at BaL and define recursively 

8k+t=8k+D- 1(8dn- 1 I .PadY;,X.,8k,Q(8d}. 
i=l 

Since D( 8) is an approximation to- (aja8) "I. .PaL{ Y;, X., 8, Q( 8)} this is aquasi-Newton•
Raphson iteration. At each step of the iteration it is necessary to compute the matrix 
Q(8d satisfying (3·4). For a fixed 8 the matrix Q(8) can be found as follows. Let 

Oo= n- 1 I F 0 l(XJ8)X;Xi, 

J(Q) = n- 1 I F 0 l(XJ8)X;Xi min [1, b2 / {m 2 (Xj8)XJQ- 1X; } ] , 

where the sums are over i = 1, ... , n, and define recursively Qk+t = J ( Qd. For fixed 8, 
J( Q) is an increasing function of Q in the sense of positive-definiteness, i.e. for positive•
definite matrices A 1 ,.,;,; A 2 we have J (A 1),.,;,; J (A 2 ). Since Q 1 = J( Q0 ),.,;,; Q0 an inductive 
argument shows that the sequence ( Qd is decreasing in the sense of positive-definiteness. 
As it is bounded below, the sequence necessarily converges. The limiting value is Q(8) 
provided it is positive-definite. To specify fully the algorithm one must determine the 
bound b. For BaL this was chosen as a constant multiple of b(BaL), where 

b2 (8) = p / [ n- 1 itt {F< 1l(Xj8) /m 2(Xj8) } l 
see (3·3). For the example in§ 3·3 we took the bound to be ~b(OaL); this same bound 
was then used for the one-step estimator 9~1{. The choice ~b(8) was suggested by 
experience; it is sufficiently small to provide protection from extreme observations yet 
large enough to avoid computational problems. 

For the one-step construction in § 2·4 to work it is necessary that BaL be root-n 
consistent. In the first author's Ph.D. thesis it is shown that n~( BaL- 80 ) is asymptotically 
normal with covariance matrix VaL(80)=Di!L(80)Q(80){Di!U80)}T provided: 

(i) b is sufficiently large; 
(ii) E(JJXJJ 2) < oo; 

(iii) E{F<1l(XT8)XXTJJXJJ-1} is positive-definite; 
(iv) (ajaQ)E{ J (X, 8, Q)} is nonsingular where 

J (X, 8, Q) = Q- pOl(XT8)XXT min [1, b2/{m 2(XT8)XTQ-1X}]. 

The key assumptions are (iii) and (iv) which are similar to Assumption 7 of Krasker & 
Welsch (1982). 

As an estimate of VaL we use V=D-\BaL)Q(BaLHD-1(BaL)V, where 

3·3. Example 

We now apply our results to fit a model relating participation in the L.S. Food Stamp 
Program to various socioeconomic indicators. The 150 observations used in our analyses 
were randomly selected from a data set containing information on over 2000 elderly 
citizens. The larger data set is part of the 1977-78 Nationwide Food Consumption Survey; 
see Rizek (1978) for a discussion of the data collection procedure. The covariates we 
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selected for study are: tenancy, indicating home ownership; supplemental income, indicat•
ing whether some form of supplemental security income is received; and monthly income. 
In our sample of 150 there were 24 cases of participation. 

The researcher who provided these data to us had been using probit regression with 
monthly income entering linearly in the model. We first fit the logistic model with 
covariates tenancy, supplemental income and (monthly income)/10. The maximum 
likelihood, 8ML� bounded-leverage, BaL. and one-step bounded-influence, e~l. estimates 
for this model appear in Table 1(a). The one-step estimate was obtained using BaL to 
initiate the one-step procedure; see § 2·4. 

Both BaL and 881 are similar to weighted maximum likelihood estimators with data•
dependent weights; see (3·1) and (2·9). Empirical weights obtained in the course of 
computing BaL and 8~{ can be used as diagnostics to identify extreme or ill-fitting 
observations. For 8~{ empirical weights less than one indicate influential observations 
while for BaL the corresponding weights indicate potentially influential points. Since 
potentially influential points need not be influential, and this is particularly true in logistic 
regression due to the discrete response variable, the bounded-influence weights are 
generally more informative. For the analysis in Table 1(a) the only bounded-influence 
weights less than one were w40 = 0·69, w66 = 0·40, w95 = 0·98 and w 109 = 0·62. The bounded•
leverage weights for these same four observations were w40 = 0·68, w66 = 0·39, w95 = 0·96 
and w 109 = 0·61, which explains the similarity of 8~/ and BaL· There were many more 
bounded-leverage weights less than one, although again, these corresponded to observa•
tions which were well fitted by the model; thus downweighting these points had very 
little effect on the fit. 

Table 1 (a). Estimates for the logistic regression model with covariates tenancy, 
supplemental income, and (monthly income)/ 1 0; p-values in parentheses. 

Supplemental 
Intercept Tenancy income (Monthly income)/10 

OML -0·34 (0·5287) -1·76 (0·0009) 0·78 (0·1259) -0·01 (0·1122) 

OBL -0·16 (0·7872) -1·75 (0·0014) 0·17 (0·1360) -0·02 (0·0826) 
olfl -0·20 (0·6006) -1·76 (0·0012) 0·78 (0·1300) -0·02 (0·0922) 

Table 1 (b). Estimates for the logistic regression model with covariates tenancy, 
supplemental income, and log (monthly income+ 1); p-values in parentheses. 

Intercept Tenancy 

OML 0·93 (0·5681) -1-85 (0·0005) 
0BL 4·14 (0·1030) -1-81 (0·0007) 
olfl 4·02 <o·11oo> -1·81 <o-oo06> 
o~L 6·88 <o·o16o> -2-02 <o-ooo4> 
o~t 6·29 <o·0374) -1-96 <o-ooo7> 
* With cases 5 and 66 removed. 

Supplemental 
income 

0·90 (0.0737) 
0·75 (0·1444) 
0·76 (0·1416) 
0·76 (0·1586) 
0·75 (0·1612) 

**With cases 5, 66 and thirty additional points removed. 

log (monthly 
income+1) 

-0·33 (0·2228) 
-0·86 (0·0430) 
-0·84 (0·0465) 
-1·33 (0·0062) 
-1·23 (0·0169) 

Since all four observations with bounded-influence weights less than one correspond 
to the four largest incomes among those receiving food stamps a transformation of income 
is indicated. 

Table 1(b) gives the analysis with log (monthly income+ 1) replacing (monthly 
income)/10. This transformation substantially reduces the leverage oflarge income values 
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but increases the leverage of small income values. For this model the bounded-influence 
estimator downweighted only two observations with w5 =0·19 and w66 =0·70 and the 
bounded-leverage weights for the same two points were w5 = 0·19 and w66 = 0·69 explain•
ing the similarity of the estimates. As above, there were many more bounded-leverage 
weights less than one, although again, these corresponded to observations which were 
well fitted by the model and thus downweighting them had little effect on the fit. Case 66 
has the largest income among those participating while case 5 has the smallest income 
among those not participating. Apparently cases 5 and 66 are influencing the maximum 
likelihood fit; this is indicated to a great extent by the bounded influence analysis and 
even more so by the maximum likelihood fit with the two outlying cases removed. 

The estimates and p-values for the coefficients of tenancy and supplemental income 
are not altered much by the removal of cases 5 and 66 although the opposite is true of 
the estimate and p-value for the coefficient of log (monthly income+ 1). Together cases 
5 and 66 work to mask the significance of income as a predictor of participation. 

An advantage of robust methods over maximum likelihood is that residual plots are 
more reliable for uncovering outliers. This is illustrated in Fig. 1. Standardized residuals 
(Cox, 1970, p. 96; Pregibon, 1981) are plotted for both the maximum likelihood and 
bounded-influence fits; residuals from the bounded-leverage fit are similar to those from 
the bounded-influence fit and are not plotted. 

In this example the bounded-influence and bounded-leverage estimates are similar and 
our experience suggests that this is not uncommon at least for logistic regression. The 
similarity appears to arise because both estimators downweight influential points more 
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Fig. 1. Residual plots for food stamp data. Maximum 
likelihood residuals indicated by open circles; residuals 
from bounded-influence fit by darkened circles. Both 
residuals defined as by Cox (1970, p. 96). Negligible 

residuals omitted for clarity. 
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or less equally and, although the bounded-leverage estimator downweights many more 
points, these are typically ones which are very well fitted by the model and thus contribute 
little to its determination, i.e. they are noninfluential. As evidence for this claim we 
computed the maximum likelihood estimate for the model with log (monthly income + 1) 
after removing from the data observations 5, 66 and thirty additional points corresponding 
to those observations with the thirty smallest absolute residuals, jy-F(xTB)j, from the 
model fitted by maximum likelihood with only cases 5 and 66 removed. The estimated 
coefficients appear in the bottom row of Table l(b). The similarity of BtL and 8tt is 
remarkable considering that the latter estimate is based on over one-fifth fewer observa•
tions. Apparently the thirty observations removed in the latter fit are noninfluential. These 
points correspond roughly to the majority of those downweighted by the bounded-leverage 
estimate. 

4. CONCLUSIONS 

Our bounded-influence and bounded-leverage procedures provide methods of fitting 
meaningful models in the presence of anomalous data. The bounded-leverage estimator 
was originally intended only as a starting value for the more efficient bounded-influence 
estimator. Our experience with data suggests that the two estimators may be rather similar 
in practice for logistic regression. However, until more experience is accumulated, it is 
premature to recommend exclusive use of the bounded-leverage estimator. 

Robust procedures also supply useful diagnostic tools for model building. Variable 
selection, as well as estimation, can be influenced by anomalous data; Pregibon (1982) 
cites such an example. Often robust methods suggest variables appropriate for modelling 
the bulk of the data which would otherwise go undetected in a standard maximum 
likelihood analysis. Conversely, with nonresistant fitting, a variable might be used in the 
model simply to accommodate a single outlier. In addition to variable selection, the 
weights and residuals from a robust fit provide useful supplements to more direct 
diagnostics. For example, with the food stamp data, an analyst, seeing the impact of case 
five, might question the validity of that observation or the appropriateness of the model 
over the full range of incomes. 
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APPENDIX 

Proofs of Theorem 1 and Corollary 1 

Theorem 1 is a generalization of Appendix A of Hampel (1978) and the proof given here uses 
techniques given by Krasker (1980). To prove Theorem 1, let 1/J be any competitor to 1/181 • Without 
loss of generality assume that 1/J = IC.;, that is that 1/J is in canonical form in the sense of Hampel 
(1974). This is equivalent to assuming 

(A·1) 

and implies v.,(6) = E 9 {1/J( Y, X, 6)1/!T( Y, X, 6)}. Now write I for I(Y, X, 6) and 1/J for 1/1( Y, X, 6). 
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If rfr satisfies (A·l) and (2·3) then 

Ee[{Di!:U- C}-rfr} {Di!:U-C}-rfr}T] = Di!!E.{(l- C)( I- C)~(Di!l)T -Di!i-(Di!i)T+ V;.(O). 

Therefore tr ( v., Vii!) is, neglecting an additive constant independent of rfr, proportional to 

E8 [ {Di!i(l- C)- r/I}TVi! / {Di!:U- C)- rfr}]. 

Define </> = v;lr/1; in terms of</>, expression (A·2} becomes 

E.{ II</>- v ;lDi! /(1- C)ll2}. 

(A·2) 

(A·3) 

Note that 11<1>11 2 = r/ITVilir/1 and thus, subject to (2·11), equation (A·3} is minimized, as a function 
of</>, by 

(A·4} 

Condition (A·1) ensures that</> is unique almost surely. Equations (2·4), (2·6}, (2·7) and (2·10} 
imply Dili Vi!!(Di!DT = B- 1; thus in terms of r/1, (A·4} becomes r/1 = Di!ir/1 81• 0 

To prove Corollary 1·1, again assume that all scores are in canonical form and satisfy (2·3}. 
Define 

Y= {rfr: sup rfrTV; 1r/l"" b2}, Yo1 = {rfr: sup rfrTVi!ir/1"" b2}. 
(y,x) (y,x) 

We must show that if there exists r/Jopt in [I such that V;. � .,.,;;; v., for all rfr in Y, then r/Jopt is equivalent 
to Di!ir/1 81 • Clearly Di!ir/1 81 is in Y; thus by assumption V;.op,.,;;; V 81 • From this it follows that 

r/l!p, VBir/lop•"" r/l!p, v;~,r/lop•"" b2, 

and hence r/lopt is in Y81 • Let I=YnY81 • The set I is nonempty; it contains Di!ir/1 81 and r/lopt· 

For any rfr in I we know v., •• ,.,;;; v., and hence 

tr ( V, �� , Vi!!).,;;; tr ( V"' Vi!!) 

for all rfr in I. But Theorem 1 proves that Dii)r/1 81 , when defined, is the almost everwhere unique 
minimizer of tr ( v., Vii!> among all rfr in I. The equivalence of r/lopt and r/1 81 follows. 0 
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Conditionally Unbiased Bounded-Influence 
Estimation in General Regression Models, With 

Applications to Generalized Linear Models 
HANS R. KUNSCH, LEONARD A. STEFANSKI, and RAYMOND J. CARROLL* 

In this article robust estimation in generalized linear models for the dependence of a response y on an explanatory variable x 
is studied. A subclass of the class of M estimators is defined by imposing the restriction that the score function must be 
conditionally unbiased, given x. Within this class of conditionally Fisher-consistent estimators, optimal bounded-influence 
estimators of regression parameters are identified, and their asymptotic properties are studied. The estimators studied in this 
article and the efficient bounded-influence estimators studied by Stefanski, Carroll, and Ruppert (1986) depend on an auxiliary 
centering constant and nuisance matrix. The centering constant can be given explicitly for the conditionally Fisher-consistent 
estimators, and thus they are easier to compute than the estimators studied by Stefanski et al. (1986). In addition, estimation 
of the nuisance matrix has no effect on the asymptotic distribution of the conditionally Fisher-consistent estimators; the same 
is not true of the estimators studied by Stefanski et al. {1986). Logistic regression is studied in detail. The nature of influential 
observations in logistic regression is discussed, and two data sets are used to illustrate the methods proposed. 

KEY WORDS: Asymptotic bias; Bounded influence; Breakdown point; Generalized linear models; Linear models; Linear 
regression; Logistic regression; Robust regression. 

1. INTRODUCTION 

The basic generalized regression model states that, given 
the values of a p-dimensional explanatory variable x, the 
response y has a distribution function P 0( y I x). We are 
interested in estimating the parameter () from N indepen•
dent observations (y1, x1). In such a general model, M 
estimators are defined implicitly by an equation of the 
form 

N 

L 'lf(J ;, X;, (}N) = 0. (1.1) 
i-1 

In Equation (1.1), ()and 'I' have the same dimension p. 
Of course, maximum likelihood estimators are (nonro•
bust) M estimators. Assume that xis also a random vari•
able with distribution function F. For (}N to be consistent, 
standard theory requires that the estimating equation (1.1) 
be unbiased; that is, 

Eo('l '(y, x, ())) = I I 'I'(Y, x, ())P,(dy I x)F(dx) = 0 

for all (). (1.2) 

Requiring (1.2) is the same as saying that 'I' is Fisher•
consistent. Certainly, Fisher consistency is a minimal re•
quirement, but in linear and generalized linear regression 
it is too weak and even unpalatable because it involves 
the distribution of the predictors x. In a regression context, 
the x, may not be random variables. Furthermore, when 
the x1 are random it is customary to condition on the ob-

* Hans R. Kiinsch is Associate Professor, Seminar fiir Statistik, ETH•
Zentrum, CH-8092, ZUrich, Switzerland. Leonard A. Stefanski is As•
sociate Professor. Department of Statistics, North Carolina State Uni•
versity, Raleigh, NC 27695. Raymond J. Carroll is Professor and Head, 
Department of Statistics, Texas A&M University, College Station, TX 
n843. The work of Stefanski was supported by the National Science 
Foundation. The work of Carroll was supported by the Air Force Office 
of Scientific Research. The authors thank two referees for their helpful 
and thought-provoking comments, which improved the clarity of pre•
sentation. 

served values of x. We say that an M estimator is condi�
tionally Fisher-consistent if it satisfies 

Eo('I '(Y, x, ())I x) = I I 'I'(Y, x, O)P,(dy I x) = 0 

for all () and x. (1.3) 

In linear and generalized linear regression, maximum 
likelihood estimators are conditionally Fisher-consistent 
whenever the distribution of x does not depend on (). 

Conditional Fisher consistency is an appealing concept 
because it does not depend on the x's being random, and 
even if they are, it does not involve the distribution of the 
x's. This does not mean that the properties of conditionally 
Fisher-consistent M estimators are independent of the de•
sign, of course; simply remember the formula for the co•
variance of least squares estimates. Similarly, the influence 
function and the sensitivity defined in the following de•
pend on the design. 

In the linear model with symmetric errors, essentially 
all M estimators in the literature (including least squares) 
satisfy (1.3). Nevertheless, it can be shown that there are 
some bounded-influence M estimators that are not con•
ditionally Fisher-consistent when the errors are asymmet•
ric. This is particularly true of the class popularly known 
as Schweppe-type estimators. The Mallows-type esti•
mates, including ordinary M estimators, are Fisher-con•
sistent. For the definition of these two types, see Krasker 
and Welsch (1982) or Hampel, Ronchetti, Rousseeuw, and 
Stahel (1986, pp. 315-316). 

In generalized linear models, it is also possible to define 
Schweppe- and Mallows-type estimators [see Stefanski, 
Carroll, and Ruppert (1986) for the former and Pregibon 
(1981) for the latter (in logistic regression)]. The optimal 
robust estimators of Stefanski et al. (1986) are not con-
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ditionally Fisher-consistent, although they do satisfy (1.2). 
These estimators are difficult to compute, and even when 
computable their asymptotic distributions are difficult to 
understand because of a dependence on an auxiliary nui•
sance matrix B. In Sections 2 and 3, we study optimal 
robust conditionally Fisher-consistent estimates for gen•
eralized linear models. There is a practical payoff to re•
striction on this narrower class. In contrast to the estimates 
of Stefanski et al. (1986), our estimates are relatively easy 
to compute, and the asymptotic distribution theory is 
straightforward. In Section 5, we apply our methods to 
two data sets involving logistic regression. 

We now review some general results and definitions 
from robust statistics (see Hampel eta!. 1986). The influ•
ence function of an M estimator is 

IC.(y, X, IJ) = D('fl, IJ)- 1 'f/(y, X, IJ), (1.4) 

where 

D('fl, IJ) = -~ J J 'fl(y, x, P)P9(dy I x)F(dx) IP-�· 

(1.5) 

The influence function measures the effect of an infin•
itesimal contamination at ( y, x), standardized by the mass 
of the contamination. It thus gives an approximation to 
the effect of the inclusion or deletion of a single obser•
vation. Moreover, it gives the asymptotic covariance ma•
trix. Under regularity conditions, N 112 (0N - IJ) is asymp•
totically normally distributed, with mean 0 and covariance 
matrix V( 'fl, IJ) [also written V('f/)J: 

V( 'fl, IJ) = E9(IC.(y, x, IJ)IC.(y, x, IJ)') 

= D('fl, 0)- 1W('fl, IJ)D('fl, IJ)-r, (1.6) 

where 

W('fl, IJ) = E9( 'fl(y, x, IJ)'fl(y, x, IJ)'). (1.7) 

The main idea of bounded-influence estimation is to im•
pose a bound on the influence function (1.4), and then 
find an estimator that has small variance subject to a cho•
sen bound. The usual operational difficulty is that the 
influence function is a vector, and we need to reduce this 
to a scalar measure. This scalar is called the sensitivity of 
the influence function. This problem is not too different 
from what happens with regression diagnostics. For ex•
ample, consider case-deletion diagnostics, where we try to 
understand the effect of deleting an observation on the 
parameter estimates. Changes in parameter estimates are 
necessarily p-dimensional. The beauty of a diagnostic such 
as Cook's distance (Cook and Weisberg 1982) is that the 
p-dimensional change in the parameters is summarized by 
a scalar. The same issue arises in bounded-influence 
regression, and as in deletion diagnostics we have to decide 
on a summary measure. Just as we can define diagnostics 
such as Cook's distance or DFFITS, we can define differ•
ent methods of measuring the sensitivity of the influence 
function. The most common method, used with success 
by Krasker and Welsch (1982), is the self-standardized 

sensitivity, defined as 

(F/C )2 

s('fl) ' = sup,,,sup,,.0 ~ 

= sup, ... 'fl(y, x, IJ) 'W( 'fl, IJ)- 1 'fi(Y, x, IJ). (1.8) 

This definition of sensitivity measures the maximum in•
fluence an observation can have on a linear combination 
of parameters, with a standardization by the asymptotic 
standard deviation of this linear combination. Integrating 
(1.8) and taking the trace shows that s( If! ) 2 ;,; p. Other 
measures of sensitivity were considered by Hampel et al. 
(1986, p. 317) and Giltinan, Carroll, and Ruppert (1986). 
For example, the latter authors considered bounding the 
influence on predicted values rather than the parameter 
estimates. The estimators resulting from the definition of 
sensitivity used by Giltinan et al. (1986) tend to down•
weight suspect observations much more severely than those 
considered here. 
A referee asked about the meaning of the parameter IJ 

if deviations from the model are considered. For instance, 
in logistic regression one cannot have errors with fatter 
tails, but this is not the only deviation robustness protects 
for. Whenever the true distribution is a small deviation 
from the parametric model with IJ = 00 , then the robust 
estimator is asymptotically close to that value 00• We may 
consider a gross error model with the amount of contam•
ination depending on the regressor x: The conditional dis•
tribution of y (given x) is P9 (dy I x) with probability 1 -
e(x) and arbitrary with probability e(x). This is a small 
deviation if the total proportion of contamination E[e(x)] 
is small. It also makes sense for logistic regression, and 
the meaning of the parameter is clear. 
A somewhat different concept is the requirement that 

the estimators should not change much if a few observa•
tions are included or deleted. This is clearly desirable for 
any type of data analysis. Because of the interpretation of 
the influence function given previously, our robust esti•
mators should be less affected by the inclusion or deletion 
of a few observations than the classical ones. A more 
rigorous investigation of this point is given in Section 4. 

2. GENERALIZED LINEAR MODELS 

We consider a generalized linear model with canonical 
link function 

P0(dy I x) = exp{yx'IJ - G(x'IJ) - S(y)}p(dy) 

(2.1) 

(see McCullagh and Neider 1983). If g is the derivative of 
G, the likelihood score function is 

l(y, x, IJ) = {y - g(xTIJ)}x. (2.2) 

Note that (2.2) satisfies (1.3}, so the score is conditionally 
unbiased. Because I is proportional to x, the influence is 
unbounded; that is, s(l) = oo, 

We are looking for M estimators satisfying (1.3}, and 
s( VI) :5 b that minimize V( VI) in some sense. Motivated 
by a general principle for constructing optimal robust es-



491

462 

timators satisfying (1.2) (Hampel et al. 1986, sec. 4.3a), 
we consider the following score function: 

\lfoo,,(y, X, 0, B) 

= d(y, x, 0, B)w,(id(y, x, 0, B)l(xTB- 1x) 112 )x, (2.3) 

where d(y, x, 0, B) = y - g(xTO) - c(xTO, b/(xTB- 1 

x) 112), and w,(a) = H,(a) /a, where H, is the Huber func•
tion H,(a) = max( -b, min( a, b)). 

We work within the context of the Schweppe-type, al•
though related results are obtainable for the Mallows-type 
(as in Stefanski et al. 1986). The major difference is that 
w, in (2.3) factors into two parts. The first depends only 
onx and is of the form w 1((xTB- 1x)lf2 ). The other depends 
solely on 

d(y, x, 0) = y- g(xTO)- c(xTO, b/(xTB- 1x)ll2 ) 

and has the form w 2(ld(y, x, 0)1). 
The scalar function c and the matrix B in (2.3) are cho•

sen so that the side conditions (1.3) and s(\lfoood) = bare 
satisfied. By the definition of \If,,,,, (1.3) holds iff for all 
panda> 0, 

J (y - g(p) - c(p, a))w,(l y - g(p) - c(p, a)l) 

x exp(yp- G(p) - S(y))p(dy) = 0. (2.4) 

First, we discuss the existence of a solution to (2.4). 

Lemma 2.1. For any a > 0 and p, there is a solution 
c = c(p, a) to (2.4). 

Proof. For fixed y, p, and a, the function c--> (y -
g(p) - c)wo(ly - g(p) - cl) is continuous, bounded, 
and monotone-nonincreasing, with limits ± a. Hence the 
existence follows from dominated convergence and the 
intermediate value theorem. 

A practical advantage here is that often the function c 
can be calculated in closed form. This is particularly im•
portant compared to the optimal \If satisfying (1.2), where 
c is a vector (depending only on 0) whose computation is 
quite difficult (see Stefanski et al. 1986, sec. 2.4). In the 
following examples c(p, a) can be calculated explicitly. 

Example 2.1: Logistic Regression. In this case 11 puts 
equal mass at 0 and 1, S(y) = 0, and G(p) = log{! + 
exp(p)). Write F(p) = exp(P)/(1 + exp(p)) and F(p) = 
1 - F(p). It is easily checked that 

c(p, a) = aF(p)!F(p) - F(p) if p < 0, a< F(P) 

= F(p)- aF(p)!F(p) if p > o, a< F(P) 

=0 

satisfies (2.4). 

otherwise 

Example 2.2: Negative Exponential Regression. In this 
case f1 is Lebesgue measure on [0, oo), G(p) = -log( -p), 
S(y) = 0, and P < 0. Two cases occur: If the bound is 
large, the Huberization in \lloood is one-sided (for large y's 
only), whereas for small a's both large and small y's are 
Huberized. It can be checked by straightforward calcu-
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lations that the cut point between the two cases is given 
by the equation e2P' = 1 + Pa, so pa = - . 797. In the 
former case c(p, a) = -p- 1 times the smaller solution of 
exp(x + pa - 1) = x, and in the latter case c(p, a) = 
-p- 1(1 + log(pa!(exp(pa) - exp( -pa)))). 

Turn now to the matrix B. First, note that the estimator 
is conditionally Fisher-consistent and has bounded influ•
ence for any choice of B. If we wants( \/I rood) = b, however, 
B depends on both the design and 0. In linear regression 
B depends on the design, but not on fJ. It follows from 
the definition of \lfoood that s(\lloood) = b, provided 

Eo[\llwod(y, X, 0, B)\lloood(y, X, 0, B)'] = B. (2.5) 

Equation (2.5) is used to define B = B(O, F). Because 
s(\11) 2 ""p, a necessary condition for (2.5) to have a so•
lution is b2 "" p, but we do not know if it is also sufficient. 

The estimators we have defined are intuitively appealing 
because they downweight observations according to their 
leverage and "outlyingness." It is reasonable to ask if they 
satisfy any optimality criterion. The discussion of opti•
mality within a bounded-influence class started with Kras•
ker and Welsch (1982), but the results of Ruppert (1985) 
suggest that there is no estimator that has uniformly small•
est covariance subject to a bound on the influence. The 
best-known optimality result seems to be that of Stefanski 
et al. (1986). It is not completely satisfactory, because the 
criterion to be minimized depends on the solution. Never•
theless, it implies that no other estimator satisfying the 
same bound on s( \If) can have a uniformly smaller covari•
ance. We can achieve the same optimality result within 
the class of conditionally Fisher-consistent estimates. We 
state this in the following theorem. 

Theorem 2.1. Suppose that for a given b, (2.5) has 
solution B(fJ). Then, \lloood minimizes tr{V(\If)V(\IIoood)- 1} 

among all \If that satisfy both (1.3) and sup,.JC~V 
(\lloood)- 11C• $ b'. 

Theorem 2.1 is a corollary of the following analog to 
theorem 1 of Stefanski et al. (1986). Note that the follow•
ing theorem applies to any kind of model with explanatory 
variables. 

Theorem 2.2. Let l(y, x, 0) be the likelihood score 
function. Define the score function as 

\llwod(y, X, 0) 

= (I- c)min(l, b! {(l- c) 'B- 1(1 - c))ll2), (2.6) 

where c = c(x, fJ) and B = B( fJ) are assumed to exist 
and satisfy E(\11 00,,(y, X, 0) I x) = 0 and E{ \lfw,,(y, x, 
0)\lloood( y, x, fJ)') = B. Then, (3.6) minimizes tr{V(\11) 
V(\1100,,)- 1} among all \If satisfying (1.3) and sup(pl 
1C.V( \If 00,,)- 11C� $ b'. With the exception of multi•
plication by a constant matrix, \lf~d is unique almost surely. 

Proof. The proof is almost identical to that of theo•
rem 1 in Stefanski et al. (1986), once one notes that for 
any conditionally unbiased score function \If, E[c(x, fJ) 
\II( y, x, fJ)] = E[c(x, fJ)E(\11( y, x, fJ) I x)] = 0. 
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The computational simplicity of the conditional Fisher•
consistent estimator is not particular to the canonical model 
(2.1). For instance, consider a generalized linear model 
with arbitrary link function h; that is, xro in (2.1) is re•
placed by h(xro). Then, we have to replace d(y, x, 0, B) 
in (2.3) with 

h'(xrO){y - g(h(xro)) 

- c(h(xro), bl((xrB- 1x)u 2 lh'(xrO)I))), 

where c(p, a) is still defined by (2.4). 

In applications, the distribution F of the {x,} is unknown. 
It is common to replace F by its empirical distribution. 
From (2.3) and (2.5), this means that we solve 

N 

L Vloo,o(y,, X;, (}N, BN) = 0 (2.7) 
i=l 

and 

N 

N- 1 L; x,x'{v(x'{eN, bl(xTB; ; 'x,) 112 ) = !JN, (2.8) 
i=l 

where 

v (p, a) = J ( y - g(p) - c(p, a))2w2( y, p, a) 

x exp(yp- G(P) - S(y))! ' (dy) (2.9) 

and 

w(y, p, a) = min(!, ail y - g(p) - c(p, a)l). (2.10) 

In many applications, one wants to reject extreme out•
liers completely. This can be done by replacing the Huber 
function H, in (2.3), (2.4), and (2.10) with any of the 
redescenders, such as Hampel's three-part function or the 
Tukey biweight. The calculation of c(p, a) is of the same 
complexity as it is with the Huber function. 

3. THE EFFECT OF ESTIMATING THE MATRIX 8 

In Section 2 we derived the estimator defined by (2. 7) 
and (2.8) as an approximation to the optimal estimator 
that uses Vloo,o(y, x, 0, B(O)). We consider (2.7) and (2.8) 
an M estimator for both 0 and a nuisance parameter B. 
The VI function defining this M estimator is (VIco,o(y, x, 
0, B)r, x(x, 0, B)')T, where x(x, 0, B) = xxrv(xro, b/ 
(xrB- 1x) 112 )- B. Theinfluencefunctionofthisestimator 
is [compare (1.4) and (1.5)] 

IC._,( y, x, 0, B) 

= v . _ ,(0)- 1(VIoo,,(y, X, 0, B)T, x(x, 0, BYY. (3.1) 

where 

D �. ,= 

[
--ij :•[\Vo•oo(y, X, p, B)] ~-• 

--ap E,[x(x, p, B)] 1,., 

(3.2) 

By the definition of VI""' and c(p, a) in (2.3) and (2.4), 
Vloo,o(y, x, 0, A) satisfies (1.3) for arbitrary A. Hence 
Eo[VI,,,,(y, x, 0, A)] = 0 for all A, and the upper-right 
block of D �. , is 0. This means that the 0 part of the influ•
ence function for (2.7) and (2.8) is equal to 

{ -~ Eo[VIcooct(y, X, p, B)Jio~o} -I Vloood(y, X, 0, B). 

(3.3) 

On the other hand, the influence function for the optimal 
Vlo(y, x, 0) = Vloooct(y, X, 0, B(O)) is also equal to (3.3), 
because by the same argument 

D,, = -ij £,[1/f,mm(y, X, p, B)J lp~o 

--h. £,[1/f,,,,(y, X, p, A)J I,~, to B(O) 
a -ap £,[1/frooP(y, X, p, B)J IN� 

We have thus shown the following theorem. 

Theorem 3.1. The 0 part of the influence function when 
0 and B are simultaneously estimated by (2. 7) and (2.8) 
is the same as the influence function when 0 alone is es•
timated using the optimal Vlo(Y, x, 0) = Vloooct(y, x, 0, 
B(O)). As a consequence, the asymptotic covariance ma•
trix of ON is the same in both cases. 

Remark I. (} N and fJ N are not asymptotically indepen•
dent: Eo[VIcooctX'l = 0 by (1.3), but (a!ap)E,[x(x, p, B)] 

lo~o # 0 in general. 
Remark 2. Because in linear regression with symmetric 

errors x does not depend on 0, an analog to Theorem 3 .I 
is obvious. In addition, estimation of the scale of the errors 
does not change the asymptotic covariance either, and (}N 
is asymptotically independent of all nuisance parameters. 

Remark 3. From the finite-sample interpretation of the 
influence function, (3.3) means the following: To the first 
order of approximation the change in (jN caused by adding 
or deleting an observation at (x, y) is 

( I-aapEo,[VIoooct(y,x,p,fJN)Ix, J ! _ -)-
1 

1=! P-O.v 

X Vloood(y, X, ON, BN); 

that is, the change in BN has approximately no effect on 
the change in ON. In this sense the estimator (2. 7)-(2.8) 
is reasonably stable. 

Remark 4. For the Fisher-consistent estimator (2.12)•
(2.13) of Stefanski et al. (1986), there is no analog of 
Theorem 3.1. The 0 part of the influence function is gen•
erally a linear combination of Vln1. E11[VIn1 I x]. and 
Eo[ VI n1 VI k1l x] - B, because all blocks in D are generally 
different from 0. 

Remark 5. As both referees have pointed out, esti•
mation of B makes no difference to asymptotic arguments, 
but almost certainly will have some effects in small sam•
ples. The analog to ordinary M estimation in linear regres-
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sion is the problem of simultaneous estimation of scale, 
say by mean absolute deviation or Huber's proposal2 (see 
Hampel et al. 1986, p. 234), which does have some effect 
on small-sample properties. One way to investigate this 
difference, at least in principle, is through the use of sec•
ond-order expansions. Such expansions are extremely te•
dious, even for trying to understand the effect of scale in 
linear regression, and they are likely to be prohibitively 
difficult and complex for understanding the effect of es•
timating B. We even doubt if formal second-order expan•
sion gives a much better approximation to the small-sam•
ple effects. Small-sample asymptotics (see Hampel et al. 
1986, sec. 8.5) look more promising, but are even harder. 
In any case, Theorem 3.1 suggests that the small-sample 
effect of estimating B is smaller for our estimator than for 
the one studied by Stefanski et al. (1986). In Example 5.2 
(Sec. 5) we check how good the approximation described 
in Remark 3 is in practice. 

4. INFLUENTIAL OBSERVATIONS IN 
LOGISTIC REGRESSION 

We are interested in the effect of small changes in a 
sample on the maximum likelihood estimate 0 N in a logistic 
regression model: P0 [Y = 1 I x] = F(xTIJ), where F(P) 
= exp(p)/(1 + exp(P)). If we delete a small group of 
observations from a sample, perfect or almost-perfect dis•
crimination between the two responses may become pos•
sible. In other words, the model becomes indeterminate, 
or the remaining data are nonoverlapping (Santner and 
Duf{y 1986). In such a situation the deleted observations 
are influential, but any estimation procedure has to use 
them. We cannot expect any estimator, robust or other•
wise, to produce a completely satisfactory model, for none 
exists. The situation is similar to one that occurs in linear 
regression when the X' X matrix approaches singularity 
upon the removal of one or a few observations (e.g., see 
Chatterjee and Hadi 1986, fig. 2; Draper and Smith 1981, 
p. 258). Although data analysts should be aware of these 
points, they cannot hope to obtain meaningful parameter 
estimates under these circumstances; this fact would be 
reflected by dramatic increases in standard errors when 
these points are downweighted or removed. 

To avoid this problem in our discussion of influence, we 
investigate what happens when a few observations are added 
to a sample with sufficient overlap. The influence function 
of the maximum likelihood estimator is D(0)- 1x(y -
F(xTIJ)). This suggests that 

N+k 
{jN+k - ON~ N- 1 L D(ON)-'x,(y, - F(xTON)). 

i=N+l 

This approximation is not uniform in x. To investigate the 
effect of extreme leverage points, more refined methods 
have to be used. We have the following lower bound for 
IION+k - llNII if all additional observations are equal. 

Theorem 4.1. If I? ;,: 3, then sup{llllN+k - ONII'; xN+I 
= ··· = xN+" xJ,+,ON = P} 2: h(p)4kl"i.~ 1 llx,ll', where 
h(P) = sup~.;F(IPI - e). 
Proof. Because zeros and ones can be exchanged, we 
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may assume P 2: 0. Let .;, be such that h(P) = .;,F(p -
.;,),and set"' = h(P)4kl"i. nx,ll'. We chose YN+i = 0 and 
llxN+ill = .;,It>. Suppose that IION+k - ONII < t5. We show 
that this leads to a contradiction by splitting 0 = "i.'(.~' 
x,(y 1 - F(xTON+.)) into two parts and bounding the first 
one from above and the second one from below. 

Because F'(p) = F(p)(1 - F(P)) :s!, we obtain from 
the definition of tl N and the mean-value theorem the fol•
lowing: 

~~~X;( y, - F(xTON+k))ll 

= ~~~ x;(F(xTON) - F(xTtlN+k))ll 

~ 1 - -:s 6 llx;ll41xf(ON - ON+k)l 

1 1 
:s 4 L llx,II'IION+k - ONII < 4 L llx,ll'<>. 

On the other hand, by the monotonicity of F, 

II '±' x,(y,- F(xTON+t))ll 
1=N+I 

= k.;,t>- 1F(p - x'{;+ 1(0N - ON+k)) 

;,: k.;o<>- 1F(p - .;,<>-'liON - {jN+kll) 

> k.;,t>- 'F(p- .;,) = kh(p)t>-'. 

Hence kh(p)t>- 1 <! "i. llx1ll2t5, which contradicts the def•
inition of t5. 

The condition p 2: 3 ensures that expected response and 
leverage can be varied independently. Taking .; = p shows 
that h(p) > !P. Hence by the aforementioned theorem 
liON+ I - ONII can be arbitrarily large if the additional ob•
servation has an unexpected response. This means that the 
finite-sample breakdown point in the sense of Donoho and 
Huber (1983) is li(N + 1), the lowest possible value. The 
breakdown properties of our robust estimators remain to 
be investigated. 

There remains the question of what can happen if we 
keep the expected response of an additional observation 
fixed and vary its leverage. We have an example where 
the effect on the estimate itself is bounded, but the effect 
on the estimated standard error is unbounded. We are 
currently investigating whether this phenomenon occurs 
more generally. Details will be given elsewhere. 

5. EXAMPLES 

To illustrate our estimators we consider two examples 
of logistic regression that have appeared elsewhere in the 
context of robust regression (see Pregibon 1981, 1982; 
Stefanski et al. 1986). Both data sets are difficult because 
they contain outliers, and without these outliers they are 
rather close to indeterminacy. The first example is partic•
ularly extreme, whereas in the second it is still possible to 
fit a meaningful model. 
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Example 5.1: Skin Vaso-Constriction Data ( Pregibon 1981, 
1982). These data consist of 39 observations on three 
variables: the occurrence of vaso-constriction in the skin 
of the digits, and the rate and volume of air inspired. The 
model to be fit regresses the occurrence of vaso-constric•
tion on the logarithms of the remaining two variables. We 
took rate 32 = .30 (see Pregibon 1981). 

Pregibon (1981) established that observations 4 and 18 
are enormously influential in determining the maximum 
likelihood fit. It is not as evident from his analysis that 
without these two observations the model is nearly inde•
terminate; that is, we are in the situation described at the 
beginning of Section 4. In such a case the main advantage 
of robust procedures lies in their diagnostic capability. The 
near-indeterminacy is reflected by dramatic increases in 
standard errors when the influential points are down•
weighted or removed. 

Table 1 contains parameter estimates, estimated stan•
dard errors, and weights for three robust fits, two using 
the Huber weight function with choices of bp- 112 equal to 
3.7 and 3.2, and a biased analysis, performed by using the 
Huber weight function with bp- 112 = 3.7 and setting c(p, 
a) = 0. Results from the maximum likelihood fit are also 
given. When we attempted a fit using the Hampel function, 
observations 4 and 18 were immediately assigned 0 weight, 
and computational difficulties arose as a consequence of 
the near-indeterminacy. 

Three comments are worth making. First, as b decreases 
the weights assigned observations 4 and 18 decrease 
rapidly, clearly indicating their anomalous nature. This 
fact would also manifest itself in a simple residual plot 
(see Stefanski et al. 1986). All other observations received 
weight 1 in all cases. Second, the estimated standard er•
rors increase significantly as observations 4 and 18 
are downweighted. Although some loss of efficiency is 
to be expected with the use of robust methods, the size•
able increase in standard errors for these data reflects the 
problem with indeterminacy mentioned before. Finally, 
the choice of b is crucial, but this is not surprising in view 
of the particular nature of the data. The biased estimator 
with c = 0 seems to be more robust than the conditional 
unbiased one with the same b. We have no explanation 
for this. 

Example 5.2: Food-Stamp Data (Stefanski eta/. 1986). 
For these data the response indicates participation in the 
federal food-stamp program, and the predictor variables 
employed include two dichotomous variables (tenancy and 
supplemental income) and a logarithmic transformation of 
monthly income [Iog(monthly income + 1)]. The data 
consist of observations on 150 persons, of whom 24 par•
ticipated in the program. 

Table 2 displays results from several robust fits, as well 
as maximum likelihood estimation. In computing the 
Hampel estimator a concession was made for computa•
tional convenience: Rather than solving (2.4) to define c(p, 
a), we chose to use the same formula as in Example 2.1. 
The conclusions drawn by Stefanski et al. (1986) apply 
equally well to the estimators here. Observations 5 and 
66 are most influential for the maximum likelihood esti•
mator. As b decreases, these observations are down•
weighted. This results in an increase in perceived signifi•
cance of the monthly income, accompanied by a decrease 
of the importance of supplemental income. Besides these 
two outliers, there are seven other atypical observations 
that are downweighted, but to a smaller extent. 

Unlike the previous example, the estimated standard 
errors remain relatively stable, suggesting a greater degree 
of overlap in the data. A closer look shows that there are 
only six persons with tenancy participating in the food•
stamp program. Once these are eliminated the parameter 
for tenancy can no longer be estimated. Moreover, without 
tenancy as a predictor the data become completely sepa•
rated after elimination of 17 observations. All nine down•
weighted observations belong to this group, so any rea•
sonable estimator has to use these outliers to some extent. 

In Table 3 we give the changes in the estimates due to 
deletion of observation 5 or 66 and compare it with the 
change predicted by the influence function. Although we 
used a robust estimator, the changes are rather big. This 
is due to the peculiarity of the data set, mentioned previ•
ously. Still, the changes are much smaller than for the 
maximum likelihood estimator. For instance, if observa•
tion 5 is deleted, the maximum likelihood estimator for 
the coefficient of log(monthly income + 1) changes by 
.73, compared to .26 with our estimator. ForB kept con•
stant, the predictions by the influence function are excel-

Table 1. Maximum likelihood and Robust Estimators for the Skin Vaso-Constriction Data 

Maximum Huber Huber 
likelihood Huber conditional conditional 
estimator, c(p, a) ~ 0, unbiased, unbiased, 

b = 00 b = 3.7p112 b = 3.7p1t2 b = 3.2pll2 

Intercept -2.92 -5.71 -2.98 -6.41 
(1.29) (2.45) (1.35) (2.84) 

log(volume) 5.22 9.13 5.27 9.98 
(1.93) (3.73) (1.93) (4.38) 

log( rate) 4.63 8.09 4.67 8.85 
(1.79) (3.31) (1.86) (3.82) 

Weights 
Observation 4 .38 >.80 .25 
Observation 18 .44 >.80 .29 

NOTE: For selected observations, the weights w11 in Equation (2.3) are given. 
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Table 2. Maximum Ukelihood and Robust Estimators tor the Food-Stamp Data 

Hampel 
Maximum Huber Huber conditional 
likelihood Huber conditional conditional unbiased, 
estimator, c(p, a)~ o, unbiased, unbiased, bends at 

b=oo b = 3.5ptl2 b = 3.5pll2 b = 2.75p 112 (3, 7, 16)p'" 

Intercept .93 4.26 4.51 5.49 6.00 
(1.62) (2.55) (2.54) (2.66) (2.76) 

Tenancy -1.85 -1.85 -1.78 -t.76 -1.80 
(.53) (.54) (.54) (.51) (.54) 

Supplemental .90 .75 .74 .62 .70 
income (.50) (.52) (.51) (.52) (.52) 

Log(monthly -.33 -.89 -.93 -1.10 -1.18 
income+ 1) (.27) (.43) (.43) (.45) (.47) 

Weights 
Observation 5 .21 .16 .13 .0 
Observation 66 .76 .60 .41 .54 

NOTE: For selected obsetYations, the weightS wb in Equation (2.3) ars given. 

lent. By the results of Section 3 the influence function 
predicts no effect of reestimating B. In this example this 
is not quite true, but as a first-order approximation it is 
acceptable, in particular because the effective sample size 
is less than 150. 

Our estimators are suitable for inferences based on the 
majority of the data. Moreover, they can also be used as 
a diagnostic with the following strategy suggested by the 
examples. Choose a large b (say b = 5p112 ) and decrease 
it (e.g., in steps by .5p112). Looking at the weights allows 
one to identify outliers. At the same time, it should be 
checked how close the data are to indeterminacy. A pos•
sible indication is how fast the estimated standard errors 
change, but it would be interesting to have other criteria. 
In this way, one can either fit a meaningful model to the 
good observations or identify the data set as problematic. 

6. CONCLUSIONS 

Conditionally unbiased score functions are appealing 
because their definition does not depend on the distri•
bution of the predictors. In the context of robustness, there 
is an optimality theory for this class analogous to that 
already developed for unconditionally unbiased score 

Intercept 
Tenancy 

Table 3. Effect of Datelion of Selected Observations 
in the Food·Stamp Data 

Approximation 
by the 

8 B influence 
constant reestimated function 

Deletion of observation 5 

.48 
-.05 

.61 
-.04 

.47 
-.04 

Supplemental income 
log(monthly income + 1) 

-.08 
-.51 

-.06 -.08 
-.62 -.47 

Datelion of observation 66 

Intercept .37 .65 .32 
Tenancy .26 .29 .24 
Supplemental income .05 -.10 .05 
log(monthly income + 1) - .40 - .67 - .33 

NOTE: Changes In the Huber conditional unbiased estimates (b = 2.15p112) divided by the 
estimated standard deviations. 

functions. The optimal estimator depends on the unknown 
distribution of the predictors, and thus one has to estimate 
a matrix B, Nevertheless, consistency holds for any B, and 
asymptotically the uncertainty about B does not matter, 
In addition, conditionally unbiased score functions are often 
far easier to define. Although ignoring the bias and setting 
c = 0 did not matter much in the examples considered, 
one can construct situations where this bias is large. With 
our estimator, we avoid this problem with little additional 
complexity. · 

[Received Apri/1987. Revised December 1988.] 
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On One-Step GM Estimates and Stability of 
Inferences in Linear Regression 

D. G. SIMPSON, D. RUPPERT, and R. J. CARROLL* 

The folklore on one-step estimation is that it inherits the breakdown point of the preliminary estimator and yet has the same large 
sample distribution as the fully iterated vernon as long as the preliminary estimate converges faster than n-•t", where n is the sample 
size. We investigate the extent to which this folklore is valid for one-step GM estimators and their associated standard errors in linear 
regression. We find that one-stepGM estimates based on Newton-Raphson or Scoring inherit the breakdown point of high breakdown 
point initial estimates such as least median of squares provided the usual weights that limit the influence of extreme points in the 
design space are based on location and scatter estimates with high breakdown points. Moreover, these estimators have bounded 
influence functions, and their standard errors can have high breakdown points. The folklore concerning the large sample theory is 
correct assuming the regression errors are symmetrically distributed and homoscedastic. If the errors are asymmetric and homoscedastic, 
Scoring still provides root~n consistent estimates of the slope parameters, but Newton-Raphson fails to improve on the rate of 
convergence of the preliminary estimates. If the errors are symmetric and heteroscedastic, Newton-Raphson provides root~n consistent 
estimates. but Scoring fails to improve on the rate of convergence of the preliminary estimate. Our primary concern is with the 
stability of the inferences associated with the estimates, not merely with the point estimates themselves. To this end we define the 
notion of standard error breakdown, which occurs if the estimated standard deviations of the parameter estimates can be driven to 
zero or infinity, and study the large sample validity of the standard error estimates. A real data set from the literature illustrates the 
issues. 

KEY WORDS: Asymmetry; Heteroscedasticity; Least median of squares; Minimum volume ellipsoid; Robust inference; Standard 
error breakdown. 

Consider the linear model y1 = z~ {3 + e;, for i = 1, ... , 
n, where z1 ~ (lxl)', x1 is a known (p- I)-dimensional 
vector of explanatory variables, and y1 is an observed re•
sponse. Two standard assumptions are: ( l) e1 , � � � , <n are 
identically distributed according to some F, and ( 2) F ~ N( 0, 
u2 ) for some u2 > 0. The earlier robust regression estima•
tors-for example, M estimators (Andrews 1974; Bickel 
1975; Huber 1973), rank estimators (Hettmansperger and 
McKean 1977; Jaeckel 1972), and trimmed least squares 
(Ruppert and Carroll 1980)-were designed to maintain 
efficiency under violations of ( 2), especially when the error 
distribution is heavy-tailed. However, it is as important to 
protect against violations of ( I ) , particularly at outlying x 
observations, where heteroscedasticity or nonlinearity is 
likely. The generalized M estimators ( GM estimators), such 
astheproposalsofMallows(I975), Hampel( 1978), Krasker 
( 1980), and Krasker and Welsch ( 1982), and the weighted 
trimmed least squares estimators of DeJongh, DeWet, and 
Welsh ( 1988) were intended to produce stable results when 
there are possible response outliers at outlying values of x, 
as can occur when ( I ) fails. In particular, they have influence 
functions bounded in both x and y. Unfortunately these 
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bounded-influence estimators have breakdown points of at 
most I I (p + I ) , where p is the number of predictor variables 
( Maronna, Bustos, and Y ohai 1979), suggesting that they 
can be overwhelmed by a cluster of outliers; see, for example, 
Rousseeuw ( 1984). 

The low breakdown point of the GM estimators has been 
viewed as a serious deficiency, particularly for multidimen•
sional problems and exploratory data analysis. Several high 
breakdown point ( HBP) estimators have been proposed that 
achieve breakdown points near 1 for each p, including the 
least median of squares estimator of Rousseeuw ( 1984), the 
S estimators of Rousseeuw and Y ohai (I 984), and the es•
timators of Yohai ( 1987) and Yohai and Zamar (1988), 
which combine good asymptotic efficiency under the normal 
linear model with HBP. These estimators do not have 
bounded influence functions. 

The HBP property provides some confidence that one will 
not be completely fooled by a cluster of poorly fit data. In 
practice, however, one would like the inferences to be robust 
to outliers, leverage points, and so on. If a few points can 
change the estimate by many standard errors or change dras•
tically the standard error, it is small consolation that the 
change in the estimate is bounded. Routine data are thought 
to contain I %-10% gross errors (Hampel, Ronchetti, Rous•
seeuw, and Stahell986). Although this is below the break•
down point of HBP estimators currently available, such a 
fraction of anomalous data can have a substantial effect if 
the influence function is unbounded. See, for instance, table 
I ofYohai and Zamar ( 1988 ), in which the bias of the Kras•
ker-Welsch bounded-influence estimator is considerably less 
than that of the HBP unbounded-influence estimators if the 
level of contamination is 5%. We therefore contend that the 
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local stability associated with the bounded-influence property 
is as important as the global stability suggested by a high 
breakdown point. Moreover, the stability of the standard 
errors themselves is important and worthy of investigation. 

To construct regression estimators that have bounded in•
fluence functions and high breakdown points, we follow a 
strategy that exists in the folklore: Start with a high break•
down point estimator and perform one iteration of a New•
ton-Raphson-type algorithm towards solution of the GM 
estimating equations. Hampel et a!. (1986, p. 330) men•
tioned the possibility of using a one-step GM estimator but 
gave no details. We find one detail to be crucial for a high 
breakdown point, namely, the x-dependent weights asso•
ciated with the GM iteration need to be based on high break•
down point location and scatter estimates rather than on the 
customary multivariate M estimates. Section I provides the 
specific definitions of our one-step GM estimates. Section 2 
provides the breakdown analysis. Oearly one can iterate a 
fixed finite number of times and retain the breakdown point 
of the one-step. As a rough measure of the stability of infer•
ences based on the estimates, we consider breakdown of the 
standard errors as well as the parameter estimates. The in•
fluence functions are derived in Section 3. 

The large sample theory of the one-step GM estimators 
requires some care, as one natural initial estimator (least 
median of squares) converges only like n _, 13 rather than the 
n -1!2 rate usually associated with parametric estimation 
(Davies 1990; Kim and Pollard 1990; Rousseeuw 1984). 
However, results presented in Section 4 establish that both 
Newton-Raphson and Scoring versions of the one-step GM 
estimators converge at the root-n rate provided that the pre•
liminary estimate is better than fourth root-n consistent and 
that the regression errors are symmetric and homoscedastic. 
Using a different method of proof, Jureckova and Portnoy 
( 1987) established this kind of result for certain one-step 
Huber estimators. We find that if the errors are asymmetric 
and homoscedastic, Scoring still provides root-n consistent 
estimates of the slope parameters, whereas Newton-Raphson 
fails to improve on the rate of convergence of the preliminary 
estimate. On the other hand, if the errors are heteroscedastic 
and symmetric then Newton-Raphson provides root-n con•
sistent estimates, whereas Scoring fails to improve on the 
rate of convergence of the preliminary estimate. We study 
asymptotic validity of the standard errors as well. 

A potential objection to bounded-influence estimators is 
their low efficiency in cases where most of the sample infor•
mation about fJ is contained in a few high leverage points. 
However, Morganthaler ( 1988) and Stefanski ( 1991) have 
shown that no estimator with a breakdown point greater 
than I 1 n can have high finite-sample efficiency in the pres•
ence of extreme leverage points. In such instances, which 
involve a kind of extrapolation, it requires considerable faith 
in the linear model to take seriously the efficiency under the 
model. Our principal motivation for reqniring a bounded•
influence function as well as a high breakdown point is sta•
bility of inference. Section 5 illustrates some of the issues 
with a particularly vexing data set. 
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1. ONE-STEP MALLOWS ESTIMATES 

Define residuals, r; = Y; - zl tio, where tio is a high break•
down preliminary estimate with breakdown value at least 
min. For instance, a modified least median ofsquares(LMS) 
estimate has m = [ (n- p)l2] + I (Rousseeuw and Leroy 
1987). Let u0 = med{lrd}l•, where K is a standardizing 
constant, and let mx and Cx be multivariate location and 
scatter for the {x;} with breakdown point at least min. A 
possible choice for ( mx, Cx), the minimum volume ellipsoid 
( MVE) estimator, is given by the center and covariance of 
the smallest ellipsoid containing at least [ ( n + p + I ) I 2] 
points. It has m = [ ( n - p + I ) I 2], the best possible for 
affine equivariant covariance estimators ( Rousseeuw and van 
Zomeren 1990). Cook and Hawkins ( 1990) discussed certain 
difficult computational issues associated with MVE. 

The estimators we use are one-step estimators taking the 
form 

go= uo L if;(r;/uo)w;z;, 
i=l 

where there are two viable choices for H0 : 

n 

Newton-Raphson: H 0 = L w;z;zlY,(Il(r;/u0 ); 

i=l 

n 

Scoring: H 0 = n·' L y,(l>(r;/u0 ) L wiziz). 
i=l 

In the regression we employ Mallows weights, 

W; =min[!, { 1 b I }"''). 
(X; - mx) Cx (X;- mx) 

(1.1) 

The case a = 0 is the one-step Huber estimate discussed by 
Bickel ( 1975) and J ureckova and Portnoy ( 1987). Jureckova 
and Portnoy ( 1987) imposed a nonequivariant bound on 
the step size to get HBP when a = 0. We show that if a 
;;, I, the Mallows weights automatically bound the step size. 
The case a = I is usual for GM estimators, whereas a = 2 
was used by Giltinan, Carroll, and Ruppert ( 1986) to force 
a bounded change of variance function, indicating local sta•
bility of the asymptotic variance. Ronchetti and Rousseeuw 
( 1985) gave the form of the change of variance function for 
GM estimators. An even more extreme case, a = oo, deletes 
any observation in which the robust Mahalanobis distance 
from mx exceeds b. Rousseeuw and van Zomeren ( 1990) 
discussed this possibility. We set b equal to the (I - 'Y) quan•
tile of the chi-squared distribution on p - I degrees of free•
dom, where 'Y = .I or .05. 

Scoring and Newton-Raphson are asymptotically equiv•
alent if the errors { e;} are independent and identically and 
symmetrically distributed; see Section 4. Another common 
choice for H 0 is based on iterative weighted least squares, 
but the resulting one-step estimator has a different asymptotic 
distribution that depends on that of the initial estimate; we 
forego the details. For either Newton-Raphson or Scoring, 
the large sample theory estimate of the covariance matrix of 
ti is D = H 0 1 MoHo', where M 0 has one of two forms: 
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n 

Nonexchangeable: Mo = uil L wyz,zl1/12(rtfuo); 
i=l 

n n 

Exchangeable: M 0 = n-�.rij L 1/1 2(rt/u0 ) L w]zizj. 

If the e1 are heteroscedastic, then in general D is consistent 
only if H 0 is "Newton-Raphson" and M 0 is "Nonexchange•
able." 

2. BREAKDOWN ANALYSIS 

The finite sample breakdown point was introduced by 
Donoho and Huber ( 1983). Let X= { (x 1 , y1 ): i = I, ... , 
n} and let Tbe an estimator of {3. Then the breakdown point 
of Tat X is given by 

BP(T, X)= min{ min: sup liT( X)- T(X*)II = oo }, 
X* 

where the supremum is over all choices of X* consisting of 
( n - m) points from X and m arbitrary points. A HBP es•
timator like Rousseeuw's ( 1984) LMS estimator has BP "" ! 
for any data set where the z;'s are in general position; that 
is, any p of them are linearly independent. For the scatter 
matrix, Cx, breakdown is defined as driving Am.,( Cx) 
+ { Am;.(Cx)} -I to infinity, where Am;n(A) and Amu(A) are 
the minimum and maximum eigenvalues of the matrix A. 
We obtain breakdown points for the one-step GM estimators 
defined in Section I and then consider breakdown of their 
covariance estimates. 

2.1 Breakdown of Estimates 

In what follows, we will assume that the first n - m ob•
servations are the "good" ones and that the remaining m 
observations are free to roam. We assume that n - m ;;,o n 1 
2 + 1 ;;,o p, and, without loss of generality, that the first p 
observations are such that (z1 , � � � , Zp) are linearly indepen•
dent. As usual, 1/1( v) is odd and bounded. We make use of 
the following additional assumptions: 

A. Assume that 1/1 is nondecreasing with the properties 

and 

,Y(v)lv ~ d0 > 0 

,y 0 >(v);;.od1 >0 

a>"· 

ifO,;; I vi,;; a; 

ifO,;; I vi,;; a; 

(2.1) 

(2.2) 

(2.3) 

B. If,Y is redescending, assume (2.1 )-(2.3) as well as 

sup I,Y 0 >(v)l = d,, where d1 > d2 � (2.4) 
lvl~a 

C. Assume that any set of n - m - nl2 "good" points 
has a linearly independent subset of size p. 

Theorem 2.1. Either of Assumptions A or B suffice for 
the breakdown value of the one-step Mallows to be at least 
min under Scoring. For Newton-Raphson, the breakdown 
value is at least mIn under Assumptions A and C taken 
together. 
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Remark 2.1. If,Y is redescending, then ,yo>(rtfu0 ) can 
go negative. We conjecture that in this case it is possible to 
manipulate p data points so that the Newton-Raphson ver•
sion of H 0 equals 0. 

2.2 Standard Error Breakdown 

Let D be the covariance estimate of {3 given in Section 1. 
Standard-error breakdown occurs if either Amn (D) -+ oo or 
Am;n(D) -+ 0. The former usually is the only concept con•
sidered, as in Hampel et al. ( 1986), but the latter is important 
as well. For instance, even if the estimate does not break 
down, the Wald-type tests for the parameters can break down 
if D breaks down to 0. He, Simpson, and Portnoy (1990) 
have discussed breakdown of tests in general. A simple anal•
ysis shows that Amu(D),;; Amu(M0 )1Aii,;0(H0 ), and we show 
in the Appendix that Am;n(H0 ) > 0. It is clear that, because 
a ;;,o 1, Amu(M0 ) has a finite upper bound under any ar•
rangement of the "bad" points, and hence the same holds 
for Amu(D). 

Unfortunately, breakdown to 0 may occur unless a ~ 2. 
Because Am;.(D)-+ 0 if det(D)-+ 0, this breakdown occurs 
ifeitherdet(M0)-+ 0 ordet(H01)-+ 0, the latter occurring 
if Amn( H 0 )-+ oo . A detailed analysis as presented in Section 
2.1 shows that under any arrangement of the "bad" points, 
Am;.(M0 ) > 0. Thus Am;.(D) -+ 0 if we can show that 
Amu(H0 )-+ oo. This may happen if a < 2. 

Lemma 2.1. Define d1 = zJIIz,ll and let llzill-+ oo for 
j ;;,o n - m + I in such a way that for a positive definite 
matrix s, L7"'n-m+l d;df-+ s. Then "-max(Ho)-+ 00 if a 
< 2, whereas Am,.(H0 ) = 0( 1) if a ;;,o 2. 

3. INFLUENCE ANALYSIS 

Influence analysis is a method of studying the local stability 
of estimators in terms of the effect of point-mass perturba•
tions of the data or the underlying distribution. Two ap•
proaches to influence analysis of linear regression are in 
common use: ( 1) treat { (x, y1 ) } as a random sample and 
define the influence function on the space of distributions 
for (x, y) (Hampel et al. 1986) and (2) define the influence 
function via asymptotic linearity of the estimator ( Krasker 
and Welsch 1982). Weshowthatineithercasetheinfluence 
function of the one-step Mallows estimator is bounded when 
evaluated at the model. Method ( 1) requires that the prelim•
inary estimates have influence functions, but they need not 
be bounded. Method ( 2) reqnires only a rate of convergence. 
Method ( 2) is perhaps more appropriate for regression, be•
cause it yields an influence function even when an iid as•
sumption on the x; 's is inappropriate. 

First act as if { ( x1 , y1 ) } is a random sample from a dis•
tribution F0 and consider the effect of perturbation of F0 . 

We suppose that the preliminary estimates and the location 
and scatter functionals for x have influence functions, but 
the influence functions need not be bounded. For instance, 
the preliminary regression estimate might be a regression S 
estimate ( Rousseeuw and Y ohai 1984), and the location 
scatter estimate might be a multivariate S estimate (Davies 
1987; Lopuhaa 1989). The alternative definition of the in-
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fluence function via asymptotic linearity allows treatment 
of the minimum volume ellipsoid. 

Consider a generic matrix-valued functional T(F) defined 
on the space of distributions for ( x, y). Let F0 be a fixed 
distribution representing the target model and let F, be a 
point-mass contamination of F 0 : F, = (I - A)Fo + A.6.x,y• 
for 0 .s A .s I. Following Hampel et al .. (l986), T has an 
influence function, which we shall denote by IF(x, y; T), 
if it has a directional derivative at A = 0: 

IF(x, y; T) = lim { T(FJ - T(F0)} /A. 
AIO 

The IF operation preserves matrix dimensions and satisfies 
the multiplication and chain rules of scalar differentiation. 

The one-step Newton-Raphson estimators described in 
the preceding section correspond to the functional /i( F) 
= P0(F) + {H(F)}-'g(F), where 

g(F) 
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IF( g) = u,P( y -" z'il) w(x, m(F~). C(F5)}z 

- EF,[ .p(I>( Y -"Z'il)w(X, m(F~). C(F5)}ZZ'] 

X IF({i0 ) + u-1g(F0 )IF(i10 ) 

+ uEF,[ ,P(y -"Z'il)IF(w(X, m( • ), C( · )))Z] 

+ IF(uo)EF,[ (y -"Z'/l).p(I>(y -"Z'il) 

X w(X, m(F~). C(F5)}Z] 

= u.p( y -"z'il)w(x, m(F~). C(F5)}z 

- H(F0 )IF(/io). 

Inserting the latter expression in ( 3.1) gives 

= uo(F)EF[ ,P(y -u~:l(F))w(X, m(F'), C(F'))Z] IF(x, y; /i) 

and 

H(F) 

= EF[ .p(I>( Y -;;.~:l(F))w(X, m(F'), C(Fx))zz•]. 

For Scoring, H(F) instead takes the form 

H(F) = EF[ .p(I>( y -u~~(F))] 

X EFx[w(X, m(Fx), C(Fx))ZZ'). 

Here EF denotes expectation with respect to F, Po( F) and 
u0 (F) are the functionals corresponding to the preliminary 
regression and scale estimates, Fx is the marginal distribution 
for x, m(F') and C(P) are the location and scatter func•
tionals for x, and the weight function w is of the same form 
as in ( 1.1 ) . Assuming F0 is such that the conditional distri•
bution of(Y- Z'/i0 (F0 )) given Z = z is independent of z, 
Newton-Raphson and Scoring reduce to the same functional 
at F0 � If F. is the empirical distribution of { ( x1 , y1)}, then 
statistics and functionals are related as follows: ti = P( F.), 
Po= {i( F.), go= ng(F.), and H0 = nH(F.). 

For both Newton-Raphson and Scoring the multiplication 
rule yields 

IF(x,y;{i) 

= IF(x, y; tio) + {H(F0 ) } - 1IF(x, y;g), (3.1) 

because g(F0 ) = 0. In the following we suppress the depen•
dence of IF on (x, y). Fisher consistency and symmetry of 
the residual distribution for F0 yield 

= {H(F0)} -•u.p( y -"z'!l)w(x, m(F~). C(F5)}z. 

This expression agrees with the influence function of the 
fully iterated GM estimate with weight function w (Hampel 
eta!. 1986). 

Alternatively, observe that by Theorem 4.1 the one-step 
GM estimator has the following asymptotic representation: 

ti = il + n-• ~~ Q-'z,w,u.p( Yt -"zlil) + Op(n-112), (3.2) 

where Q is as in Dl of Section 4.3. The summand in (3.2) 
shows the contributions of the observations to the deviation 
of ti from /l: Following Krasker and Welsch ( 1982) we call 
the corresponding function, Q-'zw(z)...p((y- z'/l)/u), the 
influence function. 

Remark 3.1. !fan estimator has an influence function, 
then general results of He and Simpson (in press) imply that 
the bounded-influence property is necessary rather than suf•
ficient for local stability of the estimator. A stronger result 
would be to establish that the bias sensitivity is bounded. 
Martin, Yohai, and Zamar ( 1989) studied bias properties of 
certain S estimators and GM estimators. 

The Huber estimates, which used bounded .P but w( � ) 
= I, bound the residuals but not the influence of the position 
in the design space. These estimators are susceptible to le•
verage points; that is, to outliers in the design space. On the 
other hand, if~/- and llzllw(z) are both bounded, then the 
Mallows estimators bound the joint influence of the residuals 
and the position in the design space. 

4. LARGE SAMPLE THEORY 

To provide a rigorous large sample theory on which to 
base precision estimates and other inferences, we derive 
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asymptotic representations for the one-step GM estimators. 
The preliminary estimates (Po, .10 ) need only be n' -consistent 
for some r E ( ;\ , i ]. For instance, Po might be the LMS 
estimate, which converges at the rate n _, !3 (Davies 1990; 
Kim and Pollard 1990; Rousseeuw 1984), or the least 
trimmed sum of squares estimate ( Rousseeuw 1984), which 
converges at the rate n-'12. 

The rate of convergence of the remainder in the asymptotic 
representation depends on the rate of convergence of the 
preliminary estimator. Although any rate better than n-114 

suffices for the one-step estimator to be root-n consistent and 
asymptotically normal, a better rate of convergence for the 
preliminary estimator implies a better rate of convergence 
for the remainder. In the following let 

n 

Q. = L; E[,YP>(c,/u))w1z1zl. (4.1) 
i=l 

Theorem 4.1. Assume conditions AI-D2 of Section 4.3. 
Suppose Po-P= Op(n-•) and u0 - u = Op(n-') for some 
r E (;\, !J. Then for Newton-Raphson, n- 1(H0 - Q.) 
= Op(n-•) and 

n-li2Ho(P- p) 

n 

= n- 112u L; .y{c,/u)w1z1 + Op(n 112- 2'). (4.2) 
i=l 

ThesameistrueofScoringifn- 1 2:7. 1 lid= 0(1). 
Theorem 4.1 implies that H 0(P - p) is asymptotically 

normal with mean 0 and covariance A., where 

n 

A.= u 2 L: var[,y(c,/u)]wr z,zl. 
i=l 

(4.3) 

In practice we estimate A. by M 0 • The following result shows 
that this works. 

Theorem 4.2. Assume conditions AI-D2 and suppose 
Po - P = Op(n-•) and .10 - u = Op(n-'). If n-1 2:7.1 
wt II z1 11 4 = 0( I ) , then nonexchangeable M 0 satisfies 

n- 1(M0 - A.)= Op(n-'), (4.4) 

and hence M 0112H0(P- P) = z. + Op(n 1' 2- 2'), where z. 
has mean 0, covariance I, and is asymptotically normal. The 
same is true for exchangeable M 0 if instead n- 1 2:7. 1 llz1 II 
=0(1). 

4.1 Effect of Asymmetry 

Condition D2 of Theorem 4.1 is essentially symmetry of 
the error distribution. Carroll and Welsh ( 1988) and Welsh 
( 1989) noted that the Huber and Mallows GM estimates of 
the slope are consistent even when the errors are asymmetric. 
This kind of result extends to the one-step versions as well. 
We show that if the errors are iid, then the asymptotic bias 
introduced by asymmetry is absorbed in the intercept, and 
we provide asymptotic expansions for the slope estimates. 
Asymmetry implies that the Scoring and Newton-Raphson 
estimators have different limiting behavior. In particular, the 
Scoring estimate of the slope vector is root-n consistent, 
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whereas the Newton-Raphson estimate fails to improve on 
the rate of convergence of the preliminary estimate. 

Partition P' = ( ~. 'Y') into intercept~ and slope vector 'Y, 
and do the same for Po and P. Even if the error distribution 
is asymmetric, 'Y is identifiable as the value such that the 
distribution of y1 - xh is independent of x1 (Carroll and 
Welsh 1988). Hence it is reasonable to expect n'(.Yo- 'Y) 
= 0 p( I ) even in the asymmetric case, as long as the errors 
are homoscedastic. For a fully iterated GM estimate the in•
tercept ~ may be defined by the condition 

As different choices of ,Y give different values of ~ in the 
asymmetric case, wecanexpectonlythatn'(~0 - ~0 ) = Op( I) 
for some ~0 not necessarily the same as ~· 

Let Po= ( ~0 , 'Y')' be the limiting value of the preliminary 
estimator and define U; = y; - z~ {j0 = ei + 11 - 1Jo for i = 1, 
... , n. Replace c1 by u1 in the definition of Q �. In corre•
spondence with the partition of p, we partition the Hessian 
matrix and Q.: 

Here h1, and q, 1 are scalars and H22 and Q22 are (p - I ) 
X (p - I ) symmetric matrices. Define H22. , = H 22 

- h11)h\l)/h11 and similarly define Q22·I· To simplify the 
analysis, we center the x's by their Mallows-weighted means 
so that 

LX;W; =0. 
i=l 

(4.6) 

This centering implies that Q22. 1 = Q22 and, for Scoring, 
H22·1 = H22· 

Lemma 4.1. Assume conditions AI-C2. Assume Dl, 
replacing ( <;} by ( u,}. Suppose Po- Po = Op(n-•) and uo 
- u = Op(n-•). Then for Scoring, n-1(H22 - 0,2 ) = Op(n-•) 
and 

n 

n-112Hn(.Y- 'Y) = n-ll2u L x;w,( .y(u,/u) 
i~I 

Assume also that ,p<2l has derivative 1/-(3) with II,Y 13lll,.. and 
II(· )21/-(3)( ·) ll,up both finite. Then for Newton-Raphson, 
n-'(H22·1 - Q22l = Op(n-') and 

n 

.Y = 'Y + Qtiu L x;w,( ;j{u,;u)- E[;j{u1/u)l} 
i-1 

where ;j{t) = ,Y(t)- a.,ai 1,Y1'l(t) and ak = E[.p<k>(udu)] 
fork=O, 1,2. 
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Remark 4.1. If the preliminary estimate converges more 
slowly than n _,,2, then the expansion for Newton-Raphson 
implies n'(.Y- 'Y) = (aoa 2 laTJn'(.Yo- 'Y) + o.(I), and the 
asymptotic relative efficiency of Newton-Raphson versus 
.Yo is at a02 a>'· This approaches infinity as the error distri•
bution approaches symmetry. 

Remark 4.2. Both the Scoring and Newton-Raphson 
versions of~ converge in probability to ~0 + uaol a1, which 
is one step of a Newton-Raphson algorithm for solving ( 4.5). 
Hence, iteration can drive ao to 0. In theory, iterating k. 
times to achieve ao = o(n'-'") implies that the Newton•
Raphson k. step has the same asymptotic distribution as 
does the fully iterated version. 

Remark 4.3. In the asymmetric case, asymptotically 
valid Wald-type inferences on the slope parameters may be 
obtained by the Scoring method coupled with the following 
modification of the exchangeable M0 : 

n n 

Mn = n-•.ra L { 1/;(rdiro)- ~} 2 L wf x,xj, 
i=l j=l 

where~= n-• L7= 1 1/;(r,/iT0 ). In this case M2i12H,,(.y- 'Y) 
= z.2 + o.(n l/2-2•), where z.2 has mean 0 and covariance 
lp-1 and is asymptotically normal. 

4.2. Effect of Heteroscedasticlty 

We next consider the large sample behavior of one-step 
estimators when the errors are symmetrically distributed but 
heteroscedastic. We show that Newton-Raphson and the 
nonexchangeable version of M 0 provide valid large sample 
inferences, whereas Scoring fails to improve on the rate of 
convergence of the initial estimator. 

Lemma 4.2. Suppose the errors e1 , � � � , ' � are indepen•
dent withe;- F1.AssumeA2-DI ofSection4.3,andassume 
02 holds for each F1 � Suppose n'(Po - fJ) = o.< I) and 
n'(u0 - u) = o.< I). Then bothNewton-Raphson and Scor•
ing have expansions of the form 

n 

n-'Ho(P- fJ) = n-•u L 1/l(e;/ u)w,z1 + T. + Op(n-2'). 
j .. J 

For Newton-Raphson T. = 0, whereas for Scoring T. is 
asymptotically equivalent to r .<Po - fJl for a symmetric 
nonstochastic matrix r n. 

Because of the heteroscedasticity, the limiting value of 
iTo depends on the estimator. Although u has an effect on 
the efficiency of {i, the Newton-Raphson covariance estimate 
Ho' MoHo' is asymptotically correct. 

Theorem 4.3. Assume the conditions of Lemma 4.2. For 
the Newton-Raphson version of H 0 and nonexchangeable 
Mowehave Mo 112Ho(P- fJ) = z. + o.(n'''-2'), wherez. 
has mean 0 and covariance I and is asymptotically normal. 

4.3 Technical Conditions and Remarks 

A I. The errors e1, � � � , ' � are independent with distri•
bution function F. 
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A2. The score function Y, is bounded and continuous. 

Bl. Y, has derivative y,<ll such that (a) 11>/t(llll.,. < oo 
and(b) II(· )Y,(11( ·lll.., < oo, where ll·ll..,isthe supremum 
norm . 

B2. Y,(ll has derivative y,<'lsuch that(a) 11>/t(l)ll, •• < oo, 
(b) II<· l>/t<21( • lll ... < oo, and (c) II<· J'>Jt<21( • lll ... < oo. 

Cl. As n-+ oo the design satisfies (a) n-1 L7=• llz1 ll 4 
X wf = O(I)and(b)n-• L7=•11z,ll'w, = 0(1). 

C2. The design satisfies Iim,...oomax,~,~·llz, ll 2wr I 
L llz111 2w] = o. 

Dl. lim,_.00n-1An =A and lim,_.00n-1Q. = Qforsome 
symmetric positive definite matrices A and Q. 

02. Ep(l/;(ev)] = 0 and £p(evY,< 1>(ev)] = 0 for any 
nonnegative scalar v. For example, Y, is odd and F has a 
density symmetric about 0. 

Remark 4.4. We place heavy conditions on Y, but weak 
conditions on F. In the context of robust inference it seems 
appropriate to place conditions on Y, (which is under our 
control) rather than on F. The differentiability of Y, < 1 l given 
in B2 can be weakened by Lipschitz-type conditions, as in•
dicated in Lemma A. I. 

Remark 4.5. For appropriately chosen Mallows weights 
the present design conditions are weaker than the standard 
conditions for Huber regression. In particular, taking a = 2 
in ( 2.1 ) ensures that II z,ll 2w1 ,; X...,. ( Cx), so it is sufficient 
that X...,.(Cx) = 0(1), n- 1 L llz,ll = 0(1), and L?- 1 

wf II z,ll 2 -+ oo. The asymptotics of the preliminary estimator 
may require additional conditions; for instance, the condi•
tions given by Kim and Pollard ( 1990) or Davies ( 1990) for 
least median of squares. 

Remark 4.6. The conditions on Y, exclude piecewise lin•
ear score functions such as Hampel's three-part redescender. 
Simpson, Ruppert, and Carroll (1989) gave an alternative 
proof for such estimators. Discontinuities in Y, (I l can lead 
to instability in the large sample variance if there is substantial 
discreteness in the data (Simpson, Carroll, and Ruppert 
1987). 

5. LAND USE/WATER QUALITY 

Haith ( 1976) collected data relating land use to water 
quality. Each case was a river basin in New York State. Basins 
were selected by two criteria: independence (no basin in the 
sample being a tributary of another basin in the sample) and 
completeness of the data. All20 basins satisJYing these criteria 
were included in the sample. The data, which also were given 
in Allen and Cady (1982, table 2.1 ), include five variables, 
nitrogen concentration and four land use variables given as 
a percentage of total land usage: N = total nitrogen; AC 
= active agriculture; FR = forest, brushland, or plantation; 
RS = residential; and C/ = commercial 1 industrial. Haith 
( 1976) developed linear regression models relating N to sub•
sets of the four other variables. Because the puepose of mod•
eling was to attribute nonpoint source pollution to the various 
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types ofland use, the parameter estimates and their standard 
errors were of primary interest. 

The covariates exhibit sizeable linear dependencies, and 
there are design outliers. AC and FR have a negative asso•
ciation, except for case #5 (the Hackensack River), which 
is an outlier in the design space with low AC and FR values 
and high RS and C/ values. Much of the variation in RS 
and C/ is due to five rivers, and the observed RS and C/ 
values exhibit a strong positive association. Their sample 
correlation is .86; their sample correlation excluding the riv•
ers with the two highest RS values is .93. With such a design 
it is difficult to disentangle the residential and commercial 
effects reliably. To alleviate the collinearity, we replace RS 
and C/ by their sum, UR := RS + CI =percent urhan land 
usage. Ifthe goal were to predict N, one might instead use 
stepwise regression to select a subset of the variables; this 
was Haith's strategy. However, simpler models do not attain 
a goal of relating all land uses to water quality. Aggregating 
RS and C/ is a compromise made necessary by the design 
that still allows us to relate all land uses to pollution. 

Case #5 (the Hackensack River) is such a severe design 
outlier that data analysts likely would set this point aside 
rather than including it in a linear least squares analysis. We 
shall present results both with and without case #5. Although 
inferences that rely heavily on this point are too unstable to 
be trusted, it would be of interest to determine whether the 
Hackensack River conforms roughly to the model suggested 
by the other rivers or whether it points to some alternative 
phenomenon in urban rivers. The Mallows weights that we 
use essentially delete case #5 in the fitting algorithm. Such 
downweighting of design outliers and response outliers is 
meant to limit their influence on the fitted model and as•
sociated inferences, but it also has the benefit of accentuating 
the inadequacy of the model for these points, possibly making 
it easier to discover alternative and more satisfactory models. 
Thus, although outliers may be downweighted or even de•
leted during the fitting of the model, this does not imply that 
they are "discarded" in the analysis of the data. They are in 
fact emphasized. 

For the full data, ordinary least squares ( OLS) regression 
of N on the land use variables yields (with standard errors 
in parentheses): 

N = 1.43(±1.29) + .0085(±.016)AC 

- .0084(±.015)FR + .029(±.028)UR. 

Omitting case #5 yields instead 

N = 1.70(±.76) + .0021(±.0094)AC 

AC 
FR 
UR 
OTHER 

- .Ol4(±.0086)FR + .16(±.028)UR. 

Table 1. Linear Model Parameter Estimates and 
Standard Errors for New York Rivers Data 

OLS 

.0028 (.0043) 

.0058 (.0020) 

.0437 (.016) 

.0143 (.013) 

LMS 

.0157 

.00019 

.171 

.0364 

M 

.0175 (.0021) 

.0022 (.00096) 

.179 (.0077) 

.0251 (.0063) 

GM 

.0164 (.0030) 

.0026 (.0014) 

.203 (.046) 

.0239 (.0077) 
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Table 2. Unear Model Parameter Estimates and Standard 
Errors Excluding the Hackensack River 

AC 
FR 
UR 
OTHER 

OLS 

.0191 (.0026) 

.00322 (.0013) 

.173 (.025) 

.0170 (.0076) 

LMS 

.0175 

.00114 

.136 

.0335 

M 

.0177 (.0018) 

.0023 (.00089) 

.156 (.018) 

.0276 (.0054) 

GM 

.0162 (.0029) 

.0024 (.0013) 

.195 (.052) 

.0263 (.0070) 

It is clear that case #5 would have considerable effect on the 
OLS inferences about urhan effects were it included. 

The parameter estimates and standard errors for the co•
variates in the above model are somewhat difficult to inter•
pret, because the parameters represent incremental effects 
over other land uses not measured. We therefore repara•
meterize the model by replacing the intercept with the con•
structed variable OTHER:= 100- AC- FR- UR. This 
reparameterization leaves the design space intact but provides 
directly interpretable parameters. For instance, the AC pa•
rameter is the nitrogen that can be attributed to each per•
centage of agricultural use. 

Tables 1 and 2 give estimates and standard errors using 
several methods: OLS; LMS; a three-step Huber estimator 
( M )-that is, Mallows with a = 0, starting from LMS; and 
a three-step Mallows estimator ( GM) with a = 2, starting 
from LMS. The three-step estimates used the scoring method, 
exchangeable standard errors, and a three-part redescending 
Hampel Y, function with tuning constants (a, b, c)= ( 1.5, 
3, 8). The normalizing constant in the scale estimate was 
set equal to • = .6745, but standard errors were inflated by 
the factor (Wf(W- p)} '''·where Wis the number of ob•
servations with nonzero weight. The Mallows weights for 
GM used b = x2(.95; p- I). MVE estimates of location 
and scatter for the covariates were computed using a 
FORTRAN program supplied by B. van Zomeren. LMS was 
computed via the S-plus (Statistical Sciences, Inc.) function, 
LMSREG. S functions for the GM steps and diagnostics are 
available from the authors on request. 

On deletion of case #5, the nitrogen concentration attrib•
uted to urhan use by OLS quadruples and the standard errors 
become considerably smaller. It is clear that the nitrogen 
concentration for case #5 is much less than was predicted 
by linear extrapolation from the remaining data. The LMS 
and M parameter estimates are not affected drastically by 
the presence or absence of case #5; however, theM standard 
error for URis more than doubled by the deletion. The GM 
parameter estimates and standard errors show little change 
on deletion of case #5. The M standard error for UR seems 
overly optimistic, even after deleting case #5, given the 
change in the estimates induced by the deletion and the dif•
ferences among the estimates. The standard error associated 
with GM is perhaps more realistic. 

Table 3 provides diagnostics for selected rivers based on 
the full data: diagonals of the OLS projection matrix (hu) ; 
OLS studentized residuals (t?LS ); standardized residuals for 
LMS (srMs), M (sl"). and GM (s?M); and the Mallows 
weights ( w1 ) . The standardized residuals s1 were scaled by 
median ( I residual I } 1.6145. McKean, Sheather, and Hett-
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Tabfe 3. Diagnostics for Selected ObseNations 
From the New York Rivers Data 

h, tF sF s~ sP"' w, 

3 .365 .726 0 .206 .302 .286 
4 .170 .588 -.712 -1.16 -2.08 .0662 
5 .957 -3.29 -44.6 -34.1 -41.2 .000585 
6 .053 .839 -1.35 -1.10 -1.76 .0637 
7 .063 2.89 0 -.041 -1.15 .0175 

19 .315 -2.12 -5.38 -3.52 -3.62 1.00 

mansperger ( 1990) developed a method of studentizing 
rather than standardizing robust residuals that likely will be 
helpful in studying outliers. 

Case #5 is an OLS leverage point in the full data, and it 
exhibits a moderately large OLS studentized residual. Clearly 
this point will have a large effect on the OLS fit(Cook 1977). 
The OLS residuals not shown were all smaller tban I in 
magnitude, perhaps a clue that case #5 has inflated the scale 
estimate. The extreme discordance of case #5 is obvious from 
the more robust standardized residuals, and the MVE-based 
Mallows weight also identifies it as extremely outlying in the 
design space. The Mallows weights not shown were all equal 
to I. The corresponding MVE-based Mahalanobis distances 
( Rousseeuw and van Zomeren 1990) provide a clear iden•
tification of several urban rivers (cases #3-7). The robust 
residuals also point to case #19 (the Oswegatchie River) as 
a possible response outlier. It is suggestive that case #19 is 
the largest river basin and case #5 the smallest (Haith 1976, 
table 2). 

Table 4 presents tbe same diagnostics after exclusion of 
case #5. Only case #19 remains as a response outlier. Case 
#7 emerges as a moderate OLS leverage point. The Mallows 
weights excluding case #5 are unchanged, because the re•
sampling algorithm ( Rousseeuw and van Zomeren 1990) 
selects the same subsample. Is there a pattern in the residuals? 
Figure I shows plots of residuals versus UR for OLS, LMS, 
M, and GM after excluding case #5. The plot for GM reveals 
a pattern of negative residuals for the more urban rivers. 
Coupled with the huge negative residual of the much more 
urban Hackensack River, tbere is evidence of nonlinearity 
for large values of UR. The pattern fails to emerge in the 
other plots, for which the estimators do not have the 
bounded-influence property. It is clear, however, tbat addi•
tional leverage points could influence tbe fit in the plots for 
OLS, LMS, and M. 

The nonlinearity revealed by the GM plot suggests that 
an alternative mechanism might come into play in urban 

Table 4. Diagnostics for Selected Observations 
Excluding the Hackensack River (#5) 

h, tF sF sr sf" w, 

3 .374 .577 .153 .251 .293 .286 
4 .279 -1.09 0 -.952 -2.20 .0662 
6 .178 -.650 -.783 -.976 -1.96 .0637 
7 .640 .865 2.56 .812 -1.07 .0175 

19 .323 -3.021 -7.92 -4.68 -4.51 1.00 
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areas. Perhaps urban areas have more efficient waste treat•
ment, which would mitigate the effects of urbanization on 
water quality. One could attempt to introduce nonlinearity 
into the model to account for such diminishing effects; how•
ever, because nearly all information about the nonlinearity 
is provided by the four most urban rivers, the effect will be 
difficult to model reliably. 

The preceding analysis leads us to some tentative conclu•
sions, with caveats about the hazards of interpreting obser•
vational data. The significant contribution of agricultural 
use to nitrogen content persists across estimators, so this 
appears to be a reliable attribution. Forestland also persists 
as a minor, marginally significant contributor. Urbanization 
of rural rivers is associated with relatively large increases in 
nitrogen content, but there is evidence that further urban•
ization of substantially urban rivers has less effect. Given the 
size of the data set and the collinearity, attribution of nitrogen 
to sources is very difficult; we would not be surprised if otbers 
discovered analyses that they prefer to ours. 

6. CONCLUSIONS 

We have examined the behavior of one-step Mallows type 
robust regression metbods in the linear model using either 
Scoring or Newton-Raphson. Two major general conclu•
sions have emerged: 

I. Under reasonably general conditions, the regression 
parameter estimates inherit the breakdown properties of the 
preliminary estimates of the regression parameters and the 
multivariate location and scale estimates of the design x's. 

2. It makes little sense to confine attention to regression 
parameter estimation and to completely ignore the associated 
problem of inference. Even when regression parameter es•
timates have reasonable breakdown properties, their esti•
mated standard errors may change radically with the deletion 
of a single observation. 

We have sh'own how to construct Mallows regression pa•
rameter estimates with the same breakdown properties as 
their standard error estimates. The Mallows weights depend 
on a user-chosen parameter a in ( 1.1). When using a re•
descending >/; function, the Scoring method with a ;;, 2 is 
recommended for inference; a ~ 1 suffices for point esti•
mation. 

In our analysis of the New York rivers data, we used LMS 
as the preliminary regression parameter estimate and the 
MVE scatter matrix estimate for the design. Both have high 
breakdown points, but they are extremely inefficient esti•
mates and might have undesirable small sample perfor•
mance; see, for example, Cook and Hawkins ( 1990). In our 
example this was not a problem. In other settings, however, 
one might be more successful in lowering the breakdown 
requirement from 50% to something less ambitious, such as 
20%, to avoid the exact fit property ( Rousseeuw and Y ohai 
1984). Moreover, although any rate of convergence better 
than n- 1 / 4 is sufficient for tbe one-step GM estimator to be 
root-n consistent and asymptotically normal, this approxi•
mation is more accurate if the preliminary estimator has a 
better rate of convergence. Hence improved performance 
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may occur using more efficient preliminary estimates such 
asS estimates (Rousseeuw and Yohai 1984; Davies 1987). 
Another way to improve the starting value is to iterate more 
than once, as in our analysis of the New York rivers data; 
we have observed empirically that three-step GM estimates 
starting from LMS or MVE are somewhat more stable than 
the one-step versions. 

The behavior of one-step regression estimators with 
asymmetric and heteroscedastic errors deserves further study. 
If the regression errors are iid and symmetrically distributed, 
then both Scoring and Newton-Rapbson have the standard 
large sample theory of fully iterated GM estimates. If the 
errors are asymmetric, however, then only Scoring improves 
on the rate of convergence of the preliminary estimate. On 
the other hand, if the errors are symmetric and heterosce•
dastic, then only Newton-Raphson shows this improvement. 
Fnlly iterated Mallows estimates work in either case, but 
they may give up the higb breakdown point (Maronna et al. 
1979). 

The complexities encountered in the analysis of the land 
use data suggest that several important areas of research need 

further development, including stability of inference, robust 
model selection, and robust diagnostics. 

APPENDIX: TECHNICAL PROOFS AND LEMMA 

Proof of Theorem 2.1. First observe that IIHo'Koi s IIKoll/ 
IX.,,,(H 0)i.Becausea'> l,wehave 

.r-'IIKoll' 

s llli''llmp L: l!z,!l'w1"' llli''ll,.., 
i=l 

XL: {I+ llm.ll' + llx,-m.ll')wl 

s ll~i''llmo( n(l + llm.ll') + b 1~ "'"(x-,-~"-'l~=;,;,;-;~;:'x':'i7tx"'-ll,'_m_x-c)} 
s nllli''llmp(l + llmxll' +b),_( C.)). 

Because li' is hounded and c. has breakdown m/n, IIKoll' has 
breakdown at least m/n. We now must show that no matter what 
one does with the "bad" points, Am;n(H0 ) > 0. 
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Scoring. We have that 

A.m.(± w,z,z:) « Ami•( ± w1z1zl) 
1=1 ,_, 

« ( inf w1)A,. 1.(± z,z:). (A. I) 
1"'J"'P i-1 

Because by convention the first p of the { z, } are linearly indepen•
dent, we need only consider the first factor on the right side in 
(A.l). This term is0onlyifsup,.1 .. {(x1 - mx)'C; 1(x1 - mx)) 
~ ro, which cannot happen because Cx has breakdown m/n and 
the first p observations are "good." It thus suffices to show that . 

L "41"'<rtfu) > o. (A.2) 

By (2.3), there are at least n/2 observations with lrd/& :s; a; so 
that if "41 is nondecreasing, application of ( 2.2) suffioes to prove 
(A.2). Under Assumption B we find that the left side of (A.2) is 
at least n/2(d1 - d2), and (A.2) then follows from (2.4). 

Newton-Raphson. We must show that under arbitrary manip•
ulation of the "bad" points 

Ami•{± "4l(ll(r;/&)w,z1zl} > 0. (A.3) 
•=I 

When "41 is nondecreasing, "41<' 1( v ) « 0 and "4l"'(rt/&) « d1 > 0 for 
at least n - m - n/2 "good" points. Thus (A.3) follows from 
Assumption C. 

Proof of Lemma 2.1. For the first part of the lemma, it suffioes 
to replace Ho by L1 w1z1z~. As in (A.l), i\nu(L7= 1 W;z;zD 
:<!=. Amax(L7 .. n-m+l W;z1zD. Now letting llzill-+ oo forj~ n- m + 1, 
we have w1 - b•l'(xjC;' x1)- �12 - b•l'llx1 ii-•(g,C;1 g,)·•/2 
- b•12 11z111-"(g1C;'g1)-•1', where 81 ~ xtfllx,ll, because Cx and 
mx have breakdown mfn. But because gJC;1 ~ :s;; Amax(C;') 
~ {A.,;.(Cx)}-1 , it then follows that in the limit, as llzJII-+ ro, 
(inf_m+l<i .. wj) « !{hA.u.(Cx))•1'11zJii-•, and hence that 
A-(~1-;W;Z;Zl)« HhA,.;,(Cx))•/2 A-(~1-n-m+l d;dlllzdl'-•). 
This can be made to diverge to ro if " < 2. If " « 2, then 
A-(~7., W1z,zl) :s ~7-1 llz1ll 2w1 :s ~7-1 (1 + llmxll 2 + llx, 
- mxll 2)w, :s n{l + llmxll' + hA_(Cx)), the last step following 
because a ~ 2. 

Proof of Theorem 4.1. We derive a more general result that 
holds even if the errors are asymmetric, as in Section 4.2. Let 11o be 
the limiting value of the preliminary estimate of the intercepL Let 
{jo = (7Jo. 'Ytr, u, = Y;- zfPo, and G({J, u) = q L7-t 1/l(ut/CT)W;Zt 
~ u ~7-1 <l-((r1 + zi(lio- fJo))/u)w1z1 � 

Newton-Raphson. Conditions Bl and B2 and the mean value 
theorem yield 

G(/J, &o) ~ &o ± <1-(rtfuo)w,z, + ± "41<' 1(rtfuo)wlz,zi(lio-fJo) 

+ _21 uii' ± "41<''( rl + z;~Po- Po>)wlzl<zi(Po- Po»' 
;-1 11o 

~ HNR(PNR- fJo) + ,.,{ uii'IIPo- /loll' ± wdlzdl ')' 
..... , 1"'1 

(A.4) 

where Po is on the line segment between flo and Po. On the other 
hand, applying the mean value theorem to g(s) ~ G(fJ, s) yields, 
after some simplification, 
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n 

G(fJ, &o)~ &o L <1-(utfu)wlzl 
I� I 

I� I 

+~(ITo- u) 2i1-1 "i; 1/t<2>(udii)(u;/i1)2w;z;, 
l~l 

where ii is between &o and u. Equating (A.4) and (A.5), 

HNa(PNa- flo)~ &o L { <1-(utfu)- ao)w,z, 

- (&o- u) L { "41° 1(u; /u)(udu)- b,)w 1z1 

+ {ao&o + b,(u- &o)} L w1z; 

+ O(&ii'IIPo- /Joll 2 L w1llz.!l') 

+ 0(( &o - u )2ii-1 L w;!lztll ), 

with ao ~ E[</-(u,fu) ] and b, ~ E[t<"(u,fu)(u,f u)]. 
The assumption on &0 , Conditions AI, A2, Bl (b), Cl, and Che•

byshev's inequality imply n-112 (&o- u) ~ {"4l(u;/u)- ao)wlzl 

~o,(n-') and n- 112 (&o- u) ~ {t"'<utfu)(utfu)- b,)w1z1 

~O,(n-•). Moreover, by Cl, n-112&ii'lllio- Poll'~ w,llz,ll' 
~ O,(n 112-2') and n-'1'(uo - u)'ii-1 ~ w1llz,ll ~ O,(n'12- 2'). 
Observing also that -r .s: l implies 2-r - i .s: -r, we have 

n-112HNa(PNR- fJo) 

where the bias term is B, = n"' 112 {aoiT 0 + b1(u- IT0)} ~?=1 w;Zt. 

Condition 02 implies B, ~ 0, which establishes ( 4.2) for Newton•
Raphson. 

Scoring. Observe that 

Hs(Ps- flo)~ HNR(PNR- flo)+ (Hs- HNR)(Po- flo). (A.7) 

Hence if we show that the components of (Hs - HNa) are of order 
Op(n 1-'), it will then follow that expansion (A.6) holds with PNR 
and HNR replaced by Ps and Hs. Setting g(l) ~ "41" 1(1) and c, 
= n"' 1w1zuzlk in Lemma A. I shows that 

J I " 
n-1HNR ~ n-'Q. + 0"\ n ,., ~ w,iiz, 11 2(1 + llztll) 

+ {J, ± w111z.ll 4}'"), (A.8) 
n 1-1 

replacing e1 by u1 in the definition of Q,. On the other hand, set•
ting c1 ~ n-1 shows that n-1 ~ { t(l>(rt/&0)- E["41°1(utfu)l} 
~ O,(n-'( I + n-1 ~ ~z.!l) + n-'1'), from which it follows that 

n-1Hs = n-'Q, 

+ofn-·(1 +n-1 ± llz,ll)n-' ± w,llz.!l')· (A.9) 
~ 1""1 , ... , 

Comparing(A.8)and(A.9) shows thatn- 1(Hs- HNR) ~ Op(n-'), 
whence 

n-11'Hs(Ps - fJo) 

Lemma A. I. Suppose { u,) are independent, n'(lio - fJo) 
~ O,(l),andn'(u0 - u) ~ O,(l)with u>O. Let {c1 } be a sequence 
of finite constants. If a measurable function g satisfies the Lipschitz 
condition 
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lg(s)-g(t)l s;Lis-tl/(1 + ltl), (alls,t) (A.ll) 

for a finite constant L, then 

i c,[g(u' + zl~ilo- Pol)_ E[g(u;/a)]} 
t=t uo 

~ o,(n·· i I c;l(l +liz, II)+ ( i c;}'''). 
,., 1'•1 

Proof Condition ( A.ll ) implies 

I ( u, +zl(/lo-Pol)- ( _1� >I L lzl(/lo-Poll g A g u, CTo :S A 

uo uo 

"'L llzdlll!io- Poll 
uo 

and lg(u;/uo)- g(u;/a)l "'Llu,lluii'- a·'l/(1 + luda-1 ) 

:s; L&O'Iu- &o\. Hence 

~ I c;llg( u, + zl~o- Pol)_ g(u;/a)l 

"'L(ll!io- Poll_+ Ia- uol) i lc;l(l + llzdll-
Go 1-1 

Condition ( A.ll ) also implies that g is continuous and bounded 
betweeng(O)± L. Hence the sum a.~ L7-1 c1{g(u;/a)- E[g(u.! 
a) l} has mean 0 and variance bounded by ( I g( 0) I + L} 2 L 
ci. Chebyshev's inequality implies a. ~ O,( { L ci} 112). 

Proof ofTheorem 4.2. To prove the result for nonexchangeable 
Mo, use Lemma A.l with g = 1f2 and c1 = n-1w1 ZncZu(k, IE { 1, 
... , n} ). For exchangeable M0 set q = n-1 to show n- 1 ~ 
Y,'(r.!uo) ~ EY,'(e,/a) + O,(n- '(1 + n·' L llzdl)). 

Proof of Lemma 4.1. The expansion for Scoring follows from 
(A. tO), because L7.1 w 1x, ~ 0 and Hs is block diagonal. 

For Newton-Raphson, first recall that n·'(HNR- Q,) ~ O,(n- ') 

by (A.8), and q 0 , ~ 0 due to the centering in ( 4.6). It follows that 
h0 >hll = Op(n- 7 ) and 

n·1H 22 � 1 ~ n·1H 22 + O,(n- 2') ~ n·1Q22 + O,(n- '). (A.l2) 

Next rearrange ( A.6) to obtain 

H,.,(y- 'Y) ~ h0 ,hll(b. + S!l + S, + O,(n 1- 2'), (A.l3) 

where b.~ {ao<o+Ma-uo)} L w, ~ {aouo+Op(n-')} LW;, 
S, ~a L7. 1 {Y,(u;/a)- ao}w, ~ O,( {L w1} 112), and S2 ~a 
Lf.1 {y,(u,/a) - a0 }w1x,. In (A.l3) the term h11 ,hllS1 

= Op(n 1' 2 - .. ) = op(n 1- 27), which can be absorbed into the remainder. 
Further we have htl h11 = at'aoU0 + Op(n-'), so it remains to detail 
the large sample behavior of Uoho>· An application of the mean 
value theorem yields 

&oh(tl = Uo L 'f!( 0 (rdlro)wix, 

~ uo L Y,'"(u;/uo)w,x, + L Y,'"(u;/uo)w,x,zl(/3o- ilo) 

+ O(uii'IIPo- iloii'IIY,'"II,., L wdlzdi'J. (A.t4) 

Further expansion of the first term in ( A.l4) yields 

&o L l/; 0 >(u ; /Uo)w 1x 1 

~ Q-0 L Y, 10 (u,/a)w,x1 - (u0 - a) L Y, 1''(u,/a)(u;/a)w1x, 

+ o(<uo; aJ'II<·J'Y,'''<·JII •• , L w,llx.ll). 

where U is between u and & 0 • Because of the centering, Chebyshev's 
inequality and the conditions on 1/1 and x imply that ~ 
¢< 0 >(u, j& 0 ))w,x, = Op(n 112 ) and ~ 1/;< 2>(u;/u)(u;/u)w;X; 
= Op(n 112 ). Hence & 0 ~ ,p<'>(u; /& 0 )w 1x 1 = aL {1/1< 0 (u,/u) 

449 

-a,} w,x1 + O,(n 112-') + O,(n,_,') _ To handle the second term 
in(A.l4), note that L ¥-<2>(u;/U0)w1 x1z~ = a2 L W;X;Z~ + Op(n-.,. 
L w1 ) + 0,( { L wi} 112 ) ~ a[1a2[q0 ,; Q,2 ] + O,(n 1-'). Thus we 
have 

uoh(l)~ a L {Y,"'<u.ta)-a,}w,x, 

+ a['a,Q,('¥0 - 'Y) + O,(n'- ' ' ). (A.lS) 

Combining (A.l2), (A.13), and (A.IS)completes the proof. 

Proof of Lemma 4.2. The proof of Theorem 4.1 for Newton•
Raphson extends immediately to the present case. To handle Scor•
ing, use (A. 7) and observe that, by Lemma A.l, 

n·'(HNR- Hs) 

As an example where this matrix fails to vanish asymptotically, let 
the empirical covariance between EI~f<'>(edo-)1 and w1z~ converge 
to unity as n ..... oo . 

Proof of Theorem 4.3. This follows from Lemma 4.2 and an 
application of Lemma A. I to M0 . 

{Received January 1990. Revised February 1991.] 
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Chapter 7
Other Work
By George Casella

About the Author. George Casella was a long-time friend of Ray’s and leader in the field
of Statistics who passed away in 2012. At the time of his death, George was Distinguished
Professor in the Department of Statistics at the University of Florida. He was active in
many aspects of statistics, having contributed to theoretical statistics in the areas of deci-
sion theory and statistical confidence, to environmental statistics, and has more recently
to statistical genomics and political science methodology. He also had strong research in-
terests in the theory and application of Monte Carlo and other computationally intensive
methods. He was elected a Foreign Member of the Spanish Royal Academy of Sciences
(2010) and a Fellow of the American Association for the Advancement of Science (2012).
In other capacities, he served as Theory and Methods Editor of the Journal of the American
Statistical Association, 1996–1999, Executive Editor of Statistical Science, 2002–2004, and
Joint Editor the Journal of the Royal Statistical Society, Series B, 2009–2012. He authored
seven textbooks, including Statistical Inference, Second Edition, 2001, with Roger Berger,
and Monte Carlo Statistical Methods, Second Edition, 2004, with Christian Robert. His
friendship with Ray Carroll went back to their graduate studies at Purdue in the seventies.
Although their statistical expertise tended to be in different areas, they kept familiar with
each other’s work and saw each other regularly, both professionally and on the golf course.

This commentary was written in the year before George’s passing.

Selected Papers on Other Work

[OW-1]-[52] Carroll, R. J. and Lombard, F. (1985). A note on N-estimators for the binomial
distribution. Journal of the American Statistical Association, 80, 423–426.

[OW-2]-[339] Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in
the presence of informative right censoring by modeling the censoring process. Biometrics,
44, 175–188.

[OW-3]-[117] Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of sand-
wich covariance matrix estimation. Journal of the American Statistical Association, 96,
1387–1396.

[OW-4]-[115] Molenberghs, G., Thijs, H., Kenward, M. G., Carroll, R. J., Mallinckrodt, C.,
Jansen, I., and Beunckens, C. (2004). Analyzing incomplete longitudinal clinical trial data.
Biostatistics, 5, 445–464.

Imagine your first day of graduate school, and one of the first people you meet is
Ray Carroll. It was Ray’s second year (and almost final year, as he only took two-
and-a-half years to get a PhD), and right then you know that you have no chance.
How on earth can someone compete in the Carroll arena? The secret? There is no
competition. As the rest of this introduction shows, Ray Carroll is not only one of
the best statisticians on the planet, he is one of the sweetest people you will ever
meet. Much of his career has been spent mentoring young statisticians, and showing
them how to solve real problems in meaningful ways.

M. Davidian et al. (eds.), The Work of Raymond J. Carroll: The Impact
and Influence of a Statistician, DOI 10.1007/978-3-319-05801-6 7,
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Ray and I have been friends for over 30 years. Although we never lived or
worked in the same place, we are always in touch. Meetings and university visits
have helped, and throughout we have always found time to play a round of golf.
There are many stories, but the only one I will share took place in North Carolina in
the 1980s, when I was visiting Ray. He made reservations at Pinehurst (one of the
most famous, and expensive, golf courses in the world). Reservations were almost
impossible to get if you were not a member, but Ray convinced them that a very
famous professor was visiting North Carolina, and they should accommodate him
(me—ha!) for the benefit of the university. They not only let us on the course, but
also since Ray was not a member they had no way of billing us, so we played for
free!

This section chapter is, in many ways, quintessential Ray. Although the other
chapters show his deep contributions in many areas, this chapter highlights his per-
sonality and approach to statistics, and how his influence on researchers, both young
and old, transcends the field. Ray is always positive, upbeat, and dedicated to good
science and solving good problems. The overall theme of these works is that Ray
talks with someone—often a young researcher—understands the problem, suggests
a solution, and produces a substantial contribution. Consider the range of these four
papers, from the applied treatment of wildlife data and informative censoring, to
the efficiency of sandwich estimators and a deep look at handling missing data in
longitudinal studies.

Binomial N

Carroll and Lombard (1985, [OW-1]) is my personal favorite, and I still recall
first reading it and thinking—what a cool solution! It spurred me to also write a
paper on n estimation (nowhere near as influential as Ray’s). This problem actually
has a long history, going back to a disagreement between Fisher and Haldane (ref-
erences in the paper). Ray’s coauthor Fred Lombard recalls, “Going back 30 years
is a bit of a stretch, however, I can recall the following details: On a visit to the
Kruger Park with Ray in 1982 I mentioned to him that I had been involved with the
Park authorities in trying to extract useful information about animal numbers from
counts they had done. The data were of the binomial(n,p) type—p unknown and
n to be estimated. Maximum likelihood estimation didn’t yield much because the
likelihood functions were ‘flat as pancakes’ in a large neighborhood of the maxi-
mum. He suggested that the nuisance parameter p be integrated out—an idea which
led eventually to the paper.”

This problem, and the type of solution provided (marginal likelihood), has ac-
tually become more important. Ray notes, “I have recently been using the think-
ing from that problem to analyze the number of significant SNPs in genome wide
association studies, together with Nilanjan Chatterjee.” I can also attest that these
unknown n models have become very useful in modeling RNA-seq data.

Informative Censoring

Wu and Carroll (1988, [OW-2]) is another paper motivated by a real problem,
that of assessing the effectiveness of certain therapies for treating lung disease, and
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the possibility of there being informative censoring. Ray and Margaret Wu look at
the effect of informative censoring on the usual estimates, in particular bias and loss
of efficiency, and propose a solution based on a probit model for the informative
censoring. The impact of this paper is clear, it has been cited over 350 times.

Ray notes, “This paper was, I think, the first paper in biostatistics to actually
think about informative censoring,1 which is now also called Missing Not at Ran-
dom or MNAR, and it had a major impact at the time. Margaret and I had talked
about the problem when I was at NHLBI in 1980–1832, and in 1986 she called
me and suggested we finish the initial work, which I had completely forgotten but
for which she had kept notes. We did, and submitted it to Biometrics, where it was
quickly accepted. Neither of us thought this was a big deal paper, and both of us
were obviously wrong.”

Margaret Wu has retired from NHLBI, and attempts to contact her for comments
have failed.

Sandwich

Of Kauermann and Carroll (2001, [OW-3]), Ray notes “I like to think of this
as a little gem of a paper,” and I concur. Every once in a while we see a short
paper in a top journal that has an important message. This is one, where Ray and
Göran Kauermann show that the sandwich variance estimator suffers from increased
variability and that the resulting confidence intervals do not attain their nominal
level. They propose an adjustment that mediates this problem.

Göran Kauermann notes “I was at a pretty early stage of my career and I remem-
ber that Ray was giving me a manuscript he had just finished with coauthors where
he showed in simulations and on theoretical grounds that the use of sandwich vari-
ance estimation leads to undercoverage of confidence intervals. I found the result
interesting and started working on a correction for the undercoverage.” This joint
work lead to the sandwich paper, which has had a major impact.

Missing Data

Ray’s approach to science is totally professional, with the goal of doing and
promoting good science. Molenberghs et al. (2004, [OW-4]) grew out of a talk on
Ray’s website entitled, “Last Observation Carried Forward Is A Stupid Method For
Handling Missing Data in Longitudinal Studies.” Understand that there is no malice
or insult here; it is a statement that this is not good science, and must be fixed.
This paper is a very careful look at missing data methods in longitudinal studies,
characterizing their properties and recommending good procedures. Although the
authors do not actually say that Last Observation Carried Forward is stupid, they
show that it is biased, can distort the variance and covariance structure of a model,
and can almost certainly lead to incorrect inferences.

Ray notes that this paper “: : : is one of a series inspired by Craig Mallinckrodt
of Eli Lilly, who made the professionally bold decision to push for modern mixed

1 No, but real close. A Web of Science search on “nonignorable nonresponse” or “informative
missingness” or “informative censoring” finds 520 articles, with only three older than Wu and
Carroll (but not by much). Moreover, of the 520 articles, Wu and Carroll is number 4 in citations.
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model statistical methods for handling missing data.” Geert Molenberghs, speaking
for the “team,” notes “Early in the first decade of this century, Ray came up to talk
to me during the Joint Statistical Meetings. He had been working with Eli Lilly
and Company, and wanted to make sure that they would be using proper, modern,
adequate missing data methodology and had been referring to our book (Verbeke
and Molenberghs, 2000), in which we spent one paragraph on the infamous Last
Observation Carried Forward method. Ray forged a satisfying, socially pleasant,
and lasting relationship and, over time, it started to involve many other people in our
department. The 2004 Biostatistics paper is a direct testimony to this collaboration
and a first milestone of it. Nothing of this would have happened without Ray.”

Endnote

These papers solve a variety of real problems and provide sophisticated solutions
that are not only applicable but that also move the theory forward. To this I say,
“Bravo, Ray.” Perhaps this is the most important lesson we can learn from Ray—
let the real problems guide you, and bring the theory to bear to produce a useable
solution.
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A Note on N Estimators for the Binomial Distribution 
RAYMOND J. CARROLL and F. LOMBARD* 

Consider k success counts from a binomial distribution with 
unknown Nand success probability p. We examine the problem 
of estimating N. By integrating the likelihood for N and p over 
a beta density for p, we obtain the beta-binomial distribution 
resulting in stable and reasonably efficient estimators of N, 
which compare favorably with and are often better than the 
estimates introduced by Olkin et al. (1981). 

KEY WORDS: Analysis of count data; Maximum likelihood; 
Method of moments; Unstable estimators. 

1. INTRODUCTION 

Olkin, Petkau, and Zidek (OPZ; 1981) considered the prob•
lem of estimating the parameter N based on independent success 
counts s" ... , sk from a binomial distribution with unknown 
parameters N and p. They showed that the method of moments 
estimator (MME; see Haldane 1942) and the maximum like•
lihood estimator (MLE; see Fisher 1942) of N can be extremely 
unstable in the sense that changing an observed success count 
s to s + 1 can result in a massive change in the estimate of 
N. The difficulty arises when the method of moments estimates 
of mean and variance, jl and fJ 2, are nearly equal, so the success 
probability p is apparently small. 

To overcome the instability of the MME and MLE of N, 
OPZ introduced two estimators that they showed to be stable. 
The first is MLE: S, which is either the ordinary MLE or a 
jackknifed version of the maximum success count, depending 
on whether j.tlf12 "= I + 11V1. The stabilized MME:S also 
varies: if ,fli & 2 "= I + 11V1, the usnal MME is used; otherwise 
a ridge tracing method is employed (Hoerl and Kennard 1970). 

Both MME:S and MLE:S are reasonably stable, and OPZ 
demonstrated in a convincing Monte Carlo Study that these 
estimators dominate the ordinary MME and MLE. They also 
showed that the ridge-stabilized MME: S is generally a better 
estimator of N than is the jackknife-stabilized MLE: S, except 
in unstable cases in which p is large. The purpose of this article 
is to describe a simple, stable estimator that is closely related 
to the MLE and seems to be competitive with and often superior 
to both MLE: S and MME: S in terms of mean squared error. 

2. A NEW CLASS OF ESTIMATORS 

The instability of the MME and MLE arises when p is ap•
parently near zero. OPZ cited a case in which N = 75, p = 
.32, and the success counts are 16, 18, 22, 25, and 27. Even 
though p is not small, the natural estimate of it from the ob•
served counts is I - fl'l f.t = .21. This is an example of an 
unstable case, since f.t/&2 = 1.27 even though EP.IEIJ 2 = 

* Raymond J. Carroll is Professor of Statistics, University of North Carolina, 
315 Phillips Hall 039 A, Chapel Hill, NC 27514; and F. Lombard is Professor 
of Statistics, University at South Africa, P.O. Box 392, Pretoria, South Africa. 
Carroll's work was supported by Air Force Office of Scientific Research Con· 
tract F 4%20 82 C 0009. Lombard's work was supported by research grants 
from the University of South Africa and the Council for Scientific and Industrial 
Research. The authors thank the associate editor for detailed and helpful com· 
ments and the referees for their suggestions. 

1.84. The extreme instability of the MLE and MME of N in 
this case was noted by OPZ. In the examples that motivated 
this research, namely counting the number of impala herds and 
individual waterbuck in the Kruger National Park, South Africa, 
it is fairly certain that p is much different from zero (see Sec. 
4 for details). We reasoned from these examples that a stable 
procedure ought to be obtained if one smoothly builds in au•
tomatic discounting of data for which pis apparently near zero. 
In particular, it seemed that fairly stable procedures with good 
frequentist properties could be obtained by pretending that p 
had a beta distribution with parameters (a, b) and then looking 
at the likelihood obtained after integrating out p. Specifically, 
for 0 < p < I and N "= s_ = max(s1 , ••• , s,), write the 
likelihood of the data as 

L(N, p) = {I] (~)} p�>, (I - p)kN-!>.. (I) 

Suppose for the moment that the density of p is proportional 
to 

p'(l- p)', (2) 

where a and b are integers. To eliminate the nuisance parameter, 
multiply (I) and (2) and integrate over p to obtain an integrated 
likelihood for N: 

~(N) = { ) ] (~)} 

for N "= s_. (3) 

The estimate Mbeta (a, b) of N is obtained by maximizing (3) 
as a function of N "= max(s 1, � � � , s,). Of course, in the 
standard terminology, (3) is the beta-binomial likelihood. 

The idea of maximizing (3) as a function of N was justified 
in a Bayesian context by Draper and Guttman [ 1971; our Eq. 
(3) is equivalent to their (2.8)]. A non-Bayesian justification 
for eliminating nuisance parameters by integrating them out is 
given by Barnard et al. (1962; see pp. 348-350 in particular). 

For every a "= 0 and b "= 0, the integrated likelihood (3) is 
maximized at some finite N. This follows because f'(N) __. 0 
as N __. oo, using Stirling's formula. We do not know if (3) 
always has a unique maximum when considered as a continuous 
function of N. In our calculations, however, we always found 
that (3) was either decreasing or first increasing and then de•
creasing inN, suggesting that (3) does have a unique maximum. 
DeRiggi (1983) showed that the likelihood function (I) eval•
uated at p = '2:-s,l kN is unimodal; we have been unable to 
prove a similar result for (3). 
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Of course, one need not be restricted to having the distri•
bution of p given N be beta (a, b). Indeed, different but fairly 
unnatural choices of distributions for p given N lead to some 
familiar, unstable estimators. For example, the MLE is formed 
by supposing that given N, p has a point mass distribution at 
{J(N) = I-:s;IN. Following the prescription that led from (1) 
to (3) gives 

!t(N: MLE) = {,¢. (~) }{J(N)'\'•(1 - fJ(N))'v~r:,, 

Part of the instability of the MLE may be due to the fact that 
as N--" oo, it does not follow that £(N : MLE)--" 0. 

A second, rather strange choice is to pretend that the density 
of p is proportional to lip (0 < p < 1). This gives extreme 
weight to small values of p and, as might be expected, leads 
to a very unstable estimator. It turns out that this unstable 
estimator is equivalent to the one obtained by maximizing the 
conditional likelihood for N given L7s;; the conditional likeli•
hood for N differs from (3) here by a multiplier not dependent 
onN. 

In contrast to the unrestricted and conditional MLE, our 
method uses a proper and natural distribution for p. We have 
chosen to fix the choice of (a, b) in line with our experience, 
but one could reasonably attempt to use the data to estimate 
(a, b). A Bayesian might also wish to construct a proper prior 
distribution for the parameter (N, p), the result of which might 
be an estimator with good frequentist properties. 

Our method differs from that of Blumenthal and Dahiya 
(1981 ), who multiplied (1) and (2) together and then maximized 
this product jointly in N and p. They did not give any guidelines 
on how to choose (a, b) or on the stability of the result. From 
our limited calculations, it is clear that their choice of (a, b) 
must operate entirely differently from ours. In fact, our inte•
gration over p seems to induce stability for much smaller values 
of (a, b) than is the case with the Blumenthal and Dahiya 
method. 

3, NUMERICAl WORK 

The estimate of N obtained from maximizing (3) is reasonably 
stable. In Table I we analyze the examples listed in table 2 of 
OPZ, who computed MME, MME:S, MLE, and MLE:S for 
some particularly difficult cases; the MLE differs slightly from 
that of OPZ in cases 2 and 6 because of the extreme flatness 
of the likelihood in these cases. In addition, we provide the 
estimator Mbeta (0, 0) obtained from (3) with a = b = 0 (the 
uniform distribution) and the estimator Mbeta (1, 1) with a = 
b = 1. It is clear from these examples that MME and MLE are 
highly unstable. In addition, MME:S, MLE:S, Mbeta (0, 0), 
and Mbeta (1, 1) are clearly stable, with MME:S, Mbeta (0, 
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Table 1. N Estimates for Selected 
and Perturbed Samples 

Estimators 
Parameters 

Mbeta Mbeta 
Sample N K MME MME:S MLE MLE:S (0, 0) (1,1) 

75 .32 102 70 19 29 51 49 
195 80 190 30 57 52 

34 .57 507 77 S14 31 52 47 
<0 91 32 S9 52 

37 .17 20 65 25 66 11 26 23 
154 27 159 13 29 25 

48 .06 15 18 10 15 9 8 
135 12 125 12 10 

40 .17 12 32 26 40 21 27 2S 
61 32 79 22 33 29 

74 .68 12 210 1S3 213 67 135 125 
259 162 266 69 144 131 

S5 .48 20 71 69 71 43 64 63 
79 74 81 4S 70 67 

60 .24 15 67 49 67 24 45 41 
88 53 90 26 49 45 

NOTE: The exact samples are given in table 2 of OPZ. For each sample number, the first 

entries are the N estimates for the original sample, and the second entries are the N estimates 

for perturbed samples obtained by adding one to the largest success oount. 

0), and Mbeta (1, 1) giving rather similar results. Cases 6 and 
8 are particularly illustrative. Case 6 is an unstable case with 
large p, and here MLE:S dominates MME:S, with our Mbeta 
(0, 0) and Mbeta (1, 1) falling somewhere in between. Case 8 
is unstable with small p, and MLE: S is now much worse than 
MME:S; again our estimators fall between the two, although 
they are more efficient in this case. The different behavior in 
unstable cases is reflected in the Monte Carlo study we now 
describe. 

In Table 2 we expand the Monte Carlo study of OPZ, com•
paring MME:S and MLE:S with Mbeta (0, 0) and Mbeta (1, 
1). All random numbers were generated by using the IMSL 
generators GGBTR and GGBN. The basic study was as in OPZ, 
so k was randomly chosen such that 3 ::5 k ::5 22, p was uni•
formly chosen such that 0 < p < 1 , and 1 :5 N :5 100 was 
uniformly chosen. There were 2,000 randomly generated cases. 
A case was called stable if jJ. ~ (1 + 11Vl)a2 and unstable 
otherwise. We also considered subcases in which .2 ::5 p ::5 .8, 
O<pVl- 1 andv'2- 1 :sp< 1. 

Readers of an earlier version of this article pointed out that 
our study seemed biased in favor of our estimators, since p was 
uniformly distributed on 0 < p < 1. To avoid this criticism 
we redid the study completely, generating beta (A, B) random 
variables [see (2)] with the asymmetric choices (A, B) = (0, 
1), (1, 2), (1, 3), (1, 0), (2, 1), and (3, 1). Since in each of 
these studies. our estimators performed as well as or better than 

Table 2. Relative Mean Square Error Efficiencies of the N Estimates Relative to MME: S 

Stable Cases Unstable Cases 

Range No. MME:S MLE:S Mbeta (0, O) Mbeta(1, 1) No. MME:S MLE:S Mbeta (0, 0) Mbeta (1, 1) 

O<p<1 1,367 1.00 .99 .99 1.03 633 1.00 .86 1.16 1.18 
.2<p<.B 863 1.00 .98 .99 1.08 336 1.00 1.18 1.96 2.79 
p<\12-1.0 281 1.00 .99 .96 .99 519 1.00 .66 .96 .92 
p>V2 -1.0 1,086 1.00 .99 1.08 1.20 114 1.00 5.70 2.90 5.16 
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in the case (A, B) = (0, 0) reported in Table 2, we do not 
report them. 

For the unrestricted case in which 0 < p < 1, the actual 
relative mean squared error efficiencies and the percentages of 
stable cases were similar to the results of OPZ. For the stable 
cases, the four estimators performed equally well. For the un•
stable cases, MLE:S was the clear loser, with the other three 
estimators being similar in performance. 

When we consider the special cases .2 < p < .8, interesting 
results emerge. For the unstable cases, MME:S still beats 
MLE:S, but our estimators Mbeta (0, 0) and Mbeta (1, 1) are 
vastly superior to the other two. An intuitive reason for this 
may be that our estimators downweight the possibility that p 
is near zero. 

Followi'!jl OPZ, we also consider the cases of "small" p (0 
< p < Y2 - 1) and "large" p (v2 - I :s p < 1). The 
former case is, as expected, least favorable to our estimators, 
which discount the possibility that p is small. However, our 
estimators still perform well; for example, Mbeta (0, 0) is only 
4% less efficient in terms of relative mean squared error than 
MME:S, and Mbeta (1, 1) loses only 1% efficien<;J. 

More striking results emerge when p is large (Y2 - 1 :s p 
< 1). For the stable cases (90%) in this subset, our estimators 
have a definite advantage over MME: S and MLE: S, especially 
Mbeta (1, 1). For the few unstable cases, MLE:S is much 
better than MME:S (a fact noted by OPZ); even in these cases, 
our estimators perform competitively, and overall Mbeta ( 1, I) 
emerges as the clear winner. 

We found that the stabilized MLE: S was much more neg•
atively biased than the three other stabilized estimates. Though 
all were negatively biased in general, the stabilized MLE:S 
had a bias in the unstable cases of almost 60% of the true value 
of N, versus 20% for the moments estimate MME: S and 30%-
35% for our suggestions Mbeta (0, 0) and Mbeta (1, 1). In•
terestingly, for the 82% of unstable cases with true probability 
less than v2 - I, our suggestions were negatively biased, 
and for the other 18% of unstable cases, the bias was positive. 

4. EXAMPLES 

This research was motivated by the following two examples, 
the second of which is especially difficult. The counts of impala 
herds and individual waterbucks were obtained on five succes•
sive cloudless days in a small area of the Kruger Park. Counting 
was done from a light aircraft by five highly ttained and ex•
perienced wildlife officials. The assumption of independent 
binomial counts with approximately equal success probabilities 
seems reasonable in this example, but the assumption is of 
course not absolutely indisputable. 

Example I. The observed number of herds of at least 25 
impala were given as 15, 20, 21, 23, and 26. This is an unsta•
ble case, since j.t./a 2 = 1.59. The various estimators are 
MME =57, MLE:S = 28, MLE =53, Mbeta (0, 0) = 42, 
MME:S = 54, and Mbeta (1, 1) = 42. When we changed 
the largest count from 26 to 27, the estimators MME:S, MLE:S, 
Mbeta (0, 0), and Mbeta (1, 1) exhibited little change. The 
moments estimator MME, however, changed from 57 to 77 
and the MLE changed from 53 to 74. Note how the stabilized 
MLE:S is the smallest here, which is in line with the extreme 

Table 3. N Estimates in the Waterbuck Data 

0 
-.25 
-.50 
-.75 
-.90 

-1.00 

Original Data 

146 
159 
179 
225 
311 

1,545 

Mbeta (a, 0) 

Perturbed Data 

155 
168 
193 
251 
367 

>4,000 

425 

negative-bias results found in the Monte Carlo study in the 
previous section. The conditional maximum likelihood esti•
mator Mbeta (- 1, 0) was fairly unstable here-95 for the 
original data but 215 for the perturbed data. 

Example 2. The observed number of waterbucks was 53, 
57, 66, 67, and 72. Since j.t.la' = 1.32, this is a highly unstable 
case. For the observed data, the estimates of N are MME = 
272, MLE:S = 72, MLE = 265, Mbeta (0, 0) = 146, 
MME:S = 199, and Mbeta (I, 1) = 140. When we changed 
the largest count from 72 to 73, the estimates became 
MME = 362, MLE:S = 78, MLE = 355, Mbeta (0, 0) = 
155, MME:S = 215, and Mbeta (1, 1) = 146. Note again 
the apparent extreme bias of the stabilized MLE: S. 

The conditional MLE was again very unstable here-! ,545 
for the original data and >4,000 for the perturbed data. Because 
of the bias observed in the Monte Carlo study, we did some 
experimentation with the estimator Mbeta (a, 0), with a :s 0. 
The results are displayed in Table 3. Whether a reasonable, 
perhaps data-based choice of the value of a in Mbeta (a, 0) 
would improve on the estimators we have studied remains to 
be seen. As noted in the previous section, it is in the highly 
unstable cases such as these waterhuck data for which negative 
bias is of most concern. Casella (1984) discusses an interesting 
graphical device for assessing the degree of instability of a 
given set of data. It seems that he implicitly suggests a data•
dependent choice of (a, b), something along the lines of using 
Mbeta (0, 0) for stable cases but smoothly adjusting to Mbeta 
(a, 0) as the instability increases; the waterbuck data suggest 
that we must stay strictly away from the conditional maximum 
likelihood estimate Mbeta (- I, 0). 

5. ASYMPTOTIC THEORY 

An illuminating general asymptotic theory for this problem 
awaits development. The stabilized method of moments and 
maximum likelihood estimators of OPZ have not been fully 
studied. Of course, as k --'> oo for fixed N, all estimators dis•
cussed in this article are consistent. We have also considered 
an asymptotic theory for the estimators Mbeta (a, b) in the case 
of fixed (a, b), N-> oo, k--'> oo, and Vk/N- > 0. The results 
of this asymptotic theory are not too interesting because we 
find that regardless of the choice of (a, b), 

k112(Mbeta (a, b) - N)IN ~ 

( 2(1- p)') 
normal mean = 0, variance = --p-2 - • (4) 

Note that (4) suggests a large effect in variance for smaller 
values of p. 
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We have obtained two theoretical results that shed light on 
the behavior of our procedures. Both results involve fairly in•
tricate calculations, which will not be presented here. 

The first theoretical result illustrating the role of (a, b) in 
(3) and in the estimators Mbeta (a, b) occurs when we fix k•
the number of observers-and let N -4 oo. In this case, none 
of the estimators will be consistent in the sense that N IN -4 I. 
If we fix k ~ 2 and let the chi-squared lintit distribution of 
{2p(l - p)}- 1(s1 - s2)21N be denoted by xl, then ji.IN-> p 

and {4p(l - p)}- 'd 'IN :!> xl- We can thus expect interesting 
results here because there will still be a positive probability of 
an unstable case. In fact, we obtain the following: 

Lemma I. In (3) take a ~ band k ~ 2. Let the chi-squared 
lintit distribution of {2p(l - p)}- 1(s 1 - s2) 2 /N be denoted by 
xi. Then as N ~ oo, 

Mbeta(b, b):! > _ _ P_ {6b + 3 + (I _ ) , 
N (4b + 4) p X� 

+ V(6b + 3 + (I - Plxll' - 4(b + J)(Sb + 2)}. (5) 

The lemma illustrates one interesting facet of our estimators 
Mbeta (b, b) obtained from maximizing (3). The unstable cases 
are those in which (s1 - s2 ) 2 is large relative to (s 1 + s2). 

This corresponds to the situations in (5) in which xl is large. 
Taking the limit of the right side of (5) as xl-> oo, we obtain 
the proportionality 

(5) oc xlp(l - p)t(2b + 2). (6) 

Equation (6) shows that the effect of increasing the smoothing 
parameter a ~ b in (3) is a type of shrinkage. This agrees with 
the intuitive notion that the effect oflarger (a, b) is to discount 
the possibility that p is small. This simple asymptotic theory 
helps explain why in Table 2 the most severe unstable cases 
are better handled by (a ~ I, b ~ 1) than by Mbeta (a ~ 0, 
b ~o). 

Our second useful asymptotic theoretical result illustrating 
the role of (a, b) in our estimator Mbeta (a, b) occurs under 
the following specifications: 

N~oo, 

a= akll2, 

k~ oo, k 112 /N- > 0 

b ~ Pk'"· (7) 

Lemma2. 
> 0. Then 

Consider the assumptions (7) with a > 0 and p 

k'12(Mbeta (a, b) - N)IN 
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band a ~ p, which was examined in our Monte Carlo study. 
Equation (8) suggests that in our Monte Carlo we should have 
found more negative bias for the case in which the true success 
probability p < v2 - 1 than for the case p ;;, v2 - !. This 
we found to be true for stable cases taken together as well as 
unstable cases taken together. 

6. DISCUSSION 

By considering beta-binomial distributions, we have obtained 
stable estimates that are at least competitive with, and in some 
instances superior to, the stabilized MME and MLE introduced 
by OPZ. OPZ were primarily interested in easily computed 
stable estimators with good efficiency properties, and thus it is 
natural that they did not consider refinements of their methods. 
In particular, they noted that perhaps their definition of unstable 
also ought to depend on k. We think their work is an excellent 
step toward better understanding of this difficult problem. Our 
estimators are differently motivated than theirs, and we hope 
that they will provide some additional insight. The advantages 
of our method include the flexibility of choosing a and b and 
the modification of the likelihood by smooth handling of the 
nuisance parameter p. We believe that further progress is in•
evitable and that even better estimates can be found. For ex•
ample, one ntight suppose a natural joint distribution for (N, 
p) that downweights small p and large N; an estimator with 
good frequentist properties might emerge from such as Bayesian 
analysis. 

Finally, little is known about the shape of :f.(N) in (3), so 
the question of finding a confidence interval for N remains to 
be addressed. 

[Received May 1983. Revised October 1984.] 
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SUMMARY 

In the estimation and comparison of the rates of change of a continuous variable between two groups, 
the unweighted averages of individual simple least squares estimates from each group are often used. 
Under a linear random effects model, when all individuals have complete observations at identical 
time points, these statistics are maximum likelihood estimates for the expected rates of change. 
However, with censored or missing data, these estimates are no longer efficient when compared to 
generalized least squares estimates. When, in addition, the right-censoring process is dependent on 
the individual rates of change (i.e., informative right censoring), the generalized least squares estimates 
will be biased. Likelihood-ratio tests for informativeness of the censoring process and maximum 
likelihood estimates for the expected rates of change and the parameters of the right-censoring process 
are developed under a linear random effects model with a probit model for the right-censoring 
process. In realistic situations, we illustrate that the bias in estimating group rate of change and the 
reduction of power in comparing group differences could be substantial when strong dependency of 
the right-censoring process on individual rates of change is ignored. 

1. Introduction 

In clinical trials and longitudinal studies it is often of interest to estimate and compare the 
rates of change of one or more variables between groups, in, e.g., lung function or tumor 
growth. Furthermore, comparing the rates of change of a continuous response variable 
between two treatment groups is often the primary objective. Death or withdrawal may 
cause some observations of the primary variable to be right-censored. 

Growth curve methods for comparing rates of change have been studied extensively (see 
Rao, 1965; Fearn, 1975; and Schlesselman, 1973). Most of these analyses assume that there 
are no right-censored or missing observations. Maximum likelihood and generalized 
weighted least squares provide alternative approaches to simple least squares for the analysis 
of a series of measurements when some observations are right-censored or missing. Koziol 
et al. (1981) proposed a distribution-free test for the comparison of growth curves with 
incomplete data. In order to be valid, these procedures require that the probabilities of 

*Research supported by Air Force Office of Scientific Research Contract AFOSR-F-49620-85-C-
0144. 

Key words: Informative right censoring; Linear random effect; Probit right censoring; Rate of 
change. 
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right censoring or missing do not depend on the parameter values of the response under 
investigation, i.e., they are noninformative with respect to the response parameters. 

In this paper we are primarily interested in right censoring caused by the participant's 
death or withdrawal, to be referred to as the primary right-censoring process. The primary 
right-censoring process could be informative with respect to the response parameters. In 
our development, staggered entry and other missing-value processes, if incorporated, are 
assumed to be noninformative and independent of the primary right-censoring process. 

Under a linear random effects model, we propose a model that can depend both on the 
individual's initial value and slope. A likelihood-ratio test for informativeness and maxi•
mum likelihood estimates for the response parameters and the primary right-censoring 
process coefficients are derived under a probit model for the probability of primary right 
censoring. 

The right censoring is considered to be noninformative with respect to the response 
parameters if the likelihood function can be factored into two independent parts, 
one corresponding to the response parameter and the other corresponding to censoring 
parameters. 

We show that when the primary right censoring is noninformative, the maximum 
likelihood estimates for the average linear regression coefficients of the response are 
weighted linear combinations of the simple least squares estimates. In the case of complete 
observations at identical time points among all individuals, these estimates are just the 
unweighted averages of the individual simple least squares estimates. 

The proposed method is applied to data on patients with PiZ phenotype, gathered by the 
Workshop on Natural History of PiZ Emphysema (1983). To illustrate the effect of 
informative right censoring, maximum likelihood and the weighted and unweighted least 
squares procedures are applied to a set of simulated clinical trials with primary right 
censoring generated from a noninformative probit process and then to another set of 
simulated trials with primary right censoring generated from an informative probit process. 
Mean squared error and power comparisons are made among the different statistical 
procedures and between these two sets. 

2. Linear Random Effects and Informative Right Censoring 

We assume that the participants of a longitudinal study are divided into two treatment 
groups of sample sizes nk, fork= 1, 2. The combined sample size is n = n1 + n2. Let there 
be J identical mortality (and withdrawal status) follow-up time points, t1 , with t1 = 0 and 
tJ = the length of the study. Each participant can have at most R measurements of the 
response during the study. The measurement time need not be identical among individuals. 
Let vi = total number of measurements made for the ith individual. Let Yi. and ti. be the 
vth response and the corresponding measurement time for the ith participant in the 
combined sample for v = 1, ... , vi and i = 1, ... , n. With til = 0, let ti., .., t1 if death, 
withdrawal, or right censoring due to staggered entry occurred for the ith participant 
between time t1 and tJ+I (the jth interval); otherwise ti., = tJ if the ith participant was not 
right censored and ti., = tiR = tJ if the ith participant had complete observations. 
It is assumed that the serial measurements of the primary variable follow a linear function 

of time. Let /Jl = ({Ji 1, {Ji 2 ) be the unobservable vector representing the true initial value 
and slope of the primary variable for the ith individual in the combined sample. For i E k 
and k = 1, 2; 

Yi = Xi/Ji + ei, where Yl = (Yi!, ... , Yi.,), 

/Ji - N(Bk, l;p) and ei- N(O, u;I); 

X· = [ 1• · · ·' 1 ] :1; = [ u~, u,,,,] B' = (B B ) 
l tn, • .. ' lt,i ' fJ Uf3rf3z u~z ' k kh k2 � 

(2.1) 
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The notation i E k is used to denote that the ith participant in the combined sample 
belonged to the kth treatment group. 

We further suppose that the probability of being primarily right-censored due to death 
or withdrawal during a specified time interval (0, tj ), given fli, is M(a'fli, tj ). Here a' = 
(a~, a2) is the vector of "regression parameters" relating this probability to the primary 
variables fli· Examples of the logical choices for M are proportional hazards regression 
(Cox, 1972), logistic regression (Walker and Duncan, 1967), and probit regression 
(Halperin, Wu, and Gordon, 1979). For instance, under probit regression M(a'fJ, tj) = 
if>(a'fJ + aoj), where if> is the cumulative probability of a standard normal variate, and aoj 
for j = 2, ... , J are censoring time parameters. The argument of the probit function is thus 
a linear combination of the regression parameters and a discrete time component. Note 
that we allow the ao 's to be arbitrary parameters for the different time intervals. A more 
restrictive time-dependent pro bit function can be obtained by restricting the a0 's to follow 
a linear or higher-order polynomial function of time. 

Since for each fli, (i) the simple least squares estimates Pi= (XlXit 1(XlYi), (ii) censoring 
time, and (iii) survival time are sufficient statistics for fli, it suffices to consider the joint 
distribution of Pi, fli and the primary right-censoring process. The marginal likelihood for 
Bk and a for the ith individual can be expressed as 

Li = D J tP2(Pi, fli, Cli)tP2(fJi, BK, l:p) 

J 

� II [(1- ~-lf(iJ-1)(~- ~-I)Z(i,j-1)](1- MJ)<I-rn(i)) d{Ji, 
j-2 

(2.2) 

where~= M(a'{Ji, lj) fori E k (k = 1, 2; j = 1, ... , J ) ; M1 = 0. The dependency of~ 
on i is suppressed here for notational simplicity. Here C(i,j) is the indicator function that 
the ith individual was censored in the jth interval because of staggered entry, Z(i, j) is the 
indicator function that death or withdrawal occurred in the jth interval for the ith 
individual, Dis constant with respect to fli, a, and Bb and 

eli= u;(XlXit 1, m(i) = L [C(i,j) + Z(i,j)]. 

The notation tjJ 2(Y, {J, 2:) represents the bivariate normal density with mean vector fJ and 
covariance matrix 2:. On the right-hand side of equation (2.2), under the integration sign, 
the first factor represents the conditional probability distribution of Pi given fli, C(i, j ), and 
Z(i, j) for j = 1, ... , J - l. The second factor is the probability distribution of fli· The 
third factor of products corresponds to the conditional probabilities that the- i th participant 
survived the (j - 1 )th time point and then was censored by staggered entry or death (or 
withdrawal) between the (j - 1 )th and the j th time points, respectively, for j = 2, ... , J 
given fli· The last factor represents the conditional probability that the ith participant 
survived the entire study, given fli· Therefore, the product of these four factors is pro•
portional to the joint distribution of Pi, {Ji, Z(i, j), and C(i, j), because the staggered 
entry process and the missing-value process are assumed to be noninformative and inde•
pendent of the primary right-censoring process. Hence, integration with respect to the 
vector fli provides the marginal likelihood of Pi, Z(i, j), and C(i, j) with respect to Bk 
and a. 

The marginal likelihood for those measured only at baseline is obtained from 
equation (2.2) by equating all elements except the (1, 1)th of eli and l:p to zero and 
letting the ( 1, 1 )th element of eli equal u; and Pi2 = f3i2 = 0. The marginal likelihood for 
all n individuals is the product of the individual likelihoods. 

Joint estimation of the parameters depends on the ability to evaluate (2.2) and its 
derivatives. For this section we assume that l:p and u; are known. The more realistic case 
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will be discussed in the next two sections. In principle, (2.2) can be evaluated by numerical 
integration. When the primary right-censoring process is a probit model, (2.2) can be 
evaluated explicitly: ForiE k and k = 1, 2, 

ln(L;) = 1n(D) + ln(A;)- .5(P;- Bk)'C2l(P;- Bk) + T;, (2.3) 

where 

J 

T; = L {C(i,j- 1)ln[1- <I>(Uij-t)] + Z(i,j- l)ln[<I>(Uij)- <I>(U;j-t)]} 
j=2 

+ [1- t Z(i,j)- t C(i,j)}n[1- <I>(UiJ)], 

U;j = (aoj + d}kCJ;a)(l + a 1C3;at 112, 

d;k = c~:l Pi + l:i1 sk, c3i = (C!l + l:i1 t 1� 

When there are right-censored or missing observations, CJ; will differ among individuals. 
Hence, the primary right-censoring contribution to the likelihood, T;, is in the f~.lfm of a 
nonlinear probit model. Maximum likelihood estimation of the parameters can be made 
in principle provided that the number of time intervals is small. Otherwise, some constraints 
could be imposed on the a0 's to reduce the number of parameters. 

Likelihood-ratio tests for the hypothesis (H0: a1 = a2 = 0) versus (Ht: a2 = 0 and 
a1 ¥- 0) and the hypothesis H1 versus (H2: a1 ¥-0 and a2 ¥- 0) can be conducted. When Ho 
is true, the primary right censoring will be noninformative with respect to Bk fork= 1, 2. 
However, when Ht is true, it can be shown that the coefficient of Bk2 in Uij of (2.3) is 
nonzero even when CT~I.tJ2 = 0. Hence, the primary right censoring will be informative with 
respect to Bk2 fork= 1, 2. This is true because when the measurement error variance u; is 
nonzero, the true initial value of the response variable is not observable and the estimated 
initial value contains information about the expected slope. When Ht is true and u~2 = 
CT(j1(j2 = 0, or when H 1 is true and u, = 0, the primary right censoring is noninformative with 
respect to Bk2· 

3. Estimation and Testing for Noninformative Censoring 

When H 0 is true, the maximum likelihood estimate of Bk is 

[ ]

-1 

A -1 -1 A 

BoL,k = L c2i L (C2i {J;), 
iek iek 

(3.1) 

the weighted or generalized least squares estimate (GLSE). When all individuals have 
complete observations measured at identical time points, C2; will be the same among 
individuals, in which case (3.1) reduces to 

Buw,k = L P;/nk, 
iEk 

the unweighted least squares estimate (UWLE). In what follows, the unweighted least 
squares estimate is computed only on those individuals with at least two measurements. 
The covariance matrices are 

CoL,k = [ L C2/]-l and Cuw,k = [ L c2i]n//. 
iEk iEk 

(3.2) 
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When~~~ and u; are unknown, the following unbiased estimators can be substituted: 

u; = s; / [t 1 (v;- 2)]. l:, = s11/(n - 1) - ;tr Cr/n, (3.3) 

2 n 

s, = ~ ~ (P;- Buw.k)(P;- Buw,k)', and s; = ~ (Y:Y;- Y:X;P;). 
k=1 iEk i=l 

However, l:, has the disadvantage that it is not necessarily positive definite. The procedure 
given by Bock and Petersen (1975) for constructing an estimate that is at least semidefinite 
will be used. 

When the goal of a study is to compare differences in rate of change between two groups, 
we wish to test the null hypothesis, HN: Brz = Bzz against the alternative hypothesis, HA: 
Brz < Bzz. The test statistic is of the form 

(Brz - Bzz)/[(a.§12 )2 + (a.§,?] 112, 

with Bkz = BoL,kz or Bvw,kz· For shifted alternatives, sample size, power, and significance 
level of the test can be related according to the approximate formula, 

[(a»,Y + (u»2Y](Za + Zp)2 = A2, (3.4) 

where A is the difference in expected rates of change we wish to detect, a and fJ are the 
Type I and Type II error probabilities of the test, and Za and Z 13 are the unit normal 
deviates corresponding to a and fJ. 

Remarks: We have by assumption that an individual's coefficient estimate is unbiased, 
i.e., 

E[P; I {J;, censoring, death, and withdrawal pattern] = {J;. 

Thus, the unweighted least squares estimate is unbiased for Bk. There are two cases. When 
the primary right censoring is noninformative, the distribution of Cz; in (3.1) does not 
depend on {J;, so that the GLSE and UWLE are both consistent and unbiased estimators 
of Bk. although of course the UWLE is less efficient. Furthermore, the relative differences 
between the variances and hence the required sample sizes of the UWLE and the GLSE 
for the slope or initial value are a function of [a;/(u132f] or [u;/(u13YJ, respectively. When 
the primary right-censoring process is informative, the unweighted least squares estimate is 
still unbiased, although the GLSE is not because C2; and {J; are dependent. 

4. Examples and Simulations 

This paper was motivated by design and analysis problems encountered in many clinical 
trials concerning lung diseases, e.g., the Intermittent Positive Pressure Breathing Trial 
(IPPB, 1983) for chronic pulmonary diseases. One specific example was the feasibility study 
of an antiproteolytic replacement therapy trial among individuals with PiZ phenotype, 
conducted by the Workshop on the Natural History of PiZ emphysema. The association 
between severe alpha1-antitrypsin deficiency and lung diseases, particularly pulmonary 
emphysema, has been observed since the early 1960s (Laurell and Eriksson, 1963). Individ•
uals with PiZ phenotype tend to develop severe alpha1-antitrypsin deficiency and hence 
pulmonary emphysema and more rapid decline in lung function. The planned trial was 
designed to detect differences in rates of decline of a 1-second forced expiratory volume 
(FEVr) between a control and a therapeutic group. Retrospective data on PiZ individuals 
were gathered from the ten participating institutions (see Workshop on Natural History of 
PiZ Emphysema, 1983) to provide crude estimates of parameter values required for sample 
size calculations. 
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4.1 Estimation and Testing 

A FORTRAN program was developed for estimation when there is no staggered entry. The 
method of pseudo-maximum-likelihood estimation (PMLE; see Gong and Samaniego, 
1981) was used. Estimates of (f; and 1: 11 were made according to (3.3) and the Bock and 
Petersen (1975) procedure and substituted into (2.3), which was then maximized by the 
Newton-Raphson method. The algorithm first calculates the simple least squares intercept 
and slope for each individual and estimates lT; and 1: 11 • The UWLE of Bk is used as initial 
value for Bk in calculating d;k and CJ; for each individual according to (2.3). Partial 
derivatives of the log-likelihood for the Newton-Raphson iterative procedure are then 
calculated using initial values for at, az, aoz, ... , aoJ. Formulae for these partial derivatives 
are presented in the Appendix. Note that the initial values for the a's can be chosen 
arbitrarily with the constraint aoz < ao3 < · · · < aoJ. 

This algorithm was applied to the PiZ emphysema data. Among the data gathered for 
294 PiZ individuals by the ten U.S. institutions, initial and follow-up FEYt values (with 
the initial and the last measurements at least 6 months apart) were available on 117 
individuals. The number of FEYt measurements ranged from 2 to 12 (mean number of 
measurements = 3.8, median = 3.0). The duration between the initial and the last 
measurements ranged from 6 to 227 months (mean duration = 52 months, median = 40 
months). Since the proposed trial duration was between 3 and 6 years, an analysis 
corresponding to a 3-year follow-up study was first made using the initial and all follow-up 
FEY t measurements made within 3 years of the initial measurement. Since many did not 
have reported follow-up FEYtS within 3 years of the initial measurement, only 81 individ•
uals with 8 deaths were included in this analysis. A second analysis, corresponding to a 6-
year follow-up study, was also made among those with a minimum follow-up of6 years or 
a reported death within the first 6 years. Follow-up FEYts within 6 years of the initial 
measurement were used. This analysis included 65 individuals with 19 deaths. Because of 
the small number of deaths, mortality follow-ups were grouped into two equal-length 
intervals for both analyses. The average numbers ofFEYt measurements were 2.9 and 3.6 
(median= 3 for both) and the average (median) durations between the initial and the last 
FEYts were 28 (33) and 48 (55) months for the 3- and 6-year follow-ups, respectively. 
Those individuals with only one FEY t measurement were not included in these analyses. 
This has the effect of causing a slight bias in the unweighted least squares analysis and a 
slight loss of efficiency in the informative censoring analysis. 

The purpose of these analyses was to test for informativeness of the right censoring 
caused by a participant's death with respect to FEY t initial value and slope, obtained from 
3- and 6-year follow-ups, respectively, and to derive crude estimates of the primary right•
censoring coefficients. The initial values used for the iterative procedure were a0z = -1.35, 
a03 = -.90, and at = az = 0. The algorithm converged after 12 and 10 iterations for the 
first and second analyses, respectively. The results are presented in Table 1. T.he estimated 
probi~ right-censoring coefficients for FEYt initial value and slope (at and az) were -3.8, 
-11.3 and -4.6, -13.8 for the two analyses, respectively. The negative values of the 
estimates for both parameters indicate that low initial FEY t and rapid decline in FEY t lead 
to greater risk of death. Likelihood-ratio tests indicated that the coefficients for FEY t initial 
value (at) were statistically significantly different from zero in both analyses. Although the 
chi-squared statistic (with l degree of freedom) of 2.8 for the slope coefficient (az) of the 
first analysis was not statistically significant at a 5% level, the chi-squared statistic of 7.1 
for the slope coefficient of the second analysis was statistically significant. The significance 
of the initial value coefficients, as well as the large negative slope coefficients obtained from 
both analyses and the significance of the slope coefficient from the second analysis, indicate 
that the right censoring by participants' deaths could be informative with respect to both 
FEY t initial value and slope. 
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Survival probability distributions estimated by the product limit method (Kaplan and 
Meier, 1958) for the entire data set of 294 individuals, for those individuals included in the 
first and second analyses of Table 1, respectively, and for the 117 individuals with two or 
more FEY, measurements, are displayed in Figure Since these data were collected 
retrospectively, mortality follow-ups were not as complete and rigorous as one would like 
them to be for the proposed prospective study. Hence, survival probabilities in Figure 1 
could be optimistic. 

Table I 
Estimation for the expected FEY, slope, the missing-value coefficients, 

and likelihood-ratio test statistics for the coefficients 

Estimates and test statistics 

Estimated FEY, change/year 
Unweighted 
Weighted 
Probit informative missing 

Estimated missing-value coefficients 
FEY1 Initial value 
FEY, Slope 
a'o2 

ao3 

Likelihood-ratio test statistics 
Initial value (H, vs Ho)b: x~ 
Slope (H, vs H 1)b: x~ 

No. at risk at baseline 
No. of deaths 

Three-year mortality 

Three-year FEY, 
follow-up 

-.093 (.0164)' 
-.090 (.0151) 
-.095 (.0152) 

-3.80 (2.01) 
-11.30 (7 .46) 

-.53 (1.10) 
.42 (1.10) 

11.02 
2.81 

81 
8 

• Numbers in parentheses are estimated standard errors. 
b H0 : a, = a 2 = 0; H,: a 1 ¢. 0, a, = 0; H,: a, ¢. 0, a, ¢. 0. 

Six-year mortality 

Six-year FEY, 
follow-up 

-.078 (.0138)' 
-.076 (.0136) 
-.085 (.0133) 

-4.61 (I. 70) 
-13.80 (6.76) 

1.25 (.93) 
2.42 (1.05) 

26.97 
7.13 

65 
19 

The estimates we have proposed are of course sensitive to model misspecification. When 
using the estimation and test procedures derived under the pro bit model, goodness of fit to 
the data should be checked. One approach is to note that the estimated probability for the 
ith individual being primarily right-censored in the jth time interval, for given P;, is 
h = <~>( uij+l) - <t>(Uij ), fori = 1, ... , J - 1, where uij is uij of (2.3) with a, aoj, 
and the expected intercept and slope for the primary variable being replaced by their 
maximum likelihood estimates. Therefore, group the <I>(Uu) into groups and compute for 
each group, Ej = ~ J >ij. Then compare Ej with the observed deaths and dropouts between 
the j th and ( j + 1 )th time points. 

For the PiZ 6-year follow-up data of Table 1, the observed number of deaths among 
those whose estimated probabilities of death in 6 years were above the 85th percentile, 
between the 70th and 85th percentiles, and below the 70th percentile (for the entire 65 
individuals) were 4, 2, 2 and 3, 4, 4 for the first and second 3-year intervals, respectively. 
The corresponding expected numbers of death were 4.47, 1.82, .85 and 2.98, 3.70, 3.88 for 
the two time intervals, respectively. Hence, the probit model seems to fit the data reasonably 
well. 

Graphical comparison of the actual versus expected (under the probit censoring model) 
cumulative numbers of death by the estimated probability of death in 6 years for the 6-
year follow-up data is displayed in Figure 2. Comparisons of the actual versus expected 
(under the probit censoring model) cumulative numbers of deaths·in the first and second 

1
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Figure 3. Actual vs expected deaths by expected risk of death in each of the two 3-year intervals. 

3-year intervals by the estimated probability of death in the corresponding time intervals, 
for the same 6-year follow-up data, are shown in Figure 3. The overall fits of the data to 
the probit censoring model were again reasonably good in both figures. 

4.2 The Effect of Informative Censoring 

The UWLE, GLSE, and the PMLE were compared in simulated experiments based on the 
model (2.2) with the following primary right-censoring processes: ( 1) pro bit noninformative 
censoring with a 1 = a2 = 0; (2) probit informative censoring with coefficients a, = -3.8, 
a 2 = -11.3; (3) probit informative censoring with coefficients a, = -4.6, a2 = -13.8, 
corresponding to the two analyses of Section 4.1; and (4) probit informative censoring with 
a 1 = -3.8 and a 2 = 0. Similar to the IPPB trial (1983), the study duration was assumed to 
be 3 years with four FEV, measurements per year. The expected FEV, slope and initial 
value in the control group, and the within- and between-individual variances used were all 
estimated from the PiZ data. A 50% reduction in FEV, rate of decline was assumed in the 
treatment group. Equal sample sizes of 100 each were generated for the two groups. In the 
IPPB trial, similar to the proposed trial, patients were required to have their FEV, values 
less than 65% predicted [by age, sex, and height of the participants using regression 
coefficients given by Morris, Koski, and Johnson (1971)] at entry and the comparison of 
FEV 1 annual rates of decline between two randomized treatment groups was the primary 
objective of the trial. The primary right-censoring rate for the IPPB trial was more than 
12% per year. For these illustrations the probability of primary right censoring was assumed 
to be 16% each year for all individuals under the noninformative right-censoring process. 
When the informative probit model was used, this probability was assumed to be 16% for 
an individual whose initial value and slope were equal to the expected values for the control 
group. It was further assumed that there is no correlation between the slope and the initial 
value (up,p2 = 0). The decision value used for rejecting the null hypothesis of no difference 
was (B12- B22)/[(u8 ,,) 2 + (un,Yl' 12 < -1.645. Normal random numbers were generated 
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by the IMSL routine GNPM. The experiments were repeated 600 times. In the simulation, 
every individual turned out to have at least two measurements. 

The results in Table 2 indicate that the UWLE procedure remained relatively unbiased 
in estimating the mean FEY 1 slope for each group and the between-group difference in 
slopes. However, the PMLE clearly had much smaller mean squared errors in estimating 
the individual group mean slopes and the between-group differences, and much higher 
statistical power in detecting the between-group differences in all four censoring processes 
considered. The GLSE, although most efficient under noninformative censoring, resulted 
in large underestimations of individual group mean FEY 1 rates of decline (24-46% ), under 
the two probit informative censoring processes with nonzero coefficients for FEY 1 slope. 
The underestimations for the between-group differences were much smaller (11-13%), 
because under the shifted alternative of equation (3.4), the biases in the two group estimates 
tend to cancel each other. The GLSE had smaller mean squared errors in estimating the 
between-group differences and higher statistical power to detect these differences than the 
UWLE in all four censoring processes considered. Compared to the PMLE, under the two 
probit informative censoring processes with nonzero slope coefficients, the GLSE had much 
larger mean squared errors in estimating the individual group mean slopes (39-69%) 
and in estimating the between-group differences (14-22%); and lower statistical power 
( 10-15%) in detecting the between-group differences. The expected power for the proposed 
study, calculated according to (3.4) using the assumed parameter values, was .85 for the 
GLSE under the noninformative censoring process. The simulated power for the GLSE 
under noninformative censoring, using the estimated within- and between-individual 
variances according to (3.3) and the Bock and Petersen (1975) procedure for constructing 
covariance matrices that are at least semidefinite, was .81, and not very different from the 
expected power. Using the PMLE when the censoring process was noninformative or when 
the probit censoring slope coefficient was zero could result in larger mean squared errors 
than the GLSE, in estimating the group slopes. The simulated significance levels were not 
much different from the expected 5% level for all procedures in Table 2. 

5. Discussion 

The probit model used in Sections 2 and 4 is not necessarily meant to be biologically valid 
for describing the underlying right-censoring process. Indeed, the choice of the pro bit was 
made primarily on computational grounds, and because logistic and probit regressions give 
similar estimates of event probabilities (Halperin et al., 1979). 

When the estimation and test procedures derived under the probit model are used, 
goodness of fit to the data should be checked as suggested in Section 4.1. However, the 
distribution of the chi-squared goodness-of-fit test statistic for this situation cannot be 
obtained from a straightforward application of the usual theory because (i) parameter 
estimates are determined using likelihood functions for ungrouped data; and (ii) cell 
boundaries are random. Moore and Spruill (1975) derived the large-sample distribution of 
the usual chi-squared goodness-of-fit statistics under these two problems. Their basic result 
is that under appropriate regularity conditions the large-sample distribution of the goodness­
of-fit statistic is that of a central chi-squared with the usual reduction in degrees of freedom 
due to estimated parameters plus a weighted sum of independent chi-squared random 
variables each with 1 degree of freedom. Application of their result to this problem is under 
investigation. In work as yet unpublished, Wu and Bailey have developed estimation and 
test procedures to account for informative right censoring without modeling the censoring 
process. Their procedures are less dependent than ours on the underlying censoring model, 
but are also less efficient under the probit censoring model. 
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Although the estimation and test procedures of Sections 2 and 4 were developed 
for k = 2 groups, they could be extended easily to the case of k > 2 groups. To test for 
equality or linear trend among the expected slopes of the k > 2 groups, the likelihood-ratio 
chi-squared statistic could be used. 

The standard errors provided in Table 1 for estimates based on the probit right-censoring 
model and those used in computing the test statistics for the PMLE in Table 2 were 
estimated from the sample information matrix based on the pseudo-maximum-likelihood 
(rather than the maximum likelihood), by assuming that the estimated between- and within•
individual error variances were the true values. The bootstrap (Efron, 1979) could be used 
to improve these estimates. Alternatively, the maximum likelihood procedure, treating 
a}, u~,, and u~, as additional parameters, could also be used. 
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REsUME 

On utilise souvent les moyennes non ponderees des moindres canis ordinaires de chaque groupe 
qnand on estime et compare les taux de changement d'une variable continue entre deux groupes. 
Sous un modele lineaire a effets aleatoires, quand tous les individus ont ete observes completement 
aux memes instants, ces statistiques sont les estimations du maximum de vraisemblance des taux 
moyens de changement. Cependant, avec des donnees censurees ou manquantes, ces estimations ne 
sont plus efficaces, comparees aux estimations des moindres carres generalises. Quand, de plus, le 
processus de censure a droite depend des taux individuels de changement (c.a.d. censure a droite 
informative), les estimations des moindres canis sont biaisees. On developpe des tests du rapport de 
vraisemblance sur Ia realite du processus de censure, et !'estimation du maximum de vraisemblance 
des taux moyens de changements et les parametres du processus de censure a droite, sous un modele 
lineaire a effets aleatoires, avec un modele probit pour le processus de censure a droite. Dans des 
estimations reelles, on montre que, d'une part, le biais obtenu en estimant un taux de changement 
par groupe et, d'autre part, Ia reduction de puissance dans Ia comparaison entre groupes peuvent etre 
considerables quand on ne tient pas compte de Ia forte dependance entre le processus de censure a 
droite et les taux de changement individuels. 
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APPENDIX 

C . = [O'~tl l12tl2] c.= [O'~ii 0)Jl2] 
z, 2 ' 31 2 ' 

0'2112 0'2/2 O'Ji12 t13t2 

d:k = (d;ki, dik2), p; = U2m/(u2; 1 U2;2), tPiJ = </>(Vii), if!;J = if!(Uii ), for j = 2, ... , J and tPil = if!il = 0. 
From(2.3), Vii= (ao 1+ a,d;ki + cx2d1k2)/D'12, forj= 2, ... , J, whereD= (I+ u~ncx~ + u3112 cx,cx2 + 
u~12aD. The parameter to be estimated is 9' = (8,, ... , 81 + 5 ) = (Bu, B12 , B21, B22 , cx1, cx2, cx02 , ... , 
""' ). The partial derivatives of the log-likelihood (2.3) with respect to these parameters are as follows: 

{ 

[ (Pu- BkJ)fub - p;(p;,.- Bkm)/(u2JIU2i2)) 
a In(L;) = (I - P~) + [aT;/a{:lkJ], 
aBk; for i e k; k = 1, 2; l = 1, 2; m = 3 - l; 

0 otherwise 

a2ln(L) {(-l)V-m>pl 1-'" 1/[u2;JU2im(l - pt)] + aT;faBk,laBk,m, 
-:-=::..::::o'?' '- = for i E k; k, = k2 = k; l = 1, 2; and m = 1, 2; 
aBk,;aBk,m 0 otherwise; 

a ln(L1)/a81 = aT;/a8~> for l = 5, ... , J + 5; 

a2Jn(L;) = aT; fior l 1 J 5 , = 5, ... , J + 5; m = , ... , + . 
a81a8,. ao;a8,. 

When there is no staggered entry we have, 

aT;= f {Z(i, j - 1)[t/>;J{aUufa81) - tf>ij-I(aU; 1- Ja81)] } 
a81 1-2 (if!u- if!u_,) 

- [1 - .f Z(i, j - 1)]tf>u(aUufa81)/(1 - if!jJ); ,-2 

n~2'!'81 = f {Z(i, j - l){(if!;j - if!;}- I) 
f.JQ[U m J=2 

[ ( auij)(auij) (auij-I)(au; 1-,) ( auij ) (aU; 1- ') ] x -U;jt/>J} an; ao,. + u,J-ItPJJ-I ---ai;- a8,. + tf>u a81a8,. - t/>i}-1 a8~ao .. 

- [<~>ij(aa~j)- "'ij-{a~~;')][<~>~j(~~:)- "'ij-le~::')]} /<if!i j- if!;j-1>'} 

- [1 - f Z(i, j - 1)] 
]=2 

x [o- t/>JJ)u;j"'iJe~:')(~~:) + "'jJ(~~~J + "'~'(aa~:')(~~:)]/o- if!jJ)2, 

for/= 1, ... ,J+5 and m= 1, ... ,J+5; 
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au. {al(ad;kljaB.t) + a2(ad;k2/aBkl)/D 112, 
aB11 = for i E k, I= I, 2; 

kt 0 otherwise; 

aUufaa1 = (d,.tD 112 - U,1Ct]/D, for i E k; I= I, 2; 

aUjaa ={D-112 for l=j; 
u 01 0 otherwise; 

a2U11 = [DII2(adikt)- Cm(aUij)]jD, for i E k; I= I, 2; and m = I, 2; 
aB.taam aBkl aBkl 

a2U;j { rd c -1/2 u c(au,j)] 2[ -lf2d c }/ 2 aataam = Dr ikl mD -aim ij- I aam - D ikl- tUij]Cm D ; 

a2 U,1 Ct 
-a a = - D''2 for I = I, 2; 

at aoj 

a2Uu = a2U11 = a2Uij = 0 
aB.1aBkm aB.taao1 aaohaaoh ' 

for/= 1,2; m= 1,2; iEk; ji=2, ... , J ; j,=2, ... , J ; and j=2, ... , J ; 

where C~ = u~"a~ + u3"2a3-~ for 'Y = I, 2; 

{ u~u for l=m 
aim= U3;12 for f :;/:. m. 
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A Note on the Efficiency of 
Sandwich Covariance Matrix Estimation 

Goran KAUERMANN and Raymond J. CARROLL 

The sandwich estimator, also known as robust covariance matrix estimator, heteroscedasticity-consistent covariance malrix estimate, or 
empirical covariance matrix estimator, has achieved increasing use in the econometric literature as well as with the growing popularity of 
generalized estimating equations. Its virtue is that it provides consistent estimates of the covariance matrix for parameter estimates even 
when the fitted parametric model fails to hold or is not even specified. Surprisingly though, there has been little discussion of properties 
of the sandwich method other than consistency. We investigate the sandwich estimator in quasi-likelihood models asymptotically, and in 
the linear case analytically. We show that under certain circumstances when the quasi-likelihood model is correct, the sandwich estimate 
is often far more variable than the usual parametric variance estimate. The increased variance is a fixed feature of the method and the 
price that one pays to obtain consistency even when the parametric model fails or when there is heteroscedasticity. We show that the 
additional variability directly affects the coverage probability of confidence intervals consbUcted from sandwich variance estimates. In 
fact, the use of sandwich variance estimates combined with !-distribution quantiles gives confidence intervals with coverage probability 
falling below the nominal value. We propose an adjustment to compensate for this fact 

KEY WORDS: Coverage probability; Generalized estimating equation; Generalized linear model; Heteroscedasticity; Linear regression; 
Marginal model; Quasi-likelihood; Robust covariance estimator; Sandwich estimator. 

1. INTRODUCTION 

The heteroscedasticity-consistent covariance matrix estima•
tor is a common tool used for variance estimation of param•
eter estimates. Originally introduced by Huber (1967), Eicker 
(1%7), and White (1980). the estimate has become pop•
ular in the econometric literature. In the last decade, the 
method has also been widely used in the context of general•
ized estimating equations (see. e.g .• Diggle. Liang. and Zeger 
1994; Liang and Zeger 1986; Liang. Zeger and Qaqish 1992. 
where it was introduced as the sandwich variance estimator. 
Whereas in econometric models the estimate is used to cope 
for heteroscedastic errors, in generalized estimating equations 
its objective is consistent variance estimation for dependent 
data. In the latter setting. efficient estimation of parameters 
requires specification of the correlation structure among the 
observations-which, however, typically is unknown. There•
fore, a so-called working covariance matrix is used in the esti•
mation step, which for variance estimation is combined with 
its corresponding empirical version in a sandwich form. This 
approach yields consistent estimates of the covariance matrix 
under misspecified working covariances as well as under het•
eroscedastic errors. Because of this desirable model-robustness 
property, the sandwich estimator is also sometimes called the 
robust covariance matrix estimator or the empirical covari•
ance matrix estimator. We use the term sandwich variance 
estimator throughout the article. 

The argument in favor of the sandwich estimate is that 
asymptotic nonnality and asymptotic coverage of confidence 
intervals require only a consistent variance estimate, so there 
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land {E-mail: goeran@stats.gla.ac.uk). Raymond J. Carroll is Distinguished 
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bereich 386 at the Ludwig-Maximilans-Universitiiit Milnchen). Parts of this 
article contain material in an unpublished technical report written with Dou~ 
glas Simpson, Amy Stromberg, Suojin Wang, and David Ruppert, whose help 
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is no direct need to construct a highly accurate covariance 
matrix estimate. But the consistency of the sandwich vari•
ance estimate has its price in increased variability; that is, 
sandwich variance estimators generally have a larger variance 
than model-based classical variance estimates. In his discus•
sion of the article by Wu ( 1986). Efron ( 1986) gave simulation 
evidence of this phenomenon. Breslow (1990) demonstrated 
this in a simulation study of overdispersed Poisson regression. 
Firth (1992) and McCullagh (1992) both raised concerns that 
the sandwich estimator may be particularly inefficient. Diggle 
et al. (I 994, p. 77) suggest that it is best used when the data 
come from "many experimental units." We clarify and refine 
these statements. An earlier discussion about small sample 
improvements for the sandwich estimate in the econometric 
literature was given by MacKinnon and White (1985). who 
proposed jackknife sandwich estimates. The perlonnance of 
this estimate compared to other approaches was recently inves•
tigated by means of simulations by Long and Ervin (2000). 

The objectives of this article are twofold. First we investi•
gate the sandwich estimate in terms of efficiency; and second, 
we analyze the effect of the increased variability of the sand•
wich estimate on the coverage probability of confidence inter•
vals. For efficiency, we derive asymptotic and fairly precise 
small-sample properties, neither of which appear to have been 
quantified before. For example. the sandwich method in simple 
linear regression when estimating the slope has an asymptotic 
efficiency equal to the inverse of the sample kurtosis of the 
design values. This inefficiency also holds for quasi-likelihood 
estimation and in generalized linear models. For example, in 
simple linear logistic regression, at the null value where there 
is no effect from the predictor, the sandwich method's asymp•
totic relative efficiency is again the inverse of the kurtosis of 
the predictors. In Poisson regression, the sandwich method 
has even less efficiency. The problem of undercoverage of 
confidence intervals was shown through simulation studies by 
Wu (1986) and by Breslow (1990). who repOrted somewhat 
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elevated levels of Wald-type tests based on the sandwich 
estimator. Rothenberg (1988) derived an adjusted distribution 
function for the t-statistic calculated from sandwich variance 
estimates. We give a different theoretical justification for the 
empirical fact that confidence intervals calculated from sand•
wich variance estimates and t-distribution quantiles are gen•
erally too small; that is, the coverage probability falls below 
the nominal value. We show that undercoverage is determined 
mainly by the variance of the variance estimate. To correct 
this deficit, we present an adjustment that depends on normal 
distribution quantiles and the variance of the sandwich vari•
ance estimate. 

The article is organized as follows. In Section 2 we com•
pare the sandwich estimator with the usual parametric regres•
sion estimator in the linear regression model. In Section 3 we 
discuss the sandwich estimate for quasi-likelihood and gen•
eralized estimating equations (GEEs). We provide proofs and 
other general statements in the Appendix. 

2. LINEAR REGRESSION 

2.1 Properties of the Sandwich Estimator 

First, consider the simple homoscedastic linear regression 
model 

(I) 

where x; are 1" x p-dimensional vectors of covariates and i = 
I, ... , n. Let {3 = (XTX)- 1XTY be the ordinary least squares 
estimator of {3, where yT = (Y1 •••• Y") and XT = (x1, ••• x"). 
Assume now that we are interested in inference about the lin•
ear combination zT {3, where zT is a 1 x p-dimensional con•
trast vector of unit length, that is, zT z = 1. The variance 
of zT/3 is given by var(zT/3) = <T2zT(XTX)- 1z, which can 
be estimated by the classical model-based variance estima•
tor vmodel = U2zT(XTX)- 1z, where if2 = L7=1 E; /(n ~ p) with 
E, = Y; ~ x; {3 as fitted residuals. A major assumption used 
implicitly in the calculation of vmodel is that the errors €; are 
homoscedastic. This assumption is often not very plausible, 
particularly in econometric models, where one is faced with 
heteroscedasticity, so that the model 

holds. In this case Vmodet does not provide a consistent variance 
estimate. In contrast, the sandwich variance estimate, 

v = zT(XTx)- 1 ("xxT<')(xTx)- 1z =~a'<' (3) Sand L..., I I I L..., I 1' 

I i=l 

consistently estimates var(zT{3), where a, = zT(XTX)- 1x,. 
Estimate (3) is called the sandwich variance estimator because 
of its sandwich structure, even though the terms robust vari•
ance estimator, heteroscedasticity-consistent covariance esti•
mator, and empirical covariance estimator are more common 
in the econometric literature. 

In linear regression, (3) is often multiplied by n/(n- p) 
(Hinkley 1977) to reduce the bias. Let h,, be the ith diagonal 
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element of the hat matrix H = X(X1X)- 1XT = (h,). Under 
homoscedasticity, one finds E(<n = <T2(1- h,), so that 

where bn = L7= 1 h;;a~ / L7= 1 a; :::: rnax 1<i<n hw Because bn 2:_ 

0, one obtains that in general the sandwich estimator is biased 
downward, as was shown by Chesher and Jewitt (1987), (see 
also MacKinnon and White 1985). The bias therefore depends 
on the design of x, and can be substantial when there are 
leverage points. Bias problems can be avoided by replacing E, 
in (3) by €, = i)(1- h,Y1 2• The resulting estimator is referred 
to as the unbiased sandwich variance estimator and is denoted 

by V'"""·" (Wu 1986, eq. 2.6). It is easily seen that E(V""'·") = 
var(z 1 /3), whereas under heteroscedasticity of model (2), the 
estimate is still consistent but with an asymptotic of order 
O(n- 1). Because var(€;)=2(T4 and cov(€f,E7)=2h~(T4 for 

i # j , where h,1 = h,J{(l- h,,)(l- hh)) 112 , it follows that 

var(Vsand.u) = La~var(E2 ) + La;a;cov(i;, E7) 
1=1 

(5) 

We now compare the variance (5) to the variance of the model•
based variance estimator V model• which equals var(Vm()del) R:: 

2<T4 {zT(XTX)- 1z}' /n = 2<T4 (I:ai)2 jn. 

Theorem/. Under the homoscedastic linear model (I), the 
efficiency of the unbiased sandwich estimate vsand.u compared 
to the classical variance estimate V model for zT {3 satisfies 

(6) 

The proof follows directly from the Cauchy-Schwarz 
inequality. Theorem I states that the sandwich estimate is less 
efficient when the model is correct, that is, when the errors 
are homoscedastic. Because of the vector z, the loss of effi•
ciency basically depends on the design of the covariates, as 
the following example shows. 

Example I (The Intercept and the Slope in Simple Linear 
Regression). Assume that x~· = (1, u,), where L u, = 0. Sup•
pose that we are interested in the intercept, that is, zT = (I, 0). 
We then have a,.= n- 1, and the asymptotic relative efficiency 
in (6) is I. Suppose now that z = (0, 1), so that S, = zT/3 is 
the slope estimate. Assuming max(lu,l) = o(n 1i4 ) for techni•
cal purposes, the asymptotic relative efficiency is K; 1, where 
Kn = n- 1 L u; /(n- 1 L7= 1 u;)2 2:_ I. Note that Kn is the sample 
kurtosis of the design points u,. For instance, if the design 
points (u 1 , � � � , un) are realizations of a normal distribution, 
then Kn --+ 3, and hence the sandwich estimator Vsand.u has 
three times the variability of the usual model-based estimator 
Vmodcl· If the design points are generated from a Laplace dis•
tribution, then the usual sandwich estimator is six times more 
variable. 
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The foregoing example shows that using sandwich variance 
estimates in linear models can lead to a substantial loss of effi•
ciency. A similar phenomena occurs for quasi-likelihood esti•
mation, as discussed in the next section. Note that Theorem 1 
is formulated under the assumption of homoscedasticity. Even 
though it might be interesting to weaken this assumption and 
analyze the efficiency of vsand,u under heteroscedasticity theo•
retically, one should keep in mind that V model is not a consis•
tent estimate under heteroscedasticity, so its bias also must be 
taken into account. Instead, we investigate the behavior of the 
estimate under heteroscedastic errors empirically in the simu•
lations studies of the following subsection. 

2.2 Coverage Probability of Confidence Intervals 

In this section we investigate how the additional variabil•
ity affects the coverage probability of confidence intervals 
obtained from sandwich variance estimates. As one would 
expect, the excess variability of the sandwich estimate is 
directly reflected in undercoverage of confidence intervals. Let 
8 = Z T {:J be the unknown parameter Of interest With 0 = Z T j j -
N ( 8, u 2( n) an unbiased estimate of 8 based on a random sam•
ple of size n. The symmetric 1 -a confidence interval is given 
by CI(u 2, a):= [8 ±zpu(vfn], where Zp is the p = 1-a/2 
quantile of the standard normal distribution. If u 2 is estimated 
by an unbiased variance estimate &2, it is well known that the 
confidence interval C/(&2, a) shows undercoverage, and typi•
cally t-distribution quantiles are used instead of normal quan•
tiles. The following theorem shows explicitly how the variance 
of & 2 affects the undercoverage. 

Theorem 2. Let ii-N(8, u 2(n) and let it' be an unbiased 
estimate of u 2 independent of 8. The coverage probability of 
the I - a confidence interval C I (it', a) equals 

• var(it2 ) 
Pr{ll E C/(u 2 , a))= 1-a- cp-----;;:< + O{n-2), (7) 

where cP = </>(zP)(z! + zp)/8, with </>0 the standard normal 
distribution density. 

The proof of Theorem 2 is given in the Appendix. Note 
that the assumption of independence of it' and ii- II holds 
in a normal homoscedastic regression model if U2 is calcu•
lated from fitted residuals; that is, it holds for sandwich vari•
ance estimates. Because c P > 0 (for p > 1 /2), undercoverage 
becomes obvious. In particular, the undercoverage increases 
linearly with the variance of the variance estimate ft2• Using 
the results of Theorem I, we therefore conclude that confi•
dence intervals based on sandwich variance estimators have 
lower coverage probability than confidence intervals based 
on model-based variance estimates. This also implies that 
t -distribution quantiles do not correct the undercoverage. The 
result stated in Theorem 2 resembles that given by Rothenberg 
(1988, p. 1005). He derived an adjustment for the distribution 
function of the t-statistic based on sandwich variance esti•
mates. In contrast to Rothenberg, however, Theorem 2 points 
out the distinct role of the variance of &2 • 
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Coverage Adjustment. In normal linear regression mod•
els, formula {7) can be used directly to construct a coverage 
correction for confidence intervals. Instead of using quantile 
Zp, we suggest choosing p > p and make use of the quan•
tile z,. The increased p is then selected such that Pr{ll E 
[ ii ± z,it I vfn]) = p holds; that is, with (7), p is defined as the 
numerical solution to 

z~+z­
P = p- </>{z,)var{it2) P8u" P (8) 

Example 2 (t-Distribution Quantiles). Before applying 
the correction to the sandwich variance estimate, we demon•
strate the use of (8) in a setting where an exact solution 
is available. Let the random sample Y, - N (p., u 2) be 
drawn from an univariate normal distribution. The cen•
tered mean estimate n 112 (fi.- p.) is distributed as a normal 
(0, u 2), with fi. = 2::7 YJn and variarlce u 2 estimated by 
it2 = I:7(Y1 - fi.)2/(n- 1). Exact quantiles for confidence 
intervals based on the estimates jl and ft2 are available 
from t -distribution quantiles with n - I degrees of freedom. 
Approximative quantiles z, follow from solving (8) using 
var{it2 ) = 2u4((n- 1). It is a special feature of the nor•
mal distribution that the unknown variance component u 4 

in (8) cancels out and is not required for the calculation of 
Zp· In Table 1 we compare the exact quantiles based on a 
t-distribution with the corrected versions based on (8). Even 
for small sample sizes, the corrected quantiles zp are distinctly 
close to the exact !-distribution quantiles. This is also seen in 
the true one-sided coverage probability Pr( ii ::0 8 + zpiT( Jn) 
of the confidence intervals, and demonstrates that the adjust•
ment applied in a standard setting behaves quite well. 

Example 3 (Sandwich Variance Estimate). We now apply 
the corrected quantile zp to confidence intervals based on 
sandwich variance estimates. Inserting (5) in (8) shows again 
that the variance component u4 cancels out, so that the cor•
rection depends exclusively on the design of the covariates. 
We ran a small simulation study to demonstrate the behav•
ior of the correction. Let Y; = f:J 0 + x1f:Jx + e1 with {J 0 = 0, 
f:lx = I, and e1 - N(O, u;'). The errors are drawn from the 
homoscedastic model {I), that is, u1 constant with value .2 
(model 1), as well as from the heteroscedastic model (2) 
with u, = .2+exp(xJ2)/2 {model 2) and u 1 = . J(.I+xi) 
(model3). The covariates x1 are chosen to be (a) uniformly, {b) 

Table 1. Comparison of Coverage Probability Based on zp and 

t-Distribution Quantiles tp,n-1 for n -1 Degrees of Freedom 

p tp,n-1 z, P(iJ,; e+z,uf./fi) 

n=5 

.90 1.533 1.551 .902 

.95 2.132 2.095 .948 

.975 2.776 2.543 .968 

n=15 

.90 1.345 1.346 .900 

.95 1.761 1.761 .950 

.975 2.145 2.137 .975 
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Table 2. Corrected Quantiles z p for Different Designs 

p~.90 p~.95 

Design tp,n-2 z, tp,n-2 z, 
n=20 

(a) 1.81 2.21 
(b) 1.73 1.86 2.10 2.27 
(C) 1.94 2.36 

n=40 

(a) 1.72 2.07 
(b) 1.68 1.75 2.02 2.12 

(C) 1.80 2.19 

normally, and (c) Laplace distributed. The corrected quantiles, 
zp, are listed in Table 2. The results shown in Figure 1 give the 
empirical coverage probability based on 2000 replicates with 
n = 20 (upper row) and n = 40 (bottom row) observations. 
For comparison, we also show the coverage probability for 
confidence intervals calculated from vsand,u and (-distribution 
quantiles. Moreover, we calculate confidence intervals based 
on the jackknife estimate as suggested by MacKinnon and 
White (1985, form. 13). This has the form 
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It appears that uncorrected intervals clearly suffer from 
undercoverage. This is corrected to a large extent by both 
the corrected quantiles and the jackknife estimate. In general, 
however, the corrected quantiles behave slightly better in all 
three models, for heteroscedastic as well as homoscedastic 
errors. 

The foregoing examples show the benefits of correction (8). 
For practical purposes, it might be cumbersome to solve (8) 
explicitly, however. Instead, an approximate solution of (8) 

based on the relative efficiency var(Y,and.u)fvar(Vmodel) given 
in (6) in Theorem 1 can be used. As shown in the Appendix, 
one easily gets 

-=t +d (var(V""'·") -1)+0(n-2 ) (10) 
Zr p. n-r p. n-r var(V model) , 

where 'r is the !-distribution quantile with n- p degrees of 

freedom and dp,,-p = var(Vm,,,1)(z!+zp)/(8<T4). As before, 
the variance term (]'4 cancels out when var(V model) is inserted. 
Formula (10) shows that the corrected quantiles depend lin•
early on the relative efficiency. The slope parameter is thereby 
decreasing with increasing sample size. Relation (I 0) is visu•
alized in Figure 2, where we plot zp against the relative effi•

ciency var(V""'·J/var(V mode~) for p = .95 and p = .975. The 
linear shape is obvious, and it appears that the correction is 
substantial if the relative efficiency is large and/or the sample 

size is small. Figure 2 and (10) can also be used to provide 
confidence intervals with appropriate coverage probability by 
calculating the relative efficiency. 

uniform normal Laplace 
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Figure 1. Coverage Probability of Confidence lnteNals Based on V sand. u With Corrected Quantiles z p {D.) as Well as With t-Distribution Quantiles 
tp, n-r { +) and Based on the Jackknife Estimate V 1ack{o). The upper row is for n = 20; the bottom row, for n = 40. 
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3 --Figure 2. Correc ted Ouantiles Zp in Dependence of Sami)Je Slze n 
and Relative Efficiency va r(V -.,)tvar(V .,..) . 

3. Q UASI- LIKELIHOOD AND G ENERALIZED 

ESTIMATING EQUATIONS 

3.1 Properties of the Sandw ich Estima te 

In this section we consider the sandwich variance csti· 
mate for quasi-likelihood estimates from GEEs. Let Y1 = 
(Yj1 ••• .. Y1 ... )T. be a random vector taken at the ith unit for 
i = 1. . , n and m ~ I . For m ::> I. the components of Yl are 
allowed to be correlated while observations taken at two dif•
ferent units are independent. Although in principle the number 
of observations per unit may vary from unit w u11ir. for ease 
of notation we take m as constant here. The case m = 1 is of 
course a special case in the fonnulas. n~e mean of Yi given 
the l1l X p-climensionaJ deSign matriX Xi iS given by the gen•
eralized linear model E(Y;I X1) = ir(XJ IJ ), where h(·) is an 
invertible m-dimensional link function. Efficient esti mation of 
{J requires knowledge of the covariance matrix of Y;. This is 
typically unknown, and thus one specifies u ' V(J.L 1) =: u

2V, as 
the so-called working covariance matrix. where "'' = lt(XJ fJ). 
V(·) is a specified covariance variance function. and u2 is 
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a d ispersion scalar tltat is e ither unknown (e.g .. for normal 
response) or a known constant. (e.g .• 0'2 ,. I for Poisson data). 
Models of this type are also called marginal models (sec 
Diggle e t al. 1994 and references therein). If Y, is a scalar. 
(i.e., if m = 1). models of this type are bener known as quasi­
likelihood models (Wedderbum 1974) or generalized linear 
models (McCullagh and Neider 1989). The parameter {3 can 
be estimated using the GEE (e.g .. Gourieroux. Monfon. and 
Trognon 1984: Liang and Zeger 1986) 

" a"' J _, 0= ' ;-apv , (Y1 - J.L 1). ( II) 

lo the previous secrion. we were able to perfonn exac1 cal· 
culations. In quasi-likelihood models. such exact calculations 
are not feasible. and asympco1ics are required. We do not write 
down formal regularity conditions, but essentially what is nec•
essary is that sufficient moments of the components of X and 
Y exist. We also require suffic ient smoothness of It(·). Under 
such conditions. a Taylor expansion of (I I) about the true 
parameter fJ provides 1he first-order approximation 

P- IJ = W 1 ~a;; v ;- ' (Y;- J.L,)+O p(n -
1
). ( 12) 

where a = r_,aJ.LJ!(iJ /J)V i ' iJ J.L ,/(iJ /1 ). Assume that we are 
intereSted in inference about l T {J . rf V, is correctly SpCci· 

fied. that is. if u 1V1 = var(Y,IX,). then one gets var(z-rp ) = 
zTfl- 1zq2 to a first·order approximation. Hence , .. ,c can esti•
mate var(z-rp ) by V"""'1 := &'zTfi-•z. where fi is a simple 
plug-in estimate of !l and ,y: is an estimate of the dispcr· 
sion parameter if this is unknown. But in practice the covari•
ance matrix may not be known-that is. V, in { 11) can be 
misspecified- which means that u 2V, of var(Y, IX1) holds. In 
this case the variance var(zTP ) can be esti mated consistently 
by the sandwich formula 

v = zTn - •("a;:..J v - ' i<Tv -•a;:.., )ii- ' z ( 13) _, 7 iJ {J I II I B{J � 

where i1 = Y1 - fj.1 = Y1 - h(X ,p ) are the fined residu­
als and the hat notation refers to simple plug·in estimates. 
1l1e fined residuals can be expanded as i1 = E;- iJ J.L ; / 
(iJ{JT)(p - {J)( I + Op(n- '")J. and assuming for the 
moment that Vr correctly specifies the covariance. that 
is, E( < ; < J) = u 2V ,. one finds via (12) that E(i1i j) = 
u 2V , - u'iJJ.L , / (iJ fJ T)O - ' iJJ.Li!(B {J ) { I + O(n - ' )J. Because 
iJJ.L;/(iJ {J T) a - �aJ.LT !(iJ {J ) is positive definite. the sand­
wich estimate V un;~ appears to be biased downward with 
order O(n 1). and. as in the previous section. 1he bias 
can be corrected. '11lus let i , =(I - H,,)-! i , define the 
leverage-adjusted residuals with 1 as identity matrix and 
H,, = BJ.L ; / ( iJ fJ -r) a - �aJ.L ' [ ! ( iJ {J)V j ' . Replacing i in (13) 
by i gives the bias-reduced sandwich estimate V unct.w that 
satisfies E(V,..,_.) = var(zTP JP + O(n-2)}. assuming that 
Lhe variance is correctly specified. If in contra~t the vari•
ance is not correctly specified. that is. if V,0'2 of E( <1i [) 
holds. then the first-order asymptotic bias remains. so that 
E(V...,_ ,) = var(zTP )(I + O(n 1

) } . This means that the first­
order bias reduction holds only if the variance is known. 
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In practice, however, it seems to be a plausible strategy to 
work with Vsand.u instead of Vsand• even if V; is a working 
covariance and the true variance structure is unknown. 

3.2 Examples 

Theorem A. I in Appendix Section A.2 extends Theorem I 
to the quasi-likelihood setting. The formulation and presenta•
tion of the result is cumbersome, however, and thus is deferred 
to the Appendix. The major reason for the additional com•
plications is that in quasi-likelihood equations and GEEs, 
variance estimates have two different sources of stochastic 
variation. The first source is estimation of the dispersion 
parameter u 2, if this is unknown; the second is the use of 
plug-in estimates, which are used if the variance function 
V(JL) depends on the mean. We demonstrate the loss of effi•
ciency from the second source with Poisson and binomial data 
where the dispersion parameter is known. The variability of 
the model-based variance estimate occurs here solely from 
plug-in estimation. 

Example 4 (Poisson Log-Linear Regression). We consider 
the univariate model E(Y,Ix) = exp(xj /J) where x, = (I, uJ 
with u, scalar, fJ = ({30,/J 1)T, and Y1 Poisson distributed. 
The slope /3 1 is the parameter of interest, and we investigate 
the null case fJ = (i,O)T Then, as seen in the Appendix, 
if u has a symmetric distribution, then in limit as n --+ 

oo, var(V,,,)/var(Vmoo•tl = K,{l +2exp({30 )}, where K, = 
n- 1 Li uj j(n- 1 Li u;)2 is the sample kurtosis as in Example 3. 
The additional variability in the Poisson case is somewhat 
surprising-namely, that as the background event rate exp(/10) 

increases, at the null case the sandwich estimator has effi•
ciency decreasing to 0. 

Example 5 (Logistic Regression). Let Y, be binary with 
E(Y,IxJ = logiC 1(x'JfJ) with x, as described before. Again, 
the slope /J 1 is the parameter of interest. We vary {3 1 

while choosing {30 so that marginally E(ylx) = .10. With 
fJ 1 = 0, .5, 1.0, and 1.5, the asymptotic relative efficiency 
var(V ~,,)jvar(V moo•tl varies for u, standard normally dis•
tributed as 3.00, 2.59, 1.92, and 1.62. When u, comes from 
a Laplace distribution (with unit variance), the corresponding 
efficiencies are 6.00, 4.36, 3.31, and 2.57. Note that in both 
cases, at the null case {3 1 = 0 the efficiency of the sandwich 
estimator is exactly the same as the linear regression problem. 
This is no numerical fluke, and in fact can be shown to hold 
generally when u has a symmetric distribution. 

The previous two examples show that the loss of efficiency 
of the sandwich variance estimate in nonnormal models differs 
from and can be worse than that occurring in normal model5.. 

3.3 Coverage Probability 

Undercoverage as pointed out in (7) of Theorem 2 extends 
asymptotically to quasi-likelihood or generalized linear mod•
els. For multivariate normal response models with correctly 
specified covariance matrices V;. i = 1, ... , n, Theorem 2 still 
holds exactly because variance estimates are independent of 
parameter estimates. But even if covariance matrices are mis•
specified, correction (8) derived from Theorem 2 can provide 
improved coverage, as demonstrated in our simulations. In the 
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general case, however, exact calculation of the coverage prob•
ability and of the variance of the sandwich estimate are cum•
bersome, as seen from Examples 4 and 5. Because we concen•
trate on symmetric confidence intervals, which themselves are 
based on asymptotic normality arguments, it seems plausible 
to neglect the effect of plug-in estimates in the following. We 
show in simulations that for normal response and nonnormal 
response models, the coverage adjustment has a positive effect 
by compensating for undercoverage. To apply correction (8), 
we have to calculate the variance of the sandwich estimate. 
This can be done efficiently using matrix algebra. 

Calculation of var(V~,, .• ). We rewrite (13) in matrix 
form. Let Y denote the ( mn) x !-dimensional vector 
(Yr, . .. , r;y and set,..= (JLi, . .. , JL!)T The residual vec•
tor is defined by E = Y - 1-'· Let P denote the projection-type 
matrix P= (I-H), where I is the (nm) x (nm) identity matrix 
and H is the hat -type matrix 

a,.. _,a,..T . _, 
H = apT 0 apd1agm (V, ), 

with diagm (Vj 1) denoting the block diagonal matrix with 
V;- 1 on its diagonal, i = 1, ... n. Note that form= I, other 
versions of the hat matrix have been suggested (see Cook 
and Weisberg 1982, pp. 191-192, for logistic regression or 
Carroll and Ruppert 1988, p. 74, for other models). Let W 
be the block diagonal matrix W = diagm(a~a1 ) with aTa1 on 

the block diagonals, where a,= zTn-' a;fi v,-'. With D = 

diagm (I - Hu)-' 1', we get the leverage-adjusted fitted residu•
als i =D{Y - ji } =DP(Y -1-'){1 +Op(n- 112)). As before, we 
use the hat notation to denote plug-in estimates. This allows 
us to write 

v,,, .• = iTWi = ET(PDWDP)E 

= <T2iTMi{l + O(n- 1)), (14) 

where M = diagm(V! 12)PDWDPdiagm(V! 12 ) and iT = 
(iT, ... , i!) independent, homoscedastic residuals defined by 
E1 = v; 112 e1, where we assume again that u 2V; correctly spec•
ifies the variance of Y1� The quadratic form now easily allows 
calculation of the variance of the sandwich variance. Let mu 
denote the k, lth element of M and let i, be the elements of 
E, where k, l =I, 2, ... mn. Neglecting the effect of plug-in 
estimates, we find 

var(V,,, .• ) =2<T4 trace(MM)+<T4 L{E(ii) -3)m;,. ( 15) 

If the (i,) are standard normal, then (15) simplifies to 
var(V ~and, 11 ) = 2u4 tr(MM). The variance of the sandwich vari•
ance estimate again depends distinctly on the design of the 
covariates because of aiL; jafJ = x,ah(TJ)(aTJ with 1J = XJ/J. 

The foregoing calculation of the variance depends on the 
covariance structure V; used for fitting. In the calculations 
we implicitly assumed that V1 was specified correctly. Even 
though this appears to be a conceptional restriction, we 
demonstrate in simulations that correction (8) actually is rather 
robust against misspecified covariances. This means that even 
if V1 is misspecified, the corrected profiles zp show a positive 
effect. 
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Example 6 (Multivariate Normal Response). Let Y1 -

N(X,p, u 21) with X1 = (lm, U1), where lm is the m x !•
dimensional unit vector and U; is an m x 1 covariate vector. 
We set p = (.5, .5)T and consider /31 = (0, 1)/3 to be the 
parameter of interest. We simulate from the following designs 
for the covariates: Let U; = lmu; with scalar ui E m chosen 
(a) uniformly, (b) normally, or (c) from a Laplace distribu•
tion. Inserting var(Vu,,,.) = 2u4tr(MM) in (8) shows that u 4 

cancels out as before, so that the correction depends only on 
the design and the working covariance V;. We assume work•
ing independence (i.e., V1 = I) and simulate Y, from three 
different settings: with correctly specified working covariance 
matrix, that is, var(Y,) = u 21 (model ! ) ; with misspecified 
working covariances, that is, var(f1) = u 2(3/41 + l/4lml~) 
(model 2), and with autocorrelated errors var(Y,), = u 2pl'-•i 
with p = .5 (model 3). The corrected quantiles are listed 
in Table 3. Figure 3 shows simulated coverage probabilities 
for 2000 simulations for the p = .9 confidence interval. For 
comparison, we again report the coverage probabilities for 
t-distribution quantiles with n - 2 degrees of freedom and 
for the multivariate jackknife estimate. The proposed adjust•
ment shows satisfactory behavior for all three designs. The 
misspecification of the covariance has only a small effect 
on the coverage probability, so the adjustment appears to 
work for misspecified models as well. In contrast, both tp,n- 2 

distribution quantiles and jackknife estimates show under•
coverage, although the jackknife approach behaves more 
accurately. 

For nonnormal data, var(V ~""·.) depends not only on the 
design and the working covariance. but also on the unknown 

Design 

(a) 
(b) 
(c) 
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Table 3. Corrected Quantiles Zp for Different Designs 

P=.90 

n=10(m=4) 

2.03 
2.10 
2.18 

1.86 

p=.95 

z, 
n=20 (m=4) 

1.71 
1.81 
1.86 
1.94 

parameter /J. This implies that in practice matrix M must to 
be estimated by plug-in estimates. Moreover, the latter tenn 
in ( !5) does not vanish, and the kurtosis must be estimated. 
Even though at first glance this appears cumbersome, estima•
tion is usually not too complicated when assuming an under•
lying probability model. We demonstrate this using a binomial 
model. 

Example 7 (Logistic Regression). We simulate (indepen•
dent) binomial data with predictor X'J f3 where f3 = (0, .5)T 
(model I) and P =(I, J)T (model 2). The covariates X; are 
distributed as in Example 6, and we are interested in the slope 
parameter {3 1 • For comparison, we again compare our pro•
posed correction with the jackknife estimate, which in this 
case is a weighted and multivariate version of (9). The results 
are given in Table 4. The general positive appearance of the 
corrected quantiles canies over to binomial data, even if the 
distribution is rather skew. as in model 2. A similar behav•
ior was also observed for simulations with Poisson data, not 
reported here. 
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Figure 3. Coverage Probability of confidence Intervals Based on Vsarw:J,u With Corrected Quantiles Zp (.6.) as Well as With t-Distribution Quantiles 
tp,rr-TP(+) and Based on the Jackknife Estimate Viaek (o). The upper Row is for n = 10, m = 4; the bottom row is for n =20, m =4. 
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Table 4. Coverage Probability of Confidence Based on Vsand,u With Zp 

Calculated With True and Fitted Parameters and t-Distribution 

Quantiles tp,n-t 

Coverage based on 

Design tp,n-2 

vsand,u z, 
Logistic regression n = 30 (m = 4), p = .9 

(a) 1.74 (1.74) 89.9 (90.6) 
(b) 1.70 1.77 (1.78) 89.5 (90.1) 
(c) 1.82 (1.83) 91.1 (91.8) 

Logistic regression n = 30 (m = 4), p = .95 

(a) 2.08 (2.11) 95.4 (95.5) 
(b) 2.04 2.12 (2.16) 95.4 (95.6) 
(c) 2.19 (2.22) 95.8 (96.0) 

3.4 Balanced Design 

vsand,u 

fp,n-2 

87.3 (87.7) 
85.3 (84.6) 
85.6 (85.1) 

93.4 (92.0) 
92.1 (91.1) 
91.7 (89.6) 

89.8 (90.4) 
88.5 (89.0) 
89.6 (90.5) 

95.4 (95.3) 
94.9 (95.1) 
95.2 (94.7) 

Finally, we revisit the design issue. So far we have focused 
on undercoverage properties with sandwich estimates. This 
undercoverage basically occurs if the covariates differ between 
the units, as in the foregoing simulations. In contrast, as we 
shown later, if the covariate design is the same for all units, 
then undercoverage may not occur. 

Example 8 (Balance Design). Consider again the multi•
variate normal model Y; - N(XJ fJ, u 21), with XJ as a m x p 
design matrix. We assume that the covariates are scaled and 
orthogonal such that 0 = Li X;XJ = nl. This gives L 1 aJa; = 
n, and the variance is obtained from 

var{V,m,.,} =2u4tr(MM) =2tr(WW}{l +O(n- 1)} 

= 2n-4u 4 ~)aJa;}'(I +O(n- 1} } 

2: 2n-'u'(L:aJa;) 2 (I+ O(n- 1)} 
; 

The lower bound is reached if the covariates are individu•
ally orthogonal or balanced in the sense X;XJ =I for all i. 
This is the case if, for instance, the individual design X; does 
not differ among the individuals. A typical example is given 
by longitudinal data, where the covariates give the timepoint 
of measurement, that is, X;= (1, t), where 1 =(I, ... , J)T 
and t = (-T, -T +I, ... , T- I, T)T !CL.;~_rt2 ) is a cen•
tered and standardized time vector. In this case one gets 
the lower bound var(V..,w.,) = 2u' /{n2(n-l}}{l +O(n- 1)}, 

which equals the variance of the classical variance estimate 
discussed in Example 2. Hence one finds that in general 
Zp:::: tp,n- J holds asymptotically, where the lower bound is 
reached if the design is individually balanced. As a conse•
quence undercoverage is not an issue in this case. 

4. DISCUSSION 

We have shown that sandwich variance estimates are typi•
cally less efficient than model-based variance estimates. The 
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loss of efficiency depends mainly on the design; for standard 
cases, it is proportional to the inverse of the design kurtosis of 
the design points, and for nonnonnal data, additional compo•
nents beside the kurtosis influence the loss of efficiency. The 
variance of the sandwich variance estimate directly affects the 
coverage probability of confidence intervals. An adjustment 
has been suggested that depends on the design. The adjust•
ment has shown promising behavior, although we expect it to 
be possible to break down the method. 

Basically, the use of the sandwich variance estimate leads to 
undercoverage of confidence intervals if the covariates differ 
between the units. For individually balanced designs, as may 
occur in dynamic data, undercoverage does not occur. There•
fore, we can refine the statement of Diggle et al. (1994, p. 77) 
that the sandwich variance estimate should be used with care 
if the data come from a small number of "experimental units" 
and the covariates differ between the units. In this case, the 
suggested corrected quantiles provide a small-sample adjust•
ment for the confidence intervals. 

APPENDIX: TECHNICAL DETAILS 

A.1 Proof of Theorem 2 

In general, the result can be proved by applying an Edgeworth 
series to iJ- 8 (see, e.g., Hall 1992, pp. 46-68). But we pursue a 
more direct proof here, which makes the result accessible for readers 
not too familiar with Edgeworth series. 

Let n'l'(ii- 8)- normal(O, u 2) and z, = q,-'(p), where <!>(·) 
is the standard normal distribution function. We define vP = uzP 
and VP = /}zP such that F(vp) = Pr{n112 (iJ- 8) ::::: vf'} = p with 

F(vp) = <l>(zp). The intention is to calculate Pr{n 112(8- fJ)::::: V,,}. 
Let HvP 0 denote the distribution function of VP'~ and take /}2 as the 

.fii-consistent variance estimate independent of 8-8. This gives 

Pr{(ii-8) :S ii,) = J Pr{(ii-8) :S ( viii,= v)dH 0,( v ) 

= jF( v)dH 0,( v )=E{F(ii,)). 

Hence we have to calculate the expectation of F( Vp) to obtain the 
coverage probability. Applying the delta method to the root function 
g(v) = v112, we find that 

u-u=g(u 2)-g(u 2 ) 

= 1f2-u2- (U2-u2)2 +0 (n-312). 
2u Su3 P 

This along with VP = vp+zp(U- u) implies that 

l 1f2-u2 (U2-u2)2l 
F(Vp)=F vp+Zp~-zP~ +Op(n-312 ) 

l 1f2-u2 (1f2-u2)2l 
=F(vp)+F(1l(vp) zP~-zP~ 

I l u2
-u

2l2 
+-F(2l(v) z -- +0 (n-312 ). 

2 PPzu2 P 

Because F(vp) = p, this yields 

l z' F(2l(2 ) z F( 1l(z ) l 
E{F(ii )}=p+var(u2) -'--'---'---' 

P Su4 8u4 

+O(n-312). 
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Inserting the derivatives for F(v) = cp(vfu) gives formula (7) in Theorem A. I. As n-+ oo, under the foregoing conditions we 
Theorem 2. have 

Note that p- p = O(n-1 ), so that by simple Taylor expansion, 

Zp = oj>-1(p) = oj>-1(p+p- p) 

= z, + (p- p)/<l>(z,) + O(n-2 ), 

which provides Zp- Zp = O(n-1 ). Let IJi be the variance estimate 
such that (iJ- 0)/U, is !-distributed with the usual degrees of free•
dom. Denoting by tP the !-distribution quantiles, calculations similar 
to the foregoing show that t, = z, + (p- p,)/4>(1,) + O(n-2), where 
p1 is defined through Zp, = tr Using these equations and applying (8) 
provides 

as claimed in Section 2.2. 

A.2 Sandwich Estimates in Quasi-Ukelihood and 
Generalized Estimating Equations 

Here we derive the relative efficiency in quasi-likelihood models. 
For simplicity of notation, we consider univariate regression mod•
els of the form E(Y1jxJ = p,(xjfj) = h(xjfj) with xj as a I x p 
vector. The variance of Y; is given by var(Y;jx1) = u 2 V{p,(xjfj)}. 
where V( ·) is a known variance function. In some problems u2 is 
estimated, which we indicate by setting ~ = I, whereas when u 2 is 
known. we set~ =0. We denote the derivatives of functions by super•
scripts, for example, p.U>('I) = a1p.('l)/(a'l)1� Let us assume that the 
variance is correctly specified, that is, var(Y1jx1) = u 2 V{p,(xjfj)}, so 
that with expansion (12) we get var(n112zT/l) = V~ym,{l + O(n-1)), 
where Vasymp = u 2zT0;1(Jj)z and 0,(/J) = n-1 L~= 1 x1xjQ(xTJj) 
with Q(71) = {p.O>('I)J'/V('I). The model-based variance estimator 
for n 112iT{J is V model= U2(fi)zT0; 1 (~)z, where 

Defining B,(p) = n- 1 L7~ 1 x1x"JM(x"JIJ){Y1-p.(x"JIJ)}2 and M(71) = 
{p,(1)('q)/V(17)J2, the sandwich estimator for n 112zTfj is written as 
V~00 =zT0;1(p)B,(p)0;1(p)z. 

To derive the following theorem, we need some addi•
tional notation. Let R, = §n- 1 L~= 1 g(xj{J)xj, where g(17) = 
(a;a,)log{V('I)}, ., = {Y1-p.(x"Jil))/V1'2(xjp), q1, =x"J0;1(1J)z, 
a,= zT0; 1({J)z, C.,= n-1 L~=l qf,Q(1)(xj{J)x;, 

t 1, = 0;1(1J)x1p.(Il(xj /l)/V112(xj IJ), 

v1 = {f1 -p.(xjp))2M(xjp) -u2Q(xjp), 

and 

K, = n-1 tqf, V(xjp)MO>(xjp)x1• 

1=1 

In what follows, we treat x1 as a sample from a distribution. We 
assume that sufficient moments of the components of x and y exist, as 
does sufficient smoothness of p,( · ). Under the foregoing conditions, at 
least asymptotically there are no leverage points, so that the usual and 
unbiased sandwich estimators will have similar asymptotic behav•
ior. We write 0(/l) = E{O,(Il)}. q = xT0-1(/l)z, a= zT0-1(/l)z, 
C = E{q2 Q(1)(xT{J)x}, and so on-that is, the bar notation refers to 
asymptotic moments. 

ni/2(Vmode1- V asymp) 

=> norma![O, ~moo.!:= E{aH•2-u2) -u2(aR+C)Tl•J'] 

and 

n112(Vsand-Vasymp) 

=> nmma!(O,};~, :=E{q2v+(K-2u2C)Tl•J']. 

For the proof, recall that n112(/J- p) ~ n-112 L~= 1 l1,e1, where 
~ means that the difference is of order op(l). By a simple delta•
method calculation we get ~n 1 12 {U2 (fj) -u 2} ~ n- 1 12 L~= 1 ~(ef­
u 2)-u2R"Jn112(p-p). Thus 

n 112{Vmodel- Vasymp} 

"'~n1''{U'(p) -u')a" +n1f2u'zT{0;1(p) -0;1(/l)}z 

"' ~n 1'2{U2(p)- u 2)a,- u 2n112zTo;1(1J){O,(p) 

-0,(/l)}0;1(1J)z 

"'~n 112 {U'(P)-u2 )a"-u'c;n 112(P-Pl 

"'n- 112 ~]a,~(•f -u2) -u2(a,R,+C,)Tt1,E1}, 

which shows the first part of Theorem A. I. 
We now turn to the sandwich estimator and note that B., (JJ) -

u 20.,(fl) = Op(n-112). Because of this, we have that 

n1/2{Vsand- Vasymp} 

"'-2u2n112zT0;1(/l){O,(P) -O,(Il))0;1(/l)z 

+n1'2zT0;1(/l){B,(Ji)- u 20,(1l)}0;1(/l)z 

' ' 
"' -2u2n- 112 L;c;t 1,< 1 +n- 112 :[qf,[M(XTiil 

' ' 
~ -2u2n-I/2EC!.t;,e;+n-I/2Eq7,ui 

I= I 

' ' 
~ -2u2n- 1 12LC!.t 1,e1 +n-112 Lq~v; 

i=1 i=l 

as claimed. 
Theorem A.l can now be used to prove the statements listed 

in Examples 4 and 5. For the logistic case, we have V( 17) = 
p.(ll('l) = Q(71) = P.('l){l- P.('l)), u 2 = I,g = O,R, = 0, and 
Q(ll('l) = p.(ll('l){l-2p.('l)). All of the terms in Theorem A.! can 
then be computed by numerical integration, which gives the numbers 
presented in Example 5. 

For the Poisson case, it is easily verified that 0(/1) = 
exp(,80)12, where 12 is the 2 x 2 identity matrix. Also, q = 
Uexp(-ll0 ), xTP=/30, QO>(xTp) =exp(/30 ), C=exp(-{30)(I.O)T, 
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t = exp( -Jl0 j2)(l, U)T, � = {Y- exp(Jl0)}/ exp(Jl0 /2), and hence 
:!:moo.t = exp( -3/lol· 

Let 8=exp(Jl0 ). Then E(Y2 ) = 8+82, E(Y') = 83 +382 +8, and 
E(Y4 ) = 11'+683 +782 +8. If we define Z = Y -8, then E(Z) =0, 
E(Z2 ) = E(Z3) = 8, and E(Z4 ) = 382 + 8. Further, M(1)) = l, 
M<0(1J) = 0, and K = 0. A detailed calculation then gives that 
IM.nd =2Kexp(-2/30 )+Kexp(-3/30), which shows the relative effi�
ciency given in Example 4. 

{Received March 2000. Revised April 200/.] 
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SUMMARY 

Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations, 
it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial 
data, such as complete case analyses and methods based on last observation carried forward, require 
restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based methods 
developed under the missing at random (MAR) framework. Given the availability of flexible software for 
analyzing longitudinal sequences of unequal length, implementation of likelihood-based MAR analyses 
is not limited by computational considerations. While such analyses are valid under the comparatively 
weak assumption of MAR, the possibility of data missing not at random (MNAR) is difficult to rule out. 
It is argued, however, that MNAR analyses are, themselves, surrounded with problems and therefore, 
rather than ignoring MNAR analyses altogether or blindly shifting to them, their optimal place is within 
sensitivity analysis. The concepts developed here are illustrated using data from three clinical trials, where 
it is shown that the analysis method may have an impact on the conclusions of the study. 

Keywords: Complete case analysis; lgnorability; Last observation carried forward; Missing at random; Missing 

completely at random; Missing not at random. 

1. INTRODUCTION 

In a longitudinal clinical trial, each unit is measured on several occasions. It is not unusual in practice 
for some sequences of measurements to terminate early for reasons outside the control of the investigator, 
and any unit so affected is called a dropout. It might therefore be necessary to accommodate dropout in 
the modeling process. 

*To whom corespondence should be addressed. 

Biostatistics Vol. 5 No. 3 © Oxford University Press 2004; all rights reserved. 
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Early work on missing values was largely concerned with algorithmic and computational solutions 
to the induced lack of balance or deviations from the intended study design (Afifi and Elashoff, 1966; 
Hartley and Hocking, 1971). More recently, general algorithms such as expectation-maximization (EM) 
(Dempster eta!., 1977), and data imputation and augmentation procedures (Rubin, 1987), combined 
with powerful computing resources have largely solved the computational difficulties. There remains 
the difficult and important question of assessing the impact of missing data on subsequent statistical 
inference. 

When referring to the missing-value, or non-response, process we will use terminology of Little and 
Rubin (1987, Chapter 6). A non-response process is said to be missing completely at random (MCAR) 
if the missingness is independent of both unobserved and observed data and missing at random (MAR) 
if, conditional on the observed data, the missingness is independent of the unobserved measurements. A 
process that is neither MCAR nor MAR is termed non-random (MNAR). In the context of likelihood 
inference, and when the parameters describing the measurement process are fimctionally independent of 
the parameters describing the missingness process, MCAR and MAR are ignorable, while a non-random 
process is non-ignorable. 

Numerous missing data methods are formulated as selection models (Little and Rubin, 1987) as 
opposed to pattern-mixture modeling (PMM; Little, 1993, 1994). A selection model factors the joint 
distribution of the measurement and response mechanisms into the marginal measurement distribution 
and the response distribution, conditional on the measurements. This is intuitively appealing because 
the marginal measurement distribution would be of interest with complete data. Little and Rubin's 
taxonomy is most easily developed in the selection model setting. Parametrizing and making inference 
about treatment effects and their evolution over time is straightforward in the selection model context. 

In many clinical trial settings, the standard methodology used to analyze incomplete longitudinal 
data is based on such methods as last observation carried forward (LOCF), complete case analysis 
(CC), or simple forms of imputation. This is often done without questioning the possible influence of 
these assumptions on the final results, even though several authors have written about this topic. A 
relatively early account is given in Heyting eta!. (1992). Mallinckrodt eta!. (2003a,b) and Lavori eta!. 
(1995) propose direct-likelihood and multiple-imputation methods, respectively, to deal with incomplete 
longitudinal data. Siddiqui and Ali (1998) compare direct-likelihood and LOCF methods. 

As will be discussed in subsequent sections, it is unfortunate that such a strong emphasis is placed 
on methods like LOCF and CC in clinical trial settings, since they are based on strong and unrealistic 
assumptions. Even the strong MCAR assumption does not suffice to guarantee that an LOCF analysis is 
valid. In contrast, under the less restrictive assumption of MAR, valid inference can be obtained through 
a likelihood-based analysis without modeling the dropout process. One can then use linear or generalized 
linear mixed models (Verbeke and Molenberghs, 2000), without additional complication or effort. We 
will argue that such an analysis is more likely to be valid, and even easier to implement than LOCF and 
CC analyses. 

Nevertheless, approaches based on MNAR need to be considered. In practical settings, the reasons 
for dropout are varied and it may therefore be difficult to justifY the assumption of MAR. For example, 
in 11 clinical trials of similar design, considered by Mallinckrodt eta!. (2003b ), with the same drug and 
involving patients with the same disease state, the rate of and the reasons for dropout varied considerably. 
In one study, completion rates were 80% for drug and placebo. In another study, two-thirds of the patients 
on drug completed all visits, while only one-third did so on placebo. In yet another study, 70% finished on 
placebo but only 60% on drug. Reasons for dropout also varied, even within the drug arm. For example, at 
low doses more patients on drug dropped out due to lack of efficacy whereas at higher doses dropout due 
to adverse events was more common. At first sight, this calls for a further shift towards MNAR models. 
However, caution ought to be used since no modeling approach, whether MAR or MNAR, can recover 
the lack of information due to incompleteness of the data. 
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Table 1. Overview of number of patients and 
post baseline visits per study 

Study I 
Stndy 2 
Stndy 3 

Number of patients 
167 
342 
713 

Post-baseline visits 
4-11 
4-8 
3-8 

447 

First, if MAR can be guaranteed to hold, a standard analysis would follow. However, only rarely is such 
an assumption known to hold (Murray and Findlay, 1988). Nevertheless, ignorable analyses may provide 
reasonably stable results, even when the assumption of MAR is violated, in the sense that such analyses 
constrain the behavior of the unseen data to be similar to that of the observed data (Mallinckrodt et a/., 
2001a,b). A discussion of this phenomenon in the survey context has been given in Rubin eta/. (1995). 
These authors argue that, in rigidly controlled experiments (some surveys and many clinical trials), the 
assumption of MAR is often reasonable. Second, and very importantly for confirmatory trials, an MAR 
analysis can be specified a priori without additional work relative to a situation with complete data. Third, 
while MNAR models are more general and explicitly incorporate the dropout mechanism, the inferences 
they produce are typically highly dependent on untestable and often implicit assumptions regarding the 
distribution of the unobserved measurements given the observed measurements. The quality of the fit 
to the observed data need not reflect at all the appropriateness of the implied structure governing the 
unobserved data. This point is irrespective of the MNAR route taken, whether a parametric model of 
the type of Diggle and Kenward (1994) is chosen, or a semi parametric approach such as in Robins et 
a/. (1998). Hence, in incomplete-data settings, a definitive MNAR analysis does not exist. We therefore 
argue that clinical trial practice should shift away from the ad hoc methods and focus on likelihood­
based ignorable analyses instead. The cost involved in having to speciJY a model will likely be small to 
moderate in realistic clinical trial settings. To explore the impact of deviations from the MAR assumption 
on the conclusions, one should ideally conduct a sensitivity analysis, within which MNAR models and 
pattern-mixture models can play a major role (Verbeke and Molenberghs, 2000, Chapter 18-20). 

A three-trial case study is introduced in Section 2. The general data setting is introduced in Section 3, 
as well as a formal framework for incomplete longitudinal data. A discussion on the problems associated 
with simple methods is presented in Section 4. In Section 5, using algebraic derivations, we explore the 
origins of the asymptotic bias in LOCF, complete-case and likelihood-based ignorable analyses. The case 
study is analyzed in Section 6. A perspective on sensitivity analysis is sketched in Section 7. 

2. CASE STUDIES 

The ideas developed in this paper are motivated from, and applied to, data from three clinical trials of 
anti-depressants. The three trials contained 167, 342, and 713 patients with post-baseline data, respectively 
(Mallinckrodt eta/., 2003b ). The Hamilton Depression Rating Scale (HAM D17) was used to measure the 
depression status of the patients. For each patient, a baseline assessment was available. Post-baseline visits 
differ by study (Table 1 ). 

For blinding purposes, therapies are recoded as AI for primary dose of experimental drug, A2 for 
secondary dose of experimental drug, and B and C for non-experimental drugs. The treatment arms across 
the three studies are as follows: AI, B, and C for study 1; AI, A2, B, and C for study 2; AI and B for 
study 3. The primary contrast is between AI and C for studies 1 and 2, whereas in study 3 one is interested 
in A versus B. 

In this case study, emphasis is on the difference between the treatment arms in mean change of the 



544

448 G. MOLENBERGHS ET AL. 
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Fig. I. Mean profiles for each of the three studies. 

H AMD17 score at the endpoint. For each study, mean profiles within each treatment arm are given in 
Figure 1. However, as time evolves, more and more patients drop out, resulting in fewer observations for 
later visits. Indeed, a graphical representation of dropout, per study and per arm, is given in Figure 2. Due 
to this fact, Figure I might be misleading if interpreted without acknowledging the diminishing basis of 
inference. 

3. DATA SETTING AND MODELING FRAMEWORK 

Assume that for subject i = 1, ... , N in the study a sequence of responses Yij is designed to be 
measured at occasions j = I, ... , n. The outcomes are grouped into a vector Y; = (Yn, ... , Y;n)'. In 
addition, define a dropout indicator D; for the occasion at which dropout occurs and make the convention 
that D; = n + 1 for a complete sequence. It is often necessary to split the vector Y; into observed (Yf) 
and missing ( Yf) components respectively. 

In principle, one would like to consider the density of the full data / (V ; , d; 18, 'lj;), where the parameter 
vectors 8 and 'lj; describe the measurement and missingness processes, respectively. Covariates are 
assumed to be measured, but have been suppressed from notation for simplicity. 

Most strategies used to analyze such data are, implicitly or explicitly, based on two choices. 

Model for measurements. A choice has to be made regarding the modeling approach to the measure•
ments. Several views are possible. 

View 1. One can choose to analyze the entire longitudinal profile, irrespective of whether interest focuses 
on the entire profile (e.g. difference in slope between groups) or on a specific time point (e.g. 
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Fig. 2. Evolution of dropout per study and per treatment arm. Treatment arms of primary interest, are shown in bolder 
typeface. 

the last planned occasion). In the latter case, one would make inferences about such an occasion 
using the posited model. 

View 2. One states the scientific question in terms of the outcome at a well-defined point in time. Several 
choices are possible: 

View 2a. The scientific question is defined in terms of the last planned occasion. In this case, one can 
either accept the dropout as it is or use one or other strategy (e.g. imputation) to incorporate 
the missing outcomes. 

View 2b. One can choose to define the question and the corresponding analysis in terms of the last 
observed measurement. 

While Views 1 and 2a necessitate reflection on the missing data mechanism, View 2b avoids 
the missing data problem because the question is couched completely in terms of observed 
measurements. Thus, under View 2b, an LOCF analysis might be acceptable, provided it matched 
the scientific goals, but is then better described as a Last Observation analysis because nothing is 
carried forward. Such an analysis should properly be combined with an analysis of time to dropout, 
perhaps in a survival analysis framework. Of course, an investigator should reflect very carefully on 
whether View 2b represents a relevant and meaningful scientific question (see also Shih and Quan, 
1997). 

Method for handling missingness. A choice has to be made regarding the modeling approach for the 
missingness process. Under certain assumptions this process can be ignored (e.g. a likelihood-based 
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ignorable analysis). Some simple methods, such as a complete case analysis and LOCF, do not 
explicitly address the missingness process either. 

We first describe the measurement and missingness models in turn, then formally introduce and comment 
on ignorability. 

The measurement model will depend on whether or not a full longitudinal analysis is done. When the 
focus is on the last observed measurement or on the last measurement occasion only, one typically opts 
for classical two- or multi-group comparisons (t test, Wilcoxon, etc.). When a longitudinal analysis is 
deemed necessary, the choice depends on the nature of the outcome. For continuous outcomes, such as in 
our case studies, one typically assumes a linear mixed-effects model, perhaps with serial correlation: 

Y; = X;{3 + Z;b; + W; + c:;, (3.1) 

(Verbeke and Molenberghs, 2000) where Y; is then-dimensional response vector for subject i, 1 :( i :( 
N,N is the number of subjects, X; and Z; are (n x p) and (n x q) known design matrices, (3 is the 
p-dimensional vector containing the fixed effects, b; ~ N (0, D) is the q-dimensional vector containing 
the random effects, c; ~ N (0, a 2 In,) is a n-dimensional vector of measurement error components, and 
bt, ... , bN, ct, ... , c:N are assumed to be independent. Serial correlation is captured by the realization of 
a Gaussian stochastic process, W;, which is assumed to follow a N (0, r 2 H;) law. The serial covariance 
matrix H; only depends on i through the number n of observations and through the time points fij at 
which measurements are taken. The structure of the matrix H; is determined through the autocorrelation 
function p(tij - f;k). This function decreases such that p(O) = I and p(u) -+ 0 as u -+ oo. Finally, D 
is a general (q x q) covariance matrix with (i, j) element dij = dji· Inference is based on the marginal 
distribution of the response Y; which, after integrating over random effects, can be expressed as 

Y; ~ N(X;{3, Z;Dz; + L:;). (3.2) 

Here, L:; = a 2 In, + r 2 H; is a (n x n) covariance matrix combining the measurement error and serial 
components. 

Assume that incompleteness is due to dropout only, and that the first measurement Yn is obtained for 
everyone. A possible model for the dropout process is a logistic regression for the probability of dropout 
at occasion j , given that the subject is still in the study. We denote this probability by g(h; j, Yij) in which 
hij is a vector containing all responses observed up to but not including occasion j , as well as relevant 
covariates. We then assume that g(hij, Yij) satisfies 

iogit[g(h; j , Yij) ] = logit [pr(D; = jiD; ;;:, j,y;)] = h;j'I/J + wy; j, i = !, ... ,N, (3.3) 

(Diggle and Kenward, 1994). When w equals zero, the dropout model is MAR, and all parameters can be 
estimated using standard software since the measurement model, for which we use a linear mixed model, 
and the dropout model, assumed to follow a logistic regression, can then be fitted separately. If w i= 0, 
the posited dropout process is MNAR. Model (3.3) provides the building blocks for the dropout process 
f(d;ly;. 'lj;). 

Rubin (1976) and Little and Rubin (1987) have shown that, under MAR and the condition that 
parameters (} and 'lj; are functionally independent, likelihood-based inference remains valid when the 
missing data mechanism is ignored (see also Verbeke and Molenberghs, 2000). Practically speaking, the 
likelihood of interest is then based upon the factor f(yfl(}). This is called ignorability. The practical 
implication is that a software module with likelihood estimation facilities and with the ability to handle 
incompletely observed subjects, manipulates the correct likelihood, providing valid parameter estimates 
and likelihood ratio values. Note that the estimands are the parameters of (3.2), which is a model for 
complete data, corresponding to what one would expect to see in the absence of dropouts. 
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A few cautionary remarks are warranted. First, when at least part of the scientific interest is directed 
towards the nonresponse process, obviously both processes need to be considered. Under MAR, both 
processes can be modeled and parameters estimated separately. Second, likelihood inference is often 
surrounded with references to the sampling distribution (e.g. to construct measures of precision for 
estimators and for statistical hypothesis tests; Kenward and Molenberghs, 1998). However, the practical 
implication is that standard errors and associated tests, when based on the observed rather than the 
expected information matrix and given that the parametric assumptions are correct, are valid. Thirdly, 
it may be hard to rule out the operation of an MNAR mechanism. This point was brought up in the 
introduction and will be discussed further in Section 7. Fourthly, such an analysis can proceed only under 
View 1, i.e. a full longitudinal analysis is necessary, even when interest lies, for example, in a comparison 
between the two treatment groups at the last occasion. In the latter case, the fitted model can be used as 
the basis for inference at the last occasion. A common criticism is that a model needs to be considered, 
with the risk of model misspecification. However, it should be noted that in many clinical trial settings the 
repeated measures are balanced in the sense that a common (and often limited) set of measurement times is 
considered for all subjects, allowing the a priori specification of a saturated model (e.g. full group by time 
interaction model for the fixed effects and unstructured variance-covariance matrix). Such an ignorable 
linear mixed model specification is termed MMRM (mixed-model random missingness) by Mallinckrodt 
eta/. (200la,b). Thus, MMRM is a particular form of a linear mixed model, fitting within the ignorable 
likelihood paradigm. Such an approach is a promising alternative to the often used simple methods such 
as complete-case analysis or LOCF. These will be described in the next section and further studied in 
subsequent sections. 

4. SIMPLE METHODS 

We will briefly review a number of relatively simple methods that still are commonly used. For the 
validity of many of these methods, MCAR is required. For others, such as LOCF, MCAR is necessary 
but not sufficient. The focus will be on the complete case method, for which data are removed, and on 
imputation strategies, where data are filled in. Regarding imputation, one distinguishes between single and 
multiple imputation. In the first case, a single value is substituted for every 'hole' in the data set and the 
resulting data set is analyzed as if it represented the true complete data. Multiple imputation acknowledges 
the uncertainty stemming from filling in missing values rather than observing them (Rubin, 1987; Schafer, 
1997). LOCF will be discussed within the context of imputation strategies, although LOCF can be placed 
in other frameworks as well. 

A complete case analysis includes only those cases for which all measurements were recorded. This 
method has obvious advantages. It is simple to describe and almost any software can be used since there 
are no missing data. Unfortunately, the method suffers from severe drawbacks. Firstly, there is nearly 
always a substantial loss of information. For example, suppose there are 20 measurements, with 10% of 
missing data on each measurement. Suppose, further, that missingness on the different measurements is 
independent; then, the estimated percentage of incomplete observations is as high as 87%. The impact on 
precision and power may be dramatic. Even though the reduction of the number of complete cases will 
be less severe in settings where the missingness indicators are correlated, this loss of information will 
usually militate against a CC analysis. Secondly, severe bias can result when the missingness mechanism 
is MAR but not MCAR. Indeed, should an estimator be consistent in the complete data problem, then the 
derived complete case analysis is consistent only if the missingness process is MCAR. A CC analysis can 
be conducted when Views I and 2 of Section 3 are adopted. It obviously is not a reasonable choice with 
View2b. 

An alternative way to obtain a data set on which complete data methods can be used is to fill in rather 
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than delete (Little and Rubin, 1987). Concern has been raised regarding imputation strategies. Dempster 
and Rubin (1983) write: 'The idea of imputation is both seductive and dangerous. It is seductive because 
it can lull the user into the pleasurable state of believing that the data are complete after all, and it is 
dangerous because it lumps together situations where the problem is sufficiently minor that it can be 
legitimately handled in this way and situations where standard estimators applied to the real and imputed 
data have substantial biases.' For example, Little and Rubin ( 1987) show that the application of imputation 
could be considered acceptable in a linear model with one fixed effect and one error term, but that it is 
generally not acceptable for hierarchical models, split-plot designs, repeated measures with a complicated 
error structure, random-effects, and mixed-effects models. 

Thus, the user of imputation strategies faces several dangers. First, the imputation model could be 
wrong and, hence, the point estimates biased. Second, even for a correct imputation model, the uncertainty 
resulting from missingness is ignored. Indeed, even when one is reasonably sure about the mean value the 
unknown observation would have had, the actual stochastic realization, depending on both the mean and 
error structures, is still unknown. In addition, most methods require the MCAR assumption to hold while 
some even require additional and often unrealistically strong assumptions. 

A method that has received considerable attention (Siddiqui and Ali, 1998; Mallinckrodt et al., 
2003a,b) is last observation carried forward (LOCF). In the LOCF method, whenever a value is missing, 
the last observed value is substituted. The technique can be applied to both monotone and nonmonotonic 
missing data. It is typically applied in settings where incompleteness is due to attrition. 

LOCF can, but should not necessarily, be regarded as an imputation strategy, depending on which 
of the views of Section 3 is taken. The choice of viewpoint has a number of consequences. First, when 
the problem is approached from a missing data standpoint, one has to think it plausible that subjects' 
measurements do not change from the moment of dropout onwards (or during the period they are 
unobserved in the case of intermittent missingness ). In a clinical trial setting, one might believe that the 
response profile changes as soon as a patient goes off treatment and even that it would flatten. However, 
the constant profile assumption is even stronger. Secondly, LOCF shares with other single imputation 
methods that it artificially increases the amount of information in the data, by treating imputed and 
actually observed values on an equal footing. This is especially true if a longitudinal view is taken. 
Verbeke and Molenberghs ( 1997, Chapter 5) have shown that all features of a linear mixed model (group 
difference, evolution over time, variance structure, correlation structure, random effects structure, . . . ) 
can be affected. A similar conclusion, based on the case study, is reached in Section 6. 

Thus, scientific questions with which LOCF is compatible will be those that are phrased in terms of 
the last obtained measurement (View 2b ). Whether or not such questions are sensible should be the subject 
of scientific debate, which is quite different from a post hoc rationale behind the use of LOCF. Likewise, 
it can be of interest to model the complete cases separately and to make inferences about them. In such 
cases, a CC analysis is of course the only reasonable way forward. This is fundamentally different from 
treating a CC analysis as one that can answer questions about the randomized population as a whole. 

We will briefly describe two other imputation methods. The idea behind unconditional mean 
imputation (Little and Rubin, 1987) is to replace a missing value with the average of the observed values 
on the same variable over the other subjects. Thus, the term unconditional refers to the fact that one does 
not use (i.e. condition on) information on the subject for which an imputation is generated. Since values 
are imputed that are unrelated to a subject's other measurements, all aspects of a model, such as a linear 
mixed model, are typically distorted (Verbeke and Molenberghs, 1997). In this sense, unconditional mean 
imputation can be as damaging as LOCF. 

Buck's method or conditional mean imputation (Buck, 1960; Little and Rubin, 1987) is similar in 
complexity to mean imputation. Consider, for example, a single multivariate normal sample. The first step 
is to estimate the mean vector J1 and the covariance matrix :E from the complete cases, assuming that 
Y ~ N(JL, :E). For a subject with missing components, the regression of the missing components (Y;") 
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on the observed ones (yf) is 

(4.1) 

The second step calculates the conditional mean from the regression of the missing components on the 
observed components, and substitutes the conditional mean for the corresponding missing values. In this 
way, 'vertical' information (estimates for IL and :E) is combined with 'horizontal' information (yf). Buck 
( 1960) showed that under mild conditions, the method is valid under MCAR mechanisms. Little and Rubin 
(1987) added that the method is also valid under certain MAR mechanisms. Even though the distribution 
of the observed components is allowed to differ between complete and incomplete observations, it is 
very important that the regression of the missing components on the observed ones is constant across 
missingness patterns. Again, this method shares with other single imputation strategies that, although 
point estimation may be consistent, the precision will be overestimated. There is a connection between 
the concept of conditional mean imputation and a likelihood-based ignorable analysis, in the sense that 
the latter analysis produces expectations for the missing observations that are formally equal to those 
obtained under a conditional mean imputation. However, in likelihood-based ignorable analyses, no 
explicit imputation takes place, hence the amount of information in the data is not overestimated and 
important model elements, such as mean structure and variance components, are not distorted. 

Historically, an important motivation behind the simpler methods was their simplicity. Currently, with 
the availability of commercial software tools such as, for example, the SAS procedures MIXED and 
NLM!XED and the SPlus and R nlme libraries, this motivation no longer applies. Arguably, a MAR 
analysis is the preferred choice. Of course, the correctness of a MAR analysis rests upon the truth of the 
MAR assumption, which is, in tum, never completely verifiable. Purely resorting to MNAR analyses is 
not satisfactory either since important sensitivity issues then arise. These and related issues are briefly 
discussed in the next section (see also Verbeke and Molenberghs, 2000). 

It is often quoted that LOCF or CC, while problematic for parameter estimation, produce random•
ization-valid hypothesis testing, but this is questionable. First, in a CC analysis partially observed data 
are selected out, with probabilities that that may depend on post-randomization outcomes, thereby 
undermining any randomization justification. Second, if the focus is on one particular time point, e.g. 
the last one scheduled, then LOCF plugs in data. Such imputations, apart from artificially inflating the 
information content, may deviate in complicated ways from the underlying data (see next section). In 
contrast, a likelihood-based MAR analysis uses all available data, with the need for neither deletion nor 
imputation, which suggests that a likelihood-based MAR analysis would usually be the preferred one 
for testing as well. Third, although the size of a randomization based LOCF test may reach its nominal 
size under the null hypothesis of no difference in treatment profiles, there will be other regions of the 
alternative space where the power of the LOCF test procedure is equal to its size, which is completely 
unacceptable. 

5. BIAS IN LOCF, CC, AND IGNORABLE LIKELIHOOD METHODS 

Using the simple but insightful setting of two repeated follow-up measures, the first of which is always 
observed while the second can be missing, we establish some properties of the LOCF and CC estimation 
procedures under different missing data mechanisms, against the background of a MAR process operating. 
In this way, we bring LOCF and CC within a general framework that makes clear their relationships 
with more formal modeling approaches, enabling us to make a coherent comparison among the different 
approaches. The use of a moderate amount of algebra leads to some interesting conclusions. 

Let us assume each subject i is to be measured on two occasions t; = 0, 1. Subjects are randomized to 
one of two treatment arms: T; = 0 for the standard arm and 1 for the experimental arm. The probability 
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of an observation being observed on the second occasion (Dt = 2) is Po and PI for treatment groups 0 
and 1, respectively. We can write the means of the observations in the two dropout groups as follows: 

dropouts Dt = 1: f3o + f31Tt + f3ztt + f33Ttft, 

completers Dt = 2 : Yo + Yl T; + yzft + Y3 T; ft. 

(5.1) 

(5.2) 

The true underlying population treatment difference at time ft = 1, as determined from (5.1}-(5.2), is 
equal to 

~true =PI (yo + Yl + l'2 + YJ) + (1 - Pl)(f3o + f31 + f32 + f33) 

-[po(Yo + )12) + (1- po)(f3o + f3z)]. (5.3) 

If we use LOCF as the estimation procedure, the expectation of the corresponding estimator equals 

~LOCF =PI (yo+ Yl + l'2 + Y3) + (1- Pl)(f3o + {3!) 

-[po(Yo + l'2) +(I - Po)f3o]. 

Alternatively, if we use CC, the above expression changes to 

~cc = Yl + YJ. 

In general, these are both biased estimators. 

(5.4) 

(5.5) 

We will now consider the special but important cases where the true missing data mechanisms are 
MCAR and MAR, respectively. Each of these will impose particular constraints on the f3 andy parameters 
in model (5.1 }-(5.2). Under MCAR, the f3 parameters are equal to their y counterparts and (5.3) simplifies 
to 

~MCAR.true = fJ1 + f33 = Yl + Y3· (5.6) 

Suppose we apply the LOCF procedure in this setting, the expectation ofthe resulting estimator then 
simplifies to 

(5.7) 

The bias is given by the difference between (5.6) and (5.7): 

BMCAR.LOCF = (pi - po)f3z- (I- p!)f33. (5.8) 

While of a simple form, we can learn several things from this expression by focusing on each of the terms 
in tum. First, suppose f33 = 0 and f3z i= 0, implying that there is no differential treatment effect between 
the two measurement occasions but there is an overall time trend. Then, the bias can go in either direction 
depending on the sign of PI -Po and the sign of f3z. Note that PI =Po only in the special case that the 
dropout rate is the same in both treatment arms. Whether or not this is the case has no impact on the status 
of the dropout mechanism (it is MCAR in either case, even though in the second case dropout is treatment•
arm dependent), but is potentially very important for the bias implied by LOCF. Second, suppose f33 i= 0 
and f3z = 0. Again, the bias can go in either direction depending on the sign of f33, i.e. depending on 
whether the treatment effect at the second occasion is larger or smaller than the treatment effect at the first 
occasion. In conclusion, even under the strong assumption of MCAR, we see that the bias in the LOCF 
estimator typically does not vanish and, even more importantly, the bias can be positive or negative and 
can even induce an apparent treatment effect when one does not exist. 
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In contrast, as can be seen from (5.5) and (5.6), the CC analysis is unbiased. 
Let us now turn to the MAR case. In this setting, the constraint implied by the MAR structure of 

the dropout mechanism is that the conditional distribution of the second observation given the first is 
the same in both dropout groups (Molenberghs et a/., 1998). Based on this result, the expectation of the 
second observation in the standard arm of the dropout group is 

E(Yi2[D; = 1, T; = 0) =Yo+ J12 + rr(f3o- Yo) (5.9) 

where rr = rr2w 1] 1, rru is the variance of the first observation in the fully observed group and rr12 is 
the corresponding covariance between the pair of observations. Similarly, in the experimental group we 
obtain 

E(Y;2[D; = I, T; = 1) =Yo+ Yl + J12 + Y3 + rr(f3o + f31 -Yo- YJ). 

The true underlying population treatment difference (5.3) then becomes 

~MAR,true = Yl + Y3 + rr[(l- PI)(f3o + /31 -Yo- y!)- (1- Po)(f3o- Yo)]. 

In this case, the bias in the LOCF estimator can be written as 

BMAR,LOCF = Pl (yo+ Yl + Jl2 + J13) + (1 - Pl)(f3o + f3I) 

-po(Yo + J12)- (1- Po)f3o- Yl- Y3 

-rr[(l- PI)(f3o + f31 -Yo- y!)- (1 - Po)(f3o- Yo)]. 

(5.10) 

(5.11) 

(5.12) 

Again, although involving more complicated relationships, it is clear that the bias can go in either 
direction, thus contradicting the claim often put forward that the bias in LOCF leads to conservative 
conclusions. Further, it is far from clear what conditions need to be imposed in this setting for the 
corresponding estimator to be either unbiased or conservative. 

The bias in the CC estimator case takes the form 

BMAR,CC = -rr[(l- p!)(f3o + f31- Yo- Yl)- (1- po)(f3o- Yo)]. (5.13) 

Even though this expression is simpler than in the LOCF case, it is still true that the bias can operate in 
either direction. 

Thus, in all cases, LOCF typically produces bias of which the direction and magnitude depend on 
the true but unknown treatment effects. Hence, caution is needed when using this method. In contrast, an 
ignorable likelihood based analysis, as outlined in Section 4, provides a consistent estimator of the true 
treatment difference at the second occasion under both MCAR and MAR. While this is an assumption, 
it is rather a mild one in contrast to the stringent conditions required to justify the LOCF method, even 
when the qualitative features of the bias are considered more important than the quantitative ones. Note 
that the LOCF method is not valid even under the strong MCAR condition, whereas the CC approach is 
valid under MCAR. 

6. ANALYSIS OF CASE STUDIES 

We now analyze the three clinical trials, introduced in Section 2. The primary null hypothesis 
(zero difference between the treatment and placebo in mean change of the HAMD17 total score at 
endpoint) is tested using a model of the type (3.1). The model includes the fixed categorical effects of 
treatment, investigator, time, and treatment by time interaction, as well as the continuous, fixed covariates 
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of baseline score and baseline score-by-time interaction. In line with the protocol design, we use the 
heterogeneous compound symmetric covariance structure. Satterthwaite's approximation will be used to 
estimate denominator degrees of freedom. The significance of differences in least-square means is based 
on Type III tests. These examine the significance of each partial effect, that is, the significance of an effect 
with all the other effects in the model. Analyses are implemented using the SAS procedure MIXED. 

Given this description, the effect of simple approaches, such as LOCF and CC, versus MAR, can 
be studied in terms of their impact on various linear mixed model aspects (fixed effects, variance 
structure, correlation structure). It will be shown that the impact of the simplifications can be noticeable. 
This is the subject of Section 6.1, dedicated to View 1. Section 6.2 focuses on Views 2a and 2b, 
where the last planned occasion and the last measurement obtained are of interest, respectively. In 
addition, we consider the issues arising when switching from a two-treatment arm to an all-treatment 
arm comparison. 

6.1 View 1: longitudinal analysis 

For each study in this longitudinal analysis, we will only consider the treatments that are of direct interest. 
This means we estimate the main difference between these treatments (treatment main effect) as well as 
the difference between both over time (treatment by time interaction). Treatment main effect estimates 
and standard errors, p values for treatment main effect and treatment by time interaction, and estimates 
for the within-patient correlation are reported in Table 2. When comparing LOCF, CC, and MAR, there 
is little difference between the three methods, in either the treatment main effect or the treatment by time 
interaction. Nevertheless, some important differences will be established between the strategies in terms 
of other model aspects. These will be seen to be in line with the reports in Verbeke and Molenberghs 
(1997, 2000). 

Two specific features of the mean structure are the time trends and the treatment effects (over time). 
We discuss these in turn. The placebo time trends as well as the treatment effects (i.e. differences between 
the active arms and the placebo arms) are displayed in Figure 3. Both LOCF and CC are different from 
MAR, with a larger difference for CC. The effect is strongest in the third study. It is striking that different 
studies lead to different conclusions in terms of relative differences between the approaches. While there 
is a relatively small difference between the three methods in Study 2 and a mild one for Study I, for 
Study 3 there is a strong separation between LOCF and CC on the one hand, and MAR on the other hand. 
Importantly, the average effect is smaller for MAR than for LOCF and CC. This result is in agreement 
with the proofs in Section 5, which showed that the direction of the bias on LOCF is in fact hard to 
anticipate. 

The variance--covariance structure employed is heterogeneous compound symmetry (CSH), i.e. a 
common correlation and a variance specific to each measurement occasion. The latter feature allows us to 
plot the fitted variance function over time. This is done in Figure 4. It is very noticeable that MAR and 
CC produce a relatively similar variance structure, which tends to rise only mildly. LOCF on the other 
hand, deviates from both and points towards a (linear) increase in variance. If further modeling is done, 
MAR and CC produce homogeneous or classical compound symmetry (CS) and hence a random-intercept 
structure. LOCF on the other hand, suggests a random-slope model. The reason for this discrepancy is 
that an incomplete profile is completed by means of a flat profile. Within a pool of linearly increasing or 
decreasing profiles, this leads to a progressively wider spread as study time elapses. Noting that the fitted 
variance function has implications for the computation of mean-model standard errors, the potential for 
misleading inferences is clear. 

The fitted correlations are given in Table 2. Clearly, CC and MAR produce virtually the same 
correlation. However, the correlation coefficient estimated under LOCF is much stronger. This is entirely 
due to the fact that after dropout, a constant value is imputed for the remainder of the study period, thereby 
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Fig. 3. Summary of all placebo time evolutions (left hand panels) and all treatment effects (right hand panels). 

increasing the correlation between the repeated measurements. Of course, the problem is even more severe 
than shows from this analysis since, under LOCF, a constant correlation structure can be changed into one 
which progressively strengthens as time elapses. It should be noted that the correlation structure has an 
impact on all longitudinal aspects of the mean structure. For example, estimates and standard errors of 
time trends and estimated interactions of time with covariates can all be affected. In particular, if the 
estimated correlation is too high, the time trend can be ascribed a precision which is too high, implying 
the potential for a liberal error. 

In conclusion, all aspects of the linear mixed models (mean structure, variance structure, correlation 
structure) may be influenced by the method of analysis. This is in line with results reported in Verbeke and 
Molenberghs (1997, 2000). It is important to note that, generally, the direction of the errors (conservative 
or liberal) is not clear a priori, since different distortions (in mean, variance, or correlation structure) may 
counteract each other. We will now study a number of additional analyses that are extremely relevant from 
a clinical trial point of view. 

6.2 Views 2a and 2b and all- versus two-treatment arms 

When emphasis is on the last measurement occasion, LOCF and CC are straightforward to use. When the 
last observed measurement is of interest, the corresponding analysis is not different from the one obtained 
under LOCF. In these cases, at test will be used. Note that it is still possible to obtain inferences from a 
full linear mixed-effects model in this context. While this seems less sensible, since one obviously would 
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Fig. 4. Variance functions per study and per method. 

Table 2. Analysis of case study. View 1. Treatment effects (standard 
errors), p values for treatment main effect and for treatment by time 

interaction, and within-patient correlation coefficients 

Treatment p value Within-patient 
Study Method effect (s.e.) (effect, interaction) correlation 
I LOCF -1.60(1.40) (0.421. 0.565) 0.65 

cc -1.96(1.38) (0.322. 0.684) 0.57 
MAR -1.81(1.24) (0.288. 0.51 0) 0.53 

2 LOCF -1.61(1.05) (0.406, 0.231) 0.54 
cc -1.97(1.16) (0.254, 0.399) 0.37 
MAR -2.00(1.12) (0.191, 0.138) 0.39 

3 LOCF 1.12(0.71) (0.964,<0.001) 0.74 
cc 1.75(0.77) (0.918,<0.001) 0.57 
MAR 2.10(0.69) (0.476,<0.001) 0.60 

get distorted estimates of such longitudinal characteristics as time evolution, etc., we nevertheless add 
these for the sake of comparison. However, it should be understood that the t test analysis is more in line 
with clinical trial practice. 

For MAR, by its very nature, one is drawn to consider the incomplete profiles, to use the information 
contained in these for the correct estimation of effects at later times, where there may be some missingness. 



555

Analyzing incomplete longitudinal clinical trial data 459 

Table 3. Analysis of case study. Views 2a and 2b. p values are 
reported ('mixed" refers to the assessment of treatment at the 

last visit based on a linear mixed model) 

Method Model Data used Study I Study 2 Study 3 
cc mixed All treatments 0.076 0.055 0.001 

Two treatments 0.070 0.088 0.001 
cc t test All treatments 0.092 0.156 0.017 

Two treatments 0.092 0.156 0.017 
LOCF mixed All treatments 0.053 0.052 0.001 

Two treatments 0.056 0.082 0.001 
t test All treatments 0.246 0.172 0.120 

Two treatments 0.246 0.172 0.120 
MAR mixed All treatments 0.052 0.048 0.001 

Two treatments 0.047 0.077 0.001 

Thus, one has to consider the full linear mixed model. To this end, the MMRM approach has been 
developed (Mallinckrodt et al., 200 I a,b ). 

An important issue that occurs whenever there are more than two treatment arms is whether one uses 
all treatments or only the two of interest. This choice has an effect on the p value in the linear mixed model 
case. Consider, for example, the covariance structure. Model-based smoothing of the covariance structure 
takes place either on two arms or on all arms. Hence, due to correlations between model parameters, the 
estimated treatment effects and also the resulting p values might change. Generally, one might argue that 
efficiency can be gained by using all treatment arms, but this comes at the cost of an increased risk of mis•
specification. This risk can be avoided by assuming a treatment-arm specific covariance matrix in conjunc•
tion with a treatment-arm specific mean evolution. For the t tests, however, there is no change. Of course, 
one might entertain the possibility of correcting for multiple comparisons when more than two arms are 
involved, but this is not the purpose of the current paper and does not substantially affect our conclusions. 

Table 3 summarizes results in terms of p values. In study 3, which has a relatively large sample size, 
all p values indicate a significant difference with, very importantly, the sole exception of the t tests under 
LOCF. This re-emphasizes the problems with the LOCF method as discussed in Section 6.1. In studies I 
and 2, more subtle differences are observed. 

For study I, we have the following conclusions. All mixed models lead to borderline differences: 
LOCF and CC are not significant, MAR is borderline (depending on the number of treatments included). 
An endpoint analysis (i.e. using the last available measurement) leads to a completely different picture, 
with clearly non-significant results. For study 2, the mixed models lead to small differences, with a 
noticeable shift towards borderline significance for MAR with all treatments. An endpoint analysis shows, 
again, results that are notably different (non-significant) from the mixed models. 

If the t tests under LOCF and CC are compared with the mixed analysis of MAR, studies I and 2 show 
dramatic differences. Such a comparison is not contrived since the t tests for LOCF and CC are well in 
line with common data-analytic practice and under MAR only the mixed analysis makes sense. 

These results, in conjunction with those of Section 6.1, underscore the limitations ofLOCF and CC. By 
selecting a subset (CC), a different type of patient might be retained in the treated versus the untreated arm. 
This can be explained by a difference in therapeutic effect, a difference in side effects or a combination 
thereof. As with CC, the difference of complete versus incomplete observations can cause distortions 
within an LOCF analysis. In addition to differences in sets to which the techniques are applied, there 
are further distortions which take place, in the mean structure, the variance structure and the correlation 
structure. These effects may counteract and/or strengthen each other, depending on the situation. 
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Table 4. Analysis of case study. Fitted MAR and 
MNAR models to the case study data. Columns MAR 
and MNAR report twice the negative likelihood. The 
resulting likelihood ratio is given in the column 

labeled x2 

MAR MNAR 

Study -2likelihood X p 

I 2005.89 2004.99 0.90 0.32 
2 2330.06 2320Al 9.65 0.0019 
3 10234.53 10199.05 35.48 <0.0001 

Treat. effect (s.e.) 
-1.58(1.14) -1.55(1.10) 

2 -1.84(1.07) -1.64(1.07) 
3 1.98(0.65) 2.04(0.64) 

In conclusion, use of likelihood-based ignorable methods is more justifiable than LOCF and CC. 

7. SENSITIVITY ANALYSIS 

Although the assumption of likelihood ignorability encompasses both MAR and the more stringent 
and often implausible MCAR mechanisms, it is difficult to exclude the option of a more general 
nonrandom dropout mechanism. One solution is to fit an MNAR model as proposed by Diggle and 
Kenward (1994) who fitted models to the full data using the simplex algorithm (Neider and Mead, 1965). 
The result of fitting these models to studies 1-3, using GAUSS code developed by the authors, is presented 
in Table 4. The effects oftreatment, time, the interaction between time and treatment, and baseline value 
were all included in the model. The model for dropout is based on (3.3) and includes the effect of the 
previous outcome (MAR), with in addition the effect for current, possibly unobserved outcome in the 
MNARcase. 

Note that the results are not directly comparable to those reported in Table 3, where inference is 
based on the last measurement, but rather to the treatment main effect results reported in Table 2. The 
model considered here is somewhat simpler than the model considered in Section 6.1, since fitting such 
a complicated model in the MNAR case may become computationally prohibitive. Note that studies 1-3 
show a dramatically different picture in terms of evidence for MNAR, with apparently no, fairly strong, 
and very strong evidence for MNAR, respectively. However, as pointed out in the introduction and by 
several authors (discussion to Diggle and Kenward, 1994; Verbeke and Molenberghs, 2000, Chapter 18), 
one has to be extremely careful with interpreting evidence for or against MNAR using only the data under 
analysis. 

A sensible compromise between blindly shifting to MNAR models or ignoring them altogether, is 
to make them a component of a sensitivity analysis. In that sense, it is important to consider the effect 
on key parameters such as treatment effect. Here, in line with several other observations (Molenberghs 
et al., 2001; Verbeke et a/., 2001) we see that the impact on the treatment effect parameter is extremely 
small, providing additional support for the use of likelihood-based ignorable models. One such route for 
sensitivity analysis is to consider pattern-mixture models as a complement to selection models (Thijs 
eta/., 2002; Michiels et al., 2002). Further routes to explore sensitivity are based on global and local 
influence methods (Verbeke et al., 2001). A more extensive case study on the advantages and problems 
related to several sensitivity analysis is a topic of ongoing research. 



557

Analyzing incomplete longitudinal clinical trial data 461 

The same considerations can be made when compliance data are available. In such a case, arguably 
a definitive analysis would not be possible and it might be sensible to resort to sensitivity analysis ideas 
(Cowles et al., 1996). 

8. DISCUSSION 

In this paper, we have used both formal derivations and case studies to show that there is little 
justification for analyzing incomplete data from longitudinal clinical trials by means of such simple 
methods as LOCF and CC. This is true even if a single point in time (e.g. the last measurement occasion) 
is of primary interest. It is more sensible to use linear mixed models in combination with the assumption 
of MAR. Such an approach, tailored to the needs of clinical trials, has been proposed by Mallinckrodt et 
al. (200 1 a,b ). This type of analysis is stable and provides sensible assessments of important aspects such 
as treatment effect and time evolution, even if the assumption of MAR is violated in favor of MNAR. 
This is in line with analyses conducted by Diggle and Kenward (1994), Molenberghs et al. (1997, 2001) 
and Verbeke et al. (200 1 ). Moreover, such analyses can be conducted routinely using standard statistical 
software such as the SAS procedures MIXED and NLMIXED. 

A related and, for the regulatory clinical trial context, very important set of assertions is the following: 
(1) an ignorable likelihood analysis can be specified a priori in a protocol without any difficulty; (2) 
an ignorable likelihood analysi is consistent with the intention to treat (ITT) principle, even when 
only the measurement at the last occasion is of interest; (3) the difference between an LOCF and an 
ignorable likelihood analysis can be both liberal and conservative. The first is easy to see since, given 
ignorability, formulating a linear mixed model for either complete or incomplete data involves exactly 
the same steps. Let us expand on the second issue. It is often believed that when the last measurement 
is of interest a test for the treatment effect at the last occasion neglects sequences with dropout, even 
when such sequences contain post-randomization outcomes. As a result, it is often asserted that to be 
consistent with ITT some form of imputation, based on an incomplete patient's data, e.g. using LOCF, 
is necessary. However, as Little and Rubin (1987, Chapter 6) showed, likelihood based estimation of 
means in an incomplete multivariate setting involves adjustment in terms of the conditional expectation 
of the unobserved measurements given the observed ones. Thus, a likelihood based ignorable analysis 
(such as MMRM) should be seen as a proper way to accommodate information on a patient with post•
randomization outcomes, even when such a patient's profile is incomplete. This fact, in conjunction 
with the use of treatment allocation as randomized rather than as received, shows that MMRM is fully 
consistent with ITT. Regarding the third issue, the case study produced smaller p values under MAR 
than under LOCF (Table 3). Conversely, consider a situation where the treatment difference increases 
over time, reaches a maximum around the middle of the study period, with a decline thereafter until 
complete disappearance at the end of the study. Suppose further that the bulk of dropout occurs around 
the middle of the study. Then, an endpoint analysis based on MAR will produce the correct nominal level, 
whereas LOCF might reject the null hypothesis too often. When considering LOCF, we often have in mind 
examples in which the disease shows progressive improvement over time. However, when the goal of a 
treatment is maintenance of condition in a progressively worsening disease state, LOCF can exaggerate the 
treatment benefit. For example, in Alzheimer's disease the goal is to prevent the patient from worsening. 
Thus, in a one-year trial where a patient on active treatment drops out after one week, carrying the last 
value forward implicitly assumes no further worsening. This is obviously not conservative. 

Note that the inadequacy ofLOCF, especially when conceived as a single imputation method, will vary 
across types of disease. LOCF is particularly inappropriate if either the effect of treatment is expected to 
change over time or there are secular trends. Thus, it would do slightly better in diseases where the 
treatment induces a steady but reversible response, such as asthma or rheumatism (Senn et al., 2000). 
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When there is residual doubt about the plausibility of MAR, one can conduct a sensitivity analysis. 
This is a very active area of research. Obviously, a number of MNAR models can be fitted, provided 
one is prepared to approach formal aspects of model comparison with due caution. Such analyses can 
be complemented with appropriate (global and/or local) influence analyses. Another route is to construct 
pattern-mixture models and to compare the conclusions with those obtained from the selection model 
framework. Alternative frameworks for sensitivity analyses are provided by Robins et al. (1998) and 
Forster and Smith (1998), who present a Bayesian sensitivity analysis, and Raab and Donnelly (1999). 
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Carroll, R. J. and Härdle, W. (1988). Symmetrized nearest neighbor estimates. Statistics and Prob-
ability Letters, 7, 315–318.

Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. Journal
of the American Statistical Association, 83, 1184–1186.

Altschul, S. F., Carroll, R. J., and Lipman, D. J. ( 1989). Weights for data related by a tree. Journal
of Molecular Biology, 207, 647–651.
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Carroll, R. J., Lombard, F., Küchenhoff, H., and Stefanski, L. A. (1996). Asymptotics for the
SIMEX estimator in structural measurement error models. Journal of the American Statistical
Association, 91, 242–250.



Bibliography of Raymond J. Carroll 567

Roeder, K., Carroll, R. J., and Lindsay, B. G. (1996). A nonparametric mixture approach to case-
control studies with errors in covariables. Journal of the American Statistical Association, 91,
722–732.

Carroll, R. J., Freedman, L., and Hartman, A. (1996). The use of semiquantitative food frequency
questionnaires to estimate the distribution of usual intake. American Journal of Epidemiology,
143, 392–404.

Gail, M. H., Mark, S., Carroll, R. J., Green, S. B., and Pee, D. (1996). On design considerations
and randomization-based inference for community intervention trials. Statistics in Medicine,
15, 1069–1092.

Carroll, R. J. and Ruppert, D. (1996). The use and misuse of orthogonal regression estimation in
linear errors-in-variables models. American Statistician, 50, 1–6.

Carroll, R. J. (1996). Review of Measurement, Regression and Calibration, by P. J. Brown. Statis-
tics in Medicine, 15, 561–562.

Simpson, D. G., Guth. D., Zhou, H., and Carroll, R. J. (1996). Interval censoring and marginal
analysis in ordinal regression. Journal of Agricultural, Biological and Environmental Statistics,
1, 354–376.

Carroll, R. J. (1997). Discussion of “Optimal estimating functions, quasilikelihood and statistical
modeling,” by A. F. Despond. Journal of Statistical Planning and Inference, 60, 104–106.

Carroll, R. J., Chen, R., Li, T. H., Newton, H. J., Schmiediche, H., Wang, N., and George, E.
I. (1997). Modeling ozone exposure in Harris County, Texas (with discussion). Journal of the
American Statistical Association, 92, 392–413.

Wang, C. Y., Wang, S., and Carroll, R. J. (1997). Estimation in choice-based sampling with mea-
surement error and bootstrap analysis. Journal of Econometrics, 77, 65–86.
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