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Preface

The focus of this book is on models for contingency table analysis. It deals mainly
with log-linear models and special models for ordinal data (log-linear or nonlinear).
Special models for ordinal data are dealt with to a greater extent, covered in Chaps.6,
7, and 9. These models, as for example, association models for two- and multi-way
contingency tables or symmetry models for square tables, though very powerful and
of great interpreting value, are not very popular in use. This is mainly because they
are not readily provided as model options in standard statistical software. Though
they can be fitted in R by some special packages, their application usually requires
some expertise or experience on these models and R. Existing books on contingency
tables or categorical data analysis either do not include association models in their
contents or refer only to the simplest types of them. The few exceptions, although
treating these models in more detail, remain in the methodological part without
providing guidance for applying them in practice. Thus, such models can be used
mainly by experts on the topic. This ascertainment was the motivation and the idea
behind the concept of this book: to provide a reference that exploits these models,
explains their features and interpretation aspects in detail, and simultaneously
trains the reader to fit them in practice. Additionally, special issues not covered
in other books, such as the adjustment of models to account for structural zeros,
are addressed. The goal was to end up with a methodological book that makes all
approaches, models, or graphs presented, easy reproducible.

The aim to familiarize readers with methods and models for the analysis of
contingency tables and their use in practice is served by discussing the models’
features and interconnections and by giving special emphasis on the examples’
analysis, their interpretation, and their implementation in R. When needed, special
R functions are provided (in the web companion of the book) that automatize the
required procedures, simplifying thus their applicability. For example, functions are
provided for deriving the midrank scores of a classification variable or computing
the local odds ratios of a two-way contingency table (or other types of generalized
odds ratios). Hence, all models, measures, and graphs discussed can easily be
realized in R by handy functions. The examples are worked out in R, explaining
the use of the functions, so that the reader is gradually trained and at the end in the

vii



viii Preface

position to alter the functions and adjust them to special needs. The web companion
of the book is to be found under

http://cta.isw.rwth-aachen.de
Framing this book on model-based analysis, the great body of nonparametric

methods (especially for ordinal data) and smoothing methods for contingency
tables is not considered. Emphasis is given primarily on models that treat the
variables symmetrically rather than distinguishing between response and explana-
tory variables. Additionally, since the book deals only with contingency tables,
regression-type models that involve also continuous explanatory variables are not
addressed at all. Thus, logistic regression, though very important in categorical
data analysis, is partially covered, only for the case of categorical explanatory
variables (logit models). Furthermore, clustered categorical data and multivariate
response models are not considered. Only bivariate response models are considered
for data represented in square two-way contingency tables with commensurable
classification variables, nominal or ordinal. For more than two occasions, we refer
to other special reference sources.

The approach adopted is the asymptotic frequentist approach. A short reference
on Bayesian analysis of contingency tables and on small sample inference is
provided in the last chapter.

The readership target groups are (a) graduate students or researchers (in statistics
or in psychometric, social, biomedical, and pedagogical sciences) and (b) practition-
ers (e.g., for social or consumers’ surveys). The first five chapters (up to Sect.5.4)
address both groups, though group (a) could go quickly through it, for filling gaps
and building up gradually the R part. Expertise in R is not required. Regarding the
following material (from Sect.5.5), group (b) would probably be more interested in
the simpler models (as linear-by-linear, row, or column effect association models),
easy to present and interpret, while group (a) also in more advanced topics (such as
handling structural zeros, the multiplicative row–column association model, models
for the marginal distributions, or the generalized odds ratios). An updated rich
literature review on a bright aspect of topics is provided at the end of each chapter
and is mainly addressed to group (a).

The scope is to simultaneously develop the theoretical and R programming skills
required for analyzing contingency tables, as well as evaluating and interpreting
the results. Parts of the manuscript are based on my notes for the graduate course
on categorical data analysis, which I held for about 10 years in the Department of
Statistics and Insurance Science of the University of Piraeus in Greece.

I would like to thank those who have been involved in this book project.
Special thanks to Alan Agresti who influenced the most my view on categorical
data. His Categorical Data Analysis book, in its first 1990 edition, is partly
responsible for my involvement with categorical data. I also thank him for providing
valuable comments on the manuscript, suggesting alterations and additions. I thank
Panayiotis Bobotas for proofreading the complete draft, Anna Gottard for her
critical comments and suggestions on graphical models, and Anestis Touloumis
for his helpful comments on Chaps. 5–10. I appreciate all those who accompanied
my scientific journey, in particular my former supervisor Takis Papaioannou.

http://cta.isw.rwth-aachen.de
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Thanks also to Narayanaswamy Balakrishnan, editor in chief for the series “Statis-
tics for Industry and Technology,” for his interest in this project, and to Mitch
Moulton, editorial assistant at Springer, for his help facilitating it. This book
would not have been possible without the generous support of my parents, Athina
and Dimitris Kateris, to whom I express my deep gratitude. Finally, I thank my
daughter Zenia for her patience during the preparation period and her interest in the
development of the project.
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Chapter 1
Introduction

Abstract Preliminary material on scales, distributions, and inferential procedures
for categorical data is briefly presented. Classes of models, usually applied for
categorical data analysis, are introduced and discussed. Finally, the outline of the
book is presented.

Keywords Measurement scales • Discrete distributions: binomial, multinomial,
poisson, hypergeometric • Asymptotic inference with categorical data

1.1 Categorical Data

Categorical data play an important role in many fields, from biomedicine and
social sciences to political sciences, marketing, and quality control. A categorical
variable consists of a set of non-overlapping categories and thus categorical data
are counts, namely the frequencies of occurrence of each category of the variable.
When all the involved variables in a problem of interest are categorical, then they
are represented in form of a contingency table. This book deals with methods of
analysis of contingency tables.

1.1.1 Measurement Scales

The simplest categorical variable is one that has just two categories, usually
labeled as “yes-no” or “success-failure”. Such a variable is called binary. Cate-
gorical variables of more than two categories are distinguished, accordingly to
their measurement scale, to nominal and ordinal. Categorical variables, such as
nationality and denomination, the categories of which cannot be ordered in any
aspect, are nominal. The categories of an ordinal variable exhibit a natural ordering.
Characteristic examples of ordinal variables are the social class, the education level,

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__1,
© Springer Science+Business Media New York 2014

1



2 1 Introduction

or any scale of opinion measurement with categories expanding from “strongly
disagree” to “strongly agree” and the middle category being the “neutral.” The
distances between successive categories of an ordinal variable are not known.
Interval variables are categorical variables with ordered categories of known in-
between distances. These are variables of continuous nature that are categorized,
with their categories corresponding to disjoint intervals of values. Variables of this
type are, for example, the annual income in euro (from “≤ 5000” to “> 150000”) or
age (from “less than 18” to “over 75”).

The type of the variables of interest influences the choice of the method of
analysis to be applied. Methods for nominal variables can also be used for ordinal
or interval variables, without utilizing however the additional features of ordered
categories of unknown or known distances, respectively. On the other hand, methods
for ordinal variables require ordered categories and thus are appropriate for interval
variables (ignoring the distances between categories) but inappropriate for nominal
ones. Binary variables can be treated as nominal or ordinal. Contingency tables with
ordinal classification variables are called ordinal contingency tables.

1.1.2 Response and Explanatory Variables

Variables are characterized as response or explanatory, according to their role
in the analysis. In some problems the interest lies on detecting and analyzing
possible interactions between variables. In these cases the variables are treated
symmetrically. However, very often, from the nature of the problem, the interaction
is not symmetric but directed. For example, the educational level of the mother
affects the school performance of her child and not the opposite. Thus, in such
a context, we are interested on testing whether a set of explanatory variables
affects one or more response variables. In other words, the response variable is the
“dependent” variable of the problem and the explanatory the “independent” ones. In
medical applications, the explanatory variables are also known as prognostic factors.

The choice of type of model to be used depends on the existence or not
of response variables. Special models apply for response variable analysis that
provides more straightforward and sound physical interpretation (see Chap. 8).

1.2 Discrete Distributions and Related Inference Problems

The most common probability distributions for categorical data are the binomial, the
multinomial, and Poisson distributions and they are briefly reviewed in this section.
Additionally, the hypergeometric distribution is presented, which forms the basis for
exact inference in 2× 2 contingency tables and the famous Fisher’s exact test (see
Sect. 2.1.7).
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1.2.1 Binomial Distribution

A trial with two possible outcomes, usually referred as “success–failure,” is repeated
n times. We assume that the probability of success π is common for all trials (i.e., the
trials are identical) and that the outcome of one trial does not affect the outcome of
any other (i.e., the trials are independent). A trial with these characteristics is called
Bernoulli trial. The random variable X counting successes out of n such Bernoulli
trials takes values in S = {0,1,2, . . . ,n} and has the binomial distribution, denoted
by

X ∼B(n,π).

The probability that X takes a specific value x ∈ S, P(X = x), is

P(X = x) =
n!

x!(n− x)!
πx(1−π)n−x, x = 0,1,2, . . . ,n. (1.1)

The mean (expected value) and variance of X ∼B(n,π) are

μ = E(X) = nπ , σ2 = Var(X) = nπ(1−π)

The characterization of an outcome as “success” or “failure” is a convention not
necessarily having this meaning. Their role can change, since if X ∼B(n;π), then
n−X ∼B(n,1−π).

An important property of the binomial distribution is that the sum of two
independent binomial distributions Xi ∼ B(ni,π), i = 1,2, of the same success
probability π and probably different number of trials ni (i = 1,2) is also binomial
distributed:

X1 +X2 ∼B(n1 + n2,π) (1.2)

The property holds also for the sum of more than two independent binomials with
common success probability.

For n sufficiently large, the standardized version of X is approximated by the
standard normal distribution, i.e.,

Z =
X − μ
σ

=
X − nπ

√
nπ(1−π) ∼N (0,1) (1.3)

In practice n is considered sufficiently large if nπ ≥ 5 and n(1−π)≥ 5.
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1.2.1.1 The Binomial Distribution in R

For a random variable X , binomial distributed with n = 10 and success probability
π = 0.3, i.e., X ∼B(10,0.3), the probability P(X = 2) is computed in R as
> dbinom(2,10,0.3)

[1] 0.2334744

while the cumulative probability P(X ≤ 2) by
> pbinom(2,10,0.3)

[1] 0.3827828

The functions dbinom(x,n,p) and pbinom(x,n,p), evaluating the probability
mass function and the cumulative distribution function, respectively, for X = x, can
also be applied on vectors of numbers of successes. Thus, for X ∼B(5,0.1) they are
derived in R by applying the corresponding functions on the vector of all possible
outcomes x = (0,1, . . . ,5)
> x <- 0:5

> dbinom(x,5,0.1)

[1] 0.59049 0.32805 0.07290 0.00810 0.00045 0.00001

> pbinom(x,5,0.1)

[1] 0.59049 0.91854 0.99144 0.99954 0.99999 1.00000

Furthermore, the probability mass function can be plotted by the commands
> plot(x,dbinom(x,5,0.1), type="h", ylim=c(0,1),lwd=5, lend=3,

+ frame.plot=F, xaxt="n", main = "0.1", ylab="P(X=x)")

> axis(1, at=x, pos=c(0,0))

while the plot of the cumulative distribution function is defined analogously.
The normal approximation to the binomial distribution is visualized in Fig. 1.1,

where the probability mass functions of binomial distributions with n= 5 and n= 25
and success probabilities 0.05, 0.25, and 0.5 along with the corresponding normal
approximations are to be seen. The R function used to provide this figure is provided
in the web appendix (see Sect. A.3.1).

1.2.2 Multinomial Distribution

Consider a trial with K possible outcomes, K ≥ 2, denoted by A1,A2, . . . ,AK .
The number of outcomes K is fixed and the probability for each of them to occur
is positive and constant across independent trials, equal to πk, k = 1, . . . ,K, with
∑K

k=1πk = 1. The K outcomes are all possible levels of a categorical variable X ,
taking values in {1,2, . . . ,K}. For a random sample of n independent trials, let
(N1, . . . ,NK) be the random category frequencies of X . Since the sample size n
is fixed, ∑K

k=1 Nk = n and thus K − 1 of the category frequencies are random.
Under this sampling design, the probability of a sample of observed frequencies
n = (n1, . . . ,nK), with ∑K

k=1 nk = n, to occur is
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Fig. 1.1 Probability mass functions of binomial distributions and associated normal approxi-
mations for n = 5 (first row) and n = 25 (second row) and characteristic choices of success
probabilities (π = 0.05, 0.25, 0.5) in columns

p(n1, . . . ,nK) = P(N1 = n1, . . . ,NK = nK) =

(
n!

n1!n2! · · ·nK!

)
πn1

1 π
n2
2 · · ·πnK

K (1.4)

We denote, in terms of the random category frequencies,

(N1, . . . ,NK−1)∼M (n;(π1, . . . ,πK−1)) .

For K = 2, the multinomial distribution reduces to the binomial B(n;π1).
It is straightforward to obtain probabilities (1.4) in R. For example, for (N1,N2)∼

M (10;(0.35,0.25)), the probability P(3,2,5) = 0.0691 is calculated by
> x <- c(3,2,5); dmultinom(x, prob = c(0.35, 0.25, 0.4))

The mean and variance of Nk, k = 1, . . . ,K, are

E(Nk) = nπk, Var(Nk) = nπk(1−πk)
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and each of them is marginally binomial distributed:

Nk ∼B(n;πk), k = 1,2, . . .K

Since the probabilities for outcomes A1,A2, . . . ,AK sum to 1, it is expected that the
variables N1, . . . ,NK of their corresponding frequencies are negatively correlated.
Indeed, the covariance of any Ni, Nj, for i �= j, is Cov(Ni,Nj) =−nπiπ j and thus

Corr(Ni,Nj) =− nπiπ j√
[nπi(1−πi)][nπ j(1−π j)]

=−
√

πi

1−πi
· π j

1−π j

An important property of the multinomial distribution is that any collapsing between
categories leads to a multinomial distribution with fewer categories. The proba-
bilities for the new categories are derived by summing the probabilities of the
combined categories. For example, if the initial categories A1, . . . ,A6 are combined
to B1 = A1,A2, B2 = A3, B3 = A4,A5,A6, then the initial distribution

(N1, . . . ,N5)∼M (n;(π1, . . . ,π5))

with corresponding probability vector πT = (π1, π2, . . . , π6) leads to

(Y1,Y2)∼M (n;(π∗1 , π
∗
2 ))

with (Y1, Y2) = (N1 +N2, N3) and (π∗1 , π
∗
2 ) = (π1 +π2, π3). Obviously, Y3 = n−

Y1 −Y2 = N4 +N5 +N6 and the associated probability vector is π∗T = (π∗1 , π
∗
2 , π

∗
3 )

with π∗3 = π4 +π5 +π6. This property makes data reduction in contingency tables
feasible. Data reduction is meant as either collapsing categories of a classification
variable or collapsing classification variables themselves in multi-way tables.

Another property of the multinomial distribution refers to the distribution of a
subset of outcomes, conditional on their total number of observations. If, without
loss of generality, we are interested in the first q (q < K) outcomes, then

(N1, . . . ,Nq−1)∼M
(
n;(π1|q, . . . ,πq−1|q)

)
(1.5)

with components of the probability vector equal to πk|q = πk
π1+...+πq

, 1 ≤ k ≤ q.
In contingency tables’ framework, this property lies behind the equivalence of the
“multinomial” and “product multinomial” sampling schemes (see Sect.2.2.1).

1.2.3 Poisson Distribution

It can be that frequency data do not arise from a fixed number of trials. A char-
acteristic example is the number of car accidents that happened in a region during
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the weekend. Thus, if the number of events is X , there exists no upper limit for it.
What is fixed in such experiments is an interval, within which we count the event
occurrences. The interval is usually of time but can be of any other form as well,
such as space. The simplest distribution adequate for setups of this type is the
Poisson. If X is Poisson distributed, X ∼P(λ ), then

P(X = x) =
e−λλ x

x!
, x = 0,1,2, . . . , (1.6)

where the parameter λ > 0 is the expected number of arrivals in the specified
interval, i.e., E(X) = λ . Note that for the Poisson distribution the variance equals
the mean, that is, Var(X) = E(X) = λ .

In R, Poisson probabilities and cumulative probabilities are computed by
dpois() and ppois(), respectively. Thus, if X ∼P(2), then
> dpois(3,2)

calculates P(X = 3) = 0.18045, while P(X > 4) = 0.05265 is computed as
> 1-ppois(4,2)

As λ increases, the Poisson distribution is approximated by a normal. For large λ

Z =
X − μ
σ

=
X −λ√
λ

∼N (0,1)

The binomial distribution with large n and small p is approximated by a Poisson
with λ = np.

A handy property of Poisson distributions is that if X1, . . . ,XK are independent
Poisson random variables with parameters λ1, . . . ,λK , respectively, then their sum
∑K

k=1 Xk is also Poisson distributed with parameter λ = ∑K
k=1 λk.

Based on this property, the following can be proved that connects the Poisson to
the multinomial distribution.

The conditional distribution of X1, . . . ,XK , given their sum ∑K
k=1 Xk = n, is

P[(X1=n1, . . . , XK=nK) |
K

∑
k=1

Xk=n]=
P(X1 = n1, . . . , XK = nK)

P(∑K
k=1 Xk = n)

=

∏k

(
e−λkλ nk

k
nk!

)

e−λ λ n

n!

,

which, since ∑K
k=1λk = λ and ∑K

k=1 nk = n, yields

P[(X1 = n1, . . . , XK = nK) |
K

∑
k=1

Xk = n] =
n!

n1!n2! · · ·nK!∏k

(
λk

λ

)nk

, (1.7)

which is the multinomial distribution M (n;π), with πk = λk/λ , 1 ≤ k ≤ K, being
the components of π.
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This last result is practically important because it states that if we have K
possible response categories and count the number of their occurrences n1, . . . ,nK ,
without any restriction on their total, then conditioning on their sum ∑K

k=1 nk = n
afterward, we can consider that the underlying variable is multinomial distributed. In
contingency table analysis, this proves the inferential equivalence of the multinomial
and independent Poisson sampling schemes (see Sect.2.2.1).

We have seen that the Poisson distribution has variance equal to its mean. In order
to model event occurrences of higher variance (overdispersion), an alternative
distribution is the negative binomial. This distribution is not used in the sequel and
thus not presented.

1.2.4 Hypergeometric Distribution

In a binary data setup, the success probability p may not be constant from trial
to trial (for example, when sampling from finite populations without replacement).
In such cases, the binomial distribution is no longer adequate and other distributions
are required. Consider a population of N items, with M of them being of “type
A.” If a sample of size q is selected from this population, then the number X of
“type A” items in the sample is modeled by the hypergeometric distribution, X ∼
H (N,M,q), according to which

P(X = x) =

(
M
x

)(
N −M
q− x

)

(
N
q

) , max(0, q+M−N)≤ x ≤ min(q,M) (1.8)

The mean and variance of the hypergeometric X are

E(X) =
qM
N

, Var(X) =
qM(N − q)(N −M)

N2(N − 1)

When M is small compared to N, then the hypergeometric distribution resembles
the binomial.

The hypergeometric distribution is the basis for the Fisher’s exact test of
independence for 2× 2 contingency tables (Sect.2.1.7).

Hypergeometric probabilities in R are computed by dhyper(). If, for example,
X ∼H (10,6,4), then P(X = 2) = 0.3709 is computed as
> dhyper(2, 10, 6, 4)

Furthermore P(X ≤ 2) = 0.4890 is obtained by
> phyper(2, 10, 6, 4)
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1.3 Statistical Inference with Categorical Data

The likelihood function is a key quantity in statistical inference as a basic tool for
estimation and hypothesis testing. The likelihood L(x; θ) is a function of the sample
and the parameter and is the probability of observing this sample x as a function of
the parameter θ .

The most classical method of parameter estimation is the method of maximum
likelihood, according to which the maximum likelihood (ML) estimate of a param-
eter θ is the value that maximizes the likelihood with respect to θ , denoted as θ̂ .
At θ̂ , the observed sample has the highest occurrence probability. MLEs have many
attractive properties that justify their dominance. In practice it is often easier to
maximize the logL instead of the likelihood L.

For example, for the binomial distribution X ∼B(n;π), the parameter is θ = π
and, upon observing X = x, the likelihood is

L(x; π) =
n!

x!(n− x)!
πx(1−π)n−x, x = 0,1,2, . . . ,n.

It can easily be derived (solving ∂ logL(x; π)
∂π = 0 and verifying that ∂

2 logL(x; π)
∂π2 < 0)

that it is maximized with respect to π at

p =
x
n
,

the observed sample proportion of successes. Thus the ML estimate of π is p.
For the random number of successes X ∼B(n;π), π̂ = X

n is a random variable

with E(π̂) = π and Var(π̂) = π(1−π)
n , i.e., the MLE π̂ is unbiased and its standard

error (s.e.) is estimated by

SE(p) =

√
p(1− p)

n
.

Analogously, the ML estimates of the category probabilities of the multinomial
distributionM (n;π) are proved to be the observed sample proportions, i.e., pk =

nk
n ,

k = 1, . . . ,K.
In general, for a scalar parameter θ , if θ̂ is its MLE and SE(θ̂ ) the estimated s.e.

of θ̂ , then standard methods are applied for related asymptotic hypothesis testing
and confidence intervals derivation, based on the asymptotic normality of the MLE.
Thus, the (1−α)100% two-sided Wald confidence interval (CI) is

θ̂ ± zα/2SE(θ̂ ), (1.9)

where zα/2 = Φ−1(1−α/2) is the α/2 upper quantile of N (0, 1). A discussion
on its performance and comparison to alternative confidence intervals is provided,
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among others, by Brown et al. (2001) and Cai (2005). In R this is easily obtained by
the function
CI <- function(mle, se, conf.level=0.95)

. {mle+c(-1,1)*se*qnorm(0.5*(1+conf.level))}

The Wald CI is the most well-known and easiest to derive asymptotic CI. It can
be constructed by inverting the asymptotic Wald test for testing the null hypothesis

H0 : θ = θ0 (1.10)

vs. the two-sided alternative H1 : θ �= θ0, for known θ0. The Wald test statistic for
a scalar parameter θ , like in (1.10), is given by

W =

(
θ̂ −θ0

SE(θ̂ )

)2

. (1.11)

Under (1.10), W is asymptotically X 2
1 distributed, or equivalently, Z = θ̂−θ0

SE(θ̂) is

N (0, 1) distributed. In particular, (1.9) is the set of all θ0, for which (1.10) is not
rejected at significance level α = 0.05.

Asymptotically equivalent alternative tests to Wald for testing (1.10) are the score
test and the likelihood ratio (LR) test. The first is based on the score test statistic

S =

(
u(θ0)

SE(u(θ0))

)2

=

(
∂ logL(θ )/∂θ

∣
∣θ=θ0

)2

−E
(
∂ 2 logL(θ )/∂θ 2

∣
∣θ=θ0

) ,

where u(θ0) = ∂ logL(θ )/∂θ
∣
∣θ0 is the score function (vector of partial derivatives

of the log-likelihood with respect to θ , evaluated at θ 0), while the second on the LR
test statistic

G2 = 2
(
logL(θ̂ )− logL(θ0)

)
.

Under (1.10), S and G2 are asymptotically X 2
1 distributed. The (1−α)100% score

and LR CIs can be defined analogously to the Wald CI.
The Wald, score, and LR statistics are provided above for testing a scalar

parameter. They all extend to vector parameters as well. For example, if the
parameter of interest is θθθ = (θ1, . . . ,θK) ∈Θ , K ≥ 1, for testing the hypothesis

H0 : θθθ ∈Θ0, (1.12)

withΘ0 the parameter subspace under H0, the LR test statistic is defined as

G2 = 2log{L1/L0}= 2(log(L1)− log(L0)) , (1.13)
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where L0 =maxθθθ∈H0
(L(θθθ )) and L1 =maxθθθ∈H0∪H1

(L(θθθ )). Under (1.12), G2 ∼X 2
d f

with d f = dim(Θ)− dim(Θ0).
Let (N1,N2, . . . , NK−1) ∼ M (n,(π1, . . . ,πK−1) be a multinomial distributed

random sample and consider for its probability vector the following null hypothesis:

H0 : πππ = πππ0. (1.14)

The null value πππ0 = (π01, . . . ,π0K) can be fixed or depending on a parameter vector
θθθ = (θ1, . . . ,θs) of size s < K − 1, i.e., πππ0 = πππ0(θθθ). For given n, the expected
categories’ frequencies under H0 are m = (m1, . . . ,mK), with mk = E(Nk) = nπ0k,
k = 1, . . . ,K, and ∑K

k=1 mk = n. In case of parametric πππ0, which is more realistic and
common in applications, m cannot be specified exactly and has to be estimated by
the sample. For a sample of observed frequencies n = (n1, . . . ,nK) with∑K

k=1 nk = n,
the ML estimate of mk, k = 1, . . .K, is m̂k = nπ̂0k = nπ0k(θ̂ ).

In general, a null hypothesis of the type (1.14) imposes a specific structure on the
category probabilities of a multinomial distribution. To decide whether an observed
data vector n supports this structure or not, the closeness of the expected under H0

frequencies mk to the corresponding observed nk, k= 1, . . . ,K, needs to be evaluated.
The further apart the vectors n and m̂ are, the stronger is the evidence against H0.
The most well-known test statistic for testing H0 is it Pearson’s chi-squared statistic,
proposed by Pearson (1900a). This is

X2 =
K

∑
k=1

(nk − m̂k)
2

m̂k
, (1.15)

for parametric πππ0. If m̂ = n, then X2 = 0. In all other cases X2 > 0, with larger
values indicating stronger deviation from H0, for fixed sample size n.

For large random samples, under the null hypothesis, X2 is chi-squared dis-
tributed with degrees of freedom

d f = K − 1− s, (1.16)

where s is the number of parameters estimated under the null hypothesis.
For fixed πππ0, no parameter is estimated; thus s = 0 and the m̂k’s in (1.15) are

replaced by the corresponding mk’s.
An alternative statistic for testing H0 is the LR statistic (1.13), which in this

context takes the form

G2 = 2
K

∑
k=1

nk log(
nk

m̂k
), (1.17)

for parametric πππ0. Also G2 ≥ 0, with larger values indicating stronger departure
from H0, for fixed n, and G2 = 0 for m̂ = n. The test statistic G2 is asymptotically
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equivalent to X2, that is, under H0 and for large n, G2 is distributed. The m̂k’s in
(1.17) are replaced by the corresponding mk’s when πππ0 is fixed.

In practice, H0 is rejected at significance level α , if the observed value of the test
statistic lies in the associated critical region, i.e., if

X2 >X 2
d f ;α or G2 >X 2

d f ;α

for X2 or G2, respectively, where X 2
d f ;α is the α th upper quantile of the X 2

d f
distribution.

The p-values for these two tests are

P(X 2
d f > X2

obs) and P(X 2
d f > G2

obs),

respectively, where X2
obs and G2

obs are the observed values of X2 and G2. In R the
p-value corresponding to a test statistic T with null distribution X 2

d f and observed
value Tobs is easily computed by
> p.value <- 1-pchisq(Tobs, df)

where pchisq(Tobs, df) is the cumulative density function of the X 2
d f

distribution evaluated at Tobs.
X2 converges faster to the X 2 distribution than G2 while the approximation is

poor for G2 if n/K < 5. In general, for fixed n and K, the approximation by the X 2

distribution is better for lower d f . Theoretical results regarding the derivation of
asymptotic distributions of parameter estimators or test statistics and their properties
are out of the scopes of this book. Such issues are addressed in Bishop et al. (1975,
Chap. 14) and in Agresti (2013, Chap. 16).

1.4 Classes of Models for Discrete Data

It is noticeable that methods for the analysis of categorical data have been developed
with a certain delay, compared to methods for continuous data. When all d observed
attributes in a study are categorical, then the most common way to represent the data
is a d-dimensional contingency table, produced by cross-classifying the attributes.
The information of a contingency table is traditionally summarized through appro-
priate measures (measures of association), which differentiate according to the
nature of the underlying classification variables (nominal or ordinal). Association
measures, though handy in computation and interpretation, lead to a major loss of
information. Models provide a more sensitive analysis.

The most characteristic models for contingency tables are the log-linear models.
In case some or all of the classification variables are ordinal, special models (log-
linear or log-multiplicative) have been developed that utilize the additional infor-
mation of categories’ ordering, assigning scores to them. These are the association
models, introduced in the 1970s and developed mainly by Leo Goodman. Methods
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for analysis of nominal variables are appropriate also for ordinal ones but the reverse
is not true. Ordinal data analysis is an area of special interest (Agresti 2010; Liu and
Agresti 2005).

Log-linear models treat all the classification variables in a symmetric way in
terms of their interactions. Whenever we are interested in the effect of a set of
continuous and/or categorical data on a categorical response variable, the logistic
regression is applied. Logistic regression, initially developed for a binary response
variable (success–failure), has a long history, as is extensively explained in Cramer
(2002). Its origins lie back to the definition of the logistic function by Verhulst
in 1840s, rediscovered by Pearl and Reed in 1920. However, logistic regression
received attention just in the 1960s. One of its early supporters was Cox, whose
book (Cox 1970a) helped in the establishment of the logistic regression model.
Logistic regression has been extended to polytomous responses, for nominal or
ordinal response variables. One of the most fundamental references is McCullagh
(1980), who introduced the proportional odds model.

A new boost was given to the analysis of categorical data through the develop-
ment of the generalized linear model (GLM), introduced by Nelder and Wedderburn
(1972). Via the GLM, various models for categorical data were unified; their options
were naturally extended while some new did arise. Beyond log-linear models,
the Poisson regression is a classical GLM model for categorical data. Response
is the expected number of an event (failures or successes), and it is modeled
by a regression function upon a set of explanatory variables. In the presence of
overdispersion, the negative binomial model is applied instead.

An area on categorical data analysis that is of special interest, research- and
application-wise, is the analysis of clustered data, i.e., data that are correlated.
The most common framework is that of repeated measurements. Categorical and
ordinal repeated measurements are treated either through marginal or conditional
models, depending on whether the effects are population-averaged or subject-
specific, respectively. A comprehensive reference book on this field is Molenberghs
and Verbeke (2005) while they are extensively treated also in Agresti (2013).

Contemporary problems in categorical data analysis often refer to extreme high-
dimensional data that can be clustered. These require the development of complex
models and computational demanding procedures. For a more detailed overview on
categorical data analysis, see in Kateri (2008).

Overall, the classical reference book of the 1970s on categorical data analysis is
that of Bishop et al. (1975). Other fundamental books of the same period are those
of Plackett (1974), Upton (1978), Fienberg (first published in 1977; reprint of its
revised 2nd edition in 2007), and Haberman (1979). A classical book adjusted to
models and applications for social sciences is by Andersen (1980). In our days, the
most comprehensive book on categorical data analysis is that of Agresti, in its recent
revised 3rd edition (Agresti 2013) and its introductory counterpart (Agresti 2007).
Further on, noticeable recent reference books include Zelterman (2006), Simonoff
(2003), and Andersen (2001) while Johnson and Albert (2000) is Bayes orientated
and restricted to ordinal models. Tutz (2012) focuses on regression models for
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categorical data. For an information theoretic approach in the analysis of categorical
data, see Gokhale and Kullback (1978a), Read and Cressie (1988), and Pardo
(2006).

1.5 Outline of the Book

The focus of this book is on model-based analysis of contingency tables with
emphasis to special models for ordinal classification variables. Hence, logistic
regression is partially covered, only for contingency tables applications, i.e., when
all explanatory variables are categorical as well. Due to space limitations, correlated
categorical data are treated only for the paired case.

Basic concepts of two-way contingency tables are introduced in Chap.2.
Traditional descriptive and inferential results on estimation and hypothesis
testing are presented and applied on characteristic examples in R. The notions
of independence and association are extended to multi-way contingency tables
in Chap.3. A model-based approach is adopted in Chap.4, where the log-
linear models are introduced for two- and multi-way tables. The analysis of
log-linear models is more flexible in the framework of the GLM. For this, the
log-linear models are viewed as members of the GLM family in Chap.5, making
thus easier the consideration of special issues, such as treating structural zeros.
Furthermore, the generalized log-linear models (GLLM) are considered, which
allow modeling of functions of the cell probabilities. For example, the local odds
ratios of a contingency table can be modeled by a GLLM.

Chapters 6–9 are devoted to models for ordinal contingency tables. Thus, the
association models are discussed in Chap.6 for two- and multi-way contingency
tables. Some more specialized features of association models, like the role of scores
in merging categories or association models for odds ratios, are discussed in Chap.
7, along with a short reference to correspondence analysis and its connection to
association models. So far, it was considered that the classification variables of a
contingency table interact in a symmetric way. In case one of them is a response
and the remaining are explanatory variables, special models can be applied, the logit
models. Logit models for ordinal and nominal response and/or explanatory variables
are the subject of Chap.8. Chapter 9 deals with special models for matched pairs.
The models of symmetry, quasi symmetry, marginal homogeneity, and conditional
and diagonal symmetry are introduced and discussed. Furthermore, models for
rater agreement are presented. Finally, in the epilogue Chap.10, we briefly refer
to alternative models and approaches, not covered in this book, and to recent trends
in the contingency table analysis.

The approach adopted in this book is the frequentist approach and the inferential
results are asymptotic. Small sample inference is discussed in Sect.10.4. An area
of interest is the Bayesian analysis of contingency tables. The first fundamental
results lie back to the classical Bayesian analysis in the 1960s and early 1970s while
the interest on the Bayesian approach is renewed in the last two decades, after the
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development of the computer-intensive Bayesian computational methods. Bayesian
inference overcomes limitations of the classical approach related to asymptotics.
They are not asymptotic, so samples need not to be large and they apply easier
to sparse tables. Section 10.5 is devoted to the Bayesian analysis of contingency
tables, bringing up main issues in the Bayesian analysis of contingency tables and
providing an extended bibliography review.

The book is applications orientated. For this, though the theory is presented
detailed and accurate, theoretical results are not derived but rich relevant citations
are provided. The aim is to familiarize readers with these models and their
application in practice although some of them cannot be directly fitted in statistical
packages. To achieve this, all examples are worked out in R and presented in a
way that can be followed in R by the reader. This procedure is simplified through
handy R functions that are used throughout the book and provided in the book’s web
companion, available at

http://cta.isw.rwth-aachen.de.
It consists mainly of an R Appendix, where the R options for contingency tables are
discussed, helpful R packages are listed, and all the functions and examples used
in the book are available to download. Additionally, SPSS syntax code scripts are
provided for fitting the association and symmetry models.

http://cta.isw.rwth-aachen.de


Chapter 2
Analysis of Two-way Tables

Abstract Basic concepts of two-way contingency table analysis are introduced.
Descriptive and inferential results on estimation and testing of basic hypotheses
are discussed and illustrated in R. In particular the comparison of two independent
proportions, the test of independence for 2× 2 and I × J contingency tables, the
linear trend test, and the Fisher’s exact test are presented. Special emphasis is given
to the odds ratio for 2× 2 tables, while the generalized odds ratios for I × J tables
are treated in detail. Finally, graphical displays of categorical data (barplot, fourfold
plot, sieve diagram, and mosaic plot) are derived using R for examples of this chapter
and discussed.

Keywords Binary variables • Odds ratio • Fisher’s exact test • Independence for
I × J tables • Residuals • Generalized odds ratios • Linear trend test • Fourfold
plots • Sieve diagrams • Mosaic plots

2.1 Analyzing 2×2 Tables

2 × 2 contingency tables are very common in biomedical and social sciences
applications, where binary variables (yes–no) play an important role, in the context
of survival, success of a treatment, or presence of a characteristic or prognostic
factor. The extent of related literature is impressive and this very simple table keeps
the continuous interest of researchers since the early 1900s. Indicatively we mention
that Upton (1982) compared twenty-two alternative tests of the literature for the
2× 2 comparative trial commenting that the range of different possible sampling
schemes for 2× 2 tables is responsible for this amount of literature.

Different sampling schemes correspond to different experimental scenarios and
to different hypotheses of interest. A 2× 2 table can arise by cross-classifying two
binary variables on a sample. If X and Y are the row and column classification
variables, respectively, then the hypothesis of interest is the independence of X
and Y . Alternatively, a binary response for two independent samples can be reported

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__2,
© Springer Science+Business Media New York 2014
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by a 2× 2 table, setting, for example, the response in the column variable Y and
letting X define the two underlying populations. In this case, the hypothesis to
be tested is the equality of the success probabilities in Y for the two independent
binomial populations. Notation is unified for both cases. Thus, for a data set, let
ni j denote the observed cell frequency at cell (i, j), i, j = 1,2, i.e., the number
of cases for which the combination X = i and Y = j is observed. Notation-wise,
the first index (i) stands for the row and the second ( j) for the column category.
Then, ni+ = ni1 + ni2 is the marginal frequency of the ith row, i = 1,2, while the
marginal column frequencies are defined analogously, n+ j = n1 j + n2 j, j = 1,2.
In general a “+” in place of an index denotes summation over this index. Finally,
n = n++ = n1++ n2+ = n+1 + n+2 is the total number of observations of the data
set. In table form this is stated as follows:

n11 n12 n1+

n21 n22 n2+

n+1 n+2 n

The sampling scheme underlying the first scenario is either a multinomial
distribution of four categories, corresponding to the cells of the table, or four
independent Poisson distributions, one for each cell. In the first case the total sample
size n is fixed (known) while in the second random. In the second scenario, we
observe two independent binomial samples, one for each row, of sizes n1+ and n2+,
respectively. Thus, one set of margins is fixed, here the row marginals (n1+,n2+).
Obviously, the case of fixed column marginals is analogous. These two scenarios
will be treated in Sects. 2.1.1 and 2.1.3, respectively.

To illustrate, consider the indicative examples of Table 2.1. Data in Table 2.1(a)
present a sample of size n= 3213, collected in the period 1980–1983 in the St. Louis
Epidemiologic Catchment Area Survey (Glassman et al. 1990) and cross-classified
according to regular smoking habit (rows) and major depressive disorder (columns).
Interest lies on testing for possible relation between cigarette smoking and major
depressive disorder. Table 2.1(b) reports the binary response (success–failure) of
two treatments (high–low dose) received by two independent samples of patients
(hypothetical data). The goal is to compare the success probabilities for the high and
low dose treatment, based on two independent samples of patients. In Table 2.1(a)
the total sample size is fixed while in Table 2.1(b) the row marginals are fixed, not
necessarily equal. Data in Table 2.1(c) seem similar to Table 2.1(b) and serve the
same goal, but the experiment is designed differently; they correspond to a crossover
study. Just one sample of patients is considered and they receive both treatments
in sequence, after a follow-up period (hypothetical data). A pair of responses is
available for each patient and Table 2.1(c) cross-classifies these responses, reporting
the number of patients for which both treatments were successful, both failed, or
only the high or low dose was successful. This last example is a longitudinal study.
As in Table 2.1(b), the success probabilities for high and low dosages have to
be compared. However, it is different from the second scenario setup, since the
proportions to be compared are dependent. At this point, we will deal with the
first two problems while we will return to the dependent proportions comparison in
Sect. 9.3.
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Table 2.1 (a) Survey respondents cross-classified by smoking habit and major depressive
disorder (Glassman et al. 1990). (b) Response for two independent samples of low and high
dose treatments (hypothetical data). (c) Crossover trial comparing low and high dose treatments
on a sample of 100 patients (hypothetical data)

(a) (b) (c)

Major
depression Response Low doseEver

smoked Yes No Dose Success Failure
High
dose Success Failure

Yes 144 1729 High 41 9 Success 62 18
No 50 1290 Low 37 13 Failure 8 12

2.1.1 Independence of Two Binary Variables

For the 2×2 contingency table n = (ni j) that cross-classifies two binary variables X
and Y on a sample of fixed size n, let Ni j be the random number of observations in
cell (i, j) and πi j = P(X = i, Y = j) the associated cell probability, i, j = 1,2. Since
the total sample size is fixed, ∑i, j Ni j = n and thus only three cell frequencies of the
table N = (Ni j) are random. Thus ∑i, j πi j = 1 and the underlying distribution is the
multinomial:

(N11,N12,N21)∼M (n,(π11,π12,π21)) .

The probability vector πππ = (π11,π12,π21,π22) is the joint distribution of X and Y .
The probability of the ith row category is P(X = i) = πi1 +πi2 = πi+, i = 1,2 and
of the jth column category P(Y = j) = π1 j +π2 j = π+ j, j = 1,2. The probabilities
vectors (π1+,π2+) and (π+1,π+2) are the row and column marginal distributions,
respectively. In matrix notation, we have

π11 π12 π1+

π21 π22 π2+

π+1 π+2 1

It is well known that variables X and Y are independent if P(X = i, Y = j) =
P(X = i)P(Y = j) for all possible values of i and j. Thus, in our context the null
hypothesis of independence is

H0 : πi j = πi+π+ j , i, j = 1,2 . (2.1)

For multinomial distribution, the expected cell frequencies are mi j = nπi j (adjusting
the vector notation of Sect.1.2.2 to two-way arrays) and under (2.1), mi j = nπi+π+ j,
i, j = 1,2. The corresponding MLEs are

m̂i j = nπ̂i+π̂+ j . (2.2)
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It can be easily verified that π̂i+(n) = pi+, where pi+ is the ith row marginal sam-
pling proportion. Analogously, π̂+ j(n) = p+ j for the column marginal probabilities.
Thus, the ML estimates of the expected cell frequencies under H0 of independence
are

m̂i j = npi+p+ j =
ni+n+ j

n
, i, j = 1,2.

Note that the ML estimates of the row and column marginals satisfy m̂i+ = ni+ and
m̂+ j = n+ j, i, j = 1,2, respectively.

The within rows probabilities are the conditional row probabilities

π j|i =
πi j

πi+
, i, j = 1,2 ,

while the conditional column probabilities are defined analogously. The indepen-
dence hypothesis (2.1) could equivalently be expressed in terms of the conditional
row probabilities as

π1|i = π+1 , i = 1,2 , (2.3)

which means that under independence the within rows success probability is the
same for both rows (obviously π2|i = 1−π1|i , i = 1,2).

Actually only one of the row marginals and one of the column marginals
probabilities, say π1+ and π+1, respectively, need to be estimated in (2.2), since
∑2

i=1πi+ =∑2
j=1π+ j = 1. Thus, the number of parameters to be estimated under H0

is s = 2 and Pearson’s X2 statistic (1.15) becomes

X2 =∑
i, j

(ni j − m̂i j)
2

m̂i j
(2.4)

The asymptotic distribution for (2.4) under H0 is X 2
1 . Alternatively, the asymptotic

equivalent LR statistic (1.17) can be applied, here expressed as

G2 = 2∑
i, j

ni j log(
ni j

m̂i j
) (2.5)

Yates (1934) suggested to correct the Pearson’s X2 test (2.4) in order to reduce the
approximation error encountered by approximating the binomial distribution by the
continuous chi-square distribution; therefore, the correction is known as continuity
correction. The formula of the Yates’ corrected X2 is

X2 =∑
i, j

(|ni j − m̂i j|− 0.5)2

m̂i j
.

This correction reduces the Pearson’s X2 statistic value and consequently increases
the corresponding p-value.
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2.1.2 Example 2.1(a)

Applying the procedure described above on the smoking vs. depression data, we get
X2 = 21.557, highly significant for d f = 1 (p-value < 0.00005). Thus, we conclude
that indeed, as expected, the smoking habit is strongly related to depression. The ML
estimates of the expected cell frequencies under the H0 of independence (m̂i j) are

Depression
Ever_Smoker Yes No

Yes 113.091 1759.909
No 80.909 1259.091

Observing that the observed frequency of people smoking and with a depression
(n11 = 144) is higher than the corresponding expected (m̂11 = 113.09), we can
conclude about the direction of the association. In particular, the probability of
smoking is higher for people who have experienced a major depressive disorder.
Identification of the cells that are responsible for the deviation from H0 and
evaluation of their contribution, in strength and direction, are achieved by the
inspection of the residuals, presented for the general I× J table in Sect. 2.2.4.

The X2 test of independence is very easily implemented in any statistical
package. In R, the appropriate function is chisq.test() that reads the data in a
matrix form. For this example, we enter the data and the labels for the variables’
names and their values as
> depsmok <- matrix(c(144,1729,50,1290),byrow=T,ncol=2);

> dimnames(depsmok) <- list(Ever_Smoker=c("Yes","No"),

+ Depression=c("Yes","No"));

The created frequency table can be viewed by typing depsmok. The table can be
enriched with the row and column marginals as follows:
> addmargins(depsmok)

Depression
Ever_Smoker Yes No Sum

Yes 144 1729 1873
No 50 1290 1340

Sum 194 3019 3213

Command prop.table(depsmok) computes the sampling proportions while the
proportions table along with the marginal proportions will be printed by
> addmargins(prop.table(depsmok))

Depression
Ever_Smoker Yes No Sum

Yes 0.0448 0.5381 0.5829
No 0.0156 0.4015 0.4171

Sum 0.0604 0.9396 1.0000

The row conditional proportions are derived by prop.table(depsmok,1). Analo-
gously, the column conditional proportions are
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> prop.table(depsmok,2)

Depression
Ever_Smoker Yes No

Yes 0.7423 0.5727
No 0.2577 0.4273

Command
> chisq.test(depsmok)

computes the X2 test of independence providing the following output:

Pearson’s Chi-squared test with Yates’ continuity correction
data: depsmok
X-squared = 20.8652, df = 1, p-value = 4.928e-06

For 2× 2 tables, the standard expression of chisq.test() engages the continuity
correction of Yates (see Sect.1.3). The test without the continuity correction is
fitted by
> chisq.test(depsmok, correct = FALSE)

Pearson’s Chi-squared test
data: depsmok
X-squared = 21.557, df = 1, p-value = 3.435e-06

The ML estimates of the expected cell frequencies under H0 are derived by
> chisq.test(depsmok)$expected

chisq.test() does not provide the G2 statistic (2.5). This can be computed, along
with the associated p-value, by the function G2(), which is based on chisq.test()

and is provided in the web appendix (see Sect. A.3.2). For our example we apply
> G2(depsmok)

$G2
[1] 22.75493
$df
1
$p.value
[1] 1.840319e-06

The options and features of chisq.test() will be further discussed in the
context of the general I× J contingency tables later in Sects. 2.2.3 and 2.2.4.

2.1.3 Comparison of Two Independent Proportions

Consider data of the type of Example 2.1(b) and let n11 and n21 be the frequencies of
successes for two independent samples of sizes n1 and n2, respectively. Then, for a
sample of fixed sample size ni from the ith population (i = 1,2), the random number
of successes Ni1 for population i is binomial distributed

Ni1 ∼B(ni,πi)
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and the two distributions are independent. The underlying probability pattern of the
2× 2 contingency table formed by two independent binomials is

π1 1-π1 1
π2 1-π2 1

The basic associated hypothesis testing problem is

H0 : π1 = π2 (= π) (2.6)

and can be faced by a number of alternative approaches. The most direct is the
well-known asymptotic Z test with test statistic

Z =
π̂1 − π̂2√

π̂(1− π̂)( 1
n1
+ 1

n2
)

H0∼ N (0,1) , (2.7)

where π̂1 = N11/n1 and π̂2 = N21/n2 are the random sample success proportions for
the 1st and 2nd sample, respectively, while π̂ = N11+N21

n1+n2
is the MLE of the common

success probability under H0. This test is based on the normal approximation of a
binomial distribution (1.3) and the fact that under H0, Ni1+Ni2 ∼B(n1+n2,π) (see
property (1.2)).

Possible alternatives to (2.6) are

H1a : π1 > π2 or H1b : π1 < π2 or H1 : π1 �= π2 .

The null hypothesis (2.6) is then rejected at significance level α in favor of the one-
sided alternatives H1a, H1b or the two-sided H1, if Z ≥ zα , Z ≤ −zα , or |Z| ≥ zα/2,
respectively.

The asymptotic (1−α)100% Wald CI for the difference π1 −π2 is

(
p1 − p2 − za/2

√
V̂ar(π̂1 − π̂2), p1 − p2 + za/2

√
V̂ar(π̂1 − π̂2)

)
, (2.8)

where Var(π̂1 − π̂2) is equal to

Var(π̂1 − π̂2) =
π1(1−π1)

n1
+
π2(1−π2)

n2
(2.9)

and is estimated by substituting in (2.9) the probabilities with the corresponding
sample proportions pi = ni1/ni, i = 1,2. For alternative methods of constructing
confidence intervals for the difference of independent binomial proportions and
simulation based comparisons among them, we refer to Newcombe (1998) and
Brown and Li (2005).
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Such a data setup could also be viewed in a 2× 2 contingency table form, in the
context of Sect. 2.1.1, produced by cross-classifying variables X for the sample (1st
and 2nd) and Y for the response (success–failure). Then

πi = P(Y = 1 |X = i) = π1|i , i = 1, 2, (2.10)

and by (2.3) and the equivalence between independence and equality (homogeneity)
of conditional row probabilities (see Sect. 2.1.1), we conclude that hypothesis (2.6)
can equivalently be viewed as a hypothesis of independence (success is independent
of population) and tested by the X2 test (2.4). In this setup, the X2 test is known as
test of homogeneity.

2.1.4 Example 2.1(b)

For the data on successes for the high–low dose treatments [Table 2.1(b)], we have
n1 = n2 = 50 and the Z-test (2.7) gives

Z =
0.82− 0.74

√
0.78(1− 0.78)( 1

50 +
1

50 )
= 0.9656 ,

which is nonsignificant. The corresponding X2 statistic (2.4) is equal to X2 =
0.9324, with p-value = 0.3342 for d f = 1. (Note that Z2 = 0.96562 = 0.9324, as
expected.) Thus, though the sample success proportion is higher for the high dose
treatment, the difference in success proportion of 8% between high and low doses
is not statistically significant for the sample size under consideration.

For the X2 test of independence, this example can be worked out in R by
chisq.test(), exactly as Example 2.1(a). The Z-test above can be applied
by prop.test() that has the additional feature of providing the (1 − α)100%
confidence interval (2.8) for the difference π1 − π2. The following script of
commands reads the data, creates labels, and applies the Z-test
> dosesuc<- matrix(c(41,9,37,13),byrow=TRUE,ncol=2);

> dimnames(dosesuc) <- list(Dose=c("high","low"),

+ Response=c("success","failure"));

> prop.test(dosesuc, correct=FALSE)

The derived output is

2-sample test for equality of proportions
without continuity correction

data: dosesuc
X-squared = 0.9324, df = 1, p-value = 0.3342
alternative hypothesis: two.sided
95 percent confidence interval:
-0.08162277 0.24162277
sample estimates:
prop 1 prop 2
0.82 0.74
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Since the data support H0 for α = 0.05, the 0.95% CI for the difference π1 − π2

includes the value 0.
The (1 − α)100% CI provided by prop.test() for the difference of two

proportions is the Wald CI, though the CI provided by prop.test() for one
proportion is the score CI. The score CI for the difference of proportions, along
with Wald CI and further types of CIs, can be derived in the PropCIs package.

For significance level α = 0.01 and for the one-sided alternative H1 : π1 > π2,
> prop.test(dosesuc, alternative="greater",

+ conf.level = 0.99, correct=F)

leads to

2-sample test for equality of proportions
without continuity correction

data: dosesuc
X-squared = 0.9324, df = 1, p-value = 0.1671
alternative hypothesis: greater
99 percent confidence interval:
-0.1118356 1.000000
sample estimates:
prop 1 prop 2
0.82 0.74

2.1.5 The Odds Ratio

For a binary response, results are often presented and interpreted not directly on the
success probability π but regarding success’s relative importance to failure. Hence,
the ratio of success vs. failure probabilities for a response, known as odds of success

odds =
π

1−π ,

is a key quantity. An odds of 2 means that success is twice as possible as failure for
the population under study while of 0.25 that failure is four times more possible
than success. When comparing the response of two independent populations,
for example, cases/controls, with/without a prognostic factor, or comparing two
treatments, as in Example 2.1(b), their odds are compared. If π1 and π2 are the
success probabilities of the two populations, then their odds ratio is defined as

θ =
odds1

odds2
=
π1/(1−π1)

π2/(1−π2)
(2.11)

and is more informative for the comparison of π1 and π2 than their difference. For
example, the cases π1 = 0.9, π2 = 0.8 and π1 = 0.6, π2 = 0.5 have both π1 −π2 =
0.1 while their odds ratios are 2.25 and 1.5, respectively, incorporating the relative
importance of success probabilities in terms of their level of magnitude.
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In terms of the joint distribution of a 2×2 contingency table and due to (2.10), it
is easy to verify that θ is equivalently defined as

θ =
π11/π12

π21/π22
=
π11π22

π12π21
(2.12)

A value of θ = 1 is equivalent to π1 = π2, i.e., to independence of the binary
classification variables of the table. A value of θ > 1 or < 1 corresponds to positive
or negative dependence, respectively, while dependence becomes stronger as θ
moves away from 1.

The odds ratio is a fundamental association measure for a 2×2 contingency table
and, as we shall see in the sequel, the odds ratio as a concept plays an important role
in model formulation and interpretation in contingency table analysis. It does not
depend on the marginal distributions of the classification variables and is therefore
a good measure of their association. The marginal invariance of θ can easily be
verified as follows. When multiplying row i (i = 1,2) and/or column j ( j = 1,2) of
the table by a fixed positive number αi and/or β j, respectively, the cell probabilities

for the derived table are π∗i j =
αiβ jπi j

∑i, j αiβ jπi j
, i, j = 1,2, and θ ∗ is the corresponding odds

ratio. Then, it holds

θ ∗ =
π∗11π∗22

π∗12π
∗
21

=
π11π22

π12π21
= θ . (2.13)

The sample odds ratio is

θ̂ (n) =
p11 p22

p12 p21
=

n11n22

n12n21
. (2.14)

The computation of θ̂ is straightforward by (2.12) while definition (2.11) is more
convenient for meaningful interpretation. θ̂ takes values in the interval [0, ∞), with
θ̂ = 0 or θ̂ = ∞ when a sampling zero occurs in nominator or denominator of
(2.14), respectively, while it is undefined when sampling zeros occur in both cells
of a row or column. A classical way to treat such cases is, in presence of sampling
zeros, to add 0.5 to the cell frequencies. This procedure has however been criticized,
especially in cases of small sample sizes (see discussion in Sect. 2.5.2).

It has been proved that for random sample, log θ̂ is better normally approximated
than θ̂ . Thus, inference is drawn in terms of logθ . In particular, it can be proved that
asymptotically

log θ̂ ∼N (logθ ,
1

n11
+

1
n12

+
1

n21
+

1
n22

) (2.15)

Furthermore, in log-scale, interpretation is more straightforward, since indepen-
dence corresponds to logθ = 0, positive (negative) dependence to positive (negative)
values of logθ and the strength of association is increasing in |θ |.
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Based on (2.15), the asymptotic (1−α)100% confidence interval for θ can be
derived

(eL(θ̂ ,0), eL(θ̂ ,2))

where

L(θ̂ ,c) = log θ̂ − (1− c)zα/2

√
1

n11
+

1
n12

+
1

n21
+

1
n22

Also, hypotheses about θ , like

H0 : θ = θ0 ⇔ logθ = logθ0 (2.16)

for θ0 known, can be asymptotically tested by the associated Z test

Z =
log θ̂ − logθ0√

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

H0∼ N (0,1) (2.17)

Since θ = 1 ⇔ π1 = π2, hypothesis (2.16) for θ0 = 1 is equivalent to the hypothesis
of equality of two independent proportions (2.6) or to independence (2.1). However,
(2.17) is a Wald test and is not equivalent to the X2 or G2 tests (2.4) and (2.5), which
are score and LR tests, respectively, and are preferable.

In medical applications, the “success” probabilities π1 and π2 refer often to the
occurrence of a disease and are therefore called risk. The risks of two independent
populations are then compared through their ratio, which, as the odds ratio, is more
informative than their difference. Thus, the relative risk is defined by

r =
π1

π2
. (2.18)

Substituting in (2.18) the probabilities with the corresponding sampling proportions,
the corresponding sampling relative risk r̂ is obtained. The odds ratio and relative
risk are related through

θ = r · 1−π2

1−π1
. (2.19)

The relative risk is easier to interpret than the odds ratio but with the cost that it
cannot be defined for all types of studies. Risks can be defined directly only for
cohort studies while odds ratios also for case-controls or cross-sectional studies.
Also, covariate adjustment, required by some designs, is easier for odds ratios,
through logistic regression models, than relative risks (see, e.g., Simon 2001).
Therefore, for rare diseases, it is common to compute the odds ratio and interpret
it as relative risk, since θ ≈ r for small π1, π2, due to (2.19). Furthermore, r does
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not exhibit nice mathematical properties, in contrast to θ . From definition (2.12) it
can easily be verified that θ is invariant under table rotation while it becomes θ−1

when the rows (or columns) are interchanged. These properties do not hold for the
relative risk r. Practically speaking, this means that when changing the reference
response category, the new θ is simply the reciprocal of the initial one while r has
to be recomputed.

2.1.6 Example 2.1 (Continued)

For a 2× 2 data table, function odds.ratio(), to be found in web appendix (see
Sect.A.3.2), computes the ML estimate θ̂ , its asymptotic (1−α)100% confidence
interval as well as the Z test for testing (2.16) against the two-sided alternative. In
case of sampling zeros, odds.ratio() adds 0.5 in every cell frequency.

In order to derive the 95% confidence interval for θ and to test the hypothesis of
independence (θ0 = 1, set as default in the function) at α = 0.05 (default), function
odds.ratio() is applied on Table 2.1(a) as
> odds.ratio(depsmok)

The derived output is

$estimator
[1] 2.148757

$asympt.SE
[1] 0.1682201

$conf.interval
[1] 1.545247 2.987971

$conf.level
[1] 0.95

$Ztest
[1] 4.546955

$p.value
[1] 5.442761e-06

and θ̂ = 2.149 implies that the odds of smoking is 2.15 times higher for people with
a major depression disorder than for people without.

An alternative convenient way to apply functions of R is to save the output of the
function and then extract the parts of the results needed. For example, the test of
hypothesis (2.16) for θ0 = 1.7 at significance level 5% can be saved in theta1.7 by
> theta1.7<- odds.ratio(depsmok, 0.95, 1.7)

Then,
> theta1.7$Ztest

provides just the value of the test statistic (2.17) for θ0 = 1.7, Z = 1.3926, and
> theta1.7$p.value

the corresponding p-value=0.1637.
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For Table 2.1(b), we find by odds.ratio(dosesuc) that θ̂ = 1.6 and the
null hypothesis (2.16) cannot be rejected (p-value= 0.3364). The 95% confidence
interval for θ is (0.613420, 4.176457). Thus, the odds of success does not differ
significantly for high and low dose treatments, conclusion equivalent to that drawn
by the procedure of Sect. 2.1.3 in terms of the difference in success probabilities for
high and low dose treatments.

2.1.7 Fisher’s Exact Test

We have seen that for 2× 2 contingency tables, independence (2.1) can be tested
in terms of the odds ratio. The corresponding test discussed in the section above is
asymptotic and thus inappropriate for small samples. Fisher introduced an exact test
for testing

H0 : θ = 1 vs. H1 : θ > 1 , (2.20)

which is a conditional test and is based on the hypergeometric distribution (Fisher
1934). In particular, it can be verified that, under independence, the conditional
distribution of N11, given n1+, n+1, and n = n++, is N11 ∼ H g(n,n1+,n+1), i.e.,
hypergeometric with probability function (under independence)

p(t) = P(N11 = t) =

(
n1+

t

)(
n− n1+

n+1 − t

)

(
n

n+1

) , (2.21)

max(0, n1++ n+1 − n)≤ N11 ≤ min(n1+,n+1)

The p-value for testing (2.20) equals the sum of the “extreme” probabilities, where
“extreme” is meant toward the direction of the alternative. Hence, if tobs denotes the
observed value of N11, then

P+ = P(N11 ≥ tobs) . (2.22)

For the alternative hypothesis of the opposite direction θ < 1, the p-value is defined
analogously as

P− = P(N11 ≤ tobs) . (2.23)

Due to the high degree of discreteness of the hypergeometric distribution, when n
is small, only a few values can be attained for these p-values. The conservatism of
such discrete tests can be attenuated by using the mid-p-values. For the alternative
θ > 1, the mid-p-value is defined by
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mid−P+ = P(N11 > tobs)+
1
2

P(N11 = tobs) ,

while for H1 : θ < 1, it is defined analogously as

mid−P− = P(N11 < tobs)+
1
2

P(N11 = tobs) .

For H1 : θ �= 1, the definition of the two-sided p-value is not that obvious.
The classical choice for Fisher’s exact test is

P� = ∑
t:p(t)≤p(tobs)

P(N11 = t) , (2.24)

called by Hirji (2006) “the probability based method,” which is the sum of
probabilities of outcomes that are at most as probable as the observed outcome tobs.
An easy to compute alternative p-value is derived by taking twice the minimum
one-tail probability, bounded by 1, i.e.,

Ptw = min{1,2min[P+,P−]} , (2.25)

where P+ and P− are given in (2.22) and (2.23), respectively. This is the direct
analogue of the definition of two-sided p-values for continuous distributions of test
statistics. Another option of p-value that is based on both tail probabilities is

PCH = min[P+,P−]+ p∗ , (2.26)

where p∗ is the one-sided p-value from the other tail of the distribution, nearest to
but not exceeding min[P+,P−] (see Cox and Hinkley 1974, p. 79). The computation
of exact p-values will be clarified in the example that follows in Sect. 2.1.8.

Based on two-sided Fisher’s exact test, an exact (1−α)100% CI for the odds
ratio θ can be constructed by inversion of the exact test that tests the null hypothesis
H0 : θ = θ0 vs. the alternative H1 : θ �= θ0, for θ0 �= 1. This test is based on the
distribution of N11, given n1+, n+1, and n, when the odds ratio equals θ . This is the
noncentral hypergeometric with probabilities

p(t,θ ) = P(N11 = t,θ ) =

(
n1+

t

)(
n− n1+

n+1 − t

)
θ t

∑tmax
k=tmin

(
n1+

k

)(
n− n1+

n+1 − k

)
θ k

,

tmin = max(0, n1·+ n·1 − n)≤ N11 ≤ min(n1·,n·1) = tmax .

For θ = 1, the hypergeometric probability is derived. The associated exact
(1−α)100% CI will consist of the set of θ0 values for which the corresponding
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test fails to reject H0 at significance level α . The classical CI based on Fisher’s
exact test is based on the test with two-sided p-value (2.24). Using the p-values
defined by (2.25) or (2.26), alternative confidence intervals are derived for θ . The
CI based on (2.26) is less conservative than the classical one and was proposed by
Blaker (2000). Exact confidence interval can also be derived by the inversion of two
one-sided tests. However, the CIs based on the inversion of a single two-sided test
are shorter and their coverage probabilities tend to be closer to the nominal level
(Agresti 2003). For alternative options for deriving an exact confidence interval for
the odds ratio, see Sect. 2.5.2.

2.1.8 Example 2.2

Consider the following hypothetical data set, where 20 patients are cross-classified
according to treatment and therapy outcome.

Group Success Failure Total

A 10 3 13
B 2 5 7
Total 12 8 20

For given n1+ = 13, n+1 = 12 and n = 20, N11 ∼ H (20,13,12). All possible
values for N11 along with the corresponding probabilities p(t) = P(N11 = t) are
given below.

t 5 6 7 8 9 10 11 12
p(t) 0.0102 0.0954 0.2861 0.3576 0.1987 0.0477 0.0043 0.0001

In this case, tobs = 10 and p(10) = 0.0477. Testing H0 : θ = 1, we get the following
p-values:

H1 p-value
θ > 1 P+ = P(N11 ≥ t0) = p(10)+ p(11)+ p(12)= 0.0521

mid−P+ = 1
2 p(10)+ p(11)+ p(12)= 0.0283

θ < 1 P− = P(N11 ≤ t0) = p(5)+ . . .+ p(10) = 0.9956
mid−P− = p(5)+ . . .+ p(9)+ 1

2 p(10) = 0.9717

θ �= 1 P� = ∑t:p(t)≤p(10) = p(5)+ p(10)+ p(11)+ p(12)= 0.0623
Ptw = 2P+ = 0.1042
PCH = P++ p∗ = P++ p(5) = 0.0623

Note that p∗ = p(5), since the next left tail probability would be p(5) + p(6) =
0.1057 > p(10). Thus, for this data set we have PCH = P�.
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2.1.8.1 Example 2.2 in R

In R, the Fisher’s exact test along with the exact (1−α)100% confidence interval is
computed by fisher.test(). For our example,

> example <- matrix(c(10,2,3,5), 2, 2)

> fisher.test(example)

leads to the output

Fisher’s Exact Test for Count Data
data: example
p-value = 0.06233
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.7406562 117.2637532
sample estimates:
odds ratio
7.320765

Command
> fisher.test(example, alternative = "greater")

would provide the Fisher’s exact test for the one-sided alternative H1 : θ > 1. The
two-sided p-value adopted in fisher.test() is (2.24) and the provided confidence
interval, based on the acceptance region and this p-value, can be inconsistent with
the test (Fay 2010a). To observe this, replace in the data set above the first column
by quite larger frequencies, setting, for example,
> exampl2 <- matrix(c(127,45,3,5),2,2)

Then, function fisher.test() gives the following output
> fisher.test(exampl2)

Fisher’s Exact Test for Count Data
data: exampl2
p-value = 0.03876
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.8661222 31.1888976
sample estimates:
odds ratio
4.655061

Note, that although the null hypothesis of θ = 1 is rejected at α = 0.05, value
1 belongs to the 95% CI for θ . Fay (2010b) constructed algorithms that match the
p-values of testing and CI, implemented in R’s package exact2x2. Thus, the CI
based on the inversion of the two-sided test Fisher’s exact test but with the p-value
defined by (2.25) is derived as
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> exact2x2(exampl2, tsmethod = "central")

Central Fisher’s Exact Test
data: exampl2
p-value = 0.07752
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.8661222 31.1888976
sample estimates:
odds ratio
4.655061

An alternative option of exact2x2 is to construct Blaker’s confidence interval,
using the p-value (2.26). For this example

> exact2x2(exampl2, tsmethod = "blaker")

Blaker’s Exact Test
data: exampl2
p-value = 0.03876
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.0919 23.1823
sample estimates:
odds ratio
4.655061

Alternatively, exact tests for the odds ratio and associated confidence intervals
can be computed in R by packages propCIs and pairwise.CI.

2.2 Analyzing I × J Tables

2.2.1 Possible Sampling Schemes

Let X and Y be two categorical variables of I ≥ 2 and J ≥ 2 levels, respectively, that
are cross-classified in a I × J contingency table and ni j be the observed frequency
for cell (i, j), i = 1 . . . , I, j = 1, . . . ,J. The table will be of the following form.

n11 n12 · · · n1 j · · · n1J n1+

n21 n22 · · · n2 j · · · n2J n2+

· · · · · · · · · ·
ni1 ni2 · · · ni j · · · niJ ni+

· · · · · · · · · ·
nI1 nI2 · · · nI j · · · nIJ nI+

n+1 n+2 · · · n+ j · · · n+J n

Regarding the sample size and according to the study design, there are three
options: (a) the total sample size n is fixed, (b) one set of marginals is fixed, without
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loss of generality assume the row marginals (n1+,n2+, . . .nI+) are fixed, or (c) no
restriction is imposed on the sample size. The associated sampling proportions are
denoted by pi j =

ni j
n .

Case (a) corresponds to the situation where a sample of prespecified sample
size n is collected and its items are cross-classified with respect to the categorical
characteristics X and Y . The underlying sampling scheme is multinomial and interest
lies on testing independence of these characteristics. If Ni j is the random number of
observations in cell (i, j) with ∑i, j Ni j = n, then

(N11,N12, . . . ,NI.J−1)∼M (n,(π11,π12, . . . ,πI.J−1)) (2.27)

where (π11,π12, . . . ,πI.J−1)
T is the (IJ−1)×1 vector of cell probabilities, expanded

by rows. The probabilities matrix πππ = (πi j)I×J , with ∑i, j πi j = 1, is the joint
distribution of (X , Y ). The likelihood function under (2.27) is

L(n11, . . . ,nIJ) =
n!

∏i, j (ni j!)
∏
i, j
πni j

i j (2.28)

Situation (b) arises when samples from I independent populations and of prespec-
ified sizes n1+, . . .nI+ are available. That is, a categorical characteristic (in Y )
is recorded for I independent samples aiming to test the homogeneity of the
characteristic’s distribution across the samples. Thus, an independent multinomial
distribution is considered for each row i

(Ni1,N12, . . . ,Ni.J−1)∼M
(
ni+, (π∗i1,π

∗
i2, . . . ,π

∗
i.J−1)

)
, i = 1, . . . , I , (2.29)

with πππ∗i
T = (π∗i1,π

∗
i2, . . . ,π

∗
iJ) the probability vector for the ith population and

∑ j π∗i j = 1, for i = 1, . . . , I. This sampling scheme is the product multinomial and
the corresponding likelihood function is

L(n11, . . . ,nIJ) =
I

∏
i=1

L(ni1,n12, . . . ,ni.J) =
I

∏
i=1

(
ni+!

∏J
j=1 ni j!

J

∏
j=1

(π∗i j)
ni j

)

Since the row marginals (n1+,n2+, . . .nI+) are fixed, in the light of property (1.5),
the I independent multinomials can be derived from a multinomial of the type (2.27)
with n = ∑i ni+, fixed row marginal probabilities πi+ = ni+

n (i = 1, . . . , I), and π∗i j =

π j|i =
πi j
πi+

. Thus, the above likelihood function equals

L(n11, . . . ,nIJ) =
nn∏I

i=1

(
n−ni+

i+ ni+!
)

∏i, j (ni j!)
∏
i, j
πni j

i j (2.30)
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Note that for both (2.28) and (2.30), it holds

L(n11, . . . ,nIJ) ∝∏
i, j
πni j

i j (2.31)

and thus they are inferentially equivalent.
Finally, under (c) the concept is as in (a) with the difference that the total sample

size is random. Randomness of n arises because by design a different aspect is
constrained than sample size. Usually the design is time constrained. For example,
we record the monthly arrivals in a clinic and cross-classify them according to two
categorical characteristics X and Y . Then, if mi j is the expected frequencies for the
combination (X = i, Y = j),

(Ni j)∼P(mi j) , i = 1, . . . , I, j = 1, . . . ,J , (2.32)

and this sampling scheme is known as independent Poisson. The likelihood function
for case (c) is

L(n11, . . . ,nIJ) =∏
i, j

e−mi j m
ni j
i j

ni j!

Upon observing the sample, we can condition on the total sample size n. Then,
applying property (1.7), the likelihood function conditional on ∑i j mi j = n becomes

L(n11, . . . ,nIJ |n) = n!

∏i, j (ni j!)
∏
i, j

(mi j

n

)ni j
(2.33)

and by setting πi j =
mi j
n , this is equivalent to (2.28).

Overall, testing independence is not influenced by the underlying sampling
scheme. Furthermore, testing homogeneity of independent samples in terms of a
characteristic is equivalent to testing independence between the variable of the
characteristic and the variable defining the samples. Thus, all hypothesis testing
problems related to the setups discussed here are treated unified under the test of
independence, presented in the next subsection.

2.2.2 Test of Independence

The hypothesis of independence introduced and discussed for 2× 2 tables in Sect.
2.1.1 extends directly to the general I× J contingency table. The variables X and Y
are independent if

P(X = i, Y = j) = P(X = i)P(Y = j) , i = 1, . . . , I, j = 1, . . . ,J .
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The distribution of X , ignoring the level of Y , is defined by the vector of the row
marginal probabilities πr = (π1+,π2+, . . . ,πI+) and is known as the row marginal
distribution. Analogously, the column marginal distribution is defined for Y by
πc = (π+1,π+2, . . . ,π+J). Thus, variables X and Y are independent if the following
hypothesis holds

H0 : πi j = πi+π+ j , i = 1, . . . , I, j = 1, . . . ,J (2.34)

For the multinomial sampling scheme (2.27), the expected under (2.34) frequencies
are mi j = nπi+π+ j and their MLEs m̂i j = nπ̂i+π̂+ j, i = 1, . . . , I, j = 1, . . . ,J. Further,
by property (1.5), the distribution for the row marginals is

(N1+,N2+, . . . ,NI−1+)∼M (n,π r)

and the ML estimates of the row marginal probabilities are π̂i+ = pi+, i = 1, . . . , I,
with the analogous result holding also for the column marginals (π̂+ j = p+ j, j =
1, . . . ,J). The ML estimates of the expected cell frequencies under H0 are thus

m̂i j = npi+p+ j =
ni+n+ j

n
, i = 1, . . . , I, j = 1, . . . ,J . (2.35)

Hypothesis H0 will be tested asymptotically by Pearson’s X2. Since the row
(column) marginal probabilities sum to one, only I−1 (J−1) of them are unknown,
and the number of parameters to be estimated under H0 is (I − 1)+ (J − 1). The
associated d f are by (1.16) equal to d f = IJ−(I−1)−(J−1)−1= (I−1)(J−1).
Thus, Pearson’s X2 statistic (1.15) for testing (2.34) becomes

X2 =∑
i, j

(ni j − m̂i j)
2

m̂i j
(2.36)

The asymptotic distribution for (2.36) under H0 is X 2
(I−1)(J−1). Alternatively, the

asymptotic equivalent LR statistic (1.17) can be applied, here expressed as

G2 = 2∑
i, j

ni j log(
ni j

m̂i j
) . (2.37)

2.2.3 Example 2.3

The test of independence will be illustrated with a 2× 3 contingency table, formed
from the General Social Survey basis for year 2008 (GSS2008), cross-classifying
responders by gender and confidence in banks and financial institutions. The data
are given in Table 2.2. The ML estimates of the expected cell frequencies under the
hypothesis of independence (2.34) are provided in brackets.



2.2 Analyzing I × J Tables 37

Table 2.2 Respondents’ cross-classification by gender and their confidence in banks and financial
institutions (GSS 2008)

Confidence in banks

Gender Great deal Only some Hardly any Total

Male 98 (119.62) 363 (366.58) 153 (127.80) 614
Female 165 (143.38) 443 (439.42) 128 (153.20) 736
Total 263 806 281 1,350

In parentheses are give the maximum likelihood estimates under the hypothesis of independence

Test statistics (2.36) and (2.37) are asymptotically equivalent andX 2
2 distributed.

For this example, their observed values are X2 = 16.34 and G2 = 16.40, respectively,
that are highly significant with both corresponding p-values < 0.0003. Hence, H0 of
independence is rejected and we conclude that the level of confidence in banks and
financial institutions depends on the gender of the responder. With respect to the
conditional row distributions, we could say that the distribution of the confidence
level is nonhomogeneous for men and women. However, just the confirmation of
the speculation that confidence in banks and gender are dependent is not enough.
We would like to describe this dependence and investigate its direction. For this, we
need to compare the estimates of the expected under independence cell frequencies
to the observed frequencies. We can observe that men feel lower confidence for
banks than expected under independence while women higher. The cells that are
farther apart from independence are (1,3) and (2,3), in opposite directions, with
n13 − m̂13 = −(n23 − m̂23) = 25.2 followed by the set (1,1) and (2,1) with −(n11 −
m̂11) = n21 − m̂21 = 21.2. How can we evaluate the contribution of each cell to the
deviance from independence? Is the simple difference ni j − m̂i j appropriate for such
type of conclusions? These questions will be addressed in the next subsection.

In R, the analysis above is carried out by chisq.test(). As explained in Sect.
2.1.2, the data are read by chisq.test() in a matrix form. Thus, data in Table 2.2
is entered in matrix confinan as
> confinan <- matrix(c(98,363,153,165,443,128),byrow=T,ncol=3)

while labels can be added to the classification categories of the table
> dimnames(confinan) <- list(Gender=c("males","females"),

+ Conf=c("great deal","only some","hardly any"))

The X2 test of independence is then applied by
> chisq.test(confinan)

and the ML estimates of the expected cell frequencies under independence are
derived by
> chisq.test(confinan)$expected

To see more about chisq.test() and its possibilities for analysis and output, one
can consult R’s help command, help(chisq.test). The G2 test of independence is
achieved by the > G2() function of the web appendix (see Sect. A.3.2) as follows:
> G2(depsmok)
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2.2.4 Analysis of Residuals

Upon rejecting the H0 of independence, or more general any H0, interest lies
on detecting parts of the contingency table (single cells or whole regions) that
contribute more in the value of the goodness-of-fit statistic, i.e., parts of the table
that are mainly responsible for the rejection of H0. The natural quantities to observe
for this are the differences between the observed and the estimates of the expected
under H0 cell frequencies, called residuals

ei j = ni j − m̂i j , i = 1, . . . , I, j = 1, . . . ,J . (2.38)

The residuals are examined in terms of sign and magnitude. The detection of a
systematic structure of their signs is of special interpretational interest. However,
the evaluation of the importance of the contribution of a particular cell to the
deviation from independence, when based on these residuals, can be misleading.
More appropriate are the residuals that standardize (2.38) by dividing them by
their s.e.

e∗i j =
ei j√

Var(ei j)
=

ni j − m̂i j√
Var(m̂i j)

, i = 1, . . . , I, j = 1, . . . ,J , (2.39)

and are under the H0 of independence, es
i j ∼N (0,1), asymptotically. For Poisson

sampling, Var(m̂i j) =mi j and estimating Var(m̂i j) by m̂i j, the estimates of (2.39) are

eP
i j = ê∗i j =

ni j − m̂i j√
m̂i j

, i = 1, . . . , I, j = 1, . . . ,J , (2.40)

and are called Pearsonian residuals, since

X2 =∑
i, j

(
eP

i j

)2
. (2.41)

Thus, eP
i j are adequate quantities to evaluate the merit of each cell to the deviation

from independence.
Under multinomial sampling, Var(m̂i j) is different than under Poisson and

consequently the Pearsonian residuals (2.40) are no more asymptotic standard
normal distributed. Desired properties for a residual type would be that it is invariant
of the sampling scheme and asymptotic standard normal distributed. The Pearsonian
residuals are asymptotically normal distributed eP

i j ∼ N (0,vi j) but vi j �= 1, due to
the approximation of the variance Var(m̂i j) under H0 by estimating it. Haberman
(1973b) proved that under independence and for multinomial sampling, the asymp-
totic variances of the expected cell frequencies are vi j = vi j(π) = (1−πi+)(1−π+ j),
as n → ∞. He suggested to estimate asymptotic variances by their ML estimates
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v̂i j = (1− ni+

n
)(1− n+ j

n
) , i = 1, . . . , I, j = 1, . . . ,J ,

introduced the standardized residuals

es
i j =

eP
i j√
v̂i j

=
ei j√
m̂i j v̂i j

, i = 1, . . . , I, j = 1, . . . ,J , (2.42)

and proved that they are asymptotically standard normal distributed. Standardized
residuals (Haberman (1973b) called them adjusted residuals) are also common for
both sampling schemes, multinomial and independent Poisson. The standardized
residuals es

i j are thus more informative and preferable for reporting and analyzing.
Cells can be characterized as significantly influential against H0 at level a = 0.05,
for example, if |es

i j|> z0.025 = 1.96. Since vi j < 1, for all i, j, it is always |eP
i j|< |es

i j|.
For Example 2.3, the Pearsonian residuals (2.40) are obtained in R by

> chisq.test(confinan)$residuals

Conf
Gender great deal only some hardly any
males -1.976451 -0.1870200 2.228841
females 1.805225 0.1708179 -2.035749

while the standardized residuals (2.42) by
> chisq.test(confinan)$stdres

Conf
Gender great deal only some hardly any
males -2.983089 -0.3990097 3.392228
females 2.983089 0.3990097 -3.392228

By the Pearsonian residuals we conclude that the deviation from independence
is no more symmetric for the set of cells in column 3 neither in column 1. The
cells in decreasing significance order of deviation from H0 are (1,3), (2,3), (1,1),
and (2,1). Thus, the level of confidence in banks is significantly different for
men and women. The major contribution to deviation from independence is due
to the “nonconfidence” category with the men being highly non-confident while
the women are less non-confident than under independence. The next significant
category is that of confidence, for which women show higher confidence than under
independence while men lower. Finally the partial confidence category does not
differ significantly for men and women.

Similar to the Pearsonian residuals, the deviance residuals are defined by the cell
components of the G2-statistic. They are equal to

ed
i j = sign(ni j − m̂i j) ·

[
2ni j log(

ni j

m̂i j
)

]1/2

, i = 1, . . . , I, j = 1, . . . ,J . (2.43)

with G2 = ∑i, j

(
ed

i j

)2
.
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The residuals discussed above in the context of the hypothesis of independence
are defined and analyzed in the same manner for any other hypothesis H0, provided
the m̂i j’s involved are the estimates of the expected cell frequencies under the
assumed H0. Furthermore, they are defined analogously for testing hypothesis on
multi-way contingency tables.

The only residual options of chisq.test() are the Pearsonian and the standard-
ized. The deviance residuals are provided in the log-linear models framework and
we shall revisit the example for this in Sect. 4.2.2.

The analysis of a contingency table is completed by visualizing the residuals
graphically. For large n, the normal probability plots for the ordered standardized
residuals are a standard companion while Santner and Duffy (1989) suggest also
plots of the residuals vs. the row or column category indexes. Informative are also
graphical displays presented in Sect. 2.4 and illustrated for Example 2.2 in Fig.5.1
(right).

2.2.5 Odds Ratios for I × J Tables

The odds ratio θ is a powerful measure of association for a 2 × 2 table of high
interpretational importance. It is the basis for detecting association structures also
in I × J tables. For this, a decomposition of the I × J table to a set of 2 × 2
tables is needed. In general, for an I × J table, a set of (I − 1)(J − 1) basic
2× 2 tables is formed and the corresponding odds ratios describe the underlying
associations. However this decomposition is not unique. Depending upon the type
of the classification variables but also on the inference problem under consideration,
there are alternative options, leading to different types of odds ratios.

For nominal classification variables this set of basic 2 × 2 tables is defined in
terms of a reference category, usually the cell (I,J). Then the 2× 2 tables formed
have in their upper diagonal cell the (i, j) cell of the initial table, for i = 1, . . . , I −
1, j = 1, . . . ,J − 1, and in the lower diagonal cell always the reference cell (I,J).
The non-diagonal cells are the cells of the initial table that share one classification
variable index with each diagonal cell, i.e., they are the cells (i,J) and (I, j). Thus,
the nominal odds ratios are defined as

θ IJ
i j =

πi jπIJ

πI jπiJ
, i = 1, . . . , I− 1, j = 1, . . . ,J − 1 . (2.44)

The diagonal cells are indicated in the sub- and superscript of the notation.
Of course, any cell (r,c) of the table could serve as reference category and the
nominal odds ratios are then defined analogously for all i �= r, j �= c.

Different types of odds ratios are adequate for ordinal variables. A fixed reference
cell is not meaningful and a more natural choice is either to compare each level
of the ordinal classification variable to the immediate next or for each level, to
oppose the events of being up to it or above it. The first option refers locally to
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just two successive categories while the second engages cumulatively all categories.
Adoption of the same type (local or cumulative) for both classification variables
or different for each of them leads to the three more characteristic odds ratios for
ordinal variables. Consideration of the same option for both classification variables
treats them symmetrically while otherwise not. The nonsymmetric case is adequate
for problems with a response variable, for which the cumulative option is adopted.
Of course, the odds ratios treating both variables symmetrically do also apply for
response variables.

When both classification variables are treated locally, the 2×2 tables are formed
by two successive rows i and i+1, for i = 1, . . . , I−1, and two successive columns j
and j+1, for j = 1, . . . ,J−1. This way there are formed (I−1)(J−1) local tables
and the corresponding odds ratios are the local odds ratios

θL
i j =

πi jπi+1, j+1

πi+1, jπi, j+1
, i = 1, . . . , I− 1, j = 1, . . . ,J− 1 . (2.45)

This minimal set is sufficient to describe association and derive odds ratios for any
other 2× 2 table formed by non-successive rows or columns. A 2× 2 subtable is
determined by its diagonal cells. Once they are chosen, the non-diagonal cells are
specified by combining the levels of the classification variables of the diagonal ones.
Thus, assuming that both classification variables are in increasing order, the odds
ratio for comparing cell (i, j) to the cell that is k levels higher for the row and �
levels higher for the column classification variable, i.e., the (i+ k, j+ �) cell, refers
to the subtable

j j+ �

i
i+ k

and is derived by the local odds ratios as

θ i+k, j+�
i j =

πi jπi+k, j+�

πi+k, jπi, j+�
=

k−1

∏
ρ=0

�−1

∏
ξ=0

θL
i+ρ , j+ξ , 1 ≤ k ≤ I − i, 1 ≤ �≤ J− j . (2.46)

For k = � = 1, (2.46) is the local odds ratio, i.e., θL
i j = θ

i+1, j+1
i j , while for k = I − i

and �= J − j, (2.46) becomes the nominal odds ratio (2.44).
For nominal and local odds ratios, the minimal set of 2 × 2 tables is a set of

subtables of the initial table. If the cumulative option is adopted for at least one of the
classification variables for defining the odds ratios, then the associated 2× 2 tables
are no more subtables. When both classification variables are treated cumulatively,
then the 2 × 2 tables are collapsed versions of the I × J table, produced by
transforming the classification variables to binary with cut points i (i = 1, . . . , I−1)
and j ( j = 1, . . . ,J − 1) for rows and columns, respectively. This way, all cells of
the initial table participate in the formulation of each 2× 2 table and association is
faced globally. The associated odds ratios are the global odds ratios, defined by
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Local Continuation

Cumulative

Continuation 2

Global odds ratio

Fig. 2.1 Formulation of the generalized odds ratios for I × J contingency tables. With respect to
ordinality of the row and column classification variables X and Y , odds ratios in the first, second,
and third column require ordinality of none, only Y , or both X and Y , respectively

θG
i j =

(
∑l≤i∑k≤ j πlk

)(
∑l>i∑k> j πlk

)
(
∑l≤i∑k> j πlk

)(
∑l>i∑k≤ j πlk

) , i = 1, . . . , I−1, j = 1, . . . ,J−1 , (2.47)

and illustrated in Fig. 2.1. In the numerator is the product of the sums of cells in the
dark shadowed rectangles while in the denominator the product of the sums in the
light shadowed rectangles.

Odds ratios θL
i j and θG

i j refer to different types of associations and the choice
between them relies on the needs of our analysis and the nature of the underlying
classification variables.

Both types of odds ratios, θL
i j and θG

i j , treat both classification variables in

a symmetric way (the θL
i j’s locally and the θG

i j ’s cumulatively). If only one
classification variable is treated cumulatively, say the columns’ variable Y and the
other locally, then for the formulation of the 2 × 2 tables only the columns of
the initial table are collapsed and each of them is based on all cells of two successive
rows of the table. Hence, for given i (i = 1, . . . , I − 1) and j ( j = 1, . . . ,J − 1), the
tables constructed are of the form presented in Fig.2.1.

The odds ratios applied on these tables are the cumulative odds ratios, defined by

θCY
i j =

(
∑k≤ j πik

)(
∑k> j πi+1,k

)
(
∑k> j πik

)(
∑k≤ j πi+1,k

) , i = 1, . . . , I− 1, j = 1, . . . ,J− 1 . (2.48)

The cumulative odds ratio θCX
i j is cumulative with respect to the rows, applies on

successive columns j and j+ 1, and is defined analogously.
Cumulative and global odds ratios make sense for ordinal classification variables.

They are also meaningful for tables with one ordinal classification variable and one
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binary. For 2× J tables, the global and cumulative odds ratios, (2.47) and (2.48),
coincide.

Less popular are the continuation odds ratios

θCOY
i j =

π j|i/(∑k> j πk|i)
π j|i+1/(∑k> j πk|i+1)

(2.49)

and the continuation type 2 odds ratios

θCO2Y
i j =

π j|i/(∑k> j πk|i)
∑�>iπ j|�/(∑k> j,�>iπk|�)

. (2.50)

Odds ratios (2.49) and (2.50) consider Y to be the response variable. Analogously
are defined the θCOX

i j and θCO2X
i j , when X is the response.

For the generalized odds ratios presented above, the ordinality of the clas-
sification variables is required only whenever a classification variable is treated
cumulatively. Thus, the local odds ratios are also appropriate for nominal variables.
In Fig.2.1 is illustrated the formulation of the generalized odds ratios. They are
organized in columns according to requirements on ordinality of the classification
variables. In the first column is only the θL

i j that can be applied also when both X
and Y are nominal. In the second column ordinality is required only for the column
classification variable Y while in the third for both X and Y .

We have seen that an I × J probability table πππ = (πi j) with positive entries
determines uniquely the corresponding (I − 1)× (J − 1) table of local odds ratios
or any other type of generalized odds ratios. On the other hand, an (I −1)× (J−1)
table of positive and finite local odds ratios corresponds to more than one probability
tables, since property (2.13) for θ of the 2×2 table generalizes also to the local odds
ratios of the I×J table. Hence, given an (I−1)× (J−1) table of positive and finite
local odds ratios θθθL = (θL

i j), a corresponding I × J probability table πππ = (πi j) is
derived by

πi j =
αiβ jθ i j

11

∑I
i=1∑J

j=1αiβ jθ i j
11

, i = 1, . . . , I, j = 1, . . . ,J , (2.51)

where θ i j
11, for i, j > 1, are defined by (2.46), θ i j

11 = 1 for i = 1 or j = 1, and αi, β j

positive parameters. It can be proved that the probability table πππ becomes unique
once its row and column marginals, πππT

r = (π1+, . . . ,πI+) and πππT
c = (π+1, . . . ,π+J),

are fixed, which uniquely specify the parametersαi, i = 1, . . . , I, and β j, j = 1, . . . ,J,
respectively. In other words, θ , πππr, and πππc determine uniquely the table of joined
probabilities πππ , a result that holds also when θ is replaced by any other minimal set
of odds ratios.

In analogy to the simple 2×2 table, where independence was equivalent to θ = 1,
it can be verified that for an I × J contingency table, the independence hypothesis
(2.34) is equivalent to the hypothesis that all odds ratios in a minimal set are equal
to 1. Thus, in terms of local odds ratios, (2.34) is equivalent to

θL
i j = 1 , i = 1, . . . , I − 1, j = 1, . . . ,J− 1 . (2.52)
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Independence could equivalently be expressed by (2.52) for any other type of
minimal set of odds ratios. The hypothesis formulation for independence is simpler
for the odds ratio than for the expected probabilities parameterization, since (2.52)
assigns fixed values to the parameters while under (2.34) parameters have to be
estimated. Also the d f of independence are directly understood by (2.52).

In general, beyond independence, any hypothesis considered for the structure of
an I × J probability table π = (πi j) can equivalently be expressed in terms of the
corresponding (I−1)× (J−1) table of local odds ratios, as we shall see in Chaps.6
and 8. In view of the discussion above, when a hypothesis H0 is defined in terms of
odds ratios, the row and column marginal probabilities are required for the expected
under H0 cell probabilities to be fully determined.

The odds ratios presented above refer to the population under consideration and
are unknown. Upon observing a sample, the sample local odds ratio is

θ̂L
i j(n) =

ni jni+1, j+1

ni+1, jni, j+1
, i = 1, . . . , I− 1, j = 1, . . . ,J − 1 . (2.53)

The ML estimate of θL
i j of θi j under a hypothesis H0 is provided by (2.53) with

the observed frequencies (ni j) being replaced by the ML estimates of the expected
under H0 frequencies (m̂i j). The sample odds ratios θ̂ IJ

i j , θ̂G
i j , θ̂CY

i j , θ̂COY
i j , and θ̂CO2Y

i j
are defined analogously.

In R, the various sets of generalized odds ratios are easier computed in log-scale
and working with matrices. It can easily be proved that the set of the sample log local
odds ratios is derived in a (I − 1)(J− 1)× 1 vector logL (expanded by rows) as

logL = CL · logn , (2.54)

where n is the IJ × 1 vector of the observed frequencies (given by rows) and CL is
an appropriate design matrix of size (I − 1)(J − 1)× IJ. Analogously, the global,
cumulative, continuation, and continuation of type 2 odds ratios, in log-scale, are
provided in vector form by

logOi = Ci · log(Mi ·n) , i = 1, . . . ,4 , (2.55)

where Ci and Mi are appropriate matrices. The R functions local.odds.DM(),
global.odds.DM(), cum.odds.DM(), and cont.odds.DM(), provided in the web
appendix (see Sect. A.3.2), produce the design matrices used in (2.54) and (2.55),
for deriving the various sets of generalized odds ratios for any choice of I and J.
The use of these functions is illustrated in the example below.
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Table 2.3 Respondents’ cross-classification by educational level and their opinion about national
spending for welfare (GSS 2008)

Highest degree obtained

Welfare spending LT high school High school Junior college Bachelor Graduate Total

Too little 45 116 19 48 23 251
About right 40 167 33 68 41 349
Too much 47 185 34 63 26 355

Total 132 468 86 179 90 955

Table 2.4 The sample ordinal odds ratios (a) θ̂L
i j , (b) θ̂G

i j , and (c) θ̂XY
i j for the data in Table 2.3

Highest degree obtained

Welfare spending LT high school High school Junior college Bachelor Graduate

(a) Too little 1.62 1.21 0.82 1.26
About right 0.94 0.93 0.90 0.68
Too much

(b) Too little 1.55 1.08 0.99 1.04
About right 1.08 0.84 0.78 0.66
Too much

(c) Too little 1.57 1.16 0.77 1.07
About right 1.18 1.00 0.83 0.75
Too much

2.2.6 Example 2.4

Data in Table 2.3 are from the General Social Survey basis for year 2008 (GSS2008).
Responders are cross-classified by their opinion on the sufficiency of the amount
of national spending for welfare and their educational level, measured by the
highest degree they obtained. Both classification variables are ordinal. The national
spending can be considered as a response variable, thus the cumulative odds ratio
is applicable. Since the response variable is in rows (X), the appropriate cumulative
odds ratio is θ̂CX

i j , the cumulative on X .
For this example, the ML estimates of the local odds ratios, global odds ratios,

and cumulative odds ratios are presented in Table 2.4. Indicatively, we calculate

θ̂L
12 =

116 ·33
167 ·19

= 1.21

θ̂G
12 =

(45+ 116)(33+ 68+41+34+63+26)
(40+ 167+ 47+185)(19+48+23)

= 1.08

θ̂XY
12 =

116(33+ 34)
(167+ 185)19

= 1.16
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This means that the odds of believing that the welfare spending is about right than
too little is 1.21 times higher for junior college than high school graduates. Similarly,
the odds of spending being about right or above than too little is 1.08 times higher for
responders with education higher than high school than up to high school. Finally,
the odds of spending being about right or above than too little is 1.16 times higher
for junior college than high school graduates.

For this data set, the R function for producing the 2× 3 tables of the local odds
ratios is implemented as follows:
freq<-c(45,116,19,48,23,40,167,33,68,41,47,185,34,63,26)

NI <- 3; NJ <- 5; C <- local.odds.DM(NI,NJ)

L.OR <- exp(t(matrix(as.vector(C%*%log(freq)), NJ-1)))

Analogously, the global odds ratios are derived by
C1 <- global.odds.DM(NI,NJ)$C ; M1 <- global.odds.DM(NI,NJ)$M

GL.OR <- exp(t(matrix(as.vector(C1%*%log(M1%*%freq)), NJ-1)))

By (2.55), the cumulative, the continuation, and the continuation type 2 odds ratios
are produced as the global odds ratios by replacing the set of matrices (C1, M1) by
(C2, M2), (C3, M3), and (C4, M4), respectively, where
C2 <- cum.odds.DM(NI,NJ)$C; M2 <- cum.odds.DM(NI,NJ)$M

C3 <- cont.odds.DM(NI,NJ,1)$C; M3 <- cont.odds.DM(NI,NJ,1)$M

C4 <- cont.odds.DM(NI,NJ,2)$C; M4 <- cont.odds.DM(NI,NJ,2)$M

Functions cum.odds.DM() and cont.odds.DM() derive the matrices required
for the calculation of the odds ratios θ̂CY

i j , θ̂COY
i j , and θ̂CO2Y

i j , i.e., with Y being the
response variable. In case the response is in rows variable X , we only need to apply
the procedure described above on the transpose of the data table.

The fact that for this example all sample odds ratios are close to 1 indicates
that whatever association there is between the belief about welfare spending and
the responder’s educational level is very weak. Indeed, Pearson’s statistic (2.36) for
testing independence equals X2 = 10.52 and is nonsignificant (d f = 8, p-value =
0.2304). This example will be revisited in Sects.2.4 and 4.2.1.

2.3 Test of Independence for Ordinal Variables

When both classification variables of a contingency table are ordinal, we are
interested in the direction of the underlying association (positive or negative).
The ordering information of a classification variable is captured in scores, assigned
to its categories. Thus, for an I×J table let x1 ≤ x2 ≤ . . .≤ xI and y1 ≤ y2 ≤ . . .≤ yJ

be the scores assigned to the categories of the row and column classification
variables, X and Y , respectively, with x1 < xI and y1 < yJ .

The structure of the underlying association is then expressed through rela-
tions among the scores. A first sensible assumption is that association exhibits
a linear trend. The linear trend is measured by Pearson’s correlation ρ between
X and Y , defined through their categories’ scores. It is easy to verify that for
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marginally weighted scores, i.e., scores satisfying ∑I
i=1πi+xi = ∑J

j=1π+ jy j = 0

and ∑I
i=1πi+x2

i = ∑J
j=1π+ jy2

j = 1, the sample correlation is r = 1
n ∑i, j xiy jni j. The

linear trend test (Mantel 1963) restricts interest to linearly associated classification
variables and tests the significance of ρ . Thus, the testing problem is

H0 : ρ = 0 vs H1 : ρ �= 0 (2.56)

and the corresponding test statistic

M2 = (n− 1)r2 (2.57)

The linear trend is a strong assumption that concentrates all association information
of the table in just one parameter, r, regardless of the size I×J of the table. Thus, not
surprisingly, the linear trend test is a 1 df test. Under H0 in (2.56) and for a random

sample of large n, M2 H0∼ X 2
1 . Consequently,

R = sign(r)
√

M2 H0∼ N (0,1) ,

and the test statistic R can be used for testing one-sided alternatives. The values of
M2 range from 0 (independence) to n−1 (perfect linear association), with evidence
against independence increasing in M2.

The test remains invariant under linear transformation of the scores. Thus,
important are not the scores’ values themselves but the distances between scores of
successive categories. Therefore, for a classification variable of only two categories
(I = 2 or J = 2), M2 remains invariant under any choice of two (different) scores,
since there is just one distance between categories. Since for a binary variable the
scores serve just as labels, the linear trend test can be applied also to 2×J tables with
the binary variable nominal. In general, methods and models appropriate for ordinal
contingency tables can still be applied in presence of binary nominal classification
variables.

2.3.1 The Choice of Scores

Scores is a powerful tool in the analysis of ordinal contingency tables and the
development of special, very informative models, as we shall see in the sequel
(Chaps.6–9). Often, it is not clear how scores should be chosen. Typically, different
choices of monotone scores lead to the same results, but different scores’ systems
can lead to different results (Graubard and Korn 1987). There is no direct way
to measure the sensitivity of an analysis on the scores used. Test results may be
sensitive in the choice of scores when the margins of the table are highly unbalanced
or even if some cells have considerably larger frequencies than the others. Hence,
scores’ assignment can be crucial.
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Table 2.5 Cross-classification of response on presence of
varicella complications vs. age for 170 children in Germany
(Boulesteix and Strobl 2007)

Age category (in years)

Varicella complications 0–1 1–2 2–3 3–18

No 10 7 9 59
Yes 6 19 12 48

The most common scores used are (a) the equally spaced scores, appropriate for
ordinal classification variables, usually set equal to the category order (1,2, . . .), (b)
the category midpoints for interval classification variables, and (c) the midranks.
Midranks assign to each category the mean of the ranks of its cases, when all
items of the sample are ranked from 1 to n. When midrank scores are applied to
both classification variables, then r is Spearman’s coefficient. For an interval scaled
classification variable with an open category (the first or the last), the midpoint
score of the open category is not uniquely determined, since we have to arbitrarily
assume a lower or upper limit for the scale. Of course, any other choice is possible,
provided it can be justified from the knowledge about the data. When inference
differs significantly for alternative scoring sets, it is important to choose scores
based on nature of the data and not guided by the desired result.

Often, scores are standardized. Standardization does not affect the test, since it
is a linear transformation of the initially considered set of scores. Scores and their
influence in trend analysis will be clarified in the example that follows.

2.3.2 Example 2.5

We shall consider a data set on varicella disease (Boulesteix and Strobl 2007) that
cross-classifies 170 children according to their age (in four categories) and their
binary response about complications. Data are provided in Table 2.5. The hypothesis
of independence is rejected at α = 0.05, since X2 = 8.098 and G2 = 8.328 with
d f = 3 and associate p-values equal to 0.044 and 0.040, respectively.

In order to perform the linear rank test, scores need to be assigned to the row
and column categories of the table. Since I = 2, the choice for the row scores
does not influence the outcome of the test and it will be x1 = 1 and x2 = 2,
the simplest and natural choice. The column classification variable is interval
scaled, hence the adequate choice is the category midpoints. However, we shall
consider the raw and the midrank scores as well, to reveal the differences and
innovate the discussion. Hence, for the column scores (y1,y2,y3,y4) we consider
(a) the raw scores (1,2,3,4), (b) the category midpoint (0.5, 1.5, 2.5, 10.5), and
(c) the midranks (8.5, 29.5, 53, 117). For the computation of the midranks the
column marginals and their cumulative distribution are required. In our example,
they are (16,26,21,107) and (16,42,63,170), respectively. Hence, there are 16
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Table 2.6 Linear trend tests for Example 2.4 and for the indicated
choices of scores

r M2 d f p-value

(a) Raw scores −0.085 1.223 1 0.269
(b) Category midpoints −0.125 2.636 1 0.104
(c) Midranks −0.112 2.130 1 0.144

p-values are based on the X 2
1 approximation

children with ranks {1,2, . . . ,16} in the 1st age category , 26 children with ranks
{17,18, . . . ,42} in the 2nd, etc. Thus, y1 =

1+...+16
16 , y2 =

17+...+42
26 , y3 =

43+...+63
21 ,

and y4 =
64+...+170

107 .
The linear trend tests for the above discussed different choices of scores are pro-

vided in Table 2.6. For this example all choices of scores do not give much evidence
against H0 but with different significance. We have argued that the appropriate
choice is (b); thus, the associated p-value is 0.104. Interpretation conclusions should
be drawn with caution. Acceptance of ρ = 0 does not imply independence. In our
case, we conclude that provided there is a linear trend in the probability of varicella
complications across age categories, this trend seems negative but is nonsignificant
(p-value = 0.104). We do not conclude that complications are independent of age. As
we shall see later on in Sect.6.6.3, complications are age dependent but not linearly.
Thus, the linear trend test is a powerful 1 d f test but of restricted origin.

2.3.3 The Linear Trend Test in R

In R the linear trend test can be fitted by function linear.trend(), provided in the
web appendix (see Sect.A.3.2). It requires the data in vector form (by rows), the
number of rows and columns (here, I = 2, J = 4), and the row and column scores
to be used in vectors. The implementation for Example 2.5 and midpoint scores
follows.
> varicella <- c(10,7,9,59,6,19,12,48)

> x <- c(1,2) ; y <- c(0.5, 1.5, 2.5, 10.5)

> linear.trend(varicella, 2, 4, x, y)

The derived output is

$r
[1] -0.1248894
$M2
[1] 2.635954
$p.value
[1] 0.1044693

Raw and midpoint scores are easily typed, midrank scores can be computed
through the midrank() function, provided in the web appendix (see Sect.A.3.2).
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This function requires the data in a vector form (by rows), the number of rows and
columns and a logical parameter (row), controlling whether the row (row = T) or
column scores (row = F) are to be computed. For our example, command
> y <- midrank(varicella, 2, 4, F)

saves in vector y the midrank scores for the columns of Example 2.5 in Sect. 2.3.2.
For 2× J tables formed by a binary response and an explanatory variable, such

as Example 2.5 above, independence can equivalently be expressed as equality of
success proportions across the levels of the explanatory variable. In this context,
(2.57) tests the significance of linear trend in the success probabilities and can be
fitted by prop.trend.test() of R.

2.4 Graphs for Two-way Tables

The first type of plot one thinks of to describe a two-way contingency table is a
stacked barplot of the observed frequencies or proportions of the table. Furthermore,
special graphs have been developed to visualize graphically the sizes of the cells
of a table (observed or expected under an assumed model) and the structure
of underlying associations (illustrating the residuals for the assumed model).
Characteristic such special graphs are the sieve diagram and the more popular
mosaic plot. For a 2× 2 table, the odds ratio is visualized by the fourfold display.

The barplots (simple or stacked) can be constructed in the basic graphics

package of R. Fourfold displays and mosaic plots can be obtained in graphics

as well, but for the construction of graphs for categorical data, the special package
vcd (Visualizing Categorical Data) has been developed, offering more options.

In the following subsections stacked barplots, sieve diagrams, and mosaic plots
are illustrated for Examples 2.2 and 2.3. The fourfold display is derived for Example
2.1(a).

We do not present the features of packages graphics and vcd for controlling the
appearance of a graph. For more on R graphics we refer to Murrell (2006) and for
applying and programming in vcd to Meyer et al. (2006).

2.4.1 Barplots

In R, barplots are produced by barplot(). The input can be a vector or a matrix,
resulting to a simple or stacked barplot, respectively. In case of matrix input, the
column categories define the bars while the row categories form the stacked levels.

We shall illustrate the barplots for Example 2.2 on the gender by confidence
to banks and financial institutions cross-classification. The corresponding data
table is in R matrix confinan, defined in Sect. 2.2.3 while labels have also been
assigned to the row and column classification categories. The barplot in terms of
proportions is then derived by applying barplot() on the table of proportions
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Fig. 2.2 Barplot of the observed proportions (left) and the conditional proportions (right) for data
of Table 2.2

prop.table(confinan) as
> barplot(prop.table(confinan), density=30, legend.text=T, main=

+ "Confidence in Banks and Financial Institutions by Gender

+ (GSS2008)", xlab="Confidence level", ylab="Proportions",

+ ylim=c(0,0.65))

and is to be seen in Fig.2.2 (left).
The role of gender in confidence to banks is better visualized by the barplot of

the conditional column proportions of the table. This barplot is obtained by the com-
mand above, replacing the matrix of proportions by prop.table(confinan,2),
the matrix of conditional column proportions, and changing the label for axis y

accordingly. The conditional barplot is provided in Fig.2.2 (right). Observing Fig.
2.2 (right), we see that the gender analogy is not fixed within confidence categories,
with the proportion of men growing as we move to categories of less confidence.
This visualizes the dependence of confidence to banks on gender with women being
less suspicious.

The required argument by barplot() is only the table to be plotted. The
remaining arguments process the appearance of the barplot, like defining the shading
of the sub-bars (density), adding labels to the row categories that are stacked in the
bars (legend.text=TRUE), adding labels to the figure (main) and its axes (xlab,

ylab), or specifying the limits of the axes (xlim, ylim).
Analogously, for Example 2.4, the barplot and the conditional barplot of the GSS

2008 respondents’ opinion on national welfare pending are presented in Fig.2.3.
In Sect. 2.2.6, the data (Table 2.3) were entered in a vector form (expanded by

rows)
> freq <- c(45,116,19,48,23,40,167,33,68,41,47,185,34,63,26)
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Fig. 2.3 Barplot of the observed proportions (left) and the conditional proportions (right) for data
of Table 2.3

In order to produce a stacked barplot, they need to be in their table form. For this,
we construct the matrix natfare as follows:
> natfare <- matrix(freq, byrow=TRUE,ncol=5)

> dimnames(natfare) <- list(WELFARE=c("too little","about right",

+ "too much"), DEGREE=c("LT HS","HS", "JColg","BA", "Grad"))

In this case, we want to define the bars by the rows of the table, thus barplot()
is applied on the transpose of the data matrix t(natfare). Hence the barplot in
Fig.2.3 (left) is obtained by
> barplot(t(natfare), legend.text=T, args.legend=list(x=1,y=350,

+ cex=.8), main="Opinion on National Welfare Spending by

+ Educational Level (GSS 2008)", xlab="Welfare Spending",

+ ylab="Frequencies")

The labels of the categories stacked are printed in the upper right corner of the
plot, by default. In this case, it is convenient to move the legend box to the upper
left corner. This is achieved by the argument args.legend=list(x=, y=, cex=),
where x and y define the (x,y) coordinates of the legend’s location and cex

rescales the font size of the legend. For the barplot of the conditional proportions
(Fig.2.3 right), the input matrix t(natfare) in the command above is replaced
by the matrix prop.table(t(natfare),2) and the label of the y-axis is changed
accordingly. Observing the conditional barplot, we realize that the distributions
of educational levels within each category of opinion about welfare spending are
similar, in agreement with the independence model that is not rejected for this
data set.



2.4 Graphs for Two-way Tables 53

Ever_Smoker: Yes

D
ep

re
ss

io
n:

 Y
es

Ever_Smoker: No

D
ep

re
ss

io
n:

 N
o

144

50

1729

1290

Fig. 2.4 Fourfold plot for the odds ratios of Example 2.1(a) [Table 2.1(a)]

2.4.2 Fourfold Plots

A fourfold plot provides a graphical expression of the association in a 2× 2 table,
visualizing the odds ratio. Each cell entry ni j, i, j = 1,2, is represented as a quarter-
circle with radius proportional to

√
ni j. Thus, the area of each of the quarter-circles

is proportional to the corresponding cell frequency.
If the diagonal areas are greater (less) than the off-diagonal areas, then the

association between the two binary classification variables is positive (negative), i.e.,
the odds ratio is θ > 1 (< 1). The direction of the association is visually strengthened
by the use of color. In case of no association (θ = 1), the quarter-circles should form
a circle. The test of the null hypothesis of no association is also visualized on the
fourfold plot by the confidence rings provided for each quarter-circle. The observed
frequencies support the null hypothesis if the rings for adjacent quarters overlap.

The fourfold plot of Example 2.1(a) is displayed in Fig.2.4 and is obtained in
package graphics by the function
> fourfoldplot(depsmok, color = c("#CCCCCC", "#999999"))

where depsmok is the data matrix, constructed in Sect. 2.1.2.
It is thus verified that the association between smoking and depression is signifi-

cant (the confidence rings do not overlap) and positive (the diagonal quarters—dark
colored—are of greater area).

The standard confidence level is set to 95% but can be controlled through
the argument conf.level =. Also the colors are set by default to red–blue, i.e.,
color = c("#99CCFF", "#6699CC"). Hence a red–blue fourfold display with
99% confidence rings would be derived by
> fourfoldplot(depsmok, conf.level = 0.99)

Fourfold plots can also be drawn for the generalized odds ratios of I × J tables.
For example, the fourfold plots for the local odds ratios of any I × J table can
be produced in a (I − 1)× (J − 1) matrix form by the function ffold.local(),
provided in the web appendix (see Sect. A.3.2). Thus, the local odds ratios of
Table 3.5 can be visualized in Fig.2.5, which is produced by
> ffold.local (natfare)
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Fig. 2.5 Fourfold plots for the local odds ratios of Example 2.4 (Table 2.3)

2.4.3 Sieve Diagrams

The sieve diagram (or parquet diagram) represents for a I × J table the expected
cell frequencies under independence, as a rectangular formed by a collection of IJ
rectangles, each of them having height and width proportional to the corresponding
row and column marginal frequencies, respectively. This way the area of each
rectangular is proportional to the expected under independence frequency for the
corresponding cell. The number of squares in each rectangular equals the observed
frequency for this cell. The sieve diagram can also be constructed for the observed
cell frequencies of the table. In this case the rectangles are colored and their frame
is dashed according the sign of the corresponding residuals. Blue-dashed squares
indicate positive while red non-dashed negative residuals.

Figure 2.6 provides the sieve diagrams for expected under independence and
observed cell frequencies of Examples 2.3 and 2.4. The command sieve() of the
vcd package, applied on data matrix confinan as
> sieve(confinan, sievetype="expected", shade=T)

and
> sieve(confinan, shade=T)

produces the sieve diagrams for Example 2.3, to be seen in Fig.2.6 upper left and
Fig.2.6 upper right plots, respectively. The sieve diagrams for Example 2.4 are
derived analogously.
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Fig. 2.6 Sieve Diagrams of the expected under independence (left) and the observed (right) cell
frequencies for data of Table 2.2 (upper) and Table 2.3 (lower)

2.4.4 Mosaic Plots

Mosaic plots for two-way tables display graphically the cells of a contingency table
as rectangular areas of size proportional to the corresponding observed frequencies.
Were the classification variables independent, the areas would be perfectly aligned
in rows and columns. The worse the alignment is, the stronger is the lack of
fit for independence. Furthermore, specific locations of the table that deviate
from independence the most can be identified and thus the pattern of underlying
association can be explained. The strength of individual cells’ contribution to
divergence from independence as well as the direction of the divergence are reflected
in the magnitude and sign of the corresponding independence model’s residuals that
can be incorporated in a mosaic plot.
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Fig. 2.7 Mosaic plots based on the independence model applied on Table 2.2: plain (left) and
incorporating the significant (α = 5%) deviance residuals (right)

Mosaic plots can be obtained in graphics by mosaicplot(). In vcd, the
corresponding function is mosaic(). The simplest version of mosaic plot con-
structed requires only the specification of the matrix on which it is applied.
Thus, mosaic(natfare) produces the mosaic plot for Example 2.3 (Fig.2.7, left).
The boxes corresponding to each cell have area proportional to the observed cell
frequency.

The residuals for independence are incorporated in a mosaic plot through the
option residuals_type, with default type the Pearsonian, and the option gp for
controlling color and shading. Hence,
> mosaic(confinan, gp=shading_hcl)

shades the boxes of the nonsignificant at the 5% level Pearsonian residuals gray,
colors the significant ones (blue the positive and red the negative), and reports the
p-value of the independence model fit. Alternative options for gp are, for example,
gp=shading_max or gp=shading_Friendly. The last replaces the gray-shaded
boxes for nonsignificant residuals by non-shaded boxes color framed (dashed red
for negative and solid blue for positive). Furthermore, gp can be controlled by
the user. Adding in mosaic() the argument labeling = labeling_residuals

would cause the printing of the residual values only for the cells of significant at 5%
level residuals.

For the deviance residuals, the corresponding command would be
> mosaic(confinan, gp=shading_hcl, residuals_type="deviance",

+ labeling = labeling_residuals)

leading to the mosaic plot in Fig.2.7 (right).
To use the standardized residuals on the mosaic plot, they have to be computed

ahead and provided then in mosaic() through the option
residuals_type="Std\nresiduals"

This will be illustrated for Examples 2.2 and 2.3 in Sect.5.4.1.
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2.5 Overview and Further Reading

2.5.1 The Continuity Correction

On continuity correction, characteristic sources are Plackett (1964), Grizzle (1967),
Cox (1970b), Pirie and Hamdan (1972), Conover (1974), and Haber (1980), while
a comprehensive review can be found in Haber (1982). As also mentioned in
Coull (2005), this traditional continuity correction, applied for inference on a
single binomial proportion, a 2 × 2 contingency table and stratified 2 × 2 tables
(Sect.3.3), yields to conservative inference in small samples. Martín Andrés et al.
(2005) and references therein explore conditions for the asymptotic X2 test to be
valid in 2× 2 tables and provide validity conditions in case continuity corrections
are used. In our days continuity correction is usually not preferred due to its
conservatism. Alternative contemporary methods for treating discreteness exist (for
a short discussion see Sect.10.4).

2.5.2 2×2 Tables and the Odds Ratio

The extent of the literature for the analysis of the very basic 2×2 table is impressive.
This lies primary on the range of different sampling schemes that generate 2× 2
tables and the variability of methods that exist for analyzing such tables, as noted
by Upton (1982). He mentions that Barnard (1947) was the first to report that there
were at least three distinct sampling schemes leading to a 2× 2 table. These three
schemes were discussed in detail by Pearson (1947).

A significant part of the discussion on analyzing 2× 2 contingency tables by
different approaches deals with the small sample case and associated exact tests,
with most famous the exact test of Fisher for testing independence (see Sect.2.1.7),
which is a conditional test (conditioning on the marginals). Its major competitor
is the unconditional test of Barnard (1945, 1947), comparing two independent
binomial proportions for small samples. Unconditional tests are generally preferable
with small samples, since conditioning increases the discreteness and thus the
conservatism of an approach. McDonald et al. (1977) provided a simpler version
of Barnard’s test while Silva Mato and Martín Andrés (1997) proposed a procedure
that reduces the computation time of the traditional Barnard’s test. An overview of
the dispute conditional vs. unconditional tests can be found in the sound discussion
paper by Yates (1984) while comparisons of Fisher’s exact test to an unconditional
test are provided by Suissa and Shuster (1985). On the same dispute, through an
information theoretic approach, Cheng et al. (2008) establish information identities
for testing independence in 2 × 2 tables, yielding a unified power analysis for
Fisher’s exact test, Pearson’s X2, and the LR test G2. Barnard’s exact test is
nonparametric and can be more powerful for 2×2 tables (Mehta and Senchaudhuri
2003), with the cost of being computational more demanding.
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With regard to p-values for small samples, the mid-p-value was first proposed
by Lancaster (1961) for testing independence in a contingency table. The mid-p-
value is less conservative than the p-value derived by the Fisher’s exact test and
has been further supported by Hirji et al. (1991), Agresti (1992), and Upton (1992),
among others. Hwang and Yang (2001) provided the theoretical justification of the
mid-p-value. They derived the expected p-value and showed that in the one-sided
case it coincides to the mid-p-value while in a contingency table of two independent
binomials with balanced sample sizes, it becomes the two-sided mid-p-value.

Focusing on exact confidence intervals for the odds ratio θ , the classical
conditional exact (1 − α)100% confidence interval is derived by inverting two
separate one-sided tests, each having size ≤ α/2, and is based on the noncentral
hypergeometric distribution (Cornfield 1956). Agresti and Min (2001) showed that
confidence intervals derived by inverting a single two-sided test are less conservative
than those based on inverting two independent one-sided tests of half nominal size.
Baptista and Pike (1977) were the first to propose a confidence interval based on
the inversion of a single two-sided test. The concept of mid-p-value is extended to
the confidence intervals as well. For a review on mid-p confidence intervals, see
Berry and Armitage (1995). The mid-p confidence interval behaves better in terms
of length (is shorter than Cornfield’s exact and tends to be shorter than that based
on two-sided p-value) but does not guarantee that the coverage probability will be
at least equal to the nominal level (Agresti 2003). Exact conditional confidence
intervals for the odds ratio are treated in Agresti and Min (2001) and unconditional
in Agresti and Min (2002). Agresti (2003) provides an enlightening discussion on
the discreteness problem related to exact confidence intervals for proportions and
odds ratios, comparing confidence intervals derived by diverse methods and based
on alternative p-values. A detailed discussion on exact p-values and further options
in exact analysis of a 2× 2 table can be found in Hirji (2006) and Agresti (2013).

Beyond small sample inference, a variety of point estimators and confidence
intervals have been proposed for the odds ratio. One of the cons of odds ratio is
the problem in estimating it by maximum likelihood in presence of zeros that lead
either to null or infinite estimates. To overcome this, many researchers suggested
the addition of a small constant ε = 0.5 to all cells (Haldane 1956; Gart and Zweifel
1967) or only to the zero cells (Walter and Cook 1991). This approach has been
criticized because it adds “fake data,” the effect of which is stronger for smaller
sample sizes (Bishop et al. 1975; Agresti and Yang 1987). For the more general
case of a 2× k table, corresponding to a binary response and an explanatory or
factor variable of k levels, Gart et al. (1985) and Davis (1985) have shown that the
optimal ε correction depends on k. Alternative estimators have been proposed by
Berkson (1953) and Birch (1964) and for small samples by Jewell (1984, 1986)
and Walter (1985). Gart and Zweifel (1967) and Walter and Cook (1991) compared
different estimators. Parzen et al. (2002) suggest an alternative estimator that always
lies in (0,∞) and compare it to the standard obtained by adding 0.5 to all cells
of the table. They also provide bootstrap confidence intervals for the odds ratio.
Confidence intervals have been considered also by Gart and Thomas (1982) while
the small sample behavior of various confidence intervals for the odds ratio has been
studied by Agresti (1999).
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In biomedical and behavioral sciences, the odds ratio is connected to the relative
risk and often (not always correctly) interpreted as relative risk. Furthermore, its
role is fundamental in meta analysis studies (cf. Kulinskaya et al. 2008). Newcombe
(2006) demonstrates a deficiency of the odds ratio as a measure of effect size and
argues for the relative risk. The role of the odds ratio in case-control design in
connection to the way the controls have been selected is discussed by Pearce (1993).
Limitations of the odds ratio in evaluating the performance of markers are exposed
by Pepe et al. (2004), who suggest as an alternative the use of ROC curves and
logistic regression. Kraemer (2004) criticizes the use of the odds ratio as a measure
of association and uses ROC methods to point out when it produces misleading
results. The major issue is for cases of perfect association, i.e., θ = ∞. Rudas and
Bergsma (2004) however commented Kraemer’s attitude and stated that it is a matter
of definition of the perfect association.

2.5.3 Inference for Two-way Tables

The X2 test of independence in contingency tables, one of the most widely used
statistical tests, was introduced by Pearson (1900a) while the term contingency
table appeared first in Pearson (1904). Pearson however assigned to the test wrongly
the degrees of freedom, which were later corrected by Fisher (1922). For an early
literature review and a discussion on the impact of Pearson’s work on X2, we refer
to Plackett (1983) and Stigler (2008). Wilks (1935) proposed the LR test for testing
independence in contingency tables.

Pearson’s X2 (and G2 as well) for testing independence tends to be highly
significant when the sample size n is large, without necessarily the corresponding
table being that far from independence. This was first pointed out by Berkson
(1938). For this, Diaconis and Efron (1985) in a stimulating discussion paper
introduce the volume test, by considering the uniform alternative, under which all
tables of a given dimension and sample size are equal probable. However, this
problem is not restricted only to two-way tables and the hypothesis of independence.

The traditional type of estimation associated with contingency tables and log-
linear models is the maximum likelihood (ML). The method, developed by Fisher in
1912–1922, was named as maximum likelihood in 1922 (for related history and the
development of related concepts such as sufficiency, efficiency, and information, see
Aldrich (1997) and references cited there). A discussion on the major contributions
in the development of ML estimation of log-linear models will be provided in Sect.
4.9, after introducing log-linear models for multi-way contingency tables.
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2.5.4 Partitioning of the X2 Statistic

A popular approach for explaining the lack of fit of the independence model was the
partitioning of the X2 statistic. The first partition of the total X2 statistic in a I × J
table is due to Irwin (1949) and Lancaster (1949, 1950). By such a partitioning,
(I − 1)(J − 1) statistics of one degree of freedom are obtained and they can be
used to test orthogonal contrasts. Kastenbaum (1960) managed to handle testing
for a broader class of orthogonal contrasts, with one or more degrees of freedom.
Early related contributions are also these of Yates (1948) and Cochran (1954),
directing the departure from the null hypothesis toward alternatives of particular
type. Partitioning of the X2 statistic for multi-way tables has been considered by
Goodman (1969, 1971c).

Johnson (1975) and Gokhale and Johnson (1978) proposed a class of alternative
hypotheses to independence in two-way contingency tables by removing from a
set of cells the probability mass under independence and redistributing it over the
remaining cells, preserving the marginal totals. The alternatives are expressed in
a log-linear form and can be analyzed by minimum discrimination information,
maximum likelihood, or weighted least squares.

2.5.5 Ordinal Odds Ratios and Positive Dependencies

It is clear by now the crucial role odds ratios play in the analysis of contingency
tables. Ordinal contingency tables are connected to the ordinal odds ratios, presented
in Sect.2.2.5. Although the analysis of ordinal contingency tables will be discussed
in detail in Chaps.6–9, we refer here briefly to their connection to concepts of
positive dependence, in order to highlight the role of the type of ordinal odds ratio
used.

By constraining specific log odds ratios of a table to be nonnegative, different
notions of positive dependence are ensured (see Douglas et al. 1990 or Silvapulle
and Sen 2005). Thus the positivity of all log local odds ratios (logθL

i j > 0,
i = 1, . . . , I − 1, j = 1, . . . ,J − 1) is equivalent to the strongest notion of positive
dependence, the total positivity of order 2 (TP2). TP2 is equivalent to the positive
likelihood ratio dependence (Dykstra et al. 1995). Analogously, the positivity of
all the log cumulative odds ratios for all ways of collapsing the response (here the
column classification variable) to binary

logθC
i j = log

((
∑k≤ j πik

)(
∑k> j πi+1,k

)
(
∑k> j πik

)(
∑k≤ j πi+1,k

)

)

> 0, i = 1, . . . , I− 1, j = 1, . . . ,J− 1,

is equivalent to the positive regression dependence while that of the log global odds
ratios
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logθG
i j = log

((
∑l≤i∑k≤ j πlk

)(
∑l>i∑k> j πlk

)
(
∑l≤i∑k> j πlk

)(
∑l>i∑k≤ j πlk

)

)

> 0, i=1, . . . , I−1, j=1, . . . ,J−1,

to that of the positive quadrant dependence, introduced by Lehmann (1966). The
likelihood ratio ordering is the strongest ordering and implies the other weaker
types. For a detailed insight on the various concepts of orderings, please refer to
Shaked and Shanthikumar (2007). Dardanoni and Forcina (1998) considered various
hypotheses of stochastic orders among the conditional row distributions of two-way
contingency tables with ordered margins.

The focus in this book lies on local odds ratios, since they are appropriate for
nominal and ordinal classification variables. However, cumulative or global odds
ratios can be modeled in a similar manner, as illustrated in Sects.5.6.1 and 7.1.1.
The choice of the type of the ordinal odds ratios used in an analysis lies mainly
on the specific application under consideration and the researcher’s decision about
whether description will refer to individual categories or to groupings (e.g., above
vs. below) of categories. The problem of local vs. global odds ratios choice will be
further discussed in the context of association models in Sect.7.1.



Chapter 3
Analysis of Multi-way Tables

Abstract Issues discussed in Chap.2 for two-way tables are extended to multi-way
contingency tables. Emphasis is given to clarifying the concepts of partial and
marginal association. Further on, stratified 2×2 tables are analyzed by the Mantel–
Haenszel and the Breslow–Day–Tarone tests. Types of independence for three-way
tables are introduced. Graphs are presented for multi-way contingency tables
while fourfold plots are used to visualize stratified 2× 2 tables. All examples are
implemented in R.

Keywords Partial and marginal tables • Stratified 2× 2 tables • Homogeneous
association tests • Independence for three-way tables • Graphs for multi-
way tables

3.1 Describing Multi-way Contingency Tables

Multi-way contingency tables are very common in practice, derived by the presence
of more than two cross-classification variables. For a three-way contingency table
(ni jk), with i = 1, . . . , I, j = 1, . . . ,J, and k = 1, . . . ,K indexing the row, column,
and layer level of the classification variables X , Y , and Z, respectively, there are
associated partial and marginal tables. A partial table is the cross-classification of
two of these variables for fixed level of the remaining third. Thus, there are three
possible sets of partial tables, according to which variable is kept at a fixed level.
By keeping a variable at a fixed level, we control over this variable. In particular,
the set of the XY -partial tables consists of the K corresponding two-way layers,
denoted as (ni j(k)) for k = 1, . . . ,K. In terms of notation, the index of the control
variable is given in parenthesis. Analogously, the XZ- and Y Z-partial tables are
denoted as (ni( j)k) and (n(i) jk), respectively. Summing all possible layers of a set
of partial tables leads to the corresponding marginal table. Thus the XY -, XZ-, and
YZ-marginal tables are the (ni j+), (ni+k), and (n+ jk), respectively. While a partial
table controls over the third variable, a marginal table ignores it. Furthermore,

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__3,
© Springer Science+Business Media New York 2014
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Table 3.1 Smoking habit vs. major depressive disorder by
gender for a sample collected in the St. Louis epidemiologic
catchment area survey (Glassman et al. 1990)

Major Major
depression depressionEver

smoked Yes No
Ever
smoked Yes No

Yes 40 889 Yes 104 840
No 10 417 No 40 873

information on the single classification variables is summarized in the marginal
vectors (n1++, . . . , nI++), (n+1+, . . . , n+J+), and (n++1, . . . , n++K), respectively.

A multi-way I1 × I2 . . .× Iq contingency table will analogously be denoted as
(ni1i2...iq), i� = 1, . . . , I�, � = 1, . . . ,q, while the definition of partial and marginal
tables follows straightforward. In general, for a q-way table, there can be defined
(q−1)-way down to two-way partial tables, when controlling 1 up to q−2 variables,
respectively. Analogously, the marginal tables formed are from one way (i.e.,
vectors) up to (q−1) way. Thus, for an I1× . . .× I5 table (ni1i2i3i4i5), (ni1(i2)i3i4(i5)) is
a three-way partial table controlling over the second and fifth classification variables
while (ni1i2(i3i4i5)) is a two-way partial table controlling the third up to the fifth
classification variables.

A characteristic 2× 2× 2 data example follows.

3.1.1 Example 3.1

Consider the 2× 2 data set in Example 2.1 (a), where a sample was cross-classified
according to smoking and depression. This data set is actually a marginal table from
the data in Glassman et al. (1990), ignoring gender. The data set is a 2×2×2 table,
providing the smoking (S) vs. depression (D) vs. gender (G) cross-classification. The
data are provided in Table 3.1, where the layers are defined by the gender (k = 1,2
for males and females, respectively). Thus, the SD-partial tables (ni j(1)) and (ni j(2))
are the left and right two-way tables in Table 3.1, respectively, while Table 2.1(a) is
the SD-marginal table (ni j+).

Multi-way contingency tables can be defined in R through the array() command
(see Sect.A.2.2 of the Appendix). Thus, given the data entries in a vector form,
Table 3.1 can be produced in R and saved under depsmok3 as follows:

> freq <- c(40, 10, 889, 417, 104, 40, 840, 873)

> names <- list(Ever_Smoker=c(’Yes’, ’No’), Depression=

+ c(’Yes’, ’No’), Gender=c(’male’, ’female’))

> depsmok3 <- array(freq, c(2,2,2), dimnames=names)

Partial and marginal tables are easily produced in R. For our example, the
(ni j(1)) and (ni j(2)) partial tables are simply the depsmok3[„1] and depsmok3[„2],
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respectively. The depression vs. gender partial table for smokers would then be
depsmok3[1„]. The marginal table (ni j+), i.e., the 2× 2 table of Example 2.1 (a),
is derived by

> margin.table(depsmok3, c(1,2))

while the marginal gender vector (n++1, n++2) = (1356,1857) would be

> margin.table(depsmok3, c(3))

3.2 On Partial and Marginal Tables

3.2.1 Joint, Conditional, and Marginal Probabilities

Recall that for a two-way I × J table of observed frequencies (ni j), associated
were the joint probabilities (πi j), the conditional within rows (π j|i) with π j|i =
πi j
πi+

, i = 1, . . . , I (or analogously within columns), and the row and column marginal

probabilities, (π1+, . . . , πI+) and (π+1, . . . , π+J), respectively.
Analogously, for three-way tables, the table of joint probabilities is (πi jk), with

πi jk = P(X = i,Y = j,Z = k), i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K . (3.1)

The marginal row (X) probability vector is defined as (π1++, . . . , πI++), with
πi++ = P(X = i), while the marginal column (Y ) and layer (Z) probability vectors,
(π+1+, . . . , π+J+) and (π++1, . . . , π++K), are defined analogously. Furthermore,
there are also defined the XY , XZ, and Y Z marginal probability tables (πi j+),
(πi+k), and (π+ jk), with πi j+ = P(X = i,Y = j), πi+k = P(X = i,Z = k), and
π+ jk = P(Y = j,Z = k). The correspondence between marginal frequencies and
marginal probabilities tables is obvious.

The partial frequency tables are related to corresponding conditional probabilities
for the three-way table. For example, the conditional within layers probabilities table
(πi j|k), where πi j|k = πi jk/π++k, k = 1, . . . ,K, corresponds to the partial frequency
table (ni j(k)), and its sample estimate is (pi j|k) = (ni jk/n++k).

Joint, conditional, and marginal probabilities for multi-way tables are defined
analogously.

3.2.2 Conditional and Marginal Odds Ratios
for 2×2×K Tables

Consider a 2× 2×K contingency table cross-classifying two binary characteristics
X and Y across the K levels of an explanatory variable Z. Then, for the partial
frequency table (ni j(k)), i, j = 1,2, at each level k of Z, k = 1, . . . ,K, the associated
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conditional probabilities table is (πi j|k). The odds ratio can be defined for each of
these conditional probabilities tables, straightforward, as

θXY
(k) =

π11|kπ22|k
π12|kπ21|k

=

π11k
π++k

π22k
π++k

π12k
π++k

π21k
π++k

=
π11kπ22k

π12kπ21k
, k = 1, . . . ,K. (3.2)

These odds ratios are known as conditional odds ratios.
The odds ratio for the corresponding marginal probabilities table (πi j+)

θXY =
π11+π22+

π12+π21+
, (3.3)

is called a marginal odds ratio.
Marginal and conditional odds ratios express the association between the vari-

ables denoted in their superscripts and are estimated by the corresponding sample
odds ratios. Thus, the estimates of (3.2) and (3.3) are θ̂XY

(k) = n11kn22k
n12kn21k

, k = 1, . . . ,K,

and θ̂XY =
n11+n22+
n12+n21+

. However, the conditional odds ratios express the XY partial
association controlling over the level of Z, while the marginal odds ratio expresses
the XY marginal association, ignoring Z. Conditional odds ratios can differ sub-
stantially over k, even in direction of association. This phenomenon is known as
Simpson’s paradox and will be discussed in more extent in Sect.4.8. If this is the
case, the marginal odds ratio will be misleading for describing the XY association,
which has to be captured by the conditional odds ratios, taking into consideration
the explanatory variable Z. Marginal and conditional odds ratios are illustrated next
for Example 3.1.

3.2.2.1 Example 3.1 (Continued)

We have seen in Sect.2.1.6 that for the marginal 2× 2 table the sample odds ratio
was θ̂ = 2.149. The sample odds ratio for each gender, i.e., for each partial table,
along with the associated asymptotic confidence intervals (CI), can be computed in
R by applying the odds.ratio() function (discussed in Sect.2.1.6) on the 2× 2
partial tables depsmok3[„1] and depsmok3[„2], respectively. This way we get
θ̂(1) = 1.876 and θ̂(2) = 2.70, while the associated 95% CI are (0.93,3.79) and
(1.85,3.94) for males and females, respectively. These sample conditional odds
ratios indicate that there is a smoking-depression association but it differentiates
between males and females, being stronger for women. This issue will be discussed
further in Sect.3.3.3.
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3.2.3 Odds Ratios for Tables of Higher Dimension

Conditional and marginal odds ratios can be defined for any two-way conditional
and marginal probabilities table of a multi-way I1 × I2 × . . .× Iq table with I� ≥ 2,
� = 1, . . . ,q. In this case, the conditional and marginal odds ratios are defined as
odds ratios for two-way tables of size I × J, greater than 2× 2. Thus, as defined for
general two-way tables in Sect.2.2.5, they will be a minimal set of odds ratios of
nominal, local, cumulative, or global type.

For an I × J ×K table, based on (2.45), the XY conditional local odds ratios are
defined as

θXY
i j(k) =

πi jkπi+1, j+1,k

πi+1, j,kπi, j+1,k
, i = 1, . . . , I − 1, j = 1, . . . ,J − 1, k = 1, . . . ,K , (3.4)

and the XY marginal local odds ratios as

θXY
i j =

πi j+πi+1, j+1,+

πi+1, j,+πi, j+1,+
, i = 1, . . . , I − 1, j = 1, . . . ,J− 1 . (3.5)

The conditional and marginal odds ratios of other types, like nominal, cumulative,
or global, are defined analogously.

Conditional and marginal odds ratios play a crucial role in understanding the
nature of the underlying association structure in multi-way tables and interpreting
fitted models, as odds ratios do for two-way tables.

3.2.4 Example 3.2

The 5×7×2 data table, given in Table 3.2, is from the General Social Survey basis
for year 2008 (GSS 2008), cross-classifying responders by their educational level
(D: highest degree obtained), political party affiliation (P), and gender (G).

For the DP partial tables (within gender) and the DP marginal table, the
conditional and marginal sample local odds ratios are computed by (3.4) and (3.5),
respectively, and provided in Table 3.3. In R, they can be derived applying the
local.odds.DM() function (web appendix, see Sect. A.3.2), as shown below. The
data are entered in a vector form by columns and transformed to a three-way array
party.tab as follows:
> freq <- c(32,67,12,23,16,20,85,14,21,9,18,63,6,29,12,29,68,9,

. 20,13,11,48,13,19,7,12,65,17,32,14,9,44,6,20,13,

. 31,118,20,33,38,25,98,16,23,20,16,69,13,28,8,58,88,

. 13,11,13,8,30,7,16,3,8,82,16,44,13,16,54,7,23,9)

names <- list(D=c("LT HSc","HSc","JunCol","Bachelor","Graduate"),

. P=c("1","2","3","4","5","6","7"), G=c("male","female"))

party.tab <- array (freq, c(5,7,2), dimnames=names)
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Table 3.2 Respondents’ cross-classification (GSS 2008) by degree (1: LT
high school, 2: high school, 3: junior college, 4: bachelor, 5: graduate),
political party affiliation (1: strong Democrat, 2: not strong Democrat, 3:
independent (nearly Democrat), 4: independent, 5: independent (nearly
Republican), 6: not strong Republican, 7: strong Republican), and gender
(1: male, 2: female)

Political party affiliation (P)(G): males
Degree (D) 1 2 3 4 5 6 7

1: LT high school 32 20 18 29 11 12 9
2: High school 67 85 63 68 48 65 44
3: Junior college 12 14 6 9 13 17 6
4: Bachelor 23 21 29 20 19 32 20
5: Graduate 16 9 12 13 7 14 13

Political party affiliation (P)(G): Females
Degree (D) 1 2 3 4 5 6 7

1: LT high school 31 25 16 58 8 8 16
2: High school 118 98 69 88 30 82 54
3: Junior college 20 16 13 13 7 16 7
4: Bachelor 33 23 28 11 16 44 23
5: Graduate 38 20 8 13 3 13 9

The DP partial tables for male and female are respectively
> DP1 <- party.tab[„1]; DP2 <- party.tab[„2]

and the DP marginal (over gender) table is
> DPm <- margin.table(party.tab, c(1,2))

In this setup, the design matrix C, applied for the construction of the local odds
ratios table in (2.54), requires the 5× 7 frequency table in a vector form, expanded

by rows. For this, the 4× 6 table
(
θ̂DP

i j(1)

)
for males is derived by

> C <- local.odds.DM(5, 7)

> LOR1 <- as.vector(C%*%log(as.vector(t(DP1))))

> OR1 <- exp(t(matrix(LOR1, NJ-1)))

Changing table DP1 by DP2 and DPm, the
(
θ̂DP

i j(2)

)
and

(
θ̂DP

i j

)
tables are produced,

respectively.
We observe that the conditional sample local odds ratios in Table 3.3 are diverse

within each gender and in some cases far apart from 1. On the other hand, for given
i, j, in most cases, the θ̂DP

i j(1) and θ̂DP
i j(2) are quite close to each other and close to

the corresponding θ̂DP
i j marginal sample local odds ratio. This is an indication that

there exists an association between education and party affiliation, but it seems not
to differentiate between males and females. This indication will be verified by fitting
and interpreting the appropriate model on this data set in Sect.4.6.2.

Since D and P are both ordinal, we could analogously compute the partial or
marginal global odds ratios.
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Table 3.3 DP conditional and marginal sample local odds ratios for the data in Table 3.2. The
partial θ̂DP

i j(1), θ̂
DP
i j(2) and the marginal θ̂DP

i j are in Tables (a), (b), and (c), respectively

(a) θ̂DP
i j(1) (G: Males) Political party affiliation (P)

Degree (D) 1 2 3 4 5 6 7

1: LT high school 2.030 0.824 0.670 1.861 1.241 0.903
2: High school 0.920 0.578 1.390 2.046 0.966 0.521
3: Junior college 0.783 3.222 0.460 0.658 1.288 1.771
4: Bachelor 0.616 0.966 1.571 0.567 1.187 1.486
5: Graduate

(b) θ̂DP
i j(2) (G: Females) Political party affiliation (P)

Degree (D) 1 2 3 4 5 6 7

1: LT high school 1.030 1.100 0.352 2.472 2.733 0.329
2: High school 0.963 1.154 0.784 1.579 0.836 0.664
3: Junior college 0.871 1.498 0.393 2.701 1.203 1.195
4: Bachelor 0.755 0.329 4.136 0.159 1.576 1.324
5: Graduate

(c) θ̂DP
i j Political party affiliation (P)

Degree (D) 1 2 3 4 5 6 7

1: LT high school 1.385 0.955 0.462 2.289 1.790 0.533
2: High school 0.948 0.878 0.980 1.818 0.876 0.591
3: Junior college 0.838 2.045 0.470 1.242 1.316 1.436
4: Bachelor 0.684 0.532 2.390 0.341 1.243 1.441
5: Graduate

3.3 Analysis of K 2×2 Tables

Let X and Y be binary variables that are cross-classified across the K strata of
a variable Z, forming thus 2× 2 partial tables

(
ni j(k)

)
, k = 1, . . . ,K. If X and Y

are independent in each partial table, i.e., given the level k of Z, then X , Y are
conditionally independent, given Z. In this case, it holds

θXY
(1) = θ

XY
(2) = . . .= θXY

(K) = 1 . (3.6)

With respect to the marginal odds ratio θXY , condition (3.6) does not generally
imply θXY = 1, which corresponds to marginal independence of X and Y .

To visualize this, consider the following toy example. In the framework of a
social survey, carried out at four different cities, responders are classified according
to their opinion on an issue and gender. Is opinion independent of gender?
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Opinion (Y )
City Gender
(Z) (X) Agree Disagree
1 Male 8 4

Female 12 6

2 Male 10 4
Female 5 2

Total Male 29 44
Female 24 70

Opinion (Y )
City Gender
(Z) (X) Agree Disagree
3 Male 2 30

Female 4 60

4 Male 9 6
Female 3 2

It is easy to verify that although the sample estimates of all the conditional odds
ratios are all equal to 1

θ̂XY
(1) =

(8)(6)
4)(12)

= 1, θ̂XY
(2) =

(10)(2)
(4)(5)

= 1, θ̂XY
(3) =

(2)(60)
(30)(4)

= 1, θ̂XY
(4) =

(9)(2)
(6)(3)

= 1 ,

indicating that the opinion is independent of the gender, the estimated marginal (over
cities) odds ratio signals that the odds of agreeing for males is almost twice as high
as that for females

θ̂XY =
(29)(70)
(44)(24)

= 1.92 .

This is a case under which the information obtained for the association between
two classification variables ignoring a third grouping variable (here the city), i.e.,
the information obtained from the collapsed over the grouping variable table,
contradicts information in the stratified tables. More generally, information in the
stratified tables can even be of the opposite direction from that of the collapsed
table (Simpson’s paradox; see also Sects.3.2.2 and 4.8).

For stratified 2 × 2 tables of the form discussed here, X and Y may not
be conditional independent given Z, but the underlying XY association may be
homogeneous across the levels of the conditioning variable. Then it holds

H0 : θXY
(1) = θ

XY
(2) = . . .= θXY

(K) = θ . (3.7)

The conditional independence of X and Y , (3.6), is a special case for θ = 1.
An estimate for the common θ , proposed by Mantel and Haenszel (1959), is

θ̂MH =
∑k

(
n11kn22k

n++k

)

∑k

(
n12kn21k

n++k

) , (3.8)

which gives more weight to layers of larger sample size. This becomes obvious by
expressing θ̂MH in terms of the conditional sampling proportions pi j|k = ni jk/n++k.



3.3 Analysis of K 2×2 Tables 71

In case K is large and the data are sparse, then the estimate (3.8) of Mantel and
Haenszel is preferred over the MLE of θ (see Agresti 2013, p. 229).

3.3.1 The Mantel–Haenszel Test

A popular test for testing the null hypothesis (3.6), i.e., conditional independence of
two binary classification variables X and Y , over the strata defined by a third variable
Z, is the test of Mantel and Haenszel (1959). It considers K stratified 2×2 tables and
conditions on the row and column marginals of each of the K partial tables. Thus,
for every partial table, n11k follows the hypergeometric distribution (like Fisher’s
exact test) with mean and variance,

μ11k =
n1+kn+1k

n++k
and σ2

11k =
n1+kn2+kn+1kn+2k

n2
++k(n++k − 1)

,

respectively. Then ∑k n11k has mean ∑k μ11k and variance ∑kσ2
11k, since the partial

tables are independent to each other, and the Mantel–Haenszel test statistic is
defined as

TMH =
[∑k (n11k − μ11k)]

2

∑kσ2
11k

. (3.9)

TMH is asymptotically X 2
1 distributed under the hypothesis (3.6). If TMH(obs) is the

observed value of the test statistic for a particular case, then p-value=P(X 2
1 >

TMH(obs)). Mantel and Haenszel proposed it with a continuity correction. This
way the test statistic approximates better an exact conditional test but is more
conservative.

When the XY association is similar across the partial tables, then the test is more
powerful and is similar to the test of conditional independence, given that the XY
association is homogeneous across the strata, in the log-linear models framework
(see Sect.4.6.1). It loses in power when the underlying associations vary across
strata, especially when they are of different direction, since the differences n11k −
μ11k will then cancel out in the sum of the statistic (3.9).

Cochran (1954) proposed the test statistic (3.9) as well but with different σ2
11k

values. This difference in n11k’s variance occurred because Cochran considered
a different sampling scheme than that of Mantel and Haenszel. In particular, he
assumed the two rows of each partial table to be independent binomials, deriving
thus

σ̂2
11k =

n1+kn2+kn+1kn+2k

n3
++k

.

However, the difference is of no practical importance.
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3.3.2 Homogeneous Association Tests

Breslow and Day (1980) proposed a large-sample test for testing the H0 of
homogeneity of odds ratios (3.7). It is based on the conditional distribution under
H0 of n11k, given nc = (n1+k, n+1k, n++k), which is noncentral hypergeometric for
θ �= 1, and the fact that n11k from different strata are independent. Let μ11k(θ ) =
E(n11k|nc,θ ) and σ2

11k(θ ) = Var(n11k|nc,θ ) be the conditional mean and variance
of n11k, respectively. Then μ11k(θ ) is estimated by the acceptable solution of the
quadratic equation

μ̂11k(n2+k − n+1k + μ̂11k)

(n+1k − μ̂11k)(n1+k − μ̂11k)
= θ , (3.10)

where θ is the common odds ratio under (3.7). Furthermore,

σ̂2
11k(θ ) =

(
1
μ̂11k

+
1

(n2+k − n+1k + μ̂11k)
+

1
(n+1k − μ̂11k)

+
1

(n1+k − μ̂11k)

)−1

.

(3.11)

Based on the independence of the n11k’s for k = 1, . . . ,K, they proposed the
following test statistic

BD =∑
k

[
n11k − μ̂11k(θ̂MH)

]2

σ̂2
11k(θ̂MH)

, (3.12)

where μ̂11k(θ̂MH) and σ̂2
11k(θ̂MH) are evaluated by (3.10) and (3.11), respectively,

substituting θ in (3.10) by the Mantel–Haenszel estimator θ̂MH , given in (3.8). These
μ̂i jk’s lead to estimated partial tables that have the same marginals as the observed
data and odds ratio equal to θ̂MH . The hypothesis of homogeneous association (3.7)
is rejected for high values of BD, based on its asymptotic X 2

K−1 distribution under
(3.7).

Tarone (1985) adjusted the test of Breslow and Day for the inefficiency of
Mantel–Haenszel’s θ̂MH as follows:

BDT =∑
k

[
n11k − μ̂11k(θ̂MH)

]2

σ̂2
11k(θ̂MH)

−
[
n11+− μ̂11+(θ̂MH)

]2

σ̂2
11+(θ̂MH)

. (3.13)

This is known as the Breslow–Day–Tarone test, is also asymptotically X 2
K−1

distributed under (3.7), and is the most frequently used one.
Another test for heterogeneity in stratified 2× 2 tables is the test proposed by

Woolf (1955). He proposed one of the first estimators for the common θ as the
weighted mean of the sample log odds ratios
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θ̂k =
n11kn22k

n12kn21k
,k = 1, . . . ,K ,

with weights the inverse of their variances. In particular,

θ̂W = exp

(
∑K

k=1

(
wk log θ̂k

)

∑K
k=1 wk

)

, (3.14)

where

wk =

(
1

n11k
+

1
n12k

+
1

n21k
+

1
n22k

)−1

,k = 1, . . . ,K .

Based on this estimator he proposed the Woolf statistic for testing (3.7),

W =∑
k

wk
(
log θ̂k − log θ̂W

)2
, (3.15)

which is under the null hypothesis (3.7) asymptotically X 2
K−1 distributed.

3.3.3 Example 3.1 (Continued)

Recall that for the example in Sect.3.1.1, the sample conditional odds ratios between
smoking and depression, conditioning on gender, were computed in Sect.3.2.2.1.
They were both far from 1, indicating that the underlying association is significant.
Indeed, testing hypothesis (3.6) by the Mantel–Haenszel test, the test statistic (3.9)
equals TMH = 30.62 and the H0 that the homogeneous conditional odds ratios equal
1 is rejected (p-value=3.141e-08).

The Mantel–Haenszel test can be performed in R by mantelhaen.test(), which
tests (3.6), assuming that (3.7) holds. The corresponding output for the data in
Table 3.1 is given below.
> mantelhaen.test(depsmok3, correct = FALSE)

Mantel-Haenszel chi-squared test without continuity correction
data: depsmok3
Mantel-Haenszel X-squared=30.6184, df=1, p-value=3.141e-08
alternative hypothesis: true common odds ratio not equal to 1
95 percent confidence interval:
1.779109 3.463946
sample estimates:
common odds ratio
2.482486
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Table 3.4 The Breslow–Day test (with and without Tarone’s adjustment) and the Woolf test for
Example 3.1

> BDT(depsmok3)

$MH.theta
common odds ratio
2.482486
Breslow-Day X2 statistic
$X2
[1] 0.8083629
$df
[1] 1
$p.value
[1] 0.3686047

Breslow-Day-Tarone X2 statistic
$T.X2
[1] 0.805296
$df
[1] 1
$p.value2
[1] 0.3695146

> woolf(depsmok3)

Woolf test statistic
$X2
[1] 0.8040594
$d.f
[1] 1
$p.value
[1] 0.3698824
$estim.theta
[1] 2.490770

The common for males and females odds ratio is estimated to be 2.48 with a
95% confidence interval (1.78, 3.46), indicating that the odds of major depression
is almost 2.5 times higher for smokers than for nonsmokers. But are we justified to
assume that they share a common odds ratio? The BDT() and the woolf() functions,
provided in the web appendix (see Sect. A.3.3), perform the Breslow–Day test (with
and without Tarone’s adjustment) and the Woolf test, respectively, for testing (3.7).
We verify that the underlying association is homogeneous for males and females.
The related output for this data set is provided in Table 3.4.

We shall revisit this example to model the structure of the underlying association
based on log-linear models (Sect.5.4.2).
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Table 3.5 Cross-classification of patients according to treatment and the presence of a
prognostic effect in six clinics

Prognostic Prognostic Prognostic
Clinic: A factor Clinic: B factor Clinic: C factor

Treatment Yes No Treatment Yes No Treatment Yes No

Success 79 5 Success 89 4 Success 141 6
Failure 68 17 Failure 221 46 Failure 77 18

Prognostic Prognostic Prognostic
Clinic: D factor Clinic: E factor Clinic: F factor

Treatment Yes No Treatment Yes No Treatment Yes No

Success 45 29 Success 81 3 Success 168 13
Failure 26 21 Failure 112 11 Failure 51 12

3.3.4 Example 3.3

Consider the following hypothetical data set, provided in Table 3.5. Patients from
six different clinics are cross-classified according to treatment’s outcome and the
presence or not of a prognostic factor. Interest lies in testing the strength of influence
of the prognostic factor on the treatment’s outcome.

The homogeneity of the association between the prognostic factor and the
treatment’s outcome across the clinics will be tested first, applying function
BDT(dat), where dat is the data table, entered in R as
> dat <- array(c(79,68,5,17,89,221,4,46,141,77,6,18,45,26,29,21,81,

. 112,3,11,168,51,13,12), c(2,2,6))

> dimnames(dat) <- list(Treatment=c("Success","Failure"),

. Prognostic_Factor=c("Yes","No"),

. Clinic=c("A","B","C","D","E","F"))

Verify that the hypothesis of homogeneous association across the clinics cannot
be rejected (BDT = 7.91, d f = 5, p-value=0.161). On the basis of homogeneous
underlying association and applying mantelhaen.test(dat), the common odds
ratio is estimated to be θ̂MH = 2.96, which is high significantly different than 1
(MH = 32.703, d f = 1, p-value=1.074e-08). Hence, the conditional independence
of the prognostic factor and the treatment’s outcome given the clinic is rejected
(based on the Mantel–Haenszel test) and the odds of success is estimated to be
about 3 times higher for patients with the prognostic factor than patients without,
homogeneous across the clinics.

The corresponding test in the framework of log-linear models is discussed in
Sect.4.6.1.1 while the ML estimate of the common odds ratio is computed in the
framework of generalized log-linear models for odds ratios in Sect.5.6.2.
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3.4 Types of Independence for Three-way Tables

Let (ni jk) be an I × J × K contingency table of observed frequencies with row,
column, and layer classification variables X , Y , and Z, respectively. The variables
X , Y , and Z will be independent if and only if

πi jk = πi++π+ j+π++k, i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K, (3.16)

where πi jk are the cell probabilities (3.1), while the marginal probabilities πi++,
π+ j+, and π++k are also defined in Sect.3.2.1.

If Y is jointly independent from X and Z (without these two being necessarily
independent), then

πi jk = π+ j+πi+k, i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K. (3.17)

There are two more possible hypotheses of this type, since (3.17) can be expressed
in a symmetric way for X or Z being jointly independent from the remaining two
variables.

Finally, we shall see how the concepts of conditional and marginal independence
of two variables X and Y over a third one Z, discussed in Sect.3.3 in the framework
of stratified 2× 2 tables, extend to general I× J×K tables.

Under multinomial sampling scheme, the joint probabilities of the three-way
table cells πi jk = P(X = i, Y = j, Z = k) can be expressed in terms of conditional
probabilities as

πi jk = P(Y = j|X = i, Z = k) ·P(X = i, Z = k) ,

which under conditional independence of X and Y given Z equals

πi jk = P(Y = j| Z = k) ·P(X = i, Z = k) =
P(Y = j, Z = k)

P(Z = k)
·P(X = i, Z = k) .

Incorporating the standard notation we use for marginal probabilities (see also, Sect.
3.2.1), we conclude that variables X and Y are independent conditionally on Z, if
and only if

πi jk =
πi+kπ+ jk

π++k
, i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K . (3.18)

The analysis above assumed that Y is a response variable. The conditioning
approach with X as response variable would also lead to (3.18), which is symmetric
in terms of X and Y . The hypotheses of conditional independence of X and Z given
Y , and of Y and Z, given X , are formed analogously to (3.18).
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Under conditional independence of X and Y , given Z, the conditional XZ local
odds ratios are

θXZ
i( j)k =

πi jkπi+1, j,k+1

πi+1, j,kπi, j,k+1
, i = 1, . . . , I− 1, k = 1, . . . ,K − 1 ,

for any j = 1, . . . ,J, and the marginal XZ local odds ratios

θXZ
ik =

πi+k πi+1,+,k+1

πi+1,+,k πi,+,k+1
, i = 1, . . . , I− 1, k = 1, . . . ,K − 1 .

Furthermore, by (3.18)

θXZ
i( j)k =

πi+kπ+ jk
π++k

· πi+1,+,k+1π+, j,k+1
π+,+,k+1

πi+1,+,kπ+ jk
π++k

· πi,+,k+1π+, j,k+1
π+,+,k+1

=
πi+k πi+1,+,k+1

πi+1,+,k πi,+,k+1
,

i.e.,

θXZ
i( j)k = θ

XZ
ik , i = 1, . . . , I− 1, k = 1, . . . ,K − 1, j = 1, . . . ,J . (3.19)

Analogously, it can be proved that under (3.18) also

θYZ
(i) jk = θ

Y Z
jk , i = 1, . . . , I, k = 1, . . . ,K − 1, j = 1, . . . ,J − 1 . (3.20)

Thus, when X and Y are conditionally independent given Z, then the XZ (as well
as the YZ) marginal and conditional associations coincide. However, this is not the
case for the XY marginal and conditional association.

For a three-way table, the marginal independence of X and Y is defined as

πi j+ = πi++ ·π+ j+ ∀i, j . (3.21)

Under conditional independence of X and Y , given Z, summing (3.18) over k, it
holds

πi j+ =∑
k

(
πi+k π+ jk

π++k

)
,

which does not simplify to the condition of marginal independence (3.21), confirm-
ing thus that conditional independence does not imply marginal independence. This
fact is actually known from the properties of multivariate distributions.

Marginal independence (3.21) can be tested by the test of independence pre-
sented in Sect.2.2.2 applied on the corresponding two-way marginal table. Hypothe-
ses (3.16) through (3.18) could be tested analogously. These tests will not be
presented here, since they can equivalently be treated in the context of log-linear
models in Chap.4 by fitting the associated model.
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3.5 Graphs for Multi-way Contingency Tables

The graphs presented for two-way tables in Sect.2.4 serve also for picturing
association structures in multi-way tables. Marginal and conditional associations
can be visualized, clarifying thus issues regarding their relationship.

All graphical displays for multi-way contingency tables share a common basis.
They represent a multi-way table in the two-dimensional space, using areas to
represent frequencies. As for two-way tables, they can represent the sample structure
(applied on the observed frequency table), the expected structure under an assumed
model (applied on the ML estimates), or the deviation from a model (applied on
residuals). At this stage, we will illustrate sample structures by the graphs while
model-based graphs will be presented in Chap.4.

3.5.1 Fourfold Plots for 2×2×K Tables

The fourfold plot, for visualizing odds ratios in 2× 2 tables (Sect.2.4.2), can be
constructed also for stratified 2× 2 tables. In the framework of the R package vcd,
for example, the fourfold plots of Example 3.3 can be constructed by
> fourfoldplot(dat, color=c("#CCCCCC", "#999999"), mfcol=c(2,3))

This leads to the plots in Fig.3.1.
Observing these fourfold plots, we conclude for a positive association between

prognostic factor and treatment’s response for all clinics, expecting the strongest
to be in Clinic 3 and the weakest in Clinic 4. Furthermore, for Clinics 4 and 5,
the sample estimates support the null hypothesis of no association, since the 95
% confidence rings for adjacent quartiles do overlap. These rings are calculated
for the odds ratios in each stratum and are not adjusted for multiple testing. This
plot assessment is confirmed by the individual asymptotic tests for the conditional
odds ratios θ(k), k = 1, . . . ,6. The corresponding sample conditional odds ratios are

θ̂(1) = 3.95, θ̂(2) = 4.63, θ̂(3) = 5.49, θ̂(4) = 1.25, θ̂(5) = 2.65, and θ̂(6) = 3.04, with

max(θ̂(k)) = θ̂(3) and min(θ̂(k)) = θ̂(4). These sample conditional odds ratios along
with their asymptotic tests of significance and confidence intervals can be calculated
in R applying function odds.ratio() on each partial table. For example, the sample
estimate and the associated asymptotic inferential results for θ(3) are delivered by
> odds.ratio(dat[„3])

Analogously, the fourfold plots for data in Table 3.1 (Example 3.1) can be derived
and compared to the plot of Fig.2.4 that corresponds to the marginal table (over
gender) of this data set.

Furthermore for stratified I × J tables, conditional or marginal generalized odds
ratios can be visualized by fourfold plots, applying the procedure described in
Sect.2.4.2 for I × J tables on each partial table or on the marginal table. For
example, the conditional local odds ratios of Table 3.3 can be visualized by function
ffold.local() of the web appendix (see Sect. A.3.2).
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Fig. 3.1 Fourfold plots for the conditional odds ratios of Example 3.3 (Table 3.5)

3.5.2 Sieve Diagrams for Multi-way Tables

The sieve diagram for a multi-way table is an easy and direct adjustment of the two-
way sieve diagram. The starting point is the sieve diagram for a two-way marginal
table of the initial multi-way table, corresponding to variables, say X1 and X2. Then,
a variable X3 is added on the graph by subdividing the rectangles corresponding to
the marginal horizontally to show how the counts of this cell are further classified
by X3. In the same way, these derived rectangulars are further split vertically by the
categories of the next variable X4 and the procedure continues till all variables are
represented on the graph.

For Example 3.2, the data (Table 3.2) are already in R matrix party.tab (see
Sect.3.2.4). Before constructing the sieve diagram, we add labels to the variables
and their categories, to make the display easier to be read:
> dimnames(party.tab) <- list(D=c("LT H.Sc", "H.Sc", "J.College",

+ "Bachelor", "Graduate"), P=c("1", "2", "3", "4", "5",

+ "6", "7"), G=c("M", "F"))

The sieve diagram is then derived in R package cvd by
> sieve(party.tab)

and presented in Fig.3.2 (left). Note that the education level of the responders is
given in the rows, subclassified by gender, and their party affiliation in columns.
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Each squared area corresponds to a cell of the table while the number of square in
each area equals the corresponding observed cell frequency. Thus, cells or areas of
the table of high or low frequencies are easily recognized.

3.5.3 Mosaic Plots for Multi-way Tables

The mosaic plots are extended to multi-way tables, the same way as the sieve
diagrams. The mosaic plot for Example 3.2 is given in Fig.3.2 (right) and is derived
in cvd package of R by the function
> mosaic(party.tab)

Since the educational level variable is subclassified by gender, the rectangular
areas corresponding to males and females for a specific educational level show the
proportion of males and females in this educational level.

We shall reconsider mosaic plots in Chap.4, when fitting models on the data.
The most interesting mosaic plots for multi-way tables arise when visualizing the
residuals corresponding to a particular model by colors or shadings. The location
of the deviations of the observed frequencies from the expected under the assumed
model may clarify the source of bad fit and guide to a model that represents better
the data.

3.6 Overview and Further Reading

3.6.1 Stratified 2×2 Contingency Tables

Different Mantel–Haenszel type estimators for the common odds ratio of 2× 2×K
contingency tables have been compared by Hauck (1984). Confidence intervals for
the common odds ratio of stratified 2× 2 tables, also based on the mid-p-value, are
presented and compared in Mehta and Walsh (1992).

Conditional independence and homogeneous association in 2 × 2 × K tables
have been considered so far in a non-model-based fashion. These issues will be
reconsidered in terms of log-linear and logit models in Sects.4.6.1.1 and 8.2,
respectively, as well as via modeling odds ratios by the generalized log-linear model
in Sect.5.6.2, which will also provide the MLE of the expected common odds ratio
value under the homogeneous association assumption.

An alternative approach for testing that K stratified 2× 2 tables share a common
odds ratio uses a random effects model to describe heterogeneity of the odds ratios.
Consider the null hypothesis H0 of homogeneous odds ratios (3.7). Then, assuming
that the log odds ratios for the stratified tables logθk, k = 1, . . . ,K, are independent
realizations of a random variable with mean logθ and variance σ2

θ , H0 is equivalent
to testing that the variance σ2

θ is zero. The likelihood function of the mixture
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model for the parameters logθ and σ2
θ has been approximated by Liu and Pierce

(1993) by expanding the integrand in a Taylor series about its maximizing value
using the Laplace’s method. A similar approximation has been provided by Cox
(1983), who expanded the integrand about the true mean of the random effect logθ .
Based on Cox’s approximation, Liang and Self (1985) proposed a score statistic for
testing the hypothesis of equality of the odds ratios. The associated standardized
test is asymptotically normal distributed and is of good performance in sparse
table situations, as shown by simulation studies on its size (Jones et al. 1989).
However, a skewness problem was detected in cases with K relative small and large
θ values. Davison (1992) considered a simpler statistic, by eliminating a specific
term of the score statistic, which has a skew distribution, approximated by a gamma
distribution. The adequacy of the corrected-for-skewness score method is verified by
numerical results of Gart and Nam (1988), who derived, for moderate sample sizes,
confidence limits for the common (under the null hypothesis) odds ratio based on
the Cornish–Fisher corrected score statistic of the unconditional likelihood.

3.6.2 Generalized Mantel–Haenszel Test for I× J×K
Contingency Tables

The TMH statistic has been generalized to I × J ×K tables by Mantel (1963), Birch
(1965), and Mantel and Byar (1978). In this case the null hypothesis of unit odds
ratios across the stratified tables is extended to the null hypothesis of independence
for the K I × J partial tables, conditional on the row and column marginals. The
generalization of the TMH statistic is

TGMH = (n−m)T V−1(n−m) ,

where n = ∑K
k=1 nk, m = ∑K

k=1 mk, and V = ∑K
k=1 Vk, with nk the (I − 1)(J− 1)× 1

vector of nonredundant cell frequencies of the kth partial table, i.e., nk =
(n11k, . . . ,n1,J−1,k,n21k, . . . ,nI−1,J−1,k)

T , mk =E(nk)= (
n1+kn+1k

n++k
, . . . ,

nI−1,+,kn+,J−1,k
n++k

)T

under the H0 of conditional independence and Vk the (I−1)(J−1)× (I−1)(J−1)
covariance matrix of n under H0 with elements

Cov(ni1 j1k,ni2 j2k) =
ni1+k(δi1i2n++k − ni2+k)n+ j1k(δ j1 j2n++k − n+ j2k)

n2
++k(n++k − 1)

,

where δρξ = 1 for ρ = ξ and 0 otherwise. Under H0, TGMH is asymptotically
X 2

(I−1)(J−1) distributed.
The TGMH statistic assumes that the classification variables X and Y are both

nominal. If they are ordinal, then appropriate is also the test statistic

M2
K =

(
∑k

[
∑i, j xiy jni jk −E

(
∑i, j xiy jni jk

)])2

∑k Var(∑i, j xiy jni jk)
,
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where xi, i = 1, . . . , I, and y j, j = 1, . . . ,J, are the row (X) and column (Y ) scores,
respectively (Mantel 1963). The asymptotic distribution for M2

k under H0 is X 2
1 .

For K = 1, the statistic M2
K is the linear trend statistic (2.57) of the two-way

contingency tables. Landis et al. (1978) presented a generalized test statistic having
TGMH and M2

K as special cases. This statistic applies also to stratified tables with
one classification variable nominal and the other ordinal (see Agresti 2013, p. 317–
319, 328). Related is also the work by Goodman (1969), who estimated the degree
of partial association in K stratified I × J tables and proceeded to ML estimation,
conditional (on the row and column marginals) and unconditional.

3.6.3 Visualization of Categorical Data

The fourfold plots for a 2× 2 contingency table were first introduced by Fienberg
(1975) and further developed (also for stratified 2 × 2 tables) by Friendly (1994,
1995). The sieve diagrams were proposed by Riedwyl and Schüpbach (1983, 1994).
Mosaic plots for contingency tables in their current form were introduced by
Hartigan and Kleiner (1981, 1984) and expanded by Friendly (1994, 1999) while
mosaic type displays had already been used by the early 1800s. For a historical
review and bibliography on mosaic plots, we refer to Friendly (2002).

Originally, the sieve diagrams and the mosaic plots had been considered for
illustrating the fit of independence or visualizing departures from it. Their concept
however applies to other hypotheses (or models). Thus they can be used to reveal
the departure from the structure dictated by the assumed model, which can be in the
GLM family (see Chap.5) or not, since the underlying concept holds for a general
model. In R, plots for GLM or also generalized nonlinear models (GNM) can be
obtained in package vcdExtra, an extension of vcd for models fitted by glm() and
gnm(). The package gnm() will be illustrated in Chap.6, where we shall consider
some special models, nonlinear in their parameters. A tutorial on vcd and vcdExtra

is provided by Friendly (2013) while Meyer et al. (2006) exhibit the visualization
of multi-way tables in vcd. Package vcdExtra offers also the feature of three-
dimensional plots.

Graphical displays for categorical data (also for multivariate) are discussed in
detail by Friendly (2000). Furthermore, interesting related contributions are to be
found in the volume Visualization of Categorical Data, edited by Blasius and
Greenacre (Academic Press, 1998).



Chapter 4
Log-Linear Models

Abstract The classical log-linear models are introduced for two-way and multi-
way contingency tables. Estimation theory, goodness-of-fit testing, and model
selection procedures are discussed. Characteristic examples are worked out in R and
interpreted. Log-linear models for three-dimensional tables are illustrated through
mosaic plots. Graphical models are shortly discussed. Finally the collapsibility in
multi-way tables, in connection to Simpson’s paradox, is addressed.

Keywords Hierarchical log-linear models • Model fit and selection • Dissimilar-
ity index • Graphical models • Simpson’s paradox

4.1 Log-Linear Models for Two-way Tables

4.1.1 Model of Independence

Independence (2.34) between the classification variables X and Y can equivalently
be expressed in terms of the expected under independence cell frequencies mi j in a
log-linear model form as

logmi j = λ +λX
i +λY

j , i = 1, . . . , I, j = 1, . . . ,J , (4.1)

where λ corresponds to the overall mean while λX
i , λY

j are the ith row and jth
column main (or marginal) effects, respectively.

Model (4.1) could equivalently be expressed in terms of the expected under
the assumed model probabilities πi j. The usual choice is in terms of mi j, because
expected cell frequencies are common for the different sampling schemes while
the underlying probability structure changes (see Sect. 2.2.1). For this, all log-
linear models considered in the sequel will be expressed in terms of expected cell
frequencies.

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__4,
© Springer Science+Business Media New York 2014
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Interpretation is carried out in terms of the odds. For given column category j,
under model (4.1), the odds of being in row i1 instead of row i2 (i1 �= i2), i1, i2 = 1,
. . . , I, is

mi1 j

mi2 j
=

exp(λ +λX
i1
+λY

j )

exp(λ +λX
i2
+λY

j )
= exp(λX

i1 −λX
i2 ) , j = 1, . . . ,J , (4.2)

independent of j. Similarly, for columns j1 and j2 ( j1 �= j2, j1, j2 = 1, . . . ,J),

mi j1

mi j2
= exp(λY

j1 −λY
j2) , i = 1, . . . , I , (4.3)

i.e., the odds of being in column j1 instead of j2 is determined only by the distance
of the corresponding column main effect values and is independent of i. By (4.3),
the conditional j1 and j2 column probabilities (within row i)

P(Y = j1|X = i)
P(Y = j2|X = i)

= exp(λY
j1 −λY

j2) , i = 1, . . . , I ,

relate the same for all rows and this is true for any pair of columns j1 and j2.
Thus, the conditional column distribution is the same for all rows, as should be
for independent X and Y .

Using (4.3), the expected under independence local odds ratios are

θL
i j =

mi j/mi. j+1

mi+1. j/mi+1. j+1
=

eλ
Y
j −λY

j+1

eλ
Y
j −λY

j+1
= 1 , i = 1, . . . , I − 1, j = 1, . . . ,J− 1,

i.e., all equal to 1, as expected by (2.52).
The parameters in model (4.1) are 1+ I + J while we know that under inde-

pendence the parameters are (I − 1) + (J − 1). Hence, parameters in (4.1) are
not uniquely determined unless constraints are imposed on the main effects. The
traditionally used identifiability constraints are the sum to zero constraints:

I

∑
i=1

λX
i =

J

∑
j=1

λY
j = 0 . (4.4)

Due to computational convenience, software applications replace (4.4) by the
constraints that set a category effect to zero, usually the last (λX

I = λY
J = 0) or the

first (λX
1 = λY

1 = 0).
The different set of constraints are equivalent and they affect only the reference

point for physical interpretation. Thus, λX
i compares the ith row category to

the overall mean or to the first category, depending on whether model (4.1) is
fitted under (4.4) or under λX

1 = 0. The differences λX
i1
− λX

i2
and λY

j1
− λY

j2
are

constraints invariant; thus, comparisons between categories are not affected by the
identifiability constraints used.



4.1 Log-Linear Models for Two-way Tables 87

Model (4.1) will be illustrated in Sect. 4.2.1, after we discuss technical matters
on parameter estimation and model fit checking.

4.1.2 The Saturated Model

In case the classification variables X and Y are not independent, their interaction is
significant and the corresponding XY -interaction term has to be added in the log-
linear model expression, leading to the saturated model

logmi j = λ +λX
i +λY

j +λ
XY
i j , i = 1, . . . , I, j = 1, . . . ,J . (4.5)

Identifiability constraints are also required for model (4.5). Under the sum to zero
identifiability constraints, additional to (4.4) the following constraints hold for the
interaction parameters:

I

∑
i=1

λXY
i j =

J

∑
j=1

λXY
i j = 0 . (4.6)

Analogous to model (4.1), the (4.4) and (4.6) constraints can be equivalently
replaced by constraints equating the last (or first) row and column parameters to
zero. For the interaction parameters this would be

λXY
I j = λXY

iJ = 0, i = 1, . . . I − 1, j = 1, . . .J − 1

(or λXY
1 j = λXY

i1 = 0, for i = 2, . . . I, j = 2, . . .J).
The saturated model (4.5), under (4.4) and (4.6), has as many parameters as the

number of cells, i.e., IJ. Thus, it does not impose any structure on the underlying
association. It just reparametrizes the table’s cells in an interpretational meaningful
way. The local odds ratios are directly derived from the interaction parameters, since

logθL
i j = λ

XY
i j +λXY

i+1, j+1 −λXY
i+1, j −λXY

i, j+1 , (4.7)

i = 1, . . . , I− 1, j = 1, . . . ,J − 1 .

For a simple 2× 2 table and for the first category set to zero constraints (λXY
11 =

λXY
12 = λXY

21 = 0), it holds

logθ = λXY
22 .

Evidently, the λXY term indeed expresses the association between X and Y .
Furthermore, model (4.1) is derived by (4.7), setting

λXY
i j = 0 , i = 1, . . . , I, j = 1, . . . ,J , (4.8)
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i.e., by eliminating the association between X and Y . This means that (4.1) is nested
in (4.7). We shall refer in detail to nested models in the context of log-linear models
for multi-way tables in Sect. 4.4.

An example of the saturated model’s implementation in practice is provided in
Sect. 4.2.2.

Overall, log-linear models describe the way the involved categorical variables
and their association (if significant) influence the count at each of the IJ cells of the
cross-classification of these variables. They are the discrete analogue of analysis of
variance, where for each cell of the cross-classification, there is modeled the mean
of a continuous variable, instead of a count. The analogy to classical analysis of
variance is obvious once the log-linear model’s parameters, subject to the sum to
zero constraints (4.4) and (4.6), are identified in terms of expected cell frequencies:

λ =
1
IJ∑i, j

logmi j (4.9)

λX
i =

1
J∑j

logmi j −λ , i = 1, . . . , I , (4.10)

λY
j =

1
I ∑i

logmi j −λ , j = 1, . . . ,J , (4.11)

λXY
i j = logmi j −λ −λX

i −λY
j , i = 1, . . . , I, j = 1, . . . ,J . (4.12)

4.2 On Inference and Fit of Log-Linear Models

We have seen in Sect. 2.2.1 that the three common sampling schemes for contin-
gency tables are inferential equivalent. For this, the ML estimates of the expected
cell frequencies mi j under a log-linear model can be equivalently derived under any
of these sampling assumption. For simplicity reasons, the Poisson log-likelihood
function is usually considered. Assuming thus an independent Poisson distribution
for each cell, Ni j ∼P(mi j), and upon observing a sample table (ni j)I×J , the Poisson
log-likelihood kernel � (ignoring the constants) is

�=∑
i, j

(
ni j logmi j − elogmi j

)
. (4.13)

Under a particular log-linear model assumption, substituting logmi j in (4.13) by
the model’s formula, � will be a function of the log-linear models parameters.
Maximizing (4.13) with respect to these parameters, the sets of corresponding
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likelihood equations are derived. Their solution is the set of ML estimates of the
parameters and consequently the ML estimates m̂i j of the expected under this model
cell frequencies.

Thus, for the independence model, substituting in (4.13) the logmi j by (4.1) and
maximizing with respect to λX

i and λY
j , the sets of likelihood equations are derived,

respectively, as follows:

m̂i+ = ni+ , i = 1, . . . , I, and m̂+ j = n+ j , j = 1, . . . ,J. (4.14)

Their solution is the ML estimates of the expected cell frequencies m̂i j, provided
in (2.35). The ML estimates of the λ parameters in (4.1), under the sum to zero
constraints (4.4), are

λ̂ =
1
I ∑s

logns++
1
J∑s

logn+s− logn (4.15)

λ̂X
i = logni+− 1

I ∑s
logns+ , i = 1, . . . , I , (4.16)

λ̂Y
j = logn+ j − 1

J∑s
logn+s , j = 1, . . . ,J , (4.17)

and are obtained by (4.9)–(4.11), substituting the mi j’s by the corresponding m̂i j’s.
The goodness of fit of a log-linear model is assessed asymptotically by the clas-

sical X2 and G2 test statistics, which are under the assumed model asymptotically
X 2 distributed with degrees of freedom (d f ) equal to the dimension of the sample
space reduced by the number of the parameters estimated under the model. Note
that the dimension of the sample space of a contingency table depends on the
underlying sampling scheme. Thus, for an I × J table, for example, it is IJ − 1 if
the table is derived by a multinomial distribution (total n is fixed), while it is IJ
when independent Poisson distributions are considered for each cell (n is random).
For this, the λ of a log-linear model is a parameter only under Poisson sampling
(counting for n). Consequently, the d f of the model are the same under both
sampling schemes and the sampling schemes, given n are inferentially equivalent.

For the independence model (4.1), the X2 and G2 tests are (2.36) and (2.37),
respectively, with m̂i j given by (2.35) or by (4.1), with the parameters being
substituted by their ML estimates (4.15)–(4.17). The saturated model (4.5) fits the
data perfectly (X2 = G2 = 0, d f = 0).

The classical goodness-of-fit tests X2 and G2 are sensitive in sample size n, as
already mentioned in Sect. 2.2.2. It is evident that for large n, they tend to reject
even “good” models. For this, in the framework of log-linear models and in cases
of large sample size n, a dissimilarity index is used that assesses the practical
significance of the assumed model’s lack of fit. This index Δ̂ is common in social
sciences applications where also cross-tabulations of large sample sizes occur and
is defined as
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Δ̂ =
1

2n

I

∑
i=1

J

∑
j=1

|ni j − m̂i j|= 1
2

I

∑
i=1

J

∑
j=1

|pi j − π̂i j| (4.18)

The dissimilarity index Δ̂ ranges in the interval [0,1] and expresses the percentage of
observations that have to be moved to different cells in order to achieve a perfect fit.
Thus, small values of Δ̂ are indicative of good fit with Δ̂ < 0.02 or < 0.03 being the
limit for a satisfying representation of the data by the assumed model. The sample
index Δ̂ estimates the corresponding population index

Δ =
1
2

I

∑
i=1

J

∑
j=1

|πi j −π∗i j| ,

which measures the dissimilarity between the population probability distribution
π = (πi j) and the probability distribution under the assumed model π∗ = (π∗i j).

The approximate variance of the statistic Δ̂ and the associated confidence interval
has been given by Kuha and Firth (2011). They also provide an updated review of
literature on Δ̂ , which has a long history.

In practice, log-linear models for two-way (and multi-way) contingency tables
are fitted very easily in any software. In R, there are several options for getting
log-linear models analysis. They can be fitted by loglin (of stats) or loglm (of
the MASS package). Log-linear models will be fitted for Examples 2.4 and 2.3 by
loglm in Sects. 4.2.1 and 4.2.2, respectively. However, the predominant approach
is to analyze log-linear models in the generalized linear model (GLM) framework.
Thus, Example 2.4 will be revisited in Sect. 5.4.1, after discussing the GLM and its
connection to log-linear models.

4.2.1 Example 2.4 (Continued)

The log-linear model of independence (4.1) will be fitted on Table 2.3 in R, by the
loglm function of the package MASS. The parameter estimates derived by loglm are
under the sum to zero constraints. The data can be either in matrix form or in a data
frame.

The data of Table 2.3 are to be found in matrix natfare, constructed in Sect.
2.4.1.

After loading the MASS package, model (4.1) is then fitted by

> I.fit <- loglm( ∼ WELFARE + DEGREE, data=natfare)

The model formula of the fitted model and the corresponding G2 and X2 goodness-
of-fit tests is the standard output, obtained by
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> I.fit

Call:
loglm(formula = ∼ WELFARE + DEGREE, data = natfare)

Statistics::
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 10.36287 8 0.2404748
Pearson 10.52048 8 0.2303766

The goodness-of-fit tests above suggest not to reject the independence model. Thus
we conclude that the respondents’ belief about national funds for welfare does
not depend significantly on their educational level. Recall that independence was
visualized in the conditional barplot in Fig. 2.3, where the conditional distributions
of educational levels within each category of opinion about welfare spending were
similar.

Naturally, we derived the same Pearson’s X2 as in Sect. 2.2.6 by the clas-
sical chisq(). However, in the log-linear models framework, a more detailed
interpretation can be extracted by the parameter estimates λ̂X

i and λ̂Y
j in means

of (4.2) and (4.3), respectively. All items saved in object I.fit can be viewed by
names(I.fit) and we verify that the parameters’ ML estimates, satisfying the sum
to zero constraints (4.4), are saved in I.fit under $param. They can be printed by
> I.fit$param

‘(Intercept)’
[1] 3.923732

$WELFARE
too little about right too much
-0.2254279 0.1041910 0.1212369

$DEGREE
LT HS HS JColg BA Grad

-0.1517607 1.1139057 -0.5802153 0.1528232 -0.5347529

Alternatively, they can be saved in new vectors, convenient for further use, like
> L <- I.fit$param[1] # λ̂
> L.X <- I.fit$param[2:4] # (λ̂X

1 , λ̂X
2 , λ̂X

3 )

> L.Y <- I.fit$param[5:9] # (λ̂ y
1 , . . ., λ̂

y
5)

Thus, it is estimated that in year 2008, it was 1.4 times more probable a responder
to believe that the national welfare spending was too much than that it was too little,
independent of his educational level, since

m̂3 j

m̂1 j
= exp(λ̂X

3 − λ̂X
1 ) = e0.1212−(−0.2254) = e0.347 = 1.41 , j = 1, . . . ,5 ,

which is computed by
> exp(L.X [3]-L.X[1])

The ML estimates of the expected under independence cell frequencies are
derived by
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> fitted(I.fit)

DEGREE

WELFARE LT HS HS JColg BA Grad

too little 34.69319 123.0031 22.60314 47.04607 23.65445

about right 48.23874 171.0283 31.42827 65.41466 32.89005

too much 49.06806 173.9686 31.96859 66.53927 33.45550

The dissimilarity index Δ̂ can now be easily calculated as
> D <- sum(abs(natfare-fitted(I.fit)))/(2*sum(natfare))

and we find that Δ̂ = 0.038, stating that 3.8% of the observations have to be moved
to achieve a perfect fit.

The Pearsonian residuals are given by
> residuals(I.fit)

DEGREE

WELFARE LT HS HS JColg BA Grad

too little 1.6724517 -0.6375826 -0.7794780 0.1386103 -0.1351891

about right -1.2226377 -0.3092454 0.2780712 0.3175824 1.3612691

too much -0.2973437 0.8277514 0.3555753 -0.4378190 -1.3419302

but there is no option in the loglm framework for getting the standardized residuals.
The log-linear models can also be fitted in the GLM framework by glm, where the
derived output is more informative (for example, the standard errors and significance
of the parameters’ ML estimates are also provided) and more options are available
(standardized residuals calculation is one of them). This example is treated by glm

in Sect. 5.4.1.
Function loglm applies also on a data frame. To construct the data frame for

this example, the row and column factors, WELFARE and DEGREE, respectively, are
defined and tied to the vector of observed frequencies freq in a data frame, named
nf.frame, as shown below. The factors are defined for a frequency vector of length
IJ = 15 that expands the cells of the table by rows.
> NI <- 3

> NJ <- 5

> row.lb <- c("too little","about right","too much")

> col.lb <- c("LT HS","HS", "JColg","BA", "Grad")

> WELFARE <- gl(NI,NJ,length=NI*NJ, labels=row.lb)

> DEGREE <- gl(NJ,1,length=NI*NJ, labels=col.lb)

> nt.frame <- data.frame(freq,WELFARE,DEGREE)

Then, the model is fitted as
> I.fit <- loglm( freq ∼ WELFARE + DEGREE, data=nt.frame)

leading to the same output and options as described above.
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4.2.2 Example 2.3 (Continued)

We have already seen in Sect. 2.2.3 that the independence hypothesis is rejected
for the cross-classification in Table 2.2 of responders (in GSS2008) subject to their
gender and confidence in banks and financial institutions. In the log-linear models
framework, model (4.1) is fitted by
> I.fit <- loglm( ∼ Gender + Conf, data=confinan)

giving the fit statistics that we already know from Sect. 2.2.3
> I.fit

Call:
loglm(formula = ∼ Gender + Conf, data = confinan)

Statistics::
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 16.39847 2 .0002748643
Pearson 16.34136 2 .0002828258

Hence, the interaction between gender and confidence in banks is significant. The
interaction between two variables X and Y is denoted in R by X:Y. Entering the term
Gender:Conf in the model above, the saturated model is achieved
> sat.fit <- loglm( ∼ Gender + Conf + Gender:Conf, data=confinan)

with G2 = X2 = 0 and d f = 0 (perfect fit). Though no structure is imposed on
the underlying probability table gaining in parsimony, the parameters are still
informative for interpretational purposes. We get
> sat.fit$param

‘(Intercept)’
[1] 5.260226

$Gender
males females

-0.09028955 0.09028955

$Conf
great deal only some hardly any

-0.4147691 0.7337607 -0.3189915

$Gender.Conf
$Conf

Gender great deal only some hardly any
males -0.1701995 -0.009293922 0.1794934

females 0.1701995 0.009293922 -0.1794934

In log-linear models, only the highest factor interaction parameters are interpreted.
Thus, in presence of λXY , the main effects are not interpreted. Odds ratios can be
calculated by (4.7) and corresponding conclusions can be expressed. Thus, based on
the λXY values of the output above, the odds of having hardly any instead of great
confidence to banks is 2.01 times higher for men than for women, computed by
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> L.XY <- sat.fit$param$Gender.Confinan

> 1/exp(L.XY[1,1]+L.XY[2,3]-L.XY[1,3]-L.XY[2,1])

[1] 2.012516

4.3 Log-Linear Models for Three-way Contingency Tables

Consider a three-way contingency table, cross-classifying the variables X , Y , and
Z. In Sect. 3.2 we discussed on conditional and marginal distributions of such
tables and their relations, preparing the field to introduce the various notions of
independence in Sect. 3.4.

The hypothesis of complete independence of X , Y , and Z (or mutual indepen-
dence), defined by (3.16), is equivalently expressed in log-scale as

logπi jk = logπi+++ logπ+ j++ logπ++k, i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

which indicates that the logarithmic model of complete independence is

logmi jk = λ +λX
i +λY

j +λ
Z
k , i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K, (4.19)

with the main effect parameters λX
i , λY

j , and λ Z
k satisfying identifiability constrains

as the main effects of the log-linear models for two-way tables, i.e.,

I

∑
i=1
λX

i =
J

∑
j=1
λY

j =
K

∑
k=1

λ Z
k = 0 or λX

1 = λY
1 = λ Z

1 = 0 (4.20)

Analogously, hypothesis (3.17) of joint independence of Y from X and Z is in log-
scale equivalent to model

logmi jk = λ +λX
i +λY

j +λ Z
k +λXZ

ik , ∀ i, j,k. (4.21)

Additionally to constraints (4.20), the parameters of model (4.21) satisfy the
identifiability constraints

I

∑
i=1

λXZ
ik =

K

∑
k=1

λXZ
ik = 0 or λXZ

1k = λXZ
i1 = 0, (4.22)

for all possible values of the non-summing subscript (k or i).
The model of joint independence (4.21) involves only one two-factor interaction

term, the λXZ , since Y is joint independent from X and Z, but X and Z can be
dependent to each other. Obviously, on a three-way table two more models of joint
independence can be defined, those having as single two-factor interaction the λXY

or the λY Z term.
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If X and Y are independent conditionally on Z, then the underlying probabilities
structure is captured in (3.18) as

πi jk = πi j|kπ++k = πi+|kπ+ j|kπ++k =
πi+kπ+ jk

π++k
,

which is equivalent to the log-linear model:

logmi jk = λ +λX
i +λY

j +λ
Z
k +λXZ

ik +λYZ
jk , ∀ i, j,k. (4.23)

The identifiability constraints of this model are (4.20), (4.22), and

J

∑
j=1
λYZ

jk =
K

∑
k=1

λY Z
jk = 0 or λY Z

1k = λYZ
j1 = 0, (4.24)

for all possible values of the non-summing subscript (k or j).
In model (4.23) are present two two-factor interaction terms (from the three

possible for a three-way table). The missing interaction term, the λXY , is the
one responsible for the physical interpretation of the model, signaling missing
interaction, in the presence of the other variable. Thus, X and Y are conditionally
independent, given Z. The model of conditional independence of X and Z, given Y
(or of Y and Z, given X) is defined analogously.

Naturally, the next model to be considered is the one having all three possible
two-factor interactions. Thus, consider the model

logmi jk = λ +λX
i +λY

j +λ Z
k +λXY

i j +λYZ
jk +λXZ

ik , ∀ i, j,k. (4.25)

Additional to (4.20), (4.22), and (4.24), constraints

I

∑
i=1

λXY
i j =

J

∑
j=1

λXY
i j = 0 or λXY

1 j = λXY
i1 = 0, (4.26)

for all possible values of the non-summing subscript ( j or i), are imposed on the
parameters of this model.

It can be easily verified that under model (4.25), all conditional odds ratios of
the kth XY partial table for all pairs (i, i′), ( j, j′) with i < i′ and j < j′

πi j|kπi′ j′|k
πi′ j|kπi j′|k

, i = 1, . . . , I − 1, i′ = 2, . . . , I, j = 1, . . . ,J− 1, j′ = 2, . . . ,J ,

are independent of k, k = 1, . . . ,K. Indeed, we have

log

(πi j|kπi′ j′|k
πi′ j|kπi j′|k

)
= log

(
mi jkmi′ j′k
mi′ jkmi j′k

)
= λXY

i j +λXY
i′ j′ −λXY

i′ j −λXY
i j′ . (4.27)
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Hence, the XY conditional association does not depend on k, i.e., is homogeneous
across the levels of Z. Analogously it can be proved that also the YZ and XZ
conditional associations are homogeneous across the levels of X and Y , respectively.
For this, model (4.25) is called the models of homogeneous association.

If we set i′ = i+ 1 and j′ = j + 1 (without loss of generality), the conditional
odds ratios above become the θXY

i j(k) local conditional odds ratios, defined in (3.4),
and (4.27) leads to

logθXY
i j(k) = λ

XY
i j +λXY

i+1. j+1−λXY
i+1. j −λXY

i. j+1 , i = 1, . . . , I− 1, j = 1, . . . ,J − 1,
(4.28)

independent of k. For the conditional odds ratios θXZ
i( j)k and θY Z

(i) jk hold analogous
results.

Finally, the saturated model has an additional term, the three-factor interaction
term λXY Z that accounts for the more complex connection of all three variables:

logmi jk = λ +λX
i +λY

j +λ Z
k +λXY

i j +λXZ
ik +λYZ

jk +λXYZ
i jk , ∀ i, j,k. (4.29)

All terms of saturated model satisfy identifiability constraints, of the type given
above. Thus also for the three-factor interaction term it holds

I

∑
i=1

λXY Z
i jk =

J

∑
j=1

λXY Z
i jk =

K

∑
k=1

λXY Z
i jk = 0 or λXY Z

1 jk = λXY Z
i1k = λXY Z

i j1 = 0. (4.30)

The parameters of the saturated model are in 1-1 correspondence with the mi jk.
Taking into consideration the appropriate constraints and solving simple equa-
tions we can express all λ parameters as functions of the mi jk’s, analogously to
(4.9)–(4.12) for two-way tables.

All possible main effect and interaction terms that can appear in a three-way log-
linear model are listed in Table 4.1, along with their number of them being “free,”
after the identifiability constraints consideration. All these “free” parameters sum
to IJK − 1, which is the dimension of the parameter space when the contingency
table

(
mi jk

)
I×J×K is multinomial distributed. The fixed term λ is considered as a

parameter only under the Poisson sampling scheme; in which case the number of
possible “free” parameters is IJK (in analogy to two-way contingency tables).

All the log-linear models considered so far are of a special type. In all of
them, whenever a higher-order effect is in the model, then all possible lower-order
effects involving the variables of this higher-order effect term are also in the model.
Such models are called hierarchical log-linear models and are parsimoniously
symbolized by the set of the highest-order terms (with respect to all variables) that
define them uniquely. For instance, model logmi j = λ + λX

i + λXY
i j for two-way

tables is nonhierarchical, since it includes the term λXY
i j , without having the term λY

j .
Analogously, the absence of the term λ Z

k makes logmi jk = λ+λX
i +λY

j +λXY
i j +λYZ

jk
nonhierarchical. The hierarchical log-linear models for three-way tables are given
in Table 4.2, along with their notation.
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Table 4.1 Number of “free” parameters for each log-linear model term (main effect or interaction)
applied on an I × J×K contingency table, due to the identifiability constraints

Number of Number of Identifiability
Term parameters “free” parameters constraints

Main effects
λX

i I (I −1) (4.20) for λX
i

λY
j J (J −1) (4.20) for λY

i

λ Z
k K (K −1) (4.20) for λ Z

i

Two-factor interactions
λXZ

ik IK (I −1)(K −1) (4.22)
λYZ

jk JK (J −1)(K −1) (4.24)

λXY
i j IJ (I −1)(J −1) (4.26)

Three-factor interaction
λXYZ

i jk IJK (I −1)(J −1)(K −1) (4.30)

Table 4.2 Hierarchical three-way log-linear models

Model Description logmi jk =

(X ,Y,Z) Independence of X , Y , Z λ +λX
i +λY

j +λ Z
k

Jointly independence of
(Y,XZ) Y from X and Z λ +λX

i +λY
j +λ Z

k +λXZ
ik

(X ,Y Z) X from Y and Z λ +λX
i +λY

j +λ Z
k +λYZ

jk

(Z,XY ) Z from X and Y λ +λX
i +λY

j +λ Z
k +λXY

i j

Conditional independence of
(XZ,Y Z) X and Y , given Z λ +λX

i +λY
j +λ Z

k +λXZ
ik +λYZ

jk

(XY,XZ) Y and Z, given X λ +λX
i +λY

j +λ Z
k +λXY

i j +λXZ
ik

(XY,Y Z) X and Z, given Y λ +λX
i +λY

j +λ Z
k +λXY

i j +λY Z
jk

(XY,XZ,Y Z) Homogeneous association λ +λX
i +λY

j +λ Z
k +λXY

i j +λXZ
ik +λYZ

jk

(XY Z) Saturated λ +λX
i +λY

j +λ Z
k +λXY

i j +λXZ
ik +λYZ

jk +λXYZ
i jk

4.4 Hierarchical Log-Linear Models for Multi-way Tables

Log-linear models can be defined for contingency tables of dimension higher than
three, in a similar manner as for three-way tables. Log-linear models for multi-
way tables include higher-order interactions, up to interactions of order equal to
the dimension of the table. The number of possible models increases with the
dimension of the table, involving the procedure of deciding for the one appropriate
to describe the underlying structure of association. In order to impose a structure on
model building, especially helpful in model selection, log-linear modeling is usually
restricted to the family of hierarchical log-linear models.

Furthermore, the presence of nonhierarchical interaction terms in a model causes
interpretational inconveniences. For example, in a 4-way table, cross-classifying
variables X , Y , Z, and W , how can we understand and explain that variable X
does not interact with Y (absence of the λXY

i j term from the model) but it interacts
simultaneously with Y , Z, and W (model includes the λXY ZW

i jk� term)? Even among the
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hierarchical log-linear models, the physical interpretation of the models becomes
more involved as the dimension of the table increases. It is easier to understand
and interpret a high-dimensional model by focusing on its missing terms. Missing
interaction terms refer to variables that are conditional independent and conditional
independence statements are easier to understand and express.

To clarify this, consider the hierarchical log-linear model (XYZ,YW ) applied on
the 4-way table described above. The formula of this model would be

logmi jk� = λ +λX
i +λY

j +λ
Z
k +λW

� +λXY
i j +λXZ

ik +λYZ
jk +λYW

j� +λXYZ
i jk .

Note that the missing two-factor interaction terms are XW and ZW , while W is
associated to Y and X , Z are associated to each other and both to Y (also in a three-
factor interaction). This signals that X and W are conditionally independent, given
Y and Z. Indeed, the conditional XW log local odds ratios

logθXW
i( jk)� = logmi( jk)�+ logmi+1( jk)�+1 − logmi+1( jk)�− logmi( jk)�+1

under the above model turn out to be

logθXW
i( jk)� = 0, ∀i = 1, . . . , I − 1, �= 1, . . . ,L− 1,

for all j ( j = 1, . . . ,J) and k (k = 1, . . . ,K), fact that verifies the conditionally
independence of X and W , given Y , Z. In a symmetric manner, also Z and W are
conditionally independent, given the other two.

For a higher-order example, let the variables X1, . . . ,X7 be cross-classified to form
a I1 × I2 × . . .× I7 contingency table. Then, model (X1X2, X1X5, X3X4X5, X5X6X7)
equates logmi1i2...i7 to the sum of the fixed term, λ , plus the sum of the seven main
effects λXk

ik
, k = 1, . . . ,7, plus the sum of the eight two-factor interactions λXkX�

iki�
from

the 21 possible (the terms corresponding to the pairs (k, �) = (1,2), (1,5), (3,4), (3,5),
(4,5), (5,6), (5,7), (6,7) are in the model), plus the three-factor interactions terms
λX3X4X5

i3i4i5
and λX5X6X7

i5i6i7
. Observing the terms not included in the model, we can see that

variables X1, X2 are jointly independent from X3, X4, conditional on X5, X6, X7.

4.5 Maximum Likelihood Estimation for Log-Linear Models

For multi-way tables, the ML estimation procedure for a log-linear model M is
analogous to the procedure followed in Sect. 4.2 for the two-way independence
model (4.1). The log-likelihood function is of the (4.13) form, with the subscripts
and the indices in the sum appropriately adjusted. Thus, for an I1× I2× . . .× Is table,
cross-classifying variables X1,X2 . . . ,Xs, the kernel of the log-likelihood is

�(λλλ) = ∑
i1,...,is

(
ni1,...,is log(mi1,...,is)− elog(mi1,...,is )

)
, (4.31)



4.5 Maximum Likelihood Estimation for Log-Linear Models 99

where mi1,...,is are the expected frequencies under the assumed model M and λλλ the
vector of all its parameters. It is then maximized with respect to every parameter in
λλλ and the set of the associate likelihood equations is derived.

For the three-way hierarchical log-linear model (XZ,Y Z), for example, the
parameter vector λλλ (4.31) by (4.23) becomes

�(λλλ)= ∑
i1,...,is

(
ni1,...,is(λ +λ

X
i +λY

j +λ
Z
k +λXZ

ik +λYZ
jk )− eλ+λ

X
i +λY

j +λ
Z
k +λ

XZ
ik +λYZ

jk

)
.

Then, solving ∂�(λλλ )
∂λX

i
= 0 leads to

m̂i++ = ni++, i = 1, . . . , I ,

which are the likelihood equations corresponding to the X main effect parameters.
Analogously, with respect to the XZ interaction parameters, ∂�(λλλ )∂λXZ

ik
= 0 leads to

m̂i+k = ni+k, i = 1, . . . , I, k = 1, . . . ,K .

The remaining sets of likelihood equations are m̂+ j+ = n+ j+ ( j = 1, . . . ,J) and
m̂++k = n++k (k = 1, . . . ,K), for the Y and Z main effects, respectively, and m̂+ jk =
n+ jk (for all j, k), corresponding to the Y Z interaction.

In general, log-linear models oppose some nice properties regarding their
likelihood-based inference. It has been proved that the minimal sufficient statistics
of a model M is the set of sample marginals, corresponding to the highest-
order terms in the model, with respect to each variable. Thus, for (XZ,Y Z), the
sufficient statistics are (ni+k, n+ jk), for all i, j, k, while for (X ,Y Z), they would
be (ni++, n+ jk), for all i, j, k. The likelihood equations of the model are then
equating the sufficient statistics to their corresponding expecting values under M
(Birch 1963).

The ML estimates under the independence model (4.1) are derived in closed-form
expression but this is not the case in general. For most log-linear models for higher-
dimensional tables, the likelihood equations do not lead to closed-form expressions
for the ML estimates and have to be solved iteratively. The first algorithm applied
for this was the iterative proportional fitting (IPF) algorithm. Predominant is now
the Newton–Raphson (NR) algorithm, which will be presented in the context of the
GLMs (Sect.5.3.1).

Log-linear models for which closed-form MLEs exist are the decomposable
models. The joint probability of a decomposable model can be factorized in a
closed form in terms of marginal probabilities. This factorization is due to Goodman
(1970, 1971c) while the term decomposable was introduced by Andersen (1974).
Decomposable log-linear models received special attention in the 1970s and are
treated in detail in Bishop et al. (1975, Sect.3.4). They exhibit nice properties,
connected also to graphical log-linear models (see Sect. 4.7.2).
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4.6 Model Fit and Selection

The classical goodness-of-fit statistics to evaluate the fit of a multi-way log-linear
model M are Pearson’s X2 and the LR statistic G2, defined for an I1 × I2 × . . .× Is

table as

X2 = ∑
i1,...,is

(ni1,...,is − m̂i1,...,is)
2

m̂i1,...,is
, (4.32)

G2 = 2 ∑
i1,...,is

ni1,...,is log(
ni1,...,is

m̂i1,...,is
). (4.33)

The asymptotic distribution for X2 and G2 under model M is X 2
d−d0

, where
d =∏s

k=1 Ik − 1 is the total number of “free” cells of the table under consideration
under the multinomial sampling scheme, d0 the number of “free” parameters of the
assumed model M (overall λ is not considered as a parameter), and m̂i1,...,is the ML
estimate of the expected under M frequency for cell (i1, . . . , is).

The residual degrees of freedom d f = d−d0 of the hierarchical log-linear models
for three-way tables are given in Table 4.3. In this case d = IJK − 1 and d0 is
calculated by adding the number of “free” parameters for the terms in model from
Table 4.1.

Evaluation of the model fit to the data includes also inspection of the residuals.
The types of residuals discussed in Sect. 2.2.4 for two-way tables apply also to
tables of higher dimension. The dissimilarity index Δ̂ in (4.18) is also defined for
multi-way tables. It does not share the nice properties of G2 but its relative reduction
between models M1 and M2 can be used to compare practically the models, even
if they are not nested.

The number of possible log-linear models increases with the dimension of the
table, corresponding to different types of dependencies among the classification

Table 4.3 Hierarchical three-way log-linear models and
their residual d f

Model Formula d f

(X ,Y,Z) (4.19) IJK − I − J−K+2
(Y,XZ) (4.21) (J −1)(IK −1)
(X ,Y Z) (I −1)(JK −1)
(Z,XY ) (K −1)(IJ −1)
(XZ,Y Z) (4.23) K(I −1)(J −1)
(XY,XZ) I(J −1)(K −1)
(XY,Y Z) J(I −1)(K −1)
(XY,XZ,Y Z) (4.25) (I −1)(J −1)(K −1)
(XY Z) (4.29) 0
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mutual independence

jointly independence

conditional independence

homogeneous association
(non-decomposable model )

saturated

(X,Y,Z)

(X,YZ) (Y,XZ) (Z,XY)

(XZ,YZ) (XY,YZ) (XY,XZ)

(XY,XZ,YZ)

(XYZ)

Fig. 4.1 Sequences of nested models for three-way tables, from the saturated (XY Z) to the model
of mutual independence (X ,Y,Z)

variables. Thus, model selection becomes a basic issue as the dimension of the table
rises. The model selection procedure is based on the concept of “nested” models. In
general, a model M1 is nested in model M2, denoted as M1 ⊂M2, if M1 is derived
from M2 by eliminating some of M2’s parameters. Thus M2 contains all the terms
of M1 plus at least one more not present in M1.

Nested models are compared by conditional testing. Model M1 is more parsimo-
nious than M2, but for this G2(M1) ≥ G2(M2). Given that model M2 holds, the
adequacy of M1 is tested by

G2(M1|M2) = G2(M1)−G2(M2) , (4.34)

which under M1 is asymptotically X 2
d f (M1)−d f (M2)

distributed.
The possible sequences of nested models for three-way tables are illustrated

in Fig.4.1. Conditional tests of the type (4.34) can be performed between models
connected with arrows, not necessarily directly (see also Tutz 2012, Sect.12.4).

The log-linear model selection procedure consists of a sequential search between
hierarchical nested model, starting from the saturated model and removing terms
(one at a time) by conditional testing the significance of the term removed. The
process stops and decides for the model for which the next term to be removed leads
to a significant increase of the test statistic (4.34). For each level of interaction,
say k-factor interactions, the order the interaction terms are removed from the
model is the order of their significance, less significant being removed first. The
procedure described is a step algorithm of backward elimination. Alternatively,
forward elimination algorithms start from the model of complete independence and
continue to add terms, as long as they improve significantly the fit, according to the
conditional test (4.34).
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However, we should not let an algorithm decide blindly for the model. Some-
times, the nature of the problem or experimental conditions dictate the presence of
nonsignificant terms in the model. For example, suppose in a survey responders are
cross-classified according to their educational level (X1), marital status (X2), gender
(X3), and age in categories (X4). From the experimental design it is controlled over
gender and age, in the sense that the number of males and females participating
in the survey is prespecified for each of the K age categories. This means that the
table marginals n++i3i4 for i3 = 1,2 and i4 = 1, . . . ,K are set fixed by the design. If
the X3X4 interaction term is not found to be significant by the selection algorithm
and is thus not included in the model, then the corresponding likelihood equations,
m++i3i4 = n++i3i4 (i3 = 1,2, i4 = 1, . . . ,K), are missing. Consequently, the number
of males and females assigned by the adopted model to each age group will not
agree with the known prespecified numbers. Thus, the X3X4 interaction term should
be included in the model, even if it is nonsignificant. In this case, the λX3X4

i3i4
terms

signal the underlying product multinomial sampling design and not the physical
significance of this interaction.

We have already mentioned the crucial role the concept of conditional indepen-
dence plays in understanding and recording structures of associations in multi-way
contingency tables. An important application of the above described model selection
procedure is for testing for conditional independence structures, which is exposed
next for three-way tables.

4.6.1 Conditional Test of Conditional Independence

In the context of a I×J×K contingency table with classification variables X , Y , and
Z, if the model of homogeneous association (XY,XZ,YZ) fits the data well, we can
test for conditional independence between any two of them, given the third. This
test will be conditional on homogeneous association. For example, the test of

H0 : X , Y are independent, conditional on Z vs. H1 : not H0

can be expressed as

H0 : model (XZ,Y Z) vs. H1 : model (XY,XZ,Y Z) ,

since we already know that the underlying association is homogeneous. The H0 and
H1 models are nested; thus, the associated test can be based on the difference

G2(XZ,Y Z)−G2(XY,XZ,Y Z) (4.35)

which, under H0 and given that model (XY,XZ,YZ) holds, is asymptotically
distributed as χ2

(I−1)(J−1), since d f(XZ,Y Z)− d f(XY,XZ,Y Z) = (I − 1)(J− 1).
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For stratified 2× 2 contingency tables, the conditional test (4.35) applied on the
2 × 2 × K table has d f = 1 and is analogue to the Mantel–Haenszel test (3.9).
This provides an intuitive justification to the fact that the Mantel–Haenszel test
works best when the partial associations across the stratification levels are similar
(remarked in Sect. 3.3.1).

4.6.1.1 Log-Linear Model Selection for Example 3.3

Reconsidering Example 3.3 of Sect. 3.3.4, if T, F, and C stand for the treatment
outcome, the prognostic factor, and the clinic variables, then the homogeneous
association log-linear model (TF,TC,FC)) and the model of treatment-factor
conditional independence within clinic (TC,FC)) are of 5 and 6 d f , respectively,
and fitted in MASS as follows
: > hom.assoc<-loglm(∼Treatment*Prognostic_Factor+
+ Prognostic_Factor*Clinic+Treatment*Clinic, data=dat)

> cond.ind.TF<-loglm(∼Prognostic_Factor*Clinic+Treatment*Clinic)
The homogeneous association model is adequate, since G2(T F,TC,FC) = 7.950
(p-value= 0.159) and X2(T F,TC,FC) = 7.894 (p-value= 0.162), very close to the
Breslow–Day–Tarone test statistic (3.15), which is equal to BDT = 7.91 (d f = 5,
p-value=0.161).

The conditional test (4.35) in this case is G2(TC,FC)− G2(T F,TC,FC) =
34.845, with associated p-value=3.570184e-09 (d f = 1), computed as
> DG2 <- cond.ind.TF$deviance - hom.assoc$deviance

> p.value <- 1 - pchisq(DG2, 1)

while the corresponding difference in the X2 statistics
> DX2 <- cond.ind.TF$pearson - hom.assoc$pearson

is X2(TC,FC)−X2(TF,TC,FC) = 33.177, also indicative of the inappropriateness
of the conditional independence model considered (though not asymptotically X 2

1
distributed). Thus the “treatment–prognostic factor” association is homogeneous
across the clinics but conditional independence is rejected, based on the above
G2 conditional test. Recall that the Mantel–Haenszel test gave for this example
MH = 32.703 (d f = 1, p-value=1.074e-08), very close to the difference in X2

statistics value above.

4.6.2 Log-Linear Model for Example 3.2

Reconsider the 5× 7× 2 contingency table of the example introduced in Sect. 3.2,
which is already given in the R array party.tab. The three-way log-linear model
that describes this data table best will be achieved by the backward stepwise algo-
rithm. The stepwise model selection algorithms, forward or backward, presented
in Sect. 4.6, are implemented in R by the step function. In step the contribution
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Table 4.4 Backward stepwise procedure of log-linear model selection for Example 3.2

Start: AIC=140
∼D*P*G

Df AIC LRT Pr(Chi)
- D:P:G 24 120.82 28.818 0.2271
<none> 140.00

Step: AIC=120.82
∼ D + P + G + D:P + D:G + P:G

Df AIC LRT Pr(Chi)
- D:G 4 113.32 0.505 0.9730008
<none> 120.82
- P:G 6 132.77 23.951 0.0005333 ***
- D:P 24 174.34 101.523 1.650e-11 ***

—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Step: AIC=113.32
∼ D + P + G + D:P + P:G

Df AIC LRT Pr(Chi)
<none> 113.32
- P:G 6 125.84 24.519 0.000419 ***
- D:P 24 167.41 102.091 1.319e-11 ***
—
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Call:
loglm(formula = ∼ D + P + G + D:P + P:G,
data = party.tab, evaluate = FALSE)

Statistics:
Xˆ2 df P(> Xˆ2)

Likelihood Ratio 29.32320 28 0.3962751
Pearson 29.17456 28 0.4037142

of a term is evaluated by the change its removal causes on Akaike’s information
criterion (AIC) value of the model. The saturated model is applied on party.tab

and saved under sat. Then, with model sat as starting point, nonsignificant terms
of this model are eliminated by the procedure step, as shown below. Recall that we
work in library MASS.
> sat <- loglm(∼ D*P*G, data=party.tab)

step(sat, direction="backward", test="Chisq")

The derived output is provided in Table 4.4.
Thus, according to the backward stepwise algorithm and based on conditional

testings (4.34) between nested hierarchical log-linear models, the three-factor
interaction is nonsignificant (p-value= 0.227). Further on, the two-factor interaction
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Table 4.5 Conditional testing between nested hierarchical log-linear models for Example 3.2

LR tests for hierarchical log-linear models

Model 1:
∼ D + P + G
Model 2:
∼ D + P + G + D:P
Model 3:
∼ D + P + G + D:P + P:G
Model 4:
∼ D + P + G + D:P + P:G + D:G
Model 5:
∼ D * P * G

Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)
Model 1 155.93392 58
Model 2 53.84259 34 102.0913317 24 0.00000
Model 3 29.32320 28 24.5193932 6 0.00042
Model 4 28.81808 24 0.5051182 4 0.97300
Model 5 0.00000 0 28.8180773 24 0.22705
Saturated 0.00000 0 0.0000000 0 1.00000

DG is also nonsignificant with G2
(PG,DP) − G2

(DG,PG,DP) = 0.505 and associated

(p-value= 0.973), based on the X 2
4 approximation for the test statistic. The

interaction terms DP and PG are both highly significant with G2
(D,PG)−G2

(PG,DP) =

102.091 and G2
(G,DP) − G2

(DG,PG,DP) = 24.519, respectively. Thus, the backward
elimination procedure concludes to the (DP,PG) model, i.e., the responder’s
educational level (D) is conditional independent from his/her gender (G), given
his/her party affiliation (P).

The procedure above provides at each stage the value of the AIC for the
corresponding model as well. This criterion will be discussed in Sect. 5.3.2.

The successive conditional testings between nested hierarchical log-linear
models, from the model of complete independence up to the saturated, adding
terms according to their significance order, is summarized in the corresponding
analysis of variance table, which is possible in R by function anova.
> I <- loglm(∼D+P+G); as_1 <- loglm(∼D+P+G+D:P)
> as_2 <- loglm(∼D+P+G+D:P+P:G); as_3 <- loglm(∼D+P+G+D:P+P:G+D:G)
> anova(I, as_1, as_2, as_3, sat)

In the derived output (in Table 4.5), deviance coincides for log-linear models with
the G2 test statistic for the corresponding model (see Sect.5.3.2). The conditional
G2 values between successive nested models are in column Delta(Dev), followed
in next columns by the difference between their d f and the asymptotic p-value of
the associated conditional test.
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The mosaic plot of the observed frequencies for this example is provided in
Fig. 3.2 (right). This mosaic plot can be enriched by displaying on it the residuals
of each cell as well. Thus, the mosaic plot derived by
> mosaic(party.tab, gp = shading_Friendly,

. labeling= labeling_residuals)

is to be seen in Fig.4.2 (left). It differs from Fig.3.2 (right) in that the tiles are
colored according to the value of the corresponding residuals for the model of
complete independence. Negative significant residuals are red shaded while the
positive significant are blue shaded, with the depth of the color strengthening
for larger (in absolute value) residuals. We asked additional to label the tiles
with the significant residual value, so red-shaded tiles are those with the negative
residual values and blue with the positive ones. Cells with nonsignificant residuals
are non-shaded (white) with red (dashed) frame for negative residuals and blue
(solid) frame for positive ones. Thus, we observe that the highest positive residual
corresponds to females with educational level less than high school, who are
more political “independent” (“4”) than expected under independence. The highest
negative residual is for females with a bachelor degree, who are less political
“independent” than expected under independence.

The residuals illustrated in the mosaic plot above were for the independence
model (default). To refer to residuals of a different model, the output object of the
assumed model has to take the position of the data matrix as input in mosaic().
Thus, the mosaic plot in Fig.4.2 (left) can equivalently be obtained as
> mosaic(I, gp=shading_Friendly, labeling=labeling_residuals)

The residuals of the (PG,DP) model are incorporated in the mosaic plot by
> mosaic(as_2, gp=shading_Friendly, labeling=labeling_residuals)

The derived plot is provided in Fig.4.2 (right) and we can easily verify that the
Pearsonian residuals for (PG,DP) vary between −1.58 and 1.81, without anyone
being significant.

The residuals pictured so far are the Pearsonian residuals (default in mosaic()).
Alternative option is the deviance residuals, controlled by the option residuals=.
Thus, the deviance residuals for model (D,P,G) are considered in the mosaic plot as
> mosaic(party.tab, gp = shading_Friendly, residuals="deviance",

. labeling= labeling_residuals)

For other type of residuals, they have to be calculated ahead and be read in
mosaic(). This option will be illustrated in the context of GLMs for Example 2.4
in Sect.5.4.1.

The ML estimates of the expected under the adopted model (PG,DP) cell
frequencies are saved in array MLE by
> MLE <- fitted(as_2)

In order to visualize the structure of association dictated by each model, the
mosaic plots based on the ML estimates of the expected cell frequencies under
characteristic models are provided in Fig.4.3. In particular, the mosaic plot of the
ML estimates under the complete independence model (P,D,G) is in (a), while
under (DP,G) and (DP,PG) in (b) and (c), respectively. For comparison reasons,
in (d) is located the mosaic plot of the sample values, also given in Fig.3.2
(right). Observe in (a) that under the complete independence all rectangular tiles
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Fig. 4.3 Mosaic plots of the ML estimates of the expected cell frequencies for Example 3.2
(Table 3.2) under models (a) (P,D,G), (b) (DP,G), (c) (DP,PG) and of the observed cell
frequencies in (d)
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are perfectly aligned. Adding the DP interaction in (b), the alignment of the DP
rectangles is disturbed while the within P by G division of the rectangles remains
aligned, since the PG term is missing. This alignment is also lost in (c), which
resembles closely to the mosaic plot of the observed frequencies in (d).

Mosaic plot in Fig.4.3c is obtained by
> mosaic(MLE)

while replacing MLE with the array of estimates under (P,D,G) or (DP,G), plots (a)
or (b) are derived, respectively.

4.7 Graphical Models

Log-linear models can also be defined as graphical models. Not all log-linear
models are graphical, as we shall see next. Graphical models are useful whenever
the detection of conditional independencies among the involved variables is of
interest. They are a wide class of models whose conditional independence structure
can be deduced by a graph. In the context of multi-way contingency tables,
such graphs for log-linear models were introduced by Darroch et al. (1980),
who called them first order interaction graphs. They are undirected graphs and
in the context of graphical models they are known as independence graphs or
conditional independence graphs. For reasons explained below, we shall use the
term conditional independence graphs.

In case of high-dimensional contingency tables, graphical log-linear models
provide guidance for possible collapsing over one or more classification variables
without losing the relevant information. This dimension reduction problem is faced
through the factorization criterion and model’s decomposability.

To describe graphical models, one needs the basic notion of graph theory, the link
between graph theory and probability models, and the group of models which are
graphical, that is, whose conditionally independencies can be depicted by a graph.

Graphical models are not in the scope of this book but we shall introduce
briefly the basic terminology on undirected graphs (Sect. 4.7.1) and the class
of graphical log-linear models in order to connect them with classical log-linear
models (Sect. 4.7.2) and use them in the discussion on dimension reduction of
multi-way contingency tables by collapsing over one or more of the classification
variables (Sect. 4.8).

4.7.1 Undirected Graphs

An undirected graph consists of a finite set of nodes (or vertices) V and a set of
edges E , connecting some (or all) of the nodes in pairs. Consider, for example, a set
of five notes V = {v1,v2,v3,v4,v5}. Then, an undirected graph G = (V,E) consists
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Fig. 4.4 Undirected graphs G = (V,E) for V = {v1,v2,v3,v4,v5} and
(a) E = {{v1,v2},{v1,v3},{v1,v4},{v1,v5},{v2,v3},{v2,v4},{v2,v5},{v3,v4},{v3,v5},{v4,v5}},
(b) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v4},{v3,v5},{v4,v5}},
(c) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v5},{v4,v5}},
(d) E = {{v1,v2},{v2,v3},{v2,v4},{v3,v4}}

of the five nodes in V and up to ten edges (the elements of E) connecting pairwise
the nodes. Possible graphs for this setup are provided in Fig.4.4.

Next, we shall briefly refer to some terminology for undirected graphs. Two
nodes v1, v2 ∈ V are said to be adjacent in G if the edge {v1,v2} belongs to E ,
so that they are connected by a line in the corresponding graph. A subset A ⊂ V is
complete if all pairs of nodes in A are adjacent. A graph G = (V, E) is complete if
its set of nodes V is complete. A complete subset of nodes C induces a complete
subgraph of the graph of G . If this subgraph becomes incomplete by the addition of
a further node, then C is maximally complete and is said to be a clique. A path is
a sequence of distinct nodes v1,v2, . . . ,vk for which each successive pair of nodes
are adjacent. Two nodes vi and v j are connected if there exists a path joining them.
A cycle is a path with v1 = vk and is said to be chordless if only the successive pairs
of nodes in the cycle are adjacent. An edge of a cycle that connects to non-successive
nodes in the cycle is characterized as a chord. A graph is chordal (or triangulated) if
each of its cycles of four or more nodes has a chord. A subset of nodes B separates
two nodes vi and v j if every path joining them contains at least one node from B.
A subset B separates two subsets of N, A, and C, if it separates every pair of nodes
vi ∈ A and v j ∈C.

4.7.2 Graphical Log-Linear Models

Graphical models are a family of probability models, simplified through conditional
independencies represented in graphs. Focusing on contingency tables, the family
of graphical log-linear models is a subset of the hierarchical log-linear models that
utilizes undirected graphs to represent conditional independencies.

The connection between graphical log-linear models for a K-way contingency
table (with cross-classifying variables X1, . . . , XK) and undirected graphs is achieved
by assuming that (i) the set V of a graph consists of K nodes (v1, . . . , vK), one for
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each classification variable of the table, and (ii) the set of edges E connects some (or
all) of the nodes in pairs, indicating a lack of independence between the variables.
There is a one-to-one correspondence between models and graphs. In particular,
given an undirected graph, the corresponding graphical log-linear model is defined
as the hierarchical log-linear model with generators the cliques of the graph. For
this reason, graphical log-linear models are not always parsimonious models.

Thus, for a five-way table (K = 5), the graph provided in Fig.4.4a is a complete
graph and corresponds to the saturated model (X1X2X3X4X5), while the graphs of
Fig.4.4b–d correspond to the graphical log-linear models (X1X2,X2X3X4,X3X4X5),
(X1X2,X2X3,X2X4,X3X5,X4X5), and (X2X3X4,X1X2,X5), respectively. For instance,
verify for model (X1X2,X2X3X4,X3X4X5) that its three maximal interaction terms
correspond to the cliques of the graph in Fig.4.4b. Only log-linear models
with this correspondence are graphical. Thus, the hierarchical log-linear model
(X1X2,X2X3,X2X4,X3X4,X3X5,X4X5) is not graphical. Such exclusions from the
class of graphical log-linear models ensure the one-to-one correspondence between
models and graphs mentioned above.

Conditional independence is the key concept for defining graphical log-linear
models. Thus, a representative example of a non-graphical log-linear model is the
model of homogeneous association for three-way tables, since it has no conditional
independence interpretation. The set of conditional independencies involved in a
graphical log-linear model are ruled by three Markov properties, whose description
is out of the scope of this section. See Lauritzen (1996) or Højsgaard et al. (2012)
for details.

Graphs of graphical log-linear models are interpreted in terms of their missing
edges, which are indicative of the underlying conditional independence structure,
justifying thus that they are referred to as conditional independence graphs (see
also Agresti 2013). In particular, the variables corresponding to two nonadjacent
nodes in a graph are conditionally independent, given the nodes (variables) in the
paths connecting them.

Conditional independence is connected to separation of nodes’ subsets. If
subsets of nodes A and C are separated by subset B in the graph, then, under the
corresponding model, variables in A are conditionally independent to variables in B,
given C.

We have seen that an important subset of the hierarchical log-linear models are
the decomposable models, which lead to MLEs of closed-form expression (see
Sect.4.5). Graphical decomposable log-linear models are graphical models with
chordal graphs. The graphical models pictured in Fig.4.4 are all decomposable
except case (c).

Inference for graphical models is beyond the scope of this book. We shall only
illustrate them briefly in the following section’s examples, mostly to highlight their
role in collapsing over one or more classification variables of a high-dimensional
contingency table.

For constructing conditional independence graphs and fitting graphical models
in R one can consult Højsgaard et al. (2012, Chaps.1 and 2). For example, graphs
(a) and (d) of Fig.4.4 are derived in gRbase as shown below.
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> library(gRbase)

> ag.a <- ug(˜v1:v2:v3:v4:v5); plot(ag.a)

> ag.d <- ug(˜v1:v2+v2:v3:v4+v5; plot(ag.d)

Often the association structure of a high-dimensional hierarchical log-linear
model (not necessarily graphical) is visualized in terms of a graph, known as
association graphs. Note however that there is not a one-to-one correspondence
between log-linear models and association graphs. More than one log-linear models
may have the same graph. For example, considering the graphs in Fig.4.4 as
association graphs of hierarchical log-linear models, (b) is also the graph for the
model (X1X2,X2X3,X2X4,X3X4,X3X5,X4X5), while (a) is also (among others) the
conditional independence graph of the hierarchical log-linear model including all
possible two-factor interactions and none of higher order. In general, a triangle
subgraph

v1

v2

v3

of a conditional independence graph expresses the association structure between
X1, X2 and X3 of a hierarchical log-linear model containing the corresponding three-
factor interaction as well as of a model without this three-factor but all associated
pairwise interactions.

The graphs presented so far are undirected graphs and are applicable when the
classification variables are treated in a symmetric manner in terms of the underlying
associations. In the case of one or more response variables, the association structures
are visualized through the directed acyclic graphs and the chain graphs.

4.8 Collapsibility in Multi-way Tables

An intuitive way to treat multi-way tables is to reduce their dimension by collapsing
over classification variables that are not of direct interest. This way, the collapsing
variables are ignored, though they may correspond to covariates that influence
the relationship among the variables of interest. Such variables are characterized
as confounding variables and should be controlled (through conditioning on their
levels) instead of ignored. Thus, the association structure among the variables of
interest studied on the marginal table produced by collapsing over a confounding
variable does not necessarily express their interrelationships but reflects possibly a
confounded effect (that of the collapsing variable on the variables of interest).

Furthermore, collapsing over a confounding variable can falsify the structure of
the underlying associations, since partial associations can differ substantially (even
in direction) from the corresponding marginal ones, as already stated in the context
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Fig. 4.5 Conditional independence graphs for models (XZ,YZ) (left) and (XY,XZ) (right)

of 2×2×K tables in Sect. 3.2.2. This phenomenon is known as Simpson’s paradox
(Yule 1912; Simpson 1951), which states that the association in a marginal table can
be of different direction than conditional association at each corresponding partial
table.

Hence, the dimension of a table should not be reduced without ensuring that
confounding does not occur. Conditions under which collapsing is possible in three-
way tables are exposed next, while a discussion on conditions for multi-way tables
follows.

Consider a I × J × K table, cross-classifying the variables X , Y , and Z and
suppose that we are interested in the XZ association. The XZ marginal and the XZ
conditional (given Y ) local odds ratios coincide (and thus we could collapse over Y
without affecting the XZ association), if either X , Y are conditional independent,
given Z, or Y , Z are conditional independent, given X , i.e., if the underlying
model is the (XZ,Y Z) or (XY,XZ), respectively. These patterns of conditional
independencies can easily be visualized in the conditional independence graphs of
these models in terms of separated variables (see Fig.4.5). Thus, under both models
we can collapse over Y , since it is separated from X (Z) by Z (X) for model (XZ,Y Z)
(XY,XZ). With similar arguments we can verify in Fig.4.5 (left) that for (XZ,Y Z)
we could also collapse over X but not over Z.

In general for multi-way contingency tables, conditions under which they can be
collapsed are provided by Bishop et al. (1975, Chap.2), who defined the classical
parametric collapsibility. It is based on the condition that if a model for a multi-way
tables partitions the classification variables into three mutually exclusive subsets A,
B, and C, such that B separates A and C, then parameters relating variables in A
and variables in A to variables in B remain unchanged when collapsing over the
variables in set C. This means that the association structure of a contingency table
is not affected by collapsing over a variable (or a set of variables), only if it is
conditionally independent to another variable (or set of variables) of the contingency
table, conditioning on the rest of the variables. Since the concept of conditional
independence is the fundamental kernel of graphical log-linear models (Sect. 4.7.2)
and due to the “separation–conditional independence” connection, graphical models
and the associated graphs are extremely useful in detecting patterns of conditional
independencies and take decisions for collapsing, especially in high-dimensional
contingency tables. For a discussion on the alternative approaches on collapsibility,
see Sect. 4.9.4.
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Table 4.6 DP ML estimates of the expected under (PG,DP) conditional and marginal local odds
ratios for the data in Table 3.2

(G): males Political party affiliation (P)
Degree (D) 1 2 3 4 5 6 7
1: LT high school 1.385 0.955 0.462 2.289 1.790 0.533
2: High school 0.948 0.878 0.980 1.818 0.876 0.591
3: Junior college 0.838 2.045 0.470 1.242 1.316 1.436
4: Bachelor 0.684 0.532 2.390 0.341 1.243 1.440
5: Graduate

4.8.1 Collapsing for Example 3.2

Recall that for Example 3.2, model (PG,DP) was selected. As expected due
to (3.19) and the discussion above, since under (PG,DP) variables D and G are
conditionally independent given P, it holds

θ̂DP
i j(1) = θ̂

DP
i j(2) = θ̂

DP
i j , i = 1, . . . ,4, j = 1, . . . ,6,

and their common estimated expected values are provided in Table 4.6.
The estimates of the expected under (PG,DP) conditional DP local odds ratios

can be calculated in R following the procedure described in Sect. 3.2 for the
corresponding observed local odds ratios just by replacing the party.tab by the
MLE array. The DP partial fitted tables for male and female are respectively
> eDP1 <- MLE[„1]; eDP2 <- MLE[„2]

and the DP fitted marginal (over gender) table is
> eDPm <- margin.table(MLE, c(1,2))

The 4× 6 table of fitted under (PG,DP) conditional (for males) local odds ratios(
θ̂DP

i j(1)

)
is then derived by

> eOR<-exp(t(matrix(as.vector(C%*%log(as.vector(t(eDP1)))),NJ-1)))

Replacing table eDP1 by eDP2 and eDPm in the command above, the conditional(
θ̂DP

i j(2)

)
and the marginal

(
θ̂DP

i j

)
fitted tables are produced, respectively, which

under (PG,DP) coincide.
Alternatively, (PG,DP) can be fitted as a graphical model in gRim. In Sect. 3.2.4

the data were stored in the array part.tab. In gRim, if the data are in a contingency
table format, they need to be defined as table. Thus, the graphical model is fitted as
follows.
> library(gRim)

> party <- as.table(party.tab)

> graph.PG.DP <- dmod(˜P*G+D*P, data=party)

The conditional independence graph of the model, given in Fig.4.6 (right), is
derived by
> plot(graph.PG.DP)

Based on the graph, we observe that we could collapse over gender (G).
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Fig. 4.6 Conditional independence graphs for Example 3.2 (Table 3.2) for the saturated model
(DPG) (left) and for the graphical log-linear model (DP,PG) (right)

Table 4.7 Cross-classification of a sample of 2,228 responders according to their age, presence
of depression, their gender (G), and whether they are living alone

Living alone (L): no

Gender (G) Gender (G)
Males Depression (D) Females Depression (D)

Age (A) No Yes Age (A) No Yes

≤ 45 283 16 ≤ 45 310 44
> 45 270 13 > 45 262 63

Living alone (L): yes

Gender (G) Gender (G)
Males Depression (D) Females Depression (D)

Age (A) No Yes Age (A) No Yes

≤ 45 212 34 ≤ 45 291 46
> 45 113 63 > 45 138 70

Analogously, collapsing over the educational level (D) is also possible but not
over the party affiliation (P).

4.8.2 Example 4.1

Consider the 2×2×2×2 contingency table produced by cross-classifying a sample
of 2,236 responders according to presence of depression (D), their gender (G), and
whether they are living alone (L) and are aged above 45 (A), given in Table 4.7
(artificial data).

If we are interested in the association between depression and age, the marginal
AD sample odds ratio is

θ̂AD =
1,096 ·209
140 ·783

= 2.09 ,
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indicating that the odds of depression is 2.1 times higher for people over 45. But,
looking at the conditional AD sample odds ratio, for all possible combinations of G
and L, we get

(
θ̂AD(LG)

)
=

(
0.852 1.694
3.476 3.209

)
,

realizing that Simpson’s paradox occurs. Indeed, we observe that for men the AD
association changes direction with respect to the living conditions (first column). In
particular, for men not living alone, the odds of depression is 1.2 (= 1/0.852) times
higher for people up to 45 than older while for men living alone it is 3.5 times higher
for people older than 45.

Studying the underlying association structure, we proceed to log-linear model
selection via the backward stepwise procedure, implemented in R as follows.
> freq<-c(283,270,16,13,310,262,44,63,212,113,34,63,291,138,46,70)

> names<-list(A=c("<45",">=45"), D=c("no","yes"), G=c("M","F"),

+ L=c("no","yes"))

> dat <- array(freq, c(2,2,2,2), dimnames=names)

> sat <- loglm(∼A*D*G*L, data=dat)

> step(sat, direction="backward" , test="Chisq")

The proposed model is the (ADL,DGL) with G2 = 3.886 and p-value=0.4216
(based on the X 2

4 approximation), which is graphical.
In the graphical models framework, the saturated model is fitted in GRim as

> depression <- as.table(dat)

> graph.sat <- dmod(˜A*D*G*L, data=depression)

while
> plot(graph.sat)

produces its conditional independence graph, pictured in Fig.4.7 (left). Based on the
saturated model, the backward model selection procedure
mod.sel <- backward(graph.sat)

. BACKWARD: type=decomposable search=all, criterion=aic(2.00), alpha=0.00

. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -4.1140 Edge deleted: G A

suggests to delete the GA edge (based on the AIC, see Sect. 5.3.2). This leads, as
expected, to (ADL,DGL). As a graphical model, it is fitted by
> graph.model <- dmod(˜A*D*L+D*G*L, data=depression)

The derived output
> graph.model

Model: A dModel with 4 variables

graphical : TRUE decomposable : TRUE
-2logL : 10940.92 mdim : 11 aic : 10962.92
ideviance : 171.80 idf : 7 bic : 11025.72
deviance : 3.89 df : 4
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Fig. 4.7 Conditional independence graphs for Example 4.1 (Table 4.7) for the saturated model
(ADGL) (left) and for the graphical log-linear model (GLD,DLA) (right)

provides information on whether the fitted model is graphical and decomposable as
well as on its goodness of fit. -2logL is minus twice the maximized log-likelihood
and mdim the number of parameters in the model. deviance and df give the
likelihood ratio statistic value and the associated degrees of freedom of the fitted
model while ideviance is G2((A,D,G,L)|(ADL,DGL)), that is, the likelihood ratio
statistic for testing independence conditional on the fitted model. The degrees of
freedom corresponding to this conditional test are idf. The term “deviance” and the
other two criteria (AIC and BIC) will be introduced in Sect. 5.3.2.

The fact that (GLD,DLA) is a graphical decomposable log-linear model can
easily be verified also by its association graph, derived by
> plot(graph.model)

and provided in Fig.4.7 (right). By this graph, we verify that Simpson’s paradox
may occur when collapsing over L. On the other hand, when marginalizing over G,
the AD and AL association structures are still well estimated, i.e., Simpson’s paradox
does not occur. Also collapsing over A is possible (the DG and GL association
structures are not affected). Thus, the Simpson paradox we noticed for the AD
marginal table is due to the marginalization over L.

4.9 Overview and Further Reading

4.9.1 On Log-Linear Models Analysis

The contribution of Birch (1963) in the analysis of multi-way tables was essential.
He was the first who pointed out the equivalence of multinomial and Poisson log-
linear models. Furthermore, his result that the ML estimates are the sole estimates
that equate a log-linear model’s sufficient statistics to their fitted values was a mile-
stone for the log-linear models analysis. He generalized earlier work by Roy, Mitra,
and Kastenbaum. It is fair to mention that the first who worked on the interaction
structure for multi-way tables was Bartlett (1935), who considered the 2× 2× 2
case. A review of these early results is provided by Goodman (1963b, 1964).
Fundamental in the multi-way log-linear models establishment was the contribution
of Cox, Darroch, Good, Goodman, Bishop, and Fienberg. Seminal to the theoretical
development of the topic is the contribution of Haberman, who generalized Birch’s
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results and provided a formal investigation of MLEs for log-linear models and their
properties (see Haberman 1974a). He also developed Newton–Raphson iterative
algorithms for their fit (Haberman 1973a), which gave estimates of the standard
error of the MLEs as well, and made thus their asymptotic significance testing
feasible. The algorithm applied by then was the IPF algorithm of Deming and
Stephan (1940), adjusted for log-linear models by Bishop (1969), Fienberg (1970a),
and Darroch and Ratcliff (1972). Ku and Kullback (1974) approached log-linear
models by indicating the analogies to linear models for continuous variables. Lang
(1996b) provided a detailed discussion on the comparison of multinomial and
Poisson log-linear models. For an extended historical review on the development
of the inferential methods for log-linear models we refer to Fienberg and Rinaldo
(2007).

Zero frequencies of a contingency table need special consideration and are
distinguished between two types, the sampling and the structural zeros. Sampling
zeros refer to cells of low but positive probability that may lead to zero observed
frequencies in a certain realization. They are thus random zeros, and the corre-
sponding cells are included in the analysis leading to nonzero expected frequencies
estimates. Sampling zeros need no special consideration, in general. Traditionally,
it has been suggested either to add a small positive constant ε only to the zero cells
(see Grizzle et al. 1969) or to add it always (see Cox 1970b; Goodman 1970). Bishop
(1969), Fienberg (1970b), and Goodman (1971b) dealt further with the problem of
log-linear models’ ML estimation in the presence of sampling zeros. Glonek et al.
(1988) proved that for hierarchical log-linear models for multi-way contingency
tables, the positivity of the sufficient statistics (i.e., corresponding marginal totals of
the table) ensure the existence of the MLEs if and only if the model is decomposable.
For non-decomposable models, they discuss the additional conditions required.

Tables with many sampling zeros (sparse tables) require special consideration,
since the standard asymptotic theory does not apply and technical problems may
arise in the estimation procedure. A contingency table with large number of cells and
relative small total sample size will contain many zero cells and is called sparse. The
basic asymptotic theory for testing nonparametric null hypotheses for multinomial
data under sparseness assumption has been developed by Holst (1972) and Morris
(1975). In case of sparse two-way tables, Mehta and Patel (1983) show that Fisher’s
exact test and Pearson’s X2 can lead to contradictory conclusions. Zelterman (1987)
indicated that X2 can show significant bias in testing independence for sparse tables
and proposed a new statistic, D2, which is also supported by Haberman (1988) in
the context of null hypotheses defining unequal cell probabilities. Goodness-of-fit
tests for sparse multinomials are reviewed and compared in Kim et al. (2009).

A class of test statistics for sparse tables with ordered categories are proposed by
Burman (2004), which under certain conditions are asymptotically more powerful
tests than Pearson’s chi-square. Classes of goodness-of-fit tests under sparseness
for multidimensional multinomial contingency tables are considered by Maydeu-
Olivares and Joe (2005, 2006), based on low-order marginal proportions. Koehler
(1986) and Dale (1986) studied the fit of log-linear models on sparse tables.
Fienberg and Rinaldo (2012) studied ML estimation in log-linear models, conditions
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of their existence, and the role of the sampling zeros. An alternative approach to treat
sparse tables is the Bayesian (Sect.10.5). Sparseness is also met in high-dimensional
data (see Sect.10.6). On the other hand, structural zeros are cells of zero probability
that must be excluded from the analysis and thus not estimated. Structural zeros will
be faced in Sect. 5.5.

Statistical inference for categorical data is mostly asymptotic, based on large
sample approximations. For log-linear models, Haberman (1977) provided condi-
tions for the asymptotic normality of linear functions of the MLEs and for the
asymptotic chi-squared distribution of Pearson’s X2 and the G2 goodness-of-fit
statistics. He further pointed out that they remain applicable even if individual cell
frequencies are small, provided the sample size and the number of cells of the table
are large. The analysis of small sample contingency tables is briefly reviewed in
Sect. 10.4.

Friendly (1994) connected mosaic plots to log-linear models, visualizing on
mosaic displays beyond the observed cell frequencies (by the area of the cell
rectangular) also the residuals (through shadings of the cell areas). For more on
visualizing log-linear models via mosaic plots, we refer to Theus and Lauer (1999).
Zeileis et al. (2007) visualized on mosaic plots departures of independence in two-
way tables and models of conditional independence for three-way tables through
residual shadings that code also significance of associations.

Beyond MLEs, the broad class of best asymptotic normal (BAN) estimators
has been developed for the multinomial distribution by Neyman (1949), which
share optimal large sample properties. In this class belong the weighted least
squares (WLS) estimators, which are simpler to compute than the MLEs. The basic
reference on WLS estimation for categorical data models is Grizzle et al. (1969).

Early contributions on treating misclassification of categorical data are by Bross
(1954), facing the problem in 2 × 2 tables, and by Mote and Anderson (1965),
considering its effect on X2 tests. Espeland and Odoroff (1985) proposed a log-linear
model for misclassified categorical data, fitted by the EM algorithm, generalizing
earlier results by Chen (1979). A review on methods of categorical data analysis
subject to misclassification is provided by van den Hout and van der Heijden (2002)
while Buonaccorsi (2010, Chap.2) treats two-way tables under misclassification
extensively.

4.9.2 Residual Analysis: Outlier Detection

Residuals for two-way tables were introduced by Anscombe and Tukey (1963),
who proposed graphical and analytical procedures to analyze the residuals. Later
on, Cox and Snell (1968) defined residuals in a more general setup and studied
their asymptotic properties. They did not deal with contingency tables but discussed
problems concerning Poisson and binomial distributed samples. Haberman (1973b)
developed methods of residual analysis for log-linear models in two-way tables,
complete and incomplete. In particular, he considered the models of independence
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and quasi-independence, supporting the use of the standardized residuals over
the Pearsonian. Pearsonian and standardized residuals were compared in terms
of the type I error rates of post hoc cellwise tests for two-way tables under
independence and homogeneity models by MacDonald and Gardner (2000) and
García-Pérez and Núñez-Antón (2003). The conclusions of MacDonald and Gardner
(2000) were in favor of the standardized residuals. García-Pérez and Núñez-Antón
(2003) considered the moment-corrected Pearsonian residuals and concluded that
they behave the same as the standardized when the marginal distributions of the
table are uniform while standardized residuals behave slightly better for peaked
marginal distributions. The residuals presented in Sect.2.2.4 are the most known
and widely used. However, a variety of alternative residuals have been suggested
in the literature. For example, Brown (1974) and Simonoff (1988) introduced the
deleted residuals, for which each expected cell frequency is estimated by the model
of quasi-independence, fitted on the data table with this particular cell replaced by a
structural zero.

Residuals are a crucial tool for detecting outliers in a contingency table (Simonoff
1988). On outlier detection for two-way tables see, among others, Fuchs and Kennet
(1980), Kotze and Hawkins (1984), and Lee and Yick (1999). For outlier detection
and measures of influence, see Hastie and Pregibon (1992) and Lee and Fung (1997).
For outlier identification in multi-way contingency tables, see Kuhnt (2004) and
references cited therein. Alternatively, outliers are treated via algebraic statistics
(see Sect. 10.4) by Rapallo (2012).

4.9.3 On Graphical Log-Linear Models

The connection of log-linear to graphical models is due to Darroch et al. (1980),
while important early contributions are by Edwards and Kreiner (1983) and
Wermuth and Lauritzen (1983). Classical reference sources on graphical models
are Whittaker (1990) and Lauritzen (1996). Graphical models with missing data are
dealt in Lauritzen (1995). Conditional independence graphs for multi-way log-linear
models along with more complex multigraphs and the construction of fundamental
conditional independencies for non-decomposable log-linear models are discussed
in Khamis (2011). For graphical models with causal motivation, distinguishing
between explanatory and response variables, see in Sect. 8.4.2.

4.9.4 On Collapsibility

Collapsibility, discussed in Sect. 4.8, is an important concept associated with
the dimension reduction of multi-way contingency tables without affecting the
underlying association structure information. Issues of collapsibility are tied related
to Simpson’s paradox. For more on Simpson’s paradox we refer to Simpson (1951),
Blyth (1972), and Samuels (1993).
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There exist various notions of collapsibility, starting with the classical parametric
collapsibility (Bishop et al. 1975, Chap.2). Further necessary and sufficient condi-
tions of parametric collapsibility, less restrictive than those by Bishop et al. (1975),
are provided by Whittemore (1978), who introduced also the term of strict collapsi-
bility. Additional to strict collapsibility, Ducharme and Lepage (1986) considered
the pseudo collapsibility and tested the various types of collapsibility based on
the table’s nominal odds ratios. A geometric approach for exploring collapsibility
is provided by Shapiro (1982). Vellaisamy and Vijay (2007) stated the results of
Whittemore in an alternative form using the technique of Möbious inversion and
further established new results on collapsibility and strict collapsibility.

Asmussen and Edwards (1983) approached collapsibility via graphical models
and defined the model-collapsibility. They linked collapsibility to model’s decom-
posability and to the idea of invariance of models when some variables are
unobserved. They also showed that model-collapsibility is often equivalent to
estimate-collapsibility. The different types of collapsibility conditions are reviewed
in Whittaker (1990, Sect.12.5). Model-collapsibility is also considered in Khamis
(2011). Vellaisamy and Vijay (2010) obtained necessary and sufficient conditions
for the strict collapsibility based on the interaction parameters of the condi-
tional log-linear model adopted for the layers of the conditioning variables. They
considered also the model-collapsibility for hierarchical log-linear models under
the conditioning framework and provided connections between the strict and the
model-collapsibility. Model- and estimate-collapsibility and their equivalence for
conditional graphical models for multi-way contingency tables are considered by
Liu and Guo (2012).

4.9.5 Information-Theoretic Approach in Contingency
Table Analysis

A pioneering approach in categorical data analysis is the minimum discrimination
information (MDI) approach, based on information theory. It is based on the
discrimination information function of Kullback (1959), which is defined on two
probability distributions and is a measure of closeness between them.

Based on the principle of MDI, the MDI estimates are BAN estimates obtained
by minimizing the discrimination information function between the observed
frequencies and the expected under the assumed model or hypothesis. For the cell
probabilities of two-way tables with fixed marginals, Ireland and Kullback (1968a)
proposed the MDI estimators, illustrating also how their procedure is extended to
multi-way tables. Further applications of the results derived in Ireland and Kullback
(1968a) and connections to previously ad hoc considered estimators by Fisher
(1934) for the 2× 2 case are given in Ireland and Kullback (1968b).

The MDI approach offers a complete treatment for categorical data inference.
The corresponding statistic is asymptotically X2 distributed under the assumed
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model and is used for testing model fit. Furthermore, the procedure can be applied
for testing hypotheses about parameters of the model or linear combinations of them
and provides indication of outlier cells and the analysis of information table, in
analogy to the analysis of variance table. It is a platform of unified treatment for
contingency tables of any order and dimension as well as for categorical data not in
a contingency table form. For applications of this approach on contingency tables
see Ku and Kullback (1974), references cited therein, and the book by Gokhale
and Kullback (1978a). A clarifying short review is given by Gokhale and Kullback
(1978b). The MDI approach is identical to the ML approach for internal constrained
problems (ICP) while for external constrained problems (ECP) the two approaches
are equivalent in probability under the null hypothesis or the assumed model. For
more on ICP and ECP, we refer to Gokhale and Kullback (1978b) and Read and
Cressie (1988, Sect.3.5).

The MDI approach is itself a special case of the minimum power divergence
approach. The power divergence family is introduced by Cressie and Read (1984)
and unifies all major approaches considered for discrete multivariate data analysis.
Its dynamism lies on the fact that the individual special cases are obtained through
a single parameter λ . The power divergence goodness-of-fit statistic for comparing
the frequency vector Y = (Y1, . . .Yny)

′ to the estimated of the expected under the
assumed null hypothesis (or model) μ̂ = (μ̂1, . . . μ̂ny)

′ is defined as

2Iλ (Y : μ̂) =
2

λ (λ + 1)

ny

∑
i=1

Yi

[(
Yi

μ̂i

)λ
− 1

]

, −∞< λ <∞ , λ �=−1, 0 . (4.36)

The cases λ = −1 and λ = 0 are defined by the continuous limits of (4.36) for
λ → −1 and λ → 0. It forms a parametric family of goodness-of-fit statistics,
controlled by the parameter λ . Pearson’s X2 is (4.36) with λ = 1, while (4.36)
converges to the LR statistic G2 for λ → 0. Further, for λ → −1, it converges to
the MDI statistic mentioned above. The Neyman-modified X2 statistic (Neyman
1949) is obtained for λ = −2 and the Freeman–Tukey statistic (Freeman and
Tukey 1950) for λ = −1/2. Under the null hypothesis tested and under certain
regularity conditions, (4.36) is asymptotically X2 distributed and all members of
this goodness-of-fit statistics family are asymptotically equivalent. In terms of test
power and of small sample approximation, Cressie and Read (1984) suggested the
value λ = 2/3. Statistical inference for multivariate discrete data based on the power
divergence is studied extensively in Read and Cressie (1988), also under sparseness
assumptions.

Associated with statistic (4.36) is the power divergence measure, which measures
the divergence of two probability distributions. If π = (π1, . . .πK)

′ and q =
(q1, . . .qK)

′ are two probability vectors, then the power divergence specifies their
divergence as

2Iλ (π : q̂) =
2

λ (λ + 1)

K

∑
i=1
πi

[(
πi

qi

)λ
− 1

]

, −∞< λ < ∞ , λ �=−1, 0 , (4.37)

with the cases λ =−1 and λ = 0 being defined as above.



124 4 Log-Linear Models

The power divergence belongs to the even broader family of φ -divergences. For
π and q as above, the φ -divergence between π and q (or Csiszar’s measure of
information in q about π) is defined by

IC(π,q) =
K

∑
i=1

qiφ(πi/qi), (4.38)

where φ is a real-valued strictly convex function on [0,∞) with φ(1) = φ ′(1) =
0, 0φ(0/0) = 0, 0φ(y/0) = limx→∞ φ(x)/x (see Pardo 2006). Setting φ(x) =
x logx, (4.38) is reduced to the Kullback–Leibler divergence measure that corre-
sponds to the LR statistic G2. For φ(x) = (1− x)2, Pearson’s divergence is derived,

related to Pearson’s X2 statistic. If φ(x) = xλ+1−x
λ (λ+1) , (4.38) becomes the power

divergence measure (4.37).
For φ -divergence-based inference and for special applications to log-linear

models and categorical data analysis, we refer to Pardo (2006), references therein,
and to Martìn and Pardo (2008). Minimum power divergence and minimum
φ -divergence estimators generalize the MLEs, retaining their properties and mean-
while exhibiting robustness properties (see Basu et al. 1998 and Pardo 2006). In
Sect.7.4 we discuss generalized association models, connected to φ -divergence.



Chapter 5
Generalized Linear Models and Extensions

Abstract The generalized linear model (GLM) is reviewed and the log-linear
models are integrated in this family. For GLMs, maximum likelihood estimation,
model fit, and model selection are discussed. In the GLM framework the analysis of
incomplete tables is more straightforward. The quasi-independence model is defined
and illustrated in R. Furthermore, the family of generalized log-linear models
(GLLMs) is briefly presented and a GLLM is illustrated with a representative
example in R.

Keywords Generalized linear models • Exponential family • Maximum likeli-
hood estimation • Model selection and fit • Log-linear models • Quasi indepen-
dence • Multinomial Poisson homogeneous model

5.1 The Generalized Linear Model (GLM) in Keywords

Log-linear models for contingency tables are members of the family of gener-
alized linear models (GLMs). The GLM is a broad class of statistical models,
introduced by Nelder and Wedderburn (1972), that allows for unified consideration
and treatment of many models of different types of response variables and error
structures. Characteristic special cases of the GLM are the models of regression,
logistic regression, Poisson regression, and the log-linear models. The GLM is an
extension of the classical regression model that relates a response variable Y to a set
of q explanatory variables Xj, j = 1, . . . ,q, by equating a function of the expected
response E(Y ) to a linear predictor based on X = (X1, . . . ,Xq).

Under the classical linear regression model, if y = (y1, . . . ,yny)
′ is a sample of

size ny of the response variable Y and x = (xi j)ny×q is the ny × q matrix with the
corresponding sample values on the explanatory variables Xj, j = 1, . . . ,q, then in
matrix notation we have

y = Xβββ + εεε ,

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__5,
© Springer Science+Business Media New York 2014
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where βββ = (β1, . . . ,βq)
′ is the parameter vector and εεε = (ε1, . . . ,εny)

′, the vector
of errors. The distributional assumptions are that (i) Yi are independent normal
distributed with E(Yi) = μi (i = 1, . . . ,ny) and common variance Var(Yi) = σ2

and (ii) the errors are also independent normal distributed with zero mean and
common variance σ2

ε . In summary, the regression model has a random component,
the response variable Y , and a systematic component, the linear combination of
the explanatory variables Xβββ , that links to the vector of the expected response
values, i.e.,

μμμ = E(Y) = Xβββ , (5.1)

with μμμ = (μ1, . . . ,μny)
′ and Y = (Y1, . . . ,Yny)

′.
The GLM extends the regression models by relaxing the assumption about

normal distributed response variable Y and by linking the systematic component
not directly to μμμ but to a function of it g(μμμ). Thus, the systematic component of the
GLM is

ηηη = g(μμμ) = Xβββ , (5.2)

with ηηη = (η1, . . . ,ηny)
′. Function g is called the link function. The linear model (5.1)

is a special case of (5.2) for the identity link, i.e. for ηηη = g(μμμ) = μμμ .
Under GLM, the distribution of the response Y may be any member of the

exponential family. For univariate responses, as considered in this book, the
corresponding density function is

f (yi; θi,ψ ,ωi) = exp

{
yiθi − b(θi)

ψ
ωi + c(yi,ψ ,ωi)

}
, (5.3)

where ωi is a weight with

ωi =

{
1, ungrouped data (i = 1, . . . ,ny)

nc
i , grouped data (i = 1, . . . ,g)

,

and c = 1 or −1, according to whether as group response is considered the average
or the sum of the individuals’ responses in a group, respectively. Parameter θ is
called natural parameter, because it determines the mean, since

μ = E(Y ) = b′(θ ) . (5.4)

Parameter ψ controls the variance

σ2 = Var(Y ) =
ψ
ωi

b′′(θ ) (5.5)

and is therefore called the dispersion parameter. b(·) and c(·) are specific functions
determined by the type of the exponential family.
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Many commonly used distributions are members of the exponential family,
like the normal, the gamma, the binomial, the multinomial, and the Poisson.
For one-parameter families the dispersion parameter ψ is fixed. For example,
the Poisson P(θ ) and the binomial B(n,θ ), for fixed n, have ψ = 1. These
distributions are in the simpler natural exponential family. Furthermore, for the
Poisson ω = 1 while for the binomial ω = n or n−1, according to whether as
response y is considered the success proportion or the number of successes.

The link function ηi = g(μi) can theoretically be any monotonic and differen-
tiable function. However, the link options are practically limited, since the link
is chosen so that the inverse μi = g−1(ηi) leads to admissible values for μi and
simple functions of θi. Characteristic example is the case of a binomial response
B(n,πi). Then μi = πi and it must be in (0,1). The three links that are more often
used for binomial data are the logit, the probit, the complementary log–log , and
the complementary log. In Chap.8, we will apply the logit link g(π) = log

( π
1−π
)

and refer briefly to the other options. The link function specifies the nature of the
distribution considered for the error εi. A convenient link with nice properties is
the canonical link that expresses μi in terms of the parameter θi, i.e., the canonical
link is g(μi) = B−1(θi), where B = b′. Under the canonical link, X′Y is a sufficient
statistic for βββ .

In summary, GLM is a framework that unifies a wide range of models, flexible
through the choices for the distribution of its random component, for the link
and eventually the error distribution. Beyond the powerful theoretical setup, it is
practically attractive because it allows to draw inference for all possible GLM
models by the same algorithm, simplifying thus their implementation in statistical
software.

5.2 Log-Linear Model: Member of the GLM Family

Classical log-linear models, presented in Chap. 4, can be viewed in the framework
of GLM for specific selection of the link function and the error distribution, as will
be stated next. Doing so has specific advantages. Beyond convenience in model
selection and inference by adopting the procedures developed for the GLM family,
it allows for easy handling of the structural zeros in log-linear modeling (see Sect.
5.5) and it provides a platform for extending the log-linear model to model the
marginals as well (see Sect.5.6).

In order to adjust to GLM’s notation, contingency tables are expanded to vectors.
Thus, the I× J table n = (ni j) is expanded (by rows) to the ny × 1 vector y as

y = (y1,y2, . . . ,yny)
′ = (n11,n12, . . . ,n1J,n21, . . . ,nIJ)

′ ,

with ny = IJ. Additionally, this vector approach ensures unified treatment for tables
of any dimension. Throughout this book whenever tables are expanded in vectors,
expansion is considered by rows, followed by columns, layers, etc.
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Under the GLM setup, the log-linear models for contingency tables are
easier derived considering the Poisson distribution for the random component,
i.e., Yi ∼P(θi) and for link the g(μi) = logμi, i = 1, . . . ,ny. The log link is the
canonical link for the Poisson distribution. They are referred as Poisson log-linear
models. Considering Poisson sampling is not restrictive due to the equivalence of
the three possible sampling schemes (see Sect.2.2.1). Recall that also in the classical
log-linear framework, estimation was based on the Poisson likelihood (2.33).

Thus, the log-linear models for I × J tables discussed in this section can be
expressed in matrix notation, as follows:

log(μμμ) = Xβββ , (5.6)

where μμμ is the IJ × 1 vector of expected cell frequencies under the model, βββ is the
q×1 vector of parameters, and X is the IJ×q associated design matrix. The table of
expected cell frequencies mI×J is expanded the same way as the table of observed
frequencies.

For example, the model of independence (4.1) subject to last category zero
constraints is equivalently expressed by (5.6), where the IJ × 1 vector of expected
frequencies is μ = (m11,m12, . . . ,m1J,m21, . . . ,mIJ)

′, the (I + J − 1)× 1 vector of
parameters is β= (λ ,λX

1 , . . . ,λX
I−1,λ

Y
1 , . . . ,λ

Y
J−1)

′, and

X =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

1 1(1) I∗

1 1(2) I∗
...

...
...

1 1(I−1) I∗

1 0J×(I−1) I∗

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

is the IJ×(I+J−1) design matrix, with 1 the J×1 matrix of 1’s, 1(i) the J×(I−1)
matrix with 1’s at the ith column and 0’s in all other entries, 0s×t the s× t matrix of
0’s, and

I∗ =
(

IJ−1

01×(J−1)

)
,

where Is is the s× s identity matrix.
The application of the independence model through local odds ratios (2.52),

though simpler in expression, is more advanced and computationally involved,
because it is not in the GLM family. It does not apply to the expected cell frequencies
directly but to a function of them. For this, a generalization of the GLM is needed,
briefly discussed in Sect.5.6.
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5.3 Inference for GLMs

5.3.1 ML Estimation for GLMs

For the maximum likelihood estimation of βββ for model (5.2), the log-likelihood of a
given sample needs to be maximized with respect to βββ . Thus, for a random sample
y of size ny, from a population distributed by (5.3), the log-likelihood is

�=
ny

∑
i=1

log f (yi; θi,ψ ,ωi) =
ny

∑
i=1

yiθi − b(θi)

ψ
ωi +

ny

∑
i=1

c(yi,ψ ,ωi) (5.7)

and is a function of βββ due to (5.2) and (5.4).
The first derivative of the log-likelihood function is the Fisher’s score function

s(βββ ) =
∂�
∂βββ

=

(
∂�(βββ )
∂β1

, . . .
∂�(βββ)
∂βq

)′
.

Equating the score function’s components to zero, the corresponding likelihood
equations are obtained

s(β j) =
∂�
∂β j

=
∂
∂β j

(
ny

∑
i=1

log f (yi; θi,ψ ,ωi)

)

= 0 , j = 1, . . . ,q,

and are finally equal to

ny

∑
i=1

(
yi −E(Yi)

Var(Yi)
· ∂g−1(ηi)

∂ηi
· xi j

)
= 0 , j = 1, . . . ,q , (5.8)

where ηi =∑q
j=1β jxi j. The likelihood equations (5.8) are derived applying the chain

rule, since θi = (b′)−1(μi), μi = g−1(ηi), and using (5.4) and (5.5).
For certain distributional assumption for Yi and particular link function g, the

likelihood equations (5.8) take their explicit form and specify the MLE β̂ββ . For

the canonical link, ηi = θi and g−1 = b′, leading to ∂g−1(ηi)
∂ηi

= b′′(θi). Thus,
by (5.5), (5.8) are simplified to

ny

∑
i=1

[yi −E(Yi)]xi j = 0 , j = 1, . . . ,q , (5.9)

stating that the likelihood equations for the canonical link equate the β j’s sufficient
statistic ∑ny

i=1 yixi j to its expected value, for j = 1, . . . ,q.

The asymptotic covariance matrix of β̂ββ is derived from the second derivative of
the log-likelihood, since it is equal to

Cov(β̂ββ ) =I −1
F ,
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where IF = Cov(s(βββ )) is the expected Fisher information matrix. In our case

IF = Cov(s(βββ )) = E

(
∂�
∂βββ

∂�
∂βββ ′

)
= E

(
− ∂ 2�

∂βββ∂βββ ′

)
= X′WX ,

where W is a diagonal matrix with diagonal entries

wi = (∂μi/∂ηi)
2[Var(Yi)]

−1 . (5.10)

For large ny,

β̂ββ ∼Nq(βββ , I −1
F ) .

The matrix of the negative second derivatives of the score function is the observed
information matrix

I obs
F =−H =− ∂ 2�

∂βββ∂βββ ′ ,

where the matrix of second derivatives H is usually referred as the Hessian matrix.
It holds that

IF = E
(
I obs

F

)
= E(−H) . (5.11)

For GLMs with canonical link functions, ηi = θi implies ∂μi
∂ηi

= ∂μi
∂θi

and the Hessian
matrix becomes

H =−X′WX , (5.12)

with W a diagonal matrix with entries wi = ωi
[
g−1(θi)

]′
/ψ , i = 1, . . . ,ny, indepen-

dent of y. Hence

IF = E(−H) =−H =I obs
F ,

i.e., for canonical link functions, the expected and observed information matrices
are identical.

The likelihood equations (5.8) or (5.9) do not usually lead to closed form
expressions for the β̂ββ and have to be solved iteratively. The two algorithms usually
applied for solving the likelihood equations are the Newton–Raphson and the Fisher
scoring.

If βββ (t) is the value assigned to β̂ββ at stage t of the iterative procedure
(t = 0,1,2, . . .), then the updating equations of the Newton–Raphson algorithm
at stage t + 1 are

βββ t+1 = βββ t −
(

H(t)
)−1

s(βββ (t)) , (5.13)

where s(βββ (t)) and H(t) are the score function s(βββ ) and the Hessian matrix H
evaluated at βββ (t). For matrix inversion to be possible, H(t) has to be non-singular.
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The algorithm converges and stops when a termination criterion is met, say after
tc iterations, leading to β̂ββ = βββ (t). A termination criterion checks whether βββ (t) and
βββ (t+1) are sufficiently close, for example, whether

|�(βββ (tc+1))− �(βββ (tc))| ≤ ε or

∥
∥
∥βββ (t+1)−βββ (t)

∥
∥
∥

∥∥
∥βββ (t)

∥∥
∥

≤ ε ,

for a pre-chosen small positive ε .
The Fisher’s scoring algorithm is similar to the Newton–Raphson algorithm with

the only difference being that it is based on the expected information matrix, instead
of the observed information matrix. In particular, the updating equations for the
Fisher scoring algorithm are

βββ t+1 = βββ t +
(
I

(t)
F

)−1
s(βββ (t)) , (5.14)

where I (t)
F is IF evaluated at βββ (t).

The asymptotic covariance matrix of β̂ββ is estimated for the Fisher’s scoring
algorithm by Ĉov(β̂ββ ) = Î −1

F and for the Newton–Raphson algorithm by Ĉov(β̂ββ ) =
(−Ĥ)−1, where ÎF and Ĥ are IF and H, respectively, evaluated at β̂ββ .

Due to (5.11), the Newton–Raphson and the Fisher scoring algorithm coincide
for GLMs of canonical link function. For noncanonical link functions, the choice
between the algorithms relates to issues of ease of application, algorithm’s con-
vergence, and efficiency of implementation. It is a choice between observed and
expected information matrix. For a related discussion, we refer to the classical
discussion paper by Efron and Hinkley (1978) and Palmgren (1981). Alternatively,
other methods have been proposed like the Quasi-Newton (or Newton’s unidimen-
sional) method that is easier to apply since it does not require matrix inversion but
does not provide estimate of the asymptotic covariance matrix. We will illustrate the
Newton’s unidimensional method for association models in Sect.6.2.

The solutions of the likelihood equations correspond actually to local maxima
and not to the global maximum of the log-likelihood function �, as is expected for
the MLE β̂ββ . Whenever � is concave, the local and global maxima are identical. For
non-concave �, the choice of the initial estimate βββ (0) is important, to ensure that it
is in the region of the global maxima.

5.3.2 Evaluating Model Fit for GLMs

Given a sample y of ny observations, let μ̂μμ denote the corresponding ML estimate
of μμμ = E(Y) under a model M of q parameters. The quality of the model fit is
assessed by comparing the maximum log-likelihood for the model �(μ̂μμ;y) to the
maximum log-likelihood for the model that describes the data perfectly, i.e., the
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saturated model. A saturated model has as many parameters as the observations in
the sample. We have seen so far saturated models in the context of log-linear models.
For the saturated GLM, the number of parameters is ny, μ̂μμ = y and the corresponding
log-likelihood is �(y;y). It is obvious that always �(μ̂μμ ;y) < �(y;y) with model M
fitting as better as its log-likelihood approaches the saturated log-likelihood. Hence,
the goodness of fit of a model is expressed in terms of their difference by the test
statistic

−2 [�(μ̂μμ ;y)− �(y;y)] ,

which for the exponential family (5.3) becomes

D(y; μ̂μμ)
ψ

=
2
ψ

ny

∑
i=1
ωi
(
yi(θ̃i − θ̂i)− [b(θ̃i)− b(θ̂i)]

)
, (5.15)

where θ̂i is the ML estimate of parameter θi under the model M and θ̃i is the
estimate under the saturated model. The statistic D(y; μ̂μμ) is known as deviance.
Analogously, the Pearson’s X2 statistic can be used for testing the adequacy of
model M . In this context

X2(M ) =
ny

∑
i=1

(yi − μ̂i)
2

μ̂i
. (5.16)

For Poisson and binomial GLMs, the deviance (5.15) turns out to equal the LR
statistic for testing the null hypothesis that model M holds against the saturated
model

G2(M ) = 2
ny

∑
i=1

yi log(
yi

μ̂i
) . (5.17)

The statistics above can be used for testing goodness of fit of M , if their asymptotic
distribution can be specified. For this to be possible, the data have to be grouped
(each yi occurs ni times) with the number of observations in each group ni being
sufficiently large. In this case, the distribution for the statistics (5.15)–(5.17) is
approximately X 2

d f , with d f = ny − q, the difference between the number of
parameters for the saturated model (ny) and the model under testing (q). For more
on the test statistics refer to McCullagh and Nelder (1989).

These goodness-of-fit tests do not account for model complexity while they are
increasing in sample size ny, giving thus significant values even for good models
if the sample size is large. Alternatively, the fit of a model M can be evaluated by
Akaike’s information criterion (Akaike 1974)

AIC =−2�(μ̂μμ;y)+ 2q . (5.18)
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It is based on the maximum likelihood under M but penalizes its value for model
complexity. Furthermore, the Bayesian information criterion (Schwarz 1978)

BIC =−2�(μ̂μμ;y)+ (logn)q (5.19)

is another maximum likelihood-based measure, incorporating Bayesian thinking,
that beyond complexity takes into account also the sample size n. The AIC and BIC
are used for comparing models, with smaller values indicating better models. They
can be used to compare also non-nested models. They will be illustrated in the log-
linear model context in Sect.5.4.1.

5.3.3 Residuals

Residuals are critical for diagnosing lack of model fit and identifying possible
underlying patterns. The types of residuals used in GLM analysis are the same
as those discussed in the context of independence testing for two-way tables (see
Sect.2.2.4). In the GLM setup, the raw residuals ei = yi − μi (i = 1, . . . ,ny) are
transformed to the Pearsonian residuals

eP
i =

yi − μ̂i√
V̂ar(yi)

, i = 1, . . . ,ny . (5.20)

For the Poisson GLM, V̂ar(yi) = μ̂i in (5.20) above, while for testing independence
in two-way tables, (5.20) is (2.40), expressed in vector form. Pearson’s residuals
are asymptotic normal distributed but not standard normal, as explained in Sect.
2.2.4. Thus, dividing the raw residuals by their asymptotic standard errors, the
standardized residuals are derived

es
i =

eP
i√

1− ĥi

=
ei√

V̂ar(yi)(1− ĥi)
, i = 1, . . . , I, j = 1, . . . ,J , (5.21)

where ĥi is the estimate of the diagonal element hi, i = 1, . . . ,ny of the ny×ny matrix

Hat = W1/2X(X′WX)−1W1/2 ,

known as hat matrix, with W the diagonal matrix with entries (5.10).
The deviance residuals decompose the deviance to the individual contributions

of each observation i. Hence, for the exponential family (5.3), they are equal to

ed
i = sign(yi − μ̂i) ·

[
2ωi
(
yi(θ̃i − θ̂i)− [b(θ̃i)− b(θ̂i)]

)]1/2
, i = 1, . . . ,ny , (5.22)

satisfying D(y; μ̂μμ) = ∑ny
i

(
ed

i

)2
. For testing independence in two-way tables, (5.22)

simplify to (2.43).
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5.3.4 Model Selection in GLMs

Deviance plays a predominant role in comparing GLMs, via the likelihood ratio
criterion, for responses yi, i = 1, . . . ,ny, in the exponential family with ψ = 1.
In this case, by (5.15), the deviance of a model is equal to the corresponding LR
statistic (4.33) for testing its fit.

Let M1 be a GLM of q1 parameters. Let also M0 be a simpler GLM, produced
from M1 by eliminating r of its q1 parameters. Then, M0 is said to be nested in
M1 and denoted by M0 ⊂M1. Model M0 has q0 = q1 − r parameters and is more
parsimonious than M1.

If μ̂μμ0 and μ̂μμ1 are the ML estimates of μμμ under M0 and M1, respectively, then,
for ψ = 1, the deviances of models M0 and M1 are

D(y; μ̂μμ0) = −2
[
�(μ̂μμ0;y)− �(y;y)

]

D(y; μ̂μμ1) = −2
[
�(μ̂μμ1;y)− �(y;y)

]
.

Since reducing the number of model’s parameters implies increase of model’s
distance from the perfect fit of the saturated model, it will always be D(y; μ̂μμ0) >
D(y; μ̂μμ1).

Models M0 and M1 apply both on the same y, thus their difference is

D(y; μ̂μμ0)−D(y; μ̂μμ1) =−2
[
�(μ̂μμ0;y)− �(μ̂μμ1;y)

]
= LRS(M0,M1) ,

where LRS(M0,M1) is the LR statistic for testing the null hypothesis that M0

holds against the alternative that M1 holds. In particular, by (5.15), the difference
in deviances equals

D(μ̂μμ0; μ̂μμ1) = D(y; μ̂μμ0)−D(y; μ̂μμ1) = 2
ny

∑
i=1

ωi
(
yi(θ̂i1 − θ̂i0)− [b(θ̂i1)− b(θ̂i0)]

)
.

(5.23)

Under M0, (5.23) is approximately X 2
r distributed, where r = q1 − q0 is the

difference between the number of parameters of the two compared models. This
asymptotic result is the key for models’ comparison.

For Poisson log-linear models, (5.23) simplifies to (4.34), i.e.,

G2(M0|M1) = 2
ny

∑
i=1
μ̂i1 log

(
μ̂i1

μ̂i0

)
= G2(M0)−G2(M1) ,

where G2(M0) and G2(M1) are as in (5.17).
Upon considering a sequence of nested models from a very simple M0 up to the

saturated Msat,

M0 ⊂M1 ⊂M2 ⊂ . . .⊂Msat ,
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the importance of the parameters added gradually can be evaluated by successive
comparisons of neighbor models. Thus, the appropriate model can be built by
selecting this model Ms for which D(μ̂μμ s; μ̂μμ s+1) is nonsignificant and D(μ̂μμ s−1; μ̂μμs)
is significant. This means that adding more parameters would complicate the model
without improving its fit significantly, while removing any parameters further would
lead to a model of significantly poorer fit. Hence, comparisons of nested models
serve for developing procedures of “best model” selection. Furthermore, once the
“best model” is selected, model comparison can serve as a tool for evaluating the
individual importance of each parameter or group of parameters. Model selection
can also be based on AIC and BIC. For a comparative study of AIC and BIC
and a corrected for finite samples version of AIC with emphasis on their role
in model selection, we refer to Burnham and Anderson (2004). These criteria
will be illustrated in the context of log-linear models for multi-way tables next
(see Sect.5.4.1).

5.4 Software for GLMs

All general-purpose statistical packages (like SAS, SPSS, Stata, and SYSTAT)
have procedures for GLM analysis. For example, GLMs are fitted in SAS by the
procedure GENMOD. The corresponding R function is glm, which is based on the
S-function “glm” (Hastie and Pregibon 1992). The basic form for calling the glm

function is
> Mfit <- glm(formula, family=..., data=...)

where formula defines the model to be fitted, family determines the error
distribution and link function of the model, and data specifies the data frame on
which the model will be applied. Mfit is the object where output of glm is saved.
formula is provided in a form of the type Y∼X1+X2+X3+X1:X2, where Y is the
dependent variable, X1, X2, X3 the independent, and X1:X2 denotes the interaction
between X1 and X2. The expression above is equivalent to Y∼X3+X1*X2, where
X1*X2 stands for the generating term of a hierarchical model, i.e., it is equivalent to
Y∼X1+X2+X1:X2. For log-linear models the choice for family is family=poisson
(link = "log"). The specification of data frame is optional. If it is omitted, the
variables are taken from the environment from which glm is called.

The minimum output is printed on screen by simply typing Mfit while more
detailed output is provided by summary(Mfit). The content of object Mfit can be
viewed by names(Mfit). An item, say A, of Mfit is located in Mfit$A and can
be saved in a variable for further use (e.g., V1 <- Mfit$A). Due to the predominant
role deviance plays in GLM’s analysis, the residuals saved in Mfit, the output object
of glm, are the deviance residuals. For results not provided in Mfit, a variety of
special functions is available that apply on the glm output. Function step() for
model selection between nested models and anova() for analysis of variance can
be activated also in glm framework, as will be illustrated in the examples that follow.
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Table 5.1 Summary output of the independence model applied on Table 2.3, fitted by glm

Call:
glm(formula = freq ∼ WELFARE + DEGREE, family = poisson,data = nt.frame)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.3419 -0.5377 -0.1352 0.3366 1.6724

Coefficients:
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.54654 0.10253 34.590 < 2e-16 ***
WELFARE2 0.32962 0.08276 3.983 6.81e-05 ***
WELFARE3 0.34666 0.08247 4.204 2.63e-05 ***
DEGREE2 1.26567 0.09855 12.843 < 2e-16 ***
DEGREE3 -0.42845 0.13858 -3.092 0.00199 **
DEGREE4 0.30458 0.11473 2.655 0.00793 **
DEGREE5 -0.38299 0.13670 -2.802 0.00508 **
--
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

( Dispersion parameter for poisson family taken to be 1 )

Null deviance: 478.046 on 14 degrees of freedom

Residual deviance: 10.363 on 8 degrees of freedom

AIC: 110.74

Number of Fisher Scoring iterations: 4

For historical reasons, let us note that GLIM (generalized linear interactive
modeling) was the first package with the ability of fitting a variety of GLMs in a
unified manner. It was developed by the GLIM working party of the Royal Statistical
Society in 1974. GLIM4, the latest release (1993), had many links as standard
options and was convenient for GLM fit and model selection. A rich macro library
was available while users could write their own macros in GLIM language. The
associated journal GLIM Newsletter, issued from 1979 to 1998, was publishing
GLIM macros.

5.4.1 Example 2.4 by glm

The log-linear model of independence (4.1) will be fitted on Table 2.3, by glm of
R. The variables are required in vector form; thus we apply glm on the data frame
nt.frame, constructed in Sect.4.2.1. Model (4.1) is then fitted by
> I.glm <- glm(freq ∼ WELFARE+DEGREE,family=poisson,data=nt.frame)

and the extended output (provided in Table 5.1) is obtained by
> summary(I.glm)
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The value of the G2 statistic is reported under “Residual Deviance” and is saved
in I.glm$deviance, as can be verified by typing names(I.glm). Its asymptotic
p-value is not provided but can easily be calculated by
> p.value <- 1-pchisq(I.glm$deviance, I.glm$df.residual)

We find p-value = 0.240; thus the independence model describes adequately this
data set. Furthermore the value of the AIC is given (AIC = 110.74) while the BIC,
defined by (5.19), can be computed as
> n <- sum(ntfare$freq); q <- I.glm$df.null-I.glm$df.residual

> BIC <- I.glm$aic-(2-log(n))*q

giving BIC = 139.91. The level of the AIC and BIC values can be judged in
comparison to alternative models. In this case, for the saturated model
> sat <- glm(freq ∼ WELFARE*DEGREE,family=poisson,data=nt.frame)

AIC = 116.4, while for the models of only one main effect
> welfr <- glm(freq ∼ WELFARE,family=poisson,data=nt.frame)

and
> degr <- glm(freq ∼ DEGREE,family=poisson,data=nt.frame)

we get AIC = 548.1 and AIC = 129, respectively. Hence, the choice of the
independence model is justified.

Function glm produces parameter estimates subject to the first category zero
constraints. Recall that only the effect differences between different categories are
of interest and these remain invariant under different types of constraints. Observe
that λ̂X

3 − λ̂X
1 = 0.347− 0, equal to the corresponding value derived in Sect.4.2.1

subject to the sum to zero constraints.
The residuals saved in object I.glm are the working residuals. The Pearsonian

residuals are calculated by residuals(I.glm, type = c("pearson")) and the
deviance by changing the type option to "deviance". Standardized residuals are
obtained by rstandard(I.glm).

The items of the output object are all in vector form but can easily be transformed
to the more friendly table form by xtabs(). For example, the ML estimates of the
expected cell frequencies under independence and the standardized residuals are
derived in table form by
> MLEs <- xtabs(I.glm$fitted.values ∼ WELFARE+DEGREE,data=natfare)

> stdres <- xtabs(rstandard(I.glm) ∼ WELFARE+DEGREE,data=natfare)

Thus, the standardized residuals are
> stdres

DEGREE
WELFARE LT HS HS JColg BA Grad
too little 2.0983151 -1.039894 -0.9517240 0.1790943 -0.1654438
about right -1.6533505 -0.543633 0.3659428 0.4422752 1.7955727
too much -0.4040979 1.462390 0.4702723 -0.6127615 -1.7788921

The only standardized residual that exceeds in absolute value 1.96 corresponds to
cell (1,1). That is, responders with educational level lower than high school tend
to believe that welfare spending is too little with higher probability than expected
under the independence model.
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The sequence of commands followed above is unified in function fit.I() of the
web appendix (see Sect. A.3.4), which additionally provides the values for Pearson’s
X2 along with its p-value, the dissimilarity index (4.18) and the BIC. The function
requires the vector of frequencies (by rows) and the number of rows and columns of
the table. For this example, it is called as fit.I(freq,3,5).

The standardized residuals can be displayed on the mosaic plot as shown below.
We apply
> mosaic(natfare, gp=shading_Friendly, residuals=stdres,

+ residuals_type="Std\nresiduals",labeling = labeling_residuals)

where stdres is the table of standardized residuals derived above. The mosaic plot
derived is given in Fig.5.1 (right). The figure on the left is the mosaic plot for
standardized residuals for Example 2.2 and is derived analogously.

The residuals illustrated in the mosaic plots so far were all for the independence
model (default). To refer to residuals of a different model, the output object of the
assumed model has to take the position of the data matrix as input in mosaic().
Thus,
> mosaic(natfare, gp=shading_hcl, residuals_type="deviance")

is equivalent to
> mosaic(I.glm, gp=shading_hcl, residuals_type="deviance")

To incorporate the residuals of the model with only the row (opinion) main effect
> X.glm <- glm(freq ∼ WELFARE+DEGREE,family=poisson,data=nf.frame)

the mosaic plot function should be
> mosaic(X.glm, gp=shading_hcl, residuals_type="deviance")

From the ML estimates it can be verified that the estimated under independence
θ̂i j (i = 1,2, j = 1, . . . ,4I) are, as expected, all equal to 1. The same holds also for
the global and cumulative odds ratios. The ML estimates of any set of generalized
odds ratios expected under the assumed model can be calculated in R, using the
corresponding functions of the web appendix (see Sect. A.3.2). The procedure is
that described for the sample generalized odds ratios at the end of Sect.2.2.5 and
illustrated in the example of Sect.2.2.6. Only the vector of observed frequencies
has to be replaced with the vector of ML estimates of the expected cell frequencies
under the assumed model. The equivalent independence model (2.52) in terms of
the local odds ratios will be illustrated for this example in Sect.5.6.

5.4.2 Example 3.1 (Revisited)

For the example of Table 3.1, we have seen in Sect.3.3, applying the Breslow–Day
test (or the Woolf test), that the association between smoking and depression is
homogeneous for males and females. At this point, we shall select the appropriate
log-linear model for describing the underlying association structure of Table 3.1.
The data are available in R in matrix depsmok3. In order to fit the models in the
GLM setup applying glm, the data have to be expanded from a matrix to a vector
and the factors corresponding to the classification variables have to be defined. This
is carried out easily as follows:
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> obs <- as.vector(depsmok3)

> row <- rep(1:2, 4); col <- rep(1:2, each=2,2)

> lay <- rep(1:2, each=4); row.lb <- c("yes","no")

> col.lb <- c("yes","no"); lay.lb <- c("male", "female")

> S <- factor(row,labels=row.lb); D <- factor(col,labels=col.lb)

> G <- factor(lay, labels=lay.lb)

> depres.fr <- data.frame(obs,S,D,G)

The appropriate log-linear model is selected via the backward stepwise procedure
based on AIC. Thus, we first save the saturated model under object saturated
and then proceed with the backward model selection procedure as follows:
> saturated <- glm(freq S*D*G, poisson, data = depres.fr)

> step(saturated, direction="backward")

The stepwise procedure concludes to the model of no three-factor interaction
(SD, DG, SG), giving the following output:

Start: AIC=71.38
freq S * D * G:

Df Deviance AIC
- S:D:G 1 0.77135 70.155
<none> 0.00000 71.384
Step: AIC=70.16
freq ∼ S + D + G + S:D + S:G + D:G

Df Deviance AIC
<none> 0.771 70.155
- S:D 1 33.024 100.408
- D:G 1 34.386 101.769
- S:G 1 112.298 179.682
Call: glm(formula = freq∼S+D+G+S:D+S:G+D:G, family=poisson,
data=depres.fr)

Coefficients:

Intercept Sno Dno Gfemale
3.7393 -1.6684 3.0485 0.8850
Sno:Dno Sno:Gfemale Dno:Gfemale
0.9187 0.7834 -0.9369

Degrees of Freedom: 7 Total (i.e. Null); 1 Residual
Null Deviance: 3315
Residual Deviance: 0.7713 AIC: 70.16

The (SD, DG, SG) is also the model of homogeneous association since under this
model the association in all two-way partial tables is homogeneous across the levels
of the remaining third classification variable, as explained in Sect.4.3. This model
is fitted in R, as shown below, giving the output provided in Table 5.2.

> hom.assoc <- glm(freq∼S*D+S*G+D*G, poisson,data=depres.fr);

summary(hom.assoc)

The p-value of testing the model fit based on G2 statistic is 0.380, which is close to
the corresponding p-values of the Woolf’s or the Breslow–Day test (Sect.3.3.3).
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Table 5.2 Output for model (SD, DG, SG), fitted on data in Table 3.1

Call:
glm(formula = freq∼S*D+S*G+D*G, family=poisson, data=depres.fr)

Deviance Residuals:
1 2 3 4 5 6 7

-0.32157 0.70555 0.06943 -0.10112 0.20418 -0.32157 -0.07131
8

0.07006
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.73930 0.14417 25.936 < 2e-16 ***
SNo -1.66844 0.17668 -9.443 < 2e-16 ***
DNo 3.04847 0.14705 20.731 < 2e-16 ***
Gfemale 0.88501 0.16620 5.325 1.01e-07 ***
SNo:DNo 0.91871 0.17059 5.385 7.23e-08 ***
SNo:Gfemale 0.78344 0.07529 10.405 < 2e-16 ***
DNo:Gfemale -0.93691 0.17055 -5.493 3.94e-08 ***
--
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3315.40325 on 7 degrees of freedom

Residual deviance: 0.77135 on 1 degrees of freedom

AIC: 70.155

Number of Fisher Scoring iterations: 4

Relation (4.27), adjusted in our setup, becomes

logθ SD
(k) = log

(π11|kπ12|k
π21|kπ22|k

)
= λ SD

22 = logθ SD , k = 1,2 ,

due to the identifiability constraints λ SD
11 =λ SD

12 = λ SD
21 = 0. Thus, the ML estimate of

the common odds ratio θ SD under the log-linear model of homogeneous association
is

θ̂ SD = exp
(
λ̂ SD

22

)
= exp(0.91871) = 2.506 ,

close in value to θ̂MH and θ̂W , calculated in Sect.3.3.3.
Furthermore, the asymptotic Wald (1−α)100% CI for θ SD is

exp
[
log θ̂ SD ± zα/2s.e.

(
log θ̂ SD)] ,

where s.e.(log θ̂ SD) is the standard error of log θ̂ SD and is equal to s.e.(logθ SD) =
s.e.(λ SD

22 ) = 0.17059 .
This CI can easily be computed via the function

> CI <- function(t, SE, conf.level=0.95)

. {exp(t+c(-1,1)*qnorm(0.5*(1+conf.level))*SE)}
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with t and SE standing for log θ̂ SD and its standard error, respectively. Hence, the
95% CI for θ SD in this case is computed as
> logSD <- 0.91871 ; SE.SD <- 0.17059

> CI(logSD, SE.SD)

[1] 1.793842 3.501041

The xtabs() function, used in the previous example (Sect.5.4.1), is especially
useful in multi-way tables, since it provides a straightforward way to extract
marginal and partial tables of observed or expected cell frequencies. In this example
for instance, the smoking-depression marginal table of the ML estimates of the
expected cell frequencies under (SD, DG, SG) is
> MLE.SD <- xtabs(hom.assoc$fitted.values ∼ S + D)

and, as expected, coincides with the corresponding marginal table of observed
frequencies, which for arrays is obtained by
> margin.table(depsmok3, c(1,2))

or
> apply(depsmok3, c(1,2), sum)

However, were the data available only in the data frame format (depres.fr), with
obs the vector of observed frequencies, then the smoking-depression observed
marginal table would be
> MLE.SD <- xtabs(obs ∼ S + D)

5.5 Independence for Incomplete Tables

In case of structural zeros existence (see also Sect.4.9.1), the corresponding cells
are of zero probability and must be excluded from the analysis . Thus, any model
assumed will not apply on all cells of the contingency table under consideration but
only on the subset of its nonstructural zero cells. Hence, structural zeros affect the
assumed model in substance. A table with structural zeros is known as an incomplete
or truncated table.

As an illustration, we will consider the independence model for an I × J table.
Independence is considered not for all IJ cells but only for the subset of the
nonstructural zero cells S = {(i, j) : πi j > 0}. The model of independence applied
on an incomplete table is known as the quasi-independence (QI) model, term
introduced by Goodman (1968).

QI is defined naturally in the log-linear models framework, as the classical model
of independence (4.1), applied on a subset S of the table

logmi j = λ +λX
i +λY

j , (i, j) ∈ S . (5.24)

The main effect parameters satisfy the identifiability constraints (4.4), and the
associated d f are d f = (I − 1)(J − 1)− s, where s = IJ − |S| is the number of
structural zeros, i.e., the cardinality of the set of structural zeros Sc .
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The restriction (i, j) ∈ S can be incorporated in the model by introducing s
additional parameters in (4.1), one for each structural zero. Hence, (5.24) is
equivalent to

logmi j = λ +λX
i +λY

j + qi jI
Sc

i j , i = 1, . . . , I, j = 1, . . . ,J , (5.25)

where ISc

i j is the indicator function for structural zeros

ISc

i j =

{
1 , (i, j) /∈ S
0 , (i, j) ∈ S

.

This way, the structural zero cells equal the observed counts (ni j = mi j = 0 for
(i, j) /∈ S), sacrificing thus s d f . Structural zeros have no contribution to the value
of the X2 or G2 test statistic.

QI is expressed directly on the cell probabilities, as

πi j = αiβ j , (i, j) ∈ S ,

where the marginal parameters are no more the marginal probabilities.
Additionally, structural zeros serve as a powerful tool in contingency table

analysis, since they can be activated by the needs of the analysis to exclude a
specific cell or region of the table that is nonzero but exhibits “special behavior”
and exacerbates the fit of the assumed model. This is often the case for mobility
tables or panel studies, where the tables are square with augmented diagonal entries,
corresponding to non-change. It is natural thus to exclude the diagonal from the
analysis by considering S = {(i, j) : i �= j}. Other incomplete square tables that
received special attention are triangular tables. We will return to special QI models
for square tables in Sect.9.3. References on conditions for existence of ML estimates
for truncated tables are provided in Sect.5.7.1.

Structural zeros are incorporated easily in log-linear models analysis in the GLM
framework. A cell (i, j) is excluded from the model, by the inclusion in the log-
linear model (5.25) of the additional parameters qi j that is responsible for fixing
it to its observed frequency (ei j = 0). In practice, this is achieved in standard
software by adding in the log-linear model the index variable of (5.25) as an
explanatory variable. In the presence of more structural zeros, additional index
variables are added in the model, one for each structural zero. Alternatively, in the
GLM context, all structural zeros can be indicated in one single variable that will
be used to determine the subset of cells on which model (5.24) will be applied.
SPSS handles structural zeros in the “general log-linear analysis” straightforward.
An index variable has to be added in the data file, taking values 0 for structural zero
cells and 1 otherwise. This index variable has to be declared in the “Cell Structure”
field of the window:
. Analyze > Loglinear > General. . .
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QI will be illustrated in R, using Example 5.1 below.
When interaction is significant, model (4.5) is expressed for two-way incomplete

tables as

logmi j = λ +λX
i +λY

j +λ
XY
i j , (i, j) ∈ S . (5.26)

The main effect parameters satisfy constraints (4.4) while the sum to zero constraints
in (4.6) for the interaction parameters are corrected to

I

∑
i=1

ISc

i j λXY
i j =

J

∑
j=1

ISc

i j λXY
i j = 0 .

Log-linear models for multi-way incomplete contingency tables can be defined and
fitted in an analogous manner.

5.5.1 Example 5.1

A typical example of contingency table with structural zeros is a survey on
teenagers’ health concerns. Teenagers are cross-classified according to their health
concerns (in four categories), gender, and age (in two categories: 12–15, 16–17)
in a 4× 2× 2 table. The table has two structural zeros, since the health concerns
category “menstrual problems” cannot refer to boys. This example is analyzed by
Grizzle and Williams (1972) and Fienberg (2007, pp.148–150). Ignoring age, i.e.,
merging over the age, the data are provided in Table 5.3, and there exists 1 structural
zero; thus, the test of QI will be based on 2 d f . QI is rejected, since G2(QI) = 12.60
(p-value = 0.0018) and X2(QI) = 12.39 (p-value = 0.0020). The ML estimates of
the expected under QI cell frequencies along with the standardized residuals are
provided in Table 5.3 in parentheses. Observing them, we conclude that the greatest
difference between genders lies on the category “how healthy I am,” for which girls
are significantly less concerned and boys more than under independence, followed
by “sex, reproduction” for which boys are significantly less interested while girls
more, though not as significant. Finally, boys are more health concerns-free than
expected under independence and girls less, but these differences are at the limit of
5% significance.

This model was fitted in R by the function fit.QI(), provided in web appendix
(see Sect. A.3.4). This function fits the QI model by (5.24), excluding the structural
zero cells from the analysis. It needs to read the numbers of rows I and columns
J of the table, the cell frequencies in a vector (by rows) of length IJ, where 0 are
put in places of structural zeros, and an index vector of length IJ with entries the
ISc

i j indices, given by rows. Thus for our example, the analysis is carried out by the
commands
> freq<-c(6,16,0,12,49,29,77,102)

> zer<- c(0,0,1,0,0,0,0,0)

> fit.QI(freq,zer,4,2)
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Table 5.3 Teenagers’ cross-classification by gender and their health concerns (Brunswick 1971)

Gender

Health concerns Male Female

Sex, reproduction 6 (10.41, −2.13) 16 (11.59, 1.85)
Menstrual problems – 12 (12.00, 0.00)
How healthy I am 49 (36.90, 3.08) 29 (41.10, −3.41)
Nothing 77 (84.69, −1.95) 102 (94.31, 1.90)

In parenthesis are provided the ML estimates under the QI model and the
standardized residuals

The output of fit.QI(), beyond the results presented above, includes the overview
of the fit provided by summary() and the estimates of the log-linear model
parameters in vector forms for possible further use.

Alternatively, without restricting the cells on which the model applies, the QI
model can be fitted by (5.25), including s extra parameters in the model, one for
each structural zero. For this example, s = 1 and would have
> NI <- 4

> NJ <- 2

> row<-gl(NI,NJ,length=NI*NJ)

> col<-gl(NJ,1,length=NI*NJ)

> example <- data.frame(row, col, freq, zer)

> QI.model <- glm(freq ∼ row+col+zer, poisson)

Under this approach, in the presence of s > 1 structural zeros, the index vector zer
used in glm() above, needs to be replaced by a factor of s+ 1 levels. Level 0 is
assigned to the non-structural zero cells and a different level (from 1 to s) is assigned
to every structural zero cell.

In case of existence of sampling zeros as well, they will not differ from the
structural zeros in the frequency vector but in their index vector entry.

5.6 Models for Joint and Marginal Distributions

Model (5.6) applies directly on the cell entries of the table. In certain frameworks,
it is of interest to model or test hypotheses about linear functions of the cell entries.
For this, (5.6) is extended to

log(Mm) = Xβββ , (5.27)

with M a matrix suitably defined in order to form the desired functions of the
expected cell entries when applied on m.

The most famous models of this type are those modeling the marginals of a table,
since some structures can easier be expressed in terms of marginal distributions,
leading to the marginal models. Marginal models for contingency tables impose
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structural restrictions on certain marginals of the classification variables and are
usually of log-linear type. A characteristic example is the marginal homogeneity
model for a square I×I table, presented in Sect.9.2.2. For higher dimensional tables,
modeling the marginal distributions is important for clustered and longitudinal
categorical data (see Sects.5.7.2 and 9.7.4).

However, if we would like to model the local odds ratios of an I × J table,
model (5.27) is not appropriate; a further extension is needed. A brighter family
of models is the generalized log-linear model (GLLM)

C log(Mm) = Xβββ . (5.28)

Matrix C provides more flexibility and allows an even brighter variety of models to
be included in this class. GLLM is introduced by Lang and Agresti (1994) and
opened new origins in the analysis of multivariate categorical data, providing a
powerful and flexible framework to model structures of associations. Model (5.28) is
suitable for modeling, among others, the log of local or global odds ratios (see Sect.
2.2.5). Recall the matrix definition of the generalized odds ratios, given by (2.54)
and (2.55), which correspond to the left-hand side of (5.28).

GLLM is itself a member of the broader multinomial-Poisson homogeneous
(MPH) model, which is of the very general form

L(m) = Xβββ , (5.29)

where L is a link function. Details on inference for the MPH model are beyond
the scope of this book and can be found in Lang (2004, 2005). Setting L(m) =
C log(Mm), (5.29) reduces to (5.28).

Another special case of the MPH model (5.29) is the

h(m) = 0 , (5.30)

where h() is a smooth constraint function with the constraints in (5.30) being
nonredundant. With the adequate choice of the constraint function h(), model (5.30)
reduces to the independence model (2.52), expressed in terms of the local odds
ratios.

Though inference for the MPH model is not straightforward, it can be imple-
mented in R by the mph function of Lang or the package hmmm of Colombi et al.
(2013). We will illustrate mph, which is a powerful and flexible function that fits
a big variety of general models via maximum likelihood. We limit its use only to
GLLM models (5.28) and to model (5.30), both considered for the local odds ratios
and the global odds ratios of a contingency table.

Function mph is available on request. The file “mph.Rcode.txt” is then sent and
the routine mph is activated in R by
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> source("c://...//mph.Rcode.txt")

The data are read in vector form that has to be defined as matrix. Thus, the I × J
table of observed frequencies is expanded (by rows) in a IJ×1 vector freq and this
vector finally forms the IJ × 1 data matrix
> y <- matrix(freq)

The derived vector of expected cell frequencies m is also a matrix of size IJ× 1.
The typical expression of the mph function for fitting (5.29) is

> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X, strata=1)

where L.fct is the link function and X the design matrix of the MPH model (5.29)
under consideration. The link for the GLLM model (5.28) is defined by
> L.fct <- function(m)C%*%log(M%*%m)

with C and M appropriate defined matrices. In the sequel, command
> mph.summary(mph.out,cell.stats=T,model.info=T)

produces summary output of the model, i.e., goodness-of-fit statistics, parameter
estimates, expected cell frequency estimates under the assumed model, and infor-
mation on the model applied and its convergence.

Model (5.30) is fitted by
mph.constr <- mph.fit(y, constraint=h.fct, strata=1)

where h.fct is the constraints function. For example, in order to fit the indepen-
dence model (2.52), it should be
> h.fct <- function(m) {C%*%log(m)}

with C an appropriate (I − 1)(J− 1)× IJ matrix.
Examples of fitting the GLLM model through the L.fct option will be discussed

in Sects.6.6.4 and 7.1, for the local and the global odds ratios, respectively.
The standard expression of mph.fit() assumes one single multinomial sample
(strata=1). The extra option for defining more strata of data will be discussed in
Sect.5.6.2. At this point we will use mph to fit model (2.52) for our familiar Example
2.3, illustrating the use of h.fct.

5.6.1 Example 2.4 by mph

The function local.odds.DM() in the web appendix (see Sect. A.3.2) produces
the matrix C needed to derive the logs of the local odds ratios when multiplied to
log(m), for tables of any size I× J.

Hence, after actualizing mph in R, model (2.52) is fitted for our example by
> NI <- 3; NJ <- 5

> freq <- c(45,116,19,48,23,40,167,33,68,41,47,185,34,63,26)

> C<-local.odds.DM(NI,NJ)

> h.fct <- function(m) {C%*%log(m)}

> ind.odds <- mph.fit(y, constraint=h.fct, strata=1)

The corresponding output is derived by
> mph.summary(ind.odds,cell.stats=T,model.info=T)

Part of this output is provided in Table 5.4.
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Table 5.4 Output of the mph function, fitting the independence model on the local odds ratios of
Example 2.4

MODEL GOODNESS OF FIT: Test of Ho: h(p)=0 vs. Ha: not Ho...

Likelihood Ratio Stat (df=8): Gsq=10.36287 (pval=0.2405)

Pearson’s Score Stat (df=8): Xsq=10.52048 (pval=0.2304)

Generalized Wald Stat (df=8): Wsq=10.40275 (pval=0.2379)

Adj Resids: -1.709 -1.604 ...1.865 2.195,

Number |Adj Resid| > 2: 1

SAMPLING PLAN INFORMATION...

Number of strata: 1

Strata identifiers: 1

Strata with fixed sample sizes: all

Observed strata sample sizes: 955

CELL-SPECIFIC STATISTICS...

strata OBS FV StdErr.FV PROB StdErr.PROB ADJ.RESIDS

y1 1 45 34.6932 3.3753 0.0363 0.0035 2.1954

y2 1 116 123.0031 7.8052 0.1288 0.0082 -1.0299

y3 1 19 22.6031 2.6280 0.0237 0.0028 -0.9253

y4 1 48 47.0461 4.0679 0.0493 0.0043 0.1797

y5 1 23 23.6545 2.6971 0.0248 0.0028 -0.1647

y6 1 40 48.2387 4.4071 0.0505 0.0046 -1.6041

y7 1 167 171.0283 9.2226 0.1791 0.0097 -0.5415

y8 1 33 31.4283 3.4996 0.0329 0.0037 0.3690

y9 1 68 65.4147 5.2158 0.0685 0.0055 0.4452

y10 1 41 32.8901 3.5852 0.0344 0.0038 1.8653

y11 1 47 49.0681 4.4699 0.0514 0.0047 -0.4012

y12 1 185 173.9686 9.3027 0.1822 0.0097 1.4776

y13 1 34 31.9686 3.5528 0.0335 0.0037 0.4752

y14 1 63 66.5393 5.2853 0.0697 0.0055 -0.6073

y15 1 26 33.4555 3.6394 0.0350 0.0038 -1.7087

CONVERGENCE INFORMATION...

Original counts used.

iterations = 5 , time elapsed = 0.18

norm.diff = 1.80924e-09 = dist between last and second

last iterates.

Norm diff convergence criterion [1e-06] was met.

norm.score = 1.61128e-09 = norm of score at last iteration.

Norm score convergence criterion [1e-06] was met.

If we wanted to express the independence model in terms of the global odds
ratios, then h(m) in (5.30) equals h(m) = C log(Mm), with matrices C and M
appropriately defined. Function global.odds.DM() of the web appendix (see
Sect. A.3.2) returns these two matrices for tables of size I× J. The procedure above
had to be adjusted as follows:
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> C <- global.odds.DM(NI,NJ)$C; M <- global.odds.DM(NI,NJ)$M

> h.fct <- function(m) {C%*%log(M%*%m)}

> ind.glob <- mph.fit(y, constraint=h.fct, strata=1)

5.6.2 Example 3.3 by mph

The hypothesis of homogeneous association (3.7) in 2 × 2 × K tables can be
treated also in the GLLM framework, expressed by (5.28) with m the expected
cell frequencies under the homogeneous association hypothesis expanded in a
4K × 1 matrix form, X = (1)K×1, and C the K × 4K block-diagonal matrix C =
diag(C1, . . . ,CK) matrix with Ck = C0 = (1, −1, −1, 1), for k = 1, . . . ,K. C0 is
the matrix for constructing the log odds ratios when applied on m. It has this form,
provided that the expected frequency table is expanded by columns. In this case the
parameter is scalar and is equal to the assumed log odds ratio for all partial 2× 2
tables under the homogeneous association hypothesis, i.e., β = logθ .

This approach is illustrated in mph for Example 3.3, as follows. Function
bdiag() of library Matrix is applied to produce the block-diagonal matrix C.

> source("c://Program Files//R//mph.Rcode.txt");

freq <- c(79,68,5,17,89,221,4,46,141,77,6,18,45,26,29,21,81,112,

+ 3,11,168,51,13,12);

y<- matrix(freq); K <- 6; X1 <- matrix(rep(1, K));

library(Matrix); C0<-c(1, -1, -1, 1);

C <- t(bdiag(C0,C0,C0,C0,C0,C0)); # 6×6 block-diagonal matrix

L.fct <- function(m){C%*%log(m)};

mph.out <- mph.fit(y=y,strata=K,L.fct=L.fct,X=X1);

mph.summary(mph.out,cell.stats=T,model.info=T)

From the observed output we have that G2 = 7.950 (p-value=0.159, d f =5) and
X2 = 7.896 (p-value=0.162, d f =5) while the ML estimate of the common under
homogeneous association log odds ratio is β̂ = 1.0759, i.e., θ̂ = 2.9326. This model
is equivalent to the homogeneous association log-linear model applied on the cell
frequencies (see Sect.4.6.1.1). Recall from Sect.3.3.4 that the Mantel–Haenszel
estimate was θ̂MH = 2.96.

5.7 Overview and Further Reading

The classical reference for GLMs is McCullagh and Nelder (1989). Additionally, a
comprehensive reference is Fahrmeir and Tutz (2001). For application of GLMs in
S-Plus and R, we refer to Venables and Ripley (2002, Chap.7). Dobson and Barnett
(2008) provide an easy to follow introduction to GLMs, with theoretical counterpart
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but focusing on the analysis of particular types of data and their implementation in
standard software, categorical data included. They consider also Bayesian analysis
and Markov chain Monte Carlo (MCMC) methods to fit GLMs. A formulation and
presentation of models for categorical data through the GLM family can be found
in Agresti (2007, 2013).

GLMs have been extended in various directions, like for incorporating noncon-
stant variance, modeling dispersion, or generalizing the link function (McCullagh
and Nelder 1989). In categorical data context, characteristic cases are, for example,
the consideration of a negative binomial instead of a Poisson response or the
introduction of dispersion effect in the cumulative link model (McCullagh 1980).

The Fisher information matrix plays an important role in statistics in many
different aspects, the two most characteristic being in determining the variance of
an estimator and the “noninformative” priors determination in the Bayesian setup.
Spall (2005) reviews basic principles associated with the information matrix and
presents a resampling-based method for computing the information matrix.

When the ni’s are small, the residuals are not approximately normal distributed.
For such cases the transformed Anscombe residuals have been proposed (see
McCullagh and Nelder 1989). For a survey on residuals for GLMs, we refer to
Pierce and Schafer (1986). For goodness-of-fit testing of GLMs for sparse data, see
Farrington (1996).

5.7.1 Incomplete Contingency Tables

Incomplete tables attracted researchers’ attention very early. Stigler (1992), in an
interesting and enlightening historical review, points out that in 1913, Karl Pearson
was the first to consider the independence model for two-way incomplete tables.
The historical fingerprint data set in Waite (1915) contains structural and sampling
zeros while Harris and Treloar (1927) and Harris and Tu (1929) face for incomplete
tables the problems occurring in the applicability of the contingency coefficient.

The existence of ML estimates for models considered on incomplete tables
became a central issue in the late 1960s and 1970s. The most well-known model for
incomplete tables is the QI model, presented in Sect. 5.5. Very popular, especially in
the context of rater agreement and mobility tables, is the QI model for square tables
having the main-diagonal entries missing or excluded. The key reference for the QI
model is Goodman (1968), though the QI model for diagonal truncated square tables
had been considered earlier by Savage and Deutsch (1960) and Goodman (1963a)
in transaction flows analysis and White (1963) and Goodman (1965) in mobility
table analysis. Fundamental papers in developing inference for QI in the log-linear
model setup were Bishop and Fienberg (1969), Fienberg (1970a), and Haberman
(1973a), with the last two providing conditions for existence of unique nonzero ML
estimates. The QI model is discussed in detail in Bishop et al. (1975).
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Interesting is the approach of Fienberg (1969) that locates the cells exhibiting
interaction, when the number of such cells is relatively small compared with the
total number of cells in the table, and applies then the QI model, excluding these
cells. Mantel (1970) focused on determining the appropriate degrees of freedom
and considered, beyond independence, also symmetry testing for incomplete square
tables. Goodman (1971a) proposed a test procedure for testing the hypothesis of
QI simultaneously for several different subsets of the cells of a table. Enke (1977)
considered incomplete two-way tables of special structures that are decomposed
to separable tables and lead to closed form MLEs. For the ML estimation of the
diagonal truncated independence model, Morgan and Titterington (1977) compared
the performance of the EM, Newton–Raphson, and iterative scaling algorithms,
concluding empirically that the last is the least efficient method.

Another special type of incomplete square tables are the triangular tables. Such
form of incomplete tables occurred already in Waite (1915), while is special referred
in Goodman (1968) and Bishop and Fienberg (1969). Special on triangular QI are
Goodman (1979a, 1994) and Altham (1975), who considered also the Bayesian
analysis with conjugate prior. For ordinal triangular tables, Sarkar (1989) interpreted
QI in terms of likelihood ratio dependence and Tsai and Sen (1995) provided
an alternative test of QI. We considered in Sect.5.5 the problem of incorporating
structural zeros in the simple independence model for two-way tables. The diagonal
and triangular truncated tables will be presented in Sect.9.3.

Colombo and Ihm (1988) applied the QI model in an unusual context to estimate
failure rates of components classified by two qualitative covariates. QI allows for
different operating times in the various cells, zero operating time included.

Incomplete tables may occur in tables of higher dimension and of more complex
association structures. Klimova et al. (2012) introduce a general family of models
for contingency tables, the rational models, which provide a unified framework
for analysis of complete and incomplete tables by log-linear models and others,
like association models (Chap. 6) and rater agreement models (Sect.9.5.2). They
provide sufficient conditions for the existence of the ML estimates under this general
model and prove the classical equivalence between the Poisson and multinomial
likelihoods.

A nice review of the literature on the sensitivity analysis of overparameterized
models for incomplete categorical data, Bayesian and frequentist, is provided by
Poleto et al. (2011).

5.7.2 Marginal Distributions Modeling

Marginal models have been mainly developed by Lang and Agresti (1994), Lang
(1996a), Lang et al. (1999), and Bergsma and Rudas (2002a,b). Their approach is
based on earlier work by Haber (1985) and Haber and Brown (1986). Bartolucci
et al. (2007) generalized the model of Bergsma and Rudas (2002a) to allow for
global and continuation type logits, which may be more adequate for ordinal
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data analysis. Rudas et al. (2010) formed conditional independence models in a
marginal log-linear parameterization. Becker et al. (1998) explored similarities and
differences between standard log-linear and marginal models with special emphasis
on square tables and reference to multi-way tables as well in the social sciences
framework. For a detailed presentation of marginal models and their features, we
refer to the book by Bergsma et al. (2009).

Marginal models are applied for modeling repeated (or clustered) categorical
data (see also Sect.9.7.4).



Chapter 6
Association Models

Abstract The association models, appropriate for the analysis of ordinal contin-
gency tables, are presented for two-way and multi-way contingency tables. Their
features, properties, and the associated graphs are discussed. The models of uniform
association (U), row effect (R), column effect (C), multiplicative row–column effect
(RC), and the more general RC(M) model are illustrated with examples in terms of
fit, presentation, and interpretation. They are all worked out in R, through functions
provided for their fit and the construction of their scores’ plots.

Keywords Association models: U, R, C, RC(M) • Graphs for the RC(2) model •
Association models for multi-way tables

6.1 Basic Association Models for Two-way Tables

We realized so far that in the context of classical log-linear models there are just two
options for modeling two-way contingency tables: the parsimonious but restrictive
model of independence (4.1) and the saturated. Association models fill the gap
between these two extreme cases by imposing a special structure on the association
and reducing the number of interaction parameters, providing thus intermediate
models of dependence. For ease in understanding but also for interpretation
purposes, it is convenient to think in terms of local associations in the table and
first define the models on local odds ratios rather than cell frequencies. Recall that
for models applied on an I × J contingency table there always exists an equivalent
expression defining them on the (I − 1)× (J− 1) table of the corresponding set of
local odds ratios.

In most of the cases association models apply to ordinal classification variables
and are thus usually introduced as models for ordinal data. However, some of them
do not require ordinality, as we shall see later on in this chapter.

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__6,
© Springer Science+Business Media New York 2014
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6.1.1 Linear-by-Linear Association Model

We have seen in Sect. 2.2.5 that for an I × J contingency table and under the
model of independence, all the local odds ratios are equal to 1, i.e., θL

i j = 1,
i = 1 . . . , I − 1; j = 1 . . . ,J − 1. Whenever the model of independence is of poor fit,
the only alternative in the framework of classical log-linear models is the saturated
model (4.5), which assumes all θL

i j’s to be free parameters and is noneffective in
summarizing the underlying significant association. A natural way to proceed is to
assume a pattern for this underlying association. This way, the number of parameters
to be estimated is reduced and, most important, we can provide a meaningful
interpretation. The easiest pattern to think of, which is meanwhile of clear and strong
interpretational power, is that of constant θL

i j’s, as under independence, but different
than 1. That is, to introduce the model

θL
i j = c, i = 1, . . . , I− 1 , j = 1, . . . ,J− 1, (6.1)

for some c > 0, to be estimated. This model allows for interaction while remains
parsimonious, since it has just one parameter more than the independence model,
the parameter c. Under the independence model, all possible odds ratios θ k�

i j of the
table are equal to 1. Under (6.1), local association is uniform, since all the local odds
ratios are equal to c. This property characterizes model (6.1), which is therefore
called uniform association model, denoted as U. When it comes to the odds ratio
θ k�

i j of any 2× 2 subtable of our initial table, through (2.46), (6.1) takes the form

θ k�
i j = c(k−i)(�− j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1 , i < k ≤ I , j < �≤ J ,

and in log-scale

logθ k�
i j = (k− i)(�− j) logc, i = 1, . . . , I− 1 , j = 1, . . . ,J− 1 , (6.2)

for i < k ≤ I , j < �≤ J. Under the U model, the general θ k�
i j odds ratio is influenced

by the categories of each classification variable but only through their distances.
Hence, odds ratios formed by cells further apart will exhibit stronger association.
Measuring thus how far apart are two categories of a classification variable is
crucial. Distances between categories are meaningful only when the corresponding
classification variable is ordinal. Hence the U model makes sense to be considered
only for tables with both classification variables ordinal or with one ordinal and the
other binary.

The U model assumes that all successive categories of a classification variable are
equidistant. However, there can arise ordinal variables of non-equidistant successive
categories. A typical example of this type is a categorized income variable, which is
actually interval scaled with categories corresponding to intervals of unequal length.
A flexible way to handle such situations is to assign scores to the categories of
the classification variables and express their distances by the corresponding scores’
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differences. Thus, let {μ1, μ2, . . . , μI} and {ν1, ν2, . . . , νJ} be the scores assigned
to the row and column categories, respectively. The simplest and most natural choice
for the scores is μi = i (i = 1, . . . , I) and ν j = j ( j = 1, . . . ,J), which corresponds to
model (6.2). Allowing the scores to take other values as well and setting ϕ = logc,
we are led to model

logθ k�
i j = ϕ(μk − μi)(ν�−ν j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1 , (6.3)

with i < k ≤ I , j < �≤ J, for which scores of successive row or column categories
are not necessarily equidistant. Their distance is meant in terms of their similarity
as they interact with the other classification variable. Thus different scores may
be assigned to the same levels of a classification variable X when interacting with
different variables Y or Z. This will be illustrated in a three-way contingency table
example in Sect. 6.7.1. Regarding the scores’ assignment, refer also to the related
discussion in Sect. 2.3.1.

For non-equidistant scores for successive categories, the local odds ratios under
(6.3) are no more all equal but proportional (in log-scale) to the distance between
the enrolled categories of each classification variable. Due to this linear dependence
on each of the classification variables, model (6.3) is called the linear-by-linear
association model (LL).

Though the interpretation of these models is clear and natural when formulated
in terms of the local odds ratios, the development of inferential aspects and model
fitting is more straightforward for their equivalent formulation in terms of expected
cell frequencies. Recalling that the saturated log-linear model in terms of θi j is
provided by (4.7) and equating (4.7) to (6.3) for k = i+1 and �= j+1, we conclude
that the (i, j)th interaction term under the LL model has the form λXY

i j = ϕμiν j.
Hence, the equivalent expression of LL model (6.3) in terms of expected cell
frequencies is

logmi j = λ +λX
i +λY

j +ϕμiν j, i = 1, . . . , I, j = 1, . . . ,J, (6.4)

where the overall mean and the main effects parameters are those of the classical
log-linear model.

Model (6.4) reduces to the U model and is thus equivalent to (6.2), not just
for μi = i, (i = 1, . . . , I) and ν j = j, ( j = 1, . . . ,J) but for any choice of row and
column scores {μ1, μ2, . . . , μI} and {ν1, ν2, . . . , νJ}, as long as they are both
equidistant for successive categories. This is due to model’s LL property of being
invariant in linear transformation of the scores, as we shall see in Sect. 6.4. Thus,
for identifiability purposes, usually the scores are set to satisfy the sum-to-zero and
the sum of squares-to-one constraints

I

∑
i=1
μi = 0 and

I

∑
i=1
μ2

i = 1, (6.5)

J

∑
j=1

ν j = 0 and
J

∑
j=1

ν2
j = 1. (6.6)
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For scores satisfying the (6.5) and (6.6) constraints, multiplying (6.4) by μiν j and
adding over i and j leads to

ϕ =∑
i, j
μiν j logmi j , (6.7)

i.e., ϕ measures the correlation between row and column scores, fact that justifies
its characterization as intrinsic association parameter.

6.1.2 Example 6.1

We shall demonstrate the utility and interpretation power of this parsimonious
association model with just one degree of freedom less than complete independence
by an example. We shall first focus on explaining the nature and use of such a model
and we will provide inferential details and application in software at a later stage.
The data used are from a survey on the use of cannabis among students, conducted
at the University of Ioannina (Greece) in 1995 and published in Marselos et al.
(1997). The students’ frequency of alcohol consumption is measured on a four-level
scale ranging from at most once per month up to more frequent than twice per week
while their trial of cannabis through a three-level variable (never tried–tried once
or twice–more often). These two ordinal variables are cross-classified leading to a
4× 3 table provided in Table 6.1.

These data provide strong evidence against the independence model (4.1), since
the corresponding LR test statistic is G2(I) = 152.793, which is highly significant
with an asymptotic p-value< 0.00005 (d f = 6). In the context of classical log-linear
models the only alternative is to add the interaction term λXY

i j in the model and end
up thus to the saturated model.

Taking advantage of the ordinal nature of the classification variables, we apply
the U model to the data of Table 6.1, by fitting model (6.4) with μi = i (i = 1, . . . ,4)
and ν j = j ( j = 1,2,3). Thus, we introduce just one additional parameter to the
independence model, the ϕ . The LR test statistic for model (6.4) equals G2(U) =
1.469, leading to a reduction of 151.324 from G2(I) by sacrificing just 1 d f . This
model is of impressive fit with p-value= 0.92. The cell estimates under U are
provided in parentheses in Table 6.1.

As already mentioned, under the U model, the local odds ratios θL
i j are constant

all over the table. The corresponding sampling values for the local odds ratios are
provided in Table 6.2. In this case, the association parameter ϕ is estimated as
ϕ̂ = 0.803 and furthermore θ̂L

i j = θ̂ = exp(ϕ̂) = exp(0.803)= 2.23, for all i = 1,2,3
and j = 1,2. This means that the odds of having tried cannabis once or twice vs.
never tried is 2.23 times higher for students who drink twice a month than those
who drink at most once a month. The same comparison holds for any odds ratio
comparing successive row and successive column categories.
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Table 6.1 Students’ survey about cannabis use at the University of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often Total

At most once/month 204 (204.4) 6 (5.7) 1 (0.9) 211
Twice/month 211 (211.4) 13 (13.1) 5 (4.5) 229
Twice/week 357 (352.8) 44 (48.8) 38 (37.4) 439
More often 92 (95.3) 34 (29.4) 49 (50.3) 175
Total 864 97 93 1054

In parentheses are given the maximum likelihood estimates under the model of
uniform association (U)

Table 6.2 Sample local odds ratios for the students’ survey about cannabis use at the University
of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often

At most once/month 2.10 2.31
Twice/month 2.00 2.25
Twice/week 3.00 1.67
More often

If we would like to compare any non-successive categories, the results can
be adjusted accordingly. For example, for the odds ratio formed by the corner
(“extreme”) cells of the table, it holds

π̂11π̂43

π̂13π̂41
= exp(ϕ̂(μ4 − μ1)(ν3 −ν1)) = exp(ϕ̂ ·3 ·2) = 123.387 ,

meaning that the odds of using often cannabis instead of never tried is 123 times
higher for student who drink more often than twice a week than for students who
drink at most once a month.

6.1.3 Row and Column Effect Models

The LL model presented above is a very parsimonious and useful model of strong
interpretation power when it is applicable. However, often it is proved insufficient.
It can be the case that the structure of model (6.4) is appropriate but there is no
obvious way of deciding about the scores of one of the classification variables. It is
then natural to broaden model (6.4) to a class of more flexible association models
by relaxing the assumptions about known scores. Model (6.4) with unknown row
scores {μ1, . . . ,μI} and thus parameters to be estimated is the row effect association
model, to be denoted as R. Under this model, the odds defined over the column
classification variable vary from row to row, i.e., the effect of the row classification
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variable on the column odds is significant but unknown. This effect is reflected in
the row scores and more precisely in the unknown (and unequal) distances between
successive row categories. Model R has I−2 additional parameters than model LL,
corresponding to the row scores. The number of parameters is reduced by two, due
to the identifiability constraints (6.5) that hold. Thus, the associated d f of model R
equal (I − 1)(J− 2). Analogously, the column effect association model C is defined
by expression (6.4) for known row scores and unknown column scores {ν1, . . . ,νJ}.
It models the effect of the column classification variable on the row odds. The
associated d f are d f (C) = (I− 2)(J− 1).

We have seen in the context of the U association model that its definition in terms
of odds ratios (6.1) is more natural with respect to interpretation. The R model is
equivalently defined in terms of local odds ratios as

θL
i j = c1i , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1, (6.8)

and the C model as

θL
i j = c2 j , i = 1, . . . , I − 1 , j = 1, . . . ,J− 1. (6.9)

Expression (6.8) reveals the dependence of the column odds on the row category
while the analogue statement is true for the C model (6.9).

In terms of local odds ratios and categories’ scores, model R is expressed as

log
(
θL

i j

)
= ϕ(μi+1 − μi)(ν j+1 −ν j), i = 1, . . . , I − 1 , j = 1, . . . ,J− 1, (6.10)

with parametric row scores {μi, i= 1, . . . , I} and known (equidistant) column scores
{ν j, j = 1, . . . ,J}. Analogously, model C is (6.10) with parametric column scores
and known (equidistant) row scores.

6.1.4 Row by Column Effect Model

The LL, U, R, and C models considered so far are special types of log-linear
models. The LL model is applicable on two-way tables when both the classification
variables are ordinal. The R and C models are less restrictive about the nature
of the underlying classification variables and thus also less parsimonious. They
allow the row or column classification variable, respectively, to be ordinal but
with unknown distances between the scores assigned to its successive categories
or even nominal. This is achieved by considering the row or the column scores
as unknown parameters to be estimated. Furthermore, a more flexible model can
be defined by (6.4), considering the row and the column score vectors to be both
unknown parameters. Thus, we model a multiplicative row by column association.
This model, denoted by RC, is no more linear in its parameters and their estimation
is not straightforward. The estimation problem will be faced in Sect. 6.2.
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Table 6.3 Association models and related d f . The U model is a special LL model

Association model μμμ = (μ1, . . .,μI) ννν = (ν1, . . .,νJ)

Linear × linear (LL) Known Known
Row effect (R) Unknown Known
Column effect (C) Known Unknown
Multiplicative row–column (RC) Unknown Unknown

Model Parameters additional to independence d.f.

LL 1 (I −1)(J −1)−1
R 1+(I −2) (I −1)(J −2)
C 1+(J −2) (I −2)(J −1)
RC 1+(I −2)+(J −2) (I −2)(J −2)

In terms of local odds ratios, the RC model is defined by

θL
i j = c1ic2 j , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1 ,

allowing the effect of each classification variable on the odds defined by the other
one to vary from category to category. In log-scale, the RC model is given by (6.10)
with parametric (unknown) row and column scores. The RC model does not require
ordinality for any of the classification variables. Thus it can be applied in tables of
nominal variables as well. Of course, scores’ assignment is more natural for ordinal
variables.

The association models considered so far are all defined in terms of expected cell
frequencies by

logmi j = λ +λX
i +λY

j +ϕμiν j, i = 1, . . . , I, j = 1, . . . ,J, (6.11)

i.e., by expression (6.4). Thus, all association models considered so far are defined
by the same expression (6.4) and differentiated by the assumptions made for the
nature of the scores, known or unknown parameters. They are summarized in
Table 6.3. The U model is a special LL model and is not listed in the table.

6.1.5 Example 6.1 (Revisited)

Revisiting the cannabis example, we fit in Table 6.1 the R, C, and RC models.
The test statistic values along with their corresponding significance are provided
in Table 6.4. The estimates of parametric scores as well as the values of the fixed
scores for these models are provided in Table 6.5. The estimated score parameters
for the rows and the columns are close to be equidistant for two successive score
parameters. Thus it seems not to be worth to adopt a more complex model than U.
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Table 6.4 LR goodness-of-fit tests for the independence and the association models applied in
Table 6.1

Model G2 d.f. p-value

I 152.7933 6 0.0000
U 1.4687 5 0.9167
C 1.1004 4 0.8942
R 1.2964 3 0.7230
RC 0.6044 2 0.7392

Table 6.5 ML estimates for parameters and fixed scores values for the U, R, C, and RC models
applied in Table 6.1. Values in italics correspond to fixed scores

U R C RC

ϕ̂ 2.5382 2.4776 2.4638 2.3191

μ1 −0.6708 −0.6640 −0.6708 −0.6494
μ2 −0.2236 −0.2238 −0.2236 −0.2365
μ3 0.2236 0.2043 0.2236 0.1880
μ4 0.6708 0.6836 0.6708 0.6979

ν1 −0.7071 −0.7071 −0.7331 −0.7447
ν2 0.0000 0.0000 0.0553 0.0825
ν3 0.7071 0.7071 0.6779 0.6622

This is verified also from the corresponding goodness-of-fit tests, where we see
that moving from the simple U model to less parsimonious association models, the
fit improvement is very minor. A more detailed discussion on association model
selection will be carried out in Sect. 6.3.

Focusing on the C and RC models, the estimated local odds ratios under these
models are provided in Table 6.6. Recall that under the U model, the common local
odds ratios estimate is 2.23. We can verify that the expected local odds ratios under
the C model are column dependent, i.e., the value is common in each column but
differs from column to column while under the more general RC model they are
row and column dependent, thus all different to each other. However, the estimated
local odds ratios are not that different to justify the use of more complicated models
than the simple U model, which was of impressive fit. Under the C model, the odds
of having tried cannabis once or twice vs. never tried is 2.38 times higher for those
who are one level higher in the alcohol consumption scale, no matter what this level
is. The odds in the second column of Table 6.6 can be interpreted similarly. In this
example we did not refer at all at model R since it is less parsimonious of C and of
worse fit.
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Table 6.6 Estimated local odds ratios under the RC model and under the C model (in parentheses)
for the students’ survey about cannabis use at the University of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often

At most once/month 2.21 (2,38) 1,74 (1,99)
Twice/month 2,26 (2,38) 1,77 (1,99)
Twice/week 2,66 (2,38) 1,98 (1,99)
More often

6.2 Maximum Likelihood Estimation for Association Models

For any association model, the maximum likelihood estimation approach is that
described in Sect. 4.2 for log-linear models. Thus, independent of the underlying
sampling scheme, ML estimates of an association model’s parameters and even-
tually of its expected cell frequencies mi j are achieved by maximizing the Poisson
log-likelihood kernel (4.13) with respect to the parameters of the model. Substituting
mi j by the association model expression and equating the partial derivative of (4.13)
with respect to a parameter of the model to zero, one is led to the likelihood equation
corresponding to this parameter.

The likelihood equations with respect to the main effect parameters of model
(6.4) are the same as the corresponding of the two-way standard log-linear model,
given in (4.14). For the more general RC model where both set of scores are
parameters, the likelihood equations for the row scores (μ1, . . . ,μI) are derived as

∑
j
ν j(m̂i j − ni j) = 0, i = 1, . . . , I (6.12)

while for the column scores (ν1, . . . ,νJ) as

∑
i
μi(m̂i j − ni j) = 0, j = 1, . . . ,J . (6.13)

Finally, the likelihood equation corresponding to the intrinsic association parameter
ϕ is

∑
i, j
μiν j(m̂i j − ni j) = 0 . (6.14)

For the rest of the association models defined by (6.11) by considering the row
or column scores or both of them as fixed, the likelihood equations are derived
from the above set by eliminating the equations corresponding to known scores.
Thus, the likelihood equations for the U model are (4.14) and (6.14) while for the R
model (4.14), (6.12), and (6.14). Analogously, the likelihood equations for model C
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are (4.14), (6.13), and (6.14). Note that the likelihood equation (6.14) is redundant
given (6.12) or (6.13). This means that parameter ϕ is redundant whenever at least
one set of scores is parametric and can thus be eliminated. At this point it is worth
mentioning that the RC model was introduced by Goodman (1979b, model (4.1b))
in terms of the non-redundant parameters, as

mi j = αiβ j exp(μiν j), i = 1, . . . , I; j = 1, . . . ,J , (6.15)

with unconstrained row and column scores. Introducing the intrinsic association
parameter ϕ with the cost of imposing constraints (6.5) and (6.6) on the scores,
Goodman (1979b, model (4.5b)) proposed the equivalent expression

mi j = αiβ j exp(ϕμiν j), i = 1, . . . , I; j = 1, . . . ,J . (6.16)

This way the RC model and its scores are comparable to other standard models
(Chap. 7). The multiplicative form (6.16) is also equivalent to the log-form (6.4).

The ML estimates of the parameters of any association model cannot be derived
in closed-form expression and the corresponding likelihood equations have to be
solved iteratively. The simplest iterative procedure for association models ML
estimation is based on the Newton’s unidimensional method. The updating equations
(at the tth iteration) for the RC model parameters’ estimation, based on expression
(6.16), are

α(t)
i = α(t−1)

i
ni+

m̃i+
, i = 1, . . . , I,

β (t)
j = β (t−1)

j
n+ j

m̃+ j
, j = 1, . . . ,J,

μ (t)
i = μ (t−1)

i +
∑ j ν

(t−1)
j (ni j − m̃i j)

ϕ̃(t−1)∑ j

(
ν(t−1)

j

)2
m̃i j

, i = 1, . . . , I,

ν(t)j = ν(t−1)
j +

∑i μ
(t−1)
i (ni j − m̃i j)

ϕ̃(t−1)∑i

(
μ (t−1)

i

)2
m̃i j

, j = 1, . . . ,J,

ϕ(t) = ϕ(t−1) +
∑i μ

(t−1)
i ν(t−1)

j (ni j − m̃i j)

ϕ̃(t−1)∑i, j

(
μ (t−1)

i ν(t−1)
j

)2
m̃i j

,

where m̃i j stands for the ML estimate of mi j, recalculated at each step of the
iterations (Goodman 1979b).

As in every iterative procedure the assignment of initial values to the parameters’
estimates is crucial. In this setup, a reasonable choice for the main effects is

α(0)
i = exp( �i+

J − �̄
2 ) and β (0)

j = exp(
�+ j

I − �̄
2 ),



6.3 Association Model Selection 163

where �i j = log(ni j) and �̄ = �++
IJ . A natural choice for the initial estimates of the

parametric scores is to consider them equidistant for successive categories, i.e., as if
the U model was applied. In this case, starting by considering the scores equal to the
corresponding category index and rescaling them linearly so that constraints (6.5)
and (6.6) are satisfied, we conclude to

μ (0)
i =

√
3

I(I2−1)
(2i− I− 1) and ν(0)j =

√
3

J(J2−1)
(2 j− J− 1).

A compatible then choice for ϕ(0) would be ϕ(0) = ∑i, j μiν j logni j; see (6.7). The
algorithm convergence is checked through the change in the log-likelihood value
(4.13), calculated after each parameters’ estimates updating circle.

The standard algorithms normally applied are the Newton–Raphson’s or the
Fisher’s scoring algorithm (see Sect. 5.3.1). In this context, the parameters of the
under consideration association model has to be written in a vector form. For exam-
ple, for the U model the parameter vector is βββ = (λ ,λX

1 , . . . ,λX
I−1,λY

1 , . . . ,λY
J−1,ϕ).

The Newton’s unidimensional method is simpler, since it does not require matrix
inversion but for this with the drawback that it does not estimate the s.e. of the
parameters.

Information on available software and special programs for estimation of associ-
ation models based on each of these algorithms will be provided in Sect. 6.6.

6.3 Association Model Selection

We have already faced in the context of the cannabis example the problem of
selecting the appropriate association model when more than one of them is of
adequate fit. The problem of model selection in the framework of association models
is connected to the analysis of association (ANOAS) in a contingency table and is
based on the interconnection between the models. In particular, it holds

I ⊂ U (or (LL) ⊂ R (or C) ⊂ RC.

Indeed, the I model is the U (or LL) model with ϕ = 0, while the C model, for
example, is the RC model for a specific choice for the row scores. This means that

G2(I)> G2(U)> G2(C)> G2(RC) ,

for example, with the analogous results for the LL or the R model. The crucial
question at this point is whether the reduction in G2 value as we move to less
parsimonious models is worth, justifying the loss in d f and simplicity. The answer
is provided through the conditional testing procedure (see Sects. 4.6 and 5.3.4).
As soon as we detect the simplest association modelM1 of adequate fit, we abandon
it in favor of a more complicated M2 (M1 ⊂ M2) only if the reduction in G2 is
statistically significant. Hence, we proceed testing the fit of M1 conditional on the
fact that M2 holds by (4.34).
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Thus, for example, given that the U, R, or C models hold, one could propose
the conditional tests of independence G2(I|U), G2(I|R), or G2(I|C), being asymp-
totically distributed as X 2 with d f equal to 1, I − 1, or J − 1, respectively.
These conditional tests of independence, given that model U, R, or C holds, are
of greater asymptotic power, compared to the traditional unconditional test of
independence (Gross 1981; Agresti 1983a). The tests I|U and I|LL are special
mentioned since they are most powerful as 1 d f tests. In this context it is important
to note that the conditional test I|RC is not that straightforward since G2(I|RC) =
G2(I)−G2(RC) is not asymptotically X 2 distributed with d f = d f (I)− d f (RC)
as probably expected. The asymptotic null distribution of G2(I|RC) for testing
independence is that of the largest eigenvalue from a Wishart distributed matrix
(Haberman 1981). Gradually conditional testing from the RC to I, such as I|U,
U|R, and R|RC, is possible and provides an analysis of association (ANOAS) table,
throwing light on the underlying association structure of the table and analyzing
deviance from independence in terms of source (overall, row, interaction) in a
manner analogous to the ANOVA table (Goodman 1981a).

6.3.1 Model Selection for Example 6.1

We have already seen that for the cannabis data set all association models provide an
acceptable fit. It seems natural to favor the C model over the R, due to parsimony and
better fit. Thus, the choice lies between the U, C, and RC models. By the conditional
testing procedure one has G2(C|RC) = G2(C)−G2(RC) = 0.496, which is non-
significant based on the X 2

2 distribution (p-value=0.7804). Thus, there is no point
in adopting the RC model since it does not provide a significant improvement of the
fit over the C model. Further on, since G2(U|C) =G2(U)−G2(C) = 0.3683 is again
non-significant (p-value=0.5439, d f = 1), the model that seems to be appropriate
for this data set is the simple U model, with just 1 d f less than the independence
and a straightforward interpretation of constant local association all over the table.
This sequence of conditional testing is summarized in the ANOAS table, provided
for this example at the end of Sect. 6.6.1.

6.4 Features of Association Models

We have mentioned that the LL model (U as well) is invariant under linear
transformations of its scores. Actually, this property holds for all association models
considered so far. Let μ∗

i = a1μi + b1 and ν∗j = a2ν j + b2 be any choice of linear
rescaling for the row and column scores, respectively. Then in terms of the local
odds ratios and the new scores, the association model would be defined as

logθ k�
i j = ϕ∗(μ∗

k − μ∗
i )(ν

∗
� −ν∗j ) , i = 1, . . . , I − 1 , j = 1, . . . ,J − 1 ,
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for i < k ≤ I and j < �≤ J. This is further transformed to

logθ k�
i j = a1a2ϕ∗(μk − μi)(ν�−ν j) ,

which for ϕ∗ = ϕ
a1a2

is equivalent to (6.3). Thus, without affecting the expected cell
frequencies, their estimates, and consequently the fit of the model, we can replace
the normalizing constraints on the scores by the weighted normalizing constraints:

∑
i

w1iμi =∑
j

w2 jν j = 0 and ∑
i

w1iμ2
i =∑

j
w2 jν2

j = 1. (6.17)

Although the choice of weights does not affect the model fit, it has an impact on the
scores’ values and thus issues related to or depending on them. The most common
choices for weights are uniform (w1i =w2 j = 1, i= 1, . . . , I j = 1, . . . ,J) or marginal
(w1i = πi+, i = 1, . . . , I and w2 j = π+ j, j = 1, . . . ,J). Uniform weights are preferred
when the marginal distributions are not fixed and interest lies on comparing tables
with unequal marginal distributions. The marginal weights are the choice when
scores of association models have to be compared to correspondence analysis results
(see Sect. 7.2) or when merging rows and/or columns of a table is the issue (see
Sect. 7.5). For a more detailed discussion on the choice of the weighting system,
please see Goodman (1985, 1991) or Becker and Clogg (1989).

Replacing the standard constraints (6.5) and (6.6) by the more general (6.17)
and working analogously as for deriving (6.7), the intrinsic association parameter ϕ
satisfies

ϕ =∑
i, j

w1iw2 jμiν j logπi j ,

i.e., it is a weighted measure of correlation between the row and columns of the
table. However, as already stated, parameter ϕ is redundant in models R, C, and RC.

Models LL, U, R, and C are log-linear while RC is log-multiplicative (not
linear in its parameters). As already mentioned, models LL and U require that both
classification variables of the contingency table are ordinal and thus are sensitive in
re-ordering of rows or columns. Similarly, model R (C) is invariant in re-ordering of
the rows (columns) of the table and the corresponding classification variable needs
not necessarily be ordinal. Ordinality is required only for columns (rows). Finally,
the RC model is invariant in re-ordering of columns or rows. Hence, it can also be
applied to tables with nominal classification variables. Overall, parametric scores
in an association model can correspond either to nominal underlying classification
variable or to ordinal with unknown distances between successive categories. Thus,
the parametric scores of models R, C, and RC need not necessarily be monotone.
Lack of monotonicity implies non-monotone association, in the sense that local
association will be positive in some areas of the table and negative in others.

Thus, monotonicity of the row and column scores is naturally connected to
positive dependence and stochastic ordering of the conditional distributions in rows
or columns of the table. In particular, Goodman (1981a) showed that under the RC
model, association is isotropic and tables possessing this property are TP2, i.e.,
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θi j � 1 for all i = 1, . . . , I − 1, j = 1, . . . ,J − 1 with at least one strict inequality
(see also Sect. 2.5.5). As indicated by (6.10), in case the row and column scores
are both ordered and of the same ordering (i.e., both increasing or both decreasing),
ϕ > 0 is equivalent to positive dependence and consequently the conditional row or
column probabilities are stochastically ordered. This means that if Xi and Xi′ are the
conditional row distributions of rows i and i′ with i< i′, then the positive dependence
implies Xi �st Xi′ , e.g., Xi is stochastically smaller than Xi′ . The distribution of
Xi is said to be stochastically smaller than that of Xi′ , if FXi(t) � FXi′ (t), for all
t = 1, . . . ,J, where FX is the cumulative distribution function of X.

In general, it is not ensured that the ML estimates of monotone parametric scores
will be monotone as well. If the ML estimates are non-monotonic, then one can
proceed in order-restricted estimation of the corresponding association model (see
Sect. 6.8.2).

Another nice property of association models is their connection to the bivariate
normal distribution. In fact, association models lead to very good approximations of
the discretized bivariate normal distribution (Goodman 1981b, 1985; Wang 1987;
Becker 1989a; Rom and Sarkar 1990). To see this, consider the bivariate normal
density

f (x,y;μx,μy,σx,σy,ρ) =
1

2πσxσy

√
1−ρ2

×

exp

(
− 1

2(1−ρ2)

[
(

x− μx

σx
)2 − 2ρ(

x− μx

σx
)(

y− μy

σy
)+ (

y− μy

σy
)2
])

and partition the ℜ2 surface in small rectangular regions (ai−1 × ai)× (b j−1 × b j),
where i = 1, . . . , I, j = 1, . . . ,J, a0 = b0 = −∞, and aI = bJ = +∞. Then, the U
model, or more precisely the symmetric U model (with I = J and μi = νi), applied in
the table formed by this partition approximated well the discretization of the above
density. For standardized scores, parameter ϕ is analogue to ρ

1−ρ2 of the normal
density.

Finally, we would like to emphasize that beyond the sophisticated insight in the
structure of the underlying association, if significant, one of the major strong points
of the association models is the ability for conditional testing of independence, as
already discussed in Sect. 6.3.

6.5 Association Models of Higher Order: The RC(M) Model

The RC model, though the less parsimonious association model considered so
far and in spite of its impressive abilities and often impressive fit, is not always
adequate. RC itself imposes a restrictive structure which can sometimes be insuffi-
cient to model the underlying association. It leaves (I−2)(J−2) d f , enough space
for more in-between models for building up the interaction until the saturated model
is reached.
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Indeed, one could consider to add more multiplicative terms of the RC-type. For
example, the next model to consider would be

logmi j = λ +λX
i +λY

j +ϕ1μi1ν j1 +ϕ2μi2ν j2 , i = 1, . . . , I , j = 1, . . . ,J .

In fact, this idea can be extended further, as long as I and J are large enough,
since in the saturated model, there are (I − 1)(J − 1) association parameters. Thus,
considering M association terms for the general case, we are led to the model

logmi j = λ +λX
i +λY

j +
M

∑
m=1

ϕmμimν jm , i = 1, . . . , I , j = 1, . . . ,J , (6.18)

denoted by RC(M).
How large can M be? To answer this question one must see what M represents.

The concept behind the RC(M) general association model is that of dimensionality
of the underlying association and its decomposition in axes. The idea is the same
as in other well-known methods of reduction of dimensionality, such as factor
analysis and principal component analysis. As in these methods, for identifiability
purposes as well as for convenience of interpretation, the axes to which the
association is decomposed are considered to be orthogonal. In our framework,
the key for this decomposition is the singular value decomposition (SVD) of the

interaction parameters matrixΛΛΛ =
(
λXY

i j

)

I×J
of the saturated log-linear expression.

Thus, M is the rank of matrixΛΛΛ , the parametersϕm (m= 1, . . . ,M) are the associated
eigenvalues while the row and column scores for a certain m are the components of
the mth corresponding eigenvector. In particular, the SVD of the interaction matrix
ΛΛΛ gives

ΛΛΛ = MϕϕϕN′

where ϕϕϕ = diag(ϕ1, . . . ,ϕM) with ϕ1 � . . . � ϕM > 0 are the eigenvalues while
the eigenvectors μm = (μ1m, . . . ,μIm) and νm = (ν1m, . . . ,νJm), associated to the
mth eigenvalue, form the matrices MI×M = (μim) and NJ×M = (ν jm), respectively.
M and N are orthonormal, e.g., they satisfy

M′M = N′N = IM

where IM is the Mth order identity matrix. The maximum possible value for the
dimension of the decomposition M is M∗ =min(I,J)−1. Thus, model (6.18) can be
considered for 0≤M ≤M∗. The associated degrees of freedom equal d f [RC(M)] =
(I −M− 1)(J−M− 1). Model RC(0) is the independence model, RC(1) is the RC
while RC(M∗) is the saturated model. The orthonormality of the eigenvectors is
equivalently expressed as
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∑
i
μim =∑

j
ν jm = 0 ,

∑
i
μ2

im =∑
j
ν2

jm = 1, m, �= 1, . . . ,M,

∑
i
μimμi� =∑

j
ν jmν j� = 0, m �= � .

Note that the first two restrictions are the identifiability constraints we have already
imposed on the row and column scores of the RC model for uniform weights
while the last one corresponds to the orthogonality of the dimensions. In order
to generalize the above constraints and allow the use of weights, the generalized
singular value decomposition (GSVD) of the interaction matrixΛ has to be applied
instead of the SVD. By GSVD, M and N are orthonormalized with respect to the
weights

W1 = diag(w11, . . . ,w1I) and W2 = diag(w21, . . . ,w2J),

e.g., they satisfy

M′W1M = N′W2N = IM ,

or equivalently, the row and column scores satisfy the constraints:

∑
i

w1iμim =∑
j

w2 jν jm = 0, m = 1, . . . ,M , (6.19)

∑
i

w1iμimμi� =∑
j

w2 jν jmν j� = δm�, m, �= 1, . . . ,M,

where δm� is Kronecker’s delta.
Analogously to the RC, the RC(M) model can alternatively be expressed by the

multiplicative form, used by Goodman:

mi j = αiβ j exp

(
M

∑
m=1

ϕmμimν jm

)

, i = 1, . . . , I , j = 1, . . . ,J.

However, the most convenient expression for physical interpretation is in terms of
the local odds ratios

logθL
i j =

M

∑
m=1

ϕm(μim − μi+1,m)(ν jm −ν j+1,m) , (6.20)

for i = 1, . . . , I − 1 , j = 1, . . . ,J− 1.
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6.5.1 Maximum Likelihood Estimation of the RC(M) Model

The estimation procedure for the RC(M) follows the lines of the procedure described
in Sect. 6.2 for the simple RC model. The extension for the RC(M) model
is straightforward. Thus it can be proved that the likelihood equations for the
RC(M) model are the (4.14) for the main effects while the likelihood equations
corresponding to the row and column scores and the association parametersϕm’s are

∑
j
ν jm(m̂i j − ni j) = 0, i = 1, . . . , I, m = 1, . . . ,M , (6.21)

∑
i
μim(m̂i j − ni j) = 0, j = 1, . . . ,J, m = 1, . . . ,M , (6.22)

∑
i, j

μimν jm(m̂i j − ni j) = 0, m = 1, . . . ,M , (6.23)

i.e., straightforward extensions of (6.12), (6.13), and (6.14), respectively.
In practice, the updating equations of the simple Newton’s unidimensional

method for the interaction parameters of RC(M) are direct extensions of the
corresponding updating equations for the RC model, presented in Sect. 6.2, while
the updating equations for the main effects remain the same. The orthonormal
constraints that must be satisfied by the scores of RC(M) need not to be enrolled in
the iterative procedure. Since it is only a matter of parameters’ identifiability and
rescaling that does not affect the cell estimates, it is sufficient if they are fulfilled by
the initial values and if the final estimated interaction parameters are rescaled by
SVD at the final stage, after the convergence of the algorithm is achieved. The

initial values ϕ(0)
m , μ (0)

im , and ν(0)jm (m = 1, . . . ,M) can easily be obtained as the
corresponding values of the first M terms of the SVD of the observed interaction
matrix, e.g., matrix Γ with entries γi j =

ni j

α(0)
i β (0)j

. The extension of the Newton–

Raphson algorithm, presented in Sect. 6.2, is also straightforward.

6.5.2 Example 6.2

The data considered in Table 6.7 are from Wermuth and Cox (1998) and cross-
classify people in West Germany (Central archive, 1993) according to their type of
schooling completed and their age in a 5×5 table. As can be observed in Table 6.8,
there exists a highly significant association between age and type of schooling which
is not captured by the RC model. Hence, the consideration of an association model
RC(M) with M > 1 is necessary. The RC(2) model is of very good fit and is the
model we propose for this data set and base inference on.

In the context of the RC model, we have seen that the important information lies
not on the values of the row and column scores themselves but on their distances
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Table 6.7 Cross-classification of 3,673 subjects according to their age and type of school
attended, West Germany 1991/92

Age group

Type of schooling 18–29 30–44 45–59 60–74 >74

Basic, incomplete 12 13 12 20 7
(11.943) (13.068) (12.008) (20.994) (5.987)

Basic, complete 215 507 493 460 137
(215.823) (504.677 (495.243) (458.267) (137.990)

Medium 277 300 192 126 38
(273.739) (309.576) (182.462) (129.431) (37.792)

Upper medium 52 91 47 15 6
(51.859) (91.307) (46.776) (16.149) (4.909)

Intensive 233 225 102 74 19
(235.637) (217.372) (109.510) (70.158) (20.323)

In parentheses are given the ML estimates under the RC(2) model

Table 6.8 G2 statistics for the fit of independence and association models applied in Table 6.7

Model G2 d.f. p-value

I 357.146 16 0.000
RC 24.275 9 0.039
RC(2) 2.599 4 0.627

for successive categories. Distances are the quantities that are interpreted in terms
of closeness of the effect of the underlying categories on odds formed by categories
of the other classification variable. For the RC(M) model with M > 1, the logic of
interpretation is the same, as can easily be verified by definition (6.20). However,
distances between rows (or columns) are now defined by the Euclidean distance in
the M dimensional space. For M = 2, this is easily visualized on the two-dimensional
space, with the i-th row (i = 1, . . . , I) and the j-th column ( j = 1, . . . ,J) being
represented by the points (μ̂i1, μ̂i2) and (ν̂ j1, ν̂ j2), respectively. For our example,
Fig. 6.1 presents such graphs for scores satisfying constraints (6.19) subject to the
uniform (left) or marginal (right) weights. The MLEs of the scores (under uniform
weights) are provided in Table 6.9.

These two graphs, though they obviously refer to different scores’ values,
they correspond to equivalent expressions of the RC(2) estimates just differently
scaled through the choice of the weights. It is evident from the plots that the 2nd
dimension captures the differentiation of row 1 from 2 (incomplete from complete
basic education) and 4 from 3 and 5 (upper medium from medium and intensive
education). The closeness of columns 4 and 5 (ages 60–74 or > 74) is remarkable,
especially in the marginal weights plot, where they are almost indistinguishable.
This observation motivates Sect. 7.5 on merging categories, where this example
is revisited (Sect. 7.5.1). Though the marginal weighted scores are preferred for
comparisons in rows (or in columns), the uniform weighted are more appropriate for
investigating the row–column combinations of strong association. We can observe,
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Fig. 6.1 Plots of the estimated row (bullets) scores (μ̂i1, μ̂i2), i = 1, . . .,5, and column (triangles)
scores (ν̂ j1, ν̂ j2), j = 1, . . . ,5, under the RC(2) model applied to Table 6.7, with respect to uniform
(left) and marginal (right) weights

Table 6.9 Association parameters’ ML estimates for the RC(2) model applied in Table 6.7

ϕ1 = 1.7830 ϕ2 = 0.6904

μ-scores ν-scores

m = 1 m = 2 m = 1 m = 2

1 −0.575 0.431 0.529 0.684
2 −0.484 −0.605 0.428 −0.400
3 0.168 0.209 0.073 −0.573
4 0.517 −0.467 −0.520 0.181
5 0.374 0.432 −0.511 0.107

The estimates are subject to the orthonormal
constraints with uniform weights

for example, that upper medium education (row 4) is stronger associated with people
aged 30–44 (column 2). Also, as expected basic incomplete education (row 1) is
more often among elder people (columns 4 and 5). Alternatively, one could apply
Correspondence Analysis (CA) and conclude to very similar results. The CA of this
data set is provided in Sect. 7.2.2.

6.6 Software Applications for Association Models

Association models, though so powerful tools in modeling the association in
contingency tables, did not receive the attention one would expect. The major reason
for that is the fact that their fit is not provided as a standard option in statistical
software. They can be fitted in statistical packages, but some extra programming is
required. Additionally, a Fortran algorithm for ML estimation of the RC(M) model
by the Newton’s unidimensional method has been provided by Becker (1990a) while
the Newton–Raphson algorithm has been implemented in Fortran by Haberman
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(1995) and a Fisher’s scoring type algorithm using the weighted least squares as
initial estimates by Ait-Sidi-Allal et al. (2004). As already mentioned in Sect. 6.2,
the above algorithms are appropriate for the estimation and fit of models linear in
their parameters, i.e., models U, R, and C. In case of RC(M), M ≥ 1, we still apply
these methods by considering at each step of estimation for the row (columns) scores
that the column (row) scores are fixed at the estimated value of the previous step.
This procedure is continued until convergence is achieved.

Association models which are linear in their parameters, e.g., the models U (and
LL), R, and C, are log-linear and can be fitted as GLM by any available software,
adopting the procedure described next for R. In the web appendix (see Sect. A.4)
are also available syntax codes for automatized fitting of all the association models
in SPSS, including the RC(M).

6.6.1 Association Models in R: Example 6.1

The simple association models U (or LL), R, and C can be fitted in R straightfor-
ward, in the generalized linear models framework by the glm() function of R, as
described below.

First of all, the data have to be in the standard format for fitting classical
log-linear models. Thus, let freq, row, and col be the usual variables of a data
frame corresponding to the vectors of observed frequencies and row and column
classification variables, respectively. Then, we have to construct the variables of
row and column scores, mu = row and nu = col, respectively. This way, the row
and column scores are set equal to μi = i, i = 1, . . . , I and ν j = j, j = 1, . . . ,J. In the
sequel, row and col have to be defined as factors and then the U, R, and C models
are the log-linear models with terms in the model row + col + mu:nu, row + col

+ row:nu and row + col + mu:col, respectively. The LL model can be fitted as
the U model with the only difference that the score variables mu and nu will now
contain the values of the prefixed, not equidistant scores for the corresponding row
and column categories.

To illustrate, let us consider the cannabis example. The data are saved under the
data frame cannabis.fr. Models U, R, and C are fitted by glm() as follows:
> freq <- c(204,6,1,211,13,5,357,44,38,92,34,49)

> row <- rep(1:4, each=3); col <- rep(1:3,4)

> mu <- row; nu <- col

> row <- factor(row); col <- factor(col)

> cannabis.fr <- data.frame(freq, row, col, mu, nu)

> model.U <- glm(freq∼row+col+mu:nu, poisson, data=cannabis.fr)

> model.R <- glm(freq∼row+col+row:nu, poisson, data=cannabis.fr)

> model.C <- glm(freq∼row+col+mu:co„ poisson, data=cannabis.fr)
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Table 6.10 Output of the U model fit in R for the cannabis data (Table 6.1)

Call:

glm(formula = freq∼row + col + mu:nu, family = poisson, data = cannabis.fr)

Deviance Residuals:

1 2 3 4 5 6 7

-0.03133 0.13352 0.13252 -0.02757 -0.02850 0.23335 0.22138

8 9 10 11 12

-0.69889 0.10336 -0.34184 0.82418 -0.17906

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.51766 0.10017 45.098 < 2e-16 ***
row2 -0.76921 0.12181 -6.315 2.70e-10 ***
row3 -1.05962 0.17968 -5.897 3.70e-09 ***
row4 -3.17104 0.30478 -10.404 < 2e-16 ***
col2 -4.38621 0.25357 -17.298 < 2e-16 ***
col3 -7.06112 0.53471 -13.205 < 2e-16 ***
mu:nu 0.80265 0.07827 10.255 < 2e-16 ***
--

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1357.7001 on 11 degrees of freedom

Residual deviance: 1.4687 on 5 degrees of freedom

AIC: 79.655

Number of Fisher Scoring iterations: 4

for models U, R, and C, respectively. The output is then derived, for the U model,
for example, through the command
> summary(model.U)

and is provided in Table 6.10.
Note that by the above procedure, the scores involved in the interaction term are

not standardized, they are equal to the corresponding category index and thus they
do not satisfy constraints (6.5) and (6.6). For these scores, we have ϕ̂ = 0.80265, as
given in Sect. 6.1.2. This, however, does not affect the ML estimates of the common
value of all expected under U local odds ratios or of the expected cell frequencies,
which can be obtained by
> MLE.U <- xtabs(model.U$fitted.values∼row+col)
verifying the corresponding entries of Table 6.1.

The R and C models fitted above are defined by (6.15), the parameterization
without the intrinsic association parameter ϕ . If we want the models to be in the
form (6.4) and the scores to be standardized, then mu and nu have to be rescaled
appropriately before applying the model, while the estimates of the parametric
scores have to be rescaled at a final stage as well. To simplify this procedure,
we conducted for each association model the corresponding R function, namely
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the fit.U(), fit.R() and fit.C(), to be found in the web appendix (see Sect.
A.3.5). They fit the corresponding model subject to the general constraints (6.17),
controlling the weights used by the parameter iflag, with the option of uniform
(=0) or marginal (=1) weights. Hence, the U model on the cannabis example with
marginal weights could be fitted by this function as
> U <- fit.U(freq, NI=4, NJ=3, iflag=1)

where NI=I and NJ=J. Under U, additional to the standard glm output, the standard-
ized scores are saved under U$mu and U$nu, respectively, as well as ϕ̂ (U$phi), the
G2 value (U$G2), the degrees of freedom (U$df), the p-value (U$p.value), and the
ML estimates of the expected cell frequencies (U$fit.freq). Functions fit.R()
and fit.C() are called analogously and give output of the same format.

The RC and more generally the RC(M) models, M ≥ 1, cannot be fitted by glm,
since they are not linear in their parameters and thus not in the GLM family. Thus,
these models need special treatment. They can be fitted through functions available
in special packages developed for nonlinear models, such as gnm, developed by
Turner and Firth. An overview of version 1.0–6 is provided by Turner and Firth
(2012a). An alternative choice is the VGAM package, which deals with Vector
Generalized Additive Models (Yee and Wild 1996). For a short presentation of the
package, see Yee (2008).

We will illustrate association models by the gnm package, based on Turner and
Firth (2007). It is designed for models multiplicative in their parameters and defines
the product of parameters, corresponding to factors f1 and f2, respectively, through
Mult(f1,f2). Thus, the RC model is fitted on our cannabis example by
> library(gnm)

> RC.model<-gnm(freq∼row+col+Mult(row,col),family=poisson)
Recall that row and col have to be defined as factors before calling the model.
Output is printed on the screen by typing
> RC.model

The output is provided in Table 6.11.
The ML estimates of the expected cell frequencies under the RC model are

provided by
> predict(RC.model, type="response", se.fit=TRUE)

$fit
1 2 3 4 5 6

204.249905 5.393465 1.356630 211.279836 12.320820 5.399344
7 8 9 10 11 12

355.826805 46.847419 36.325776 92.643454 32.438296 49.918250

$se.fit
1 2 3 4 5 6

14.2819358 1.9407176 0.8911325 14.5093040 2.8007752 1.9625848
7 8 9 10 11 12

18.7968741 5.6652758 5.5879960 9.5879954 5.3135278 6.9616519

$residual.scale
[1] 1

The ML estimates of the parameters of the model are printed on screen by typing:
> coefficients(RC.model)
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Table 6.11 Output for the RC model applied on the cannabis example (data in Table 6.1) by gnm

Call:
gnm(formula=freq∼row+col+Mult(row,col),family=poisson)

(Intercept) row2 row3
4.97406 0.20900 0.91031

row4 col2 col3
-0.21912 -2.07242 -2.35822

Mult(.,col).row1 Mult(.,col).row2 Mult(.,col).row3
-0.67224 -0.33122 0.01931

Mult(.,col).row4 Mult(row,.).col1 Mult(row,.).col2
0.44034 -0.51364 1.80955

Mult(row,.).col3
3.43750

Deviance: 0.5888162
Pearson chi-squared: 0.5802588
Residual df: 2

Furthermore, the command coef() gives the ability to save the ML estimates of a
parameter in a separate vector in order to be handy for further use. For example, the
row main effects estimates can be saved under the vector a:
> a<-c(0,coef(model.RC) [2:4])

> a

row2 row3 row4
0.0000000 0.2090018 0.9103069 -0.2191229

Note that the model is fitted through (6.15) and the scores’ estimates are not
with respect to the constraints (6.17). They can be rescaled linearly though, in order
to satisfy them. The getContrasts() command of the gnm package provides this
facility. Thus, for uniform weights, the rescaling is achieved as
mu<-getContrasts(model.RC, pickCoef(model.RC,"[.]row"),

+ ref="mean", scaleWeights="unit")

and
> nu<-getContrasts(model.RC, pickCoef(model.RC,"[.]col"),

+ ref="mean", scaleWeights="unit")

for the row and column scores, respectively, leading to
> mu

Estimate Std. Error
Mult(., col).row1 -0.6494141 0.07259224
Mult(., col).row2 -0.2364548 0.10092333
Mult(., col).row3 0.1880143 0.05142579
Mult(., col).row4 0.6978546 0.04442136
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> nu

Estimate Std. Error
Mult(row, .).col1 -0.74474733 0.04043242
Mult(row, .).col2 0.08252274 0.09813196
Mult(row, .).col3 0.66222459 0.05769954

For marginal weights, the vectors of row and column marginal probabilities have to
be computed first:
> rowProbs<-with(cannabis.fr, tapply(freq,row,sum)/sum(freq))

> colProbs<-with(cannabis.fr, tapply(freq,col,sum)/sum(freq))

The rescaling follows then analogously:
> mu<-getContrasts(model.RC, pickCoef(model.RC,"[.]row"),

+ ref=rowProbs, scaleWeights=rowProbs)

> nu<-getContrasts(model.RC, pickCoef(model.RC,"[.]col"),

+ ref=colProbs, scaleWeights=colProbs)

For our example, this leads to
>mu

Estimate Std. Error
Mult(., col).row1 -1.5106642 0.17070781
Mult(., col).row2 -0.5686042 0.22575503
Mult(., col).row3 0.3997124 0.08382567
Mult(., col).row4 1.5627815 0.14715755

and
>nu

Estimate Std. Error
Mult(row, .).col1 -0.2849555 0.003252048
Mult(row, .).col2 0.8920811 0.141339476
Mult(row, .).col3 1.7168786 0.117206021

Alternatively, the RC model can be fitted by the function fit.RC(), provided in
the web appendix (see Sect. A.3.5), with the option of selecting marginal or uniform
weights for the constraints (6.17) on the scores. The function is called exactly as
fit.U() and provides the same type of output. However, this function does not
provide the standard errors of the parametric scores. For this, the getContrasts()
function described above is needed.

The conditional testing between nested association models, when allowed, can be
performed by function anova(). Thus, for our cannabis example, the ANOAS table
based on the conditional tests G2(I|U), G2(U|C), and G2(C|RC) (see Sect. 6.3.1) is
produced by
> I<-glm(freq∼row+col, family=poisson)

> m1<- fit.U(freq,4,3,1)

> m2<- fit.C(freq,4,3,1)

> m3<- fit.RC(freq,4,3,1)

> anova(I,m1$model,m2$model,m3$model,test="Chisq")
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Analysis of Deviance Table

Model 1: freq ∼ row + col
Model 2: freq ∼ X + Y + mu:nu
Model 3: freq ∼ X + Y + Y:mu
Model 4: freq ∼ X + Y + Mult(X, Y)

Resid. Df Resid. Dev Df Deviance P(> |Chi|)
1 6 152.793
2 5 1.469 1 151.325 <2e-16 ***
3 4 1.100 1 0.368 0.5439
4 2 0.589 2 0.512 0.7743
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

6.6.2 The RC(M) Model in R: Example 6.2

Association models of order M, M > 1, can be fitted in the gnm package applying
the instances argument for the multiplicative term of the model. Thus, for our
Example 6.2 (Table 6.7), the RC(2) model can be fitted as
> RC2.model <- gnm(freq ∼ row+col+instances(Mult(row,col),2),

+ family=poisson)

where freq is the vector of cell frequencies while row and col are the factors
corresponding to the rows (type of schooling) and columns (age group) of the table,
respectively. The fit.RCm() function in the web appendix (see Sect. A.3.5) fits the
RC(M) model (M ≥ 1) on a contingency table, read in vector form, and rescales
the row and column score vectors through singular value decomposition of the
appropriate table, so that constraints (6.19) hold for uniform or marginal weights.

Thus, for Example 6.2, the 5×5 data table is provided in vector form (by rows) as
> WCox <- c(12,13,12,20,7,215, 507,493,460,137,

+ 277,300,192,126,38,52,91,47,15,6,233,225,102,74,19)

and the RC(2) model is fitted by
> m <- 2

> RC.m <- fit.RCm(freq=WCox, NI=5, NJ=5, m=2, iflag=1)

where the parameter m specifies the order of the association model. The derived
score vectors are subject to constraints (6.19) with marginal weights. Changing the
last argument of fit.RCm() from 1 to 0, the uniform weights are applied.

One can save the scores’ estimates in order to proceed with the presentation of
the results, for example, through appropriate graphs. For Example 6.2, the vectors
of row and column scores subject to marginal weights can be saved in vectors mu1
and nu1 as
> mu1 <- RC.m$mu ; nu1 <- RC.m$nu

while subject to uniform weights in mu0 and nu0 as
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> RC.m0 <- fit.RCm(freq=WCox, NI=5, NJ=5, m=2, iflag=1)

> mu0 <- RC.m0$mu ; nu0 <- RC.m0$nu

respectively.
The plot, for example, of the row and column scores’ coordinates under uniform

weights (Fig. 5.1 (left)) can easily be obtained through the standard plot()

command, applied on mu0 and nu0. This plot is produced by function plot_2dim(),
provided in the web appendix (see Sect. A.3.5). The plot in Fig. 5.1 (left) is obtained
by calling this function as
> plot_2dim(mu0, nu0, -0.6, 0.6, -0.8, 0.8, -0.7, 1.1, 1.2)

The parameters of this function following nu0 control the plot appearance. Thus,
(−0.6, 0.6) and (−0.8, 0.8) define the range of values of the first and second axis,
respectively. The value set −0.7 leaves a gap of 70% of the text width between
the category label and the corresponding plotted symbol. According to the case, it
can be adjusted each time for the better appearance of the graph. The size of text
characters in axes and labels is set to be 1.1 times the default text size while the
size of the symbols and their categories’ labels are 1.2 times the default text size.
Analogously, the plot in Fig. 5.1 (right) is obtained through
> plot_2dim(mu1, nu1, -2, 2, -5, 5, -0.7, 1.1, 1.2)

6.6.3 Example 2.4 (Revisited)

Recall the data set on varicella disease in Table 2.5, where 170 children are cross-
classified by complication occurrence and age (in a 2 × 4 table). Independence
was rejected (p-value=0.040) and the linear trend test suggested that the linear
association is non-significant (p-value=0.104). Fitting association models on this
example, we confirm the inappropriateness of linear association since the U model
is rejected with G2 = 7.093 (p-value=0.029, d f = 2). Note that because I = 2, the
R model is equivalent to the U while the C model is saturated (G2 = 0, d f = 0).
However, derivation of the column scores of the C model is very informative on
comparing the different age groups in terms of their association to the complication
response. The C model is fitted by function fit.C of the web appendix (see
Sect. A.3.5). From the corresponding output, the coefficients along with their
standard errors and significances are provided below.
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Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.1503 0.2759 7.794 6.47e-15 ***
X2 -0.2063 0.1944 -1.062 0.2885
Y2 0.3980 0.3399 1.171 0.2416
Y3 0.2939 0.3395 0.866 0.3867
Y4 1.9272 0.2759 6.986 2.84e-12 ***
Y1:mu -0.1522 0.2759 -0.552 0.5811
Y2:mu 0.6024 0.2415 2.495 0.0126 *
Y3:mu 0.2470 0.2409 1.025 0.3053
Y4:mu NA NA NA NA
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In the estimation procedure above, the parametric score ν4 is redundant and is the
reference category (coefficient for Y4:mu, shown as not defined). The fixed row
scores used are μ1 = −1 and μ2 = 1. The estimated column scores are rescaled
to satisfy the marginal weighted constraints (6.17). The rescaled scores and the
interaction parameter are also part of the output. In particular, ϕ̂ = 0.231, ν̂1 =
−1.127 ν̂2 = 2.136, ν̂3 = 0.560, and ν̂4 =−0.468.

Observing that only the column score ν̂2 is significantly different from the
others, we conclude that only the category “1–2 years old” relates differently to
complications than all other age categories. Thus, we proceed by applying the LL
model with the constraint ν1 = ν3 = ν4. In R this is easily achieved, as shown
next. Before fitting the LL model, we rescale the simple raw scores 1,2, assigned
initially to the rows and column categories, through the function rescale of the
web appendix (see Sect. A.3.5), so that the ϕ̂ , derived by glm(), corresponds to the
marginally weighted scores:
> NI <- 2

> NJ <- 4

> freq <- c(10,7,9,59,6,19,12,48)

> row<-gl(NI,NJ,length=NI*NJ)

> col<-gl(NJ,1,length=NI*NJ)

> dtable <- data.frame(freq,row,col)

> mu0<-c(1,2)

> nu0<-c(1,2,1,1)

> mu<-rep(rescale(mu0, dtable, 1, 1)$score,each=NJ)

> nu<-rep(rescale(nu0, dtable, 1, 0)$score, NI)

> LL.model <- glm(freq∼row+col+mu:nu,poisson)
From the summary output, obtained by summary(LL.model), we see that the model
is acceptable, since G2 = 1.572 (p-value=0.456, d f = 2). Commands
MLEs <- xtabs(LL.model$fitted.values ∼ row + col)

stdres <- xtabs(rstandard(LL.model) ∼ row + col)
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express in table form the ML estimates of the expected frequencies and the
corresponding standardized residuals. None of the standardized residuals exceeds
1.96; thus all cells are fitted satisfactorily by the model.

> MLEs
col

row 1 2 3 4
1 8.666667 7.000000 11.375000 57.958333
2 7.333333 19.000000 9.625000 49.041667
> stdres

col
row 1 2 3 4
1 0.6924565 0.0000000 -1.1684753 0.3975276
2 -0.7328918 0.0000000 1.0833608 -0.4001372

The interaction parameter is estimated as ϕ̂ = 0.210 (coefficient for mu:nu in
the output) while the row and column scores are μ1 = −1, μ2 = 1, ν1 = ν3 = ν4 =
−0.4249 and μ2 = 2.3534 (saved in vectors mu and nu).

This model provides a clear and strong interpretation. The equality restrictions
among the column scores impose on the expected local odds ratios the restrictions
θL

13 = 1 and θL
11 = 1/θL

12. The odds ratios θ 23
11 and θ 24

11 , opposing age categories
1 to 3 and 1 to 4, respectively, are also equal to 1 and θ 24

12 = θL
12. Thus we

conclude that the odds of complication occurrence for children 1–2 years old is
θ̂L

11 = eϕ̂(μ2−μ1)(ν2−ν1) = e1.1669 = 3.2 times higher than for children of any other
age. The θ̂L

1 j, j = 1,2,3, could also have been computed by the local.odds.DM()
function (see Sect. A.3.2), implemented as follows:
> NI <- 2; NJ <- 4; C <- local.odds.DM(NI, NJ)

> LO <- as.vector(C%*%log(LL.model$fitted.values))

> exp(t(matrix(LO, NJ-1)))

[,1] [,2] [,3]
[1,] 3.207792 0.3117409 1

6.6.4 Association Models Fitted on the Local Odds Ratios

Association models can also be fitted directly on the local odds ratios through the
generalized log-linear model GLLM (5.28) and implemented in R by Lang’s mph

package. The GLLM turns to a model on local odds ratios by eliminating matrix
M and appropriately defining matrix C, so that C log(m) becomes the vector of
the expected local odds ratios under the assumed model, where m is the vector of
expected cell frequencies. For an I×J table, C and m are of size (I−1)(J−1)× IJ
and IJ × 1, respectively. This matrix C for an I × J table is produced by function
local.odds.DM() of the web appendix (see Sect. A.3.2). The design matrix X
specifies the restrictions imposed on the local odds ratios by the model under
consideration and is of size (I − 1)(J− 1)× s, where s is the number of parameters
in the model.
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We illustrate this option fitting the U model on our cannabis example. Under the
U model a common value is assumed for all local odds ratios; thus the parameter β
is scalar and the design matrix X is the (I − 1)(J − 1)× 1 vector of 1’s. Recall (see
Sect. 5.6) that mph needs to be actualized in R and that the data are read as a vector
saved in matrix form. The way we define the C matrix requires the data to be read
by rows. For the cannabis example,
> y <- c(204,6,1,211,13,5,357,44,38,92,34,49)

> y <- matrix(y); NI <- 4; NJ <- 3; dim1<-(NI-1)*(NJ-1)

> X<-matrix(rep(1,dim1))

In our context, matrix C is
> C <- local.odds.DM(NI,NJ)

and the link of the GLLM model is defined by the function
> L.fct <- function(m){C%*%log(m)}

Finally, the U model is fitted by
> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X)

> mph.summary(mph.out,cell.stats=T,model.info=T)

The derived output provides goodness-of-fit statistics for the model; estimate of the
β (the log of the common local odds ratio under U), and estimates of the expected
cell frequencies and the associated residuals. Further informations, as for example
on the algorithm’s convergence, are also provided.

In case of one or more sampling zeros, when working with odds ratios and for
ensuring their existence, we set
> z <- y+0.000001

> mph.out <- mph.fit(y=z,L.fct=L.fct,X=X)

6.7 Association Models for Multi-way Tables

Association models can also be applied on contingency tables of higher dimension.
Consider a I × J ×K contingency table with classification variables X , Y , and Z,
respectively. Association models can be derived by replacing one or more of the
interaction terms of any hierarchical log-linear model by multiplicative terms based
on scores, leading thus to more parsimonious models of special structure, in analogy
to two-way association models.

For example, consider the model

logmi jk = λ +λX
i +λY

j +λ
Z
k +ϕXZμiτk +ϕYZν jτk , .(6.24)

i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

with (μ1, . . . ,μI), (ν1, . . . ,νJ), and (τ1, . . . ,τK) sets of known scores assigned to the
categories of the classification variables X , Y , and Z, respectively, all equidistant for
successive categories. This model is a special type of conditional XY independence
model, derived from the (XZ, YZ) log-linear model by replacing the λXZ

ik and λYZ
jk

interaction terms by the uniform (U)-type terms ϕXZμiτk and ϕY Zν jτk, respectively.
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For this, it will be denoted as (XZU , Y ZU). It is very parsimonious, having d f =
IJK − I− J−K, just 2 less than the complete independence model (X , Y, Z).

More options are available by considering some of the scores to be parametric.
Assuming thus an R-type interaction only for the term λXZ

ik , the (μ1, . . . ,μI)
scores would be considered as parameters in (6.24) and the model would then
be (XZX , Y ZU). In terms of notation, an interaction term without an index is of
log-linear model type, with U of uniform association type, while when it is of
row or column effect type, the variable of parametric scores is set as an index.
A multiplicative RC-type has also a multiplicative index. Thus (XZXZ , YZU ) is the
model defined by (6.24) with parametric μ- and τ-scores of the XZ interaction and
fixed equidistant scores for the ν- and τ-scores of the Y Z interaction term. Were
the layer scores parametric in both interaction terms, they could be homogeneous or
not. The model for parametric nonhomogeneous τ-scores, (XZZ , YZZ), is

logmi jk = λ +λX
i +λY

j +λ
Z
k +ϕXZμiτXZ

k +ϕYZν jτY Z
k ,

while with the additional restrictions τXZ
k = τY Z

k , k = 1, . . . ,K, the homogeneous
(XZZ, Y ZZ) is derived.

A flexible form of association model, including three-factor interaction, is

logmi jk = λ +λX
i +λY

j +λ
Z
k +ϕXYμXY

i νXY
j +ϕXZμXZ

i τXZ
k + (6.25)

ϕY ZνY Z
j τ

Y Z
k +ϕXY ZμXY Z

i νXY Z
j τXY Z

k ,

which offers a variety of model options, depending on the combinations of
assumptions about the scores.

The most general expressions for imposing association structures on the two-
factor interaction terms of a three-way log-linear model are

λXY
i j =

M1

∑
m=1

ϕXY
m μXY

im ν
XY
jm , λY Z

jk =
M2

∑
m=1

ϕY Z
m νY Z

jm τ
Y Z
km , (6.26)

λXZ
ik =

M3

∑
m=1

ϕXZ
m μXZ

im τ
XZ
km ,

with 1 ≤ M1 ≤ min(I,J)−1, 1 ≤ M2 ≤ min(J,K)−1, and 1 ≤ M3 ≤ min(I,K)−1.
The three-factor interaction can be decomposed in an analogue manner

λXY Z
i jm =

M4

∑
m=1

ϕmμimν jmτkm . (6.27)

The consideration of (6.27) for M4 > 1 as well as other options for decomposing
three-way arrays, known as trilinear decomposition, is beyond the scopes of this
book (see Sect. 6.8.1).
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The scores are subject to constraints analogue to (6.19) of the two-way case.
When Mi = 1 (i = 1, . . . ,4), we conclude to model (6.25). Furthermore, the scores
can be considered known and lead to terms of U-, R-, C-, or L- (for the layer scores)
type.

The idea extends analogously to contingency tables of higher dimension. How-
ever, the number of possible association models augments with the dimension of the
table. It is difficult to control all possible combinations of assumptions regarding
the interaction terms of a multi-way table, so an automated stepwise association
model selection procedure is not feasible. In practice we start by selecting the
appropriate hierarchical log-linear model by a stepwise procedure and then try to
conclude to a more parsimonious model by imposing special structures to some of
the interaction terms. In this procedure, conditional tests between nested models are
helpful. Finally, we can test whether parametric scores of the same classification
variable but on different interaction terms are homogeneous.

Multi-way association models and their physical interpretations will be illus-
trated with two examples that follow.

6.7.1 Example 6.3

In a study, 16,236 teenagers in Holland are cross-classified in a 6× 7 × 2 table
by their educational level after 4 years of second-level education, their test for
intellectual capacity (TIC) score, and their gender (Siciliano and Mooijaart 1997).
The data are provided in Table 6.12.

In the framework of hierarchical log-linear model, we do not have another
option for this data set than the saturated model, since the three-factor interaction is
significant. We can verify that the model of homogeneous association (EI,EG, IG)
is rejected with G2(GE,GI,EI) = 61.517 (p-value=0.001, d f =30). It is notable
however that the highly significant G2 value is also affected by the large sample size
of the table. The corresponding dissimilarity index is Δ̂ = 0.02, at the limit for a
satisfying data representation by this model (see Sects. 4.2 and 4.2.1 for calculation
in R). The significance of each term in the log-linear model is summarized in the
analysis of deviance table of the saturated model, derived as shown below.

Provided that the data are given in vector freq, expanded by rows, followed by
columns and layers, we program in R
> G<-factor(rep(1:2,each=42)); I<-factor(rep(1:7,12))

> E<-factor(rep(1:6,2,each=7)); educ.fr<-data.frame(freq,E,I,G)

> sat.glm <- glm(freq ∼ E*I*G, family=poisson, data=educ.fr)

> anova(sat.glm, test="Chisq")

and get the output of Table 6.13.
Since all interaction terms are significant, the basis for selecting the appropriate

association model will be the saturated. The simplest model expression of this type
is the

log(mi jk) = λ +λE
i +λ I

j +λ
G
k +ϕEIμiν j +ϕ IGν jτk +ϕEGμiτk +ϕEIGμiν jτk,

(6.28)
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Table 6.12 Cross-classification of 16,236 teenagers in Holland by their educational level after 4
years of second-level education, their test for intellectual capacity (TIC) score, and their gender
(Siciliano and Mooijaart 1997)

Gender TIC Total

1 2 3 4 5 6 7

Boys Education

DO 75 77 105 125 89 38 17 526
(57.24) (79.28) (127.13) (128.12) (87.64) (37.99) (8.60)

LBO 216 305 495 522 389 168 34 2129
(212.43) (304.47) (505.33) (527.06) (373.10) (167.38) (39.23)

MAVO 67 144 267 368 339 194 54 1433
(71.70) (131.16) (277.81) (369.79) (334.07) (191.27) (57.20)

MBO 51 84 239 345 301 208 65 1293
(49.32) (98.25) (226.62) (328.50) (323.18) (201.50) (65.63)

HAVO 26 65 200 332 383 258 98 1362
(31.04) (71.86) (192.65) (324.57) (371.13) (268.95) (101.81)

VWO 12 27 104 216 325 321 178 1183
(8.81) (27.28) (97.81) (220.36) (336.94) (326.51) (165.28)

Total 447 702 1410 1908 1826 1187 446 7926

Girls Education

DO 51 60 115 123 78 56 9 492
(44.21) (65.96) (113.96) (123.73) (91.18) (42.58) (10.39)

LBO 144 223 382 370 290 107 26 1542
(154.72) (221.27) (366.45) (381.38) (269.39) (120.59) (28.20)

MAVO 60 134 288 424 442 266 72 1686
(64.61) (128.52) (296.03) (428.51) (420.98) (262.10) (85.24)

MBO 75 167 320 458 428 258 72 1778
(80.81) (152.43) (332.96) (457.05) (425.81) (251.41) (77.54)

HAVO 23 68 211 373 450 402 169 1696
(25.43) (65.95) (198.08) (373.88) (478.94) (388.83) (164.89)

VWO 5 9 77 183 307 326 209 1116
(4.67) (16.59) (68.17) (176.07) (308.64) (342.88) (198.98)

Total 358 661 1393 1931 1995 1415 557 8310

In parentheses are given the fitted values under the association model (6.29). Educational-level
scale: (1) DO, dropped out; (2) LBO, junior level of education for professions; (3) MAVO, medium
level of general education; (4) MBO, senior level of education for professions; (5) HAVO, high
level of general education; and (6) VWO, general education preparing for university

with all the involved set of scores known. Considering the scores in each set
equidistant for successive categories, model (6.28), denoted by (EIGU), is the
most parsimonious three-way association model in the class of models with up to
three-factor interaction, having just 4 parameters more than the model of complete
independence (E, I, G).



6.7 Association Models for Multi-way Tables 185

Table 6.13 Decomposition of the deviance for Table 6.12

Analysis of Deviance Table
Model: poisson, link: log
Response: freq
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 83 9063.2
E 5 1910.5 78 7152.7 < 2.2e-16 ***
I 6 4508.9 72 2643.8 < 2.2e-16 ***
G 1 9.1 71 2634.7 0.002580 **
E:I 30 2330.2 41 304.5 < 2.2e-16 ***
E:G 5 222.3 36 82.2 < 2.2e-16 ***
I:G 6 20.6 30 61.6 0.002154 **
E:I:G 30 61.6 0 0.0 0.000584 ***
--
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In order to fit association models in R, we create the known score vectors for the
classification variables. For simplicity, we set each score equal to the index of the
category it corresponds to. We compute
> mu<-rep(1:6,2,each=7); nu<-rep(1:7,12); tau<-rep(1:2,each=42)

and extend the data frame
> educ.fr<-data.frame(freq,E,I,G,mu,nu,tau)

Model (EIGU) is then fitted as
> EIG.U <- glm(freq∼E+I+G+mu:nu+mu:tau+nu:tau+mu:nu:tau,
+ poisson, data=educ.fr)

It is of very bad fit, with G2 (EIGU) = 450.179 (p-value< 0.0005, d f =67),
but reduces the G2 statistic drastically, compared to complete independence
(G2(E, I, G) = 2634,719, d f =71).

This means that some of the row and/or column scores in (6.28) have to be
considered parametric. Since G is binary, the corresponding scores (τ1,τ2) cannot
be parametric and their choice does not affect the model fit.

Considering that only the TIC effect is parametric on all the interaction terms,
model (6.28) extends to

log(mi jk) = λ +λG
i +λE

j +λ I
k + μiνEI

j +ν IG
j τk +ϕEGμiτk + μiνEIG

j τk ,

denoted by (EII , EGU , IGI, EIGI). This last model expression employs non-
standardized parametric scores and therefore the redundant intrinsic association
ϕ-parameters are absorbed. It is fitted in R by
> EIG.I <- glm(freq∼E+I+G+mu:I+mu:tau+I:tau+mu:I:tau,
+ poisson, data=educ.fr)
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Table 6.14 ML estimates of the parametric scores of model (6.29) fitted on the data in Table 6.12
for equidistant scores ν j = j ( j = 1, . . . ,7) and τk = k (k = 1,2)

i = 1 2 3 4 5 6
μ̂EI

i −0.742 −0.631 −0.473 −0.250 −0.268 0.000
μ̂EG

i 0.438 0.456 0.583 1.319 0.458 0.000
μ̂EIG

i 0.000 −0.077 0.009 −0.129 0.039 0.062

Its bad fit (G2(EII , EGU , IGI , EIGI) = 426.6, p-value< 0.0005, d f =52) provides
evidence that the education scores in some or all interaction terms should be
considered as unknown parameters.

Thus, we try next the model

log(mi jk) = λ +λG
i +λE

j +λ I
k + μ

EI
i ν j +ϕ IGν jτk + μEG

i τk + μEIG
i ν jτk , (6.29)

where only the education level (E) effect is parametric for all interaction terms.
This is denoted as (EIE , EGE , IGU , EIGE) and fitted in R by
> EIG.E <- glm(freq∼E+I+G+E:nu+E:tau+nu:tau+E:nu:tau,
+ poisson, data=educ.fr)

exhibiting an adequate fit with G2(EIE , EGE , IGU , EIGE) = 61.074
(p-value=0.267, d f =55).

The fitted cell frequencies under (EIE , EGE , IGU , EIGE) are provided in
Table 6.12 in parentheses. For equidistant scores ν j = j ( j = 1, . . . ,7) and τk = k
(k = 1,2), the ML estimate of the intrinsic association parameter ϕ IG is ϕ̂ IG =
0.0745 while the ML estimates of the parametric scores are given in Table 6.14.

The interpretation of parameters needs caution and has to be done locally due
to the non-monotonicity of the parametric scores. For interpretation, the fitted
odds ratios under the model have to be considered. Model (6.29) in terms of the
conditional EI log local odds ratios and for the choice of known scores given above
is expressed as

log
(
θEI

i j(k)

)
= log

(
mi jk ·mi+1, j+1,k

mi+1, j,k ·mi, j+1,k

)
= (μEG

i+1 − μEG
i )+ (μEIG

i+1 − μEIG
i )k

= log
(
θEI

i(k)

)
, i = 1, . . . , I− 1, j = 1, . . . ,J − 1, k = 1,2,

i.e., independent of j, as expected since successive ν j scores are equidistant. This
means that under (6.29) the fitted local odds ratios are constant within rows. In our
case, the θ̂EI

i(k) row values are given in Table 6.15. Thus, we see that for boys, the
strongest association between educational level and the TIC score is between HAVO
and VWO. The odds of a boy achieving a category of TIC score vs. the immediate
previous one is 1.34 times higher for a boy having general education preparing for
university (VWO) than high level of general education (HAVO). The corresponding
odds ratio for girls is 1.37. The conditional (within gender) association between TIC
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Table 6.15 ML estimates of the θEI
i(k), i = 1, . . . ,5, k = 1,2, under model (6.29) for the example in

Table 6.12

Education Boys Girls

DO 1.035 0.958
LBO 1.276 1.391
MAVO 1.089 0.948
MBO 1.162 1.375
HAVO 1.337 1.368
VWO

score and educational level is positive for boys although not equally strong for all
educational levels while for girls it is negative (though weak) when comparing DO
to LBO and MAVO to MBO.

Based on model (6.29), one could further try if more parsimonious models
are preferable. More parsimonious models are obtained by imposing homogeneity
constraints among the vectors of the unknown education scores or considering one
of them as being equidistant. It could also be tested whether less parsimonious non-
log-linear models involving interaction terms multiplicative in their parameters (i.e.,
of RC-type) lead to a significant improvement of the fit.

6.7.2 Homogeneous Uniform Association

Consider a I×J×K contingency table, consisting of K independent strata. Then the
simplest association structure is to consider that for each XY partial table, all local
odds ratios are equal, i.e., assume that the U model holds for each stratum. This
model is defined by

θXY
i j(k) = θ

XY
k , i = 1, . . . , I − 1, j = 1, . . . ,J− 1, k = 1, . . . ,K. (6.30)

Local odds ratios however from different strata may vary and (6.30) is the
nonhomogeneous U model. An even simpler model is the homogeneous U model,
assuming that all strata have a common local odds ratio

θXY
i j(k) = θ

XY , i = 1, . . . , I − 1, j = 1, . . . ,J− 1, k = 1, . . . ,K. (6.31)

To illustrate these models, consider the data in Table 6.16. The first stratum of this
4× 3× 2 data table is the cannabis example of Table 6.1 while the second stratum
corresponds to an analogue survey among students of another university (artificial
data).

The U model, fitted on the 4 × 3 partial table of the second stratum (data in
Table 6.16, stratum (2)), with one of the procedures described in Sect. 6.6.1 for
Example 6.1, is of good fit with G2

2 = 8.284 (p-value= 0.141, d f = 5). Under this
model, the MLE of the common local odds ratio in log-scale is log θ̂L

2 = 0.749, close
to the corresponding estimate for the data in the first stratum (log θ̂L

1 = 0.803), for
which we had G2

1 = 1.469 (p-value= 0.917, d f = 5).
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Table 6.16 Students’ survey about cannabis use at two universities

I tried cannabis . . .

Alcohol consumption Never Once or twice More often

Stratum (1)
≤ Once/month 204 6 1
Twice/month 211 13 5
Twice/week 357 44 38
More often 92 34 49

Stratum (2)
≤ Once/month 311 5 4
Twice/month 339 19 12
Twice/week 429 66 57
More often 134 51 74

Stratum (1) is the data of Table 6.1; stratum (2) is artificial

The nonhomogeneous U model (6.30) for data in Table 6.16 can be derived in
mph by

> source("c://Program Files//R//mph.Rcode.txt")

> freq <-c(204,6,1,211,13,5,357,44,38,92,34,49)

> freq2<-c(311,5,4,339,19,12,429,66,57,134,51,74)

> y<- matrix(append(freq,freq2))

> NI<-4; NJ<-3; dim1<-(NI-1)*(NJ-1); dim2<-2*dim1

> zer<-matrix(rep(0,NI*NJ*(NI-1)*(NJ-1)),(NI-1)*(NJ-1))

> C0<-local.odds.DM(NI,NJ); C1<-cbind(C0,zer)

> C2<-cbind(zer,C0); C<-rbind(C1,C2)

> L.fct <- function(m){C%*%log(m)}

> X<-matrix(rep(1,dim1)); Z<-matrix(rep(0,dim1))

> X2<-rbind(cbind(X,Z),cbind(Z,X))

> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X2)

> mph.summary(mph.out,cell.stats=T,model.info=T)

leading to G2 = 9.752 (p-value=0.462) with corresponding residual d f =10. In this
case, since the two strata are independent, model (6.30) is equivalent to fitting the
U model independently to each of the partial two-way tables. Indeed, we can verify
that G2

1+G2
2 = 9.752=G2 and that the ML estimates of logθXY

k , k = 1,2 (log θ̂XY
1 =

β̂1 = 0.803, log θ̂XY
2 = β̂2 = 0.749) coincide with the corresponding log θ̂L

k , k = 1,2.
The homogeneous U model (6.31) can be fitted as follows. The L.fct function

is defined as above but the design matrix X2 is replaced by X1, defining thus a
univariate parameter β instead of the bivariate (β1,β2) above:

> X1<-rbind(X,X) # homogeneous U model for both layers

> mph.out <- mph.fit(y=y,strata=2,L.fct=L.fct,X=X1)

> mph.summary(mph.out,cell.stats=T,model.info=T)

Selected parts of the output are provided in Tables 6.17 and 6.18.
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Table 6.17 Output of the mph function for the homogeneous U model, applied on the 4× 3× 2
data of Table 6.16: the observed local log odds ratios (OBS LINK) are listed by rows, along with
the ML estimate of the common under the assumed model local log odds ratio value, its s.e. and
the standardized link residuals

MODEL GOODNESS OF FIT: Test of Ho: h(p)=0 vs. Ha: not Ho. . .

Likelihood Ratio Stat (df=11): Gsq = 10.05081 (pval = 0.5258 )

Pearson’s Score Stat (df=11): Xsq = 10.28396 (pval = 0.505 )

Generalized Wald Stat (df=11): Wsq = 9.83676 (pval = 0.5451)

Adj Resids: -1.708 -1.452 . . . 1.546 1.705,

Number |Adj Resid| > 2: 0

SAMPLING PLAN INFORMATION. . .

Number of strata: 1

Strata identifiers: 2

Strata with fixed sample sizes: all

Observed strata sample sizes: 2555

LINEAR PREDICTOR MODEL RESULTS. . .

BETA StdErr(BETA) Z-ratio p-value

beta1 0.7691 0.0472 16.2809 0

OBS LINK ML LINK StdErr(L) LINK RESID

link1 0.7395 0.7691 0.0472 -0.0596

link2 0.8362 0.7691 0.0472 0.0563

link3 0.6934 0.7691 0.0472 -0.2391

link4 0.8089 0.7691 0.0472 0.0701

link5 1.0981 0.7691 0.0472 1.2801

link6 0.5121 0.7691 0.0472 -0.8144

link7 1.2488 0.7691 0.0472 1.2460

link8 -0.2364 0.7691 0.0472 -1.1251

link9 1.0098 0.7691 0.0472 0.9707

link10 0.3129 0.7691 0.0472 -1.0692

link11 0.9058 0.7691 0.0472 0.6372

link12 0.5188 0.7691 0.0472 -0.9681

The equivalent expression of model (6.30) in terms of expected cell frequencies is

logmi jk = λ +λX
i +λY

j +λ Z
k +ϕXYμiν j +λXZ

ik +λYZ
jk +ϕXYZμiν jτk, (6.32)

i = 1, . . . , I, j = 1, . . . ,J, k = 1, . . . ,K,

where the set of scores (μ1, . . . ,μI), (ν1, . . . ,νJ), and (τ1, . . . ,τK) are all known
and equidistant for successive categories. They can be considered subject to
standardization constraints or set equal to the corresponding category index.

The conditional local odds ratios under this model are fixed within partial tables
equal to

θXY
(k) = exp

(
(ϕXY +ϕXY Zτk)Δ1Δ2

)
, (6.33)

i = 1, . . . , I − 1, j = 1, . . . ,J − 1, k = 1, . . . ,K,
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Table 6.18 Output of the mph function: observed and ML fitted cell frequencies under the
homogeneous U model applied on the 4× 3 × 2 data of Table 6.16, along with ML estimates
of the cell probabilities, standard errors, and standardized residuals

CELL-SPECIFIC STATISTICS. . .

strata OBS FV StdErr.FV PROB StdErr.PROB ADJ.RESIDS

y1 2 204 203.9403 13.4845 0.0798 0.0053 0.0247

y2 2 6 6.0413 0.9179 0.0024 0.0004 -0.0181

y3 2 1 1.0183 0.2575 0.0004 0.0001 -0.0188

y4 2 211 210.6392 13.4128 0.0824 0.0052 0.0987

y5 2 13 13.4638 1.6978 0.0053 0.0007 -0.1431

y6 2 5 4.8970 0.8612 0.0019 0.0003 0.0506

y7 2 357 352.2819 16.4381 0.1379 0.0064 0.8152

y8 2 44 48.5868 5.1333 0.0190 0.0020 -0.9936

y9 2 38 38.1313 4.4575 0.0149 0.0017 -0.0312

y10 2 92 97.1386 8.4659 0.0380 0.0033 -1.1012

y11 2 34 28.9081 3.4680 0.0113 0.0014 1.2515

y12 2 49 48.9533 5.7150 0.0192 0.0022 0.0119

y13 2 311 308.3105 16.1909 0.1207 0.0063 0.8984

y14 2 5 9.8678 1.3053 0.0039 0.0005 -1.7076

y15 2 4 1.8218 0.4348 0.0007 0.0002 1.7054

y16 2 339 337.4154 16.4817 0.1321 0.0065 0.3441

y17 2 19 23.3021 2.4133 0.0091 0.0009 -1.0353

y18 2 12 9.2825 1.4482 0.0036 0.0006 1.0162

y19 2 429 432.2293 17.6141 0.1692 0.0069 -0.4620

y20 2 66 64.4085 5.6842 0.0252 0.0022 0.2883

y21 2 57 55.3622 5.2807 0.0217 0.0021 0.3195

y22 2 134 135.0448 10.0966 0.0529 0.0040 -0.2050

y23 2 51 43.4217 4.3209 0.0170 0.0017 1.5465

y24 2 74 80.5335 7.5990 0.0315 0.0030 -1.4519

where Δ1 = μi+1 − μi and Δ2 = ν j+1 −ν j. Distances Δ1 and Δ2 are constant over i
and j, respectively, since the corresponding scores are equidistant. In case the scores
equal their categories’ indexes, (6.33) is simplified to

θXY
(k) = exp

(
ϕXY + kϕXY Z) , i = 1, . . . , I− 1, j = 1, . . . ,J − 1, k = 1, . . . ,K.

Eliminating the three-factor interaction term in (6.32), the model of homoge-
neous uniform association (6.31) is derived in its equivalent expression

logmi jk = λ +λX
i +λY

j +λ
Z
k +ϕXYμiν j +λXZ

ik +λYZ
jk , (6.34)

and θXY = exp
(
ϕXYΔ1Δ2

)
.

Replacing λXZ
ik and/or λYZ

jk in (6.32) or (6.34) by ϕXZμiτk and/or ϕY Zν jτk,
respectively, more parsimonious models of uniform or homogeneous uniform
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association are derived that consider U-type structure also for one at least of the
other two-factor interactions. The options for models of this type do not restrict to
XZ and/or Y Z interactions of U-type. They could be of any other type (R, C, RC,
or RC(M)). Such special models of uniform and homogeneous uniform association
cannot be captured via the odds ratio formulation (6.30) or (6.31).

Finally, the simplest homogeneous uniform XY association model is obtained
when X is jointly independent from X and Y , i.e., the model

logmi jk = λ +λX
i +λY

j +λ
Z
k +ϕXYμiν j, i = 1, . . . , I− 1, j = 1, . . . ,J − 1 ,

with k = 1, . . . ,K. For the example above, this model is the best option, with G2 =
18.165 (p-value=0.314, d f = 16), giving log θ̂XY = 0.7688.

6.8 Overview and Further Reading

Association models, in their dominant form, have been mainly developed by the
fundamental and inspiring work of Goodman (1979b, 1981a, 1985, 1986, 1991,
1996) and thus it is common to refer to them also as Goodman’s models. For an
overview, we refer to the 1986 and 1991 discussion papers and the review Goodman
(1982). Significant in the development of association models was continuation work
of Haberman (1979, 1995), Clogg (1982a), Becker and Clogg (1988, 1989), and
Becker (1989a, 1990a, 1992) as well as the contribution of Anderson and Philips
(1981) and Anderson (1984). Association models are presented in the book by
Clogg and Shihadeh (1994). An overview of association models with formulation
and interpretation based on odds ratios is provided by Breen (2008) along with social
sciences-orientated illustrations and references. For their connection to latent class
models, see Sect. 10.3.1.

To be fair, we must say that the basis for the development of the association
models lies back to Tukey’s 1 d.f. test (Tukey 1949) and in a different form they have
been considered earlier. In particular, Nelder and Wedderburn (1972) consider the U
model applied on the popular Boys’ Dream Disturbance data set of Maxwell as an
illustration of their GLM model on contingency tables. Simon (1974) introduced the
R model (his formulation A) as well as the R model for cumulative odds (his formu-
lation B), being the forerunner of the association models for global odds ratios (see
Sect. 7.1 below). A similar model for the cumulative odds was earlier considered
by Williams and Williams and Grizzle (1972). Also his analysis of information is
remarkable, throwing insight into the nature of departure from independence in the
direction of the ANOAS, developed later by Goodman. Other multiplicative models
modeling triangular or diagonal departures from independence for square tables
have been proposed by Goodman (1972). We should mention that methods that
analyze contingency tables with ordinal classification variables by applying scores
to their categories have been proposed much earlier, even from Yates (1948) and
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Armitage (1955), not to forget the linear trend test of Mantel (1963), described in
Sect. 2.3. However, these early references, after assigning scores to the categories,
treated the corresponding categorical variables applying methods appropriate for
continuous variable analysis.

Haberman (1974b) adopted a different approach by generating a class of models
through the decomposition of the vector with elements of the expected cell
frequencies log(mi j) on an orthonormal basis, formed by orthogonal polynomials.
Special members of this class of models are the linear-by-linear association model
and the row effect model. Further, he proved standard asymptotic inference results
for these models and expressed them in terms of the log odds ratio, noting the
importance of the difference between scores. Finally, he was the first to mention that
his approach could be extended straightforward to define such models for multi-way
tables. Association models for two-way and three-way tables are presented in Wong
(2010).

Diagnostics for the RC association model have been discussed in Andersen
(1992). De Rooij and Heiser (2005) criticized the classical graphical representation
of the RC(M) model and proposed the distance-association model representation,
for which the distances between row and column points can be interpreted directly.
Marginal association models have been considered by Lapp et al. (1998), Bartolucci
et al. (2001), and Bartolucci and Forcina (2002). For ordinal tables with a response
variable, Agresti (1986) proposed a regression R2-type measure of association,
based on scores assigned to the classification variables’ categories, and used the
R association model to estimate these scores. Baccini and Khoudraji (1992) and
Baccini et al. (2000) considered least squares estimation of association models. Beh
and Farver (2009) discuss on closed-form estimation of the association parameter ϕ
of the U model.

The RC(M) are not the only models with additive multiplicative interaction
terms. Goodman (1985) introduced other possible models with interaction of rank
M but simpler than the RC(M). For example, for M = 2, the R+C model is defined
by the same formula as RC(2) but assumes that the column scores of the first term
and the row scores of the second are known; thus it has less parameters than RC(2).
Similarly, model U+R+C has just one parameter more than the R+C model, since
the third term that is added is of uniform type, having assigned fixed row and column
scores. More options of parsimonious models of higher rank for the interaction are
obtained through the use of orthogonal polynomials for assigning scores (Kateri
et al. 1998). For example, the model U(1)+U(2) is of M = 2, but all the involved
scores are fixed, assigned through orthogonal polynomials of first and second order
for the (1) and (2) term, respectively, and has thus just 2 parameters more than the
independence model.

In the special case of a square table with commensurable classification variables,
it makes sense to assume that the row and column scores are homogeneous. Thus,
the RC model with the homogeneity restriction on its scores μi = νi, ∀ i =
1, . . . , I, can be applied, which is more parsimonious than the standard RC and
simultaneously of special interpretational value for such tables. On this we shall
return and comment more on Chap. 9, specialized on square tables.
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We have already mentioned in Chap. 2 that the log-linear models are the discrete
analogue of the analysis of variance. It is interesting to note briefly at this point
the analogues to association model in the two-way ANOVA framework. Special
analysis of variance models that impose a structure on the interaction as that of
the association models have been considered as well. Indicatively we mention the
early work of Williams (1952), who used the multiplicative term for the interaction,
and that by Gollob (1968), who introduced the more general term of the RC(M)
type. Goodman and Haberman (1990) proved asymptotic normality for the scores
of the RC(M) ANOVA model and provided asymptotic confidence intervals for the
estimated scores. Furthermore, they developed the asymptotic conditional tests of
the appropriateness of a simpler association model of the type U, R, or C given
that the RC holds. Finally, they extended their results for the more general RC(M)
ANOVA model. Viele and Srinivasan (2000) proceeded to the Bayesian analysis of
the RC(M) ANOVA model. Speaking about analogies to the continuous case, Jones
(1998) noted that the constant local dependence for continuous bivariate random
variables is the continuous analogue of the U model.

We have seen in Sect. 6.3 that for ordinal contingency tables, conditional tests
of independence given that the U, R, or C model holds, i.e., testing indepen-
dence against a directed alternative, are more asymptotically powerful. Alternative
approaches for strengthening the power of the classical Pearson’s X2 test of indepen-
dence are based on the decomposition of Pearson’s X2 into orthogonal components
in terms of assigned scores to the categories of the ordinal classification variables.
For example, Best and Rayner (1996) and Rayner and Best (2000) considered
scores based on orthogonal polynomials while Nair (1986, 1987), proportional to
the midrank scores. Beh (1998) studied the use of different types of scores in the
correspondence analysis framework. Nair’s procedure partitions the X2 statistic
value for testing independence into location, dispersion, and residual effects. It is
related to the location-dispersion model of McCullagh (1980), as is also pointed out
by McCullagh’s and Agresti’s comments in the discussion of Nair (1986). Agresti’s
comment related Nair’s statistics also to the statistics of Koch et al. (1982) with
fixed or rank-based scores, to the measure of Agresti (1986), and to association
models and the models in Semenya et al. (1983). Koshimizu and Tsujitani (1998)
consider association models with location and dispersion scores for singly ordered
contingency tables. Their model is actually analogue to the R(1)+R(2) model of
Kateri et al. (1998) with the column scores of the first dimension being the Nair’s
scores instead of equidistant for successive categories.

6.8.1 Multi-way Association Models

Conditional and partial associations in multi-way tables are discussed in Clogg
(1982b). Becker (1989b) introduced the no three-factor interaction model with
all two-way interaction terms replaced by the general terms (6.26). Becker and
Clogg (1989) considered three-way association models for the analysis of stratified
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two-way tables, with and without homogeneity constraints on the scores across
the strata. Association models for stratified tables focusing on detecting layer
differences were developed by Goodman and Hout (1998).

On the decomposition of the three-factor interaction term (6.27) focused Good-
man (1983, 1986), Agresti and Kezouh (1983), Choulakian (1988), Anderson
(1996), and Siciliano and Mooijaart (1997). A review is provided by Wong (2001).
Methods of decomposing three-way arrays are reviewed in Ten Berge (2011).

6.8.2 Order-Restricted Inference

In case of association models with parametric scores, the monotonicity of the scores
is not ensured by the standard estimation procedures. Since their monotonicity is
related to stochastic ordering of the corresponding classification variable (Goodman
1981a), it is usually natural to expect the scores for ordinal classification variables to
be monotonic. Estimation procedures subject to order constraints for the parametric
scores have been developed for the R (or C) model by Agresti et al. (1987), based on
isotonic regression. The RC model with order-restricted row and column scores has
been considered by Ritov and Gilula (1991). A test of independence, conditional on
the order-restricted RC model, is discussed in Kuriki (2005). Alternative algorithms
for fitting the order-restricted RC model have been proposed and compared by
Galindo-Garre and Vermunt (2004). Order restrictions yield also for an extended
RC model, introduced by Bartolucci and Forcina (2002).

Ordinary or order-restricted inferences for these models rely on large-sample
asymptotic methods. As it is stated in Galindo-Garre and Vermunt (2004), these
methods do not work well for sparse tables or small sample sizes, common in
social and biomedical applications, where the usual asymptotic chi-squared p-values
are known to be inaccurate. A promising alternative is the Bayesian approach (see
Sect. 10.5).

6.8.3 Comparison of Two Ordinal Responses

The problem of comparing two ordinal responses is very old and of special interest
in many fields, especially in biomedical applications. The need to compare the
response to a treatment of two independent groups of patients, defined, for example,
by the presence of a prognostic factor, is obvious. Another common situation is
to compare two different treatments applied on two independent samples with
the corresponding responses measured on a common scale. The ordinality of
the response scale has to be taken into consideration in handling the problem
and answering to the question “Which group of patients benefits more from the
treatment?” or “Which treatment is superior?.” The underlying sampling scheme
can be multinomial or product multinomial. The first is the case whenever a



6.8 Overview and Further Reading 195

sample of n subjects is cross-classified with respect to an ordinal response Y
and a binary variable X indicating the two groups, while the second when two
independent multinomial samples of the same ordinal response and of sizes n1 and
n2 are available. If the ordinal response has J categories, then the above described
data form a 2 × J contingency table. For the multinomial sampling scheme the
corresponding joint distribution is π = (πi j) = P(X = i, Y = j), i = 1,2, j =
1, . . . ,J. In case of two independent multinomials, the row marginals are also fixed,
ni+ = ∑J

j=1 ni j = ni (i = 1,2).
The problem of comparing two response profiles is equivalent to the stochastic

comparison of the two row distributions of the abovementioned 2× J contingency
table and as such has been faced by a variety of methods. The related bibliography
is very rich and an extended critical review of the available methods can be found
in Agresti and Coull (2002).

The hypothesis that two multinomial distributions are identical against an ordered
alternative is mainly tested through LR, Wald, and score tests or through linear
rank tests. It is well known that restricting the alternative hypothesis leads to more
powerful tests than the standard chi-squared test of independence. These approaches
are all asymptotic, while the linear rank tests depend on the choice of the scores
assigned to the ordered categories. Characteristic references of LR tests are Grove
(1980, 1984) and Robertson and Wright (1981), while the approaches of Emerson
and Moses (1985), Graubard and Korn (1987), and Gautam (1997) are based on
linear rank tests. To deal with the sensitivity of the linear rank tests on the scores,
Kimeldorf et al. (1992) proposed the min–max scoring and Gautam et al. (2001)
the iso-chi-square approach. Nonlinear rank tests have also been proposed. For
example, Hilton et al. (1994) and Nikiforov (1994) applied the Smirnov test while
Berger (1998) proposed the convex hull methodology that leads to admissible tests.
Properties and power of the convex hull test applied on 2× J tables are further
studied in Berger et al. (1998) (see also Cohen and Sackrowitz 1998; Cohen et al.
2000). An interesting approach is provided by Permutt and Berger (2000), who
reviewed various rank tests, classified them as Smirnov-like or Wilcoxon-like, and
compared them. However, the nonlinear tests are not easy to compute for J > 3.
It is important to note that “with few exceptions there is no optimal test for this
problem,” as stated by Berger and Ivanova (2002). Tests based on log-linear models
were developed by Agresti and Coull (1998).

The connection of association models to the stochastic ordering of the conditional
row (or column) distributions of the contingency table has been discussed in
Sect. 6.4. In case of the 2× J tables, the RC model coincides with the C model,
which is saturated. For 2× J contingency tables with μ1 < μ2 and ϕ > 0, positive
dependence is equivalent to ν j � ν j+1 ( j = 1, . . . ,J − 1) with ν1 < νJ . Thus,
monotonicity of the column scores {ν j : j = 1, . . . ,J} implies stochastic ordering
of the probabilities

π i =

{
πi j

πi+
, j = 1, . . . ,J

}
, i = 1,2.

Thus the distribution of the response Y for the second group (row) is stochastically
larger than the one of the first group (row).
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The comparison of the two row distributions can be further enriched with the
option of umbrella ordering as an alternative when stochastic ordering is rejected
(Kateri 2011). Umbrella ordering means that the distribution in the first row is
stochastically smaller than the one in the second up to a level of the ordinal scale that
defines the column categories and stochastically larger after this level (or the
opposite). In terms of physical interpretation, when comparing two alternative
treatments, umbrella ordering of their response distributions corresponds to cases
where one treatment is better over the other up to a certain level of the response
scale while the situation changes after this point. In a retrospective study context
cross-classifying the “cured”– “not-cured” groups with the J levels of a prognostic
factor, this could mean higher risk for the very low and very high levels of the
prognostic factor. Umbrella ordering essentially reveals a dispersion effect for the
group comparison. Dispersion effects for ordinal responses have been handled by
the generalized cumulative link model, introduced by McCullagh (1980). Umbrella
ordering can be captured by the C model, with adequately constrained column
scores.

6.8.4 Cell Frequencies vs. Local Odds Ratios Modeling

We have seen so far that models applied on contingency tables can be expressed in
terms of expected cell frequencies or equivalently in terms of local odds ratios. The
choice depends on issues of interpretation and on convenience of model formulation.
For example, the association models are easier interpreted through the local odds
ratios. On the other hand, the quasi-independence model can be expressed in terms
of local odds ratios but is too complicated to compete with (5.24).

A clarifying and inspiring insight into the possible different views of log-linear
models is provided by Goodman (1981d), who considers three alternative views,
depending on the purpose of the analysis. The model imposed on the cell frequencies
is preferred whenever the purpose is the examination of the joint distribution of the
contingency table. Local odds ratio formulation of the model is employed when
interest lies on the association between the two variables that are cross-classified.
In both cases, the classification variables of the table are treated symmetrically.
If there exists a response variable, then modeling the possible dependence of the
response variable on the explanatory one is more adequate than the symmetric
approaches and leads to more direct interpretations. This constitutes the third view
and corresponds to modeling the odds for the response variable, given that the
explanatory variable is at a fixed, prespecified level. Such models are presented
in Chap. 8. Goodman (1981d) discussed the connections between these different
approaches of log-linear modeling and illustrated them on characteristic examples.
These comments apply also to the special models for square tables in Chap. 9.



Chapter 7
More on Association Models and Related
Methods

Abstract Advanced issues on association models are discussed in this chapter.
These include exploring the rows and/or columns heterogeneity in a contingency
table, the issue of merging categories of a classification variable, and the consid-
eration of association models for generalized odds ratios other than the local odds
ratios. The uniform association model for the global odds ratios is illustrated with
an example in R. Correspondence analysis (CA) is also presented and connected
to association models. For comparison purposes, CA is applied in R on one of the
examples analyzed in Chap. 6 by association models.

Keywords Association models for the global odds ratios • Correspondence
analysis • Generalized association models • Merging categories

7.1 Association Models for Global Odds Ratios

The association models considered so far were defined on the local odds ratios
and interpreted in terms of the local associations of the (I − 1)(J − 1) odds ratios
defined for successive row and column categories. If interest lies on modeling global
association in a contingency table, association models can be defined analogously
in terms of the global odds ratios (defined in Sect. 2.2.5). For example, we have seen
that the U model defined on the local odds ratios assumes constant local odds ratios
across the table. Similarly, the uniform global odds ratios model (UG) is

θG
i j = θG, i = 1, . . . , I − 1; j = 1, . . . ,J− 1 (7.1)

and assumes a common value θG for all global odds ratios of the table. Plackett
(1965) was the first who modeled global odds ratios by defining their distribution in
terms of their common value and the marginals of the table. Analogously, the R, C,
and RC models expressed in terms of local odds ratios by (6.8), (6.9), and (6.10),

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__7,
© Springer Science+Business Media New York 2014
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respectively, can be defined for the global odds ratios as well, just by replacing the
local odds ratios by the corresponding global ones. Closely related is the follow-up
work by Wahrendorf (1980).

The choice between modeling local or global associations is basically inter-
pretation driven. If interest lies in comparing two distinct rows or columns, then
local association models are appropriate. On the other hand, models for global
associations have to be used if conclusions for dichotomized versions of the classi-
fication variables’ scales make better sense. Dale (1984) compared local and global
associations for I × J tables with both marginal probabilities ordered, highlighted
situations where the one should be preferred over the other, and concluded that they
have “complementary roles.” Global associations are more stable with respect to
category boundaries; thus, they are more appropriate when classification variables
have an underlying continuum while local association when the categories are well
defined. The U model for the local odds ratios provides a better discretization to the
bivariate normal than U for global odds ratios (Goodman 1981c; Dale 1984).

A class of models for bivariate ordinal responses based on global odds ratios
that condition over a set of covariates is introduced by Dale (1986). This general
model allows for many parameterizations of the marginal cumulative probabilities,
the generalized linear model of McCullagh (1980) included. It could be viewed as
the precursor of Lang and Agresti’s GLLM model (5.28).

The most characteristic model of this type is the constant global odds ratio
model, i.e., the U model for the global odds ratios. Before Dale, it has been
considered by Pearson and Heron (1913), Plackett (1965), and Mardia (1970) for
a bivariate response with specified marginal distributions, discrete or continuous.
Models of constant global odds ratios have also been discussed by Molenberghs
and Lesaffre (1994) and Heagerty and Zeger (1996) for correlated ordinal data (see
Sect. 9.7.4). The continuous analogue of the constant global odds ratio model has
been introduced by Clayton (1978) for modeling association in bivariate life tables.
Semiparametric global odds ratio models for bivariate censored survival times are
discussed in Ghosh (2006).

7.1.1 The UG Model in R: Example 6.1

For our cannabis example, the sample global odds ratios are provided in Table 7.1
and it is obvious that the U model for the global odds ratios will not be as good
as the U model on the local odds ratios. Indeed, the LR statistic for this model
is G2 = 6.029 (p-value=0.307) on 5 df, while for the same model considered for
the local odds ratios, we derived G2 = 1.469 (p-value=0.917) on the same d f (see
Table 6.4). This indicates that the underlying association structure in this data table
is constant rather locally than globally.

This model can be considered as a special case of the generalized log-linear
model (GLLM) (5.28) and implemented in R by Lang’s mph package. The GLLM
becomes the U model on global odds ratios by appropriately choosing matrices M
and C. The I × J data table is expanded in rows and the vector of expected cell
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Table 7.1 Sample global odds ratios θ̂G
i j (i = 1,2,3; j = 1,2), for the students’ survey about

cannabis use at the University of Ioannina, Greece (1995)

I tried cannabis. . .

Alcohol consumption Never Once or twice More often

At most once/month 8.08 25.73
Twice/month 6.10 11.94
Twice/week 6.51 7.38
More/often

The ML estimates of the common global odds ratio value under
the U model for global odds ratios is θ̂G = e1.8622 = 6.44

frequencies m is of size IJ × 1. Matrix M is applied on m to form the sums of cell
entries needed for the derivation of the global odds ratios. Thus, it is a table of 1’s
and 0’s. Since an I×J table forms (I−1)(J−1) global odds ratios and each of them
needs 4 sums of cell entries, M is of size 4(I− 1)(J− 1)× IJ. Finally, C is defined
so that it combines the entries of log(M ·m) to conclude to the (I − 1)(J − 1)× 1
vector of all expected global odds ratios C log(M ·m). A function that produces
the required matrices M and C for any I × J table is provided in the web appendix
mentioned in Sect. A.3.2 (function global.odds.DM()).

Once the global odds ratios are formed, the rest of the procedure is analogue to
the one described for the local odds ratios in Sect. 6.6.4. Thus, for the U model
the data and the design matrix are defined as in Sect. 6.6.4. Matrices M and C are
constructed by
> M <- global.odds.DM(NI,NJ)$M

> C <- global.odds.DM(NI,NJ)$C

while the link function is specified as
> L.fct <- function(m){C%*%log(M%*%m)}

Finally,
> mph.out <- mph.fit(y=y,L.fct=L.fct,X=X)

> mph.summary(mph.out,cell.stats=T,model.info=T)

fits the model and derives the output, as described in Sect. 5.6. The common logθG

is estimated by β̂ = 1.8622 and thus θ̂G = e1.8622 = 6.44.
If sampling zeros are present and cause a convergence problem, they are treated

as in Sect. 6.6.4.

7.2 Correspondence Analysis

A popular method for detecting the pattern of association between the row and
column categories of a two-way contingency table is correspondence analysis (CA),
which is mainly a descriptive method. CA assigns “optimal” scores to the row and
column categories and plots these scores as points in the Euclidean two- or three-
dimensional space, providing thus a reduced rank display. “Optimal” is considered
in the sense that the reduced rank expression explains the maximum possible
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percentage of variation in the data. The relative positions of the points indicate the
underlying association between rows (or columns) as well as between rows and
columns. CA for two-way tables is known as simple CA while for multi-way tables
as multiple CA (see Sect. 7.6.1).

7.2.1 Simple Correspondence Analysis in Steps

CA is the discrete analogue of principal component analysis (PCA). PCA par-
titions the total variance while CA partitions the Pearson’s X2 value for testing
independence on an I × J contingency table (ni j) of total sample size n = ∑i, j ni j.
The partitioning is achieved through the singular value decomposition (SVD) of
the matrix S with elements si j =

pi j−pi+p+ j√
pi+p+ j

, which correspond to the Pearsonian

residuals, since X2 = n∑i, j(si j)
2. The dimension of the Euclidean space of the

saturated model’s decomposition is M∗ = min(I,J)−1. The goal is the detection of
a subspace of order M < M∗ which includes the row and column points in the best
possible way. If suitable, the choice M = 2 is ideal for the visualization advantage
of the points on the two-dimensional space.

The CA procedure can briefly be described in the following steps:

1. Calculation of the SVD of matrix S:
S = UΛV′, where Λ = diag(λ1, λ2, . . . , λM∗) is the diagonal matrix of the
corresponding eigenvalues (λ1 ≥ λ2 ≥ . . . ≥ λM∗ ≥ 0) while the rows of tables
UI×M∗ and VJ×M∗ are the left and right eigenvectors, respectively, with U′U =
V′V = I.

2. Row and column masses, profiles, and centroids:
The row and column masses, profiles, and centroids are key quantities in CA
application and interpretation. In the CA framework, row (or column) masses are
called the row (or column) marginal probabilities of the table and they are used
as weights associated to the rows (or columns) of the contingency table. Row
profiles are called the conditional row probabilities while the column profiles
are defined analogously. The rows centroid (or barycenter) is considered to be
the average row profile, while the columns centroid is defined analogously. Let
mr(i) = pi+ and mc( j) = p+ j be the mass of row i and column j, respectively. Let
also ri j =

pi j
pi+

and ci j =
pi j
p+ j

be the row and column profiles, respectively. Then,

the rows centroid is r = (r1, . . . , rJ) with coordinates r j = ∑i pi+ri j = p+ j =
mc( j), j = 1, . . . ,J. Analogously, the column centroid is c = (c1, . . . , cI) with
ci = ∑ j p+ jci j = pi+ = mr(i). Thus, the X2 statistic can be reexpressed as

X2 = n∑
i

pi+

{

∑
j

(ri j − r j)
2

r j

}

= n∑
j

p+ j

{

∑
i

(ci j − ci)
2

ci

}

and can be interpreted as the weighted average distance of the row profiles (or
column profiles) from their centroid.
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3. Construction of the standard coordinates for rows and columns:
If Dr = diag(p1+, . . . , pI+) and Dc = diag(p+1, . . . , p+J) are the diagonal matri-
ces of the row and column masses respectively, then standard coordinates of the
rows are

X = D−1/2
r U ,

while of the columns

Y = D−1/2
c V .

The standard coordinates are weighted orthonormalized, i.e., they satisfy the
constraints

X′DrX = Y′DcY = I . (7.2)

4. Calculation of inertias:
The eigenvalue λm (m= 1, . . . ,M∗) is a measure of correlation between the vector
of scores xm and ym, since

λm =∑
i, j

pi jximy jm , m = 1, . . . ,M∗, (7.3)

due to (7.2). It can be further shown that

X2 = n∑
i, j
(si j)

2 = n
M∗

∑
m=1

λ 2
m , (7.4)

i.e., the X2 goodness-of-fit test for independence is partitioned in M∗ terms, each
of which expresses the part of X2 explained by the corresponding dimension.
The quantities λ 2

m are called inertias and their sum ∑M∗
m=1 λ 2

m, known as the total
inertia, is indicative about the variability in the data, independent of sample size.

5. Construction of the principal coordinates for rows and columns:
The principal coordinates of rows are

X̃ = D−1/2
r UΛ,

while for columns

Ỹ = D−1/2
c VΛ .

It can be verified by standard matrix calculations that

X̃′DrX̃ = Ỹ′DcỸ = Λ2,
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i.e., the weighted sum of squares of the principal row (or column) coordinates on
the mth dimension (1 ≤ m ≤ M∗) equals the corresponding inertia. Due to this
property, the row and column principal coordinates are crucial quantities in CA
and are used for physical interpretation.

6. Graphical representation:
Whenever feasible, the use of M = 2 is engaged so that the corresponding
vectors can be represented graphically in the two-dimensional space and easier
to visualize and interpret. This is the best bivariate representation of the data.

The graphical representation of CA offers an overview for the underly-
ing association structure. For example, monotonicity of the association, rows
(or columns) not differentiating in one dimension or in total, and row–column
combinations of greater probability can be detected. For a set of row points (or
column points), the Euclidean distance in the two-dimensional graph corresponds
to a statistical distance between pairs of row (or column) profiles. However, there
is no direct distance relation between a row and a column point.

7. The role of a specific category:
Specific conclusions for each category of the row classification variable can
be drawn by observing its total and relative contribution to the inertia of the

mth axis, defined as TCT X
m (i) = pi+x̃2

im and RCT X
m (i) =

x̃2
im

∑m x̃2
im

, respectively.

The contribution of the ith category to the mth axis is of special interest if
TCT X

m (i) >> pi+. Analogously are defined the total and relative contributions
TCTY

m ( j) and RCTY
m ( j) of the jth column of the table. The definition of the total

contributions is justified by the relation λ 2
m = ∑i TCT X

m (i) = ∑ j TCTY
m ( j).

Traditionally, CA is based on the principal scores and the CA model is
expressed as

pi j = pi+p+ j

(

1+
M∗

∑
m=1

x̃imỹ jm

λm

)

, i = 1 . . . , I, j = 1, . . . ,J .

This is actually a reparameterized version of the canonical correlation model

pi j = pi+p+ j

(

1+
M∗

∑
m=1

λmximy jm

)

, i = 1 . . . , I, j = 1, . . . ,J , (7.5)

defined in terms of the standard scores and founded by Fisher (1940), since x̃im =
λmxim and ỹ jm = λmy jm. This model is saturated and will be denoted by CA(M∗).
Replacing M∗ with M < M∗ in (7.5), more parsimonious models are achieved,
namely the CA(M),

πi j = πi+π+ j

(

1+
M

∑
m=1

λmximy jm

)

, i = 1 . . . , I, j = 1, . . . ,J , (7.6)
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where πi j is the expected frequency in cell (i, j) under CA(M). The row and column
marginal probabilities are equal to the corresponding observed, i.e., πi+ = pi+ (i =
1, . . . , I) and π+ j = p+ j ( j = 1, . . . ,J). How well the deviation from independence
is captured by the subspace of order M is judged by comparing the size of the M
largest inertias to that of the rest of them. For this, the index used for the quality of
the approximation of model CA(M) to the table of observed sample proportions is
the popular percentage

∑M
m=1λ 2

m

∑M∗
m=1λ 2

m

.

7.2.2 Correspondence Analysis of Example 6.2

We shall illustrate the fit and interpretation of CA on the example of Wermuth and
Cox (1998), presented in Sect. 6.5.2 and already analyzed by association models.
The fit of CA in practice is straightforward in most statistical or mathematical
packages. For example, in SPSS, it can be fitted through

Analyze > Data Reduction > Correspondence Analysis .
To perform CA in Mathematica, see Yelland (2010). In R, the function

corresp() of the package MASS is appropriate, but we will demonstrate special
packages developed for correspondence analysis, the ca of Nenadić and Greenacre
(2007) and anacor of de Leeuw and Mair (2009). The ca package fits CA to
multi-way tables as well (see Sect. 7.6.1). On the other hand, anacor is restricted
to two-way contingency tables but provides more options for plots and is applicable
also for incomplete tables.

Both packages need the data to be provided in a frequency table format. Thus, for
the Wermuth and Cox example, if the data were written in a file named WCox.txt,
in a simple matrix form without header

12 13 12 20 7
215 507 493 460 137
277 300 192 126 38

52 91 47 15 6
233 225 102 74 19

then they are read in R by the command:
> WCox.data <- read.table(file="c:// . . . //WCox.txt",header=F)

Correspondence analysis in ca is performed by the command
> ca(WCox.data)

which gives the following output
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Principal inertias (eigenvalues):
1 2 3 4

Value 0.088408 0.005845 0.000485 0.000132
Percentage 93.19% 6.16% 0.51% 0.14%

Rows:
1 2 3 4 5

Mass 0.017424 0.493330 0.254016 0.057446 0.177784
ChiDist 0.421986 0.286497 0.233038 0.374979 0.406673
Inertia 0.003103 0.040493 0.013795 0.008077 0.029402
Dim. 1 -0.905634 -0.963207 0.776072 0.924481 1.353983
Dim. 2 4.037920 -0.089332 0.166141 -3.293206 0.678866

Columns:
1 2 3 4 5

Mass 0.214811 0.309284 0.230329 0.189219 0.056357
ChiDist 0.463855 0.134855 0.195366 0.369847 0.384979
Inertia 0.046219 0.005625 0.008791 0.025883 0.008353
Dim. 1 1.536961 0.359641 -0.616852 -1.206601 -1.259753
Dim. 2 1.031116 -1.035024 -0.761026 1.156251 0.978118

The coordinates of the two most important dimensions are reported in this output.
To obtain full flexibility in reporting and graphing results, we may want to retrieve
the full row and column eigenvector coordinates. This is achieved by the commands
> x <- ca( WermCox.data)$rowcoord

and
> y <- ca( WermCox.data)$colcoord

for the row and column coordinates, respectively. For the Wermuth and Cox
example, these are

> x

[,1] [,2] [,3] [,4]
[1, ] -0.9056343 4.03791967 3.7885808423 -4.9912234
[2, ] -0.9632069 -0.08933166 -0.0009268877 0.3021479
[3, ] 0.7760720 0.16614083 -1.2969234500 -0.7904822
[4, ] 0.9244814 -3.29320644 1.7135868247 -1.3309127
[5, ] 1.3539829 0.67886567 0.9305866854 1.2102433

and
> y

[,1] [,2] [,3] [,4]
[1, ] 1.5369608 1.0311159 -0.4633144 -0.1230903
[2, ] 0.3596406 -1.0350242 1.0001602 0.1798274
[3, ] -0.6168523 -0.7610259 -1.5320267 -0.1866404
[4, ] -1.2066013 1.1562510 0.4246632 1.1453166
[5, ] -1.2597529 0.9781184 1.1126896 -3.6003042
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Fig. 7.1 Two-dimensional CA map of the data in Table 6.7, with row (bullets) and column
(triangles) in (i) principal coordinates (left) and (ii) standard coordinates (right)

The 2-dimensional plots of the row and column coordinates, for which CA is
famous, are produced by
> plot(ca(WCox.data))

This command treats by default the rows and columns symmetric and produces the
plot of the principal coordinates for rows and columns. For our example, this plot is
provided in Fig. 7.1 (left). The type of coordinates plotted is controlled by the map

scaling option. For example,
> plot(ca(WCox.data),map="rowprincipal")

uses for the plot the principal coordinates for the rows and the standard for the
columns. A description of possible scale options for the CA plot function is provided
in Nenadić and Greenacre (2007).

The coordinates that are comparable to the scores of the RC(2) association model
are the standard coordinates, which, for our example, are the first two dimensions
of x and y listed above. The plot of the standard coordinates for both, rows and
columns, is not an option in map. However, it can be easily obtained through the
standard plot() command, applied on x and y. This plot can be produced by
function plot_2dim() of the web appendix (see Sect. A.3.5).

Thus, the plot in Fig. 5.2 (right) is obtained by calling this function as
> plot_2dim(x, y, -2, 2, -5, 5, -0.7, 1.4, 1.2)

The arguments of this function, beyond x and y, control the plot appearance and
their use is explained in Sect. 6.6.2. Note the similarity of Fig. 5.2 (right) to Fig. 5.1
with marginal weights.
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7.3 Correlation Models

The analogies between CA and the RC(M) model made the comparison unavoidable
and the two approaches were developed competitively, borrowing ideas from each
other. Thus, graphs were constructed for the scores of the RC(M) model in the spirit
of CA while the inferential aspects of the CA model were developed accordingly to
RC(M). On the other hand, the estimates applied by classical CA are traditionally
least square estimates. The consideration of maximum likelihood estimation for the
parameters of the CA(M) model (7.6) led to the development of the RC correlation
model of order M (Goodman 1985). MLEs for (7.6) have been considered by Gilula
(1986). The scores are subject to constraints (7.2) in terms of matrix notation, which
are expressed on the elements as

I

∑
i=1

πi+xim=
J

∑
j=1

π+ jy jm = 0, m = 1, . . . ,M ,

I

∑
i=1

πi+ximxi�=
J

∑
j=1

π+ jy jmy j� = δm� , m, �= 1, . . . ,M .

In the special case of M = 1, (7.6) reduces to the CA(1) model

πi j = πi+π+ j (1+λxiy j) , i = 1, . . . , I , j = 1, . . . ,J , (7.7)

by eliminating the subscript m, while the constraints on the scores are adjusted
accordingly to

∑
i
πi+xi =∑

j
π+ jy j = 0 and ∑

i
πi+x2

i = π+ jy
2
j = 1. (7.8)

Following exactly the same consideration and arguments as in the association
models framework, for M = 1 we could consider that the row or the column
scores or both sets of them are known, usually equidistant for successive categories.
Then (7.7) turns out to be the column (Cc), row (Rc), or uniform (Uc) correlation
model.

The correlation models have the oddity to express the expected cell frequencies
in terms of their row and column marginals. This is feasible only when the specific
(marginal weighted) constraints are applied on the row and column scores of the
model. Furthermore, this means that the main effects of the classification variables
are captured only through the corresponding marginals. This lack of flexibility for
the main effects has a consequence in the estimation of the special Uc, Rc, and
Cc correlation models. Whenever a set of scores is fixed, the related marginals
of the ML estimates of the expected probability table are no more equal to the
corresponding observed marginals of the sample proportions. This means that

π̂i+ = pi+, i = 1, . . . , I, (7.9)
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do not hold for the Rc model and

π̂+ j = p+ j, j = 1, . . . ,J, (7.10)

do not hold for the Cc model, while none of them holds for the Uc model. Due to the
importance of constraints (7.9) and (7.10) and in order for these correlation models
to be consistent with association and classical log-linear models, Goodman (1985)
suggested also constrained maximum likelihood estimation.

Furthermore, independence (I) could be tested conditional on the Uc, Rc, or Cc

models, by the I|Uc, I|Rc, or I|Cc conditional tests, as in the association models
framework (see Sect. 6.3). Also the Rc or the Cc models could be tested conditional
on the RCc, leading thus to an analysis of correlation, in the spirit of the analysis of
association (ANOAS) procedure.

Thus, the test statistic G2(I|Uc) = G2(I)−G2(Uc) serves as a 1 d.f. conditional
test of independence for a contingency table, provided that the Uc model holds,
by testing the null hypothesis λ = 0. Under I, G2(I|Uc) is asymptotically X 2

1
distributed. Under the Uc model, (7.3) leads to

λ̂ =∑
i, j
π̂i jxiy j ,

where π̂i j are the constraint MLEs of the cell probabilities under Uc. It is worth to
highlight the connection of this test to the linear trend test (2.57), which is also
a 1 d.f. test of independence, restricted to the case of linear correlation between
the row and column scores (see Sect. 2.3). For scores subject to the marginal
constraints (7.8), the correlation ρ is estimated by the sample correlation

r =∑
i, j

pi jxiy j .

If Uc expresses the association structure of the table, the πi j’s should be close
to the pi j’s. Hence, as π̂i j’s under Uc approach the sampling proportions pi j’s, λ̂
approaches r and these two tests become similar.

7.4 Generalized Association Models

In the 1980s, association and CA models were developed competitively to each
other, until their connection was pointed out in the pioneer paper of Gilula et al.
(1988). They stated that under certain conditions, both of them are the closest
model to independence. Their difference is on the scale measuring the closeness to
independence. Association models are the closest in terms of the Kullback–Leibler
divergence while correlation models in terms of the Pearson’s divergence. This gave
ground to the development of general classes of dependence models by modeling
the departure from independence in terms of generalized measures.
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An important generalized measure is the φ -divergence (see Sect. 4.9.5). If π =
(πi j) and q = (qi j) are two discrete finite bivariate probability distributions, then the
φ -divergence between π and q, given in (4.38), takes the form

IC(π,q) =∑
i, j

qi jφ(πi j/qi j) . (7.11)

Under the conditions of Gilula et al. (1988), the closest model to independence, in
terms of the φ -divergence, is the

πi j = πi+π+ jF
−1

(

αi +β j +
M

∑
m=1

ϕmμimν jm

)

, i = 1, . . . , I, j = 1, . . . ,J , (7.12)

where F−1 is the inverse function of F(x) = φ ′(x) and 1 ≤ M ≤ M∗ (Kateri and
Papaioannou 1995). This is the φ -divergence association model of order M, denoted
by RCφ (M), and its scores μm and νm satisfy the restrictions (6.17).

The RCφ (M) model defines a family of models. The standard RC(M)
model (6.18) is a member of this family and is derived for φ(x) = x logx, expressed
in terms of cell probabilities. For φ(x) = (1− x)2, setting μim = xim (i = 1, . . . , I),
ν jm = y jm ( j = 1, . . . ,J), and ϕm = λm (m = 1, . . . ,M), model (7.12) reduces to
the correlation model (7.6). The association models proposed by Rom and Sarkar
(1992) correspond to the power divergence of Cressie–Read (4.37) and are included
in the RCφ (M) family.

It is interesting to note that the idea of viewing a model as a departure from a
parsimonious reference model with the property of being the closest to this reference
model under certain conditions in terms of the Kullback–Leibler divergence can
be extended to other types of models as well, such as the logistic regression (see
Sect. 8.4) and the quasi-symmetry model (see Sect. 9.7). This leads to the generation
of classes of generalized models, based on φ -divergence, which includes these
known models as special cases.

In terms of measures of dependence, the concept of φ -divergence was applied
by Joe (1989). He proposed measures of multivariate or conditional dependence
based on relative entropies, studied their properties, found connections to classical
measures of association, and extended his results for the class of the φ -divergence
measures.

7.5 The Role of Scores in Merging Categories

The issue of merging categories and thus reducing the size of a contingency table
is almost as old as contingency table analysis itself and drew the interest even in
the very early literature on contingency tables (Yates 1948). At this point we have to
distinguish between motives and criteria of merging and where they meet. The basic
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motive to consider merging of classification categories has to do with sparseness
and the desire to avoid small cell entries. Thus, we tend to merge categories of small
entries, usually at the edges of the classification scale. Motivation could also be
the observation that the merged table can be described by a simpler and of easier
interpretation model. But when is it right to proceed to a merging? The oldest and
most popular criterion for merging is homogeneity of the corresponding rows (or
columns) (Benzécri 1973; Hirotsu 1983; Gilula 1986; Gilula and Krieger 1989;
Weller and Romney 1990). Another basic criterion is that of structure (Goodman
1981c, 1985; Wermuth and Cox 1998). Greenacre (1988a) clusters homogeneous
rows or columns, adopting the procedure by Hirotsu (1983) and decomposing
the X2 statistic of independence with respect to the nodes of the binary tree
associated with either the row or column clustering, displaying thus graphically the
heterogeneity. In case of ordinal classification variable, order violation of certain
estimated parametric scores of an association model for a classification variable is
a reason to merge the corresponding categories in order to ensure the known order
(Goodman 1985, 1986; Agresti et al. 1987; Ritov and Gilula 1991, 1993).

The rows r and s of an I × J contingency table Π = (πi j) are set to be
homogeneous if the corresponding conditional column probabilities are equal,
e.g., if

πr j

πr+
=
πs j

πs+
, ∀ j = 1, . . . ,J .

The definition is straightforwardly extended to more than two rows while homoge-
neous columns are defined analogously.

The basic property that characterizes homogeneous rows or columns is that
independence holds for every subtable formed from homogeneous rows or columns.
It was thus natural that homogeneity was initially related to the basic model of
independence. Consequently, if we denote by I and Ĩ the models of independence for
the initial I×J and the merged Ĩ× J̃ tables, respectively (Ĩ � I, J̃ � J), then, provided
the merging has been done among homogeneous rows and columns, the difference
of the LR statistics for the fit of models I and Ĩ, G2(I)− G2(Ĩ), should not be
statistically significant (see Williams 1952 and Goodman 1985). Following similar
arguments and in correspondence analysis framework, Benzécri (1973) introduced
the principle of distributional equivalence. In this setup, homogeneity is expressed
as equality of the corresponding row profiles. Recall that

πr j
πr+

has been named by
Benzécri (1973) as the sth row profile.

Goodman questioned whether the above criterion is valid even in the case when
independence is rejected for the initial table. In this case merging categories that
seem homogeneous according to the independence of the subtable criterion can
affect the underlying association structure, although the fit of independence remains
very bad. This led him to introduce the structural criterion, according to which, two
(or more) homogeneous categories can be merged only if the association structure
remains unchanged (Goodman 1981a,b). He connected detection of categories’
homogeneity to association models by stating that equality of the scores of two
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rows (or columns) under the RC model (or R or C), if it is adequate for describing
the underlying association structure, implies homogeneity of the corresponding
categories (Goodman 1981a). Later, he generalized this result by showing that
equality of the scores of two rows (or columns) on all dimensions of the saturated
association model RC(M∗) implies homogeneity of the corresponding categories
(Goodman 1986). Analogously, homogeneity of categories can be decided upon the
observed similarities in the row and/or column canonical coordinates, as discussed
in Gilula (1986) and Gilula and Haberman (1986).

This result was further extended by Kateri and Iliopoulos (2003) for the general
φ -divergence association model RCφ (M), defined by (7.11). They also showed that
the predominant criteria for merging categories, e.g., homogeneity and structure, are
always in agreement. In their context, the structure is described in terms of a gen-
eralized association model based on an information theoretic setup, which includes
the models used by Goodman and Gilula as special cases. Furthermore, they proved
that the scores of the RCφ (M) model applied on the merged table for the new merged
category are equal to the corresponding common scores’ values of the RCφ (M) of
the initial table, provided the weights in constraints (6.17) for the merged table are
the same as those of the initial table for the non-merged categories while for the
new categories derived by merging, their weights are the sum of the weights of
the corresponding merged categories in the initial table. This weights’ condition is
satisfied by the marginal weights but not by the uniform. Thus, when considering
merging, the marginal weights should be used.

To summarize, merging between homogeneous classification categories ensures
the preservation of the underlying structure of the probability table π. As a conse-
quence, no simpler model should be appropriate for the merged table. Nevertheless,
in practice we have to be cautious if, after merging categories, the merged table
satisfies a simpler model. Either the assumption of categories’ homogeneity does
not hold or the association structure adopted for one of the two tables (initial and
merged) is false. It cannot be the case that all these assumptions are correct but not
in agreement.

Finally, keep the remark that deciding about merging categories based on the
classical and simple independence criterion of the corresponding subtable is not
always safe when independence is rejected for the initial table and its association
structure is complicated. It is always better to draw conclusions about homogeneities
and merging categories based on a model consistent with the underlying association
structure.

7.5.1 Example 6.2 (Continued)

To illustrate this last remark, let us reconsider the example in Sect. 6.5.2. Wermuth
and Cox (1998), by the homogeneity criterion, suggested the merging of columns
4 and 5 as well as rows 1 and 2. Indeed, independence holds for the 5 × 2
subtable formed by the two last columns (G2 = 0.835, d f = 4, p-value=0.9336).
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Table 7.2 G2 statistics for the fit of independence and association models applied on the table
produced by merging the last two columns of Table 6.7

Model G2 d.f. p-value

I 356.310 12 0.000
RC 23.487 6 0.001
RC(2) 1.809 2 0.405

The evidence for merging rows 1 and 2 is much weaker, since the test of
independence applied on the corresponding subtable gives G2 = 6.949 (d f = 4,
p-value=0.1386). Obviously the columns 4 and 5 are merged first. Testing then for
homogeneity of the first two rows of the merged 5× 4 table, we get G2 = 6.823
(d f = 3, p-value=0.078), which is not rejected at the 5% level and is also consistent
with the natural motivation of merging due to the low frequencies of the first row.

We have seen that the appropriate model for this data table is the RC(2). Recall
that for deciding about merging categories we work with the marginal weights as
explained in the previous section. Observing the scores’ estimates for marginal
weights in Table 6.9 we realize that the estimates for the last two columns are very
close on both dimensions while for the first two rows their scores’ estimates are close
on the first dimension of the association (m = 1) but they are much different for the
second (m= 2). This is directly visualized in Fig. 6.1. Scores for columns 4 and 5 are
almost indistinguishable for marginal weights while for rows 1 and 2 are far apart,
basically due to their second axis coordinate. Hence we have a strong indication
that columns 4 and 5 are homogeneous but rows 1 and 2 not. This is verified by the
hypothesis testing of homogeneity for the corresponding scores. For this example it
has been tested asymptotically by computing the appropriate Mahalanobis distances
and checking their significance (see Kateri and Iliopoulos 2003). Thus, we merge
only the last two columns.

As expected (and verified in Table 7.2), the structure of association remains the
same in the merged table, e.g., RC(2). If we checked homogeneity looking only
on the scores of the first dimension (e.g., consider the RC model), then we would
decide to merge also the first two rows. But in this case it is wrong to work with the
RC model, since it does not describe the underlying structure of the association.

7.6 Overview and Further Reading

Correspondence analysis was originally developed primarily in France by Benzécri
in the early 1970s (Benzécri 1973), though the algebraic derivation of the technique
is due to Hirschfeld (1935). For the early history of CA, see de Leeuw (1983a,b).
Important in the development and spreading of CA is the contribution, among
others, of Hill (1974), Escoufier (1984), van der Heijden and de Leeuw (1985),
Carroll et al. (1986, 1987, 1989), Greenacre and Hastie (1987), Heiser (1987),



212 7 More on Association Models and Related Methods

Choulakian (1988), Greenacre (1989), van der Heijden et al. (1989), de Leeuw
and van der Heijden (1991), Kim (1992), Kroonenberg and Lombardo (1999), and
Gabriel (2002). Gilula (1984) connected CA to latent class models (Sect. 10.3.1).
van de Velden and Kiers (2005) considered rotation in CA. Classic reference
texts on CA are Greenacre (1984) and Lebart et al. (1984), while of practical
importance with R implementations is Greenacre (2007). For a literature review
on correspondence analysis see Beh (2004) and for recent trends in research, the
Computational Statistics & Data Analysis special issue on CA (vol. 53(8), 2009),
edited by Blasius, Greenacre, Groenen, and van de Velden. On nonsymmetric CA,
we refer to Sect. 8.4.4 while multiple CA for multi-way tables is discussed in
Sect. 7.6.1 below.

Goodman (1985, 1986, 1996, 2002a) related CA to correlation models and
association models. Gilula et al. (1988) clarified the nature of their connection
further while Kateri and Balakrishnan (2008) proved that association and correlation
models are not equivalent in terms of statistical evidence (Royall 2000; Royall and
Tsou 2003). The association models are bounded by the maximum of the bump
function while the correlation models are not.

The ordered restricted CA has been considered by Schriever (1983), Parsa and
Smith (1993), and Ritov and Gilula (1993). Beh (1997) considered CA for ordinal
contingency tables with preassigned scores through orthogonal polynomials. Tests
of independence, conditional on order-restricted CA or order-restricted RC models,
are discussed in Kuriki (2005).

7.6.1 Homogeneity Analysis

CA has also been considered for higher dimensional tables, leading to multiple cor-
respondence analysis (MCA). MCA is based on the simple CA of the Burt matrix.
Characteristic related references are Greenacre (1988b), Kroonenberg (1989),
Heiser and Heiser and Meulmann (1994), and Carlier and Kroonenberg (1996).
MCA is equivalent to homogeneity analysis (see Gifi 1990; Michailidis and De
Leeuw 1998). Tenenhaus and Young (1985) discussed extensively MCA and
relevant methods, providing a rich reference list, also of the early developments. An
overview of MVA can be found in Greenacre and Blasius (2006). For regularized
MCA, motivated by ridge regression, see Hwang et al. (2009) and references cited
therein. Park et al. (2007) applied CA in a genetic study.

7.6.2 Canonical Correlation and Correspondence Analysis

The model of correspondence analysis is equivalent to the canonical correlation
model of Fisher (1940) while the partition of Pearson’s X2 statistic for testing
independence in terms of the eigenvalues (7.4) lies back to the fundamental paper by
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Lancaster (1963). The asymptotic distributions of the canonical correlations can be
found in O’ Neill (1978a,b) and their variances and covariances in O’ Neill (1981).
A conditional test of independence, based on the canonical correlation, is provided
by Haberman (1981). The links of MCA to the canonical correlation are clarified in
Gower (1990).



Chapter 8
Response Variable Analysis in Contingency
Tables

Abstract Logit models for binary, nominal, and ordinal responses are introduced in
Chap. 8. In particular beyond the basic logit model for binary response, the baseline
category logit, the cumulative logit, and the proportional odds models are presented.
Also logit models for ordinal explanatory variables are considered as well as the
logit analysis of stratified 2× 2 contingency tables. Logit models are connected to
association models and illustrated with examples, worked out in R.

Keywords Logit model • Ordinal explanatory variables • Cumulative logit
model • Cox’s proportional odds model • Adjacent categories odds logit model •
Rasch model • Stereotype model

8.1 Logit Models for Binary Response

Log-linear and association models treat all the classification variables in a symmet-
ric way, modeling the association structure among them. They do not distinguish
between dependent and independent variables. In case there exists an explicit
response variable and interest lies in modeling its dependence on one or more
explanatory (or predictor) variables, then logit models are applied instead. The
response is characterized as dependent variable and the explanatory variables as
independent. A logit model is a logistic regression model with all the independent
variables categorical.

Consider an I × 2 table (ni j)I×2 with the column classification variable Y
being the response (yes–no or success–failure). If (πi j)I×2 is the corresponding
probability table under the multinomial sampling scheme, the probability of success,
conditional on the level i of the explanatory variable X , is defined as

π1|i = P(Y = 1|X = i) =
πi1

πi1 +πi2
,

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__8,
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while the odds of success will be
π1|i

1−π1|i
= πi1

πi2
. The log of the odds of success is

known as the logit of success

logit(π1|i) = log

( π1|i
1−π1|i

)
= logπi1 − logπi2 .

Considering further the saturated log-linear model for the contingency table,
since πi1/πi2 = mi1/mi2, we have

logit(π1|i) = log

(
mi1

mi2

)
= (λY

1 −λY
2 )︸ ︷︷ ︸

β0

+(λXY
i1 −λXY

i2 )
︸ ︷︷ ︸

βi

, i = 1, . . . , I,

leading to the standard expression of the logit model

logit(π1|i) = log
π1|i

1−π1|i
= β0 +βi, i = 1, . . . , I . (8.1)

Parameters βi express the effect of the explanatory variable X on the response
Y , verified by the fact that the local odds ratio opposing the odds of success at
predictor’s level i + 1 vs. i is θL

i1 = exp(βi+1 − βi). One of the βi parameters is
redundant; thus, one of them (say, β1) or their sum is set equal to 0 for identifiability
reasons.

Model (8.1) is saturated. The hypothesis of “no effect” of X on Y ,

H0 : β1 = β2 = . . .= βI = 0,

is equivalent to the hypothesis of independence between X and Y .
Model (8.1) is equivalently expressed in terms of success probabilities as

π1|i =
exp(β0 +βi)

1+ exp(β0 +βi)
, i = 1, . . . , I . (8.2)

For two-way tables there exists a one-to-one correspondence between the logit
models and the class of hierarchical log-linear models. This is not the case for
contingency tables of higher order. For example, for an I1 × I2 × 2 table with two
explanatory variables X1 and X2, model (8.1) extends to

logit(π1|i1i2) = β0 +βX1
i +βX2

i , i = 1, . . . , I ,

which corresponds to the log-linear model (X1X2, X1Y, X2Y ). However, in logit
framework, focus lies on the dependence of the response on the explanatory variable
while the association structure among the explanatory variables is not of interest and
their interactions are considered in the greatest possible level. Thus, for the three-
way table considered above, model (X1Y, X2Y ) has not a logit analogue.
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In case of � (�≥ 2) explanatory variables, the corresponding logit model is

logit(π1|i1i2...i�) = β0 +
�

∑
s=1

βXs
is
, is = 1, . . . , Is , s = 1, . . . , �, (8.3)

and is equivalent to the (X1X2 · · ·X�, X1Y, X2Y, . . . , X�Y ) hierarchical log-linear
model. Model (8.3) assumes only main effects of the explanatory variables on the
response. Less parsimonious logit models including interaction terms are possible.
As in the log-linear models framework, only hierarchical models are considered.
The interaction terms are of the type βXkXq

ikiq
and of higher order, up to the βX1X2...X�

i1i2...i�
,

which corresponds to the saturated model.
Summarizing, the point of differentiation between log-linear and logit model

is that log-linear models analyze the structure of association among all factors,
while logit models focus only on the way the response depends on the explanatory
variables, conditioning on the explanatory variables cross-classification. The choice
between them relies on the type of the problem and the goal of the analysis.

8.1.1 Logit Models for Ordinal Explanatory Variables

In the context of I × 2 tables, when the explanatory variable X is ordinal, one can
assign scores x1 ≤ . . . ≤ xI (with x1 < xI) to its categories and replace the βi effect
term in (8.1) by βxi, leading to the model:

logit(π1|i) = log

( π1|i
1−π1|i

)
= β0 +βxi, i = 1, . . . , I. (8.4)

This model has two parameters (just one more than independence) and is the logit
expression of model LL in (6.4) with

xi = μi, i = 1, . . . , I; β = ϕ(ν1 −ν2),

or of model U, if the xi scores are equidistant for successive categories.
In case of multi-way tables with a binary response, scores can be assigned to

some or all of the ordinal explanatory variables and the corresponding βXs
i terms in

model (8.3) can be replaced by the βXsxsi terms. For example, for an I1 × I2× I3 ×2
table with explanatory variables X1 and X2 ordinal and X3 nominal or ordinal, the
model

logit(π1|i1 i2i3) = β0 +βX1x1i +βX2 x2 j +βX3
k , i = 1, . . . , I1, j = 1, . . . , I2, k = 1, . . . , I3,

applies parsimonious effect terms for X1 and X2 based on one parameter each and
known scores and a factor effect term of I3 levels for X3.
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8.1.2 Inference for Logit Models

The logit models for binary response belong to the family of GLM and thus
the inferential results follow from the corresponding general results for GLMs.
In particular, model (8.1) can be written in a vector form in terms of its nonredundant
parameters, as

logit(π1|X) = Xβ , (8.5)

where π1|X = (π1|1, . . . ,π1|I)′ is the I × 1 vector of success probabilities at every
explanatory level X = i, β = (β0, β1, . . . , βI−1)

′ the I × 1 vector of nonredundant
model parameters, and X = (xi j) the I × I design matrix X = (1I×1 I∗), with
1s×t the s × t matrix with all entries equal to 1 and I∗ the I × (I − 1) matrix

I∗ =
(

II−1

01×(I−1)

)
, where Is is the s× s identity matrix and 0s×t the s× t matrix

with all entries equal to 0.
Analogously, model (8.3) can be equivalently expressed by

logit(π1|X1,...X�
) = Xβ , (8.6)

where π1|X1,...X�
= (π1|11...1, π1|11...2, . . .π1|11...I� , . . .π1|I1I2...I�)

′ is the
(
∏�

s=1 Is
)× 1

vector of success probabilities at every combination of the levels of the � explanatory
variables, expanded by their order, β = (β0, βX1

1 , . . . , βX1
I1−1, . . . , β

X�

1 , . . . , βX�
I�−1)

′

the
(
∑�

s=1 Is − �+ 1
)× 1 vector of nonredundant parameters, and X the design

matrix X =
(

1(∏�
s=1 Is)×1 X1

)
, with

Xk =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1(1)k Xk+1

1(2)k Xk+1
...

...

1(Ik−1)
k Xk+1

0(∏�
s=k+1 Is)×(Ik−1) Xk+1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, k = 1, . . . , �− 2, X�−1 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎝

1(1)�−1 I∗

1(2)�−1 I∗
...

...

1(I�−1−1)
�−1 I∗

0I�×(Ik−1) I∗

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

,

and I∗ =
(

II�−1

01×(I�−1)

)
, with 1(i)k the

(
∏�

s=k+1 Is
)× (Ik −1) matrix with 1’s at the ith

column and 0’s in all other entries.
Models (8.5) and (8.6) are of the form (5.2). In particular, for model (8.5), the

response variable is the random sample success proportion for every level of the
explanatory variable X , i.e., the I × 1 vector Y, with E(Y) = μ = π1|X and for the

logit link, i.e., η = g(μ) = logit(μ) = log
(

μ
1−μ
)

, where 1 is a vector of ones, of

the same dimension as μ. For binomial proportions, it holds Var(Yi) =
μi(1−μi)

ni
,

i = 1, . . . , I, where ni is the sample size for level i of X . Substituting in (5.8) the
quantities above, the likelihood equations for model (8.5) are calculated as
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I

∑
i=1

ni(yi − μi)xi j

μi(1− μi)
· eηi

(1+ eηi)2 = 0 ⇒
I

∑
i=1

ni(yi − μi)xi j

μi(1− μi)
· μi/(1− μi)

(1+ μi/(1− μi))2 = 0 ,

for j = 1,2. Finally, the likelihood equations for β0 ( j = 1) and β ( j = 2) are
derived as

I

∑
i=1

ni(yi − π̂1|i)xi j = 0 , j = 1,2 . (8.7)

Analogously, for model (8.6) the responses are the sample success proportions
for each combination of the explanatory variables, i.e., the

(
∏�

s=1 Is
)×1 vector y =

p1|X1,...X�
with μ= π1|X1,...X�

. The system (5.8) leads to the likelihood equations

∏�
s=1 Is

∑
i=1

ni(yi − π̂1|ixi j) = 0 , j = 1, . . . ,
�

∑
s=1

Is − �+ 1, (8.8)

for parameters β0 ( j = 1), βX1
1 ( j = 2), . . . , βX�

I�−1 ( j =∑�
s=1 Is− �+1), respectively.

For (8.5) and (8.6), the diagonal entries (5.10) of the diagonal matrix W become
wi = niπ1|i(1−π1|i), for i = 1, . . . , I, or i = 1, . . . , ∑�

s=1 Is − �+ 1, respectively, and
the estimated covariance matrix is

Ĉov(β̂) = [X′ŴX]−1 . (8.9)

The ML estimate β̂ of β is obtained by solving the set of equations (8.7) or (8.8)
using an iterative algorithm, like the Newton–Raphson or the Fisher’s scoring
algorithm. The square roots of the diagonal entries of table (8.9) are the estimated
standard errors of β̂ and are used for testing the asymptotic significance of the terms
of β or deriving Wald confidence intervals for β or odds ratios that are function of β.
Furthermore, by (8.5), the estimated variance of logit(π1|x), for observed X = x, is

x′Ĉov(β̂)x. Based on this and (8.2), a corresponding interval for π1|X can be derived.
Model fit and model selection among nested logit models follow straightforward

in the GLM framework (see Sects. 5.3.2 and 5.3.4). In practice, logit models can
easily be fitted as GLMs (with logit link) in any software. We will illustrate it next
in R.

8.1.3 Logit Models in R

The data from a quality control study of five production machines are provided in
Table 8.1. The binary response is in the row classification variable X .

The probability of a defective product for machine i (i = 1, . . . ,5) is π1|i, and
model (8.1) is fitted in R by glm as follows.
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Table 8.1 Quality control data for a sample of 500 products (hypothetical data) from five
production machines, ordered from oldest (A) to newest (E)

Product. Machine

Product A B C D E

Defective 24 17 12 10 4 67
Non-defective 79 94 83 89 88 433

Table 8.2 Output by applying model (8.1) to the data in Table 8.1 by glm

Call:
glm(formula=cbind(def, nodef)∼machine, family=binomial(link="logit"))

Deviance Residuals:
[1] 0 0 0 0 0
Coefficients:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.1914 0.2331 -5.112 3.19e-07 ***
machine2 -0.5187 0.3518 -1.474 0.140417
machine3 -0.7425 0.3869 -1.919 0.054971 .
machine4 -0.9947 0.4069 -2.445 0.014504 *
machine5 -1.8996 0.5619 -3.381 0.000722 ***
--
Signif. codes: 0 ”***” 0.001 ”**” 0.01 ”*” 0.05 ”.” 0.1 ” ” 1

( Dispersion parameter for binomial family taken to be 1 )

Null deviance: 1.7255e+01 on 4 degrees of freedom

Residual deviance: 9.3258e-15 on 0 degrees of freedom

AIC: 30.747

Number of Fisher Scoring iterations: 3

> def <- c(24,17,12,10,4); nodef <- c(79,94,83,89,88)

> machine <- factor(1:5)

> bin.logit <- glm(cbind(def,nodef)∼ machine, family=

+ binomial(link="logit"))

> summary(bin.logit)

The output is provided in Table 8.2. We can verify that product defectiveness
depends on production machine, since the hypothesis of independence is equivalent
to β1 = . . .= β5 = 0, which is rejected (G2(I)=17.26, d f =4, p-value=0.0017). In the
glm output (see Table 8.2), G2(I) is to be found under “null deviance.” Observe that
β1 = 0, while we notice that the βi’s are decreasing in i, showing that the probability
of a defective product decreases as the machine is newer.

In order to test for linear trend, we assign scores xi = i, i = 1, . . . ,5, to the
machines and fit model (8.4) by
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Table 8.3 Output by applying model (8.4) to the data in Table 8.1 by glm

Call:
glm(formula=cbind(def, nodef)∼machlin, family=binomial(link="logit"))

Deviance Residuals:
1 2 3 4 5
0.08325 -0.39530 0.22304 0.62272 -0.60402
Coefficients:

Estimate Std. Error z value Pr(> |z|)
Intercept) -0.8145 0.2792 -2.917 0.003534 **
machlin -0.3963 0.1027 -3.859 0.000114 ***
--
Signif. codes: 0 ”***” 0.001 ”**” 0.01 ”*” 0.05 ”.” 0.1 ” ” 1

( Dispersion parameter for binomial family taken to be 1 )

Null deviance: 17.25503 on 4 degrees of freedom

Residual deviance: 0.96556 on 3 degrees of freedom

AIC: 25.713

Number of Fisher Scoring iterations: 4

> def <- c(24,17,12,10,4); nodef <- c(79,94,83,89,88)

> machlin <- 1:5

> lin.logit <- glm(cbind(def,nodef)∼ machlin, family=

+ binomial(link="logit"))

> summary(lin.logit)

From the derived output (Table 8.3), observe that (8.4) is a parsimonious model of
very good fit with G2=0.966 (p-value=0.8096, d f =3) that captures the dependence
of the defectiveness on the machine’s age by a single parameter β . Since β̂ =
−0.3963, the odds of defective product for a machine in age category i + 1 is

eβ̂ (xi−xi+1) = e−β̂ = e0.3963 = 1.486 times higher than for a machine in the immediate
previous age category i, i = 1, . . . ,4.

The within machine-type probability of defective product is estimated under the
last model by

π̂1|i =
exp(β̂0 + β̂xi)

1+ exp(β̂0 + β̂xi)
=

exp(−0.8145− 0.3963xi)

1+ exp(−0.8145− 0.3963xi)
, i = 1, . . . , I .

These probabilities are saved in lin.logit under
> lin.logit$fitted.values

1 2 3 4 5

0.22955379 0.16698819 0.11884463 0.08319487 0.05754063
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8.2 Logit Analysis of Stratified 2×2 Contingency Tables

Reconsider the setup discussed in Sect. 3.3, cross-classifying the binary variables
X and Y for the K levels of a third variable Z. Let us assume that Y is a response
variable and πik = π1|ik = P(Y = 1|X = i, Z = k). Since X is binary, model (8.3),
adjusted for this case, becomes

logit(π1|ik) = β0 +βXxi +β Z
k , i = 1,2 , k = 1, . . . , K, (8.10)

with x1 = 0 and x2 = 1, and the βX
i term in the logit model expression is equivalent

to the linear trend term present in the model above. Under (8.10), the XY conditional
odds ratio is the same (equal to eβ

X
) for every level k of Z, i.e., the XY association

is homogeneous across the levels of Z. If βX = 0, X and Y are conditionally
independent and the corresponding model is

logit(π1|ik) = β0 +β Z
k , i = 1,2 , k = 1, . . . , K. (8.11)

Model (8.11) is nested in (8.10), and if (8.10) fits the data well, then the
fit of (8.11) can be tested conditional on (8.10). In particular, if G2

1 and G2
2

are the LR goodness-of-fit statistics of (8.10) and (8.11), respectively, then their
difference G2

2 −G2
1 is asymptotically distributed as X 2

1 (Sect. 5.3.4) and is used for
the conditional testing of (8.11), given (8.10).

Model (8.10) is equivalent to the hierarchical log-linear model (XY, XZ, YZ)
while (8.11) to (XZ, YZ) and the conditional testing discussed here is equivalent to
the conditional test presented in Sect. 4.6.1.

This is illustrated on Example 3.3 of Sect. 3.3.4. The data have to be given in R in
a matrix of two response columns, the first containing the successes and the second
the failures. Thus, the data are entered as shown below.
> suc <- c(79,5,89,4,141,6,45,29,81,3,168,13)

> fail <- c(68,17,221,46,77,18,26,21,112,11,51,12)

> response <- cbind(suc,fail)

The factors F (prognostic factor) and C (clinic) are defined and the data are saved
in a data frame by
> F <- factor(rep(1:2, 6)); C <- factor(rep(1:6, each=2))

> clinstudy.fr <- data.frame(response, F, C)

Models (8.10) and (8.11) are then fitted by
> bin.logit <- glm(response∼F+C, family=binomial(link="logit"),

+ data=clinstudy.fr)

> bin.logit2 <- glm(response∼C, family=binomial(link="logit"),

+ data=clinstudy.fr)

Verify that the models considered and the conditional test performed are identical
to the corresponding conditional analysis via log-linear models in Sect. 4.6.1.1.
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8.3 Logit Models for Multi-category Response

Consider that the response variable Y has J (J > 2) categories. Polytomous logit

models describe the log-odds for all possible
(

J
2

)
pairs of responses. A set of J − 1

pairs is sufficient to produce all possible pair of responses. The way these pairs are
defined is dictated by the type of the response variable and the problem-specific
interest in forming the pairs to be compared. The possible odds are those used in
defining the generalization of the odds ratios for I × J tables in Sect. 2.2.5.

8.3.1 Nominal Response

The set of the J − 1 pairs to be opposed in the odds is defined by setting a category
of the response variable Y as the baseline or reference category, usually the first or
the last one, and then pairing every other category to the reference category. For
reference category the last (J) and for nominal explanatory variable X , the logit
model, known as the baseline category logit model, is defined by a set of J − 1
equations

logit(π j|i) = log

(π j|i
πJ|i

)
= β0 j +βi j , i = 1, . . . , I, j = 1, . . . ,J − 1,

where π j|i = P(Y = j|X = i) =
πi j
πi· . It is equivalent to the saturated log-linear model

with β0 j = λY
j −λY

J and βi j = λXY
i j −λXY

iJ .
A non-saturated realistic model is derived by assuming that the explanatory

variable effect is the same for all response odds. Then each of the J − 1 logit
equations has its own β0 j parameter ( j = 1, . . . ,J − 1), but they all share a common
explanatory variable effect, depending only on the level of the explanatory variable i.
This is the proportional baseline category logit model, given by

logit(π j|i) = β0 j +βi , i = 1, . . . , I, j = 1, . . . ,J− 1. (8.12)

The choice of the reference category affects the model parameters estimates but
not the estimated cell probabilities.

8.3.2 Ordinal Response: The Cumulative Logit Model

The cumulative logit model is based on the cumulative odds for the response and is
defined as
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logit(π≤ j|i) = log

(
P(Y ≤ j|X = i)

1−P(Y ≤ j|X = i)

)
= log

(
πi1 + . . .+πi j

πi, j+1 + . . .+πiJ

)
(8.13)

= β0 j +βi j , i = 1, . . . , I, j = 1, . . . ,J− 1.

This is the most general form, allowing the explanatory variable effect to vary
among the different cumulative odds. When the explanatory variable X is also
ordinal, then usually scores xi, i = 1, . . . , I, are employed for its categories and the
following model is defined:

logit(π≤ j|i) = β0 j +β jxi , i = 1, . . . , I, j = 1, . . . ,J− 1. (8.14)

In analogy to model (8.12), under the assumption of a common explanatory
variable effect for all cumulative odds, model (8.13) leads to

logit(π≤ j|i) = β0 j +βi , i = 1, . . . , I, j = 1, . . . ,J− 1, (8.15)

and (8.14) to

logit(π≤ j|i) = β0 j +βxi , i = 1, . . . , I, j = 1, . . . ,J − 1, (8.16)

respectively. Model (8.16) is known as Cox’s proportional odds model.
Under (8.15) the cumulative odds ratios (2.48) of the table are given by

θCY
i j =

∑k≤ j πik/∑k> j πik

∑k≤ j πi+1,k/∑k> j πi+1,k
= exp(βi−βi+1) , i = 1, . . . , I−1; j = 1 . . . ,J−1 ,

which means that model (8.15) is equivalent to the row effect association model R
for the cumulative odds ratios.

Analogously, model (8.16) with equidistant scores for successive categories is
equivalent to the uniform association model U for the cumulative odds ratios with
β the common log cumulative odds ratio value, i.e.,

θCY
i j =

∑k≤ j πik/∑k> j πik

∑k≤ j πi+1,k/∑k> j πi+1,k
= exp(β (xi − xi+1)) , i=1, . . . , I−1; j=1 . . . ,J−1 .

Thus, models (8.15) and (8.16) could also be fitted as cumulative odds ratios
R and U models, respectively, in an analogue manner to the global odds ratios
association models (Sect. 7.1).

The baseline category and cumulative logit models considered above are
analogously defined for multi-way contingency tables with explanatory variables
X1, . . . , X�, with some or all of them ordinal. In matrix notation, the baseline
category logit model for more than one explanatory variables is defined as

logit(π j|X1,...X�
) = Xβ , j = 1, . . . ,J− 1 ,
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with matrices X and β, defined appropriately, depending on the type of each
explanatory variable and in analogy to the binary response case in Sect. 8.1.2. For
the cumulative logit, π j|X1,...X�

in the equation above is replaced by π≤ j|X1,...X�
. For

example, the proportional odds model for a (�+1)-way table with all � explanatory
variables ordinal and scores xs,is = is, assigned to their categories is = 1, . . . , Is

(s = 1, . . . , �), would be

logit(π≤ j|X1,...X�
) = β0 j +

�

∑
s=1

βsis , j = 1, . . . ,J − 1 .

8.3.3 Alternative Models for Ordinal Response

The cumulative odds is the most frequent used type of odds for ordinal logit models.
The adjacent categories and the continuation odds are possible alternatives. For an
I × J table with the response on the columns, the J − 1 adjacent column categories
odds are defined for j = 1, . . . , J− 1 by

π j| j, j+1,i

π j+1| j, j+1,i
=

P(Y = j|(Y = j or Y = j+ 1), X = i)
P(Y = j+ 1|(Y = j or Y = j+ 1), X = i)

=
πi j

πi, j+1
, i = 1, . . . , I .

Assuming a common explanatory variable effect on all J − 1 odds, the adjacent-
categories odds logit model is

logit
(
π j| j, j+1,i

)
= log

(
πi j

πi, j+1

)
= β0 j +βi , (8.17)

i = 1, . . . , I, j = 1, . . . ,J− 1.

This model is the equivalent logit expressions of the row association model R,
presented in Sect. 6.1.3. Model (8.17) is equivalent to (8.12), easily verified by the
fact that log

(
π j| j, j+1,i

)
= log

(
π j|i
)− log

(
π j|i
)
.

For ordinal explanatory variable and fixed scores xi, i = 1, . . . , I, assigned to its
categories, the proportional adjacent-categories odds logit model is defined as

logit
(
π j| j, j+1,i

)
= β0 j +βxi , i = 1, . . . , I, j = 1, . . . ,J − 1, (8.18)

which, for equidistant scores for successive categories, is equivalent to the U
association model (6.4).

Analogously, for the J− 1 response continuation odds at explanatory level i

π j| ≥ j,i

π> j| ≥ j,i
=

P(Y = j| Y ≥ j, X = i)
P(Y > j| Y ≥ j, X = i

=
πi j

πi, j+1 + . . .+πiJ
,
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and for common explanatory variable effect on all odds, the continuation ratio logit
model is defined by

logit
(
π j| ≥ j,i

)
= log

(
πi j

πi, j+1 + . . .+πiJ

)
= β0 j +βi . (8.19)

i = 1, . . . , I, j = 1, . . . , J − 1.

The proportional continuation ratio logit model is then

logit
(
π j| ≥ j,i

)
= β0 j +βxi , i = 1, . . . , I, j = 1, . . . , J− 1. (8.20)

Obviously models (8.17) to (8.20) extend also to cases of multiple explanatory
variables.

The choice of type of logit model for ordinal response relies on the actual prob-
lem under consideration and the question addressed. A comparison of alternative
options for logit analysis can be found in Cox and Chuang (1984).

8.3.4 Example 6.1 (Continued)

Logit models for ordinal response can be fitted by function vglm() of Yee’s VGAM
library. Alternatively, the polr() (library MASS) can be used.

We illustrate the cumulative logit model (8.14) applied on the cannabis data
(Table 6.1). Use of cannabis is the response variable (three levels, ordered) and the
explanatory is the alcohol consumption (four categories, ordered). The data have to
be written in a matrix format, each column representing the responses vector for a
given level of the explanatory variable. For this 4× 3 table, the vectors correspond
to the columns.
> library(VGAM)

> canb1 <- c(204,211,357,92); canb2 <- c(6,13,44,34)

> canb3 <- c(1,5,38,49); response <- cbind(canb1,canb2,canb3)

> alcohol <- 1:4

> cum.logit <- vglm(response∼alcohol, family=cumulative)

> summary(cum.logit)

The output is provided in Table 8.4. The fitted model is

logit(π≤1|i) = log

(
P(Y ≤ 1|X = i)

1−P(Y ≤ 1|X = i)

)
= 4.8122− 1.1492xi , i = 1, . . . ,4,

logit(π≤2|i) = log

(
P(Y ≤ 2|X = i)

1−P(Y ≤ 2|X = i)

)
= 6.4548− 1.3673xi ,

with xi = i, and is of very good fit (p-value=0.5532).
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Table 8.4 Output by applying model (8.14) to the data in Table 6.1 in VGAM

Call:
vglm(formula=response∼alcohol, family=cumulative)

Pearson Residuals:
logit(P[Y<=1]) logit(P[Y<=2])

1 -0.95929 0.427307
2 -0.32758 0.255103
3 1.04712 -0.266701
4 -0.82452 0.042323

Coefficients:
Value Std. Error t value

(Intercept):1 4.8122 0.36471 13.195
(Intercept):2 6.4548 0.56152 11.495

alcohol:1 -1.1492 0.11336 -10.137
alcohol:2 -1.3673 0.16369 -8.353

Number of linear predictors: 2

Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2])

( Dispersion Parameter for cumulative family: 1 )

Residual Deviance: 3.02777 on 4 degrees of freedom

Log-likelihood: -18.91251 on 4 degrees of freedom

Number of Iterations: 4

The estimated multinomial response probabilities for each of the three cannabis
use groups is given by
> fitted.values(cum.logit)

cannab1 cannab2 cannab3
1 0.9749880 0.01887674 0.006135302
2 0.9251109 0.05123438 0.023654685
3 0.7965296 0.11664030 0.086830108
4 0.5536876 0.17454653 0.271765829

Assuming β1 = β2, the proportional odds cumulative logit model (8.16) is fitted
by
> prop.cum <- vglm(response∼alcohol,
+ family=cumulative(parallel=TRUE))

> summary(prop.cum)

giving the output of Table 8.5. The fitted model is thus

logit(π≤1|i) = log

(
P(Y ≤ 1|X = i)

1−P(Y ≤ 1|X = i)

)
= 4.8914− 1.1784 · i , i = 1, . . . ,4,

logit(π≤2|i) = log

(
P(Y ≤ 2|X = i)

1−P(Y ≤ 2|X = i)

)
= 5.8137− 1.1784 · i ,
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Table 8.5 Output by applying model (8.16) to the data in Table 6.1 in VGAM

Call:
vglm(formula=response∼alcohol, family=cumulative(parallel = TRUE))

Pearson Residuals:
logit(P[Y<=1]) logit(P[Y<=2])

1 -1.48843 1.15241
2 -0.76749 1.00743
3 0.93117 0.20792
4 -0.17846 -0.91400

Coefficients:
Value Std. Error t value

(Intercept):1 4.8914 0.36524 13.392
(Intercept):2 5.8137 0.38155 15.237

alcohol -1.1784 0.11296 -10.432

Number of linear predictors: 2

Names of linear predictors: logit(P[Y<=1]), logit(P[Y<=2])

( Dispersion Parameter for cumulative family: 1 )

Residual Deviance: 6.33295 on 5 degrees of freedom

Log-likelihood: -20.5651 on 5 degrees of freedom

Number of Iterations: 4

with p-value=0.2752. Under this model, all six fitted cumulative odds ratios (2.48)
of the table are fixed, i.e.,

θ̂CY
i j = e1.1784[i−(i+1)] = 3.25 , i = 1,2,3; j = 1,2 ,

while the estimated multinomial response probabilities are
> fitted.values(prop.cum)

cannab1 cannab2 cannab3
1 0.9761771 0.01421219 0.009610758
2 0.9265291 0.04290351 0.030567439
3 0.7951277 0.11193918 0.092933116
4 0.5443026 0.20593812 0.249759244

The fit of this model is comparable to that of the global odds ratios U model
(Sect. 7.1.1). We verify that the classical U model of constant local odds ratios,
discussed for this example in Sect. 6.1.2, is the most suitable for this data set. The
equivalent logit expression for the classical U model (8.18) is fitted in VGAM by
> prop.adj <- vglm(response∼alcohol, family=acat(parallel=TRUE))
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8.4 Overview and Further Reading

The logit link was used very early in bioassay applications (Bartlett 1937; Berkson
(1944, 1953)). Berkson (1955) proposed a least squares procedure of parame-
ters estimation, alternative to the ML estimation. Odoroff (1970) compared the
alternative methods of estimation and discussed small samples properties of tests
for interaction in 2× 2× 2 and 3× 2× 2 contingency tables. The distribution of
the estimated parameters for binary explanatory variables and small samples is
investigated by Whaley (1991). Other early references on logit models are Cox
(1958a,b), Bishop (1969), and Goodman (1971b). The book of Cox (1970a) covered
related models and treated their inferential aspects. For a recent reference on models
for binary response and issues related to their fit and diagnostics, we address to
Collet (2003).

References on testing conditional independence in stratified 2 × 2 tables in
presence of a binary response via the logit consideration include Prentice (1976)
and Day and Byar (1979). For updated work, see Agresti and Hartzel (2000) and
Cheng et al. (2010).

For ordinal responses, Walker and Dunkan (1967) considered the cumulative
logit, while the continuation logit was modeled by Fienberg and Mason (1978).
A key reference on regression models for ordinal variables is the discussion paper
by Anderson (1984).

Logit models for binary and ordinal response are presented in more detail in
Agresti (2010, 2013), Dobson and Barnett (2008), and Hosmer et al. (2013).

8.4.1 Alternative Links to the Logit

An alternative to the logit link is the probit (Bliss 1934, 1935). Berkson (1951)
argued for the logit link. However, the shapes of the logit and probit models are
similar, differentiated at the tails of the distribution (Cox and Snell 1989). Another
important link is the complementary log–log link. The logit and probit links probit
are more appropriate for symmetric distributions while the complementary log–log
when the distribution is skewed. The optimal choice of the link function is discussed
in McCullagh (1980).

Generalized link functions have been proposed by Genter and Farewell (1985)
and by Kateri and Agresti (2010), who proposed a log-gamma link and a link based
on the φ -divergence, respectively. Stukel (1988) proposed a class of logistic models
that extends the standard model by introducing two shape parameters, achieving thus
improved fit for the noncentral probability regions and applicability of the logistic
model to asymmetric probability curves.
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8.4.2 Chain Graph Models and Collapsibility

Collapsibility is treated in Sects. 4.8 and 4.9.4 in terms of symmetric associations.
Parametric collapsibility criteria in case of categorical explanatory variables and
a binary response have been discussed in Wermuth (1987), who considered and
compared conditions of collapsibility based on a symmetric measure of association
(odds ratio) and a directed one (relative risk).

In the framework of graphical models, whenever there is an a priori division
of the classification variables into explanatory and response variables, the corre-
sponding graphical models consist of a combination of directed and undirected
edges and are known as chain graph models (see Wermuth and Lauritzen 1990).
Chain graph models are thus a generalization of undirected graphs and directed
acyclic graphs (DAGs). They depend strongly on the explanatory–response partition
of the variables made before fitting and selecting the appropriate model with the
exception of a set of Markov equivalent models (Roverato 2005). For a discussion
on chain graph models, their interpretations, their misuse, and their relation to DAGs
and structural equation models (SEMs), see Lauritzen and Richardson (2002).
A particular type of chain graph models for contingency tables has been considered
by Marchetti and Lupparelli (2011).

Collapsibility of hierarchical log-linear models for multi-way contingency tables
was considered in Asmussen and Edwards (1983). Additional to the graph models
approach, they used also directed graphs for contingency tables with response
variables, noting the corresponding models as “causal chain models.” Tunaru (2001)
compared the class of graphical models to the class of chain graph models in terms
of collapsibility, arguing that these two classes can lead to different results.

8.4.3 The Rasch Model

The Rasch model, introduced by Rasch in 1960 (see Rasch 1980), is a parametric
item response model, with major areas of application in psychometrics, education,
and behavioral sciences. It uses the logistic function to model individual’s abilities
or attitudes based on the corresponding assessment’s data. If Yi j is the ith subject’s
binary response (correct–false or presence–absence) on item j of the questionnaire
or test, then the Rasch model, in its simplest form, is defined by

logitP(Yi j = 1) = β0 +β1i+β2 j , i = 1, . . . ,n, j = 1, . . . ,J,

where β1i and β2 j are the ith subject’s and jth item’s effect on the response,
respectively. An important property of the Rasch model is the independence of
the item parameters from specific subjects and vice versa. Standard asymptotic
results for maximum likelihood fail in this case leading to inconsistent estimators
for the item parameters as n → ∞. The Rasch model and associated inferential
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results are presented in Andersen (1980). The goodness-of-fit tests for the Rasch
model are sensitive in model’s assumption. For a related discussion, we refer to
Kelderman (1984), who formulated the Rasch model as quasi-independence model
in the log-linear models framework. Rasch models for multi-way contingency tables
are discussed in Goodman (1990).

The Rasch model has been expanded for multiple-response items by Andersen
(1973). For polytomous Rasch models see also Andrich (2010) and references cited
there. For the extended class of Rasch models, we refer to Fischer and Molenaar
(1995) and von Davier and Carstensen (2007). A family of extended Rasch models
can be fitted in R by package eRm (Mair and Hatzinger 2007). Polytomous Rasch
models are fitted by the R function plRasch. For a presentation of the function but
also a connection of the polytomous Rasch model to linear-by-linear association
models, an updated bibliography, discussion on Rasch models, and connection to
log-linear models, see Anderson et al. (2007).

8.4.4 The Stereotype Model

We have seen that the adjacent-categories odds logit models (8.17) and (8.18) are
equivalent logit expressions of the R and U association models, respectively. The
logit version of the RC association model with monotone scores for the categories
of the response variable is the stereotype model, introduced by Anderson (1984).
The stereotype model and its properties and estimation are discussed, among others,
by Kuss (2006) and Johnson (2007). For its connection to the RC association model,
see Douglas and Fienberg (1990).

The logit analogue of correspondence analysis is known as nonsymmetric
correspondence analysis (see Lauro and D’ Ambra 1984; Lauro and Balbi 1999).
Nonsymmetric correspondence analysis for ordinal variables with scores assign-
ment based on orthogonal polynomials is considered by Lombardo et al. (2007).



Chapter 9
Analysis of Square Tables

Abstract Special models for matched pairs of ordinal responses are presented in
Chap. 9. Beyond the classical models of symmetry and quasi symmetry, the models
of conditional symmetry, diagonal symmetry, and ordinal quasi symmetry are
discussed in detail. The model of marginal homogeneity is tested as a generalized
log-linear model and not only conditioning on quasi symmetry, as is usually done.
Connections to rater agreement models and mobility table analysis are made.

Keywords McNemar’s test • Symmetry models • Marginal homogeneity • Quasi
independence • Homogeneous association models • Rater agreement • Bradley-
Terry model

9.1 Comparison of Two Dependent Proportions

Often it is the case that we are interested in comparing two proportions that are
not independent. Thus, the procedure in Sect. 2.1.3 cannot be followed. Dependent
proportions occur when a binary response is measured on the same subject at
two different time points or occasions, like data in Table 2.1(c), or when a binary
response is measured on two different but paired, correlated subjects (e.g., husband
and wife). Dependent proportions arise also when two binary response variables are
measured on the same subjects and are cross-classified. The n paired observations
are then cross-classified, as shown below:

Occasion B
Occasion A Success Failure

Success n11 n12 n1+

Failure n21 n22 n2+

n+1 n+2 n

The success (or the “yes”) probabilities of each occasion correspond to the
marginal probabilities π1+ and π+1 and interest lies on testing whether these two

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__9,
© Springer Science+Business Media New York 2014
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probabilities are equal. Their equality is equivalent to π12 = π21, with the probability
of pairs to agree on “yes,” π11, playing no role. The corresponding null hypothesis is

H0 : π1+ = π+1 ⇔ π12 = π21 (9.1)

Conditioning on the sum of the disjoint responses N12 +N21 = n∗, the random
number of pairs N12 in cell (1,2) follows a binomial distribution

N12 ∼B(n∗, π) ,

with π = π12
π12+π21

, and the null hypothesis (9.1) is equivalent to

H0 : π = 1/2 . (9.2)

Under (9.2), E(N12) =
n∗
2 and Var(N12) =

n∗
4 , leading to the score test statistic

Z =
n12 − n21√
n12 + n21

. (9.3)

The asymptotic distribution for Z under (9.1) is the standard normal. Thus, the
asymptotic distribution for

X2 = Z2 =
(n12 − n21)

2

n12 + n21
(9.4)

is X 2
1 . Test statistic (9.4) was introduced by McNemar (1947), and the correspond-

ing test of significance, rejecting (9.1) at significance level α if X2 ≥ X2
1,α , is known

as McNemar’s test.
The asymptotic (1− a)100% Wald confidence interval for the difference of the

correlated marginal probabilities π1+−π+1 is

(
p1+− p+1 − za/2σ̂ , p1+− p+1 + za/2σ̂

)
, (9.5)

where the variance σ2 =Var(π̂1+− π̂+1) is considered under the general parametric
space and is equal to

σ2 =
π1+(1−π1+)+π+1(1−π+1)− 2(π11π22 −π12π21)

n
. (9.6)

It is estimated by

σ̂2 =
p1+(1− p1+)+ p+1(1− p+1)− 2(p11p22 − p12p21)

n
, (9.7)

where pi j = ni j/n are the observed sample proportions.
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Table 9.1 Cross-classification of GSS respondents with college degree aged 20–50 in 2000 by
voting in 2000 and 2004 US elections for (a) males and (b) females

2004

2000 Yes No Total

(a) Males
Yes 223 11 234
No 25 23 48
Total 248 34 282

(b) Females
Yes 297 16 313
No 33 50 83
Total 330 66 396

For comparing two success probabilities, the matched pairs design is preferable
to the independent samples design, in case it is possible, since it leads to a statistic of
smaller variance. Indeed, if π1 and π2 are the success probabilities to be compared
based on two independent equal-sized samples (n1 = n2 = n), with sample estimates
p1 and p2, respectively, then the variance of the difference π̂1 − π̂2, VarI(π̂1 − π̂2),
is given by (2.9). If π1 = π1+ and π2 = π+1, the variance (9.6) and VarI(π̂1 − π̂2) for
n1 = n2 = n are related as follows:

σ2 = VarI(π̂1 − π̂2)− 2
n

c ,

where c = π11π22 − π12π21. Responses of matched pairs are usually positive
associated; thus θ = π11π22

π12π21
> 0, which implies c > 0, and consequently, for positive-

associated responses, σ2 < VarI(π̂1 − π̂2).

9.1.1 Example 9.1

From the GSS data set, we cross-tabulated respondents born between 1950 and 1980
and with educational level of at least college degree according to whether they voted
or not in the 2000 and 2004 US elections by gender. The data are given in Table 9.1.

For our example, π1+ and π+1 in (9.1) are the probabilities of voting in 2000
and 2004, respectively. The McNemar test (9.4) is evaluated in R by the function
mcnemar.test() of stats that reads the data in table form. Thus, for Table 9.1(a),
the McNemar test is computed in R by
> vote.M <- matrix(c(223,11,25,23), nrow=2, byrow=T, dimnames=

+ list("Voted 2000"=c("yes","no"),"Voted 2004"=c("yes","no")))

> mcnemar.test(vote.M)

giving the output

McNemar’s Chi-squared test with continuity correction
data: vote.M
McNemar’s chi-squared = 4.6944, df = 1, p-value = 0.03026
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Analogously, for females in Table 9.1(b), we get McNemar’s X2 = 5.2245
with associated p-value=0.02227. Thus, hypothesis (9.1) is rejected, for males
and females at significance level a = 0.05, meaning that the percentage of voting
among the responders is significantly different between the 2000 and 2004 elections.
In particular, the percentage of voters has increased in 2004 compared to 2000. For
one-sided alternatives, the test statistic (9.3) should be used.

For the males the 95% asymptotic confidence interval (9.5) for the difference
π1+ − π+1 is (−0.0909, −0.0083), meaning that the increase of the voting per-
centage for men in 2004 elections lies between 0.8 and 9%. Analogously, the
corresponding interval for females is ( −0.0773, −0.0085). Their computation
is straightforward and the function McNemar.CI() of the web appendix (see
Sect. A.3.6) can be applied for this.

9.2 Symmetry Models

The special case of square I×I contingency table with commensurable classification
variables occurs often in biomedicine, educational and social sciences applications,
in psychology and sports, among other fields. Characteristic such cases refer
to treatments’ comparison or “before–after” comparisons applied on the same
subjects, cross-classification of responses in matched pairs designs, problems of
rater agreement, social mobility tables , or models of preference in opinion surveys.
In this framework, interest lies on the off-diagonal cells and the models of symmetry
and marginal homogeneity consist the starting or reference point. If symmetry
is not a meaningful choice, which is usually the case, there is need to consider
special models of asymmetry that measure departures from symmetry toward certain
direction.

9.2.1 Complete Symmetry

The standard hypothesis of complete symmetry (S) is defined as

H0 : πi j = π ji , i > j , i, j = 1, . . . , I , (9.8)

or equivalently in terms of the expected cell frequencies as

H0 : mi j = m ji , i > j , i, j = 1, . . . , I .

The S model does not model the diagonal cells of the table. They are kept fixed or,
in other words, modeled exactly. Actually, this is true not only for the S model but
for all models for square tables considered in this section.
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It can easily be verified that the ML estimates of the expected under (9.8) cell
frequencies are

m̂i j =
ni j + n ji

2
, i, j = 1, ..., I. (9.9)

Hypothesis (9.8) is tested through the classical test of Bowker (1948), based on the
test statistic

X2 =∑
i> j

(ni j − n ji)
2

ni j + n ji
, (9.10)

for which the asymptotic distribution under (9.8) is the chi-squared with associated
degrees of freedom d f (S) = I(I−1)/2. Hypothesis (9.8) is rejected for high values
of (9.10). This test of Bowker is a generalization of McNemar’s test for I× I tables
with I > 2. For I = 2, (9.8) is equivalent to (9.1) and (9.10) reduces to (9.4). The
corresponding LR statistic G2, given by expression (2.37) for m̂i j as in (9.9), is
asymptotically equivalent.

The hypothesis of complete symmetry can equivalently be expressed, in terms of
a log-linear model, as the model defined by (4.5), i.e.,

logmi j = λ +λX
i +λY

j +λ
XY
i j , i, j = 1, . . . , I ,

with the additional constraints

λX
i = λY

j , (9.11)

λXY
i j = λXY

ji , i, j = 1, . . . , I . (9.12)

9.2.2 Marginal Homogeneity

The hypothesis of marginal homogeneity (MH)

H0 : πi+ = π+i, i = 1, . . . , I , (9.13)

states that the marginal distributions of a square contingency table are equal. One
of the Eq. in (9.13) is redundant, due to ∑i, j πi j = 1. For an I × I table, complete
symmetry (9.8) implies MH (9.13), while for the special case of 2×2 tables, models
S and MH are equivalent and tested by the McNemar test.

The tests proposed for marginal homogeneity are asymptotically chi-squared
distributed with d f (MH) = I − 1. For a short reference to the early MH tests,
see Sect. 9.7. Alternatively, MH can be tested conditionally, as we shall see in
Sect. 9.2.3.
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MH has not a straight representation in log-linear model form but is a character-
istic case of marginal model and inference can easily be developed in the marginal
models framework (see Sect. 5.6), since (9.13) is equivalent to

mi+−m+i = 0, i = 1, . . . , I − 1.

If m = (m11,m12, . . . ,m1I,m21, . . . ,mII)
′ is the I2 × 1 vector of expected cell

frequencies, expanded by row, then MH can be expressed as a special MPH model
of the type (5.30) by

C log(Mm) = 0 , (9.14)

where M is the 2I× I2 matrix

M =

(
Ib

I I . . . I

)
,

with I the I × I identity matrix and Ib the I × I2 block-identity matrix

Ib =

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

⎞

⎟
⎟
⎟
⎠

,

with 1 and 0 the 1× I vectors of 1’s and 0’w, respectively. C is the (I − 1)× 2I
matrix

C =
(

II−1 − II−1
)

,

where II−1 is the (I−1)× I subtable of I, formed by deleting the last row, and 0 the
(I− 1)× 1 vector of 0’s.

The fit of the MH model by expression (9.14) in Liang’s mph function is discussed
in Sect. 9.2.6 and illustrated in Sect. 9.2.7 below.

9.2.3 Quasi Symmetry

The model of complete symmetry S is a parsimonious model with sound interpreta-
tion. However, tables that satisfy model S are not common in practice. A less strict
model for square tables is the quasi-symmetry (QS) model, introduced by Caussinus
(1965). It is the model under which the local odds ratios of the table θL

i j =
πi jπi+1. j+1
πi+1. jπi. j+1

are symmetric instead of the cell probabilities πi j, i.e., QS is defined by

θL
i j = θ

L
ji, i, j = 1, . . . , I− 1, i > j .

In terms of a log-linear model representation, it is defined by (4.5) when (9.12)
holds, i.e., it is produced by the S model by relaxing the constraint (9.11). Thus,
complete symmetry implies quasi symmetry. The associated degrees of freedom are
d f (QS) = (I − 1)(I− 2)/2.
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The ML estimates of the expected cell frequencies under QS are not derived in
closed-form expressions. The corresponding likelihood equations that have to be
solved iteratively are

π̂i+ = pi+ , i = 1, . . . , I− 1 , (9.15)

π̂+ j = p+ j , j = 1, . . . , I − 1 , (9.16)

π̂i j + π̂ ji = pi j + p ji , i, j = 1, . . . , I, i > j . (9.17)

Actually, only one set of (9.15) and (9.16) is needed, since the other is redundant
given (9.17). It is thus clear that expression (4.5) is overparameterized for QS.

Although its physical interpretation is not straightforward, it is a powerful model
due to its links to other models, as, for example, the association models (Sect. 9.4.1)
and the Bradley–Terry model (Sect. 9.6). The QS model is invariant under any
permutation of the categories of the classification variables, provided that the same
permutation is applied to both rows and columns.

Its nature can be better understood by its connection to the models S and MH, as
stated by the property

S = MH∧QS . (9.18)

This means that when MH and QS both hold, then symmetry does also hold.
Property (9.18) is used to build a conditional test for MH, as the test of symmetry,
given that the quasi-symmetry model holds

G2
MH|QS = G2

S −G2
QS ,

which is asymptotically chi-squared distributed with d f (MH|QS) = d f (S) −
d f (QS) = I − 1. This conditional test of MH is usually applied in the context
of log-linear models, since the fit of S and QS is direct while of MH is not.

In the log-linear models setup, QS can alternatively be defined by

logmi j = λ +λX
i +λX

j + ai +λXY
i j , i, j = 1, . . . , I , (9.19)

subject to (9.12), which is not overparameterized and expresses QS as departure
from the complete symmetry (model S). The parameters ai, i = 1, . . . , I, capture
this departure and in view of property (9.18) they are indicative of sources of
marginal inhomogeneity in the table (Becker 1990b). For identifiability purposes
we set a1 = 0 or

I

∑
i=1

ai = 0 . (9.20)

We adopt constraint (9.20), since it treats the categories symmetrically and thus
the ai’s express the contribution of each category to marginal inhomogeneity in
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reference to the overall mean. For a1 = a2 = . . .= aI = 0, (9.19) implies the S model
while the larger (in absolute value) ai is, the larger the contribution of category i to
marginal inhomogeneity is.

Equivalent to (9.19) is the multiplicative expression in terms of cell probabilities

πi j =
2αi

αi +α j
πS

i j, i, j = 1, . . . I, (9.21)

where πS
i j is the expected cell probability under the S model (Kateri and Papaioan-

nou 1997). Under (9.20), it holds ai = logαi and

αi = exp

(
1
I ∑j

log

(
πi j

π ji

))

. (9.22)

9.2.4 Conditional (or Triangular) Symmetry

The model of conditional symmetry (Bishop et al. 1975; McCullagh 1978), known
also as triangular (T) symmetry model (Goodman 1979c), is defined as

πi j = τ∗π ji, i > j,

and states that the cell probabilities of the lower triangle of the table are proportional
to the corresponding upper triangle symmetric cells and the proportionality constant
is the same for all cells.

The equivalent definition for T, as a departure from S model, is

πi j = τπS
i jI(i > j)+ (2− τ)πS

i jI(i < j), i, j = 1, . . . , I, i �= j , (9.23)

with I(·) the indicator function. Note that τ∗ = τ
2−τ . Model T has just one parameter

more than S, namely the τ , and thus d f (T) = I(I− 1)/2− 1. The ML estimate of τ
is derived in closed-form

τ̂ =
2∑i> j pi j

∑i> j pi j +∑i< j pi j
.

The log-linear expression for (9.23) is

logmi j = λ +λX
i +λX

j +λXY
i j + tI(i > j), i, j = 1, . . . , I, i �= j , (9.24)

with the additional constraint (9.12).
Obviously, the T model implies S when τ∗ = 1 (or τ = 1). Furthermore, it holds

S = T∧QS ,

S = T∧MH . (9.25)
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9.2.5 Diagonal Symmetry

The model of diagonal (D) symmetry (Goodman 1979c) is adequate for ordinal
contingency tables and models departures from complete symmetry in terms of the
distance between the classification categories of rows and columns, i.e., in terms of
the secondary diagonals of the table. Thus, it is defined as

πi j = δ ∗i− jπ ji , i > j , (9.26)

or equivalently

πi j = δi− jπS
i jI(i > j)+ (2− δi− j)πS

i jI(i < j), i, j = 1, . . . , I , i �= j , (9.27)

with I(·) the indicator function and δ ∗i− j =
δi− j

2−δi− j
. It has I−1 additional parameters

than S, namely the parameters δk, k = 1, . . . , I − 1, and d f (D) = (I − 1)(I − 2)/2.
It is especially useful in modeling rater agreement (see Sect. 9.5.2).

The ML estimates of δk are

δ̂k =
2∑i− j=k pi j

∑|i− j|=k pi j
, k = 1, . . . I− 1 .

As a log-linear model, (9.27) is given by

logmi j = λ +λX
i +λX

j +λXY
i j + dkI(i− j = k), i, j = 1, . . . , I, i �= j , (9.28)

with the interaction parameters {λXY
i j } satisfying (9.12).

More parsimonious models can be derived by setting homogeneity constraints
among some of the δk-parameters. For each homogeneity constraint, one degree of
freedom is released. In particular, if all δks are equal, i.e., δ1 = δ2 = . . .= δI−1 = δ0,
model D is reduced to the triangular symmetry model T with δ0 = τ . Due to
the ordinal classification variables, it may make sense to assume the diagonal
parameters to be ordered, i.e.,

δ1 ≤ δ2 ≤ . . .≤ δI−1 , (9.29)

implying that the proportionality constant of row and column probabilities in sym-
metric cells increases as they come further apart. In this case, the parameters δk, k =
1, . . . , I − 1, are estimated under the order restriction (9.29) by isotonic regression.
The order-restricted D model will be illustrated in Example 9.2 (Sect. 9.2.7).
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9.2.6 Software for Symmetry Models

The models of symmetry are not directly fitted in statistical packages. In SPSS,
models S, QS, T, and D can be fitted in MATRIX by the macro provided in the web
appendix (see Sect. A.4). This requires the data to be inserted in table format. In R,
they can be fitted by function glm, as log-linear models, as shown below. The model
of MH can be tested conditionally on QS. An unconditional test, providing also cell
estimates under MH, can be performed through marginal models and Liang’s mph
function in R.

To fit the symmetry models in R, let NI be the number of rows I of the I × I
table and freq the vector of cell frequencies, given by rows. The associated row
and column factors are defined by the commands
> row <- gl(NI,NI,length=NIˆ2) ; col <- gl(NI,1,length=NIˆ2)

and can be bound along with the frequencies’ vector in the data frame example
> example <- data.frame(freq,row,col)

The model of complete symmetry (S) is then fitted by
> S <- gnm(freq∼Symm(row,col),data=example,family=poisson)
while that of QS by
> QS <- gnm(freq∼Symm(row,col)+row,data=example,family=poisson)
This fits the QS model in its log-linear form (9.19) subject to (9.12) but under the
constraint a1 = 0. These ai’s have to be rescaled linearly to satisfy constraint (9.20).
This is achieved by
> r1 <- NI*(NI+1)/2+1 ; r2 <- r1+ (NI-2)

> a <- c(0, coef(QS)[r1:r2]) ; a <- a-sum(a)/NI

Vector a is the vector of the ML estimates of the model’s (9.19) parameters ai

(i = 1, . . . , I). The ML estimates of the αi parameters of model expression (9.21)
are then
> alpha <- exp(a)

Alternatively, the α̂i’s can be obtained by substituting the cell probabilities πi j

in (9.22) by their ML estimates under QS π̂i j, avoiding thus the rescaling of vector
a above. This is implemented by
A <- exp(rowSums(log(matrix(QS$fitted.values, nrow=NI, byrow=T)/

+ t(matrix(QS$fitted.values, nrow=NI, byrow=T))))/NI)

For the T and D models, we need to define two further vectors t and d. For this,
we define the vectors (not factors) indicating the row and column for each entry of
freq, X and Y, respectively, as
> v <- c(1:NI) ; X <-rep(v,each=NI) ; Y <-rep(v, NI)

Then, the factors t and d are
> t<-as.numeric(X>Y)

and
> d <- X-Y

> for(i in 1:NIˆ2) {if (d[i]<0)

+ {d[i]<-NI+abs(d[i])} else {d[i]<-d[i]+1}}

> d<-factor(d)
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Table 9.2 The factors needed to fit the symmetry models in GLM

row col sm sqs t d

1 1 1 1 1 2 3 4 2 3 4 5 1 2 3 4 0 0 0 0 1 5 6 7
2 2 2 2 1 2 3 4 3 4 5 6 2 1 5 6 1 0 0 0 2 1 5 6
3 3 3 3 1 2 3 4 4 5 6 7 3 5 1 7 1 1 0 0 3 2 1 5
4 4 4 4 1 2 3 4 5 6 7 8 4 6 7 1 1 1 1 0 4 3 2 1

respectively. Finally, the T and D models are defined by
> TS <- gnm(freq Symm(row,col)+t,data=example,family=poisson)

> DS <- gnm(freq∼Symm(row,col)+d,data=example,family=poisson)
The derived ML estimates for the parameters associated to t and d are the τ̂∗ and
δ̂ ∗k , k = 1, . . . , I − 1.

The symmetry models discussed above can alternatively be fitted in glm. For this,
the factors row, col, sm, sqs, t, and d are required. To understand the structure of
these factors, they are provided for I = 4 in Table 9.2.

For any value of NI, these factors, expanded in a vector form by rows, are created
by function SYMV(NI) of the web appendix mentioned in Sect. A.3.6. Thus, for the
data frame defined above, we set
> row <-SYMV(NI)$row ; col <- SYMV(NI)$col

> t <- SYMV(NI)$t ; d <- SYMV(NI)$d

> sm <- SYMV(NI)$sm ; sqs <- SYMV(NI)$sqs

and the symmetry models are fitted by
> S.model <- glm(freq∼sm+sqs,data=example, family=poisson)

> QS.model <- glm(freq∼row+col+sqs,data=example, family=poisson)

> TS.model <- glm(freq∼sm+sqs+t,data=example, family=poisson)

> DS.model <- glm(freq∼sm+sqs+d,data=example, family=poisson)

To fit the MH model in mph, the function
> h.fct <- function(p){

p.row <- M.fct(row)%*%p
p.col <- M.fct(col)%*%p

as.matrix(c(p.row[-NI] - p.col[-NI]))}

is required, that returns the I−1 differences between the row and column marginals,
excluding the last category marginal that is redundant. The MH model is then
applied by
> MH <- mph.fit(y=freq, h.fct=h.fct)

and summary results, the cell estimates and residuals included, are printed by
> mph.summary(MH,T)

Alternatively, MH can be tested conditionally, provided the QS model holds as
> anova(S.model, QS.model, test="Chisq")
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Table 9.3 Cross-classification of GSS male respondents by degree of pride with regard to
America’s economic (rows) vs. scientific and tech (columns) achievements

Science and tech

Economic 1 2 3 4 Total

1: Very proud 369 59 6 1 435
2: Somewhat proud 226 238 10 3 477
3: Not very proud 60 67 14 2 143
4: Not proud at all 7 16 3 2 28

Total 662 380 33 8 1083

Table 9.4 Goodness of fit for symmetry models applied on Table 9.3

Model G2 df p-value

I 210.3535 9 0.0000
S 217.9977 6 0.0000
MH 197.8918 3 0.0000
QS 3.4181 3 0.3315
T 8.4775 5 0.1318
D 4.3021 3 0.2306
D23 4.3288 4 0.3633

9.2.7 Example 9.2

From the GSS data set, males’ degree of pride with regard to America’s economic
vs. scientific and tech achievements is cross-tabulated as shown in Table 9.3.

The symmetry models discussed above are applied on this data set and the
corresponding goodness-of-fit statistics are provided in Table 9.4. For comparative
purposes the statistic for testing independence is also provided.

Models S, QS, T, D, and MH are fitted in R, as described in Sect. 9.2.6, for
> NI <- 4

> freq <- c(369,59,6,1,226,238,10,3,60,67,14,2,7,16,3,2)

> vision.w <- data.frame(freq,row,col)

and by changing the data frame name in gnm model specification commands from
data=example to data=vision.w.

The test statistics for S and MH are highly significant while models QS, T, and
D are of acceptable fit. The test for model MH in Table 9.4 is the unconditional,
based on marginal models. MH can also be tested, conditional on QS, engaging
property (9.18). Indeed, G2

MH|QS =G2
s −G2

QS = 217.9977−3.4182= 214.5795 with
associated d f (MH|QS) = d f (S)− d f (QS) = 3.

Regarding the QS model, the ML estimates of the ai parameters are obtained by
the procedure described in Sect. 9.2.6 and for this example are equal to â1 =−1.766,
â2 = −0.487, â3 = 1.112, and â4 = 1.140, leading further to the ML estimates of
the αi = logai parameters, α̂1 = 0.171, α̂2 = 0.615, α̂3 = 3.040, and α̂4 = 3.128.
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The parameter estimated by model T in gnm is τ̂∗ = 1.5431, leading to τ̂ =
2exp(τ̂∗)

exp(τ̂∗)+1 = 1.6478. Similarly, for the D model, the gnm output provides δ̂ ∗1 =

1.4277, δ̂ ∗2 = 2.1335, δ̂ ∗3 = 1.9459 and thus δ̂1 = 1.6131, δ̂2 = 1.7882, δ̂3 = 1.7500.
We observe that δ̂2 and δ̂3 violate the order δ1 ≤ δ2 ≤ δ3. The order-restricted

ML estimates are δ̂ ∗1 = 1.4277, δ̂ ∗2 = δ̂ ∗3 = 2.1163 and the corresponding model is
denoted by D23, the subscript indicating the δ -parameters that are equated. To obtain
D23 we need to modify accordingly the factor d of the D model in the corresponding
gnm model formula. The factor d for I = 4 is provided in Table 9.2 and to fit the D23

model, it has to be modified to d2, which is

1 5 6 6
2 1 5 6
3 2 1 5
3 3 2 1

This can easily be derived by
> d23<-d

> for(i in 1:NIˆ2) {if (d23[i]==7) {d23[i]<-6}

+ else if (d23[i]==4) {d23[i]<-3}}

The model is finally obtained by
> d23 <- factor(d23)

> D23 <- gnm(freq∼Symm(row,col)+d23,data=vision.w,family=poisson)
Among the symmetry models tried, based on their goodness of fit and parsimony,

our final choice is the D23. However, different adopted models highlight different
features of the data set. Thus, in this GSS example, the T, D, and D23 models all
state that responders are more proud for scientific and tech achievements of the USA
than for economic. Their difference lies on the refining of the comparison. Under
T the ratio of the expected probabilities in symmetric cells is constant for any level
comparison of the pride scale, while under D it is constant within level comparisons
that are equally far apart. Under D23 this ratio differs for comparing levels that
are one unit apart and levels that are two or three units apart. In particular, model
T states that comparing the respondents’ feelings toward scientific and economic
achievements, when opposing any two levels of the pride scale, the probability
that the “more proud” level is assigned to the scientific achievements is 1.54 times
higher than that of being assigned to the economic ones. On the other hand, under
the proposed D23 model, the probability of being more proud for scientific than
for economic achievements is 1.4 times higher than that of being more proud for
economic achievements, when comparing “very proud” to “somewhat proud,” and
2.1 times higher for any comparison between the levels “somewhat proud,” “not
very proud,” and “not proud at all.”

Furthermore, we observed that the MH model is of very bad fit. The estimates
of the QS model ai’s indicate that marginal inhomogeneity is mainly due to the
first category, followed by the last. More detailed, the relative contribution of each
category to inhomogeneity is dictated by the ordering of the absolute values of α̂i’s
from highest to lowest.
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9.3 Quasi-Independence Models for Square Tables

Quasi-independence models have been introduced in Sect. 5.5. In the special case of
square tables with commensurable classification variables, a basic model of special
interest is the QI model that excludes the main-diagonal entries. In a mobility table
or a panel study this corresponds in excluding from the analysis cases they were
stable and focusing thus on items changing status. The QI model fitted on the non-
diagonal entries of a I × I table is defined in terms of expected cell frequencies as

mi j = αiβ j , i �= j , i, j = 1, . . . , I . (9.30)

According to the problem under study, the diagonal entries are either structural zeros
or their values are fitted exactly. In practice, model (9.30) can be fitted by function
QI.model(), discussed in Sect. 5.5, defining appropriately the index vector zer.
Alternatively, it can be fitted in the gnm package, activating the Diag() structure.
Such a case is exhibited in the Example given in Sect. 9.3.1 below. For I = 3 the QI
model (9.30) is equivalent to the QS model while for I > 3, it implies QS.

Interesting applications of model (9.30) are met in the context of analyzing
rater agreement (see Sect. 9.5.2) and mobility tables of any type (like social or
occupational) and of measuring change (e.g., in opinion or voting), like Example
9.3 below.

Another QI model for square tables occurs in cases under which all cells above
(or below) the diagonal of the table are structural zeros. This triangular type QI
model makes sense when the commensurable classification variables are of ordinal
scale and is known that in the second occasion, the situation measured cannot be
worse (or better) than in the first, producing thus structural zeros. For example,

mi j = αiβ j , i ≥ j , i, j = 1, . . . , I , (9.31)

fits the independence model only on the lower triangle of the table. Model (9.31)
can be fitted by function QI.model(), for structural zeros index vector given by
zer <- rep(1, NIˆ2)-t

for NI=I and t the corresponding vector introduced in Sect. 9.2.6. Model (9.31) is
illustrated in Example 9.4.

9.3.1 Example 9.3

The example analyzed here is an election example, exhibiting the voting shifts
of a sample of voters between the 1970 and 1974 (February) elections in Great
Britain. The data, provided in Table 9.5, are initially from Fuller (“New Society,”
12 September 1974) and analyzed by Morgan and Titterington (1977). A voting
shift table, formulated by cross-classifying the vote of a sample of voters at two
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Table 9.5 Voting transitions between 1970 and 1974 Morgan and Titterington (1977)

1974 election

1970 election Con. Lab. Lib. Abst. Total

Con. 619 (619.00) 62 (62.15) 115 (115.24) 79 (78.61) 875
Lab. 41 (40.85) 604 (604.00) 99 (96.31) 74 (76.84) 818
Lib. 11 (10.76) 11 (13.69) 82 (82.00) 9 (6.55) 113
Abst. 73 (73.39) 112 (109.16) 63 (65.45) 98 (98.00) 346

Total 744 789 359 260 2152

In parentheses are given the ML estimates of the expected cell frequencies under the QS model

elections, is a classical example of a table with augmented diagonal entries (stable
party preference). It is unrealistic to assume (or test) independence for such tables.
It is however of interest to test whether the shifts in voting behavior are independent
for voters that changed preference, i.e., to test model (9.30).

The QI model (9.30), excluding the main-diagonal cells, is fitted on Table 9.5 in
gnm of R, as is illustrated next:
> NI <- 4

> row <- gl(NI,NI,length=NIˆ2)

> col <- gl(NI,1,length=NIˆ2)

> freq <- c(619,62,115,79,41,604,99,74,11,11,82,9,73,112,63,98)

> election <- data.frame(freq,row,col)

> QI<-gnm(freq∼row+col+Diag(row,col),data=election,family=poisson)

The degrees of freedom for model (9.30) applied on Table 9.5 are d f (QI) = 4
and the associated LR statistic value is G2 = 39.874, highly significant. Thus, the
QI model is rejected for this data set. However, the improvement of goodness
of fit achieved by the QI model, compared to the classical independence model
(G2 = 1417.275 with d f (I) = 9), is impressive. The QS model is of very good fit
for this data set with G2 = 1.745 (d f (QS) = 2, p-value=0.8832). The estimates of
its α parameters are (α̂1, α̂2, α̂3, α̂4) = (2.044,1.343,0.191,1.908). The α̂i values,
compared relative to 1, indicate that the largest shift occurred toward the Liberal
party that strengthened its power in 1974 while all other parties lost power, the
greatest loss observed for the Conservatives.

9.3.2 Example 9.4

The data in Table 9.6 are from Bishop and Fienberg (1969) and refer to 121 stroke
patients at the Massachusetts General Hospital. The patients’ physical disability
following a stroke was graded on their admission on a five-point scale A–E of
increasing severity. The patients were re-rated on the same scale in discharge. One
patient’s score on the second examination could be the same or better than the first
one, since none of the patients had a second stroke. This data set was reanalyzed by
Altham (1975) and Goodman (1979a).
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Table 9.6 Initial and final rating on physical disability of 121 stroke patients

Final state

Initial state A B C D E Total

A 5 (5.00) – – – – 5
B 4 (3.75) 5 (5.25) – – – 9
C 6 (4.43) 4 (6.20) 4 (3.37) – – 14
D 9 (6.16) 10 (8.63) 4 (4.69) 1 (4.52) – 24
E 11 (15.66) 23 (21.92) 12 (11.93) 15 (11.48) 8 (8.00) 69

Total 35 42 20 16 8 121

In parentheses are given the ML estimates of the expected cell frequencies under the QI
model

In this setup, QI is defined by model (9.31), which is fitted on data of Table 9.6
in R by function QI.model() with the associated zer vector defined through the X

and Y vectors of Sect. 9.2.6. In particular,
> v <- c(1:5) ; X <-rep(v,each=5) ; Y <-rep(v, 5)

zer <- rep(1,25)-as.numeric(X>=Y)

and finally
> freq<-c(5,0,0,0,0,4,5,0,0,0,6,4,4,0,0,9,10,4,1,0,11,23,12,15,8)

> QI.T <- QI.model(freq,zer,5,5)

lead to G2 = 9.5958 with an asymptotic p-value equal to 0.1427 on d f = 6. Thus,
QI is plausible, indicating that for these stroke patients, the state of their physical
ability in discharge can be regarded as independent of their initial state.

9.4 Symmetry Models with Scores

9.4.1 Homogeneous Association Models

For an I × I contingency table, the homogeneous RC(M) association model, 1 ≤
M ≤ I − 1, is denoted by RCh(M) and is model (6.18) with homogeneous row and
column scores, i.e., with

μim = νim , i = 1, . . . , I, m = 1, . . . ,M .

Hence, it is defined as

logmi j = λ +λX
i +λY

j +
M

∑
m=1

ϕmμimμ jm, i, j = 1, . . . , I , (9.32)

with d f (RCh(M)) = (I−M−1)2+∑ρ
∗
ρ=0(I−2−ρ), where ρ∗ =min{M−1, I−2}.

For M = I − 1, d f (RCh(I − 1)) = (I − 1)(I − 2)/2 and the RCh(I − 1) model
is equivalent to the QS model. For 1 ≤ M < I − 1, more parsimonious models of
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symmetric interactions are derived. The most well-known model of this type is
the homogeneous RC model, RCh, derived for M = 1. In this case, the degrees
of freedom given by the formula above reduce to d f (RCh) = (I − 1)(I − 2).
However the RCh(M) model with M < I − 1 does not fit the diagonal entries
exactly. To consider special types of quasi-symmetric model, in the sense that the
interactions are symmetric and the diagonal cells are excluded from the model, I
extra parameters have to be added in the model. Thus, for 1 ≤ M < I−1, the model

logmi j = λ +λX
i +λY

j + diI(i = j)+
M

∑
m=1

ϕmμimμ jm, i, j = 1, . . . , I , (9.33)

is a quasi-symmetric model and will be denoted by RCd
h(M). Of special interest is

the simplest model of this class RCd
h , achieved for M = 1,

logmi j = λ +λX
i +λY

j + diI(i = j)+ϕμiμ j, i, j = 1, . . . , I . (9.34)

For I = 3, model (9.34) is saturated while for I = 4 it is equivalent to the QS model
and d f (RCd

h) = 3. For M > 4, RCd
h is more parsimonious than QS and d f (RCd

h) =
I2 − 4I+ 2 (Goodman 1985).

The simplest quasi-symmetric model is the homogeneous uniform association
model with the diagonal fitted exactly, Ud

h , which is defined by (9.34) with the
scores μi, i= 1, . . . , I, being not parametric but known and equidistant for successive
categories. The associated degrees of freedom are d f (Ud

h) = (I−1)2− I−1. Recall
that under the standard uniform (U) association model, all local odds ratios are
constant, as stated by (6.1). For the Ud

h model, due to the exclusion of the diagonal
cells, (6.1) is extended to

logθL
i j = ϕ(μi − μi+1)(μ j − μ j+1)+ (di+ di+1)I(i = j) (9.35)

−diI(i = j+ 1)− di+1I(i = j− 1) , i, j = 1, . . . , I − 1 , i < j ,

while θL
i j = θL

ji, due to the quasi-symmetric nature of the Ud
h model.

Note that for the homogeneous association models RCh, RCd
h , and Ud

h , the scores
μi, i = 1, . . . , I, are under constraints (6.5), i.e., for uniform weights in the general
form of constraints (6.17). Marginal weights are not possible, since they have to be
applied simultaneously for rows and columns. This is obviously true also for the
RCh(M) and RCd

h(M) models with M > 1.

9.4.2 Ordinal Quasi Symmetry

For ordinal classification variables a special QS model has been proposed by
Agresti (1983b), which is based on the assignment of known score values to their
categories and has just one parameter more than the model of complete symmetry,
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independently of the size of the table, the model of ordinal quasi symmetry (OQS).
It is a simpler version of Goodman’s D model, for the case the log-odds parameters
δ ∗i− j in (9.26) follow a pattern linear in the distance between the row and column
categories i− j, i.e., for

δ ∗i− j = δ
i− j , i > j . (9.36)

This model is called the OQS model, since it is simultaneously a special type of
quasi-symmetry model as well, as can easily be verified by setting αi = δ i in (9.21).
Whereas likelihood equations for QS equate observed and fitted margins, this model
equates observed and fitted means.

In log-linear formulation, a generalized OQS model that allows to scale the
differences i− j in (9.36), for different i’s and j’s, i > j, is

logmi j = λ +λX
i +λX

j +βui+λXY
i j , i, j = 1, . . . , I, (9.37)

with λXY
i j = λXY

ji , i, j = 1, . . . , I, and u1,u2, . . . ,uI known scores. For ui = i, i =
1, . . . , I, this model is equivalent to (9.36) with β = − logδ . For β = 0, (9.37)
reduces to the S model.

For ordinal square tables, OQS is a very powerful model, since it can be
interpreted as a D and a QS model. It is very parsimonious having just one parameter
more than the model of complete symmetry S. Furthermore, it fits well when there
is an underlying bivariate normal distribution (Agresti 1983b).

The OQS model is invariant under linear transformations of the scores; thus we
can set, without loss of generality, the scores to satisfy the constraints

∑
i

ui = 0 and ∑
i

u2
i = 1. (9.38)

These constraints are useful for the interpretation of β and in agreement with
standard identifiability restrictions set on scores.

9.4.3 Example 9.2 (Continued)

Reconsidering the example introduced in Sect. 9.2.7, since the classification scale
is ordinal from very proud (1) to not proud at all (4), the quasi-symmetric models
based on scores, discussed in this section, can be applied.

Recall that for this 4× 4 example X and Y are the vectors of the row and column
classification variables, respectively, row and col the corresponding factors, and
vision.w the associated data frame.

Then, the OQS model can easily be fitted in gnm by specifying the model as
> OQS <- gnm(freq∼Symm(row,col)+X, data=vision.w,family=poisson)

This way, the scores used in (9.37) are the simple row scores appearing in X, i.e.,
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ui = i (i = 1, . . . ,4). To fit model (9.37) under the constraints (9.38), the scores in X

need to be rescaled before the application of the model. This rescaling is achieved
by function rescale.square(), to be found in the web appendix mentioned in
Sect. A.3.6. Thus, if Xu is the vector of the linearly rescaled scores, model OQS
under constraints (9.38) is fitted by
> NI<- 4 ; Xu<-rep(rescale.square(NI), each=NI)

> OQS <- gnm(freq∼Symm(row,col)+Xu, data=vision.w,family=poisson)

The RCd
h is obtained in gnm by

> gnm(freq∼row+col+Diag(row,col)+MultHomog(row,col),
+ family=poisson,data=vision.w)

In this case, model RCd
h is equivalent to the classical QS model, since I = 4. For the

simpler model of homogeneous uniform association Ud
h with scores constrained

by (6.5), we have
> Yu<-rep(rescale.square(NI), NI) ; u <- Xu*Yu

> U.hd<-gnm(freq∼row+col+Diag(row,col)+u,family=poisson,
+ data=vision.w)

More generally, the homogeneous RC model RCh, with no special consideration
for the diagonal entries, is fitted as above by omitting the Diag(row,col) term.
For the RCd

h(K) model, with K > 1, the term MultHomog(row,col) is replaced by
instances(MultHomog(row,col),K).

For data in Table 9.3, both models, OQS and Ud
h , provide an adequate fit.

In particular, G2(OQS) = 8.8867 with d f = 5 (p-value=0.1137) and G2(Ud
h) =

3.9002 with d f = 4 (p-value=0.4197).
For scores satisfying (9.38), the ML estimate of parameter β in (9.37) is β̂ =

2.876. The positive sign of β̂ indicates that the lower triangle of Table 9.3 is more
probable than the upper, i.e., responders are less proud for economic than for science
and tech achievements. Furthermore, for the probabilities in symmetric cells under
OQS, it holds by (9.37) that

πi j

π ji
= exp[β (ui − u j)] , i > j .

That is, according to the OQS model’s structure, the odds of an observation falling
a certain distance under the main diagonal of the table (instead of the same distance
above it) are estimated as

π̂i j

π̂ ji
= exp[2.876(ui− u j)] , i > j .

Hence, the probability of being not very proud for economic achievements (i = 3)
and very proud for science and tech achievements ( j = 1) is

π̂31

π̂13
= exp{2.876[0.2236− (−0.6708)]}= exp(2.572) = 13.097
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times the probability of being not very proud for science and tech and very proud
for economic achievements. The same proportionality constant applies also when
comparing any i, j levels two units apart, i.e., for I = 4, and also when comparing
i = 4 to j = 2.

Fitting the Ud
h model subject to (6.5) leads to ϕ̂ = 2.097 for the intrinsic

association parameter ϕ . Under this model and in view of (9.35), interpretation
results based on specific odds ratios can be extracted.

9.5 Rater Agreement

Consider an I × I contingency table (ni j)I×I , cross-classifying items according to
their ranking by two separate raters (medical doctors, teachers, book critics, wine
tasters, etc.) on the same scale. Interest lies in analyzing their agreement. The
natural choice for measuring agreement of the raters is the probability of their actual
agreement πa = ∑I

i=1πii .
The most popular measure of two raters’ agreement is Cohen’s kappa (Cohen

1960), defined as

κ =
πa −πI

1−πI
, (9.39)

where πI =∑I
i=1πi+π+i is the probability of the expected agreement if the two raters

were rating independently. Thus, it adjusts the probability of actual agreement for
“random” agreement by chance, which is captured by πI. It is estimated by

k = κ(π̂a = pa, π̂I = pI) =
pa − pI

1− pI
,

with pa =∑I
i=1 pii =

(
∑I

i=1 nii
)
/n the observed proportions of actual agreement and

pI = ∑I
i=1 pi+p+i =∑I

i=1(ni+n+i)/n the ML estimate of πI.
Coefficient k expresses the observed agreement as a proportion of the maximum

possible agreement, depending on the marginal distributions. Theoretically, it ranges
in the interval [ −pI

1−pI
, 1] but in practice,

0 ≤ k ≤ 1 ,

since agreement rarely is worse than expected under independence. Agreement is
characterized as “perfect,” “good,” or “poor,” if k > 0.75, 0.4≤ k ≤ 0.75, or k < 0.4,
respectively, although the cut points are not clear, depending upon the application
area.

For large sample size n, κ̂ is asymptotically normal distributed κ̂ ∼N
(
κ , σ2

k

)
.

Based on its estimated asymptotic variance,
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Table 9.7 Cross-classification of 120 patients (artificial data) according to their depression
severity rating of two independent psychiatrists from negative (D0) to most severe (D3)

Psych. Psychiatrist B

A D0 D1 D2 D3 Total

D0 34 5 3 0 42
D1 1 21 9 2 33
D2 0 2 18 7 27
D3 0 1 4 13 18

Total 35 29 34 22 120

σ̂2
k = (1−pa)

n(1−pI)2

{
pI +

2[2pa pI−∑i pii(pi++p+i)]
(1−pI)

+
(1−pa)[∑i, j pi j(p j++p+i)

2−4p2
I ]

(1−pI)2

}

(Fleiss et al. (1969)), the asymptotic 100(1−α)% confidence interval for κ can be
derived or the level of its strength can be tested (H0: κ = κ0 vs. one- or two-sided
alternatives, for given κ0).

9.5.1 Example 9.5

The same patients are classified by two independent psychiatrists regarding the
presence and severity of depression, as shown in Table 9.7.

For this data set, pa = 0.717, pI = 0.260, leading to k = 0.617 and σ̂k =
0.056. The difference between the observed agreement and that expected under
independence is about 62% of the maximum possible difference; the asymptotic
95% CI is (0.508, 0.726) indicating moderate to strong agreement between the two
psychiatrists.

9.5.2 Agreement on Ordinal Rating Scales

Cohen’s κ considers the classification variables as nominal, assuming equally
serious the effect on disagreement of all off-diagonal cells, independently from
their distance from the diagonal. In most cases, classification is based on an ordinal
scale and the disagreement is stronger for larger distances between the ranking
categories. The weighted kappa (Spitzer et al. 1967; Cohen 1968) is a measure that
weights the disagreements, according to their severity. The system of weights used
(wi j)I×I satisfies 0 ≤ wi j ≤ 1, with wi j = wji and wii = 1, for all i, j = 1, . . . , I.
Given the weights, the weighted agreements, actual and under independence, are
πw

a = ∑i=1, j wi jπi j and πw
I = ∑i, j wi jπi+π+ j, respectively. The weighted kappa is

then

κw =
πw

a −πw
I

1−πw
I

. (9.40)



254 9 Analysis of Square Tables

A common choice is the uniform spaced weights

wi j = 1−|i− j|/(I− 1) , i, j = 1, . . . , I, (9.41)

which consider stronger disagreement for cells farther apart from the main diagonal.
Another option is the weights by Fleiss and Cohen (1973)

wi j = 1− (i− j)2/(I− 1)2 , i, j = 1, . . . , I. (9.42)

Inequalities between Cohen’s unweighted kappa and the weighted kappa with
weights (9.41) and (9.42) are studied in Warrens (2013).

9.5.3 Cohen’s Kappa in R

Cohen’s kappa, weighted and unweighted, can be computed in R in many packages.
Most of them, like psych and irr, do not apply directly on the cross-classification
table but on the analytical by subject ratings in n× 2 matrix.

A handy function is Kappa of library vcd that applies on the I × I table and
provides the unweighted and weighted kappa estimates along with their asymptotic
standard errors.

Thus, for Table 9.7, k and kw are computed as
> library(vcd); freq <- c(34,5,3,0,1,21,9,2,0,2,18,7,0,1,4,13)

> depression <- matrix(freq, byrow=T, ncol=4)

> k.est <- Kappa(depression)

Under k.est is saved

value ASE
Unweighted 0.6172249 0.05557287
Weighted 0.7239476 0.12554597

The 95% CI is obtained by function confint() of vcd as
> confint(k.est)

Kappa lwr upr
Unweighted 0.5083041 0.7261457
Weighted 0.4778820 0.9700131

Argument level= of confint controls the significance level of the CI.
For kw, the default weights used in (9.40) are the uniform spaced weights (9.41).

Alternatively, the Fleiss–Cohen weights (9.42) can be applied by
> Kappa(depression, weights = "Fleiss-Cohen")

giving kw = 0.816 and σ̂k.w = 0.108.
Although measures of agreement are convenient and easy to use and inter-

pret, a model-based analysis of the agreement–disagreement tables is much more
informative. Beyond measuring the agreement, in most applications, is of special
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interest to detect special patterns of disagreement or draw conclusions with regard to
its direction. This is possible through the models QI, QS, T, and D, discussed
previously in this chapter. The discussion on interpreting symmetry models applied
on the examples in Sects. 9.2.7, 9.3.1, and 9.4.3 is toward this direction.

For Table 9.7, the T model is of very good fit with G2(T) = 3.023
(p-value=0.696, d f = 5) and τ̂∗ = −1.179, leading to τ̂ = 0.47 (for model fit in R
and derivation of τ̂ , see the example in Sect. 9.2.7). This means that psychiatrist
A is “looser” in his diagnosis than B. In particular, whenever a disagreement
occurs between them, it is 2.13 (=1/0.47) times more probable that psychiatrist B
did the more severe diagnosis. The QS model describes also very well these data
(G2(T) = 1.012, p-value=0.798, d f = 3), highlighting different aspects of the
comparison and evaluating marginal inhomogeneity.

9.6 The Bradley–Terry Model

The Bradley–Terry (BT) model is a well-known model used whenever items of a
group are repeatedly compared to each other in pairs. Characteristic applications
occur in sports, opposing teams’ win–losses, and in customers’ preference for
competitive projects. Let us assume that I items (teams, products, etc.) are cross-
classified in pairs and within the pair (i, j) letΠi j be the probability that i “won” (or
is preferred to) j with Πi j +Π ji = 1. The model is then defined by

log(
Πi j

Π ji
) = γi − γ j , i, j = 1, . . . , I ,

(Bradley and Terry 1952). One of the γ parameters is redundant, say γ1 = 0.
If γi = γ j, then Πi j = Π ji, while Πi j > Π ji, for γi > γ j. The equivalent model’s
expression in terms of the preference probability of i over j is

Πi j =
eγi

eγi + eγ j
, i, j = 1, . . . , I .

It is connected to the classical QS model. In particular, Fienberg and Larntz
(1976) showed that BT is the logit version of the QS model. To see this, consider a
probability table (πi j) and let π∗i j = πi j/(πi j +π ji) be the conditional probability of
cell (i, j), conditional on the symmetric pairs (i, j) and ( j, i). Then under the QS
model, as defined by (9.21), it holds

π∗i j

π∗ji
=
πi j

πi j
=

ai

a j
.

Hence, Πi j = π∗i j for ai ∝ exp(γi).
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The BT model is strongly related to the choice axiom of Luce (1959); therefore
it is also known as the Bradley–Terry–Luce model. Imrey et al. (1976) expressed
the BT model as a quasi-independence model. Extensions of the BT model in
order to allow for ties have been considered by Glenn and David (1960), Rao and
Kupper (1967), and Davidson (1970). Davidson and Beaver (1977) incorporated in
the model the within-pair order effect (or home team advantage). Tutz (1986) and
Bockenholt and Dillon (1997) proposed extensions for ordered responses. The BT
and the Davidson models have been extended for more than one response variables
through logistic models by Bockenholt (1988). Su and Zhou (2006) connected the
BT to the proportional hazards model (Cox 1972). The literature on the Bradley–
Terry model and its generalizations, known as paired comparison models, is vast
(see David 1988; Train 2009).

In R, BT models can be fitted by the BradleyTerry2 package of Turner and
Firth (2012b).

9.7 Overview and Further Reading

Stuart (1955) introduced a test for marginal homogeneity of I × I tables with the
asymptotic null distribution of his test statistic being X 2 with df=I−1. The test by
Bhapkar (1966, 1979a) is of Wald type and asymptotic equivalent to Stuart’s test.
Similar is the X 2

I−1 test proposed by Madansky (1963), who maximized the log-
likelihood kernel subject to the marginal homogeneity constraints and handled the
maximization problem by a gradient method (see Bishop et al. 1975, pp. 294–295).
Ireland et al. (1969) discussed another X 2

I−1 test, yielding an iterative estimation
of the expected cell frequencies under marginal homogeneity by a modified version
of the minimum discrimination information estimation. All these standard tests do
not take into consideration the possible ordering of the classification variables’
categories. Agresti (1983c) proposed alternative approaches that make use of
category order and showed by power comparisons for certain common alternatives
that they tend to yield more powerful tests. McCullagh (1977) developed statistics
to measure the lack of marginal homogeneity in square tables for paired data based
on global odds ratios and a logistic model.

The model of quasi symmetry (QS) was introduced by Caussinus (1965) and
is presented in detail in the classical reference of Bishop et al. (1975). McCullagh
(1978) connected the QS model to Markov chains; the transition probabilities matrix
of a Markov chain is quasi symmetric. An application-orientated presentation of the
QS model is provided in McCullagh (1982). Fienberg and Larntz (1976) proved
that the Bradley–Terry model can be defined as the logit version of the QS model.
Agresti (1993) showed that generalized Rasch models for ordinal response items
are related to quasi-symmetric log-linear models with diagonal parameters. Bavaud
(2002) provided an interesting approach of quasi symmetry and connected it to
gravity model. For an overview and connections to other family of models, see
Goodman (2002a).
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The QS model exhibits a similar property to that of association models. In par-
ticular, QS can be viewed as a departure from complete symmetry model, and it can
be proved that under certain conditions, this is the closest to complete symmetry
in terms of the Kullback–Leibler divergence (Kateri and Papaioannou 1997). This
leads to the generation of a class of quasi-symmetry models, based on φ -divergence,
which includes the standard QS model as a special case. The ordinal QS model can
be generalized toward this direction as well (Kateri and Agresti 2007).

9.7.1 Mobility Tables and the Mover–Stayer Model

The analysis of mobility tables relies mainly on log-linear and association models
with or without special treatment for the diagonal entries (see Goodman 1979d).
Characteristic examples of social and class mobility tables are Tables 4 and 6,
respectively, in Breen (2008). Models for mobility tables have been extended to
I × I ×K tables, modeling mobility in different layers (Xie 1992). Mobility tables
have also been analyzed by modeling simultaneously their joint and marginal
distributions (Becker 1994; Lang and Agresti 1994; Lang and Eliason 1997; Sobel
et al. 1998).

Well known for mobility tables is the Mover–Stayer (MS) model. The MS
model assumes that there are two types of individuals: the “stayer,” who remains
in the same category during the entire period of study, and the “mover,” who
changes categories over time and whose moves are described by a Markov chain of
constant transition probabilities matrix. MS was initially introduced in the context
of industrial mobility tables by Blumen et al. (1955) and further developed, among
others, by Goodman (1961), Spilerman (1972), Frydman (1984), and Fuchs and
Greenhouse (1988) and for panel data by Cook et al. (2002).

Extensions of the association models to handle square tables with diagonal
values of strong effect, like mobility tables, have been presented in Sect. 9.4.1.
The adjustment of correspondence analysis (CA) to apply to such tables has been
considered by Greenacre (2000) and is based on the orthogonal decomposition of the
data table into two tables, a symmetric and a skew symmetric, before its analysis by
CA. This decomposition is due to Gower (1977) and Constantine and Gower (1978).

9.7.2 Measuring Agreement

Though Cohen’s kappa is the predominant measure of rater agreement, alternative
measures have been proposed. Hutchinson (1993), for example, argued that the
tetrachoric correlation coefficient is preferable to Cohen’s kappa, because the latter
is sensitive in different placing of the boundaries between categories. For a review
on measures of agreement, see Banerjee et al. (1999). See also Schuster (2004) and
Fay (2005).
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References on measures of agreement among multiple raters include Fleiss
(1971), Landis and Koch (1977), James (1983), Kraemer (1980), Janson and Olsson
(2004), and Schuster (2004).

Beyond criticism and contradictions between measures, an assessment of agree-
ment based only on measures can lead to severe loss of information. Furthermore, a
model-based approach is extended naturally to problems of multi-rater agreement.

Special log-linear, association, or symmetry models for modeling rater agree-
ment were proposed by Goodman (1979c), Tanner and Young (1985), Darroch and
McCloud (1986), Agresti (1988), Becker and Agresti (1992), Agresti and Lang
(1993), Perkins and Becker (2002), and Valet et al. (2007). Schuster (2002) proposed
a mixture model for rater agreement that includes the models of Tanner and Young
(1985) and Agresti (1988), among other, as special cases. Agresti and Lang (1993)
and Yang and Becker (1997) modeled agreement by latent class models. A logistic
regression model, adjusting for covariates, has been proposed by Barlow (1996).

9.7.3 Symmetry Models for Multi-way Tables

The models of symmetry, quasi symmetry, and marginal homogeneity have been
generalized to higher-order contingency tables Ik, k > 2, mainly by Bhapkar
(1979a,b) and Bhapkar and Darroch (1990) and Lovison (2000). With respect to
the conditional symmetry model T , Read (1978) and Sobel (1988) considered the
conditional within levels T symmetry model for K stratified I × I contingency
tables by applying the two-way T model on each of the K partial square tables.
A generalization of the concept of conditional symmetry to three-way tables and
definition of conditional symmetry models of first and second order for three-
way tables is provided by Kateri and Dellaportas (2012). These models retain all
desirable properties with respect to connections between the three-way conditional
symmetry models as well as to the symmetry and marginal homogeneity models for
three-way tables, i.e., extensions of property (9.25).

9.7.4 Clustered Categorical Data

We have seen that square tables with commensurable ordinal classification variables
occur often in panel studies of two occasions. Such correlated ordinal data can
be modeled through global odds ratios based on a time- and subject-dependent
covariate vector by the maximum likelihood method (Molenberghs and Lesaffre
1994) or by the GEE approach (Williamson et al. 1995), both methods being also
applicable to studies where the response variable is measured more than twice.
Williamson and Kim (1996) propose a regression model for bivariate correlated
ordinal data that associates the outcome data with grouping variables and other
covariates.
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Clustered categorical data of two or more occasions occur often in longitudinal
studies. They are treated either through marginal models (see also Sect. 5.7.2)
or random effect models. Marginal models treat the pairwise among cluster-level
dependence structure as nuisance while random effect models include also cluster-
specific effects that are random. They are applied through the generalized linear
mixed models (GLMM), i.e., GLMs are extended to include also random effects.
Characteristic related references are Breslow and Clayton (1993) and Hedeker
and Gibbons (1994). Furthermore, in repeated categorical measures analysis, the
transition (or Markov) models are also an option, when previous responses are
considered as predictors (see Kalbfleisch and Lawless (1985) and references cited
therein).

The estimation method used in marginal models is maximum likelihood (see
Fitzmaurice and Laird 1993; Bergsma and Rudas 2002a). The weighted least
squares (WLS) of procedure of Grizzle et al. (1969) is an alternative. For repeated
categorical measures it has been applied by Koch et al. (1977) and Landis and Koch
(1979). Though WLS is computationally simpler than the ML, the WLS estimators
do not share the nice statistical properties of the MLEs.

Liang and Zeger (1986) introduced the generalized estimating equations (GEE)
method, a quasi-likelihood approach, that overcomes the computational difficulties
of the MLEs while leads to estimators of good properties. The GEE method was
further developed by Lipsitz et al. (1994) and Diggle et al. (2002). Touloumis et al.
(2013) developed a GEE approach for correlated nominal or ordinal multinomial
responses using a local odds ratio parameterization. This approach is implemented
in the R package multgee (Touloumis 2012). Other fundamental contributions to
marginal modeling deal with response variables (Glonek and McCullagh 1995),
ordinal variables (Colombi and Forcina 2001; Forcina and Dardanoni 2008), or
panel data (Croon et al. 2000; Vermunt et al. 2001). Marginal models have been
considered for medical applications, among others, by Balagtas et al. (1995) and
Molenberghs and Lesaffre (1999).

A comprehensive reference book on modeling clustered categorical data is
Molenberghs and Verbeke (2005), while they are extensively treated also in Agresti
(2010, 2013). For a detailed insight to marginal models for clustered categorical
data and the underlying theory we refer to Bergsma et al. (2009). An R package for
fitting marginal models is hmmm of Colombi et al. (2013).



Chapter 10
Further Topics

Abstract This epilogue chapter refers briefly to alternative methods and
approaches in the analysis of contingency tables (latent class models, graphical
models, and smoothing), not covered in the book. Furthermore, a bibliography on
small sample inference, Bayesian inference, and the analysis of high-dimensional
sparse contingency tables is discussed.

Keywords Association measures • Latent class models • Graphical models •
Small sample inference • Bayesian inference

10.1 Overview

The focus of this book is on model-based approaches, so we did not refer to
association measures other than the odds ratio which was in the kernel of the
models developed. Measures of association however played an important role in
the early development of categorical data analysis and continue to be of special
interest in areas of social sciences and psychology. For this, an overview of the
related literature is provided in Sect. 10.2 below.

The predominant modeling approach for contingency tables is log-linear models
based. Alternative approaches of contingency table analysis with links to log-linear
models are mentioned in Sect. 10.3.

Our approach was the classical frequentist approach, assuming large samples and
non-sparse situations so that standard asymptotic theory applies. It is often the case
that small samples occur. Sect. 10.4 refers to methods for analysis of small samples.
Furthermore the Bayesian analysis of contingency tables is an attractive alternative
in situations the asymptotic assumptions are not met. Beyond small sample setups,
the Bayesian method is interesting for giving the option of incorporating prior
information upon availability. Section 10.5 is devoted to Bayesian methods and
applications for contingency tables.

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4__10,
© Springer Science+Business Media New York 2014
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Finally, clustering of categorical data has gained the last years renewed interest
due to huge data sets and the need to organize their presentation and detect
association structures. Huge data sets are normally extremely high dimensional.
Bibliography on analyzing extreme high-dimensional categorical data sets and
clustering techniques is to be found in Sect. 10.6.

10.2 On Measures of Association

Upon rejection of independence, information on the significant underlying relation-
ship is traditionally summarized through measures of association. These measures
differentiate for nominal and ordinal data. Measures for nominal variables refer
only to the strength of the association while for ordinal variables, they incorporate
information about the direction (positive or negative) of the association as well.
Their values range preferably in the [0, 1] and [−1, 1] intervals, for the nominal
and ordinal measures, respectively, with their absolute value being increasing in
the strength of the association. Special interest has been attracted by measures for
binary cross-classifications.

The interest in defining and measuring association in I × J contingency tables
dates back to the 1840s and the related bibliography is enormously rich, motivated
from diverse scientific fields, like social sciences, education, and meteorology.
The history of their development, interesting and often generating controversies,
is reviewed exhaustively in the book by Goodman and Kruskal (1979), which is the
most classical reference on association measures. This book republishes their four
JASA papers of Goodman and Kruskal in 1954, 1959, 1963, and 1972. In the first
two papers, Goodman and Kruskal organized existing measures, presenting them
unified. Furthermore, they focused on the general I × J table and developed new
measures, for nominal and ordinal variables. They suggested measures taking into
account the existence of a response variable in the table, introducing symmetric
and asymmetric versions of their measures. In their last two papers they proved the
asymptotic normality of their measures, making thus asymptotic inference feasible.

Association measures are organized in classes accordingly to their basis of
formulation. They can be based on the X2 statistic for independence, on the
assumption of an underlying joint normal distribution, or they can be based on
a probabilistic model (like measures based on pairs of observations or on scores
assigned to the categories of the classification variables). The measures based on
the X2 statistic, as the contingency coefficient φ , the association coefficient C, and
Cramer’s V , are indicative only about the strength of the underlying association.

Focusing on 2× 2 contingency tables, the odds ratio θ , θ ∈ [0,+∞), introduced
by Yule (1900, 1903, 1912), is undoubtedly the “gold standard” of measures. Yule
proposed transformations of θ , the Q and Y , that range in [−1, 1]. A competitor
of Yule’s odds ratio for measuring association in 2 × 2 tables is the tetrachoric
correlation coefficient of Pearson (1900b, 1904, 1913), a product–moment corre-
lation between two unobserved quantitative variables that have been dichotomized.
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The tetrachoric correlation opposes the odds ratio by this underlying continuum
assumption. Pearson preferred to view contingency tables as discretizations of
underlying multivariate normal distributions (Pearson and Heron 1913) while for
Yule contingency tables were formed by discrete variables of fixed categories.
The dispute between Yule and Pearson was long and strong. Over the years both
approaches had their supporters and opposers. Edwards (1963) argued that the odds
ratio should be the basis of an association measure for 2× 2 tables. On the other
hand, when the classification variables are of continuous nature and dichotomized
at a certain cut point, as it is often the case in psychometrics, then the tetrachoric
correlation is preferable. The tetrachoric correlation coefficient and related inference
problems are discussed analytically by Bonett and Price (2005). Transformations of
the odds ratio that approximate the tetrachoric correlation have been proposed by
Digby (1983) and Becker and Clogg (1988). Bonett and Price (2007) proposed a
generalized Yule coefficient that is similar in value to the contingency coefficient
φ and has, among others, Yule’s Q and the coefficient of Digby (1983) as special
cases. A review of association coefficients for 2×2 tables with focus on their general
properties is provided by Warrens (2008). Overall, the odds ratio predominated, also
due to its connection to log-linear models. The odds ratio is the precursor of log-
linear models and Yule can be considered as their “father.” For an overview of the
odds ratios and their role in contingency table analysis, see Rudas (1998).

For I × J contingency tables, the tetrachoric correlation was extended to the
polychoric correlation by Lancaster and Hamdan (1964) while measures, general-
izations of the odds ratio, were proposed by Altham (1970) for nominal association
and by Agresti (1980) and Edwardes and Baltzan (2000) for ordinal. Cumulative
odds ratios for ordinal variables have been considered earlier by Clayton (1974),
who developed statistics based on them to summarize the difference in location
between two distributions of an ordered categorical variable and for describing
association between two such variables. The approach was generalized also in case
some observations were subject to censorship (Clayton 1976).

For ordinal association, famous are Goodman and Kruskal’s λ , λa, λb and γ .
Kendall (1938, 1948) introduced a measure of rank correlation, known as
Kendall’s τ , and its asymmetric version τb. Stuart (1953) proposed a measure of
association for contingency tables, the τc, based on Kendall’s τ , which is compared
to Goodman and Kruskal’s γ in Hamdan (1977). Another popular measure of ordinal
association is Somers’ d (Somers 1962). The measures of raters’ agreement consist
a special category of association measures, presented in Sect. 9.5.2.

Different measures refer to different types of association; thus they should not
be used blindly and routinely. The choice of measure should take into account
the nature of the contingency table under consideration and be compatible with
its distribution. Efficacies of the measures of association for ordinal contingency
tables are discussed in Simon (1978). Contingency tables are better treated through
model-based approaches, which are flexible regarding the structure imposed on the
association and meanwhile are more informative, providing cell estimates under
the assumed model. Since our approach is model focused, we will not discuss any
further measures of association. For ordinal measures of association we refer to
Agresti (2010, Chap. 7).
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10.3 Alternative Approaches in Contingency Table Analysis

10.3.1 Latent Class Models

The classical latent class model is defined as a finite mixture of unobserved
(latent) multinomial distributions, each of which exhibits statistical independence.
Latent class models play an important role in multivariate data analysis and
receive special attention in psychology and social sciences. They were first treated
by Lazarsfeld (1950). For their connection to log-linear models, see Goodman
(1974), Haberman (1979), Heinen (1996), and Hagenaars (1998). Formann (1992)
connected latent class models to polytomous logistic models and Gilula (1979,
1984) to correspondence analysis. Goodman (1987) provides a nice overview of
the connection between the approaches of CA, latent class analysis, and log-
linear and association models. The connection of association models to latent class
models is also discussed in Anderson and Vermunt (2000). Their link to models
for rater agreement is due to Uebersax (1993), Uebersax and Grove (1990, 1993),
and Yang and Becker (1997). Becker and Yang (1998) discuss latent class models
for modeling marginal associations in contingency tables and provide an extended
literature review on analysis of contingency tables by latent class models.

The volume Applied Latent Class Analysis, edited by Hagenaars and
McCutcheon (Cambridge University Press, 2002), provides an interesting collection
of papers on traditional latent class analysis as well as in connection to special topics
as clustering, logistic regression, longitudinal data, missing data, and nonresponse
(see, e.g., Goodman 2002b). For an updated source on latent variable models and
their applications, we refer to Bartholomew et al. (2011). An overview on latent
variable models for categorical responses is provided by Agresti and Kateri (2014).

10.3.2 Graphical Models

The graphical log-linear models and their role in the analysis of high-dimensional
contingency tables are discussed in Sects. 4.7.2, 4.9.3, and 4.9.4. Beyond log-linear
models, conditional independence graphs of a multi-way contingency tables are
connected to the RC model and to correspondence analysis by de Falguerolles et al.
(1995). Bounds on the cell counts of contingency tables for decomposable log-
linear models and their related graphs are proposed by Dobra and Fienberg (2000,
2003). Bidirected graphical models of marginal independencies for categorical data
are discussed in Lupparelli et al. (2009). Quasi-symmetry models are presented as
graphical models by Gottard et al. (2011).
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10.3.3 Smoothing Categorical Data

Alternative to modeling, nonparametric approaches can be adopted for analyzing
contingency tables. The oldest and most well-known is the partitioning of the X2

statistic for testing independence (see Sect. 2.5.4). Furthermore, smoothing methods
bridge the gap between the parametric and nonparametric approaches, from strict
assumptions to no assumptions at all. Smoothing methods for ordinal data were
studied and compared by Titterington and Bowman (1985), who organized them
into three major groups, the kernel-based methods (Aitchison and Aitken 1976),
Bayesian-based methods (Leonard 1975), and the penalized minimum distance
methods, which relate to maximizing the penalized likelihood (Scott et al. 1980).
Smoothing methods are appropriate for the analysis of large sparse contingency
tables (Simonoff 1983). The application of smoothing to categorical data analysis
is reviewed in Simonoff (1995, 1998). For a literature review on the smoothing
methods for categorical data, see the references cited in Titterington and Bowman
(1985) and Simonoff (1995).

Coull and Agresti (2003) introduced a generalized log-linear model with random
effects, useful for smoothing large sparse contingency tables by maximizing a penal-
ized likelihood. The structures considered for the random effects mimic Goodman’s
association models. Geenens and Simar (2010) propose two nonparametric tests
for testing independence of two categorical cross-classified variables, conditional
on a set of explanatory variables, based on kernel estimation of the conditional
probabilities.

10.4 Small Sample Inference for Contingency Tables

Starting with Fisher’s exact test (see Sect. 2.1.7) for testing independence for
2× 2 contingency tables with small cell entries, the development of methods and
algorithms for exact inference for a variety of models, applied on two- and multi-
way contingency tables, has a long history. In the early years, Yule’s correction was
quite popular, while it was criticized later. Despite this, adding a constant to the
cells of a contingency table to avoid problems from small or zero count cells is still
common in practice. Greenland (2010) argued against this practice, showing in the
Bayesian framework that it can lead to a form of Simpson’s paradox, and proposed
more sophisticated methods of smoothing. In case of high-dimensional contingency
tables, sparseness problems occur even for moderate to large sample sizes, leading
to inferential implications (see also Sect. 10.6).

Fundamental is the network algorithm of Mehta and Patel (1983) for sampling
from an I×J contingency table with given marginals, which served in extending the
Fisher’s exact test to tables of higher size. Sequent results by them with coauthors
established the exact analysis of contingency tables. For example, Agresti et al.
(1990) extended this algorithm for the exact analysis of two-way contingency
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tables with ordinal classification variables. Basic summarizing reference is Mehta
and Patel (1995). Exact analysis of models for binary response is provided in
Cox (1970a) and Cox and Snell (1989). Exact conditional tests for testing quasi-
independence in incomplete tables are considered by McDonald and Smith (1995).
A survey on exact inference for categorical data is provided in the discussion paper
of Agresti (1992) and in Agresti (2001). A detailed treatment is provided in the book
by Hirji (2006).

Small sample inference can be developed based on Markov chain, as in Forster
et al. (1996), or bootstrap algorithms. For applications of bootstrap methods on
categorical data, we refer to Jhun and Jeong (2000) and Amiri and von Rosen (2011).
Model-based bootstrap tests for independence in two-way tables are considered in
Pettersson (2002) and Jeong et al. (2005). Bootstrapping for log-linear models in
large, sparse contingency tables has been considered by Sauermann (1989). Alter-
natively to log-linear models, Streitberg (1999) developed a bootstrap approach for
analyzing interactions in high-dimensional tables, based on the additive approach
(see Darroch and Speed (1983) and references therein).

The problem of studying the exact distribution in a contingency table under
a model assumption can also be faced through algebraic statistics, based on the
pioneer work by Diaconis and Sturmfels (1998). They proposed an algorithm
for sampling from a set of tables with given marginals, based on Markov bases
computation, which is achieved by finding a Gröbner basis. Aoki and Takemura
(2005) and Rapallo (2003, 2006) derive Gröbner bases for some classical log-linear
models taking structural zeros into account. Dobra (2003) applied graphical models
to identify special settings which lead to reduction of the required computations for
the identification of a Markov basis. Dobra et al. (2009) dealt with the maximum
likelihood estimation for log-linear models and a related disclosure limitation
problem, focusing on the disclosure of small cell counts to protect the confidentiality
of individual responses. Hara et al. (2012) proposed a new class of models for
the analysis of multi-way contingency tables, more parsimonious than the usual
hierarchical log-linear models, by modeling the interaction terms in each maximal
compact component of a hierarchical model. They proceed to exact tests via Markov
bases while their approach considers also the presence of structural zeros.

Exact inference for the model of symmetry for square contingency tables based
on Diaconis and Sturmfels’s algorithm is provided by Rapallo (2003) and Krampe
and Kuhnt (2007). In the context of rater agreement, Rapallo (2005) provides
algebraic testing procedures for Cohen’s kappa, the quasi symmetry, and quasi-
independence model. Krampe et al. (2011) develop algebraic tests for the models
of conditional, diagonal, and ordinal quasi symmetry.

Alternatively, inferential problems due to sparseness, sampling zeros, or small
frequencies can be treated in the Bayesian analysis framework.
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10.5 Bayesian Analysis of Contingency Tables

Bayesian analysis can be the solution in situations of small samples or sparse
tables, where standard asymptotic inference does not apply. Furthermore, the
incorporation of prior inference can be essential in some applications’ areas.
The model selection procedure is benefited in the Bayesian framework. MCMC
methods enable an efficient search of the model space even if it is large. For the
models visited, the associated algorithm provides the posterior model probabilities,
a powerful tool for models’ evaluation and estimation of their uncertainty. These
issues are of great importance in high multidimensional contingency tables. Model
uncertainty might be high in small samples or in existence of more than one models
of similar performance. High model uncertainty can be incorporated in the Bayesian
statistical inference.

Early attempts on Bayesian analysis of categorical data go back to the 1950s
and were based on conjugate prior analysis. Good (1956) proposed smoothing
proportions in contingency tables while his approach for hierarchical Bayesian
inference (Good 1965) is related to the early work by Johnson in the 1920s on
the Dirichlet priors for the multinomial distribution (see Fienberg (2006) for a
detailed discussion on the early and key Bayesian developments). Lindley (1964)
focused on the Bayesian analysis of contingency tables (two- and three-way) and
developed the Bayesian inference for the odds ratio. Altham (1969, 1971) dealt with
the Bayesian analysis of 2× 2 tables for small samples based on conjugate priors.
Since then, the development of the Bayesian approach was rapid, mainly due to the
progress of computer-intensive numerical methods for the evaluation of posterior
distributions, which made the Bayesian analysis and Bayesian model selection of
multidimensional problems and complex models feasible. For an overview, see
Congdon (2005) and the review paper by Agresti and Hitchcock (2005).

The Bayesian analysis of log-linear models with non-conjugate priors originates
from Leonard (1975) and Laird (1978). They proposed univariate normal priors
for the parameters of the saturated model. Knuiman and Speed (1988) and King
and Brooks (2001) considered multivariate normal prior for the parameter vector
and extended the approach to multi-way contingency tables. In contingency tables’
framework, the model fit evaluation through the Bayes factor has been considered
by Spiegelhalter and Smith (1982), Raftery (1986), and Albert (1997). Issues for
the Bayesian analysis of the 2 × 2 table are discussed in Howard (1998). For
Bayesian log-linear model selection we refer to Dellaportas and Forster (1999) and
Ntzoufras et al. (2000). The Bayesian analysis of log-linear models is reviewed
in Forster (2010). Consonni and Pistone (2007) considered the Bayesian analysis
of contingency tables with structural zeros based on algebraic statistics. The basic
reference on Bayesian logit models is Albert and Chib (1993).

The Bayesian analysis of the simple U association model has been considered
by Agresti and Chuang (1989). They imposed a Dirichlet prior distribution on
the probability table π = (πi j)I×J . The prior mean was assigned from the U
model. Alternatively to the conjugate prior-type analysis they proposed the Bayesian
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log-linear analysis by considering independent uniform priors for the main effect
parameters λX

i and λY
j and normal priors for the interaction parameters λXY

i j ∼
N(ϕμiν j ,σ2).

The first attempt for fitting the RC association model in the Bayesian framework
was due to Chuang (1982). He set independent uniform priors on the main effect
parameters λX

i and λY
j and normal priors on the parametric row and column scores

μi ∼N (0,σ2
1 ), ν j ∼N (0,σ2

2 ) and proceeded with empirical variance estimation.
Evans et al. (1993) adopted a different approach for the Bayesian analysis of the
RC model. They based their analysis on the Bayesian estimation of the saturated
log-linear model with normal priors on all its parameters and then concluded to
the posterior for the RC by Euclidean projection from the posterior of the saturated
log-linear model. Further, they studied the posterior distribution of the Euclidean
distance between the interaction matrices of the saturated and the RC models,
(λXY

i j ) and (ϕμiν j), respectively. Finally, Bayesian inference for the more general
RC(M) association model has been developed by Kateri et al. (2005). This procedure
can be also applied for fitting the RC model (for M = 1). Albert (1997) provided
an interesting Bayesian approach for testing the fit of simple models such as
independence, quasi-independence, and uniform association models, as well as for
modeling outliers via mixture models.

With respect to merging categories and the associated role of the association
models (as discussed in Sect. 7.5), in the Bayesian framework, Tarantola et al.
(2008) used methodology adopted from product partition models to make inferences
about the clustering of scores in the row effect model. For the two-group comparison
of an ordinal scale, Kateri and Agresti (2013) discussed stochastic orderings, based
on generalized odds ratios for ordinal responses for 2× J contingency tables, from
the Bayesian point of view.

We referred in Sect. 6.8.2 to the order-restricted inference for association models,
through large sample asymptotic methods. The Bayesian inference for association
models with order-constrained parametric scores has been developed by Iliopoulos
et al. (2007). Their approach for identifying possible score equalities was based
on calculating the posterior probabilities of possible order violations for successive
categories in the unrestricted model. These probabilities were used in an isotonic
regression-type logic, indicating which scores should be merged. Furthermore,
the deviance information criterion (DIC, Spiegelhalter et al. 2002) was applied
to identify the most appropriate model in terms of goodness of fit. However, this
approach forms not a formal Bayesian evaluation in favor or against merging
specific scores, since it is not based on the posterior model odds and probabilities
(for details, see Kass and Raftery 1995). Toward this direction, Iliopoulos et al.
(2009) proposed an alternative approach for this problem, focusing on the estimation
of posterior model probabilities of the RC order-constrained model, in a full
Bayesian way, by allowing for ties in the prior distribution level. They constructed
a trans-dimensional MCMC algorithm (reversible jump MCMC, Green 1995) for
assessing the equality of successive row and column scores.
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For Bayesian graphical models we refer to Madigan and Raftery (1994) and
Madigan and York (1995). Massam et al. (2009) developed a family of conjugate
prior for a class of discrete hierarchical log-linear models for multi-way tables,
with graphical models being in this class. Webb and Forster (2008) dealt with
Bayesian graphical model selection for multivariate ordinal data. Ng et al. (2008)
provided a conjugate Bayesian analysis of incomplete contingency tables based on a
new family of distributions, the grouped Dirichlet distributions, which includes the
classical Dirichlet distribution as special case.

10.6 Extreme High-Dimensional Categorical Data

High-dimensional contingency tables often lead to sparseness and related inferential
discrepancies. Approaches for high-dimensional data discussed in Hastie et al.
(2009) and Bühlmann and van de Geer (2011) apply also on contingency tables.
In particular, Dahinden et al. (2007) extended the lasso algorithm, to the group
lasso, in order to fit log-linear models for high-dimensional and sparse data arising
in computational biology. An alternative approach based on graphical models is
given by Dahinden et al. (2010). The lasso penalty for high-dimensional GLMs is
considered by van de Geer (2008).

In high-dimensional problems the clustering of the subjects or items under
study becomes often an important issue. This way customers, patients, or genes,
for example, can be assigned to groups of similar profile (with respect to some
characteristics). Clustering methods are based on measuring the dissimilarity
between items with respect to their characteristics, captured in variables. Most of
the clustering algorithms refer to continuous variables (see, e.g., Everitt et al. 2011).
Bock (1986) developed clustering methods for categorical data, based on a logistic
or log-linear models probability distribution. For an overview on clustering methods
that apply also on categorical data, see also in van Mechelen et al. (2004). On
clustering of categorical data, refer to Agresti (2013, Sect. 15.3).



Appendix A
Appendix: Contingency Table Analysis
in Practice

A.1 Software for Categorical Data Analysis

The free software R, for statistical computing and graphics, is of increasing
popularity and usage (R web site: http://www.r-project.org/). Many researchers
support their published papers with the related R code. This way, R software is
continuously updated and one can find a variety of functions for basic or advanced
analysis of categorical data and special types of them. R language and environment
is similar to S and code written for S-Plus runs usually underR as well. Furthermore,
standard statistical packages, such as SAS, SPSS, and Stata, are well supplied to
treat categorical data. Especially in their updated versions, their features concerning
categorical data analysis are enriched. They incorporate procedures for applying the
recently developed methods and models in categorical data analysis following the
new computing strategies. Briefly, one could say that their major new features
concern mainly options for exact analysis and analysis of repeated categorical data.
Thus, NLMIXED of SAS fits generalized linear mixed models while GEE analysis
for marginal models can be performed in GENMOD. SPSS offers the “generalized
estimating equations” sub-option under the “GLMs” option. The related R function
is gee().

For categorical data analysis with SAS, we refer to Stokes et al. (2012) while
a variety of SAS codes are presented and discussed in the Appendix of Agresti
(2007, 2013). Advanced models are fitted in R using special functions, developed
individually, and included in different libraries. Orientated toward categorical data
analysis and models for ordinal data as well are the libraries MASS (Venables and
Replay) and VGLM, VGAM developed by Yee (2008). For example, generalized linear
mixed models can be fitted through the glmmPQL() function of the MASS library.

Other software, as BMDP, Minitab, and SYSTAT, have also components for
categorical data inference.

M. Kateri, Contingency Table Analysis: Methods and Implementation Using R,
Statistics for Industry and Technology, DOI 10.1007/978-0-8176-4811-4,
© Springer Science+Business Media New York 2014
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Bayesian analysis of categorical data can be carried out through WINBUGS
(http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml), which is a free soft-
ware. Another option is to perform categorical data analysis through MATLAB, as
Johnson and Albert (2000). The MATLAB functions they used are described in their
Appendix.

For categorical data analysis, there have been developed also some special pack-
ages. Thus, exact analysis of categorical data is performed by StatXact while exact
conditional logistic regression can be fitted by LogXact. SUDAAN is specialized
for analysis of mixed data from stratified multistage cluster designs. It has also the
feature of analyzing marginal models for nominal and ordinal responses by GEE.
Software tool for estimating marginal regression models is also MAREG.

Finally, some algorithms may be found in Fortran. For example, Haberman
(1995) provided a Fortran program for fitting the association model RC(K) by
the Newton–Raphson method while Ait-Sidi-Allal et al. (2004) implemented their
algorithms for estimating parameters in association and correlation models also in
Fortran.

A.2 Contingency Table Analysis with R

All procedures and models discussed in this book are worked out in R, in a fashion
aiming that even readers not familiar with R will be able to apply in practice all the
models discussed here, even the nontrivial ones, fast and directly. A web companion
of the book serves this goal. This section of the Appendix is basically the content
description of the web companion of the book, to be found under

http://cta.isw.rwth-aachen.de

A.2.1 R Packages for Contingency Table Analysis

An extensive list of special R packages, useful in the analysis of contingency tables,
is provided in the web appendix.

A.2.2 Data Input in R

Alternative forms of defining contingency tables data in R are presented (matrix(),
array(), and data.frame()) and transformations from one type to another are
illustrated. Ways of entering or reading data are discussed.

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
http://cta.isw.rwth-aachen.de
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A.3 R Functions Used

The R functions constructed for the descriptive and inferential needs of this book
are given in the corresponding section of the web appendix, organized by chapter of
their first use.

A.3.1 R Functions of Chap.1

• Binomial–Normal Distribution Graph: bin_norm( )

A.3.2 R Functions of Chap.2

• Likelihood Ratio Statistic for Testing Independence in Two-way Contingency
Tables: G2( )

• Odds Ratio for a 2× 2 Table: odds.ratio( )

• Local Odds Ratios for an I× J Table: local.odds.DM( )

• Global Odds Ratios for an I× J Table: global.odds.DM( )

• Cumulative Odds Ratios for an I× J Table: cum.odds.DM( )

• Continuation Odds Ratios for an I × J Table: cont.odds.DM( )

• Linear Trend Test: linear.trend( )

• Midrank Scores Computation: midrank( )

• Fourfold Plots for the Local Odds Ratios of an I× J Table: ffold.local( )

A.3.3 R Functions of Chap.3

• Breslow–Day–Tarone Test of Homogeneous Association: BDT( )

• Woolf’s Test of Homogeneous Association: woolf( )

A.3.4 R Functions of Chap.5

• Independence (I) Model for Two-way Contingency Tables: fit.I( )

• Quasi-Independence (QI) Model for Two-way Contingency Tables: fit.QI( )
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A.3.5 R Functions of Chap.6

• Scores’ Rescaling to Obey the Weighted Constraints (6.17): rescale( )

• Uniform (U) Association Model: fit.U( )

• Row Effect (R) Association Model: fit.R( )

• Column Effect (C) Association Model: fit.C( )

• Row–Column (RC) Association Model: fit.RC( )

• RC(M) Association Model: fit.RCm( )

• Plotting the Row and Column Scores in Two Dimensions: plot_2dim( )

A.3.6 R Functions of Chap.9

• (1− a)100% Asymptotic Confidence Interval for the Difference of Correlated
Proportions: McNemar.CI( )

• Factors Needed to Fit Symmetry Models on an I × I Table in glm: SYMV( )

• Scores’ Rescaling to Satisfy Constraints (9.38): rescale.square( )

A.4 Contingency Table Analysis with SPSS

The association and symmetry models cannot be fitted directly in SPSS through the
options of the windows commands. Association models that are GLM can be fitted
through the GLM option by defining the appropriate vectors, as explained in Sect.
6.6. For all two-way association models (RC(M) included, which is nonlinear and
thus cannot be fitted in GLM) and the symmetry models, we provide appropriate
syntax codes to be fitted in SPSS MATRIX.

In particular, we provide MATRIX codes for:

• Independence for two-way tables using SPSS MATRIX

• Association models for two-way tables
(uniform (U), row effect (R), column effect (C), and RC (M) association models)

• Symmetry models
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continuation odds ratios, 43
in R, 46

continuation ratio logit model, 226
continuity correction, 20, 22, 57, 71
correlated proportions, see McNemar, 233

CI for their difference, 234
correlation model, 206–207

and statistical evidence, 212
correspondence analysis (CA), 199–205

connection to association models, 207
and canonical correlation model, 212

Cressie-Read divergence, see power divergence
cumulative logit model, 223

ordinal explanatory variables, 224
in R, 226–227

cumulative odds ratios, 42, 45
in R, 46
positive regression dependence, 60

D
decomposable models, see hierarchical

log-linear models
deviance, 132–134
diagonal symmetry model, 241

in R, 242
modeling agreement, 255, 258

dissimilarity index, 89, 138, 183
in R, 92
multi-way tables, 100

F
φ -divergence, 124, 208

association model, 207–210
logistic model, 229
quasi symmetry model, 257

Fisher scoring algorithm, 130–131, 163
Fisher’s exact test, 29–31, 57, 119, 265

in R, 32–33
fourfold plots, 53, 83

for 2×2×K tables, 78
for local odds ratios, 53

G
generalized log-linear model (GLLM), 146,

180–181, 198–199, 237–238
global odds ratios, 41, 45

in R, 46
modeling of, 148, 197–199
positive quadrant dependence, 60

graphical models, 99, 110–113, 264, 266, 269

H
hierarchical GLM, 135
hierarchical log-linear models, 96–98, 119

association graphs for, 113
conditional independence graphs for, 110,

112
decomposable, 99, 112, 118, 119
graphical, 111–113
nested, 101, 105

high dimensional contingency tables, 269
homogeneity analysis, 212
hypergeometric distribution, 8, 29, 71

non-central, 30, 58, 72

I
incomplete tables, see quasi independence
independence graph, see conditional

independence graphs

K
kappa, Cohen, see rater agreement
Kullback-Leibler divergence, 124, 207

L
latent class models, 191, 212, 258, 264
linear trend test, 47, 83, 178, 192

and the uniform correlation model, 207
in R, 49–50

LL model, see association model
local odds ratios, 41, 45

conditional for three-way tables, 67
fourfold plots, 53
in R, 46
independence in terms of, 43
marginal for three-way tables, 67
modeling of, 147, 154, 158, 159, 168,

180–181, 196, 238, 249
positive likelihood ratio dependence, 60

log-linear models
Bayesian approach, 267
connection to logit model, 216
for multi-way tables, 97–98
for three-way tables, 94–97
for two-way tables, 85–88

logit model, 215–217
connection to LL, U models, 217

in R, 221
connection to log-linear model, 216
in R, 219–220
ordinal explanatory variables, 217
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longitudinal categorical data, see clustered
categorical data

LR statistic G2, 11, 36, 100, 123, 132

M
Mantel-Haenszel test, 71, 103

generalized for I × J×K tables, 82–83
in R, 73

marginal homogeneity, 237–239, 241, 256
in R, 243

marginal independence, 77
in stratified 2×2 tables, 69

marginal models, 145, 151, 238, 242, 244, 259
McNemar test, 234

in R, 235
relation to Bowker test, 237

measures of association, 262–263
merging categories, see association model
MLE

association models, 161–162, 169
GLM, 129
log-linear models, 88–89, 98–99, 130
logit models, 218–219

mobility tables, 143, 150, 236, 246, 257
mosaic plots, 55–56, 83

for log-linear models, 120
for multi-way tables, 81
two-way independence model example,

138
visualizing log-linear model fit of

conditional independence, 106–110
Mover-Stayer model, 257
multinomial distribution, 4–6

relation to binomial, 5
relation to Poisson, 7

multinomial-Poisson homogeneous (MPH)
model, 146

in R, 146–149
multiple correspondence analysis, see

homogeneity analysis

N
Newton’s unidimensional method, 162–163
Newton-Raphson algorithm, 130–131, 163
nominal variables, 1

O
odds ratio, 25–29

plots for, see fourfold plots
exact CI, 30
generalized for I × J tables, 40–44

Mantel-Haenszel estimate, 70
ordinal variables, 1
orthogonal polynomials, 192, 193, 212, 231
outliers, 121, 123

Bayesian analysis, 268

P
Pearson’s X2 statistic, 11, 36, 100, 123, 132
Pearson’s divergence, 124, 207
Poisson distribution, 6–8

relation to multinomial, 7
positive likelihood ratio dependence, 60
positive quadrant dependence, 60
positive regression dependence, 60
power divergence, 123

association model, 208
statistic, 123

probit link, 127, 229
proportional logit model

adjacent categories odds, 225
connection to U model, 225

baseline category, 223
continuation ratio, 226
cumulative odds, 224

connection to cumulative R model, 224
proportional odds model (Cox’s), 224

connection to cumulative U model, 224
in R, 227–228

Q
quasi independence, 145, 150–151

for square tables, 246–248
in R, 247

modeling agreement, 255, 258
quasi symmetry model, 238–240, 256, 258

and graphical models, 264
and homogeneous association models, 248
connection to Bradley-Terry model, 255
in R, 242
modeling agreement, 255, 258
ordinal, 249

R
R model, see association model
Rasch model, 230–231, 256
rater agreement, 252–255, 257

in R, 254
on ordinal rating scales, 253–254

RC model, see association model
RC(M) model, see association model



304 Index

repeated categorical data, see clustered
categorical data

residuals, 38–40, 120–121, 133
Anscombe, 150
deviance, 39, 133, 135
in mosaic plots, 55–56, 106, 138
in R, 39, 137
Pearsonian, 38, 92, 133, 200
standardized, 39, 133

S
sampling zeros, see zeros
scores, 46–47, 83

and stochastic ordering, 165, 195–196
choice of, 47–48
in association models, 154–156, 159

graphs of, 170
in CA, 199–202

graphs of, 205
in square tables, 248–252
mid-rank scores in R, 49
role in merging categories, 208–210

sieve diagrams, 54, 83
for multi-way tables, 78, 79

Simpson’s paradox, 66, 70, 114, 117–118
small samples, 29, 57, 58, 194, 229, 265–267
smoothing categorical data, 265
sparse tables, 71, 82, 119–120, 150, 194, 209,

265–267
square tables, 233–258

exact inference, 266
statistical evidence, 212
stereotype model, 231
stochastic ordering

and association models, 165, 194

and generalized odds ratios, 60–61
Bayesian approach, 268

in 2×K tables, 195
stratified 2×2 tables, 69–75, 81–82

and log-linear models, 103
conditional odds ratios, 66
fourfold plots, 78
homogeneous association, 70, 72–75, 149
logit analysis, 222, 229
marginal odds ratios, 66

structural zeros, see zeros
symmetry model, 236–237

in R, 242

T
triangular symmetry model, see conditional

symmetry model
triangular tables, 151, 246–248

U
U model, see association model

W
Woolf test, 72, 140

in R, 74

Z
zeros

sampling, 26, 119, 120, 145, 150, 181, 266
structural, 119–121, 127, 142–145, 150,

246, 266, 267
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