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Preface

Aims, scope and audience

Over the last two decades, functional data analysis has established itself as an impor-
tant and dynamic area of statistics. It offers effective new tools and has stimulated
new methodological and theoretical developments. The field has become very broad,
with many specialized directions of research. This book focuses on inferential meth-
ods grounded in the Hilbert space formalism. It is primarily concerned with statisti-
cal hypothesis tests in various functional data analytic settings. Special attention is
devoted to methods based on the functional principal components and model speci-
fication tests, including change point tests. While most procedures presented in this
book are carefully justified by asymptotic arguments, the emphasis is on practically
applicable methodology, rather than theoretical insights into the structure of the rel-
evant statistical models. The methodology we present is motivated by questions and
data arising in several fields, most notably space physics and finance, but we solve
important general problems of inference for functional data, and so the methodol-
ogy explained in this book has a much broader applicability. Detailed derivations
are presented, so readers will be able to modify and extend the specific procedures
we describe to other inferential problems.

The book can be read at two levels. Readers interested primarily in methodology
will find detailed descriptions of the testing algorithms, together with the assess-
ment of their performance by means of simulations studies, followed by, typically,
two examples of application to real data. Researchers interested in mathematical
foundations of these procedures will find carefully developed asymptotic theory.
We provide both the introduction to the requisite Hilbert space theory, which many
graduate students or advanced undergraduate students may find useful, and some
novel asymptotic arguments which may be of interest to advanced researchers. A
more detailed description of the contents is given below.

As noted above, functional data analysis has become a broad research area, and
this book does not aim at giving a comprehensive account of all recent develop-
ments. It focuses on the construction of test statistics and the relevant asymptotic
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viii Preface

theory, with emphasis on models for dependent functional data. Many areas of func-
tional data analysis that have seen a rapid development over the last decade are not
covered. These include dynamical systems, sparse logitudinal data and nonpara-
metric methods. The collection of Ferraty and Romain (2011) covers many of the
topics which are the focus of this book, including functional regression models and
the functional principal components, but it also contains excellent review papers on
important topics not discussed in this book, including resampling, curve registration,
classification, analysis of sparse data, with special emphasis on nonparametric meth-
ods and mathematical theory. The books of Ferraty and Vieu (2006) and Ramsay et
al. (2009) are complementary to our work, as they cover, respectively, nonparamet-
ric methods and computational issues. The monograph of Ramsay and Silverman
(2005) offers an excellent and accessible introduction to many topics mentioned
above, while Bosq (2000) and Bosq and Blanke (2007) study mathematical founda-
tions. Our list of references is comprehensive, but it is no longer possible to refer
even to a majority of important and influential papers on functional data analysis.
We cite only the papers most closely related to the research presented in this book.

Outline of the contents

Chapters 1, 2 and 3 introduce the prerequisites, and should be read before any other
chapters. Readers not interested in the asymptotic theory, may merely go over Chap-
ter 2 to become familiar with the concepts and definitions central to the whole book.
The remaining chapters can essentially be read independently of each other. There
are some connections between them, but appropriate references can be followed
only if desired. Many chapters end with bibliographical notes that direct the reader
to related research papers. The book consists of three parts. Part I is concerned with
the independent and identically distributed functions, a functional random sample.
Part II studies the functional regression model. Part III focuses on functional data
structures that exhibit dependence, in time or in space.

Chapter 1 sets the stage for the remainder of the book by discussing several exam-
ples of functional data and their analyses. Some of the data sets introduced in Chap-
ter 1 are revisited in the following chapters. Section 1.5 provides a brief introduction
to software packages and the fundamental ideas used in the numerical implemen-
tation of the procedures discussed in the book. Part I begins with Chapter 2 which
introduces the central mathematical ideas of the book, the covariance operator and
its eigenfunctions. Chapter 3 follows with the definition of the functional principal
components, which are the most important ingredient of the methodology we study.
Chapters 4, 5 and 6 focus, respectively, on functional counterparts of the multi-
variate canonical correlation analysis, the two sample problem and the change point
problem. Part I concludes with Chapter 7 which discusses a test designed to verify if
a sample of functional data can be viewed as a collection of independent identically
distributed functions. Part II begins with Chapter 8 which offers an overview of the
various functional linear models and of the related inference. The remaining three
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chapters, 9, 10 and 11, focus on three inferential problems of increasing complexity,
testing for the nullity of the autoregressive kernel, testing for the equality of two
regression kernels, and testing for the error correlation. The methodology explained
in these chapters is illustrated by many data examples. Part III considers functional
time series, Chapters 13–16, and modeling spatially distributed curves, Chapters 17
and 18. The initial sections of Chapter 13 review the central ideas of functional
autoregression, but the focus is on the methodology and theory developed after the
publication of the monograph of Bosq (2000). Spatially distributed functional data
have not been discussed in any other book, as far as we know.
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Chapter 1
Functional data structures

Statistics is concerned with obtaining information from observations X1;

X2; : : : ; XN . The Xn can be scalars, vectors or other objects. For example, each
Xn can be a satellite image, in some spectral bandwidth, of a particular region
of the Earth taken at time n. Functional Data Analysis (FDA) is concerned with
observations which are viewed as functions defined over some set T . A satellite
image processed to show surface temperature can be viewed as a function X

defined on a subset T of a sphere, X.t/ being the temperature at location t . The
value Xn.t/ is then the temperature at location t at time n. Clearly, due to finite
resolution, the values of Xn are available only at a finite grid of points, but the
temperature does exist at every location, so it is natural to view Xn as a function
defined over the whole set T .

Some functional data belong to the class of high dimensional data in the sense
that every data object consists of a large number of scalar values, and the number
of measurements per objects may be larger than the sample size N . If there are
m measurements per object, such data falls into the “large m small N ” paradigm.
However, for functional data, the values within one functional object (a curve or
surface) for neighboring arguments are similar. Typical functional objects are thus
smooth curves or surfaces that can be approximated by smooth functions. Thus, to
perform computations, a functional object can be replaced by a few smooth stan-
dard building blocks. The central idea of this book is to study the approximations
of functional objects consisting of large number of measurements by objects that
can be described using only p coefficients of the standard building blocks, with p
being much smaller than N . Such approximations give rise to many interesting and
challenging questions not encountered in statistical inference for scalars or vectors.

1.1 Examples of functional data

The data that motivated the research presented in this book is of the formXn.t/; t 2
Œa; b�, where Œa; b� is an interval on the line. Each observation is thus a curve. Such

1
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curves can arise in many ways. Figure 1.1 shows a reading of a magnetometer over
a period of one week. A magnetometer is an instrument that measures the three
components of the magnetic field at a location where it is placed. There are over
100 magnetic observatories located on the surface of the Earth, and most of them
have digital magnetometers. These magnetometers record the strength and direction
of the field every five seconds, but the magnetic field exists at any moment of time,
so it is natural to think of a magnetogram as an approximation to a continuous
record. The raw magnetometer data are cleaned and reported as averages over one
minute intervals. Such averages were used to produce Figure 1.1. Thus 7�24�60 D
10; 080 values (of one component of the field) were used to draw Figure 1.1. The
dotted vertical lines separate days in Universal Time (UT). It is natural to view
a curve defined over one UT day as a single observation because one of the main
sources influencing the shape of the record is the daily rotation of the Earth. When an
observatory faces the Sun, it records the magnetic field generated by wind currents
flowing in the ionosphere which are driven mostly by solar heating. Thus, Figure
1.1 shows seven consecutive functional observations.

Many important examples of data that can be naturally treated as functional come
from financial records. Figure 1.2 shows two consecutive weeks of Microsoft stock
prices in one minute resolution. In contrast to the magnetic field, the price of an
asset exists only when the asset is traded. A great deal of financial research has
been done using the closing daily price, i.e. the price in the last transaction of a
trading day. However many assets are traded so frequently that one can practically

Time in minutes

0 1440 2880 4320 5760 7200 8640 10080

Fig. 1.1 The horizontal component of the magnetic field measured in one minute resolution at
Honolulu magnetic observatory from 1/1/2001 00:00 UT to 1/7/2001 24:00 UT.
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think of a price curve that is defined at any moment of time. The Microsoft stock
is traded several hundred times per minute. The values used to draw the graph in
Figure 1.2 are the closing prices in one-minute intervals. It is natural to choose
one trading day as the underlying time interval. If we do so, Figure 1.2 shows 10
consecutive functional observations. From these functional observations, various
statistics can be computed. For example, the top panels of Figure 1.3 show the mean
functions for the two weeks computed as O�.t/ D 5�1

P5
iD1Xi .t/, where Xi .t/ is

the price at time t on the i th day of the week. We see that the mean functions have
roughly the same shape (even though they have different ranges), and we may ask
if it is reasonable to assume that after adjusting for the ranges, the differences in
these curves can be explained by chance, or these curves are really different. This
is clearly a setting for a statistical hypothesis test which requires the usual steps
of model building and inference. Most chapters of this book focus on inferential
procedures in models for functional data. The bottom panels of Figure 1.3 show the
five curves Xi .t/ � O�.t/ for each week. We will often work with functional data
centered in this way, and will exhibit the curves using the graphs as those in the
bottom panels of Figure 1.3.

Functional data arise not only from finely spaced measurements. For example,
when measurements on human subjects are made, it is often difficult to ensure that
they are made at the same time in the life of a subject, and there may be differ-
ent numbers of measurements for different subjects. A typical example are growth
curves, i.e. Xn.t/ is the height of subject n at time t after birth. Even though every
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Fig. 1.2 Microsoft stock prices in one-minute resolution, May 1-5, 8-12, 2006
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Fig. 1.3 (a) Mean function of Microsoft stock prices, May 1-5, 2006; (b) Mean function of
Microsoft stock prices, May 8-12, 2006; (c) Centered prices of Microsoft stock, May 1-5, 2006;
(d) Centered prices of Microsoft stock, May 8-12, 2006.

individual has a height at any time t , it is measured only relatively rarely. Thus
it has been necessary to develop methods of estimating growth curves from such
sparse unequally spaced data, in which smoothing and regularization play a crucial
role. Examples and methodology of this type are discussed in the monographs of
Ramsay and Silverman (2002, 2005).

It is often useful to treat as functional data measurements that are neither sparse
nor dense. Figure 1.4, shows the concentration of nitrogen oxide pollutants, referred
to as NOx , measured at Barcelona’s neighborhood of Poblenou. The NOx concen-
tration is measured every hour, so we have only 24 measurements per day. It is nev-
ertheless informative to treat these data as a collection of daily curves because the
pattern of pollution becomes immediately apparent. The pollution peaks in morn-
ing hours, declines in the afternoon, and then increases again in the evening. This
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Fig. 1.4 Hourly levels of NOx pollutants measured in Poblenou, Spain. Each curve represents one
day.

pattern is easy to explain because the monitoring station is in a city center, and road
traffic is a major source of NOx pollution. Broadly speaking, for functional data the
information contained in the shape of the curves matters a great deal. The above
data set was studied by Febrero et al. (2008), Jones and Rice (1992) study ozone
levels In Upland, California.

The usefulness of the functional approach has been recognized in many other
fields of science. Borggaard and Thodberg (1992) provide interesting applications of
the functional principal component analysis to chemistry. A spectrum is a sampling
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of a continuous function at a set of fixed wavelengths or energies. Borggaard and
Thodberg (1992) point out that multivariate linear regression often fails because
the number of input variables is very large. Their simulations and examples show
that functional regression provides much better results. Spectra are studied in detail
in Ferraty and Vieu (2006). Starting with Kirkpatrick and Heckman (1989), it has
been recognized that evolutionary important traits are better modeled as infinite–
dimensional data. The examples in Griswold et al. (2008) are organismal growth
trajectories, thermal performance curves and morphological shapes. Griswold et al.
(2008) argue that the functional approach provides a more convenient framework
than the classical multivariate methods. Many recent applications of functional data
analysis are discussed in Ferraty (2011).

In the remaining sections of this chapter, we present a few analyses which illus-
trate some ideas of FDA. The discussion in this chapter is informal, in the follow-
ing chapters the exposition will be more detailed and rigorous. In Section 1.2, we
discuss in the functional context the concepts of the center of a distribution and out-
liers. Section 1.3 show how temporal dependence in functional data can be modeled.
Finally, Section 1.4 focuses on modeling the dependence between two samples.

1.2 Detection of abnormal NOx pollution levels

In this section, based on the work of Febrero et al. (2008), we show how the fun-
damental statistical concepts of the center of a distribution and of an outlier can be
defined in the functional context. A center of a sample of scalars can be defined by
the median, the mean, the trimmed mean, or other similar measures. The definition
of an outlier is less clear, but for relatively small samples even visual inspection
may reveal suspect observations. For a collection of curves, like those shown in
Figure 1.4, it is not clear how to define central curves or outlying curves. The value
of a function at every point t may not be an outlier, but the curve itself may be a
functional outlier. Generally speaking, once incorrectly recorded curves have been
removed, a curve is an outlier if it comes from a populations with a different dis-
tribution in a function space than the majority of the curves. An outlier may be far
away from the other curves, or may have a different shape. The concept of depth
of functional data offers a possible framework for identifying central and outlying
observations; those with maximal depth are central, and those with minimal depth
are potential outliers.

The depth of a scalar data point can be defined in many ways, see Zuo and Ser-
fling (2000). To illustrate, suppose X1; X2; : : : XN are scalar observations, and

FN .x/ D 1

N

NX
nD1

I fXn � xg

is their empirical distribution function. The halfspace depth of the observationXi is
defined as

HSDN .Xi / D min fFN .Xi /; 1 � FN .Xi /g :
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If Xi is the median, then FN .Xi / D 1=2, and so HSDN .Xi / D 1=2, the largest
possible depth. IfXi is the largest point, thenFN .Xi / D 1, and soHSDN .Xi / D 0,
the least possible depth. Another way of measuring depth is to define

DN .Xi / D 1 �
ˇ̌̌̌
1

2
� FN .Xi /

ˇ̌̌̌
:

The largest possible depth is now 1, and the smallest 1=2.
Suppose now that we have a sample of functions fXn.t/; t 2 Œa; b�; n D 1;

2; : : : ; N g. We define the empirical distribution function at point t by

FN;t .x/ D 1

N

NX
nD1

I fXn.t/ � xg ;

and we can define a functional depth by integrating one of the univariate depths. For
example, Fraiman and Muniz (2001) define the functional depth of the curve Xi as

FDN .Xi / D
bZ
a

�
1 �

ˇ̌̌̌
1

2
� FN;t .Xi .t//

ˇ̌̌̌�
dt:

There are also other approaches to defining functional depth, an interested reader is
referred to Febrero et al. (2008) and López-Pintado and Romo (2009).

Once a measure of a functional depth, denote it generically by FDN , has been
chosen, we can use the following algorithm to identify outliers:

1. Calculate FDN .X1/; FDN .X2/; : : : ; FDN .XN /:
2. Remove curves with depth smaller than a threshold C from the sample and clas-

sify them as outliers. If there are no such curves, the procedure ends here.
3. Go back to step 1 and apply it to the sample without outliers removed in step 2.

The critical element of this procedure is determining the value of C which should
be so small that only a small fraction, say 1%, of the curves are classified as outliers,
if there are in fact no outliers. The value ofC can then be computed from the sample
using some form of bootstrap, two approaches are described in Febrero et al. (2008).
Step 3 is introduced to avoid masking, which takes place when “large” outliers mask
the presence of other outliers.

Febrero et al. (2008) applied this procedure with three measuresFDN to the data
shown in Figure 1.4, but split into working and non-working days. The two samples
containing 76 working and 39 nonworking days between February 23 and June 26,
2005 are shown in Figure 1.5, with outliers identified by black lines. For working
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Fig. 1.5 Outliers in NOx concentration curves in the samples of working and nonworking days.

days, these are Friday, March 18, and Friday, April 29. For non-working days, the
outliers are the following Saturdays, March 19 and April 30. These days are the
beginning of long weekend holidays in Spain. This validates the identification of
the NOx curves on these days as outliers, as the traffic pattern can be expected to be
different on holidays.

Febrero et al. (2008) did not attempt to develop an asymptotic justification for
the procedure described in this section. Its performance is assessed by application to
a real data set. Such an approach is common. In this book, however, we focus on sta-
tistical procedures whose asymptotic validity can be established. Resampling proce-
dures for functional data taking values in a general measurable space are reviewed
by McMurry and Politis (2010).
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1.3 Prediction of the volume of credit card transactions

In this section, based on the work of Laukaitis and Račkauskas (2002), we describe
the prediction of the volume of credit card transactions using the functional autore-
gressive process, which will be studied in detail in Chapter 13.

The data available for this analysis consists of all transactions completed using
credit cards issued by Vilnius Bank, Lithuania. Details of every transaction are doc-
umented, but here we are interested only in predicting the daily pattern of the vol-
ume of transactions. For our exposition, we simplified the analysis of Laukaitis and
Račkauskas (2002), and denote byDn.ti / the number of credit card transactions on
day n; n D 1; : : : ; 200; (03/11/2000 – 10/02/2001) between times ti�1 and ti , where
ti � ti�1 D 8 min; i D 1; : : : ; 128: We thus have N D 200 daily curves, which
we view as individual observations. The grid of 8 minutes was chosen for ease of
exposition, Laukaitis and Račkauskas (2002) divide each day into 1024 intervals
of equal length. The transactions are normalized to have time stamps in the inter-
val Œ0; 1�, which thus corresponds to one day. The left most panel of Figure 1.6
shows the Dn.ti / for two randomly chosen days. The center and right panels show
smoothed functional versions Dn.t/ obtained, respectively, with 40 and 80 Fourier
basis functions as follows. Each vector ŒDn.t1/;Dn.t2/; : : : ;Dn.t128/� is approxi-
mated using sine and cosine functionsBm.t/; t 2 Œ0; 1�;whose frequencies increase
with m. We write this approximation as

Dn.ti / �
MX
mD1

cnmBm.ti /; n D 1; 2; : : : ; N:

The trigonometric functions are defined on the whole interval Œ0; 1�, not just at the
points ti , so we can continue to work with truly functional data

Yn.t/ D
MX
mD1

cnmBm.t/; n D 1; 2; : : : ; N:

In this step, we reduced the the number of scalars needed to represent each curve
from 128 to M (40 or 80). If the original data are reported on a scale finer than 8
minutes, the computational gain is even greater. The step of expanding the data with
respect to a fixed basis is however often only a preliminary step to further dimension
reduction. The number M is still too large for many matrix operations, and the
choice of the trigonometric basis is somewhat arbitrary, a spline or a wavelet basis
could be used as well. The next step will attempt to construct an “optimal” basis.

Before we move on to the next step, we remove the weekly periodicity by com-
puting the differences Xn.t/ D Yn.t/ � Yn�7.t/; n D 8; 9; : : : ; 200: Figure 1.7
displays the first three weeks of these data. The most important steps of the anal-
ysis are performed on the curves Xn.t/; n D 8; 9; : : : ; 200: which we view as a
stationary functional time series. Thus, while each Xn is assumed to have the same
distribution in a function space, they are dependent. We assume that each Xn is an

1.3 Prediction of the volume of credit card transactions
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Fig. 1.6 Two functional observations Xn derived from the credit card transactions (left–most
panel) together with smooths obtained by projection on 40 and 80 Fourier basis functions.

element of the space L2 D L2.Œ0; 1�/ of square integrable functions on Œ0; 1�, and
that there is a function  .t; s/; t 2 Œ0; 1�; s 2 Œ0; 1�; such that

Xn.t/ D
Z 1

0

 .t; s/Xn�1.s/ds C "n.t/;

where the errors "n are iid elements of L2. The above equation extends to the func-
tional setting the most popular model of time series analysis, the AR(1) model, in
which the scalar observationsXi are assumed to satisfy Xi D  Xi�1 C "i , see e.g.
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Fig. 1.7 Three weeks of centered time series of fXn.ti /g derived from credit card transaction
data. The vertical dotted lines separate days.

Chapter 3 of Box et al. (1994). To compute an estimate of the kernel  .t; s/, the
curvesXn are approximated by an expansion of the form

Xn.t/ �
pX
kD1

�knvk.t/;

where the vk are the functional principal components (FPC’s) of the Xn; n D
8; 9; : : : ; 200: The idea of expansion with respect to FPC’s will be taken up in

11Prediction of the volume of credit card transactions1.3
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Chapter 3. Here we note that p is generally much smaller than the number of the
points at which the curves are evaluated (128 in this example) or the number M
of basis functions (40 or 80 in this example). The vk are orthonormal, and form an
“optimal” system for expressing the observations. Laukaitis and Račkauskas (2002)
recommend using p D 4 FPC’s. Once an estimator O has been constructed, we can
predict Xn via OXn D R 1

0
O .t; s/Xn�1.s/ds and the transaction volume curves via

OYnC1.t/ D Yn�6.t/C
Z 1

0

O .t; s/ŒYn.s/ � Yn�7.s/�ds:

Figure 1.8 shows examples of two curves Yn (n D 150 and n D 190) and their
predictions OYn. In general, the predictions tend to underestimate the transaction vol-
ume. This is because even for the scalar AR(1) process, the series of prediction
OXn D O�Xn�1 has a smaller range than the observations Xn D �Xn�1 C "n. The

problem of prediction of functional time series is studied in detail in Chapter 13.

1.4 Classification of temporal gene expression data

This section, based on the work of Leng and Müller (2006), introduces one of many
formulations of the functional linear model. We introduce such models in Chapter
8, and study them in Chapters 9, 11 and 10. Our presentation focuses only on the
central idea and omits many details, which can be found in Leng and Müller (2006)
and Müller and Stadtmüller (2005).

Figure 1.9 shows expression time courses of 90 genes. The expressions are mea-
sured at 18 time points ti with ti � ti�1 D 7 minutes. The genes can be classified as
G1 phase and non–G1 phase. A classification performed using traditional methods
yielded 44 G1 and 46 non–G1 genes. Leng and Müller (2006) proposed a statistical
method of classifying genes based exclusively on their expression trajectories. Their
approach can be summarized as follows.

After rescaling time, each trajectory is viewed as a smooth curve Xn.t/; t 2
Œ0; 1�; observed, with some error, at discrete time points ti . It is assumed that the
curves are independent and identically distributed with the mean function �.t/ D
EXn.t/ and the FPC’s vk , so that they admit a representation

Xn.t/ D �.t/C
1X
kD1

�knvk;

with

�kn D
Z 1

0

.Xn.t/ � �.t//vk.t/dt:
The unknown curves Xn must be estimated, as outlined below, but the idea is that
the scalars

�n D ˛ C
Z 1

0

ˇ.t/ .Xn.t/ � �.t// dt;
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Fig. 1.8 Two credit card transaction volume curves Yn (solid lines) and their predictions OYn (dot-
ted lines)

for some parameters ˛ and ˇ.t/; t 2 Œ0; 1�; can be used to classify the genes as G1
or non–G1. Note that the parameter ˇ is a smooth curve. The idea of classification is
that we set a cut–off probability p1, and classify a gene as G1 phase if h.�n/ > p1,
where

h.�/ D e�

1C e�
:

The central issue is thus to approximate the linear predictors �n, and this involves
the estimation of the curvesXn and the parameters ˛ and ˇ.
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Fig. 1.9 Temporal gene expression profiles of yeast cell cycle. Dashed lines: G1 phase; Gray solid
lines: non-G1 phases; Black solid line: overall mean curve.

The curvesXn are estimated by smooth curves

X .p/n .t/ D O�.t/C
pX
kD1

O�kn Ovk.t/:

For the curves shown in Figure 1.9, using p D 5 is appropriate. Estimation of the
FPC’s vk involves obtaining a smooth estimate of the covariance surface

c.t; s/ D E f.Xn.t/ � �.t//.Xn.s/ � �.s//g ; t; s 2 Œ0; 1�:
Inserting X .p/n into the equation defining �n yields

�.p/n .˛; ˇ/ D ˛ C
Z 1

0

ˇ.t/

 
pX
kD1

O�kn Ovk.t/
!
dt;

i.e

�.p/n .˛; ˇ/ D ˛ C
pX
kD1

ˇk O�kn;

where

ˇk D
Z 1

0

ˇ.t/ Ovk.t/dt; k D 1; 2; : : : ; p:

The parameters ˛; ˇ1; : : : ; ˇp are estimated using the generalized linear model

Yn D h

 
˛ C

pX
kD1

ˇk O�kn
!

C en;
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where Yn D 1 if a gene is classified as G1 using traditional methods, and Yn D
0 otherwise. This is done by solving an appropriate score equation. Denoting the
estimates by Ǫ ; Ǒ

1; : : : ; Ǒ
p, we can compute the linear predictor

O�n D Ǫ C
pX
kD1

Ǒ
k

O�kn

for any trajectory, and classify the gene as G1 phase if h. O�/ > p1.
Leng and Müller (2006) applied this method to the time courses of 6,178 genes in

the yeast cell cycle, and found that their method compares favorably with an earlier
method. In the training sample of the 90 trajectories, they found 5 genes which their
method classified as non–G1, but the traditional method as G1. They argued that the
traditional method may have classified some of these 5 genes incorrectly.

1.5 Statistical packages, bases, and functional objects

All procedures described in this book can be implemented in readily available sta-
tistical software without writing additional code in FORTRAN or C++. We have
implemented them using the R package fda. When applied to a single data sets,
these procedures are reasonably fast, and never take more then a few minutes on
a single processor laptop or desktop. Some simulations, which require running the
same procedure thousands of times can however take hours, or days if bootstrap is
involved.

Ramsay et al. (2009) provide a solid introduction to computational issues for
functional data, and numerous examples. Their book describes not only the R pack-
age fda, but contains many examples implemented in Matlab. Clarkson et al.
(2005) describes the implementation in S+.

Throughout this book we often refer the choice of a basis and the number of
basis functions. This is an important step in the analysis of functional data, which is
often not addressed in detail in the subsequent chapters, so we explain it here. This
is followed by brief comments on sparsely observed data.

We assume that the collected raw data are already cleaned and organized. Let t
be the one-dimensional argument. Functions of t are observed at discrete sampling
values tj , j D 1; : : : ; J , which may or may not be equally spaced. We work with
N functions with indexes i D 1; : : : ; N ; these are our functional data. These data
are converted to the functional form, i.e. a functional object is created. In order to
do this, we need to specify a basis. A basis is a system of basis functions, a linear
combination of which defines the functional objects. The elements of a basis may
or may not be orthogonal. We express a functional observationXi as

Xi .t/ �
KX
kD1

cik�k.t/;
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where the �k; k D 1; : : : ; K; are the basis functions. One of the advantages of this
approach is that instead of storing all the data points, one stores the coefficients of
the expansion, i.e. the cik . As indicated in Section 1.3, this step thus involves an
initial dimension reduction and some smoothing. It is also critical for all subsequent
computations which are performed on the matrices built from the coefficients cik .
The numberK of the basis functions impacts the performance of some procedures,
but other are fairly insensitive to its choice. We discuss this issue in subsequent
chapters on a case by case basis. We generally choose K so that the plotted func-
tional objects resemble original data with some smoothing that eliminates the most
obvious noise. If the performance of a test depends on K , we indicate what values
of K give correct size. The choice of the basis is typically important. We work in
this book with two systems: the Fourier basis and the B–spline basis. The Fourier
basis is usually used for periodic, or nearly periodic, data. Fourier series are useful
for expanding functions with no strong local features and a roughly constant curva-
ture. They are inappropriate for data with discontinuities in the function itself or in
low order derivatives. The B-spline basis is typically used for non-periodic locally
smooth data. Spline coefficients are fast to compute and B–splines form a very flex-
ible system, so a good approximation can be achieved with a relatively small K .

In R, bases are created with calls like:

minutebasis<-create.fourier.basis(rangeval=c(0,1440),nbasis=49)

minutebasis<-create.bspline.basis(rangeval=c(0,1440),nbasis=49)

The parameter rangeval is a vector containing the initial and final values of
the argument t . The bases created above will be used for magnetometer data, which
consist of 1440 data points per day. These data are in one minute resolution, and
there are 1440 minutes in a day. The argument nbasis is the number of basis
functions.

Once a basis is created, the data are converted into functional objects. This is
needed to reduce the computational burden; only the coefficients cik are used after
this conversion. In our example, the reduction is from 1440 to 49 numbers. In order
to convert raw data into a functional object the function data2fd is used. The code
below produces Figure 1.10. The data are the daily records of the magnetic intensity
stored in the matrix data.

minutetime<-seq(from = 1, to = 1440, by = 1)
minutebasis<-create.bspline.basis(rangeval=c(0,1440),nbasis=69)
data.fd<-data2fd(data, minutetime, basisobj=minutebasis)
plot.fd(data.fd, col="black")
title("Functional data, March -- April, 2001")
mean.function<-mean.fd(data.fd)
lines(mean, lw=7)

The fda package contains a variety of display functions and summary statis-
tics such as plot.fd, mean.fd, var.fd, sd.fd, center.fd, etc. All these
functions use functional objects as input.

The data we work with in this book are available at very densely spaced (typ-
ically equispaced) and numerous points tj (often over a thousand per curve). We
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Fig. 1.10 31 magnetic intensity functions with the mean function (thick line)

need smoothing with a basis expansion as a means to make further calculations
feasible. The measurement errors for our data are typically very small relative to
the magnitude of the curves, and so are negligible. In many application, the data
are available only at a few sparsely distributed points tj , which may be different
for different curves, and the data are available with non–negligible measurement
errors, Yao et al. (2005a) introduce such data structures. For such data, smooth-
ing with a basis expansion is at best inappropriate, and often not feasible. Dif-
ferent smoothing techniques are required to produce smooth curves which can be
used as input data for the procedures described in this book. These techniques are
implemented in the Matlab package PACE developed at the University of Califor-
nia at Davis, available at http://anson.ucdavis.edu/$\sim$mueller/
data/software.html, at the time of writing.

After the data have been represented as functional objects, we often construct
a more sparse representation by expanding them with respect to the orthonormal
system formed by the functional principal components vk , as illustrated in Section
1.3 and 1.4. In R, this is done by using the function pca.fd. For the procedures
described in this book, the argumentcenterfnsmust be set to TRUE. This means
that the sample mean function NXN .t/ D N�1PN

iD1Xi .t/ is subtracted from each
Xi .t/ before the vk are estimated. The FPC’s are thus computed for the centered
data. Further details are presented in Section 3.4.

http://anson.ucdavis.edu/$\sim$mueller/
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Independent functional observations



Chapter 2
Hilbert space model for functional data

In this Chapter we introduce some fundamental concepts of the theory of operators
in a Hilbert space, and then focus of the properties of random samples in the space
L2 of square integrable functions. The space L2 is sufficient to handle most proce-
dures considered in this book. We also present a few technical results that fit into
the framework considered in this chapter, and are used in subsequent chapters.

2.1 Operators in a Hilbert space

In this section we follow closely the exposition in Bosq (2000). Good references on
Hilbert spaces are Riesz and Sz.-Nagy (1990), Akhiezier and Glazman (1993) and
Debnath and Mikusinski (2005). An in–depth theory of operators in a Hilbert space
is developed in Gohberg et al. (1990), where the proofs of all results stated in this
section can be found.

We consider a separable Hilbert space H with inner product h �; �i which gen-
erates the norm k � k, and denote by L the space of bounded (continuous) linear
operators onH with the norm

k�kL D supfk�.x/k W kxk � 1g:

An operator � 2 L is said to be compact if there exist two orthonormal bases fvj g
and ffj g, and a real sequence f�j g converging to zero, such that

�.x/ D
1X
jD1

�j
˝
x; vj

˛
fj ; x 2 H; (2.1)

The �j may be assumed positive because one can replace fj by �fj , if needed.
The existence of representation (2.1) is equivalent to the condition:� maps every

bounded set into a compact set. Another equivalent condition is the following: the
convergence hy; xni ! hy; xi for every y 2 H implies that k�.xn/��.x/k ! 0.

OI 10.1007/978-1-4614- _2, 
© Springer Science+Business Media New York 2012

L. Horváth and P. Kokoszka, Inference for Functional Data with Applications, 
3655-3Springer Series in Statistics 200, D
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Compact operators are also called completely continuous operators. Representation
(2.1) is called the singular value decomposition.

A compact operator admitting representation (2.1) is said to be a Hilbert–Schmidt
operator if

P1
jD1 �2j < 1. The space S of Hilbert–Schmidt operators is a separable

Hilbert space with the scalar product

h�1; �2iS D
1X
iD1

h�1.ei /; �2.ei /i ; (2.2)

where feig is an arbitrary orthonormal basis, the value of (2.2) does not depend on
it. One can show that k�k2S D P

j�1 �2j and

k�kL � k�kS : (2.3)

An operator � 2 L is said to be symmetric if

h�.x/; yi D hx; �.y/i ; x; y 2 H;

and positive–definite if
h�.x/; xi � 0; x 2 H:

(An operator with the last property is sometimes called positive semidefinite, and
the term positive–definite is used when h�.x/; xi > 0 for x ¤ 0.)

A symmetric positive–definite Hilbert–Schmidt operator � admits the decompo-
sition

�.x/ D
1X
jD1

�j
˝
x; vj

˛
vj ; x 2 H; (2.4)

with orthonormal vj which are the eigenfunctions of � , i.e. �.vj / D �j vj . The
vj can be extended to a basis by adding a complete orthonormal system in the
orthogonal complement of the subspace spanned by the original vj . The vj in (2.4)
can thus be assumed to form a basis, but some �j may be zero.

2.2 The space L2

The space L2 D L2.Œ0; 1�/ is the set of measurable real–valued functions x defined
on Œ0; 1� satisfying

R 1
0
x2.t/dt < 1. The spaceL2 is a separable Hilbert space with

the inner product

hx; yi D
Z
x.t/y.t/dt:

An integral sign without the limits of integration is meant to denote the integral
over the whole interval Œ0; 1�. If x; y 2 L2, the equality x D y always meansR
Œx.t/ � y.t/�2dt D 0.
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An important class of operators in L2 are the integral operators defined by

�.x/.t/ D
Z
 .t; s/x.s/ds; x 2 L2;

with the real kernel  .�; �/. Such operators are Hilbert–Schmidt if and only ifZZ
 2.t; s/dtds < 1;

in which case

k�k2S D
ZZ

 2.t; s/dtds: (2.5)

If  .s; t/ D  .t; s/ and
RR
 .t; s/x.t/x.s/dt ds � 0, the integral operator � is

symmetric and positive–definite, and it follows from (2.4) that

 .t; s/ D
1X
jD1

�j vj .t/vj .s/ in L2.Œ0; 1� � Œ0; 1�/: (2.6)

If  is continuous, the above expansions holds for all s; t 2 Œ0; 1�, and the series
converges uniformly. This result is known as Mercer’s theorem, see e.g. Riesz and
Sz.-Nagy (1990).

2.3 Random elements in L2 and the covariance operator

We view a random curve X D fX.t/; t 2 Œ0; 1�g as a random element of L2

equipped with the Borel 	–algebra. We say that X is integrable if EkXk D
EŒ
R
X2.t/dt�1=2 < 1. If X is integrable, there is a unique function � 2 L2 such

that E hy;Xi D hy;�i for any y 2 L2. It follows that �.t/ D EŒX.t/� for almost
all t 2 Œ0; 1�. The expectation commutes with bounded operators, i.e. if � 2 L and
X is integrable, then E�.X/ D �.EX/.

If X is square integrable, i.e.

EkXk2 D E

Z
X2.t/dt < 1;

and EX D 0, the covariance operator of X is defined by

C.y/ D EŒhX; yiX�; y 2 L2:

It is easy to see that

C.y/.t/ D
Z
c.t; s/y.s/ds; where c.t; s/ D EŒX.t/X.s/�:
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Clearly, c.t; s/ D c.s; t/ andZZ
c.t; s/y.t/y.s/dt ds D

ZZ
EŒX.t/X.s/�y.t/y.s/dt ds

D E

"�Z
X.t/y.t/dt

�2#
� 0:

Thus C is symmetric and positive–definite, so it has nonnegative eigenvalues.
However, not every symmetric positive–definite operator in L2 is a covariance

operator. To explain, let vj ; �j ; j � 1; be the eigenfunctions and the eigenvalues of
the covariance operator C . The relation C.vj / D �j vj implies that

�j D ˝
Cvj ; vj

˛ D ˝
EŒ
˝
X; vj

˛
X�; vj

˛ D E
h˝
X; vj

˛2i
:

The eigenfunctions vj are orthogonal, and they can be normalized to have unit norm,
so that fvj g forms a basis in L2. Consequently, by Parseval’s equality,

1X
jD1

�j D
1X
jD1

E
h˝
X; vj

˛2i D EkXk2 < 1: (2.7)

One can show that, in fact, C 2 L.L2/ is a covariance operator if and only if it is
symmetric positive–definite and its eigenvalues satisfy

P1
jD1 �j < 1.

To give a specific example of a bounded, symmetric, positive–definite operator
which is not a covariance operator, consider an arbitrary orthonormal basis fej ; j �
1g, so that every x 2 L2 can be expanded as x D P

j

˝
x; ej

˛
ej . Define

�.x/ D
X
j

˝
x; ej

˛
j�1ej :

The operator � is bounded because

k�.x/k2 D
X
j

˝
x; ej

˛2
j�2 �

X
j

˝
x; ej

˛2 D kxk2:

Thus, in fact, k�kL � 1. To see that this operator is symmetric, observe that

h�.x/; yi D
*X
j

˝
x; ej

˛
j�1ej ;

X
k

hy; eki ek
+

D
X
j;k

˝
x; ej

˛ hy; eki ˝ej ; ek˛ j�1
D
X
j

˝
x; ej

˛ ˝
y; ej

˛
j�1 D hx; �.y/i :
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Since
h�.x/; xi D

X
j

˝
x; ej

˛2
j�1 � 0;

the operator � is positive–definite.
The eigenvalues of � are equal to j�1 because �.ej / D j�1ej ; j � 1. SinceP
j j

�1 D 1, � is not a covariance operator.
Throughout the book, we will often use the following central limit theorem ,

which is stated (and proven) as Theorem 2.7 in Bosq (2000).
A more general version is stated and proven as Theorem 6.2, and an extension to

dependent summands is given in Theorem 16.10.

Theorem 2.1. Suppose fXn; n � 1g is a sequence of iid mean zero random ele-
ments in a separable Hilbert space such that EkXik2 < 1. Then

N�1=2
NX
nD1

Xn
d! Z;

where Z is a Gaussian random element with the covariance operator

C.x/ D EŒhZ; xiZ� D EŒhX1; xiX1�:
Notice that a normally distributed function Z with a covariance operator C

admits the expansion

Z
dD

1X
jD1

q
�jNj vj ; (2.8)

with independent standard normal Nj . This follows because C is the covariance
operator of the right–hand side of (2.8), and it determines the distributions, as both
sides are normally distributed.

For ease of reference, we also recall the law of large numbers , which is stated
and proved as Theorem 2.4 in Bosq (2000).

Theorem 2.2. Suppose fXn; n � 1g is a sequence of iid random elements in a
separable Hilbert space such thatEkXik2 < 1. Then� D EXi is uniquely defined
by h�; xi D E hX; xi, and

N�1
NX
nD1

Xn
a:s:! �:

2.4 Estimation of mean and covariance functions

In applications, we observe a sample consisting of N curves X1; X2; : : : XN . We
view each curve as a realization of a random function X , or as a random ele-
ment of L2 with the same distribution as X . We can often assume that the Xi are
independent, especially if these curves arise from measurements on subjects ran-
domly selected from a large population.
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Assumption 2.1. The observationsX1; X2; : : : XN are iid inL2, and have the same
distribution as X , which is assumed to be square integrable.

We define the following parameters:

�.t/ D EŒX.t/� .mean function/I
c.t; s/ D EŒ.X.t/ � �.t//.X.s/ � �.s//� .covariance function/I

C D EŒh.X � �/; �i .X � �/� .covariance operator/:

The mean function � is estimated by the sample mean function

O�.t/ D N�1
NX
iD1

Xi .t/

and the covariance function by its sample counterpart

Oc.t; s/ D N�1
NX
iD1

.Xi .t/ � O�.t// .Xi .s/ � O�.s// :

The sample covariance operator is defined by

OC.x/ D N�1
NX
iD1

hXi � O�; xi .Xi � O�/; x 2 L2:

Note that OC maps L2 into a finite dimensional subspace spanned by X1;

X2; : : : ; XN . This illustrates the limitations of statistical inference for functional
observations; a finite sample can recover an infinite dimensional object only with
limited precision.

The first theorem states that O� is an unbiased MSE consistent estimator of�, and

implies that it is consistent, in a sense that k O���k P! 0. The theorem, and its proof,
parallel analogous results for the average of scalar observations.

Theorem 2.3. If Assumption 2.1 holds, then E O� D � and Ek O���k2 D O.N�1/.

Proof. For every i , for almost all t 2 Œ0; 1�, EXi .t/ D �.t/, so it follows that
E O� D � in L2. Observe that

Ek O�� �k2 D N�2
NX

i;jD1
EŒ
˝
.Xi � �/; .Xj � �/˛�

D N�2
NX
iD1

EkXi � �k2 D N�1EkX � �k2: ut

In the proof we used the following lemma which follows from conditioning on
X2 and the definition of expectation in a Hilbert space, see Section 2.3.
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Lemma 2.1. If X1; X2 2 L2 are independent, square integrable and EX1 D 0,
then EŒhX1; X2i� D 0.

To study the properties of Oc.t; s/, we must first choose an appropriate norm for
measuring the distance between Oc.t; s/ and c.t; s/. Observe that c.�; �/ 2 L2.Œ0; 1��
Œ0; 1�/ because ZZ

c2.t; s/dt ds

D
ZZ

EŒ.X.t/ � �.t//.X.s/� �.s//�2dt ds

�
ZZ

EŒ.X.t/ � �.t//2�EŒ.X.s/ � �.s//2�dt ds

D
�Z

EŒ.X.t/ � �.t//2�dt
�2

D
�
E

Z
.X.t/ � �.t//2dt

�2
D �

EkX � �k2�2 :
It follows that the covariance operator C is Hilbert–Schmidt. Just as in the scalar
case, Oc.t; s/ is a biased estimator of c.t; s/. An elementary verification shows that

EŒ Oc.t; s/� D N

N � 1 c.t; s/ .in L2.Œ0; 1� � Œ0; 1�//:

The bias of Oc is asymptotically negligible, and is introduced by the estimation of
the mean function �. Replacing � by O� in general has a negligible effect, and in
theoretical work, it is convenient to assume that � is known and equal to zero. This
simplifies many formulas. When applying such results to real data, it is important to
remember to first subtract the sample mean function O� from functional observations.

From now on, except when explicitly stated, we thus assume that the observations
have mean zero. We therefore have

Oc.t; s/ D N�1
NX
iD1

Xi .t/Xi .s/I OC.x/ D N�1
NX
iD1

hXn; xiXn

and
OC.x/.t/ D

Z
Oc.t; s/x.s/ds; x 2 L2: (2.9)

We will see in Theorem 2.4 thatEkXk4 < 1 impliesEk OCk2S < 1, where k � kS is
the Hilbert–Schmidt norm. By (2.5) and (2.9), this implies that with probability one
Oc.�; �/ 2 L2.Œ0; 1� � Œ0; 1�/ because then E

RR Oc2.t; s/dt ds < 1. The assumption
EkXk4 < 1 is however only a sufficient condition. A direct verification shows that
if for each 1 � n � N , Xn.�/ 2 L2.Œ0; 1�/ a.s., then Oc.�; �/ 2 L2.Œ0; 1� � Œ0; 1�/ a.s..
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Theorem 2.4. If EkXk4 < 1; EX D 0; and Assumption 2.1 holds, then

Ek OCk2S � EkXk4:

Proof. By the triangle inequality

Ek OCkS D E

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇN�1

NX
nD1

hXn; � iXn
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
S

� Ek hX; � iXkS :

By (2.2), for any orthonormal basis fej ; j � 1g,

k hX; � iXk2S D
1X
jD1

k ˝X; ej ˛Xk2 D kXk2
1X
jD1

j ˝X; ej ˛ j2 D kXk4: ut

Theorem 2.5. If EkXk4 < 1; EX D 0; and Assumption 2.1 holds, then

Ek OC � Ck2S � N�1EkXk4:

Proof. By (2.2), for any orthonormal basis fej ; j � 1g,

k OC � Ck2S

D
1X
jD1

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ 1N

NX
nD1

˝
Xn; ej

˛
Xn �EŒ˝X; ej ˛X�

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

D
1X
jD1

*
1

N

NX
nD1

˚˝
Xn; ej

˛
Xn � EŒ

˝
Xn; ej

˛
Xn�

�
;

1

N

NX
mD1

˚˝
Xm; ej

˛
Xm �EŒ˝Xm; ej ˛Xm��+

D 1

N 2

1X
jD1

NX
nD1

NX
mD1

h˚˝Xn; ej ˛Xn �EŒ˝Xn; ej ˛Xn��
� ˚˝Xm; ej ˛Xm �EŒ˝Xm; ej ˛Xm��i:

By Lemma 2.1, for n ¤ m,

Eh˚˝Xn; ej ˛Xn � EŒ
˝
Xn; ej

˛
Xn�

�
;
˚˝
Xm; ej

˛
Xm � EŒ

˝
Xm; ej

˛
Xm�

�i D 0:
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Therefore,

Ek OC � Ck2S

D 1

N 2

1X
jD1

NX
nD1

E
ˇ̌̌̌ ˝
Xn; ej

˛
Xn �EŒ˝Xn; ej ˛Xn�ˇ̌̌̌ 2

D 1

N

1X
jD1

E
ˇ̌̌̌ ˝
X; ej

˛
X �EŒ˝X; ej ˛X�ˇ̌̌̌ 2

� 1

N

1X
jD1

E
ˇ̌̌̌ ˝
X; ej

˛
X
ˇ̌̌̌ 2

D N�1E
1X
jD1

ˇ̌̌̌ ˝
X; ej

˛
X
ˇ̌̌̌ 2

D N�1E

24kXk2
1X
jD1

j ˝X; ej ˛ j2
35

D N�1EkXk4:

By (2.5), the conclusion of Theorem 2.5 can be equivalently stated as

E

ZZ
Œ Oc.t; s/ � c.t; s/�2dt ds � N�1EkXk4:

This implies that Oc.t; s/ is a mean squared consistent estimator of the covariance
function c.t; s/.

The following application of Theorem 2.5 will be used in subsequent chapters
dealing with change point analysis. We first formulate the assumptions and intro-
duce some additional notation.

Assumption 2.2. The X; Y;Xi ; Yi ; i � 1; are random elements of L2 which satisfy
the following conditions:

C1: X;Xi ; i � 1 are independent and identically distributed,
C2: Y; Yi ; i � 1 are independent and identically distributed,
C3: fX;Xi ; i � 1g and fY; Yi ; i � 1g are independent,
C4: EX D 0; EkXk4 < 1; EY D 0; EkY k4 < 1:

Let k� D k�N be a sequence of integers satisfying 1 � k�N � N and

lim
N!1

k�N
N

D 
; for some 0 � 
 � 1: (2.10)
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Define

Oc�N .t; s/ D 1

N

0@ X
1�i�k�

Xi .t/Xi .s/C
X

k�<i�N
Yi .t/Yi .s/

1A
and

c� .t; s/ D 
EŒX.t/X.s/�C .1 � 
/EŒY.t/Y.s/�:
Introduce the corresponding operators OC �N and C� defined by

OC �N .x/.t/ D
Z

Oc�N .t; s/x.s/ds; x 2 L2;

C�.x/.t/ D
Z
c� .t; s/x.s/ds; x 2 L2:

Theorem 2.6. If Assumption 2.2 and condition (2.10) hold, then

Ek OC �N � C�k2S ! 0:

Proof. To avoid introducing additional operators, we identify the operators with
their kernels, and, somewhat abusing the notation, use the arguments t and s, when
we actually mean the corresponding operators.

Since k � kS is a norm, we getˇ̌̌̌̌̌̌̌
OC �N �

�
k�

N
EŒX.t/X.s/�C N � k�

N
EŒY.t/Y.s/�

�ˇ̌̌̌̌̌̌̌
S

� k�

N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ 1k� X

1�i�k�

Xi .t/Xi .s/ �EŒX.t/X.s/�
ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
S

C N � k�

N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ 1

N � k�
X

k�<i�N
Yi .t/Yi .s/ � EŒY.t/Y.s/�

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
S

:

Henceˇ̌̌̌̌̌̌̌
OC �N �

�
k�

N
EŒX.t/X.s/�C N � k�

N
EŒY.t/Y.s/�

�ˇ̌̌̌̌̌̌̌ 2
S

� 2

8̂<̂
:
�
k�

N

�2 ˇ̌̌̌ˇ̌
ˇ̌̌̌
ˇ̌ 1k� X

1�i�k�

Xi .t/Xi .s/ �EŒX.t/X.s/�
ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

S

C
�
N � k�
N

�2 ˇ̌̌̌ˇ̌
ˇ̌̌̌
ˇ̌ 1

N � k�
X

k�<i�N
Yi .t/Yi .s/ � EŒY.t/Y.s/�

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

S

9>=>; :
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Therefore, by Theorem 2.5, we have

E

ˇ̌̌̌̌̌̌̌
OC �N �

�
k�

N
EŒX.t/X.s/�C N � k�

N
EŒY.t/Y.s/�

�ˇ̌̌̌̌̌̌̌ 2
S

� 2

	
k�

N 2
EkXk4 C N � k�

N 2
EkY k4



:

On the other hand,ˇ̌̌̌̌̌̌̌ �
k�

N
� 


�
EŒX.t/X.s/�C

�
N � k�
N

� .1 � 
/
�
EŒY.t/Y.s/�

ˇ̌̌̌̌̌̌̌
S

! 0;

on account of (2.10). ut

2.5 Estimation of the eigenvalues and the eigenfunctions

We often must estimate the eigenvalues and eigenfunctions of C , but the interpreta-
tion of these quantities as parameters, and their estimation, must be approached with
care. The eigenvalues must be identifiable, so we must assume that �1 > �2 > � � � :
In practice, we can estimate only the p largest eigenvalues, and assume that �1 >
�2 > � � � > �p > �pC1, which implies that the first p eigenvalues are nonzero. The
eigenfunctions vj are defined by Cvj D �j vj , so if vj is an eigenfunction, then so
is avj , for any nonzero scalar a (by definition, eigenfunctions are nonzero). The vj
are typically normalized, so that kvj k D 1, but this does not determine the sign of
vj . Thus if Ovj is an estimate computed from the data, we can only hope that Ocj Ovj is
close to vj , where

Ocj D sign.
˝ Ovj ; vj ˛/:

Note that Ocj cannot be computed form the data, so it must be ensured that the statis-
tics we want to work with do not depend on Ocj .

With these preliminaries in mind, we define the estimated eigenelements byZ
Oc.t; s/ Ovj .s/ds D O�j Ovj .t/; j D 1; 2; : : : N: (2.11)

We will often use the following result established in Dauxois et al. (1982) and
Bosq (2000). Its proof is presented in Section 2.7.

Theorem 2.7. SupposeEkXk4 < 1; EX D 0; Assumption 2.1 holds, and

�1 > �2 > � � � > �p > �pC1: (2.12)

Then, for each 1 � j � p,

lim sup
N!1

NE
�k Ocj Ovj � vj k2� < 1; lim sup

N!1
NE

h
j�j � O�j j2

i
< 1: (2.13)
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If Assumption (2.12) is replaced by �j > �jC1 > 0 for every j � 1, then (2.13)
holds for every j � 1.

Theorem 2.7 implies that, under regularity conditions, the population eigenfunc-
tions can be consistently estimated by the empirical eigenfunctions. If the assump-
tions do not hold, the direction of the Ovk may not be close to the vk . Examples of
this type, with many references, are discussed in Johnstone and Lu (2009).

The study of several change point procedures to be introduced in subsequent
chapters requires a version of Theorem 2.7. By Theorem 2.6, the empirical covari-
ance operator OC �N converges to C� . Hence the empirical eigenvalues and eigenfunc-
tions should be compared to �j;� and vj;� , the eigenvalues and eigenfunctions of C�
defined by Z

c� .t; s/vj;� .s/ds D �j;�vj;� .t/; j � 1:

We also define
Ocj;� D sign.

˝ Ovj ; vj;� ˛/
and state the following theorem.

Theorem 2.8. Suppose Assumption 2.2 and condition (2.10) hold, and

�1;� > �2;� > � � � > �p;� > �pC1;� :
Then, for each 1 � j � p,

E
�k Ocj;� Ovj � vj;�k2� ! 0 and E

h
j O�j � �j;� j2

i
! 0:

Proof. The result follows from Theorem 2.6 and Lemmas 2.2 and 2.3 because the
kernel c� .�; �/ is symmetric. ut

In most applications considered in this book, the L2 and in probability bounds
implied by (2.13) are sufficient. These bounds are optimal, as the random func-
tions N 1=2. Ocj Ovj � vj / and the random variables N 1=2.�j � O�j / have nondegen-
erate limits. It can be shown that they are asymptotically normal, see Mas (2002).
Theorem 2.10 is a simplified version of an approximation result obtained by Hall
and Hosseini-Nasab (2006) which implies the asymptotic normality under stronger
assumptions on the distribution of the observationsXn.

First, we introduce the random functions

ZN .t; s/ D N 1=2. Oc.t; s/ � c.t; s//;

where Oc.t; s/, c.t; s/ can be either centered with the (sample) mean function, or
uncentered if the mean function is assumed zero, see Section 2.4. The following
theorem establishes the weak convergence ofZN .�; �/ in the spaceL2.Œ0; 1�� Œ0; 1�/
assuming mean zero observations. A proof in the centered case is a simple modifi-
cation.

2.6 Asymptotic normality of the eigenfunctions



Theorem 2.9. If Assumption 2.1 holds with EX.t/ D 0 and EkXk4 < 1, then
ZN .t; s/ converges weakly in L2.Œ0; 1� � Œ0; 1�/ to a Gaussian process � .t; s/ with
E� .t; s/ D 0 and

EŒ� .t; s/� .t 0; s0/� D EŒX.t/X.s/X.t 0/X.s0/� � c.t; s/c.t 0; s0/:
Proof. Writing

ZN .t; s/ D N�1=2
NX
nD1

ŒXn.t/Xn.s/ � c.t; s/�;

we observe thatZN .t; s/ is a normalized partial sums process of independent, iden-
tically distributed random processes taking values in L2.Œ0; 1� � Œ0; 1�/. Hence the
CLT in a Hilbert space, holds ifE

RR
.X.t/X.s//2dt ds < 1. This condition holds,

because

E

ZZ
.X.t/X.s//2dt ds D E

Z
X2.t/dt

Z
X2.s/ds

�
(
E

�Z
X2.t/dt

�2 �Z
X2.s/ds

�2)1=2
D �

EkXk4�2 < 1: ut

We note that if the Xn are strongly mixing random functions, then the functions
Xn.t/Xn.s/ are also strongly mixing with the same rate. Hence, assuming some
moment conditions, for example those in Theorem 2.17 of Bosq (2000), the weak
convergence of the sequenceZN can also be established in the dependent case.

Since ZN .�; �/ converges weakly in the space L2.Œ0; 1� � Œ0; 1�/, the asymptotic
normality of O�j � �j and Ocj Ovj � vj is an immediate consequence of Theorem 2.10
which follows for the results of Hall and Hosseini-Nasab (2006), see also Hall and
Hosseini-Nasab (2007). First we state the required conditions.

Assumption 2.3. The random function X 2 L2 which has the same distribution as
the Xn satisfies the following conditions:

C1: For all � > 0, sup0�t�1EjX.t/j� < 1;

C2: there is 
 > 0 such that for all � > 0

sup
0�t;s�1

E Œjt � sj�� jX.t/� X.s/j�� < 1;

C3: for each integer r � 0, the sequence
n
��1j E

˝
X; vj

˛2ro
is bounded.

Theorem 2.10. If Assumptions 2.1 and 2.3 and condition (2.12) hold, then for 1 �
j � p,

N 1=2. O�j � �j / D
ZZ

ZN .t; s/vj .t/vj .s/dt ds C oP .1/

and
sup
0�t�1

jN 1=2. Ocj Ovj .t/ � vj .t// � OTj .t/j D oP .1/;
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where

OTj .t/ D
X
k¤j

.�j � �k/�1vk.t/
ZZ

Zn.t; s/vj .t/vj .s/dt ds:

2.7 Proof of Theorem 2.7

The proof of Theorem 2.7 is based on Lemmas 2.2 and 2.3. These lemmas have
wider applicability, and will be used in subsequent chapters. They state that if the
operators are close, then their eigenvalues and eigenfunctions (adjusted for the sign)
are also close.

Consider two compact operators C;K 2 L with singular value decompositions

C.x/ D
1X
jD1

�j
˝
x; vj

˛
fj ; K.x/ D

1X
jD1


j
˝
x; uj

˛
gj : (2.14)

The following Lemma is proven in Section VI.1 of Gohberg et al. (1990), see their
Corollary 1.6 on p. 99.

Lemma 2.2. Suppose C;K 2 L are two compact operators with singular value
decompositions (2.14). Then, for each j � 1, j
j � �j j � kK � CkL:

We now tighten the conditions on the operatorC by assuming that it is symmetric
and C.vj / D �j vj , i.e. fj D vj in (2.14). Notice that any covariance operator C
satisfies these conditions. We also define

v0j D cj vj ; cj D sign.
˝
uj ; vj

˛
/:

Lemma 2.3. Suppose C;K 2 L are two compact operators with singular value
decompositions (2.14). If C is symmetric, fj D vj in (2.14), and its eigenvalues
satisfy (2.12), then

kuj � v0j k � 2
p
2

˛j
kK � CkL; 1 � j � p;

where ˛1 D �1 � �2 and ˛j D min.�j�1 � �j ; �j � �jC1/; 2 � j � p:

Proof. For a fixed 1 � j � p, introduce the following quantities

Dj D kC.uj / � �juj k; Sj D
X
k¤j

˝
uj ; vk

˛2
:

The claim will follow, once we have established that

kuj � v0j k2 � 2Sj ; (2.15)

˛2jSj � D2
j ; (2.16)
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and
Dj � 2kK � CkL: (2.17)

Verification of (2.15): By the Parseval identity

kuj � v0j k2 D
1X
kD1

.
˝
uj ; vk

˛ � cj
˝
vj ; vk

˛
/2 D .

˝
uj ; vj

˛ � cj /
2 C Sj :

If cj D 0, then (2.15) clearly holds, since in this case kuj � v0j k D kuj k D 1

and Sj D kuj k � ˝
uj ; vj

˛ D 1.
If jcj j D 1, then .

˝
uj ; vj

˛ � cj /
2 D .1 � j ˝uj ; vj ˛ j/2, and using the identityP

k

˝
uj ; vk

˛2 D 1, we obtain

.1 � j ˝uj ; vj ˛ j/2 D
1X
kD1

˝
uj ; vk

˛2 � 2j ˝uj ; vj ˛ j C ˝
uj ; vj

˛2
:

Thus, if jcj j D 1,

.
˝
uj ; vj

˛ � cj /
2 D Sj C 2.

˝
uj ; vj

˛2 � j ˝uj ; vj ˛ j � Sj :

Verification of (2.16): By the Parseval identity

D2
j D

1X
kD1

�˝
C.uj /; vk

˛ � �j
˝
uj ; vk

˛�2
:

Since C is symmetric and C.vj / D �j vj ,
˝
C.uj /; vk

˛ D �k
˝
uj ; vk

˛
: Therefore

D2
j D

X
k¤j

.�k � �j /
2
˝
uj ; vk

˛2 � Sj min
k¤j

.�k � �j /
2:

Verification of (2.15): Observe that

C.uj /� �juj D .C �K/.uj /C .
j � �j /uj :
Therefore, by Lemma 2.2,

Dj � kC �KkLkuj k C j
j � �j jkuj k � 2kK � CkL: ut
Proof of Theorem 2.7.. By (2.3), kZN kL � kZN kS , where the kernel ZN is
defined in Section 2.6. By Theorem 2.5, EkZN k2S D O.N/, so the result follows
from Lemmas 2.2 and 2.3. ut

2.8 Bibliographical notes

In the R package fda, and in most other numerical implementations, the curves
Xi are smoothed before the estimates O�.t/ and Oc.t; s/ introduced in Section 2.4 are



36 2 Hilbert space model for functional data

computed. Smoothing is done by approximating theXi by finite linear combinations
of smooth basis functions,as explained in Section 1.5. This step ensures that O�.t/
and Oc.t; s/, and the estimated eigenfunctions Ovj .t/ defined in Section 2.5 are also
smooth. If the smoothing is not too severe, i.e. if it eliminates only noise and the
smoothed curves retain the main features of the original curves, then the estimates
resulting by smoothing the Xi first are approximately equivalent to the estimates
considered in this chapter. To formulate this property precisely, a statistical model
with a noise and a smooth component needs to be formulated. An interested reader
is referred to Boente and Fraiman (2000) and Zhang and Chen (2007) who consider,
respectively, kernel–based and local polynomial smoothing.

Just like the average of scalar data, the estimates O�.t/ and Oc.t; s/ are not robust
to outlying curves. It is possible to define the functional median, which is a more
robust measure of central tendency. If EkXk < 1, the population median m is
defined as the minimizer of EkX � mk, but it is also possible to define it and its
sample counterpart without assuming the finite first moment, see Gervini (2008),
who also proposes a method of robust estimation of the eigenfunctions vk . The
idea is that instead of using the eigenfunctions of the kernel Oc.t; s/, cf. (2.11), the
eigenfunctions of a weighted version of Oc.t; s/ should be used.

Delaigle and Hall (2010) propose a definition of the mode of the distribu-
tion a random function. The definition, and the estimation procedure, involve the
functional principal component expansions discussed in Chapter 3. This chapter
focused on moments of the distribution of a random function and on their estima-
tion. Delaigle and Hall (2010) argue that a density function cannot be meaningfully
defined.



Chapter 3
Functional principal components

This chapter introduces one of the most fundamental concepts of FDA, that of the
functional principal components (FPC’s). FPC’s allow us to reduce the dimension of
infinitely dimensional functional data to a small finite dimension in an optimal way.
In Sections 3.1 and 3.2, we introduce the FPC’s from two angles, as coordinates
maximizing variability, and as an optimal orthonormal basis. In Section 3.3, we
identify the FPC’s with the eigenfunctions of the covariance operator, and show
how its eigenvalues decompose the variance of the functional data. We conclude
with Section 3.4 which explains how to compute the FPC’s in the R package fda.

3.1 A maximization problem

In this section we present some preliminary results which are fundamental for the
remainder of this chapter. To motivate, we begin with a vector case, and then move
on to the space L2.

We first state the following well–known result, see e.g. Chapter 6 of Leon (2006).

Theorem 3.1. (Principal axis theorem). Suppose A is a symmetric p � p matrix.
Then, there is an orthonormal matrix U D Œu1; : : : ;up� whose columns are the
eigenvectors of A, i.e.

UTU D I and Auj D �juj :

Moreover,
UTAU D � D diagŒ�1; �2; : : : ; �p �:

The orthonormality of U is equivalent to the assertion that the vectors u1; : : : ;up
form an orthonormal basis in the Euclidean space Rp. Theorem 3.1 implies that
A D U�UT , a representation known as the spectral decomposition of A. It can
be used to solve the following maximization problem. Suppose A is symmet-
ric and positive–definite with distinct eigenvalues arranged in decreasing order:

OI 10.1007/978-1-4614- _3, 
© Springer Science+Business Media New York 2012

L. Horváth and P. Kokoszka, Inference for Functional Data with Applications, 
3655-3Springer Series in Statistics 200, D
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�1 > �2 > � � � > �p . We want to find a unit length vector x such that xTAx is
maximum. By the spectral decomposition, xTAx D yT�y, where y D UT x. Since
U is orthonormal, kyk D kxk, so it is enough to find a unit length vector y such
that y�yT is maximum, and then set x D Uy. Since y�yT D Pp

jD1 �jy2j , clearly

y D Œ1; 0; : : : ; 0�T , and x D u1 with the maximum being �1.
The above ideas can be easily extended to a separable Hilbert space, where they

become even more transparent. Suppose� is a symmetric positive–definite Hilbert–
Schmidt operator in L2. We have seen in Section 2.4 that the covariance operator C
and its sample counterpart OC are in this class, providedEkXk4 < 1. The operator
� then admits the spectral decomposition (2.4), and the problem of maximizing
h�.x/; xi subject to kxk D 1 becomes trivial because

h�.x/; xi D
* 1X
jD1

�j
˝
x; vj

˛
vj ; x

+
D

1X
jD1

�j
˝
x; vj

˛2
:

By Parseval’s equality, we must maximize the above, subject to
P1
jD1

˝
x; vj

˛2 D 1.

To ensure uniqueness, suppose �1 > �2 > � � � , so we take hx; v1i2 D 1 and˝
x; vj

˛ D 0 for j > 1. Thus, h�.x/; xi is maximized at v1 (or -v1), and the max-
imum is �1. Suppose now that we want to maximize h�.x/; xi subject not only to
the condition kxk D 1, but also to hx; v1i D 0. Thus we want to find another unit
norm function which is orthogonal to the function found in the first step. Such a
function, clearly satisfies h�.x/; xi D P1

jD2 �j
˝
x; vj

˛2
and

P1
jD2

˝
x; vj

˛2 D 1,
so x D v2, and the maximum now is �2. Repeating this procedure, we arrive at the
following theorem.

Theorem 3.2. Suppose� is a symmetric, positive definite Hilbert–Schmidt operator
with eigenfunctions vj and eigenvalues �j satisfying (2.12). Then,

sup
˚h�.x/; xi W kxk D 1;

˝
x; vj

˛ D 0; 1 � j � i � 1; i < p
� D �i ;

and the supremum is reached if x D vi . The maximizing function is unique up to a
sign.

3.2 Optimal empirical orthonormal basis

The approach developed in the previous section can be applied to the following
important problem. Suppose we observe functions x1; x2; : : : ; xN . In this section it
is not necessary to view these functions as random, but we can think of them as the
observed realizations of random functions in L2. Fix an integer p < N . We think
of p as being much smaller thanN , typically a single digit number. We want to find
an orthonormal basis u1; u2; : : : ; up such that

OS2 D
NX
iD1

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇxi �

pX
kD1

hxi ; ukiuk
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2
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is minimum. Once such a basis is found, we can replace each curve xi byPp

kD1 hxi ; ukiuk , to a good approximation. For the p we have chosen, this approx-

imation is uniformly optimal, in the sense of minimizing OS2. This means that instead
of working with infinitely dimensional curves xi , we can work with p–dimensional
vectors

xi D Œhxi ; u1i ; hxi ; u2i ; : : : ;
˝
xi ; up

˛
�T :

This is a central idea of functional data analysis, as to perform any practical calcu-
lations we must reduce the dimension from infinity to a finite number. The func-
tions uj are called collectively the optimal empirical orthonormal basis or natu-
ral orthonormal components, the words “empirical” and “natural” emphasizing that
they are computed directly from the functional data.

The functions u1; u2; : : : ; up minimizing OS2 are equal (up to a sign) to the nor-
malized eigenfunctions of the sample covariance operator, see (2.11). To see this,
suppose first that p D 1, i.e. we want to find u with kuk D 1 which minimizes

NX
iD1

jjxi � hxi ; uiujj2 D
NX
iD1

kxik2 � 2
NX
iD1

hxi ; ui2 C
NX
iD1

hxi ; ui2 kuk2

D
NX
iD1

kxik2 �
NX
iD1

hxi ; ui2 ;

i.e. maximizes
PN
iD1 hxi ; ui2 D

D OCu; u
E
: By Theorem 3.2, we conclude that u D

Ov1.
The general case is treated analogously. Since

OS2 D
NX
iD1

kxik2 �
NX
iD1

pX
kD1

hxi ; uki2 ;

we need to maximize
pX
kD1

NX
iD1

hxi ; uki2 D
pX
kD1

D OC.uk/; uk
E

D
1X
jD1

O�j
˝
u1; Ovj

˛2 C
1X
jD1

O�j
˝
u2; Ovj

˛2 C � � � C
1X
jD1

O�j
˝
up ; Ovj

˛2
:

By Theorem 3.2, the sum cannot exceed
Pp

kD1 O�k , and this maximum is attained if
u1 D Ov1; u2 D Ov2; : : : ; up D Ovp.

3.3 Functional principal components

Suppose X1; X2; : : : ; XN are functional observations. The eigenfunctions of the
sample covariance operator OC are called the empirical functional principal com-
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ponents (EFPC’s) of the data X1; X2; : : : ; XN . If these observations have the same
distribution as a square integrable L2–valued random function X , we define the
functional principal components (FPC’s) as the eigenfunctions of the covariance
operator C . We have seen in Section 2.5 that under regularity conditions the EFPC
estimate the FPC’s (up to a sign).

Section 3.2 explains that the EFPC’s can be interpreted as an optimal orthonormal
basis with respect to which we can expand the data. The inner product

˝
Xi ; Ovj

˛ DR
Xi .t/ Ovj .t/dt is called the j th score of Xi . It can be interpreted as the weight of

the contribution of the FPC Ovj to the curve Xi .
Another interpretation of EFPC’s follows from Section 3.1. Observe that under

the assumption EXi D 0, the statistic

1

N

NX
iD1

hXi ; xi2 D
D OC.x/; x

E
can be viewed as the sample variance of the data “in the direction” of the function
x. If we are interested in finding the function x which is “most correlated” with the
variability of the data (away from the mean if the data are not centered), we must
thus find x which maximizes h OC.x/; xi. Clearly, we must impose a restriction on
the norm of x, so if we require that kxk D 1, we see from Theorem 3.2 that x D Ov1,
the first EFPC. Next, we want to find a second direction, orthogonal to Ov1, which is
“most correlated” with the variability of the data. By Theorem 3.2, this direction is
Ov2. Observe that since the Ovj ; i D 1; : : : ; N; form a basis in RN ,

1

N

NX
iD1

kXik2 D 1

N

NX
iD1

NX
jD1

˝
Xi ; Ovj

˛2 D
NX
jD1

1

N

NX
iD1

˝
Xi ; Ovj

˛2 D
NX
jD1

O�j :

Thus, we may say that the variance in the direction Ovj is O�j , or that Ovj explains
the fraction of the total sample variance equal to O�j =.PN

kD1 O�k/. We also have the
corresponding population analysis of variance:

EkXk2 D
1X
jD1

EŒ
˝
X; vj

˛2
� D

1X
jD1

˝
Cvj ; vj

˛ D
1X
jD1

�j :

We now present an example that describes how functional data with specified
FPC’s can be generated. Set

Xn.t/ D
pX
jD1

ajZjnej .t/; (3.1)

where aj are real numbers, for every n, the Zjn are iid mean zero random variables
with unit variance, and the ej are orthogonal functions with unit norm. To com-
pute the covariance operator, we do not have to specify the dependence between the
sequences fZjn; j � 1g. This is needed to claim the convergence of the EFPC’s to
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the FPC’s, see Section 2.5. Denote by X a random function with the same distribu-
tion as each Xn, i.e. X.t/ D Pp

jD1 ajZj ej .t/. Then the covariance operator of X
acting on x is equal to

C.x/.t/ D E

��Z
X.s/x.s/ds

�
X.t/

�
D
Z
EŒX.t/X.s/�x.s/ds:

By the independence of the Zj , the covariance function is equal to

EŒX.t/X.s/� D E

24 pX
jD1

ajZj ej .t/

pX
iD1

aiZiei .s/

35 D
pX
jD1

a2j ej .t/ej .s/:

Therefore,

C.x/.t/ D
pX
jD1

a2j

�Z
ej .s/x.s/ds

�
ej .t/:

It follows that the EPC’s of the Xn are the ej , and the eigenvalues are �j D a2j .
Methods of functional data analysis which use EFPC’s assume that the observa-

tions are well approximated by an expansion like (3.1) with a small p and relatively
smooth functions ej .

In most applications, it is important to determine a value of p such that the actual
data can be replaced by the approximation

Pp
iD1

˝ Ovj ; Xn˛ Ovj . A popular method
is the scree plot. This is a graphical method proposed, in a different context, by
Cattell (1966). To apply it, one plots the successive eigenvalues O�j against j (see
Figure 9.6). The method suggests to find j where the decrease of the eigenvalues
appears to level off. This point is used as the selected value of p. To the right of
it, one finds only the “factorial scree” (“scree” is a geological term referring to the
debris which collects on the lower part of a rocky slope). The method that works best
for the applications discussed in this book is the CPV method defined as follows. The
cumulative percentage of total variance (CPV) explained by the first p EFPC’s is

CPV.p/ D
Pp

kD1 O�kPN
kD1 O�k

:

We choose p for which CPV.p/ exceeds a desired level, 85% is the recommended
value. Other methods, known as pseudo–AIC and cross–validation have also been
proposed. All these methods are described and implemented in the MATLAB pack-
age PACE developed at the University of California at Davis.

This section has merely set out the fundamental definitions and properties. Inter-
pretation and estimation of the functional principal components has been a subject
of extensive research, in which concepts of smoothing and regularization play a
major role, see Chapters 8, 9, 10 of Ramsay and Silverman (2005).
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3.4 Computation of functional principal components

The R function pca.fd computes the EFPC’s Ovj , the corresponding eigenvalues
O�j , and the scores

˝
Xi � NXN ; Ovj

˛
. Its argument must be a functional object, see

Section 1.5. A typical call is

pca<-pca.fd(data.fd, nharm = 3, centerfns = TRUE)

The functional object data.fd contains the 31 magnetic intensity functions
introduced in Section 1.5. The argument nharm specifies the number p of the
EFPC’s (also called harmonics) to be estimated. As explained at the end of Section
1.5, centerfns = TRUEmeans that the EFPC’s and the scores are computed for
the centered functionsXi � NXN .

Once the object pca has been created, Ov1; Ov2; : : : Ovp can be extracted as
pca$harmonics, O�1; O�2; : : : O�p as pca$values. The scores

˝
Xi � NXN ; Ovj

˛
;

i D 1; 2; : : : ; N; j D 1; 2; : : : p are in the N � p matrix pca$scores.
To illustrate, the left–most panel of Figure 3.1 shows the scatter plot of the pairs

.
˝
Xi � NXN ; Ov1

˛
;
˝
Xi � NXN ; Ov2

˛
/. The other two panels show the scatter plots for

the remaining two combinations of pairs. Plots of this type are often used to detect
outliers, verify normality of the observations, or the validity of a model. Figure 3.1
was created with the following code

par(mfrow=c(1,3))
plot(pca$scores[,1], pca$scores[,2], xlab="1st PC scores",

ylab="2nd PC scores")
plot(pca$scores[,1], pca$scores[,3], xlab="1st PC scores",

ylab="3rd PC scores")
plot(pca$scores[,2], pca$scores[,3], xlab="2nd PC scores",

ylab="3rd PC scores")
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Fig. 3.1 Scatter plots of the scores of the magnetic intensity data.
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3.5 Bibliographical notes

A comprehensive modern treatment of principal component analysis is given in the
monograph of Jolliffe (2002), who also gives a brief account of the history of the
subject. Following Jolliffe (2002), we note that the mathematical ideas behind the
PCA are related to those of the singular value decomposition of matrices, which
was obtained independently by Beltrami and Jordan in 1870’s. Most authors cite the
papers of Pearson (1901) and Hotelling (1933) as giving rise to the statistical idea of
the PCA form two different angles. The PCA was not widely used until late 1960’s,
but recent decades have seen its very extensive use in practically all fields where
statistics is applied. Ruppert (2011), Chapter 17, gives illustrative examples of PCA
applied to yield curves, similar to Eurodollar futures studied later in this book, and to
daily returns. Like many other authors, he uses the terminology in which the vectors
of scores are called the principal components, while for what we call the principal
components the more direct term eigenvectors is used.

Related to the subject of this book is recent interest in the properties of sam-
ple functional principal components in the ”small n large p” setting, see Jung and
Marron (2009) among several contributions. This setting is different from the FDA
framework because functional data consist of scalar observations which are nat-
urally organized, say, in time, and can be assumed to be generated by underly-
ing curves with some degree of smoothness. If the data lack smoothness, different
approaches are required. The difficulties arising for non-smooth data, and possible
solutions, are discussed in Johnstone and Lu (2009).

The approaches described in this book are suitable for data which can be viewed
as curves observed at fine time grids with a measurement error which is negligi-
ble relative to the size of the data or the purpose of analysis. This approach is not
suitable for data that are available only at sparse time points, possibly with a large
measurement error . A group of researchers at UC Davis developed a new approach
to deal with such data. Its essence is explained in Müller (2009). The idea is that
smoothing must be applied to all observations collectively, not to individual tra-
jectories (which basically do not exist for sparse data). This methodology is moti-
vated by data arising in medical longitudinal studies in which the individuals can be
regarded as independent cases. The focus is on surface smoothing and measurement
error evaluation.

The EFPC’s represent the data as linear combinations of functions estimated from
the data, and so this technique is data driven. This is of great value if little is known a
priori about the structure of the data, and a general purpose linear dimension reduc-
tion is sought. In many applications however, linear decompositions with respect to
fixed, not necessarily orthonormal, bases are useful, or even nonlinear decomposi-
tions, as discussed in Izem and Marron (2007).



Chapter 4
Canonical correlation analysis

Canonical correlation analysis (CCA) is one of the most important tools of multi-
variate statistical analysis. Its extension to the functional context is not trivial, and
in many ways illustrates the differences between multivariate and functional data.
One of the most influential contributions has been made by Leurgans et al. (1993)
who showed that smoothing is necessary in order to define the functional canonical
correlations meaningfully.

This chapter is organized as follows. Section 4.1 reviews multivariate population
and sample canonical correlation analysis (CCA). In Section 4.2, we explain how
functional population CCA should be defined, but postpone the difficult question of
its existence to Section 4.6. First, in Section 4.3, we discuss two ways in which its
sample version has been defined, and then, in Section 4.4, we show the usefulness of
the functional sample CCA by applying it the analysis of space physics data. After
this numerical example, we return, in Section 4.6, to the theoretical question of the
existence of the population functional CCA. Section 4.6 uses some properties of the
square root of the covariance operator, so we first review the relevant concepts in
Section 4.5.

4.1 Multivariate canonical components

In this section we review the definition and some properties of the multivariate CCA.
Proofs of the results stated in this section are presented e.g. in Johnson and Wichern
(2002).

Suppose X and Y are two random vectors, respectively, in Rp andRq . For deter-
ministic vectors a 2 Rp and b 2 Rq define the random variables

A D aTX; B D bTY:

We want to find a and b which maximize

Corr.A;B/ D Cov.A;B/p
VarŒA�VarŒB�

: (4.1)
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Clearly, if a and b maximize (4.1), then so do ca and db for any c; d > 0. Therefore,
we impose a normalizing condition

VarŒA� D 1; VarŒB� D 1: (4.2)

If such a and b exist, we denote them a1 and b1, and set A1 D aT1 X; B1 D bT1 Y.
We call .A1; B1/ the first pair of canonical variables and

�1 D Cov.A1; B1/ D max
˚
Cov.aTX;bTY/ W VarŒaTX� D VarŒbTY� D 1

�
(4.3)

the first canonical correlation.
Once a1 and b1 have been found, we want to find another pair .a;b/ which

maximizes (4.1) subject to (4.2), but also satisfies

Cov.A;A1/ D Cov.A;B1/ D Cov.B;B1/ D Cov.B;A1/ D 0: (4.4)

If such a and b exist, we denote them a2 and b2 and call A2 D aT2 X; B2 D bT2 Y
the second pair of canonical variables and the resulting value �2 of (4.1) the second
canonical correlation. Notice that �2 � �1 because �2 is a maximum over a smaller
subspace (condition (4.4) is added).

We can continue in this way to find kth canonical components .�k; ak;bk ;
Ak; Bk/ by requiring that the pair .Ak; Bk/ maximizes (4.1) subject to (4.2) and

Cov.Ak ; Aj / D Cov.Ak; Bj / D Cov.Bk ; Bj / D Cov.Bk; Aj / D 0; j < k:

(4.5)
One can show that,under mild assumptions, the canonical components exist for

k � min.p; q/, and can be computed as follows. Assume, to lighten the notation,
that

EX D 0 and EY D 0

and define the covariance matrices

C11 D EŒXXT �; C22 D EŒYYT �; C12 D EŒXYT �; C21 D EŒYXT �:

Assume that C11 and C22 are nonsingular and introduce the correlation matrices

R D C�1=211 C12C�1=222 ; RT D C�1=222 C21C�1=211 :

Setting m D min.p; q/, it can be shown that the first m eigenvalues of the matrices

MX D RRT D C�1=211 C12C�122C21C�1=211

and
MY D RTR D C�1=222 C21C�111 C12C�1=222

are the same and positive, and are equal to

�21 � �22 � � � � �2m > 0:
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Define the corresponding eigenvectors by

MXek D �2kek; MY fk D �2kfk; k D 1; 2; : : : m:

Then
ak D C�1=211 ek; bk D C�1=222 fk

are the weights of the kth pair of canonical variables, and �k is the kth canonical
correlation. It is easy to check the the vectors ek and fk have unit norm and are
related via

ek D ��1k Rfk; fk D ��1k RT ek:

For the development in the subsequent sections, it is convenient to summarize
the above using the inner product notation. Observe that

Cov.aTX;bTY/ D E
�
aTXbTY

�
D E

�
aTXYT b

� D aTE
�
XYT

�
b D ha;C12bi

and
Var

�
aTX

� D ha;C11ai ; Var
�
bTY

� D hb;C22bi :
Thus

�k D hak;C12bki
D max fha;C12bi W a 2 Rp;b 2 Rq; ha;C11ai D 1; hb;C22bi D 1g (4.6)

subject to the conditions˝
Ak ; Aj

˛ D ˝
Ak; Bj

˛ D ˝
Bk ; Bj

˛ D ˝
Bk ; Aj

˛ D 0; j < k; (4.7)

where Aj D ˝
aj ;X

˛
; Bj D ˝

bj ;Y
˛
.

We conclude this section by describing the multivariate CCA for a sample

.x1; y1/; .x2; y2/; : : : ; .xN ; yN /; (4.8)

in which each xj is an observed vector of dimensionp and yj is of dimension q. The
goal of the CCA is to find vectors Oa 2 Rp; Ob 2 Rq such that the sample correlation
between the N � 1 vectors

OA D ŒOaT x1; OaT x2; : : : ; OaT xN �T

and
OB D Œ ObT y1; ObT y2; : : : ; ObT yN �T

is maximum, provided the vectors OA and OB have unit sample variance. Once the
weight vectors Oa and Ob have been found, they are denoted Oa1 and Ob1, and the corre-
sponding first pair of sample canonical variates by OA1 and OB1. We then search for
another pair .Oa2; Ob2/ such that the sample correlation between analogously defined
OA2 and OB2 is maximum subject to the conditions of unit sample variances and the
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lack of sample correlation with the OA1 and OB1. Conditions for the existence of sam-
ple multivariate canonical components are fully analogous to those stated for the
population CCA. We define the matrices OCij ; i; j D 1; 2; by analogy with the
definition of the matrices Cij . For example, the p � q matrix OC12 is defined as

OC12 D 1

N � 1

NX
jD1

24xj � 1

N

NX
jD1

xj

3524yj � 1

N

NX
jD1

yj

35T :
If the matrices OC11 and OC22 are nonsingular, then the sample multivariate canonical
components . O�k ; Oak; Obk; OAk ; OBk/ exist for k � min.p; q/, and are calculated by
replacing the matrices Cij by the OCij .

4.2 Functional canonical components

We now define the functional canonical components (FCC) by analogy to the multi-
variate setting. Their existence will be investigated in Section 4.6. We work with two
L2 spaces H1 D L2.T1/ and H2 D L2.T2/, where T1 and T2 are, possibly differ-
ent, subsets of a Euclidean space. We consider square integrable random functions
X 2 H1; Y 2 H2 and, to simplify the notation and some formulas, we continue to
assume that they have mean zero. The canonical components are determined solely
by the covariance structure and do not depend on the means. Thus, we define the
covariance functions

c11.t; s/ D EŒX.t/X.s/�;

c12.t; s/ D EŒX.t/Y.s/�;

c21.t; s/ D EŒY.t/X.s/�;

c22.t; s/ D EŒY.t/Y.s/�:

Next, we define the operators

C11 W H1 ! H1; C12 W H2 ! H1;

C21 W H1 ! H2; C22 W H2 ! H2

via

C11.x/.t/ D
Z
T1

c11.t; s/x.s/ds D EŒhX; xiX.t/�;

C12.y/.t/ D
Z
T2

c12.t; s/y.s/ds D EŒhY; yiX.t/�;

C21.x/.t/ D
Z
T1

c21.t; s/x.s/ds D EŒhX; xi Y.t/�;

C22.y/.t/ D
Z
T2

c22.t; s/y.s/ds D EŒhY; Y iY.t/�:
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The operators C11 and C22 are just the covariance operators introduced in Chapter
2, so they are symmetric, positive–definite and Hilbert–Schmidt. It is easy to extend
the definition of a Hilbert–Schmidt operator to the space L.H2;H1/ of bounded
operators fromH2 to H1, see Section 4.5. It is then seen thatC12 is Hilbert–Schmidt
because by the Cauchy–Schwartz inequalityZ

T1

Z
T2

c212.t; s/dt ds � EkXk2EkY k2:

Analogous statements are true for C21.
We define the kth canonical correlation �k and the associated weight functions

ak and bk , if they exist, by

�k D Cov.hak ; Xi ; hbk; Y i/ D sup fCov.ha;Xi ; hb; Y i/ W a 2 H1; b 2 H2g ;
(4.9)

where a and b are subject to

VarŒha;Xi� D 1; VarŒhb; Y i� D 1; (4.10)

and for k > 1 also to (4.7) with Aj D ˝
aj ; X

˛
; Bj D ˝

bj ; Y
˛
: We call .�k; ak ; bk ;

Ak; Bk/ the kth canonical components.
Notice that

Cov.ha;Xi ; hb; Y i/ D EŒha;Xi hb; Y i� D EŒha; hY; biXi�
D ha;EŒhY; biX�i D ha; C12.b/i :

Similarly,

VarŒha;Xi� D ha; C11.a/i ; VarŒha; Y i� D hb; C22.b/i :
Therefore, just as in the multivariate setting, conditions (4.9) and (4.10) can be,
respectively, rewritten as

�k D hak ; C12.bk/i D sup fha; C12.b/i W a 2 H1; b 2 H2g ; (4.11)

ha; C11.a/i D 1; hb; C22.b/i D 1: (4.12)

4.3 Sample functional canonical components

Suppose we observe a sample of pairs of functions

.x1; y1/; .x2; y2/; : : : ; .xN ; yN /;

and we would like to obtain sample FCC analogously to the multivariate sample
canonical components described in Section 4.1. Replacing the inner product in a
Euclidean space by the inner product in L2, we would thus like to maximize the
sample correlation between the N � 1 vectors

OA D Œha; x1i ; ha; x2i ; : : : ; ha; xN i�T (4.13)
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and
OB D Œhb; y1i ; hb; y2i ; : : : ; hb; yN i�T : (4.14)

As discovered by Leurgans et al. (1993), see also Chapter 11 of Ramsay and
Silverman (2005), this is not a meaningful approach because it is possible to find
functions a and b such that the sample correlation of OA and OB is arbitrarily close to
1. This can be intuitively explained as follows: in the multivariate case, the vectors
a and b lie in spaces of finite dimension (p � 1 and q � 1), whereas the functions
a and b are in an infinitely dimensional subspace. This gives too much flexibility.
To illustrate, consider two samples of curves shown in Figure 4.1. These curves are
obtained in an intermediate step leading to the construction of a global index of
magnetic activity which is described in Section 4.4. The sample in the left panel
reflects measurements obtained at Honolulu, the sample on the right those obtained
at Kakioka, Japan. The curves a and b obtained by numerically maximizing the
correlation between the vectors (4.13) and (4.14) are shown in the bottom row of
Figure 4.2, (c) for Honolulu, (d) for Kakioka; they do not convey any meaningful
information, and produce the first canonical correlation of 0.995. The weight func-
tions showed in Panels (a) and (b) are more informative and reflect the presence of
a very large storm which, as a global event, leaves almost the same signature at both
Honolulu and Kakioka. These curves produce the first canonical correlation of 0.98.
This correlation is so high because the storm event leaves almost identical signatures
at Honolulu and Kakioka, and the remaining curves appear almost as noise relative
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Fig. 4.1 Daily curves reflecting geomagnetic activity.



4.3 Sample functional canonical components 51

to this storm. We explain toward the end of this section how the curves in Figure 4.2
were obtained.

Several ways of defining sample FCC’s have been put forward. All of them
involve some form of smoothing and/or dimension reduction. We describe here a
method recommended by He et al. (2004), which is closely related to the theory
introduced in Section 4.6. Then we turn to the method of Leurgans et al. (1993),
which emphasizes smoothing the weight functions a and b. It is implemented in the
R package fda.

Denote by O�i and Ovi the eigenvalues and the eigenfunctions of the sample covari-
ance operator of the functions xi , and define analogously O
j and Ouj for the yj .
Determine the numbers p and q such that

P
i�p O�i and

P
j�q O
j explain the

required proportion of the variance, see Section 3.3. Methods of selecting p and
q which involve cross–validation are described in Section 2.5 of He et al. (2004).
Next, compute the scores

O�in D hOvi ; Xni ; i D 1; 2; : : : ; p; O�jn D ˝ Ouj ; Yn˛ ; j D 1; 2; : : : ; q:
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Fig. 4.2 Weight functions for first canonical correlations of the curves displayed in Figure 4.1. Top
row with penalty, bottom row without penalty.



52 4 Canonical correlation analysis

Now, we can work with the finite expansions

OXn D
pX
iD1

O�in Ovi ; OYn D
qX
jD1

O�jn Ouj :

The curves OXn and OYn are smoothed versions of the original observations Xn and
Yn, while the vectors

O�n D ŒhXn; Ov1i ; hXn; Ov2i ; : : :
˝
Xn; Ovp

˛
�T ;

O�n D ŒhYn; Ou1i ; hYn; Ou2i ; : : :
˝
Yn; Ouq

˛
�T

allow us to reduce the the problem to the multivariate sample CCA described in
Section 4.1. The collection of pairs

. O�1; O�1/; . O�2; O�2/; : : : ; . O�N ; O�N /
now plays the role of the multivariate sample (4.8), and allows us to find the multi-
variate sample canonical components .�k ; Oak; Obk; OAk ; OBk/. In analogy to (4.25), we
define the functional canonical components as .�k ; Oak ; Obk; OAk; OBk/, where

Oak D OaTk Œ Ov1; : : : Ovp�T ; Obk D ObTk Œ Ou1; : : : Ouq �T :
He et al. (2004) recommend an additional smoothing step. After the Ovi and the

Ouj have been computed, they can be smoothed in some way, for example using
polynomial smoothing. Denote the smoothed FPC’s by Qvi and Quj , and construct the
vectors

Q�n D ŒhXn; Qv1i ; hXn; Qv2i ; : : :
˝
Xn; Qvp

˛
�T ;

Q�n D ŒhYn; Qu1i ; hYn; Qu2i ; : : :
˝
Yn; Quq

˛
�T :

The pairs . Q�n; Q�n/; n D 1; 2; : : : ; N; lead to multivariate sample canonical compo-
nents, which again yield functional sample canonical components.

To explain the approach of Leurgans et al. (1993), denote by CN .A;B/ the
sample covariance of the N –dimensional vectors A and B. The naive approach to
finding sample functional canonical correlations is to maximize CN . OA; OB/ subject
to CN . OA; OA/ D 1; CN . OB; OB/ D 1 (and orthogonality conditions), where OA; OB are
defined by (4.13) (4.14). We have seen that it is then always possible to find func-
tions a and b such that CN . OA; OB/ D 1. In order to restrict the set of function over
which the maximum is found, we assume that that T1 D T2 D Œ0; 1�, and consider
only functions a; b such that a00; b00 (second derivatives) exist and are elements of
L2. We then maximize CN . OA; OB/ subject to

CN . OA; OA/C �ka00k2 D 1; and CN . OB; OB/C �kb00k2 D 1:

The number � > 0 is a smoothing parameter which penalizes for using functions
a; b which are highly irregular. It can be chosen by cross-validation, or subjectively,
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in order to obtain informative weight functions a and b. The weight functions in
Panels (a) and (b) of Figure 4.2 were obtained with � D 10�11:5.

The following R code implements the method of Leurgans et al. (1993) and pro-
duces Figure 4.2.

harmaccelLfd <- vec2Lfd(c(0, 0, (2*pi)\ˆ{} 2, 0))
lambda=10ˆ(-11.5)

Define a functional parameter object:

fdPar <- fdPar(fdobj = basis, Lfdobj = harmaccelLfd,
lambda = lambda)

Create a functional object that smooths the data using specified roughness
penalty:

fd.s.1 <- smooth.basis(t, t(z1.new), fdPar)\$fd
fd.s.2 <- smooth.basis(t, t(z2.new), fdPar)\$fd
ccafdPar1 <- fdPar(fd.s.1, harmaccelLfd, lambda = 1e-8)
ccafdPar2 <- fdPar(fd.s.2, harmaccelLfd, lambda = 1e-8)

Compute the smoothed canonical correlations :

cca.smoothed <- cca.fd(fd.s.1, fd.s.2, ncan=3,
ccafdPar1, ccafdPar2)

par(mfrow=c(2,2))
plot.fd(cca.smoothed\$weight1[1], main="(a)",

ylab="HON weight function")
plot.fd(cca.smoothed\$weight2[1], main="(b)",

ylab="KAK weight function")
plot.fd(cca.unsmoothed\$weight1[1], main="(c)",

ylab="HON weight function",
xlab="Time (proportion of a day)")

plot.fd(cca.unsmoothed\$weight2[1], main="(d)",
ylab="KAK weight function",
xlab="Time (proportion of a day)")

Canonical correlations are often used to see which samples of functions are most
strongly associated, an application of this type is presented in Section 4.4. In such
applications, provided clear cut differences exists, any reasonable choice of �, or
several values of �, will lead to informative comparisons. The same is true for
choosing the orders p and q. In physical applications, these orders can be chosen to
restrict the analysis to meaningful principal components.
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4.4 Functional canonical correlation analysis of a
magnetometer data

This section is based on the work of Maslova et al. (2009) who proposed a new
method computing an index of magnetic storm activity. Magnetic storms belong to
the most important phenomena in near Earth space due to the energy involved and
their impact on the operation of satellite based telecommunication and navigation
systems.

The data are magnetometer observations, an example is shown in Figure 1.1.
When a magnetic storm occurs, the H-component drops for a period of 2-3 days at
observatories close to the magnetic equator, reflecting a strong magnetic field gen-
erated by a magnetospheric ring current that forms during storms. Figure 4.3 shows
a magnetometer record at Honolulu during a storm. Similar curves are observed at
other equatorial observatories, but each of them looks different, mostly because at
a given universal time, different observatories may be at local day- or nighttime, or
dawn or dusk. The position of an observatory relative to the sun has a noticeable
impact on the shape of the magnetogram. The change in the shape of the mag-
netometer records due to the daily rotation of the Earth is called the Sq (Solar
quiet) variation. An important direction of research in space physics, going back
to Sugiura (1964), has been concerned with developing an index curve that would
measure the strength of a magnetic storm globally, as different storm signatures
are observed at different observatories. Computing a global index involves averag-
ing over several equatorial observatories after removing the Sq variation from each
record. The technical details are quite complex, and there is no universal agree-
ment in the space physics community on the best way to construct a good global
index.

Maslova et al. (2009) proposed a new method of removing the Sq variation from
each record. Without discussing the technicalities, the idea is that the component
that is removed changes from day to day. For an older method, WISA, this com-
ponent was constant over the period of 2-4 weeks. The new method was proposed
in two variants, referred to below as 1) “with” and 2) “without centering”. There
are thus three methods to compare. To perform the comparison, the Sq variation is
removed by every method from the record at every observatory. What is left, should
reflect the effect of a global ring current, not the location of the station relative to
the Sun. Thus if the removal is successful, the remainders, called preindices, at the
pairs of stations should be highly correlated.

We present only a small part of the validation study reported by Maslova et al.
(2009). We consider four observatories, known as the “Dst Observatories”, which
are listed in Table 4.1. These four observatories yield six pairs listed in Table 4.2. For
each pair, we compute the sample FCC’s as described in Section 4.3. The smoothing
parameter � is chosen so that all correlations fall into a relatively large subinterval
of [0,1], so that a visual comparison is facilitated. We are not interested so much in
the values of the sample FCC’s as in their order for the three methods. The results
are shown in Figure 4.4. High sample FCC’s indicate that the preindices obtained
by one of the methods are good because they measure the same field generated by
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Fig. 4.3 H-component of the magnetogram recorded at Honolulu Mar 29 – Apr 3 (thin line)
together with the global index developed by Maslova et al. (2009) (thick line). The dashed lines
separate UT days. The drop reflects a magnetic storm.

Table 4.1 Dst Geomagnetic observatories and their coordinates.

s Name Colatitude Longitude

1 Hermanus (HER) 124.43 19.23
2 Kakioka (KAK) 53.77 140.18
3 Honolulu (HON) 68.68 202.00
4 San Juan (SJG) 71.89 293.85

a global ring current. Figure 4.4 shows that the preindices constructed with the new
method always have higher sample FCC’s than those obtained with an older WISA
method. The new method with centering is generally better than the new method
without centering. A more detailed analysis confirms these assertions.

4.5 Square root of the covariance operator

In this section we review certain properties of the covariance operator C which will
be used in Section 4.6
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Table 4.2 Pairs of four Dst stations (first set) used to compare methodologies.

Combination # Stations

1 HON & KAK
2 HON & SJG
3 HON & HER
4 KAK & SJG
5 KAK & HER
6 SJG & HER
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Fig. 4.4 Canonical correlations for the new method (star), new method without centering (cross)
and WISA (circle), applied to all combinations of four Dst stations (see Table 4.2).

Recall from Chapter 2 that C admits the decomposition

C.x/ D
1X
jD1

�j
˝
x; vj

˛
vj ; x 2 L2; (4.15)

in which the �j are nonnegative, the vj form a basis and satisfy C.vj / D �j vj .



4.5 Square root of the covariance operator 57

An operator R is called a square root of C if RR D C . Every covariance (in
fact, every positive–definite) operator has a unique positive–definite square root. It
is defined by

C 1=2.x/ D
1X
jD1

�
1=2
j

˝
x; vj

˛
vj ; x 2 L2:

Direct verification shows that C 1=2 is symmetric and positive–definite.
Suppose A is an operator defined on a subspace D.A/ with range R.A/. An

operator B with domain R.A/ is called the inverse of A if B.A.x// D x for all
x 2 D.A/ and A.B.y// D y for all y 2 R.A/. If A has an inverse, it is unique and
is denoted A�1. An operator A is invertible if and only if A.x/ D 0 implies x D 0.

We see that C and C 1=2 (defined on the whole of L2) are invertible if and only if

�j > 0 for each j � 1: (4.16)

Condition (4.16) is assumed in the following.
If condition (4.16) holds, then

R.C 1=2/ D
8<:y 2 L2 W

1X
jD1

��1j
˝
y; vj

˛2
< 1

9=; : (4.17)

Indeed, if y 2 R.C 1=2/, then for some x 2 L2

y D C 1=2x D
1X
iD1

�
1=2
i hx; vi i vi ;

and so

1X
jD1

��1j
˝
y; vj

˛2 D
1X
jD1

��1j

* 1X
iD1

�
1=2
i hx; vi i vi ; vj

+2

D
1X
jD1

��1j


�
1=2
j

˝
x; vj

˛�2 D
1X
jD1

˝
x; vj

˛2 D kxk2 < 1:

Conversely, if
P1
jD1 ��1j

˝
y; vj

˛2
< 1, then x D P1

jD1 �
�1=2
j

˝
y; vj

˛
vj is a well–

defined element of L2, and a direct verification shows that C 1=2.x/ D y. The
inverse of C 1=2 is thus defined by

C�1=2.y/ D
1X
jD1

�
�1=2
j

˝
y; vj

˛
vj ; y 2 R.C 1=2/: (4.18)

Notice that under assumption (4.16) each vk is in R.C 1=2/, and since R.C 1=2/ is
a linear subspace, so are all finite linear combinations of the vk . However, in contrast
to the Euclidean space Rp, these finite linear combinations do not fill the whole of
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L2. Define, for example, y D P1
kD1 �

1=2

k
vk . Since

P1
kD1 �k < 1, y 2 L2.

However, y is not in R.C 1=2/ because

1X
jD1

��1j
˝
y; vj

˛2 D
1X
jD1

��1j �j D 1:

We conclude this section by recalling some facts about Hilbert–Schmidt opera-
tors inL.H1;H2/which will be needed to establish the existence of FCC’s. Suppose
fvig is a basis in H1, and fuj g is a basis in H2. If A 2 L.H1;H2/, then

A.vi / D
1X
jD1

˝
A.vi /; uj

˛
uj D

1X
jD1

aj iuj :

The coefficients aj i determine the operator A. If
P1
i;jD1 a2j i < 1, A is called

Hilbert–Schmidt. The sum does not depend on the choice of bases, and its square
root is the Hilbert–Schmidt norm. The space of Hilbert–Schmidt operators in
L.H1;H2/ is denoted S.H1;H2/. If A1 2 S.H1;H2/ and A2 2 S.H2;H3/, then
A2A1 2 S.H1;H3/, and kA2A1kS � kA1kSkA2kS .

If A is an integral operator of the form

A.x/.t/ D
Z
T1

a.t; s/x.s/ds; x 2 H1;

then A is Hilbert–Schmidt if and only if
R
T2

R
T1
a2.t; s/dt ds < 1: In that case,Z

T2

Z
T1

a2.t; s/dt ds D
1X

i;jD1
a2j i < 1:

4.6 Existence of the functional canonical components

Recall the notation introduced in Sections 4.1 and 4.2. The central message of this
section is that the whole spaces H1 and H2 are too large to define a functional
CCA. It it possible only on smaller subspaces. In practice, this is reflected by the
required smoothing in the sample FCCA, as discussed in Section 4.3. It is difficult
to capture this idea in a theoretical framework. We present the approach of He et al.
(2003) who propose to restrict the spaces H1 and H2 by imposing conditions on the
magnitude of the eigenvalues of C11 and C22 and their interactions, see Assumption
4.1. A more general framework for functional CCA was developed by Eubank and
Hsing (2008). Cupidon et al. (2007) is also relevant.

We would like to construct operator analogs of the matrices MX and MY defined
in Section 4.1. Define R1 D R.C 1=211 / � H1 and R2 D R.C 1=222 / � H2. We need
the following condition

C12.H2/ � R1; C21.H1/ � R2: (4.19)
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To establish a convenient sufficient condition for (4.19), consider the expansions

X D
1X
iD1

�ivi ; �i D hX; vii ; Y D
1X
jD1

�juj ; �j D ˝
Y; uj

˛
;

where the eigenfunctions vi and uj satisfy C11vi D �ivi ; C22uj D 
juj : We
assume that

�i > 0; 
j > 0 for each i; j > 0: (4.20)

Next define the correlation coefficients

rj i D EŒ�i�j �q
E�2i E�

2
j

D EŒ�i�j �

�
1=2
i 


1=2
j

: (4.21)

Proposition 4.1. If (4.20) holds and the coefficients rj i in (4.21) satisfy

1X
i;jD1

r2j i < 1; (4.22)

then (4.19) holds.

Proof. We focus on the first relation C12.H2/ � R1. We must show that if x 2
C12.H2/ and (4.22) holds, then

1X
iD1

��1i hx; vi i2 < 1: (4.23)

If x D C12.y/ for some y 2 H2, then

x D EŒhY; yiX� D
24*X

j

�juj ; y

+X
k

�kvk

35 D
X
j;k

EŒ�j �k�
˝
uj ; y

˛
vk: (4.24)

Consequently, since E�2i D �i ; E�
2
j D 
j ,

hx; vi i D
X
j

EŒ�i�j �
˝
uj ; y

˛ D
X
j

rj i�
1=2
i 


1=2
j

˝
uj ; y

˛
:

Therefore, by the Cauchy–Schwartz inequality,

hx; vi i2 � �i

0@X
j

r2j i
j

1A0@X
j

˝
uj ; y

˛21A D �ikyk2
X
j

r2j i
j ;

and so we obtain 1X
iD1

��1i hx; vi i2 � kyk2
1X

i;jD1
r2j i
j :

Thus, a sufficient condition for C12.H2/ � R1 is
P1
i;jD1 r2j i
j < 1 and, anal-

ogously, a sufficient condition for C21.H1/ � R2 is
P1
i;jD1 r2j i�i < 1: Since


j � 
1; �i � �1, both these conditions are implied by (4.22). ut
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If assumption (4.19) holds, we can define a correlation operator

R D C
�1=2
11 C12C

�1=2
22 W R2 ! H1:

Its adjoint operator R� W H1 ! R2 is uniquely defined by

hR.y/; xi D hy;R�.x/i ; y 2 R2; x 2 H1:

Lemma 4.1. If condition (4.22) holds, then R 2 S.R2;H1/, R� 2 S.H1;R2/, and

R.uj / D
1X
kD1

rjkvk; R�.vi / D
1X
kD1

rkiuk :

Proof. Observe that

C
�1=2
22 .uj / D

X
k



�1=2
k

˝
uj ; uk

˛
uk D 


�1=2
j uj :

By (4.24),

C12C
�1=2
22 .uj / D 


�1=2
j C12.uj / D 


�1=2
j

X
i;k

EŒ�i�k �
˝
ui ; uj

˛
vk

D 

�1=2
j

X
k

EŒ�k�j �vk :

Consequently,

R.uj / D 

�1=2
j

X
k

EŒ�k�j �C
�1=2
11 .vk/

D 

�1=2
j

X
k

EŒ�k�j ��
�1=2
k

vk D
X
k

rjkvk :

Next, notice that

˝
R.uj /; vi

˛ D
*X
k

rjkvk; vi

+
D rj i D ˝

uj ; R
�.vi /

˛
;

implying R�.vi / D P
k rkiuk . ut

We now define the operator

MY D R�R W R2 ! R2:

Direct verification shows that MY is symmetric and positive–definite, and by
Lemma 4.1, it is a Hilbert–Schmidt operator, as a composition of two Hilbert–
Schmidt operators. The operator MY thus admits decomposition (2.4), which we
write down as

MY .y/ D
1X
kD1

�2k hy; fki fk; y 2 R2;



4.6 Existence of the functional canonical components 61

with orthonormal eigenfunctions fk 2 R2. All eigenvalues �2
k

are positive as
hMY .y/; yi D 0 implies y D 0. This is because hMY .y/; yi D kRyk2, and R
is invertible on R2.

To ensure the existence of the FCC’s, we need to strengthen condition (4.22) to
the following assumption:

Assumption 4.1. Condition (4.20) holds and

1X
i;jD1

��1i r2j i < 1 and
1X

i;jD1

�1j r2j i < 1:

To understand why Assumption 4.1 is needed, define analogously to the multi-
variate setting ek D ��1

k
R.fk/:We would like ek to be an element of R1 so that we

can define the weight function ak D C
�1=2
11 ek. Observe that by Lemma 4.1,

1X
iD1

��1i hR.fk/; vi i2 D
1X
iD1

��1i

* 1X
jD1

˝
fk; uj

˛
R.uj /; vi

+2

D
1X
iD1

��1i

0@ 1X
jD1

˝
fk; uj

˛
rj i

1A2

�
1X
iD1

��1i
1X
jD1

˝
fk ; uj

˛2 1X
jD1

r2j i

� kfkk2
1X

i;jD1
��1i r2j i :

Consequently R.fk/ 2 R1, if Assumption 4.1 holds. In fact, the same argument
is valid for any y 2 R2, so we have R.R2/ � R1. Thus, under Assumption 4.1
the domain of the conjugate operator R� is R1. Changing the roles of the spaces
H1 and H2, we see that S D C

�1=2
22 C21C

�1=2
11 maps R1 into R2, By an analog of

Lemma 4.1,

S.vj / D
1X
kD1

sjkuk ; sj i D 

�1=2
i �

�1=2
j EŒ�i�j �:

Thus,
˝
uj ; S.vi /

˛ D ˝
uj ; R

�.vi /
˛
, and so we conclude that S D R�. Finally define

MX D RR� W R1 ! R1

and observe that MX .�
�1
k
R.fk// D �2

k
.��1
k
R.fk//, and that kekk2 D 1. We sum-

marize these calculations in the following proposition:
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Proposition 4.2. If Assumption 4.1 holds, then

R D C
�1=2
11 C12C

�1=2
22 W R2 ! R1;

S D C
�1=2
22 C21C

�1=2
11 W R1 ! R2;

S D R�; R D S�:

The operatorsMY and MX have the same eigenvalues �2
k

, all eigenvalues are pos-
itive, and the normalized eigenfunctions ek of MX are related to the normalized
eigenfunctions fk of MY via

ek D ��1k R.fk/; fk D ��1k R�.ek/:

We are now able to define the weight functions

ak D C
�1=2
11 .ek/; bk D C

�1=2
22 .fk/:

These functions are well defined elements of, respectively, H1 and H2 because
ek 2 R.C 1=211 / and fk 2 R.C 1=222 /. The following theorem shows that .�k; ak ; bk ;
hak; Xi ; hbk ; Y i/ are the functional canonical components defined in Section 4.2.
We say that the pair of random variables .Aj ; Bj / is uncorrelated with .Ak ; Bk/ if
condition (4.5) holds.

Theorem 4.1. If Assumption 4.1 holds, then

(i) hak ; C12.bk/i D �k ; hak ; C11.ak/i D 1; hbk ; C22.bk/i D 1:

(ii) For any a 2 H1; b 2 H2 such that ha; C11ai D 1; hb; C22bi D 1, and
such that .ha;Xi ; hb; Y i/ is uncorrelated with .

˝
aj ; X

˛
;
˝
bj ; Y

˛
/ for j < k,

ha; C12bi � �k .
(iii) If j ¤ k, the pairs .

˝
aj ; X

˛
;
˝
bj ; Y

˛
/ and .hak ; Xi ; hbk ; Y i/ are uncorrelated.

Proof. The equalities in part (i) are easy to verify. For example

hak; C12.bk/i D
D
C
�1=2
11 .ek/; C12C

�1=2
22 .fk/

E
D hek; R.fk/i D hek; �keki D �k:

To lighten the notation, we verify part (ii) for k D 2. For functions a and b
satisfying the assumptions of part (ii) define x D C

1=2
11 .a/; y D C

1=2
22 .b/. Then

ha; C12.b/i D
D
C
�1=2
11 .x/; C12C

�1=2
22 .y/

E
D hx;R.y/i � kxkkR.y/k:

Condition ha; C11ai D 1, is equivalent to kxk D 1, so it remains to verify that
kR.y/k � �2. By Theorem 3.2

�22 D sup fhMY .y/; yi W y 2 R2; kyk D 1; hy; f1i D 0g :
Since hMY .y/; yi D kR.y/k2, and y also has unit norm, it is enough to check that
hy; f1i D 0. This holds because

hy; f1i D
D
C
1=2
22 .b/; f1

E
D
D
b; C

1=2
22 .f1/

E
D
D
b; C22C

�1=2
22 .f1/

E
D hb; C22.b1/i D hb;EŒhY; b1iY �i
D EŒhb; hY; b1i Y i� D EŒhb; Y i hY; b1i� D 0:
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Part (iii) is easy to verify. For example

EŒ
˝
aj ; X

˛ hbk; Y i� D EŒ
˝
bk ;

˝
X; aj

˛
Y
˛
� D ˝

bk; C21.aj /
˛

D
D
C
�1=2
22 .fk/; C21C

�1=2
11 .ej /

E
D ˝
fk; R

�.ej /
˛ D ˝

fk; �kfj
˛ D 0: ut

Assumption 4.1 states that in order for the FCC’s to exist, the correlations of the
scores �i and �j must tend to zero very fast. This is trivially the case if rj i D 0 if i >
p or j > q, for some integers p and q. We thus conclude this section by considering
the case when the random functionsX and Y admit the finite expansions

X D
pX
iD1

�ivi ; Y D
qX
jD1

�juj ;

with orthonormal systems v1; : : : ; vp 2 H1; u1; : : : ; uq 2 H2. Strictly speaking,
this case is not covered by the theory developed in this section because condition
(4.16) fails, but it is, in fact, much simpler, and the FCC’s are directly related to the
multivariate canonical components of the vectors

� D Œ�1; : : : ; �p �
T ; � D Œ�1; : : : ; �q�

T :

Define the linear spans

R1 D spfv1; : : : ; vpg; R2 D spfu1; : : : ; uqg:
Consider the operators Cij ; i; j D 1; 2; defined in Section 4.2, but with their
domains restricted to the appropriate subspaces Ri ; i D 1; 2. For example, if
y D Pp

jD1 yjuj ; yj D hy; ui i ; then

C12.y/ D EŒhY; yiX� D E

24* qX
jD1

�juj ;

qX
j 0D1

yj 0uj 0

+
pX
iD1

�ivi

35
D E

24 qX
jD1

�jyj

pX
iD1

�ivi

35 D
pX
iD1

�
EŒ�i�j �yj

�
vi :

Thus, the i th coefficient of C12.y/ in the basis fv1; : : : ; vpg coincides with the i th
component of C12y, where C12 D EŒ��T � and y D Œy1; : : : ; yq�

T . If the matrices
C11 D EŒ��T � and C22 D EŒ��T � are nonsingular, then the canonical components
.�k ; ak;bk; Ak ; Bk/ of the random vectors � and � are defined as in Section 4.1.
Direct verification then shows that .�k ; ak ; bk; Ak; Bk/ are the FCC’s of X and Y ,
where

ak D aTk v; v D Œv1; : : : ; vp�
T and bk D bTk u; u D Œvu; : : : ; uq �

T : (4.25)



Chapter 5
Two sample inference for the mean and
covariance functions

Due to possibly different FPC’s structures, working with two functional samples
may be difficult. An important contribution has been made by Benko et al. (2009)
who developed bootstrap procedures for testing the equality of mean functions, the
FPC’s, and the eigenspaces spanned by them. In this chapter, we present asymp-
totic procedures for testing the equality of the means and the covariance operators
in two independent samples. Section 5.1 focuses on testing the equality of mean
functions. It shows that instead of statistics which have chi–square limits, those that
converge to weighted sums of squares of independent standard normals can also be
used. In other chapters we focus on statistics converging to chi–square distributions,
but analogous versions converging to weighted sums of normals can be readily con-
structed.

In Section 5.1 we present the procedures for testing the equality of the mean
functions, together with the theorems that justify them asymptotically; the proofs of
these theorems are presented in Section 5.3. Finite sample performance is examined
in Section 5.2. The theory presented in Section 5.4 is based on the work of Panaretos
et al. (2010), which contains some further extensions and numerical applications.

5.1 Equality of mean functions

We consider two samples X1; : : : ; XN and X�1 ; : : : ; X�M . We assume that they sat-
isfy the model

Xi .t/ D �.t/C "i .t/; 1 � i � N (5.1)

and

X�i .t/ D ��.t/C "�i .t/; 1 � i � M: (5.2)

We wish to test the null hypothesis

H0 W � D �� in L2

OI 10.1007/978-1-4614- _5, 
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3655-3Springer Series in Statistics 200, D
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against the alternative thatH0 is false. We assume:

the two samples are independent; (5.3)

"1; : : : ; "N are independent and identically distributed with
E"1.t/ D 0 and Ek"1k4 < 1 (5.4)

and similarly

"�1; : : : ; "�M are independent and identically distributed with
E"�1.t/ D 0 and Ek"�1k4 < 1:

(5.5)

Note that the "�i are not assumed to have the same distribution as the "i .
Since

NXN .t/ D 1

N

NX
iD1

Xi .t/ and NX�M .t/ D 1

M

MX
iD1

X�i .t/

are unbiased estimators for �.t/ and ��.t/, respectively, it is natural to reject the
null hypothesis if

UN;M D NM

N CM

Z 1

0

. NXN .t/ � NX�M .t//2dt

is large. Our first method is based directly on UN;M .

Method I: We start with establishing the convergence of UN;M underH0.

Theorem 5.1. If H0 and (5.3)-(5.5) hold, and

N

N CM
! 
 with some 0 � 
 � 1; (5.6)

then

UN;M
d!
Z 1

0

� 2.t/dt; (5.7)

where f� .t/; 0 � t � 1g is a Gaussian process satisfying E� .t/ D 0 and

EŒ� .t/� .s/� D .1 � 
/c.t; s/C 
c�.t; s/; (5.8)

with c.t; s/ D Cov.X1.t/; X1.s// and c�.t; s/ D Cov.X�1 .t/; X�1 .s//.
The distribution of the limit in (5.7) depends on the unknown covariance func-

tions c and c�. According to the Karhunen–Loève expansion (2.8), we can assume
that

� .t/ D
1X
kD1

�
1=2

k
Nk'k.t/;

where the Nk are independent standard normal random variables, �1 � �2 � � � �
and '1; '2; : : : are the eigenvalues and eigenfunctions of the operator determined by
.1 � 
/c C 
c�. Clearly, Z 1

0

� 2.t/dt D
1X
kD1

�kN
2
k ;
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so to provide a reasonable approximation for
R 1
0
� 2.t/dt , we only need to estimate

the �k’s. This can be done easily using O�k’s, the eigenvalues of the empirical covari-
ance function

ÓN;M .t; s/ D M

M CN

1

N

NX
iD1
.Xi .t/ � NXN .t//.Xi .s/ � NXN .s//

C N

M CN

1

M

MX
iD1
.X�i .t/ � NX�M .t//.X�i .s/ � NX�M .s//:

The sum
Pd
kD1 O�kN 2

k
provides an approximation to the limit in (5.7) if d is large

enough. The choice of d is discussed in Section 5.2.
The asymptotic consistency of Method I follows form thefollowing result.

Theorem 5.2. Suppose (5.3)-(5.5) and (5.6) hold, andZ 1

0

.�.t/ � ��.t//2dt > 0;

then UN;M
P! 1:

The next method is essentially a projection version of the procedure based on
UN;M . It is easier to implement in R because it does not require the numerical eval-
uation of the integral defining UN;M .

Method II: Now we use projections onto the space determined by the leading
eigenfunctions of the operatorZ D .1�
/CC
C �. We assume that the eigenvalues
of Z satisfy

�1 > �2 > � � � > �d > �dC1: (5.9)

The corresponding eigenfunctions are '1; : : : ; 'dC1: We want to project the obser-
vations onto the space spanned by '1; : : : ; 'd :. Since these functions are unknown,
we are using the corresponding eigenfunctions of OZN;M , denoted by O'1; : : : ; O'd .
Now we project NXN � NX�M into the linear space spanned by O'1; : : : ; O'd . Let

Oai D h NXN � NX�M ; O'ii; 1 � i � d;

and introduce Oa D . Oa1; : : : ; Oad /T . We show that under the conditions of Theo-
rem 5.1 the vector .NM=.N C M//1=2 Oa is approximately d -variate normal up
to some random signs. The asymptotic variance of .NM=.N C M//1=2 Oa is Q D
fQ.i; j /; 1 � i; j � d g, where

Q.i; j / D .1�
/EhX1 � �; 'i ihX1 � �; 'j i C 
EhX�1 � ��; 'iihX�1 � ��; 'j i;
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1 � i; j � d: It is easy to see that

Q.i; j / D
Z 1

0

Z 1

0

.1 � 
/EŒ.X1.t/ � �.t//.X1.s/ � �.s//�'i .t/'j .s/dt ds

C
Z 1

0

Z 1

0

.1 � 
/EŒ.X�1 .t/ � ��.t//.X�1 .s/ � ��.s//�'i .t/'j .s/dt ds

D
Z 1

0

Z 1

0

´.t; s/'i .t/'j .s/dt ds

D
	
�i ; if i D j

0; if i ¤ j:
(5.10)

In light of (5.9) and (5.10), testing procedures can be based on the statistics

T
.1/
N;M D NM

N CM

dX
kD1

Oa2k= O�k

and

T
.2/
N;M D NM

N CM

dX
kD1

Oa2k:

Theorem 5.3. If H0 and (5.3)–(5.5), (5.6) and (5.9) hold, then

T
.1/
N;M

d! �2.d/ (5.11)

and

T
.2/
N;M

d!
dX
kD1

�kN
2
k ; (5.12)

where �2.d/ is a chi–square random variable with d degrees of freedom, and
N1; N2; : : : ; Nd are independent standard normal random variables.

It is clear that T .2/N;M is a projection version of UN;M , we only use the first d

terms in the L2 expansion of NXN � NX�M . The statistic T .1/N;M is an asymptotically

distribution free modification of T .2/N;M , and hence of UN;M .

The consistency of testing procedures based on T .1/N;M and T .2/N;M can be easily
established along the lines of Theorem 5.2.

Theorem 5.4. If (5.3)-(5.5), (5.6) and (5.9) hold, and � � �� is not orthogonal to

the linear span of '1; : : : ; 'd , then T .1/N;M

P! 1 and T .2/N;M

P! 1:

The difference between tests based on UN:M and T .1/N;M ; T
.2/
N;M is that the last

two only see the difference between � and �� in a d dimensional subspace. If
� D �� in this subspace, then H0 will not be rejected. However, this has little
practical relevance if the first d �k explain a large percentage of the variance of the
difference. The difference in the span of �dC1; �dC2; : : : ; cannot then be practically
distinguished from the randomness in the errors.
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5.2 A simulation study and an application

We present the results of a small simulation study aimed at comparing the test-
ing procedures introduced in Section 5.1. Since Method I essentially reduces to the
statistic T .2/N;M of Method II, we compare the statistics T .1/N;M and T .2/N;M .

We consider sample sizes N D 50 and N D 100 and M D N as well as
M D 2N . To compare the sizes, we set �.t/ D ��.t/ D 0. Under the alternative,
we set �.t/ D 0 and��.t/ D at.1� t/. The power is then a function of the parame-
ter a. We consider two setting for the errors: 1) Both the "i and the "�i are Brownian
bridges; 2) The "i are Brownian bridges, and the "�i are Brownian motions. To com-
pute the test statistics we converted the Gaussian processes simulated as increments
into functional objects using 49 Fourier basis function. We then computed the test
statistics with d D 5.

The tests have size very close to the nominal size, almost always within one per-
cent. We did not detect any systematic differences in size between the two tests.
The tests have remarkably good power. To illustrate, Figure 5.1 shows fifty trajecto-
ries of the Brownian bridge in the left panel and 50 independent trajectories of the
Brownian bridge plus ��.t/ D at.1 � t/ with a D 0:8 in the right panel. Except
one function in the right panel which goes visibly above the other functions, both
sets look very similar, and it would be difficult to tell by eye that they have differ-
ent mean functions. Yet, based on one thousand replications, T .1/50;50 rejects the null

hypothesis of equal means with probability 0.91 and T .2/50;50 with probability 0.98,
at the nominal size ˛ D 5%. For such relatively small sizes, the tests suffer from
an elevated probability of type I error. For ˛ D 5%, the empirical size is 6:6% for
T
.1/
50;50 and 7:3% for T .2/50;50. When bothM andN exceed 100, the empirical sizes are

within 1% of the nominal sizes. Typical results are shown in Table 5.1. The power
is higher if the distributions of the errors are the same in both samples.
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Fig. 5.1 Fifty trajectories of the Brownian bridge (left) and fifty independent trajectories of the
Brownian bridge plus ��.t/ D 0:8t.1� t/ (right). The tests can detect the different means with
probability higher than 90%.
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Table 5.1 Size (a D 0:0) and power (a > 0) of the tests based on T .1/

100;200 and T .2/

100;200 . The
sample withN D 100 has Brownian bridge errors, the one withM D 200 has Brownian motion
errors.

˛ D :01 ˛ D :05 ˛ D :10
a T

.1/

100;200 T
.2/

100;200 T
.1/

100;200 T
.2/

100;200 T
.1/

100;200 T
.2/

100;200

0:0 1:3 1:4 5:6 5:7 10:8 10:8
0:1 1:7 1:7 6:8 6:4 12:2 12:1
0:2 2:6 3:0 9:8 11:0 16:5 18:2
0:3 4:8 6:1 15:8 18:5 24:7 27:3
0:4 9:8 10:7 23:6 27:7 35:6 39:0
0:5 18:5 19:5 37:8 41:5 50:1 54:6
0:6 29:3 29:7 52:3 55:0 64:3 67:2
0:7 42:7 43:1 65:5 67:5 75:6 78:1
0:8 59:2 57:7 79:3 80:3 87:1 88:1
0:9 73:7 71:0 88:7 89:0 93:7 94:7
1:0 85:3 82:0 94:4 94:8 97:2 97:7
1:1 92:8 89:8 97:8 97:3 98:9 98:7
1:2 96:6 94:7 99:3 99:2 99:9 99:7
1:3 98:9 97:7 99:8 99:7 99:9 99:9
1:4 99:5 99:3 100:0 99:9 100:0 100:0
1:5 99:8 99:8 100:0 100:0 100:0 100:0
1:6 100:0 100:0 100:0 100:0 100:0 100:0

Table 5.2 P–values (in percent) of the tests based on statistics T .1/
N;M and T .2/

N;M applied to medfly
data.

d 1 2 3 4 5 6 7 8 9

T .1/ 1.0 2.2 3.0 5.7 10.3 15.3 3.2 2.7 5.0
T .2/ 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.1 1.1

We conclude this section by an application of the two tests to an interesting data
set consisting of egg-laying trajectories of Mediterranean fruit flies (medflies). This
data set will be revisited in Chapter 10. Müller and Stadtmüller (2005), Section 6,
consider 534 egg–laying curves (count of eggs per unit time interval) of medflies
who lived at least 30 days. Each function is defined over an interval Œ0; 30�, and its
value on day t � 30 is the count of eggs laid by fly i on that day. The 534 flies are
classified into long–lived, i.e. those who lived longer than 44 days, and short–lived,
i.e. those who died before the end of the 44th day after birth. In the sample, there are
256 short–lived, and 278 long–lived flies. This classification naturally defines two
samples: Sample 1: the egg-laying curves Xi .t/; 0 < t � 30; i D 1; 2; : : : ; 256

of the short–lived flies. Sample 2: the egg-laying curves X�j .t/; 0 < t � 30; j D
1; 2; : : : ; 278 of the long–lived flies. The egg-laying curves are very irregular; Figure
10.1 shows ten smoothed curves of short– and long–lived flies. The tests are applied
to such smooth trajectories.

Table 5.2 shows the P–values as a function of d . For both samples, d D 2

explains slightly over 85% of variance, so this is the value we would recommend
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Fig. 5.2 Estimated mean functions for the medfly data: short lived –solid line; long lived –dashed
line.

to use. Both tests reject the equality of the mean functions, even though the sample
means, shown in Figure 5.2, are not far apart. The P–values for the statistic T .2/ are
much more stable, equal to about 1%, no matter the value of d . The behavior of the
test based on T .1/ is more erratic. This indicates that while the test based on T .1/ is
easier to apply because it uses standard chi–square critical values, the test based on
T .2/ may be more reliable.

5.3 Proofs of the theorems of Section 5.1

Proof of Theorem 5.1. By Theorem 2.1, there are two independent Gaussian
processes �1 and �2 with zero means and covariances C and C � such that
.N�1=2P

1�i�N .Xi � �/;M�1=2P
1�i�M .X�i � ��// converges weakly in L2

to .�1; �2/: This proves (5.7) with � D .1 � 
/�1 C 
�2: ut
Proof of Theorem 5.2. It follows from the proof of Theorem 5.1 that

UN;M D NM

N CM

Z 1

0

.�.t/ � ��.t//2dt COP .1/;

which implies the result. ut
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Proof of Theorem 5.3. The central limit theorem for sums of independent and iden-
tically distributed random vectors in Rd yields�

NM

N CM

�1=2 �
h NXN � NX�M ; '1i; : : : ; h NXN � NX�M ; 'd i

�T
(5.13)

d! Nd .0;Q/;

where Nd .0;Q/ is a d -variate normal random vector with mean 0 and covariance
matrix Q. Since Z 1

0

Z 1

0

. OZN;M .t; s/ �Z.t; s//2dt ds D oP .1/;

Lemma 2.3 and inequality (2.3) imply

max
1�i�d

j O�i � � j D oP .1/ (5.14)

and

max
1�i�d

k O'i � Oci'k D oP .1/; (5.15)

where Oc1; : : : ; Ocd are random signs. We showed in the proof of Theorem 5.1 that

N

Z 1

0

. NXN .t/ � �.t//2dt D OP .1/

and

M

Z 1

0

. NXM .t/ � ��.t//2dt D OP .1/;

so by (5.15) we have

max
1�i�d

�
NM

N CM

�1=2 ˇ̌h NXN � NX�M ; O'i � Oci'iˇ̌ D oP .1/:

Now the results in Theorem 5.3 follow from (5.13), (5.14)and from the observation
that neither T .1/N;M nor T .2/N;M depend on the random signs Oci . ut

Proof of Theorem 5.4. Following the proof of Theorem 5.3 one can easily verify
that�

NM

N CM

�1=2
Oai D

�
NM

N CM

�1=2
h� � ��; 'ii COP .1/; 1 � i � d:

Since (5.15) also holds, both parts of Theorem 5.4 are proven. ut
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5.4 Equality of covariance operators

We consider two samples: X1; X2; : : : ; XN and X�1 ; X�2 ; : : : X�M . The functions in
each sample are iid mean zero elements ofL2, and the two samples are independent.
Consider the covariance operators

C.x/ D EŒhX; xiX�; C �.x/ D EŒhX�; xiX��;
where X has the same distribution as the Xi , and X� the same distribution as the
X�j . We want to test

H0 W C D C � versus HA W C ¤ C �:

In Theorem 5.5, we will assume that X and X� are Gaussian elements of L2. This
means that the equality of the covariances implies the equality in distribution. Thus,
under the additional assumption of normality, H0 states that the Xi have the same
distribution as the X�j .

Denote by OC and OC � the empirical counterparts of C and C �, and by OR, the
empirical covariance operator of the pooled data, i.e.

OR.x/ D 1

N CM

8<:
NX
iD1

hXi ; xiXi C
MX
jD1

˝
X�j ; x

˛
X�j

9=;
D O
 OC.x/C .1 � O
/ OC �.x/; x 2 L2;

where
O
 D N

N CM
:

The operator OR has N CM eigenfunctions, which are denoted O�k . We also set

O�k D 1

N

NX
nD1

D
Xn; O�k

E2
; O��k D 1

M

MX
mD1

D
X�m; O�k

E2
:

Note that the O�k and the O��
k

are not the eigenvalues of the operators OC and OC �,
but rather the sample variances of the coefficients of X and X� with respect to the
orthonormal system f O�k; 1 � k � N C M g formed by the eigenfunctions of the
operator OR.

The test statistic is defined by

OT D N CM

2
O
.1 � O
/

pX
i;jD1

D
. OC � OC �/ O�i ; O�j

E2
. O
 O�i C .1 � O
/ O��i /. O
 O�j C .1 � O
/ O��j /

:

Theorem 5.5. SupposeX andX� are Gaussian elements ofL2 such thatEkXk4 <
1 and EkX�k4 < 1. Suppose also that O
 ! 
 2 .0; 1/, as N ! 1. Then

OT d! �2p.pC1/=2; N;M ! 1;
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where �2
p.pC1/=2 denotes a chi-square random variable with p.p C 1/=2 degrees

of freedom.

Proof. Introduce the random operators

Ci .x/ D hXi ; xiXi ; C �j .x/ D ˝
X�j ; x

˛
X�j ; x 2 L2:

The Ci form a sequence of iid elements the Hilbert space S of the Hilbert–Schmidt
operators acting on L2, and the same is true for the C �j . Under H0, the Ci and the
C �j have the same mean C . They also have the same covariance operator, which is
an operator acting on S given by

G.�/ D EŒhCi � C;� iS .Ci � C/� D EŒhCi ; � iS Ci � � hC;� iS C; � 2 S:
(5.16)

UnderH0, the second term hC;� iS C is the same for both samples. By (2.2),

EŒhCi ; � iS Ci � D E

" 1X
nD1

hCi .en/; �.en/iCi
#

D
1X
nD1

E ŒhhXi ; eniXi ; �.en/i hXi ; eniXi � D
1X
nD1

E
h
hXi ; eni2 hXi ; �.en/iXi

i
:

The assumption of Gaussianity and C D C � imply that the Xi and the X�j have the
same distribution, so

E
h
hXi ; eni2 hXi ; �.en/iXi

i
D E

h˝
X�j ; en

˛2 ˝
X�j ; �.en/

˛
X�j
i
:

We want to apply the CLT in the Hilbert space S to the operatorsCi . By Theorem
2.1, we must verify that EkCik2S < 1. This holds because, by Parseval’s equality,

EkCik2S D E

1X
nD1

k hXi ; eniXik2 D E

"
kXik2

1X
nD1

j hXi ; eni j2
#

D EkXik4:

We therefore obtain,

N 1=2. OC � C/
d! Z1; M 1=2. OC � � C �/ d! Z2; (5.17)

where Z1 is a Gaussian element of S with the same covariance operator as C1, and
Z2 a Gaussian element with the same covariance operator as C2. Thus, Z1 and Z2
are independent, and, underH0, both have the covariance operator equal to G.

For every 1 � i; j � p, introduce the random variables

WN;M .i; j / D
D
Œ.N CM/ O
.1 � O
/�1=2. OC � OC �/ Oci O�i ; Ocj O�j

E
;

so that

OT D
Pp
i;jD1W 2

N;M .i; j /

2. O
 O�i C .1 � O
/ O��i /. O
 O�j C .1� O
/ O��j /
(5.18)
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Observe that underH0,

WN;M .i; j / D
Dh
.1 � O
/1=2N 1=2. OC � C/� O
1=2M 1=2. OC � � C �/

i
Oci O�i ; Ocj O�j

E
:

By Theorem 2.7, under H0, Oci O�i P! vi , with the vi being the eigenfunctions of C
(and of C �). Therefore , by (5.17),

WN;M .i; j /
d! ˝
Zvi ; vj

˛
; Z D .1 � 
/1=2Z1 � 
1=2Z2:

SinceZ1 andZ2 are independent random operators in S, we see that the covariance
operator of Z is also equal to G. By (5.18), we therefore obtain

OT d!
Pp
i;jD1

˝
Z.vi /; vj

˛2
2.
�i C .1 � 
/�i /.
�j C .1� 
/�j /

D
Pp
i;jD1

˝
Z.vi /; vj

˛2
2�i�j

D
nX
kD1

hZ.vk/; vki2
2�2
k

C
X
k<n

hZ.vk/; vni2
2�k�n

C
X
k>n

hZ.vk/; vni2
2�k�n

D
nX
kD1

hZ.vk/; vki2
2�2
k

C
X
k<n

hZ.vk/; vni2 C hZ.vn/; vki2
2�k�n

: (5.19)

To identify the distribution of the right-hand side of (5.19), it is convenient to
represent the operator Z in terms of the operators Vij defined by

Vij .x/ D hvi ; xi vj :
By Lemma 5.1,

Z
dD p

2

1X
iD1

�i�i iVi i C
X
i<j

q
�i�j �ij .Vij C Vj i /; (5.20)

where the �ij are iid standard normal.
Since the vi form a basis, (5.20) implies that

Z.vk/ D p
2�k�kkvk C

X
k<j

q
�k�j �kj vj C

X
i<k

p
�i�k�ikvi ;

and so

hZ.vk/; vni D

8̂<̂
:

p
2�k�kk if k D n;p
�k�n�kn if k < n;p
�k�n�nk if k > n:

(5.21)

Using (5.19) and (5.21), we see that

OT d!
pX
kD1

�2kk C
X
k<p

�2
kn

C �2
nk

2

dD
pX
kD1

�2kk C
X
k<p

�2kn
dD �2p.pC1/=2: ut



76 5 Two sample inference for the mean and covariance functions

Lemma 5.1. Under the assumptions of Theorem 5.5,

G D
1X
iD1
.
p
2�i /

2 hVi i ; � iS Vi i C
X
i<j

�i�j
˝
Vij C Vj i ; � ˛S .Vij C Vj i /:

Proof. We work with the expansion

Xn D
1X
iD1

p
�i�nivi ;

where the �i are the eigenvalues of C and f�ni ; i � 1g are independent sequences
of iid standard normal random variables.

Direct verification then shows that

Cn D
1X

i;jD1

q
�i�j �ni �njVij ; C D

1X
iD1

�iVi i :

Let � be an arbitrary Hilbert–Schmidt operator. Then, by (5.16),

G.�/D
X
i;j;`;k

EŒ�ni�nj �n`�nk �
p
�i�k�`�k

˝
Vij ; �

˛
S V`k �

X
i;j

�i�j hVi i ; � iS Vjj :

The expected value EŒ�ni�nj �n`�nk � is zero unless there are two pairs of equal
indices, or all indices are equal. We therefore have

G.�/ D
X
i¤j

�i�j
�hVi i ; � iS Vjj C ˝

Vij ; �
˛
S Vij C ˝

Vij ; �
˛
S Vj i

�
C 3

X
i

�2i hVi i ; � iS Vi i �
X
i

�2i hVi i ; � iS Vi i �
X
i¤j

�i�j hVi i ; � iS Vjj

D 2
X
i

�2i hVi i ; � iS Vi i C
X
i¤j

�i�j
�˝
Vij ; �

˛
S Vij C ˝

Vij ; �
˛
S Vj i

�
:

The proof is completed by rearranging the terms. ut

5.5 Bibliographical notes

In Section 5.1 we assume that the observations in each sample are independent. If
the functions are obtained from a time record, for example daily or annual curves,
then the assumption of independence need not hold. Horváth et al. (2011) extend the
methodology and theory of Section 5.1 to dependent errors "i and "�i . Instead of the
covariance kernel ´N;M .t; s/, a kernel corresponding to suitably defined long–run
covariances must be used. The dependence is quantified by the notion of Lp–m–
approximability introduced in Chapter 16. Gromenko and Kokoszka (2011) develop
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a test for the equality of the mean functions of the curves from two disjoint spatial
regions. They emphasize computational issues arising in small sample sizes of spa-
tially dependent curves.

The two sample problem for the covariance operators if the assumption of nor-
mality is violated is studied by studied by Fremdt et al. (2011) and Kraus and
Panaretos (2011). Boente et al. (2011) develop a bootstrap test to test the equal-
ity of covariance operators.

The two sample problem when the equality of the whole distributions is tested is
studied by Hall and Keilegom (2007) who emphasize the role of smoothing in two
sample problems for functional data.

Laukaitis and Račkauskas (2005) consider the model Xg;i .t/ D �g.t/ C
"g;i .t/; g D 1; 2; : : : ; G; with innovations "g;i and group means �g , and test
H0 W �1.t/ D � � � D �G.t/: Other related contributions are Cuevas et al. (2004),
Delicado (2007) and Ferraty et al. (2007).



Chapter 6
Detection of changes in the mean function

In this chapter, we present a methodology for the detection of changes in the mean of
functional observations. At its core is a significance test for testing the null hypothe-
sis of a constant functional mean against the alternative of a changing mean. We also
show how to locate the change points if the null hypothesis is rejected. Our method-
ology is readily implemented using the R package fda. The null distribution of
the test statistic is asymptotically pivotal with a well-known asymptotic distribution
going back to the work of Kiefer (1959).

In Section 6.1, we provide some background and motivation. After formulating
the assumptions in Section 6.2, we describe the test procedure in Section 6.3. The
finite sample performance is investigated in Section 6.4, which also contains an
illustrative application to the detection of changes in mean patters of annual temper-
atures. The proofs of the theorems of Section 6.3 are presented in Section 6.5.

6.1 Introduction

Throughout the book we typically assume that the observationsXi have mean zero.
This is clearly not true in applications, so a suitable assumption is thatXi D �CYi ,
where EYi D 0. These equalities are in the space L2, which, in particular, means
that EXi.t/ D �.t/ for almost all t 2 Œ0; 1�. The various procedures discussed in
this book refer then to the mean adjusted variables Xi � � which are estimated by
Xi � NX . In particular, the FPC’s vk , are those of X ��, and we have the following
L2 expansion

Xi .t/ D �.t/C
1X
kD1

�kivk.t/; 1 � i � N:

The FPC’s vk and their eigenvalues are then estimated using the sample covariance
operator

OC.x/ D N�1
NX
iD1

˝
Xi � NXN ; x

˛
.Xi � NXN /; x 2 L2:
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The above approach is however not valid if the observationsXi do not have the same
mean. If the data are collected sequentially, like annual temperature curves, intra-
day price curves, or daily magnetometer curves, then it is possible that the mean
function changes over time. The simplest type of change is that the mean func-
tion changes abruptly from one deterministic curve to another. Such an assump-
tion is clearly a convenient idealization. However, as has been shown for scalar
observations, procedures aimed at detecting such simple “jump changes” also
have power to detect more complex changes. The model for an abrupt change is
Xi D �1 C Yi ; 1 � i � k�, Xi D �2 C Yi ; k

� < i � N , where k� is an unknown
change point. Assuming k�=N ! 
 , a simple verification shows that then OC is
close to CY C 
.1 � 
/ h�; �i�, where � D �1 � �2. The eigenfunctions of OC
will then no longer estimate the eigenfunctions of CY , the covariance operator of
the Yi . In general, if the mean function changes, inference based on the FPC’s will
no longer be valid.

It is important to distinguish between a change point problem and the problem
of testing for the equality of means discussed in Chapter 5. In the latter setting,
it is known which population or group each observation belongs to. In the change
point setting, we do not have any partition of the data into several sets with possibly
different means. The change can occur at any point, and we want to test if it occurs
or not, and if it does, to estimate the point of change.

In this chapter, we assume that the observations are independent. This assumption
is often approximately satisfied, and allows to focus on the aspect of the methodol-
ogy directly related to change point detection. The case of dependent observations
is considered in Chapter 16. We note that even if the mean zero Yi are independent,
but the mean � changes, a test of independence, like the one studied in Chapter 7,
will show that the Xi D �i C Yi are dependent. This phenomenon is well–known
for scalar observations, and is referred to as spurious dependence.

Change point methodology is often applied to time series of average annual tem-
peratures at specific locations, or to series derived from such data, like the land
surface or marine global temperature series described and used in several examples
in Shumway and Stoffer (2006). Figure 6.1 shows the series of average annual tem-
peratures in Central England from 1780 to 2007. Longer records of temperature in
England, reaching into 1600’s, are available, but we focus on the more recent period
because starting from late 1700’s daily temperatures have been recorded, and the
annual curves can be viewed as functional observations. One such curve is shown
in Figure 6.2. Detecting a change point in mean in a series like the one shown
in Figure 6.1 should not be taken literary to mean that the mean actually abruptly
changes from one value to another in a specific year. It means that the assumption of
a constant mean value for the whole series is not acceptable. The estimated change
point then shows a rough break point after which the temperatures are higher on
average. Different model formulations are obviously possible. One can postulate a
straight line regression model for the annual mean and test for changes in slope.

In this chapter, we focus on the change in mean problem in the functional setting.
In this case, the mean is a function, and the change can be not only in the average
level of this function, but also in its shape. For the daily temperature data, a change in
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shape may mean, for example, that while the overall annual average stays the same,
summers may become warmer and winters colder. In Section 6.4 we show that in
the functional setting more subtle changes can be detected than in the multivariate
setting which studies average monthly temperatures. The difference between the
multivariate and the functional data is illustrated in Figure 6.2.

6.2 Notation and assumptions

We assume that the observations Xi 2 L2 are independent, and we want to test if
their mean remains constant in i . Thus we test the null hypothesis

H0 W EX1 D EX2 D � � � D EXN :

Note that underH0, we do not specify the value of the common mean.
The test we construct has a particularly good power against the alternative in

which the data can be divided into several consecutive segments, and the mean is
constant within each segment, but changes from segment to segment. The simplest
case of only two segments (one change point) is specified in Assumption 6.4.

Under the null hypothesis, we can represent each functional observation as

Xi .t/ D �.t/C Yi .t/; EYi .t/ D 0: (6.1)

The following assumption specifies conditions on �.�/ and the errors Yi .�/ needed
to establish the asymptotic distribution of the test statistic.

Assumption 6.1. The mean�.�/ is inL2. The errors Yi .�/ are iid mean zero random
elements of L2 which satisfy

EkYik2 D
Z
EY 2i .t/dt < 1: (6.2)

Assumption 6.1 implies that the covariance function

c.t; s/ D EŒYi .t/Yi .s/� t; s 2 Œ0; 1� (6.3)

is square integrable, i.e. is in L2.Œ0; 1�� Œ0; 1�/. Consequently, it implies the follow-
ing expansions:

c.t; s/ D
X

1�k<1
�kvk.t/vk.s/ (6.4)

and
Yi .t/ D

X
1�`<1

�`;iv`.t/: (6.5)

The vk are eigenfunctions of the covariance operator with kernel (6.3). The
sequences f�`;i ; ` D 1; 2; : : :g are independent, and within each sequence the �`;i
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are uncorrelated with mean zero and variance �`. The infinite sum in (6.5) converges
in L2 with probability one.

Recall that the estimated eigenelements are defined byZ
Oc.t; s/ Ov`.s/ds D O�` Ov`.t/; ` D 1; 2; : : : ; (6.6)

where

Oc.t; s/ D 1

N

X
1�i�N

�
Xi .t/ � NXN .t/

� �
Xi .s/ � NXN .s/

�
and

NXN .t/ D 1

N

X
1�i�N

Xi .t/:

To control the distance between the estimated and the population eigenelements,
we need the following assumptions:

Assumption 6.2. The eigenvalues �` satisfy, for some d > 0

�1 > �2 > � � � > �d > �dC1:

Assumption 6.3. The Yi in (6.1) satisfy

EkYik4 D
Z
EY 4i .t/dt < 1:

By Theorem 2.7, for each k � d :

lim sup
N!1

NE
�k Ockvk � Ovkk2� < 1; lim sup

N!1
NE

h
j�k � O�kj2

i
< 1: (6.7)

We establish the consistency of the test under the alternative of one change point
formalized in Assumption 6.4. A similar argument can be developed if there are
several change points, but the technical complications then obscure the main idea
explained in Sections 6.3 and 6.5 (in particular the functions (6.9) and (6.16) would
need to be modified). The more general case is studied empirically in Section 6.4.

Assumption 6.4. The observations follow the model

Xi .t/ D
(
�1.t/C Yi .t/; 1 � i � k�;
�2.t/C Yi .t/; k� < i � N;

(6.8)

in which the Yi satisfy Assumption 6.1, the mean functions�1 and �2 are in L2.T /,
and

k� D Œn
� for some 0 < 
 < 1:
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We will see in the proof of Theorem 6.2 that under Assumption 6.4 the sample
covariances of the functional observations converge to the function

Qc.t; s/ D c.t; s/C 
.1 � 
/.�1.t/ � �2.t//.�1.s/ � �2.s//: (6.9)

This is a symmetric, square integrable function, and it is easy to see that for any
x; y 2 L2, “

Qc.t; s/x.t/x.s/dt ds � 0;

so Qc.t; s/ is a covariance function. Consequently, it has orthonormal eigenfunctions
wk and nonnegative eigenvalues 
k satisfyingZ

Qc.t; s/wk.s/ds D 
kwk.t/: (6.10)

The quantities Qc.t; s/, wk and 
k are used in Section 6.3 to describe the distribution
of the test statistic under the alternative of a single change point.

6.3 Detection procedure

To explain the idea of the test procedure, denote

O�k.t/ D 1

k

X
1�i�k

Xi .t/; e�k.t/ D 1

N � k
X

k<i�N
Xi .t/:

If the mean is constant, the difference �k.t/ D O�k.t/ � e�k.t/ is small for all
1 � k < N and all t 2 Œ0; 1�. However, �k.t/ can become large due to chance
variability if k is close to 1 or to N . It is therefore usual to work with the sequence

Pk.t/ D
X
1�i�k

Xi .t/ � k

N

X
1�i�N

Xi .t/ D k.N � k/
N

Œ O�k.t/ �e�k.t/�
in which the variability at the end points is attenuated by a parabolic weight function.
If the mean changes, the difference Pk.t/ is large for some values of k and of t .
Since the observations are in an infinite dimensional domain, we work with the
projections of the functions Pk.�/ on the principal components of the data. These
projections can be expressed in terms of scores which can be easily computed using
the R package fda.

Consider thus the scores corresponding to the largest d eigenvalues:

O�`;i D
Z
ŒXi .t/ � NXN .t/� Ov`.t/dt; i D 1; 2; : : : ; N; ` D 1; 2; : : : ; d:
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Observe that the value of Pk.t/ does not change if theXi .t/ are replaced byXi .t/�NXN .t/. Consequently, setting k D ŒNx�; x 2 .0; 1/, we obtainZ 8<: X
1�i�Nx

Xi .t/ � ŒNx�

N

X
1�i�N

Xi .t/

9=; Ov`.t/dt D
X

1�i�Nx
O�`;i� ŒNx�

N

X
1�i�N

O�`;i :

(6.11)
Identity (6.11) shows that scores can be used for testing the constancy of the mean
function.

The following theorem can be used to derive a number of test statistics. To state
it, introduce the statistic

TN .x/ D 1

N

dX
`D1

O��1`

0@ X
1�i�Nx

O�`;i � x
X

1�i�N
O�`;i
1A2 (6.12)

and let B1.�/; : : : ; Bd .�/ denote independent standard Brownian bridges.

Theorem 6.1. Suppose Assumptions 6.1, 6.2,6.3 hold. Then, underH0,

TN .x/
d!

X
1�`�d

B2` .x/ .0 � x � 1/;

in the Skorokhod topology of DŒ0; 1�.

Theorem 6.1 is proved in Section 6.5.

By Theorem 6.1, U.TN /
d! U.

P
1�`�d B2` .�//, for any continuous functional

U W DŒ0; 1� ! R. Applying integral or max functionals, or their weighted ver-
sions, leads to useful statistics. We focus on the integral of the squared function, i.e.
the Cramér–von–Mises functional, which is known to produce effective tests. We

thus consider the convergence
R 1
0 TN .x/dx

d! R 1
0

P
1�l�d B2` .x/dx, which can

be rewritten as

SN;d WD 1

N 2

dX
lD1

O��1`
NX
kD1

0@ X
1�i�k

O�`;i � k

N

X
1�i�N

O�`;i
1A2 d!

Z 1

0

X
1�`�d

B2` .x/dx:

(6.13)
The distribution of the random variable

Kd D
Z 1

0

X
1�`�d

B2` .x/dx (6.14)

was derived by Kiefer (1959). Denoting by cd .˛/ its .1 � ˛/th quantile, the test
rejectsH0 if SN;d > cd .˛/. The critical values cd .˛/ are presented in Table 6.1.

A multivariate analog of statistic (6.13) considered in Horváth et al. (1999) is

MN;d D 1

N 2

NX
kD1

�
k

N

N � k

N

�2
�.k/ OD�1

d �
T .k/; (6.15)
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where �.k/ is the difference of the mean vectors (of dimension d ) computed from
the first k and the last N � k data vectors, and ODd is the d � d matrix of estimated
residual vectors. If d is large, the inverse of ODd is unstable. In statistic (6.13), this
inverse is “replaced” by inverses of the d largest eigenvalues O�`, and the whole
statistic is properly “diagonalized” so that only the most important variability of the
data is considered, while the high dimensional noise is ignored.

We now turn to the behavior of the test under the alternative. We will show that

it is consistent, i.e. SN;d
P! 1. In fact, we can obtain the rate of divergence: under

HA, Sn;d grows linearly with N . We formulate these results under the assumption
of one change point.

Under Assumption 6.4, for 1 � k � d , introduce the functions

gk.x/ D

8̂<̂
:
x.1 � 
/

Z
.�1.t/ � �2.t//wk.t/dt; 0 < x � 



.1 � x/
Z
.�1.t/ � �2.t//wk.t/dt; 
 < x < 1:

(6.16)

Theorem 6.2. Under Assumption 6.4,

sup
0�x�1

ˇ̌̌
N�1TN � gT .x/˙�g.x/

ˇ̌̌
D oP .1/;

where

g.x/ D Œg1.x/; : : : ; gd .x/�
T and ˙� D

26664
1=
1 0 � � � 0

0 1=
2 � � � 0
:::

:::
:::

:::

0 0 � � � 1=
d

37775 :
Theorem 6.2 is proven in Section 6.5.
It follows that the test statistic (6.13) satisfies the law of large numbers under the

alternative, i.e.

1

N
SN;d

P!
X

1�k�d

1


k

1Z
0

g2k.x/dx:

If
R 1
0
g2
k
.x/dx > 0 for some 1 � k � d , then SN;d

P! 1.
To understand when the test is consistent, introduce the jump function �.t/ D

�1.t/ � �2.t/. By (6.16), the condition
R 1
0 g

2
k
.x/dx > 0 is equivalent toR 1

0
�.s/wk.s/ds ¤ 0: Thus the test will have no power ifZ 1

0

�.s/wk.s/ds D 0; for all 1 � k � d: (6.17)

This lead us to the following corollary.

Corollary 6.1. If Assumption 6.4 holds, and the jump function �.t/ D �1.t/ �
�2.t/ is not orthogonal to the subspace spanned by the first d eigenfunctions of the

covariance kernel Qc.t; s/ (6.9), then SN;d
P! 1; as N ! 1.
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To estimate the change point, we plot the function TN .x/ in (6.12) against
0 � x � 1, and estimate 
 by the value of x which maximizes TN .x/. The intu-
ition behind this estimator is clear from (6.12) and (6.11). To ensure uniqueness, we
formally define this estimator as

O
N D inf

(
x W TN .x/ D sup

0�y�1
TN .y/

)
: (6.18)

Its weak consistency is established in the following proposition

Proposition 6.1. If the assumptions of Corollary 6.1 hold, then O
N P! 
 .

Proof. The argument x maximizing TN .x/ clearly maximizes AN .x/ D
N�1TN .x/. Theorem 6.2 states that sup0�x�1 jAN .x/ �A.x/j P! 0, where

A.x/ D gT .x/˙�g.x/ D
(
x2.1 � 
/2A; 0 � x � 



2.1� x/2A; 
 < x < 1;

with

A D
X
1�`�d

1


`

�Z
�.t/w`.t/dt

�2
: (6.19)

Under the assumptions of Corollary 6.1, A > 0, and it is easy to verify that A.x/
has then a unique maximum at x D 
 . ut

The asymptotic distribution of the estimator O
N is studied in Aue et al. (2009).
They show that if A > 0 in (6.19), and the assumptions of Corollary 6.1 hold, then
N. O
N � 
/ converges in distribution to the location of the supremum of a two–
sided random walk with a drift. If the size of the change depends on depends on
the sample size, i.e. �.t/ D �N .t/, and the size of the change goes to zero as
N ! 1, but not faster than N�1=2, then there is a sequence c.N / ! 1 such
that c.N /. O
N � 
/ converges in distribution to the location of the supremum of a
two–sided random walk with a drift. By Lemmas 2.2 and 2.3 and Theorem 2.6, even
under the alternative the eigenvalues and the eigenfunctions (up to a random sign)
stabilize.

An important aspect of the procedure is the choice of the number d of the eigen-
functions vk . This issue is common to all FDA procedures using functional PCA,
and several approaches have been proposed. These include an adaptation of the scree
plot of Cattell (1966), see Section 9.4, the pseudo AIC and the cross–validation.
All these methods are implemented in the MATLAB PACE package developed
at the University of California at Davis. We use the cumulative percentage vari-
ance approach, which is explained in Section 6.4. A general recommendation for
the cumulative percentage variance method is to use d which explains 85% of the
variance.
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6.4 Finite sample performance and application to temperature
data

In this section, we report the results of a simulation study that examines the finite
sample performance of the test. Recall that the test rejects if SN;d of (6.13) exceeds
the .1 � ˛/th quantile of Kd of (6.14). For d � 5, these quantiles were computed
by Kiefer (1959) using a series expansion of the CDF of Kd . Horváth et al. (1999)
used these expansions to find the critical values for d D 12 and noticed that the
critical values obtained by simulating Kd by discretizing the integral are slightly
different, but actually lead to more accurate tests. To cover a fuller range of the d
values, Table 6.1 gives simulated critical values for d D 1; : : : ; 30, computed by
discretizing the integral over 1; 000 points and running 100; 000 replications.

The simulation study consists of two parts. First we use standard Gaussian pro-
cesses as the errors Yi and a number of rather arbitrary mean functions �. This part
assesses the test in some generic cases analogous to assuming a normal distribution
of scalar observations. In the second part, we use mean functions and errors derived
from monthly temperature data. No assumptions on the marginal distribution of the
Yi ’s or the shape of the �’s are made. This part assesses the test in a specific, prac-
tically relevant setting.

Gaussian processes. To investigate the empirical size, without loss of generality,
�.t/was chosen to be equal to zero and two different cases of Yi .t/were considered,

Table 6.1 Simulated critical values of the distribution ofKd .

Nominal size d

1 2 3 4 5 6
10% 0.345165 0.606783 0.842567 1.065349 1.279713 1.485200
5% 0.460496 0.748785 1.001390 1.239675 1.469008 1.684729
1% 0.740138 1.072101 1.352099 1.626695 1.866702 2.125950

7 8 9 10 11 12
10% 1.690773 1.897365 2.096615 2.288572 2.496635 2.686238
5% 1.895557 2.124153 2.322674 2.526781 2.744438 2.949004
1% 2.342252 2.589244 2.809778 3.033944 3.268031 3.491102

13 14 15 16 17 18
10% 2.884214 3.066906 3.268958 3.462039 3.650724 3.837678
5% 3.147604 3.336262 3.544633 3.740248 3.949054 4.136169
1% 3.708033 3.903995 4.116829 4.317087 4.554650 4.734714

19 20 21 22 23 24
10% 4.024313 4.214800 4.404677 4.591972 4.778715 4.965613
5% 4.327286 4.532917 4.718904 4.908332 5.101896 5.303462
1% 4.974172 5.156282 5.369309 5.576596 5.759427 5.973941

25 26 27 28 29 30
10% 5.159057 5.346543 5.521107 5.714145 5.885108 6.083306
5% 5.495721 5.688849 5.866095 6.068351 6.242770 6.444772
1% 6.203718 6.393582 6.572949 6.771058 6.977607 7.186491
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namely the trajectories of the standard Brownian motion (BM), and the Brownian
bridge (BB). These processes were generated by transforming cumulative sums of
independent normal variables computed on a grid of 103 equispaced points in Œ0; 1�.
Following Ramsay and Silverman (2005) (Chapter 3) discrete trajectories were
converted to functional observations (functional objects in R) using B-spline and
Fourier bases and various numbers of basis functions. No systematic dependence
either on the type of the basis or on the number of basis functions was found. The
results reported in this section were obtained using B-spline basis with 800 basis
functions. We used a wide spectrum of N and d , but to conserve space, we present
the results for N D 50; 150; 200; 300; 500 and d D 1; 2; 3; 4. All empirical
rejection rates are based on 1; 000 replications.

Table 6.2 shows the empirical sizes based on critical values reported in Table 6.1.
The empirical sizes are fairly stable. Except for a very few cases of small sample
sizes, all deviations from the nominal significance levels do not exceed two standard
errors computed using the normal approximation

p
p.1 � p/=R, where p is a nom-

inal level and R the number of repetitions. Table 6.2 shows that for these Gaussian
processes, the empirical size does not depend appreciably either on n or on d .

In the power study, several cases that violate the null were considered. We
report the power for k� D ŒN=2�. Several other values of k� were also consid-
ered, and only a small loss of power was observed for N=4 < k� � 3N=4.
A few different mean functions � before and after change were used, namely
�i .t/ D 0; t; t2;

p
t ; et ; sin.t/; cos.t/, i D 1; 2, for instance �1.t/ D t and

�2.t/ D cos.t/, etc.

Table 6.2 Empirical size (in percent) of the test using the B-spline basis.

Process d=1 d=2 d=3 d=4

10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

N D 50
BM 10.3 4.6 0.1 9.9 4.8 0.7 8.4 3.3 0.6 9.7 4.8 0.8
BB 11.2 5.5 0.8 10.6 4.9 1.1 8.4 4.0 0.9 8.5 4.3 1.2

N D 100
BM 12.2 5.6 1.3 9.8 5.6 0.9 9.3 4.6 0.9 9.0 5.4 0.9
BB 12.4 5.7 0.7 10.2 4.2 0.6 9.9 4.6 1.0 8.3 4.1 0.8

N D 150
BM 10.8 5.7 1.3 9.7 4.6 1.2 11.8 6.2 0.8 10.8 5.3 1.1
BB 10.5 5.0 1.2 9.8 4.4 1.1 10.4 6.2 0.7 10.5 5.1 1.2

N D 200
BM 9.7 5.4 0.8 9.2 4.3 0.7 9.3 5.8 1.3 10.8 5.5 0.9
BB 9.2 5.1 0.8 10.8 5.6 1.2 10.0 5.2 1.0 9.6 5.2 1.0

N D 300
BM 10.3 5.2 1.5 11.1 6.1 0.6 10.1 4.5 0.6 9.9 5.5 0.7
BB 10.4 5.6 1.1 9.4 4.8 0.9 9.9 4.1 0.8 10.5 5.3 1.3

N D 500
BM 11.6 6.3 1.3 10.6 6.9 1.5 10.9 5.7 1.4 9.0 4.4 0.6
BB 11.7 5.1 1.3 9.7 5.8 1.4 10.3 5.3 1.1 10.0 5.4 1.1
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Table 6.3 Empirical power (in percent) of the test using B-spline basis. Change point at k� D
Œn=2�.

Process d=1 d=2 d=3

10% 5% 1% 10% 5% 1% 10% 5% 1%

N D 50
BM; BM + sin.t/ 81.5 70.8 43.7 72.6 60.0 33.2 67.7 54.9 27.3
BM; BM + t 88.4 78.0 54.1 84.7 74.0 45.4 77.5 64.3 36.0
BB; BB + sin.t/ 99.8 99.4 97.4 100 100 99.9 100 100 100
BB; BB + t 99.9 99.8 98.9 100 100 99.9 100 100 100

N D 100
BM; BM + sin.t/ 97.4 95.3 86.3 96.4 91.0 76.5 93.5 88.0 68.7
BM; BM + t 99.0 97.5 91.2 98.7 97.1 87.6 97.5 94.9 83.8
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N D 150
BM; BM + sin.t/ 99.9 99.5 96.6 99.6 98.6 95.1 98.9 97.4 90.3
BM; BM + t 100 99.8 98.7 99.8 99.7 98.8 99.9 99.7 97.8
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

N D 200
BM; BM + sin.t/ 100 99.9 99.1 100 99.8 99.0 99.9 99.7 98.2
BM; BM + t 100 100 100 100 100 99.9 100 100 99.3
BB; BB + sin.t/ 100 100 100 100 100 100 100 100 100
BB; BB + t 100 100 100 100 100 100 100 100 100

Table 6.3 presents selected results of the power study. It shows that the test has
overall good power. For small samples, N � 100, in cases where the BB was used
the power is slightly higher than for those with the BM. Nonetheless, for N � 150

the power approaches 100% for both processes and all choices of other parameters.
The power decreases as the number of principal components d increases. This can
be explained as follows: the critical values of SN;d increase with d , but the change
point is mainly captured by a few initial leading principal components explaining
the major part of the variance.

Analysis of central England temperatures. The goal of this section is twofold:
to investigate the performance of the test in a real world setting, and to demonstrate
the advantages of the functional approach for high–dimensional data. The data con-
sists of 228 years (1780 to 2007) of average daily temperatures in central England.
They were published by the British Atmospheric Data Centre, and compiled by
Nick Humphreys at the University of Utah. The original data can thus be viewed
as 228 curves with 365 measurements on each curve. These data were converted to
functional objects in R using 12 B-spline basis functions. Multivariate observations
were obtained as in Horváth et al. (1999) by computing monthly averages resulting
in 228 vectors of dimension d D 12. (We could not even compute statistics (6.15)
for vectors of dimension 365 because R reported that OD was singular.) These two
procedures are illustrated in Figure 6.2. Even though we used 12 B-splines and 12



6.4 Finite sample performance and application to temperature data 91

averages, the resulting data look quite different, especially in spring and fall, when
the temperatures change most rapidly. Gregorian months form a somewhat arbitrary
fixed partition of the data, while the splines adapt to their shapes which differ from
year to year.

To compute statistic (6.13), we used d D 8 eigenfunctions which explain 84% of
variability. If the test indicates a change, we estimate it by the estimator O
N (6.18).
This divides the data set into two subsets. The procedure is then repeated for each
subset until periods of constant mean functions are obtained. We proceed in exactly
the same manner using statistic (6.15). We refer to these procedures, respectively,
as FDA and MDA approaches. The resulting segmentations are shown in Tables 6.4
and 6.5.

The functional approach identified two more change point, 1850 and 1992, which
roughly correspond to the industrial revolution and the advent of rapid global warm-
ing. The multivariate approach “almost” identified these change points with the
P–values in iterations 4 and 5 being just above the significance level of 5%. This
may indicate that the functional method has better power, perhaps due to its greater
flexibility in capturing the shape of the data. This conjecture is investigated below.
Figure 6.3 shows average temperatures in the last four segments, and clearly illus-
trates the warming trend.

Table 6.4 Segmentation procedure of the data into periods with constant mean function.

Iteration Segment Decision SN;d P-value Estimated
MN;d change point

England temperatures (d D 8) (FDA approach)
1 1780 - 2007 Reject 8.020593 0.00000 1926
2 1780 - 1925 Reject 3.252796 0.00088 1808
3 1780 - 1807 Accept 0.888690 0.87404 -
4 1808 - 1925 Reject 2.351132 0.02322 1850
5 1808 - 1849 Accept 0.890845 0.87242 -
6 1850 - 1925 Accept 1.364934 0.41087 -
7 1926 - 2007 Reject 2.311151 0.02643 1993
8 1926 - 1992 Accept 0.927639 0.84289 -
9 1993 - 2007 Accept 1.626515 0.21655 -

England temperatures (d D 12) (MDA approach)
1 1780 - 2007 Reject 7.971031 0.00000 1926
2 1780 - 1925 Reject 3.576543 0.00764 1815
3 1780 - 1814 Accept 1.534223 0.81790 -
4 1815 - 1925 Accept 2.813596 0.07171 -
5 1926 - 2007 Accept 2.744801 0.08662 -

Table 6.5 Summary and comparison of segmentation. Beginning and end of data period in bold.

Approach Change points

FDA 1780 1808 1850 1926 1993 2007
MDA 1780 1815 1926 2007
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Fig. 6.3 Average temperature functions in the estimated partition segments.

The analysis presented above assumes a simple functional change point model
for the daily temperatures. Obviously, one cannot realistically believe that the mean
curves change abruptly in one year, this is merely a modeling assumption useful in
identifying patterns of change in mean temperature curves. Well-established alter-
native modeling approaches have been used to study the variability of temperatures.
For example, Hosking (1984) fitted a fractionally differenced ARMA(1,1) model
to the series of annual average temperatures in central England in 1659–1976. It is
generally very difficult to determine on purely statistical grounds if a change–point
or a long–range dependent model is more suitable for any particular finite length
record, see Berkes et al. (2006) and Jach and Kokoszka (2008) for recent methodol-
ogy, discussion and references. It is often more useful to choose a modeling method-
ology which depends on specific goals, and this is the approach we use. One way of
checking an approximate adequacy of our model is to check if the residuals obtained
after subtracting the mean in each segment are approximately independent and iden-
tically distributed. This can be done by applying the test developed by Gabrys and
Kokoszka (2007) which is a functional analog of the well–known test of Hosking
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(1980) and Li and McLeod (1981) (see also Hosking (1981, 1989). The P-value of
8% indicates the acceptance of the hypothesis that the residuals are iid.

Keeping these caveats in mind, we use the partitions obtained above to generate
realistic synthetic data with and without change–points. We use them to evaluate and
compare the size and power properties of the FDA and MDA tests, and to validate
our findings. We compute the residuals of every observation in a constant mean
segment by subtracting the average of the segment, i.e. OYis D Xis � O�s ; where
s D 1; : : : ; S denotes the segment, and i D 1; : : : ; Is indexes observations in the
sth segment. The OYis are functional residuals, and their average in each segment is
clearly the zero function.

To assess the empirical size, we simulate “temperature-like” data by consider-
ing two cases. Case I: for every constant mean segment s, we produce synthetic
observations by adding to its mean function O�s errors drawn from the empirical dis-
tribution of the residuals of that segment, i.e. synthetic (bootstrap) observations in
the sth segment are generated via X�is D O�s C OYi�s; where i� indicates that OYi�s
is obtained by drawing with replacement from

n OYis; i D 1; : : : ; Is

o
: Case II: We

compute residuals in each segment and pool them together. We use this larger set of
residuals to create new observations by adding to the average of a segment the errors
drawn with replacement from that pool of residuals. For each segment, we generate
1000 of these bootstrap sequences. Table 6.6 shows the the resulting empirical sizes.
As the sample size increases, the FDA rejection rates approach nominal sizes, while
the MDA test is much more conservative. For the 1993–2007 segment, the size is
not reported because the matrix D was (numerically) singular for most bootstrap
replications.

We next investigate the power. Three cases are considered. Case I: For each seg-
ment, we produce synthetic observations using the bootstrap procedure and sam-
pling residuals from a corresponding period. This means that the errors in each
segment come from possibly different distributions. Case II: We pool together two,

Table 6.6 Empirical size of the test for models derived from the temperature data.

Segment Number of
functions

10% 5% 1% 10% 5% 1%

Case I Case II

FDA approach (d D 8)
1780 - 1807 (�1) 28 8.0 3.0 0.1 7.6 2.5 0.2
1808 - 1849 (�2) 42 9.5 3.9 0.4 9.7 4.1 0.4
1850 - 1925 (�3) 76 10.0 4.7 0.7 10.2 4.3 0.7
1926 - 1992 (�4) 66 8.8 3.7 0.8 9.2 4.1 1.0
1993 - 2007 (�5) 16 3.8 0.3 0.0 3.3 0.1 0.0

MDA approach (d D 12)
1780 - 1807 (�1) 28 3.0 0.5 0.0 2.8 0.4 0.0
1808 - 1849 (�2) 42 5.3 2.3 0.1 5.4 1.3 0.0
1850 - 1925 (�3) 76 6.9 1.9 0.0 9.1 4.2 0.6
1926 - 1992 (�4) 66 7.9 3.3 0.5 7.4 2.7 0.2
1993 - 2007 (�5) 16 - - - 0.0 0.0 0.0
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three, four, or five sets of residuals (depending on how many constant mean seg-
ments we consider) and sample from that pool to produce new observations. This
means that the errors in each segment come from the same distribution. Case III:
We slightly modify Case II by combining all residuals from all segments into one
population and use it to produce new observations. In both Case II and Case III,
the theoretical assumptions of Section 6.2 are satisfied, cf. Assumption 6.4, i.e. the
means change, but the errors come from the same population. Table 6.7 shows the
power of the test for FDA approach and Table 6.8 presents results of discrete MDA
method. As seen in Table 6.7, the differences between the three cases are of the
order of the chance error. Table 6.7 shows that the test has excellent power, even in
small samples, both for single and multiple change points. As for the Gaussian pro-
cesses, power is slightly higher if there is a change point around the middle of the
sample. Comparing Tables 6.7 and 6.8, it is seen that in FDA approach dominates
the MDA approach. There are a handful of cases, indicated with �, when MDA per-
formed better, but their frequency and the difference size suggests that this may be
attributable to the chance error.

6.5 An approximation theorem for functional observations and
proofs of Theorems 6.1 and 6.2

A key element of the proofs is bound (6.31), which follows from a functional cen-
tral limit theorem in a Hilbert space, see e.g. Kuelbs (1973). A result of this type is
needed because the observationsXi .�/ are elements of a Hilbert space, and to detect
a change point, we must monitor the growth of the partial sums

P
1�i�Nx Xi .t/

which are a function of 0 < x < 1. Lemma 6.2 is particularly noteworthy because
it shows that the eigenvalues and the eigenfunctions also converge under the alter-
native.

For the sake of completeness we provide a new and simple proof of the result
of Kuelbs (1973) in a form most suitable for the application to the proofs of The-
orems 6.1 and 6.2. We start with an L2 version of the Kolmogorov inequality. Let
fZi .t/; 0 � t � 1; 1 � i � N g be independent identically distributed random
functions with values in L2Œ0; 1� satisfying

EZ1.t/ D 0 and
Z
EZ21 .t/dt < 1: (6.20)

Lemma 6.1. If (6.20) holds, then for all � > 0 we have

�P

8<: max
1�k�N

Z  
kX
iD1

Zi .t/

!2
dt � �

9=; dt � E

Z  
NX
iD1

Zi .t/

!2
dt: (6.21)
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Proof. Let Fk be the 	 algebra generated by fZ`.t/; 0 � t � 1; 1 � ` � kg: By
the independence of the Zi ’s and assumption (6.20), we have

E

8<:
Z  

kC1X
iD1

Zi .t/

!2
dt

ˇ̌̌̌
Fk

9=; �
Z  

kX
iD1

Zi .t/

!2
dt;

and therefore fR 
Pk
iD1Zi .t/

�2
dt;Fkg is a non-negative submartingale. Hence by

Doob’s maximal inequality (cf. Hall and Heyde (1980), p. 14), we have that

�P

8<: max
1�k�N

Z  
kX
iD1

Zi .t/

!2
dt � �

9=; dt
� E

8<:
Z  

NX
iD1

Zi .t/

!2
dtI

24 max
1�k�N

Z � X
1�i�k

Zi .t/

�2
dt > �

359=;
� E

8<:
Z  

NX
iD1

Zi .t/

!2
dt

9=; ;
completing the proof. ut

The following result was obtained by Kuelbs (1973), and now we present a proof
based on projections.

Theorem 6.3. . If Y1; Y2; : : : ; YN satisfy Assumption 6.1, then we can define
a sequence of Gaussian processes �N .x; t/ such that E�N .x; t/ D 0,
E�N .x; t/�N .x

0; t 0/ D min.x; x0/c.t; t 0/ and

sup
0�x�1

Z 0@N�1=2 X
1�i�Nx

Yi .t/ � �N .x; t/

1A2 dt D oP .1/ .N ! 1/: (6.22)

We also note that for all N	
�N .x; t/; 0 � x; t � 1



d!
	 1X
`D1

�
1=2

`
W`.x/v`.t/; 0 � x; t � 1



;

where W` are independent, identically distributed Wiener processes.

Proof. Let M � 1 and define

Yi:M .t/ D
MX
`D1

hYi ; v`i v`.t/
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and

NYi:M .t/ D Yi .t/ � Yi:M .t/ D
1X

`DMC1
hYi ; v`i v`.t/:

First we show that for all � > 0 we have

lim
M!1 lim sup

N!1
P

8<: max
1�k�N

Z  
N�1=2

kX
iD1

NYi:M .t/
!2
dt � �

9=; D 0: (6.23)

Using Lemma 6.1 we get that

P

	
max
1�k�N

Z  
N�1=2

kX
iD1

NYi:M .t/
!2
dt � �




� 1

�
E

Z  
N�1=2

kX
iD1

NYi:M .t/
!2
dt

D 1

�

Z
.E NY1:M .t//2dt

D 1

�

1X
`DMC1

�`;

proving (6.23).
It is easy to see that

N�1=2
kX
iD1

Yi;M .t/ D
MX
`D1

 
N�1=2

kX
iD1

hYi ; v`i
!
v`.t/:

Next we note that the vectors Yi D .hYi ; v1i ; : : : ; hYi ; vM i/T ; 1 � i � N

are independent and identically distributed random vectors with EYi D 0 and
EYiYTi D diag.�1; : : : ; �M /: By Donsker’s theorem for any N we can define M
independent Wiener processesW1;N ; : : : WM;N such that

max
1�`�M

max
1�k�N

ˇ̌̌̌
ˇN�1=2

kX
iD1

hYi ; v`i � �1=2
`
W`;N .k=N /

ˇ̌̌̌
ˇ D oP .1/: (6.24)

Using the continuity of the Wiener process we conclude that for all M � 1

max
1�`�M

sup
0�x�1

ˇ̌
W`;N .ŒNx�=N / �W`;N .x/

ˇ̌ D oP .1/: (6.25)
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Thus by (6.24) and (6.25)we have for all M � 1 that

sup
0�x�1

Z 0@ MX
`D1

0@N�1=2
ŒNx�X
iD1

hYi ; v`i � �1=2
`
W`;N .x/

1A v`.t/
1A2 dt (6.26)

D sup
0�x�1

MX
`D1

0@N�1=2
ŒNx�X
iD1

hYi ; v`i � �
1=2

`
W`;N .x/

1A2
D oP .1/:

The process �N .x; t/ is defined by

�N .x; t/ D
1X
`D1

�
1=2

`
W`;N .x/v`.t/;

where fW`;N g are suitably chosen independent Wiener processes.

To finish the proof it is enough to prove that

E sup
0�x�1

Z 0@ 1X
`DMC1

�
1=2

`
W`;N .x/v`.t/

1A2 dt ! 0 .M ! 1/:

(Note that the expected value above does not depend on N .) By the orthonormality
of the v`’s we have that

E sup
0�x�1

Z 0@ 1X
`DMC1

�
1=2

`
W`;N .x/v`.t/

1A2 dt D E sup
0�x�1

1X
`DMC1

�`W
2
`;N .x/

� E

 
sup
0�x�1

W 2
1;N .x/

! 1X
`DMC1

�`

! 0 .M ! 1/;

which completes the proof of the theorem. ut

Proof of Theorem 6.1. We will work with the unobservable projections

Q̌
k;i D

Z
Yi .t/ Ovk.t/dt; ˇk;i D

Z
Yi .t/vk.t/dt; ˇ�k;i D Ockˇk;i

and the vectors

ˇi D Œˇ1;i ; : : : ; ˇd;i �
T ; ˇ�i D Œˇ�1;i ; : : : ; ˇ�d;i �

T ; 1 � i � N:
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Since the Yi are iid functions with mean zero, the ˇi are iid mean zero vectors in
Rd . A simple calculation using the orthonormality of the vk shows that each ˇi has
a diagonal covariance matrix

˙d D

26664
�1 0 � � � 0

0 �2 � � � 0
:::
:::

:::
:::

0 0 � � � �d

37775
The functional central limit theorem, thus implies that

N�1=2 X
1�i�Nx

ˇi
d! �d .x/ .0 � x � 1/; (6.27)

where the convergence is in the Skorokhod space Dd Œ0; 1�. The process
f�d .x/; 0 � x � 1g takes values in Rd , has zero mean and covariance matrix˙d .
Convergence (6.27) implies in turn that

1

N

24 X
1�i�Nx

ˇi � x
X

1�i�N
ˇi

35T ˙�1
d

24 X
1�i�Nx

ˇi � x
X

1�i�N
ˇi

35 d!
X
1�i�d

B2i .x/

(6.28)
in the Skorokhod space DŒ0; 1�.

The matrix˙d is estimated by ḃd . By (6.7) and Assumption 6.2, ḃ�1
d

P! ˙d
�1,

so (6.28) yields

1

N

24 X
1�i�Nx

ˇi � x
X

1�i�N
ˇi

35T ḃ�1
d

24 X
1�i�Nx

ˇi � x
X

1�i�N
ˇi

35 d!
X
1�i�d

B2i .x/:

(6.29)
Note that

X
1�i�Nx

ˇ�k;i � x
X

1�i�N
ˇ�k;i D Ock

0@ X
1�i�Nx

ˇk;i � x
X

1�i�N
ˇk;i

1A :
Since Oc2

k
D 1, we can replace the ˇi in (6.29) by the ˇ�i , and obtain

1

N

24 X
1�i�Nx

ˇ�i � x
X

1�i�N
ˇ�i

35T ḃ�1
d

24 X
1�i�Nx

ˇ�i � x
X

1�i�N
ˇ�i

35 d!
X
1�i�d

B2i .x/:

(6.30)
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We now turn to the effect of replacing the ˇ�
i;k

by Q̌
i;k. Observe that

sup
0<x<1

ˇ̌̌̌
ˇ̌N�1=2 X

1�i�Nx
ˇ�i;k �N�1=2 X

1�i�Nx
Q̌
i;k

ˇ̌̌̌
ˇ̌

D sup
0<x<1

ˇ̌̌̌
ˇ̌Z

0@N�1=2 X
1�i�Nx

Yi .t/

1A . Ockvk.t/ � Ovk.t// dt
ˇ̌̌̌
ˇ̌

� sup
0<x<1

264Z
0@N�1=2 X

1�i�Nx
Yi .t/

1A2 dt
375
1=2 �Z

. Ockvk.t/ � Ovk.t//2 dt
�1=2

:

The first factor is bounded in probability, i.e.

sup
0<x<1

Z 0@N�1=2 X
1�i�Nx

Yi .t/

1A2 dt D OP .1/: (6.31)

Relation (6.31) follows from the weak convergence in D.Œ0; 1�; L2.T // of the par-
tial sum process

P
1�i�Nx Yi ; x 2 Œ0; 1�, see Theorem 6.3.

Combining (6.31) and (6.7), we obtain

sup
0<x<1

ˇ̌̌̌
ˇ̌N�1=2 X

1�i�Nx
ˇ�i;k �N�1=2 X

1�i�Nx
Q̌
i;k

ˇ̌̌̌
ˇ̌ P! 0;

which in turn implies thatˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
24 X
1�i�Nx

ˇ�i � x
X

1�i�N
ˇ�i

35 �
24 X
1�i�Nx

O�i � x
X

1�i�N
O�i

35ˇ̌̌̌ˇ̌
ˇ̌̌̌
ˇ̌ D oP .N

�1=2/;

(6.32)
where the norm is the Euclidean norm in Rd . Relations (6.30) and (6.32) yield the
claim in Theorem 6.1. ut
Proof of Theorem 6.2. Theorem 6.2 follows from relation (6.36) and Lemma 6.3.
To establish them, we need the following Lemma.

Lemma 6.2. Under Assumption 6.4, for every 1 � k � d , as N ! 1,

O�k P! 
k; (6.33)Z
Œ Ovk.t/ � Ockwk.t/�2dt P! 0; (6.34)

where Ovk; O�k are defined by (6.6),wk; 
k by (6.10) and Ock D sign
R
T vk.t/ Ovk.t/dt:



102 6 Detection of changes in the mean function

Proof. It is easy to see that

NXN .t/ D NYN .t/C k�

N
�1.t/C N � k�

N
�2.t/

and, denoting�.t/ D �1.t/ � �2.t/,

OcN .t; s/ D 1

N

0@ X
1�i�k�

C
X

k�<i�N

1A .Xi .t/ � NXN .t//.Xi .s/ � NXN .s//

D 1

N

X
1�i�k�

�
Yi .t/ � NYN .t/C �1.t/ � k�

N
�1.t/ � N � k�

N
�2.t/

�

�
�
Yi .s/ � NYN .s/C �1.s/ � k�

N
�1.s/ � N � k�

N
�2.s/

�
C 1

N

X
k�<i�N

�
Yi .t/ � NYN .t/C �2.t/ � k�

N
�1.t/ � N � k�

N
�2.t/

�

�
�
Yi .s/ � NYN .s/C �2.s/ � k�

N
�1.s/ � N � k�

N
�2.s/

�
D 1

N

X
1�i�k�

�
Yi .t/ � NYN .t/C N � k�

N
�.t/

��
Yi .s/ � NYN .s/C N � k�

N
�.s/

�

C 1

N

X
k�<i�N

�
Yi .t/ � NYN .t/ � k�

N
�.t/

��
Yi .s/ � NYN .s/ � k�

N
�.s/

�
:

Rearranging terms, we obtain

OcN .t; s/ D 1

N

NX
iD1

�
Yi .t/ � NYN .t/

� �
Yi .s/ � NYN .s/

�
C k�

N

�
1 � k�

N

�
�.t/�.s/C rN .t; s/;

where

rN .t; s/ D
�
1 � k�

N

�
1

N

X
1�i�k�

��
Yi .t/ � NYN .t/

�
�.s/C �

Yi .s/ � NYN .s/
�
�.t/

�
C k�

N

1

N

X
k�<i�N

��
Yi .t/ � NYN .t/

�
�.s/C �

Yi .s/ � NYN .s/
�
�.t/

�
:

Using the law of large numbers (Theorem 2.2), we obtain
RR
r2N .t; s/dt ds

P! 0

and, by Theorem 2.6, ZZ
Œ OcN .t; s/� QcN .t; s/�2 P! 0: (6.35)

Hence Lemmas 2.2 and 2.3 imply, respectively, (6.33) and (6.34). ut
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As an immediate corollary to (6.33), we obtain

ḃ�1
d

P! ˙�: (6.36)

Lemma 6.3. Under Assumption 6.4,

sup
0�x�1

ˇ̌̌̌
ˇ̌ 1N

24 X
1�i�Nx

O�k;i � x
X

1�i�N
O�k;i
35 � Ockgk.x/

ˇ̌̌̌
ˇ̌ D oP .1/;

with the functions gk defined by (6.16).

Proof. Denote

Ogk.x/ D 1

N

24 X
1�i�Nx

O�k;i � x
X

1�i�N
O�k;i
35 ; x 2 Œ0; 1�;

and observe that

O�k;i D
Z
Yi .t/ Ovk.t/dt C

Z
�1.t/ Ovk.t/dt �

Z
NXN .t/ Ovk.t/dt; if 1 � i � k�

and

O�k;i D
Z
Yi .t/ Ovk.t/dt C

Z
�2.t/ Ovk.t/dt �

Z
NXN .t/ Ovk.t/dt; if k� < i � N:

We will use the relation

sup
0<x<1

ˇ̌̌̌
ˇ̌ X
1�i�Nx

Z
Yi .t/ Ovk.t/dt

ˇ̌̌̌
ˇ̌ D OP .N

1=2/; (6.37)

which follows from (6.31).
Suppose first that 0 < x � 
 . Then, by (6.37) and (6.34), uniformly in x 2 Œ0; 1�,

Ogk.x/ D x.1 � 
/

�Z
�1.t/ Ovk.t/dt �

Z
�2.t/ Ovk.t/dt

�
C oP .N

�1=2/

D x.1 � 
/ Ock
�Z

�1.t/wk.t/dt �
Z
�2.t/wk.t/dt

�
C oP .1/:

If x > 
 , then, uniformly in x 2 Œ0; 1�,

Ogk.x/ D 
.1� x/ Ock
�Z

�1.t/wk.t/dt �
Z
�2.t/wk.t/dt

�
C oP .1/: ut
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6.6 Bibliographical notes

The problem of change point detection in a sequence of scalar observations has
been extensively studied, and it is not possible to review the literature. Mathemat-
ical foundations most closely related to the approach developed in this chapter are
presented in Csörgő and Horváth (1997). Brodsky and Darkhovsky (1993) offer
a different perspective. Some references to the change point problem in the mul-
tivariate. setting are Srivastava and Worsley (1986), Shumway and Stoffer (1991)
(Kalman filter), Horváth et al. (1999), Lavielle and Teyssiére (2006), Zamba and
Hawkins (2006) and Qu and Perron (2007).

The problem of detecting a change in the mean of a sequence of Banach–space
valued random elements is theoretically studied by Rackauskas and Suquet (2006).
Motivated by detecting an epidemic change (the mean changes and then returns to its
original value), they propose a statistic based on increasingly fine dyadic partitions
of the index interval, and derived its limit, which is nonstandard.



Chapter 7
Portmanteau test of independence

Most inferential tools of functional data analysis rely on the assumption of iid func-
tional observations. In designed experiments this assumption can be ensured, but
for observational data, especially derived from time series, it requires a verification.
In this chapter, based on the paper of Gabrys and Kokoszka (2007), we describe a
simple portmanteau test of independence for functional observations whose idea is
as follows. The functional observations Xn.t/; n D 1; 2; : : : ; N; are approximated
by the first p terms of the principal component expansion

Xn.t/ �
pX
kD1

Xknvk.t/; n D 1; 2; : : : ; N: (7.1)

where the Xkn are the scores. For the sake of an intuitive argument, assume
first that the populations FPC’s vk.t/ are known. Testing the iid assumption for
the curves Xn.�/ reduces then to testing this assumption for the random vectors
ŒX1n; : : : ; Xpn�

T . For this purpose, the method proposed by Chitturi (1976) can
be used: we find multivariate analogs of correlations and an analog of the “sum
of squares” which has a �2 asymptotic distribution. In reality, the vk.t/ must be
replaced by the EFPC’s. This transition is delicate in the problem of testing for
independence because the EFPC’s depend on all observations.

The test studied in this chapter is analogous to the Ljung–Box test which is exten-
sively used in time series analysis. It essentially tests if the curves are uncorrelated.
As is common in time series analysis, evidence against independence can be found
if the test is applied to some transformations of the functional observations, for
example to the curves X2n.t/.

We note that Székely et al. (2007) and Székely and Rizzo (2009) proposed a
test of independence of two variables X and Y , which can be of arbitrary dimen-
sion, and so can also be elements of a Hilbert space. Their test is based on a mea-
sure of dependence, known as the ”correlation of distances” which is derived from
differences of characteristic functions. To apply such a test, a sample of iid pairs
.Xi ; Yi /; i D 1; 2; : : : ; N; is required, and so a different inferential problem is solved
than that studied in this chapter.
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The chapter is organized as follows. In Section 7.1, we formulate the test proce-
dure together with mathematical assumptions and theorems establishing its asymp-
totic validity. The proofs of the theorems of Section 7.1 are presented in Section 7.4.
Sections 7.2 and 7.3 are devoted, correspondingly, to the study of the finite sample
performance of the test and its application to two types of functional data: credit
card sales and geomagnetic records. Section 7.5 contains some lemmas on Hilbert
space valued random elements which are used in Section 7.4, and may be useful in
other similar contexts. In Section 7.6, we develop the required theory for random
matrices.

7.1 Test procedure

We observe mean zero random functions fXn.t/; t 2 Œ0; 1�; n D 1; 2; : : : N g and
want to test

H0 W the Xn.�/ are independent and identically distributed

versus

HA W H0 does not hold.

We approximate the Xn.t/ by

OXn.t/ D
pX
kD1

OXkn Ovk.t/;

where
OXkn D

Z
Xn.t/ Ovk.t/dt D

Z
OXn.t/ Ovk.t/dt: (7.2)

In practice, the number p must be selected so that the first p EFPC’s explain a large
fraction of the sample variance, see Section 3.3.

To establish the null distribution of the test statistic, we require the following
assumption:

Assumption 7.1. The observations X1; X2; : : : XN are iid in L2, have mean zero,
and satisfy

EkXnk4 D E

�Z
X2n.t/dt

�2
< 1: (7.3)

The eigenvalues of the (population) covariance operator satisfy (2.12).

We will work with the random vectors

OXn D Œ OX1n; OX2n; : : : ; OXpn�T (7.4)
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and analogously defined (unobservable) vectors

Xn D ŒX1n; X2n; : : : ; Xpn�
T ; (7.5)

where

Xkn D
Z
Xn.t/vk.t/dt: (7.6)

UnderH0, the Xn are iid mean zero random vectors in Rp for which we denote

v.i; j / D EŒXinXjn�; V D Œv.i; j /�i;jD1;:::;p:

The matrix V is thus the p � p covariance matrix of the Xn. By Ch we denote the
sample autocovariance matrix whose entries are

ch.k; l/ D 1

N

N�hX
nD1

XknXl;nCh; 0 � h < N:

Notice that we do not use the “hat” O in the definition of the above sample covari-
ances because they cannot be computed from the data. When we work with vectors
(7.4), rather than (7.5), we use the “hat”.

Denote by rf;h.i; j / and rb;h.i; j / the .i; j / entries of C�10 Ch and ChC�10 ,
respectively, and introduce the random variable

QN D N

HX
hD1

pX
i;jD1

rf;h.i; j /rb;h.i; j /: (7.7)

Analogously to the way QN (7.7) is constructed from the vectors Xn; n D
1; : : : ; N , we construct the statistic OQN from the vectors OXn; n D 1; : : : ; N .

The following theorem establishes the limit null distribution of the test statistic
OQN .

Theorem 7.1. If Assumption 7.1 holds, then OQN
d! �2

p2H
(Chi–square distribution

with p2H degrees of freedom).

Theorem 7.1 is proven in Section 7.4.
Lemma 7.1 identifies an alternative expression for the statistic OQN , which is con-

venient in calculations. It is proven in Section 7.4, but it essentially follows from the
fact that unlike the general multivariate case, in our case, the matrix OC0 is diagonal.

Lemma 7.1. The statistic OQN has the form

OQN D N

HX
hD1

pX
i;jD1

Oc2h.i; j / O��1i O��1j : (7.8)
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Lemma 7.1 also shows that OQN does not depend on the sign of the EFPC’s Ovk .
Supressing the “hat”, set v0

k
D ckvk , where c2

k
D 1. Using the “prime” to denote

quantities computed with v0
k

rather than vk , observe that

c0h.k; l/ D 1

N

N�hX
nD1

hXn; ckvki hXnCh; clvl i D ckclch.k; l/:

Out of many possible directional alternatives, we focus on the functional AR(1)
model which is treated in detail in Chapter 13. Suppose then that

XnC1 D �.Xn/C "nC1 (7.9)

with iid mean zero innovations "n 2 L2. We assume that fXng is a stationary solu-
tion to equation (7.9), which exists under mild assumptions on � , see Chapter 13.

Introduce the p � p matrix � with entries

 lk D hvl ; �.vk/i ; l; k D 1; 2; : : : p;

where the vk are the eigenfunctions of the covariance operator of X1. Clearly, if �
is not zero, then  lk is not zero for some l and k, and so the matrix � is not zero
for sufficiently large p.

The following theorem establishes the consistency against the AR(1) model (7.9).

Theorem 7.2. Suppose the functional observations Xn follow a stationary solution
to equations (7.9), conditions (2.12) and (7.3) hold, and p is so large that the p�p
matrix � is not zero. Then OQN

P! 1.

Theorem 7.2 is proven in Section 7.4. The idea is to show that if � is not zero,
then N�1QN tends in probability to a positive constant. More generally, formula
(7.8) shows that the test is consistent whenever the first p estimated eigenvalues
are uniformly bounded (in N ), and for some 1 � h � H , at least one covariance
Och.i; j / is uniformly (in N ) bounded away from zero. These conditions hold if the
O�j converge to a finite limit and one of the Och.i; j / converges to a nonzero limit, as
N ! 1.

7.2 Finite sample performance

In this section we investigate the finite sample properties of the test using some
generic models and sample sizes typical of applications discussed in Section 7.3.

To investigate the empirical size, we generated independent trajectories of the
standard Brownian motion (BM) on Œ0; 1� and the standard Brownian bridge (BB).
This was done by transforming cumulative sums of independent normal variables
computed on a grid of m equispaced points in Œ0; 1�. We used values of m ranging
from 10 to 1440, and found that the empirical size basically does not depend on m
(the tables of this section use m D 100).
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To compute the principal components Ovk and the corresponding eigenvalues
using the R package fda, the functional data must be represented (smoothed) using
a specified number of functions from a basis. We worked with Fourier and B splines
functional bases. we used 8, 16, and 80 basis functions. All results are based on one
thousand replications.

Table 7.1 shows empirical sizes for the Brownian bridge and and the Fourier
basis for several values of the lagH D 1; 3; 5, the number of principal components
p D 3; 4; 5 and sample sizesN D 50; 100; 300. The standard errors in this table are
between 0.5 and 1 percent. In most cases,the empirical sizes are within two standard
errors of the nominal size, and the size improves somewhat with increasing N . The
same is true for the BM and B splines; no systematic dependence on the type of data
or basis is seen, which accords with the nonparametric nature of the test.

In a power study, we focus on the AR(1) model (7.9), which can be more explic-
itly written as:

Xn.t/ D
Z
 .t; s/Xn�1.s/ds C "n.t/; t 2 Œ0; 1�; n D 1; 2; : : : ; N: (7.10)

A sufficient condition for the assumptions of Theorem 7.2 to hold is

k�k2S D
ZZ

 2.t; s/dt ds < 1: (7.11)

In our study, the innovations "n in (7.10) are either standard BM’s or BB’s. We
used two kernel functions: the Gaussian kernel

 .t; s/ D C exp

	
t2 C s2

2



; .t; s/ 2 Œ0; 1�2;

and Wiener kernel

 .t; s/ D C min.s; t/; .t; s/ 2 Œ0; 1�2:

Table 7.1 Empirical size (in percent) of the test using Fourier basis. The simulated observations
are Brownian bridges.

Lag p=3 p=4 p=5

10% 5% 1% 10% 5% 1% 10% 5% 1%

N=50
1 7.7 2.5 0.6 7.4 2.8 0.3 7.9 3.5 0.4
3 6.8 2.5 0.3 6.7 3.3 0.6 4.9 2.0 0.3
5 4.9 2.0 0.0 3.6 1.4 0.2 4.0 1.7 0.2

N=100
1 9.0 5.1 0.4 8.9 3.9 0.6 10.0 3.9 0.8
3 8.1 3.5 0.6 8.3 4.0 0.9 7.5 3.2 0.4
5 8.8 3.6 0.6 6.6 2.7 0.3 6.7 2.4 0.3

N=300
1 9.8 4.6 1.2 9.4 4.0 0.9 10.1 4.7 0.6
3 9.3 4.8 1.0 9.1 4.7 0.9 10.0 5.4 0.8
5 7.2 3.7 1.0 8.2 3.8 0.7 10.6 5.5 1.2
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Table 7.2 Empirical power of the test using Fourier basis. The observations follow the AR(1)
model (7.10) with Gaussian kernel with k	kS D 0:5 and iid standard Brownian motion innova-
tions.

Lag p=3 p=4 p=5

10% 5% 1% 10% 5% 1% 10% 5% 1%

N=50
1 44.7 33.8 17.7 41.9 29.4 12.6 38.5 26.1 9.2
3 35.2 27.0 13.3 34.0 24.7 10.8 33.2 21.6 8.7
5 26.7 20.0 11.0 24.4 15.8 8.1 21.5 14.3 6.0

N=100
1 71.2 64.2 51.4 74.4 66.5 48.1 77.7 68.0 46.1
3 67.9 61.0 44.9 67.5 58.6 42.8 68.4 56.9 38.1
5 62.3 54.6 38.6 59.0 49.9 32.3 55.1 45.5 27.9

N=300
1 98.7 98.2 96.7 99.2 98.9 97.2 99.8 99.5 98.5
3 97.6 97.1 95.5 99.0 98.4 96.8 99.2 98.3 96.6
5 96.8 95.9 92.8 98.1 97.0 93.8 98.4 97.3 94.4

The constants C were chosen so that k�kS D 0:3; 0:5; 0:7. We used both Fourier
and B spline basis.

The power against this alternative is expected to increase rapidly with N , as the
test statistic is proportional to N . This is clearly seen in Table 7.2. The power also
increases with k�kS ; for k�kS D 0:7 and the Gaussian kernel, it is practically
100% for N D 100 and all choices of other parameters.

There are two less trivial observations: The power is highest for lag H D 1.
This is because for the AR(1) process the “correlation” between Xn and Xn�1 is
largest at this lag. By increasing the maximum lag H , the value of OQN generally
increases, but the critical value increases too (degrees of freedom increase by p2 for
a unit increase in H ). The power also depends on how the action of the operator �
is “aligned” with the eigenvectors vk . If the inner products hvi ; �vki are large in
absolute value, the power is high. Thus, with all other parameters being the same,
the power in Table 7.3 is greater than in Table 7.2 because of the different covariance
structure of the Brownian bridge and the Brownian motion. In all cases, the power
for the Wiener kernel is slightly lower than for the Gaussian kernel.

7.3 Application to credit card transactions and diurnal
geomagnetic variation

In this section, we apply our test to two data sets which we have encountered
in earlier chapters. The first data set consists of the number of transactions with
credit cards issued by Vilnius Bank, Lithuania. The second, is a daily geomagnetic
variation.
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Table 7.3 Empirical power of the test using Fourier basis. The observations follow the AR(1)
model (7.10) with Gaussian kernel with k	kS D 0:5 and iid standard Brownian bridge innova-
tions.

Lag p=3 p=4 p=5

10% 5% 1% 10% 5% 1% 10% 5% 1%

N=50
1 98.3 97.0 92.1 98.4 96.4 87.6 99.1 97.3 87.6
3 95.2 90.3 77.4 92.1 86.2 69.6 89.9 85.1 63.2
5 86.9 80.2 61.7 78.5 71.7 51.4 75.2 63.9 40.4

N=100
1 100 100 100 100 100 100 100 100 100
3 100 100 99.9 100 100 99.7 100 99.9 99.8
5 99.9 99.3 98.7 99.9 99.8 98.6 99.7 99.5 97.8

Table 7.4 P-values for the functional AR(1) residuals of the credit card dataXn.

Lag,H p=1 p=2 p=3 p=4 p=5 p=6 p=7

BF=40
1 69.54 22.03 13.60 46.29 80.35 96.70 99.20
2 35.57 38.28 7.75 47.16 64.92 95.00 99.04
3 54.44 53.63 25.28 52.61 71.33 86.84 94.93

BF=80
1 57.42 18.35 53.30 89.90 88.33 95.40 99.19
2 35.97 23.25 23.83 45.07 55.79 46.39 70.65
3 36.16 36.02 26.79 30.21 56.81 34.51 47.00

Suppose Dn.ti / is the number of credit card transactions in day n; n D
1; : : : ; 200; (03/11/2000 – 10/02/2001) between times ti�1 and ti , where ti � ti�1 D
8 min; i D 1; : : : ; 128: For our analysis, the transactions were normalized to have
time stamps in interval Œ0; 1�, which thus corresponds to one day. To remove the
weekly periodicity, we work with the differencesXn.ti / D Dn.ti /�Dn�7.ti /; n D
1; 2; : : : ; 193: Figure 1.7 displays the first three weeks of these data. A characteris-
tic pattern of an AR(1) process with clusters of positive and negative observations
is clearly seen. Two consecutive days are shown in the left–most panel of Figure
1.6 together with functional objects obtained by smoothing with 40 and 80 Fourier
basis functions. As expected, the test rejects the null hypothesis at 1% level for both
smooths, and all lag values 1 � H � 5 and the number of principal components
equal to 4, 5, 10 and 20.

Next we applied the test to the residuals O"n D Xn � O�.Xn�1/. We estimated
the autoregressive function using the function linmod from the R package fda.
Table 7.4 displays the P-values for the sequence of the residuals. They support the
model functional AR(1) model proposed by Laukaitis and Račkauskas (2002). We
note that the above validation of the AR(1) model is not fully asymptotically jus-
tified. Even for real–valued time series, see Ljung and Box (1978) and Section 4.4
of Lütkepohl (2005), sums of squared residual autocorrelations do not converge to
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a chi–square distribution, but it is a good approximation. The number of degrees
of freedom in the chi–square approximation is slightly less than p2H . A different
method of testing the fit of the functional AR(1) model is developed in Chapter 15.

We now turn to the ground-based magnetometer records. We focus on the hor-
izontal (H) component measured at Honolulu in 2001. It is the component of the
magnetic field tangent to the Earth’s surface and pointing toward the magnetic
North; its variation best reflects the changes in the large currents flowing in the mag-
netic equatorial plane, as already discussed in Section 4.4. The top panel of Figure
7.1 shows two weeks of these data. Following Xu and Kamide (2004), we subtracted
the linear change over a day to obtain the curves like those showed in the bottom
panel of Figure 7.1. More precisely, we connected the first and last observation in
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Fig. 7.1 Top: horizontal intensity (nT) measuret at Honolulu 30/3/2001 - 13/4/2001 with the
straight lines connecting first and last measurements in each day. Bottom: the same after sub-
stracting the lines.
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Table 7.5 P-values (in percent) for the magnetometer data split by season.

Lag Feb, Mar, Apr, May Jun, Jul, Aug, Sep

H p=4 p=5 p=4 p=5

1 13.44 6.51 1.03 1.23
3 3.37 2.99 31.72 42.59

a given day by a line, and subtracted this line from the data. After centering over
the period under study, we obtained the mean zero functional observations we work
with. The analysis was conducted using Fourier base functions.

Testing one year magnetometer data with lags H D 1; 2; 3 and different num-
bers of principal components p D 3; 4; 5; yields P–values very close to zero. This
indicates that while principal component analysis, advocated by Xu and Kamide
(2004), may be a useful exploratory tool to study daily variation over the whole
year, one must be careful when using any inferential tools based on it, as they typi-
cally require independent and identically distributed observations (a simple random
sample), see e.g. Section 5.2 of Seber (1984). We also applied the test to smaller
subsets of data roughly corresponding to boreal Spring and Summer. The P–values,
reported in Table 7.5, show that the transformed data can to a reasonable approxi-
mation be viewed as a functional simple random sample, at least with respect to the
second order properties. The discrepancy in the outcome of the test when applied to
the whole year and to a season is probably due to the annual change of the position
of the Honolulu observatory relative to the Sun whose energy drives the convective
currents mainly responsible for the daily variation.

The two examples discussed in this section show that our test can detect depar-
tures from the assumption of independence (credit card data) or from the assumption
of identical distribution (magnetometer data), and confirm both assumptions when
they are expected to hold. In our examples, the results of the test do not depend
much on the choice of the smoothing basis.

7.4 Proofs of the results of Section 7.1

Proof of Lemma 7.1:. Direct verification shows that

pX
i;jD1

Orf;h.i; j /Orb;h.i; j / D tr
n OCTh OC�10 OCh OC�10

o
(7.12)

and that
pX

i;jD1
Oc2h.i; j / O��1i O��1j D tr

n OCTh O��1 OCh O��1
o
;

so it suffices to verify that OC0 D O�.
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Assuming that the sample mean function has been subtracted from the data, we
have OXin D R

Xn.t/ Ovi .t/dt . Therefore the .i; j / entry of OC0 is

Oc0.i; j / D N�1
NX
nD1

OXin OXjn

D N�1
NX
nD1

Z
Xn.t/ Ovi .t/dt

Z
Xn.s/ Ovj .s/ds

D
Z

Ovj .s/
 
N�1

NX
nD1

Z
Xn.t/ Ovi .t/dtXn.s/

!
ds

D
Z

Ovj .s/ OC. Ovi /.s/ds

D
Z

Ovj .s/. O�i Ovi /ds D O�iıij : ut

Proof of Theorem 7.1:. By Theorem 7.6, it is enough to show that OQN �QN
P! 0:

Recall from Section 7.1 that the value of OQN does not change if we replace Ovk by
vkN D Ock Ovk , where Ock is defined in Section 2.5. In the following, we replace Ovk by
vkN .

By (7.7), relation OQN �QN
P! 0 will follow if we show that

OC0 � C0
P! 0 (7.13)

and

N 1=2. OCh � Ch/
P! 0; h � 1: (7.14)

Recall that

ch.k; l/ D 1

N

N�hX
nD1

XknXl;nChI Och.k; l/ D 1

N

N�hX
nD1

OXkn OXl;nCh:

Relation (7.13) follows from Theorems 2.4 and 2.7 because

Oc0.k; l/ � c0.k; l/ D
D OC.vkN /; vlN

E
�
D OC.vk/; vl

E
D
D OC.vkN � vk/; vlN

E
C
D OC.vk/; vlN � vl

E
;

which implies j Oc0.k; l/ � c0.k; l/j � k OCkSOP .N�1=2/.
To prove (7.14), we work with the decomposition Och.k; l/�ch.k; l/ D M1CM2,

where

M1 D 1

N

N�hX
nD1

.Xkn � OXkn/Xl;nChI M2 D 1

N

N�hX
nD1

OXkn.Xl;nCh � OXl;nCh/:
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We will first show that N 1=2M1
P! 0. Observe that

N 1=2M1 D N�1=2
N�hX
nD1

hXn; vk � vkN i hXnCh; vl i

D
*
N�1=2

N�hX
nD1

hXnCh; vl iXn; vk � vkN
+

D hSN ; YN i ;

where

SN WD N�1=2
N�hX
nD1

hXnCh; vliXnI YN D vk � vkN :

Note that by (2.13),

Ej hSN ; YN i j � EŒkSN k kYN k� � .EkSNk2/1=2.EkYN k2/1=2
D O.N�1=2/.EkSN k2/1=2:

To show that N 1=2M1
P! 0, it thus remains to verify that EkSNk2 is bounded.

Notice that

EkSN k2 D N�1Ek
N�hX
nD1

hXnCh; vliXnk2

D N�1E
N�hX
m;nD1

hXmCh; vli hXnCh; vli hXm; Xni

D N�1
N�hX
nD1

EŒhXnCh; vli�2EkXnk2

� �
EkXnk2�2 :

To show that N 1=2M2
P! 0, decomposeM2 as M2 D M21 CM22, where

M21 D 1

N

N�hX
nD1

hXn; vki hXnCh; vl � vlN i I

M22 D 1

N

N�hX
nD1

hXn; vkN � vki hXnCh; vl � vlN i :

By the argument developed forM1, N 1=2M21
P! 0, so we must showN 1=2M22

P!
0. This follows from Lemma 7.4. ut
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Proof of Theorem 7.2:. We will verify below that

c1.k; l/
P!  lk�k (7.15)

and

Oc1.k; l/ � c1.k; l/ P! 0: (7.16)

Choose 1 � l; k � p such that  lk ¤ 0. Then by (7.8), (7.16), (7.15) and Theorem

13.2, N�1 OQN
P! q > 0, completing the proof.

We now verify (7.15), and then the relation

OCh � Ch
P! 0; (7.17)

from which (7.16) follows.
Observe that

c1.k; l/ D N�1
N�1X
nD1

hvk; Xni hvl ; XnC1i

D N�1
N�1X
nD1

hvk; Xni hvl ; �.Xn/i CN�1
N�1X
nD1

hvk; Xni hvl ; "nC1i

P! E Œhvk ; Xni hvl ; �.Xn/i� D
1X
jD1

 ljEŒhvk; Xni ˝vj ; Xn˛�
D

1X
jD1

 lj
˝
C.vk/; vj

˛ D
1X
jD1

 lj�k
˝
vk; vj

˛
D  lk�k:

To prove (7.17), we use the notation introduced in the proof of Theorem 7.1. We

must show that M1
P! 0 and M2

P! 0. We will display the argument only for M1.
Observe that

M1 D
*
N�1

N�hX
nD1

hXnCh; vl iXn; vk � vkN

+
:

By Theorem 13.2, kvk � vkN k P! 0. Since,

EkN�1
N�hX
nD1

hXnCh; vliXnk � Ek hXnCh; vliXnk � EkXnk2;

it follows that M1
P! 0. ut
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7.5 Auxiliary lemmas forH -valued random elements

Consider the empirical lag-h autocovariance operator

CN;h.x/ D 1

N

N�hX
nD1

hXn; xiXnCh: (7.18)

Recall that the Hilbert-Schmidt norm of a Hilbert-Schmidt operator S is defined by

kSk2S D
1X
jD1

kS.ej /k2;

where fe1; e2; : : :g is any orthonormal basis.

Lemma 7.2. Suppose the Xi are iid random elements in a separable Hilbert space
with EkX0k2 < 1, then for h � 1,

EkCN;hk2S D N � h
N 2

�
EkX0k2

�2
:

Proof. Observe that

kCN;hk2S D
1X
jD1

kCN;h.ej /k2

D
1X
jD1

*
1

N

N�hX
nD1

˝
Xn; ej

˛
XnCh;

1

N

N�hX
mD1

˝
Xm; ej

˛
XmCh

+

D
1X
jD1

1

N 2

N�hX
m;nD1

˝
Xm; ej

˛ ˝
Xn; ej

˛ hXmCh; XnChi :
It follows from the independence of the Xn that

EkCN;hk2S D 1

N 2

N�hX
nD1

1X
jD1

EŒ
˝
Xn; ej

˛
�2EŒhXnCh; XnChi�2

D EkX0k2 1

N 2

N�hX
nD1

E

24 1X
jD1

Œ
˝
Xn; ej

˛
�2

35
D �

EkX0k2
�2 N � h

N 2
: ut

Lemma 7.3. Suppose fUN g and fVN g are random sequences in a Hilbert space

such that kUN k P! 0 and kVN k D OP .1/ i.e. limC!1 lim supN!1P.kVN k >
C/ D 0: Then

hUN ; VN i P! 0:
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Proof. The Lemma follows from the corresponding property of real random
sequences and the inequality j hUN ; VN i j � kUN kkVN k: ut

Lemma 7.4. Suppose Xn; ZN ; YN are random elements in a separable Hilbert
space. We assume

EkYN k2 D O.N�1/; EkZN k2 D O.N�1/I (7.19)

Xn 	 i id; EkXnk2 < 1: (7.20)

Then, for h � 1,

N�1=2
N�hX
nD1

hXn; YN i hXnCh; ZN i P! 0:

Proof. Observe that

N�1=2
N�hX
nD1

hXn; YN i hXnCh; ZN i D
D
CN;h.YN /; N

1=2ZN

E
;

with the operator CN;h defined in (7.18). Since P.N 1=2kZN k>C/�
C�2NEkZN j2, N 1=2kZN k D OP .1/. Thus, by Lemma 7.3, it remains to verify

that CN;h.YN /
P! 0. Since the Hilbert–Schmidt norm is not less than the uniform

operator norm k � kL, see Section 2.1, we obtain from Lemma 7.2:

EkCN;h.YN /k � EŒkCN;hkLkYN k� � EŒkCN;hkSkYN k�
� �

EkCN;hk2S
�1=2 �

EkYNk2�1=2 D O.N�1=2/O.N�1=2/ D O.N�1/: ut

7.6 Limit theory for sample autocovariance matrices

In this section, we present some results on limits of autocovariance matrices.
These results were used in previous sections, and are generally known, but are
presented here with detailed proofs for completeness and ease of reference. If
the matrix V is the covariance matrix of the vectors Xn defined in Section 7.1,
then, an argument analogous to that used in the proof of Lemma 7.1 shows that
V D diag.�1; �2; : : : ; �p/, and many arguments presented below could be simpli-
fied. However, if the Xn were obtained by projecting on another system, rather than
on the FPC’s of the observations, then V would no longer be diagonal. We therefore
present these useful results in the general case.

Consider random vectors X1; : : : ;XN , where Xt D ŒX1t ; X2t ; : : : ; Xpt �
T . We

assume that the Xt ; t D 1; 2; : : : are iid mean zero with finite variance and denote

v.i; j / D EŒXi tXjt �; V D Œv.i; j /�i;jD1;:::;p: (7.21)
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By Ch we denote the sample autoccovariance matrix with entries

ch.k; l/ D 1

N

N�hX
tD1

XktXl;tCh; h � 0:

In order to find the asymptotic distribution of Ch we use Theorem 6.4.2 in Brock-
well and Davis (1991) which we state here for ease of reference.

Theorem 7.3. Suppose fYtg is a strictly stationary m–dependent sequence with
mean zero and finite variance. Denote

v D 
.0/C 2

mX
jD1


.j /; 
.j / D EŒYtYtCj �:

If v ¤ 0, then

N�1=2
NX
tD1

Yt
d! N.0; v/

and

v D lim
N!1NVar

"
1

N

NX
tD1

Yt

#
:

We first find the asymptotic distribution of C0. We will show thatN 1=2.C0�V /
tends to a matrix Z0 whose entries Z0.k; l/ are jointly Gaussian mean zero.

Observe that
pX

k;lD1
akl Œc0.k; l/ � v.k; l/� D 1

N

NX
tD1

Yt ;

where

Yt D
pX

k;lD1
akl .XktXlt � v.k; l//:

The Yt are iid with mean zero and variance

EY 2t D E

24 pX
k;lD1

akl .XktXlt � v.k; l//

352

D
pX

k;l;i;jD1
aklaijE

�
.XktXlt � v.k; l//.Xi tXjt � v.i; j //

�
D

pX
k;l;i;jD1

aklaij Œ�.k; l; i; j / � v.i; j /v.k; l/�;

where
�.k; l; i; j / D EŒXktXltXi tXjt �: (7.22)
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Thus, by the CLT,

N 1=2

pX
k;lD1

akl Œc0.k; l/ � v.k; l/�

d! N

0@0; pX
k;l;i;jD1

aklaij Œ�.k; l; i; j / � v.i; j /v.k; l/�

1A : (7.23)

Convergence (7.23) is equivalent to

N 1=2.C0 � V/
d! Z0; (7.24)

where Z0 is a random matrix with jointly Gaussian entries Z0.k; l/; k; l D
1; : : : ; p; with mean zero and covariances

EŒZ0.k; l/Z0.i; j /� D �.k; l; i; j / � v.i; j /v.k; l/: (7.25)

We now find the asymptotic distribution of Ch for h � 1. Note that

pX
k;lD1

aklch.k; l/ D 1

N

N�hX
tD1

Yt ;

where

Yt D
pX

k;lD1
aklXktXl;tCh:

The Yt are identically distributed with mean zero and are h–dependent. Observe that

EY 2t D
pX

k;l;i;jD1
aklaij v.k; i/v.l; j /

and EŒYtYtCs� D 0 for s � 1. Thus, by Theorem 7.3,

N 1=2

pX
k;lD1

aklch.k; l/
d! N.0;

pX
k;l;i;jD1

aklaij v.k; i/v.l; j //

what is equivalent to

N 1=2Ch
d! Zh; (7.26)

where Zh is a random matrix with jointly Gaussian mean zero entries
Zh.k; l/; k; l D 1; : : : ; p; with

EŒZh.k; l/Zh.i; j /� D v.k; i/v.l; j / .h � 1/: (7.27)

The above calculations suggest the following result:
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Theorem 7.4. If the Xt are iid with finite fourth moment, then

N 1=2ŒC0 � V;C1; : : : ;CH � d! ŒZ0;Z1; : : : ;ZH �;

where the Zh; h D 0; 1; : : : ;H; are independent mean zero Gaussian matrices with
covariances (7.25) and (7.27).

Proof. To lighten the notation, we present the proof forH D 1. We must thus show
that for any numbers a0kl ; a1kl ; k; l D 1; : : : ; p;

N 1=2

pX
k;lD1

Œa0kl .c0.k; l/ � v.k; l//C a1klc1.k; l/�

d!
pX

k;lD1
Œa0klZ0.k; l/C a1klZ1.k; l/� :

(7.28)

Since Z0 and Z1 are independent,

E

8<:
pX

k;lD1
Œa0klZ0.k; l/C a1klZ1.k; l/�

9=;
2

D
pX

k;l;i;jD1
Œa0kla0ij .�.k; l; i; j / � v.i; j /v.k; l// C a1kla1ij v.k; i/v.l; j /�:

(7.29)

We must thus show that the left–hand side of (7.28) converges to a normal random
variable with mean zero and variance (7.29). Observe that the left–hand side of
(7.28) is equal to N�1=2PN

tD1 Yt , where

Yt D
pX

k;lD1
Œa0kl .XktXlt � v.k; l//C a1klXktXl;tC1�:

The Yt are identically distributed with mean zero and are 1–dependent. Direct ver-
ification shows that the variance of Yt is equal to (7.29) and autocovariances of the
Yt at positive lags vanish. Convergence (7.28) follows therefore from Theorem 7.3.

ut
We now want to find the asymptotic distribution of C�10 . We first state a propo-

sition which is a matrix version of the delta method and essentially follows from
Proposition 6.4.3 in Brockwell and Davis (1991) by writing the matrices as column
vectors, e.g. we write a 2 � 2 matrix with entries aij as Œa11; a12; a21; a22�T .

Proposition 7.1. Suppose AN is a sequence of p � q matrices such that for some
deterministic matrix � of the same dimension

c�1N .AN � �/ d! Z .cN ! 0/; (7.30)
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where Z is a mean zero Gaussian matrix. Suppose g W A 7! g.A/ is a function
that maps Rp � Rq into Rr � Rs, i.e. g.A/ D Œgij .A/�iD1;:::;r; jD1;:::;s: If g has
continuous derivatives in a neighborhood of �, then

c�1N .g.AN / � g.�// d! rg.�/.Z/; (7.31)

where rg.�/.Z/ is a r � s Gaussian matrix with .i; j /–entry

Œrg.�/.Z/�.i; j / D
pX
kD1

qX
lD1

�
@gij .�/

@´.k; l/

�
Z.k; l/: (7.32)

Consider the function g.A/ D A�1 from Rp � Rp into itself. The derivative of
this function at an invertible matrix V, rg.V/, is the linear operator

H 7! �V�1HV�1; (7.33)

see e.g. Noble (1969), p. 24, Exercise 1.50. We want to identify the partial
derivatives @gij .V/=@´.k; l/ appearing in (7.32). Let u.k; l/ be the .k; l/–entry
of V�1. Direct verification shows that the .i; j /–entry of V�1ZV�1 isPp

k;lD1 u.i; k/u.l; j /´.k; l/, so

@gij .V/
@´.k; l/

D �u.i; k/u.l; j /: (7.34)

From (7.24) and Proposition 7.1, we thus obtain

N 1=2.C�10 � V�1/ d! Y0; (7.35)

where Y0 is a mean zero Gaussian matrix with .i; j /–entry

Y0.i; j / D �
pX

k;lD1
u.i; k/u.l; j /Z0.k; l/: (7.36)

We now want to find the limit ofN 1=2C�10 Ch; h � 1. We view ŒC0�V;Ch�T as a

.2p/�p matrix and apply Proposition 7.1. By Theorem 7.4,N 1=2ŒC0�V;Ch�T
d!

ŒZ0;Zh�T : Consider the function g.A1;A2/ D A�11 A2: By Proposition 7.1, with
� D ŒV; 0�T ,

N�1=2C�10 Ch
d! rg.�/.ŒZ0;Zh�T /:

We must find the explicit form of rg.�/. The map ŒA1;A2�T 7! A1A2 has deriva-
tive

ŒH1;H2�
T 7! H1A2 C A1H2;

see e.g. Noble (1969), p. 24, Exercise 1.50. Combining this with (7.33), we obtain

rg.ŒA1;A2�T /.ŒH1;H2�
T / D �A�11 H1A�11 A2 C A�11 H2:

mailto:@�.k
mailto:.V/=@�.k
mailto:@�.k
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It thus follows that rg.�/.ŒH1;H2�
T / D V�1H2; and so we obtain

N 1=2C�10 Ch
d! V�1Zh; h � 1: (7.37)

Using the same technique as in the proof of Theorem 7.4, relation (7.37) can be
extended to the following theorem:

Theorem 7.5. If the Xt are iid with finite fourth moment, then

N 1=2C�10 ŒC1; : : : ;CH �
d! V�1ŒZ1; : : : ;ZH �; (7.38)

where the Zh; h D 0; 1; : : : ;H; are independent mean zero Gaussian matrices with
covariances (7.27).

Denote by rf;h.i; j / and rb;h.i; j / the .i; j / entries of C�10 Ch and ChC�10 ,
respectively. Introduce the statistic

QN D N

HX
hD1

pX
i;jD1

rf;h.i; j /rb;h.i; j /: (7.39)

Theorem 7.6. If the Xt are iid with finite fourth moment, then QN
d! �2

p2H
.

Proof. Similarly to (7.38), it can be verified that

N 1=2ŒC1; : : : ;CH �C�10
d! ŒZ1; : : : ;ZH �V�1; (7.40)

and that convergence (7.38) and (7.40) are joint. Since the matrices
ŒC�10 Ch;ChC�10 � are asymptotically independent, it suffices to verify that

N

pX
i;jD1

rf;h.i; j /rb;h.i; j /
d! �2

p2 : (7.41)

To lighten the notation, in the remainder of the proof we suppress the index h
(the limit distributions do not depend on h).

Denote by �f .i; j / and �b.i; j /, respectively, the entries of matrices V�1Z and
ZV�1. By (7.38) and (7.40), it suffices to show that

pX
i;jD1

�f .i; j /�b.i; j /
dD �2

p2 : (7.42)

Denote by QZ the column vector of length p2 obtained by expanding the matrix Z
row by row. Then the covariance matrix of QZ is the p2�p2 matrix V˝V. By formula
(23) on p. 600 of Anderson (1984), its inverse is .V˝V/�1 D V�1˝V�1 D U˝U:
It thus follows from theorem 3.3.3 of Anderson (1984) that

QZ0.U ˝ U/ QZ dD �2
p2 : (7.43)
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It remains to show that the LHS of (7.42) is equal to the LHS of (7.43). The entry
Z.i; k/ of the vector QZT multiplies the row u.i; �/u.k; �/ of U ˝ U; the entryZ.j; l/
of QZ multiplies the column u.�; j /u.�; l/. Consequently,

QZ0.U ˝ U/ QZ D
pX

i;j;k;lD1
u.i; j /u.k; l/Z.i; k/Z.j; l/

D
pX

i;lD1

pX
jD1

u.i; j /Z.j; l/

pX
kD1

Z.i; k/u.k; l/

D
pX

i;lD1
�f .i; l/�b.i; l/;

completing the proof. ut



Part II
The functional linear model



Chapter 8
Functional linear models

In this chapter we review some important ideas related to the functional linear
model. Like its multivariate counterpart, this model has been developed in various
directions, and has been found to be extremely useful in a broad range of applica-
tions. The relevant research is very rich and multifaceted, and we do not aim at a full
review of the very extensive literature on this subject. Our objective in this chapter
is to explain briefly the general ideas and point to some recent advances. Some addi-
tional references are given in Section 8.7. Our choice of topics is partially motivated
by the the methodology presented in Chapters 9, 11 and 10. Practically all inferen-
tial tool for the functional linear model have been developed under the assumption
that the regressor/response pairs, .Xi ; Yi /, are independent. They must therefore be
applied with care to functional data obtained over time or space.

8.1 Introduction

The linear regression is perhaps the most useful and widely used statistical model.
The simplest linear model is the familiar straight line regression

Yi D ˇ0 C ˇ1xi C "i ; i D 1; 2; : : : ; N;

in which all random variables are scalars, and the regressors xi are typically
assumed to be known scalars. In a functional linear model, some of these quanti-
ties are curves, and analogs of the coefficients ˇ0 and ˇ1 must be then appropriately
defined.

To provide a motivating example, we start with a problem studied in Chiou et al.
(2004) and based on an experiment reported in Carey et al. (2002) in which 1200
female medflies were fed one of 12 dietary doses ranging from full diet to 30% of
full diet. For each medfly, the count of eggs laid every day was recorded, and so the
egg-laying trajectories were obtained. Some of those are shown in Figure 8.1. As
expected, the total count of eggs increases with the dietary dose, but a biological
question of interest is whether this increase is due to a systematic increase at all
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Fig. 8.1 Smoothed egg-laying trajectories of twenty randomly selected med flies at dose levels
100%, 75% and 50%. Source: Chiou et al. (2004).

ages, or whether the different diet levels lead to different patterns of egg-laying. For
example, on a reacher diet, flies could start laying eggs earlier, and continue to lay
them well into a mature age, or produce a lot more eggs at the prime reproductive
age. To study this question, it is convenient to consider a linear model in which the
dose levels are scalar regressors and the egg–laying curves are functional responses.

We can distinguish three cases, in which either the responses or the regressors,
or both are curves. We assume for simplicity that the responses and the regressors
have mean zero. In all formulations, we assume that the errors "i are independent of
the explanatory variables (regressors)Xi .

The fully functional model:

Yi .t/ D
Z
 .t; s/Xi .s/ds C "i .t/: (8.1)

In this model, the responses Yi are curves, and so are the regressors Xi . It is
further studied in Section 8.3 and Chapters 9, 11, 10.
The scalar response model:

Yi D
Z
 .s/Xi .s/ds C "i ; (8.2)

in which the regressors are curves, but the responses are scalars. The properties
and extensions of this model are reviewed in Section 8.4.
The functional response model:

Yi .t/ D  .t/xi C "i .t/; (8.3)

in which the responses are curves, but the regressors are known scalars. Exten-
sions of this model are described in Section 8.5.

Models (8.1), (8.2) and (8.3) are just prototypes intended to illustrate the general
idea. The main issue is that the functions  are infinite dimensional objects which



8.2 Standard linear model and normal equations 129

must be estimated from a finite sample. Without any restrictions on , a perfect fit is
possible (all residuals are zero), and the resulting estimates O are erratic, noise type
functions, which do not provide useable insights. We encountered a similar problem
in Section 4.3. The parameter is therefore often estimated by restricting the action
of the corresponding operators to subspaces spanned by the EFPC’s of the data. As
we have seen in Chapter 3, the EFPC’s summarize the main features of the data.
This estimation approach thus removes a noise–like variability. Another approach
is to impose a roughness penalty on the estimates, which has a similar effect of
removing noise and producing interpretable estimates. Models (8.1), (8.2) and (8.3)
have been modified in various directions, depending on applications at hand, and
suitable estimation methods have been developed. Before we discuss some of these
extensions, we first review in Section 8.2 the fundamental idea of the standard linear
model.

8.2 Standard linear model and normal equations

The standard linear model, see e.g. Chapter 3 of Seber and Lee (2003), takes the
form

Y D Xˇ C ";

where

Y is the N � 1 vector of responses;
X is the N � p regression matrix, typically assumed to be of rank p;
ˇ is the p � 1 parameter vector;
" is the N � 1 vector of mean zero errors.

The least squares estimator of ˇ minimizes the Euclidean norm of the difference
Y �Xˇ. Set 	 D Xˇ, and denote by O	 the projection of Y on the subspaceLX � Rn

spanned by the columns of X. Thus O	 is the unique vector minimizing the length of
Y � 	 over 	 2 LX . The vector Y � O	 is orthogonal to LX , so XT .Y � O	/ D 0,
i.e. XT O	 D XTY. If X is of rank p, there is a unique Ǒ such that O	 D X Ǒ , in which
case Ǒ satisfies the normal equations

XTXˇ D XTY:

It can be shown that if X is of rank p, then XTX is nonsingular, and so the least
squares estimator of ˇ is given by

Ǒ D .XTX/�1XTY:

We often write the standard model as

yi D xi1ˇ1 C xi2ˇ2 C : : : xipˇp C "i ; i D 1; 2; : : : ; N; (8.4)

and we think of
yi ; xi D Œxi1; xi2; : : : ; xip�

T ; "i
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as realizations of the corresponding random variables

y; x D Œx1; x2; : : : ; xp�
T ; ":

Then, the population model becomes

y D xTˇ C ": (8.5)

8.3 The fully functional model

In Equation (8.1), the value .t; s/ reflects the effect of the explanatory functionXi
at time s on the response function Yi at time t . To develop an estimation procedure
analogous to the least squares estimation described in Section 8.2, and implemented
in the R package fda, equation (8.1) is rewritten in the following form:

Y.t/ D
Z

X.s/ˇ.s; t/ds C ".t/; (8.6)

where
ˇ.s; t/ D  .t; s/;

and where

Y.t/ D ŒY1.t/; Y2.t/; : : : ; YN .t/�
T I

X.s/ D ŒX1.s/; X2.s/; : : : ; XN .s/�
T I

".t/ D Œ"1.t/; "2.t/; : : : ; "N .t/�
T :

Suppose f�k; k � 1g and f
`; ` � 1g are some bases, for example Fourier and
spline, which need not be orthonormal. The functions �k are suitable for expanding
the functions Xi and the 
i for expanding the Yi . The idea of the estimation of the
kernel ˇ.�; �/ is to consider estimates of the form

ˇ�.s; t/ D
KX
kD1

LX
`D1

bk`�k.s/
`.t/;

in whichK and L are relatively small numbers which are used as smoothing param-
eters; the smallerK and L, the smoother the estimate of ˇ.�; �/. A least squares esti-
mator is then obtained by finding bk` which minimize the residual sum of squares:

NX
iD1

kYi �
Z
Xi .s/ˇ

�.s; �/k2

Consistency properties of this approach are not fully understood, but it gives useful
estimates, which can be computed analogously to the standard vector case.
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To provide a heuristic derivation of the normal equations, introduce the column
vectors

�.s/ D Œ�1.s/; �2.s/; : : : ; �K.s/�
T ; 	.t/ D Œ
1.t/; 
2.t/; : : : ; 
L.t/�

T

and the K �L matrix

B D Œbk;`; 1 � k � K; 1 � ` � L�:

In this notation, ˇ�.s; t/ D �T .s/B	.t/, and inserting to (8.6), we obtain

Y.t/ D
Z

X.s/�T .s/B	.t/ds C ".t/:

Introducing the N �K matrix Z� defined by

Z� D
Z

X.s/�T .s/ds;

we obtain an approximate identity

Y.t/ D Z�B	.t/C ".t/: (8.7)

Next, introducing the L � L matrix

J D
Z
	.t/	T .t/dt;

we see that (8.7) implies thatZ
Y.t/	T .t/dt D Z�BJ C

Z
".t/	T .t/dt:

To obtain an analog of the normal equations of Section 8.2, multiply by Z�T and
ignore the error terms. This gives an approximate identity

Z�TZ�BJ D Z�T
Z

Y.t/	T .t/dt; (8.8)

which we must solve for B.
If A is a p�q matrix, we denote by vec.A/ a column vector of lengthpq obtained

by stacking the columns of A under each other starting from the left. One can then
show that for any matrices A;X;B for which the product AXB is defined

vec.AXB/ D .BT ˝ A/vec.X/:

We can therefore rewrite (8.8) as

.JT ˝ ŒZ�TZ��/vec.B/ D vec

�
Z�T

Z
Y.t/	T .t/dt

�
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If the matrices J and Z�TZ� are nonsingular, a unique solution exists:

vec.B/ D .JT ˝ ŒZ�TZ��/�1vec

�
Z�T

Z
Y.t/	T .t/dt

�
;

see Lemma 4.3.1. of Horn and Johnson (1991).
An alternative approach to the estimation of ˇ.�; �/, discussed in Section 16.4.2 of

Ramsay and Silverman (2005), is to allow large K and L, but to introduce a rough-
ness penalty on the estimates. Asymptotic properties of this approach are known in
the scalar response case discussed in Section 8.4.

Using EFPC’s rather than fixed bases offers another approach to the estimation
of  .�; �/. Methods of this type are based on Lemma 8.1. To formulate it, consider
two L2–valued mean zero random functionsX and Y , and their expansions

X.s/ D
1X
iD1

�ivi .s/; Y.t/ D
1X
jD1

�juj .t/; (8.9)

where the vj are the FPC’s of X and the uj the FPC’s of Y , see Section 3.3, and

�i D hX; vii ; �j D ˝
Y; uj

˛
:

Lemma 8.1. Suppose X; Y; " 2 L2 are mean zero, " is independent of X , and the
following linear equation holds

Y.t/ D
Z
 .t; s/X.s/ds C ".t/; (8.10)

with the kernel  .�; �/ satisfyingZZ
 2.t; s/dt ds < 1: (8.11)

Then

 .t; s/ D
1X
kD1

1X
`D1

EŒ�`�k�

EŒ�2
`
�
uk.t/v`.s/;

where the convergence is in L2.Œ0; 1� � Œ0; 1�/.
Proof. Since fvig and fuj g are bases inL2, the functions fvi .s/uj .t/; 0 � s; t � 1g
form a basis in L2.Œ0; 1� � Œ0; 1�/, so  .t; s/ admits a unique representation

 .t; s/ D
1X
kD1

1X
`D1

 k`uk.t/v`.s/; (8.12)

and by (8.11) the coefficients  k` satisfy

1X
kD1

1X
`D1

 2k` D
ZZ

 2.t; s/dt ds < 1: (8.13)
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Inserting (8.9) and (8.12) into (8.10), and using the orthonormality of the vi , we
obtain 1X

jD1
�juj .t/ D

1X
kD1

1X
iD1

 ki�iuk.t/C ".t/:

Multiplying by u`.t/ and integrating, we further obtain

�` D
1X
iD1

 `i�i C hu`; "i : (8.14)

Finally, multiplying by �k , taking the expectation, and using the independence of X
and ", we arrive at

EŒ�`�k � D  `kEŒ�
2
k �;

from which the claim follows. ut
Remark 8.1. Observe that EŒ�2

`
� D �`, the eigenvalue corresponding to v`. The

eigenfunctions v` belonging to zero eigenvalues can be omitted from representa-
tion (8.9) without changing it (it is an L2 representation), so we may assume that
EŒ�2

`
� > 0 for each ` � 1.

Lemma 8.1 implies that if X and Y satisfy (8.10) with  satisfying (8.11), then

1X
kD1

1X
`D1

.EŒ�`�k �/
2

�2
`

< 1: (8.15)

It can be conversely assumed that (8.10) and (8.15) hold, and then the implication
that satisfies (8.11) will follow. This is the approach adopted by Yao et al. (2005b).

Lemma 8.1 and Remark 8.1 suggest the following estimator:

O KL.t; s/ D
KX
kD1

LX
`D1

O��1` O	`k Ouk.t/ Ov`.s/;

where O	`k is an estimator of EŒ�`�k�. The simplest estimator is

O	`k D 1

N

NX
iD1

hXi ; Ov`i hYi ; Ouki : (8.16)

It is clear that for this estimator, O KL.t; s/ does not depend on the signs of the Ov`
and Ouk .

If the curves Xn; Yn; n D 1; 2; : : : ; N are observed at sparse, irregular times,
and are subject to measurement error, Yao et al. (2005b) propose the following
procedure to calculate O	`k . In the notation of Section 4.2, observe that

c21.t; s/ D EŒX.s/Y.t/� D
1X
iD1

1X
jD1

EŒ�i�j �vi .s/uj .t/;
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and so

EŒ�`�k� D
ZZ

c21.t; s/v`.s/uk.t/dsdt:

The surface c21.�; �/ is estimated by two–dimensional scatter plot smoothing, and
the resulting estimate is denoted by Oc21.�; �/. We then set

O	`k D
ZZ

Oc21.t; s/ Ov`.s/ Ouk.t/dsdt: (8.17)

To establish the consistency of O KL.t; s/, we must assume that K and L are
functions of the sample size N . Then, under regularity conditions,ZZ h O KL.t; s/ �  .t; s/

i2
dt ds

P! 0; .K;L ! 1/;

see Theorem 1 of Yao et al. (2005b) for the details.

We conclude this section with a brief description of an extension of the functional
linear model proposed by Müller et al. (2008). To explain the idea, note that by
(8.14),EŒ�`jX� D P1

iD1 `i�i : Therefore,

EŒY jX� D
1X
`D1

EŒ�`jX�u` D
1X
`D1

1X
iD1

 `i �iu`:

This means that the prediction of Y is a linear combination of the scores �i . To
obtain a greater modeling flexibility, Müller et al. (2008) propose merely an additive
structure, i.e. postulate that

EŒY jX� D
1X
`D1

1X
iD1

f`i .�i /u`;

where the functions f`i are assumed to be smooth. Assuming that the scores �i are
independent, they develop a model fitting approach which is easy to implement.

8.4 The scalar response model

Model (8.2) can be estimated by a simplified version of the procedure described in
Section 8.3, regularization with a roughness penalty is also often useful, see Chap-
ter 15 of Ramsay and Silverman (2005) for examples of applications and further
discussion.

An asymptotic theory for the estimation with roughness penalty was developed
by Li and Hsing (2007). To explain the idea of their results, denote by f�k; k D
1; 2; : : :g the (normalized) Fourier basis and by g.m/ themth derivative of a function
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g on Œ0; 1�. An estimator that involves both restricting the number of basis functions
and a smoothness penalty is obtained by minimizing

NX
iD1

�
Yi �

Z
g�.s/Xi .s/ds

�2
C �

Z h
g�.m/.s/

i2
ds:

An estimate of  .s/ is g�.s/ D PK
kD1 bk�k.s/. Using the orthogonality of the

functions in the Fourier basis and their derivatives, we see that this reduces to finding
b1; b2; : : : ; bK which minimize

NX
iD1

"
Yi �

KX
kD1

hXi ; �ki bk
#2

C �

KX
kD1

b2k

Z h
�
.m/

k
.s/
i2
ds:

We denote the resulting estimator by

O k;
.s/ D
KX
kD1

Obk�k.s/:

An asymptotic setting for the estimation with largeK and the roughness penalty
only, can be obtained informally by setting K D 1, and formally by assuming that
the potential estimates g are in a subspace of L2 of sufficiently smooth and periodic
functions. We therefore introduce the following definition:

Definition 8.1. The space W m
2;per � L2 consists of m times differentiable functions,

such that g.m/ 2 L2, and for 0 � � � m � 1, g.�/ is absolutely continuous, and
g.�/.0/ D g.�/.1/.

The space W m
2;per is an example of a Sobolev space, i.e. a space in which inte-

grability conditions are imposed not only on functions but also on their derivatives.
In order to develop a rigorous theory involving smoothing of functional data by
a roughness penalty, it is necessary to work with such spaces. In this setting, the
estimator O 1;
 is defined as the function g 2 W m

2;per which minimizes

NX
iD1

�
Yi �

Z
g.s/Xi .s/ds

�2
C �

Z h
g.m/.s/

i2
ds:

Li and Hsing (2007) show that if m � 2, then

Ek O 1;
 �  k2 D OP



N�1=2 C �CN�1��1=.2m/

�
;

provided the smoothing parameter � tends to zero with N , but not too fast, see
Theorem 5 of Li and Hsing (2007) for the details.

For a general basis f�kg, e.g. a nonorthogonal spline basis, an estimator of the
coefficient function  .s/ of the form

PK
kD1 bk�k.s/ is obtained by minimizing

NX
iD1

"
Yi �

KX
kD1

hXi ; �ki bk
#2

C �

"
KX
kD1

bk

Z
�
.m/

k
.s/ds

#2
; (8.18)
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with m D 2 being the typical choice. In this approach, the emphasis is on choosing
an appropriate smoothing parameter �, while the number K of basis is assumed to
be large.

An alternative approach regularizes the estimates of  by projecting the regres-
sors onto the p leading EFPC’s (those corresponding to the largest eigenvalues), i.e.
by using the approximationXn � Pp

iD1 hXn; Ovi i Ovi ; in which p is a small number.
The coefficient function .s/ is then estimated by

Pp
iD1 O i Ovi .s/, with the O i being

the values of the  i which minimize

NX
nD1

"
Yn �

pX
iD1

hXn; Ovi i i
#2
: (8.19)

Reiss and Ogden (2007) proposed several hybrid methods which combine the
above two approaches, i.e. projecting onto the EFPC’s of the regressors and using
the roughness penalty. We describe only one of them, called FPCRR by the authors,
which appears to be most effective. The acronym FPCR stands for Functional Prin-
cipal Component Regression, the subscript R indicated that a roughness penalty
is applied to the regression rather than the components, the latter method being
denoted FPCRC. We focus on the general idea, the precise formulas and the compu-
tational details are given in Reiss and Ogden (2007).

As in (8.18), we seek coefficients bk such that we can obtain a good and infor-
mative approximation

Yi �
KX
kD1

QXikbk; where QXik D hXi ; �ki :

This brings us to the framework of the standard linear model of Section 8.2. Denote
by

Qvj D Œ Qvj1; Qvj2; : : : ; QvjK �T ; 1 � j � K;

the multivariate principal components of the vectors

QXi D Œ QXi1; QXi2; : : : ; QXiN �T ; 1 � i � N:

The Qvj are the normalized eigenvectors of the sample covariance matrix of the QXi ,
they coincide with the vectors uj of Theorem 3.1, see also Chapter 8 of Johnson and
Wichern (2002) for further details. The coefficient vector b D Œb1; b2; : : : ; bK �

T is
projected on the first p Qvj (those corresponding to the largest eigenvalues), what
yields

bk �
pX
iD1

ˇj Qvjk ; 1 � k � K:

The ˇj are estimated by minimizing

NX
nD1

ˇ̌̌̌
ˇ̌Yn �

pX
jD1

ˇj

kX
kD1

QXjk Qvjk
ˇ̌̌̌
ˇ̌
2

C �

24 pX
jD1

ˇj

KX
kD1

Qvjk
Z
�
.m/

k
.s/ds

352 :
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Selection of p and � is discussed in Reiss and Ogden (2007) and Reiss and Ogden
(2009a). Denoting the resulting estimates by Ǒ

i , the estimate of  .s/ is then

O .s/ D
KX
kD1

bk�k.s/ D
pX
jD1

Ǒ
j

KX
kD1

Qvjk�k.s/:

The FPCRR method seeks to attain a greater flexibility by including a much
higher number of components; the numberK of the Qvj we start with, is much larger
than the number p of the Ovi in (8.19). This can be done without overfitting by the
inclusion of a roughness penalty. The usual methods use either only deterministic
spline functions, or only the EFPC’s Ovk . Greater flexibility is often needed when the
data are densely observed curves like magnetometer or financial data discussed in
this book.

Motivated by applications to classification problems, Müller and Stadtmüller
(2005) proposed the model

Yi D g

�
 0 C

Z
 .t/Xi .t/dt

�
C "i ;

in which g is a link function. Returning to the med fly egg-laying curves introduced
in Section 8.1, suppose the Xi .t/; 0 � t � 30; are the egg–laying curves of 534
flies that lived for at least 30 days, and define

Yi D
	
1 if fly i lived full 44 days
0 if fly i lived less than 44 days;

If Yi D 1, we say that fly i is long–lived. The link function g may be estimated from
the data, but Müller and Stadtmüller (2005) obtained almost equally good results
with the usual logit link:

g.�/ D e�

1C e�
:

Müller and Stadtmüller (2005) explain how to compute the estimates O 0 and O .
These allow us to calculate

O�i D O 0 C
Z

O .t/Xi .t/dt:

If O�i > 0 (g. O�i / > 1=2), we classify fly i as long lived.
Li et al. (2010) extended the model of Müller and Stadtmüller (2005) to allow

interactions between the functional regressors Xi and some additional covariates.
To focus on the central idea, suppose that the link function g is an identity function,
g.x/ D x, and that there is only one additional scalar covariate ´i . In this case, the
model of Li et al. (2010) becomes

Yi D r.´i /

Z
 .s/Xi .s/ds C ˇ´i C "i ; (8.20)
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where r.�/ is an unknown smooth function, and ˇ is an unknown parameter. In this
model, the impact of the regressorsXi on the responses Yi is modified by the value
of ´i in both the multiplicative, via r.´i /, and the additive, via ˇ´i , manner.

To make this model identifiable, some additional conditions must be imposed.
Notice that replacing r by ar and  by a�1 , we obtain the same model for any
a ¤ 0. If we assume that r � 0, this lack of identifiability can be addressed by
requiring that

R
 2.s/ds D 1.

Parameter estimation in model (8.20) is interesting, and we describe the general
idea. Suppose that  admits the expansion  D Pp

jD1 ˛j ej , where the ej are
initial elements of a basis system. The condition

R
 2.s/ds D 1 is then equivalent

to
Pp
jD1 ˛2j D 1. The parameters to be estimated are

	 D Œ˛1; ˛2; : : : ; ˛p ; ˇ�
T and r.�/:

They are estimated by an iterative procedure. For a fixed 	 , r.�/ is estimated by local
linear smoothing. For a fixed r.�/, 	 is estimated by weighted least squares. These
steps are repeated one after another until the differences in the estimates become
negligible, i.e. until convergence is achieved. Local linear smoothing assumes that
if ´ is close to ´k , then r.´/ � a0k C a1k.´ � ´k/. Thus, in a neighborhood of ´k ,
(8.20) becomes

Yi D fa0k C a1k.´i � ´k/g
pX
jD1

˛j
˝
ej ; Xi

˛C ˇ´i C "i :

To estimate a0k and a1k , we fix 	 (starting with a reasonable initial value) and
minimize

Rk D
NX
iD1

wi .k/

24Yi � fa0k C a1k.´i � ´k/g
pX
jD1

˛j
˝
ej ; Xi

˛C ˇ´i

352 ; (8.21)

where the weightswi .k/ decrease as j´i�´kj increases. These weights are obtained
as

wi .k/ D
"
NX
`D1

K

� j´` � ´kj
h

�#�1
K

� j´i � ´k j
h

�
;

where K is a kernel function and h is a smoothing bandwidth. Once the estimates
. Oa0k ; Oa1k/; k D 1; 2; : : : ; N; have been obtained, we estimate 	 by minimizingPN
kD1 ORk , where OTK is equal to Rk with a0k ; a1k replaced by Oa0k ; Oa1k . The result-

ing estimate O	 is used to reestimate a0k ; a1k , etc.
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8.5 The functional response model

Model (8.3) is too simple for most applications. A useful extension is to consider
more than one parameter functions, what leads to the specification

Yi .t/ D
LX
jD1

xij j .t/C "i .t/; i D 1; 2; : : : N;

which, analogously to (8.6), can be written as Y.t/ D X .t/C".t/. The parameter
 .t/ D Œ 1.t/; : : : ;  L.t/�

T can be estimated by using a version of the procedure
described in Section 8.3. Chapter 13 of Ramsay and Silverman (2005) contains two
interesting applications of this model.

Chiou et al. (2004) propose a model in which the intercept function depends
on the regressor. Their formulation is suitable for experiments in which multiple
responses are available for every level of the explanatory variable, like the med fly
data described in Section 8.1, where there are almost 100 responses for every diet
level. To introduce that model set �.t/ D EY.t/ and denote by 
.x/ the value of 

which minimizes Z

fEŒY.t/jX D x� � �.t/
g2 dt:
Direct verification shows that


.x/ D
�Z

�2.t/dt

��1 Z
�.t/EŒY.t/jX D x�dt:

If we assume that Yi .t/ D �.t/
.xi / C "i .t/; we obtain the multiplicative model
of Chiou et al. (2003) which can be easily estimated by using the sample analogs of
the expectations occurring above and some smoothing. To improve the predictions
of the functions Yi , Chiou et al. (2004) propose the model

Yi .t/ D �.t/
.xi /C
KX
kD1

˛k.xi / k.xi ; t/C "i .t/; (8.22)

in which the  k.x; �/ are the FPC’s of the functions R.x; t/ D Yi .t/ � �.t/
.x/.
To estimate this model, the  k.xi ; t/ are estimated by the EFPC’s of the residuals
OR.x; t/ D Yi .t/ � O�.t/ O
.x/, and the link functions ˛k by the general methods

developed in Chiou and Müller (1998).

8.6 Evaluating the goodness–of–fit

In this section we discuss several diagnostic methods for functional regression mod-
els. We first review the relevant ideas in the standard setting of Section 8.2. Our
objective is to verify if model (8.5) is appropriate.
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An elementary approach is to plot the responses yi against the regressors xij for
j D 1; 2; : : : ; p. If model (8.5) is correct, all these scatter plots should approxi-
mately follow a line with some spread around it, and have roughly the shape of an
ellipse.

There are many possible departures from the model (8.5), an in–depth study is
presented in Chapter 10 of Seber and Lee (2003). Here we focus only on two impor-
tant cases. By (8.5), the conditional expectation EŒyjx� D xTˇ is a linear function
of x. If, in factEŒyjx� D �.x/ is not a linear function, then model (8.5) is not appro-
priate. Also if (8.5) holds, then VarŒyjx� D VarŒ"� is constant. If VarŒyjx� D w.x/,
where w.�/ is not a constant function, then model (8.5) is not appropriate either.

Focusing first on the conditional expectationEŒyjx�, suppose the data follow the
model

y D ˇ1g.x1/C ˇ2x2 C : : : ˇpxp C ";

where g.�/ is a nonlinear function. This relation can be rewritten as

y D ˇ1x1 C ˇ2x2 C : : : ˇpxp C .ˇ1.g.x1/ � x1/C "/ ;

i.e. as a linear regression in which the error terms have a mean which depends on
the value of x1 in a nonlinear manner. Estimating this regression by the least squares
method, we obtain the fit

yi D xi1 Ǒ
1 C xi2 Ǒ

2 C : : : xip Ǒ
p C Oei :

For example, if the model is yi D ˇg.xi / C "i , but we think it is yi D ˇxi C "i ,
the least squares estimate is Ǒ D .

P
x2i /

�1P yixi . The residual then is

Oei D yi � Ǒg.xi / D "i C .ˇ � Ǒ/g.xi /:
Thus, if g.�/ is nonlinear, the plot of the Oei versus the xi will reveal this nonlinearity.

It can be hoped that if y depends in a nonlinear manner on some coordinates
xj ; j D 1; 2; : : : ; p, then this nonlinearity will be revealed by one of the plots of
the Oei against the xij . If the "i in (8.4) do not have a constant variance, then the
residulas O"i D yi � .xi1 Ǒ

1 C xi2 Ǒ
2 C : : : xip Ǒ

p/ should exibit uneven spread with
respect to some variable. If VarŒ"i � depends in some manner on the xi , then the plots
of the O"i against the xij should reveal it.

If model (8.5) is correct, it is useful to check how well the data are described by
it. A commonly used measure is the coefficient of determination defined as

OR2 D
PN
iD1. Oyi � NyN /2PN
iD1.yi � NyN /2

;

where NyN D N�1PN
iD1 yi and Oyi D xTi Ǒ : It measures the proportion of the total

sample variance of the responses explained by the model. The population coefficient
of determination is defined as

R2 D VarŒEŒyjx��
VarŒy�

: (8.23)

We now discuss how these approaches can be adapted to functional linear
models.



8.6 Evaluating the goodness–of–fit 141

Scatter plot analysis. The informal graphical methods can be extended to the func-
tional setting as follows. Consider, for example, the fully functional model (8.1).
Then, by (8.14),

�` D
pX
jD1

 j̀ �j C �`.p/; (8.24)

where

�`.p/ D
1X

jDpC1
 j̀ �j C hu`; "i :

Equation (8.24) resembles (8.5) with the response �` and the regressors �j , but the
errors �`.p/ are no longer independent of the regressors. Nevertheless, in light of
(8.13), the sum

P1
jDpC1  j̀ �j can be expected to be small, so we may hope that

if model (8.1) is appropriate, then the scatter plots of the O�i` against the O�ij , i D
1; 2; : : : ; N; will approximatelly follow a line. Recall that

O�i` D
Z
Yi .t/ Ou`.t/dt; O�ij D

Z
Xi .s/ Ovj .s/ds

are, respectively, the scores of the Yi and the Xi in (8.1). When the dependence is
not linear, these plots exhibit different patterns. For example, if

Yi .t/ D H2.Xi .t//C "i .t/;

where H2.x/ D x2 � 1, the scatterplot of the first FPC clearly shows a quadratic
trend, see Figure 9.4. In applications, we consider only the first few values of ` and
j , see Chiou and Müller (2007) for examples.

As in the standard regression model, one can also work with the residuals

O"i .t/ D Yi .t/ �
Z

O .t; s/Xi .s/ds; i D 1; 2; : : : ; N;

where O .t; s/ is an estimator of  .t; s/. In principle, any estimator described in
Section 8.3 can be used. If model (8.1) is correct, the O"i should be close to the "i ,
and so the scores of O"i should be independent of the O�ij . The scatter plots of the
scores of the residuals O"i against the O�ij should therefore exhibit no obvious patters.

Finally, one can also check the goodness-of-fit by plotting the scores of the resid-
uals O"i against the scores of fitted values OYi .t/ D R O .t; s/Xi .s/ds. The points
should lie in a horizontal band.

These methods can be easily modified for the models of Sections 8.4 and 8.5.
Cook (1994) provides interesting insights into the interpretation of the scatter plots
mentioned above in the standard regression setting.

Functional coefficient of determination. Using Lemma 8.1, it is not difficult to com-
pute the pointwise functional population coefficient of determination, cf. (8.23),
defined for model (8.1) by

R2.t/ D VarŒEŒY.t/jX��
VarŒY.t/�

:
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Since VarŒEŒY.t/jX�� � VarŒY.t/�, 0 � R2.t/ � 1.

Lemma 8.2. If assumptions of Lemma 8.1 hold, then

R2.t/ D

1X
mD1

1X
kD1

1X
`D1

EŒ�m�k�EŒ�m�`��
�1
m uk.t/u`.t/P1

jD1 
ju2j .t/
: (8.25)

Proof. By (8.9),

VarŒY.t/� D E

264
0@ 1X
jD1

�juj .t/

1A2
375

D
1X
jD1

1X
j 0D1

EŒ�j �j 0 �uj .t/uj 0 .t/

D
1X
jD1


ju
2
j .t/:

Since EŒY.t/jX� D R
 .t; s/X.s/ds, we obtain

VarŒEŒY.t/jX�� D E

"�Z
 .t; s/X.s/ds

�2#

D E

ZZ
 .t; s/ .t; s0/X.s/X.s0/dsds0:

Thus, by Lemma 8.1,

VarŒEŒY.t/jX��

D E

(ZZ 1X
kD1

1X
`D1

EŒ�`�k�

EŒ�2
`
�
uk.t/v`.s/

�
1X
k0D1

1X
`0D1

EŒ�`0�k0 �

EŒ�2
`0 �

uk0.t/v`0.s0/X.s/X.s0/dsds0
)

D
1X
kD1

1X
`D1

EŒ�`�k�

�`
uk.t/

�
1X
k0D1

1X
`0D1

EŒ�`0�k0 �

�`0

uk0.t/E

	Z
v`.s/X.s/ds

Z
v`0.s0/X.s0/ds0



:

Observe that

E

	Z
v`.s/X.s/ds

Z
v`0.s0/X.s0/ds0



D E Œhv`; Xi hv`0 ; Xi�
D hC.v`/; v`0i D �`ı``0 :
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Therefore

VarŒEŒY.t/jX�� D
1X
`D1

1X
kD1

1X
k0D1

EŒ�`�k�

�`

EŒ�`�k0 �

�`0

�` uk.t/uk0 .t/;

and so we obtain

VarŒEŒY.t/jX��
VarŒY.t/�

D

1X
`D1

1X
kD1

1X
k0D1

EŒ�`�k�EŒ�`�k0 ���1` uk.t/uk0.t/

1X
jD1


ju
2
j .t/

:

Setting m D `; ` D k0, we obtain (8.25). ut
The coefficient R2.t/ (8.25) quantifies the degree to which the functional linear

model explains the variability of the response curves at a fixed point t . To define a
global measure of the degree of linear association, we can either integrate R2.t/ or
integrate the numerator and the denominator separately, to obtain

QR2 D
Z
R2.t/dt

and

R2 D

Z
VarŒEŒY.t/jX��dtZ

VarŒY.t/�dt
D

1X
mD1

1X
kD1

.EŒ�m�k�/
2��1m

1X
jD1


j

:

A closed form formula for QR2 is not available. Both QR2 and R2 are between 0 and
1. (If the function Y is defined on an interval Œa; b� rather than Œ0; 1�, then we define
QR2 D .b � a/�1

R b
a R

2.t/dt .)
Sample analogs of R2.t/; QR2 and R2 are defined by replacing the population

eigenfunctions and eigenvalues by their sample counterparts, and truncating the infi-
nite sums, for example,

OR2 D

MX
mD1

KX
kD1

O	2mk O��1m
JX
jD1

O
j

where O	mk is an estimator of EŒ�m�k�, e.g. estimator (8.16).
An application of the coefficients QR2 and R2 to clinical data is discussed in Sec-

tion 5 of Yao et al. (2005b).
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8.7 Bibliographical notes

The functional linear model is introduced in its various forms in Chapters 12–17 of
Ramsay and Silverman (2005). Additional case studies are described in Chapters
8, 9 and 12 of Ramsay and Silverman (2002). Examples of R code are discussed
in Chapters 9 and 10 of Ramsay et al. (2009), which also give a quick application
oriented introduction.

An important application of the functional linear model is the prediction of the
response Y given a new observation of the explanatory variable X . This can be
done without postulating a linear relationship. Such nonparametric approaches are
discussed in Chapters 5, 6 and 7 of Ferraty and Vieu (2006). The general idea is to
nonparametrically estimate the a function r in a relation Yi � r.Xi /. Such methods
have been developed for scalar responses. Model (8.20) can be viewed as a hybrid
nonparametric/linear model. The book of Shi and Choi (2011) studies Bayesian
methods for Gaussian functional regression.

Another important application of FDA is in classification problems; an example
is given in Section 1.4. In addition to a gene’s temporal expression profile, other
factors or covariates may be important. Motivated by such settings, Ma and Zhong
(2008) consider what can be called a functional nonparametric mixed effect model
of the form Yi .t/ D �.Xi .t// C Zi .t/bi C "i .t/, where � is a smooth function,
bi is a mean zero column random vector of dimension m with a covariance matrix
B, and Zi .t/ D ŒZi1.t/; Zi2.t/; : : : ; Zim.t/� is a design matrix. The estimation of
� is formulated using the notion of the reproducing kernel Hilbert space (RKHS)
which is necessary to accommodate smoothness properties of the estimates, a point
not addressed in this book. To explain briefly, note that smoothness connects the
values of a function evaluated at neighboring points. In the space L2, the value
x.t/ at any given t 2 Œ0; 1� is not relevant, and the functional L2 3 x 7! x.t/ is
not continuous. It can be defined as a continuous functional on a smaller space of
functions in L2 with square integrable second derivatives, similar to the Sobolev
space defined in Section 8.4. It is an example of a RKHS with a suitably defined
inner product h�; �iRKHS. On that space, by Riesz’ representation theorem, x.t/ D
hx;Rt iRKHS, for some elementRt of the RKHS. The valueRt .s/ of the functionRt
at point s 2 Œ0; 1� is typically denoted R.t; s/, and the function R.�; �/ is called the
reproducing kernel. An interested reader is referred to Gu (2002).

A central issue for functional data is dimension reduction appropriate for a given
problem. Li and Hsing (2010) assume a general model Yi D f .hˇ1; Xii ; : : : ;
hˇK ; Xii ; "i /; in which the responses Yi are scalars, and the predictorsXi are func-
tions; f is an arbitrary function and ˇ1; : : : ; ˇK are linearly independent functions.
The functions f and ˇk are unknown, and K is also unknown. The problem of
interest is to test for and estimate the value of K , which is called the dimension of
the effective dimension reduction space.

We now list several other references related to the issues discussed in this chapter.
Cuevas et al. (2002) discuss the functional model in which the explanatory variables
are fixed rather than random functions; we focus in this book on the latter case. Mal-
fait and Ramsay (2003) emphasize that in many situations the general model (8.1)
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is inappropriate because the response Yi .t/ can depend only on the values of Xi .s/
for s � t . McKeague and Sen (2010) study a scalar response impact point model
Y D ˛ C ˇX.
/ C " in which Y depends on the function X only through an
unknown point 
 2 .0; 1/. In an application, 
 corresponds to a gene location that
impacts the response Y . Febrero-Bande et al. (2010) study the detection of influ-
ential data points in a functional model with scalar responses. Chiou et al. (2004)
discuss functional response models and give interesting data examples. Cardot et
al. (2003b) discuss estimation with splines, while Cardot et al. (2003c) present an
interesting application to predicting land use from remote sensing data. Cai and Hall
(2006) study theoretical foundations of prediction in the scalar linear model. Reiss
and Ogden (2010) introduce a linear model with images as explanatory variables.



Chapter 9
Test for lack of effect in the functional linear
model

In this chapter, we study the fully functional linear model (8.1) and test the nullity
of the operator � , i.e.

H0 W � D 0 versus HA W � ¤ 0:

We thus test the null hypothesis that the curvesXn have no effect on the curves Yn.
This is analogous to testing H0 W ˇ1 D 0 in the straight line regression, yi D ˇ0 C
ˇ1xi C"i . In the functional setting, the slope corresponds to a linear operator which
transforms functions into functions. Just as in the case of straight line regression, the
nullity of � does not mean that there is no dependence between the curves Xn and
Yn, but that if there is a dependence, it cannot be described by a functional linear
model.

The usual t–test for the slope of the regression line is equivalent to anF –test. The
F –test is a standard tool for testing the significance of the coefficients in the scalar
linear model yi D ˇ0Cˇ1xi;1C : : : ˇp�1xi;p�1C "i . The F –test, valid for normal
"i , is asymptotically equivalent to a �2–test, see e.g. Chapter 4 of Seber and Lee
(2003). The test we propose is a �2–test in which projections on the EFPC’s play
the role of the regressors. We impose only moment conditions on the distribution of
the regressor and error curves.

This chapter is organized as follows. In Section 9.1 we provide some background
and motivation for the test procedure described in Section 9.2. Its finite sample per-
formance is assessed in Section 9.3, followed by a detailed application to magne-
tometer data in Section 9.4. The asymptotic results and their extensions are stated
in Section 9.5, with the proofs presented in Section 9.6.

9.1 Introduction and motivation

The test procedure described in this chapter was motivated by a question of space
physics. The most important magnetospheric phenomenon observed at high lati-
tudes, i.e. in the polar regions, are the substorms, which manifest themselves in
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Fig. 9.1 Horizontal intensities of the magnetic field measured at a high-, mid- and low-latitude
stations (College, Alaska; Boulder, Colorado; Honolulu, Hawaii) during a substorm (left column)
and a quiet day (right column). The top left panel shows a typical signature of a substorm. Note
the different vertical scales for high-latitude records. Each graph is a record over one day, which
we view as a single functional observation.

a spectacular manner as the Northern Lights, the aurora borealis. There has been
some debate if the currents flowing in mid and low magnetic latitudes are “cor-
related” with the substorms. All magnetospheric currents are observed indirectly
through continuous records measured by terrestrial magnetometers. Examples of
such records, cut into one day pieces, are shown in Figure 9.1. The left top panel
shows a day with a substorm, the right top panel a day without a substorm. Compar-
ing the bottom left and right panels, little difference can be found. Some difference,
at least in the range, can be seen in the middle panels. There is thus a need for a
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quantitative statistical tool for testing if the substorms have any (linear) effect on
lower latitude records. This problem is described in detail in Section 9.4.

Testing the null hypothesis of no effect exhibits new features in the functional
setting due to the fact that the data are infinitely dimensional, and every dimension
reduction technique restricts the domain of � , and so leads to a loss of information
about � . These issues are addressed in different contexts in Cuevas et al. (2002)
and Cardot et al. (2003). The testing procedure we propose is similar to that devel-
oped in Cardot et al. (2003) who consider scalar responses Yn. It turns out that the
more symmetric fully functional formulation actually leads to a somewhat simpler
test statistic which can be readily computed using the principal components decom-
positions of the the Yn and the Xn. Our test statistic has �2 limiting distribution
which is a good approximation for sample sizes around 50. The research presented
in this chapter is based on the papers Kokoszka et al. (2008), and Maslova et al.
(2010b).

9.2 The test procedure

We assume that the response variables Yn, the explanatory variables Xn and the
errors "n are zero mean random elements of the Hilbert space L2. Denoting by X
(Y ) a random function with the same distribution as each Xn (Yn), we introduce the
operators:

C.x/ D EŒhX; xiX�; � .x/ D EŒhY; xi Y �; �.x/ D EŒhX; xiY �

and denote their empirical counterparts by bC ; b� ; b�, e.g.

bC.x/ D 1

N

NX
nD1

hXn; xiXn:

We define the eigenelements of C and � by

C.vk/ D �kvk; � .uj / D 
juj :

Empirical eigenelements are defined correspondingly and denoted by
. O�k; Ovk/; . O
j ; Ouj /.

The testing procedure involves restrictions of the operators defined above to cer-
tain finite dimensional subspaces. This is a dimension reduction procedure which
necessarily involves some loss of information about the action of � . The subspace
Vp D spfv1; : : : ; vpg contains the best approximations to the Xn which are linear
combinations of the first p FPC’s, see Section 3.2. Similarly, Uq D spfu1; : : : ; uqg
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is a good approximation to spfY1; : : : ; Yng. Since, by (8.1), � D �C; we have, for
k � p,

�.vk/ D ��1k �.vk/: (9.1)

Thus,� vanishes on spfv1; : : : ; vpg if and only if�.vk/ D 0 for each k D 1; : : : ; p:

(We postulate in Assumption 9.2 that �k > 0.) Observe that

�.vk/ � b�.vk/ D 1

N

NX
nD1

hXn; vki Yn:

Since spfY1; : : : ; YN g is well approximated by Uq , a test can be developed by check-
ing if D b�.vk/; uj E D 0; k D 1; : : : ; p; j D 1; : : : ; q: (9.2)

If such a test accepts H0, it means that for every x 2 Vp, �.x/ is not in Uq . Intu-
itively, it means that up to a small error arising from the approximations by the
principal components and a random error, no function Yn; n D 1; 2; : : : ; N; can be
expressed as a linear combination of functionsXn; n D 1; 2; : : : ; N .

A test statistic should thus involve squares of the inner products in (9.2). Theorem
9.1 states that the statistic

OTN .p; q/ D N

pX
kD1

qX
jD1

O��1k O
�1j
D b�. Ovk/; Ouj

E2
(9.3)

converges in distribution to a chi–squared distribution with pq degrees of freedom.
Since �k D E hX; vki2 and 
j D E

˝
Y; uj

˛2
, the statistics OTN .p; q/ is essentially a

normalized sum of squared correlations.
If H0 fails, then �.vk/ ¤ 0 for some k � 1. If we impose conditions only on

the first p largest eigenvalues, the test will be consitent only if � does not vanish
on one of the vk ; k D 1; 2; : : : ; p. The test has no power if � does not vanish on
the orthogonal complement of spfv1; : : : ; vpg. Further, to ensure consistency, one
of the vk; k D 1; 2; : : : ; p must be mapped into spfu1; : : : ; uqg. These restrictions
are intuitively appealing because we want to test if the main sources of the vari-
ability of the responses Y can be explained by the main sources of the variability
of the explanatory variables X . These ideas are formalized in Theorem 9.2 which
establishes the consistency of the test.

In linear regression setting, it is often of interest to test if specific covariates have
no effect on the responses. In our setting, we could ask if specific FPC’s vk have no
effect. It is easy to see from the proof of Theorem 9.1, see Lemma 9.1 in particular,
that if we want to test if FPC’s vi.1/; : : : ; vi.p0/ have no effect, we must modify the
statistic (9.3) by including only these components. The limit �2 distribution will
then have p0q degrees of freedom. A further obvious modification can be made if
we want to check if there is an effect in the subspace spanned by some FPC’s of the
responses Yk . Modifications of this type are useful if some principal components
have obvious interpretations. This is sometimes the case in space physics applica-
tions, see Xu and Kamide (2004), but in the case of when the Xn are high–latitude
records, see Section 9.4, the vk cannot, at this point, be readily interpreted.
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We now present an algorithmic summary of the testing procedure, some aspects
of which are elaborated on in Section 9.4.

Summary of the testing procedure. 1. Check the linearity assumption using FPC
score predictor-response plots, see Section 9.4.

2. Select the number of important PC’s, p and q using both the scree test and
CPV, see Section 9.4

3. Compute the test statistics OTN .p; q/ (9.3). Note that

hb�. Ovk/; Ouj i D
*
1

N

NX
nD1

hXn; OvkiYn; Ouj
+

D 1

N

NX
nD1

hXn; Ovki ˝Yn; Ouj
˛
;

where hXn; Ovki is the kth score of the Xn, and hYn; Ouj i is j th score of the Yn.
These scores and the eigenvalues O�k and O
j are output of functions available in the
R package fda.

4. If OTN .p; q/ > �2pq.˛/, reject the null hypothesis of no linear effect. The crit-
ical value �2pq.˛/ is the (1 � ˛)th quantile of the chi-squared distribution with pq
degrees of freedom.

9.3 A small simulation study

In this section, we present the results of a small simulation study intended to evaluate
the empirical size and power of the test in standard Gaussian settings.

We used R D 1000 replications of samples of processes "n; Xn and Yn, n D
1; 2; : : : ; N: In order to evaluate the empirical size, we generated samples of pairs
."n; Yn/ with independent components. To find the empirical power, we generated
samples of pairs ."n; Xn/ with independent components, and calculated Yn accord-
ing to (8.1). As "n; Xn and Yn, we used Brownian bridge and motion processes in
various combinations. The computations were performed using the R package fda.
We used both Fourier and spline bases.

Since the Brownian bridge and motion have very regular Karhunen-Loève
decompositions, see e.g. Bosq (2000), p. 26, it is not surprising that the size and
power of the test do not depend appreciably on p and q. Figures 9.2 and 9.3 illus-
trate this point. The horizontal axes represent various combinations of p and q; 1
stands for p D 1 and q D 1; 2 for p D 1, q D 2; 3 for p D 1, q D 3, etc. All
combinations of p � 4; q � 4 were considered in the size study and p � 6; q � 6

in the power study. The results for Brownian bridges and motions and Fourier and
spline bases are practically the same. For this reason, we present the results only
in cases when all processes are Brownian bridges, and the analysis was performed
with the Fourier basis.

Naturally, the bigger the sample size the closer the empirical size of the test is to
the nominal size. Nevertheless, there is little or no improvement in the size of the
test starting from N D 40 – 80; these values can therefore be considered sufficient
to obtain reasonable size; with N D 40 the test being slightly conservative.
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Fig. 9.2 Empirical size of the test for ˛ D 1%; 5%; 10% (indicated by dotted lines) for different
combinations of p and q. Here "n and Yn, n D 1; 2; : : : ;N are two independent Brownian
Bridges.

To evaluate the empirical power, we used the Gaussian kernel

 .s; t/ D C exp
˚
.t2 C s2/=2

�
; t 2 Œ0; 1�; s 2 Œ0; 1� (9.4)

with constants C such that k�k < 1, i.e. jC j < 1 (the norm in this section is the
Hilbert–Schmidt norm). Panels (a) and (b) of Figure 9.3 present power when the
dependence between Xn and Yn is quite strong, k�k D 0:75. For N D 80, the
power is practically 100% if k�k D 0:75. The right column of Figure 9.3 shows the
power of the test when k�k D 0:5. In this case power increases slower with N .
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Fig. 9.3 Empirical power of the test for different combinations of principal components and dif-
ferent sample sizesN . Here Xn and "n are Brownian Bridges. In panels (a), (b) k	k D 0:75; in
panels (c), (d) k	k D 0:5.

9.4 Application to magnetometer data

About a hundred terrestrial geomagnetic observatories form a network, INTER-
MAGNET, designed to monitor the magnetic fields generated by electrical currents
flowing in the magnetosphere and ionosphere (M-I). Modern digital magnetometers
record three components of the magnetic field in five second resolution, but the data
made available by INTERMAGNET (http://www.intermagnet.org) consist of one
minute averages (1440 data points per day per component per observatory). Figure
9.1 shows examples of magnetometer records. We work with the Horizontal (H)
component of the magnetic field. This is the component lying in the Earth’s tangent

http://www.intermagnet.org
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plane and pointing toward the magnetic North. It most directly reflects the variation
of the M–I currents we wish to study. The M–I currents form a complex interac-
tive system which at present is only partially understood, see Kamide et al. (1998)
and Daglis et al. (2003). The magnetometer records contain intertwined signatures
of many currents, and an effort has been under way to deconvolute the signatures
of various currents. So far this has been done by preprocessing records from every
individual station, and then combining the filtered signals from stations at the same
magnetic latitude (e.g. equatorial stations, or auroral stations), see Jach et al. (2006)
for a recent example of such an approach. Better understanding of the M–I sys-
tem can however be obtained only by modeling interactions between the various
currents.

It is believed, see e.g. Rostoker (2000), that the auroral currents may have an
indirect impact on the equatorial and mid-latitude currents. The question of interest
is whether the auroral geomagnetic activity reflected in the high–latitude curves has
an effect on the processes in the equatorial belt reflected by the mid– and low–
latitude curves. This question is of particular interest for days during which a high–
latitude activity known as a substorm occurs. Its most spectacular manifestation are
the Norther Lights caused by high–energy electrojets flowing for a few hours in
the auroral belt. The top left panel of Figure 9.1 shows a signature of a substorm.
It is believed that there is energy transfer between the auroral electrojets and lower
latitude currents, but the direct physical mechanisms which might be responsible for
this interaction are a matter of debate. The question can be cast into the setting of
the functional linear model (8.1) in which the Xn are centered high–latitude records
and Yn are centered mid– or low–latitude records. This postulates an approximate
statistical model for the data and allows us to the the null hypothesis � D 0. If the
null is true, we conclude that the high–latitude curves Xn have no linear effect on
the lower latitude curves. If the null is rejected, this indicates the existence of an
effect, which can be approximately linear (in the functional sense).

Detailed description of the data. We analyze one-minute averages of the horizon-
tal intensity of the magnetic field from four sets of stations given in Table 9.1. Only
one high–latitude station is used because substorms last for a few hours at night local
time, and we want to study their effect as the longitudal distance increases. The mid–
and low–latitude observatories are roughly aligned along the same longitude. The

Table 9.1 Geomagnetic observatories used in this study.

Latitude I II III IV

High College – – –
(CMO) – – –

Mid Boulder Fredericksburg Tihany Memambetsu
(BOU) (FRD) (THY) (MMB)

Low Honolulu San Juan Hermanus Kakioka
(HON) (SJG) (HER) (KAK)
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functional data consists of daily curves in UT (Universal Time), with 1440 observa-
tions per curve. Figure 9.1 provides examples of such curves.

Several types of data sets are analyzed. The first set consists of all days with
substorms from January until August, 2001 (set A). Then, the same analysis is per-
formed on the so called medium strength substorms (defined by the dynamic range
of 400-700 nT) during the same period (set B). Substorms often occur during much
larger disturbances known as geomagnetic storms. In order to eliminate possible
confounding effects of storms, we removed all days n such that a storm was tak-
ing place on days n � 1, n, or n C 1 (set A�). We also removed such days from
the list of medium strength substorms (set B�). To eliminate the possibility of con-
founding by next day’s storm, we also considered only isolated substorm days, i.e.
substorm days followed by at least two days without any substorms (set I). Finally,
to provide an additional validation of our findings, we select the substorms that took
place during three month periods: January – March (A1), March – May (A2), and
June – August (A3). The main reason of performing a separate analysis on medium
strength substorms is that very strong substorms can be viewed as outliers and may
distort the overall pattern of dependence. They are also typically generated by a dif-
ferent physical mechanism than medium strength substorms: the strong substorms
are connected to the instability associated with the release of energy stored in the
magnetosphere, and the medium substorms are associated with the direct pushing of
the enhanced solar wind. Comparing the substorms over three month periods guards
against the violation of the assumption of iid observations. Due to the annual rota-
tion of the Earth, the locations of the stations relative to the Sun change over time.
Hence, the substorms that happened long time apart might follow different statisti-
cal distributions. There were 101 substorm days from January until August during
2001, 81 substorm of which did not have any storms around; 41 substorms were
medium strength, 35 medium strength substorms after removing the ones close to
the storms; 43 isolated substorms occurred during 2001. We observed 40 substorm
days from January until March, 42 – from March until May, and 42 – from June
until August.

Details of test application and interpretation. In order to perform the test, the
minute-by-minute data were converted into functional objects in R using B–spline
basis with 149 basis functions. The number of basis functions is not crucial, the
only requirement being that the smoothed curves should look almost identical to the
original, while some noise can be eliminated.

In order to ensure that the test gives reliable results, the approximate validity of
the functional linear model must be checked. For this purpose, a technique intro-
duced by Chiou and Müller (2007), which relies on a visual examination of scatter
plots of scores, can be used. If the model is valid, score plots are roughly football–
shaped. When the dependence is not linear, these plots exhibit different patterns. The
number of plots is pq, where p and q are as in Section 9.2. They show the interac-
tion of the kth PC of theXn (k D 1; : : : ; p) and j th PC of the Yn (j D 1; : : : ; q). To
illustrate this technique, consider a non-linear model: Yn.t/ D H2.Xn.t//C "n.t/,
where H2.x/ D x2 � 1 is the Hermite polynomial of rank 2. For this model, the
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Fig. 9.4 Functional predictor-response plots of FPC scores of response functions versus FPC
scores of predictor functions for Yn.t/ D H2.Xn.t// C "n.t/, where H2.x/ D x2 � 1,
n D 1; : : : ; 40.

plot in the top left corner of Figure 9.4 exhibits a quadratic trend. For the functional
linear model to be valid all these plots should be “pattern–free”. Figure 9.5 shows
examples of these plots for magnetometer data. We used CMO medium strength
substorm records as X , and THY with no lag – as Y . These scatter plots indicate
linear relationship with some outliers. Since we do not require Gaussianity, only
finite fourth moment, these outliers need not invalidate our conclusions. In case of
other pairs of functional data, the score plots look similar. We conclude that a linear
model is approximately appropriate for our application.

We now describe how to choose the most important FPC’s that will be used in
the test. One of the ways to pick them is to use the scree test, which is a graphi-
cal method first proposed by Cattell (1966). To apply the scree method one plots the
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Fig. 9.5 Functional predictor-response plots of FPC scores of response functions versus FPC of
explanatory functions for magnetometer data (CMO vs THY0)

successive eigenvalues, see Figure 9.6, and find the place where the smooth decrease
of eigenvalues appears to level off. To the right of this point one finds only “facto-
rial scree” (“scree” is a geological term referring to the debris which collects on the
lower part of a rocky slope). Table 9.2 provides the number of most important princi-
pal components and corresponding percentage of total variability explained by them
for all substorms that occurred from January until August, 2001. For other data sets
under consideration the general pattern is similar. One can also see from Figure 9.7
that each subsequent component picks up variation that declines in smoothness. For
example, the 10th principal components resemble random noise and explain a small
percentage of variability, that is why they are not included in the analysis.

When applying the test to magnetometer data, in most cases there is a clear rejec-
tion or acceptance for all combinations of the most important principal components.
In those cases, we can either reject “1” or fail to reject “0” the null hypothesis
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Fig. 9.6 Eigenvalues for different principal components of the substorm days that occurred from
March until May, 2001, from College(CMO), Honolulu (HON) stations. The black diamond
denotes the number of most important principal components selected by the scree test.

Table 9.2 Number of principal components retained by the scree test, and percentage of total
variability explained, during substorm days that occurred from January until August, 2001.

Stations PC % Stations PC % Stations PC % Stations PC %

CMO 10 82.52
BOU0 5 91.36 FRD0 4 90.83 THY0 5 92.17 MMB0 4 92.30
BOU1 4 86.40 FRD1 4 89.55 THY1 5 89.49 MMB1 4 91.01
BOU2 4 91.17 FRD2 4 92.32 THY2 4 91.57 MMB2 4 94.59
BOU3 4 91.74 FRD3 4 92.68 THY3 4 91.51 MMB3 4 95.60
HON0 4 96.56 SJG0 5 97.08 HER0 4 95.07 KAK0 4 94.33
HON1 3 94.91 SJG1 4 94.57 HER1 4 94.31 KAK1 4 93.80
HON2 4 97.44 SJG2 3 92.73 HER2 4 95.89 KAK2 4 96.39
HON3 4 97.79 SJG3 4 96.42 HER3 4 95.53 KAK3 3 94.66

with a reasonable confidence. We use the nominal 95% confidence level in this Sec-
tion. However, there are some cases when it is not clear what conclusion to draw.
We denote such cases “1?” – inclined toward rejecting the null hypothesis, “0?”–
inclined toward failing to reject the null, “1?0?”– inconclusive. Figure 9.8 gives
examples of such cases. We plot rejection regions up to the number of important
principal components. Grey areas mean that we rejectH0, white – fail to reject H0.
The conclusion is clear when all, or almost all, rectangles are of the same color.
We can then conclude that X has an effect on Y (all grey) or there is no effect (all
white). Left panel of Figure 9.8 gives an example when it is not clear what to con-
clude. However, based on our previous experience we are most likely to reject the
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Fig. 9.7 EFPC’s of the substorm days that occurred from January until August, 2001, from Col-
lege(CMO) and Honolulu (HON) stations.
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null hypothesis. In the case shown in the middle panel, the conclusion is also not
clear, but we lean toward accepting the independence of X and Y . Finally, the right
panel presents an example where it is rather unclear what to conclude.

Results and conclusions. We now discuss the results of the application of the test.
We consider high-latitude records from College, Alaska, (CMO) as X , and let Y
be the observations from all eight mid- and low-latitude stations during the same
UT time as the CMO data. We also analyze responses one, two and three days after
substorms were recorded at the CMO station. Such a setting should allow us to see
if there is a longitudinal effect of substorms; how long this effect, if any, lasts; and
what the global influence of a substorm is.

Column A in Table 9.3 presents the test results for all the substorms that occurred
from January to August. We see that the effect of substorms observed at CMO is
statistically significant at all mid- and low- latitude stations at the same UT (e.g.
BOU0, HON0). This is true for one-day lag data as well (e.g. BOU1, HON1), but
for the lag of two days the results are inconclusive. We conclude that the effect
of substorms observed at CMO persists for about 48 hours, at all longitudes and
latitudes. In the column labeled A* we provide the test results for the set of the
substorms where none of the events occurred close to storms. As one can see, the
results are similar to the ones in column A. This means that the observed effect is
not attributable to an impact of storms on high-latitude currents. We also analyzed
the effects of isolated substorms, i.e. there were at least 2 quiet days after such
substorms (see column I in Table 9.3). As one can see, there is significant linear
dependence between records observed at high latitude and mid-, low-latitude during
substorm days, as well as the next day. This means that the next day effect cannot
be attributed to the confounding effect of substorms on consecutive days. Next, we
analyze the effect of medium strength substorms. Table 9.3, column B, presents
the test results. We can see that the medium strength substorm effect is weaker
than in case of all substorms. The effect of medium strength substorms appears
significant on the same day, but on the following days is absent. It fades out faster for
further longitudes. We draw the same conclusion from column B* which includes
test results on the medium strength substorms that were not effected by the storm
activity. Table 9.4 gives the results for the three sets of substorms in three month
periods. In column A1 the results for the substorm days from January to March,
2001 are presented. The conclusions are similar to the ones we got for all substorms
from January until August (see Table 9.3, column A). The dependence seems to last
for two days. We come to the same conclusion dealing with the other two sets of the
substorms, the ones that occurred in Spring and Summer 2001 (see columns A1 and
A2 of Table 9.4), the second day dependence being weaker in summer. This agrees
with the earlier analysis, as there are fewer strong substorms in summer months.

We conclude that there is a pattern that suggests that there is a dependence
between high- and mid-, and high- and low-latitude records with no and one day
lag. There is no significant dependence for data with two- and three-day lags.

We conclude this section with a discussion of the physical meaning of our find-
ings. The ground magnetic effects of a localized auroral current system in the
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Table 9.4 Results of the test for substorm days that occurred in 2001 from January to March (A1),
March to May (A2), June to August (A3).

Mid-latitude
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

BOU0 BOU1 BOU2 BOU3
1 1 1 1 1 1?0? 0 0 0 0 0 0

FRD0 FRD1 FRD2 FRD3
1 1 1 1 1 1?0? 0 0 0 0 0 0

THY0 THY1 THY2 THY3
1 1 1 1 1 1 0 0 0 0 0 0

MMB0 MMB1 MMB2 MMB3
1 1 1 1 1 1?0? 1?0? 0 0? 0? 0 0

Low-latitude
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

HON0 HON1 HON2 HON3
1 1 1 1 1 1?0? 0? 0 0 0 0 0

SJG0 SJG1 SJG2 SJG3
1 1 1 1 1 1? 0 0 0 0 0 0

HER0 HER1 HER2 HER3
1 1 1 1 1 1 0 0 0 0 0 0

KAK0 KAK1 KAK2 KAK3
1 1 1 1 1 1 1?0? 0 0 0? 0 0

ionosphere normally become insignificant for a location at the Earth’s surface 400-
500 km away from the center of the current system. Therefore the substorm auroral
currents in the ionosphere would not be expected to have significant direct effects
on the H–component measurements at mid–latitudes and most certainly not at low
(equatorial) latitudes. The influence is likely not directly from the auroral electro-
jects, but the full current curcuit in the M-I system that drives the auroral electoro-
jects during substorms. Conceptually, this would not be entirely unexpected. How-
ever, what is unexpected is that on subsequent day, after a 24 hour lag, the mid– and
low–latitude field is still affected by prior day’s substorm activity defined by high–
latitude magnetic fields. The result is dependent on the strength of the substorms,
i.e. only the effect of strong substorms extends to low latitudes on the second day.
The interpretation of this result is not readily apparent. These statistical findings
may imply some physical connections between the substorm electrodynamics and
the physical processes in other regions of the M-I system that we are not aware of
at the present time.

9.5 Asymptotic theory

Our first assumption specifies independence and moment conditions.
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Assumption 9.1. The triples .Yn; Xn; "n/ form a sequence of independent identi-
cally distributed random elements such that "n is independent of Xn and

EXn D 0 and E"n D 0I (9.5)

EkXnk4 < 1 and Ek"nk4 < 1: (9.6)

The next assumption extends condition (2.12) to both response and explanatory
variables.

Assumption 9.2. The eigenvalues of the operatorsC and � satisfy, for some p > 0
and q > 0,

�1 > �2 > : : : �p > �pC1; 
1 > 
2 > : : : 
q > 
qC1: (9.7)

Under these assumptions, we can quantify the behavior of the test underH0 and
HA.

Theorem 9.1. UnderH0 and Assumptions 9.1 and 9.2, OTN .p; q/ d! �2pq ; as N !
1.

Theorem 9.2. If Assumptions 9.1 and 9.2 hold, and
˝
�.vk/; uj

˛ ¤ 0 for some k �
p and j � q, then OTN .p; q/ P! 1; as N ! 1.

Jiofack and Nkiet (2010) showed that statistic (9.3) can be used outside the con-
text of the functional linear model to test the independence of two functional sam-
ples. The null hupothesis is then formulated in the following assumption.

Assumption 9.3. The pairs .Yn; Xn/ form a sequence of mean zero independent
identically distributed random elements such that Yn is independent of Xn and
EkXnk4 < 1; EkYnk4 < 1:

They proved the following result together with an analog of Theorem 9.2.

Theorem 9.3. If Assumptions 9.2 and 9.3 hold, then OTN .p; q/ d! �2pq ; asN ! 1.

Jiofack and Nkiet (2010) also showed that statistic (9.3) can be used to test a
broader null hypothesis which corresponds to a lack of correlation rather than inde-
pendence. In the functional context, zero correlation can be defined by the condition
� D 0, which means that for any x; y 2 L2, EŒhX; xi hY; yi� D 0. To formulate
the null hypothesis in this context, we introduce the following assumption.

Assumption 9.4. The pairs .Yn; Xn/ form a sequence of mean zero independent
identically distributed random elements such that EkXnk4 < 1; EkYnk4 < 1:

The operator� is equal to zero.
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If only� D 0 is assumed, rather than the independence of the two samples, then
the statistic OTN .p; q/ no longer converges to the chi–squared distribution. This is
essentially because without assuming independence, the fourth order moments

�ijk` D EŒhX; vii hX; vki ˝Y; uj ˛ hy; u`i�
need not vanish if i ¤ k or j ¤ `. To describe the limit distribution, we introduce
the pq � pq matix

K D

26664
�1111 �1112 : : : �11pq
�1211 �1212 : : : �12pq
:::

::: : : :
:::

�pq11 �pq12 : : : �pqpq

37775 : (9.8)

We also introduce the pq � pq diagonal matix

H D diag.�1; �2; : : : ; �p/˝ diag.
1; 
2; : : : ; 
q/; (9.9)

where ˝ denotes the Kronecker product. For the properties of the Kronecker product
we refer to Chapter 4 of Horn and Johnson (1991). For example, if p D q D 2, then

H D

2664
�1
1 0 0 0

0 �1
2 0 0

0 0 �2
1 0

0 0 0 �2
2

3775 :
With this notation in place, we state the following result.

Theorem 9.4. If Assumptions 9.2 and 9.4 hold, then OTN .p; q/ d! GTH�1G, where
G is a mean zero Gaussian vector in Rpq with covariance matrix K, and H is
defined by (9.9).

Note that if X is independent of Y , then K D H, and so GTH�1G
dD �2pq , see

e.g. Theorem 2.9 of Seber and Lee (2003). Jiofack and Nkiet (2010) explain how to
implement the test for a general matrix K.

9.6 Proofs of Theorems 9.1 and 9.2

The test statistics (9.3) does not change if we replace Ovk by Ock Ovk and Ouj by Ocj Ouj ,
see Section 2.5. To lighten the notation in this section, we therefore write Ovk in place
of Ock Ovk and Ouj in place of Ocj Ouj .

Proof of Theorem 9.1. Theorem 9.1 follows from Corollary 9.1, which is arrived
at through a series of simple lemmas. Lemma 9.1 shows that the �2 limit holds
for the population eigenelements. The remaining lemmas show that the differences
between the empirical and population eigenelements have asymptotically negligible
effect.



9.6 Proofs of Theorems 9.1 and 9.2 165

Lemma 9.1. Under the assumptions of Theorem 9.1,

p
N
nDb�.vk/; uj E ; 1 � j � q; 1 � k � p

o
d!
	
�kj

q
�k
j ; 1 � j � q; 1 � k � p



;

(9.10)

with �kj 	 N.0; 1/. Moreover, �kj and �k0j 0 are independent if .k; j / ¤ .k0; j 0/.

Proof. Under H0,
p
N
D b�.vk/; uj E D N�1=2PN

nD1 hXn; vki ˝"n; uj ˛ : The sum-

mands have mean zero and variance �k
j , so (9.10) follows.
To verify that �kj and �k0j 0 are independent if .k; j / ¤ .k0; j 0/, it suffices to

show that
p
N
D b�.vk/; uj E and

p
N
D b�.vk0/; uj 0

E
are uncorrelated. Observe that

E
hp
N
D b�.vk/; uj E ;pN D b�.vk0/; uj 0

Ei
D 1

N
E

"
NX
nD1

hXn; vki ˝"n; uj ˛ NX
n0D1

hXn0; vk0i ˝"n0 ; uj 0

˛#

D 1

N

NX
n;n0D1

E ŒhXn; vki hXn0 ; vk0i� E �˝"n; uj ˛ ˝"n0; uj 0

˛�
D 1

N

NX
nD1

E ŒhXn; vki hXn; vk0i� E �˝"n; uj ˛ ˝"n; uj 0

˛�
D hC.vk/; vk0i ˝� uj ; uj 0

˛ D 
kıkk0
j ıjj 0 : ut

Recall that the Hilbert–Schmidt norm of a Hilbert–Schmidt operator S is defined
by kSk2S D P1

jD1 kS.ej /k2, where fe1; e2; : : :g is any orthonormal basis, and that
it dominates the operator norm: kSkL � kSkS :

Lemma 9.2. Under the assumptions of Theorem 9.1,

Ekb�k2S D N�1EkXk2Ek"1k2:

Proof. Observe that

kb�.ej /k2 D N�2
NX

n;n0D1

˝
Xn; ej

˛ ˝
Xn0; ej

˛ hYn; Yn0i :
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Therefore, underH0,

Ekb�k2S D N�2
1X
jD1

NX
n;n0D1

E
�˝
Xn; ej

˛ ˝
Xn0 ; ej

˛ h"n; "n0i�
D N�2

1X
jD1

NX
nD1

E
˝
Xn; ej

˛2
Ek"nk2

D N�1Ek"1k2
1X
jD1

˝
X; ej

˛2 D N�1Ek"1k2EkXk2: ut

Lemma 9.3. Under the assumptions of Theorem 9.1,
p
N
nD b�. Ovk/; Ouj

E
; 1 � j � q; 1 � k � p

o
d!
	
�kj

q
�k
j ; 1 � j � q; 1 � k � p


 (9.11)

with �kj equal to those in Lemma 9.1.

Proof. By Lemma 9.1, it suffices to verify that

p
N
D b�. Ovk/; Ouj

E
� p

N
D b�.vk/; uj E P! 0: (9.12)

Relation (9.12), will follow from
p
N
D b�.vk/; Ouj � uj

E
P! 0 (9.13)

and p
N
D b�. Ovk � vk/; Ouj

E
P! 0: (9.14)

To verify (9.13), note that by (2.13),
p
N. Ouj � uj / D OP .1/, and by Lemma

9.2, Ekb�vkk � Ekb�kS D O.N�1=2/: Thus (9.13) follows from Lemma 7.3.
To use the same argument for (9.14) (with (2.13)), we note that

p
N
D b�. Ovk � vk/; Ouj

E
D p

N
˝ Ovk � vk ; Q�. Ouj /

˛
;

where Q�.x/ D N�1PN
nD1 hYn; xiXn: Lemma 9.2 shows that under H0,

Ek Q�kS D Ekb�kS : ut
By (2.13), O�k P! �k and O
j P! 
j , so we obtain

Corollary 9.1. Under the assumptions of Theorem 9.1,
p
N
nO��1=2
k

O
�1=2j

D b�. Ovk/; Ouj
E
; 1 � j � q; 1 � k � p

o
d! ˚

�kj ; 1 � j � q; 1 � k � p
�
;

(9.15)

with �kj equal to those in Lemma 9.1.
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Proof of theorem 9.2. Denote

OSN .p; q/ D
pX
kD1

qX
jD1

O��1k O
�1j
D b�. Ovk/; Ouj

E2
:

By Lemma 9.6 and (2.13), OSN .p; q/ P! S.p; q/ > 0. Hence OTN .p; q/ D
N OSN .p; q/ P! 1:

To establish Lemma 9.6, it is convenient to split the argument into two simple
lemmas: Lemma 9.4 and Lemma 9.5.

Lemma 9.4. If Yn; n � 1; are identically distributed, then Ekb�k � EkY k2:
Proof. For arbitrary u 2 L2 with kuk � 1,

kb�uk � N�1
NX
nD1

j hYn; ui jkYnk � N�1
NX
nD1

kYnk2:

Since the Yn are identically distributed, the claim follows. ut
Lemma 9.5. If Assumption 9.1 holds, then for any functions v; u 2 L2,D b�.v/; uE P! h�.v/; ui :

Proof. The result follows from the Law of Large Numbers after noting that

D b�.v/; uE D 1

N

NX
nD1

hXn; vi hYn; ui

and
E ŒhXn; vi hYn; ui� D E ŒhhXn; vi Yn; ui� D h�.v/; ui : ut

Lemma 9.6. If Assumptions 9.1 and 9.2 hold, then
D b�. Ovk/; Ouj

E
P!˝

�.vk/; uj
˛
; j � q; k � p:

Proof. By Lemma 9.5, it suffices to showD b�.vk/; Ouj � uj
E
P! 0

and D b�. Ovk/� b�.vk/; Ouj
E
P! 0:

These relations follow from Lemma 7.3, relations (2.13) and Lemma 9.4. ut



Chapter 10
Two sample inference for regression kernels

In Chapter 5, we studied two sample procedures for the mean function and the
covariance operator. This chapter is devoted to testing the equality of the regres-
sion operators in two functional linear models. We are concerned with the following
problem: We observe two samples: sample 1: .Xi ; Yi /; 1 � i � N; and sample
2: .X�j ; Y �j /; 1 � j � M . The explanatory variables Xi and X�j are functions,
whereas the responses Yi and Y �j can be either functions or scalars (the Yi and Y �j
are either both functions, or both scalars). We model the dependence of the Yi (Y �j )
on the Xi (X�j ) by the functional regression models

Yi D �Xi C "i ; Y �j D ��X�j C "�j ;

where � and �� are linear operators whose domain is a function space, and which
take values either in the same function space or in the real line. We wish to test if
the operators � and �� are equal.

In Section 10.1, we provide motivation and background for the methodology
developed in this chapter. The testing procedures are derived in Sections 10.2 and
10.3, respectively, for scalar and functional responses. As with the usual two sample
tests for the equality of means, we make a distinction between the simpler case of
“equal variances” and the more complex case of “unequal variances”. We thus have
four testing procedures, which are summarized in Section 10.4. A reader interested
only the description of the test can start with Section 10.4, and refer to Sections 10.2
and 10.3 for further details, as needed. Section 10.5 presents the results of a small
simulation study. Applications to medfly and magnetometer data are presented in
Section 10.6. Asymptotic results and their proofs are collected in Section 10.7. This
chapter is based on the paper of Horváth et al. (2009).

10.1 Motivation and introduction

We begin this section with a motivating example, which is continued in Section 10.6.

169
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Egg–laying curves of Mediterranean fruit flies. Müller and Stadtmüller (2005),
Section 6, consider 534 egg-laying curves (count of eggs per unit time interval) of
medflies who lived at least 30 days. Each function is defined over an interval Œ0; 30�,
and its value on day t � 30 is the count of eggs laid by fly i on that day. The
534 flies are classified into long–lived, i.e. those who lived longer than 44 days,
and short–lived, i.e. those who died before the end of the 44th day after birth. In
the sample, there are 256 short–lived, and 278 long–lived flies. This classification
naturally defines two samples: Sample 1: the egg-laying curves Xi .t/; 0 < t �
30; i D 1; 2; : : : ; 256 of the short–lived flies, and the corresponding total number
of eggs Yi . Sample 2: the egg-laying curves X�j .t/; 0 < t � 30; j D 1; 2; : : : ; 278

of the long–lived flies, and the corresponding total number of eggs Y �j . The egg-
laying curves are very irregular; Figure 10.1 shows ten smoothed curves of short–
and long–lived flies.

The smoothed egg-laying curves are considered as regressors, Xi for the short–
lived, and X�j for the long–lived flies. The responses are the lifetime count of eggs,
Yi and Y �j , respectively. The average of the Y �j is obviously larger than that of the
Yi , but a question of interest is whether after adjusting for the means, the structure
of the dependence of the Y �j on the curves X�j .t/ is different from the dependence
of the Yi on the curves Xi .t/. We thus consider two linear models:

Yi � NY D
Z
 .t/.Xi .t/ � NX.t//dt C "i ; i D 1; 2; : : : ; 256;

Y �j � NY � D
Z
 �.t/X�j .t/ � NX�.t//dt C "�j ; j D 1; 2; : : : ; 278:

and wish to test H0 W  D  �.
The above linear models describe the dependence structure of the data remark-

ably well. We applied the graphical test of Chiou and Müller (2007), described in
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Fig. 10.1 Ten randomly selected smoothed egg–laying curves of short-lived medflies (left panel),
and ten such curves for long–lived medfies (right panel).
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Section 9.4, in which the responses are graphed against the scores of the initial func-
tional principal components. All graphs show nice elliptical shapes. In Section 10.6,
we apply the test derived in Section 10.2 to check if it is reasonable to assume that
 D  �.

Like classical two sample procedures in various forms, the tests of this chapter
are likely to be applicable to a wide range of problems, where estimating two signif-
icantly different functional linear regressions on subsamples of a larger sample may
reveal additional features. In our setting, the role of regression parameter vectors (or
matrices) is played by integral operators acting on a function space. The complexity
of the test statistics increases as we move from scalar to functional responses and
relax assumptions on the covariance structure of the regressors. Even in the multi-
variate setting, except for comparing mean responses, the problem of comparing the
regression coefficients for two models based on two different samples is not trivial,
and we could not find a ready reference for it.

In the remainder of this chapter, we do not deal with the errors caused by replac-
ing the FPC’s by the EFPC’s: the test statistics do not depend on the signs of the
EFPC’s, and the OP .N�1=2/ distances can be handled by the application of Theo-
rem 2.7. The formulas appearing in this chapter are rather complex, and developing
arguments analogous to those in Section 5.4 and other chapters would take up too
much space and obscure the main ideas. To obtain computable test statistics, we
also neglect terms arising from EFPC’s with small eigenvalues. These terms are not
asymptotically negligible, but they are practically negligible, as established by the
simulations presented at the end of Section 10.3.

In the remainder of this chapter, we assume that the mean functions and the
means of the responses have been subtracted, and so we consider the scalar response
model

Yi D
Z 1

0

 .s/Xi .s/ds C "i (10.1)

and the functional response model

Yi .t/ D
Z 1

0

 .t; s/Xi .s/ds C "i .t/: (10.2)

Precise model assumptions are formulated in Section 10.7.
Our objective is to test

H0 W k �  �k D 0

against

HA W k �  �k ¤ 0;

where the norm is in L2.Œ0; 1�/ for model (10.1) and in L2.Œ0; 1� � Œ0; 1�/ for
model (10.2).
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10.2 Derivation of the test for scalar responses

In this Section, and Section 10.3, we refer to theorems stated and proven in Sec-
tion 10.7. To understand the procedures, it is however not necessary to study these
results, which provide asymptotic justification for the claims we make. To develop
a meaningful asymptotic theory, and to ensure that the tests perform well in finite
samples, we assume that the two samples sizes are of comparable size. Asymptoti-
cally, we postulate that there exists a constant 0 < � < 1 such that

N=M ! �; N ! 1: (10.3)

Suppose vi ; i � 1; form a basis in L2.Œ0; 1�/. Since we now deal with two sam-
ples, we may choose two different bases or one common basis. This choice will also
depend on what we assume about the variances of the regressors and the errors in
the two samples. To focus attention, it is initially convenient to think that the vi are
the FPC’s of the regressorsXi .

Since  2 L2.Œ0; 1�/, we can expand it as  .s/ D P1
iD1�ivi .s/; where

�i D h ; vi i. Consequently, the response variables can be expressed as Yi DP1
kD1 �k hXi ; vki C "i : We truncate the above expansion at 1 � p < 1, and

combine the error made by the truncation with the "i . The response is thus given by

Yi D
pX
kD1

�k hXi ; vki C "0i ; "0i D "i C
1X

kDpC1
�k hXi ; vki : (10.4)

In terms of matrix and vector notation we have

Y D X�C "0; (10.5)

where, for 1 � i � N and 1 � j � p,

Y.i/ D Yi ; X.i; j / D ˝
Xi ; vj

˛
; �.j / D �j ; "0.i/ D "0i :

The least squares estimator for � is therefore

O� D �
XTX

��1
XTY: (10.6)

By Theorem 10.1, O� is a consistent estimator of �, and for the second sample,
the analogously defined O�� a consistent estimator of ��. Thus we can base a test
statistic on the difference O� � O��. To motivate our construction, assume first that
the covariance operators of the Xi and X�j are equal and the errors "i and "�j have
equal variances, i.e.

E.X1.s/X1.t// D E.X�1 .s/X�1 .t// D c.s; t/ (10.7)

and
var."1/ D var."�1/: (10.8)
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The common covariance operator of the Xi and the X�j is denoted by C and its
eigenelements by vi ; �i , as in Section 2.5. Under these assumptions, we introduce
the random variable

�p D N.1C �/�1. O� � O��/T˙�1
p . O�� O��/; (10.9)

where˙p is the common asymptotic covariance matrix of O� and O�� defined by

˙p.i; i/ D ��1i 	2 C ��2i var

0@hX1; vii
1X

kDpC1
�k hX1; vki

1A ;
i D 1; : : : ; pI

(10.10)

˙p.i; j / D ��1i ��1j E

0B@hX1; vi i
˝
X1; vj

˛ 0@ 1X
kDpC1

�k hX1; vki
1A2
1CA ;

i ¤ j:

(10.11)

By Theorem 10.2, �p
d! �2.p/; as N ! 1; i.e. �p defined by (10.9), con-

verges to a chi-square random variable with p degrees of freedom. We therefore
propose the following test statistic when the covariances are equal

O�p D N.1CN=M/�1. O�� O��/T . Ȯ
p/
�1. O� � O��/; (10.12)

where Ȯ
p is the empirical diagonal approximation to the matrix˙p given by

Ȯ
p D O	2

2666664
O��11 0 � � � 0

0 O��12 � � � 0

:::
:::

:::
:::

0 0 � � � O��1p

3777775 ;

and where O	 is the residual standard deviation from the estimated regression model
defined analogously to (10.5), but with both samples pooled together. Thus, the
estimates O	; O�1; : : : ; O�p are all computed using the pooled sample.

In many applications, the covariance kernels c.s; t/ and c�.s; t/ are not necessar-
ily equal. Since the two kernels have different eigenfunctions, we now consider an
arbitrary basis fwig of L2.Œ0; 1�/. Good choices for the wi are discussed in Section
10.4. The kernels  and  � are expanded as

 .s/ D
1X
iD1

�iwi .s/;  �.s/ D
1X
jD1

��jwj .s/; (10.13)

and so

Yi D
1X
kD1

�k hXi ; wki C "i ; Y �j D
1X
kD1

��k
˝
X�j ; wk

˛C "�j :

mailto:0B@%CB%99p.i
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Truncating both sums at p, the response variables can again be expressed as

Y D X�C "0; Y� D X��� C "0�;

with all terms analogously defined with respect to our new basis. While this appears
similar to our prior calculations, we are expanding with respect to an arbitrary basis
which means that X and "0 are now potentially correlated. The least squares estima-
tors take, however, the same form

O� D .XTX/�1XTY; O�� D .X�TX�/�1X�TY�:

Thus we can once again compare O� and O�� to test the null hypothesis. To analyze
the asymptotic behavior of these estimates we consider the relation

O� D �C .XTX/�1XT "0:

The vector XT "0 can be expressed as

XT "0 D A C B CNm;

where

A D

2666666664

NX
iD1

"i hXi ; w1i
:::

NX
iDp

"i
˝
Xi ; wp

˛

3777777775
;

B D

2666666664

NX
iD1

1X
kDpC1

�k .hXi ; w1i hXi ; wki � EŒhX1; w1i hX1; wki�/
:::

NX
iD1

1X
kDpC1

�k
�˝
Xi ; wp

˛ hXi ; wki � EŒ
˝
X1; wp

˛ hX1; wki��

3777777775
;

have mean zero and are uncorrelated since the error terms are independent of the
explanatory functions. The term m represents the bias introduced by using an arbi-
trary basis which is given by

m D

266666664

1X
kDpC1

�kEŒhX1; w1i hX1; wki�
:::

1X
kDpC1

�kEŒ
˝
X1; wp

˛ hX1; wki�

377777775
:
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This yields the form

O� D �C .XTX/�1A C .XTX/�1B CN.XTX/�1m:

Clearly A and B are sums of iid random vectors with means zero and finite covari-
ance matrices due to Assumptions 10.1 and 10.2. Thus by the multivariate central
limit theorem N�1=2.A B/T is asymptotically normal. We have by the strong law
of large numbers that

N�1
NX
iD1

˝
Xi ; wj

˛ hXi ; wki a:s:! E
˝
X1; wj

˛ hX1; wki ;

for j D 1; : : : ; p and k D 1; : : : ; p, or in matrix notation

N�1XTX
a:s:! ˙ 1;

where the .j; k/ entry of ˙ 1 is E
˝
X1; wj

˛ hX1; wki. Thus by Slutsky’s Lemma
N�1=2. O� � � � N.XTX/�1m/ is asymptotically normal. Since A has zero mean,
we have that the .i; j / entry of its covariance matrix is given by

E

NX
kD1

"k hwi ; Xki "k
˝
wj ; Xk

˛ D N	2E hwi ; X1i
˝
wj ; X1

˛
;

and therefore
cov.A/ D N	2˙ 1:

Turning to B, the .i; j / entry of its covariance matrix is given by

N

1X
kDpC1

1X
rDpC1

�k�rE
˚
.hX1; wi i hX1; wki �EŒhX1; wii hX1; wki�/

� �˝X1; wj ˛ hX1; wri � EŒ
˝
X1; wj

˛ hX1; wr i���:
We will denote the covariance matrix of B asN˙ 2. Combining everything, we have
by Slutsky’s Lemma

N 1=2. O� �� �N.XTX/�1m/
d! N.0;C/;

where C D 	2˙�1
1 C˙�1

1 ˙ 2˙
�1
1 .

An identical argument gives, for the second sample,

M 1=2. O�� ��� �M.X�TX�/�1m�/ d! N.0;C�/;

with all terms analogously defined. Using (10.3), we therefore conclude that

N 1=2. O�� O�� � .N.XTX/�1m �M.X�TX�/�1m�// d! N.0;C C �C�/:
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Neglecting the biases m and m�, we thus arrive at the test statistic

O�p D N. O�� O��/T . O	2 Ȯ
1 C .N=M/ O	�2 Ȯ �

1/
�1. O� � O��/; (10.14)

where O	2 and O	�2 are residual standard deviations from the regression models for
the first and second sample respectively. The matrix˙ 1 is now estimated with

Ȯ
1 D N�1XTX;

with Ȯ �
1 defined analogously.

The distributions of statistics (10.12) and (10.14) are approximated by the chi-
square distribution with p degrees of freedom. If p is large (in terms of the percent-
age of variance explained), then all neglected terms are close to 0.

10.3 Derivation for functional responses

Turning to model (10.2), we note that now it is also necessary to choose bases to
project the Yi and the Y �j onto. We can then use the results developed in the scalar
case.

We first focus on the case of equal variances defined by assumptions (10.7) and,
in place of (10.8), by

E."1.s/"1.t// D E."�1.s/"�1.t//: (10.15)

Consider an arbitrary orthonormal basis fui g1iD1 for L2.Œ0; 1�/ (on which the Yi are
to be projected), and an analogous basis fu�j g1jD1. Though all our results hold for an
arbitrary choice for fui g1iD1, we will use in our applications the eigenfunctions of the
covariance operator for the fYig, with the fu�i g defined analogously. Because fuig
and fvi g are both bases for L2.Œ0; 1�/, it follows that we can construct a basis for
L2.Œ0; 1�� Œ0; 1�/ using the bivariate functions ui .t/vj .s/ for .t; s/ 2 Œ0; 1�� Œ0; 1�,
i; j � 1: We therefore have the expansion  .t; s/ D P1

kD1
P1
lD1 �klul .t/vk.s/;

but we will work with the approximation

O .t; s/ D
pX
kD1

rX
lD1

O�k;l Oul.t/ Ovk.s/;

where 1 � r < 1 and 1 � p < 1 are fixed.
Extending the notation introduced in the case of scalar responses, define the

matrices

Y.i; j / D ˝
Yi ; uj

˛
; i D 1; : : : ; N; j D 1; : : : ; r;

X.i; j / D ˝
Xi ; vj

˛
; i D 1; : : : ; N; j D 1; : : : ; p;

�.i; j / D
ZZ

 .t; s/vi .s/uj .t/ds dt; i D 1; : : : p; j D 1; : : : r:
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As in the scalar case, we combine any errors made by our approximations with the
error of the model, so we also introduce the matrix

"0.i; j / D ˝
"i ; uj

˛C 1X
kDpC1

X.i; k/�.k; j /; i D 1; : : : ; N; j D 1; : : : ; r:

Projecting the relation Yi D �Xi C "i onto the uj , we obtain

˝
Yi ; uj

˛ D ˝
�Xi ; uj

˛C ˝
"i ; uj

˛ D
1X
kD1

hXi ; vki ˝�vk ; uj ˛C ˝
"i ; uj

˛
which implies

Y D X�C "0: (10.16)

The corresponding least squares estimator O� D .XTX/�1XTY consistently esti-
mates the matrix �. This follows immediately by applying Theorem 10.1 to each
column of O�. Asymptotic normality follows from Theorem 10.4.

Since � is now a matrix, the task of constructing a quadratic form leading to a
test statistic is somewhat painful notationally. We start by writing � as a column
vector of length pr :

�Tv D vec.�/T

D .�.1; 1/;�.2; 1/; : : : ;�.p; 1/;�.1; 2/; : : : ;�.p � 1; r/;�.p; r//:
In words, �v is constructed by placing the columns of � on top of one another. The
covariance matrix for the error terms is given by

˙ ".i; j / D covŒh"1; ui i ;
˝
"1; uj

˛
� D EŒh"1; ui i

˝
"1; uj

˛
�; 1 � i; j � r;

and the diagonal matrix containing the largest p eigenvalues of C is


 .i; j / D �iıij ; for 1 � i; j � p;

where ıij is Kronecker’s delta.
With this notation in place, we consider the random variable

�pr D N.1C �/�1. O�v � O��v/T
� �˙ " ˝ 
 �1 C E

�
�1 ˝ .
 �1�2
 �1/

���1
. O�v � O��v/;

where�1;�2 are defined in (10.22) and (10.23), respectively.

Assuming equal covariances, Theorem 10.4 implies that under H0, �pr
d!

�2.pr/: An extension of the argument used in the proof of Theorem 10.3 yields

that �pr
P! 1; underHA; as long as p and r are so large that � ¤ ��: That such

a pair .p; r/ exists, follows immediately from the fact that the products viuj form a
basis in L2.Œ0; 1� � Œ0; 1�/.
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A computable approximation to �pr is

O�pr D N.1CN=M/�1. O�v � O��v/T

 Ȯ

" ˝ O
 �1��1
. O�v � O��v/; (10.17)

where Ȯ
" is the pooled sample covariance matrix of the residuals and O
 D

diag. O�1; O�2; : : : ; O�p/; with the O�i being the eigenvalues of the empirical covariance
operator of the pooledXi and X�j .

We finally turn to the most complex case of different covariances for the explana-
tory functions. We now expand both the explanatory and response functions with
respect to two arbitrary, potentially different, bases in L2Œ0; 1�, fui g and fwj g,
respectively:

 .t; s/ D
1X
iD1

1X
jD1

�j iui .t/wj .s/;  �.t; s/ D
1X
iD1

1X
jD1

��j iui .t/wj .s/:

This leads to the relations Y D X� C "0; Y� D X��� C "�0; with all terms
analogously defined as in the equal variance case, but using the bases fuig and
fwj g. Thus the least squares estimates are again O� D .XTX/�1XTY and O�� D
.X�TX�/�1X�TY�. (�;��; O�; O�� are now p�r matrices) Extending the argument
developed in Section 10.2, we arrive at the test statistic

O�pr D N vec. O� � O��/T . Ȯ
" ˝ Ȯ �1

1

C .N=M/ Ȯ �
" ˝ Ȯ �1�

1 /�1vec. O�� O��/;
(10.18)

where the residual covariance matrices ˙ " and ˙ �
" are computed for each sample

separately. The estimate Ȯ �1
1 is given by N�1XTX, and Ȯ ��1

1 is defined analo-
gously.

The distribution of statistics (10.17) and (10.18) is approximated by the chi-
square distribution with pr degrees of freedom. Selection of p and r is discussed in
Section 10.4. If p and/or r are large, the normalized �2 distribution can be approx-
imated by a normal distribution, as in Cardot et al. (2003), who studied a single
scalar response model and tested  D 0. In our case, due to the complexity of the
problem, the rigorous derivation of the normal convergence with p D pn depend-
ing on a sample size would be far more tedious, so it is not pursued. To perform a
test, a finite p (and r) must be chosen no matter what approximation is used, and
as illustrated in Section 10.6 large p (and r) do not necessarily lead to meaningful
results.

10.4 Summary of the testing procedures

In order to apply the tests, we must first verify if a linear functional model approxi-
mates the dependence structure of the data reasonably well. This can be done using



10.4 Summary of the testing procedures 179

the techniques of Chiou and Müller (2007) described in Section 9.4. The assump-
tions of independence and identical distribution of the regressor curves can be ver-
ified using the test of Chapter 7. Checking the independence of the errors is more
complicated because they are not observable; it is studied in Chapter 11. Before
applying the tests, the regressors and the responses must be centered, so that their
sample means are zero.

Next, the values of p and r must be chosen. In applications in which the FPC’s
have a clear interpretation, these values can be chosen so that the action of the
operators on specific subspaces spanned by the FPC’s of interest is compared. In
the absence of such an interpretation, several data driven approaches are avail-
able. When the covariances are approximately equal, typically p is chosen so large
that

Pp

kD1 O�k exceeds a required percentage of the variance of the Xi (defined as

.NCM/�1.
PN
iD1

R
X2i .t/dtC

PM
jD1

R
X�2i .t/dt/ for the centered functions). We

choose r analogously for the response functions. When the covariances cannot be
assumed equal then we propose, as one possibility, a pooling technique to choose p
and r . Pooling the explanatory functions we have

.N CM/�1
0@ NX
iD1

Xi .s/Xi .t/C
MX
jD1

X�j .s/X�j .t/

1A
a:s:! .1C 1=�/�1c.s; t/C .1C �/c�.s; t/:

We propose taking the wi to be the eigenfunctions of .1 C 1=�/�1c.s; t/ C .1 C
�/c�.s; t/ which is itself a covariance kernel. The ui can be defined in an analogous
manner using the response functions. Such a choice will allow smaller values of p
(and r) to be taken so that any bias from neglected terms is minimal, but we can still
expect reasonable power. The values p and r can be chosen as before, but now with
respect to the pooled variance. All these steps can be implemented in the R package
fda, and ready–made functions for the percentage of variance explained by FPC’s
are available. Other methods of choosing p (or r) are implemented in the MATLAB
PACE package developed at the University of California at Davis.

It is often useful to compute the test for a wide range of values of p (and r) and
check if a uniform pattern emerges. This approach is illustrated in Section 10.6.

Finally, we compute the test statistic O�, and rejectH0 if it exceeds the �2 density
with DF degrees of freedom according to the following table:

Response Covariances O� DF

Scalar Equal (10.12) p
Scalar Different (10.14) p
Functional Equal (10.17) pr
Functional Different (10.18) pr

The term “equal covariances” refers to assumptions (10.7), (10.8) in the scalar
case, and (10.7), (10.15) in the functional case.
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10.5 A small simulation study

Before turning to data examples, we present the results of a small simulation study.
We evaluate the performance of the test based on the most general statistic (10.18).
The test performs even better in the equal variances case (provided the simulated
data have equal variances). We consider the fully functional linear model with inte-
gral kernels of the form

 .s; t/ D cminfs; tg  �.s; t/ D c� minfs; tg;

where c and c� are constants. We set N D M D 100, and use 5 EFPC’s for the
regressors variables, and 3 EFPC’s for the responses. The results are based on 100
replications.

We use standard Brownian motions as error terms, and consider the regressors of
the following four types:

(A) Standard Brownian motions in both samples (Gaussian processes, equal
covariances).

(B) For the first sample the explanatory functions are standard Brownian motions
and for the second sample they are Brownian bridges (Gaussian processes, different
covariances).

(C) For both sets of explanatory functions we use

X.t/ D n�1=2
bntcX
kD1

Tip
var.Ti /

;

Table 10.1 Empirical rejection rates for the test based on the most general statistic (10.18). From
top to bottom, scenarios A, B, C, D described in the text.

(A)

˛=.c; c�/ (0,0) (1,1) (1,0) (1.5,0) (2,0)
0.10 0.14 0.08 0.50 0.90 0.98
0.05 0.09 0.03 0.40 0.81 0.98
0.01 0.03 0.00 0.18 0.63 0.92

(B)

˛=.c; c�/ (0,0) (1,1) (1,0) (1.5,0) (2,0)
0.10 0.14 0.09 0.45 0.90 0.98
0.05 0.08 0.06 0.28 0.80 0.95
0.01 0.00 0.01 0.14 0.60 0.93

(C)

˛=.c; c�/ (0,0) (1,1) (1,0) (1.5,0) (2,0)
0.10 0.11 0.10 0.47 0.85 0.99
0.05 0.04 0.05 0.32 0.78 0.95
0.01 0.02 0.02 0.18 0.60 0.87

(D)

˛=.c; c�/ (0,0) (1,1) (1,0) (1.5,0) (2,0) (2.5,0) (3,0) (3.5,0)
0.10 0.12 0.09 0.27 0.33 0.49 0.77 0.87 0.93
0.05 0.04 0.05 0.17 0.22 0.37 0.63 0.78 0.89
0.01 0.01 0.02 0.05 0.07 0.23 0.48 0.53 0.70
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where fTig are iid t-distributed random variables with 6 degrees of freedom and
n D 200 (heavy–tailed distribution, equal covariances).

(D) The first set of explanatory functions are defined as in (C). For the second set
we consider

X�.t/ D X.t/ŒX.1/� X.t/�;

where X.t/ is defined in (C) (heavy–tailed distribution, different covariances).
As we can see from the tables, the method works fairly well. The empirical sizes

are close to the nominal sizes (first two columns of each table), and the power
increases with the size of the difference. The power is smaller if the explanatory
functions do not have a common distribution, and/or are heavy–tailed.

10.6 Application to medfly and magnetometer data

We now illustrate the application of the test on two examples. The first example
is motivated by the work presented in Carey et al. (2002), Chiou et al. (2004),
Müller and Stadtmüller (2005), Chiou and Müller (2007), among others, and studies
egg-laying curves of Mediterranean fruit flies (medflies). The second example is an
application to the measurements of the magnetic field generated by near Earth space
currents.

Egg-laying curves of Mediterranean fruit flies (continued). We applied the test
of Section 10.2 (without assuming equal variances) to the medfly data introduced in
Section 10.1. Table 10.2 shows the P-values for the five initial FPC’s (p � 5). The
P-values for larger p do not exceed half a percent. We cannot rejectH0 W  D  � if
we use the test with p D 1, but if p > 1, we rejectH0. To understand this result, we
must turn to formula (10.13). The test compares estimates of �i to those of ��i for
i � p. Acceptance ofH0 forp D 1means that the curves�1w1.s/ and��1w1.s/ are
not significantly different. Their estimates are shown in the left panel of Figure 10.2.
The functionswi were computed by pooling all explanatory curves, as explained in
Section 10.4. The estimated coefficients are O�1 D 49:64; O��1 D 46:60. By contrast,
the estimates O�2 D 15:45; O��2 D 29:88 are very different, and consequently the
curves O�2w2.s/ and O��2w2.s/ shown in the right panel of Figure 10.2 look different.

Table 10.2 The values of statistic (10.14) and the corresponding P-values for several values of
p D p�.

p �pp� P-Value

1 1.3323 0.2484
2 11.3411 0.0034
3 10.6097 0.0140
4 23.8950 0.0001
5 33.1144 0.0000
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Fig. 10.2 The left panel shows curves O�1w1.s/ (solid) and O��
1w1.s/ (dotted). The right panel

shows correspondingly O�2w2.s/ and O��
2w2.s/
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Fig. 10.3 Approximations of the kernel functions  (solid) and  � (dotted) with p D 2. The
curves are the sums of the corresponding curves in the left and right panels of Figure 10.2.

The approximations to and � which use p D 2 FPC’s are thus sufficient to detect
the difference. They are shown in Figure 10.3.

Comparing the estimates O�2 and O��2 or the curves in Figures 10.2 and 10.3 gives
a strong hint that the kernels  and  � cannot be assumed equal. Our tests allow us
to attach statistical significance statements to these conclusions.

Data from terrestrial magnetic observatories. We now apply our methodology
to magnetometer data. A comprehensive case study is not our goal, we would rather
like to illustrate the steps outlined in Section 10.4 in a practically relevant setting.
Broader space physics issues related to this example are explained in Kamide et al.
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Fig. 10.4 Observations for sample A: left panel CMO (X), right panel HON (Y ).

(1998), while Chapters 9, 10, 13 of Kivelson and Russell (1997) provide a detailed
background.

A sample of 40 functional regressors and corresponding responses is shown in
Figure 10.4. Each curve in Figure 10.4 shows one minute averages in a UT (Uni-
versal Time) day of the component of the magnetic field lying in the Earth’s tangent
plane pointing toward the magnetic North. We thus have 1440 data points per curve.
Splitting the magnetometer data into days and treating the daily curves as functional
observations is natural because of the daily rotation of the Earth. The curves Xi
reflect ionospheric magnetic activity in the polar region known as substorms, which
are spectacularly manifested as the northern lights (aurora borealis). The curves Yi
reflect magnetospheric activity in the magnetic equatorial region in the same UT
day. We consider three samples: A, B, C. Each of them consists of about 40 pairs of
curves. All measurements were recorded in 2001, the Xi at College (CMO), Alaska;
the Yi at Honolulu (HON), Hawaii. Sample A contains substorms which took place
in January through March, B in April–June, C in July–September. Using the graph-
ical goodness–of–fit test of Chiou and Müller (2007), see Section 8.6, and the test
of Chapter 7, Kokoszka et al. (2008) verified that the fully functional linear model
is a reasonable approximation and that the functional observations can be assumed
to be uncorrelated. Moreover, on physical grounds, the data can be assumed to be
approximately independent because the M–I system resets itself after each rotation
of the Earth, and the effect of larger disturbances of solar origin decay within about
two days.

Intuitively, we would expect rejections of the null for all three pairs: A–B, B–
C, and A–C, as the position of the axis of the Earth relative to the Sun shifts with
each season, and substorms are influenced by the solar wind. This is indeed the
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Table 10.3 P–values for testing the equality of regression operators in samples A and B.

p=r 1 2 3 4 5 6 7 8 9 10

1 0.344 0.608 0.231 0.280 0.349 0.380 0.372 0.391 0.351 0.257
2 0.147 0.259 0.274 0.416 0.565 0.422 0.373 0.345 0.339 0.310
3 0.204 0.378 0.399 0.621 0.762 0.592 0.582 0.621 0.654 0.478
4 0.120 0.305 0.299 0.567 0.716 0.619 0.654 0.307 0.315 0.158
5 0.440 0.668 0.555 0.741 0.861 0.730 0.792 0.515 0.453 0.223
6 0.582 0.891 0.798 0.793 0.883 0.554 0.567 0.605 0.218 0.106
7 0.689 0.962 0.950 0.911 0.954 0.749 0.792 0.783 0.566 0.427
8 0.965 0.968 0.972 0.952 0.958 0.815 0.755 0.582 0.432 0.257
9 0.981 0.804 0.962 0.980 0.972 0.821 0.837 0.753 0.722 0.456
10 0.727 0.585 0.903 0.973 0.986 0.972 0.973 0.941 0.935 0.626
11 0.911 0.880 0.991 0.999 0.999 0.998 0.998 0.994 0.995 0.990
12 0.856 0.860 0.989 0.997 0.959 0.962 0.940 0.930 0.845 0.889
13 0.667 0.856 0.982 0.988 0.939 0.950 0.889 0.845 0.784 0.844
14 0.395 0.457 0.798 0.418 0.314 0.445 0.240 0.240 0.201 0.282
15 0.398 0.481 0.847 0.414 0.321 0.456 0.276 0.255 0.170 0.113

case for tests in cases B–C and A–C, for which the P–values are very small: for
B–C the largest P-value is 0.034, and for A–C 0.007 (for p � 15; r � 10). The
results for testing samples A and B presented in Table 10.3 indicate the acceptance
ofH0. In retrospect, this conclusion is supported by the observation, well–known in
the space–physics community, that M–I disturbances tend to be weaker in summer
months. Our test thus shows that it is reasonable to assume that the effect of sub-
storms on low–latitude currents is approximately the same in first and second quarter
of 2001, but changes in the third quarter (possibly due to weaker substorms).

10.7 Asymptotic theory

We now list he assumptions under which the tests presented in this chapter are valid
and present selected asymptotic results. They focus on the simplest case of scalar
responses and equal variances, only Theorem 10.4 pertains to functional responses,
and is stated for illustration. The asymptotic techniques used in the scalar equal vari-
ances case can be extended to the other cases, but the notation becomes more com-
plex, as explained in Section 10.3. The results presented here do not follow from
the existing multivariate theory because the regression errors are not independent
and include projections on the “left over” FPC’s vpC1; vpC2; : : : ; urC1; urC2; : : :,
etc. Theorems 10.2 and 10.4 are of particular interest, as they state the exact asymp-
totic distribution of the LSE’s in a multivariate regression obtained by projecting a
functional regression.

We state the assumptions on the sample .Xi ; Yi /; 1 � i � N . The assumptions
on .X�i ; Y �i /; 1 � i � M are the same. The two samples are assumed independent.
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Assumption 10.1. The observations fXng are iid mean zero random functions in
L2.Œ0; 1�/ satisfying

EkXnk4 D E

�Z
X2n.t/dt

�2
< 1:

For the linear model with scalar responses, we formulate the following assump-
tion.

Assumption 10.2. The scalar responses Yi satisfy

Yi D
Z
 .s/Xi .s/ds C "i ;

with iid mean zero errors "i satisfying E"4i < 1; and  2 L2.Œ0; 1�/. The errors "i
and the regressors Xi are independent.

In the case of functional responses, we define an analogous assumption.

Assumption 10.3. The functional responses Yi 2 L2.Œ0; 1�/ satisfy

Yi .t/ D
Z
 .t; s/Xi .s/ds C "i .t/;

with iid mean zero errors "i satisfying

Ek"nk4 D E

�Z
"2n.t/dt

�2
< 1;

and  2 L2.Œ0; 1� � Œ0; 1�/. The errors "i and the regressors Xi are independent.

Since the following simple lemma is used repeatedly in the proofs, it is stated
first for ease of reference.

Lemma 10.1. SupposeX is a mean zero random element ofL2 satisfyingEkXk2 <
1. Then

EŒhvi ; Xi ˝vj ; X ˛� D �iıij ;

where ıij is Kronecker’s delta.

Theorem 10.1. Suppose Assumptions 10.1, 10.2 and condition (2.12) hold. Then,

O� D �
XTX

��1
XTY

a:s:! �; as N ! 1;

where �T D .�1; : : : ; �p/ and
a:s:! refers to almost sure convergence.

Proof. To analyze the behavior of O�, let us start by considering

.XTX/.i; j / D
NX
kD1

hvi ; Xki ˝vj ; Xk˛ :
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Since the Xi are iid, by the strong law of large numbers

1

N
.XTX/.i; j /

a:s:! E.hvi ; X1i
˝
vj ; X1

˛
/; as N ! 1:

From Lemma 10.1 we have that E.hvi ; X1i
˝
vj ; X1

˛
/ D �iıij : Therefore

N�1.XTX/ converges almost surely to a p � p diagonal matrix whose diagonal
entries are the eigenvalues of C .

Turning to XTY, using (10.4), observe

XTY.i/ D
NX
jD1

˝
vi ; Xj

˛
Yj D

NX
jD1

˝
vi ; Xj

˛ pX
kD1

�k
˝
vk ; Xj

˛C NX
jD1

"0j
˝
vi ; Xj

˛
:

Applying again the strong law of large numbers and Lemma 10.1again, we obtain,
as N ! 1,

N�1
NX
jD1

˝
vi ; Xj

˛ pX
kD1

�k
˝
vk ; Xj

˛ a:s:! E
pX
kD1

�k hvi ; X1i hvk; X1i D �i�iıij :

Lastly, we will show that, as N ! 1, N�1PN
jD1 "0j

˝
vi ; Xj

˛ a:s:! 0: Recalling the
definition of "0i , (10.4), we have

N�1
NX
jD1

"0j
˝
vi ; Xj

˛ D N�1
NX
jD1

"j
˝
vi ; Xj

˛CN�1
NX
jD1

1X
kDpC1

�k
˝
vk ; Xj

˛ ˝
vi ; Xj

˛
:

Since f"ig and fXig are independent, by the strong law of large numbers and
Assumption 10.2

N�1
NX
jD1

"j
˝
vi ; Xj

˛ a:s:! 0:

Similarly, using Lemma 10.1 and noting that i � p, we get

N�1
NX
jD1

1X
kDpC1

�k
˝
vk; Xj

˛ ˝
vi ; Xj

˛ a:s:! E
1X

kDpC1
�k hvk ; X1i hvi ; X1i D 0: ut

Theorem 10.2. Suppose Assumptions 10.1, 10.2 and condition (2.12) hold. Then,
as N ! 1, p

N. O� ��/ d! N.0;˙p/;

where N.0;˙p/ is a multivariate normal random vector with mean 0 and covari-
ance matrix˙p defined by (10.10) and (10.11).

Proof. By the definition of O� (10.6),

p
N. O� ��/ D p

N

�

XTX
��1

XTY ��
�
:
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Defining "0T D ."01; : : : ; "0N /, the above reduces to
p
N. O� � �/ D �

N�1XTX
��1

N�1=2XT "0:

By Lemma 10.1, N�1XTX converges almost surely to a diagonal matrix whose
diagonal elements are the first p eigenvalues of the covariance operator of the fXig.
Therefore we need only focus on the behavior of N�1=2XT "0 and use Slutsky’s
Theorem to obtain the claimed limiting distribution. Considering the i th coordinate
of N�1=2XT "0 we have

.N�1=2XT "0/.i/ D N�1=2
NX
jD1

˝
vi ; Xj

˛
"0j ; 1 � i � p: (10.19)

By Assumption 10.2 the above is a summation of iid random variables. Since each
coordinate of N�1=2XT "0 is given by such a sum, Assumption 10.2 implies that
XT "0 can be expressed as a sum of iid random vectors. We can apply the multivariate
central limit theorem to obtain the claimed multivariate normal limiting distribution
if we can show that each entry of the covariance matrix is finite. Therefore we spend
the rest of the proof deriving the form for˙p and showing that its entries are finite.
Using the definition of "0i , we obtain

N�1=2
NX
jD1

˝
vi ; Xj

˛
"0j

D N�1=2
0@ NX
jD1

˝
vi ; Xj

˛
"j C

NX
jD1

˝
vi ; Xj

˛ 1X
kDpC1

�k
˝
vk; Xj

˛1A :
Because the fXj g are independent, both sums (with respect to j ) are sums of inde-
pendent and identically distributed random variables. Furthermore, since f"j g are
independent of all other terms, we also have that the two sums above are uncorre-
lated. Therefore it follows that

var

0@N�1=2
0@ NX
jD1

˝
vi ; Xj

˛
"j C

NX
jD1

˝
vi ; Xj

˛ 1X
kDpC1

�k
˝
vk ; Xj

˛1A1A
D var .hvi ; X1i "1/C var

0@hvi ; X1i
1X

kDpC1
�k hvk ; X1i

1A : (10.20)

Considering the first term of (10.20), we have by the independence of X1 and "1
and Lemma 10.1 that

var.hvi ; X1i "1/ D �i	
2 < 1:

Turning to the second term of (10.20), we have by Lemma 10.1

var

24hvi ; X1i
1X

kDpC1
�k hvk ; X1i

35 D E

24hvi ; X1i
1X

kDpC1
�k hvk; X1i

352 :
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Applying the Cauchy-Schwarz inequality it follows that

E

24hvi ; X1i
1X

kDpC1
�k hvk ; X1i

352

�

0B@E Œhvi ; X1i�4 E

24 1X
kDpC1

�k hvk ; X1i
354
1CA
1=2

:

As a consequence of Assumption 10.1, we obtain that

E Œhvi ; X1i�4 < 1:

Using the Cauchy-Schwarz inequality again we have

E

24 1X
kDpC1

�k hvk; X1i
354 � E

24 1X
kDpC1

�2k

1X
sDpC1

hvs ; X1i2
352 :

Therefore we can infer that

E

24hvi ; X1i
1X

kDpC1
�k hvk; X1i

352

�
0@ 1X
kDpC1

�2k

1A
0B@E Œhvi ; X1i�4 E

24 1X
sDpC1

hvs ; X1i2
352
1CA
1=2

:

Using Assumption 10.2 and Bessel’s Inequality we obtain that

1X
kDpC1

�2k � k k2 < 1:

Similarly, using Assumption 10.1 and Bessel’s Inequality we have that

E

0@ 1X
sDpC1

hvs; X1i2
1A2 � EkX1k4 < 1:

Combining the above with Assumption 10.1 we conclude

E

24hvi ; X1i
1X

kDpC1
�k hvk ; X1i

352 < 1: (10.21)
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and it follows that the diagonal elements of ˙p are given

˙p.i; i/ D ��1i 	2 C ��2i var

0@hvi ; X1i
1X

kDpC1
�k hvk ; X1i

1A ; i D 1; : : : ; p:

Next we examine the joint behavior of the coordinates. Combining (10.21) with
the Cauchy-Schwarz inequality we have

cov
�
.XT "0/.i/; .XT "0/.j /

�
< 1 i D 1; : : : ; p and j D 1; : : : ; p:

Therefore to finish the proof we need only derive the form for the off diagonal terms
of ˙p . Using (10.19), Assumption 10.2, and Lemma 10.1, it is easy to verify that
for i ¤ j

cov
�
.XT "0/.i/; .XT "0/.j /

� D E..XT "0/.i/.XT "0/.j //

D E

0@ NX
qD1

˝
vi ; Xq

˛ 1X
kDpC1

�k
˝
vk; Xq

˛ NX
sD1

˝
vj ; Xs

˛ 1X
kDpC1

�k hvk ; Xsi
1A

D
NX
qD1

E

0B@˝vi ; Xq˛ ˝vj ; Xq˛
0@ 1X
kDpC1

�k
˝
vk; Xq

˛1A2
1CA

D NE

0B@hvi ; X1i
˝
vj ; X1

˛ 0@ 1X
kDpC1

�k hvk ; X1i
1A2
1CA :

Therefore it follows that the off diagonal terms of ˙p are given by

˙p.i; j / D ��1i ��1j E

0B@hvi ; X1i
˝
vj ; X1

˛ 0@ 1X
kDpC1

�k hvk ; X1i
1A2
1CA ; i ¤ j;

which concludes the proof. ut
Theorem 10.3. Suppose Assumptions 10.1, 10.2 and conditions (2.12), (10.3)

(10.7), (10.8) hold. Suppose further that p is so large that� ¤ ��. Then�p
P! 1,

as N ! 1.

Proof. We start by expanding�p as

�p D N.1C �/�1. O� � O��/T˙�1
p . O� � O��/

D N.1C �/�1. O� �� � O�� C ��/T˙�1
p . O� � �� O�� C ��/

CN.1C �/�1.�� ��/T˙�1
p .� ���/

C 2N.1C �/�1.� ���/T˙�1
p . O� � � � O�� C ��/:
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Therefore we need only consider each term above. From Theorem 10.2 it follows
that

N.1C �/�1. O� �� � O�� C ��/T˙�1
p . O�� � � O�� C ��/ D OP .1/:

and
2N.1C �/�1.� ���/T˙�1

p . O� � � � O�� C ��/ D OP .
p
N/:

The last term we need to consider is

N.1C �/�1.� � ��/T˙�1
p .�� ��/:

Since˙�1
p is positive definite it follows that

.�� ��/T˙�1
p .� ���/ > 0;

and we have
N.1C �/�1.� � ��/T˙�1

p .� ���/ ! 1:

Furthermore when we divide the above by
p
N we get

N 1=2.1C �/�1.� � ��/T˙�1
p .� ���/ ! 1:

ThereforeN.1C �/�1.����/T˙�1
p .����/ dominates all the other terms in the

limit and the theorem follows. ut
Theorem 10.4. Suppose that Assumptions 10.1, 10.3 and conditions (2.12), (10.7),
(10.3) and (10.15) hold. Then for each fixed p � 1 and r � 1, we have

N 1=2. O�v � �v/
d! N

�
0;˙ " ˝ 
 �1 C E

�
�1 ˝ .
 �1�2
 �1/

��
where Ir is the r � r identity matrix, and

�1.j; t/ D
0@ 1X
sDpC1

�sj hvs ; X1i
1A0@ 1X

xDpC1
�xt hvx ; X1i

1A ; (10.22)

and
�2.i; q/ D hvi ; X1i

˝
vq; X1

˛
: (10.23)

Proof. The asymptotic normality follows from an application of the multivariate
CLT. The derivation of the exact form of the asymptotic variance involves lengthy
technical manipulations, and is omitted to conserve space. ut



Chapter 11
Tests for error correlation in the functional
linear model

In this chapter, we consider two tests for error correlation in the fully functional
linear model, which we call Methods I and II They complement the tools described
in Section 8.6 and the graphical goodness of fit checks used in Chapter 9. To con-
struct the test statistics, finite dimensional residuals are computed in two different
ways, and then their autocorrelations are suitably defined. From these autocorre-
lation matrices, two quadratic forms are constructed whose limiting distribution
are chi–squared with known numbers of degrees of freedom (different for the two
forms). The test statistics can be relatively easily computed using the R package
fda.

The remainder of the chapter is organized as follows. Section 11.2 develops the
setting for the least squares estimation needed define the residuals used in Method I.
After these preliminaries, both tests are described in Section 11.3. Their finite sam-
ple performance is evaluated in Section 11.4 through a simulation study, and further
examined in Section 11.5 by applying both methods to magnetometer and finan-
cial data. The asymptotic justifications is presented in Section 11.6. This chapter is
based on the work of Gabrys et al. (2010).

11.1 Motivation and background

For any statistical model, it is important to evaluate its suitability for particular data.
For the functional linear model, the methodology of Chiou and Müller (2007), which
we use in data examples in Chapters 9 and 10, is very useful. It is equally impor-
tant to verify model assumptions. An important assumption on the model errors
in all functional linear models of Chapter 8 is that these errors are independent
and identically distributed. In this chapter, we study two tests aimed at detecting
serial correlation in the error functions "n.t/ in the fully functional model (8.1).
The methodology of Chiou and Müller (2007) was not designed to detect error cor-
relation, and can leave it undetected. Figure 11.1 shows diagnostic plots of Chiou

191
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Fig. 11.1 Diagnostic plots of Chiou and Müller (2007) for a synthetic data set simulated according
to model (8.1) in which the errors "n follow the functional autoregressive model of Chapter 13.

and Müller (2007) obtained for synthetic data that follow a functional linear model
with highly correlated errors. These plots exhibit almost ideal football shapes. It is
equally easy to construct examples in which our methodology fails to detect depar-
tures from model (8.1), but the graphs of Chiou and Müller (2007) immediately
show it. The simplest such example is given by Yn.t/ D X2n.t/ C "n.t/ with iid
"n, see Figure 9.4. Thus, the methods we study in this chapter are complimentary
tools designed to test the validity of specification (8.1) with iid errors against the
alternative of correlation in the errors.

As in the multivariate regression, error correlation affects various variance esti-
mates, and, consequently, confidence regions and distributions of test statistics.
In particular, prediction based on Least Squares estimation is no longer optimal.
To illustrate these issues, it is enough to consider the scalar regression model
yi D ˇ0 C ˇ1xi C "i ; i D 1; 2; : : : N; with fixed values xi . We focus on inference
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for the slope coefficient ˇ1, whose least squares estimator is

Ǒ
1 D

NX
iD1
.xi � NxN /.yi � NyN /

NX
iD1
.xi � NxN /2

:

By default, software packages estimate the standard error of Ǒ
1 by the square root

of the estimated variance

cVar. Ǒ
1/ D O	2

NX
iD1
.xi � NxN /2

; (11.1)

where O	2 is the sample variance of the residuals

O"i D yi � Ǒ
0 � Ǒ

1xi : (11.2)

To understand the issues involved, it is useful to look closer at the derivation of
(11.1). Set

bi D xi � NxN
NX
iD1
.xi � NxN /2

:

Then

VarŒ Ǒ
1� D Var

"
NX
iD1

bi .yi � NyN /
#

D
NX

i;jD1
bibjCov.yi � NyN ; yj � NyN /:

Since the xi are fixed, we obtain

VarŒ Ǒ
1� D

NX
i;jD1

bibjCov."i � N"N ; "j � N"N /: (11.3)

If the "i are uncorrelated, all off–diagonal terms in (11.3) can be neglected, and
we arrive at the estimator (11.1). However, if the "i are correlated, the off–diagonal
terms in (11.3) contribute to the variance of Ǒ

1.
To show how large the bias in the estimation of VarŒ Ǒ

1� via (11.1) can be, we
consider the following setting:

yi D 2xi C "i ; xi D i=N; i D 1; 2; : : : ; N; N D 100;

where the errors "i follows an AR(1) process

"i D '"i�1 C wi ; wi 	 i id N.0; 1/:
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Table 11.1 Approximate ratios of VarŒ Ǒ1� to EcVar. Ǒ1/ as a function of the autoregressive coef-
ficient '.

' 0.0 0.1 0.3 0.5 0.7 0.9
V=A 1.00 1.23 1.89 3.01 5.76 19.56

We generated R D 10;000 such regressions, for each of them we computed Ǒ
1,

and then found the sample variance, VR of theR numbers Ǒ
1; VR is close to VarŒ Ǒ

1�.
For each simulated regression, we also computed the estimate (11.1), and found the
averageAR of theseR estimates;AR is close to the expected variance estimate when
formula (11.1) is used. Table 11.1 displays the ratios VR=AR for selected values of
'. We see that if the errors "i are positively correlated, the estimate of the variance
of Ǒ

1 produced by a standard procedure may be far too small. Consequently, the
confidence intervals will be too narrow, and the empirical size of hypothesis tests on
ˇ1 will be too small.

Analogous variance and size distortions will occur in the the functional setting.
Few asymptotic inferential procedures procedures for the functional linear model
have been developed so far, but the use of the residual bootstrap is common. If the
errors are dependent, using their standard bootstrap distribution will lead to prob-
lems fully analogous to those illustrated above in the scalar setting. Testing for error
correlation is thus an important initial step before further work with a functional
linear model is undertaken.

The two methods we study start with two ways of defining the residuals. Method
I uses projections of all curves on the functional principal components of the regres-
sors Xn, and so is closer to the standard regression in that one common basis is
used. Method II uses two bases: the eigenfunctions of the covariance operators of
the regressors and of the responses. The complexity of the requisite asymptotic the-
ory is due to the fact that in order to construct a computable test statistic, finite
dimensional objects reflecting the relevant properties of the infinite dimensional
unobservable errors "n.t/must be constructed. In the standard regression setting, the
explanatory variables live in a finite dimensional Euclidean space with a fixed (stan-
dard) basis, and the residuals reflect the effect of parameter estimation (cf. (11.2)).
In the functional setting, before any estimation can be undertaken, the dimension of
the data must be reduced, typically by projecting on an “optimal” finite dimensional
subspace. This projection operation introduces an error. The “optimal subspace”
must be estimated, and this introduces another error. Finally, estimation of the ker-
nel  .�; �/, conditional on the optimal subspace, introduces still another error. Our
asymptotic approach focuses on the impact of these errors. We do not consider the
dimensions of the optimal projection spaces growing to infinity with the sample
size. Such an asymptotic analysis is much more complex. In a simpler setting of
testing the equality of covariance operators, discussed in Chapter 5, it is developed
by Panaretos et al. (2010).
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11.2 Least squares estimation

This section explains the three steps, discussed in Section 11.1, involved in the
construction of the residuals in the setting of model (8.1). The idea is that the
curves are represented by their coordinates with respect to the FPC’s of the Xn,
e.g. Ynk D hYn; vki is the projection of the nth response onto the kth largest FPC.
A formal linear model for these coordinates is constructed and estimated by least
squares. This formal model does not however satisfy the usual assumptions due to
the effect of the projection of infinite dimensional curves on a finite dimensional
subspace.

Since the vk form a basis in L2.Œ0; 1�/, the products vi .t/vj .s/ form a basis in
L2.Œ0; 1� � Œ0; 1�/. Thus, if  .�; �/ is a Hilbert–Schmidt kernel, then

 .t; s/ D
1X

i;jD1
 ij vi .t/vj .s/; (11.4)

where  ij D RR
 .t; s/vi .t/vj .s/dt ds. Therefore,Z

 .t; s/Xn.s/ds D
1X

i;jD1
 ij vi .t/

˝
Xn; vj

˛
:

Hence, for any 1 � k � p, we have

Ynk D
pX
jD1

 kj �nj C enk C �nk ; (11.5)

where
Ynk D hYn; vki ; �nj D ˝

Xn; vj
˛
; enk D h"n; vki ;

and where

�nk D
1X

jDpC1
 kj

˝
Xn; vj

˛
:

We combine the errors enk and �nk by setting

ınk D enk C �nk :

Note that the ınk are no longer iid.
Setting

Xn D Œ�n1; : : : ; �np�
T Yn D ŒYn1; : : : ; Ynp�

T ; ın D Œın1; : : : ; ınp�
T ;

 D Œ 11; : : : ;  1p ;  21; : : : ;  2p : : : ;  p1; : : : ;  pp�
T ;

we rewrite (11.5) as

Yn D Zn C ın; n D 1; 2; : : : ; N;
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where each Zn is a p � p2 matrix

Zn D

26664
XTn 0

T
p � � � 0Tp

0Tp XTn � � � 0Tp
:::

:::
:::

:::

0Tp 0Tp � � � XTn

37775
with 0p D Œ0; : : : ; 0�T :

Finally, defining the Np � 1 vectors Y and ı and the Np � p2 matrix Z by

Y D

26664
Y1
Y2
:::

YN

37775 ; ı D

26664
ı1
ı2
:::

ıN

37775 ; Z D

26664
Z1
Z2
:::

ZN

37775 ;
we obtain the following linear model

Y D Z C ı: (11.6)

Note that (11.6) is not a standard linear model. Firstly, the design matrix Z is
random. Secondly, Z and ı are not independent. The error term ı in (11.6) consists
of two parts: the projections of the "n, and the remainder of an infinite sum. Thus,
while (11.6) looks like the standard linear model, the existing asymptotic results do
not apply to it, and a new asymptotic analysis involving the interplay of the various
approximation errors is needed. Representation (11.6) leads to the formal “least
squares estimator” for  is

O D .ZTZ/�1ZTY D  C .ZTZ/�1ZT ı: (11.7)

which cannot be computed because the vk must be replaced by the Ovk . Projecting
onto the Ovk , we are “estimating” the random vectore D Œ Oc1 11 Oc1; : : : ; Oc1 1p Ocp; : : : ; Ocp p1 Oc1; : : : ; Ocp pp Ocp�T : (11.8)

with the “estimator” e ^ D . OZT OZ/�1 OZT OY
obtained by replacing the vk by the Ovk in (11.7). It will be convenient to associate
this vector of dimension p2 with the p � p matrix

e�^p D

26664
Q 1̂1 Q 1̂2 � � � Q 1̂pQ 2̂1 Q 2̂2 � � � Q 2̂p
:::

:::
:::

:::
Q p̂1 Q p̂2 � � � Q p̂p

37775 : (11.9)

In Section 11.7, we will use Proposition 11.1, which can be conveniently stated
here because we have just introduced the required notation. It holds under the
assumptions listed in Section 11.6, and the following additional assumption.
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Assumption 11.1. The coefficients  ij of the kernel  .�; �/ satisfy
P1
i;jD1 j ij j <

1:

Proposition 11.1. If Assumptions (A1)–(A5) and 11.1 hold, then e ^ � e D
OP .N

�1=2/.

The proof of Proposition 11.1 is fairly technical and is developed in Aue et al.
(2010).

11.3 Description of the test procedures

We consider two test statistics, (11.14) and (11.17) which arise from two different
ways of defining finite dimensional vectors of residuals. Method I builds on the
ideas presented in Section 11.2, the residuals are derived using the estimator e ^
obtained by projecting both the Yn and the Xn on the Ovi , the functional principal
components of the regressors. Method II uses two projections; the Xn are projected
on the Ovi , but the Yn are projected on the Oui . Motivated by Lemma 8.1, in Method
II, we approximate  .�; �/ by

b pq.t; s/ D
qX
jD1

pX
iD1

O��1i O	ij Ouj .t/ Ovi .s/ O	ij D N�1
NX
nD1

hXn; Ovii
˝
Yn; Ouj

˛
:

(11.10)
Method I emphasizes the role of the regressors Xn, and is, in a very loose sense,
analogous to the plot of the residuals against the independent variable in a straight
line regression. Method II emphasizes the role of the responses, and is somewhat
analogous to the plot of the residuals against the fitted values. Both statistics have

the form
PH
hD1 OrT

h
Ȯ �1 Orh, where Orh are vectorized covariance matrices of appropri-

ately constructed residuals, and Ȯ is a suitably constructed matrix which approx-
imates the covariance matrix of the the Orh, which are asymptotically iid. As in all
procedures of this type, the P-values are computed for a range of values of H , typ-
ically H � 5 or H � 10. The main difficulty lies in deriving explicit formulas for
the Orh and Ȯ and showing that the test statistics converge to the �2 distribution.

We continue to use the notation

C.vk/ D �kvk ; Xn D
1X
iD1

�nivi ; �ni D hvi ; Xni I

� .uk/ D 
kuk ; Yn D
1X
jD1

�njuj ; �nj D ˝
uj ; Yn

˛
;

with the sample counterparts denoted by OC ; O�k; Ovk ; O�ni and O� ; O
k; Ouk ; O�nj .
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Method I. Recall the definition of the matrix e�^p (11.9) whose .i; j / entry approx-
imates Oci ij Ocj , and define also p � 1 vectors

OYn D Œ OYn1; OYn2; : : : ; OYnp�T ; OYnk D hYn; Ovki I
OXn D Œ O�n1; O�n2; : : : ; O�np �T ; O�nk D hXn; Ovki :

The fitted vectors are theneYn̂ D e�^p OXn; n D 1; 2; : : : ; N; (11.11)

and the residuals are Rn D OYn � eYn̂ . For 0 � h < N , define the sample autoco-
variance matrices of these residuals as

Vh D N�1
N�hX
nD1

RnRTnCh: (11.12)

Finally, by vec.Vh/ denote the column vectors of dimension p2 obtained by stack-
ing the columns of the matrices Vh on top of each other, starting from the left. Next,
define

e^nk D hYn; Ovki �
pX
jD1

Q ^kj
˝
Xn; Ovj

˛
;

bM0 D
"
1

N

NX
nD1

e^nke
^
nk0 ; 1 � k; k0 � p

#
and bM D bM0 ˝ bM0: (11.13)

With this notation in place, we can define the test statistic

QN̂ D N

HX
hD1

Œvec.Vh/�
T bM�1vec.Vh/: (11.14)

Properties of the Kronecker product, ˝, give simplified formulae for QN̂ . SincebM�1 D bM�1
0 ˝ bM�1

0 (see Horn and Johnson (1991) p. 244), Problem 25 on p. 252
of Horn and Johnson (1991), yields

QN̂ D N

HX
hD1

tr
hbM�1

0 VTh bM�1
0 Vh

i
:

Denoting by Omf;h.i; j / and Omb;h.i; j / the .i; j / entries, respectively, of bM�1Vh
and VhbM�1, we can write according to the definition of the trace

QN̂ D N

HX
hD1

pX
i;jD1

Omf;h.i; j / Omb;h.i; j /:

The null hypothesis is rejected ifQN̂ exceeds an upper quantile of the chi–square
distribution with p2H degrees of freedom, see Theorem 11.2.
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Method II. Equation (8.1) can be rewritten as

1X
jD1

�njuj D
1X
iD1

�ni�.vi /C "n; (11.15)

where � is the Hilbert–Schmidt operator with kernel .�; �/. To define the residuals,
we replace the infinite sums in (11.15) by finite sums, the unobservable uj ; vi with
the Ouj ; Ovi , and � with the estimator b�pq with kernel (11.10). This leads to the
equation

qX
jD1

O�nj Ouj D
pX
iD1

O�nib�pq. Ovi /C Ón;

where, similarly as in Section 11.2, Ón contains the "n, the effect of replacing the
infinite sums with finite ones, and the effect of the estimation of the eigenfunctions.
Method II is based on the residuals defined by

Ón D Ón.p; q/ D
qX
jD1

O�nj Ouj �
pX
iD1

O�nib�pq. Ovi / (11.16)

Since b�pq. Ovi / D Pq
jD1 O��1i O	ij Ouj .t/; we see that

Ón D
qX
jD1

 
O�nj �

pX
iD1

O�ni O��1i O	ij
!

Ouj .t/:

Next define

OZnj WD ˝ Ouj ; Ón
˛ D O�nj �

pX
iD1

O�ni O��1i O	ij :

and denote by bCh the q � q autocovariance matrix with entries

Och.k; `/ D 1

N

N�hX
nD1


 OZnk � O�Z.k/
� 
 OZnCh;` � O�Z.`/

�
;

where O�Z.k/ D N�1PN
nD1 OZnk : Finally denote by Orf;h.i; j / and Orb;h.i; j / the

.i; j / entries, respectively, of bC�10 bCh and bChbC�10 .
The null hypothesis is rejected if the statistic

OQN D N

HX
hD1

qX
i;jD1

Orf;h.i; j /Orb;h.i; j / (11.17)

exceeds an upper quantile of the chi–square distribution with q2H degrees of free-
dom, see Theorem 11.3.
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Repeating the arguments in the discussion of Method I, we get the following
equivalent expressions for OQN :

OQN D N

HX
hD1

tr
hbC�10 bCThbC�10 bChi

and

OQN D N

HX
hD1

Œvec.bCh/�T ŒbC0 ˝bC0��1Œvec.bCh/�:
Both methods require the selection of p and q (Method I, only of p). We rec-

ommend the popular method based on the cumulative percentage of total variability
(CPV) calculated as

CPV.p/ D
Pp

kD1 O�kP1
kD1 O�k

;

with a corresponding formula for the q. The numbers of eigenfunctions,p and q, are
chosen as the smallest numbers,p and q, such thatCPV.p/ � 0:85 andCPV.q/ �
0:85. Other ways of selecting p (and q) are discussed in Section 3.3.

As p and q increase, the normalized statistics Q^
N and OQN converge to the stan-

dard normal distribution. The normal approximation works very well even for small
p or q (in the range 3-5 if N � 100) because the number of the degrees of freedom
increases like p2 or q2. For Method I, which turns out to be conservative in small
samples, the normal approximation brings the size closer to the nominal size. It also
improves the power of Method I by up to 10%

Finally, we note that the methods of this chapter are suitable for testing the cor-
relation of errors in model (8.1), but not in its special case known as the histori-
cal functional model of Malfait and Ramsay (2003). The latter is model (8.1) with
 .t; s/ D ˇ.s; t/IH .s; t/, where ˇ.�; �/ is an arbitrary Hilbert–Schmidt kernel and
IH .�; �/ is the indicator function of the set H D f.s; t/ W 0 � s � t � 1g. This
model requires that Yn.t/ depends only on the values of Yn.s/ for s � t , i.e. it
postulates temporal causality within the pairs of curves. Our approach cannot be
readily extended to test for error correlation in the historical model because it uses
series expansions of a general kernel  .t; s/, and the restriction that the kernel van-
ishes in the complement of H does not translate to any obvious restrictions on the
coefficients of these expansions.

11.4 A simulation study

In this section we report the results of a simulation study performed to asses the
empirical size and power of the proposed tests (Method I and Method II) for small
to moderate sample sizes. The sample size N ranges from 50 to 500. Both indepen-
dent and dependent regressor functionsXi are considered. The simulation runs have
1; 000 replications each. We used the R package fda.
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To model the "i underH0, independent trajectories of the Brownian bridge (BB)
and the Brownian motion (BM) are generated by transforming cumulative sums
of independent normal random variables computed on a grid of 1; 000 equispaced
points in Œ0; 1�. In order to evaluate the effect of non Gaussian errors on the finite
sample performance, we also simulated t5 and uniform BB and BM (BBt5 , BBU ,
BMt5 and BMU ) by generating t5 and uniform, instead of normal increments. We
also generate errors as

"n.t/ D
5X
jD1

#nj j
�1=2 sin.j�t/;

with the iid #nj distributed according to the normal, t5 and uniform distributions.
We report simulation results obtained using by converting the curves into func-

tional objects using B-splines with 20 basis functions. We also performed the sim-
ulations using the Fourier basis, and found that the results are not significantly dif-
ferent. To determine the number of principal components (p for Xn and q for Yn),
the cumulative percentage of total variability (CPV) is used as described in Section
11.3.

Three different kernel functions in (8.1) are considered: the Gaussian kernel
 .t; s/ D exp

˚
t2 C s2=2

�
; the Wiener kernel  .t; s/ D min.t; s/; and the

Parabolic kernel .t; s/ D �4 �.t C 1=2/2 C .s C 1=2/2
�C2: The regressorsXi in

(8.1) are either iid BB or BM, or follow the functional autoregressive FAR(1) model
studied in detail in Chapter 13. To simulate the FAR(1) Xn we used the kernels of
the three types above, but multiplied by a constantK , so that their Hilbert–Schmidt
norm is 0.5. Thus, the dependent regressors follow the model

Xn.t/ D K

Z
 X .t; s/Xn�1.s/ds C ˛n.t/;

where the ˛n are iid BB, BM, BBt5 , BBU , BMt5 or BMU .
We present here only a small selection of the results of our numerical experi-

ments, and state general conclusions based on all simulations.
Starting with the empirical size, Tables 11.2 and 11.3 show that Method I is more

conservative and slightly underestimates the nominal levels while Method II tends to
overestimate them. The empirical sizes do not depend on whether the BB or the BM
is used, nor whether regressors are iid or dependent, nor on the shape of the kernel.
These sizes do not deteriorate if errors are not Gaussian either. The empirical size
of both methods is thus robust to the form of the kernel, to moderate dependence in
the regressors, and to departures from normality in the errors.

For the power simulations, we consider model (8.1) with the Gaussian kernel and
"n 	 ARH.1/, i.e.

"n.t/ D K

Z
 ".t; s/"n�1.s/ds C un.t/;

where ".t; s/ is Gaussian, Wiener or Parabolic andK is chosen so that the Hilbert-
Schmidt norm of the above ARH(1) operator is 0:5 and the un.t/ are iid BB, BM,
BBt5 , BBU , BMt5 or BMU .
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Table 11.2 Empirical size for independent predictors: X D BB , " D BB ,  DGaussian,
Wiener and Parabolic, p D 3.

Method I Method II

Sample Gaussian Wiener Parabolic Gaussian Wiener Parabolic

size 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

H D 1
50 6.7 2.5 5.8 3.2 7.4 3.7 7.9 3.7 7.8 3.3 8.2 3.6

100 7.4 3.7 9.5 4.4 8.9 3.8 10.6 5.2 9.9 4.2 9.8 4.7
200 9.8 4.6 8.9 4.2 9.0 4.1 8.9 4.4 10.0 4.0 9.6 4.0
300 9.3 4.8 10.0 5.1 8.1 3.5 8.7 4.4 8.8 4.7 10.3 5.5
500 8.8 5.2 9.8 5.3 9.6 4.9 8.8 4.2 8.9 4.3 8.7 4.0

H D 3
50 4.3 2.5 5.6 2.1 6.0 3.4 10.7 5.3 8.9 4.7 9.0 4.2

100 7.6 3.7 6.9 3.6 6.4 3.3 9.9 4.5 10.2 4.0 10.1 4.9
200 8.7 4.6 6.4 3.2 8.0 3.3 9.6 4.8 10.1 5.1 9.6 5.0
300 7.6 3.5 9.5 4.2 9.5 4.8 11.0 5.1 8.9 4.0 8.1 4.6
500 9.8 4.6 9.1 3.9 9.2 4.9 11.1 6.8 9.1 4.4 10.0 5.1

H D 5
50 2.6 0.9 3.5 1.1 4.1 1.4 10.4 5.7 11.2 5.7 10.0 5.1

100 6.5 3.7 5.9 3.0 4.8 1.9 11.3 5.3 10.5 5.2 8.9 4.6
200 8.5 4.4 7.5 3.7 7.4 3.3 11.3 5.7 9.7 4.5 9.7 4.4
300 7.6 4.0 9.9 4.7 7.6 2.8 9.4 4.9 9.8 5.1 10.6 5.5
500 10.1 4.6 9.8 4.4 7.9 3.6 12.1 6.8 9.7 4.7 10.4 5.8

Typical power results are shown in Table 11.4. Just as for size, power is not
affected by the dependence of the regressors. As expected from the results for the
empirical size, power is uniformly higher for method II, but this difference is visible
only for N < 200 (in our numerical experiments). The power is highest forH D 1,
especially for smaller samples, because the errors follow the ARH(1) process.

11.5 Application to space physics and high–frequency financial
data

We now illustrate the application of the tests on functional data sets arising in space
physics and finance.

Application to Magnetometer data. We continue the study of the association
between the auroral (high latitude) electrical currents and the currents flowing at
mid– and low latitudes. This problem was introduced in Section 9.4. Maslova et
al. (2010b) provide extensive references to the relevant space physics literature. The
problem was cast into the setting of the functional linear model (8.1) in which theXn
are centered high-latitude records and Yn are centered mid- or low-latitude magne-
tometer records. We consider two settings 1) consecutive days, 2) non-consecutive
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Table 11.3 Empirical size for dependent predictors: X � ARH.1/ with the BB innovations and
 X DGaussian, Wiener and Parabolic,  DGaussian, " D BB , p D 3.

Method I Method II

Sample Gaussian Wiener Parabolic Gaussian Wiener Parabolic

size 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

H D 1
50 8.4 3.9 5.9 2.1 7.3 2.9 9.2 4.6 7.2 2.7 8.6 3.8

100 8.9 4.4 8.8 3.7 8.4 3.7 10.4 4.6 10.2 4.9 9.9 4.8
200 10.2 4.7 9.7 4.6 10.1 4.7 9.5 4.8 8.9 4.0 9.8 5.2
300 9.2 4.9 8.9 4.4 8.6 4.6 10.1 4.1 8.5 3.4 12.0 5.3
500 10.5 5.2 9.3 4.5 9.0 4.7 9.0 4.2 9.5 4.8 11.5 5.6

H D 3
50 4.4 2.2 5.3 2.9 5.5 2.8 8.1 4.1 10.7 4.5 10.1 4.0

100 6.6 3.1 6.0 2.7 7.0 2.9 10.7 5.4 9.1 4.9 9.9 4.5
200 7.8 3.1 8.5 4.1 8.9 3.9 11.9 6.2 8.5 4.0 7.7 2.9
300 8.2 4.8 8.6 3.9 9.4 4.8 11.9 5.2 8.8 4.4 9.3 5.2
500 11.4 5.3 10.3 5.7 9.1 4.3 10.6 5.4 9.9 5.1 9.9 4.9

H D 5
50 4.2 1.8 3.2 1.5 4.0 1.9 9.9 5.2 11.1 6.6 11.9 6.7

100 7.2 3.2 4.9 2.4 5.2 2.1 10.5 5.5 10.2 5.5 11.2 6.0
200 7.6 2.8 8.1 3.7 8.8 4.4 11.4 4.6 10.3 4.6 11.6 7.3
300 8.3 4.2 8.3 3.4 7.3 3.9 10.7 5.5 9.3 5.2 9.7 4.7
500 10.7 5.8 10.4 4.9 7.9 4.2 9.0 4.1 9.2 4.0 10.4 5.3

days on which disturbances known as substorms occur. For consecutive days, we
expect the rejection of the null hypothesis as there is a visible dependence of the
responses from one day to the next, see the bottom panel of Figure 11.2. The low
latitude curves, like those measured at Honolulu, exhibit changes on scales of sev-
eral days. The high latitude curves exhibit much shorter dependence essentially con-
fined to one day. This is because the auroral electrojects change on a scale of about
4 hours. In setting 2, the answer is less clear: the substorm days are chronologically
arranged, but substorms may be separated by several days, and after each substorm
the auroral current system resets itself to a quieter state.

To apply the tests, we converted the data to functional objects using 20 spline
basis functions, and computed the EFPC’s Ovk and Ouj . For low latitude magnetome-
ter data, 2 or 3 FPC’s are needed to explain 87�89, or 92�94, percent of variability
while for high latitude stations to explain 88�91 percent of variability we need 8�9
FPC’s.

Setting 1 (consecutive days): We applied both methods to pairs .Xn; Yn/ in which
theXn are daily records at College, Alaska, and the Yn are the corresponding records
at six equatorial stations. Ten such pairs are shown in Figure 11.2. The samples con-
sisted of all days in 2001, and of about 90 days corresponding to the four seasons.
For all six stations and for the whole year the P–values were smaller than 10�12.
For the four seasons, all p-values, except two, were smaller than 2%. The higher
P–values for the samples restricted to 90 days, are likely due to a smaller seasonal
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Table 11.4 Method I: Empirical power for dependent predictor functions: X � ARH.1/ and
" � ARH.1/ with the BB innovations,  " D  X D Gaussian, Winer and Parabolic,
 DGaussian, p D 3.

Sample Gaussian Wiener Parabolic

size 10% 5% 10% 5% 10% 5%

H D 1
50 79.2 68.6 68.5 54.0 62.3 47.3
100 99.9 99.6 98.6 96.7 97.7 96.0
200 100 100 100 100 100 100
300 100 100 100 100 100 100
500 100 100 100 100 100 100

H D 3
50 53.8 40.7 45.4 32.8 40.0 29.0
100 98.0 95.7 93.6 89.5 87.5 81.3
200 100 100 100 99.9 100 99.8
300 100 100 100 100 100 100
500 100 100 100 100 100 100

H D 5
50 41.2 27.9 31.7 20.8 25.4 15.6
100 95.1 90.3 84.4 74.9 78.2 68.1
200 100 100 100 99.8 99.9 99.3
300 100 100 100 100 100 100
500 100 100 100 100 100 100

effect (the structure of the M-I system in the northern hemisphere changes with sea-
son). We conclude that it is not appropriate to use model (8.1) with iid errors to
study the interaction of high– and low latitude currents when the data are derived
from consecutive days.

Setting 2 (substorm days): We now focus on two samples studied in Maslova
et al. (2010b). They are derived from 37 days on which isolated substorms were
recorded at College, Alaska (CMO). A substorm is classified as an isolated sub-
storm, if it is followed by 2 quiet days. There were only 37 isolated substorms in
2001, data for 10 such days are shown in Figure 11.3. The first sample consists of
37 pairs .Xn; Yn/, whereXn is the curve of the nth isolated storm recorded at CMO,
and Yn is the curve recorded on the same UT day at Honolulu, Hawaii, (HON). The
second sample is constructed in the same way, except that Yn is the curve recorded at
Boulder, Colorado (BOU). The Boulder observatory is located in geomagnetic mid-
latitude, i.e. roughly half way between the magnetic north pole and the magnetic
equator. Honolulu is located very close to the magnetic equator.

The p-values for both methods and the two samples are listed in Table 11.5.
For Honolulu, both tests indicate the suitability of model (8.1) with iid errors. For
Boulder, the picture is less clear. The acceptance by Method I may be due to the
small sample size (N D 37). The simulations in Section 11.4 show that for N D
50 this method has the power of about 50% at the nominal level of 5%. On the
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Fig. 11.2 Magnetometer data on 10 consecutive days (separated by vertical dashed lines) recorded
at College, Alaska (CMO) and Honolulu, Hawaii, (HON).

other hand, Method II has the tendency to overreject. The sample with the Boulder
records as responses confirms the general behavior of the two methods observed
in Section 11.4, and emphasizes that it is useful to apply both of them to obtain
more reliable conclusions. From the space physics perspective, midlatitude records
are very difficult to interpret because they combine features of high latitude events
(exceptionally strong auroras have been seen as far south as Virginia) and those of
low latitude and field aligned currents.

We also applied the tests to samples in which the regressors are curves on days
on which different types of substorms (according to a space physics classification)
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Fig. 11.3 Magnetometer data on 10 chronologically arranged isolated substorm days recorded at
College, Alaska (CMO), Honolulu, Hawaii, (HON) and Boulder, Colorado (BOU).

Table 11.5 Isolated substorms data. P-values in percent.

Response
Method HON BOU

I 9.80 26.3
II 6.57 1.15

occurred. The broad conclusion remains that for substorm days, the errors in model
(8.1) can be assumed iid if the period under consideration is not longer than a few
months. For longer periods, seasonal trends apparently cause differences in distri-
bution (possibly also of the Xn).

Application to intraday returns. Perhaps the best known application of linear
regression to financial data is the celebrated Capital Asset Pricing Model (CAMP),
see e.g. Chapter 5 of Campbell et al. (1997). In its simplest form, it is defined by

rn D ˛ C ˇr .I /n C "n;

where

rn D 100.lnPn � lnPn�1/ � 100
Pn � Pn�1
Pn�1
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is the return, in percent, over a unit of time on a specific asset, e.g. a stock of a
corporation, and r .I /n is the analogously defined return on a relevant market index.
The unit of time can be can be day, month or year.

In this section we work with intra–daily price data, which are known to have
properties quite different than those of daily or monthly closing prices, see e.g.
Chapter 5 of Tsay (2005); Guillaume et al. (1997) and Andersen and Bollerslev
(1997a, 1997b) also offer interesting perspectives. For these data, Pn.tj / is the price
on day n at tick tj (time of trade); we do not discuss issues related to the bid–ask
spread, which are not relevant to what follows. For such data, it is not appropriate to
define returns by looking at price movements between the ticks because that would
lead to very noisy trajectories for which the methods based on the FPC’s are not
appropriate (Johnstone and Lu (2009) explain why principal components cannot be
meaningfully estimated for noisy data). Instead, we adopt the following definition.

Definition 11.1. Suppose Pn.tj /; n D 1; : : : ; N; j D 1; : : : ; m, is the price of a
financial asses at time tj on day n. We call the functions

rn.tj / D 100ŒlnPn.tj / � lnPn.t1/�; j D 2; : : : ; m; n D 1; : : : ; N;

the intra–day cumulative returns.

Figure 11.4 shows intra-day cumulative returns on 10 consecutive days for the
Standard & Poor’s 100 index and the Exxon Mobil corporation. These returns have
an appearance amenable to smoothing via FPC’s.

We propose an extension of the CAPM to such return by postulating that

rn.t/ D ˛.t/C
Z
ˇ.t; s/r .I /n .s/ds C "n.t/; t 2 Œ0; 1�; (11.18)

where the interval Œ0; 1� is the rescaled trading period (in our examples, 9:30 to 16:00
EST). We refer to model (11.18) as the functional CAPM (FCAPM). As far as we
know, this model has not been considered in the financial literature, but just as for
the classical CAPM, it is designed to evaluate the extent to which intraday market
returns determine the intraday returns on a specific asset. It is not our goal in this
example to systematically estimate the parameters in (11.18) and compare them for
various assets and markets, we merely want to use the methods developed in this
paper to see if this model can be assumed to hold for some well–known assets. With
this goal in mind, we considered FCAPM for S&P 100 and its major component, the
Exxon Mobil Corporation (currently it contributes 6:78% to this index). The price
processes over the period of about 8 years are shown in Figure 11.5. The functional
observations are however not these processes, but the cumulative intra–daily returns,
examples of which are shown in Figure 11.4.

After some initial data cleaning and preprocessing steps, we could compute the
p-values for any period within the time stretch shown in Figure 11.5. The p-values
for calendar years, the sample size N is equal to about 250, are reported in Table
11.6. In this example, both methods lead to the same conclusions, which match the
well–known macroeconomic background. The tests do not indicate departures from



208 11 Tests for error correlation in the functional linear model

0 1000 2000 3000 4000

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

min

S
P

 r
et

ur
ns

0 1000 2000 3000 4000

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

min

X
O

M
 r

et
ur

ns

Fig. 11.4 Intra-day cumulative returns on 10 consecutive days for the Standard & Poor’s 100 index
(SP) and the Exxon–Mobil corporation (XOM).

the FCAMP model, except in 2002, the year between September 11 attacks and the
invasion of Iraq, and in 2006 and 2007, the years preceding the collapse of 2008
in which oil prices were growing at a much faster rate than then the rest of the
economy.

In the above examples we tested the correlation of errors in model (8.1), but not
in the historical functional linear model defined at the end of Section 11.3. This
is justified because the magnetometer data are obtained at locations with different
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Fig. 11.5 Share prices of the Standard & Poor’s 100 index (SP) and the Exxon–Mobil corporation
(XOM). Dashed lines separate years.

Table 11.6 P–values, in percent, for the FCAPM (11.18) in which the regressors are the intra–
daily cumulative returns on the Standard & Poor’s 100 index, and the responses are such returns
on the Exxon–Mobil stock.

Year Method I Method II

2000 46.30 55.65
2001 43.23 56.25
2002 0.72 0.59
2003 22.99 27.19
2004 83.05 68.52
2005 21.45 23.67
2006 2.91 3.04
2007 0.78 0.72

local times, and for space physics applications the dependence between the shapes
of the daily curves is of importance. Temporal causality for financial data is often
not assumed, as asset values reflect both historical returns and expectations of future
market conditions.
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11.6 Asymptotic theory

The exact asymptotic �2 distributions are obtained only under Assumption 11.2
which, in particular, requires that theXn be iid. Under Assumption (A1)–(A5), these
�2 distributions provide only approximations to the true limit distributions. The
approximations are however very good, as the simulations in Section 11.4 show;
size and power for dependent Xn are the same as for iid Xn, within the standard
error. Thus, to understand the asymptotic properties of the tests, we first consider
their behavior under Assumption 11.2. We begin the presentation of the asymptotic
theory by stating the required assumptions.

Assumption 11.2. The errors "n are independent identically distributed mean zero
elements of L2 satisfying Ek"nk4 < 1. The regressors Xn are independent identi-
cally distributed mean zero elements ofL2 satisfying EkXnk4 < 1. The sequences
fXng and f"ng are independent.

For data collected sequentially over time, the regressorsXn need not be indepen-
dent. We formalize the notion of dependence in functional observations using the
notion of L4–m–approximability studied in detail in Chapter 16. For ease of ref-
erence, we repeat some conditions contained in Assumption 11.2; the weak depen-
dence of the fXng is quantified in Conditions (A2) and (A5).

(A1) The "n are independent, identically distributed with E"n D 0 and Ek"nk4 <
1.

(A2) Each Xn admits the representation

Xn D g.˛n; ˛n�1; : : :/;

in which the ˛k are independent, identically distributed elements of a measur-
able space S , and g W S1 ! L2 is a measurable function.

(A3) The sequences f"ng and f˛ng are independent.
(A4) EXn D 0, EkXnk4 < 1.
(A5) There are c0 > 0 and � > 2 such that


EkXn � X .k/n k4
�1=4 � c0k

�� ;

where
X .k/n D g.˛n; ˛n�1; : : : ; ˛n�kC1; ˛.k/n�k ; ˛

.k/

n�k�1; : : :/;

and where the ˛.k/
`

are independent copies of ˛0.

Condition (A2) means that the sequence fXng admits a causal representation
known as a Bernoulli shift. It follows from (A2) that fXng is stationary and ergodic,
see Section 3.5 of Stout (1974) or Sections 24 and 36 of Billingsley (1995). The
structure of the function g.�/ is not important, it can be a linear or a highly nonlinear
function. What matters is that according to (A5), fXng is weakly dependent, as it can
be approximated with sequences of k–dependent variables, and the approximation
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improves as k increases. Several examples of functional sequences satisfying (A2),
(A4) and (A5) are given in Chapter 16.

To state the alternative, we must impose dependence conditions on the "n. We
use the same conditions that we imposed on the Xn, because then the asymptotic
arguments under HA can use the results derived for the Xn under H0. Specifically,
we introduce the following assumptions:

(B1) E"n D 0 and Ek"nk4 < 1.
(B2) Each "n admits the representation

"n D h.un; un�1; : : :/;

in which the uk are independent, identically distributed elements of a measur-
able space S , and h W S1 ! L2 is a measurable function. (B3) The sequences
fung and f˛ng are independent.

(B4) There are c0 > 0 and � > 2 such that

Ek"n � ".k/n k4

�1=4 � c0k
�� ;

where
".k/n D h.un; un�1; : : : ; un�kC1; u.k/n�k ; u

.k/

n�k�1; : : :/;

and where the u.k/
`

are independent copies of u0.

The tests introduced in Section 11.3 detect dependence which manifests itself in
a correlation between "n and "nCh for at least one h. Following Bosq (2000), we say
that "n and "nCh are uncorrelated if EŒh"n; xi h"nCh; yi� D 0 for all x; y 2 L2. If
fej g is any orthonormal basis in L2, this is equivalent to EŒh"n; eii

˝
"nCh; ej

˛
� D 0

for all i; j . The two methods introduced in Section 11.3 detect the alternatives with
ei D vi (Method I) and ei D ui (Method II). These methods test for correlation up
to lag H , and use the FPC vi ; i � p; and ui ; i � q.

With this background, we can state the null and alternative hypotheses as follows.

H0: Model (8.1) holds together with Assumptions (A1)–(A5).

The key assumption is (A1), i.e. the independence of the "n.

HA;I : Model (8.1) holds together with Assumptions, (A2), (A4), (A5), (B1)–(B4),
and EŒh"0; vi i

˝
"h; vj

˛
� ¤ 0 for some 1 � h � H and 1 � i; j � p.

HA;II : Model (8.1) holds together with Assumptions, (A2), (A4), (A5), (B1)–(B4),
and EŒh"0; ui i

˝
"h; uj

˛
� ¤ 0 for some 1 � h � H and 1 � i; j � q.

Note that the ui are well defined under the alternative, because (A2), (A4), (A5)
and (B1)–(B4) imply that the Yn form a stationary sequence.

For ease of reference, we state the following Theorem, which follows immedi-
ately from Theorem 16.2.

Theorem 11.1. If assumptions (A2), (A4), (A5) and (2.12) hold, then relations
(2.13) hold.
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Method I is based on the following theorem.

Theorem 11.2. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. Then
the statistics Q^

N converges to the �2–distribution with p2H degrees of freedom.

Method II is based on Theorem 11.3. It is analogous to Theorem 7.1, but the
observations are now replaced by residuals (11.16), so more delicate arguments are
required.

Theorem 11.3. Suppose Assumption 11.2 and condition (2.12) hold. Then statis-
tic (11.17) converges in distribution to a chi–squared random variable with q2H
degrees of freedom.

We now turn to the case of dependent regressors Xn. We focus on Method I.
Similar results can be developed to justify the use of Method II, except that the uj
will also be involved. The case of dependent regressors involves the p � p matrices
Dh with entries

Dh.i; j / D
1X

`DpC1

1X
kDpC1

ZZ
v`.s/eh.s; t/vk.t/ds dt; 1 � i; j � p;

where
eh.s; t/ D EŒX0.s/Xh.t/�:

Theorem 11.4. Suppose Assumptions (A1)–(A5), Assumption 11.1 and condition
(2.12) hold. Then, for any h > 0,

N�1=2Vh D N�1=2 � Oci OcjV �h .i; j /; 1 � i; j � p
�C RN;p.h/C oP .1/:

The matrices V�
h

D �
V �
h
.i; j /; 1 � i; j � p

�
; 1 � h � H; are jointly asymp-

totically normal. More precisely,

N�1=2 ˚vec.V�h �NDh/; 1 � h � H
� d! fZ1;Z2; : : : ;ZH g ;

where the p2–dimensional vectors Zh are iid normal, and coincide with the limits
of N�1=2vec.Vh/, if the Xn are independent.

For any r > 0, the terms RN;p.h/ satisfy,

lim
p!1 lim sup

N!1
P
˚ˇ̌̌̌

RN;p.h/
ˇ̌̌̌
> r

� D 0: (11.19)

Theorem 11.4 justifies using Method I for weakly dependent Xn, provided p is
so large that the first p FPC vk explain a large percentage of variance of the Xn. To
understand why, first notice that jDh.i; j /j � .�`�k/

1=2, and since k; ` > p, the
eigenvalues �`; �k are negligible, as for functional data sets encountered in practice
the graph of the �k approaches zero very rapidly. The exact form of RN;p.h/ is very
complex. If EŒX0.u/Xh.v/� D 0, the RN;p.h/ and the matrices Dh vanish. If the
Xn are dependent, these terms do not vanish, but are practically negligible because
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they all involve coefficients jk with at least one index greater than p multiplied by
factors of orderOP .N�1=2/. In (11.19), the limit of p increasing to infinity should
not be interpreted literally, but again merely indicates that p is so large that the first
p FPC’s vk explain a large percentage of variance of the Xn.

Our last theorem states conditions under which the test is consistent. The inter-
pretation of the limit as p ! 1 is the same as above. Theorem 11.5 states that for
such p and sufficiently large N the test will reject with large probability if "n and
"nCh are correlated in the subspace spanned by fvi ; 1 � i � pg.

Theorem 11.5. Suppose Assumptions (B1)–(B4), (A2), (A4), (A5), Assumption 11.1
and condition (2.12) hold. Then, for all R > 0,

lim
p!1 lim inf

N!1 P
˚
QN̂ > R

� D 1;

provided EŒh"0; vii
˝
"h; vj

˛
� ¤ 0; for some 1 � h � H and 1 � i; j � p.

To illustrate the arguments, we present in Section 11.7 the proof of Theorem 11.2.
The proof of Theorem 11.3 follows the general outline of the proof of Theorem 7.1.
The proof of Theorem 11.4 is very long, but the general idea is like that used in the
proof of Theorem 11.2. Similarly, the proof of Theorem 11.5 is a modification and
extension of the proof of Theorem 11.2.

11.7 Proof of Theorem 11.2

Relation (11.5) can be rewritten as

Yn D �pXn C ın; (11.20)

where

�p D

26664
 11  12 � � �  1p
 21  22 � � �  2p
:::

:::
:::

:::

 p1  p2 � � �  pp

37775 :
The vectors Yn;Xn; ın are defined in Section 11.2 as the projections on the FPC’s
v1; v2; : : : vp. Proposition 11.2 establishes an analog of (11.20) if these FPC’s are
replaced by the EFPC’s Ov1; Ov2; : : : Ovp . These replacement introduces additional
terms generically denoted with the letter 
 . First we prove Lemma 11.1 which leads
to a decomposition analogous to (11.5).

Lemma 11.1. If relation (16.39) holds with a Hilbert–Schmidt kernel  .�; �/, then

Yn.t/ D
Z 0@ pX

i;jD1
Oci ij Ocj Ovi .t/ Ovj .s/

1AXn.s/ds C�n.t/;
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where
�n.t/ D "n.t/C �n.t/C 
n.t/:

The terms �n.t/ and 
n.t/ are defined as follows:

�n.t/ D �n1.t/C �n2.t/I

�n1.t/ D
Z 0@ 1X

iDpC1

1X
jD1

 ij vi .t/vj .s/

1AXn.s/ds;
�n2.t/ D

Z 0@ pX
iD1

1X
jDpC1

 ij vi .t/vj .s/

1AXn.s/ds:

n.t/ D 
n1.t/C 
n2.t/I


n1.t/ D
Z pX

i;jD1
Oci ij Œ Ocivi .t/ � Ovi .t/�vj .s/Xn.s/ds;


n2.t/ D
Z pX

i;jD1
Oci ij Ocj Ovi .t/Œ Ocj vj .s/ � Ovj .s/�Xn.s/ds:

Proof of Lemma 11.1. Observe that by (11.4),Z
 .t; s/Xn.s/ds D

Z 0@ 1X
i;jD1

 ij vi .t/vj .s/

1AXn.s/ds
D
Z 0@ pX

i;jD1
 ij vi .t/vj .s/

1AXn.s/ds C ın.t/;

where �n.t/ D �n1.t/C �n2.t/: Thus model (16.39) can be written as

Yn.t/ D
Z 0@ pX

i;jD1
 ij vi .t/vj .s/

1AXn.s/ds C �n.t/C "n.t/

To take into account the effect of the estimation of the vk , we will use the decom-
position

 ij vi .t/vj .s/ D Oci ij Ocj . Ocivi .t//. Ocj vj .s//
D Oci ij Ocj Ovi .t/ Ovj .s/

C Oci ij Ocj Œ Ocivi .t/ � Ovi .t/� Ocj vj .s/
C Oci ij Ocj Ovi .t/Œ Ocj vj .s/ � Ovj .s/�;

which allows us to rewrite (16.39) as

Yn.t/ D
Z 0@ pX

i;jD1
Oci ij Ocj Ovi .t/ Ovj .s/

1AXn.s/ds C�n.t/;

where �n.t/ D "n.t/C �n.t/C 
n.t/ and 
n.t/ D 
n1.t/C 
n2.t/: ut

mailto:n.t/C�n.t/C
n.t/:Theterms�n.t/and
n.t/aredefinedasfollows:�n.t/D�n1.t/C�n2.t/I�n1.t/DZ0@1XiDpC1ProofUncorrected1XjD1ijvi.t/vj.s/1AXn.s/d
mailto:n.t/C�n.t/C
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To state Proposition 11.2, we introduce the vectors

OYn D Œ OYn1; OYn2; : : : ; OYnp�T ; OYnk D hYn; Ovki I
OXn D Œ O�n1; O�n2; : : : ; O�np�T ; O�nk D hXn; Ovki I

O�n D Œ O�n1; O�n2; : : : ; O�np�T ; O�nk D h�n; Ovki :
Projecting relation (16.39) onto Ovk , we obtain by Lemma 11.1,

hYn; Ovki D
pX
jD1

Ock kj Ocj
˝
Xn; Ovj

˛C h�n; Ovki ; 1 � k � p;

from which the following proposition follows.

Proposition 11.2. If relation (16.39) holds with a Hilbert–Schmidt kernel  .�; �/,
then

OYn D e�p OXn C O�n; n D 1; 2; : : : N;

where e�p is the p � p matrix with entries Ock kj Ocj ; k; j D 1; 2; : : : p.

To find the asymptotic distribution of the matrices Vh, we establish several lem-
mas. Each of them removes terms which are asymptotically negligible, and in the
process the leading terms are identified. Our first lemma shows that, asymptotically,
in the definition of Vh, the residuals

Rn D OYn �eYn̂ D .e�p � e�^p/ OXn C O�n (11.21)

can be replaced by the “errors” O�n. The essential element of the proof is the relatione�p � e�^p D OP .N
�1=2/ stated in Proposition 11.1.

Lemma 11.2. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. Then,
for any fixed h > 0, ˇ̌̌̌

ˇ
ˇ̌̌̌
ˇVh �N�1

N�hX
nD1

O�n O�TnCh
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ D OP .N

�1/:

Proof of Lemma 11.2. By (11.21) and (11.12),

Vh D N�1
N�hX
nD1

Œ.e�p � e�^p/ OXn C O�n�Œ.e� p � e�^p/ OXnCh C O�nCh�T :

Denoting, OCh D N�1PN�h
nD1 OXn OXT

nCh; we thus obtain

Vh D .e�p � e�^p/ OCh.e�p � e�^p/T C .e�p � e�^p/N�1
N�hX
nD1

OXn O�TnCh

CN�1
N�hX
nD1

O�n OXTnCh.e�p � e�^p/CN�1
N�hX
nD1

O�n O�TnCh:
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By the CLT for h–dependent vectors, OCh D OP .1/, so the first term satisfies

.e�p � e�^p/ OCh.e�p � e�^p/T D OP .N
�1=2N�1=2/ D OP .N

�1/:

To deal with the remaining three terms, we use the decomposition of Lemma
11.1. It is enough to bound the coordinates of each of the resulting terms. Since
�n D "n C �n1 C �n2 C 
n1 C 
n2, we need to establish bounds for 2 � 5 D 10

terms, but these bounds fall only to a few categories, so we will only deal with some
typical cases.

Starting with the decomposition of OXn O�TnCh, observe that

N� 1
2

N�hX
nD1

hXn; Ovi i
˝
"nCh; Ovj

˛ D
ZZ  

N�1=2
N�hX
nD1

Xn.t/"nCh.s/
!

Ovi .t/ Ovj .s/dtds:

The terms Xn.t/"nCh.s/ are iid elements of the Hilbert space L2.Œ0; 1� � Œ0; 1�/, so
by the CLT in a Hilbert space, see Chapter 2,

ZZ  
N�1=2

N�hX
nD1

Xn.t/"nCh.s/dt ds
!2

D OP .1/:

Since the Ovj have unit norm,
RR
. Ovi .t/ Ovj .s//2dt ds D 1: It therefore follows from

the Cauchy–Schwarz inequality that

N�hX
nD1

hXn; Ovi i
˝
"nCh; Ovj

˛ D OP .N
1=2/:

Thus, the "n contribute to .e�p � e�^p/N�1PN�h
nD1 OXn O�TnCh a term of the order

OP .N
�1=2N�1N 1=2/ D OP .N

�1/, as required.
We now turn to the contribution of the �n;1. As above, we have

N�1=2
N�hX
nD1

hXn; Ovi i
˝
�nCh;1; Ovj

˛
D
ZZ  

N�1=2
N�hX
nD1

Xn.t/�nCh;1.s/
!

Ovi .t/ Ovj .s/dt ds

D
ZZ 0@N�1=2

N�hX
nD1

Xn.t/

Z 0@ 1X
kDpC1

1X
`D1

 k`vk.s/v`.u/

1AXnCh.u/du
1A

� Ovi .t/ Ovj .s/dt ds
D
Z �ZZ

Nh.t; u/Rp.t; u/dt du

�
vk.s/ Ovj .s/ds;
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where

Nh.t; u/ D N�1=2
N�hX
nD1

Xn.t/XnCh.u/

and

Rp.t; u/ D
1X
`D1

1X
kDpC1

 k`v`.u/ Ovi .t/:

By the CLT for m–dependent elements in a Hilbert space, (follows e.g. from Theo-
rem 2.17 of Bosq (2000)),Nh.�; �/ is OP .1/ in L2.Œ0; 1� � Œ0; 1�/, soZZ

N 2
h .t; u/dt du D OP .1/:

A direct verification using Assumption 11.1 shows that alsoZZ
R2p.t; u/dt du D OP .1/:

Thus, by the Cauchy–Schwarz inequality, we obtain that

N�hX
nD1

hXn; Ovii
˝
�nCh;1; Ovj

˛ D OP .N
1=2/;

and this again implies that the �n1 make a contribution of the same order as the "n.
The same argument applies to the �n2.

We now turn to the contribution of the 
n1, the same argument applies to the 
n2.
Observe that, similarly as for the �n1,

N�1=2
N�hX
nD1

hXn; Ovii
˝

nCh;1; Ovj

˛
D
ZZ  

N�1=2
N�hX
nD1

Xn.t/
nCh;1.s/
!

Ovi .t/ Ovj .s/dt ds

D
Z 24ZZ Nh.t; u/

pX
k;`D1

Ock k`v`.u/ Ovi .t/dt du
35 Œ Ockvk.s/ � Ovk.s/� Ovj .s/ds

(11.22)

Clearly, ZZ 0@ pX
k;`D1

Ock k`v`.u/ Ovi .t/
1A2 dt du D OP .1/;

By Theorem 2.7, 	Z
Œ Ockvk.s/ � Ovk.s/�2ds


1=2
D OP .N

�1=2/: (11.23)
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We thus obtain

N�hX
nD1

hXn; Ovi i
˝

nCh;1; Ovj

˛ D OP .1/; (11.24)

so the contribution of 
n is smaller than that of "n and �n.
To summarize, we have proven that

.e�p � e�^p/N�1
N�hX
nD1

OXn O�TnCh D OP .N
�1/:

The termN�1PN�h
nD1 O�n OXT

nCh.e�p�e�^p/ can be dealt with in a fully analogous
way. ut

By Lemma 11.1, the errors O�n can be decomposed as follows

O�n D O"n C O�n C O�n;

with the coordinates obtained by projecting the functions "n; �n; 
n onto the EFPC’s
Ovj . For example,

O�n D Œh�n; Ov1i ; h�n; Ov2i ; : : : ;
˝
�n; Ovp

˛
�T :

Lemma 11.3 shows that the vectors O�n do not contribute to the asymptotic dis-
tribution of the Vh. This is essentially due to the fact that by Theorem 2.7, the
difference between Ovj and Ocj vj is of the orderOP .N�1=2/. For the same reason, in
the definition of Ǒ

n and O�n, the Ovj can be replaced by the Ocj vj , as stated in Lemma
11.4. Lemma 11.4 can be proven in a similar way as Lemma 11.3, so we present
only the proof of Lemma 11.3.

Lemma 11.3. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. Then,
for any fixed h > 0,

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇVh �N�1

N�hX
nD1

Œ O"n C O�n�Œ O"nCh C O�nCh�T
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ D OP .N

�1/:

Lemma 11.4. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. Then,
for any fixed h > 0,

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇVh �N�1

N�hX
nD1

Œ Q"n C Q�n�Œ Q"nCh C Q�nCh�T
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ D OP .N

�1/;
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where

Q"n D Œ Oc1 h"n; v1i ; Oc2 h"n; v2i ; : : : ; Ocp
˝
"n; vp

˛
�T

and

Q�n D Œ Oc1 h�n; v1i ; Oc2 h�n; v2i ; : : : ; Ocp
˝
�n; vp

˛
�T :

Proof of Lemma 11.3. In light of Lemma 11.2, we must show that the norm of
difference between

N�1
N�hX
nD1

Œ O"n C O�n�Œ O"n C O�n�T

and

N�1
N�hX
nD1

Œ O"n C O�n C O�n�Œ O"n C O�n C O�n�T

is OP .N�1/.
Writing O�n D O�n1C O�n2 and O�n D O�n1C O�n2, we see that this difference consists

of 20 terms which involve multiplication by O�n1 or O�n2. For example, analogously
to (11.22), the term involving "n and and 
nCh;1 has coordinates

N�1
N�hX
nD1

h"n; Ovi i
˝

nCh;1; Ovj

˛
D N�1=2

Z 24ZZ N";h.t; u/

pX
k;`D1

Ock k`v`.u/ Ovi .t/dt du
35

� Œ Ockvk.s/ � Ovk.s/� Ovj .s/ds;

where

N";h.t; u/ D N�1=2
N�hX
nD1

"n.t/XnCh.u/:

By the argument leading to (11.24) (in particular by (11.23)),

N�1
N�hX
nD1

h"n; Ovii
˝

nCh;1; Ovj

˛ D OP .N
�1/:

The other terms can be bounded using similar arguments. The key point is that
by (11.23), all these terms are N 1=2 times smaller than the other terms appearing in

the decomposition of N�1PN�h
nD1 O�n O�Tn . ut
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No more terms can be dropped. The asymptotic approximation to Vh thus
involves linear functionals of the following processes.

R
.1/

N;h
D N�1=2

NX
nD1

"n.t/"nCh.s/;

R
.2/

N;h
D N�1=2

NX
nD1

"n.t/XnCh.s/;

R
.3/

N;h
D N�1=2

NX
nD1

"nCh.t/Xn.s/;

R
.4/

N;h
D N�1=2

NX
nD1

Xn.t/XnCh.s/:

Lemma 11.5, which follows directly for the CLT in the space L2.Œ0; 1� � Œ0; 1�/

and the calculation of the covariances, summarizes the asymptotic behavior of the
processes R.i/

N;h
.

Lemma 11.5. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. Thenn
R
.i/

N;h
; 1 � i � 4; 1 � h � H

o
d!
n
�
.i/

h
; 1 � i � 4; 1 � h � H

o
;

where the � .i/
h

are L2.Œ0; 1�� Œ0; 1�/–valued jointly Gaussian process such that the

processes
n
�
.i/

h
; 1 � i � 4

o
are independent and identically distributed.

According to Lemmas 11.4 and 11.5, if

Oc1 D Oc2 D : : : D Ocp D 1; (11.25)

then

N 1=2 fVh; 1 � h � H g d! fTh; 1 � h � H g ;
where the Th; 1 � h � H; are independent identically distributed normal random
matrices. Their covariances can be computed using Lemma 11.1. After lengthy but
straightforward calculations, the following lemma is established

Lemma 11.6. Suppose Assumptions 11.2 and 11.1 and condition (2.12) hold. If
(11.25) holds, then for any fixed h > 0,

N Cov.Vh.k; `/;Vh.k
0; `0// ! a.k; `I k0; `0/;

where

a.k; `I k0; `0/
D r2.k; k

0/r2.`; `0/C r2.k; k
0/r1.`; `0/C r2.`; `

0/r1.k; k0/C r1.k; k
0/r1.`; `0/;
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with

r1.`; `
0/ D

1X
jDpC1

�j j̀ `0j

and

r2.k; k
0/ D

ZZ
EŒ"1.t/"1.s/�vk.t/vk0.s/dt ds:

While assumption (11.25) is needed to obtain the asymptotic distribution of the
autocovariance matrices Vh, we will now show that it is possible to construct a test
statistic which does not require assumption (11.25). The arguments presented below
use a heuristic derivation, and the approximate equalities are denoted with “�”. The
arguments could be formalized as in the proofs of Lemmas 11.3 and 11.4, but the
details are not presented to conserve space.

We estimate h"n; vki by

"^nk D hYn; Ovki �
pX
jD1

Q ^kj
˝
Xn; Ovj

˛
� Ock hYn; vki �

pX
jD1

Ock kj Ocj Ocj
˝
Xn; vj

˛

D Ock
0@hYn; vki �

pX
jD1

 kj
˝
Xn; vj

˛1A
D Ock

0@h"n; vki C
1X

jDpC1
 kj

˝
Xn; vj

˛1A :
By the strong law of large numbers

1

N

NX
nD1

0@h"n; vki C
1X

jDpC1
 kj

˝
Xn; vj

˛1A0@h"n; vk0i C
1X

jDpC1
 k0j

˝
Xn; vj

˛1A
a:s:! E

240@h"n; vki C
1X

jDpC1
 kj

˝
Xn; vj

˛1A0@h"n; vk0i C
1X

jDpC1
 k0j

˝
Xn; vj

˛1A35
D r1.k; k

0/C r2.k; k
0/:

Therefore, defining,

Oa.k; k0; `; `0/ D
 
1

N

NX
nD1

"^nk"
^
nk0

! 
1

N

NX
nD1

"^n`"
^
n`0

!
;

we see that
Oa.k; k0; `; `0/ � Ock Ock0 Oc` Oc`0a.k; k0; `; `0/: (11.26)



222 11 Tests for error correlation in the functional linear model

By Lemma 11.6, under (11.25), the asymptotic covariance matrix of
N 1=2vec.Vh/ is a p2 � p2 matrix

M D Œ A.i; j /; 1 � i; j � p � ;

where
A.i; j / D Œ a.`; i; k; j /; 1 � `; k � p � :

By (11.26), an estimator of M is

bM D
h bM.i; j /; 1 � i; j � p

i
;

where bM.i; j / D Œ Oa.`; i; k; j /; 1 � `; k � p � :

Direct verification shows that bM can be written in the form (11.13), which is conve-
nient for coding.

As seen from (11.26), it cannot be guaranteed that the matrix bM will be close
to the matrix M because of the unknown signs Oci . However, as will be seen in the
proof of Theorem 11.2, statistic (11.14) does not depend on these signs.

Proof of Theorem 11.2. By Lemmas 11.2 and 11.3,

vec.Vh/ D vec

 
N�1

N�hX
nD1

Œ Ǒ
n C O�n�Œ Ǒ

nCh C O�nCh�T
!

COP .N
�1/:

The arguments used in the proof of Lemma 11.2 show that

vec

 
N�1

N�hX
nD1

Œ Ǒ
n C O�n�Œ Ǒ

nCh C O�nCh�T
!

D ŒbC ˝bC� vec

 
N�1

N�hX
nD1

Œ"n C �n�Œ"nCh C �nCh�T
!

C oP .1/;

where the matrix bC is defined by

bC D

26664
Oc1 0 � � � 0
0 Oc2 � � � 0
:::
:::
:::

:::

0 0 � � � Ocp

37775 ;
and where

"n D Œh"n; v1i ; h"n; v2i ; : : : ;
˝
"n; vp

˛
�T I

�n D Œh�n; v1i ; h�n; v2i ; : : : ;
˝
�n; vp

˛
�T :
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Similar arguments also show thatbM D ŒbC ˝bC�MŒbC ˝bC�C oP .1/:

Since ŒbC ˝ bC�T ŒbC ˝ bC� is the p2 � p2 identity matrix, we obtain by Lemma 11.5
that

Q^
N D N

HX
hD1

(
vec

 
N�1

N�hX
nD1

Œ"n C �n�Œ"nCh C �nCh�T
!

M

"
vec

 
N�1

N�hX
nD1

Œ"n C �n�Œ"nCh C �nCh�T
!#T9=;C oP .1/:

In particular, we see that the asymptotic distribution ofQN̂ does not depend on the
signs Oc1; Oc2; : : : ; Ocp (the same argument shows that Q^

N itself does not depend on
these signs), so we may assume that they are all equal to 1. The claim then follows
form Lemmas 11.5 and 11.6. ut

There are relatively few papers dealing with goodness-of fit testing in the functional
linear model, see Section 8.6. We have often used the the methodology of Chiou and
Müller (2007) who emphasize the role of the functional residuals O"i .t/ D OYi .t/ �
Yi .t/, where the Yi .t/ are the response curves, and the OYi .t/ are the fitted curves,
and propose a number of graphical tools, akin to the usual residual plots. They also
propose a test statistic based on Cook’s distance, Cook (1977) or Cook and Weisberg
(1982), whose null distribution can be computed by randomizing a binning scheme.

In the context of scalar data, Cochrane and Orcutt (1949) drew attention to the
presence of serial correlation in the errors of models for economic time series, and
investigated the effect of this correlation by means of simulations. Their paper is
one of the first contributions advocating the use of simulation to study the behavior
of statistical procedures. In the absence of a computer, they used tables of uniformly
distributed random integers from 1 to 99 to construct a large number of tables similar
to Table 11.1, but for more complex regression and dependence settings.

Tests for serial correlation in the standard scalar linear regression were developed
by Durbin and Watson (1950, 1951, 1971), see also Chatfield (1998) and Section
10.4.4 of Seber and Lee (2003). Their statistics are functions of sample autocorre-
lations of the residuals, but their asymptotic distributions depend on the distribu-
tion of the regressors, and so various additional steps and rough approximations are
required, see Thiel and Nagar (1961) and Thiel (1965), among others. To overcome
these difficulties, Schmoyer (1994) proposed permutation tests based on quadratic
forms of the residuals.

Textbook treatments addressing correlation in regression errors are available in
Chapters 9 and 10 of Seber and Lee (2003), a good summary is given in Section

11.8 Bibliographical notes
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5.5 of Shumway and Stoffer (2006). The general idea is that when dependence in
errors is detected, it must be modeled, and inference must be suitably adjusted. The
relevant research is very extensive, so we mention only the influential papers of
Sacks and Ylvisaker (1966) and Rao and Griliches (1969). Opsomer et al. (2001)
and Xiao et al. (2003) consider a nonparametric regression Yt D m.Xt /C "t .

Several other variants of the Functional CAPM and their predictive power are
examined in Kokoszka and Zhang (2011).

As briefly discussed in Chapter 8, there are many possible departures from the
specification of a scalar regression model. In addition to error autocorrelation, one
may test the specification of the error distribution function or the parametric form
of the regression function. Koul (2002) provides an exhaustive theoretical treatment
of such issues.



Chapter 12
A test of significance in functional quadratic
regression

The functional quadratic model in which a scalar response, Yn, is paired with a
functional predictor,Xn.t/, is defined as

Yn D �C
Z
k.t/Xcn.t/ dt C

“
h.s; t/Xcn.s/X

c
n.t/ dt ds C "n; (12.1)

where Xcn.t/ D Xn.t/�E .Xn.t// is the centered predictor process. If h.s; t/ D 0,
then � D E.Yn/ and (12.1) reduces to the functional linear model

Yn D �C
Z
k.t/Xcn.t/ dt C "n: (12.2)

In this section we develop a test to determine if the use of a quadratic model is
justified when a simpler linear model could be used.

12.1 Testing procedure

To test the significance of the quadratic term in (12.1), we test the null hypothesis,

H0 W h.s; t/ D 0; (12.3)

against the alternative
HA W h.s; t/ ¤ 0:

It is clear that we can assume that h is symmetric, and we also impose the condi-
tion that the kernels are in L2:

h.s; t/ D h.t; s/ and
ZZ

h2.s; t/dt ds < 1; (12.4)Z
k2.t/dt < 1: (12.5)

225
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Thus we have the expansions

h.s; t/ D
1X
iD1

1X
jD1

ai;j vj .s/vi .t/

D
1X
iD1

ai;ivi .s/vi .t/C
1X
iD1

1X
jDiC1

ai;j
�
vj .s/vi .t/C vi .s/vj .t/

� (12.6)

and

k.t/ D
1X
iD1

bivi .t/: (12.7)

We estimate the mean, �X .t/, of the predictor process and the associated covari-
ance function, C.t; s/, with the corresponding empiricals

NX.t/ D 1

N

NX
nD1

Xn.t/

and

OC.t; s/ D 1

N

NX
nD1

�
Xn.t/ � NX.t/� �Xn.s/ � NX.s/� :

The eigenvalues and the corresponding eigenfunctions of OC.t; s/ are denoted by
O�1 � O�2 � � � � and Ov1; Ov2; : : : .

Note that throughout this chapter the arguments of functions are sometimes omit-
ted to make equations somewhat less cumbersome. Thus we use vj .t/ and vj inter-
changeably.

After projection the model is

Yn D �C
pX
iD1

bihXn � NX; Oci Ovi i

C
pX
iD1

pX
jDi

.2 � 1fi D j g/ai;j hXn � NX; Oci OviihXn � NX; Ocj Ovj i C "��n ;
(12.8)

where

"��n D "n C
1X

iDpC1
bihXcn ; vi i C

1X
iDpC1

1X
jDi

.2 � 1fi D j g/ai;j hXcn ; vi ihXcn ; vj i

C
pX
iD1

1X
jDpC1

2ai;j hXcn ; vi ihXcn; vj i C
pX
iD1

bihXcn ; vi � Oci Ovi i

C
pX
iD1

bi h NX � �X ; Oci Ovii �
pX
iD1

pX
jDi

.2 � 1fi D j g/ai;j

� �hXn � NX; Oci Ovi ihXn � NX; Ocj Ovj i � hXcn ; vi ihXcn ; vj i� :
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Then

Y D OZ
24 QA

QB
�

35C "��; (12.9)

where
Y D �

Y1; Y2; : : : ; YN
�T
;

QA D vech
�f Oci Ocj ai;j .2 � 1fi D j g/ ; 1 � i � j � pgT � ;

QB D � Oc1b1; Oc2b2; : : : ; Ocpbp
�T
;

"�� D �
"��1 ; "��2 ; : : : ; "��N

�T
;

and

OZ D

26664
ODT1 OFT1 1ODT2 OFT2 1
:::

:::
:::

ODTN OFTN 1

37775
with

ODn D vech
�fh Ovi ; Xn � NXih Ovj ; Xn � NXi; 1 � i � j � pgT � ;

OFn D �hXn � NX; Ov1i; hXn � NX; Ov2i; : : : ; hXn � NX; Ovpi�T :
We estimate QA, QB, and � using the least squares estimator:24 OA

OB
O�

35 D

 OZT OZ

��1 OZTY: (12.10)

To represent elements of OA and OB, we will use the notation that OA D vech.f Oai;j .2�
1fi D j g/; 1 � i � j � pgT / and OB D

h Ob1; Ob2; : : : ; Obp
iT

.

We expect, under H0, that OA will be close to zero since QA is zero. If H0 is not
correct, we expect the magnitude of OA to be relatively large. Let

OG D 1

N

NX
nD1

ODn ODTn ;

OM D 1

N

NX
nD1

ODn;

and

O�2 D 1

N

NX
nD1

O"2n;
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where

O"n D Yn � O� �
pX
iD1

ObihXn � NX; Ovi i

�
pX
iD1

pX
jDi

.2 � 1fi D j g/ Oai;j hXn � NX; Ovi ihXn � NX; Ovj i

are the residuals underH0. We reject the null hypothesis if

UN D N

O�2
OAT . OG � OM OMT / OA

is large. The main result of this paper is the asymptotic distribution of UN under the
null hypothesis. First, we discuss the assumptions needed to establish asymptotics
for UN :

Assumption 12.1. fXn.t/; n � 1g is a sequence of independent, identically dis-
tributed Gaussian processes.

Assumption 12.2.

E

�Z
X2n.t/ dt

�4
< 1:

Assumption 12.3. f"ng is a sequence of independent, identically distributed ran-
dom variables satisfying E"n D 0 and E"4n < 1,

and

Assumption 12.4. the sequences f"ng and fXn.t/g are independent.

The last condition is standard in functional data analysis. It implies that the eigen-
functions v1; v2; : : : ; vp are unique up to a sign.

Assumption 12.5.
�1 > �2 > � � � > �pC1:

Theorem 12.1. If H0, (12.5) and Assumptions 12.1–12.5 are satisfied, then

UN
D�! �2.r/;

where r D p.p C 1/=2 is the dimension of the vector OA.

The proof of Theorem 12.1 is given in Section 12.3.
Remark: By the Karhunen-Loève expansion, every centered, square integrable

process, Xcn.t/, can be written as

Xcn.t/ D
1X
`D1

�n;`'`.t/;
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where '` are orthonormal functions. Assumption 12.1 can be replaced with the
requirement that �n;1, �n;2, : : :, �n;p are independent withE�3

n;`
D 0 andE�n;` D 0

for all 1 � ` � p.
Our last result provides a simple condition for the consistency of the test based

on UN . Let A D vech.fai;j .2 � 1fi D j g/; 1 � i � j � pgT /, i.e. the first
r D p.p C 1/=2 coefficients in the expansion of h in (12.6).

Theorem 12.2. If (12.4), (12.5), Assumptions 12.1–12.5 are satisfied and A ¤ 0;
then we have that

UN
P�! 1:

The condition A ¤ 0 means that h is not the 0 function in the space spanned by
the functions vi .t/vj .s/; 1 � i; j � p.

12.2 Application to spectral data

In this section we apply our test to the Tecator data set available at http:
//lib.stat.cmu.edu/datasets/tecator. This data set is studied in Fer-
raty and Vieu (2006) Tecator Infratec food used 240 samples of finely chopped pure
meat with different fat contents. For each sample of meat, a 100 channel spectrum
of absorbances was recorded. These absorbances can be thought of as a discrete
approximation to the continuous record, Xn.t/. Also, for each sample of meat, the
fat content, Yn was measured by analytic chemistry.

The absorbance curve measured from the nth meat sample is given by Xn.t/ D
log10 .I0=I /, where t is the wavelength of the light, I0 is the intensity of the light
before passing through the meat sample, and I is the intensity of the light after it
passes through the meat sample. The Tecator Infratec food and feed analyzer mea-
sured absorbance at 100 different wavelengths between 850 and 1050 nanometers.
This gives the values of Xn.t/ on a discrete grid from which we can use cubic
splines to interpolate the values anywhere within the interval.

Yao and Müller (2010) proposed using a functional quadratic model to predict
the fat content, Yn, of a meat sample based on its absorbance spectrum, Xn.t/.
We are interested in determining whether the quadratic term in (12.1) is needed
by testing its significance for this data set. From the data, we calculate U240. The
p-value is then P

�
�2.r/ > U240

�
. The test statistic and hence the p-value are influ-

enced by the number of principal components that we choose to keep. If we select p
according to the advice of Ramsay and Silverman (2005), we will keep only p D 1

principal component because this explains more than 85% of the variation between
absorbance curves in the sample. Table 12.1 gives p-values obtained using p D 1, 2,
and 3 principal components, which strongly supports that the quadratic regression
provides a better model for the Tecator data.

Since Theorem 12.1 assumes that theXn’s are Gaussian, we now check the plau-
sibility of this assumption for the absorbance spectra. If the Xn’s are Gaussian
processes, then the projections hXn; vi i would be normally distributed. Using the

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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Table 12.1 p-values (in %) obtained by applying our testing procedure to the Tecator data set with
p D 1, 2, and 3 principal components.

p 1 2 3

p-value 1:25 13:15 0:00

Shapiro-Wilks test for normality, we conclude that the first projection, hXn; Ov1i, is
not normally distributed (p-valueD 3:15 � 10�7). The Box-Cox family of transfor-
mations is commonly employed to transform data to be more like the realizations of
a normal random variable:

f .X.t// D .X.t/C !2/
!1 � 1

!1
: (12.11)

We apply the Box-Cox transformation with !1 D �:0204 and !2 D �1:6539.
We can now verify the plausibility of the Gaussian assumption for the transformed
spectra by testing the first projection (p-valueD 0:38). If we now apply our test of
the significance of the quadratic term for the transformed data, we get a p-value
which is essentially zero using p D 1, 2, or 3 principal components. This strongly
supports that the quadratic regression provides a better model for the transformed
Tecator data.

12.3 Outline for the Proof of Theorem 12.1

We have from (12.9) and (12.10) that24 OA
OB
O�

35 D

 OZT OZ

��1 OZT
0@ OZ

24 QA
QB
�

35C "��
1A

D
24 QA

QB
�

35C

 OZT OZ

��1 OZT "��:
(12.12)

We also note that, under the null hypothesis, ai;j D 0 for all i and j and therefore
"��n reduces to

"��n D "n C
1X

iDpC1
bi hXcn ; vi i C

pX
iD1

bihXcn ; vi � Oci Ovi i C
pX
iD1

bih NX � �X ; Oci Ovi i:

To obtain the limiting distribution of
p
N OA, we need to consider the vectorp

N

 OZT OZ

��1 OZT "��. First, we need to show that0B@ OZT OZ
N

!
�

264�G� 0r�p M

0p�r � 0p�1
MT 01�p 1

375
1CA D oP .1/; (12.13)
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where � is an unobservable matrix of random signs, � D diag.�1; �2; : : : ; �p/,
M D E .Dn/, and G D E

�
DnDTn

�
, where

Dn D vech
�fhvi ; Xcnihvj ; Xcni; 1 � i � j � pgT � :

We see from (12.13) that the vector
p
N

 OZT OZ

��1 OZT "�� has the same limiting

distribution as

1p
N

NX
nD1

"��n

2664
�
�
G � MMT

��1
� 0r�p �� �G � MMT

��1
�M

0p�r ��1 0p�1
�MT

�
G � MMT

��1
01�p 1C MT

�
G � MMT

��1
M

3775
24 ODn

OFn
1

35 :
(12.14)

Since we are only interested in
p
N OA we need only consider the first r D p.p C

1/=2 elements of the vector in (12.14). One can show that these are given by

1p
N

NX
nD1

"��n
h
�
�
G � MMT

��1
� 0r�p �� �G � MMT

��1
�M

i24 ODn
OFn
1

35
D 1p

N

NX
nD1

"��n


�
�
G � MMT

��1
� ODn � � �G � MMT

��1
�M

�

D 1p
N

NX
nD1

"��n �
�
G � MMT

��1
�

 ODn � M

�
:

Applying Theorem 2.1, one can show that

1p
N

NX
nD1

"��n
�
G � MMT

��1
�

 ODn � M

� D�! N


0; �2

�
G � MMT

��1�
;

where

�2 D Var

0@"n C
1X

iDpC1
bihXcn ; vii

C
1X

iDpC1

1X
jDi

.2 � 1fi D j g/ai;j hXcn ; vi ihXcn ; vj i

C
pX
iD1

1X
jDpC1

2ai;j hXcn ; vi ihXcn ; vj i
1A :

The next step is to verify that O�2 � �2 D oP .1/. As a consequence of (12.13), we

see that

 OG � OM OMT

�
� �

�
G � MMT

�
� D oP .1/, completing the proof of the

theorem. The details of this proof are given in Horváth and Reeder (2011b) and
Reeder (2011).
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12.4 Outline for the Proof of Theorem 12.2

We establish the weak law

OAT . OG � OM OMT / OA P�! AT .G � MMT /A; (12.15)

where A D vech
�fai;j .2 � 1fi D j g/ ; 1 � i � j � pgT � is like the vector QA

except without the random signs.
The estimation of v1; : : : ; vp by Ov1; : : : ; Ovp causes only the introduction of the

random signs Oc1; : : : ; Ocp . As in the proof of Theorem 12.1 one can verify that

OA � �A
P�! 0:

UnderH0 orHA, one can establish that

OG � �G� D oP .1/

and
OM OMT � �MMT � D oP .1/;

completing the proof of (12.15).
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Dependent functional data



Chapter 13
Functional autoregressive model

This chapter studies the functional autoregressive (FAR) process which has found
many applications. The theory of autoregressive and more general linear processes
in Hilbert and Banach spaces is developed in the monograph of Bosq (2000), on
which Sections 13.1 and 13.2 are based. We present only a few selected results
which provide an introduction to the central ideas, and are needed in the sequel.
Section 13.3 is devoted to prediction by means of the FAR process; some theoretical
background is given in Section 13.5.

We say that a sequence fXn; �1 < n < 1g of mean zero elements of L2

follows a functional AR(1) model if

Xn D �.Xn�1/C "n; (13.1)

where � 2 L and f"n; �1 < n < 1g is a sequence of iid mean zero errors in L2

satisfying Ek"nk2 < 1.
The above definition defines a somewhat narrower class of processes than that

considered by Bosq (2000) who does not assume that the "n are iid, but rather that
they are uncorrelated in an appropriate Hilbert space sense, see his Definitions 3.1
and 3.2. The theory of estimation for the process (13.1) is however developed only
under the assumption that the errors are iid.

To lighten the notation, we set in this chapter, k � kL D k � k.

13.1 Existence

A scalar AR(1) process fXn; �1 < n < 1g is said to be causal if it admits the
expansion

Xn D
1X
jD0

cj "n�j :

The Xn depends then only on the present and past errors, but not on the future
ones. If j j < 1, scalar AR(1) equations have a unique solution of this form, in

235
OI 10.1007/978-1-4614- _13, 
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which cj D  j . A detailed treatment of these issues is presented in Chapter 3 of
Brockwell and Davis (1991).

Our goal in this section is to establish a condition analogous to j j < 1 for
functional AR(1) equations (13.1). We begin with the following lemma:

Lemma 13.1. For any � 2 L, the following two conditions are equivalent:

C0: There exists an integer j0 such that k� j0 k < 1.
C1: There exist a > 0 and 0 < b < 1 such that for every j � 0, k� j k � abj .

Proof. Since C1 clearly implies C0, we must only show that C0 implies C1.
Write j D j0q C r for some q � 0 and 0 � r < j0. Therefore,

k� j k D k� j0q� rk � k� j0 kqk� rk:
If k� j0 k D 0, then C1 holds for any a > 0 and 0 < b < 1, so we assume in the
following that k� j0 k > 0: Since q > j=j0 � 1 and k� j0 k < 1, we obtain

k� j k � k� j0 kj=j0�1k� rk �


k� j0k1=j0

�j k� j0 k�1 max
0�r<j0

k� rk;

so C1 holds with a D k� j0 k�1 max0�r<j0
k� rk; b D k� j0 k1=j0 : ut

Note that condition C0 is weaker than the condition k�k < 1; in the scalar case
these two conditions are clearly equivalent. Nevertheless, C1 is a sufficiently strong
condition to ensure the convergence of the series

P
j �

j ."n�j /, and the existence of
a stationary causal solution to functional AR(1) equations, as stated in the following
theorem.

Theorem 13.1. If condition C0 holds, then there is a unique strictly stationary
causal solution to (13.1). This solution is given by

Xn D
1X
jD0

� j ."n�j /: (13.2)

The series converges almost surely, and in the L2 norm, i.e.

E

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌Xn �

mX
jD0

� j ."n�j /

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

! 0; as m ! 1:

Proof. To establish the existence of the limit of the infinite series, we work with
the space of square integrable random functions in L2 D L2.Œ0; 1�/, see Sec-
tion 2.3. If the random functions are defined on a probability space ˝ , then
we work with L2.˝;L2.Œ0; 1�//, which is a Hilbert space with the inner prod-
uct E hX; Y i ; X; Y 2 L2.Œ0; 1�/. Thus, to show that the sequence X .m/n DPm
jD0 � j ."n�j / has a limit in L2.˝;L2.Œ0; 1�//, it suffices to check that it is a

Cauchy sequence in m for every fixed n.
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Observe that by Lemma 2.1,

E

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ m

0X
jDm

� j ."n�j /

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

D
m0X
jDm

m0X
kDm

E
D
� j ."n�j /; �k."n�k/

E

D
m0X
jDm

Ek� j ."n�j /k2:

Note that E� j ."n�j / D 0 because the expectation commutes with bounded opera-
tors. Therefore, by Lemma 13.1,

E

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ m

0X
jDm

� j ."n�j /

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

�
0@ m0X
jDm

k� j k2
1AEk"0k2 � Ek"0k2a2

m0X
jDm

b2j :

Thus X .m/n converges in L2.˝;L2.Œ0; 1�//.
To show the a.s. convergence, it is enough to verify that

1X
jD0

k� j ."n�j /k < 1 a:s:

This holds because by condition C1

E

0@ 1X
jD0

k� j kk"n�j k
1A2 �

1X
j;kD0

k� j kk�kkEk"0k2

� Ek"0k2
0@ 1X
jD0

abj

1A2 < 1;

and so
P1
jD0 k� j kk"n�j k < 1 a.s.

The series (13.2) is clearly strictly stationary, and it satisfies equation (13.1).
Suppose fX 0ng is another strictly stationary causal sequence satisfying (13.1). Then,
iterating (13.1), we obtain, for anym � 1,

X 0n D
mX
jD1

� j ."n�j /C �mC1.X 0n�mC1/:

Therefore,

EkX 0n � X .m/n k � k�mC1kEkX 0n�mC1k � EkX0kabmC1:

Thus X 0n is equal a.s. to the limit of X .m/n i.e. to Xn. ut
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Example 13.1. As in Section 2.2, consider an integral Hilbert–Schmidt operator on
L2 defined by

�.x/.t/ D
Z
 .t; s/x.s/ds; x 2 L2; (13.3)

which satisfies ZZ
 2.t; s/dt ds < 1: (13.4)

Recall from section 2.2 that the left–hand side of (13.4) is equal to k�k2S . Since
k�k � k�kS , we see that (13.4) implies condition C0 of Lemma 13.1 with j0 D 1.

13.2 Estimation

This section is devoted to the estimation of the autoregressive operator � , but first
we state Theorem 13.2 on the convergence of the EFPC’s and the corresponding
eigenvalues, which states that the expected distances between the population and
the sample eigenelements are O.N�1=2/, just as for independent functional obser-
vations. Theorem 13.2 follows from Example 16.1, Theorem 16.2 and Lemma 13.1.

Theorem 13.2. Suppose the operator � in (13.1) satisfies condition C0 of Lemma
13.1, and the process fXng satisfies EkX0k4 < 1. If (16.12) holds, then, for each
1 � j � d , relations (2.13) hold.

We now turn to the estimation of the autoregressive operator � . It is instructive
to focus first on the univariate case Xn D  Xn�1 C "n, in which all quantities are
scalars. We assume that j j < 1, so that there is a stationary solution such that "n
is independent of Xn�1. Then, multiplying the AR(1) equation by Xn�1 and taking
the expectation, we obtain 
1 D  
0, where 
k D EŒXnXnCk� D Cov.Xn; XnCk/.
The autocovariances
k are estimated by the sample autocovariances O
k , so the usual
estimator of  is O D O
1= O
0. This estimator is optimal in many ways, see Chap-
ter 8 of Brockwell and Davis (1991), and the approach outlined above, known as
the Yule–Walker estimation, works for higher order and multivariate autoregressive
processes. To apply this technique to the functional model, note that by (13.1), under
condition C0 of Lemma 13.1,

E ŒhXn; xiXn�1� D E Œh�.Xn�1/; xiXn�1� ; x 2 L2:
Define the lag–1 autocovariance operator by

C1.x/ D EŒhXn; xiXnC1�
and denote with superscript �T the adjoint operator. Then, C T1 D C�T because, by
a direct verification, C T1 D E ŒhXn; xiXn�1�, i.e.

C1 D �C: (13.5)
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The above identity is analogous to the scalar case, so we would like to obtain an
estimate of � by using a finite sample version of the relation � D C1C

�1. The
operator C does not however have a bounded inverse on the whole of H . To see
it, recall that C admits representation (2.4), which implies that C�1.C.x// D x,
where

C�1.y/ D
1X
jD1

��1j
˝
y; vj

˛
vj :

The operator C�1 is defined if all �j are positive. (If �1 � �2 � � � � � �p >

�pC1 D 0, then fXng is in the space spanned by
˚
v1; : : : ; vp

�
. On this subspace, we

can define C�1 by C�1.y/ D Pp
jD1 ��1j hy; vi i vi .) Since kC�1.vn/k D ��1n !

1, as n ! 1, it is unbounded. This makes it difficult to estimate the bounded
operator � using the relation � D C1C

�1. A practical solution is to use only the
first p most important EFPC’s Ovj , and to define

cICp.x/ D
pX
jD1

O��1j
˝
x; Ovj

˛ Ovj :

The operator cICp is defined on the whole of L2, and it is bounded if O�j > 0 for
j � p. By judiciously choosing p we find a balance between retaining the relevant
information in the sample, and the danger of working with the reciprocals of small
eigenvalues O�j . To derive a computable estimator of � , we use an empirical version
of (13.5). Since C1 is estimated by

bC1.x/ D 1

N � 1
N�1X
kD1

hXk; xiXkC1;

we obtain, for any x 2 L2,

bC1cICp.x/ D bC1
0@ pX
jD1

O��1j
˝
x; Ovj

˛ Ovj
1A

D 1

N � 1

N�1X
kD1

*
Xk;

pX
jD1

O��1j
˝
x; Ovj

˛ Ovj
+
XkC1

D 1

N � 1

N�1X
kD1

pX
jD1

O��1j
˝
x; Ovj

˛ ˝
Xk; Ovj

˛
XkC1:

The estimator bC1cICp can be used in principle, but typically an additional smooth-
ing step is introduced by using the approximation XkC1 � Pp

iD1 hXkC1; Ovi i Ovi .
This leads to the estimator

b�p.x/ D 1

N � 1

N�1X
kD1

pX
jD1

pX
iD1

O��1j
˝
x; Ovj

˛ ˝
Xk; Ovj

˛ hXkC1; Ovii Ovi : (13.6)
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To establish the consistency of this estimator, it must be assumed that p D pN
is a function of the sample size N . Theorem 8.7 of Bosq (2000) then establishes
sufficient conditions for kb�p��k to tend to zero. They are technical, but, intuitively,
they mean that the �j and the distances between them cannot tend to zero too fast.

The estimator (13.6) is a kernel operator with the kernel

O p.t; s/ D 1

N � 1

N�1X
kD1

pX
jD1

pX
iD1

O��1j
˝
Xk; Ovj

˛ hXkC1; Ovi i Ovj .s/ Ovi .t/: (13.7)

This is verified by noting that

b�p.x/.t/ D
Z

O p.t; s/x.s/ds:

All quantities at the right–hand side of (13.7) are available as output of the R
function pca.fd, so this estimator is very easy to compute. Kokoszka and Zhang
(2010) conducted a number of numerical experiments to determine how close the
estimated surface O p.t; s/ is to the surface  .t; s/ used to simulate an FAR(1) pro-
cess. Broadly speaking, for N � 100, the discrepancies are very large, both in
magnitude and in shape. This is illustrated in Figure 13.1, which shows the Gaus-
sian kernel  .t; s/ D ˛ exp

˚�.t2 C s2/=2
�
, with ˛ chosen so that the Hilbert–

Schmidt norm of  is 1=2, and three estimates which use p D 2; 3; 4. The inno-
vations "n were generated as Brownian bridges. Such discrepancies are observed
for other kernels and other innovation processes as well. Moreover, by any reason-
able measure of a distance between two surfaces, the distance between  and O p
increases as p increases. This is counterintuitive because by using more EFPC’ Ovj ,
we would expect the approximation (13.7) to improve. For the FAR(1) used to pro-
duce Figure 13.1, the sums

Pp
jD1 O�j explain, respectively, 74, 83 and 87 percent of

the variance for p D 2; 3 and 4, but (for the series length N D 100), the absolute
deviation distances between  and O p are 0:40; 0:44 and 0:55. The same pattern is
observed for the RMSE distance k O � kS and the relative absolute distance. As N
increases, these distances decrease, but their tendency to increase with p remains.
This problem is partially due to the fact that for many FAR(1) models, the estimated
eigenvalues O�j are very small, except O�1 and O�2, and so a small error in their estima-
tion translates to a large error in the reciprocals O��1j appearing in (13.7). Kokoszka
and Zhang (2010) show that this problem can be alleviated to some extent by adding
a positive baseline to the O�j . However, as we will see in Section 13.3, precise esti-
mation of the kernel  is not necessary to obtain satisfactory predictions.

13.3 Prediction

In this section, we discuss finite sample properties of forecasts with the FAR(1)
model. Besse et al. (2000) compare several prediction methods for functional time
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Fig. 13.1 The kernel surface  .t; s/ (top left) and its estimates O p.t; s/ for p D 2; 3; 4.

series by application to real geophysical data. Their conclusion is that the method
which we call below Estimated Kernel performs better than the “non–functional”
methods rooted in classical time series analysis. A different approach to predic-
tion of functional data was proposed by Antoniadis et al. (2006). In this section,
we mostly report the findings of Didericksen et al. (2011), whose simulation study
includes a new method proposed by Kargin and Onatski (2008), which we call below
Predictive Factors, and which seeks to replace the FPC’s by directions which are
most relevant for predictions.

We begin by describing the prediction methods we compare. This is followed by
the discussion of their finite sample properties.

Estimated Kernel (EK). This method uses estimator (13.7). The predictions are
calculated as

OXnC1.t/ D
Z

O p.t; s/Xn.s/ds D
pX
kD1

 
pX
`D1

O k`hXn; Ov`i
!

Ovk.t/; (13.8)



242 13 Functional autoregressive model

where

O j i D O��1i .N � 1/�1
N�1X
nD1

hXn; OviihXnC1; Ovj i: (13.9)

There are several variants of this method which depend on where and what kind
of smoothing is applied. In our implementation, all curves are converted to func-
tional objects in R using 99 Fourier basis functions. The same minimal smoothing
is used for the Predictive Factors method.

Predictive Factors (PF). Estimator (13.7) is not directly justified by the problem
of prediction, it is based on FPC’s, which may focus on the features of the data
that are not relevant to prediction. An approach known as predictive factors may
(potentially) be better suited for forecasting. It finds directions most relevant to pre-
diction, rather than explaining the variability, as the FPC’s do. Roughly speaking, it
focuses on the optimal expansion of �.Xn/, which is, theoretically, the best predic-
tor of XnC1, rather than the optimal expansion of Xn. Since � is unknown, Kargin
and Onatski (2008) developed a way of approximating such an expansion in finite
samples. We describe this approach in Section 13.4. It’s practical implementation
depends on choosing an integer k and a positive number ˛. We used k D p (the
same as the number of the EFPC’s), and ˛ D 0:75, as recommended by Kargin and
Onatski (2008).

We selected five prediction methods for comparison, two of which do not use
the autoregressive structure. To obtain further insights, we also included the errors
obtained by assuming perfect knowledge of the operator � . For ease of reference,
we now describe these methods, and introduce some convenient notation.

MP (Mean Prediction) We set OXnC1.t/ D 0. Since the simulated curves have mean
zero at every t , this corresponds to using the mean function as a predictor. This
predictor is optimal if the data are uncorrelated.

NP (Naive Prediction) We set OXnC1 D Xn. This method does not attempt to
model temporal dependence. It is included to see how much can be gained
by utilizing the autoregressive structure of the data.

EX (Exact) We set OXnC1 D �.Xn/. This is not really a prediction method because
the autoregressive operator � is unknown. It is included to see if poor predic-
tions might be due to poor estimation of � (cf. Section 13.2).

EK (Estimated Kernel) This method is described above.
EKI (Estimated Kernel Improved) This is method EK, but the O�i in (13.9) are

replaced by O�i C Ob, as described in Section 13.2.
PF (Predictive Factors) This method is introduced above and described in detail

in Section 13.4.

Didericksen et al. (2011) studied the errorsEn andRn,N�50 < n < N , defined
by

En D
sZ 1

0



Xn.t/ � OXn.t/

�2
dt and Rn D

Z 1

0

ˇ̌̌
Xn.t/ � OXn.t/

ˇ̌̌
dt:
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for N D 50; 100; 200, and k�kS D 0:5; 0:8. They considered several kernels and
innovation processes, including smooth errors obtained as sum of two trigonometric
function, irregular errors generated as Brownian bridges, an intermediate errors.
Examples of boxplots are shown in Figures 13.2 and 13.3. In addition to boxplots,
Didericksen et al. (2011) reported the averages of theEn andRn,N �50 < n < N ,
and the standard errors of these averages, which allow to assess if the differences in
the performance of the predictors are statistically significant. Their conclusions can
be summarized as follows:

1. Taking the autoregressive structure into account reduces prediction errors, but, in
some settings, this reduction is not be statistically significant relative to method
MP, especially if k�k D 0:5. Generally if k�k D 0:8, using the autoregressive
structure significantly and visibly improves the predictions.

2. None of the Methods EX, EK, EKI uniformly dominates the other. In most cases
method EK is the best, or at least as good at the others.

3. In some cases, method PF performs visibly worse than the other methods, but
always better than NP.

4. Using the improved estimation described in Section 13.2 does not generally
reduce prediction errors.

MP NP EX EK EKI PF
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Fig. 13.2 Boxplots of the prediction errorsEn (left) andRn (right); Brownian bridge innovations,
 .t; s/ D Ct , N D 100, p D 3, k	k D 0:5.
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Fig. 13.3 Boxplots of the prediction errorsEn (left) andRn (right); Brownian bridge innovations,
 .t; s/ D Ct , N D 100, p D 3, k	k D 0:8.

Didericksen et al. (2011) also applied all prediction methods to mean corrected
precipitation data studied in Besse et al. (2000). For this data set, the averages of
the En and the Rn are not significantly different between the first five methods,
method PF performs significantly worse than the others. We should point out that
method PF depends on the choice of the parameters ˛ and k. It is possible that
its performance can be improved by better tuning these parameters. On the other
hand, our simulations show that method EK essentially reaches the limit of what
is possible, it is comparable to the theoretically perfect method EX. While taking
into account the autoregressive structure of the observations does reduce prediction
errors, many prediction errors are comparable to those of the trivial MP method.
To analyze this observation further, we present in Figure 13.4 six consecutive tra-
jectories of a FAR(1) process with k�k D 0:5, and Brownian bridge innovations,
together with EK predictions. Predictions obtained with other nontrivial methods
look similar. We see that the predictions look much smoother than the observa-
tions, and their range is much smaller. If the innovations "n are smooth, the obser-
vations are also smooth, but the predicted curves have a visibly smaller range than
the observations. This is also true for smooth real data, as shown in Figure 13.5.
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Fig. 13.4 Six consecutive trajectories of the FAR(1) process with Gaussian kernel, k	k D 0:5,
and Brownian bridge innovations. Dashed lines show EK predictions with p D 3.

The smoothness of the predicted curves follows from representation (13.8), which
shows that each predictor is a linear combination of a few EFPC’s, which are smooth
curves themselves. The smaller range of the the predictors is not peculiar to func-
tional data, but is enhanced in the functional setting. For a mean zero scalar AR(1)
process Xn D  Xn�1 C "n, we have Var.Xn/ D  2Var.Xn�1/C Var."n/, so the
variance of the predictor O Xn�1 is about �2 times smaller than the variance ofXn.
In the functional setting, the variance of OXn.t/ is close to VarŒ

R
 .t; s/Xn.s/ds�. If

the kernel  admits the decomposition  .t; s/ D  1.t/ 2.s/, as all the kernels we
use do, then

Var
h OXn.t/

i
�  21 .t/Var

�Z 1

0

 2.s/Xn�1.s/ds
�
:

If the function  1 is small for some values of t 2 Œ0; 1�, it will automatically drive
down the predictions. If  2 is small for some s 2 Œ0; 1�, it will reduce the integralR 1
0
 2.s/Xn�1.s/ds. The estimated kernels do not admit a factorization of this type,

but are always weighted sums of products of orthonormal functions (the EFPC’s
Ovk). A conclusion of this discussion is that the predicted curves will in general look
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Fig. 13.5 Six consecutive trajectories (1989–1994) of centered pacific precipitation curves (solid)
with their EK predictions (dashed).

smoother and “smaller” than the data. This somewhat disappointing performance
is however not due to poor prediction methods, but to a natural limit of predictive
power of the FAR(1) model; the curves �.Xn/ share the general properties of the
curves O�.Xn/, no matter how � is estimated.

13.4 Predictive factors

As we have seen in Section 13.3, it is difficult to improve on the predictor O�.Xn/,
and, in particular, the method of predictive factors, does not do it. It is however a
very interesting approach because it focusses on directions different than the FPC’s,
which are a main focus of this book, and uses ideas which are central to the theory
of operators in Hilbert spaces. For these reasons, we describe in this section the
method of predictive factors in some in some detail. Section 13.5 contains some
required theoretical background, which may also be of independent interest.
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We continue to assume that X1; : : : ; XN follow the AR(1) model (13.1). We
denote by Rk the set of all rank k operators in L, i.e. those operators which map L2

into a subspace of dimension k. Rank k operators are clearly compact, and admit
representation (2.1) with at most k nonzero �j . We first want to find A 2 Rk which
minimizes

EkXnC1 � A.Xn/k2 D Ek.� � A/.Xn/k2 C Ek"nC1k2:
To solve this problem, Kargin and Onatski (2008) introduce the polar decomposition
of �C 1=2, see Section 13.5,

�C 1=2 D U ˚1=2; ˚ D C 1=2�T�C 1=2:

To lighten the notation, suppose that k is smaller than the rank of ˚ , and denote by
	21 > � � � > 	2

k
the largest k eigenvalues of ˚ , and by x1; : : : ; xk the corresponding

eigenfunctions.

Theorem 13.3. If Condition C0 of Lemma 13.1 holds, and 	21 > � � � > 	2
k
> 0, then

minfEkXnC1 � A.Xn/k2I A 2 Rkg D EkXnC1 � �k.Xn/k2;
where �k is defined by

�k.y/ D
kX
iD1

	�1i
D
y; �T�C 1=2.xi /

E
U.xi /: (13.10)

Proof. For any square integrable Y 2 L2 with covariance operator CY ,

EkY k2 D tr.CY /; (13.11)

with the trace tr defined in (13.19). Equality (13.11) follows from (2.7), which states
that EkY k2 is equal to the sum of the eigenvalues of CY . This sum is clearly equal
to tr.CY / (take the eigenfunction of CY as the en in (13.19)). Setting Y D .� �
A/.Xn/, it is easy to see that CY D .� � A/C.� � A/T , and so by (13.11),

EkXnC1 �A.Xn/k2 D trŒ.� � A/C.� � A/T �; (13.12)

where C is the covariance operator of X1.
Using property P2 of Section 13.5 and identity (13.23), we obtain

trŒ.� � A/C.� �A/T � D trŒ.� � A/C 1=2C 1=2.� �A/T � (13.13)

D tr
h
.� �A/C 1=2Œ.� �A/C 1=2�T

i
D tr

h
Œ.� � A/C 1=2�T .� �A/C 1=2

i
D k.� � A/C 1=2k2S D k�C 1=2 � Rk2S ; R D AC 1=2:
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If A 2 Rk , then R D AC 1=2 2 Rk , so our problem will be solved if we can find
Rk 2 Rk of the form Rk D �kC

1=2; �k 2 Rk , such that

minfk�C 1=2 �RkS W R 2 Rkg D k�C 1=2 �RkkS
The problem of findingRk can be solved using the results of Section 13.5. To apply
them, we notice that �C 1=2 2 S. This is because the operator C 1=2 is Hilbert–
Schmidt as C is trace class, so �C 1=2 2 S, see Section 13.5. By (13.24), Rk is
given by

Rk.y/ D
kX
iD1

	i hy; xi iU.xi /; y 2 L2; (13.14)

and it remains to verify that Rk D �kC
1=2. Observe that

�kC
1=2.x/ D

kX
iD1

	�1i
D
C 1=2.x/; �T�C 1=2.xi /

E
U.xi /

D
kX
iD1

	�1i
D
x; C 1=2�T�C 1=2.xi /

E
U.xi /

D
kX
iD1

	�1i hx;˚.xi /iU.xi /

D
kX
iD1

	�1i
˝
x; 	2i xi

˛
U.xi / D Rk.x/: ut

Before moving on to the construction of a feasible predictor, we state a proposi-
tion which quantifies the population prediction error.

Proposition 13.1. If Condition C0 of Lemma 13.1 holds, and 	21 > � � � > 	2
k
> 0,

then

EkXnC1 � �k.Xn/k2 D
1X

iDkC1
	2i ;

where the 	2i are the eigenvalues of ˚ D C 1=2�T�C 1=2 in decreasing order.

Proof. The proposition follows by combining (13.12), (13.13) and (13.25). ut

By (2.7), C 2 T . Thus C 1=2 2 S, so C 1=2�T 2 S and �C 1=2 2 S. Con-
sequently ˚ 2 T , and so

P1
iD1 	2i < 1. Hence

P1
iDkC1 	2i tends to zero, as

k ! 1.
Representation (13.10) cannot be used directly to compute predictions because

it contains unknown quantities, and the operator U is not specified. The following
lemma is a step towards the construction of a feasible predictor.
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Lemma 13.2. The operator (13.10) admits the representation

�k.y/ D
kX
iD1

hy; bi iC1.bi /; bi D C�1=2.xi /; (13.15)

where C1 is the lag–1 autocovariance operator defined in Section 13.2.

Proof. We first verify that xi is in the range of C 1=2, so that C�1=2.xi / is well–
defined, see Section 4.5. Since the xi are the eigenfunctions of ˚ , we have

	2i xi D ˚.xi / D C 1=2.�T�C 1=2.xi //;

so xi is in the range of C 1=2, and

	2i C
�1=2.xi / D �T�C 1=2.xi /: (13.16)

Inserting (13.16) into (13.10), we obtain

�k.y/ D
kX
iD1

	i hy; bi iU.xi /; (13.17)

so it remains to identify U.xi /.
Using (13.5) and the the identity ˚1=2.xi / D 	ixi , see Section 13.5, we have

C1C
�1=2.xi / D �CC�1=2.xi / D �C 1=2.xi / D U˚1=2.xi / D 	iU.xi /:

Consequently,
U.xi / D 	�1i C1C

�1=2.xi / D 	�1i C1.bi /:

Inserting into (13.17) yields (13.15). ut
The random sequences fhXn; bi i ; �1 < n < 1g are called the predic-

tive factors. The functions C1.bi / are called the predictive loadings. The loadings
C1.bi /; i D 1; 2; : : : k; are the “directions” inL2 most relevant for prediction. Since
the xi are defined only up to a sign, the same is true for the predictive factors and
loadings. However the operator �k (13.15) is uniquely defined.

To implement the prediction strategy suggested by Theorem 13.3 and Lemma
13.2, we need to estimate the eigenfunctions xi and the eigenvalues 	2i of ˚ D
C 1=2�T�C 1=2 D C�1=2C T1 C1C�1=2; cf. (13.5), and then approximate the bi D
C�1=2.xi /. Similarly as in the problem of the estimation of � , the difficulty arises
from the fact C�1=2 is not a bounded estimator. This introduces an instability to
the estimation of the eigenfunctions and eignevalues of OC�1=2 OC T1 OC1 OC�1=2, and it
cannot be ensured that these estimates converge to their population counterparts.
To deal with these difficulties, Kargin and Onatski (2008) propose the following
approach. To facilitate the inversion, introduce

O̊
˛ D OC�1=2˛

OC T1 OC1 OC�1=2˛ ; OC˛ D OC C ˛I;
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where ˛ is a small positive number and I is the identity operator. Denote by O	2˛;1 �
� � � � O	2

˛;k
the largest k eigenvalues of O̊

˛ , and by Ox˛;1; : : : ; Ox˛;k the corresponding
eigenfunctions. Then define the predictor by

O�˛;k.y/ D
kX
iD1

D
y; Ob˛;i

E OC1. Ob˛;i /; Ob˛;i D OC�1=2˛ . Ox˛;i /: (13.18)

Finding a bound on the prediction error requires a long technical argument. Kar-
gin and Onatski (2008) established the following result.

Theorem 13.4. Suppose Assumptions of Theorem 13.2 hold, and ˛ and k are func-
tions of the sample size N such that

N 1=6˛ ! A > 0 and N � N�1=4k � K > 0;

for some constants A and K . Then

EkXnC1 � O�˛;k.Xn/k2 D O


N�1=6 log2.N /

�
:

Proof. The claim follows from Theorem 4 of Kargin and Onatski (2008). ut

13.5 The trace class and the polar and singular decompositions

We present in this section several useful properties of operators in a Hilbert space.
They were used in Section 13.4, but they applicability is much broader.

We first review some properties of trace class operators. Detailed proofs are pre-
sented in Section VI.6 of Reed and Simon (1972).

The trace of any positive–definite operator A 2 L is defined by

tr.A/ D
1X
nD1

hen; A.en/i ; (13.19)

where feng is any orthonormal basis.
The value of the trace does not depend on the choice of the basis feng. If ffmg is

another orthonormal basis, then
1X
mD1

hfm; A.fm/i D
1X
mD1

D
A1=2.fm/; A

1=2.fm/
E

D
1X
mD1

kA1=2.fm/k2 D
1X
mD1

1X
nD1

D
A1=2.fm/; en

E2
D

1X
nD1

1X
mD1

D
fm; A

1=2.en/
E2 D

1X
nD1

kA1=2.en/k2

1X
nD1

D
A1=2.en/; A

1=2.en/
E

D
1X
nD1

hen; A.en/i ;
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where we used the fact that A1=2 is symmetric, see Section 4.5.
The trace has the following properties:

tr.AC B/ D tr.A/C tr.B/: (13.20)

tr.˛A/ D ˛tr.A/; ˛ � 0: (13.21)

For any unitary operator U ,

tr.UAU�1/ D tr.A/: (13.22)

Properties (13.20) and (13.21) are trivial, (13.22) follows from a simple verification
which uses the fact that the trace can be computed using feng or fU.en/g.

Definition 13.1. An operator A 2 L is called trace class or nuclear if
trŒ.ATA/1=2� < 1: The set of all trace class operators is denoted T .

The class T has the following properties:

P1 T is a vector space.
P2 If A 2 T and B 2 L, then AB 2 T and BA 2 T , and tr.AB/ D tr.BA/.
P3 If A 2 T , then AT 2 T , and tr.AT / D tr.A/.

The verification of these properties, especially the first one, requires some back-
ground in the theory of decompositions of linear operators.

It can be shown that
kAkT D trŒ.ATA/1=2�

defines a norm on T , and that finite rank operators are dense in T equipped with
this norm.

We have the following class inclusions:

Trace class � Hilbert–Schmidt � Compact,

with the corresponding norm inequalities:

kAkL � kAkS � kAkT :
In terms of expansion (2.1), trace class operators are those with

P
j j�j j < 1,

Hilbert–Schmidt those with
P
j �

2
j < 1, and compact with �j ! 0.

An operator S is Hilbert–Schmidt if and only if STS is trace class, i.e. if and
only if trŒSTS� < 1. In that case

kSk2S D trŒSTS�: (13.23)

If S 2 S and A 2 L, then AS 2 S and SA 2 S.

We now turn the the polar and singular decompositions. These are extensions
to operators in a Hilbert space of fundamental decompositions of matrices, see e.g.
Chapter 7 of Horn and Johnson (1985). The proofs of the following results, which
go back to Schmidt (1907), can be found in Gohberg and Krein (1969).
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An operator U 2 L is called a partial isometry if kU.x/k D kxk for all x in the
orthogonal complement of ker.U / D fx 2 L2 W U.x/ D 0g. Every operator A 2 L
admits the polar decomposition:

A D U .ATA/1=2

in which U is a partial isometry uniquely defined by the requirement that ker.U / D
ker.A/.

Suppose now that S 2 S, and we want to find Sk 2 Rk such that kS � SkkS is
minimum. Using the polar decomposition, we can write

S D U ˚1=2; ˚ D STS:

Set r D rank.˚/, which is the dimension of the range of ˚ , and may be infinity.
Denote by 	2i the eigenvalues of ˚ , and by xi the corresponding eigenfunctions,
i D 1; 2; : : : ; r . One can show that rank.˚1=2/ D rank.˚/ and that the xi are are
the eigenvectors of ˚1=2 with eignevalues 	i .

The singular value decomposition of S is

S.y/ D
rX
iD1

	i hy; xi iU.xi /; y 2 L2:

The approximation Sk is then given by

Sk.y/ D
k^rX
iD1

	i hy; xi iU.xi /; y 2 L2; (13.24)

and satisfies

kS � Skk2S D
1X

iDkC1
	2i : (13.25)



Chapter 14
Change point detection in the functional
autoregressive process

In this chapter, we develop a change point test for the FAR(1) model introduced
in Chapter 13. The importance of change point testing was discussed in Chapter 6.
Failure to take change points into account leads to spurious inference. This chapter
is based on the work of Horváth et al. (2010). Zhang et al. (2011) proposed a self–
normalized statistic to solve the problem discussed in this chapter. Self–normalized
statistics are discussed in Section 16.6.

The remainder of this chapter is organized as follows. The testing problem and
the assumptions are stated in Section 14.1. The testing procedure is described and
heuristically justified in Section 14.2. Its application and finite sample performance
are examined in Section 14.3. Asymptotic justification is presented in Section 14.4,
with the proofs developed in Sections 14.5 and 14.6.

14.1 Introduction

The problem can be stated as follows. We observe the random functions fXn.t/; t 2
Œ0; 1�; n D 1; 2; : : : N g and assume that they follow the model

XnC1 D �n.Xn/C "nC1; n D 1; 2; : : : ; N; (14.1)

with independent identically distributed (iid) mean zero innovations "n 2 L2.
We want to test

H0 W �1 D �2 D � � � D �N

against the alternative

HA W there is 1 � k� < N W �1 D � � � D �k� ¤ �k�C1 D � � � D �N :

UnderH0, the common operator is denoted by � .
The test statistic is based on the differences of the sample autocovariances of pro-

jections of the Xn on the EFPC’s. The limit distribution can be derived by replacing
the EFPC’s by their population counterparts and using a functional central limit
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theorem for ergodic sequences. But in the functional setting, this replacement intro-
duces asymptotically nonnegligible terms, see Section 14.6, which cancel because
of the special form of the test statistic. To show that the remaining terms due to the
estimation of the FPC’s are asymptotically negligible, we develop a new technique
which involves the truncation at lag O.logN/ of the moving average representa-
tion of the FAR(1) process (Lemma 14.3), a blocking technique that utilizes this
truncation (Lemma 14.4) and Mensov’s inequality (Lemma 14.8).

The following assumption formalizes the structure of the observations under the
null hypothesis.

Assumption 14.1. The functional observationsXn 2 L2 satisfy

XnC1 D �Xn C "nC1; n D 0; 1; : : : ; N � 1; (14.2)

where � is an integral operator with the kernel  .t; s/ satisfying“
 2.s; t/ds dt < 1; (14.3)

and the iid mean zero innovations "n 2 L2 satisfy

Ek"nk4 D E

�Z
"2n.t/dt

�2
< 1: (14.4)

Equation (14.2) can then be written more explicitelly as

XnC1.t/ D
Z
 .t; s/Xn.s/ds C "nC1.t/; t; s 2 Œ0; 1�: (14.5)

Assumption 14.1 ensures that (14.5) has a unique strictly stationary solution
fXn.t/; t 2 Œ0; 1�g with finite fourth moment in L2 such that "nC1 is independent
of Xn; Xn�1; : : :, see Chapter 13.

If Assumption 14.1 holds, we can define the covariance operator

C.x/ D EŒhXn; xiXn�; x 2 L2;
and its eigenfunctions vj and eigenvalues �j . Since the Xn are assumed to have
mean zero, it is convenient to work with the sample covariance operator defined by

OC.x/ D 1

N

NX
nD1

hXn; xiXn; x 2 L2:

14.2 Testing procedure

In this section, we describe the idea of the test and explain its practical application.
The requisite asymptotic theory is presented in Section 14.4.



14.2 Testing procedure 255

The idea is to check if the action of � on the span of the p most important prin-
cipal components of the observations X1; X2; : : : ; XN changes at some unknown
time point k. If there is no change in the autoregressive operator � , the functions
�vj ; j D 1; 2; : : : ; p; remain constant. Since �vj D P

`

˝
�vj ; v`

˛
v`, this is the

case, to a good approximation, if the coefficients
˝
�vj ; v`

˛
; ` � p remain constant.

Direct verification shows that underH0,
˝
�vj ; v`

˛ D ��1j
˝
Rvj ; v`

˛
where

Rx D EŒhXn; xiXnC1�; x 2 L2;

is the lag–1 autocovariance operator. Thus, the constancy of � is approximately
equivalent to the constancy of the products

˝
Rvj ; v`

˛
; j; ` D 1; 2; : : : ; p:

The restriction to the action of � on the span of vj ; j;D 1; 2; : : : ; p; means
that the test will not detect changes on the orthogonal complement of this space.
Typically p is chosen so that the empirical counterparts Ovj ; j;D 1; 2; : : : ; p;

explain a large percentage of the variability of the data and their linear combi-
nations approximate the data very closely. We therefore view a change in the
action of � on vj ; j > p; as not relevant. This restriction quantifies the intu-
ition that very small changes cannot be detected. Another point to note is that
since

˝
Rvj ; v`

˛ D �j
˝
�vj ; v`

˛
, a change in � may be obscured by a change in

the eigenfunctions �j , thus potentially reducing power. Nevertheless, the test intro-
duced below is effective in practical settings, and its large sample properties are
tractable.

To devise a test against the alternative of a change–point, we must first esti-
mate these products from observations X1; X2; : : : ; Xk , then from observations
XkC1; XkC2; : : : ; XN , and compare the resulting estimates. To achieve it, we define
p–dimensional projections

Xi D ŒXi1; : : : ; Xip�
T ; OXi D Œ OXi1; : : : ; OXip�T ;

where

Xij D ˝
Xi ; vj

˛ D
Z
Xi .t/vj .t/dt; OXij D ˝

Xi ; Ovj
˛ D

Z
Xi .t/ Ovj .t/dt:

We also define the p � p lag-1 autocovariance matrices:

Rk D 1

k

X
2�i�k

Xi�1XTi ; R�N�k D 1

N � k

X
k<i�N

Xi�1XTi I

ORk D 1

k

X
2�i�k

OXi�1 OXTi ; OR�N�k D 1

N � k

X
k<i�N

OXi�1 OXTi :

Observe that by the ergodic theorem, as k ! 1,

Rk.j; `/ D 1

k

X
2�i�k

˝
Xi�1; vj

˛ hXi ; v`i a:s:! EŒ
˝
Xn�1; vj

˛ hXn; v`i� D ˝
Rvj ; v`

˛
:
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Thus the matrices Rk and R�
N�k approximate the matrix Œ

˝
Rvj ; v`

˛
; j; ` D

1; 2; : : : ; p� based, correspondingly, on the observations before and after time k,
and so it is appealing to base the test on their difference. The matrices Rk and
R�
N�k cannot however be computed from the data because the population princi-

pal components vj are unknown. Thus, we must replace them by their empirical
counterparts ORk and OR�

N�k . Relation (2.13) means that Ocj Ovj is close to vj . Conse-

quently, the .j; `/ entry of ORk must be multiplied by Ocj Oc` in order to approximate
the .j; `/ entry of Rk . The random signs Ocj and Oc` are unknown, so a test statistic
must be constructed in such a way that they do not appear in it. This is not a mere
technical point; changing just a few observations can flip the curves Ovj , sometimes
the sign changes in another estimation run, even if the data do not change. Another
important point is that using the EFPC’s Ovj introduces a bias. Roughly speaking,
details are presented in Section 14.6,

k ORk D kRk C k�N C oP .N
1=2/; 1 � k � N;

where the random matrix �N depends on the differences Ocj Ovj � vj ; 1 � j �
p. The order of �N is thus OP .N�1=2/, so k�N ; 2 � k � N; is of the same
order, OP .N 1=2/, as kRk; 2 � k � N . However if a procedure is based on a
CUSUM statistic, the contribution of �N cancels out. Under H0, we expect the
partial sum

P
2�i�k OXi�1 OXTi D k ORk to be close to k ORN , so CUSUM test statistics

are functionals of the the differences k ORk � k ORN ; 2 � k � N: Notice that

k ORk � k ORN D kRk C k�N C oP .N
1=2 � k



RN C �N C oP .N

�1=2/
�

D kRk � kRN C oP .N
1=2/C koP .N

�1=2/
D kRk � kRN C oP .N

1=2/:

We now describe how to construct the test statistics.
Denote

Yi .j; `/ D ˝
Xi�1; vj

˛ hXi ; v`i ; OYi .j; `/ D ˝
Xi�1; Ovj

˛ hXi ; Ov`i (14.6)

and consider the column vectors of length p2:

Yi D ŒYi .1; 1/; : : : ; Yi .1; p/; Yi .2; 1/; : : : ; Yi .2; p/; : : : ; Yi .p; 1/; : : : ; Yi .p; p/�
T I

OYi D Œ OYi .1; 1/; : : : ; OYi .1; p/; OYi .2; 1/; : : : ; OYi .2; p/; : : : ; OYi .p; 1/; : : : ; OYi .p; p/�T :

Define further

Zk D
X
2�i�k

Yi ; Z�N�k D
X

k<i�N
Yi I

OZk D
X
2�i�k

OYi ; OZ�N�k D
X

k<i�N
OYi :
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Since the Xi follow a functional AR(1) model, the vectors Yi form a weakly depen-
dent stationary sequence, and so, as k ! 1,

p
k

24 1
k

X
2�i�k

Yi �E Yk

35 d! N.0;D/; (14.7)

whereD is the p2 � p2 long run covariance matrix defined by

D D
1X

hD�1
E
�
.Y0 �EY0/.Yh �EYh/

T
�
: (14.8)

Relation (14.7), and the corresponding relation for the sum over k < i � N , can be
rewritten as

Zk � kEYN � N.0; kD/; Z�N�k � .N � k/EYN � N.0; .N � k/D/:

Denoting by fWD.t/; t � 0g a p2–dimensional Brownian motion with covariance
matrixD, we have, in fact,

Zk � kEYN � WD.k/; Z�N�k � .N � k/EYN � WD.N / � WD.k/: (14.9)

By (14.9), underH0 we have,

1

k
Zk � 1

N � k
Z�N�k � 1

k
WD.k/ � 1

N � k
.WD.N / � WD.k//

D 1

k.N � k/ ŒNWD.k/ � kWD.k/

�kWD.N /C kWD.k/�

D N

k.N � k/
�

WD.k/ � k

N
WD.N /

�
:

Denote

UN .k/ D k.N � k/
N

�
1

k
Zk � 1

N � kZ�N�k
�
: (14.10)

The above calculation shows that

UN .k/ � WD.k/ � k

N
WD.N /:

Comparing covariances, we see that

1

N

�
WD.k/ � k

N
WD.N /

�T
D�1

�
WD.k/ � k

N
WD.N /

�
; 1 � k � N;

has the same distribution asX
1�m�p2

B2m.k=N /; 1 � k � N; (14.11)
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where the Bm.�/ are independent Brownian bridges on Œ0; 1�. Consequently, any
functional of

GN .k/ D 1

N
UN .k/TD�1UN .k/; 1 � k � N; (14.12)

can be approximated by the corresponding functional of (14.11).
Asymptotic theory for functionals of the process

P
1�m�d B2m.u/; u 2 Œ0; 1�,

including weighted sums and maximally selected statistics, is well–known, see e.g.
Csörgő and Horváth (1993, 1997), and goes back to Kiefer (1959). A Cramér–von–
Mises type functionalKd WD R 1

0

P
1�m�d B2m.u/du leads to tests with good finite

sample properties, and so we focus on it in the following, but clearly other function-
als can be used as well, see e.g. Horváth et al. (1999) for more examples.

To implement the test, we need to estimate the matrix D (14.8). The estima-
tion of the long run covariance matrix is one of the most extensively studied topics
in time series analysis and econometrics, see e.g. Andrews (1991), Andrews and
Monahan (1992) and Robinson (1998) for recent approaches and references. Any
reasonable method can be used, but for concreteness, we focus on the popular and
simple Bartlett estimator, and explain how to adapt it to the change point problem.

Denote by

b�h.k/ D 1

k

X
1�i�k�h

0@ OYi � 1

k

X
1�i�k

OYi
1A0@ OYiCh � 1

k

X
1�i�k

OYi
1AT

and

b��h.N � k/ D 1

N � k

X
k<i�N�h

0@ OYi � 1

N � k

X
k<i�N�h

OYi
1A

�
0@ OYiCh � 1

N � k

X
k<i�N�h

OYi
1AT

the lag h p2 � p2 autocovariance matrices computed, respectively, from the first k
and the last N � k observations. The corresponding Bartlett estimators of D are
then bDk D

X
jhj�q

�
1 � h

q C 1

�b�h.k/ (14.13)

and bD�
N�k D

X
jhj�q

�
1 � h

q C 1

�b��h.N � k/: (14.14)

The sequence GN .k/ (14.12) is approximated by the sequence

OGN .k/ D 1

N
bUN .k/T � k

N
bDk C

�
1 � k

N

� bD�
N�k

��1bUN .k/; (14.15)
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where bUN .k/ D k.N � k/
N

�
1

k
OZk � 1

N � k
OZ�N�k

�
: (14.16)

Using the weighted sum of the estimators bDk and bD�
N�k in (14.15) has been shown

in different settings to lead to better power than using just bDN , see Antoch et al.
(1997) and Hušková et al. (2007).

Defining the critical value c.˛; d/ by P.Kd > c.˛; d// D ˛, and

OIN D 1

N

NX
kD1

OGN .k/; (14.17)

the test rejects if OIN > c.˛; p2/ The critical values c.˛; d/ can be computed using
an analytic formula derived by Kiefer (1959), but the simulated critical values in
Table 6.1 give better results in finite samples.

It is possible to develop a rigorous theory for the behavior of the test under the
alternative, but the analysis becomes even more technical and would take up space.
We therefore outline only the essential arguments which explain why and when the
test is consistent.

First we introduce the following notation: Let k� D Œn
�; 0 < 
 < 1; be the time
of change. The kernel changes from  to  � which satisfies

RR
. �.s; t//2ds dt <

1:

Following the proof of Theorem 2.6, one can show that as N ! 1;ZZ
. OCN .x; y/ � NC.x; y//2dx dy P! 0;

where
OCN .x; y/ D 1

N

X
1�i�n

Xi .x/Xi .y/

and
NC.x; y/ D 
EŒX0.x/X0.y/�C .1 � 
/ lim

N!1EŒXN .x/XN .y/�:

The kernel NC.x; y/ is symmetric, positive–definite and Hilbert–Schmidt with
eigenvalues and eigenfunctions N�i and Nvi . It follows from Lemmas 2.2 and 2.3 that
as N ! 1, k Ovi � Nvik and j O�i � N�i j tend to 0 in probability.

An application of the ergodic theorem yields that for all 0 � u � 
;

1

N

X
1�i�Nu

hXi�1; Ovj ihXi ; Ov`i ! u

ZZ
R.t; s/ Nvj .t/ Nv`.s/dt ds a.s.;

where R.t; s/ D EŒX1.t/X2.s/�.
Under the alternative,Xk�C1; Xk�C2; : : : ; XN ; XNC1; : : : is not stationary (Xk�

is not the stationary initial value), but because
RR
. �.s; t//2dsdt < 1 the effect of

Xk� is dying out exponentially fast and the elements of Xk�Cm are very close to a
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stationary solution if m is large. So carefully applying the ergodic theorem again,
we obtain for all 
 � u � 1,

1

N

X
Nu�i�N

hXi�1; Ovj ihXi ; Ov`i P! .1 � u/

ZZ
R�.t; s/ Nvj .t/ Nv`.s/dt ds;

whereR�.t; s/ D limN!1EXN .t/XNC1.s/. This means that we have consistency
if for at least one .j; `/ZZ

R.t; s/ Nvj .t/ Nv`.s/dt ds ¤
ZZ

R�.t; s/ Nvj .t/ Nv`.s/dt ds;

i.e. if R and R� are different on the space spanned by f Nvj .t/ Nv`.s/; 1 � j; ` � pg:
We conclude this section with a summary of the practical implementation of the

test procedure:

1) Find p so large that
Pp
jD1 O�j =PN

jD1 O�j > 0:8, but not greater than 5.

2) Compute OIN (14.17).
3) Choose a significance level ˛ and find the critical value c.˛; d/ with d D p2

from Table 6.1.
4) Reject H0 if OIN > c.˛; p2/.

In step 1), p cannot be too large because it is then difficult to estimateD. In step

2) good results are also obtained if in (14.15) k
N
bDk C



1 � k

N

� bD�
N�k is replaced

by bDN , the computations are then much faster.

14.3 Application to credit card transactions and Eurodollar
futures

In this section we report the results of a small simulation study that examined
the finite sample performance of our test. Calculations were performed using the
R package fda. We used the functional time series Xn of differenced counts of
credit card transactions described in Section 7.3. The first three weeks (21 func-
tional observations) are shown in Figure 1.7. The whole data set contains N D 200

curves. Applied to these data, our test does not reject the null hypothesis, indicating
that a functional AR(1) model is appropriate for all 200 Xn. This is in agreement
with the conclusions of Laukaitis and Račkauskas (2002) and of Section 7.3. The
long run covariance matrix was estimated using the code Hansen (1995) (with some
modifications).

In the following, we use the curves Xn to generate functional AR(1) processes
which will allow us to assess the finite sample performance of our test in a realis-
tic setting. To do it, we estimate the kernel  .�; �/ using the function linmod, see
Malfait and Ramsay (2003) (we omit the details of regularization). Then, residual



14.3 Application to credit card transactions and Eurodollar futures 261

functions are computed as O"n.t/ D XnC1.t/ � O�XnC1.t/; n D 1; : : : ; 193. Draw-
ing these residuals with replacement, we can simulate functional AR(1) series of
any length via

Zm.t/ D
Z

O .t; s/Zm�1.s/ds C "�m.t/; m D 1; 2; : : : ; N;

where the "�m.�/ are the bootstrap draws of the O"n.�/. If we change the kernel  .�; �/
at some point, we can assess the power of the test. To remove the initialization
effect, the first “burn-in” 100 simulated functional observations were removed. The
empirical rejection rates reported below are based on one thousand replications.

Table 14.1 shows empirical sizes for several values of p andN . The test becomes
conservative as p increases. This is because the critical values increase in proportion
to p2, but only the first few principal components explain most of the variance.
The same phenomenon was observed in Chapter 7. To save space, we report the
empirical power only forp D 2 and p D 3; for p D 4 the power is about 30% lower
than for p D 3. We introduced a change at half length by multiplying O .�; �/ by
c D 0:1; 0:3; 0:6, sample realizations for N D 200 are shown in Figure 14.1. The
change is not readily seen by eye, especially for c D 0:6. For c D 0:1, the second
half of the series looks more like white noise, and the power is correspondingly very
close to 100%, and so is not reported. Table 14.2 shows that the power increases with
the sample size N , and is satisfactory for N D 200, supporting the claim the the
functional AR(1) model is suitable for the whole credit card transactions record.

We now turn to the application of the change point test to the data set consist-
ing of Eurodollar futures contract prices studied by Kargin and Onatski (2008). The
seller of a Eurodollar futures contract takes on an obligation to deliver a 3 month
deposit of one million US dollars to a bank account outside the United States i
months from today. The price the buyer is willing to pay for this contract depends
on the prevailing interest rate. These contracts are traded at the Chicago Mercan-
tile Exchange, and provide a way to lock in an interest rate. They are liquid assets
responsive to Federal Reserve policy, inflation, and economic indicators.

The data we study consist of 114 points per day; point i corresponds to the price
of a contract with closing date i months from today. We work with centered data,
i.e. the mean function has been subtracted from all observations. Examples of these

Table 14.1 Empirical size (in percent)

p=2 p=3 p=4

10% 5% 1% 10% 5% 1% 10% 5% 1%

N=50
9.4 3.4 0.3 11.9 5.9 0.4 6.2 1.9 0.0

N=100
9.7 3.6 0.6 9.9 5.0 1.0 7.2 2.3 0.5

N=200
8.1 3.8 0.5 10.3 4.8 0.8 6.3 2.8 0.3
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Fig. 14.1 Bootstrap realizations under alternatives

centered functions are shown in Figure 14.2, the middle panel reflects a change
in expectations of future interest rates following the September 11, 2001 terrorist
attacks.

The test rejects the null hypothesis of a constant operator� for some periods and
accepts for others. Figure 14.3 shows a period of 50 days for which the null hypothe-
sis is accepted. Even though the prices of the contract fluctuate, these fluctuation can
be modeled by assuming a single FAR(1) model. By contrast, the curves shown in
Figure 14.4 cannot be assumed to follow an FAR(1) model, according to the change
point test. No single change point is apparent, but the range of the data increases in
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Table 14.2 Empirical power (in percent) for a change occurring at k� D N=2, and O changing
to c O for c D 0:3 (in parentheses c D 0:6).

p=2 p=3

10% 5% 1% 10% 5% 1%

N=50
46.1 (30.9) 28.3 (16.5) 6.3 (1.7) 23.1 (15.9) 10.4 (5.6) 0.3 (0.1)

N=100
82.5 (58.1) 67.7 (44.3) 33.5 (16.7) 64.4 (46.9) 46.9 (28.8) 18.2 (7.8)

N=200
98.7 (91.6) 95.8 (81.6) 82.3 (52.8) 96.3 (82.8) 90.4 (67.4) 65.6 (34.9)

0
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4

0 114 228 342 456 570 684 798 912 1026 1140

0
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4

Fig. 14.2 Eurodollar futures curves over three disjoint 10 day long periods.

a systematic way, making modeling with a stationary FAR(1) model inappropriate.
In general, the test rejects H0 for longer series and accepts for shorter series. This
is illustrated in Figure 14.5. For example, out of 8 consecutive periods of N D 300

trading days, only one can be modeled as a stationary FAR(1) process. By contrast,
out of 49 periods of lengthN D 50, 37 can be assumed to follow an FAR(1) model.

The Eurodollar futures data set shows that while the test of this chapter is
intended to detect a single change point on the autoregressive operator, it can also
be used more generally to assess the suitability of a single FAR(1) model for the
whole functional time series.
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Fig. 14.3 Eurodollar futures curves on fifty consecutive days. The stability of the autoregressive
operator is not rejected; P–value 0.291.

14.4 Asymptotic results

In order to develop an asymptotic theory, we must verify that the test statistic does
not change if the principal components Ovj are replaced by Ocj Ovj , as only the latter
converge to the population principal components vj . For this purpose, it is conve-
nient to introduce a p � p diagonal matrix C p and a p2 � p2 diagonal matrix M
defined by

C p D

26664
Oc1

Oc2
: : :

Ocp

37775 ; M D C p ˝ C p ;
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Fig. 14.4 Eurodollar futures curves on fifty consecutive days. The stability of the autoregressive
operator is rejected; P–value 0.019.

where ˝ denotes the Kronecker product, see e.g. Graham (1981). For example, if
p D 2

M D

2664
Oc1 Oc1

Oc1 Oc2
Oc2 Oc1

Oc2 Oc2

3775 :
Replacing Ovj by Ocj Ovj implies replacing the vectors OYi by M OYi , which in turn

implies replacing bUN .k/ by MbUN .k/, while bDk and bD�
N�k are replaced, respec-

tively, by MbDkMT and MbD�
N�kMT . Since M2 is a p2 � p2 identity matrix, it

follows that the OG.k/ (14.15) are invariant to the signs of the Ovj . To develop asymp-
totic arguments, we can thus work with quantities Ocj

˝
Xi ; Ovj

˛
in place of the actual

scores
˝
Xi ; Ovj

˛
.

Recall the definition (14.15) of OG.k/ and introduce the process

OQN .u/ D OGN .ŒNu�/; u 2 Œ0; 1�:
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Fig. 14.5 P-values for consecutive segments. The continuous line indicates the five percent thresh-
old.

Recall also the definition of the Bartlett estimators (14.13) and (14.14), and intro-
duce the following assumption of the rate of growth of the bandwidth q D q.N /:

Assumption 14.2. Suppose q.N / is nondecreasing and satisfies

sup
k�0

q.2kC1/
q.2k/

< 1 (14.18)

and
q.N / ! 1 and q.N /.logN/4 D O.N/: (14.19)
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The following theorem shows that the test procedure described in Section 14.2
has asymptotically correct size.

Theorem 14.1. Suppose Assumptions 14.1, 14.2 and condition (2.12) hold. Then

OQN .u/ !
X

1�m�p2

B2m.u/ in D.Œ0; 1�/;

where fBm.u/; u 2 Œ0; 1�g; 1 � m � p2; are iid Brownian bridges.

As we discussed in the previous section, the proof of theorem 14.1 is split into
two steps. The first step, Proposition 14.1 is the weak convergence of the pro-
cess QN .u/ D GN .ŒNu�/; u 2 Œ0; 1�; where GN is defined by (14.12). This is
the CUSUM process based on the projections on population eigenfunctions of the
covariance operator. In the second step, Proposition 14.2, it is shown that the estima-
tion of the eigenfunctions and eigenvalues has only asymptotically negligible effect.
The second step is more delicate, relies on the special structure of the processQN ,
a truncation and blocking technique, and an application of Mensov’s inequality.

Proposition 14.1. Under Assumption 14.1,

QN .u/ !
X

1�m�p2

B2m.u/ in D.Œ0; 1�/;

where QN .u/ D GN .ŒNu�/; u 2 Œ0; 1�, and GN is defined by (14.12).

Proposition 14.2. Under Assumption 14.1 and condition (2.12),

N�1=2 max
2�k�N

ˇ̌̌̌̌̌
MbUN .k/ � UN .k/

ˇ̌̌̌̌̌
P! 0:

Propositions 14.1 and 14.2 are proven, respectively, in Sections 14.5 and 14.6.
Using them, it is easy to prove Theorem 14.1.

Proof of Theorem 14.1.. Recall thatQN .u/ D GN .ŒNu�/; u 2 Œ0; 1�, where GN is
defined by (14.12). By Proposition 14.1,QN .u/ ! P

1�m�p2 B2m.u/ in D.Œ0; 1�/.
To complete the proof, we must show that

max
2�k�N

j OGN .k/ �GN .k/j P! 0: (14.20)

Relation (14.20) will follow once we have verified that

N�1=2 max
2�k�N

ˇ̌̌̌̌̌
MbUN .k/ � UN .k/

ˇ̌̌̌̌̌
P! 0 (14.21)

and

max
2�k�N

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
�
k

N
bDk C

�
1 � k

N

� bD�
N�k

��1
�D�1

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ P! 0: (14.22)
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Relation (14.21) is stated as Proposition 14.2. To prove (14.22), we use Theorem A.1
and Remark A.1 of Berkes et al. (2006) which imply that under Assumption 14.2,bDk and bD�

N�k converge almost surely toD. Recall that if a sequence �n converges

to zero a.s., then max1�n�N j�nj P! 0, asN ! 1. Therefore, sup1<u<1 kubDŒNu��
uDk P! 0 and sup1<u<1 k.1 � u/bD�

N�ŒNu� � .1 � u/Dk P! 0, and so

sup
1<u<1

kubDŒNu� C .1 � u/bD�
N�ŒNu� �Dk P! 0:

Since the inverse is a continuous map, (14.22) follows. ut

14.5 Proof of Proposition 14.1

Proposition 14.1 follows from Proposition 14.3 because by (14.23),

QN .u/ ! ŒWD.u/ � uWD.1/�
TD�1ŒWD.u/ � uWD.1/� in D.Œ0; 1�/

and a direct computation shows that the Gaussian vectors–valued processes
fD�1=2ŒWD.u/ � uW.u/�; u 2 Œ0; 1�g and fŒB1.u/; : : : ; Bp2.u/�T ; u 2 Œ0; 1�g
have equal covariance functions. Recall that WD.�/, introduced in Section
14.2, is a Gaussian process with EWD.u/ D 0 and E

�
WD.u/WT

D.s/
� D

Dmin.u; s/; u; s 2 Œ0; 1�.
Proposition 14.3. If Assumption 14.1 holds, then

N�1=2 �ZŒNu� � EZŒNu�
� ! WD.u/; in Dp2

.Œ0; 1�/: (14.23)

Proof. Denote Zk.j; `/ D P
2�i�k Yi .j; `/. To prove the proposition, it is enough

to establish the convergence in D.Œ0; 1�/ of all linear combinations, namely

N�1=2
pX

j;`D1

.j; `/

�
ZŒNu�.j; `/ �EZŒNu�.j; `/

� d! W�;D.u/;

where fW�;D.u/; u 2 Œ0; 1�g is a Brownian motion with variance

E
h
W 2
�;D.u/

i
D u

pX
j;`D1

pX
j 0;`0D1


.j; `/
.j 0; `0/D.j; `I j 0; `0/:

To reduce the notational burden, we focus on just one component, i.e. we want to
show that

N�1=2 X
2�i�ŒNu�

ŒYi .j; `/ �EYi .j; `/� d! WD.i;j /.u/: (14.24)

(WD.i;j /.u/ is defined by setting 
.i 0; j 0/ D ıi 0iıj 0j where ı�� is the Kronecker
delta.) Convergence (14.24) (in D.Œ0; 1�/) follows essentially from Theorem 19.1
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of Billingsley (1999); we must verify that the sequence fYi .j; `/g is stationary and
ergodic and that

1X
iD1

jCov.Y0.j; `/; Yi .j; `//j < 1: (14.25)

Relation (14.25) is established in Lemma 14.1. Ergodicity follows from the repre-
sentation

Yi .j; `/ D ˝
Xi�1; vj

˛
Œh�Xi�1; v`i C h"i ; v`i�

D ˝
Xi�1; vj

˛ ˝
Xi�1; �T v`

˛C ˝
Xi�1; vj

˛ ˝
"i ; �

T v`
˛

and Theorem 13.1 (moving average representation of Xk) and Theorem 36.4
of Billingsley (1995) (a function of shifts of an iid sequence forms an ergodic
sequence). ut

Now we establish (14.25).

Lemma 14.1. Under Assumption 14.1, the Yi .j; `/ defined by (14.6) satisfy,X
1�i<1

jCov.Y1.j; `/; Yi .m; n//j < 1:

Proof. Since

Yi .j; `/ D ˝
Xi�1; vj

˛ ˝
Xi�1; �T v`

˛C ˝
Xi�1; vj

˛ ˝
"i ; �

T v`
˛
;

Cov.Y1.j; `/; Yi .m; n// D C1.i/C C2.i/C C3.i/C C4.i/;

where

C1.i/ D Cov
�˝
X0; vj

˛ ˝
X0; �

T v`
˛
; hXi�1; vmi ˝Xi�1; �T vn˛� I

C2.i/ D Cov
�˝
X0; vj

˛ ˝
X0; �

T v`
˛
; hXi�1; vmi ˝"i ; �T vn˛� I

C3.i/ D Cov
�˝
X0; vj

˛ ˝
"1; �

T v`
˛
; hXi�1; vmi ˝Xi�1; �T vn˛� I

C4.i/ D Cov
�˝
X0; vj

˛ ˝
"1; �

T v`
˛
; hXi�1; vmi ˝"i ; �T vn˛� :

It is easy to see that C2.i/ D C4.i/ D 0, for i > 1, so it remains to find an
absolutely convergent bounds on C1.i/ and C3.i/. We focus on the term C1.i/, the
argument for C3.i/ being similar. Consider arbitrary x; y; u; v 2 L2.Œ0; 1�/: Since
Xk D �kX0 CPk�1

jD0� j "k�j ;

Cov .hX0; xi hX0; yi ; hXk; ui hXk; vi/
D Cov



hX0; xi hX0; yi ;

D
�kX0; u

E D
�kX0; v

E�
:

Consequently

jCov .hX0; xi hX0; yi ; hXk; ui hXk; vi/j
� E

ˇ̌̌
hX0; xi hX0; yi

D
�kX0; u

E D
�kX0; v

Eˇ̌̌
CE jhX0; xi hX0; yijE jhXk; ui hXk; vij

� k�k2k
n
EkX0k4 C �

EkX0k2
�2o kxk kyk kuk kvk:
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Therefore

jC1.i/j � k�k2.i�1/
n
EkX0k4 C �

EkX0k2
�2o kvj k kv`k k�T vmk k�T vnk

� 2k�k2iEkX0k4: ut

14.6 Proof of Proposition 14.2

Denote r.t; s/ D EŒX1.t/X2.s/� and

OR.j; `/ D
ZZ

r.t; s/ Ou.t; s/dt ds;

where

Ou.t; s/ D vj .t/v`.s/ � Ocj Ovj .t/ Oc` Ov`.s/; 0 < s; t < 1: (14.26)

Proof of Proposition 14.2.. The component of MbUN .k/� UN .k/ corresponding to
the product of the j th and the `th score is equal to

k.N � k/
N

	
1

k

h
Ocj Oc` OZk.j; `/ �Zk.j; `/ � k OR.j; `/

i
� 1

N � k
h

Ocj Oc` OZ�N�k.j; `/ �Z�N�k.j; `/ � .N � k/ OR.j; `/
i

:

Thus the claim will follow once we have verified that

N�1=2 max
2�k�N

h
Ocj Oc` OZk.j; `/ �Zk.j; `/ � k OR.j; `/

i
P! 0 (14.27)

and

N�1=2 max
2�k�N

h
Ocj Oc` OZ�N�k.j; `/ �Z�N�k.j; `/ � .N � k/ OR.j; `/

i
P! 0: (14.28)

Since the above two relations are verified in the same way, we will show only the
verification of (14.27).

Observe that

Zk.j; `/ D
ZZ X

2�i�k
Xi�1.t/Xi .s/vj .t/v`.s/dt ds

and

Ocj Oc` OZk.j; `/ D
ZZ X

2�i�k
Xi�1.t/Xi .s/ Ocj Ovj .t/ Oc` Ov`.s/dt ds:



14.6 Proof of Proposition 14.2 271

Therefore

Zk.j; `/ � Ocj Oc` OZk.j; `/
D
ZZ X

2�i�k
ŒXi�1.t/Xi .s/ � r.t; s/�vj .t/v`.s/dt ds

�
ZZ X

2�i�k
ŒXi�1.t/Xi .s/ � r.t; s/� Ocj Ovj .t/ Oc` Ov`.s/dt ds

C .k � 1/

“
r.t; s/Œvj .t/v`.s/ � Ocj Ovj .t/ Oc` Ov`.s/�dt ds

D
ZZ X

2�i�k
ŒXi�1.t/Xi .s/ � r.t; s/� Ou.t; s/dt ds C .k � 1/ OR.j; `/:

As OR.j; `/ D OP .1/, to prove (14.27), it thus remains to show that

max
2�k�N

ˇ̌̌̌
ˇ̌ZZ X

2�i�k
ŒXi�1.t/Xi .s/ � r.t; s/� Ou.t; s/dt ds

ˇ̌̌̌
ˇ̌ D oP .N

1=2/: (14.29)

Since

ZZ ˇ̌̌̌
ˇ̌ X
1�i�k

ŒXi�1.t/Xi .s/ � r.t; s/�

ˇ̌̌̌
ˇ̌ j Ou.t; s/j dt ds

�

0B@ZZ
ˇ̌̌̌
ˇ̌ X
1�i�k

ŒXi�1.t/Xi .s/ � r.t; s/�
ˇ̌̌̌
ˇ̌
2

dt ds

1CA
1=2 �ZZ

j Ou.t; s/j2 dt ds
�1=2

;

(14.29) follows from Lemmas 14.2 and 14.3. ut
Lemma 14.2. The function Ou 2 L2.Œ0; 1�2/ defined by (14.26) satisfies

k Ouk D
�ZZ

Œ Ou.t; s/�2dt ds
�1=2

D OP .N
�1=2/:

Proof. Sinceˇ̌
vj .t/v`.s/ � Ocj Ovj .t/ Oc` Ov`.s/

ˇ̌2 � 2v2j .t/Œv`.s/ � Ocj Ov`.s/�2
C 2 Ov2` .s/Œvj .t/ � Oc` Ovj .t/�2

and vj and Ov` have unit norm in L2.Œ0; 1�/, k Ouk2 � 2
˚kv` � Oc` Ov`k2

Ckvj � Ocj Ovj k2� : Consequently, by (2.13), there is a constant K such that
Ek Ouk2 � KN�1. ut
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Lemma 14.3. Under Assumption 14.1,

N�1 max
2�k�N

0B@ZZ
24 X
2�i�k

ŒXi�1.t/Xi .s/ � r.t; s/�

352 dt ds
1CA
1=2

P! 0:

Proof. By Theorem 13.1,

Xk D
1X
jD0

� j "k�j ; (14.30)

where the series converges in the L2 norm and almost surely. For c > 0 to be
determined later, introduce the truncated series

Xk;N D
c logNX
jD0

� j "k�j : (14.31)

We will use the decomposition

Xi�1.t/Xi .s/ � r.t; s/ D Xi�1.t/Xi .s/ �Xi�1;N .t/Xi;N .s/
C ŒXi�1;N .t/Xi;N .s/ � rN .t; s/�

C ŒrN .t; s/ � r.t; s/�;
where

rN .t; s/ D EŒXi�1;N .t/Xi;N .s/�: (14.32)

Introduce also the functions

Vi;N .t; s/ D Xi�1.t/Xi .s/ � Xi�1;N .t/Xi;N .s/ (14.33)

and
Ui;N .t; s/ D Xi�1;N .t/Xi;N .s/: (14.34)

To prove the lemma, it suffices to show that

N�1E max
2�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
2�i�k

Vi;N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ ! 0; (14.35)

N�1E max
2�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
2�i�k

ŒUi;N � rN �

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ ! 0 (14.36)

and
krN � rk ! 0: (14.37)

In (14.35), (14.36), (14.37), the norm is taken in the space L2.Œ0; 1�2/.
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By Lemma 14.4,

E max
2�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
2�i�k

Vi;N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ � KN 2�� ;

for some K and any � > 0, provided c is sufficiently large, so (14.35) follows.
Relations (14.36) and (14.37) follow, respectively, from Lemmas 14.5 and 14.6. ut
Lemma 14.4. For c > 0 define Xk;N D Xk;N;c by (14.31). Consider the function
Vi;N .t; s/ defined by (14.33). Then for any � > 0, there is c so large that

EkVi;Nk D E

	ZZ
V 2i;N .t; s/dt ds


1=2
� KN��

for some constantK .

Proof. Observe that

kVi;Nk2 D
ZZ

ŒXi�1.t/Xi .s/ �Xi�1;N .t/Xi;N .s/�2dt ds

D
ZZ

ŒXi�1.t/.Xi .s/ � Xi;N .s//

CXi;N .s/.Xi�1.t/ � Xi�1;N .t//�2dt ds

� 2

	Z
X2i�1.t/dt

Z
.Xi .s/ � Xi;N .s//

2ds

C
Z
X2i;N .s/ds

Z
.Xi�1.t/ � Xi�1;N .t//2dt



D 2

˚kXi�1k2kXi � Xi;Nk2 C kXi;Nk2kXi�1 � Xi�1;Nk2�
Define r > 0 by k�k D e�r . Then

EkXk � Xk;Nk �
X

j>c logN

k�kjEk"0k � .1 � e�r/�1N�crEk"0k;

and the claim follows. ut
Lemma 14.5. The functions Ui;N 2 L2.Œ0; 1�2/ defined by (14.34) satisfy

E max
2�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
2�i�k

ŒUi;N � EUi;N �

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ � KN 1=2.logN/3=2;

where K is a constant and the norm is in the space L2.Œ0; 1�2/.

Proof. Set
U �i;N .t; s/ D Ui;N .t; s/ �EUi;N .t; s/:
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Letm D c logN and assume without loss of generality thatm is an integer. We will
work with the decompositionX

1�i�k
U �i;N D S1.k/C S2.k/C : : :C Sm.k/:

The idea is that S1.k/ is the sum of (available) U �1;N ; U �1Cm;N ; : : :, S2.k/ of
U �2;N ; U �2Cm;N ; : : :, etc. Formally, for 1 � k � N and 1 � j � m, define

Sj .k/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Œk=m�X
`D1

U �.`�1/mCj;N C U �mŒk=m�Cj;N ; if k=m is not an integer

k=mX
`D1

U �.`�1/mCj;N ; if k=m is an integer:

(14.38)

By (14.31) and (14.34), for any fixed j , Sj .k/ is a sum of independent iden-

tically distributed random functions in L2.Œ0; 1�2/. Since
ˇ̌̌̌̌̌ P

1�i�k U �i;N
ˇ̌̌̌̌̌

�Pm
jD1

ˇ̌̌̌
Sj .k/

ˇ̌̌̌
; ˇ̌̌̌

ˇ̌
ˇ̌̌̌
ˇ̌ X
1�i�k

U �i;N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

� m

mX
jD1

ˇ̌̌̌
Sj .k/

ˇ̌̌̌ 2
: (14.39)

By (14.39) and Lemma 14.7, we obtain E
ˇ̌̌̌̌̌ P

1�i�k U �i;N
ˇ̌̌̌̌̌ 2 � Cmk; where C is

a constant which does not depend on N . Since U �i;N is a stationary sequence, this
bound implies that for all K < L,

E

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
K�i�L

U �i;N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

� Cm.L�K/: (14.40)

Relation (14.40) together with the Mensov inequality (Lemma 14.8) imply that

E max
1�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ X
1�i�k

U �i;N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

� Cm.logN/2N: (14.41)

Recall that m D O.logN/, to obtain the claim of the lemma. ut

Lemma 14.6. Recall the functions r.t; s/ D EŒXi�1.t/Xi .s/� and rN .t; s/ (14.32).
Then

kr � rN k2 D
ZZ

jr.t; s/ � rN .t; s/j2 dt ds D O.N�2rc/;

where r > 0 is defined by k�k D e�r .
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Proof. For ease of notation set m D c logN and observe that

rN .t; s/ D E

24 mX
jD0

� j "i�1�j .t/
mX
`D0

� `"i�`.t/

35
D

mX
jD0

E
�
� j "i�1�j .t/� jC1"i�1�j .t/

�
:

using an analogous expansion of r.t; s/, we obtain

kr � rN k2 D
ZZ ˇ̌̌̌

ˇ̌X
j>m

EŒ� j "�j .t/� jC1"�j .s/�

ˇ̌̌̌
ˇ̌
2

dt ds

D
X
j;`>m

E

ZZ
Œ� j "�j .t/� jC1"�j .s/� `"�l.t/� `C1"�`.s/�dt ds

D
X
j;`>m

E

�Z
� j "�j .t/� l"�`.t/dt

Z
� jC1"�j .s/� `C1"�`.s/ds

�
�

X
j;`>m

E
h
k� j "�j k k� `"�`k k� jC1"�j k k� `C1"�`k

i
�

X
j;`>m

k�k2jC1k�k2`C1Ek"0k4 � Kk�k4m: ut

The following two lemmas are used in the proof of Lemma 14.5.

Lemma 14.7. The functions Sj .k/ 2 L2.Œ0; 1�2/ defined by (14.38) satisfy

EkSj .k/k2 � Ck=m; 1 � j � m;

where C is a constant which does not depend on N .

Proof. To lighten the notation, suppose k=m D n is an integer. By stationarity of
the Xi;N ,

EkSj .k/k2 D E

ZZ ˇ̌̌̌
ˇ
nX
`D1

U �.`�1/mCj;N .t; s/

ˇ̌̌̌
ˇ
2

dt ds

D E

ZZ ˇ̌̌̌
ˇ
nX
`D1

U �.`�1/m;N .t; s/

ˇ̌̌̌
ˇ
2

dt ds

does not depend on j . By construction, the U �
.`�1/m;N .t; s/ are mean zero and

U �
.`�1/m;N .t; s/ is independent of U �

.`0�1/m;N .t; s/ if l 0 ¤ `. Therefore

EkSj .k/k2 D
ZZ nX

`D1
E
h
U �2.`�1/m;N .t; s/

i
dt ds D n

ZZ
E
�
U �21;N .t; s/

�
dt ds:
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It thus remains to show that
RR
E
h
U �21;N .t; s/

i
dt ds is bounded by a constant which

does not depend on N .
Observe thatZZ

E
�
U �21;N .t; s/

�
dt ds �

ZZ
E
�
X20;N .t/X

2
1;N .s/

�
dt ds

D E

�Z
X20;N .t/dt

��Z
X21;N .s/ds

�
� E

�Z
X20;N .t/dt

�2
D EkX0;Nk4:

Setting m D c logN , we get

EkX0;N k4 D E

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ mX
jD0

� j "�j

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
4

� E

0@ mX
jD0

k�kj k"�j k
1A4

D
mX

j1D0

mX
j2D0

mX
j3D0

mX
j4D0

k�kj1 k�kj2 k�kj3 k�kj4

�E �k"�j1
k k"�j2

k k"�j3
k k"�j4

k �
�
0@ mX
jD0

k�kj
1A4Ek"0k4 � .1 � k�k/�4Ek"0k4: ut

Lemma 14.8. (Mensov inequality) Let �1; �2; : : : be arbitrary Hilbert space valued
random variables. If for any K < L

E

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ

LX
iDKC1

�i

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

� C.L �K/ (14.42)

then, for any b,

E max
1�k�N

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌ kCbX
iD1Cb

�i

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌
2

� C Œlog.2N /�2N: (14.43)

Proof. The proof is practically the same as for real–valued random variables �i , see
Móricz (1976), and so is omitted. ut



Chapter 15
Determining the order of the functional
autoregressive model

This chapter is concerned with determining the order p in the FAR(p) model

Zi D
pX
jD1

˚j .Zi�j /C "i : (15.1)

We describe a testing procedure proposed by Kokoszka and Reimherr (2011). At its
core is the representation of the FAR(p) process as a fully functional linear model
with dependent regressors. Estimating the kernel function in this linear model allows
us to construct a test statistic which has, approximately, a chi–square distribution
with the number of degrees of freedom determined by the number of functional
principal components used to represent the data. The procedure enjoys very good
finite sample properties, as confirmed by a simulation study and applications to
functional time series derived from credit card transactions and Eurodollar futures
data.

Order selection has been a central problem in time series analysis, and the result-
ing research has had a transforming impact on the application of time series models.
The literature is very extensive, we mention only the pioneering work of Akaike
(1978), Hannan and Quinn (1979), Hannan (1980), Shibata (1980) and Hannan and
Rissannen (1982). A comprehensive review is provided by Bhansali (1993), and
a brief introduction in Section 9.3 of Brockwell and Davis (1991). In contrast to
scalar autoregression, only very small values of p, say 0,1,2, are of interest in the
functional setting because the curvesZk already consist of a large number of scalar
observations, often hundreds, and the goal of functional data analysis is to replace
all of these observations by a single functional object. Consequently, we do not
attempt to develop analogues of the well known information or prediction error
based order selection criteria, but propose an approach based on hypothesis testing.
Our approach is specifically designed for functional data and fundamentally differs
from the approaches in common use for scalar and vector valued time series. It relies
on the observation that the union of intervals, Œ0; 1� [ Œ1; 2� [ : : : [ Œ.p � 1/; p�, is
again an interval (which can be treated as a unit interval after rescaling), and on a
multistage testing procedure rather than penalized likelihood.
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The issue of determining an optimal order p can be approached in a problem
specific manner by checking if using the FAR(p) produces better results than using
FAR(p � 1), in a sense defined by a statistical problem at hand. Nevertheless, an
appropriate criterion may not be obvious, and we believe that a universal approach
that can be applied to any such situation is useful. In this paper we propose a suit-
able testing procedure. We focus on practical applicability, but we also provide a
large sample justification, which is based on the theory presented in Chapter 16.
An asymptotic justification of the procedure described in this paper is presented in
Kokoszka and Reimherr (2011). It is of independent interest because it concerns ker-
nel estimation in the extensively used fully functional linear model without assum-
ing the independence of the regressor/response pairs.

This Chapter is organized as follows. In Section 15.1, we state model assump-
tions and develop a representation and an estimation technique for the FAR(p) pro-
cess suitable for the testing problem. Section 15.2 describes the testing procedure
whose performance is assessed in Section 15.3 by a simulation study and application
to credit card transaction and Eurodollar futures data.

15.1 Representation of an FAR(p) process as a functional linear
model

In this Chapter, we will work with the direct products

.x ˝ y/.t; s/ D x.s/y.t/; x; y 2 L2;
which are elements of the space L2.Œ0; 1� � Œ0; 1�/. The inner product in the latter
space will also be denoted by h�; �i, as it will always be clear from the context what
space the product is in.

We observe a sample of curvesZ1.t/; Z2.t/; : : : ; ZN .t/; t 2 Œ0; 1�:We assume
that these curves are a part–realization of an infinite sequence

˚
Zj
�

which satisfies
(15.1) and the following assumptions.

Assumption 15.1. The operators ˚j in (15.1) are Hilbert–Schmidt integral opera-
tors in L2, i.e.

˚j .x/.t/ D
Z
�j .t; s/x.s/ds;

ZZ
�2j .t; s/dtds < 1: (15.2)

The operator

˚ 0 D

2666664
˚1 ˚2 : : : ˚p�1 ˚p
I 0 : : : 0 0

0 I : : : 0 0
:::

:::
:::

:::
:::

0 0 : : : I 0

3777775 (15.3)
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acting on the cartesian product .L2/p satisfies

k˚ 0kL < 1; (15.4)

where k � kL is the operator norm in the cartesian product .L2/p .

Assumption 15.2. The "i 2 L2 in (15.1) are independent and identically dis-
tributed.

Condition (15.4) and Assumption 15.2 imply that the Zi form a stationary and
ergodic sequence in L2 such that "i is independent of Zi�1; Zi�2; : : :, see Section
5.1 of Bosq (2000). For ease of reference, we state the following definition.

Definition 15.1. We say that the functional observationsZ1; Z2; : : : ; ZN follow an
FAR(p) process if ˚p is not the zero operator, and Assumptions 15.1 and 15.2 hold.

Sufficient conditions for (15.4) to hold are established in Chapter 5 of Bosq
(2000). A condition analogous to the usual condition for the existence of a scalar
AR(p) process is the following: if the operator

Qp.´/ D ´pI �
pX
jD1

´p�j˚j

does not have a bounded inverse, then j´j < 1. A stronger condition isPp
jD1 k˚j k < 1. These conditions are derived using a Markovian representation of

the process (15.1) as a FAR(1) process in the cartesian product .L2/p . For the task
of testing FAR(p�1) against FAR(p), a different representation is useful. It directly
uses the structure of the observations as curves, and of the kernels �j as surfaces,
rather than treating them as elements of abstract Hilbert spaces.

We start by expressing˚j .Zi�j / as an integral over the interval ..j�1/=p; j=p�.
Setting x WD .s C j � 1/=p, a change of variables yields

Œ˚j .Zi�j /�.t/ D
Z 1

0

�j .t; s/Zi�j .s/ ds

D
Z j=p

.j�1/=p
�j .t; xp � .j � 1//Zi�j .xp � .j � 1//p dx:

Denoting by Ij the indicator function of the interval ..j � 1/=p; j=p�, we obtain

pX
jD1

Œ˚j .Zi�j /�.t/ D
Z 1

0

pX
jD1

Ij .x/�j .t; xp � .j � 1//Zi�j .xp � .j � 1//p dx:

Next we define

Xi .s/ D
pX
jD1

Zi�j .sp � .j � 1//Ij .s/ (15.5)
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and

 .t; s/ D p

pX
jD1

�j .t; sp � .j � 1//Ij .s/: (15.6)

Setting Yi D Zi , we have
Yi D �.Xi /C "i ; (15.7)

where � is an integral Hilbert–Schmidt operator with the kernel  , i.e.

Yi .t/ D
Z
 .t; s/Xi .s/ds C "i .t/: (15.8)

Thus, if we can estimate � , then we can estimate each of the ˚j . The FAR(p � 1)
model will be rejected in favor of FAR(p) if the resulting estimate of O̊

p is large in
a sense established in Section 15.2. We now turn to the estimation of the operator� .

Let f Ovk; 1 � k � N g be an orthonormal basis of L2 (for each N ), constructed
from the eigenfunctions of the covariance operator

bCX .t; s/ D 1

N

NX
iD1
.Xi .t/ � NXN .t//.Xi .s/ � NXN .s//;

ordered by the corresponding eigenvalues O�k . To construct the test statistic, we will
use only the first qx eigenfunction/eigenvalue pairs . Ovk; O�k/. While we will use f Ovkg
in projecting the regressors, we allow for a separate basis in projecting the response
variables. Define f Ouj gNjD1 and qy analogously to f Ovkg and qx for the response func-
tions. The tuning parameter qy can be chosen to explain about 80–90 percent of the
variance of the Yi . Due to the nature of the Xi , qx can either be chosen analogously
to qy or it can be taken to be qx D qyp. While the latter results in a much larger
qx , our procedure will involve a truncation step that will bring it back in line with
qy . In our experience, taking qx D qyp results in a slightly more powerful proce-
dure, though both approaches are valid. We take qx D qyp for the simulations and
applications presented in this chapter.

We estimate  projected onto the random subspace

OHqx ;qy
WD spanf Ov1; : : : ; Ovqx

g � spanf Ou1; : : : ; Ouqy
g:

Let O�qx ;qy
denote the projection operator onto OHqx ;qy

. Then we wish to estimate
O�qx ;qy

. /. We should mention that this differs sharply from an analogous multi-
variate problem. While we wish to estimate  , we can only estimate  projected
onto a finite dimensional subspace. Furthermore, that subspace is actually random
since the space we choose depends on the random operators bCX and bCY . An asymp-
totic framework that handles these issues is developed in Kokoszka and Reimherr
(2011).

To construct a least squares estimator, we define for i D 1; : : : ; N , j D
1; : : : ; qy , and k D 1; : : : ; qx

Y.i; j / D hYi ; Ouj i; X.i; k/ D hXi ; Ovki;
 .k; j / D h ; Ovk ˝ Ouj i D

ZZ
 .t; s/ Ovk.s/ Ouj .t/dt ds:

(15.9)
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For ease of reference, we list the dimensions of the matrices introduced above

Y .N � qy/; X .N � qx/;  .qx � qy/:

Using these matrices, we now reduce model (15.7) to a finite dimensional linear
model. The precision of this finite dimensional approximation will be reflected in
the structure of its random errors. Observe that

Y.i; j / D hYi ; Ouj i D h�.Xi /C "i ; Ouj i D h�.Xi/; Ouj i C h"i ; Ouj i:

Since � has a kernel  and f Ovkg forms a basis for L2, we have

h�.Xi /; Ouj i C h"i ; Ouj i D h ;Xi ˝ Ouj i C h"i ; Ouj i

D
*
 ;

1X
kD1

hXi ; Ovki Ovk ˝ Ouj
+

C h"i ; Ouj i

D
1X
kD1

hXi ; Ovkih ; Ovk ˝ Ouj i C h"i ; Ouj i

D
qxX
kD1

hXi ; Ovkih ; Ovk ˝ Ouj i C h"i ; Ouj i C
1X

kDqxC1
hXi ; Ovkih ; Ovk ˝ Ouj i

D
qxX
kD1

X.i; k/ .k; j /C h"i ; Ouj i C
1X

kDqxC1
hXi ; Ovkih ; Ovk ˝ Ouj i:

Therefore, the projections lead to the multivariate relation

Y D X C "0;

The N � qy matrix "0 has absorbed the error we made in projecting onto a finite
dimensional space, and is given by

"0.i; j / D h"i ; Ouj i C
X
l>qx

hXi ; Ovlih ; Ovl ˝ Ouj i:

Observe also that the matrix  is not a population parameter, it is a projection of
an unknown kernel function  onto a random subspace. It is therefore a random
matrix. We can nevertheless compute the usual least squares estimator

O D .XTX/�1XTY (15.10)

and use its entries to O .k; j /; k � qx; j � qy ; to construct a test statistic, as
described in Section 15.2. The asymptotic properties of the estimator O are estab-
lished in Kokoszka and Reimherr (2011).
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15.2 Order determination procedure

The testing procedure to determine the order of an FAR process consists of a
sequence of tests of the hypotheses

Hp W fZi g are FAR(p):

We start by testing

Null Hypothesis WD H0 W fZi g are iid vs

Alternative Hypothesis WD H1 W fZi g are FAR(1):

If we accept H0, then we conclude that the observations can be assumed to be
iid. If we reject H0, then we make H1 our new null hypothesis and H2 our new
alternative. We continue until we accept a null hypothesis. We then conclude that the
process is of the corresponding order. As explained in the introduction, the number
of the individual tests will, in practice, be very small, one or two, so we are not
concerned with problems arising in testing a large number of hypotheses. Our goal
is consequently to construct a statistic to test the null hypothesis Hp�1 against the
alternativeHp .

We now describe how such a test statistic is constructed. As will be clear from
the exposition that follows, some other variants are possible, but we focus on only
one that seems most direct to us and leads to a test with very good finite sample
properties. The test algorithm is summarized at the end of this section.

Using the estimator (15.10), we obtain an estimator of the kernel  given by

O .t; s/ D
X

k�qx ; j�qy

O .k; j / Ovk.s/ Ouj .t/: (15.11)

By (15.6), we can estimate the kernel �p by

O�p.t; s/ D 1

p
O 
�
t;
s C p � 1

p

�
D 1

p

X
k�qx ; j�qy

O .k; j / Ovk
�
s C p � 1

p

�
Ouj .t/:

Testing the nullity of �p is thus equivalent to checking if the sumX
k�qx ; j�qy

O .k; j / Ovk.x/ Ouj .t/; p � 1
p

� x � 1; 0 � t � 1 (15.12)

is close to zero. The key element is the range of the argument x of Ovk , which reflects
the part of  whose nullity we want to test. Based on the above representation, we
want to find linear combinations of the O .k; j / which make the sum (15.12) small.
Clearly, we do not want to test if all O .k; j / are small because that would mean that
the whole kernel  and so all of the �j ; 1 � j � p; vanish. For further discussion,
it is convenient to set

Ovk;p.s/ D Ovk
�
s C p � 1

p

�
; 0 � s � 1;
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so that

O�p.t; s/ D 1

p

X
k�qx ; j�qy

O .k; j / Ovk;p.s/ Ouj .t/; 0 � s; t � 1:

The idea behind the construction of the test statistic is to replace the Ovk;p by a
smaller set of functions that optimally describe the space spanned by them, and so,
in a sense, by the Ovk.x/; x � .p � 1/=p. In other words, we test the nullity of
�p only in the most significant orthogonal directions of the Ovk;p. We orthogonalize
them as

Owk;p.s/ D
qxX
iD1

Ǫ i;k Ovi;p.s/

with the vectors
Ǫ k D Œ Ǫ1;k ; Ǫ2;k ; : : : ; Ǫqx ;k�

T

such that k Ǫ kk D 1. To accomplish this, we construct the qx � qx matrix OV whose
entries are the inner products

OV .k; k0/ D hOvk;p; Ovk0;pi: (15.13)

Since the matrix OV is positive–definite and symmetric, we define the Ǫ k as its
orthonormal eigenvectors ordered by their eigenvalues, i.e. we have

OV Ǫ k D O�k Ǫ k; 1 � k � qx ; (15.14)

where
O�1 � O�2 � � � � � O�qx

:

A direct verification shows that˝ Owk;p; Owk0;p

˛ D O�kık;k0 ;

where ık;k0 is Dirac’s delta.
Next we project O�p onto the functions f Owk;p ˝ Ouj g. However, we will only

include Owk;p whose norms are above a certain threshold, as the larger the value
of k Owk;pk the greater its role in estimating �p . We obtained very good empirical
performance by setting

q? D maxfk 2 f1; : : : ; qxg W k Owk;pk2 � 0:9pg:
What happens for both simulated and real data is that a few Owk;p have norms close to
p, and the remaining norms are significantly smaller. An approximate upper bound
of p, holds because

k Owk;pk �
qxX
iD1

j Ǫ i;kjk Ovi;pk � pk˛kk1;
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where we see k Ovk;pk � p by the change of variables

k Ovk;pk D p

Z 1

.p�1/=p
Ov2k.x/dx:

Since
R 1
0

Ov2
k
.x/dx D 1, k Ovk;pk will generally not be very close to p, unless most of

the mass of Ovk is concentrated on the interval Œ.p � 1/=p; 1�.
We thus want to determine if the coefficients

h O�p; Owk;p ˝ Ouj i; k D 1; : : : ; q?; j D 1; : : : ; qy

are collectively small. Observe that

ph O�p; Owk;p ˝ Ouj i D p

ZZ
O�p.t; s/ Owk;p.s/ Ouj .t/dsdt

D
ZZ 0@X

k0;j 0

O .k0; j 0/ Ovk0;p.s/ Ouj 0.t/

1A Owk;p.s/ Ouj .t/dsdt

D
Z X

k0;j

O .k0; j / Ovk0;p.s/ Owk;p.s/ds

D
Z X

k0;j

O .k0; j / Ovk0;p.s/

 X
i

Ǫ i;k Ovi;p.s/
!
ds

D
X
k0;i

O .k0; j / OV .k0; i / Ǫ i;k

D
X
k0

O .k0; j /Œ OV Ǫ k�.k0/

D
X
k0

O .k0; j / Oık Ǫk0;k D O�k Œ˛Tk O �.j /:

The above calculation shows that the coefficients h O�p; Owk;p ˝ Ouj i are small if the
matrices O�k˛Tk O have small entries. As explained above, O�k D k Owk;pk2 � 0:9p, so

we reject Hp if the entries of the matrices ˛T
k

O are collectively large. To derive a
test statistic, consider the following matrices (with their dimensions in parentheses)

OA? D Œ Ǫ 1; : : : ; Ǫ q?
� .qx � q?/; OAT? O .q? � qy/: (15.15)

We want to construct a quadratic form which is large when some entries of OAT? O are
large, and which has an approximately parameter free distribution. We will exploit

the approximation ZT .VarZ/�1Z
d! �2dim.Z/, which holds for an asymptotically

normal vector Z. To this end, we form the column vector vec. OAT? O / by stack-
ing the columns of OAT? O , a process known as vectorization. Using the property,
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vec.ABC/ D .C T ˝ A/vec.B/, where ˝ now denotes the Kronecker product of
matrices, see e.g. Chapter 4 of Horn and Johnson (1985), we obtain

vec. OAT? O / D .I.qy/˝ OAT? /vec. O /;
where I.qy/ is the qy � qy identity matrix. We use the above identity to determine
the approximate covariance matrix of vec. OAT? O /. Applying the formula Var.QZ/ D
QVar.Z/QT , and treating the matrix OA? as deterministic, we obtain

Var
h
vec. OAT? O /

i
�


.I.qy/˝ OAT?

�
Var.vec. O //



.I.qy/˝ OAT?

�
;

where we used the property .A˝B/T D AT˝BT . One can show that, see Kokoszka
and Reimherr (2011),

NVar.vec. O // � bC" ˝ O�;
where

O� D diagf O�1; : : : ; O�qx
g; bC" D N�1.Y � X O /T .Y � X O /:

Combining these results, we arrive at the test statistic

O�p WD N



vec
h OA? O 

i�T h
.I.qy/˝ OA?/.bC" ˝ O�/.I.qy/˝ OA?/

i�1
vec. OA? O /:

(15.16)
The statistic O�p has an approximately chi–square distribution with qyq? degrees of
freedom. In Section 15.3 we evaluate the quality of this approximation. We conclude
this section with an algorithmic description of the test procedure.

Test algorithm (Hp�1 againstHp).

1. Subtract the sample mean from the functional observations. Continue to work
with the centered data.

2. Construct the regressorsXi according to (15.5), and set Yi D Zi .
3. Determine qy such that the first qy eigenfunctions of the covariance operator bCY

explain between 80 and 90 percent of the variance.

a. Set qy D qxp or
b. take qx analogous to qy .

4. Construct the matrices Y and X according to (15.9).
5. Calculate the qx � qy matrix O according to (15.10).
6. Calculate the qx � qx matrix OV according to (15.13), and its eigenvectors Ǫ k and

eigenfunctions O�k defined in (15.14).
7. Determine q? such that the first q? eigenvalues O�k are greater than 0.9p. (The

procedure is not sensitive to the cut–off value of 0.9, taking 0.5 produced the
same conclusions in data examples and simulations.)

8. Construct the matrices OA? and OAT? O defined in (15.15) and compute the test
statistic O�p defined in (15.16)

9. Compute the P–value using the chi–square density with qyq? degrees of free-
dom.
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15.3 Finite sample performance and application to financial data

We first evaluate the performance of the test using simulated data, then we turn to
the application to two financial data sets.

Simulated data. The data are generated according to an FAR model, the choice of
the autoregressive operators specifies the order. We consider two models

Zi D c1Zi�1 C c2Zi�2 C "i ; (15.17)

where the cj 2 Œ0; 1/ are scalars, and

Zi D ˚1.Zi�1/C ˚2.Zi�2/C "i ; (15.18)

where the kernel of ˚i is given by

�i .t; s/ D ci

:7468
e�.t2Cs2/=2:

The L2 norm of �i is approximately ci .
The "i in both models are standard Brownian bridges. We used a burn–in period

of 200 functional observations. The rejection rates are based on one thousand repli-
cations, so the standard errors for the empirical size are about 0.009, 0.006 and
0.003, respectively for the nominal sizes of 0.10, 0.05 and 0.01. To speed up the
simulations, we used fixed values qy D 3, which explain about 85 percent of the
variance of the Yi , and qx D 3p.

The results of the simulation study are displayed in Tables 15.1 and 15.2. For
N � 100, the sample sizes are generally within two standard errors off the nominal
sizes. The power is practically 100% for testing the null hypothesis of the iid model
against the alternative of an FAR(p) model with some p D 1 or p D 2. The power
is also very high when testing the null hypothesis of the FAR(1) model against
FAR(2) model, but lower than for testing the iid hypothesis. For N D 300, the
power is 100% for all cases we considered.

Table 15.1 Empirical size and power for model (15.17).

Null Hyp p D 0 p � 1 p D 0 p � 1 p D 0 p � 1
Alt Hyp p � 1 p � 2 p � 1 p � 2 p � 1 p � 2

c1 D 0 c1 D 0 c1 D 0:5 c1 D 0:5 c1 D 0:5 c1 D 0:5
Sig. Level c2 D 0 c2 D 0 c2 D 0 c2 D 0 c2 D 0:3 c2 D 0:3

N D 100
0.10 0.115 0.122 1 0.112 1 0.831
0.05 0.070 0.068 1 0.060 1 0.753
0.01 0.022 0.015 1 0.016 1 0.558

N D 200
0.10 0.117 0.120 1 0.105 1 0.986
0.05 0.054 0.062 1 0.058 1 0.968
0.01 0.012 0.013 1 0.010 1 0.925
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Table 15.2 Empirical size and power for model (15.18).

Null Hyp p D 0 p � 1 p D 0 p � 1 p D 0 p � 1
Alt Hyp p � 1 p � 2 p � 1 p � 2 p � 1 p � 2

c1 D 0 c1 D 0 c1 D 0:5 c1 D 0:5 c1 D 0:5 c1 D 0:5
Sig. Level c2 D 0 c2 D 0 c2 D 0 c2 D 0 c2 D 0:3 c2 D 0:3

N D 100
0.10 0.108 0.105 0.996 0.112 1 0.807
0.05 0.059 0.054 0.995 0.066 1 0.724
0.01 0.014 0.012 0.987 0.019 0.999 0.549

N D 200
0.10 0.107 0.105 1 0.116 1 0.979
0.05 0.057 0.051 1 0.063 1 0.961
0.01 0.016 0.012 1 0.009 1 0.925

Table 15.3 P–values for the test applied to credit card data transformed by differencing.

Null Hyp p D 0 p � 1
Alt Hyp p � 1 p � 2
P–Value 0.000 0.427

Table 15.4 P–values for the test applied to credit card data transformed by centering.

Null Hyp p D 0 p � 1 p � 2
Alt Hyp p � 1 p � 2 p � 3
P–Value 0.000 0.00 0.161

We now apply our multistage test procedure to two financial data sets we have
already introduced in previous chapters: the daily credit card transactions and the
curves of Eurodollar futures prices.

Credit Card Transactions. This data set is introduced in Section 1.3. Recall
that we denote by Dn.ti / the number of credit card transactions in day n; n D
1; : : : ; 200; between times ti�1 and ti , where ti � ti�1 D 8 min; i D 1; : : : ; 128:

We thus have N D 200 daily curves. The transactions are normalized to have time
stamps in the interval Œ0; 1�, which thus corresponds to one day. Some smoothing is
applied to construct the functional objects, as explained in Section 1.3.

The curves thus obtained have non–zero mean and exhibit strong weekly period-
icity. By computing the differences Zn.t/ D Yn.t/ � Yn�7.t/; n D 8; 9; : : : ; 200;

we can remove both. We refer to this method of obtaining theZi for further analysis
as differencing. Another way to remove the weekly periodicity and the mean is to
center the observations according to their day of the week. We refer to this method
as centering.

The P–values are displayed in Tables 15.3 and 15.4. The stationary process
obtained by differencing can be modeled as FAR(1). This agrees with the con-
clusions we reached in Chapters 7 and 14, where we tested the suitability of the
FAR(1) model using significance tests against error correlations and change points.
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Table 15.5 P–values of the test applied to Eurodollar futures curves.

Null Hyp p D 0 p � 1 p � 2
Alt Hyp p � 1 p � 2 p � 3
P–Value 0.000 0.000 0.731

Centering by week days leads to a more complex structure, which can be captured
by the FAR(2) model.

Eurodollar Futures. We now turn to the application of our procedure to the data
set consisting of Eurodollar futures contract prices studied in Section 14.3. Recall
that each daily curve consists of 114 points per day; point i corresponds to the price
of a contract with closing date i months from today. We work with centered data,
i.e. the sample mean function has been subtracted from all observations.

The P–values displayed in Table 15.5 indicate that the FAR(1) model is not suit-
able for modelling the whole data set, but the FAR(2) model is acceptable. This
conclusion agrees with the analysis presented in Section 14.3 where a change point
test was applied to these data. We saw that the FAR(1) model is not suitable for the
whole data set, merely for shorter subintervals. The present analysis shows that a
slightly more complex FAR(2) model captures the stochastic structure of the whole
data set.



Chapter 16
Functional time series

Functional data often arise from measurements obtained by separating an almost
continuous time record into natural consecutive intervals, for example days. The
functions thus obtained form a functional time series, and the central issue in the
analysis of such data is to take into account the temporal dependence of these func-
tional observations. In the previous chapters we have seen many examples, which
include daily curves of financial transaction data and daily patterns of geophysical
and environmental data. In Chapter 13, we introduced the functional autoregressive
model which can approximate the temporal dependence in many such data sets. For
many functional time series it is however not clear what specific model they follow,
and for many statistical procedures it is not necessary to assume a specific model.
In such cases, it is important to know what the effect of the dependence on a given
procedure is. Is it robust to temporal dependence, or does this type of dependence
introduce a serious, broadly understood, bias? To answer questions of this type, it
is essential to quantify the notion of temporal dependence. For scalar and vector
valued stochastic processes, a large number of dependence notions have been pro-
posed, mostly involving mixing type distances between 	–algebras. In time series
analysis, measures of dependence based on moments have proven most useful (auto-
covariances and cumulants). In this chapter, we introduce a moment based notion of
dependence for functional time series which is an extension of m–dependence. We
show that it is applicable to linear as well as nonlinear functional time series. Then
we investigate the impact of dependence thus quantified on several important statis-
tical procedures for functional data. We study the estimation of the functional prin-
cipal components, the long-run covariance matrix, change point detection and the
functional linear model. We explain when temporal dependence affects the results
obtained for iid functional observations, and when these results are robust to weak
dependence. Our examples are chosen to show that some statistical procedures for
functional data are robust to temporal dependence, as quantified in this paper, while
other require modifications that take this dependence into account.

While we focus here on a general theoretical framework, this research has been
motivated by our work with functional data arising in space physics. For such data,
no validated time series models are currently available, so to justify any inference
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Fig. 16.1 Ten consecutive functional observations of a component of the magnetic field recorded
at College, Alaska. The vertical lines separate days. Long negative spikes lasting a few hours
correspond to the aurora borealis.

drawn from them, they must fit into a general, one might say nonparametric, depen-
dence scheme. An example of space physics data is shown in Figure 16.1. Temporal
dependence from day to day can be discerned, but has not been modeled yet.

The Chapter is organized as follows. In Section 16.1, we introduce the depen-
dence condition and illustrate it with several examples. In particular, we show that
the linear functional processes fall into this framework, and present some nonlinear
models that also do. In Section 16.2 we show how the consistency of the estimators
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for the eigenvalues and eigenfunctions of the covariance operator extends to depen-
dent functional data. Next, in Sections 16.3 and 16.4, we turn to the estimation
of an appropriately defined long run variance matrix for functional data. For most
time series procedures, the long run variance plays a role analogous to the variance–
covariance matrix for independent observations. Its estimation is therefore of funda-
mental importance, and has been a subject of research for many decades, Andrews
(1991), Anderson (1994) and Hamilton (1994) provide the background and numer-
ous references. In Sections 16.5 and 16.7, we illustrate the application of the results
of Sections 16.2 and 16.3 on two problems: change point detection for functional
mean, and the estimation of kernel in the functional linear model. We show that the
detection procedure introduced in Chapter 6 must be modified if the data exhibit
dependence, but the kernel estimation procedure is robust to mild dependence. Sec-
tion 16.5 also contains a small simulation study and a data example. The proofs are
collected in the remaining sections. This chapter is partially based on the paper of
Hörmann and Kokoszka (2010).

16.1 Approximable functional time series

The notion of weak dependence has over the past decades been formalized in many
ways. Perhaps the most popular are various mixing conditions, see Doukhan (1994),
Bradley (2007), but in recent years several other approaches have also been intro-
duced, see Doukhan and Louhichi (1999) and Wu (2005, 2007), among others. In
time series analysis, moment based measures of dependence, most notably autocor-
relations and cumulants, have gained broad acceptance. The measure we consider
below is a moment type quantity, but it is also related to the mixing conditions as it
considers 	–algebrasm time units apart, with m tending to infinity.

A most direct relaxation of independence is m–dependence. Suppose fXng is a
sequence of random elements taking values in a measurable space S . Denote by
F�
k

D 	f: : : Xk�2; Xk�1; Xkg and FC
k

D 	fXk; XkC1; XkC2; : : :g, the 	–algebras
generated by the observations up to time k and after time k, respectively. Then the
sequence fXng is said to bem-dependent if for any k, the 	–algebras F�

k
and FC

kCm
are independent.

Most time series models are not m–dependent. Rather, various measures of
dependence decay sufficiently fast, as the distance m between the 	–algebras F�

k

and FC
kCm increases. However, m–dependence can be used as a tool to study prop-

erties of many nonlinear sequences, see e.g. Berkes and Horváth (2001), Berkes,
Horváth and Kokoszka (2003, 2005), Berkes and Horváth (2003a, 2003b), Hörmann
(2008), Berkes, Hörmann and Schauer (2008, 2009). The general idea is to approx-
imate fXn; n 2 Zg by m–dependent processes fX .m/n ; n 2 Zg, m � 1. The goal is
to establish that for every n the sequence fX .m/n ; m � 1g converges in some sense
to Xn, if we let m ! 1. If the convergence is fast enough, then one can obtain
the limiting behavior of the original process from corresponding results for m–
dependent sequences. Definition 16.1 formalizes this idea and sets up the necessary
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framework for the construction of suchm–dependent approximation sequences. The
idea of approximating scalar sequences bym–dependent nonlinear moving averages
appears already in Section 21 of Billingsley (1968), and it was developed in several
direction by Pötscher and Prucha (1997). A version of Definition 16.1 for vector
valued processes was used in Aue et al. (2009).

For p � 1, we denote by Lp D Lp.˝;A; P / the space of (classes of) real
valued random variables such that kXkp D .EjX jp/1=p < 1. Further, we let
L
p
H D L

p
H .˝;A; P / be the space of H D L2 valued random functions X such

that

�p.X/ D �
EkXkp�1=p D

 
E

	Z
X2.t/dt


p=2!1=p
< 1: (16.1)

In this chapter we use H to denote the function space L2 D L2.Œ0; 1�/ to avoid
confusion with the space Lp of scalar random variables.

Definition 16.1. A sequence fXng 2 LpH is called Lp–m–approximable if each Xn
admits the representation

Xn D f ."n; "n�1; : : :/; (16.2)

where the "i are iid elements taking values in a measurable space S , and f is a mea-
surable function f W S1 ! H . Moreover we assume that if f"0ig is an independent
copy of f"ig defined on the same probability space, then letting

X .m/n D f ."n; "n�1; : : : ; "n�mC1; "0n�m; "0n�m�1; : : :/ (16.3)

we have 1X
mD1

�p
�
Xn �X .m/n

�
< 1: (16.4)

For our applications, choosing p D 4 will be convenient, but any p � 1 can be
used, depending on what is needed. (Our definition makes even sense if p < 1, but
then �p is no longer a norm.) Definition 16.1 implies that fXng is strictly stationary.

It is clear from the representation ofXn andX .m/n thatEkXm�X .m/m kp D EkX1�
X
.m/
1 kp , so that condition (16.4) could be formulated solely in terms of X1 and the

approximations X .m/1 . Obviously the sequence fX .m/n ; n 2 Zg as defined in (16.3)
is not m–dependent. To this end we need to define for each n an independent copy
f".n/
k

g of f"kg (this can always be achieved by enlarging the probability space) which

is then used instead of f"0
k
g to construct X .m/n , i.e. we set

X .m/n D f ."n; "n�1; : : : ; "n�mC1; ".n/n�m; "
.n/
n�m�1; : : :/: (16.5)

We call this method the coupling construction. Since this modification lets condition
(16.4) unchanged, we will assume from now on that the X .m/n are defined by (16.5).
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Then, for each m � 1, the sequences fX .m/n ; n 2 Zg are strictly stationary and
m–dependent, and each X .m/n is equal in distribution to Xn.

One can also define X .m/n by

X .m/n D f ."n; "n�1; : : : ; "n�mC1; ".m/n;n�m; "
.m/
n;n�m�1; : : :/; (16.6)

where
n
"
.m/

n;`
; m � 1;�1 < n; ` < 1

o
are iid copies of "0. We require (16.4), but

nowX .m/n defined by (16.6) is used. To establish (16.4) withX .m/n defined by (16.5)
or (16.6) the same arguments are used.
Lp–m–approximability is related to Lp–approximability studied by Pötscher

and Prucha (1997) for scalar– and vector–valued processes. Since our definition
applies with an obvious modification to sequences with values in any normed vec-
tor spaces H (in particular, R or R

n), it can been seen as a generalization of
Lp–approximability. There are, however, important differences. By definition, Lp–
approximability only allows for approximations that are, like the truncation con-
struction, measurable with respect to a finite selection of basis vectors "n; : : : ; "n�m,
whereas the coupling construction does not impose this condition. On the other
hand, Lp–approximability is not based on independence of the innovation process.
Instead independence is relaxed to certain mixing conditions.

Finally, we point out that only a straightforward modification is necessary
in order to generalize the theory of this paper to non-causal processes Xn D
f .: : : ; "nC1; "n; "n�1; : : :/: At the expense of additional technical assumptions, our
framework can also be extended to non-stationary sequences, e.g. those of the form
(16.2) where f"kg is a sequence of independent, but not necessarily identically dis-
tributed, random variables.

We now illustrate the applicability of Definition 16.1 with several examples. Let
L D L.H;H/ be the set of bounded linear operators from H to H . Recall that for
A 2 L the operator norm is kAkL D supkxk�1 kAxk.

Example 16.1 (Functional autoregressive process). Suppose � 2 L satisfies
k�kL < 1. Let "n 2 L2H be iid with mean zero. Then there is a unique station-
ary sequence of random elements Xn 2 L2H such that

Xn.t/ D �.Xn�1/.t/C "n.t/: (16.7)

For details see Chapter 13. The AR(1) sequence (16.7) admits the
expansion Xn D P1

jD0 � j ."n�j /; where � j is the j -th iterate of the

operator � . We thus set X
.m/
n D Pm�1

jD0 � j ."n�j / C P1
jDm � j ."

.n/
n�j /:

It is easy to verify that for every A in L, �p.A.Y // � kAkL �p.Y /:
Since Xm � X

.m/
m D P1

jDm
�
� j ."m�j / � � j ."

.m/
m�j /

�
; it follows that

�p.Xm � X
.m/
m / � 2

P1
jDm k�kjL �p."0/ D O.1/�p."0/k�kmL : By assumption

�2."0/ < 1 and therefore
P1
mD1 �2.Xm � X

.m/
m / < 1; so condition (16.4) holds

with p � 2, as long as �p."0/ < 1.
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Proposition 16.1 establishes sufficient conditions for a general linear process to
be Lp–m–approximable. Its verification follows the lines of Example 16.1, and
so is omitted. A sequence fXng is said to be a linear process in H if Xn DP1
jD0 �j ."n�j /; where the errors "n 2 L2H are iid and zero mean, and each �j

is a bounded operator. If
P1
jD1 k�j k2L < 1; then the series definingXn converges

a.s. and in L2H , see Section 7.1 of Bosq (2000).

Proposition 16.1. Suppose fXng 2 L2H is a linear process whose errors satisfy
�p."0/ < 1, p � 2. The operator coefficients satisfy

P1
mD1

P1
jDm k�j k < 1.

Then fXng is Lp–m–approximable.

We next give a simple example of a nonlinear Lp–m–approximable sequence. It
is based on the model used by Maslova et al. (2010a) to simulate the so called solar
quiet (Sq) variation in magnetometer records. In that model, Xn.t/ D Un.S.t/ C
Zn.t// represents the part of the magnetometer record on day n which reflects the
magnetic field generated by ionospheric winds of charged particles driven by solar
heating. These winds flow in two elliptic cells, one on each day–side of the equa-
tor. Their position changes from day to day, causing a different appearance of the
curves Xn.t/, with changes in the amplitude being most pronounced. To simulate
this behavior, S.t/ is introduced as the typical pattern for a specific magnetic obser-
vatory,Zn.t/ as the change in shape on day n, and the scalar random variable Un as
the amplitude on day n. With this motivation, we formulate the following example.

Example 16.2. (Product model) Suppose fYng 2 L
p
H and fUng 2 Lp are both

Lp–m–approximable sequences, independent of each other. The respective rep-
resentations are Yn D g.�1; �2; : : :/ and Un D h.
1; 
2; : : :/: Each of these
sequences could be a linear sequence satisfying the assumptions of Proposition
16.1, but they need not be. The sequence Xn.t/ D UnYn.t/ is then a non-
linear Lp–m–approximable sequence with the underlying iid variables "n D
.�n; 
n/. To see this, set X .m/n .t/ D U

.m/
n Y

.m/
n .t/ and observe that �p.Xm �

X
.m/
m / � �p



.Um � U

.m/
m /Ym

�
C �p



U
.m/
m .Ym � Y

.m/
m /

�
: Using the indepen-

dence of fYng and fUng it can be easily shown that �p


.Um � U .m/m /Ym

�
D

kUm � U .m/m kp �p.Y0/ and �p


U
.m/
m .Ym � Y

.m/
m /

�
D kU0kp �p



Ym � Y

.m/
m

�
:

Example 16.2 illustrates the principle that in order for products of Lp–
m–approximable sequences to be Lp–m–approximable, independence must be
assumed. It does not have to be assumed as directly as in Example 16.2, the impor-
tant point being that appropriately defined functional Volterra expansions should not
contain diagonal terms, so that moments do not pile up. Such expansions exist, see
e.g. Giraitis et al. (2000), for all nonlinear scalar processes used to model financial
data. The modelXn.t/ D Yn.t/Un is similar to the popular scalar stochastic volatil-
ity model rn D vn"n used to model returns rn on a speculative asset. The dependent
sequence fvng models volatility, and the iid errors "n, independent of the vn, gener-
ate unpredictability in returns. Our final example, focuses on a functional extension
of the celebrated ARCH model of Engle (1982) which has a more complex Volterra
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expansion. The proof of Proposition 16.2 is more involved than those presented in
Examples 16.1 and 16.2, and is not presented. The curves yk.t/ appearing in Exam-
ple 16.3 correspond to appropriately defined intradaily returns.

Example 16.3 (Functional ARCH). Let ı 2 H be a positive function and let f"kg
an i.i.d. sequence in L4H . Further, let ˇ.s; t/ be a non-negative kernel function in
L2.Œ0; 1�2;B2

Œ0;1�
; �2/. Then we call the process

yk.t/ D "k.t/	k.t/; t 2 Œ0; 1�; (16.8)

where

	2k .t/ D ı.t/C
Z 1

0

ˇ.t; s/y2k�1.s/ds; (16.9)

the functional ARCH(1) process.
Proposition 16.2 establishes conditions for the existence of a strictly stationary

solution to equations (16.8) and (16.9) and its Lp–m–approximability.

Proposition 16.2. Assume that there is a p > 0 such that

E
�kˇkL sup

0�s�1
j".s/j2�p=2 < 1:

Then equations (16.8) and (16.9) have a unique strictly stationary and causal solu-
tion and the sequence fykg is Lp–m–approximable.

Example 16.3 and Proposition 16.2 are taken from Hörmann et al. (2010), where
further properties of the functional ARCH sequence are discussed.

We conclude this section we a simple but useful Lemma which shows that Lp–
m–approximability is unaffected by linear transformations, whereas independence
assumptions are needed for product type operations.

Lemma 16.1. Let fXng and fYng be two Lp–m–approximability sequences in LpH .
Define


 Z
.1/
n D A.Xn/, where A 2 L;


 Z
.2/
n D Xn C Yn;


 Z
.3/
n D Xn ı Yn .Xn ı Yn.t/ D Xn.t/Yn.t//;


 Z
.4/
n D hXn; Yni;


 Z
.5/
n D Xn ˝ Yn (Xn ˝ Yn.t; s/ D Xn.s/Yn.t/).

Then fZ.1/n g and fZ.2/n g are Lp–m–approximable sequences in LpH . If Xn and Yn
are independent then fZ.4/n g and fZ.5/n g are Lp–m–approximable sequences in the
respective spaces. IfE supt2Œ0;1� jXn.t/jpCE supt2Œ0;1� jYn.t/jp < 1, then fZ.3/n g
is Lp–m–approximable in LpH .

Proof. The first two relations are immediate. We exemplify the proofs of the remain-
ing claims by focusing on Zn D Z

.5/
n . For this we set Z.m/m D X

.m/
m ˝ Y

.m/
m and
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note that Zm and Z.m/m are (random) kernel operators, and thus Hilbert-Schmidt
operators. Since

kZm �Z.m/m kL � kZm �Z.m/m kS

�
�ZZ �

Xm.s/Ym.t/ �X .m/m .s/Y .m/m .t/
�2
dt ds

�1=2
� p

2


kXmkkYm � Y .m/m k C kY .m/m kkXm �X .m/m k

�
;

the proof follows from the independence of Xn and Yn. ut
The proof shows that for product type operations our assumptions can be mod-

ified and independence is not required. However, if X; Y are not independent,
then we have then to use the Cauchy-Schwarz inequality and obviously need 2p
moments.

16.2 Convergence of sample eigenfunctions and a central limit
theorem

In this section we extend the results of Section 2.5 to weakly dependent functional
time series and establish a central limit theorem for functional time series.

Let fXng 2 L2H be a stationary sequence with covariance operatorC . We assume
that C is an integral operator with kernel c.t; s/ D Cov.X1.t/; X1.s// whose esti-
mator is

Oc.t; s/ D 1

N

NX
nD1

.Xn.t/ � NXN .t//.Xn.s/ � NXN .s//: (16.10)

Then natural estimators of the eigenvalues �j and eigenfunctions vj of C are
the eigenvalues O�j and eigenfunctions Ovj of OC , the operator with the kernel (16.10).
By Lemmas 2.2 and 2.3 we can bound the estimation errors for eigenvalues and
eigenfunctions by kC � OCk2S , where k � kS denotes the Hilbert–Schmidt norm. This
motivates the next result.

Theorem 16.1. Suppose fXng 2 L4H is an L4–m–approximable sequence with
covariance operator C . Then there is some constant UX < 1, which does not
depend on N , such that

Ek OC � Ck2S � UX N
�1: (16.11)

The proof of Theorem 16.1 is given in Section 16.8. Let us note that by Lemma
2.2 and Theorem 16.1,

NE
h
j�j � O�j j2

i
� NEk OC � Ck2L � NEk OC � Ck2S � UX :
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Assuming
�1 > �2 > � � � > �d > �dC1; (16.12)

Lemma 2.3 and Theorem 16.1 yield for j � d ( Ocj D sign.
˝ Ovj ; vj ˛/),

NE
�k Ocj Ovj � vj k2� �

 
2
p
2

˛j

!2
NEk OC � Ck2L � 8

˛2j
NEk OC � Ck2S � 8UX

˛2j
;

with the ˛j defined in Lemma 2.3.
These inequalities establish the following result.

Theorem 16.2. Suppose fXng 2 L4H is an L4–m–approximable sequence and
assumption (16.12) holds. Then, for 1 � j � d ,

lim sup
N!1

NE
h
j�j � O�j j2

i
< 1; lim sup

N!1
NE

�k Ocj Ovj � vj k2� < 1: (16.13)

Relations (16.13) are a fundamental tool for establishing asymptotic properties of
procedures for functional simple random samples which are based on the functional
principal components. Theorem 16.2 shows that in many cases one can expect that
these properties will remain the same under weak dependence, an important exam-
ple is discussed in Section 16.7.

The following theorem was established by Horváth et al. (2011).Its proof is pre-
sented in Section 16.8.

Theorem 16.3. If fXig is a zero mean L2–m–approximable sequence, then

N�1=2
NX
iD1

Xi
d! G in L2;

where G is a Gaussian process with

EG.t/ D 0 and EŒG.t/G.s/� D c.t; s/I
c.t; s/ D EŒX0.t/X0.s/�C

X
i�1

EŒX0.t/Xi .s/�C
X
i�1

EŒX0.s/Xi .t/�: (16.14)

16.3 The long–run variance

The concept of the long run variance, while fundamental in time series analysis,
has not been studied for functional data, and not even for scalar approximable
sequences. It is therefore necessary to start with some preliminaries, which lead
to the main results and illustrate the role of the Lp–m–approximability.

Let fXng be a scalar (weakly) stationary sequence. Its long run variance is defined
as 	2 D P

j2Z 
j ; where 
j D Cov.X0; Xj /, provided this series is absolutely
convergent.Our first lemma shows that this is the case for L2–m–approximable
sequences.
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Lemma 16.2. Suppose fXng is a scalar L2–m–approximable sequence. Then
its autocovariance function 
j D Cov.X0; Xj / is absolutely summable, i.e.P1
jD�1 j
j j < 1.

Proof. Observe that for j > 0,

Cov.X0; Xj / D Cov.X0; Xj �X .j /j /C Cov.X0; X
.j /
j /:

Since

X0 D f ."0; "�1; : : :/; X
.j /
j D f .j /."j ; "j�1; : : : ; "1; ".j /0 ; "

.j /
�1 ; : : :/;

the random variablesX0 and X .j /j are independent, so Cov.X0; X
.j /
j / D 0, and

j
j j � ŒEX20 �
1=2ŒE.Xj �X .j /j /2�1=2:

The summability of the autocovariances is a fundamental property of weak
dependence because thenNVarŒ NXN � ! P1

jD�1 
j , i.e. the variance of the sample
mean converges to zero at the rate N�1, the same as for iid observations. A popular
approach to the estimation of the long-run variance is to use the kernel estimator

O	2 D
X
jj j�q

!q.j / O
j ; O
j D 1

N

N�jj jX
iD1

.Xi � NXN /.XiCjj j � NXN /:

Various weights !q.j / have been proposed and their optimality properties studied,
see Andrews (1991) and Anderson (1994), among others. In theoretical work, it is
typically assumed that the bandwidth q is a deterministic function of the sample size
such that q D q.N / ! 1 and q D o.N r/, for some 0 < r � 1. We will use the
following assumption:

Assumption 16.1. The bandwidth q D q.N / satisfies q ! 1; q2=N ! 0 and the
weights satisfy !q.j / D !q.�j / and

j!q.j /j � b (16.15)

and, for every fixed j ,
!q.j / ! 1: (16.16)

All kernels used in practice have symmetric weights and satisfy conditions (16.15)
and (16.16).

The absolute summability of the autocovariances is not enough to establish the
consistency of the kernel estimator O	2. Traditionally, summability of the cumulants
has been assumed to control the fourth order structure of the data. Denoting � D
EX0, the fourth order cumulant of a stationary sequence is defined by

�.h; r; s/ D Cov ..X0 � �/.Xh � �/; .Xr � �/.Xs � �//� 
r
h�s � 
s
h�r :
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The usual sufficient condition for the consistency of O	 is

1X
hD�1

1X
rD�1

1X
sD�1

j�.h; r; s/j < 1: (16.17)

Recently, Giraitis et al. (2003) showed that condition (16.17) can be replaced by a
weaker condition

sup
h

1X
rD�1

1X
sD�1

j�.h; r; s/j < 1: (16.18)

A technical condition we need is

N�1
q.N/X
k;lD0

N�1X
rD1

ˇ̌̌
Cov



X0.Xk � X

.k/

k
/; X .r/r X

.rC`/
rC`

�ˇ̌̌
! 0: (16.19)

By analogy to condition (16.18), it can be replaced by a much stronger, but a more
transparent condition

sup
k;l�0

1X
rD1

ˇ̌̌
Cov



X0.Xk � X

.k/

k
/; X .r/r X

.rC`/
rC`

�ˇ̌̌
< 1: (16.20)

To explain the intuition behind conditions (16.19) and (16.20), consider the linear
process Xk D P1

jD0 cjXk�j . For k � 0,

Xk � X
.k/

k
D

1X
jDk

cj "k�j �
1X
jDk

cj "
.k/

k�j :

Thus X0.Xk � X
.k/

k
/ depends on

"0; "�1; "�2; : : : and "
.k/
0 ; "

.k/
�1 ; "

.k/
�2 ; : : : (16.21)

and X .r/r X
.rC`/
rC` depends on

"rC`; : : : ; "1; ".r/0 "
.r/
�1; "

.r/
�2; : : : and "

.rC`/
0 "

.rC`/
�1 ; "

.rC`/
�2 ; : : :

Consequently, the covariances in (16.20) vanish except when r D k or r C ` D k,
so condition (16.20) always holds for linear processes.

For general nonlinear sequences, the difference

Xk �X .k/
k

D f ."k; : : : ; "1; "0; "�1; : : :/ � f ."k; : : : ; "1; "
.k/
0 ; "

.k/
�1 ; : : :/

cannot be expressed only in terms of the errors (16.21), but the errors "k; : : : ; "1
should approximately cancel, so that the difference Xk � X

.k/

k
is small, and very

weakly correlated with X .r/r X
.rC`/
rC` .

With this background, we now formulate the following result.
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Theorem 16.4. Suppose fXng 2 L4 is a scalarL4–m–approximable time series for

which condition (16.19) holds. If Assumption 16.1 holds, then O	2 P! P1
jD�1 
j :

Theorem 16.4 is proven in Section 16.8. The general plan of the proof is the same
as that of the proof of Theorem 3.1 of Giraitis et al. (2003), but the verification of
the crucial relation (16.49) uses a new approach based on L4–m–approximability.
The arguments preceding (16.49) show that replacing NXN by � D EX0 does not
change the limit. We note that the condition q2=N ! 0 we assume is stronger than
the condition q=N ! 0 assumed by Giraitis et al. (2003). This difference is of little
practical consequence, as the optimal bandwidths for the kernels used in practice
are typically of the order O.N 1=5/. Finally, we notice that by further strengthening
conditions on the behavior of the bandwidth function q D q.N /, the convergence
in probability in Theorem 16.4 could be replaced by the almost sure convergence,
but we do not pursue this research here. The corresponding result under condition
(16.18) was established by Berkes et al. (2005), it is also stated without proof as
part of Theorem A.1 of Berkes et al. (2006).

We now turn to the vector case in which the data are of the form

Xn D ŒX1n; X2n; : : : ; Xdn�
T ; n D 1; 2; : : : ; N:

Just as in the scalar case, the estimation of the mean by the sample mean does
not effect the limit of the kernel long–run variance estimators, so we assume that
EXin D 0 and define the autocovariances as


r.i; j / D EŒXi0Xjr �; 1 � i; j � d:

If r � 0, 
r.i; j / is estimated byN�1PN�r
nD1 XinXj;nCr but if r < 0 it is estimated

by N�1PN�jrj
nD1 Xi;nCjrjXj;n. We therefore define the autocovariance matrices

O
 r D

8̂̂̂̂
<̂
ˆ̂̂:
N�1

N�rX
nD1

XnXTnCr if r � 0;

N�1
N�jrjX
nD1

XnCjrjXTn if r < 0:

The variance VarŒN�1 NXn� has .i; j /–entry

N�2
NX

m;nD1
EŒXimXjn� D N�1 X

jrj<N

�
1 � jr j

N

�

r.i; j /;

so the long–run variance is

˙ D
1X

rD�1

 r ; 
 r WD Œ
r .i; j /; 1 � i; j � d�;
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and its kernel estimator is
Ȯ D

X
jrj�q

!q.r/ O
 r : (16.22)

The consistency of Ȯ can be established by following the lines of the proof of
Theorem 16.4 for every fixed entry of the matrix Ȯ . Condition (16.19) must be
replaced by

N�1
q.N/X
k;lD0

N�1X
rD1

max
1�i;j�d

ˇ̌̌
Cov



Xi0.Xjk �X .k/

jk
/; X

.r/
ir X

.rC`/
j;rC`

�ˇ̌̌
! 0: (16.23)

Condition (16.23) is analogous to cumulant conditions for vector processes which
require summability of fourth order cross–cumulants of all scalar components, see
e.g. Assumption A on p. 823 of Andrews (1991).

For ease of reference we state these results as a theorem.

Theorem 16.5. a) If fXng 2 L2
Rd is an L2–m–approximable sequence, then the

series
P1
rD�1 
 r converges absolutely. b) Suppose fXng 2 L4

Rd an L4–m–
approximable sequence such that condition (16.23) holds. If Assumption 16.1 holds,

then Ȯ P! ˙ .

We are now able to turn to functional data. Suppose fXng 2 L2H is a zero
mean sequence and v1; v2; : : : ; vd is any set of orthonormal functions in H . Define
Xin D R

Xn.t/vi .t/dt , Xn D ŒX1n; X2n; : : : ; Xdn�
T and 
 r D Cov.X0;Xr/. A

direct verification shows that if fXng is Lp–m–approximable, then so is the vector
sequence fXng. We thus obtain the following corollary.

Corollary 16.1. a) If fXng 2 L2H is an L2–m–approximable sequence, then the
series

P1
rD�1 
 r converges absolutely. b) If, in addition, fXng is L4–m–

approximable and Assumption 16.1 and condition (16.23) hold, then Ȯ P! ˙ .

The results of Section 16.4 show that the conclusions of parts b/ of Theorem
16.5 and Corollary 16.1 holds under L2–m–approximability and mild additional
assumptions; L4–m–approximability and Condition (16.23) are not required.

In Corollary 16.1, the functions v1; v2; : : : ; vd form an arbitrary orthonormal
deterministic basis. In many applications, a random basis consisting of the estimated
principal components Ov1; Ov2; : : : ; Ovd is used. The scores with respect to this basis are
defined by

O�`i D
Z
.Xi .t/ � NXN .t// Ov`.t/dt; 1 � ` � d: (16.24)

To use the results established so far, it is convenient to decompose the stationary
sequence fXng into its mean and a zero mean process, i.e. we set Xn.t/ D �.t/C
Yn.t/, where EYn.t/ D 0. We introduce the unobservable quantities

ˇ`n D
Z
Yn.t/v`.t/dt; Ǒ

`n D
Z
Yn.t/ Ov`.t/dt: 1 � ` � d; (16.25)
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We then have the following proposition which will be useful in most statistical pro-
cedures for functional time series which, an application to change point detection is
developed in Section 16.5.

Proposition 16.3. Let OC D diag. Oc1; : : : ; Ocd /, with Oci D sign.hvi ; Ovi i/. Suppose
fXng 2 L4H is L4–m–approximable and that (16.12) holds. Assume further that

� WD sup
q�1

1

q

qX
jD�q

wq.j / < 1 (16.26)

and q4=N ! 0. Then

j Ȯ .ˇ/� Ȯ . OC Ǒ /j D oP .1/ and j Ȯ . O�/ � Ȯ . Ǒ /j D oP .1/: (16.27)

Condition (16.26) holds for all weights used in practice. In particular, if !q.j / D
K.j=q/, as in Section 16.4, then � D 2

R
K.x/dx. Notice that Proposition 16.3

assumes a stronger condition q4=N ! 0, which is common in the literature on the
estimation of the long–run covariance matrix, see e.g. Newey and West (1987), but
can be dropped, as we show in Section 16.4. We note that condition (16.23) does not
appear in the statement of Proposition 16.3. Its point is that if Ȯ .ˇ/ is consistent
under some conditions, then so is Ȯ . O�/. The proof of Proposition 16.3 is presented
in Section 16.8.

16.4 Estimation of the long–run covariance matrix under weak
assumptions

The result of this section, Theorem 16.6, provides an elegant alternative to Theo-
rem 16.5. It is a general consistency result for the kernel estimators of the long–run
covariance matrix, which can be used in many problems of inference for vector–
valued time series. Since its relevance goes beyond functional data, we restate
some assumptions and definitions, to make this section as self–contained as pos-
sible. In this Section, X` D ŒX1`; : : : ; Xd`�

T , is a sequence of zero mean L2–m–
approximable random vectors. For ease of reference, recall that this means that the
following assumptions hold:

Assumption 16.2. For a measurable function f taking values in R
d ,

X` D f."`; "`�1; : : :/;

where "` is a sequence of independent identically distributed random elements as in
Definition 16.1.

Assumption 16.3.
EX` D 0 and EkX`k2 < 1:
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Assumption 16.4.

max
1�j�d

1X
mD1



E.Xj` � X

.m/

j`
/2
�1=2

< 1;

where X.m/
`

D ŒX
.m/

1`
; : : : ; X

.m/

d`
�T and

X.m/
`

D f ."`; "`�1; : : : ; "`�mC1; ".m/`;`�m; "
.m/

`;`�m�1; : : : /;

where f".m/
`;n
; m � 1;�1 < n; ` < 1g are iid copies of "0.

Recall that the long–run variance matrix˙ introduced in Section 16.3 is defined
by

˙ D EX0XT0 C
1X
lD1

EX0XT` C
1X
lD1

EX`X
T
0 :

Assumptions 16.3 and 16.4 yield that˙ is well–defined, and the infinite sums in the
definition are (coordinate-wise) absolutely convergent. We consider the estimation
of˙ . The sample autocovariance matrices defined in Section 16.3 can be written as

O
 k D 1

N

min.N;N�k/X
`Dmax.1;1�k/

X`X
T
`Ck

and the kernel estimator (16.22) as

Ȯ
N D

N�1X
kD�.N�1/

K.k=BN / O
 k : (16.28)

We write the weights !q.j / as K.j=BN / to emphasize the dependence of the
bandwidth on the sample size N , and to facilitate the formulation of conditions in
Assumption 16.5. If the support of the kernelK is the interval Œ�1; 1�, then q D BN ;
for a different compact support, q andBN are proportional. The kernelK is assumed
to satisfy the following conditions:

Assumption 16.5. (i) K.0/ D 1

(ii) K is a symmetric, Lipschitz function
(iii) K has a bounded support
(iv) OK , the Fourier transform of K , is also Lipschitz and integrable

The Fourier transform in Assumption 16.5 is defined as

OK.u/ D 1

2�

Z 1

�1
K.s/e�isuds:

Assumption 16.5 imposes smoothness conditions on the kernelK which are not
required in Assumption 16.1, but these conditions are mild, and are satisfied by
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the most commonly used kernels, like the Bartlett (cf. Example 16.4) and Parzen
(cf. Example 16.5). Assumption 16.5 has been used in other contexts, for example,
Liu and Wu (2010) established consistency results for the estimation of spectral
densities under Assumption 16.6. It does not specify the rate at which BN tends to
infinity. We formulate it as a separate assumption, namely,

Assumption 16.6.
BN ! 1 and BN =N ! 0:

We can now state the following theorem, which is proven in Section 16.9

Theorem 16.6. If Assumptions 16.2-16.6 hold, then

Ȯ
N

P! ˙ :

If Theorem 16.6 is used in the context of functional data, the vectors X` are often
projections onto the EFPC’s Ov1; : : : ; Ovd . In this case, Ȯ

N is close to OC˙ OC , with
the matrix OC as in Proposition 16.3. For more applications of Theorem 16.6, see
Horváth and Reeder (2011).

The main advantage of Theorem 16.6 over Theorem 16.4 is that the latter requires
L4–m–approximability, whereas only L2–m–approximability is assumed in Theo-
rem 16.6. This is of practical relevance as some data, most notably those arising
in financial applications, may not have fourth moments. Moreover, Theorem 16.6
does not use the cumulant–like condition (16.23), which may be difficult to verify
for some model classes. Finally, Theorem 16.6 uses a weaker and more standard
assumptionBN D o.N /, rather than BN D o.N 1=2/ needed in Theorem 16.4. This
is achieved at the expense of imposing smoothness condition on the kernelK and it
its Fourier transform OK (Assumption 16.5(iii) can be replaced with the requirement
that K.t/ decays fast enough as jt j ! 1). For all kernels and bandwidths used
in practice, both the conditions on K and the rate BN D o.N 1=2/ hold, so these
differences in assumptions are less important.

We conclude this section with some example illustrating Assumption 16.5.

Example 16.4. The Bartlett kernel is

K.s/ D
(
1 � jsj; jsj � 1;

0; otherwise

This kernel clearly satisfies parts (i)–(iii) of Assumption 16.5. Its Fourier transform
is

OK.u/ D
	
1

�u
sin

u
2

�
2
:

Thus, to verify part (iv), we must check that the function

F.t/ D
	

sin.t/

t


2
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is integrable and Lipschitz. The integrability follows because jF.t/j � t�2 and
F.t/ ! 1, as t ! 0.

The derivative of F for t ¤ 0 is

F 0.t/ D 2 sin.t/

t

	
t cos.t/ � sin.t/

t2



:

This function is clearly bounded outside any neighborhood of zero. Using the Taylor
expansion of the sine and cosine functions, it is easy to verify that F 0.t/ D o.t/, as
t ! 0. In a similar fashion, one can verify that F.t/ � F.0/ D o.t2/, as t ! 0.
Thus F is Lipschitz on the whole line.

Example 16.5. The Parzen kernel is given by

K.s/ D

8̂<̂
:
1 � 6s2 C 6jsj3; jsj � 1=2;

2.1� jsj3/; 1=2 � jsj � 1;

0; jsj > 1:
Taniguchi and Kakizawa (2000), p. 391, show that

OK.u/ D 3

8�

	
sin.u=4/

u=4


4
:

Following the arguments used in Example 16.4, one can verify that OK.u/ is also
integrable and Lipschitz.

In Examples 16.4 and 16.5, the kernel is a scaled version of the convolution of
uniform densities on Œ�1; 1�. The Bartlett kernel is the convolution of two, while the
Parzen kernel is the convolution of four (this follows immediately from the form of
OK.u/, cf. Example 16.6). Higher order convolutions can be used as well.

Example 16.6. Up to multiplicative constants, the Fourier transform of the rectan-
gular kernel

K.s/ D
(
1; jsj � 1;

0; otherwise

is

F.t/ D sin.t/

t
:

This function is not absolutely integrable, so part (iv) of Assumption 16.5 does not
hold.

The rectangular kernel is not used in practice due to its poor performance in
finite samples, which can be theoretically explained by the slowly decaying Fourier
transform. To some extend, this is also true of the Bartlett kernel, but it is more
often used due to its simplicity. Optimal kernels are generally smoother in the time
domain and “more compactly” supported in the frequency domain. In software
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implementations, these kernels are typically not defined directly through a func-
tion K , but through the weights !q.j / considered in Section 16.3. For example the
modified Daniell kernel is obtained by repeated discrete convolutions of the weights
!.�1/ D 1=3; !.0/ D 1=3; !.1/ D 1=3, see e.g. Chapter 4 of Shumway and
Stoffer (2006).

16.5 Change point detection

Functional time series are obtained from data collected sequentially over time, and it
is natural to expect that conditions under which observations are made may change.
If this is the case, procedures developed for stationary series will produce spurious
results. In this section, we develop a procedure for the detection of a change in the
mean function of a functional time series. In addition to its practical relevance, the
requisite theory illustrates the application of the results developed in Sections 16.2
and 16.3. The main results of this Section, Theorems 16.7 and 16.8, are proven in
Section 16.10. This Section is an extension of Chapter 6 to dependent curves. We
thus consider testing the null hypothesis

H0 W EX1.t/ D EX2.t/ D � � � D EXN .t/; t 2 Œ0; 1�:
(Note that under H0, we do not specify the value of the common mean.) The test
we construct, has a particularly good power against the alternative in which the data
can be divided into several consecutive segments, and the mean is constant within
each segment, but changes from segment to segment. The simplest case of only two
segments (one change point) is specified in Assumption 16.8. First we note that
under the null hypothesis, we can represent each functional observation as

Xi .t/ D �.t/C Yi .t/; EYi .t/ D 0: (16.29)

The following assumption specifies conditions on �.�/ and the errors Yi .�/ needed
to establish the convergence of the test statistic underH0.

Assumption 16.7. The mean � in (16.29) is inH . The error functions Yi 2 L4H are
L4–m–approximable mean zero random elements such that the eigenvalues of their
covariance operator satisfy (16.12).

Recall that the L4–m–approximability implies that the Yi are identically dis-
tributed with �4.Yi / < 1. In particular, their covariance function

c.t; s/ D EŒYi .t/Yi .s/� 0 � t; s � 1;

is square integrable, i.e. is in L2.Œ0; 1� � Œ0; 1�/.
We develop the theory under the alternative of exactly one change point, but the

procedure is applicable to multiple change points by using a segmentation algorithm
described in Chapter 6.
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Assumption 16.8. The observations follow the model

Xi .t/ D
(
�1.t/C Yi .t/; 1 � i � k�;
�2.t/C Yi .t/; k� < i � N;

in which the Yi satisfy Assumption 16.7, the mean functions �1 and �2 are in L2

and
k� D ŒN
� for some 0 < 
 < 1:

The general idea of testing is similar to that developed in Chapter 6 for inde-
pendent observations, the central difficulty is in accommodating the dependence. To
define the test statistic, recall that bold symbols denote d–dimensional vectors, e.g.
O�i D Œ O�1i ; O�2i ; : : : ; O�di �T . Define the partial sums process

SN .x; �/ D
bNxcX
nD1

�n; x 2 Œ0; 1�;

and the bridge process

LN .x; �/ D SN .x; �/ � xSN .1; �/; (16.30)

where f�ng is a generic Rd–valued sequence. Denote by ˙ .�/ the long–run vari-
ance of the sequence f�ng, and by Ȯ .�/ its kernel estimator, see Section 16.3. The
proposed test statistic is then

TN .d/ D 1

N

Z 1

0

LN .x; O�/T Ȯ . O�/�1LN .x; O�/ dx; (16.31)

with the scores O�`i given by (16.24).
Our first theorem establishes its asymptotic null distribution.

Theorem 16.7. Suppose H0 and Assumption 16.7 hold. If the estimator Ȯ . O�/ is
consistent, then

TN .d/
d! T .d/ WD

dX
`D1

Z 1

0

B2` .x/dx; (16.32)

where fB`.x/; x 2 Œ0; 1�g, 1 � ` � d , are independent Brownian bridges.

The distribution of the random variable T .d/ was derived by Kiefer (1959). The
limit distribution is the same as in the case of independent observations, this is
possible because the long–run variance estimator Ȯ . O�/ soaks up the dependence.
Sufficient conditions for its consistency are stated in Section 16.3, and, in addition
to the assumptions of Theorem 16.7, are: Assumption 16.1 with q4=N ! 0, and
condition (16.23).

The next result shows that our test has asymptotic power 1. Our proof requires
the following condition:

Ȯ . O�/ a:s:! ˝ ; where˝ is some positive definite matrix: (16.33)
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Condition (16.33) could be replaced by weaker technical conditions, but we pre-
fer it, as it leads to a transparent, short proof. Essentially, it states that the matrix
Ȯ . O�/ does not become degenerate in the limit, the matrix˝ has only positive eigen-

values. A condition like (16.33) is not needed for independent Yi because that case
does not require normalization with the long–run covariance matrix. To formulate
our result, introduce vectors �1;�2 2 R

d with coordinatesZ
�1.t/v`.t/dt and

Z
�2.t/v`.t/dt; 1 � ` � d:

Theorem 16.8. Suppose Assumption 16.8 and condition (16.33) hold. If the vectors

�1 and �2 are not equal, then TN .d/
P! 1:

The behavior under the alternative of change point tests for dependent functional
data is studied by Aston and Kirch (2011a). Their work addresses in detail the
orthogonality conditions required for a test to have nontrivial power, and includes
epidemic changes in which the mean is �2 at k1; k1 C 1; : : : ; k2 with k1 > 1 and
k2 < n, and �1 elsewhere.

We conclude this section with two numerical examples which illustrate the effect
of dependence on our change point detection procedure. Example 16.7 uses syn-
thetic data, while Example 16.8 focuses on particulate pollution data. Both show
that using statistic (16.31) with Ȯ . O�/ being the estimate for just the covariance, not
the long–run covariance matrix, leads to spurious rejections of H0, a nonexistent
change point can be detected with a large probability. An interesting example is
presented in Aston and Kirch (2011b) who develop methodology for determining
distributions of change points for 3D functional data from multiple subjects. They
apply it to a large study on resting state functional magnetic resonance imaging.

Example 16.7. We simulate 200 observations of the functional AR(1) process of
Example 16.1, when� has the parabolic integral kernel .t; s/ D 
 ��2�.2x�1/2�
.2y � 1/2

�
: We chose the constant 
 such that k�kS D 0:6 (the Hilbert–Schmidt

norm). The innovations f"ng are standard Brownian bridges. The first 3 principal
components explain approximately 85% of the total variance, so we compute the
test statistic T200.3/ given in (16.31). For the estimation of the long–run covariance
matrix ˙ we use the Bartlett kernel

!.1/q .j / D
(
1 � jj j=.1C q/; if jj j � q;

0; otherwise.

We first let q D 0, which corresponds to using just the sample covariance of f O�ng
in the normalization for the test statistic (16.31) (dependence is ignored). We use
1000 replications and the 5% confidence level. The rejection rate is 23:9%, much
higher than the nominal level of 5%. In contrast, using an appropriate estimate for
the long–run variance, the reliability of the test improves dramatically. Choosing an
optimal bandwidth q is a separate problem, which we do not pursue here. Here we

adapt the formula q � 1:1447 .aN /1=3; a D 4 2

.1C /4 valid for a a scalar AR(1)
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process with the autoregressive coefficient  , Andrews (1991). Using this formula
with  D k�kS D 0:6 results in q D 4. This choice gives the empirical rejection
rate of 3:7%, much closer to the nominal rate of 5%.

Example 16.8. This example, which uses pm10 (particulate matter with diameter
< 10�m, measured in �g=m3) data, illustrates a similar phenomenon as Exam-
ple 16.7. For the analysis we use pm10 concentration data measured in the Austrian
city of Graz during the winter of 2008/2009 (N=151). The data are given in 30
minutes resolution, yielding an intraday frequency of 48 observations. As in Stadt-
lober et al. (2008) we use a square root transformation to reduce heavy tails. Next
we remove possible weekly periodicity by subtracting the corresponding mean vec-
tors obtained from the different weekdays. A time series plot of this new sequence
is given in Figure 16.2. The data look relatively stable, although a shift appears to
be possible in the center of the time series. It should be emphasized however, that
pm10 data, like many geophysical time series, exhibit a strong, persistent positive
autocorrelation structure. These series are stationary over long periods of time, with
an appearance of local trends or shifts at various time scales (random self–similar
or fractal structure).

The daily measurement vectors are transformed into smooth functional data
using 15 B-splines functions of order 4. The functional principal component analysis
yields that the first three principal components explain � 84% of the total variabil-
ity, so we use statistic (16.31) with d D 3. A look at the acf and pacf of the
first empirical PC scores (Figure 16.3) suggests an AR(1), maybe AR(3) behavior.
The second and third empirical PC scores show no significant autocorrelation struc-
ture. We use the formula given in Example 16.7 with  D 0:70 (acf at lag 1) and
N D 151 and obtain q � 4. This gives T151.3/ D 0:94, which is close to the critical
value 1:00 when testing at a 95% confidence level, but does not support rejection
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Fig. 16.3 Left panel: Sample autocorrelation function of the first empirical PC scores. Right panel:
Sample partial autocorrelation function of the first empirical PC scores.

of the no-change hypothesis. In contrast, using only the sample covariance matrix
in (16.32) gives T151.3/ D 1:89, and thus a clear and possibly spurious rejection of
the null hypothesis.

16.6 Self–normalized statistics

We have seen in the previous sections of this chapter that in many inferential prob-
lems related to time series the long run variance plays a fundamental role. In par-
ticular, in Section 16.5 we used it to normalize the test statistic of Chapter 6 to
obtain a limiting null distribution that is parameter free, see Theorem 16.7. It has
been known in econometric research that using the long run variance in this way
can lead to the so–called non–monotonic power. This phenomenon is illustrated in
Figure 16.4 which shows the power of three tests of the null hypothesis of Sec-
tion 16.5 under the alternative quantified in Assumption 16.8. The mean zero curves
Yi are Gaussian FAR(1) processes; k� D N=2, �1 D 0, and �2 D ıf .t/. Of cen-
tral importance is the parameter ı which quantifies the magnitude of the change.
The test called BGHK is the the test of Chapter 6 (it assumes independent Yi ), HK
refers to the test of Section 16.5, and SN to the test based on a self–normalized
statistic, which will be introduced later in this section. Focusing on the HK test , we
see that if the change becomes very large, this test looses power; its power is non–
monotonic. A heuristic explanation is that the “denominator” in statistic (16.31), an
estimate of run variance matrix based on a data driven procedure discussed later
in this section, becomes very large when ı increases. This is because the scores
O�`i , given by (16.24), are computed without adjusting for a possible change point.
If the change point is very large, the sample autocorrelations of the scores decay
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Fig. 16.4 Size-adjusted power for detecting the change in the mean function; ı measures the mag-
nitude of change; sample size N D 50.

very slowly and it causes the data driven procedure to select large bandwidths and
the estimator of the long run variance to behave like for a very strongly dependent
sequence. This inflates its value so much that the test looses power. (We note that
if the bandwidth is deterministic, the power is monotonic, but there is no universal
formula for the kernel bandwidth that gives correct size.) A remedy is to adjust the
definition of the scores O�`i to allow for a possible change point. Combined with
the idea of self–normalization, this leads to a test that has monotonic power. Before
proceeding further, we note that size of change corresponding to, say, ı D 2 is very
large relative to the Yi , and a change point of this magnitude can be detected by eye.
The tests based on self–normalized statistics correct however not only the problem
of non–monotonic power, but perhaps more importantly eliminate the need to select
the bandwidth parameter in the kernel estimators of the long run variance.

The remainder of this section is devoted to the discussion of these issues. It
is based on the work of Shao (2010), Shao and Zhang (2010) and Zhang et al.
(2011). These papers contain references to earlier work and to other applications
of self–normalization. A different approach to change point detection which does
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not require bandwidth selection is proposed in Horváth et al. (2008). We focus
only on the change point in the mean function. Zhang et al. (2011) show how self–
normalization can be applied to the problem of change point detection in the func-
tional AR(1) model studied in Chapter 14. Figure 16.4 and all numerical results
presented in this section were made available to us by Xiaofeng Shao.

We first explain the idea of self–normalization for scalar time series. Suppose
fXng is a stationary time series such that

N�1=2 X
1�k�Nr

.Xk � �/ d! 	W.r/; 0 � r � 1; (16.34)

in the Skorokhod space. The parameter 	2 is the long–run variance:

	2 D lim
N!1NVar

� NXN
� D

X
h


.h/:

Set

DN D N�2
NX
nD1

8<:
nX
jD1

.Xj � NXN /
9=;
2

:

Then, (16.34) implies

N. NXN � �/2

DN

d! W 2.1/R 1
0
B2.r/dr

: (16.35)

To see why (16.35) holds, set

SN .r/ D N�1=2 X
1�k�Nr

.Xk � �/; 0 � r � 1;

and observe that
SN .1/ D N 1=2

� NXN � �� ;
so that

N. NXN � �/2 D S2N .1/
d! 	2W 2.1/: (16.36)

Next, observe that
nX
jD1

.Xj � NXN / D
nX
jD1

.Xj � �/ � n � NXN � �
� I

N�1=2
nX
jD1

.Xj � NXN / D SN


 n
N

�
� n

N
SN .1/:

Consequently

DN D N�1
NX
nD1

n
SN


 n
N

�
� n

N
SN .1/

o2 d! 	2
Z 1

0

fW.r/ � rW.1/g2 dr:
(16.37)

The convergences in (16.36) and (16.37) are joint, so (16.35) follows.
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The key point is the cancelation of 	2 when (16.36) is divided by (16.37). Rela-
tion (16.37) shows that DN is an inconsistent estimator of 	2. The distribution of
the right–hand side of (16.35) can however be simulated, and the critical values can
be obtained with arbitrary precision. Relation (16.35) can be used to construct a
confidence interval for � without estimating the long run variance. Such a construc-
tion does not require the selection of a bandwidth parameter in the kernel estimates
of 	2.

The normalization analogous toDN is however not suitable for the change point
problem. Simulations reported in Shao and Zhang (2010) show that with such a
normalization the power of change point tests tends to zero as ı increases. These
authors propose a self–normalization that takes into account the behavior under the
alternative. Their approach was extended to functional data by Zhang et al. (2011).
To explain it, we extend and lighten the notation introduced in Section 16.5. Set

UN .n1; n2/ D
n2X
jDn1

O�j D SN

n2
N
; O�
�

� SN

�
n1 � 1

N
; O�
�
;

with the scores defined by (16.24). Note the the sums UN .n1; n2/ depend also on
the number d of the EFPC’s to be used. Next, for each 1 � k � N , introduce the
d � d matrices

DN .n; k/ D
h
UN .1; n/ � n

k
UN .1; k/

i h
UN .1; n/ � n

k
UN .1; k/

iT
; n � k:

and

D�
N .n; k/ D

�
UN .n;N / � N � nC 1

N � k UN .k C 1;N /

�
�
�

UN .n;N / � N � nC 1

N � k UN .k C 1;N /

�T
; n > k:

Using these matrices, we can define the normalizing matrices as

VN .k/ D 1

N

8<:
kX
nD1

DN .n; k/C
NX

nDkC1
D�
N .n; k/

9=; :
A test statistic can be a functional of the process

LN .x; O�/T ŒVN .bNxc/��1 LN .x; O�/; x 2 Œ0; 1�;
with the bridge process LN .�; O�/ defined in (16.30). Zhang et al. (2011) focus on the
Kolmogorov–Smirnov functional

GN D sup
1�k<N

LN .k=N; O�/T ŒVN .k/��1 LN .k=N; O�/:

They show that underL4–m–approximability, and additional technical assumptions,
GN converges in distribution to a random variable G which can be expressed as a
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Table 16.1 Simulated critical values of G based on 10000 replications.

˛% d 1 2 3 4 5 6 7 8 9 10

90:0% 29.6 56.5 81.5 114.7 150.0 183.8 223.5 267.1 308.5 360.0
95:0% 40.1 73.7 103.6 141.5 182.7 218.8 267.3 317.9 360.7 420.5
97:5% 52.2 92.2 128.9 171.9 218.7 255.0 313.4 367.9 416.3 483.0
99:0% 68.6 117.7 160.0 209.7 265.8 318.3 368.0 432.5 483.6 567.2
99:5% 84.6 135.3 182.9 246.6 291.7 367.7 410.5 498.1 544.9 621.6
99:9% 121.9 192.5 246.8 319.2 358.1 464.9 530.6 614.1 649.0 751.1

functional of a d–dimensional Brownian motion whose components are indepen-
dent standard Brownian motions. The formula forG is not difficult to derive heuris-
tically from the form of GN , but the main point is that the critical values of G can
be obtained by simulation. The critical values are shown in Table 16.1.

We now compare the finite sample performance of the three tests described at the
beginning of the Section. All simulation results are based on one thousand replica-
tions.

First, we consider independent functional observations. The mean function is
zero under the null hypothesis. Two cases of the Yi are considered, namely the stan-
dard Brownian motion (BM) and the Brownian Bridge (BB). Under the alternative,
�1.t/ D 0 and �2.t/ D t or �2.t/ D sin.t/; k� D N=2. We compare the SN test
based on the Kolmogorov–Smirnov functional GN to the BGHK test of Chapter 6
(based on the Cramér–von–Mises functional). The empirical size and size–adjusted
power are summarized in Table 16.2. Size–adjusted power is computed using finite
sample critical values based on the Monte Carlo simulation under the null hypothe-
sis. When a test is conservative, size–adjusted power is higher than power; when it
overrejects, size–adjusted power is smaller than power. In the latter scenario power
is often very high just because the test has empirical size much higher than nominal.
Size–adjusted power is often believed to offer a fairer comparison of several tests.
The empirical size of the SN test is comparable with that of the BGHK test, but the
SN test suffers from a small power loss.

To examine the effect of dependence, the functional sequence fYi.t/g is gen-
erated according to the FAR(1) model (13.3). We consider the Gaussian kernel
 .t; s/ D C exp

˚
.t2 C s2/=2

�
and the Wiener kernel,  .t; s/ D C min.t; s/. The

constantC is chosen so that the Hilbert–Schmidt norm of the kernels is 0.5. We now
compare the SN test with the BGHK test and the HK test. To implement the HK test,
we have to estimate the long run variance matrix of the first d scores. We use the
kernel estimator (16.28) with the Bartlett kernel defined in Example 16.4. We use the
popular data driven truncation lag of Andrews (1991), BN D 1:1447f Ǫ.1/N g1=3,
where

Ǫ .1/ D
(
pX
`D1

4 O	4
`

O�2
`

.1 � O�`/6.1C O�`/2
)(

pX
`D1

O	4
`

.1 � O�`/4
)�1

: (16.38)
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Table 16.2 Empirical size (upper panel) and size–adjusted power (lower panel) in percent for the
SN test (i) and the BGHK test (ii) for independent functional data generated as BM or BB. The
size-adjusted power is computed under the alternative with �2.t/ D t or �2.t/ D sin.t/, and
k� D N=2.

d D 1 d D 2 d D 3
10% 5% 1% 10% 5% 1% 10% 5% 1%

N D 50
BM (i) 10.7 5.7 0.7 9.6 3.7 0.7 10.8 5.2 1.4

(ii) 10.0 5.3 1.2 10.3 5.0 0.8 10.9 5.5 1.0
BB (i) 7.5 3.8 0.8 8.2 4.6 1.1 10.7 6.0 1.3

(ii) 10.6 5.4 0.8 10.9 5.1 1.1 10.5 5.2 1.2
N D 100

BM (i) 9.9 5.1 1.1 9.2 4.3 0.5 9.1 4.6 0.7
(ii) 10.4 5.4 0.5 10.3 4.5 0.6 9.5 3.8 0.6

BB (i) 10.0 5.1 1.3 8.4 3.5 0.7 9.9 4.7 0.7
(ii) 9.6 5.2 0.9 9.3 4.9 0.6 9.1 4.1 0.9

N D 50
BM, t (i) 77.6 64.5 44.9 71.7 58.4 39.4 67.4 51.7 23.8

(ii) 89.5 79.8 48.9 83.6 73.7 48.9 77.8 65.4 38.8
BB, t (i) 99.8 99.4 95.6 100 100 99.6 100 100 99.9

(ii) 100 100 99.7 100 100 100 100 100 100
BM, sin.t/ (i) 70.0 57.7 38.9 62.1 48.3 29.1 56.0 41.4 17.0

(ii) 82.1 71.9 39.4 74.4 61.4 36.4 66.9 52.4 28.7
BB, sin.t/ (i) 99.3 98.1 89.7 100 99.6 96.9 100 99.9 99.4

(ii) 99.9 99.7 97.6 100 100 100 100 100 100
N D 100

BM, t (i) 96.9 89.9 70.8 92.9 87.4 73.0 90.9 84.0 66.7
(ii) 99.3 98.4 95.5 99.1 97.9 94.0 98.5 96.8 91.2

BB, t (i) 100 99.9 99.6 100 100 100 100 100 100
(ii) 100 100 100 100 100 100 100 100 100

BM, sin.t/ (i) 92.7 84.2 62.7 87.1 78.7 59.2 83.9 73.8 52.1
(ii) 98.4 95.8 89.6 96.3 93.5 86.6 95.2 90.9 78.0

BB, sin.t/ (i) 99.9 99.7 98.8 100 100 100 100 100 100
(ii) 100 100 100 100 100 100 100 100 100

Here O�` is the autoregressive coefficient estimate in the model O�n;` D �` O�n�1;` C
"n;`, and O	2

`
is the estimate of the innovation variance. Table 16.3 reports the empir-

ical sizes. We see that the size distortion of the BGHK test is very large compared
to the other two tests. This is due to the fact that it is designed only for independent
functional data and is invalid in the temporally–dependent case. For the HK test,
the size distortion is less severe but is sensitive to the choice of d . It tends to be
oversized for small d but undersized for large d . For the SN test, size distortion is
apparent for N D 50, but improves for N D 100. The size for the SN test is fairly
robust to the choice of d . Based on the results reported in Zhang et al. (2011), the
following comments can be made about the size–adjusted power. First, the BGHK
test delivers the highest power among the three tests, which is largely due to its
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Table 16.3 Empirical size in percent of the SN (i), the BGHK (ii) and the HK (iii) test for data
following an FAR(1) process.

d D 1 d D 2 d D 3
10% 5% 1% 10% 5% 1% 10% 5% 1%

N D 50
Gaussian

BM (i) 15.2 10.3 3.9 15.2 8.4 2.4 14.5 8.0 2.2
(ii) 44.1 32.2 16.2 37.5 25.0 12.4 32.7 23.0 11.4
(iii) 17.7 9.2 0.6 11.1 3.2 0.3 4.9 1.1 0.0

BB (i) 17.3 10.6 3.1 14.0 7.1 2.5 14.5 8.2 2.3
(ii) 42.7 32.3 13.8 36.1 25.5 10.0 34.9 23.2 9.6
(iii) 19.8 8.8 0.2 11.1 2.6 0.0 6.3 1.5 0.0

Wiener
BM (i) 16.0 10.4 4.0 16.1 9.2 3.0 16.0 9.8 2.9

(ii) 46.4 33.6 16.6 40.2 26.9 12.6 36.6 25.0 10.2
(iii) 17.5 8.4 0.5 10.9 2.8 0.1 6.1 0.7 0.0

BB (i) 17.0 10.4 2.9 13.3 7.3 2.2 15.4 9.7 2.2
(ii) 42.8 31.0 14.3 37.9 26.7 11.2 36.4 23.9 10.0
(iii) 19.0 8.9 0.2 11.2 3.3 0.0 6.5 1.8 0.0

N D 100
Gaussian

BM (i) 13.3 7.8 2.0 11.7 5.7 1.2 11.7 6.1 1.2
(ii) 51.2 35.9 16.4 39.7 27.9 11.6 34.9 24.1 9.7
(iii) 15.2 7.4 0.4 11.6 3.9 0.2 7.2 2.1 0.0

BB (i) 11.6 6.7 1.6 10.9 4.9 1.1 11.5 7.1 1.2
(ii) 46.7 33.0 13.9 35.9 25.1 10.2 36.4 25.8 11.4
(iii) 16.1 8.0 1.4 12.4 5.3 0.3 10.0 3.5 0.1

Wiener
BM (i) 13.7 7.8 2.1 11.7 5.8 1.3 12.9 7.1 1.3

(ii) 52.2 37.2 17.5 43.8 29.7 12.8 38.3 26.1 11.7
(iii) 15.3 7.4 0.5 11.6 4.1 0.2 7.5 2.6 0.0

BB (i) 11.9 6.4 1.9 10.4 5.6 1.2 12.0 7.8 1.3
(ii) 45.1 32.0 13.5 38.5 27.5 12.8 37.9 27.3 11.9
(iii) 16.4 7.6 1.5 13.3 5.9 0.5 10.8 3.7 0.2

severe upward size distortion. Second, the power of the SN test is comparable to
that of the HK test for N D 50 and BM innovations, but the SN test tends to have
moderate power loss when sample size increases to 100. In the case of the BB inno-
vations, the SN test is superior to the HK test in power. Overall, the severe size
distortion of the BGHK test under weak dependence suggests its inability to accom-
modate dependence and thus it is not recommended for testing for a change point
for dependent functional data. The HK test is able to account for dependence but it is
sensitive to the choice of bandwidthBN and of d . As shown in Figure 16.4, the data
driven bandwidth used in the HK test leads to non–monotonic power. Compared to
the other two tests, the SN test tends to have more accurate size at the expense of
some power loss.



16.7 Functional linear model with dependent regressors 317

16.7 Functional linear model with dependent regressors

We consider the fully functional model of the form

Yn.t/ D
Z
 .t; s/Xn.s/C "n.t/; n D 1; 2; : : : ; N; (16.39)

in which both the regressors and the responses are functions. The results of this
section can be easily specialized to the case of scalar responses.

In the existing theory, the Xn in (16.39) are assumed to be independent and iden-
tically distributed. For functional time series the assumption of the independence of
the Xn is often questionable, so it is important to investigate if procedures devel-
oped and theoretically justified for independent regressors can still be used if the
regressors are dependent.

We focus here on the estimation of the kernel  .t; s/. Our result is motivated by
the work of Yao et al. (2005b) who considered functional regressors and responses
obtained from sparse independent data measured with error. The data that moti-
vates our work are measurements of physical quantities obtained with negligible
errors or financial transaction data obtained without error. In both cases the data
are available at fine time grids, and the main concern is the presence of temporal
dependence between the curves Xn. We therefore merely assume that the sequence
fXng 2 L4H is L4–m–approximable, which, as can be easily seen, implies the L4–
m–approximability of fYng. To formulate additional technical assumptions, we need
to introduce some notation.

We assume that the errors "n are iid and independent of theXn, and denote byX
and Y random functions with the same distribution as Xn and Yn, respectively. We
work with their expansions

X.s/ D
1X
iD1

�ivi .s/; Y.t/ D
1X
jD1

�juj .t/;

where the vj are the FPC’s ofX and the uj the FPC’s of Y , and �i D hX; vii ; �j D˝
Y; uj

˛
: Indicating with the “hat” the corresponding empirical quantities, an estima-

tor of  .t; s/ proposed by Yao et al. (2005b) is

O KL.t; s/ D
KX
kD1

LX
`D1

O��1` O	`k Ouk.t/ Ov`.s/;

where O	`k is an estimator of EŒ�`�k�. We will work with the simplest estimator

O	`k D 1

N

NX
iD1

hXi ; Ov`i hYi ; Ouki ; (16.40)
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but any estimator for which Lemma 16.6 of Section 16.11 holds can be used without
affecting the rates.

Let �j and 
j be the eigenvalues corresponding to vj and uj . Define ˛j as in
Lemma 2.3 and define ˛0j accordingly with 
j instead of �j . Set

hL D minf˛j ; 1 � j � Lg; h0L D minf˛0j ; 1 � j � Lg:

To establish the consistency of the estimator O KL.t; s/ we assume that

1X
kD1

1X
`D1

.EŒ�`�k �/
2

�2
`

< 1: (16.41)

and that the following assumption holds:

Assumption 16.9. (i) We have �1 > �2 > � � � and 
1 > 
2 > � � � .
(ii) We haveK D K.N/, L D L.N/ ! 1 and

KL

�L minfhK ; h0Lg D o
�
N 1=2

�
:

For model (16.39), condition (16.41) is equivalent to the assumption that  .t; s/
is a Hilbert–Schmidt kernel, i.e.

RR
 2.t; s/dt ds < 1. It is formulated in the same

way as in Yao et al. (2005b), because this form is convenient in the theoretical
arguments. Assumption 16.9 is much shorter than the corresponding assumptions
of Yao et al. (2005b). This is because we do not deal with smoothing, and so can
isolate the impact of the magnitude of the eigenvalues on the bandwidthsK and L.

Theorem 16.9. Suppose fXng 2 L4H is a zero meanL4–m–approximable sequence
independent of the sequence of iid errors f"ng. If (16.41) and Assumption 16.9 hold,
then ZZ h O KL.t; s/�  .t; s/

i2
dt ds

P! 0; .N ! 1/: (16.42)

Remark 16.1. Horváth and Reeder (2011) showed, under more general conditions,
that for fixedK and LZZ h O KL.t; s/�  KL.t; s/

i2
dt ds D OP .N

�1/;

where

 KL.t; s/ D
KX
kD1

LX
`D1

��1` EŒ�`�k �uk.t/v`.s/:

The conclusion of Theorem 16.9 is comparable to the first part of Theorem 1 in
Yao et al. (2005b). Both theorems are established under (16.41) and finite fourth
moment conditions. Otherwise the settings are quite different. Yao et al. (2005b)
work under the assumption that the subject .Yi ; Xi /, i D 1; 2; : : : are independent
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and sparsely observed, whereas Theorem 16.9 admits dependence, but does not deal
with curves measured with error at irregular points.

16.8 Proofs of the results of Sections 16.2 and 16.3

In this, and the following sections of this chapter, we use the following conventions:
A generic X , which is assumed to be equal in distribution to X1, will be used at
some places. Any constants occurring will be denoted by �1; �2; : : : The �i may
change their values from proof to proof.

Proof of Theorem 16.1. We assume for simplicity that EX D 0. For k 2 Z define
the operators Bk.y/ D hXk; yiXk � C.y/, y 2 H . Then since Bk are iid Hilbert-
Schmidt operators we have

Ek OCN � Ck2S D E

����� 1N
NX
kD1

Bk

�����
2

S

D 1

N

N�1X
kD�.N�1/

�
1 � jkj

N

�
EhB0; BkiS

� 1

N

X
k2Z

jEhB0; BkiS j ;

and it remains to show that jEhB0; BkiS j decays sufficiently fast. We let �1 �
�2 � � � � b e the eigenvalues of the operator C and we let feig be the corresponding
eigenvectors. Then

E
D
X0; X

.k/

k

E
D
X
j�1

�2j ; k � 1: (16.43)

This can be shown by using that X0 and X .k/
k

are independent. Furthermore it can
be readily verified that

E hB0; BkiS D E hX0; Xki2 �
X
j�1

�2j ; k � 1: (16.44)

For ease of notation we set X 0
k

D X
.k/

k
. Then we haveˇ̌̌˝

X0; Xk �X 0k
˛2 ˇ̌̌ D hX0; Xki2 C ˝

X0; X
0
k

˛2 � 2 hX0; Xki ˝X0; X 0k˛
D hX0; Xki2 � ˝

X0; X
0
k

˛2 � 2
˝
X0; Xk �X 0k

˛ ˝
X0; X

0
k

˛
:

Thus

hX0; Xki2 � ˝
X0; X

0
k

˛2 D ˝
X0; Xk � X 0k

˛2 C 2
˝
X0; Xk � X 0k

˛ ˝
X0; X

0
k

˛
:
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and by repeated application of Cauchy-Schwarz it follows thatˇ̌̌
E hX0; Xki2 � E

˝
X0; X

0
k

˛2 ˇ̌̌ � �24.X0/�
2
4

�
Xk �X 0k

�C 2�34.X0/�4
�
Xk � X 0k

�
:

(16.45)
Combining (16.43), (16.44), (16.45) and using the Definition of L4–m–
approximability yields the proof of our theorem, with UX equal to the sum over
k � 1 of the right hand side of (16.45). ut

Proof of Theorem 16.3. The proof is split into two steps. First we show that
N�1=2PN

iD1Xi .t/ is close toN�1=2PN
iD1X

.m/
i .t/, ifm is sufficiently large. Then

we establish the claim for m-dependent functions, for any m � 1.
As the first step, we show that

lim sup
m!1

lim sup
N!1

E

Z "
N�1=2

NX
iD1



Xi .t/ � X

.m/
i .t/

�#2
dt D 0; (16.46)

where the variablesX .m/i are defined in (16.6). By stationarity,

E

24 X
1�i�N



Xi .t/ �X .m/i .t/

�352

D
X

1�i�N

X
1�j�N

E


Xi .t/ � X

.m/
i .t/

� 

Xj .t/ � X

.m/
j .t/

�
D NE



X0.t/ �X .m/0 .t/

�2
C 2

X
1�i<j�N

E


Xi .t/ �X .m/i .t/

� 

Xj .t/ �X .m/j .t/

�
:

In the proof, we will repeatedly use independence relations which follow from rep-
resentation (16.6). First observe that if j > i , then .Xi ; X

.m/
i / is independent of

X
.j�i/
j because

X
.j�i/
j D f ."j ; : : : ; "iC1; ".j�i/j;i ; "

.j�i/
j;i�1; : : :/:

Consequently,E


Xi .t/ � X

.m/
i .t/

�
X
.j�i/
j .t/ D 0, and so

X
1�i<j�N

E


Xi .t/ �X .m/i .t/

�
Xj .t/

D
X

1�i<j�N
E


Xi .t/ � X

.m/
i .t/

� 

Xj .t/ � X

.j�i/
j .t/

�
:
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Using the Cauchy-Schwarz inequality, we conclude thatˇ̌̌̌Z X
1�i<j�N

E


Xi .t/ � X

.m/
i .t/

� 

Xj .t/ � X

.j�i/
j .t/

�
dt

ˇ̌̌̌

�
X

1�i<j�N

Z �
E


Xi .t/ �X .m/i .t/

�2� 1
2
�
E


Xj .t/ �X .j�i/j .t/

�2� 1
2

dt

�
X

1�i<j�N

�Z
E


Xi .t/ �X .m/i .t/

�2
dt

� 1
2
�Z

E


Xj .t/ � X

.j�i/
j .t/

�2
dt

� 1
2

D
X

1�i<j�N

�Z
E


X0.t/ � X

.m/
0 .t/

�2
dt

� 1
2
�Z

E


X0.t/ �X .j�i/0 .t/

�2
dt

� 1
2

� N

�Z
E


X0.t/ � X

.m/
0 .t/

�2
dt

� 1
2 X
k�1

�Z 

X0.t/ � X

.k/
0 .t/

�2
dt

� 1
2

D N�2



X0 � X

.m/
0

�X
k�1

�2



X0 � X

.k/
0

�
:

Hence, by (16.4),

lim sup
m!1

lim sup
N!1

1

N

ˇ̌̌̌
ˇ̌Z X

1�i<j�N
E
h

X
.m/
i .t/ �Xi .t/

�
Xj .t/

i
dt

ˇ̌̌̌
ˇ̌ D 0:

Similar arguments give

lim sup
m!1

lim sup
N!1

1

N

ˇ̌̌̌
ˇ̌Z X

1�i<j�N
E
h

X
.m/
i .t/ �Xi .t/

�
X
.m/
j .t/

i
dt

ˇ̌̌̌
ˇ̌ D 0:

Completing the verification of (16.46).
The next the step is to show that N�1=2P

1�i�N X
.m/
i converges to a Gaussian

process Zm with covariances defined analogously to (16.14). Recall that for every
integer m � 1, fX .m/i g is an m–dependent sequence of functions. To lighten the

notation, in the remainder of the proof, we fix m and denote sequence fX .m/i g by
fXig, so fXig is now m–dependent.

Let K > 1 be an integer and let the vi be the orthonormal eigenfunctions of the
integral operator with the kernel

EŒX0.t/X0.s/�C
mX
iD1

EŒX0.t/Xi .s/�C
mX
iD1

EŒX0.s/Xi .t/�:

The corresponding eigenvalues are denoted by �i . Then, by the Karhunen-Loéve
expansion, we have

Xi .t/ D
X
`�1

hXi ; v`i v`.t/:
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Next we define
X
.K/
i .t/ D

X
1�`�K

hXi ; v`i v`.t/:

By the triangle inequality we have that8̂<̂
:E

Z 24 X
1�i�N



.Xi .t/ � X

.K/
i .t/

�352 dt
9>=>;
1=2

�

8̂<̂
:E

Z 24 X
i2V.0/



.Xi .t/ � X

.K/
i .t/

�352 dt
9>=>;
1=2

C � � �

C

8̂<̂
:E

Z 24 X
i2V.m�1/



.Xi .t/ � X

.K/
i .t/

�352 dt
9>=>;
1=2

;

where V.k/ D fi W 1 � i � N; i D k .mod m/g; 0 � k � m � 1. Due to
the m dependence of the sequence fXig,

P
i2V.k/.Xi .t/ � X

.K/
i .t// is a sum of

independent, identically distributed random variables, and thus we get

E

Z 24 X
i2V.m�1/



.Xi .t/ � X

.K/
i .t/

�352 dt � N
X
`�K

E hX0; v`i2 :

Utilizing
lim
K!1

X
`�K

E hX0; v`i2 D 0

we conclude that for any r > 0

lim sup
K!1

lim sup
N!1

P

8̂<̂
:
Z 24 1

N 1=2

X
1�i�N



.Xi .t/ � X

.K/
i .t/

�352 dt > r
9>=>; D 0:

The sum of the X .K/i ’s can be written as

1

N 1=2

X
1�i�N

X
.K/
i .t/ D

X
1�`�K

v`.t/
1

N 1=2

X
1�i�N

hXi ; v`i :

Next, we use the central limit theorem for stationary m-dependent sequences of
random vectors (see Lehmann (1999) and the Cramér-Wold theorems in DasGupta
(2008), pages 9 and 120)) and get that8<: 1

N 1=2

X
1�i�N

hXi ; v`i ; 1 � ` � K

9=;
T

d! NK.0;�K/;
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where NK.0;�K/ is a K-dimensional normal random variable with zero mean and
covariance matrix�K D diag.�1; : : : ; �K/: Thus we proved that for all K > 1

N�1=2 X
1�i�N

X
.K/
i .t/

d!
X

1�`�K
�
1=2

`
N`v`.t/ in L2;

whereNi ; i � 1 are independent standard normal random variables. It is easy to see
that Z  X

K<`<1
�
1=2

`
N`v`.t/

!2
dt D

X
K<`<1

�`N
2
`

P! 0;

as K ! 1. Thus we have the convergence of N�1=2P
1�i�N Xi for any m and

therefore the proof of the theorem is now complete. ut
Proof of Theorem 16.4. As in Giraitis et al. (2003), set � D EX0 and

Q
j D 1

N

N�jj jX
iD1

.Xi � �/.XiCjj j � �/;

Sk;` D
X̀
iDk

.Xi � �/:

Observe that

O
j � Q
j D
�
1 � jj j

N

�
. NXN � �/2 C 1

N
. NXN � �/.S1;N�jj j C Sjj jC1;N / DW ıj :

We therefore have the decomposition

O	2 D
X
jj j�q

!q.j / Q
j C
X
jj j�q

!q.j /ıj DW O	21 C O	22 :

The proof will be complete once we have shown that

O	21
P!

1X
jD�1


j (16.47)

and

O	22
P! 0: (16.48)

We begin with the verification of the easier relation (16.48). By (16.15),

Ej O	22 j � b
X
jj j�q

Ejıj j � b
X
jj j�q

E. NXN � �/2

C b

N

�
E. NXN � �/2�1=2 X

jj j�q

�
E.S1;N�jj j C Sjj jC1;N /2

�1=2
:
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By Lemma 16.2,

E. NXN � �/2 D 1

N

X
jj j�N

�
1 � jj j

N

�

j D O.N�1/:

Similarly E.S1;N�jj j C Sjj jC1;N /2 D O.N/: Therefore,

Ej O	22 j D O.qN�1 CN�1N�1=2qN 1=2/ D O.q=N/:

We now turn to the verification of (16.47). We will show that E O	21 ! P
j 
j

and VarŒ O	21 � ! 0.
By (16.16),

E O	21 D
X
jj j�q

!q.j /
N � jj j
N


j !
1X

jD�1

j :

By (16.15), it remains to show thatX
jkj;j`j�q

jCov. Q
k; Q
`/j ! 0: (16.49)

To lighten the notation, without any loss of generality, we assume from now on that
� D 0, so that

Cov. Q
k; Q
`/ D 1

N 2
Cov

0@N�jkjX
iD1

XiXiCjkj;
N�j`jX
jD1

XjXjCj`j

1A :
Therefore, by stationarity,

jCov. Q
k; Q
`/j � 1

N 2

NX
i;jD1

ˇ̌
Cov

�
XiXiCjkj; XjXjCj`j

�ˇ̌
D 1

N

X
jrj<N

�
1 � jr j

N

� ˇ̌
Cov

�
X0Xjkj; XrXrCj`j

�ˇ̌
:

The last sum can be split into three terms corresponding to r D 0, r < 0 and r > 0.
The contribution to the left–hand side of (16.49) of the term corresponding to

r D 0 is

N�1 X
jkj;j`j�q

ˇ̌
Cov

�
X0Xjkj; X0Xj`j

�ˇ̌ D O.q2=N/:
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The terms corresponding to r < 0 and r > 0 are handled in the same way, so we
focus on the contribution of the summands with r > 0 which is

N�1 X
jkj;j`j�q

N�1X
rD1



1 � r

N

� ˇ̌
Cov

�
X0Xjkj; XrXrCj`j

�ˇ̌
:

We now use the decompositions

Cov
�
X0Xjkj; XrXrCj`j

�
D Cov



X0Xjkj; X .r/r X

.rCj`j/
rCj`j

�
C Cov



X0Xjkj; XrXrCj`j � X .r/r X

.rCj`j/
rCj`j

�
and

Cov


X0Xjkj; X .r/r X

.rCj`j/
rCj`j

�
D Cov



X0X

.jkj/
jkj ; X

.r/
r X

.rCj`j/
rCj`j

�
C Cov



X0.Xjkj � X

.jkj/
jkj /; X

.r/
r X

.rCj`j/
rCj`j

�
:

By Definition 16.1, X0 depends on "0; "�1; : : :, while the random variables
X
.k/

jkj ; X
.r/
r and X .rCj`j/

rCj`j depend on "1; "2; : : : ; "k_.rCj`j/ and errors independent of

the "i . Therefore Cov


X0X

.jkj/
jkj ; X

.r/
r X

.rCj`j/
rCj`j

�
is equal to

E
h
X0X

.jkj/
jkj X

.r/
r X

.rCj`j/
rCj`j

i
� E

�
X0Xjkj

�
E
h
X .r/r X

.rCj`j/
rCj`j

i
D EŒX0�E

h
X
.jkj/
jkj X

.r/
r X

.rCj`j/
rCj`j

i
�EŒX0�E

h
X
.jkj/
jkj

i h
X .r/r X

.rCj`j/
rCj`j

i
D 0:

We thus obtain

Cov
�
X0Xjkj; XrXrCj`j

� D Cov


X0.Xjkj �X .jkj/jkj /; X

.r/
r X

.rCj`j/
rCj`j

�
C Cov



X0Xjkj; XrXrCj`j �X .r/r X

.rCj`j/
rCj`j

�
:

By assumption (16.19), it remains to verify that

N�1 X
jkj;j`j�q

N�1X
rD1

ˇ̌̌
Cov



X0Xjkj; XrXrCj`j � X .r/r X

.rCj`j/
rCj`j

�ˇ̌̌
! 0:

This is done using the technique introduced in the proof of Theorem 16.1. By the
Cauchy-Schwarz inequality, the problem reduces to showing that

N�1 X
jkj;j`j�q

N�1X
rD1

n
EŒX20X

2
jkj�
o1=2 	

E

�

XrXrCj`j �X .r/r X

.rCj`j/
rCj`j

�2�
1=2 ! 0:
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Using (16.65), this in turn is bounded by constant times

N�1 X
jkj;j`j�q

1X
rD1

	
E
h
Xr � X .r/r

i4
1=4
;

which tends to zero by L4–m–approximability and the condition q2=N ! 0. ut

Proof of Proposition 16.3. We only prove the left relation in (16.27). The element
in the k-th row and `-th column of Ȯ .ˇ/ � Ȯ . OC Ǒ / is given by

qX
hD0

wq.h/

N

X
1�n�N�h



ˇknˇ`;nCh � Ock Ǒ

kn Oc` Ǒ
`;nCh

�

C
qX
hD1

wq.h/

N

X
1�n�N�h



ˇk;nChˇ`;n � Ock Ǒ

k;nCh Oc` Ǒ
`;n

�
:

(16.50)

For reasons of symmetry it suffices to study (16.50), which can be decomposed into

qX
hD0

wq.h/

N

X
1�n�N�h

ˇkn



ˇ`;nCh � Oc` Ǒ

`;nCh
�

C
qX
hD0

wq.h/

N

X
1�n�N�h

Oc` Ǒ
`;nCh



ˇkn � Ock Ǒ

kn

�
:

(16.51)

As both summands above can be treated similarly, we will only treat (16.51). For
any " > 0 we have

P

0@ˇ̌̌̌ˇ̌ qX
hD0

wq.h/

N

X
1�n�N�h

ˇkn



ˇ`;nCh � Oc` Ǒ

`;nCh
�ˇ̌̌̌ˇ̌ > "�

1A
� P

0@ˇ̌̌̌ˇ̌ qX
hD0

wq.h/

N

X
1�n�N�h

ˇkn



ˇ`;nCh � Oc` Ǒ

`;nCh
�ˇ̌̌̌ˇ̌ > "

q

qX
hD0

wq.h/

1A
�

qX
hD0

P

0@ 1

N

ˇ̌̌̌
ˇ̌ X
1�n�N�h

ˇkn



ˇ`;nCh � Oc` Ǒ

`;nCh
�ˇ̌̌̌ˇ̌ > "

q

1A : (16.52)

In order to show that (16.52) tends to 0 as N ! 1, we introduce a slowly
increasing sequence ˛N ! 1 such that q4˛N =N ! 0 and we let C0 such that
N max1�`�d Ekv`� Oc` Ov`k2 � C0. By Cauchy-Schwarz and Markov inequality we
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have

P

0@ˇ̌̌̌ˇ̌ X
1�n�N�h

ˇkn



ˇ`;nCh � Oc` Ǒ

`;nCh
�ˇ̌̌̌ˇ̌ > "N

q

1A
� P

 
NX
nD1

ˇ2kn

NX
nD1



ˇ`n � Oc` Ǒ

`n

�2
>
"2N 2

q2

!

� P

 
1

N

NX
nD1

ˇ2kn > q˛N

!
C P

 
1

N

NX
nD1



ˇ`n � Oc` Ǒ

`n

�2
>

"2

q3˛N

!

� Eˇ2
k1

q˛N
C P

 
1

N

NX
nD1

kYnk2kv` � Oc` Ov`k2 > "2

q3˛N

!

� EkY1k2
q˛N

C P

 
1

N

NX
nD1

kYnk2 > 2EkY1k2
!

C P

�
kv` � Oc` Ov`k2 > "2

2EkY1k2q3˛N
�

� EkY1k2
q˛N

C
Var



1
N

PN
nD1 kYnk2

�
E2kY1k2 C 2C0EkY1k2q3˛N

N"2
:

It can be easily shown that for U , V in L4H

�2
�kU k2 � kV k2� � �24.U � V /C 2 f�4.U /C �4.V /g �4.U � V /:

An immediate consequence is that L4–m–approximability of fYng implies L2–
m–approximability of the scalar sequence fkYnk2g. A basic result for stationary
sequences gives

Var

 
1

N

NX
nD1

kYnk2
!

� 1

N

X
h2Z

ˇ̌
Cov

�kY0k2; kYhk2�ˇ̌ ;
where the by Lemma 16.2 the autocovariances are absolutely summable. Hence the
summands in (16.52) are bounded by

C1

	
1

q˛N
C 1

N
C q3˛N

N"2



;

where the constantC1 depends only on the law of fYng. The proof of the proposition
follows immediately from our assumptions on q and ˛N . ut

16.9 Proof of Theorem 16.6

The proof of this result needs some preliminary lemmas, which we establish first.
We can assume without loss of generality that K.u/ D 0 if juj > 1. Let m be a
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positive integer and recall that X.m/
`

is defined in Assumption 16.4. The long term

covariance matrix associated with the stationary sequence fX.m/
`
; 1 � ` < 1g is

given by

˙ .m/ D EX.m/1 .X.m/1 /T C
1X
`D1

EX.m/1 .X.m/
`C1/

T C
1X
`D1

EX.m/
`C1.X

.m/
1 /T :

The corresponding Bartlett estimator is defined as

˙
.m/
N D

N�1X
kD�.N�1/

K.k=BN / O
 .m/k ;

where

O
 .m/

k D 1

N

min.N;N�k/X
`Dmax.1;1�k/

X.m/
`
.X.m/
`Ck/

T

are the sample covariances of lag k. SinceK is symmetric,K.0/ D 1 andK.u/ D 0

outside Œ�1; 1�, we have that, for all sufficiently large N ,

˙
.m/
N D O
 .m/

0 C
BNX
kD1

K.k=BN / O
 .m/k C
BNX
kD1

K.k=BN /. O
 .m/

k /T :

We start with the consistency of˙ .m/
N .

Lemma 16.3. If Assumptions 16.2-16.6 are satisfied, then we have for every m,

˙
.m/
N

P! ˙ .m/;

as N ! 1:

Proof. Since the sequence X.m/
`

is m-dependent we have that

˙ .m/ D EX1XT1 C
mX
`D1

EX1XT`C1 C
mX
`D1

EX`C1XT1 :

It follows from the ergodic theorem that for any fixed k andm

O
 .m/

k

P! EX.m/1 .X.m/
1Ck/

T :

So using Assumptions 16.5(i), 16.5(ii) and 16.6 we get that

O
 .m/

0 C
mX
kD1

K.k=BN / O
 .m/

k C
mX
kD1

K.k=BN /. O
 .m/k /T

P! EX1XT1 C
mX
`D1

EX1XT`C1 C
mX
`D1

EX`C1XT1 :
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Lemma 16.3 is proven if we show that

BNX
kDmC1

K.k=BN / O
 .m/k

P! 0 (16.53)

and
BNX

kDmC1
K.k=BN /. O
 .m/k /T

P! 0: (16.54)

Clearly, it is enough to prove (16.53).
Let

E.m/N D
BNX

kDmC1
K.k=BN / O
 .m/

k :

Elementary arguments show that

E.m/N D
BNX

kDmC1
K.k=BN / O
 .m/

k

D
BNX

kDmC1
K.k=BN /

1

N

N�kX
`D1

X.m/
`



X.m/
`Ck

�T
D

N�.mC1/X
`D1

X.m/
`

H.m/

`;N
;

where

H.m/

`;N
D

min.N�`;BN /X
kDmC1

K.k=BN /

N



X.m/
`Ck

�T
:

Let

E
.m/
N .i; j / D

N�.mC1/X
`D1

X
.m/

i`
H
.m/

`;N
.j /; 1 � i; j � pq;

where X .m/
i`

and H .m/

`;N
.j / are the i th and the j th coordinates of the vectors X.m/

`;N

and H.m/

`;N
, respectively. Next we write

E


E
.m/
N .i; j /

�2 D E

0@N�.mC1/X
`D1

X
.m/

i`
H
.m/

`;N
.j /

1A2

D
XX

1�r�N�.mC1/
1�`�N�.mC1/

E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�

D E
.m/
1;N .i; j /C E

.m/
2;N .i; j /;

mailto:0@N�.mC1/
mailto:0@N�.mC1/
mailto:0@N�.mC1/
mailto:0@N�.mC1/
mailto:0@N�.mC1/
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where

E
.m/
1;N .i; j / D

XX
1�r�N�.mC1/
1�`�N�.mC1/

jr�`j�m

E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�
;

and

E
.m/
2;N .i; j / D

XX
1�r�N�.mC1/
1�`�N�.mC1/

jr�`j>m

E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�
:

Notice that X.m/
`

is independent of H.m/

`;N
, H.m/

r;N and X.m/r , if r > mC `. Hence

E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�

D

8̂̂̂<̂
ˆ̂:
EX

.m/

i`
E


H
.m/

`;N
.j /X

.m/
ir H

.m/
r;N .j /

�
r > mC `;

EX
.m/
ir E



H
.m/

`;N
.j /X

.m/

i`
H
.m/
r;N .j /

�
` > mC r;

E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�
j` � r j � m;

D
(
0 j` � r j > m;
E


H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

�
j` � r j � m:

Thus we have

EE
.m/
2;N .i; j / D 0:

Let M be an upper bound on jK.t/j. Using the fact that X.m/
`

is an m-dependent
sequence, we now obtain the following:

E.H
.m/

`;N
.j //2 D

min.N�`;BN /X
kDmC1

min.N�`;BN /X
vDmC1

K.k=BN /

N

K.v=BN /

N
E


X
.m/

j;`CkX
.m/

j;`Cv
�

(16.55)

� M 2

N 2

min.N�`;BN /X
kDmC1

min.N�`;BN /X
vDmC1

E


X
.m/

j;`CkX
.m/

j;`Cv
�

� M 2

N 2
BN

mX
rD�m

E
ˇ̌̌
X
.m/
j0 X

.m/
jr

ˇ̌̌
D O

�
BN

N 2

�
:
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In the next step we will first use the Cauchy-Schwarz inequality, then the indepen-
dence of H .m/

`;N
.j / and X .m/

i`
and the independence of H .m/

r;N .j / and X .m/ir to getˇ̌̌
E
.m/
2;N .i; j /

ˇ̌̌
�

XX
1�r�N�.mC1/
1�`�N�.mC1/

jr�`j�m

E
ˇ̌̌
H
.m/

`;N
.j /X

.m/

i`
X
.m/
ir H

.m/
r;N .j /

ˇ̌̌

�
XX

1�r�N�.mC1/
1�`�N�.mC1/

jr�`j�m

�
E


H
.m/

`;N
.j /X

.m/

i`

�2�1=2 �
E


X
.m/
ir H

.m/
r;N .j /

�2�1=2

�
XX

1�r�N�.mC1/
1�`�N�.mC1/

jr�`j�m

�
E


H
.m/

`;N
.j /
�2�1=2 �

E


X
.m/

i`

�2�1=2 �
E


X
.m/
ir

�2�1=2

�
�
E


H
.m/
r;N .j /

�2�1=2
� 2mNO

 
B
1=2
N

N

!
O.1/O.1/O

 
B
1=2
N

N

!

D O

�
BN

N

�
D o.1/;

where we also used (16.55) and Assumption 16.6. This completes the proof of
Lemma 16.3. ut

In the following, i denotes the imaginary unit, i.e. i2 D �1.

Lemma 16.4. If Assumptions 16.2-16.6 are satisfied, then for all 1 � j � d we
have

lim sup
N!1

lim sup
m!1

sup
�1<t<1

E

 
1

N 1=2

NX
kD1

.Xjk � X
.m/

jk
/eikt

!2
D 0; (16.56)

lim sup
N!1

lim sup
m!1

sup
�1<t<1

E

 
1

N 1=2

NX
kD1

Xjke
ikt

!2
< 1 (16.57)

and

lim sup
N!1

lim sup
m!1

sup
�1<t<1

E

 
1

N 1=2

NX
kD1

X
.m/

jk
eikt

!2
< 1: (16.58)
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Proof. First we note that

E

 
NX
kD1

.Xjk � X
.m/

jk
/eikt

!2
D

X
1�k�N

E..Xjk �X .m/
jk
/eikt /2

C 2
X

1�k<`�N
E
h
.Xjk � 


.m/

jk
/.Xj` �X .m/

j`
/
i
ei.kC`/t :

It follows from Assumption 16.4 that there is a sequence c1.m/ ! 0 such that

ˇ̌̌̌
ˇ̌ X
1�k�N

E.Xjk � X
.m/

jk
/2ei2kt

ˇ̌̌̌
ˇ̌ � Nc1.m/:

Next we write

X
1�k<`�N

E
h
.Xjk �X .m/

jk
/Xj`

i
ei.kC`/t

D
X

1�k<`�N
E
h
.Xjk �X .m/

jk
/.Xj` � X`�kj` /

i
ei.kC`/t ;

since .Xk ;X
.m/

k
/ and X`�k

`
are independent. Using the Cauchy-Schwarz inequality

first, then Assumption 16.4 again, we get that

X
1�k<`�N

ˇ̌̌
E
h
.Xjk � X

.m/

jk
/.Xj` �X .`�k/

j`
/
i
ei.kC`/t

ˇ̌̌
�

X
1�k<`�N

h
E.Xjk �X .m/

jk
/2
i1=2 h

E.Xj` � X
.`�k/
j`

/2
i1=2

� N
h
E.Xj1 � X

.m/
j1 /

2
i1=2 X

1�k<1

h
E.Xj1 � X

.k/
j1 /

2
i1=2

D Nc2.m/

with some sequence c2.m/ ! 0. Similar arguments show that

X
1�k<`�N

ˇ̌̌
E
h
.Xjk � X

.m/

jk
/X

.m/

j`

i
ei.kC`/t

ˇ̌̌
D Nc3.m/;

with some sequence c3.m/ ! 0, completing the proof of (16.56).
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Similarly to the proof of (16.56), we write

E

 
NX
kD1

Xjke
ikt

!2
D

NX
kD1

NX
`D1

EXjkXj`e
i.kC`/t

D
NX
kD1

EX2jke
2ikt C 2

X
1�k<`�N

EXjkXj`e
i.kC`/t

D EX2j1

NX
kD1

e2ikt C 2
X

1�k<`�N
EXjk.Xj` � X

.`�k/
j`

/ei.kC`/t ;

since by the independence of Xjk and X .`�k/
j`

we have that EXjkX
.`�k/
j`

D 0.
Using the Cauchy-Schwarz inequality with Assumption 16.4 we get thatˇ̌̌̌

ˇ̌ X
1�k<`�N

EXjk



Xj` � X

.`�k/
j`

�
ei.kC`/t

ˇ̌̌̌
ˇ̌ � cN

with some constant c, completing the proof of (16.57). The same arguments can be
used to prove (16.58). ut

Next we define SN .t/ D PN
kD1 Xkeikt and S.m/N .t/ D PN

kD1 X.m/
k
eikt . Let

S�N .t/ be the conjugate transpose of SN .t/ and introduce

IN .t/ D 1

N
SN .t/S�N .t/

D 1

N

NX
kD1

Xke
ikt

NX
`D1

XT` e
�i`t

D 1

N

NX
`D1

NX
kD1

ei t.k�`/XkXT`

D
N�1X
kD1�N

e�i tk
1

N

min.N;N�k/X
`Dmax.1;1�k/

XkXT`Ck

D
N�1X
kD1�N

e�i tk O
 k:

Similarly we define

I.m/N .t/ D 1

N
S.m/N .t/



S.m/N .t/

�� D
N�1X
kD1�N

e�i tk O
 .m/

k :

Lemma 16.5. If Assumptions 16.2-16.6 are satisfied, then we have

lim sup
N!1

lim sup
m!1

sup
�1<t<1

E
ˇ̌̌
IN .t/ � I.m/N .t/

ˇ̌̌
D 0:
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Proof. By the triangle inequality we haveˇ̌̌
IN .t/ � I.m/N .t/

ˇ̌̌
D
ˇ̌̌̌
1

N
SN .t/S�N .t/ � 1

N
S.m/N .t/



S.m/N .t/

�� ˇ̌̌̌
� 1

N

ˇ̌̌
SN .t/.S�N .t/ � .S.m/N .t//�/

ˇ̌̌
C 1

N

ˇ̌̌
.SN .t/ � S.m/N .t//.S.m/N .t//�

ˇ̌̌
:

Now the result follows from Lemma 16.4 via the Cauchy-Schwartz inequality. ut
Proof of Theorem 16.6. Recall that the Fourier transform, OK.u/, of K is OK.u/ D
f2�g�1 R1�1K.s/e�isuds. Since K and OK are in L1 and both are Lipschitz func-
tions, the inversion formula givesK.s/ D R1

�1 OK.u/eisudu: From the relationship
between K and OK and from the fact that K is supported on the interval Œ�1; 1�, we
obtain:

˙N D
BNX

kD�BN

K.k=BN / O
 k

D
N�1X
kD1�N

K.k=BN / O
 k

D
N�1X
kD1�N

�Z 1

�1
OK.u/ei.k=BN /udu

�
O
 k

D
Z 1

�1
OK.u/

N�1X
kD1�N

e�i.�u=BN /k O
 kdu

D
Z 1

�1
OK.u/IN .�u=BN /du:

Similarly,

˙
.m/
N D

Z 1

�1
OK.u/I.m/N .�u=BN /du:

Hence we have

E

ˇ̌̌̌
˙N �˙ .m/

N

ˇ̌̌̌
D E

ˇ̌̌̌Z 1

�1
OK.u/



IN .u=BN / � I.m/N .u=BN /

�
du

ˇ̌̌̌
�
Z 1

�1

ˇ̌̌
OK.u/

ˇ̌̌
E
ˇ̌̌


IN .u=BN /� I.m/N .u=BN /
�ˇ̌̌
du

� sup
�1<t<1

ˇ̌̌ˇ̌̌
IN .t/ � I.m/N .t/

ˇ̌̌ˇ̌̌
1

Z 1

�1

ˇ̌̌
OK.u/

ˇ̌̌
du:
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Applying Lemma 16.5 we conclude thatˇ̌̌̌
˙N �˙ .m/

N

ˇ̌̌̌
P! 0;

as min.N;m/ ! 1. On the other hand, by Lemma 16.3, for every fixedm

˙
.m/
N

P! ˙ .m/:

Since

˙ .m/ ! ˙ ;

as m ! 1, the proof of the theorem is complete. ut

16.10 Proofs of Theorems 16.7 and 16.8

The proof of Theorem 16.7 relies on Theorem A.1 of Aue et al. (2009), which we
state here for ease of reference.

Theorem 16.10. Suppose f�ng is a d–dimensionalL2–m–approximable mean zero
sequence. Then

N�1=2SN .�; �/ d! W.�/.�/; (16.59)

where fW.�/.x/; x 2 Œ0; 1�g is a mean zero Gaussian process with covariances

Cov.W.�/.x/;W.�/.y// D min.x; y/˙ .�/:

The convergence in (16.59) is in the d–dimensional Skorokhod spaceDd .Œ0; 1�/.

Proof of Theorem 16.7. Let

GN .x; �/ D 1

N
Ln.x; �/T Ȯ .�/�1Ln.x; �/T :

We notice that replacing the LN .x; O�/ with LN .x; Ǒ / does not change the test
statistic in (16.31). Furthermore, since by the second part of Proposition 16.3
j Ȯ . O�/� Ȯ . Ǒ /j D oP .1/, it is enough to study the limiting behavior of the sequence
GN .x; Ǒ /. This is done by first deriving the asymptotics of GN .x;ˇ/ and then ana-
lyzing the effect of replacing ˇ with Ǒ .



336 16 Functional time series

Let ˇ.m/i be the m-dependent approximations for ˇi which are obtained by

replacing Yi .t/ in (16.25) by Y .m/i .t/. For a vector v inRd we let jvj be its Euclidian
norm. Then

Ejˇ1 � ˇ.m/1 j2 D E

dX
`D1



ˇ`1 � ˇ.m/

`1

�2
D

dX
`D1

E

Z

.Y1.t/ � Y .m/1 .t//v`.t/dt
�2

�
dX
`D1

E

Z
.Y1.t/ � Y .m/1 .t//2dt

Z
v2` .t/dt

D d �22.Y1 � Y .m/1 /:

Since by Lyapunov’s inequality we have �2.Y1 � Y
.m/
1 / � �4.Y1 � Y

.m/
1 /, (16.4)

yields that
P
m�1.Ejˇ1 � ˇ.m/1 j2/1=2 < 1. Thus Theorem 16.10 implies that

1p
N

SN .x;ˇ/
Dd Œ0;1��! W.ˇ/.x/:

The coordinatewise absolute convergence of the series ˙ .ˇ/ follows from part (a)
of Theorem 16.5. By assumption the estimator Ȯ .ˇ/ is consistent and consequently

Z
GN .x;ˇ/dx

DŒ0;1��!
dX
`D1

Z
B2` .x/dx

follows from the continuous mapping theorem.
We turn now to the effect of changing GN .x;ˇ/ to GN .x; Ǒ /. Due to the

quadratic structure of GN .x; �/, we have GN .x; Ǒ / D GN .x; OC Ǒ / when OC D
diag. Oc1; Oc2; : : : ; Ocd /. To finish the proof it is thus sufficient to show that

sup
x2Œ0;1�

1p
N

jSN .x;ˇ/ � SN .x; OC Ǒ /j D oP .1/ (16.60)

and

j Ȯ .ˇ/� Ȯ . OC Ǒ /j D oP .1/: (16.61)
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Relation (16.61) follows from Proposition 16.3. To show (16.60) we observe that by
the Cauchy-Schwarz inequality and Theorem 16.2

sup
x2Œ0;1�

1

N
jSN .x;ˇ/� SN .x; OC Ǒ /j2

D sup
x2Œ0;1�

1

N

dX
`D1

ˇ̌̌̌ Z bNxcX
nD1

Yn.t/.v`.t/ � Oc` Ov`.t//dt
ˇ̌̌̌2

� 1

N
sup
x2Œ0;1�

Z � bNxcX
nD1

Yn.t/

�2
dt �

dX
`D1

Z
.v`.t/ � Oc` Ov`.t//2dt

� 1

N

Z
max
1�k�N

� kX
nD1

Yn.t/

�2
dt �OP .N�1/:

Define

g.t/ D EjY1.t/j2 C 2
�
EjY1.t/j2

�1=2X
r�1

�
EjY1Cr.t/ � Y

.r/
1Cr.t/j2

�1=2
:

Then by similar arguments as in Section 16.8 we have

E

� NX
nD1

Yn.t/

�2
� N g.t/:

Hence by Menshov’s inequality (see e.g. Section 10 of Billingsley (1999)) we infer
that

E max
1�k�N

� kX
nD1

Yn.t/

�2
� .log2 4N/

2N g.t/:

Notice that (16.4) implies
R
g.t/dt < 1. In turn we obtain that

1

N

Z
max
1�k�N

� kX
nD1

Yn.t/

�2
dt D OP

�
.logN/2

�
;

which proves (16.60). ut
Proof of Theorem 16.8. Notice that if the mean function changes from �1.t/ to
�2.t/ at time k� D bN
c, then LN .x; O�/ can be written as

LN .x; Ǒ/CN

(
x.1 � 
/Œ O�1 � O�2� if x � 
 I


�
1 � x/Œ O�1 � O�2� if x > 
;

(16.62)

where

O�1 D
�Z

�1.t/ Ov1.t/dt;
Z
�1.t/ Ov2.t/dt; : : : ;

Z
�1.t/ Ovd .t/dt

�T
;

and O�2 is defined analogously.



338 16 Functional time series

It follows from (16.62) that TN .d/ can be expressed as the sum of three terms:

TN .d/ D T1;N .d/C T2;N .d/C T3;N .d/;

where

T1;N .d/ D 1

N

Z 1

0

LN .x; Ǒ/T Ȯ . O�/�1LN .x; Ǒ/dxI

T2;N .d/ D N

2

.1� 
/Œ O�1 � O�2�T Ȯ . O�/�1Œ O�1 � O�2�I

T3;N .d/ D
Z 1

0

g.x; 
/LN .x; Ǒ/T Ȯ . O�/�1Œ O�1 � O�2�dx;

with g.x; 
/ D 2
˚
x.1 � 
/Ifx��g C 
.1 � x/Ifx>�g

�
:

Since˝ in (16.33) is positive definite (p.d.), Ȯ . O�/ is almost surely p.d. for large
enoughN (N is random). Hence for large enoughN the term T1;N .d/ is nonnega-
tive. We will show that N�1T2;N .d/ � �1 C oP .1/; for a positive constant �1, and
N�1T3;N .d/ D oP .1/: To this end we notice the following. Ultimately all eigen-
values of Ȯ . O�/ are positive. Let ��.N / and ��.N / denote the largest, respectively,
the smallest eigenvalue. By Lemma 2.2, ��.N / ! �� a.s. and ��.N / ! �� a.s.,
where �� and �� are the largest and smallest eigenvalue of˝ . Next we claim that

j O�1 � O�2j D j�1 � �2j C oP .1/:

To obtain this, we use the relation k Ovi � Ocj vj k D oP .1/ which can be proven
similarly as Lemma A.1 of Berkes et al. (2009), but the law of large numbers in
a Hilbert space must be replaced by the ergodic theorem. The ergodicity of fYng
follows from the representation Yn D f ."n; "n�1; : : :/. Notice that because of the
presence of a change point it cannot be claimed that k Ovi � Ocj vj k D OP .N

�1=2/.
It follows that if N is large enough, then

Œ O�1 � O�2�T Ȯ . O�/�1Œ O�1 � O�2� >
1

2��
j O�1 � O�2j2 D 1

2��
j�1 � �2j2 C oP .1/:

To verify N�1T3;N .d/ D oP .1/, observe that

sup
x2Œ0;1�

ˇ̌
LN .x; Ǒ/T Ȯ . O�/�1Œ O�1 � O�2�

ˇ̌
� sup
x2Œ0;1�

jLN .x; Ǒ/jj Ȯ . O�/�1jj O�1 � O�2j

D oP .N /j�1 � �2j:
We used the matrix norm jAj D supjxj�1 jAxj and j Ȯ . O�/�1j a:s�! j˝�1j < 1. ut

16.11 Proof of Theorem 16.9

We first establish a technical bound which implies the consistency of the estimator
O	`k given in (16.40). Let Oc` D sign.hv`; Ov`i/ and Odk D sign.huk ; Ouki/.
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Lemma 16.6. Under the assumptions of Theorem 16.9 we have

lim sup
N!1

NEj	`k � Oc` Odk O	`k j2 � �1

�
1

˛2
k

C 1

.˛0
`
/2

�
;

where �1 is a constant independent of k and `.

Proof. It follow from elementary inequalities that

j	`k � Oc` Odk O	`k j2 � 2T 21 C 2T 22 ;

where

T1 D 1

N

ZZ � NX
iD1

�
Xi .s/Yi .t/ �EŒXi .s/Yi .t/�

��
uk.s/v`.t/dt dsI (16.63)

T2 D 1

N

NX
iD1

ZZ
EŒXi .s/Yi .t/�

�
uk.t/v`.s/ � Odk Ouk.t/ Oc` Ov`.s/

�
dt ds: (16.64)

By the Cauchy-Schwarz inequality and the inequality

jab � cd j2 � 2a2.b � d/2 C 2d 2.a � c/2; (16.65)

we obtain

T 21 � 1

N 2

ZZ � NX
iD1

Xi .s/Yi .t/ � EŒXi .s/Yi .t/�

�2
dt dsI (16.66)

T 22 D 2�22.X/�
2
2.Y /

�kuk � Odk Oukk2 C kv` � Oc` Ov`k2
�
: (16.67)

Hence by similar arguments as we used for the proof of Theorem 16.1 we get
NET 21 D O.1/. The proof follows now immediately from Lemma 2.3 and The-
orem 16.1.

Now we are ready to verify (16.42). We have

O KL.t; s/ D
KX
kD1

LX
`D1

O��1` O	`k Ouk.t/ Ov`.s/:

The orthogonality of the sequences fukg and fv`g and (16.41) imply thatZZ � X
k>K

X
`>L

��1` 	`kuk.t/v`.s/
�2
dt ds

D
X
k>K

X
`>L

ZZ
��2` 	2`ku

2
k.t/v

2
` .s/dt ds

D
X
k>K

X
`>L

��2` 	
2
`k ! 0 .L;K ! 1/:
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Therefore, letting

 KL.t; s/ D
KX
kD1

LX
`D1

��1` 	`kuk.t/v`.s/;

(16.42) will follow once we show thatZZ h
 KL.t; s/ � O KL.t; s/

i2
dt ds

P! 0 .N ! 1/:

Notice that by the Cauchy-Schwarz inequality the latter relation is implied by

KL

KX
kD1

LX
`D1

ZZ h
��1` 	`kuk.t/v`.s/ � O��1` O	`k Ouk.t/ Ov`.s/

i2
dt ds

P! 0

.N ! 1/:

(16.68)

A repeated application of (16.65) and some basic algebra yield

1

4

h
��1` 	`kuk.t/v`.s/ � O��1` O	`k Ouk.t/ Ov`.s/

i2
� ��2` j	`k � Oc` Odk O	`k j2 Ou2k.t/ Ov2` .s/C O	2`k

ˇ̌
��1` � O��1`

ˇ̌2 Ou2k.t/ Ov2` .s/
C 	2`k�

�2
`

ˇ̌
uk.t/ � Odk Ouk.t/

ˇ̌2
v2` .s/C 	2`k�

�2
`

ˇ̌
v`.s/ � Oc` Ov`.s/

ˇ̌2 Ou2k.t/:
Hence

1

4

ZZ h
��1` 	`kuk.t/v`.s/ � O��1` O	`k Ouk.t/ Ov`.s/

i2
dt ds

� ��2` j	`k � Oc` Odk O	`kj2 C O	2`k
ˇ̌
��1` � O��1`

ˇ̌2
C 	2`k�

�2
`

�kuk � Odk Oukk2 C kv` � Oc` Ov`k2
�
:

Thus in order to get (16.68) we will show that

KL

KX
kD1

LX
`D1

��2` j	`k � Oc` Odk O	`k j2 P! 0I (16.69)

KL

KX
kD1

LX
`D1

O	2`k
ˇ̌
��1` � O��1`

ˇ̌2 P! 0I (16.70)

KL

KX
kD1

LX
`D1

	2`k�
�2
`

�kuk � Odk Oukk2 C kv` � Oc` Ov`k2
� P! 0: (16.71)

We start with (16.69). By Lemma 16.6 and Assumption 16.9 we have

E

�
KL

KX
kD1

LX
`D1

��2` j	`k � Oc` Odk O	`kj2
�

! 0 .N ! 1/:
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Next we prove relation (16.70). In order to shorten the proof we replace O	`k by
	`k . Otherwise we would need a further intermediate step, requiring similar argu-
ments which follow. Now for any 0 < " < 1 we have

P

�
KL
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kD1

LX
`D1

	2`k
ˇ̌
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> "

�

D P

�
KL

KX
kD1

LX
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�2
`
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�KL
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KL2

�N�L
C 1

"N�2L

�
;

by an application of the Markov inequality and Theorem 16.2. According to our
Assumption 16.9 this also goes to zero for N ! 1.

Finally we prove (16.71). By Lemma 2.3 and Theorem 16.1 we infer that

E

�
KL

KX
kD1

LX
`D1

	2`k�
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`
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��

� �3
KL

N

KX
kD1

LX
`D1

	2`k�
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�
1

˛2
k

C 1

˛0
`
2

�
� 2�3�

KL

N minfhL; h0Kg2 :

Assumption 16.9 (ii) assures that the last term goes to zero. This completes the
proof.



Chapter 17
Spatially distributed functional data

Chapters 13, 14 and 16 focused on functional time series. The present chapter and
Chapter 18 deal with curves observed at spatial locations. The data consist of curves
X.skI t/; t 2 Œ0; 1�; observed at spatial locations s1; s2; : : : ; sN . We propose meth-
ods for the estimation of the mean function and the FPC’s for such data. We also
develop a significance test for the correlation of two such functional spatial fields.
The test we consider in this section is an extension of the test of Chapter 9 in which
the pairs of curves were assumed to be independent. The main feature of spatially
distributed curves is that the curves at neighboring locations look similar, so the
dependence cannot be neglected, and, together with the spatial distribution of the
locations s1; s2; : : : ; sN , is the main feature of the data. After validating the finite
sample performance of the test by means of a simulation study, we apply it to
determine if there is correlation between long term trends in the so called critical
ionospheric frequency and changes in the direction of the internal magnetic field
of the Earth. The test provides conclusive evidence for correlation thus solving a
long standing space physics conjecture. This conclusion is not apparent if the spa-
tial dependence of the curves is neglected. This chapter focuses on methodological
and computational issues. Chapter 18 investigates the asymptotic properties of the
sample mean and of the EFPC’s for spatially distributed functions.

This chapter is organized as follows. Section 17.1 introduces spatially distributed
functional data in greater detail, and provides the motivation for the research pre-
sented in this Chapter. In Section 17.2, we briefly describe the fundamental concepts
of spatial statistics required to understand the remaining sections. Sections 17.3 and
17.4 focus, respectively, on the estimation of the mean function and the FPC’s in the
spatial setting. Section 17.5 demonstrates by means of a simulation study that the
methods we propose improve on the standard approach, and discusses their relative
performance and computational cost. In Section 17.6, we develop a test for the cor-
relation of two functional spatial fields. This test requires estimation of a covariance
tensor. After addressing this issue in Section 17.7, we study in Section 17.8 the finite
sample properties of several implementations of the test. Finally, in Section 17.9, we
apply the methodology developed in the previous section to test for the correlation
between the ionospheric critical frequency and magnetic curves.

343
OI 10.1007/978-1-4614- _17, 

© Springer Science+Business Media New York 2012

L. Horváth and P. Kokoszka, Inference for Functional Data with Applications, 
3655-3Springer Series in Statistics 200, D



344 17 Spatially distributed functional data

17.1 Introduction

We consider data consisting of curves X.skI t/; t 2 Œ0; T �; observed at spatial
locations s1; s2; : : : ; sN . Such functional data structures are quite common. A well–
known example is the Canadian temperature and precipitation data used in several
chapters of Ramsay and Silverman (2005). The annual curves are available at 35
locations, some of which are quite close, and so the curves look very similar, others
are very remote with notably different curves. Figure 17.1 shows the temperature
curves together with the simple average and the average estimated by one of the
methods described in this chapter. Conceptually, the average temperature in Canada
should be computed as the average over a fine regular grid spanning the whole coun-
try. In reality, there are only several dozen locations mostly in the inhabited south-
ern strip. Computing an average over these locations will bias the estimate. Data at
close–by locations contribute similar information, and should get smaller weights
than data at sparse locations. This is the fundamental principle of spatial statistics
which however received only limited attention in the framework of functional data
analysis. The above example shows a simple application of our methodology as a
descriptive tool. The estimation and testing problems we solve are related to long
term trends, so the data we study do not look like the annual averages shown in
Figure 17.1, but rather consist of curves which exhibit temporal evolution. Eval-
uation of the significance of trends has been an important issue in statistical geo-
physics, so, in addition to its value in exploratory analysis, the methodology we
develop is useful in inferential procedures. In addition to the mean function, we also
study the estimation of the FPC’s.

Many environmental and geophysical data sets that fall into the framework con-
sidered in this chapter. For example, the Australian rainfall data set, studied by
Delaigle and Hall (2010) among others, consists of daily rainfall measurements
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Fig. 17.1 Average annual temperature curves at 35 locations in Canada. The continuous thick line
is the simple average, the dashed line is the average that takes into account spatial locations and
dependence.
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from 1840 to 1990 at 191 Australian weather stations. Snow water curves measured
at several dozen locations in every state over many decades have been studied in the
purely spatial framework, e.g. Carroll et al. (1995) and Carroll and Cressie (1996).
Useful insights can potentially be gained by studying the whole curves reflecting the
temporal dynamics, rather than just temporal averages. Another important example
are pollution curves:X.skI t/ is the concentration of a pollutant at time t at location
sk . Data of this type were studied by Kaiser et al. (2002). A functional framework
might be convenient because such data are typically available only at sparsely dis-
tributed time points tj , which can be different at different locations. In many studies,
X.skI t/ is the count at time t of an infectious disease cases, where sk is a represen-
tative location, e.g. a “middle point” of a county. Delicado et al. (2010) review other
examples and contributions to the methodology for spatially distributed functional
data. The work with geostatistical functional data has focused on kriging, see Deli-
cado et al. (2010), Nerini et al. (2010) and Giraldo et al. (2010, 2011).

The data set that most directly motivated the research described in this chapter
consists of the curves of the so–called F2–layer critical frequency, foF2. Three such
curves are shown in Figure 17.2. In principle, foF2 curves are available at over
200 locations throughout the globe, but sufficiently complete data are available at
only 30-40 locations which are very unevenly spread; for example, there is a dense
network of observatories over Europe and practically no data over the oceans. The
study of this data set has been motivated by the hypothesis of Roble and Dickinson
(1989) who suggested that the increasing amounts of (radiative) greenhouse gases
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Fig. 17.2 F2-layer critical frequency curves at three locations. Top to bottom (latitude in parenthe-
ses): Yakutsk (62.0), Yamagawa (31.2), Manila (14.7). The functions exhibit a latidudal trend in
amplitude.
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should lead to global cooling in mesosphere and thermosphere, as opposed to the
global warming in lower troposphere, cf. Figure 17.3. Rishbeth (1990) pointed out
that such cooling would result in a thermal contraction and the global lowering of the
ionospheric peak electron densities. The height of the peak density of the F region of
the ionosphere, see Figure 17.3, can be computed from the critical frequency foF2.
The last twenty years have seen very extensive research in this area, see Lastovicka
et al. (2008) for a partial overview. One of the difficulties in determining a global
trend is that the foF2 curves appear to exhibit trends in opposing directions over
various regions. A possible explanation suggests that these trends are caused by
long term trends in the magnetic field of the Earth. There has however been no
agreement in the space physics community if this is indeed the case. The results of
Section 17.9 confirm that there is a strong connection between the magnetic field
and ionospheric trends.

Throughout this chapter, fX.s/g denotes a random field defined on a spatial
domain and taking values in the Hilbert space L2 D L2.Œ0; 1�/. The value of the
functionX.s/ at time t 2 Œ0; 1� is denoted byX.sI t/. For inferential procedures, we
assume that the random functionsX.s/ are identically distributed. If this is the case,
then

X.sI t/ D �.t/C
1X
iD1

�i .s/vi .t/; (17.1)
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where �.t/ D X.sI t/, the vi are the eigenfunctions of the covariance operator

C D EŒhX.s/� �; �i .X.s/� �/�;

and �i .s/ D hX.s/� �; vi i. Note that the mean function � and the FPC’s vi do not
depend on s. Even if model (17.1) does not hold, our estimates of the mean function
and the FPC’s provide useful descriptive statistics, as illustrated in Figure 17.1. For
the applications we have in mind, it is enough to assume that the spatial domain is a
subset of the plane or a two–dimensional sphere.

Recall that for functions,X1; X2; : : : ; XN , the sample mean is defined as

NXN D N�1
NX
nD1

Xn;

and the sample covariance operator as

bC.x/ D N�1
NX
nD1

�˝
.Xn � NXN /; x

˛
.Xn � NXN /

�
; x 2 L2:

The EFPC’s are computed as the eigenvalues of bC . These are the estimates produced
by several software packages, including the popular R package fda. For sparse data
measured with error, nontrivial modifications are needed, see Section 1.5. In either
case, the consistency of the sample mean and the EFPC’s relies on the assump-
tion that the functional observations form a simple random sample. In Chapter 16,
we showed that the the consistency holds with the same rates for weakly depen-
dent functional time series. However, if the functions Xk D X.sk/ are spatially
distributed, the sample mean and the EFPC’s need not be consistent, see Chapter
18. This happens if the spatial dependence is strong or if there are clusters of the
points sk . For moderately dependent spatially separated curves, these estimators are
consistent. We will demonstrate that in finite samples better estimators are available
though. We will then use these improved estimators as part of the procedure for test-
ing the independence of two functional fields fX.s/; s 2 Sg and fY.s/; s 2 Sg. First
we review some essential concepts of spatial statistics.

17.2 Essentials of spatial statistics

In order to make this chapter self–contained, we discuss in this section some rele-
vant concepts and methods of spatial statistics. We focus only on geostatistical data,
i.e. observations available at irregularly distributed points of a spatial domain. The
book of Schabenberger and Gotway (2005) offers an accessible and comprehensive
introduction to spatial statistics, a reader interested in a quick introduction to basic
ideas of geostatistics, which goes beyond the information presented in this section,
is referred to Chapters 2 and 3 of Gelfand et al. (2010). In this section, we assume
that all data are scalars.
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A sample of spatial data is

fX.sk/; sk 2 S; k D 1; 2; : : : ; N g :
The spatial domain S is typically a subset of the two–dimensional plane or sphere.
The observed value X.sk/ is viewed as a realization of a random variable, so
fX.s/; s 2 Sg is a scalar random field. Just as in time series analysis, stationary
random fields play a fundamental role in modeling spatial data. To define arbitrary
shifts, we must assume that S is either the whole Euclidean space R

d , or the whole
sphere. The random field fX.s/; s 2 Sg is then strictly stationary if

fX.s1 C h/; X.s2 C h/; : : : ; X.sm C h/g dD fX.s1/; X.s2/; : : : ; X.sm/g
for any points s1; s2; : : : ; sm 2 S and any shift h. If we assume only that the mean
EX.s/ and the covariances Cov.X.s/; X.sCh// do not depend on s, then the field is
called second–order stationary. For such a field, we define the covariance function

C.h/ D Cov.X.s/; X.s C h/:

If C.h/ depends only on the length h of h, we say that the random field is isotropic.
The covariance function of an isotropic random field is typically parametrized as

C.h/ D 	2�.h/; h � 0; �.0/ D 1:

The function � is then called the correlation function. The function �.�/ quantifies
the strength of linear dependence between observations distance h apart and the
smoothness of the field. The following correlation functions are frequently used.
The powered exponential correlation function is defined by

�.h/ D exp

	
�
�
h

�

�p

; � > 0; 0 < p � 2:

If p D 1, this correlation function is called exponential, if p D 2, it is called
Gaussian. A very general family of correlation functions is the so–called Matérn
class. The Matérn class correlation functions are defined as

�.h/ D 21��

� .�/

�
h

�

��
K�.h=�/; � > 0; � > 0;

where K� is the modified Bessel function, see Stein (1999) for the details. The
functionK� decays monotonically and approximately exponentially fast; numerical
calculations show that K�.s/ practically vanishes if s > �.

The correlation function of an isotropic random field is positive definite, and
every positive definite function � is a correlation function of a (Gaussian) ran-
dom field. This follows from Kolmogorov’s consistency theorem. A positive def-
inite function � is called a valid correlation function. There exist examples of cor-
relation functions which are valid in one dimension, but are no longer valid in a
higher dimension, or on a manifold. For this reason, when working with globally
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distributed data, we use the chordal distance defined as the Euclidean distance in
the three–dimensional space. Denoting the latitude by L and the longitude by l , the
chordal distance, 0 � dk;` � 2, between two points, sk; s`, on the unit sphere is
given by

dk;` D 2

�
sin2

�
Lk �L`

2

�
C cosLk cosL` sin2

�
lk � l`

2

��1=2
: (17.2)

If we work with distance (17.2), we can use any correlation function which is valid
is the three–dimensional Euclidean space.

In spatial statistics, the concept of intrinsic stationarity is very useful. The field
fX.s/; s 2 Sg is said to be intrinsically stationary if VarŒX.s C h/ � X.s/� does not
depend on s. Notice that a second–order stationary field is intrinsically stationary.
The converse is not true. The Brownian motion is intrinsically stationary (has sta-
tionary increments), but it is not a stationary process. If fX.s/; s 2 Sg is intrinsically
stationary, we define the semivariogram by


.h/ D 1

2
VarŒX.s C h/� X.s/�:

(The variogram is defined as 2
.�/.) The semivariogram of a second order stationary
field with the covariance function C.�/ is given by


.h/ D C.0/� C.h/: (17.3)

Even for second order stationary fields, the estimation of the covariance func-
tion proceeds through the estimation of the semivariogram. One advantage of this
approach is that the semivariogram is less sensitive to the misspecification or biased
estimation of the mean. Typically isotropy is assumed. First, an empirical variogram
is computed at several available lags h > 0. Then a parametric model (derived from
a valid covariance function via (17.3)) is fitted. There are several versions of the
empirical variogram. The classical estimator proposed by Matheron is given by

O
.d/ D 1

jN.d/j
X
N.d/

.X.sk/ �X.s`//2; (17.4)

where N.d/ is the set of pairs .sk ; s`/ approximately distance d apart, and jN.d/j
is the count of pairs in N.d/. A robust estimator proposed by Cressie and Hawkins
is defined as

O
.d/ D
�
0:457C 0:494

jN.d/j
��10@ 1

jN.d/j
X
N.d/

jX.sk/� X.s`/j1=2
1A4 : (17.5)

The precise definition of the summations in (17.4) and (17.5) requires the intro-
duction of a binning parameter which allows to treat pairs of points as being
approximately distance d apart. For details, we refer to Section 4.4 of Schaben-
berger and Gotway (2005), where other ways of variogram estimation are also dis-
cussed. Examples of empirical variograms and fitted parametric models are given in
Figure 17.11.



350 17 Spatially distributed functional data

17.3 Estimation of the mean function

We represent the observed functions as

X.skI t/ D �.t/C ".skI t/; k D 1; 2; : : : ; N; (17.6)

where " is an unobservable field with E".sI t/ D 0. We propose three methods of
estimating the mean function�, which we call M1, M2, M3. As will become appar-
ent in this section, several further variants, not discussed here, are conceivable. But
the results of Section 17.5 show that while all these methods offer an improvement
over the simple sample mean, their performance is comparable. All methods assume
that the expected inner products

Ck` D EŒh".sk/; ".s`/i� (17.7)

depend only on the distance d.sk; s`/, this defines a “functional” second order sta-
tionarity. The estimation of the Ck` is the central issue, and will be discussed as we
introduce methods M1 and M2. Method M3 does not require the estimation of the
Ck`, but it requires the estimation of the corresponding covariances for the projec-
tions of the functionsX.sk/ onto several basis functions.

Methods M1 and M2 estimate � by the weighted average

O�N D
NX
nD1

wnX.sn/: (17.8)

The optimal weightswk are defined to minimizeE
ˇ̌̌̌̌̌ PN

nD1wnX.sn/� �
ˇ̌̌̌̌̌ 2

subject

to the condition
PN
nD1wn D 1. Using the method of the Lagrange multiplier, we

seek to minimize the objective function

'.w1; w2; : : : ; wN ; r/ D E

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
NX
nD1

wnX.sn/� �

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

� 2r

 
NX
nD1

wn � 1

!

D
NX

k;`D1
wkw`Ck` � 2r

 
NX
nD1

wn � 1

!
: (17.9)

To compute the optimal weights, observe that

@'

@wn
D 2

NX
kD1

wkCkn � 2r; n D 1; 2; : : : ; N I

@'

@r
D �2

 
NX
nD1

wn � 1

!
:
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The unknownsw1; w2; : : : ; wN ; r are solutions to the system of N C 1 equations

NX
nD1

wn D 1;

NX
kD1

wkCkn � r D 0; n D 1; 2; : : : ; N: (17.10)

Set w D .w1; : : : ; wN /
T . An easy way to solve equations (17.10) is to compute

v D C�11, where C D ŒCk`; 1 � k; ` � N�, and then set w D av, where a is a
constant such that 1Tw D 1.

Method M1. At each time point tj , we fit a parametric spatial model to the scalar
field X.sI tj /. To focus attention, we provide formulas for the exponential model

Cov.X.skI tj /; X.s`I tj // D 	2.tj / exp

	
�d.sk; s`/

�.tj /



: (17.11)

It is clear how they can be modified for other popular models. Observe that under
model (17.11),

Ck` D E

Z
.X.skI t/ � �.t// .X.s`I t/ � �.t// dt

D
Z

Cov.X.skI tj /; X.s`I tj //dt

D
Z
	2.t/ exp

	
�d.sk ; s`/

�.t/



dt:

One way to estimate Ck` is to set

bCk` D
Z

O	2.t/ exp

	
�d.sk; s`/O�.t/



dt; (17.12)

with the estimates O	2.tj / and O�.tj / obtained using some version of empirical vari-
ogram, for example (17.4) or (17.5).

If the sample sizeN is small, the ordinary nonlinear least squares method needed
to obtain O	2.tj / and O�.tj / may fail to converge for some tj . An example based on
the critical frequency data is given in Figure 17.4. The convergence does however
take place for most tj , so the integral in (17.12) can be approximated using a Rie-
mann sum.

Another way to proceed, is to replace the O�.tj / by their average O� D
m�1

Pm
jD1 O�.tj /; where m is the count of the tj at which the variogram is esti-

mated successfully. Then, the Ck` are approximated by

bCk` D
�Z

O	2.t/dt
�

exp

	
�d.sk; s`/O�



:

As explained above, in order to compute the weights wj in (17.10), it is enough
to know the matrix C only up to a multiplicative constant. Thus we may set

bCk` D exp

	
�d.sk; s`/O�



: (17.13)
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Fig. 17.4 The range parameter 
.tj / of the scaled foF2 curves, determined using method M1,
as a function of time. The horizontal line is its average value, N
 D 0:474. The gaps indicate the
times tj where the method failed to converge.

Once the matrix C has been estimated, we compute the weights wj , and estimate
the mean via (17.8).

If (17.12) is used, we refer to this method as M1a, if (17.13) is used, we call it
M1b.

Method M1 relies on the estimation of the variograms

2
.sk; s`I tj / D E
�
X.skI tj /� X.s`I tj /

�2
(17.14)

D 2Var.X.skI tj //� 2Cov.X.skI tj /; X.s`I tj //;
which lead to the estimates in a parametric model. The model is the same for every
tj , but the estimates ( O	2.tj /; O�.tj /, for the exponential model) depend on tj . An
advantage of this approach is that even if, for small N , parameter estimates may
not converge at some tj , it is still possible to obtain estimates (17.12) and (17.13).
Method M2, described below, requires only one optimization, so it is much faster
than M1, but this optimization may fail to converge for small N . (This has not
happened though for our real and simulated data.)

Method M2. We define the functional variogram

2
.sk; s`/ D EkX.sk/�X.s`/k2 (17.15)

D 2E jjX.sk/� �jj2 � 2E ŒhX.sk/� �;X.s`/ � �i�
D 2E jjX.s/� �jj2 � 2Ck`:

The variogram (17.15) can be estimated by its empirical counterparts, like (17.4) or
(17.5), with the jX.sk/ �X.s`/j replaced by

kX.sk/� X.s`/k D
	Z

.X.skI t/ � X.s`I t//2 dt

1=2

:
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Next, we fit a parametric model, for example we postulate that


.sk; s`/ D 	2f

�
1 � exp

	
�d.sk; s`/

�f


�
: (17.16)

The subscript f is used to emphasize the functional variogram. Denoting by O�f the
resulting estimate, we estimate the Ckl by (17.13) with O� replaced by O�f .

Method M3. This method uses a basis expansion of the functional data, it does not
use the weighted sum (17.8). Suppose Bj ; 1 � j � K; are elements of a functional
basis with K so large that for each k

X.sk/ �
X
j�K

˝
Bj ; X.sk/

˛
Bj (17.17)

to a good approximation. By (17.6), we obtain for every j˝
Bj ; X.sk/

˛ D ˝
Bj ; �

˛C ˝
Bj ; ".sk/

˛
; k D 1; 2; : : : ; N: (17.18)

For every fixed j , the
˝
Bj ; X.sk/

˛
are observations of a second order stationary and

isotropic scalar spatial field with a constant unknown mean
˝
Bj ; �

˛
. This mean can

be estimated by postulating a covariance structure for each
˝
Bj ; X.sk/

˛
, for example

Cov
�˝
Bj ; X.sk/

˛
;
˝
Bj ; X.s`/

˛� D 	2j exp

	
�d.sk; s`/

�j



:

The mean
˝
Bj ; �

˛
is estimated by a weighted average of the

˝
Bj ; X.sk/

˛
. The

weights depend on j and are computed using (17.10) with the Ckn replaced by
Cov.

˝
Bj ; X.sk/

˛
;
˝
Bj ; X.sn/

˛
. Denote the resulting estimate by O�j . The mean func-

tion � is then estimated by

O�.t/ D
X
j�K

O�jBj .t/:

Choosing an appropriate K in (17.17) is a complex theoretical problem, but in
practice, at least for data sets that motivate this research, it is easy to find K such
that the approximation (17.17) is visually satisfactory. In fact, the functional objects
in R are created using approximation (17.17), so in practice it can be treated as an
equality.

Remark 17.1. Methods M1 and M2 produce an estimated mean function which is
a linear combination of the observed curves. Such estimates belong to the same
class of functions as the original data, in particular they inherit their smoothness (or
roughness). Method M3 produces estimates that are linear combinations of the basis
functions. Such estimates will typically be smoother than the real data.



354 17 Spatially distributed functional data

17.4 Estimation of the principal components

Assume now that the mean function � has been estimated, and this estimate is sub-
tracted from the data. To simplify the formulas, in the following we thus assume
that EX.s/ D 0.

We consider analogs of methods M2 and M3. Extending Method M1 is possible,
but presents a computational challenge because a parametric spatial model would
need to be estimated for every pair .ti ; tj /. For the ionosonde data studied in Section
17.9, there are 336 points tj . Estimation on a single data set would be feasible, but
not a simulation study based on thousands of replications. In both approaches, which
we term CM2 and CM3, the FPC’s are estimated by expansions of the form

vj .t/ D
KX
˛D1

x.j /˛ B˛.t/; (17.19)

where the B˛ are elements of an orthonormal basis. We first describe an analog of
method M3, which is conceptually and computationally simpler.

Method CM3. The starting point is the expansion

X.sI t/ D
1X
jD1

bj .s/Bj .t/;

where, by the orthonormality of theBj , the bj .s/ form an observable field bj .sk/ D˝
Bj ; X.sk/

˛
. Using the orthonormality of the Bj again, we obtain

C.Bj / D E

"* 1X
˛D1

b˛.s/B˛; Bj

+ 1X
iD1

bi .s/Bi

#
(17.20)

D E

"
bj .s/

1X
iD1

bi .s/Bi

#

D
1X
iD1

EŒbi .s/bj .s/�Bi :

Thus, to estimate C , we must estimate the means EŒbi .s/bj .s/�.
Fix i and j , and define the scalar field ´ by ´.s/ D bi .s/bj .s/:We can postulate a

parametric model for the covariance structure of the field ´.�/, and use an empirical
variogram to estimate �´ D E´.s/ as a weighted average of the ´.sk/. Denote the
resulting estimate by Orij . The empirical version of (17.20) is then

bC.Bj / D
KX
iD1

OrijBi : (17.21)
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Relation (17.21) defines the estimator bC which acts on the span of Bj ; 1 � j � K .
Its eigenfunctions are of the form x D P

1�˛�K x˛B˛. Observe that

bC.x/ D
X
˛

x˛
X
i

Ori˛Bi D
X
i

 X
˛

Ori˛x˛
!
Bi :

On the other hand,
�x D

X
i

�xiBi :

Since the Bi form an orthonormal basis, we obtainX
˛

Ori˛x˛ D �xi :

Setting
x D Œx1; x2; : : : ; xK �

T ; bR D ŒOrij ; 1 � i; j � K�;

we can write the above as a matrix equation

bRx D �x: (17.22)

Denote the solutions to (17.22) by

Ox.j / D Œ Ox.j /1 ; Ox.j /2 ; : : : ; Ox.j /
k
�T ; O�j ; 1 � j � K: (17.23)

The Ox.j / satisfy
PK
˛D1 Ox.j /˛ Ox.i/˛ D ıij . Therefore the Ovj defined by

Ovj D
KX
˛D1

Ox.j /˛ B˛ (17.24)

are also orthonormal (because the Bj are orthonormal). The Ovj given by (17.24) are
the estimators of the FPC’s, and the O�j in (17.23) of the corresponding eigenvalues.

As in method M3, the value of K can be taken to the number of basis functions
used to create the functional objects in R, so it can be a relatively large number, e.g.
K D 49. Even though the range of j in (17.23) and (17.24) runs up to K , only the
first few estimated FPC’s Ovj would be used in further work.

Method CM2. Recall that under the assumption of zero mean function, the covari-
ance operator is defined by C.x/ D EŒhX.s/; xiX.s/�: For independent data it is
estimated by the simple average

1

N

NX
nD1

hX.sn/; �iX.sn/ D 1

N

NX
nD1

Ck; (17.25)

where Ck is the operator defined by

Ck.x/ D hX.sk/; xiX.sk/:
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As for the mean, more precise estimates can be obtained by using the weighted
average

bC D
NX
kD1

wkCk: (17.26)

Before discussing the estimation of the weights wk , we explain how the FPC’s
vj and their eigenvalues �j can be estimated using (17.26) and the representation
(17.19). As in method CM3, set x D P

1�˛�K x˛B˛, and observe that

bC.x/ D
KX
jD1

 
KX
˛D1

sj˛x˛

!
Bj ;

where

sj˛ D
NX
kD1

wk
˝
Xk; Bj

˛ hXk; B˛i :

Thus, analogously to (17.22), we obtain a matrix equation Sx D �x, from which the
estimates of the vj ; �j can be found as in (17.23) and (17.24).

We now return to the estimation of the weights wk in (17.26). One way to define
the optimal weights is to require that they minimize the expected Hilbert–Schmidt
norm of bC � C . Recall that the Hilbert–Schmidt norm of an operator K is defined
by

kKk2S D
1X
iD1

kK.ei /k2 D
1X
iD1

Z
jK.ei /.t/j2dt;

where fei ; i � 1g is any orthonormal basis in L2. Since k � kS is a norm in the the
Hilbert space S of the Hilbert–Schmidt operators with the inner product

hK1; K2iS D
1X
iD1

hK1.ei /;K2.ei /i ;

we can repeat all algebraic manipulations needed to obtain the weight wi in (17.8).
The optimal weights in (17.26) thus satisfy

NX
nD1

wn D 1;

NX
kD1

wk�kn � r D 0; n D 1; 2; : : : ; N; (17.27)

where
�k` D EŒhCk � C;C` � C iS �:

Finding the weights thus reduces to estimating the expected inner products �k`.
Since method M2 of Section 17.3 relies only on estimating inner product in the

Hilbert space L2, it can be extended to the Hilbert space S. First observe that, anal-
ogously to (17.15),

EkCk � C`k2S D 2EkCk � Ck2S � 2�k`:
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We can estimate the variogram


C .d/ D Ek hX.s/; � iX.s/� hX.s C d/; � iX.s C d/k2S ; d D kdk
by fitting a parametric model. In formulas (17.4) and (17.5), the squared distances
.X.sk/�X.s`//2 must be replaced by the squared norms kCk �C`k2S . These norms
are equal to

kCk � C`k2S D
1X
iD1

Z
.fikXk.t/ � fi`X`.t//2 dt;

where

fik D
Z
Xk.t/ei .t/dt:

The inner products fik can be computed using the R package fda.

17.5 Finite sample performance of the estimators

In this section, we report the results of a simulation study designed to compare the
performance of the methods proposed in Sections 17.3 and 17.4 in a realistic setting
motivated by the ionosonde data. It is difficult to design an exhaustive simulation
study due to the number of possible combinations of the point distributions, depen-
dence structures, shapes of mean functions and the FPC’s and ways of implementing
the methods (choice of spatial models, variogram estimation etc.). We do however
think that our study provides useful information and guidance for practical applica-
tion of the proposed methodology.

Data generating processes. We generate functional data at location sk as

X.skI t/ D �.t/C
pX
iD1

�i .sk/vi .t/; (17.28)

where the vi are orthonormal functions, cf. model (17.1), and the scalar fields �i are
independent.

To evaluate the estimators of the mean, we use p D 2 and

v1.t/ D p
2 sin.2�t � 6/; v2.t/ D p

2 sin.2�t=2/: (17.29)

We use two mean functions

�.t/ D 2
p
2 sin.6�t/ (17.30)

and
�.t/ D p

t sin.6�t/: (17.31)
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The mean function (17.30) resembles the mean shape for the ionosonde data. It
is however a member of the Fourier basis, and can be isolated using only one basis
function, what could possibly artificially enhance the performance of method M3.
We therefore also consider the mean function (17.31). Combining the mean function
(17.30) and the FPC’s (17.29), we obtain functions which very closely resemble
the shapes of the ionosonde curves. In the above formulas, time is rescaled so that
t 2 Œ0; 1�.

To evaluate the estimators of the FPC’s, we set

X.skI t/ D �1.sk/
e1.t/C e2.t/p

2
C �2.sk/e3.t/; (17.32)

where e1.t/ D p
2 sin.2�t � 7/, e2.t/ D p

2 sin.2�t � 2/, e3.t/ D p
2 sin.3�t � 3/.

Direct verification, which uses the independence of the fields �1 and �2, shows that
the FPC’s are v1 D 2�1=2.e1 C e2/ and v2 D e3.

To complete the description of the data generating processes, we must specify
the dependence structure of the scalar spatial fields �1 and �2. We use the Gaussian
and exponential models:

Gaussian: c.sk ; s`/ D c0 C 	2 expf�d 2.k; `/=�2g;
Exponential: c.sk ; s`/ D c0 C 	2 expf�d.k; `/=�g: (17.33)

The distances are the chordal distances (17.2) between the locations described
below. To make simulated data look similar to the real foF2 data we set 	1 D 1,
�1 D �=6 for the field �1.s/ and 	2 D 0:1, �2 D �=4 for �2.s/. For the simu-
lated data we set c0 D 0. These parameters are the same for both the Gaussian and
exponential models. They result in effective ranges that differ by about 20%.

The locations sk are selected to match the locations of the real ionosonde stations.
For the sample size 218 we use all available locations, shown in Figure 17.5. The
selected 32 locations correspond to the ionosondes with the longest record history.
The 100 stations were selected randomly out of the 218 stations.

Details of implementation. All methods require the specification of parametric
spatial model for various variograms. Even though for some methods the variograms
are defined for L2– or S–valued objects, only scalar models are required. In this
simulation study, we employ the exponential model. Methods M3, CM2 and CM3
require the specification of a basis fBj g and the number K of the basis functions.
We use the Fourier basis and K D 1 C 4Œ

p
#ftj g�, where #ftj g is the count of

the points at which the curves are observed. For our real and simulated data K D
1C 4Œ

p
336� D 73, a number that falls between the recommended values of 49 and

99 for the number of basis functions. Specifically, the basis functions Bj are

f1;p2 sin.2�it/;
p
2 cos.2�it/I i D 1; 2; : : : ; 36g: (17.34)

All methods require the estimation of a parametric model on an empirical variogram.
In our study we use only estimators (17.4) and (17.5), and refer to them, respectively,
as MT and CH.
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Fig. 17.5 Locations of 218 ionosonde stations. Circles represent the 32 stations with the longest
complete records.

Results of the simulation study. For comparison of different methods we intro-
duce the quantity L which is the average of the integrated absolute differences
between real and estimated mean functions or FPC’s. For the mean function, L
is defined by

L D 1

R

RX
rD1

Z
j O�r.t/ � �.t/jdt; (17.35)

whereR is the number of replications, we useR D 103. For the FPC’s, the definition
is fully analogous. We also compute the standard deviation for L, based on the
normal approximation for R independent runs. We use the L1 distance rather than
theL2 distance, so as not to favor a priori methods which minimiza the L2 distance.

The results of the simulations for the mean function (17.31) are shown in
Figure 17.6. The DGP’s have exponential covariance functions. If the �i in (17.28)
have Gaussian covariances, the results are not visually distinguishable. The errors
values for mean (17.30) are slightly different, but the relative position of the box
plots practically does not change. All methods M1, M2 and M3 are significantly
better than the sample average. Method M2 strikes the best balance between the
computational cost and the precision of estimation.

Errors in the estimation of the FPC’s in model (17.32) are shown in Figure 17.7.
The displayed errors are those for the �i with exponential covariances and the CH
variogram. The results for Gaussian covariances and the MT variogram are prac-
tically the same. The performance of methods CM2 and CM3 is comparable, and
they are both much better than using the eigenfunctions of the empirical covariance
operator (17.25), which is the standard method implemented in the fda package.
The computational complexity of methods CM2 and CM3 is the same.
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Fig. 17.6 Errors in the estimation of the mean function for sample sizes: 32, 100, 218. The dashed
boxes are estimates using the CH variogram, empty are for the MT variogram. The right–most box
for each N corresponds to the simple average. The bold line inside each box plot represents the
average value of L (17.35). The upper and lover sides of rectangles shows one standard deviation,
and horizontal lines show two standard deviations.
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Fig. 17.7 Errors in the estimation of the FPC’s for sample sizes: 32, 100, 218 . The bold line
inside each box plot represents the average value of L. The upper and lover sides of rectangles
shows one standard deviation, and horizontal lines show two standard deviations.

Conclusions. For simulated data generated to resemble the ionosonde data, all
methods introduced in Sections 17.3 and 17.4 have integrated absolute deviations
(away from a true curve) statistically significantly smaller than the standard meth-
ods designed for iid curves. Methods M2 and CM2, based on weighted averages
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estimated using functional variograms, offer a computationally efficient and unified
approach to the estimation of the mean function and of the FPC’s in this spatial
setting.

17.6 Testing for correlation of two spatial fields

Motivated by the problem of testing for correlation between foF2 and magnetic
curves, described in detail in Section 17.9, we now propose a relevant statistical
significance test.

The data are observed at N spatial locations: s1; s2; : : : ; sN . At location sk , we
observe two curves:

Xk D X.sk/ D X.skI t/; t 2 Œ0; 1�;

and

Yk D Y.sk/ D Y.sk I t/; t 2 Œ0; 1�:
We assume that the sample fXkg is a realization of a random field fX.s/; s 2 Sg,
and the sample fYkg is a realization of a random field fY.s/; s 2 Sg. We want to test
the null hypothesis:

H0: for each s 2 S, the random functionsX.s/ and Y.s/ are independent

against the alternative thatH0 does not hold. The test statistic will detect departures
from H0 that manifest themselves in the lack of the correlation between the pro-
jections hx;X.s/i and hy; Y.s/i, for any x; y 2 L2. In fact, the lack of correlation
will be tested only for x and y from sufficiently large subspaces, those spanned by
the first p FPC’s of X.s/, and the first q FPC’s of Y.s/. The idea of the test, thus
requires that the pairs .X.s/; Y.s// have the same distribution for every s 2 S. The
construction of the test assumes that both fields, fX.s/; s 2 Sg and fY.s/; s 2 Sg are
strictly stationary, even though this assumption could be weakened to the stationar-
ity of some fourth order moments. Since we provide only a heuristic derivation of
the test, we are not concerned here with optimal assumptions. To lighten the nota-
tion, assume that

EXk.t/ D 0 and EYn.t/ D 0:

The mean functions will be estimated and subtracted using one of the methods of
Section 17.3.

We now explain the idea of the test. We approximate the curves Xn and Yn by
the expansions

Xn.t/ �
pX
iD1

hXn; vi i vi .t/; Yn.t/ �
qX
jD1

˝
Yn; uj

˛
uj .t/;
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where the vi and the uj are the corresponding FPC’s. At this point, the functions
vi ; 1 � i � p; and uj ; 1 � j � q; are deterministic, so the independence of the
curvesXn of the curves Yn implies the independence of the vectors

ŒhXn; v1i ; hXn; v2i ; : : : ;
˝
Xn; vp

˛
�T ; 1 � n � N

and
ŒhYn; u1i ; hYn; u2i ; : : : ;

˝
Yn; uq

˛
�T ; 1 � n � N:

Then, underH0, the expected value of the sample covariances

AN .i; j / D 1

N

NX
nD1

hXn; vii
˝
Yn; uj

˛
(17.36)

If some of the estimated AN .i; j / are too large, we reject the null hypothesis.
To construct a test statistic, we introduce the quantities

Vk`.i; i
0/ D EŒhvi ; Xki ˝v0i ; X`˛�; Uk`.j; j

0/ D EŒ
˝
uj ; Yk

˛ ˝
u0j ; Y`

˛
�:

Note that Vk`.i; i 0/ D 0 and Uk`.j; j 0/ D 0, if the observations in each sample
are independent (and have mean zero). Thus, the Vk`.i; i 0/ and the Uk`.j; j 0/ are
specific to dependent data, they do not occur in the testing procedure developed
in Chapter 9 for independent curves. Setting Xik D hvi ; Xki ; Yjk D ˝

uj ; Yk
˛
;

observe that if the Xik are uncorrelated with the Yjk , then

EŒ
p
NAN .i; j /

p
NAN .i

0; j 0/� D 1

N
E

"
NX
kD1

XikYjk

NX
`D1

Xi 0`Yj 0`

#

D 1

N

NX
kD1

NX
`D1

EŒXikXi 0`�EŒYjkYj 0`� D 1

N

NX
kD1

NX
`D1

Vk`.i; i
0/Uk`.j; j 0/:

The covariance tensor of the
p
NAN .i; j / thus has the entries

	N .i; j I i 0; j 0/ D 1

N

NX
k;`D1

Vk`.i; i
0/Uk`.j; j 0/: (17.37)

The idea of the test, is to approximate the distribution of the matrix

AN D ŒAN .i; j /; 1 � i � p; 1 � j � q�

via
p
NAN � Z; where Z is a p � q Gaussian matrix whose elements have covari-

ances EŒZ.i; j /Z.i 0; j 0/� D 	N .i; j I i 0; j 0/:
We now explain how to implement this idea. Denote by O�i ; O
j and Ovi ; Ouj the

eigenvalues and the eigenfunctions estimated either by method CM2 or CM3. The
covariancesAN .i; j / are then estimated by

OAN .i; j / D 1

N

NX
nD1

hXn; Ovii
˝
Yn; Ouj

˛
:
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If the observations within each sample are independent, the test statistic introduced
in Chapter 9 is

N

pX
iD1

qX
jD1

O��1i O
�1j OA2N .i; j /:

Since �i D EŒhvi ; Xi2�, the sum above is essentially the sum of all correlations, and
it usually tends to a chi–squared distribution with pq degrees of freedom, as shown
in Chapter 9. This is however not necessarily true for dependent data. To explain, set
aN D vec.AN /; i.e. aN is a column vector of length pq consisting of the columns
of AN stacked on top of each other, starting with the first column. Then

p
N aN is

approximated by a Gaussian vector z with covariance matrix ˙ constructed from
the entries (17.37). It follows that

OSN D N OaTN Ȯ �1 OaN � �2pq ; (17.38)

where OaN D vec. OAN /, see e.g. Theorem 2.9 of Seber and Lee (2003), which states
that for a zero mean normal vector N with covariance matrix ˙ , the quadratic form
NT˙�1N has chi–square distribution. The entries of the matrix Ȯ are

O	N .i; j I i 0; j 0/ D 1

N

NX
k;`D1

OVk`.i; i 0/ OUk`.j; j 0/; (17.39)

where OVk`.i; i 0/ and OUk`.j; j 0/ are estimators of Vk`.i; i 0/ and Uk`.j; j 0/, respec-
tively. This estimation is discussed in Section 17.7. The test rejects H0 if OSN >

�2pq.1 � ˛/, where �2pq.1 � ˛/ is the 100.1 � ˛/th percentile of the chi–squared
distribution with pq degrees of freedom. One can use Monte Carlo versions of the
above test, for example the test based on the approximation

OTN WD N OaTN OaN � wT Ȯ w; (17.40)

where the components of w are are iid standard normal.

The test procedure can be summarized as follows:

1. Subtract the mean functions, estimated by one of the methods of section 17.3,
from both samples.

2. Estimate the FPC’s by method CM2 or CM3.
3. Using a model for the covariance tensor (17.39), see Section 17.7, compute the

test statistic OSN . (This tensor is not needed to compute OTN , but it is needed to
find its Monte Carlo distribution.)

4. Find the P–value using either a Monte-Carlo distribution or the �2 approxima-
tion.

We now turn to the important issue of modeling and estimation of the matrix˙ .
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17.7 Modeling and estimation of the covariance tensor

The estimation of the Vk`.i; i 0/ involves only the Xn, and the estimation of the
Uk`.j; j

0/ only the Yn, so we describe only the procedure for the Vk`.i; i 0/. We
assume that the mean has been estimated and subtracted, so we define

Ch.x/ D EŒhX.s/; xiX.s C h/�; h D khk:
The estimation of the Vk`.i; i 0/ relies on the identity

Vk`.i; i
0/ D hCh.vi /; vi 0i ; h D d.sk ; s`/;

and an extension of the multivariate intrinsic model, see e.g. Chapter 22 of Wacker-
nagel (2003). A most direct extension is to assume that

Ch D Cr.h/; (17.41)

where C is a covariance operator, i.e. a symmetric positive definite operator with
summable eigenvalues, and r.h/ is a correlation function of a scalar random field.
Since r.0/ D 1, we have C D C0, so C in (17.41) must be the the covariance
operator of each X.s/. If we assume the intrinsic model (17.41), then

Vk`.i; j / D ˝
r.h/C.vi /; vj

˛ D �iıij r.d.sk; s`//: (17.42)

To allow more modeling flexibility, we postulate that

Vk`.i; j / D �iıij ri .d.sk; s`//: (17.43)

Under (17.42) (equivalently, under (17.41)), each scalar field hX.s/; vii has the
same correlation function, only their variances are different. Under (17.43), the
fields hX.s/; vii can have different correlation functions. As will be seen below,
model (17.43) also leads to a valid covariance matrix. The correlations ri .d.sk; s`//
and the variances �i can be estimated using a parametric model for the scalar
field �i .s/ D hX.s/; vii. The resulting estimates Ori .d.sk; s`// and O�i lead to the
estimates OVk`.i; j / via (17.43). Analogous estimates of the functional field Y are
O
j .d.sk; s`//; O�j and OUk`.i; j /. For ease of reference, we note that under model
(17.43) and H0, the covariance tensor,"

1

N

NX
kD1

NX
`D1

OVk`.i; i 0/ OUk`.j; j 0/; 1 � i; i 0 � p; 1 � j; j 0 � q

#
;

has the following matrix representation

Ȯ D diag

 
NX
kD1

NX
`D1

Ȯ
�1
.k; `/ Ȯ

�1
.k; `/; : : : ;

NX
kD1

NX
`D1

Ȯ
�p
.k; `/ Ȯ

�q
.k; `/

!
;

(17.44)
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where
Ȯ
�i
.k; `/ D 1p

N
O�i Ori .d.sk; s`//

and
Ȯ
�j
.k; `/ D 1p

N
O
j O�j .d.sk; s`//:

This form is used to construct the Monte Carlo tests discussed in Section 17.8.
The matrix ḃ with the estimates just specified is positive definite, as the follow-

ing verification shows. (The matrix ˙ is also positive definite by the same argu-
ment.) To verify that the matrix ḃ is positive definite, we must show thatX

i;j

X
i 0;j 0

O	.i; j I i 0; j 0/bijbi 0j 0 � 0; (17.45)

where Œbij ; 1 � i � p; 1 � j � q� is an arbitrary p � q matrix. Observe thatX
i;j

X
i 0;j 0

O	.i; j I i 0; j 0/bij bi 0j 0

D 1

N

X
i;j

X
i 0;j 0

X
k;`

OVk`.i; i 0/ OUk`.j; j 0/bij bi 0j 0

D 1

N

X
i;j

X
i 0;j 0

X
k;`

O�iıi i 0 Ori .d.sk; s`// O
j ıjj 0 O�j .d.sk ; s`//bij bi 0j 0

D 1

N

X
i;j

b2ij

X
k;`

O�i Ori .d.sk ; s`// O
j O�j .d.sk ; s`//:

Thus, (17.45) will follow once we have shown that for any i; j ,X
k;`

O�i Ori .d.sk; s`// O
j O�j .d.sk; s`// � 0:

Since O�i Ori is a covariance function, there are mean zero random variables

"1.i/; "2.i/; : : : ; "N .i/ (17.46)

such that O�i Ori .d.sk; s`// D EŒ"k.i/"`.i/�: Similarly, there are random variables

�1.j /; �2.j /; : : : ; �N .j / (17.47)

such that O
j O�j .d.sk ; s`// D EŒ�k.j /�`.j /�: The families (17.46) and (17.47) can
be assumed independent. Using the above construction, we obtainX

k;`

O�i Ori .d.sk; s`// O
j O�j .d.sk ; s`// D
X
k;`

EŒ"k.i/"`.i/�EŒ�k.j /�`.j /�

D
X
k;`

EŒf"k.i/�k.j /g f"`.i/�`.j /g� D E

"
NX
kD1

"k.i/�k.j /

#2
� 0:
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17.8 Size and power of the correlation test

As in Section 17.5, our objective is to evaluate the finite sample performance of the
test introduced in Section 17.6 in a realistic setting geared toward the application
presented in Section 17.9.

Data generating processes. We generate samples of zero mean Gaussian processes

X.sI t/ D
pX
iD1

�i .s/vi .t/I Y.sI t/ D
qX
jD1

�j .s/uj .t/: (17.48)

The process X is designed to resemble in distribution appropriately transformed
and centered foF2 curves; the process Y the centered magnetic curves. Following
the derivation presented in Section 17.9, we use p D 7 and q D 1. The curves vi
and u1 are the estimated FPC’s of the real data. The scalar Gaussian spatial fields �i
and �1 follow parametric models estimated for real data, details of the models are
presented in Table 17.1. The �i are independent. Under H0, the �i are independent
of �1. The dependence underHA can be generated in many ways. We considered the
following scenarios: �1 and �1 are dependent, �i and �1 are independent for i ¤ 1,
then �2 and �1 are dependent, �i and �1 are independent for i ¤ 2, etc. To produce
two dependent spatial fields �i and �, we generated N iid pairs xi D Œx1i ; x2i �

T ,
1 � i � N , where

xi 	 N

�
0;
�
1 �

� 1

��
:

Then we merged all x1i into vector y1 D Œx11; : : : ; x1N �
T and all x2i into vec-

tor y2 D Œx21; : : : ; x2N �
T . Performing the Cholesky rotation, we obtain correlated

spatial vectors:

�i D Vy1; .˙ �i
D VVT /; � D Uy2; .˙ � D UUT /:

We used sample sizes N D 32 and N D 100 corresponding to the locations
determined as in Section 17.5.

Testing procedures. We studied the finite sample behavior of three methods, which
we call S, SM and T. Method S rejectsH0 if the statistic OSN (17.38) exceeds a chi–
square critical value. Method SM uses a Monte Carlo distribution of the statistic OSN :
after estimating all parameters from the data and assuming the Gaussian distribution
of the fields �i and �1, we can replicate the values of the statistic OSN underH0 using
the covariance matrix (17.44). Method T uses the statistics OTN (9.3), and approx-
imates its distribution by the Monte Carlo distribution of wT Ȯ w, as explained in
Section 17.6. For determining the critical values in methods SM and T, we used 107

Monte Carlo replications. The empirical size and power are based on 105 indepen-
dent runs.
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Fig. 17.8 Size of the correlation test as a function of p. Solid disks represent method S (based on
�2 distribution). Circles represent method SM (based on the Monte-Carlo distribution).

Conclusions. As Figure 17.8 shows, the empirical size is higher than the nominal
size, and it tends to increase with the number p of principal components used to
construct the test, especially for N D 32. The usuall recommendation is to use p
which explains about 85% of the variance. For the foF2 data with N D 32, this cor-
responds to p D 4. Tests of independence typically have larger than nominal size
because real or simulated data may have some spurious dependencies; to put it sim-
ply, one cannot get “more independent data”. Applied to real data in Section 17.9,
all tests (S, SM and T) lead to extremely strong rejections, so the inflated empirical
size is not a problem. Figure 17.8 also shows that the Monte Carlo approximation
is useful for N D 32, this is the sample size we must use in Section 17.9. The size
of test T is practically indistinguishable for that of test SM. Figure 17.9 shows the
power of method SM; power curves for method T are practically the same, method
S has higher power. The simulation study shows that a strong rejection when the test
is applied to real data can be viewed as a reliable evidence of dependence.
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Fig. 17.9 Power of the correlation test SM as a function of the population correlation 
. Each line
represents one of the four possible correlated spatial field �1��, �2��, �3��, �4��. The test
was performed using p D 4, which explains about 85% of variance of the foF2 curves. Since all
curves in the graphs are practically the same, we do not specify which curve represents a particular
dependent pair �i � �.

17.9 Application to critical ionospheric frequency and magnetic
curves

In this section, we apply the correlation test to foF2 and magnetic curves.

Description of the data. The F2 layer of the ionosphere is the upper part of the
F layer shown in Figure 17.3. The F2 layer electron critical frequency, foF2, is
measured using an instrument called the ionosonde, a type of radar. The foF2 fre-
quency is used to estimate the location of the peak electron density, so an foF2
trend corresponds to a trend in the average height of the ionosphere over a spatial
location. The foF2 data have therefore been used to test the hypothesis of iono-
spheric global cooling discussed in Section 17.1. Hourly values of foF2 are avail-
able from the SPIDR databasehttp://spidr.ngdc.noaa.gov/spidr/ for
more than 200 ionosondes. We use monthly averages for 32 selected ionosondes,
with sufficiently complete records, for the period 1964 � 1992. Their locations are
shown in Figure 17.5. Three typical foF2 curves are shown in Figure 17.2. We omit
the details of the procedure for obtaining curves like those shown in Figure 17.2,
but we emphasize that it requires a great deal of work. In particular, the SPIDR data
suffer from two problems. First, for some data, the amplitude is artificially mag-
nified ten times, and needs to be converted into standard units (MHz). Second, in
many cases, missing observations are not replaced by the standard notation 9999,
but rather just skipped. Thus if one wants to use equally-spaced time series, skipped
data must be found and replaced by missing values. For filling in missing values, we
perform linear interpolation. We developed a customized C++ code to handle these

http://spidr.ngdc.noaa.gov/spidr/for
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issues. We emphasize that one of the reasons why this global data set has not been
analyzed prior to the work of Gromenko et al. (2011) is that useable data had been
derived only over relatively small regions, like Western Europe, see e.g. Bremer
(1998), and more often only for a single location, see e.g. Lastovicka et al. (2006).

We use the foF2 data to test a hypotheses on long term ionospheric trends
extending over several decades. We thus removed annual and higher frequency
variations using 16 month averaging with MODWT filter, see Chapter 5 of Per-
cival and Walden (2000). This leads to 32 time series at different locations, each
containing 336 equally–spaced temporal observations. The amplitude of the foF2
curves exhibits a nonlinear latitudal trend; it decreases as the latitude increases, see
Figure 17.2. To remove this trend, which may potentially bias the test, we assume
that the foF2 signal, F.sI t/, at location s follows the model

F.sI t/ D G.L.s//X.sI t/; (17.49)

where X.sI t/ is a constant amplitude field, and G.�/ is a scaling function which
depends only on the magnetic latitude L (in radians). Since the trend in the ampli-
tude of F.sI t/ is caused by the solar radiation which is nonlinearly proportional to
the zenith angle, we postulate that the functionG.�/ has the form

G.L/ D a C b cosc.L/: (17.50)

The parameters a; b; c are estimated as follows. Let s0 be the position of the
ionosonde closest to the magnetic equator. For identifiability , we setG.L.s0// D 1.
For the remaining locations sk , we compute OG.L.sk// as the average, over all 336
time points tj of the ratio F.skI tj /=F.s0I tj /. Figure 17.10 shows these ratios as a
function of the magnetic and geographic latitude. The ratios in the magnetic latitude
show much less spread, and this is another reason why we work with the magnetic
latitude. The curve G.L/ (17.50) is fitted to the OG.L.sk// in magnetic latitude by
nonlinear least squares. The fitted values are a D 0:5495, b D 0:4488, c D 4:2631.

We now describe how we construct the curves that reflect the relevant long term
changes in the internal magnetic field of the earth. The height of the F2 layer (and
so the foF2 frequency) can be affected by a vertical plasma drift which responds to
the magnetic field. The vertical plasma drift is due to the wind effect, and is given
by (we use the same notations as in Mikhailov and Marin (2001))

W D .Vnx cosD � Vny sinD/ sin I cos I C Vn´ sin2 I:

In the above formula, Vnx , Vny and Vn´ are, respectively, meridional (parallel to
constant longitude lines), zonal (parallel to constant latitude lines) and vertical com-
ponents of the thermospheric neutral wind; I and D are inclination and declination
of the earth magnetic field, see Figure 13.2 in Kivelson and Russell (1997). Usu-
ally Vn´ � Vnx; Vny ; and assuming that the difference between magnetic and geo-
graphic coordinates,D, is small (at least for low- and mid-latitude regions) we can
simplify the above formula to W D Vnx sin I cos I: Thus, only the meridional ther-
mospheric wind is significant. Measuring neutral wind components (Vnx, Vny , Vn´)
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Fig. 17.10 Dots represent the scaling function GL.si / in the magnetic coordinate system and
crosses are same in the geographic coordinate system. Line is the best fit for GL in the magnetic
coordinate system.

is difficult, and long term wind records are not available. We therefore replace Vnx
by its average. For our test, which uses correlations, the specific value of this average
plays no role, so we define the magnetic curves as

Y.sI t/ D sin I.sI t/ cos I.sI t/: (17.51)

The curves I.sI t/ are computed using the international geomagnetic reference field
(IGRF); the software is available at http://www.ngdc.noaa.gov/IAGA/vmod/.

The test is applied to the curves X.skI t/ defined by (17.49) and (17.50), and to
the curves Y.sk I t/ defined by (17.51).

Application of the correlation test. We first estimate and subtract the mean func-
tions of the fieldsX.sk/ and Y.sk/ using method M2 (the other spatial methods give
practically the same estimates). The principal components vi and ui are estimated
using method CM2 (method CM3 gives practically the same curves).

We apply the test, for all 1 � p � 7 and q D 1. The first seven eigenval-
ues of the field X (computed per (17.22) or its analog for method CM2) explain
about 95% of the variance. The first eigenvalue of the field Y explains about 99%
of the variance. The eigenfunction u1 is approximately equal to the linear func-
tion: u1.t/ 	 t . This means that at any location, after removing the average, the
magnetic field either linearly increases or decreases, with slopes depending on the
location, see Figure 17.12. To lighten the notation, we drop the “hats” from the
estimated scores and denote the zero mean vector Œ�i .s1/; : : : ; �i .sN /�T by �i , and

http://www.ngdc.noaa.gov/IAGA/vmod/
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Fig. 17.11 Fitted empirical variograms for different spatial fields. The horizontal axes show nor-
malized lag distance. The dots correspond to estimated variograms.

Œ�1.s1/; : : : ; �1.sN /�T by � The covariances˙ �i
and ˙ � are estimated using para-

metric spatial models determined by the inspection of the empirical variograms. In
this application, it is sufficient to use only two covariance models, the Gaussian
and the exponential models define in (17.33). When the scores do not have a spa-
tial structure, we use the sample variance (flat variogram). The fitted variograms
are shown in Figure 17.11, The estimated models and their parameters are listed in
Table 17.1.

The P–values for different number of FPC’s 1 � p � 7 are summarized in Table
17.2. Independent of p and a specific implementation of the test, all P–values are
very small, and so the rejection of the null hypothesis is conclusive; we conclude
that there is a statistically significant correlation between the foF2 curvesX.sk/ and
the magnetic curves Y.sk/. We also applied the test of Chapter 9, which neglects any
spatial dependence. The P-values for that test hover around the 5% level, but still
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Table 17.1 Models and estimated covariance parameters for the transformed foF2 curves and the
magnetic curves.

Spatial
field

Model Parameters

c0 �2 


� Gaussian – 5:99˙ 0:48 0:32˙ 0:04
�1 Gaussian – 20:05˙ 2:20 0:12˙ 0:03
�2 – – 3:30˙ 0:43 –
�3 Exponential – 2:63˙ 0:52 0:16˙ 0:07
�4 Gaussian – 2:66˙ 0:39 0:18˙ 0:05
�5 – – 2:74˙ 0:32 –
�6 Gaussian 0:16˙ 0:02 0:85˙ 0:24 0:17˙ 0:06
�7 – – 1:22˙ 0:18 –

Table 17.2 P–values of the correlation tests applied to the transformed foF2 data. The first column
shows the number of FPC’s, the second column shows cumulative variances computed as the ratios
of the eigenvalues estimated using method CM2. Testing procedures S, SM and T are defined in
Section 17.8. The “simple” procedure neglects the spatial dependence of the curves.

p CV, % Spatial Simple

S SM T

1 47.88 6:22 � 10�5 3:05 � 10�4 3:05 � 10�4 0:035

2 62.59 3:26 � 10�6 2:91 � 10�4 2:99 � 10�4 0:095

3 73.67 4:53 � 10�8 2:43 � 10�4 2:32 � 10�4 0:043

4 84.40 1:47 � 10�26 1:6 � 10�7 2:24 � 10�5 0:039

5 88.70 4:95 � 10�26 2:6 � 10�7 2:27 � 10�5 0:046

6 92.21 6:73 � 10�27 5:9 � 10�7 2:21 � 10�5 0:060

7 94.57 2:12 � 10�32 1:6 � 10�7 1:92 � 10�5 0:030

point toward rejection. The evidence is however much less clear cut. This may par-
tially explain why this issue has been a matter of much debate in the space physics
community. The correlation between the foF2 and magnetic curves is far from obvi-
ous. Figure 17.12 shows these pairs at all 32 locations. It is hard to conclude by eye
the the direction of the magnetic field change impacts the foF2 curves.

Discussion. A very important role in our analysis is played by the transformation
(17.50). Applying the test to the original foF2 curves F.sk I t/, gives the P–values
0.209 (p D 1) and 0.011 (p D 2) for the spatial S test, and 0.707 (p D 1), 0.185
(p D 2), 0.139 (p D 3) for the “simple” test. These values of p explain over 90%
of the variance. As explained above, the amplitude of the field F.sk I t/ evolves with
the latitude. This invalidates the assumption of a mean function which is indepen-
dent of the spatial location. Thus even for the spatial test, the mean function con-
founds the first FPC. However, the spatial estimation of the mean function and of the
FPC’s “quickly corrects” for the violation of assumptions, and the null hypothesis
is rejected for p � 2. When the spatial structure is neglected (and no latitudal trans-
formation is applied) no correlation between the foF2 curves and magnetic curves
is found.
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Fig. 17.12 Transformed and centered foF2 curves (continuous) and centered magnetic curves
(dashed) at 32 locations denoted with circles in Figure 17.5. The scales for the two families of
curves are different: the foF2 curves have the same scale, the scale of the magnetic curves changes
in each box, to show the direction of the long term trend.



374 17 Spatially distributed functional data

The rejection of the null hypothesis means that after adjusting the foF2 curves
for the latitude and the global mean, their regional variability is correlated with the
regional changes in the in the magnetic field. This means that long term magnetic
trends must be considered as additional covariates in testing for long term trends in
the foF2 curves. (The main covariate is the solar activity which drives the shape of
the mean function.)

A broader conclusion of the work presented in this chapter is that methods of
functional data analysis must be applied with care to curves obtained at spatial
locations. Neglecting the spatial dependence can lead to incorrect conclusions and
biased estimates. The same applies to space physics research. If trends or models are
estimated separately at each spatial location, one should not rely on results obtained
by some form of a simple averaging. Interestingly, the results related to global iono-
spheric trends are often on the borderline of statistical significance if the spatial
dependence structure is neglected. Standard t-tests lead either to rejection or accep-
tance, depending on a specific method used (a similar phenomenon is observed in
the last column of Table 17.2). It is hoped that the methodology presented in this
Chapter will be useful in addressing such issues.



Chapter 18
Consistency of the simple mean and the
empirical functional principal components for
spatially distributed curves

In this chapter, we continue to study functional data that consist of curves
X.skI t/; t 2 Œ0; 1�; observed at spatial points s1; s2; : : : ; sN . In Chapter 17, we
have seen that in this context the simple sample average and the EFPC’s are not
the optimal estimators of their population counterparts, and that better estimators
can be constructed by using weighted averages. The simple sample average and the
EFPC’s are however often default estimators, and it is important to understand when
they are consistent. In this chapter, we establish conditions for them to be consis-
tent. These conditions involve an interplay of the assumptions on an appropriately
defined dependence between the functionsX.sk/ and the assumptions on the spatial
distribution of the points sk . The rates of convergence may be the same as for iid
functional samples, but generally depend on the strength of dependence and appro-
priately quantified distances between the points sk . We also formulate conditions for
the lack of consistency. The general results are established using an approach based
on the estimation of the expected moments of an appropriate norm of the differ-
ence between the estimator and the estimand which splits the norm into terms that
reflect the assumptions on the spatial dependence and the distribution of the points.
This technique is broadly applicable to all statistics obtained by simple averaging of
functional data. We specialize the general rates of consistency to spatial functional
models of practical interest.

A general theoretical framework has to address several problems. The first issue
is the dimensionality of the index space. While in time series analysis, the pro-
cess is indexed by an equispaced scalar parameter, we need here a d -dimensional
index space. For model building this makes a big difference since the dynamics and
dependence of the process have to be described in all directions, and the typical
recurrence equations used in time series cannot be employed. The model building
is further complicated by the fact that the index space is often continuous (geo-
statistical data). Rather than defining a random field f�.s/I s 2 R

d g via a specific
model equations, dependence conditions are imposed, in terms of the decay of the
covariances or using mixing conditions. Another feature peculiar to random field
theory is the design of the sampling points; the distances between them play a fun-
damental role. Different asymptotics hold in the presence of clusters and for sparsely
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distributed points. At least three types of point distributions have been considered,
see Cressie (1993): When the region RN where the points fsi;N I 1 � i � N g are
sampled remains bounded, then we are in the so-called infill domain sampling case.
Classical asymptotic results, like the law of large numbers or the central limit the-
orem will usually fail, see Lahiri (1996). The other extreme situation is described
by the increasing domain sampling. Here a minimum separation between the sam-
pling points fsi;N g 2 RN for all i and N is required. This is of course only possible
if diam.RN / ! 1. We shall also explore the nearly infill situation studied by
Lahiri (2003) and Park et al. (2009). In this case, the domain of the sampling region
becomes unbounded (diam.RN / ! 1), but at the same time the number of sites
in any given subregion tends to infinity, i.e. the points become more dense. These
issues are also studied by Zhang (2004), Loh (2005), Lahiri and Zhu (2006), Du
et al. (2009). We formalize these concepts in Sections 18.2 and 18.3. Finally, the
interplay of the geostatistical spatial structure and the functional temporal structure
must be cast into a workable framework.

For the reasons explained above, the framework advocated in Chapter 16,
designed for functional time series, is inappropriate for functional spatial fields.
The starting point for the theory of Chapter 16 is the representation Xk D
f ."k; "k�1; : : :/ of a function Xk in terms of iid error functions "k . While all time
series models used in practice admit such a representation, no analog representations
exist for geostatistical spatial data. (Even though not widely used, spatial autoregres-
sive processes have been proposed, but no Volterra (nonlinear moving average) type
expansions have been developed for them.)

This chapter is organized as follows. Section 18.1 describes in greater detail the
objectives of this research by developing several examples which show how spa-
tially distributed functional data differ from functional random samples and from
functional time series. In simple settings, it illustrates what kind of consistency or
inconsistency results can be expected, and what kind of difficulties must be over-
come. After the stage has been set, we formulate the asymptotic assumptions in
Section 18.2. A crucial part of these assumptions consists of conditions on the spa-
tial distribution of the points sk . Section 18.3 compares our conditions to those typ-
ically assumed for scalar spatial processes. In Sections 18.4 and 18.5, we establish
consistency results, respectively, for the functional mean and the covariance oper-
ator. These sections also contain examples specializing the general results to more
specific settings. Section 18.6 explains, by means of general theorems and examples,
when the sample principal components are not consistent. The proofs are collected
in Section 18.7.

18.1 Motivating examples

We have shown in this book that the FPC’s play a fundamental role in functional
data analysis, much greater than the usual multivariate principal components. This
is mostly due to the fact that the Karhunen-Loève expansion allows to represent
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functional data in a concise way, a property we have used in various settings.
Depending on the structure of the data, various aspects of the estimation of the
FPC’s are emphasized. This section illustrates the role of the spatial dependence
and the distribution of the curves. As in Chapter 17, we assume that the observed
curves are identically distributed, so that the mean function and the FPC’s are well–
defined.

In Section 2.5, we saw that if the functional observations Xk are independent,
then

lim sup
N!1

NEkbCN � Ck2S < 1 (18.1)

and that, consequently,

max
1�k�d

Ek Ock Ovk � vkk2 D O
�
N�1� :

In Section 16.2, we showed that (18.1) continues to hold for weakly dependent
time series, in particular for m–dependent Xk . Our first example shows why m–
dependence does not necessarily imply (18.1) for spatially distributed curves.

Example 18.1. SupposeXk D X.sk/, where s1; s2; : : : ; sN are points in an arbitrary
metric space, and the random field X.�/ is such that X.s/ is independent of X.s0/ if
the distance between s and s0, d.s; s0/, is greater than m. Set

BN .m/ D f.k; `/ W 1 � k; ` � N and d.sk ; s`/ � mg ;
and denote by jBN .m/j the count of pairs in BN .m/. A brief calculation which uses
the identity

NEkbCN � Ck2S

D N

ZZ
Var

(
N�1

NX
kD1

.Xk.t/Xk.s/ � EŒXk.t/Xk.s/�/

)
dt ds

(18.2)

and the Cauchy inequality, leads to the bound

NEkbCN � Ck2S � N�1 jBN .m/jEkX.s/k4:
If the sk are the points in R

d with integer coordinates, then jBN .m/j is asymp-
totically proportional to mN , implying lim supN!1N�1 jBN .m/j < 1, and the
standard rate (18.1). But if there are too many pairs inBN .m/ this rate will no longer
hold.

Example 18.1 shows that if the points sk are not equispaced and too densely
distributed, then the standard rate (18.1) need not hold. The next example shows
that in such cases the EFPC’s Ovk may not converge at all.

Example 18.2. This example presents only an intuitive idea. A more precise argu-
ment, with a numerical example, is developed in Example 18.6.
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Consider a functional random field

X.sI t/ D
1X
jD1

�j .s/ej .t/; s 2 R
d ; t 2 Œ0; 1�; (18.3)

where fej ; j � 1g is a complete orthonormal system and the �j .s/ are mean zero
random variables with EŒ�j .s/�j .s C h/� D �j�j .h/; h D khk; where

P1
jD1 �j <

1 and each �j .�/ is a positive correlation function. Direct verification shows that
C.x/ D P1

jD1 �j
˝
ej ; x

˛
ej ; so the �j are the eigenvalues of C , and the ej the

corresponding eigenfunctions.
Now consider a sequence sn ! 0. Because of the positive dependence, X.sn/

is close to X.0/, so bCN , as an arithmetic average, is close to the random operator
X? D hX.0/; �iX.0/: Observe that X?.X.0// D kX.0/k2X.0/: Thus kX.0/k2 DP1
jD1 �2j .0/ is an eigenvalue of X?. Since it is random, it cannot be close to any of

the �j . The eigenfunctions of bCN are also close to random functions in L2, and do
not converge to the FPC’s ej .

The above examples show that if the points sn are too close to each other, then the
empirical functional principal components are not consistent estimates of the popu-
lation principal components. Other examples of the lack of consistency are known,
see Johnstone and Lu (2009) and references therein. They fall into the “small n
large p” framework, and the lack of consistency is due to noisy data which are
not sparsely represented. A solution is to perform the principal component analysis
on transformed data which admits a sparse representation. (A different asymptotic
approach is taken by Jung and Marron (2009).) The spatial functional data intro-
duced in Chapter 17 admit natural sparse representations; the lack of consistency
may be due to dependence and densely distributed locations of the observations. It
is actually not crucial that the sn be close to each other. What matters is the inter-
play of the spatial distances between these points and the strength of dependence
between the curves. To illustrate, suppose in Example 18.2, the covariance between
X.sn/ and X.0/ is

EŒhX.sn/; xi hX.0/; yi� D
1X
jD0

�j exp

	
�ksnk
�j


 ˝
ej ; x

˛ ˝
ej ; y

˛
:

In a finite sample, small ksnk have the same effect as large �j , i.e. as stronger depen-
dence.

These considerations show that it is useful to have general criteria for functional
spatial data, which combine the spatial distribution of the points and the strength
of dependence, and which ensure that the functional principal components can be
consistently estimated, and, consequently, that further statistical inference for spatial
functional data can be carried out. Such criteria should hold for practically useful
models for functional spatial data. The next example discusses such models, with a
rigorous formulation presented in Section 18.2.
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Example 18.3. Suppose fej ; j � 1g is an arbitrary fixed orthonormal basis in L2.
Under very mild assumptions, every constant mean functional random field admits
the representation

X.s/ D �C
X
j�1

�j .s/ej ; (18.4)

where the �j .s/ are zero mean random variables. In principle, all properties of X ,
including the spatial dependence structure, can be equivalently stated as properties
of the family of the scalar fields �j . Representation (18.4) is thus the most natural
and convenient model for spatially distributed functional data.

Assume that � D 0 and the field X is strictly stationary (in space). (Strict
stationarity can be replaced by weaker moment conditions formulated in Sec-
tion 18.2.) Suppose we want to predict X.s0/ using a linear combination of the
curvesX.s1/; X.s2/; : : : ; X.sN /, i.e. we want to minimize

E

����X.s0/ �
NX
nD1

anX.sn/

����2

D E hX.s0/; X.s0/i � 2
NX
nD1

anE hX.sn/; X.s0/i

C
NX

k;`D1
aka`E hX.sk/; X.s`/i :

(18.5)

Thus for the problem of the least squares linear prediction of a mean zero spatial
process (kriging), we need to know only

K.s; s0/ D E
�˝
X.s/; X.s0/

˛�
: (18.6)

By the orthonormality of the ej in (18.18),

E
�˝
X.s/; X.s0/

˛� D E

24* 1X
jD1

�j .s/ej ;
1X
iD1

�i .s0/ei

+35
D

1X
jD1

1X
iD1

EŒ�j .s/�i .s0/�
˝
ej ; ei

˛ D
1X
jD1

EŒ�j .s/�j .s0/�:

Thus, the functional covariances (18.6) are fully determined by the covariances

Kj .s; s0/ D EŒ�j .s/�j .s0/�: (18.7)

Notice that we do not need to know the cross covariances EŒ�j .s/�i .s0/� for
i ¤ j . Thus, if we are interested in kriging, we can assume that the spatial processes
�j .�/ in (18.18) are independent. Such an assumption simplifies the verification of
some fourth order properties discussed in the following sections. This observation
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remains true if the spatial field does not have zero mean, i.e. if we observe realiza-
tions ofZ.s/ D �.s/CX.s/. A brief calculation shows that for kriging, it is enough
to know �.�/ and the covariances (18.7). Stein (1999) and Cressie (1993) provide
rigorous accounts of kriging for scalar spatial data.

Our next example shows how representation (18.4) and the independence of the
�j allow to derive the standard rate (18.1), if the points sk are equispaced on the line
and the covariances decay exponentially. In the following sections, we construct a
theory that allows us to obtain the standard and nonstandard rates of consistency in
much more general settings. We will use the following well–known Lemma, which
follows from a direct verification using the bivariate normal density.

Lemma 18.1. Suppose X and Y are jointly normal mean zero random variables
such that EX2 D 	2; EY 2 D �2; EŒXY � D �	�: Then

Cov.X2; Y 2/ D 2�2	2�2:

Example 18.4. Suppose X.sI t/ is an arbitrary functional random field observed at
locations s1; s2; : : : ; sN . Then, by (18.2),

NEkbC � Ck2S
D N�1

1X
k;`D1

ZZ
Cov.X.skI t/X.sk Iu/; X.s`I t/X.s`Iu//dt du: (18.8)

Without any further assumptions, a sufficient condition for the EFPC’s to be consis-
tent with the rate N�1=2 is that the right–hand side of (18.8) is bounded from above
by a constant. Under additional assumptions, more precise sufficient conditions are
possible.

Suppose first that representation (18.18) holds with independent strictly station-
ary scalar fields �j .�/. Define the covariances

EŒ�j .sk/�j .s`/� D 
j .sk � s`/; Cov.�2j .sk/; �
2
j .s`// D �j .sk � s`/:

Using (18.8), we see that under these assumptions,

NEkbC � Ck2S D N�1
1X

k;`D1

8<:X
i¤j


i .sk � s`/
j .sk � s`/C
1X
jD1

�j .sk � s`/

9=; :
Thus (18.1) holds, if

lim sup
N!1

N�1
NX

k;`D1

8<:
1X
jD1


j .sk � s`/

9=;
2

< 1 (18.9)

and

lim sup
N!1

N�1
NX

k;`D1

1X
jD1

ˇ̌
�j .sk � s`/

ˇ̌
< 1: (18.10)
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Suppose now, in addition, that X is Gaussian with

EŒ�j .sk/�j .s`/� D 	2j exp
˚���1j d.sk; s`/

�
(18.11)

so that
Cov.�2j .sk/; �

2
j .s`// D 2	4j exp

˚�2��1j d.sk ; s`/
�
: (18.12)

Suppose the points sk are equispaced on the line. Denoting the smallest distance
between the points by d , we see that

N�1
NX

k;`D1

8<:
1X
jD1


j .sk � s`/

9=;
2

D
1X
jD1

	2j C 2N�1
N�1X
mD1

.N �m/

8<:
1X
jD1

	2j exp
����1j md

�9=;
2

:

If we assume that X
j�1

	2j < 1 and sup
j�1

�j < � < 1; (18.13)

then Conditions (18.9) and (18.10), and so the standard rate (18.1), hold. Condi-
tion (18.13) means that the correlation functions of all processes �j .�/ must decay
uniformly sufficiently fast.

To verify (18.9), observe that

N�1
N�1X
mD1

.N �m/
8<:

1X
jD1

	2j exp
����1j md

�9=;
2

�
N�1X
mD1

8<:
1X
jD1

	2j exp
����1j md

�9=;
2

�
N�1X
mD1

8<:
1X
jD1

	2j exp
����1md �

9=;
2

D O.1/

0@ 1X
jD1

	2j

1A2 D O.1/:

The verification of (18.10) is analogous because (18.13) implies
P1
jD1 	4j < 1.

We will see that Condition (18.13) (formulated analogously for several classes of
models) is applicable in much more general settings than equispaced points on the
line.
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18.2 Models and Assumptions

We assume that fX.s/; s 2 R
d g is a random field taking values in L2 D L2.Œ0; 1�/,

i.e. each X.s/ is a square integrable function defined on Œ0; 1�. The value of this
function at t 2 Œ0; 1� is denoted by X.sI t/. With the usual inner product in L2, the
norm of X.s/ is

kX.s/k D
	Z

X2.sI t/dt

1=2

:

The mean function �.s/ D fEX.sI t/; t 2 Œ0; 1�g and the covariance operator is
then defined for x 2 L2 by

Cs;s.x/ D EŒhX.s/� �.s/ ; xi .X.s/� �.s//�:

More generally we define the cross–covariance operators

Cs1;s2
.x/ D EŒhX.s1/� �.s1/ ; xi .X.s2/� �.s2//�:

For the existence of Cs1;s2
, a minimal assumption is that the variables have finite

second moments in the sense that

EkX.s/k2 < 1; 8 s: (18.14)

To think of our observations X.s/ as curves in L2 is convenient and motivated this
work, but our results require only the general assumption that fX.s/; s 2 R

d g is a
field taking values in some separable Hilbert space. In particular, our results hold
when L2 is replaced by R

p.
Our goal is to estimate the mean functions and the FPC’s. The FPC’s are eigen-

functions of the covariance operator, as we will describe in some detail in the next
section, and likewise estimation of the FPC’s is based on estimation of covariance
operators. A minimal requirement for these population parameters to exist is that all
locations share a common mean curve and that the covariance operator is the same
for all locations, respectively:

�.s/ D � and Cs;s D C: (18.15)

To develop an estimation framework, we impose conditions on the decay of the
cross–covariances EŒhX.s1/ � �;X.s2/ � �i�, as the distance between s1 and s2
increases. We shall use the distance function defined by the Euclidian norm in R

d ,
denoted ks1 � s2k2, but other distance functions can be used as well.

Assumption 18.1. The spatial process fX.s/; s 2 R
d g satisfies (18.14) and (18.15).

In addition,

jEhX.s1/ � �;X.s2/� �ij � h
�ks1 � s2k2

�
; (18.16)

where h W Œ0;1/ ! Œ0;1/ with h.x/ & 0, as x ! 1.
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If fej g is an orthonormal basis in L2, then it can be easily seen that (18.16) is
equivalent to ˇ̌̌̌X

j�1
hCs1;s2

.ej /; ej i
ˇ̌̌̌

� h
�ks1 � s2k2

�
: (18.17)

For any such orthonormal basis, an expansion of X.s/ yields

X.sI t/ D �C
1X
jD1

�j .s/ej .t/; s 2 R
d ; t 2 Œ0; 1�; (18.18)

where �j .s/ D hX.s/� �; ej i. Using the relation

hCs1;s2
.ej /; ej i D E

�
�j .s1/�j .s2/

�
;

the more specifical assumptionˇ̌
E
�
�j .s1/�j .s2/

�ˇ̌ � �j .ks1 � s2k2/; (18.19)

on the scalar fields, gives (18.16), ifX
j�1

�j
�ks1 � s2k2

� � h
�ks1 � s2k2

�
: (18.20)

Examples 18.5 and 18.6 consider typical spatial covariance functions, and show
when condition (18.20) holds with a function h as in Assumption 18.1.

Example 18.5. Suppose that the fields f�j .s/; s 2 R
d g, j � 1, are zero mean,

strictly stationary and ˛-mixing. That is

sup
.A;B/2�.�j .s//��.�j .sCh//

jP.A/P.B/ � P.A \ B/j � ˛j .h/;

with ˛j .h/ ! 0 if khk2 ! 1. Let ˛0j .h/ D supf˛j .h/ W khk2 D hg. Then
˛�j .h/ D supf˛0j .x/ W x � hg & 0 as h ! 1. Using stationarity and the main
result in Rio (1993) it follows that

jEŒ�j .s1/�j .s2/�j D jEŒ�j .0/�j .s2 � s1/�j

� 2

Z 2˛j .s2�s1/

0

Q2
j .u/du

� 2

Z 2˛�
j
.ks2�s1k2/

0

Q2
j .u/du

DW �j .ks2 � s1k2/;
where Qj .u/ D infft W P.j�j .0/j > t/ � ug is the quantile function of j�j .0/j.
Note that ˛h.h/ � 1=4 for any h, and thus �j .x/ � 2

R 1
0 Q

2
j .u/du D 2EŒ�2j .0/�.

If
P
j�1E�2j .0/ < 1, then (18.16) holds with h.x/ D P

j�1 �j .x/. (Note that
jh.x/j & 0 follows from ˛�j .x/ & 0 and the monotone convergence theorem.)
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We note that ˛-mixing is one of the classical assumptions in random field liter-
ature to establish limit theorems. It is in fact a much stronger assumption than ours
and it is suitable if one needs more delicate results, like a central limit theorem (see
e.g. Bolthausen (1982)) or uniform laws of large numbers, see Jenish and Prucha
(2009). Besides the restriction to scalar observations, many papers restrict to the
so-called “purely increasing domain sampling”, an assumption that we are going to
relax in the following.

Example 18.6. Suppose (18.19) holds, and set h.x/ D P
j�1 �j .x/. If each �j is a

powered exponential covariance function defined by

�j .x/ D 	2j exp

	
�
�
x

�j

�p

:

then h satisfies the conditions of Assumption 18.1 ifX
j�1

	2j < 1 and sup
j�1

�j < 1: (18.21)

Condition (18.21) is also sufficient if all �j are in the Matérn class, see Stein (1999),
with the same �, i.e.

�j .x/ D 	2j x
�K�.x=�j /;

because the modified Bessel function K� decays monotonically and approximately
exponentially fast; numerical calculations show that K�.s/ practically vanishes if
s > �. Condition (18.21) is clearly sufficient for spherical �j defined (for d D 3) by

�j .x/ D

8̂<̂
:	

2
j

 
1 � 3x

2�j
C x3

2�3j

!
; x � �j

0; x > �j

because �j is decreasing on Œ0; �j �.

Assumption 18.1 is appropriate when studying the estimation of the mean func-
tion. For the estimation of the covariance operator, we need to impose a differ-
ent assumption. If ´ and y are elements of a Hilbert space, the operator ´ ˝ y, is
defined by

x 7! ´˝ y.x/ D h´; xiy:
In the following assumption, we suppose that the mean of the functional field is zero.
This is justified by notational convenience and because we deal with the consistent
estimation of the mean function separately.

Assumption 18.2. The spatial process fX.s/; s 2 R
d g satisfies (18.15) with � � 0

and has 4 moments, i.e. EhX.s/; xi D 0, 8x 2 L2, and EkX.s/k4 < 1. In
addition,ˇ̌

EhX.s1/˝X.s1/� C ; X.s2/˝X.s2/� C iS
ˇ̌ � H

�ks1 � s2k2
�
; (18.22)

where H W Œ0;1/ ! Œ0;1/ with H.x/ & 0, as x ! 1.
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Assumption 18.2 cannot be verified using only conditions on the covariances
of the scalar fields �j in (18.4) because these covariances do not specify the 4th
order structure of the model. This can be done if the random field is Gaussian, as
illustrated in Example 18.12, or if additional structure is imposed. If the scalar fields
�i .�/ are independent, the following lemma can be used to verify (18.22).

Lemma 18.2. LetX.s/ have representation (18.4) with zero mean andEkX.s/k4 <
1. Assume further that �i .�/ and �j .�/ are independent if i ¤ j . Thenˇ̌

EhX.s1/˝X.s1/� C ; X.s2/˝X.s2/� C iS
ˇ̌

�
ˇ̌̌̌X
j�1

Cov
�
�2j .s1/; �

2
j .s2/

�ˇ̌̌̌C
ˇ̌̌̌X
j�1

E
�
�j .s1/�j .s2/

�ˇ̌̌̌2
:

Proof. If �i .�/ and �j .�/ are independent for i ¤ j , then the ej are the eigenvalues
of C , and the �j .s/ are the principal component scores with E�2j .s/ D �j . Using
continuity of the inner product and dominated convergence we obtainˇ̌
EhX.s1/˝X.s1/� C ; X.s2/˝X.s2/� C iS

ˇ̌
D
ˇ̌̌̌
E
X
j�1

D
hX.s1/; ej iX.s1/� C.ej / ; hX.s2/; ej iX.s2/� C.ej /

Eˇ̌̌̌

D
ˇ̌̌̌
E
X
j�1

D
�j .s1/

X
`�1

�`.s1/e` � �j ej ; �j .s2/
X
k�1

�k.s2/ek � �j ej

Eˇ̌̌̌

D
ˇ̌̌̌
E
X
j�1

	
�j .s1/�j .s2/

X
`�1

�`.s1/�`.s2/C �2j � �j �
2
j .s1/� �j �

2
j .s2/


ˇ̌̌̌

�
ˇ̌̌̌X
j�1

Cov
�
�2j .s1/; �

2
j .s2/

�ˇ̌̌̌C
ˇ̌̌̌X
j�1

X
`¤j

E
�
�j .s1/�j .s2/

� � E��`.s1/�`.s2/�ˇ̌̌̌

�
ˇ̌̌̌X
j�1

Cov
�
�2j .s1/; �

2
j .s2/

�ˇ̌̌̌C
ˇ̌̌̌X
j�1

E
�
�j .s1/�j .s2/

�ˇ̌̌̌2
: ut

As already noted, for spatial processes assumptions on the distribution of the
sampling points are as important as those on the covariance structure. To formalize
the different sampling schemes, we use the following measure of “minimal disper-
sion” of some point cloud S:

I
.s;S/ D jfy 2 S W ks�yk2 � �gj=jSj and I
.S/ D sup
˚
I
.s;S/; s 2 S

�
;

where jSj denotes the number of elements of S. The quantity I
.S/ is the maximal
fraction of S–points in a ball of radius � centered at an element of S. Notice that
1=jSj � I
.S/ � 1. We call � 7! I
.S/ the intensity function of S.
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Definition 18.1. For a sampling scheme SN D fsi;N I 1 � i � SN g, SN ! 1, we
consider the following conditions:

(i) there is a � > 0 such that lim supN!1 I
.SN / > 0;
(ii) for some sequence �N ! 1 we have I
N

.SN / ! 0;
(iii) for any fixed � > 0 we have SN I
.SN / ! 1.

We call a deterministic sampling scheme SN D fsi;N I 1 � i � SN g
Type A if (i) holds;
Type B if (ii) and (iii) hold;
Type C if (ii) holds, but there is a � > 0 such that lim supN!1 SN I
.SN / < 1.

If the sampling scheme is stochastic we call it Type A, B or C if relations (i), (ii) and
(iii) hold with I
.SN / replaced by EI
.SN /.

Type A sampling is related to purely infill domain sampling which corresponds
to I
.SN / D 1 for all N � 1, provided � is large enough. However, in contrast
to the purely infill domain sampling, it still allows for a non-degenerate asymptotic
theory for sparse enough subsamples (in the sense of Type B or C).

Example 18.7. Assume that SN are sampling points on the line with s2k D 1=k

and s2kC1 D k, 1 � k � N . Then, for � D 1, limN!1 I
.SN / D 1=2, so this
sampling scheme is of Type A. But the subsample corresponding to odd indices is
of Type C.

A brief reflection shows that assumptions (i) and (ii) are mutually exclusive.
Combining (ii) and (iii) implies that the points intensify (at least at certain spots)
excluding the purely increasing domain sampling. Hence the Type B sampling
corresponds to the nearly infill domain sampling. If only (ii) holds, but (iii) does
not (Type C sampling) then the sampling scheme corresponds to purely increasing
domain sampling.

Our conditions are more general than those proposed so far. Their relation to
more specific sampling designs previously used is discussed in Section 18.3.

18.3 Regular spatial designs

We continue to assume a spatial design SN D fsk;N ; 1 � k � SN g. The two
special cases we discuss are closely related to those considered by Lahiri (2003).
The points are assumed to be on a grid of an increasing size, or to have a density. The
results of this section show how our more general assumptions look in these special
cases, and provide additional intuition behind the sampling designs formulated in
Definition 18.1. They also set a framework for some results of Sections 18.4 and
18.5.

Non-random regular design. Let Z.ı/ be a lattice in R
d with increments ıi in

the i -th direction. Let ı0 D minfı1; : : : ; ıd g, �d D Qd
iD1 ıi and let RN D ˛NR0,
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where R0 is some bounded Riemann measurable Borel-set in R
d containing the

origin. A set is Riemann measurable if its indicator function is Riemann integrable.
This condition excludes highly irregular sets R0. The scaling parameters ˛N > 0

are assumed to be non-decreasing and will be specified below in Lemma 18.4. We
assume without loss of generality that Vol.R0/ D 1, hence Vol.RN / D ˛dN . Typical
examples are R0 D fx 2 R

d W kxk � ´1;d g, with ´1;d equal to the radius of the
d -dimensional sphere with volume 1, or R0 D Œ�1=2; 1=2�d . The sampling points
SN are defined as fsk;N ; 1 � k � SN g D Z.�N ı/ \ RN , where �N is chosen
such that the sample size SN 	 N . It is intuitively clear that Vol.RN / � �dN�

dSN ,
suggesting

�N D ˛N

�N 1=d
: (18.23)

A formal proof that �N in (18.23) assures SN 	 N is immediate from the following

Lemma 18.3. Let K be a bounded set in R
d , and assume that K is Riemann mea-

surable with Vol.K/ D 1. If ˇN ! 0, then

jK \ Z.ˇN ı/j 	 1

�dˇdN
:

Proof. LetK � M1 � M2 whereM1 andM2 are rectangles in R
d having no inter-

secting margin (M1 is an inner subset of M2). The points fxi;N g D Z.ˇN ı/ \M2

can be seen as the vertices of rectangles Ji;N D xi;N C ft ı ˇN ı; t 2 Œ0; 1�d g,
where ı denotes the Hadamard (entrywise) product. For large enough N , the sets
Li;N D Ji;N \M1 define a partition of M1. Then, by the assumed Riemann mea-
surability, Z

M1

IK.x/dx D lim inf
N!1 ˇdN�

d
X
i

inffIK.x/ W x 2 Li;N g

� lim inf
N!1 ˇdN�

d
X
i

IK.xi;N /

� lim sup
N!1

ˇdN�
d
X
i

IK.xi;N /

� lim sup
N!1

ˇdN�
d
X
i

supfIK.x/ W x 2 Li;N g

D
Z
M1

IK.x/dx: ut

The following Lemma relates the non-random regular design to Definition 18.1.
We write aN 
 bN if lim sup bN =aN < 1.

Lemma 18.4. In the above described design the following pairs of statements are
equivalent:

(i) ˛N remains bounded , Type A sampling;
(ii) ˛N ! 1 and ˛N D o.N 1=d / , Type B sampling;

(iii) ˛N 
 N 1=d , Type C sampling.
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Proof. Let U".x/ be the sphere in R
d with center x and radius ". Assume first that

˛N D o.N 1=d /, which covers (i) and (ii). In this case the volume of the rectangles
Li;n as described in the proof of Lemma 18.3 satisfies

Vol.Li;n/ D �d�dN D ˛dN
N

! 0: (18.24)

Hence jU
.x/ \ Z.�N ı/j is asymptotically proportional to

Vol.U
.x//=Vol.Li;n/ D Vd

�
�

˛N

�d
N;

where Vd is the volume of the d -dimensional unit sphere. Now if we fix an arbitrary
�0 > 0 then there are constants 0 < CL < CU < 1, such that for any � � �0 and
N � N0 and x 2 R

d

CL

�
�

˛N

�d
� jU
.x/ \ Z.�N ı/j

N
� CU

�
�

˛N

�d
:

By the required Riemann measurability we can find an x 2 R0 such that for some
small enough " we have U2".x/ � R0. Then U2"˛N

.˛Nx/ � RN . Hence for any
2�0 � � � "˛N ,

CL

�
�

˛N

�d
� jU
=2.˛N x/ \ SN j

N
� I
.SN / � jU2
.˛N x/ \ SN j

N

� CU

�
�

˛N

�d
:

With the help of the above inequalities (i) and (ii) are easily checked.
Now we prove (iii). We notice that by (18.24) ˛N 
 N 1=d is equivalent to

Vol.Li;n/ does not converge to 0. Assume first that we have Type C sampling. Then
by the arguments above we find an x and a � > 0 such that U
.˛Nx/ � RN . Thus

jU
.˛N x/ \ Z.�N ı/j � SN I
.SN /:

As this quantity remains bounded, Vol.Li;n/ does not converge to 0.
On the other hand, if Vol.Li;n/ does not converge to 0, then for any � > 0 and

any x 2 R
d we have lim supN!1 jU
.x/\ Z.�N ı/j < 1, and thus for arbitrarily

large �

I
.SN / � sup
x

jU
.x/ \ Z.�N ı/j
SN

! 0:

The claim follows immediately. ut
Randomized design. Let fsk; 1 � k � N g be iid random vectors with a density
f .s/ which has support on a Borel set R0 � R

d containing the origin and satisfying
Vol.R0/ D 1. Again we assume Riemann measurability for R0 to exclude highly
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irregular sets. For the sake of simplicity we shall assume that on R0 the density is
bounded away from zero, so that we have 0 < fL � infx2R0

f .x/. The point set
fsk;N ; 1 � k � N g is defined by sk;N D ˛N sk for k D 1; : : : ; N . For fixed N ,
this is equivalent to: fsk;N ; 1 � k � N g is an iid sequence on RN D ˛NR0 with
density ˛�dN f .˛�1N s/.

We cannot expect to obtain a full analogue of Lemma 18.4 in the randomized
setup. For Type C sampling, the problem is much more delicate, and a closer study
shows that it is related to the oscillation behavior of multivariate empirical pro-
cesses. While Stute (1984) gives almost sure upper bounds, we would need here
sharp results on the moments of the modulus of continuity of multivariate empirical
process. Such results exist, see Einmahl and Ruymgaart (1987), but are connected
to technical assumptions on the bandwidth for the modulus (here determined by
˛N ) which are not satisfied in our setup. Since a detailed treatment would be very
difficult, we only state the following lemma.

Lemma 18.5. In the above described sampling scheme the following statements
hold:

(i) ˛N remains bounded ) Type A sampling;
(ii) ˛N ! 1 and ˛N D o.N 1=d / ) Type B sampling;

Proof. By Jensen’s inequality we infer that

EI
.SN / D E sup
x2RN

1

N

NX
kD1

I fsk;N 2 U
.x/\ RN g

� sup
x2RN

P
�
s1;N 2 U
.x/ \ RN

�
D sup
x2R0

P
�
s1 2 U
=˛N

.x/ \R0
�

D sup
x2R0

Z
U�=˛N

.x/\R0

f .s/ds:

We have two scenarios. First, ˛N remains bounded. Then we can choose
� big enough such that U
=˛N

.0/ covers R0 for all N . It follows that
lim supN!1EI
.SN / D 1 and (i) follows.

Second, ˛N ! 1. Then for large enough N , R0 contains a ball with radius
�=˛N . It follows that

EI
.SN / � fL Vd

�
�

˛N

�d
: (18.25)

Now statement (ii) follows easily. ut

18.4 Consistency of the sample mean function

Our goal is to establish the consistency of the sample mean for functional spatial
data. We consider Type B or Type C sampling and obtain rates of convergence. We
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start with a general setup, and show that the rates can be improved in special cases.
The general results are applied to functional random fields with specific covariance
structures. The proofs of the main results, Propositions 18.1, 18.2, 18.3, are collected
in Section 18.7.

For independent or weakly dependent functional observationsXk ,

E

���� 1N
NX
kD1

Xk � �

����2 D O
�
N�1� : (18.26)

Proposition 18.1 shows that for general functional spatial processes, the rate of
consistency may be much slower than O

�
N�1�; it is the maximum of h.�N / and

I
N
.SN / with �N from (ii) of Definition 18.1. Intuitively, the sample mean is con-

sistent if there is a sequence of increasing balls which contain a fraction of points
which tends to zero, and the decay of the correlations compensates for the increasing
radius of these balls.

Proposition 18.1. Let Assumption 18.1 hold, and assume that SN defines a non-
random design of Type A, B or C. Then for any �N > 0,

E

���� 1N
NX
kD1

X.sk;N /� �

����2 � h.�N /C h.0/I
N
.SN /: (18.27)

Hence, under the Type B or Type C non-random sampling, with �N as in (ii) of
Definition 18.1, the sample mean is consistent.

Example 18.8. Assume that N points fsk;N ; 1 � k � N g are on a regular grid in
˛N Œ�1=2; 1=2�d . Then I
.SN / is proportional to .�=˛N /d . For example, if h.x/ D
1=.1C x/2, then choosing �N D ˛

d=.dC2/
N we obtain that

h.�N /C h.0/I
N
.SN / � ˛

�2d=.dC2/
N _N�1:

(Recall that I
N
.SN / � N�1.) A stronger result is obtained in Proposition 18.2

below.

We now consider the special case, where we have a regular sampling design.
Here we are able to obtain the strongest results.

Proposition 18.2. Assume the nonrandom sampling design. Let Assumption 18.1
hold with h such that xd�1h.x/ is monotone on Œb;1/, b > 0. Then under Type B
sampling

E

���� 1

SN

SNX
kD1

X.sk;N / � �
����2

� 1

˛dN

(
d.3�/d

Z K˛N

0

xd�1h
�
x
�
dx C o.1/ sup

x2Œ0;K˛N �

xd�1h.x/
)
; (18.28)

for some large enough constant K which is independent of N . Under Type C sam-
pling 1=˛dN in (18.28) is replaced by O

�
N�1�.
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The technical assumptions on h pose no practical problem, they are satisfied for
all important examples, see Example 18.6. A common situation is that xd�1h.x/ is
increasing on Œ0; b� and decreasing thereafter.

Our first example shows that for most typical covariance functions, under nearly
infill domain sampling, the rate of consistency may be much slower than for the iid
case, if the size of the domain does not increase fast enough.

Example 18.9. Suppose the functional spatial process has representation (18.4), and
(18.19) holds with with the covariance functions �j as in Example 18.6 (powered
exponential, Matérn or spherical). Define h.x/ D P

j�1 �j .x/, and assume that
condition (18.21) holds. Assumption 18.1 is then satisfied andZ 1

0

xd�1h.x/dx < 1 and sup
x2R

xd�1h.x/ < 1: (18.29)

Therefore, for the nonrandom sampling,

E

���� 1

SN

SNX
kD1

X.sk;N /� �

����2 D
(
O
�
˛�dN _N�1� ; under Type B sampling

O
�
N�1� ; under Type C sampling

(18.30)

The next example shows that formula (18.30) is far from universal, and that the
rate of consistency may be even slower if the covariances decay slower than expo-
nential.

Example 18.10. Consider the general setting of Example 18.9, but assume that each
covariance function �j has the quadratic rational form

�j .x/ D 	2j

(
1C

�
x

�j

�2)�1
:

Condition (18.21) implies that h.x/ D P
j�1 �j .x/ satisfies Assumption 18.1, but

now h.x/ 	 x�2, as x ! 1. Because of this rate, condition (18.29) holds only
for d D 1 (and so for this dimension (18.30) also holds). If d � 2, (18.29) fails,
and to find the rate of the consistency, we must use (18.28) directly. We focus only
on Type B sampling, and assume implicitly that the rate is slower than N�1. We
assume (18.21) throughout this example.

If d D 2,Z K˛N

0

xd�1h.x/dx D
X
j

	2j

Z K˛N

0

x

(
1C

�
x

�j

�2)�1
dx

D
X
j

	2j �
2
j O

 Z K˛N

1

x�1dx
!

D O.ln˛N /

and similarly supx2Œ0;K˛N �
xd�1h.x/ D O.1/:
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If d � 3, the leading term isZ K˛N

0

xd�1h.x/dx D O


˛d�3N

�
:

We summarize these calculations as

E

���� 1

SN

SNX
kD1

X.sk;N / � �
����2 D

8̂<̂
:
O
�
˛�1N

�
; if d D 1

O
�
˛�2N ln.˛N /

�
; if d D 2

O
�
˛�2N

�
; if d � 3;

for Type B sampling scheme (provided the rate is slower than N�1).

The last example shows that for very persistent spatial dependence, the rate of
consistency can be essentially arbitrarily slow.

Example 18.11. Assume that h.x/ decays only at a logarithmic rate, h.x/ D
flog.x _ e/g�1 : Then, for any d � 1, the left hand side in (18.28) is � .log˛N /�1.

We now turn to the case of the random design.

Proposition 18.3. Assume the random sampling design of Section 18.3. If the
sequence fsk;N g is independent of the process X , and if Assumption 18.1 holds,
then we have for any "N > 0

E

���� 1N
NX
kD1

X.sk;N /� �

����2 � 6 h.0/ sup
s2R0

f 2.s/ "dN C h.˛N "N /C h.0/

N
:

Choosing "N such that "N ! 0 and ˛N "N ! 1, it follows that under Type B or
Type C sampling, the sample mean is consistent.

The bound in Proposition 18.3 can be easily applied to any specific random sam-
pling design and any model for the functions �j in (18.18). It nicely shows that what
matters for the rate of consistency is the interplay between the rate of growth of the
sampling domain and the rate of decay of dependence.

Let us explain in slightly more detail a Type C sampling situation. Here typically
we have ˛N D N 1=d . Then taking "N D aN�1=d logN , a > 0, we see that the
rate of consistency is h.a logN/ _ N�1. For typical covariance functions �j , like
powered exponential, Matérn or spherical, h.a logN/ decays faster than N�1. In
such cases, the rate of consistency is, up to some logarithmic factor, the same as for
an iid sample. For ease of reference, we formulate the following corollary, which
can be used in practical applications.

Corollary 18.1. Assume the random sampling design with the sequence fsk;N g
independent the process X . Suppose that X.s/ has representation (18.18) and that
(18.19) holds with the �j in one of the families specified in Example 18.6. If Con-
dition (18.21) holds, and ˛N � N 1=d then (18.26) holds up to some multiplicative
logarithmic factor.
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18.5 Consistency of the empirical covariance operator

In Section 18.4 we found the rates of consistency for the functional sample mean.
We now turn to the rates for the sample covariance operator. Assuming the func-
tional observations have mean zero, the natural estimator of the covariance operator
C is the sample covariance operator given by

bCN D 1

N

NX
kD1

X.sk/˝X.sk/:

In general, the sample covariance operator is defined by

O�N D 1

N

NX
kD1

�
X.sk/ � NXN

�˝ �
X.sk/ � NXN

�
;

where

NXN D 1

N

NX
kD1

X.sk/:

Both operators are implemented in statistical software packages, for example in
the popular R package fda and in a similar MATLAB package, see Ramsay et al.
(2009), The operator O�N is used to compute the EFPC’s for centered data, whilebCN for data without centering.

We first derive the rates of consistency for bCN assuming EX.s/ D 0. Then
we turn to the operator O�N . The proofs are obtained by applying the technique
developed for the estimation of the functional mean. It is a general approach based
on the estimation of the second moments of an appropriate norm (between estimator
and estimand) so that the conditions in Definition 18.1 can come into play. It is
broadly applicable to all statistics obtained by simple averaging. The proofs are
thus similar to those presented in the simplest case in Section 18.7, but the notation
becomes more cumbersome because of the increased complexity of the objects to
be averaged. To conserve space these proofs are not included.

We begin by observing that

E
��bCN � C

��2
S D hbCN � C ; bCN � C iS

D 1

N 2

NX
kD1

NX
`D1

hX.sk/˝X.sk/ � C ; X.s`/˝X.s`/� C iS :

It follows that under Assumption 18.2

E
��bCN � C

��2
S � 1

N 2

NX
kD1

NX
`D1

H
�ksk � s`k2

�
: (18.31)

Relation (18.31) is used as the starting point of all proofs, cf. the proof of Propo-
sition 18.1 in Section 18.4. Modifying the proofs of Section 18.4, we arrive at the
following results.
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Proposition 18.4. Let Assumption 18.2 hold, and assume that SN defines a non-
random design of Type A, B or C. Then for any �N > 0

E
��bCN � C

��2
S � H.�N /CH.0/I
N

.SN /:

Hence under the Type B or Type C non-random sampling, with �N as in (ii) of
Definition 18.1, the empirical covariance operator is consistent.

Proposition 18.5. Assume the nonrandom sampling design. Let Assumption 18.2
hold, with some function H such that xd�1H.x/ is monotone on Œb;1/, b > 0.
Then under Type B sampling

E
��bCN � C

��2
S

� 1

˛dN

(
d.3�/d

Z K˛N

0

xd�1H
�
x
�
dx C o.1/ sup

x2Œ0;K˛N �

xd�1H.x/
)
;

for some large enough constant K which is independent of N . Under Type C sam-
pling, the factor 1=˛dN is replaced by O

�
N�1�.

Proposition 18.6. Assume the random sampling design of Section 18.3. If the
sequence fsk;N g is independent of the process X and if Assumption 18.2 holds,
then we have for any "N > 0,

E
��bCN � C

��2 � 6H.0/ sup
s2R0

f 2.s/ "dN CH.˛N "N /C H.0/

N
:

It follows that under Type B or Type C sampling the sample covariance operator is
consistent.

Example 18.12. Let X have representation (18.4), in which the scalar fields �j .�/
are independent and Gaussian, and (18.11) (18.12) and (18.13) hold.

It follows that for some large enough constant A,ˇ̌̌̌X
j�1

Cov
�
�2j .s1/; �

2
j .s2/

�ˇ̌̌̌C
ˇ̌̌̌X
j�1

E
�
�j .s1/�j .s2/

�ˇ̌̌̌2
� A exp

� � 2��1ks1 � s2k2
�
:

Hence by Lemma 18.2, Assumption 18.2 holds with H.x/ D A exp
� � 2��1ks1 �

s2k2
�
. Proposition 18.4 yields consistency of the estimator under Type B or Type C

sampling, as

EkbCN � Ck2S � A



exp.�2��1�N /C I
N
.SN /

�
:

If we assume a regular sampling design, then by Proposition 18.5

EkbCN � Ck2S � A

�
1

˛dN
C 1

N

�
:
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Introducing the (unobservable) operator

Q�N D 1

N

NX
kD1

.X.sk/ � �/˝ .X.sk/� �/ ;

we see that
Q�N � O�N D . NXN � �/˝ . NXN � �/:

Therefore

Ek O�N � Ck2S � 2Ek Q�N � Ck2S C 2Ek. NXN � �/˝ . NXN � �/k2S :
The bounds in Propositions 18.4, 18.5 and 18.6 apply to Ek Q�N � Ck2S . Observe
that

Ek. NXN � �/˝ . NXN � �/k2S D Ek NXN � �k4:
If X.s/ are bounded variables, i.e. supt2Œ0;1� jX.sI t/j � B < 1 a.s., then
k NXN � �k4 � 4B2k NXN � �k2. It follows that under Assumption 18.1 we obtain
the same order of magnitude for the bounds of Ek NXN � �k4 as we have obtained
in Propositions 18.1, 18.2 and 18.3 for Ek NXN � �k2. In general Ek NXN � �k4
can neither be bounded in terms of Ek NXN � �k2 nor with Ek OCN � Ck2S . To
bound fourth order moments, conditions on the covariance between the variables
Zk;` WD hX.sk;N /�� ; X.s`;N /��i andZi;j for all 1 � i; j; k; ` � N are unavoid-
able. However, a simpler general approach is to require higher order moments of
kX.s/k. More precisely, we notice that for any p > 1, by the Hölder inequality,

Ek NXN � �k4 � �
Ek NXN � �k2�1=p 
Ek NXN � �k 4p�2

p�1

�.p�1/=p
:

Thus as long as EkX.s/k 4p�2
p�1 < 1, we conclude that, by stationarity,

Ek NXN � �k4 � M.p/
�
Ek NXN � �k2�1=p ;

where M.p/ depends on the distribution of X.s/ and on p, but not on N . It is now
evident how the results of Section 18.4 can be used to obtain bounds for Ek O�N �
Ck2S : We state in Proposition 18.7 the version for the general non-random design.
The special cases follow, and the random designs are treated analogously. It follows
that if Assumptions 18.1 and 18.2 hold, then Ek O�N � Ck2S ! 0, under Type B or
C sampling, provided EkX.s/k4Cı < 1.

Proposition 18.7. Let Assumptions 18.1 and 18.2 hold and assume that for some
ı > 0 we have EkX.s/k4Cı < 1. Assume further that SN defines a non-random
design of Type A, B or C. Then for any �N > 0 we have

Ek O�N � Ck2S
� 2

˚
H.�N /CH.0/I
N

.SN /
�C 2C.ı/

˚
h.�N /C h.0/I
N

.SN /
� ı

2Cı :

(18.32)

If X.s1/ is a.s. bounded by some finite constant B , then we can formally let ı in
(18.32) go to 1, with C.1/ D 4B2.
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18.6 Inconsistent empirical functional principal components

We begin by formalizing the intuition behind Example 18.2. By Lemma 2.3, the
claims in that example follow from Proposition 18.8. Recall thatX? D X.0/˝X.0/,
and observe that for x 2 L2,

X?.x/.t/ D
�Z

X.0Iu/x.u/du
�
X.0I t/ D

Z
c?.t; u/x.u/du;

where
c?.t; u/ D X.0I t/X.0Iu/:

Since

E

ZZ �
c?.t; u/

�2
dt du D EkX.0/k4 < 1;

the operator X? is Hilbert–Schmidt almost surely.

Proposition 18.8. Suppose representation (18.18) holds with stationary mean zero
Gaussian processes �j such that

EŒ�j .s/�j .s C h/� D �j�j .h/; h D khk;
where each �j is a continuous correlation function, and

P
j �j < 1. Assume the

processes �j and �i are independent if i ¤ j . If SN D fs1; s2; : : : ; sng � R
d with

sn ! 0, then
lim
N!1EkbCN � X?k2S D 0: (18.33)

Proposition 18.8 is proven in Section 18.7.
We now present a very specific example that illustrates Proposition 18.8.

Example 18.13. Suppose

X.sI t/ D �1.s/e1.t/C
p
��2.s/e2.t/; (18.34)

where the �1 and �2 are iid processes on the line, and 0 < � < 1. Assume that the
processes �1 and �2 are Gaussian with mean zero and covariances EŒ�j .s/�j .s C
h/� D expf�h2g; j D 1; 2. Thus, each Zj WD �j .0/ is standard normal. Rearrang-
ing the terms, we obtain

X?.x/ D


Z21 hx; e1i C

p
�Z1Z2 hx; e2i

�
e1

C

p

�Z1Z2 hx; e1i C �Z22 hx; e2i
�
e2:

The matrix �
Z21

p
�Z1Z2p

�Z1Z2 �Z22

�
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has only one positive eigenvalueZ21C�Z22 D kX.0/k2. A normalized eigenfunction
associated with it is

f WD X.0/

kX.0/k D �
Z21 C �Z22

��1=2 

Z1e1 C

p
�Z2e2

�
: (18.35)

Denote by Ov1 a normalized eigenfunction corresponding to the largest eigenvalue ofbCN . By Lemma 2.3, Ov1 is close in probability to sign.h Ov1; f i/f . It is thus not close
to sign.h Ov1; e1i/e1.

Ten simulated Ov1, with e1.t/ D p
2 sin.2�t/; e2.t/ D p

2 cos.2�t/, � D 0:5;

are shown in Figure 18.1. The EFPC Ov1 is a linear combination of e1 and e2 with
random weights. As formula (18.35) suggests, the function e1 is likely to receive a
larger weight. The weights, and so the simulated Ov1, cluster because both Z1 and
Z2 are standard normal.

We now state a general result showing that Type A sampling generally leads to
inconsistent estimators if the spatial dependence does not vanish.

Proposition 18.9. Assume that EhX.s1/ � � ; X.s2/ � �i � b.ks1 � s2k2/ > 0;

where b.x/ is non-increasing. Then under Type A sampling the sample mean NXN is

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Fig. 18.1 Ten simulated EFPC’s Ov1 for process (18.34) with 
 D 0:5 and e1.t/ Dp
2 sin.2�t/; e2.t/D

p
2 cos.2�t/ (N D 100).
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not a consistent estimator of �. Similarly, if EX.s/ D 0 and

EhX.s1/˝X.s1/� C ; X.s2/˝X.s2/� C iS � B.ks1 � s2k2/ > 0; (18.36)

where B.x/ is non-increasing, then under Type A sampling the sample covariancebCN is not a consistent estimator of C .

We illustrate Proposition 18.9 with an example that complements Example 18.2
and Proposition 18.8 in a sense that in Proposition 18.8 the functional model was
complex, but the spatial distribution of the sk simple. In Example 18.14, we allow a
general Type A distribution, but consider the simple model (18.34).

Example 18.14. We focus on condition (18.36) for the FPC’s. For the general model
(18.18), the left–hand side of (18.36) is equal to

�.s1; s2/ D
X
i;j�1

Cov.�i .s1/�j .s1/; �i .s2/�j .s2//:

If the processes �j satisfy the assumptions of Proposition 18.8, then, by Lemma
18.1,

Cov.�i .s1/�j .s1/; �i .s2/�j .s2//

D �2i ri C �2j rj C �i�j
ri C rj

2
�


�
3=2
i ri C �

3=2
j rj

�q
�i C �j ;

where ri D �i .ks1 � s2k/.
To calculate �.s1; s2/ in a simple case, corresponding to (18.34), suppose

�1 D 1; �2 D �; 0 < � < 1; �i D 0; i > 2; and �1 D �2 D �: (18.37)

Then,

�.s1; s2/ D f .�/�.ks1 � s2k/;

where

f .�/ D .3 � 2
p
2/.1C �2/C 2

h
1C �C �2 � .1C �3=2/.1C �/1=2

i
:

The function f increases from about 0.17 at � D 0 to about 0.69 at � D 1.
We have verified that if the functional random field (18.18) satisfies the assump-

tions of Proposition 18.8 and (18.37), then bC is an inconsistent estimator of C under
Type A sampling, whenever �.h/ is a nonincreasing function of h.
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18.7 Proofs of the results of Sections 18.4, 18.5 and 18.6

Proof of Proposition 18.1. By Assumption 18.1 we have

E

���� 1N
NX
kD1

X.sk;N /� �

����2 D 1

N 2

NX
kD1

NX
`D1

EhX.sk;N /� � ; X.s`;N /� �i

� 1

N 2

NX
kD1

NX
`D1

h
�ksk;N � s`;N k2

�
� 1

N 2

NX
kD1

NX
`D1

�
h.�N /I fksk;N � s`;N k2 � �N g

C h.0/I fksk;N � s`;N k2 � �N g�
� h.�N /C h.0/ I
N

.SN /: ut

The following Lemma is a simple calculus problem and will be used in the proof
of Proposition 18.2.

Lemma 18.6. Assume that f is a non-negative function which is monotone on Œ0; b�
and on Œb;1/. Then

LX
kD0

f

�
k

N

�
1

N
�
Z L=N

0

f .x/dx C 2

N
sup

x2Œ0;L=N�
jf .x/j:

Proof of Proposition 18.2. By Assumption 18.1,

E

���� 1

SN

SNX
kD1

X.sk;N /� �

����2 D 1

S2N

SNX
kD1

SNX
`D1

EhX.sk;N / � � ; X.s`;n/� �i

� 1

S2N

SNX
kD1

SNX
`D1

h
�ksk;N � s`;nk2

�
:

Let a D .a1; : : : ; ad / and b D .b1; : : : ; bd / be two elements on Z.ı/. We define
d.a;b/ D min1�i�d vi .a;b/, where vi .a;b/ is the number of edges between ai and
bi . For any two points sk;N and s`;N we have

d.sk;N ; s`;N / D m from some m 2 f0; : : : ; KN 1=d g; (18.38)

where K depends on diam.R0/. It is easy to see that the number of points on the
grid having distancem from a given point is less than 2d.2mC 1/d , m � 0. Hence
the number of pairs for which (18.38) holds is less than 2d.2mC 1/d�1N . On the
other hand, if d.sk;N ; s`;N / D m, then ksk;N � s`;N k2 � mı0�N . Let us assume
without loss of generality that ı0 D 1. Noting that there is no loss of generality if
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we assume that xı�1h.x/ is also monotone on Œ0; b�, we obtain by Lemma 18.6 for
large enoughN and K < K 0 < K 00

1

S2N

SNX
kD1

SNX
`D1

h
�ksk;N � s`;nk2

�
� 2d

K0N1=dX
mD1

.2mC 1/d�1

N
h
�
m�N

�C 2h.0/

N

� 2d

�
3

�N

�d�1 K0N1=dC1X
mD0

�
m

N
N�N

�d�1
h

�
m

N
N�N

�
1

N
C 2h.0/

N

� 2d

�
3

�N

�d�1�Z K00N1=d�1

0

.N�Nx/
d�1h

�
N�Nx

�
dx

C 2

N
sup

x2Œ0;K00˛N =��

xd�1h.x/
�

C 2h.0/

N

D .3�/dd

˛dN

Z K00˛N =�

0

xd�1h
�
x
�
dx

C 4d.3�/d�1

˛d�1N N 1=d
sup

x2Œ0;K00˛N =��

xd�1h.x/C 2h.0/

N
:

By Lemma 18.4, Type B sampling implies ˛N ! 1 and ˛N D o
�
N 1=d

�
. This

shows (18.28). Under Type C sampling 1=˛dN � 1=N . The proof is finished. ut
Proof of Proposition 18.3. This time we have

E

���� 1N
NX
kD1

X.sk;N / � �
����2 � 1

N 2

NX
kD1

NX
`D1

Eh
�ksk;N � s`;N k2

�
� ˛�2dN

Z
RN

Z
RN

h
�ks � rk2

�
f .˛�1N s/f .˛�1N r/ d sdr C h.0/

N

D
Z
R0

Z
R0

h
�
˛N ks � rk2

�
f .s/f .r/ d sdr C h.0/

N
:

Furthermore, for any "N > 0,Z
R0

Z
R0

h
�
˛N ks � rk2

�
f .s/f .r/ d sdr

� h.0/

Z
R0

Z
R0

f .s/f .r/I
˚ks � rk2 � "N

�
d sdr C h.˛N "N /

� h.0/ sup
s2R0

f 2.s/ �
Z
R0

Z
R0

I
˚ks � rk2 � "N

�
d sdr C h.˛N "N /:

Now for fixed r it is not difficult to show that
R
R0
I
˚ks � rk2 � "N

�
d s � 6 "dN .

(The constant 6 could be replaced with �d=2=� .d=2C 1//.
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Proof of Proposition 18.8. Observe that

kbCN � X?k2S D
ZZ (

1

N

NX
nD1

ŒX.snI t/X.snIu/ �X.0I t/X.0Iu/�
)2
dt du:

Therefore,

kbCN � X?k2S � 2I1.N /C 2I2.N /;

where

I1.N / D
ZZ (

1

N

NX
nD1

X.snI t/.X.snIu/ �X.0Iu//
)2
dt du

and

I2.N / D
ZZ (

1

N

NX
nD1

X.0Iu/.X.snI t/ �X.0I t//
)2
dt du:

We will show that EI1.N / ! 0. The argument for I2.N / is the same. Observe
that

I1.N /

D 1

N 2

NX
k;`D1

ZZ
X.skI t/.X.sk Iu/ �X.0Iu//X.s`I t/.X.s`Iu/ � X.0Iu//dt du

D 1

N 2

NX
k;`D1

Z
X.skI t/X.s`I t/dt

Z
.X.skIu/ � X.0Iu//.X.s`Iu/ �X.0Iu//du:

Thus,

EI1.N /

� 1

N 2

NX
k;`D1

(
E

�Z
X.skI t/X.s`I t/dt

�2)1=2 (
E

�Z
Yk.u/Y`.u/du

�2)1=2
;

where

Yk.u/ D X.skIu/ � X.0Iu/:
We first deal with the integration over t :

E

�Z
X.skI t/X.s`I t/dt

�2
� E

Z
X2.sk I t/dt

Z
X2.s`I t/dt

D E
�kX.sk/k2kX.s`/k2� � ˚

EkX.sk/k4
�1=2 ˚

EkX.s`/k4
�1=2 D EkX.0/k4:
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We thus see that

EI1.N /

� ˚
EkX.0/k4�1=2 1

N 2

NX
k;`D1

(
E

�Z
Yk.u/Y`.u/du

�2)1=2

� ˚
EkX.0/k4�1=2 1

N 2

NX
k;`D1

(
E

�Z
Y 2k .u/du

�2)1=4 (
E

�Z
Y 2` .u/du

�2)1=4

D ˚
EkX.0/k4�1=2

24 1

N

NX
kD1

(
E

�Z
Y 2k .u/du

�2)1=4352 :
Consequently, to complete the verification of (18.33), it suffices to show that

lim
N!1

1

N

NX
kD1

(
E

�Z
Y 2k .u/du

�2)1=4
D 0:

The above relation will follow from

lim
k!1

E

�Z
Y 2k .u/du

�2
D 0: (18.39)

To verify (18.39), first notice that, by the orthonormality of the ej ,Z
Y 2k .u/du D

1X
jD1

�
�j .sk/ � �j .0/

�2
:

Therefore, by the independence of the processes �j ,

E

�Z
Y 2k .u/du

�2
D

1X
jD1

E
�
�j .sk/ � �j .0/

�4
C
X
i¤j

E .�i .sk/� �i .0//
2E

�
�j .sk/� �j .0/

�2
:

The covariance structure was specified so that

E
�
�j .sk/ � �j .0/

�2 D 2�j .1 � �j .kskk//;
so the normality yields

E

�Z
Y 2k .u/du

�2
� 12

1X
jD1

�2j .1 � �j .kskk//2

C 4

8<:
1X
jD1

�j .1 � �j .kskk//
9=;
2

:
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The right hand side tends to zero by the Dominated Convergence Theorem. This
establishes (18.39), and completes the proof of (18.33). ut
Proof of Proposition 18.9. We only check inconsistency of the sample mean. In
view of the proof of Proposition 18.1 we have now the lower bound

E

���� 1N
NX
kD1

X.sk;N / � �
����2 � 1

N 2

NX
kD1

NX
`D1

b.ksk;N � s`;N k2/

� b.�/I 2
 .SN /;

which is by assumption bounded away from zero for N ! 1. ut
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Horváth, L., Kokoszka, P. and Reimherr, M. (2009). Two sample inference in
functional linear models. Canadian Journal of Statistics, 37, 571–591.
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report. École Polytechnique Fédérale de Lausanne.

Kuelbs, J. (1973). The invariance principle for Banach space valued random vari-
ables. Journal of Multivariate Analysis, 3, 161–172.

Lahiri, S. N. (1996). On inconsistency of estimators based on spatial data under
infill asymptotics. Sankhya Series A, 58, 403–417.

Lahiri, S. N. (2003). Central limit theorems for weighted sums of a spatial process
under a class of stochastic and fixed designs. Sankhya, Series A, 65, 356–388.

Lahiri, S. N. and Zhu, J. (2006). Resampling methods for spatial regression models
under a class of stochastic designs. Annals of Statistics, 34, 1774–1813.

Lastovicka, J., A, V. Mikhailov, Ulich, T., Bremer, J., Elias, A., Ortiz de Adler, N.,
Jara, V., Abbarca del Rio, R., Foppiano, A., Ovalle, E. and Danilov, A. (2006).
long term trends in foF2: a comparison of various methods. Journal of Atmo-
spheric and Solar-Terrestrial Physics, 68, 1854–1870.



414 References

Lastovicka, J., Akmaev, R. A., Beig, G., Bremer, J., Emmert, J. T., Jacobi, C., Jarvis,
J. M., Nedoluha, G., Portnyagin, Yu. I. and Ulich, T. (2008). Emerging pattern
of global change in the upper atmosphere and ionosphere. Annales Geophysicae,
26, 1255–1268.
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Absorbances, 229
Air pollution data, 6
Approximable functional time series, see

Lp–m–approximability
change point detection, 306–316
CLT, 297
covariance operator, 296
eigenfunctions, 296, 297
long–run variance, 297–306

Aurora borealis, see Northern lights
Auroral electrojects, 203
Autocovariance operator, 238, 255

B–spline basis, 16, 81, 89, 90, 155
Bartlett estimator, 258, 266
Bartlett kernel, 304, 305
Bernoulli shift, 210
Bessel function, 348, 384
British Atmospheric Data Centre, 90
Brownian bridge, 69, 85, 89, 108, 151, 201,

307
Brownian motion, 69, 89, 108, 151, 180, 201

intrinsic stationarity, 349
vector valued, 257

Canonical components, 46
Canonical correlation, 46

computation, 53
functional, 49

Canonical correlation analysis, 45
multivariate, 45, 47
smoothing, 45, 51, 53, 54

Canonical variables, 46
Canonical variates, 47
Capital Asset Pricing Model, 206

functional, 207, 224
Centering, 42, 225, 393

Central England temperature, 81, 90
bootstrap, 93
warming trend, 91

Central limit theorem, see Hilbert space,
central limit theorem

m–dependent sequence, 119
m–dependent vectors, 216, 217
autocovariance matrices, 123
functions of matrices, 121

Change point
approximable sequence, 306
consistency, 86, 87
functional AR(1) model, 253–276, 312
mean function, 79, 83, 306–316
multivariate data, 104
segmentation, 91

Characteristic function, 105
Chi–square, 65, 68, 71, 74, 105, 123, 151, 173,

176, 198, 199, 363
Chordal distance, 349
Coefficient of determination
R2, 140
functional, 141

Confidence interval for mean of time series,
313

Consistency, 108, 150, 213, see Sample
covariance operator, spatial data,
consistency, see Sample mean function,
spatial data, consistency

empirical eigenfunctions, 32
sample covariance, 29
sample mean, 26

Cook’s distance, 223
Correlation of distances, 105
Correlation operator, 60
Covariance function, 26

estimation, 26
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smoothing, 43
two samples, 67

Covariance kernel, see Covariance function
Covariance operator, 23, 26, 38, 40, 172, 254

eigenfunctions, 31, 37, 173, 176
eigenvalues, 31
equality in two samples, 73
estimation, 26
expansion, 25
pooled data, 73
spatial data, 347
spatially indexed curves, 382
square root, 55

Covariance tensor, 364
CPV method, see Cumulative percentage of

variance
Cramér–von–Mises functional, 85, 258, 314
Credit card transactions, 9–11, 13, 110, 260,

287
Cressie–Hawkins estimator, 349
Cross–covariance operator, 382
Cross–validation, 41, 87
Cumulant, 291, 298
Cumulative percentage of variance, 41, 87,

200, 212
spatial data, 372

CUSUM statistic, 256, 267

Daniell kernel, 306
Direct product, 278
Donsker’s theorem, 98
Doob’s maximal inequality, 97
Dst index, 54

Effective dimension reduction space, 144
Egg–laying curves, 70, 127, 137, 170
Empirical eigenfunctions, 32
Ergodic sequence, 269
Estimation

covariance function, 25
eigenfunctions, 31
functional principal components, 354
mean function, 25, 350
time of change in mean, 87

Eurodollar futures, 261–266, 288
Exxon Mobil intraday returns, 207

F–test, 147
F2 layer, 345, 369
F2-layer critical frequency, see Ionospheric

critical frequency
Fat content of meat, 229
Fourier basis, 9, 10, 16, 89, 111
Fractional differencing, 92

Functional AR(p) model, 277
Functional AR(1) model, 10, 108, 112,

235–252, 254
approximability, 293
convergence of EFPC’s, 238
estimation, 238–240
existence, 235–238
prediction, 240–246
predictive factors, 246–252
predictive loadings, 249
residual bootstrap, 261

Functional ARCH model, 295
Functional autoregressive model, see

Functional AR(1) model
order determination, 277–288

Functional canonical components, 48, 62
existence, 58

Functional CLT
approximable sequence, 335
in Hilbert space, 94

Functional depth, 7
Functional linear model, 127–145

additive model, 134
dependent regressors, 212, 317–319
diagnostics, 139–143, 191, 192
fully functional model, 128, 130, 147, 176,

191
functional response model, 128, 139
historical, 200
image regressors, 145
interactions, 137
least squares estimation, 195, 196, 281
local smoothing, 138
matrix form, 196, 281
measurement error, 133
nonparametric, 144
normal equations, 131
projected on the regressor space, 196
quadratic forms of residual autocorrelations,

191
residual autocorrelation matrix, 191
residuals, 194, 199, 223
roughness penalty, 134, 136
scalar response model, 128, 134, 171
scatter plot, 141
test of error correlation, 191–224
test of no effect, 147–167
two sample inference, 169

Functional median, 36
Functional principal components, 11, 17, 37,

40, 41, 105, 111, 195
computation, 42
empirical, 40, 105, 129, 147, 159, 171, 218,

256
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empirical, inconsistent, 377–378, 396
empirical, spatial data, 347, 375

Functional quadratic regression, 225–232
Functional time series, 289–341

Gaussian kernel, 201, 314
Gene expression, 12
Generalized functional linear model, 137
Geomagnetic observatories, 154
Geostatistical data, 347

Hadamard product, 387
Harmonics, 42
Heavy–tailed distribution, 181, 201
Hilbert space, 21

central limit theorem, 25, 33, 74, 216, 220
functional CLT, 94
law of large numbers, 25, 102
of Hilbert–Schmidt operators, 74

Increasing domain sampling, 376
Infill domain sampling, 376
Intermagnet network, 153
International geomagnetic reference field, 370
Intraday returns, 206–208

cumulative, 207
Ionosonde stations, 359
Ionosphere, 346

clobal cooling, 346
Ionospheric critical frequency, 345, 369

Karhunen-Loève expansion, 25, 66, 79, 82,
228, 321

Kolmogorov–Smirnov functional, 313
Kriging, 345, 380
Kronecker product, 198, 265, 285

L2 space, 22
Lagrange multiplier, 350
Law of large numbers, see Hilbert space, law

of large numbers
Linear model, 129

least squares estimator, 129
normal equations, 129
scatter plot, 140

Link function, 137
logit, 137

Long run covariance matrix, 257, 258, 300
estimation, 260
kernel estimator, 301

Long run variance, 297, 307, 313
Lp–m–approximability, 210, 291–341

m–dependent sequence, 119, 291

Magnetic coordinates, 370
Magnetic latitude, 369
Magnetic storm, 50
Magnetometer data, 2, 42, 50, 54, 110, 153,

182–184, 202–206, 290
midlatitude, 205

Matlab, 15, 41, 87, 179
Matérn class, 348
Mean function, 26

change point, 79
equality in two samples, 65
estimation, 26

Measurement error, 43, 133
Medflies, 70, 127, 170, 181
Mediterranean fruit flies, see Medflies
Mensov inequality, 267, 276
Metheron estimator, 349

Natural orthonormal components, 39
Non–monotonic power, 310
Northern lights, 148, 183

Operator
bounded, 21
compact, 21, 34, 247
completely continuous, 22
conjugate, 61
continuous, 21
Hilbert–Schmidt, 22, 38, 58, 60, 76, 117,

165, 396
integral, 23, 58, 278
linear, 21
norm, 21, 117, 165
norm comparison, 251
nuclear, 251
positive–definite, 22, 38, 250
symmetric, 22, 34, 38
trace class, 250
unitary, 251

Optimal empirical orthonormal basis, 39
Orthonormal basis, 21, 22, 28, 165, 354

PACE package, 17, 41, 87, 179
Parabolic kernel, 201
Parseval’s equality, 24, 35, 38, 74
Partial isometry, 252
Particulate pollution, 309
Parzen kernel, 305
Polar decomposition, 252
Principal axis theorem, 37
Pseudo–AIC, 41, 87

R package fda, 15, 16, 79, 111, 130, 151, 191,
200, 347, 393
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linmod function, 260
R programming language, 15, 42, 53, 353
Rectangular kernel, 305
Regression matrix, 129
Reproducing kernel Hilbert space, 144
Riesz representation theorem, 144
Ring current, 55

Sample autocovariance matrix, 107, 119, 258
kernel estimator, 303

Sample autocovariance operator, 117
Sample covariance function, 26, 83
Sample covariance operator, 26, 79, 254

eigenfunctions, 39
spatial data, consistency, 393–395

Sample mean function, 26
spatial data, consistency, 389–393

Scores, 42, 51, 85, 105, 156, 157
vector of, 43, 307

Scree plot, 41, 156, 158
Self–normalized statistics, 310–316
Semivariogram, 349
Serial correlation, 223
Singular value decomposition, 22, 34, 43, 252
Size–adjusted power, 314
Skorokhod space, 85, 100, 312, 335
Snow melt data, 345
Sobolev space, 135, 144
Sparse longitudinal data, 43
Spatial random field, 348, 375

correlation function, 348
intrinsic stationarity, 349
isotropic, 348
valid correlation function, 348

Spatial statistics, 347
intensity function of a point cloud, 385
multivariate intrinsic model, 364
randomized sampling design, 388
regular sampling design, 386

Spatially indexed functional data, 343–403

correlation test, 361, 366
Spectrum of absorbances, 229
SPIDR database, 368
Standard & Poor’s index, 208
Straight line regression, 127, 147
Strong mixing, 33, 383
Submartingale, 97
Substorm, 147, 148, 154–162, 183–184,

203–206

Tecator Infratec analyzer, 229
Test of independence, 105–124

empirical power, 109
empirical size, 108

Trace, 198
properties, 251

Trace class, see Operator, trace class
Two sample problem

and smoothing, 77
consistency, 67
covariance function estimation, 67
covariance operator equality, 73, 77
eigenvalues estimation, 67
functional regression kernel, 169–190
mean function equality, 65, 77
spatially indexed curves, 77

Variogram, 349, 371
empirical, 349, 354
estimation, 349
functional, 352

Wavelet filter, 369
Weak dependence, 291
Wiener kernel, 314
Wiener process, 98
WISA index, 54

Yule–Walker estimation, 238
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