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Preface

In the last ten years the area of scan statistics has risen to prominence in the
field of applied probability and statistics. A recent search with Google Scholar
lists 1780 references to scan statistics, 988 of which are from the last five years.
It is quite impressive that about 200 articles on scan statistics are published
each year. About 60 percent of the articles focus on spatial scan statistics and
their applications. In addition to challenging theoretical problems, the area
of scan statistics has exciting applications in many areas of science and tech-
nology, including: archaeology, astronomy, bioinformatics, biosurveillance, com-
puter science, electrical engineering, epidemiology, food sciences, genetics, geog-
raphy, material sciences, molecular biology, physics, reconnaissance, reliability
and quality control, and telecommunication.

This volume has been edited in honor of Joseph Naus’s seventieth birthday.
The leading chapter, “Joseph Naus: Father of the Scan Statistic,” by Sylvan
Wallenstein, provides a comprehensive and interesting historical account of the
early stages of research in the area of scan statistics, initiated by Joseph Naus
almost half a century ago. The rest of the chapters have been arranged in
alphabetical order of surnames of their leading authors.

In this volume, we have gathered a group of experts in the field of probabil-
ity and statistics that have made significant contributions to the area of scan
statistics, to review major developments in this area over the last ten years
and to present recent or new results as well as point out new directions for
future research. The contents of this volume illustrate the depth and the di-
versity of the methods and applications of the area. We hope that this volume
will provide a comprehensive survey of the major recent developments in this
area of research and will serve as a valuable reference and source for researchers
in applied probability and statistics and in many other areas of science and
technology. Graduate students interested in this area of research will find this
volume to be of great value, as it points out many interesting and challenging
research directions that they could pursue. This volume is suitable for use in
teaching a graduate-level seminar course in applied probability and statistics.

Our sincere thanks go to all the authors, who showed great enthusiasm
and support for this project. We appreciate their cooperation throughout the
course of the project in submitting their articles on time and their help in
reviewing the manuscripts. Additional thanks go to Mrs. Debbie Iscoe for her
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support with issues related to typesetting this volume. Our special thanks go to
N. Balakrishnan, Series Editor of Statistics for Industry and Technology, Regina
Gorenshteyn, Associate Editor, and Tom Grasso, Editor, Computational Sci-
ences and Engineering, Birkhäuser Boston (Springer) for their continual support
and encouragement throughout the preparation of this volume.

Joseph Glaz thanks his wife, Sarah, and his son, Ron, for their continual
loving support and encouragement. Vladimir Pozdnyakov thanks his mother,
Valentina, and his late father, Ivan Ivanovich, as many called him, for nurturing
Vladimir’s interest in mathematics. Sylvan Wallenstein thanks his wife, Helene,
for her love and encouragement, as well as for proofreading.

Storrs, CT, USA J. Glaz
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Joseph Naus: Father of the Scan Statistic

Sylvan Wallenstein

Department of Community and Preventive Medicine, Mount Sinai School
of Medicine, New York, NY, USA

Abstract: Currently, the literature on the scan statistic is vast, growing ex-
ponentially in diverse directions, with contributions by many researchers and
groups. As time goes on, the early history of the problem bears telling. Joseph
Naus, the father of the scan statistic, originated the modern work on the topic.
The process took almost twenty years to reach maturity; I have chosen Naus
(1982) as the definition of this maturity. The very name “scan statistic” does
not appear to have become attached to the problem for fifteen years, and the
interconnections to what is now one problem, in both statement of the problem
and common methods of solution, was far from obvious originally. This chapter
will not attempt a full review of all of Naus’s statistical contributions, or even a
full review of his contributions as they concern the scan statistic. Instead, it will
focus on a few themes that had already originated in Naus’s first twenty years
of written research (1962–1982), and briefly continue with those threads to the
present. Since these early themes include such general issues as applications
of the scan statistic, mentoring graduate students, and specific methodological
issues, the review will encompass a significant portion of Dr. Naus’s research,
without making claim to being exhaustive regarding either his research or the
much broader topic of research he influenced on the scan statistic.

This chapter is divided into five parts:

1. Naus (1963), Naus’s Ph.D. thesis, and the state of the art prior to 1965.

2. Naus’s six singly authored first papers, covering all aspects of the problem,
and focusing on exact solutions.

3. The first jointly published papers with Naus and his first five Ph.D. students
working on the scan, focusing on exact values.

4. Two key publications in 1979–1982 that brought various strands together.

5. A shorter description of “later” work focusing on themes previously
introduced.

Keywords and phrases: Scan statistic
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



2 S. Wallenstein

1.1 Naus (1963): Ph.D. Thesis

Joseph Naus graduated from the City College of New York in 1959 with a BBA
in Economics. He began graduate study in Economics at Harvard the following
year, where his advisor was Robert Dorfman. He was advised, as preparation
for his graduate studies in economics, to broaden his knowledge in several areas
— one of them being statistics. One of his first courses was taught by Arthur
Dempster. The field intrigued him and seemed (and perhaps was, at the time)
appreciably more manageable than the seemingly broader field of economics.
At some point within his first year, he switched to the Statistics Department.

In his third year of graduate study (his second in statistics), Naus was
spending an appreciable portion of the time in the Applied Science Division of
the Operations Evaluation Group (OEG), which was funded through a contract
awarded to MIT from the Navy. Naus notes in the preface to his thesis that on
April 10, 1961, Jacinto Steinhardt outlined “Two Probability Problem Areas of
Immediate Concern” to the OEG group. The first problem is stated as arising
from “naval needs,” which was probably motivated with the Navy wanting to
know something about future buildup of naval forces in one region of the ocean.
Nevertheless, from what Joe remembers, the problem was stated in general
terms, though apparently with some emphasis on the two-dimensional problem.
Naus, as a member of the OEG, began work on the problem in the fall of 1961
and on June 29, 1962 wrote up his results, Naus (1962), in ASD (Applied Science
Division) Paper 8. This technical report, written before the thesis, is referenced
in a footnote in Ederer, Myers, and Mantel (1964), which is apparently the first
citation of Naus’s work.

This line of research continued in a later contract with the Navy and cul-
minated in a thesis approved in October 1963, under the direction of Frederick
Mosteller in the Department of Statistics at Harvard, titled “Clustering of Ran-
dom Points in the Line and Plane.” The thesis acknowledged appreciation to
Jerome Klotz, who had an appointment in the Business School.

The one-dimensional aspect of the problem, as stated in the thesis, con-
cerns N points independently drawn from a random variable X on [0, 1), with
cumulative distribution F (x). P (k; N, w|F (x)) is the probability that as some
subinterval of length w scans the interval [0, 1), it contains at least k of the N
points on that larger interval. (Naus (1963) used the notation n instead of k, and
sometimes referred to the problem as the “big N/little n” problem, but in keep-
ing with later literature, this paper will use k for the size of the cluster.) When
no argument is given for F (x), X is assumed to follow a uniform distribution, so
that P (k; N, w) is the probability that given N points uniformly distributed on
[0, 1), there exists a subinterval of width w containing k or more points. As will
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be pointed out below, this problem was but one of four parts of the “general”
(one-dimensional) problem that would eventually emerge. The four subdivisions
of the problem are formed by (i) conditioning, or not, on the total number of
points in the interval, and (ii) considering discrete or continuous events. Vari-
ous aspects of the problem would be studied for two decades, with some of the
problems addressed in their own papers giving exact solutions. It was not until
Naus (1982) that all four problems were put in the same framework and a single
generic approximation was given for all four cases. Perhaps twenty years seems
like a long time, but it should be noted that in addition to Naus’s students
and readers, giants of the field such as Mosteller and Karlin who dealt with
various aspects of the four-fold problem also “missed” the global connection.
In addition, it took considerable time and effort to lay the foundation to find
exact values for the probabilities.

Some special cases of the problem had been previously considered. For k =
N , the problem was one of finding the distribution of the range with the solution
given by Burnside (1928, p. 22); for k = 2, the problem relates to the smallest
distance between N points with the solution given by Parzen (1960, p. 304).
Naus (1963) cites Feller (1958), who had noted the problem but stated that it
involves complicated sample spaces, and thus implicitly did not have a simple
solution.

The other papers most directly related to Naus’s thesis project were
Silberstein (1945), Berg (1945), and Mack (1948, 1950). These investigators
were apparently the first to address the clustering problem beyond the special
cases. They focused on the expected number of clusters, a topic that was ap-
parently not to be addressed again for over thirty years when Glaz and Naus
(1983) addressed the issue.

Mosteller, Naus’s advisor, had worked on the discrete problem, which a
decade or so later would be linked to the yet unnamed scan statistic, but for
the first decade the link would remain unexplored. In the early 1960s, the two
natural extensions to previous work were to k = 3 and to k = N −1, with k = 3
being the more promising. Naus recalls that another student of Mosteller, Tom
Lehrer, who would later achieve fame as a well-known musical satirist, worked
on the problem for k = 3. Apparently unbeknownst to Naus, and to this author
ten years later, was a paper by Elteren and Gerrits (1961) that “nibbled” on
the k = 3 problem by using a direct integration approach for N = 6, 7, 8.

One approach of Silberstein and Mack that Naus apparently used was the
polynomial approach. Silberstein (1945) had noted that P (k, N, w) is a polyno-
mial in w of order N . Mack (1948) notes that the polynomial expression may
change in different regions of [0, 1). Naus exploits this observation in his the-
sis, as a lemma that helps move from a derivation for a particular value of w
(typically w = 1/L, L an integer) to all w.
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Naus’s ground-breaking approach, which perhaps appears obvious in ret-
rospect (but is not really, for one must know its limitations), was to phrase
the problem in terms of paths, particularly what he termed 2-paths and L-
paths, and then use combinatoric techniques, particularly the reflection prin-
ciple, which allowed an exact solution to be computed. Whether an event of
interest occurred, depended on whether the move of a path down preceded, or
followed, a move up. This involved an analogy between points dropping in and
out of an interval, and a cluster of points. Two different parts of the distribution
were thus tackled: w = 1/2, and k > N/2. But it is perhaps even harder to
realize the situation in which the argument fell apart, and why the condition
k > N/2 is so critical. This is summarized as a footnote in both Naus (1963)
and Naus (1965a).

Chapter 2 of the thesis found P (k; N, w|F (x)) for k > N/2, and Chapter 3
found limiting distributions. Chapter 4 explored two-dimensional generaliza-
tions, while the last chapter gave applications. It is probably the topic in the
second chapter that sparked the greatest progress in subsequent papers and in
research in the field up to about 1990. Already in the thesis, Naus showed an
interest in a wide range of applications, for example, relating his work to work
of Daniel Bernoulli concerning the “mutual inclinations of the planets.”

In the thesis and in a later paper, Naus contrasts this “scan” approach
with that based on a “fixed grid.” The contrast can best be illustrated when
w = 1/L, L an integer, in which case the fixed grid approach is based on the
maximum number of events in any of the L intervals, while the “scan approach”
is based on the maximum number of cases as the interval of length w scans the
[0, 1) interval. Naus seems to have used “scan” in this restricted context, more
than in an attempt to label the statistic.

The beginning of Joe’s work on the scan coincided with the start of his
married life. During this period, he married Sarah Rosen who was originally
from New Jersey. They had met after Joe’s first year of graduate study. Their
first daughter, Alisa, was born in 1962 while Joe was at Harvard, and their
second daughter, Laura, was born in 1965 while Joe was at Rutgers. At Harvard,
Joe remembers living in a small apartment with minimal extras, and commuting
to Harvard by bicycle.

Joseph Irwin Naus’s thesis was approved in September 1963, and the Ph.D.
degree was awarded officially in January of the following year. In the 1963–1964
academic year, he continued his work full time as an operations research analyst
at the Institute of Naval Studies.
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1.2 The Early Papers Touching All Aspects
of the Problem: 1965–1968

This section covers Naus’s first five papers. In addition to the references previ-
ously cited, Naus was by this time aware of the asymptotic distribution for a
scan-like statistic in Menon (1964). He found that this asymptotic approxima-
tion was not adequate. This problem would continue to plague approximations
of the scan based on asymptotic theory and continue to provide justification for
the search for exact values. Later, approximations, as opposed to asymptotic
values, would be used with some measure of success.

Naus’s first position after Harvard was as an assistant professor of statistics
at Rutgers, joining the department in 1964 and having an appointment there
in 1964–1966. As will be noted in this section, the professional collaborations
and informal discussions between Naus and fellow faculty members were to be
productive.

1.2.1 Maximum cluster of points on a line, Naus (1965a)

Interestingly, this first paper of Naus cites only Berg (1945), Mack (1948),
Silberstein (1945), and Naus (1963). Since, as noted above, the contribution
of the cited articles involved at most integration methods, the ideas in the
paper were generated entirely by Naus, with possible help from his mentors at
Harvard, and possibly later, Rutgers.

To understand the context of Naus’s work, we introduce only a little nota-
tion, almost all in this paragraph. As noted above, derivations are simplified
by considering the case w = 1/L, L an integer, so that the [0, 1) interval can
be viewed as divided into L parts. The event A denotes that one of these L
intervals has k or more points, i.e. that at least one of the L cell occupancy
numbers is at least k. The event Bi denotes the event that (i) Ac, all the L
subintervals contain fewer than k points, and that (ii) there exists an interval
of length w that overlaps the ith and i + 1st disjoint intervals that contains k
or more points. Setting B = ∪ Bi, P (k, N, w) = P (A)+P (B). As Naus implic-
itly realizes, calculation of P (B) becomes more complicated to the extent that
more intersections of the Bi’s have to be considered. The probabilities of inter-
sections become rapidly more complicated, as the number of events increase,
particularly for consecutive i’s. By keeping k large relative to N , (i) the number
of possible intersections of Bi is limited, and (ii) simpler methods can be used
to calculate the probabilities needed. Specifically, for k > N/2, the only events
possible are Bi and Bi ∩ Bi+1. As would not be noted until much later, under
this restriction, the probability for the latter event is the sum of two, rather
than six, terms.
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In Naus (1965a), the derivation of P (Bi) is based on the reflection principle,
which finds the number of paths starting at one point, and ending at another,
that exceeds a certain level. A more complicated argument is used to derive
P (Bi ∩ Bi+1) involving permuting both “free” and “fixed” points. A critical
footnote explains why the complex argument breaks down when k < N/2, and
thus there are too many “free” points. The arguments are subtle; the following
extract from a key footnote explains why the method breaks down:

Permuting a free (i + 2)nd interval point with [one in] the ith interval or (i + 1)st
interval leads to a distinguishable arrangement. Permuting a free (i + 2)nd interval
point with a fixed [one in] the ith interval or (i + 1)st interval does not lead to a
distinguishable arrangement. However when a free (i+2)nd intervals point falls among
fixed i + 2 interval points, then one of the fixed (i + 1)st interval points is free to vary.
...Note that this argument is only valid so long as there are more fixed (i+1)st interval
points than free points...

It is a fortunate “coincidence” that the same restriction, k ≥ N/2, accom-
plishes two objectives: (i) freeing one from considering three- and higher-way
intersections, and (ii) limiting the two-way intersections to the case where there
are enough “fixed” points to make this subtle argument work.

It would require an apparently unrelated corollary of Barton and Mallows
(1965) to a theorem of Karlin and McGregor (1959) to resolve this apparently
general intractable problem, or even the simpler one of merely finding P (Bi ∩
Bi+1). To complete the derivation, the argument of a polynomial form is used
to extend the derivations from w = 1/L, L an integer, to arbitrary w. A brief
comment at the end of the article introduces, as a type of afterthought, a
“counter problem,” the unconditional problem based on a Poisson process. This
topic apparently did not appear in the thesis, and is described in more detail
first in Naus (1982). Here, the conditional and unconditional probabilities are
related through a somewhat difficult-to-implement summation of conditional
probabilities from N = k to infinity.

1.2.2 Clustering in two dimensions, Naus (1965b)

In the same year, Naus published the first paper for the two-dimensional prob-
lem — which as noted was the cause of his research into the scan statistic, and
one that has become more active recently. In this formulation of the problem,
the scanning area is rectangular. Naus derives upper and lower bounds for the
probability of a cluster, and shows that these bounds converge, as both the
length and width of the scanning interval approach zero. He shows that, con-
trary to the two previous papers on the subject in the mid-1940s, the shape of
the scanning interval does matter. An example in the paper concerns the prob-
ability that, given 5 ships within the same 20◦ longitude and 30◦ latitude, 4 out
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of 5 of these ships are in a 10◦ longitude × latitude square of the ocean. (Pre-
sumably, given the funding history above, this was the basis of Naus’s exposure
to the problem.) He bounds this probability by (.0086, .0278) and indicates an
approximation of 0.01.

1.2.3 Power comparisons, Naus (1966a)

This paper, titled “A Power Comparison of Two Tests of Non-Random Cluster-
ing,” is longer and allows a fuller discussion of the problem with implications
that foreshadow recent developments, and places the problem in the context of
statistics as well as probability. It begins by contrasting the “scan test” with
the “disjoint” test (previously termed the fixed grid) based on the maximum of
events in disjoint “cells.” (In the terminology above, the disjoint test hinges on
the event A, while the scan test hinges on both A and B.) Both statistics test
the null hypothesis of a uniform distribution against two alternatives suggestive
of clustering. Perhaps the most important contribution, in light of later devel-
opments and current focus, is the result in Section 5, which shows that the scan
statistic is a generalized likelihood ratio test of the null hypothesis against the
alternative that the density is a step function with two levels, a high constant
density on (b, b + w), b unknown, and a lower constant density elsewhere.

Equation (5.16) of this paper provides an asymptotic p-value, which Naus
uses to prove consistency of the test based on the (yet unnamed) scan statistic.
Naus also gives approximations for power, though these have not been exploited.
The paper continues Naus’s interest in the two-dimensional case, supplementing
the previously described results with simulation, to construct a small table
tabulating probabilities for N = 10.

Naus next opens up a new area of research, the Kolmogorov–Smirnov (KS)
statistic. The simplest case of the scan that corresponds to the traditional KS
statistic is based on L = 2, or equivalently, w = 1/2. The formulation is extend-
able to a version of the L-group problem, in which the groups can be ordered,
and interest is focused on comparing adjacent groups. Naus notes that the KS
problem can be expressed as a scan statistic problem conditional on cell occu-
pancy numbers.

These first three papers, although they cover a substantially larger range
than the topics in Naus (1963), can be thought of as a “fleshing-out” of the
various ideas in the thesis.

1.2.4 Application of Karlin–McGregor (1959) theorem,
Naus (1966b)

Naus’s next paper, somewhat vaguely titled as “Some Probabilities, Expecta-
tions, and Variances for the Size of Largest Clusters and Smallest Intervals,”
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solves the theoretical problem of calculating the distribution of the “scan statis-
tic” and reduces much future work on the topic to further exploitations of these
results. The essence of the paper is a six-line proof, which applied a corollary
of Barton and Mallows (1965) concerning “election results” to the scan. The
cited corollary concerns the amount of lead (extra votes) of candidate i over
candidate i + 1, in an L-candidate election. (To make sense of this problem,
the candidates might have to be arranged in order, for example on the basis of
very conservative to very liberal voting records, age, etc.) The corollary itself
was based on a theorem of Karlin and McGregor (1959).

To one not immersed in the problems, the concern of the amount of lead in
an election with L candidates does not appear to be closely related to a problem
with the scan statistic. But based on a close reading of Naus’s earlier papers,
one can, in retrospect, see a conceptual connection. (As noted below, Karlin
himself, when starting work on the scan in the 1990s, was not immediately
aware of the connection.) Awareness of the connection, by Naus’s account, was
hastened when Arthur Cohen, a colleague at Rutgers, in a presumably offhand
remark, pointed out the paper as something Naus might be interested in.

Naus (1966b) shows that, conditional on the cell occupancy numbers, the
probability distribution of the scan statistic could be expressed as the summa-
tion of many determinants of an L × L matrix. (The summation was over all
cell occupancy numbers, {n1, n2, ..., nL} with ni < k.) Computational problems
ensued both in computing such a determinant when L was large, and because
the summation would be over O(kL) terms.

Based on this theorem, Naus gives an explicit formula for the distribution
of the scan statistic when w = 1/3. Implicit in the formula was the basis of
computing P (Bi ∩ Bi+1), even when k < N/2. The paper tabulates some val-
ues based on computations and simulations by Naus’s Ph.D. student, Richard
Larsen. Implicit in such a limited tabulation, based in part on simulation, is
the recognition that the formula was not, at that time, that easy to apply!

The title of the article alludes to a table of moments of the scan for N =
1(1)10, w = .1(.1).9. Curiously to today’s reader (but easily explainable given
the computer resources of the time), even though an exact formula had just been
given for the window width of the form w = 1/L, L an integer (in particular for
w = 1/10 and w = 1/5), these moments (as well as those for w = 0.3, 0.4, for
which no formulas were available) were based on simulation. Whether realized
at the time or not, at least by the computing standards of the 1960s (and no
one has apparently bothered to see what the case would be today), the method
was to serve more as an impetus for future theoretical work, rather than as a
direct computational tool.
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1.2.5 Birthday problem #1, Naus (1968)

On the surface, this paper is not directly linked to the scan statistic. The paper
appears more related to Naus’s interest in coincidences, to be realized in the
Naus (1979) bibliography, than to his work on the scan. The article also reflects
Naus’s continuing interest in teaching. The purpose of the paper can be posed
as engendering some interest in coincidences in a class so small that it is unlikely
that two children have the same birthday. As Naus (1968) shows, even in a small
class, it is still likely that two students have birthdays within a very few days
of each other. For example, if the class size were 15, the probability would be
only 0.223 of two (or more) children having birthdays on the same day, 0.537
of two children having birthdays on two consecutive days, and 0.957 of having
birthdays within 6 days.

One aspect of the problem is ascribed to Mosteller, who as noted above was
Naus’s advisor. Naus also acknowledges Saul Blumenthal, who was his colleague
at Rutgers. Naus and Blumenthal apparently communicated about common
interests in “coincidences.” A more formal connection between the birthday
problem and the scan was not made until Naus (1974), possibly motivated by
a cross-fertilization of ideas between Naus and Blumenthal’s student at NYU,
Saperstein, and maybe also Naus’s student, Huntington.

At this point in his career, Naus was impacted by what seems to be a
peculiar policy of the dean at the time. To justify promotion in the Statistics
Department, it was strongly suggested that another institution should also offer
a similar or higher level position. A policy of not promoting an institution’s own
Ph.D. graduates was more common then (and possibly now), but this extra
“extension” of the policy appears unusual. In any case, Naus and Blumenthal
both went to different New York institutions, with Naus, at least technically,
on a leave of absence.

1.3 Joseph Naus’s Students in 1967–1978,
Exploitation of Ballot Problem Results,
Broadening of Problem

Having been given the appropriate promotion at Baruch, the Business School of
what was then City College, Naus returned to Rutgers from his leave of absence
as an associate professor of statistics in 1967. He was subsequently promoted to
professor in 1974. He was acting director of the Statistics Center of Rutgers in
1973–1974, and graduate director in 1974–1977. His third daughter, Julie, was
born in 1968, and a son, Mark, was born in 1970.
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Naus supervised eight Ph.D. theses from 1967 to 1978. Four theses focused
entirely on the scan, and one partly so. Thus, during this time period, nearly
an average of one Ph.D. student was graduating each year with Naus as the
thesis supervisor, a substantial percentage of the output of the department at
the time. While this account focuses on the scan statistic, and thus to students
working on this topic, to the best of my memory, students (at least I) chose
Naus as thesis advisor because of his overall reputation as a mentor, and his
expertise in the area of applied probability, rather than the scan statistic specif-
ically. In the early 1970s, Bell Labs and AT&T Long Lines were perceived as
the major employers of potential graduates of the Rutgers program in statistics,
and applied probability was perceived to be the subject area of their interest.
(They continued to be a very attractive employer for my contemporaries; the
policy ending with the deregulation of the phone companies in the early 1980s.
The pharmaceutical industry was not, as yet, a major employer.) Naus’s stu-
dents (years of graduation) were Ed Wolf (1967), Larry Rabinowitz (1968),
Richard Larsen (1970), Sylvan Wallenstein (1971), Mark Nicholich (1974), Ray
Huntington (1974), Norman Neff (1978), and Joseph Glaz (1978).

Joe Naus took detailed interest in each student, and had at least weekly
meetings with each student to discuss that student’s work. In addition to these
weekly meetings, the door to Joe’s office was always open, and a student could
just walk in and talk about the joint projects one had been working on. I can
still remember the precise setup of his office. A non-statistical aspect, scheduling
these meetings, has for some reason stuck in my mind. Joe often had car-pool
responsibilities in the early afternoon, which probably based on both of our
schedules, was an ideal time for us to talk, and he to car-pool. His two oldest girls
were at that time enrolled at schools fairly close to both his home and his office
(then in New Brunswick), traffic especially outside of rush hours was lighter
than now, and the trips merely a relatively short distraction. By coincidence,
scheduling of my single visit to talk to Joe about this article, revolved around his
car-pooling a grandchild and also helping out Laura, who had just given birth.

To give some perspective to results that would have been available to grad-
uate students in the late 1960s and very early 1970s, it should be noted that
some additional work had begun to appear concerning the scan, to supplement
the meager results previously available. Naus, who had a keen eye for connec-
tions to the scan, became aware of an abstract, Menon (1964) “Clusters in a
Poisson Process,” and the work of Newell (1963) which included an asymptotic
result for a scan-like statistic, an apparently unrelated work, Ozols (1956), hav-
ing to do with paths in three dimensions, and Ikeda (1965). Joe gave me this
corpus of work, together with Ederer, Myers, and Mantel (1964), some more
recent unpublished work by Mantel, and his thesis, when I became his student
in perhaps the fall of 1969. At the time, paper copies, particularly of articles in
relatively obscure journals and proceedings, were a valuable and hard-to-obtain
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resource. There were other papers on coincidences possibly available at the
time [e.g. Tackacs (1961)], which appear in Naus (1979), but it is unclear if
Naus was aware of all the connections that would later emerge. This author is
fairly confident that the term “scan statistic” had not been coined at the time,
and finding a relevant paper would have taken much examination. (The lack
of a good name for the problem, would explain the apparently uninformative
titles of the papers appearing up to the late 1970s.).

The first three students and the fifth student worked in areas not directly
linked to scan statistics. Naus’s first student was Ed Wolf, who received his
Ph.D. in 1967, and thus would have been doing research at about the same
time Naus’s above papers were published. The main published result, Wolf and
Naus (1973), “Tables of Critical Values for a k-sample Kolmogorov-Smirnov
Test Statistic,” appeared in JASA. Since that paper focused on the L-sample
Kolmogorov–Smirnov test, rather than the scan statistic, a detailed description
is outside the purview of this article. In addition to this published work, Wolf
contributed some methodology later used by Neff and Naus (1980) in their tab-
ulation of probabilities, and started work on an approximation. Ed Wolf was
later on the faculty at Baruch, where Naus had taught. Naus’s next student
was Richard Larsen (1970), who developed a non-parametric test. Naus’ third
student was Larry Rabinowitz, and the results of the dissertation, Rabinowitz
and Naus (1975), in the Annals of Probability, concerned the moments of the
number of components in random directed graphs. Mark Nicholich, who com-
pleted his dissertation in 1974, worked on the distributional pattern arising from
multiple sources generating pollution according to a Gaussian plume model.

The overarching theme of the next group of four graduate students was
research on the computation of exact probabilities of the scan statistic for the
conditional, continuous case. Chapter 8 of Glaz, Naus, and Wallenstein (2001)
contains a good unified description of these different results.

One result of Wallenstein’s thesis is presented in Wallenstein and Naus
(1974), which extended the range of N/k and of w for which calculations of
exact probabilities could be performed relatively quickly. First, the results in
Naus (1966b) concerning P (Bi∩Bi+1) were slightly extended. Next, it was noted
that for 2 < N/k < 3, the additional terms that had to be computed were prob-
abilities of three- and four-way intersections of the Bi’s. If the intersections were
consecutive, the probabilities could be obtained by the same theorem of Karlin
and McGregor. If they were not, one could condition on cell occupancy num-
bers, obtain the probabilities, and sum over cell occupancy numbers, basically
following the methods of Naus (1965). These observations essentially changed
the problem from summing O(kL) determinants of L × L matrices to instead
O(k3) summations of determinants of at most 5 × 5 matrices.

In Wallenstein and Naus (1973), the results in Naus (1966b) were extended
to window widths that are rational numbers, i.e. w = r/L, r and L both integers.
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To do so, r simultaneous processes were examined, which conditional on the cell
occupancy numbers, were independent. As before, whether an event took place
or not depended on the closeness of points to the beginning of the “cell.”

Any possible usefulness of this paper would be limited, as it would be ren-
dered obsolete by the work of Naus’s next student, Huntington. Huntington and
Naus (1975) greatly simplified calculations of exact probabilities when w was
arbitrary. First, the exact probabilities for the scan statistic were generalized
to any window widths, not just rational numbers. More importantly, instead
of dealing with r simultaneous processes (for w = r/L), Huntington and Naus
show that one only has to deal with two simultaneous processes. They use the
same result involving the amount of lead in ballot problems. Huntington’s thesis
and subsequent research also shares Naus’s renewed emphasis on the discrete
scan, described in the next paragraph. The name Huntington would later have
national prominence due to Huntington Learning Centers.

This sequence of joint papers with graduate students Naus mentored is
now interrupted by Naus (1974), Naus’s first formal foray into the birthday
problem in the context of scan statistics, rather than coincidences. The informal
genesis of this area can be attributed to Naus’s casual conversations with Saul
Blumenthal many years earlier. One of Blumenthal’s students at NYU was
Saperstein, who received his Ph.D. in 1969 and shortly thereafter published
results [e.g. Saperstein (1972)] addressing the discrete problem using a different
methodology than Naus had used. (Interestingly, the first use of the term “scan
statistic” found in a Google search was in that paper, but by the chronology of
subsequent use, it is doubtful that the paper is the source for the more frequent
use of the term.)

Naus (1974) discussed the conditional problem: given A successes in N trials,
what is the probability that some consecutive string of m trials contains k or
more successes? Naus, dispensing with the buildup for the continuous case, gives
the probability based on the same theorem of Karlin and McGregor (1959) via
the corollary of Barton and Mallows (1965) for the quite broad case N/m = L,
L an integer. He then extends the results to N/m = L/r, both L and r integers.

Towards the end of the paper, the case in which one does not condition
on A is discussed. It would appear that this is now the more applied problem,
but this was not then apparently obvious or true. In any case, Naus derives the
unconditional probability by multiplying the conditional probabilities given cell
occupancy numbers by the probability of observing these numbers, and adding
over all possible cell occupancy numbers.

Naus’s next student was Norman Neff, whose 1978 thesis found efficient
ways to calculate the piecewise polynomial expressing P (k, N, w) as a function
of w. His thesis work, together with extensive collaboration with Naus, resulted
in Neff and Naus (1980), a volume in “Selected Tables in Mathematical Statis-
tics” published by IMS. The book is titled “The Distribution of the Size of the
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Maximum Cluster of Points on the Line.” It covered the cases N < 20 exhaus-
tively. My copy of that book proved handy to several researchers in the field,
who used it extensively. The book gives, for the first time, prominence to the
unconditional problem, giving very extensive tables for the exact probability for
this case. In addition to the exact probabilities, it gives coefficients for piecewise
polynomials, as well as means and variances of the shortest intervals.

The book also gives an approximation for this unconditional case. This
approximation was, as a departure from other approximations considered by
Naus’s students, a multiplicative one. Unfortunately, placing an approximation
in a book devoted to exact values did not give it the exposure and influence it
may have deserved. It is hard, at this point in time, to precisely evaluate the
suggested approximation, but this type of thinking did eventually influence the
Naus (1982) approximation. (Neff’s thesis also used an additive approximation
for the conditional case that was to morph into the Wallenstein–Neff (1987)
approximation.) In any case, as with other work on the scan referenced above,
whatever worth the approximation may have possessed became obsolete after
Naus (1982). Neff then moved to the Department of Computer Sciences at
Trenton State College.

Naus’s last of the eight students in the period covered in this section was
Joseph Glaz, with whom he continues to maintain a close collaboration, and who
is actively involved in ongoing research on many aspects of the scan statistic.
Glaz’s (1978) thesis is titled “Multiple Coverage and Clusters on the Line,” and
the title suggests new directions for the scan that would be prominent in the
1980s. (In this section, we focus on work published before 1980.) Glaz and Naus
(1979) derive the exact probability of covering the circle at least m times with
a finite number of randomly placed arcs of equal length. This article solved an
open problem for over thirty years, of multiple coverage of a circle by random
arcs. Although Naus’s students had worked with the problem on the circle and
may have noted such research in their dissertations, this was the first paper
focused on the topic.

We close this section by noting that Naus, together with colleagues, also
started evaluating the closely linked problem of the distribution of the waiting
time for a cluster in a stochastic process, which was to appear in Naus (1982).
The topic was included in Glaz (1978), who continued work on the project. Naus
also discussed this issue with Ester Samuel-Cahn when she was visiting Rutgers,
resulting in Samuel-Cahn (1983). With the above papers and the publication of
the tables in Neff and Naus (1980), the conceptual problem to calculate exact
values was solved. The work had progressed in several directions. In terms of
values of the triplets (k, N , and w), it had moved from the confines of the orig-
inal solution in Naus (1965a) to larger value for N/k; it moved from w = 1/L,
L an integer, to arbitrary values of w. In terms of the problems to be ad-
dressed, the scope of the problem had moved from the one- (and possibly two-)
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dimensional continuous problem on the line conditional on the total number
of events, to extensions to unconditional problems, the discrete version of the
problem (but at this point mainly the conditional one), the circle, and waiting
times.

Other investigations in the 1970s (not noted previously) with similar lines
of research included Hwang (1977), several papers by Cressie such as Cressie
(1977, 1979), and the limit results of Erdös and Rényi (1970). Methods for
computations remained scattered over the literature, and were generally strewn
with computational pitfalls, were others to attempt to apply them. Attention
in the 1980s shifted to bounds, approximations, and other related directions of
research.

1.4 Two Key Publications, 1979–1982

This section focuses on two papers by Naus that complete or complement the
topics in the previous sections, specifically (1) approximations, (2) studying
clusters and coincidences perse, beyond their connection with the scan, and (3)
the relationship between different aspects of the problem.

1.4.1 Indexed bibliography

Dating back to his thesis, Naus had always shown an interest in the whole con-
cept of coincidences, clusters, and clumps, irrespective of his work on the scan
statistic. At a time when systematic collection of literature was difficult, and
depended more on one’s library (broadly defined) than on computer searches
of the literature, he initiated efforts to collect, and list in a manageable man-
ner, the completed work concerning coincidences. According to Naus, this in-
volved, in addition to searches of the literature (which were quite difficult at
the time and limited to only a few library tools such as Citation Index), a per-
sonal correspondence with those in the field. In the paper noted below, Naus
acknowledges Cox, Cressie, F.N. David, Daley, Fienberg, Getis, Hammersley,
Huntington, Hwang, Mantel, Melzak, Mood, Mosteller, Newell, Neyman, Pielou,
E. Rothman, Saperstein, Takacs, and Watson.

Naus’s interest in the topic, together with the above correspondence,
culminated in the 30-page “An indexed Bibliography of Cluster, Clumps and
Coincidences,” published in 1979 in the International Statistical Review. The
one-sentence summary describes the work: “This bibliography brings together
and indexes an extensive and widely scattered literature on the probability of
clustering of points in time and space”.

The bibliography features a listing of approximately 1000 articles alphabet-
ically by author. The article begins with 150 topics arranged alphabetically;
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for example, those starting with “b” include ballot problem, birthdays, blocks,
branching, bunch, bundles, burst, busy period; and those with “e” include earth-
quakes, empty cells, encounters, entropy, epidemics. These 150 topics are then
associated with from one to many references; in the overwhelming number of
cases, these take a line or two each. For example, birthdays begins with A4, an
article by Abramson in the 1970 American Mathematical Monthly. The short
two-page introduction ends with: “One of the goals of preparing the index is
to simulate the interchange of methodologies and results from different areas of
applications”.

Interestingly, in this bibliography, the word “scan” appears only in articles
by Cressie, an unpublished work by Saperstein, and works by Naus. The term
“scan statistic” appears only in articles by Cressie beginning in 1977.

1.4.2 Approximations

Simple approximations and bounds, given in Ph.D. theses referenced above,
were known, but apparently not extensively utilized either in practice or in the
literature. Although some of these approximations did a good job of estimating
probabilities in the tail, they possibly all had the undesirable property of ex-
ceeding 1.0 on occasion (perhaps when the true probability was as small as .7),
which would certainly make approximating means difficult.

Naus’s landmark paper in 1982, like Naus (1966b), provided a new method-
ology, applicable in many contexts, and different from prior research, to ap-
proximate the distribution of the various scan statistics. In later papers, and in
many contexts, this approximation continues to be used. Basically, the approx-
imation has a type of Markovian property, stating that the probability of no
cluster in an interval of width w depends mainly on the distribution of events
in the previous interval of width w, but not on events further back in “time.”
(Different approximations developed later would use a related thought based on
conditioning on m preceding events, m varying for different approximations.)
Letting Ei be the event that there is no cluster (k or more points within an
interval of width w) that begins in the ith subinterval, i.e. in [(i− 1)w, iw), the
approximation is

P (Ei+2|Ei+1 ∩ Ei ∩ Ei−1...) ≈ P (Ei+2|Ei+1).

(In the notation above, Bi = Ac ∩ Ec
i .)

This approximation allowed attention to be limited to P (E1) and P (E1 ∩E2).
The computation of these terms is similar to that of P (B1) and P (B1 ∩ B2),
whose calculation is implicit in Naus (1965a) and Naus (1966b). The proba-
bilities involving E’s are a bit simpler than those involving B’s because of the
fewer restrictions on cell occupancy numbers. Thus, P (E1) (termed Q2) was
based on a simple expression summed O(k2) times, and P (B1 ∩ B2), termed
Q3, was the sum of a somewhat complicated expression over O(k3) terms.
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Thus, for the first time, a formula was available that would have allowed
scan probabilities to be relatively easily approximated for nearly all values of
k, N , and w. Unlike most previously given approximations, the approximation
would apparently not exceed 1.0 in any case. Had today’s technology been
available, the approximation would have been placed on a web site, and possibly
some future work by Naus and others would have been unnecessary. (Sadly,
there is no (well-known) web site for either this or any other approximation
for the scan statistic.) Such a task would not be trivial, and would require
some computational tricks familiar to workers in the field, including methods
to evaluate the exact and cumulative binomial and Poisson distributions. In the
absence of such a web site or similar resource, an unwary investigator would
have to devote considerable time to programming Q2 and Q3, and take caution
in numerical overflows for terms like N !. It is unclear to what extent future
approximations surpassed the Naus (1982) approximation in accuracy, if the
computational work were held constant. The concept behind the approximation
continues to be used in more complicated contexts.

Naus actually motivates and applies this new approximation, not by the
conditional case, which was the subject of most of the previous work, but by
the unconditional problem and the waiting-time variant referred to previously.
He then gives a possibly underappreciated approximation to the expected value
of a waiting time. He applies a similar methodology to the unconditional dis-
crete problem, termed here the generalized birthday problem. Naus then applies
the approximation to the two problems previously noted: multiple coverage on
the line, and on the circle. At the end of the paper, he notes that the methods
can also be applied to the conditional problem, although he cautions that the
approximation is “rougher.” His caution in this regard seems to be a bit unfair
to the approximation; there is little indication that it performs poorly except
in the tail which is not of interest. Nevertheless, the approximation is better for
the unconditional case.

1.5 Later Work, Briefly Noted

For the majority of the 1980s, Naus was chairman (1984–1986) or acting chair-
man (1981–1982, 1988–1989, 1992–1993) of the Department of Statistics at
Rutgers. Naus was heavily involved in non-statistical issues at Rutgers: he
was head of the University Senate Budget Committee, and of the Faculty
Council Computer Policy Committee, and a member of the Strategic Planning
Subcommittee on (implementing) Computing.

Joseph Naus became a Fellow of the American Statistical Association in
1998, in recognition for his work on scan statistics. The text of the award was:
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For contributions to statistical theory and applications, particularly in the devel-
opment of scan statistics and data editing techniques, and for leadership in promoting
statistical science.

The multi-volume Encyclopedia of Statistics appeared in 1988, with the
leading researchers in different fields being asked to contribute articles. Naus
was naturally asked to contribute the article on the scan statistic, (Naus (1988)).
A revised version, Glaz and Naus (2005), appeared in the second edition of the
Encyclopedia. He also published an invited review of the scan statistic (Naus
(2006)), in the Handbook of Engineering Statistics.

Naus had continued to work with Glaz on topics concerning the scan statis-
tic. Glaz and Naus (1983) extended Glaz’s Ph.D. work and investigated the
topic of multiple clusters of ordered occurrences of events on a line. Two mod-
els were considered: the uniform model and the exponential inter-arrival times
model. Exact formulae and approximations were derived for the expected num-
ber of clusters and the variance of the number of clusters. These approximations
were based on using Markov-like approximations for intersections of dependent
events. Glaz and Naus (1986) derived approximations and waiting times of first
passage in a special Gaussian process.

Glaz and Naus (1991) began work on a different approach involving bounds.
Bounds were potentially of great benefit, since exact values continued to be com-
putationally difficult, and approximations were inherently unsatisfying since
their accuracy could not generally be proven. Glaz and Naus (1991) also pro-
posed more accurate approximations, and give an algorithm for implementing
the calculations. The scope of the scan statistic was again broadened to include
integer-valued observations, in addition to the continuous and discrete cases
that had been addressed previously.

Naus began working, and meeting, usually in his home, with Glaz and
Wallenstein in the early 1990s. The collaboration resulted in several papers
as well as a book. Wallenstein, Glaz, and Naus (1993) used a variant of the
Q2/Q3 approximation in Naus (1982) to obtain power for a pulse-like alterna-
tive, and gave special attention to simplifying the computations. Glaz, Naus,
Roos, and Wallenstein (1994) proposed a compound Poisson approximation for
the distribution of scan statistics, and showed that it is more accurate than
previously given Poisson approximations. The derivation of the approximation
is based on ordered m-spacings for independent and identically distributed uni-
form observations.

The collaboration with Glaz and Wallenstein culminated in a book “Scan
Statistics” published by Springer-Verlag in 2001. The book was divided into
two parts: “Methods and Applications” and “Scan Distribution Theory and
its Developments.” The exceptional aspect of the book, and the reason for the
positive reviews, was the first part written almost completely by Naus. This first
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half contains a wealth of applications of the scan in different areas, reflecting
a more substantial review of these applications than the 1979 bibliography.
Particularly interesting to this writer is a description of star clusters—a problem
addressed by Fisher (1959), and one that reflects Naus’s continuing interest in
the two-dimensional problem. Naus’s description of the problem goes back to
1767 when Reverend Mitchell noted the visual closeness of six of the stars of
the Pleiades. This section of the book closes with a chapter on the use of the
scan in DNA and protein sequence analysis.

In the 1990s, possibly motivated by the topic described above, Naus, in
addition to his membership in the Statistics Department, joined the Compu-
tational Molecular Biology Group at Rutgers. In a description of that group,
Naus’s interests are listed as

Probabilistic and statistical approaches to looking for unusual clustering of pat-
terns within DNA and protein sequences, and measuring the unusualness of matching
of patterns between multiple DNA sequences. Statistical approaches to data editing,
survey sampling, and applied statistics.

Related to this working group, Naus also participated in activities at DI-
MACS, the Center for Discrete Mathematics and Theoretical Computer Science,
a consortium of Rutgers, Princeton University, AT&T Bell Laboratories, and
Bellcore. Naus was one of about five Rutgers faculty members of the Steering
Committee for the DIMACS special year of 1994–1995, termed “Mathematical
Support for Molecular Biology.”

The work at DIMACS had become important in the 1990s, due to the effort
of sequencing the human genome. As part of his interest in this area, Naus
worked on the connection between the genetic sequencing problems and the
unconditional, discrete scan statistic. Karlin, who had become very involved
in this area, invited Naus to come to California to discuss his work on the
scan—work that was motivated by Karlin’s own prior work cited previously.

Naus’s work in this area led to new mentorship roles with two Ph.D. stu-
dents, Vatsala Karwe and Ke-Ning Sheng, who both received their Ph.D.’s in
1993. Karwe’s thesis included work on the maximum net charge of DNA se-
quences. Some results were given in Karwe and Naus (1997).

Sheng’s work, which began on matching DNA sequences, resulted in four
joint publications, two of which are described here. Motivated by the problem
of comparing two DNA sequences, Sheng and Naus (1994) give the probability
distribution of the longest matching word in two different sequences. The se-
quences need not be perfectly aligned, and mismatches are allowed. Sheng and
Naus (1996) describe the two-dimensional analogue of this problem in which
R N × N lattices are scanned looking for a common rectangular set of letters
using an analogue of the Naus (1982) Q2/Q3 approximation.
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Naus kept on extending the scan in light of new potential applications.
For example, Naus and Wartenberg (1997) introduce the double scan, which
evaluates clustering of two related events. This can be applied both when there
is no order to the events, as in quality-control applications, and when there is
some order as in homicide/suicide clusters.

In the current decade, work on the scan owes much to Kulldorff. For ex-
ample, Kulldorff (1997) describes how the scan statistic can be implemented to
detect spatial clustering, and Kulldorff (2001) describes the implementation for
surveillance. Part of Kulldorff’s contribution could be viewed as extending the
context for which the scan statistic is the optimal statistic for clustering. Naus
(1966) had demonstrated optimality for the narrow one-dimensional case with
a fixed window and a uniform density, while Cressie (1979) and Loader (1991)
extended it somewhat for the case of w varying. Kulldorff and Williams (1997)
make the computations easily accessible via a program, SaTScan, and Kulldorff
and co-workers continuously (at times, ingeniously) updated and expanded this
resource. The actual calculation of probabilities, based on simulation, goes into
a completely different direction of research than the computation of exact val-
ues, approximations, and bounds described here. Exactly how to implement
these simulation-based methods is often a difficult task; the difficulty is of a
different nature than that described here. The huge advantage, of course, of the
simulation-based approach is an incredibly wider scope of applications.

Some of Naus’s research in this decade could be viewed as using probabilis-
tic arguments to compute probabilities and approximations for applications
broader than considered previously, but not as broad as allowed by these more
recent methods. Naus and Wallenstein (2004) focus on finding p-values when
the assumption of a constant window and perhaps a constant density is re-
laxed. Naus and Wallenstein (2006), using an analogue of the Naus (1982)
Q2/Q3 approximation, apply the scan statistic or its variants to surveillance of
bioterrorism, without the restriction of w fixed.

Naus continues to work on scan statistics, having been awarded a grant
this summer (2008) by the National Security Agency. His latest Ph.D. student,
though his work was not connected with the scan, was Ken Ganning in 2005.

Probably the best place to find twentieth century work on the scan sum-
marized by a wide range of authors is in Glaz and Balakrishnan (1999), “Scan
Statistics and Applications.” Practically all of the authors cited Naus in their
work, although Naus’s contribution was not the theme of the volume. Other
recent books are those by Balakrishnan and Koutras (2002) and Fu and Lou
(2003).

We have already noted that the phrase “scan statistic” is not necessarily
used when discussing Naus’s work, and that the term was only used once from
1962 to 1977, and only by one author before 1980. A search on Google Scholar
(on June 26, 2008) indicated 48 uses of “scan statistic” in the 1980s, 161 in
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the 1990s, and 1160 in the current decade. The majority of these post-2000
citations (my best guess is about 1000) were based on “spatial clustering” or
its variants, but 233 did not use the term “spatial,” and examination of the ti-
tles suggests that about 200 did not deal at all with spatially related methods.
Thus, research on the topic, both in terms of numbers and breadth of applica-
tions, continues to be robust. Much of this work owes its origin to Joe Naus’s
continuing examination of the problem.
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Abstract: Precedence-type tests are proposed for comparing several treatments
with a control. The null distributions of these test statistics are derived, and
critical values for some combination of sample sizes are then presented. Next, the
exact power function of these tests under the Lehmann alternative is derived
and used to compare the power properties of the proposed test procedures.
Finally, an example is presented to illustrate all the test procedures discussed
here.
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2.1 Introduction

In life-testing and reliability experiments, it is natural to compare several treat-
ments with a standard treatment (control). For example, a manufacturer of elec-
tronic components may wish to compare (k−1) new production processes with
the standard process and then determine whether any of these new processes
would produce more reliable components than the standard process. In many
cases, the costs of production for the new processes are relatively high because
they are under development, and so it would be desirable to have a statistical
test procedure which allows the experimenter to make a decision early on in
the life-test.

The precedence test, first proposed by Nelson (1963), is a distribution-free
two-sample life-test (i.e., a special case when k = 2) based on the order of
early failures. Assume that a random sample of n1 units from distribution FX

and another independent sample of n2 units from distribution FY are placed
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simultaneously on a life-testing experiment. Suppose the null hypothesis is that
the two lifetime distributions are equal, and the alternative hypothesis of in-
terest is that one distribution is stochastically larger than the other, say, FX

is stochastically larger than FY . This alternative corresponds to the situation
wherein the Y -units are more reliable than the X-units. The experiment is ter-
minated as soon as the r-th failure from the Y -sample is observed. Then, the
precedence test statistic P(r) is defined simply as the number of failures from
the X-sample that precede the r-th failure from the Y -sample. It is obvious
that large values of P(r) lead to the rejection of the hypothesis that FX = FY

and in favor of the above-mentioned alternative hypothesis. The precedence
test will be useful (i) when a life-test involves expensive units as the units that
had not failed could be used for some other testing purposes, and (ii) to make
quick and reliable decisions early on in the life-testing experiment. Many au-
thors have studied the power properties of the precedence test and have also
proposed some alternative tests; see, for example, Eilbott and Nadler (1965),
Shorack (1967), Nelson (1986, 1993), Lin and Sukhatme (1992), Balakrishnan
and Frattina (2000), Balakrishnan and Ng (2001), Ng and Balakrishnan (2002,
2004), and van der Laan and Chakraborti (2001). A brief review of all these
precedence-type tests is first presented in Section 2.2, while an elaborate dis-
cussion of precedence-type tests and their variants can be found in the review
articles by Chakraborti and van der Laan (1996, 1997) and also in the recent
book by Balakrishnan and Ng (2006).

In this work, different precedence-type test procedures are proposed for the
k-sample problem. Specifically, suppose we have (k−1) treatments that we wish
to compare with a control, or (k−1) new processes that we wish to compare with
the standard process. With F1(x) denoting the lifetime distribution associated
with the control (or the standard process) and Fi+1(x) denoting the lifetime
distribution associated with the i-th treatment (or the i-th new process) for
i = 1, 2, . . . , k − 1, our null hypothesis is simply

H0 : F1(x) = F2(x) = · · · = Fk(x) for all x. (2.1)

We are specifically concerned with a stochastically ordered alternative of the
form

H1 : {F2(x) ≤ F1(x)} ∪ {F3(x) ≤ F1(x)} ∪ · · · ∪ {Fk(x) ≤ F1(x)} for all x,

with at least one holding strictly for some x. (2.2)

Suppose k independent random samples of sizes n1, n2, . . . , nk from F1(x),
F2(x), . . . , Fk(x), respectively, are placed simultaneously on a life-testing exper-
iment. The experiment is terminated as soon as the r-th failure from F1(x) is
observed. Then, the number of failures from Fi(x), i = 2, . . . , k, in between the
failures from F1(x) are counted and their functions are used as test statistics
for testing the hypothesis in (2.1).
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The chapter is organized as follows. In Section 2.2, we review some results
on the precedence-type tests which are considered in the subsequent sections. In
Section 2.3, we propose the precedence-type tests, which include tests based on
the precedence, weighted maximal precedence and minimum Wilcoxon rank-
sum precedence test statistics, for testing the hypothesis in (2.1). The exact
null distributions of the proposed test statistics are derived in Section 2.3, and
critical values for some selected choices of sample sizes are also tabulated. Ex-
act power properties of these tests under Lehmann alternatives are derived in
Section 2.4. We then compare the power properties of the proposed precedence-
type tests under Lehmann alternatives. Finally, an example is presented to
illustrate all the tests discussed here.

2.2 Review of Precedence-Type Tests

The precedence-type test allows a simple and robust comparison of two distri-
bution functions. Suppose there are two failure time distributions FX and FY

and that we are interested in testing

H∗
0 : FX = FY against H∗

1 : FX > FY . (2.3)

Note that some specific alternatives such as the location-shift alternative and
the Lehmann alternative are subclasses of the stochastically ordered alternative
considered in (2.3).

Assume that a random sample of n1 units from distribution FX and another
independent sample of n2 units from distribution FY are placed simultaneously
on a life-testing experiment. Let X1, . . . , Xn1 denote the sample from FX , and
Y1, . . . , Yn2 denote the sample from FY . Let us denote the order statistics from
the X- and Y -samples by X1:n1 ≤ · · · ≤ Xn1:n1 and Y1:n2 ≤ · · · ≤ Yn2:n2 ,
respectively. Further, let M1 denote the number of X-failures before Y1:n2 and
Mi the number of X-failures between Yi−1:n2 and Yi:n2 , i = 2, 3, . . . , r. Figure 2.1
gives a schematic representation of this precedence setup.

Note here that the idea of precedence-type test is closely related to that
of a run, which is defined as an uninterrupted sequence. Wald and Wolfowitz
(1940) used runs to establish a two-sample test for testing the hypothesis in
(2.3). They suggested that one should combine the two samples, arrange the
n1 + n2 observations in increasing order of magnitude, and replace the ordered
values by 0 or 1 depending on whether it originated from the X-sample or the
Y -sample, respectively. For example, in Figure 2.1, we have a binary sequence
(1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1). Then, the total number of runs in that binary
sequence is used as a test statistic to test the hypothesis in (2.3). Instead of
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m1 = 0 m2 = 3 m3 = 4 m4 = 1

Figure 2.1. Schematic representation of a precedence life-test.

using the number of runs in the binary sequence, the precedence-type tests use
the length of the runs of 0’s (i.e., Mi, i = 1, . . . , n2) and their functions as test
statistics for testing the hypotheses in (2.3). For extensive reviews on runs and
applications, one may refer to Balakrishnan and Koutras (2002) and Fu and
Lou (2003).

2.2.1 Precedence test

The precedence test statistic P(r) is defined simply as the number of failures
from the X-sample that precede the r-th failure from the Y -sample, i.e.,

P(r) =
r∑

j=1

Mj .

Large values of P(r) lead to the rejection of H∗
0 and in favor of H∗

1 in (2.3).
In other words, H∗

0 is rejected if P(r) ≥ s, where s is the critical value of the
precedence test statistic for specific values of n1, n2, r and level of significance
(α). For example, from Figure 2.1, with r = 4, the precedence test statistic
takes on the value P(4) =

∑4
i=1 Mi = 0+3+4+1 = 8. If we have n1 = n2 = 10

and we use the precedence test with r = 4, the near 5% critical value will be
s = 8 with exact level of significance 0.035, in which case H∗

0 would be rejected
if there were at least 8 failures from the X-sample before the fourth failure
from the Y -sample. Therefore, the null hypothesis that the two distributions
are equal is rejected based on the precedence test in this example.

From Balakrishnan and Ng (2006, Theorem 4.1), we have the joint proba-
bility mass function of (M1, . . . , Mr), under H∗

0 : FX = FY , to be
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Pr (M1 = m1, M2 = m2, . . . , Mr = mr | H0 : FX = FY )

=

⎛

⎝
n1 + n2 −

r∑

j=1
mj − r

n2 − r

⎞

⎠

(
n1 + n2

n2

) . (2.4)

The null distribution and critical values of the precedence test statistic P(r) can
be readily computed from (2.4). The critical values and their exact levels of
significance (as close as possible to 5% and 10%) for different choices of r and
the sample sizes n1 and n2 are presented, for example, in Balakrishnan and Ng
(2006).

2.2.2 Weighted maximal precedence test

Balakrishnan and Frattina (2000) observed that a masking effect is present in
the precedence test which has an adverse effect on its power properties. The
maximal precedence test proposed by Balakrishnan and Frattina (2000) and
Balakrishnan and Ng (2001) was specifically to avoid this masking problem. It
is a test procedure based on the maximum number of failures occurring from the
X-sample before the first, between the first and the second, . . . , between the
(r− 1)-th and the r-th failures from the Y -sample. Then, Ng and Balakrishnan
(2005) proposed the weighted maximal precedence test by giving a decreasing
weight to mj as j increases, which is given by

M(r) = max
1≤j≤r

(n2 − j + 1)Mj . (2.5)

It is also a test procedure suitable for testing the hypotheses in (2.3) with large
values of M(r) leading to the rejection of H∗

0 and in favor of H∗
1 in (2.3). The

null distribution of the weighted maximal precedence test statistic M(r) can also
be obtained from (2.4). The critical values and their exact levels of significance
(as close as possible to 5% and 10%) for different choices of r and the sample
sizes n1 and n2 are presented, for example, in Balakrishnan and Ng (2006).
For example, if we refer to Figure 2.1, with r = 4 and with n1 = n2 = 10,
the critical value is 42 with exact level of significance 0.043 and the weighted
maximal precedence test statistic is M(4) = max(10 × 0, 9 × 3, 8 × 4, 7 × 1) =
max(0, 27, 32, 7) = 32. Therefore, the null hypothesis that the two distributions
are equal is not rejected based on the weighted maximal precedence test in this
example.

2.2.3 Minimal Wilcoxon rank-sum precedence test

The Wilcoxon rank-sum test is a well-known nonparametric procedure for
testing the hypotheses in (2.3) based on complete samples. For testing the
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hypotheses in (2.3), if complete samples of sizes n1 and n2 are available from
FX and FY , respectively, one can use the standard Wilcoxon’s rank-sum
statistic, proposed by Wilcoxon (1945), which is simply the sum of ranks of
X-observations in the combined sample.

Ng and Balakrishnan (2002, 2004) proposed the Wilcoxon-type rank-sum
precedence tests for testing the hypotheses in (2.3) in the context of precedence
test described earlier, i.e., when the Y -sample is Type-II right censored. This
test is a variation of the precedence test and a generalization of the Wilcoxon
rank-sum test. In order to test the hypotheses in (2.3), instead of using the
maximum of the frequencies of failures from the X-sample between the first
r failures of the Y -sample, one could use the sum of the ranks of those fail-
ures. More specifically, suppose that M1, M2, . . . , Mr denote the number of X-
failures that occurred before the first, between the first and the second, . . . ,
between the (r− 1)-th and the r-th Y -failures, respectively; see Figure 2.1. Let
W be the rank-sum of the X-failures that occurred before the r-th Y -failure.
The Wilcoxon’s rank-sum test statistic will be smallest when all the remaining(

n1 −
r∑

j=1
Mj

)

X-failures occur between the r-th and (r+1)-th Y -failures. The

test statistic in this case would be

W(r) = W +

⎡

⎣

⎛

⎝
r∑

j=1

Mj + r + 1

⎞

⎠+

⎛

⎝
r∑

j=1

Mj + r + 2

⎞

⎠+ · · · + (n1 + r)

⎤

⎦

=
n1(n1 + 2r + 1)

2
−

r∑

j=1

(r − j + 1)Mj .

This is called the minimal rank-sum statistic. Note that in the special case of
r = n2 (that is, when we observe a complete sample), W(n2) is equivalent to
the classical Wilcoxon’s rank-sum statistic. Small values of W(r) lead to the
rejection of H∗

0 and in favor of H∗
1 in (2.3). The null distribution of the minimal

Wilcoxon-type rank-sum precedence test statistic can once again be obtained
from (2.4). The critical values and their exact levels of significance (as close as
possible to 5% and 10%) for different choices of r and the sample sizes n1 and
n2 are presented, for example, in Balakrishnan and Ng (2006).

For example, from Figure 2.1, when n1 = n2 = 10 and r = 4, we have

W(4) = 2 + 3 + 4 + 6 + 7 + 8 + 9 + 11 + 13 + 14 = 77

and the critical value of the test is 81 with exact level of significance 0.050.
Therefore, the null hypothesis that the two distributions are equal is not rejected
based on the minimal Wilcoxon rank-sum precedence test in this example.

Ng and Balakrishnan (2002, 2004) observed that the large-sample normal
approximation for the null distribution of these statistics is not satisfactory in
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the case of small or moderate sample sizes. For this reason, they developed an
Edgeworth expansion to approximate the significance probabilities. They also
derived the exact power function under the Lehmann alternative and examined
the power properties of the minimal Wilcoxon-type rank-sum precedence test.

2.3 Test Statistics for Comparing k − 1 Treatments
with Control

Suppose k independent random samples of sizes n1, n2, . . . , nk from F1(x),
F2(x), . . . , Fk(x), respectively, are placed simultaneously on a life-testing ex-
periment. When the sample sizes are all equal, we have a balanced case which
usually provides a favorable setting for carrying out a precedence-type proce-
dure for testing H0 in (2.1) against the alternative in (2.2); however, the test
can be carried out even in the unbalanced case, although the power of the test
may be adversely affected in this case.

A precedence-type test procedure, for this specific testing problem, may
be constructed as follows. After pre-fixing an r (≤ n1), the life-test continues
until the r-th failure in the sample from the control group. We then observe
M2 = (M12, M22, . . . , Mr2), . . . ,Mk = (M1k, M2k, . . . , Mrk) from the (k − 1)
treatments, where M1i, M2i, . . . , Mri are the numbers of failures in the sample
from the (i−1)-th treatment (for i = 2, 3, . . . , k) before the first failure, between
the first and second failures, . . . , and between the (r − 1)-th and r-th failures
from the control group, respectively. The observed value of M i is denoted by
mi, i = 2, . . . , k.

2.3.1 Tests based on precedence statistic

Let us consider

P(r)i =
r∑

j=1

Mji for i = 2, 3, . . . , k (2.6)

for the precedence statistic corresponding to the sample from the (i−1)-th treat-
ment. For convenience of notation, let Mj· =

∑k
i=2 Mji and denote its observed

value by mj·, j = 1, . . . , r. We may then propose the following precedence-type
test statistics:

P1 =
k∑

i=2

P(r)i =
k∑

i=2

r∑

j=1

Mji =
r∑

j=1

Mj· (2.7)
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and

P2 = min
2≤i≤k

P(r)i = min
2≤i≤k

⎧
⎨

⎩

r∑

j=1

Mji

⎫
⎬

⎭
. (2.8)

The rationale for the use of the statistics in (2.7) and (2.8) is that, under
the stochastically ordered alternative H1 in (2.2), we would expect some of the
precedence statistics P(r)i in (2.6) to be too small. Consequently, we will tend to
reject H0 in (2.1) in favor of H1 in (2.2) for small values of P1 and P2 in which the
critical values can be determined for specific values of k, r, ni, i = 1, 2, . . . , k, and
pre-fixed level of significance α. Specifically, {0 ≤ P1 ≤ cP1} and {0 ≤ P2 ≤ cP2}
will serve as critical regions, where cP1 and cP2 are determined such that

Pr(P1 ≤ cP1 |H0) = α and Pr(P2 ≤ cP2 |H0) = α. (2.9)

The null distributions of the test statistics P1 and P2 can be expressed as

Pr(P1 = p1|H0)

=
n2∑

p(r)2=0

. . .

nk∑

p(r)k=0

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

p(r)i = p1

)

(2.10)

for p1 = 0, 1, . . . ,
∑k

i=2 ni, and

Pr(P2 = p2|H0)

=
n2∑

p(r)2=0

. . .

nk∑

p(r)k=0

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)I
(

min
2≤i≤k

p(r)i = p2

)

(2.11)

for p2 = 0, 1, . . . ,min2≤i≤k ni, where I(A) is the indicator function defined by

I(A) =
{

1 if A is true,
0 otherwise,

and

Pr(P(r)i = p(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)I

⎛

⎝
r∑

j=1

mji = p(r)i, i = 2, . . . , k

⎞

⎠ (2.12)

with

∑

mi

def.
=

ni∑

m1i=0

ni−m1i∑

m2i=0

. . .

ni−
∑r−1

j=1 mji∑

mri=0

for i = 2, . . . , k
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and δ(m2, . . . ,mk) is the probability mass function of (M2, . . . ,Mk) under H0

(see Appendix A)

δ(m2, . . . ,mk) = Pr(M2 = m2, . . . ,Mk = mk|H0 : F1 = F2 = · · · = Fk)

=
1

( ∑k
i=1 ni

n1, . . . , nk

)

⎧
⎨

⎩

r∏

j=1

(
mj·

mj2, . . . , mjk

)
⎫
⎬

⎭

×
( ∑k

i=1 ni −
∑r

j=1 mj· − r

n1 − r, n2 −
∑r

j=1 mj2, . . . , nk −
∑r

j=1 mjk

)

,

where
(

a1 + · · · + al

a1, . . . , al

)

=
(a1 + . . . + al)!

a1! . . . al!
.

From Equations (2.9)–(2.12), the critical values cP1 , cP2 and their exact levels of
significance as close as possible to α = 5% for k = 3, 4 with equal sample sizes
n1 = · · · = nk = n and r = 4(1)n were computed and are presented in Tables 2.1
and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · = nk = 15;
n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented in
Tables 2.3 and 2.4. Due to the heavy computational demand in going through
all the possible outcomes, the critical values of the tests discussed in this section
were obtained from the exact null distribution for r ≤ 8 and through 20,000,000
Monte Carlo simulations for r > 8.

2.3.2 Tests based on weighted maximal precedence statistic

We can proceed similarly and propose weighted maximal precedence-type statis-
tics for the testing problem discussed here. Once again, we terminate the life-test
when the r-th failure occurs in the sample from the control group. Then, with
M i = (M1i, M2i, . . . , Mri), for i = 2, . . . , k, being observed from the (k − 1)
treatments, where Mji denotes the number of failures in the sample from the
(i − 1)-th treatment between the (j − 1)-th and j-th failures from the control
group, we may set

M(r)i = max
1≤j≤r

(n1 − j + 1)Mji for i = 2, 3, . . . , k

for the weighted maximal precedence statistic corresponding to the sample
from the (i − 1)-th treatment. We may then propose the weighted maximal
precedence-type test statistics as

T1 =
k∑

i=2

M(r)i =
k∑

i=2

max
1≤j≤r

(n1 − j + 1)Mji (2.13)
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Table 2.1. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 3, n1 = n2 = n3 = n = 10, 15 and 20.

n = 10
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.031 0 0.079 10 0.047 0 0.079 186 0.058 95 0.079
5 3 0.056 0 0.031 17 0.047 6 0.050 202 0.051 104 0.050
6 4 0.039 1 0.052 19 0.045 7 0.050 216 0.049 112 0.045
7 6 0.045 2 0.063 21 0.048 8 0.061 228 0.048 119 0.044
8 8 0.045 3 0.062 22 0.050 8 0.043 237 0.052 124 0.052
9 11 0.062 4 0.051 23 0.051 8 0.037 244 0.051 128 0.054
10 13 0.038 5 0.029 23 0.051 8 0.037 248 0.050 131 0.048

n = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.036 0 0.090 15 0.053 0 0.090 357 0.042 180 0.090
5 3 0.068 0 0.040 26 0.047 0 0.040 383 0.046 195 0.040
6 4 0.052 1 0.073 30 0.053 11 0.042 407 0.052 208 0.042
7 5 0.039 1 0.033 35 0.047 12 0.043 430 0.050 220 0.048
8 7 0.048 2 0.046 39 0.052 13 0.044 451 0.050 232 0.045
9 9 0.054 3 0.055 41 0.051 14 0.055 470 0.050 242 0.051
10 11 0.056 4 0.059 42 0.051 14 0.042 487 0.050 252 0.047
11 13 0.055 5 0.059 43 0.048 15 0.058 502 0.049 260 0.050
12 15 0.051 6 0.054 44 0.053 15 0.048 514 0.050 267 0.051
13 17 0.043 7 0.045 44 0.052 15 0.045 524 0.049 273 0.049
14 20 0.050 8 0.032 44 0.052 15 0.045 530 0.051 277 0.049
15 23 0.045 10 0.037 44 0.052 15 0.045 534 0.050 279 0.050

n = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 1 0.038 0 0.096 20 0.057 0 0.096 577 0.045 290 0.096
5 2 0.036 0 0.044 36 0.051 0 0.044 613 0.050 310 0.044
6 4 0.059 0 0.019 39 0.049 16 0.048 648 0.048 328 0.048
7 5 0.046 1 0.041 49 0.048 17 0.051 681 0.050 345 0.057
8 7 0.059 2 0.059 54 0.052 18 0.054 712 0.053 362 0.055
9 8 0.044 2 0.029 57 0.048 19 0.057 742 0.051 378 0.054
10 10 0.051 3 0.038 60 0.050 20 0.059 770 0.050 394 0.047
11 12 0.056 4 0.044 63 0.048 20 0.047 796 0.050 408 0.049
12 14 0.059 5 0.049 65 0.048 22 0.045 820 0.050 421 0.050
13 15 0.041 6 0.051 67 0.051 25 0.048 842 0.049 433 0.051
14 18 0.059 7 0.051 67 0.046 26 0.052 861 0.051 444 0.051
15 20 0.056 8 0.048 68 0.051 26 0.048 879 0.049 454 0.050
16 22 0.051 9 0.044 68 0.050 27 0.051 894 0.049 462 0.052
17 24 0.044 10 0.037 68 0.049 27 0.050 906 0.050 470 0.049
18 27 0.052 12 0.057 68 0.049 27 0.050 915 0.051 475 0.051
19 30 0.056 13 0.039 68 0.049 27 0.050 922 0.050 479 0.050
20 33 0.048 15 0.041 68 0.049 27 0.050 925 0.051 481 0.051

and

T2 = min
2≤i≤k

M(r)i = min
2≤i≤k

{

max
1≤j≤r

(n1 − j + 1)Mji

}

. (2.14)

Here again, the rationale for the use of the statistics in (2.13) and (2.14) is
that, under the stochastically ordered alternative H1 in (2.2), we would expect
some of the weighted maximal precedence statistics M(r)i in (2.12) to be too
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Table 2.2. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 4, n1 = n2 = n3 = n4 = n = 10, 15 and 20.

n = 10
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.052 0 0.109 22 0.050 0 0.109 278 0.050 95 0.109
5 5 0.050 0 0.044 28 0.051 0 0.044 301 0.051 105 0.044
6 7 0.042 1 0.073 32 0.049 6 0.043 322 0.047 113 0.043
7 10 0.049 1 0.027 35 0.050 7 0.040 339 0.049 120 0.045
8 13 0.048 2 0.030 36 0.049 8 0.061 353 0.049 126 0.045
9 17 0.058 4 0.070 37 0.052 8 0.053 363 0.049 130 0.050
10 21 0.052 5 0.040 37 0.052 8 0.053 368 0.051 133 0.046

n = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.058 0 0.125 30 0.052 0 0.125 533 0.056 180 0.125
5 5 0.060 0 0.056 42 0.048 0 0.056 572 0.050 195 0.056
6 7 0.056 0 0.024 52 0.051 11 0.059 608 0.052 208 0.059
7 9 0.049 1 0.047 57 0.048 12 0.061 642 0.050 221 0.050
8 12 0.059 2 0.064 62 0.050 12 0.039 673 0.049 233 0.048
9 14 0.047 2 0.028 65 0.048 13 0.039 701 0.050 244 0.048
10 17 0.050 3 0.033 68 0.052 14 0.059 726 0.049 254 0.047
11 20 0.049 4 0.035 69 0.049 14 0.043 747 0.051 262 0.053
12 23 0.045 5 0.033 70 0.052 14 0.035 765 0.050 270 0.049
13 27 0.052 7 0.062 70 0.051 15 0.065 779 0.051 276 0.049
14 31 0.054 8 0.044 70 0.050 15 0.064 789 0.050 280 0.050
15 35 0.042 10 0.050 70 0.050 15 0.064 794 0.051 282 0.052

n = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.062 0 0.132 39 0.048 0 0.132 864 0.046 290 0.132
5 4 0.039 0 0.063 57 0.052 0 0.063 917 0.054 310 0.063
6 6 0.040 0 0.028 71 0.051 15 0.044 969 0.050 329 0.044
7 9 0.057 1 0.057 79 0.050 16 0.046 1018 0.051 347 0.043
8 11 0.051 1 0.027 87 0.050 17 0.049 1065 0.050 364 0.047
9 13 0.044 2 0.041 93 0.050 18 0.051 1109 0.050 380 0.052
10 16 0.051 3 0.053 97 0.048 19 0.053 1150 0.050 396 0.047
11 19 0.056 4 0.062 101 0.050 20 0.066 1188 0.051 410 0.052
12 21 0.045 5 0.067 104 0.051 20 0.052 1224 0.049 424 0.049
13 24 0.046 5 0.033 106 0.052 22 0.049 1256 0.050 436 0.052
14 27 0.046 6 0.034 107 0.049 22 0.042 1285 0.050 448 0.049
15 30 0.044 8 0.066 108 0.052 24 0.054 1310 0.050 458 0.050
16 34 0.052 9 0.060 108 0.050 24 0.049 1332 0.050 467 0.049
17 37 0.045 10 0.051 108 0.050 25 0.050 1350 0.050 474 0.051
18 41 0.048 11 0.039 108 0.050 25 0.050 1364 0.050 480 0.050
19 45 0.045 13 0.053 108 0.050 25 0.050 1374 0.050 484 0.051
20 50 0.046 15 0.055 108 0.050 25 0.050 1379 0.050 486 0.051

small. Therefore, we would reject H0 in (2.1) in favor of H1 in (2.2) for small
values of T1 and T2 in which the critical values can be determined for specific
values of k, r, ni, i = 1, 2, . . . , k, and pre-fixed level of significance α. Specifically,
{0 ≤ T1 ≤ cT1} and {0 ≤ T2 ≤ cT2} will serve as critical regions, where cT1 and
cT2 are determined such that

Pr(T1 ≤ cT1 |H0) = α and Pr(T2 ≤ cT2 |H0) = α. (2.15)
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Table 2.3. Near 5% critical values and exact levels of significance (l.o.s.) for
P1, P2, T1, T2, W1 and W2 with k = 3, n1 = 10, n2 = n3 = 15 and n1 = 15,
n2 = n3 = 20.

n1 = 10, n2 = n3 = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 3 0.052 0 0.031 19 0.050 7 0.052 353 0.050 179 0.052
5 5 0.050 1 0.041 25 0.050 8 0.046 376 0.051 192 0.041
6 7 0.042 2 0.040 28 0.050 9 0.039 397 0.047 203 0.048
7 10 0.049 3 0.033 30 0.049 10 0.054 414 0.049 213 0.046
8 13 0.048 5 0.050 32 0.052 10 0.037 428 0.049 221 0.046
9 17 0.058 7 0.058 32 0.049 12 0.063 438 0.049 226 0.053
10 21 0.052 9 0.048 32 0.049 12 0.063 443 0.051 230 0.048

n1 = 15, n2 = n3 = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 2 0.041 0 0.048 27 0.050 0 0.048 575 0.043 290 0.048
5 4 0.052 1 0.072 35 0.047 12 0.047 609 0.050 308 0.047
6 6 0.055 1 0.029 41 0.051 13 0.046 641 0.052 325 0.051
7 8 0.054 2 0.035 45 0.050 14 0.043 671 0.052 341 0.054
8 10 0.049 3 0.036 49 0.048 16 0.051 699 0.050 356 0.053
9 12 0.043 4 0.034 52 0.051 18 0.045 724 0.050 370 0.050
10 15 0.051 6 0.060 54 0.053 21 0.053 746 0.051 382 0.052
11 18 0.057 7 0.049 55 0.050 21 0.045 765 0.051 393 0.051
12 20 0.042 8 0.036 55 0.047 22 0.053 781 0.051 402 0.051
13 24 0.056 10 0.046 56 0.054 22 0.051 794 0.050 410 0.048
14 27 0.047 12 0.050 56 0.054 22 0.051 803 0.050 415 0.049
15 31 0.043 14 0.041 56 0.054 22 0.051 808 0.049 418 0.048

Table 2.4. Near 5% critical values and exact levels of significance (l.o.s.) for P1,
P2, T1, T2, W1 and W2 with k = 3, n1 = 10, n2 = n3 = n4 = 15 and n1 = 15,
n2 = n3 = n4 = 20.

n1 = 10, n2 = n3 = n4 = 15
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 5 0.047 0 0.043 32 0.049 0 0.043 528 0.050 180 0.043
5 8 0.045 1 0.056 40 0.051 7 0.038 562 0.051 192 0.058
6 12 0.051 2 0.054 45 0.047 9 0.054 592 0.051 204 0.050
7 16 0.051 3 0.045 49 0.049 9 0.033 618 0.049 214 0.050
8 20 0.044 5 0.067 51 0.050 10 0.052 638 0.051 222 0.053
9 26 0.055 6 0.039 51 0.047 10 0.042 653 0.050 229 0.046
10 32 0.050 9 0.063 51 0.047 11 0.042 661 0.050 232 0.050

n2 = 15, n2 = n3 = n4 = 20
P1 P2 T1 T2 W1 W2

r cP1 l.o.s. cP2 l.o.s. cT1 l.o.s. cT2 l.o.s. cW1 l.o.s. cW2 l.o.s.
4 4 0.046 0 0.067 43 0.052 0 0.067 860 0.052 290 0.067
5 7 0.055 0 0.025 56 0.050 11 0.041 911 0.052 309 0.041
6 10 0.057 1 0.041 66 0.050 12 0.040 959 0.051 326 0.052
7 13 0.055 2 0.049 73 0.049 14 0.061 1004 0.049 343 0.046
8 16 0.050 3 0.050 79 0.050 15 0.056 1045 0.049 358 0.050
9 20 0.056 4 0.047 83 0.050 16 0.050 1082 0.049 372 0.051
10 23 0.046 5 0.041 85 0.049 18 0.050 1114 0.051 385 0.049
11 27 0.046 7 0.066 87 0.050 20 0.055 1143 0.050 396 0.050
12 32 0.054 8 0.049 88 0.051 20 0.049 1166 0.051 406 0.048
13 36 0.046 10 0.062 88 0.050 20 0.045 1185 0.050 413 0.051
14 42 0.056 11 0.035 88 0.050 21 0.055 1198 0.050 419 0.048
15 48 0.054 14 0.054 88 0.050 21 0.055 1205 0.050 422 0.048
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The null distributions of the test statistics T1 and T2 can be expressed as

Pr(T1 = t1|H0)

=
n2∑

m(r)2=0

. . .

nk∑

m(r)k=0

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

m(r)i = t1

)

(2.16)

for t1 = 0, 1, . . . ,
∑k

i=2 ni, and

Pr(T2 = t2|H0)

=
n2∑

m(r)2=0

. . .

nk∑

m(r)k=0

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)I
(

min
2≤i≤k

m(r)i = t2

)

(2.17)

for t2 = 0, 1, . . . ,min2≤i≤k ni, where Pr(M(r)i = m(r)i|H0) is

Pr(M(r)i = m(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)I
(

max
1≤j≤r

(n1 − j + 1)mji = m(r)i, i = 2, . . . , k

)

.

(2.18)

From Equations (2.15)–(2.18), the critical values cT1 , cT2 and their exact levels
of significance as close as possible to α = 5% for k = 3, 4 with equal sample
sizes n1 = · · · = nk = n and r = 4(1)n were computed and are presented in
Tables 2.1 and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · =
nk = 15; n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented in
Tables 2.3 and 2.4.

2.3.3 Tests based on minimal Wilcoxon rank-sum
precedence statistic

Similarly, we propose test procedures based on minimal Wilcoxon rank-sum
precedence statistic for the testing problem discussed here. We set

W(r)i =
ni(ni + 2r + 1)

2
−

r∑

j=1

(r − j + 1)Mji for i = 2, 3, . . . , k (2.19)

for the minimal Wilcoxon rank-sum precedence statistic corresponding to the
sample from the (i − 1)-th treatment. We may then propose the minimal
Wilcoxon rank-sum precedence statistics as

W1 =
k∑

i=2

W(r)i
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and

W2 = max
2≤i≤k

W(r)i.

Under the stochastically ordered alternative H1 in (2.2), we would expect some
of the minimal Wilcoxon rank-sum precedence statistics W(r)i in (2.19) to be
large. Therefore, we would reject H0 in (2.1) in favor of H1 in (2.2) for large
values of W1 and W2 in which the critical values can be determined for specific
values of k, r, ni, i = 1, 2, . . . , k, and pre-fixed level of significance α. Specifically,
{W1 ≥ cW1} and {W2 ≥ cW2} will serve as critical regions, where cW1 and cW2

are determined such that

Pr(W1 ≥ cW1 |H0) = α and Pr(W2 ≥ cW2 |H0) = α. (2.20)

The null distributions of the test statistics W1 and W2 can be expressed as

Pr(W1 = w1|H0)

=
u2∑

w(r)2=l2

. . .

uk∑

w(r)k=lk

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)I

(
k∑

i=2

w(r)i = w1

)

(2.21)

for w1 = min2≤i≤k li, . . . ,max2≤i≤k ui, with li = ni(ni + 1)/2, ui = (r + ni)(r +
ni + 1)/2 − r(r + 1)/2, and

Pr(W2 = w2|H0)

=
u2∑

w(r)2=l2

. . .

uk∑

w(r)k=lk

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)I
(

max
2≤i≤k

w(r)i = w2

)

(2.22)

for w2 = min2≤i≤k li, . . . ,min2≤i≤k ui, where Pr(W(r)i = w(r)i|H0) is given by

Pr(W(r)i = w(r)i, i = 2, . . . , k|H0)

=
∑

m2

. . .
∑

mk

δ(m2, . . . ,mk)

×I

⎛

⎝ni(ni + 2r + 1)
2

−
r∑

j=1

(r − j + 1)mji = w(r)i, i = 2, . . . , k

⎞

⎠ .

(2.23)

From Equations (2.20)–(2.23), the critical values cW1 , cW2 and their exact levels
of significance as close as possible to α = 5% for k = 3, 4 with equal sample
sizes n1 = · · · = nk = n and r = 4(1)n were computed and are presented in
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Tables 2.1 and 2.2; similarly, for the unequal sample sizes n1 = 10, n2 = · · · =
nk = 15; n1 = 15, n2 = · · · = nk = 20 and r = 4(1)n1, the values are presented
in Tables 2.3 and 2.4.

2.4 Exact Power Under Lehmann Alternative

The Lehmann alternative H1 : [Fi(x)]γi = F1(x) for some γi, i = 2, . . . , k,
which was first proposed by Lehmann (1953), is a subclass of the alternative
H1 : Fi(x) > F1(x) when at least one γi ∈ (0, 1) (see Gibbons and Chakraborti,
2003). In this section, we will derive an explicit expression for the power func-
tions of the proposed test procedures under the Lehmann alternative.

When γ2 = · · · = γk = γ, for some γ ∈ (0, 1), under the Lehmann alternative
H1 : [Fi(x)]γ = F1(x), the probability mass function of (M2, . . . ,Mk) is (see
Appendix B)

δ∗(m2, . . . ,mk)
= Pr(M2 = m2, . . . ,Mk = mk|H1 : [Fi]γ = F1, i = 2, . . . , k)

=
γrn1!

(n1 − r)!

{
k∏

i=2

(
ni

m1i, m2i, . . . , mri, ni −
∑r

j=1 mji

)}

×

⎧
⎨

⎩

r−1∏

j=1

B (m1· + . . . + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×

⎧
⎨

⎩

n1−r∑

l=0

(
n1 − r

l

)

(−1)lB

⎛

⎝
r∑

j=1

mj· + (r + l)γ,
k∑

i=2

ni−
r∑

j=1

mj· + 1

⎞

⎠

⎫
⎬

⎭
,

(2.24)

where B(a, b) =
∫ 1
0 xa−1(1 − x)b−1dx is the complete beta function. Note that

the exact distribution of (M2, . . . ,Mk) under the general Lehmann alternative
H1 : [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · = [F2(x)]γ2 = [F1(x)] can also be obtained.
For the purpose of illustration, we present the result for k = 3 in Appendix B.

Under the Lehmann alternative, the probability mass functions of P1, P2, T1,
T2, W1 and W2 can be computed from Equations (2.10), (2.11), (2.16), (2.17),
(2.21) and (2.22), respectively, by replacing δ(m2, . . . ,mk) with δ∗(m2, . . . ,mk)
in Equations (2.12), (2.18) and (2.23). Here, we computed the power values
of the proposed test procedures for k = 3, 4 with n1 = · · · = nk = 10,
γ = 0.2(0.2)1.0, i = 2, . . . , k. Note that when γ = 1.0, the power values are
precisely the exact levels of significance. These results are presented in Tables
2.5 and 2.6.
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Table 2.5. Power values under Lehmann alternative for k = 3, n1 = n2 = n3 =
10, r = 4(1)10 and γ2 = γ3 = γ = 0.2(0.2)1.0.

γ = 1.0 r P1 P2 T1 T2 W1 W2

4 0.031 0.079 0.047 0.079 0.058 0.079
5 0.056 0.031 0.047 0.050 0.051 0.050
6 0.039 0.052 0.045 0.050 0.049 0.045
7 0.045 0.063 0.048 0.061 0.048 0.044
8 0.045 0.062 0.050 0.043 0.052 0.052
9 0.062 0.051 0.051 0.037 0.051 0.054
10 0.038 0.029 0.051 0.037 0.050 0.048

γ = 0.8 r P1 P2 T1 T2 W1 W2

4 0.084 0.163 0.112 0.163 0.147 0.163
5 0.133 0.073 0.115 0.114 0.134 0.114
6 0.095 0.113 0.105 0.114 0.132 0.106
7 0.102 0.126 0.105 0.131 0.129 0.106
8 0.094 0.118 0.104 0.094 0.134 0.120
9 0.112 0.092 0.106 0.082 0.130 0.121
10 0.065 0.051 0.106 0.081 0.125 0.108

γ = 0.6 r P1 P2 T1 T2 W1 W2

4 0.221 0.334 0.263 0.334 0.346 0.334
5 0.302 0.181 0.271 0.261 0.329 0.261
6 0.231 0.246 0.240 0.259 0.326 0.252
7 0.229 0.255 0.229 0.277 0.319 0.252
8 0.202 0.229 0.219 0.208 0.323 0.275
9 0.208 0.174 0.219 0.181 0.311 0.273
10 0.118 0.094 0.218 0.181 0.299 0.246

γ = 0.4 r P1 P2 T1 T2 W1 W2

4 0.524 0.632 0.564 0.632 0.691 0.632
5 0.612 0.438 0.567 0.557 0.678 0.557
6 0.514 0.515 0.510 0.548 0.673 0.554
7 0.488 0.505 0.480 0.544 0.661 0.553
8 0.422 0.445 0.445 0.435 0.657 0.575
9 0.390 0.340 0.433 0.385 0.636 0.563
10 0.224 0.186 0.432 0.383 0.617 0.522

γ = 0.2 r P1 P2 T1 T2 W1 W2

4 0.918 0.945 0.926 0.945 0.973 0.945
5 0.940 0.859 0.917 0.923 0.970 0.923
6 0.893 0.886 0.879 0.907 0.967 0.924
7 0.858 0.859 0.845 0.877 0.962 0.920
8 0.784 0.792 0.793 0.779 0.957 0.922
9 0.703 0.658 0.757 0.712 0.948 0.910
10 0.455 0.407 0.756 0.705 0.939 0.886

2.5 Discussion

The results in Tables 2.5 and 2.6 show that the test procedures can detect the
difference between two distributions effectively in most cases early in the life-
testing experiment. Note that the desired level of significance may be impossible
to attain for some test statistics when r is small, especially for the tests based on
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Table 2.6. Power values under Lehmann alternative for k = 4, n1 = · · · = n4 =
10, r = 4(1)10 and γ2 = γ3 = γ4 = γ = 0.2(0.2)1.0.

γ = 1.0 r P1 P2 T1 T2 W1 W2

4 0.052 0.109 0.050 0.109 0.050 0.109
5 0.050 0.044 0.051 0.044 0.051 0.044
6 0.042 0.073 0.049 0.043 0.047 0.043
7 0.049 0.027 0.050 0.040 0.049 0.045
8 0.048 0.030 0.049 0.061 0.049 0.045
9 0.058 0.070 0.052 0.053 0.049 0.050
10 0.052 0.040 0.052 0.053 0.051 0.046

γ = 0.8 r P1 P2 T1 T2 W1 W2

4 0.135 0.216 0.127 0.216 0.141 0.216
5 0.128 0.102 0.128 0.102 0.146 0.155
6 0.108 0.151 0.119 0.102 0.136 0.102
7 0.114 0.063 0.118 0.094 0.140 0.107
8 0.105 0.066 0.113 0.129 0.137 0.107
9 0.110 0.122 0.118 0.113 0.128 0.116
10 0.088 0.067 0.118 0.113 0.136 0.106

γ = 0.6 r P1 P2 T1 T2 W1 W2

4 0.326 0.416 0.309 0.416 0.358 0.416
5 0.307 0.238 0.304 0.238 0.368 0.332
6 0.263 0.310 0.279 0.244 0.351 0.247
7 0.257 0.156 0.267 0.223 0.354 0.258
8 0.225 0.152 0.251 0.269 0.344 0.255
9 0.210 0.219 0.255 0.238 0.322 0.265
10 0.152 0.120 0.254 0.238 0.330 0.244

γ = 0.4 r P1 P2 T1 T2 W1 W2

4 0.665 0.719 0.645 0.719 0.723 0.719
5 0.633 0.525 0.621 0.525 0.733 0.645
6 0.566 0.596 0.577 0.541 0.714 0.549
7 0.533 0.381 0.541 0.489 0.710 0.564
8 0.461 0.349 0.507 0.519 0.692 0.553
9 0.400 0.400 0.500 0.468 0.662 0.556
10 0.273 0.226 0.499 0.467 0.664 0.520

γ = 0.2 r P1 P2 T1 T2 W1 W2

4 0.964 0.969 0.960 0.969 0.981 0.969
5 0.950 0.906 0.943 0.906 0.981 0.953
6 0.918 0.921 0.916 0.914 0.977 0.922
7 0.884 0.794 0.879 0.857 0.974 0.924
8 0.814 0.730 0.841 0.833 0.968 0.913
9 0.717 0.710 0.816 0.776 0.958 0.906
10 0.510 0.456 0.815 0.772 0.956 0.882

extrema (viz., P2, T2 and W2). For instance, for k = 4, n1 = n2 = n3 = n4 = 20
and r = 4, the minimum level of significance attainable by the tests based on
P2, T2 and W2 are all equal to 0.132. It is, therefore, not possible to test the
hypotheses in (2.1) at 5% level in this setting based on P2, T2 and W2. For this
reason, the tests based on the extrema of the precedence statistics from the
treatments may not be applicable for small values of r in practice.

From Tables 2.5 and 2.6, we can observe that the power values of the tests
increase with the number of treatments (i.e., k− 1) as expected, but the power
values do not increase with r under Lehmann alternatives. We can also see that
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the tests based on precedence statistics (P1 and P2) suffer from the masking
effect. In other words, the power values of P1 and P2 decrease as r increases and
the information given by a larger value of r is thus being masked. The tests based
on weighted maximal precedence statistics (T1 and T2) and minimal Wilcoxon
rank-sum precedence statistics (W1 and W2) reduce the masking effect that
affects the performance of P1 and P2.

In comparing the power performance of tests based on the sum of the prece-
dence statistics from the treatments (viz., P1, T1 and W1) with those based on
the extrema of the precedence statistics from the treatments (viz., P2, T2 and
W2), we observe that the former have better power performance than the latter.
Furthermore, among all the tests discussed here, the test based on the sum of
minimal Wilcoxon rank-sum precedence statistics among treatments (viz., W1)
seems to give overall the best power performance under the Lehmann alterna-
tive, and hence is the one that we recommend for the problem discussed here.

Further, the decrease in power values with increasing r also suggests that
the test procedures based on the order of early failures can be more powerful
than those based on a complete sample. In fact, r (≤ n1) need not be large to
provide reliable comparison between treatments and the control. This can save
both time and experimental units in a life-testing experiment, which are clear
advantages of precedence-type tests. One may be interested in maximizing the
power with respect to r, i.e., to determine the best choice of r in designing
the experiment. When prior information about the alternative is available, this
task can be achieved by comparing the power values for different values of r.
For example, for k = 4, n1 = n2 = n3 = n4 = 10, if prior information suggests
γ = 0.4 for the Lehmann alternative, we would recommend the use of W1 with
r = 6 based on the power values presented in Table 2.6.

2.6 Illustrative Example

Let us consider X2, X3 and X1 samples to be the data on appliance cord life
in flex tests 1, 2 and 3, respectively, of Nelson (1982, p. 510). These three tests
were done using two types of cord, viz., B6 and B7, where flex tests 1 and 2 were
done with cord type B6 and test 3 was done with cord type B7. Suppose cord B7
was the standard production cord and B6 was proposed as a cost improvement.
We will then be interested in testing the equality of the lifetime distributions
of these cords. For these data, we have k = 3, n1 = n2 = n3 = 12. Had we fixed
r = 8, the experiment would have stopped as soon as the eighth failure from
the X1-sample (cord B7) had been observed, i.e., at 128.7 hours. The data are
presented in Table 2.7. The observed values of (m1i, . . . , m8i) and the values of
the statistics P(8)i, M(8)i and W(8)i, i = 2, 3, are presented in Table 2.8.
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Table 2.7. Appliance cord life data from Nelson (1982, p. 510) (∗ denotes cen-
sored observations).

Test 1 (X2)
Cord B6 96.9 100.3 100.8 103.3 103.4 105.4 122.6 ∗ ∗ ∗ ∗ ∗

Test 2 (X3)
Cord B6 57.5 77.8 88.0 98.4 102.1 105.3 ∗ ∗ ∗ ∗ ∗ ∗

Test 3 (X1)
Cord B7 72.4 78.6 81.2 94.0 120.1 126.3 127.2 128.7 ∗ ∗ ∗ ∗

Table 2.8. Values of (m1i, . . . , m8i) and the statistics P(8)i, M(8)i and W(8)i for
i = 2, 3.

m1i m2i m3i m4i m5i m6i m7i m8i P(8)i M(8)i W(8)i

i = 2 0 0 0 0 6 1 0 0 7 48 147
i = 3 1 1 0 1 3 0 0 0 6 24 142

The near 5% critical values for k = 3, n1 = n2 = n3 = 12 and r = 8 and
their exact level of significance (in parentheses) for the test procedures discussed
in the preceding sections are as follows:

P1: 8 (0.061), P2: 2 (0.033), T1: 29 (0.048), T2: 10 (0.044),
W1: 317 (0.052), W2: 164(0.056).

Then the test statistics and their p-values are

P1 = 13 (p-value = 0.363), P2 = 6 (p-value = 0.491),
T1 = 72 (p-value = 0.813), T2 = 24 (p-value = 0.697),
W1 = 289 (p-value = 0.398), W2 = 147 (p-value = 0.507),

and so we will not reject the null hypothesis that the lifetime distributions of
these cords are equal. This means that the cord B6 is not better than the cord
B7. Incidentally, this finding agrees with that of Nelson (1982), who analyzed
these data by assuming a normal model.

Appendix A: Probability Mass Function
of (M2, . . . , M k) Under the Null Hypothesis

Let the ordered failures from the control be x1 < x2 < · · · < xr. Consider
the (i − 1)-th treatment, conditional on the failures from the control. Then,
the probability that there are m1i failures from the treatment before x1 and
mji failures between xj−1 and xj , j = 2, . . . , r, is given by the multinomial
probability
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Pr (M i = mi|x1, . . . , xr)
= Pr (M1i = m1i, . . . , Mri = mri|x1, . . . , xr)

=
(

ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)

×[Fi(x1)]m1i

⎧
⎨

⎩

r∏

j=2

[Fi(x2) − Fi(x1)]mji

⎫
⎬

⎭
[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)

.

For fixed values of x1 < x2 < · · · < xr, due to the independence of the samples
from the (k−1) treatments, we readily have the conditional joint probability as

Pr (M2 = m2, . . . ,Mk = mk|x1, . . . , xr)

=

{
k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)}

×
{

k∏

i=2

[Fi(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[Fi(xj) − Fi(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭
.

Now, we have the joint density of the first r order statistics from the control as

f1,...,r:n1(x1, . . . , xr) =
n1!

(n1 − r)!

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−r, x1 < . . . < xr.

As a result, we obtain the unconditional probability of (M2 = m2, . . . ,Mk =
mk) as

Pr (M2 = m2, . . . ,Mk = mk)

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[Fi(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[Fi(xj) − Fi(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − Fi(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

×

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−rdx1 · · · dxr, (2.25)
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where

C =
n1!

(n1 − r)!

k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)

.

Under the null hypothesis, H0 : F1(x) = F2(x) = · · · = Fk(x), by denoting
mj· =

∑k
i=2 mji, the expression in (2.25) becomes

Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[F1(x1)]m1i

}⎧
⎨

⎩

k∏

i=2

r∏

j=2

[F1(xj)−F1(xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − F1(xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

×

⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ [1 − F1(xr)]n1−rdx1 · · · dxr

= C

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[F1(x1)]m1·

⎧
⎨

⎩

r∏

j=2

[F1(xj) − F1(xj−1)]mj·

⎫
⎬

⎭

×[1 − F1(xr)]

(
k∑

i=1
ni−

r∑

j=1
mj·−r

) ⎡

⎣
r∏

j=1

f1(xj)

⎤

⎦ dx1 · · · dxr.

Upon setting ui = F1(xi) for i = 1, . . . , r, the above expression becomes

Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

m1·
1

[
k∏

i=2

(uj − uj−1)mj·
]

×(1 − ur)

(
k∑

i=1
ni−

r∑

j=1
mj·−r

)

du1 · · · dur.

Using the transformation w1 = u1/u2, we have
∫ u2

0
u

m1·
1 (u2 − u1)m2·du1 = u

m1·+m2·
2

∫ 1

0
w

m1·
1 (1 − w1)m2·dw1

= u
m1·+m2·+1
2 B(m1· + 1, m2· + 1),

where, as before, B(a, b) =
∫ 1
0 xa−1(1 − x)b−1dx is the complete beta func-

tion. Proceeding similarly and using the transformations wl = ul/ul+1 for
l = 2, . . . , r − 1, we obtain
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Pr (M2 = m2, . . . ,Mk = mk|H0)

= C

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + j, mj+1· + 1)

⎫
⎬

⎭

×
∫ 1

0
u

(
r∑

j=1
mj·+r+1

)

r (1 − ur)

(
k∑

i=1
ni−

r∑

j=1
mj·−r

)

dur

= C

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + j, mj+1· + 1)

⎫
⎬

⎭

×B

⎛

⎝
r∑

j=1

mj· + r,
k∑

i=1

ni −
r∑

j=1

mj· − r + 1

⎞

⎠

=
n1!

(n1 − r)!

{
k∏

i=2

(
ni

m1i, . . . , mri, ni −
∑r

j=1 mji

)}

×

(
k∑

i=1
ni −

r∑

j=1
mj· − r

)

!m1·! . . .mr·!
(

k∑

i=1
ni

)

!

=
1

( ∑k
i=1 ni

n1, . . . , nk

)

⎧
⎨

⎩

r∏

j=1

(
mj·

mj2, . . . , mjk

)
⎫
⎬

⎭

×
( ∑k

i=1 ni −
∑r

j=1 mj· − r

n1 − r, n2 −
∑r

j=1 mj2, . . . , nk −
∑r

j=1 mjk

)

.

Appendix B: Probability Mass Function
of (M2, . . . , M k) Under the Lehmann Alternative

Under the Lehmann alternative H1: [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · =
[F2(x)]γ2= F1(x), for some γi ∈ (0, 1), the expression in (2.25) can be ex-
pressed as follows:
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Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γk

k = · · · = F γ2
2 = F1

)

= Cγr
k

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞

{
k∏

i=2

[Fk(x1)]m1iγk/γi

}

×

⎧
⎨

⎩

k∏

i=2

r∏

j=2

[F γk/γi

k (xj) − F
γk/γi

k (xj−1)]mji

⎫
⎬

⎭

×

⎧
⎪⎨

⎪⎩

k∏

i=2

[1 − F
γk/γi

i (xr)]

(

ni−
r∑

j=1
mji

)⎫
⎪⎬

⎪⎭

⎡

⎣
r∏

j=1

F γk−1
k (xj)

⎤

⎦

×

⎡

⎣
r∏

j=1

fk(xi)

⎤

⎦ [1 − F γk
k (xr)]n1−rdx1 · · · dxr. (2.26)

In the special case when γi = γ for i = 2, . . . , k, the expression in (2.26) can
be simplified as

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[Fk(x1)]m1·+γ−1

×

⎧
⎨

⎩

r∏

j=2

F γ−1
k (xj)[Fk(xj) − Fk(xj−1)]mj·

⎫
⎬

⎭

×[1 − Fk(xr)]

(
k∑

i=2
ni−

r∑

j=1
mj·

) ⎡

⎣
r∏

j=1

fk(xi)

⎤

⎦ [1 − F γ
k (xr)]n1−rdx1 · · · dxr.

Upon setting ui = Fk(xi) for i = 1, . . . , r, the above expression becomes

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

m1·+γ−1
1

⎧
⎨

⎩

r∏

j=2

uγ−1
j (uj − uj−1)mj·

⎫
⎬

⎭

×(1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)

(1 − uγ
r )n1−rdx1 · · · dxr.
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Adopting an approach similar to the one used in Appendix A, we obtain

Pr
(
M2 = m2, . . . ,Mk = mk|H1 : F γ

k = · · · = F γ
2 = F1

)

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
∫ 1

0
u

(
r∑

j=1
mj·+rγ+1

)

r (1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)

(1 − uγ
r )n1−rdur

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
[

n1−r∑

l=0

(
n1 − r

l

)

(−1)l

×
∫ 1

0
u

(
r∑

j=1
mj·+rγ+1+lγ

)

r (1 − ur)

(
k∑

i=2
ni−

r∑

j=1
mj·

)
]

dur

= Cγr

⎧
⎨

⎩

r−1∏

j=1

B (m1· + · · · + mj· + jγ, mj+1· + 1)

⎫
⎬

⎭

×
n1−r∑

l=0

(
n1 − r

l

)

(−1)lB

⎛

⎝
r∑

j=1

mj· + (r + l)γ,
k∑

i=2

ni −
r∑

j=1

mj· + 1

⎞

⎠ .

The exact distribution of (M2, . . . ,Mk), under the general Lehmann alterna-
tive H1 : [Fk(x)]γk = [Fk−1(x)]γk−1 = · · · = [F2(x)]γ2 = F1(x), can be derived in
a similar manner by expanding each term by the binomial formula, and the final
expression would then involve multiple summation. For purposes of illustration,
we present the result for k = 3. In this case, we have from Equation (2.26)

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

∫ ∞

−∞

∫ xr

−∞
. . .

∫ x2

−∞
[F3(x1)]m12γ3/γ2 [F3(x1)]m13

×

⎧
⎨

⎩

r∏

j=2

[F γ3/γ2

3 (xj) − F
γ3/γ2

3 (xj−1)]mj2

⎫
⎬

⎭

⎧
⎨

⎩

r∏

j=2

[F3(xj) − F3(xj−1)]mj3

⎫
⎬

⎭

×[1 − F
γ3/γ2

3 (xr)]

(

n2−
r∑

j=1
mj2

)

[1 − F3(xr)]

(

n3−
r∑

j=1
mj3

)

×

⎧
⎨

⎩

r∏

j=1

[F3(xi)]γ3−1f3(xi)

⎫
⎬

⎭
[1 − F γ3

3 (xr)]n1−rdx1 · · · dxr.
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Upon setting ui = F3(xi) for i = 1, . . . , r, the preceding expression becomes

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

∫ 1

0

∫ ur

0
. . .

∫ u2

0
u

(
m12γ3

γ2
+m13+γ3−1

)

1

×

⎧
⎨

⎩

r∏

j=2

uγ3−1
j

(
u

γ3/γ2

j − u
γ3/γ2

j−1

)mj2

(uj − uj−1)
mj3

⎫
⎬

⎭

×
(
1 − uγ3/γ2

r

)
(

n2−
r∑

j=1
mj2

)

(1 − ur)

(

n3−
r∑

j=1
mj3

)

du1 · · · dur.

The first integral with respect to u1 can be expressed as

∫ u2

0
u

(
m12

γ3
γ2

+m13+γ3−1
)

1

(
u

γ3/γ2

2 − u
γ3/γ2

1

)m22

(u2 − u1)
m23 du1

=
∫ u2

0
u

(
m12γ3

γ2
+m13+γ3−1

)

1

×

⎧
⎨

⎩

m22∑

l1=0

(
m22

l2

)

(−1)l1u
(m22−l1)

γ3
γ2

2 u

(
l1γ3
γ2

)

1

⎫
⎬

⎭
(u2 − u1)

m23 du1

= u

(
(m12+m22)

γ3
γ2

+(m13+m23)+γ3−1
)

2

×
m22∑

l1=0

(
m22

l2

)

(−1)l1B

(

(m12 + l1)
γ3

γ2
+ m13 + γ3, m23 + 1

)

.

Similarly, the j-th integral with respect to uj (j = 2, . . . , r − 1) becomes

u

(
(m12+...+m(j+1)2)

γ3
γ2

+(m13+...+m(j+1)3)+γ3−1
)

j+1

×
m(j+1)2∑

lj=0

(
m(j+1)2

lj

)

(−1)lj

×B

(

(m12 + · · · + mj2 + lj)
γ3

γ2
+ (m13 + · · · + mj3)γ3, m(j+1)3 + 1

)

,
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while the last integral with respect to ur becomes

∫ ur

0
u

((
r∑

j=1
mj2

)
γ3
γ2

+

(
r∑

j=1
mj3

)

+γ3−1

)

r (1 − uγ3/γ2
r )

(

n2−
r∑

j=1
mj2

)

×(1 − ur)

(

n3−
r∑

j=1
mj3

)

(1 − uγ3
r )n1−rdur

=

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

(
n2 −

∑r
j=1 mj2

lr

)(
n1 − r

l

)

(−1)lr+l

×
∫ 1

0
u

((
r∑

j=1
mj2

)
γ3
γ2

+

(
r∑

j=1
mj3

)

+γ3−1+lr
γ3
γ2

+lγ3

)

r (1 − ur)
n3−

r∑

j=1
mj3

dur

=

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

(
n2 −

∑r
j=1 mj2

lr

)(
n1 − r

l

)

(−1)lr+l

×B

⎛

⎝

⎛

⎝
r∑

j=1

mj2 + lr

⎞

⎠ γ3

γ2
+

⎛

⎝
r∑

j=1

mj3

⎞

⎠ + (l + 1)γ3, n3−
r∑

j=1

mj3 + 1

⎞

⎠ .

Combining all these expressions, we finally obtain

Pr (M2 = m2, M3 = m3|H1 : F γ3
3 = F γ2

2 = F1)

= Cγr
3

m22∑

l1=0

. . .

mr2∑

lr−1=0

n2−
r∑

j=1
mj2

∑

lr=0

n1−r∑

l=0

⎧
⎨

⎩

r∏

j=2

(
mj2

lj−1

)
⎫
⎬

⎭

×
(

n2 −
∑r

j=1 mj2

lr

)(
n1 − r

l

)

(−1)

(
r∑

j=1
lj+l

)

×

⎧
⎨

⎩

r∏

j=2

B

((
j∑

l∗=1

ml∗2 + lj

)
γ3

γ2
+

(
j∑

l∗=1

ml∗3

)

γ3, m(j+1)3 + 1

)⎫
⎬

⎭

×B

⎛

⎝

⎛

⎝
r∑

j=1

mj2 + lr

⎞

⎠ γ3

γ2
+

⎛

⎝
r∑

j=1

mj3

⎞

⎠+ (l + 1)γ3, n3−
r∑

j=1

mj3 + 1

⎞

⎠ .
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Extreme Value Results for Scan Statistics
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Piraeus, Greece

Abstract: In the first part of this chapter we focus on the classical scan and
multiple scan statistic, defined on a sequence of independent and identically
distributed (i.i.d.) binary trials and review a number of bounds and approxi-
mations for their distributions which have been developed by the aid of distance
measures. Moreover, we discuss briefly a number of asymptotic results that have
been established by setting up appropriate conditions guaranteeing the conver-
gence (to zero) of the distance measures’ upper bounds. In the second part,
we study a multiple scan statistic enumerating variable by considering a gen-
eral threshold-based framework, defined on i.i.d. continuous random variables.
More specifically, we first prove a compound Poisson approximation for the total
number of fixed length overlapping moving windows containing a prespecified
number of threshold exceedances. The classical scan and multiple scan statistic
may be treated as a special case of this general model. Next we exploit the
previous result to gain some new extreme value results for the scan enumerat-
ing statistic under the assumption that the continuous random variables belong
to the maximum domain of attraction of one of the three extreme value dis-
tributions (Fréchet, reversed Weibull, Gumbel). Finally, we elucidate how the
general results can be applied in a number of classical continuous distributions
(Pareto, uniform, exponential and normal).

Keywords and phrases: Scan, multiple scan statistic, Poisson and compound
Poisson approximation, Erdős–Rényi statistic, extreme value theory, maximum
domain of attraction, moving sums and exceedances

3.1 Introduction

The discrete scan statistic Sn,k in a sequence of n binary trials (1: success, 0: fail-
ure) has been defined as the maximum number of successes within any k consec-
utive trials (n and k are two positive integers with k ≤ n). Due to its widespread
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and Technology, DOI 10.1007/978-0-8176-4749-0 3,
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applicability in an abundance of research areas such as quality control, actuar-
ial science, reliability theory, molecular biology, etc. it has been an attractive
subject of continuing research interest for the past few decades; see e.g. the
monographs by Balakrishnan and Koutras (2002) Glaz, Naus and Wallenstein
(2001) and the special issue edited by Glaz and Balakrishnan (1999).

An instance where Sn,k arises in quite a natural way is in randomness tests
when the null hypothesis of uniformity and independence of a sequence of binary
observations Xi, i = 1, 2, . . . , n is to be tested against the alternative hypothesis
of clustering of 1’s due to local dependence between Xi, i = 1, 2, . . . , n or due to
the existence of subsequences of consecutive Xi with P (Xi = 1) > p. As Glaz
and Naus (1991) indicated, the generalized likelihood ratio test for checking
the hypothesis of uniformity rejects the null hypothesis of uniformity whenever
Sn,k ≥ c, with the value of c being determined by the significance level of the
test. Apparently, the evaluation of c such that a prespecified significance level
is achieved calls for the distribution of the test statistic Sn,k. Since randomness
tests are frequently applied to large data sets, theoretical developments related
to the asymptotic distribution of Sn,k (as n, k → ∞) will play a primary role
in the analysis of the test.

In an actuarial context, let us consider a portfolio with n daily claims and de-
note by Xi, i = 1, 2, . . . , n the binary variable describing whether the i-th claim
exceeds a threshold u > 0 (Xi = 1) or not (Xi = 0). Then Sn,k will describe
the maximum number of “large claims” (i.e. claims exceeding threshold u) in
a period of k consecutive days. The primary interest in this situation is also
focused on extremely long periods (n, k → ∞), and therefore one should look
at the asymptotic distribution of Sn,k.

Exact results for the distribution of the scan statistic were discussed in Fu
(2001), Balakrishnan and Koutras (2002) and Fu and Lou (2003). Since the
evaluation of the exact distribution is computationally intractable, especially
for large values of the parameters n, k, several approximations and bounds have
been developed during the last decades.

Another random variable closely related to Sn,k is the number of occur-
rences of k consecutive trials which contain at least r successes among them.
If we denote by Wn,k,r the resulting (overlapping) enumerating variable when
a sequence of n trials is realized, it is clear that the probability mass function
of Wn,k,r at 0 coincides with the quantity P (Sn,k < r) i.e.

P (Wn,k,r = 0) = P (Sn,k < r).

The statistic Wn,k,r is referred to in the statistical literature under the name
multiple scan statistic. Balakrishnan and Koutras (2002) have introduced two
additional enumeration schemes for scan occurrence counting. They have used
the terminology “type III enumeration” for the overlapping scheme’, and the
terms “type I” and “type II” for the non-overlapping counting schemes. In this
chapter we shall restrict our discussion to the overlapping scheme only.
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Although quite accurate approximations are available by now for the prob-
ability mass function of Wn,k,r at 0 (for a review see Chen and Glaz (1999)),
when the question comes to the whole distribution of Wn,k,r the problem be-
comes extremely complex. Koutras and Alexandrou (1995) have described a
method to obtain the exact distribution of Wn,k,r by invoking a Markov chain
embedding technique; however, this approach becomes unwieldy for k and r of
moderate size, while its computational complexity for large k, r and n renders
the whole procedure non-feasible. Therefore, the development of asymptotic
results for the distribution of Wn,k,r is of special interest.

In this chapter we review some asymptotic results on the scan and multiple
scan statistic. In Section 3.2 we introduce all necessary notation and some
notions that will be used in the subsequent sections. The scan and multiple
scan statistic is introduced in a threshold-based framework, and the classical
binary statistics are viewed as special cases of the general model. An alternative
realization of the multiple scan statistic in terms of order statistics is given
as well.

Section 3.3 deals with the (binary) discrete scan statistic and multiple scan
statistic. We review first (Subsection 3.3.1) a number of bounds and approxi-
mations which have been developed by the aid of distance measures between
discrete distributions. Note that we have confined ourselves to techniques of-
fering error bounds, so that the establishment of convergence theorems will be
easily achieved (Subsection 3.3.2). Section 3.3 is completed by providing a num-
ber of extreme value results for the discrete scan statistic (Subsection 3.3.3).

In Section 3.4 we present several results for the multiple scan statistic un-
der the threshold exceedance framework. A compound Poisson approximation is
first established (Subsection 3.4.1); this result is subsequently used in Subsection
3.4.2 to derive extreme value results for the multiple scan statistic under the
assumption that the random variables (whose threshold exceedances are stud-
ied) are belonging to the maximum domain of attraction of the three classical
extreme value distributions (Fréchet, reversed Weibull, Gumbel). Finally, in
Subsection 3.4.3, we present applications of the general results in a number of
typical continuous distributions (Pareto, uniform, exponential and normal).

3.2 Definitions and Notation

Let Y1, Y2, . . . , Yn be a sequence of independent and identically distributed (i.i.d)
continuous random variables with cumulative distribution function F and de-
note by Xi(u) the indicator variable
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Xi(u) = I(u,∞)(Yi) =
{

1, if Yi > u
0, if Yi ≤ u

, i = 1, 2, . . . , n.

The quantity u ∈ � is a fixed threshold which is exceeded by Yi with probability

p = P (Xi(u) = 1) = E(Xi(u)) = P (Yi > u) = F (u),

where F denotes the tail probability of Yi. Considering all the moving windows
of length k in the sequence Y1, Y2, . . . , Yn, namely,

Yi, Yi+1, . . . , Yi+k−1, i = 1, 2, . . . , n − k + 1,

we may introduce the k-scan exceedance process as follows:

S
(i)
k (u) =

i+k−1∑

j=i

Xj(u) =
i+k−1∑

j=i

I(u,∞)(Yj), i = 1, 2, . . . , n − k + 1.

Manifestly, S
(i)
k denotes the number of random variables, among Yi, Yi+1,. . .,

Yi+k−1, whose value exceeds threshold u, while

Sn,k(u) = max
1≤i≤n−k+1

S
(i)
k (u) = max

1≤i≤n−k+1

i+k−1∑

j=i

Xj(u)

expresses the maximum number of exceedance occurrences among all possible
moving windows of length k, in the sequence Y1, Y2, . . . , Yn. A closely related
random variable is

Wn,k,r(u) =
n−k+1∑

i=1

I[r,∞)(S
(i)
k (u)),

which enumerates the total number of overlapping moving windows of length k
in which the threshold exceedances are at least r. It is plain from the previous
definitions that

P (Wn,k,r(u) = 0) = P (Sn,k(u) < r).

There is an interesting connection between the variables Wn,k,r(u), Sn,k(u) and
moving order statistics of the original sample Y1, Y2, . . . , Yn. To elucidate this,
let us first arrange the observations of the i-th moving window (of length k)
Yi, Yi+1, . . . , Yi+k−1 in descending order and denote by Y

(i)
r:k the r-th larger

observation, i.e.

Y
(i)
1:k ≥ Y

(i)
2:k ≥ . . . ≥ Y

(i)
k:k .
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For fixed r, consider next the random variables Y
(1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k , arrange

them again in descending order and denote by Ym:r:k the m-th larger among
them, that is

Y1:r:k ≥ Y2:r:k ≥ · · · ≥ Yn−k+1:r:k.

In particular, for m = 1 and m = n − k + 1 we may write

Y1:r:k = max(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ),

Yn−k+1:r:k = min(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ).

We mention that the parameter n has been suppressed in the last notation. If n
is not fixed (e.g. if we wish to investigate the asymptotic behavior as n → ∞), we
shall use the notation Ym:r:k(n) instead of Ym:r:k. The cumulative distribution
function of Ym:r:k(n) can be readily expressed in terms of the distribution of
Wn,k,r(u) as follows:

P (Ym:r:k(n) ≤ u) = P (at most m − 1 of Y
(1)
r:k , . . . , Y

(n−k+1)
r:k exceed u)

= P (
n−k+1∑

i=1

I(u,∞)(Y
(i)
r:k ) < m)

= P (
n−k+1∑

i=1

I[r,∞)(
i+k−1∑

j=i

I(u,∞)(Yj)) < m)

= P (
n−k+1∑

i=1

I[r,∞)(S
(i)
k (u)) < m)

= P (Wn,k,r(u) < m). (3.1)

As a consequence, the cumulative distribution function of the maximum of the
moving window order statistics Y

(1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k is given by the proba-

bility mass function of Wn,k,r(u) at zero, namely

P (max(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ) ≤ u) = P (Wn,k,r(u) = 0). (3.2)

Note that the maximum appearing above is over a set of dependent variables,
since Y

(i)
r;k involve order statistics over overlapping sets of variables.

Note also that the notation used here for the order statistics is slightly
different from the one used in traditional order statistics books (see e.g. Arnold
and Balakrishnan (1989) and David and Nagaraja (2003)); by our notation,
the r-th order statistic refers to the r-th largest observation instead of the r-th
smallest.

Let us next consider the special case where the random variables Yi follow
the uniform distribution on (0, 1) and set u = 1−p where 0 < p < 1. Then Xi(u)
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becomes a Bernoulli variable, say Xi, with success probability p and Sn,k(u)
reduces to the binary discrete scan statistic Sn,k mentioned in the Introduction.

In this chapter we shall make use of the term threshold-based scan statistic
to refer to the general model and binary scan statistic to refer to the special
case where Xi are i.i.d. Bernoulli variables with common success probabilities p.
In the latter case, the following notation will be practiced:

S
(i)
k =

i+k−1∑

j=i

Xj , i = 1, 2, . . . , n − k + 1,

Sn,k = max
1≤i≤n−k+1

S
(i)
k ,

Wn = Wn,k,r =
n−k+1∑

i=1

I[r,∞)(S
(i)
k ).

The notation ∼, O(·) will assume their usual meaning, i.e.

f(t) ∼ g(t) as t → t0 if lim
t→t0

f(t)
g(t)

= 1,

f(t) = O(g(t)) if
f(t)
g(t)

is bounded.

3.3 The Binary Scan Statistic

In this section we present several results for the binary discrete scan statistic
Sn,k and the binary multiple scan statistic Wn,k,r. In Subsection 3.3.1 we review
several bounds and approximations that have been suggested for deriving accu-
rate estimates of the distributions of the binary scan statistics when n is large.
Most of them use an appropriate Poisson or compound Poisson approximation
along with efficient error bounds for the distance between the exact and approx-
imating distribution. Although another class of approximations which exploits
a product-type formula is available in the literature, it will not be covered here,
since usually these approximations do not offer error estimates and therefore no
asymptotic (convergence) results can be achieved. The interested reader may
refer to the monograph by Glaz, Naus and Wallenstein (2001) for a detailed
presentation of product-type approximations.

A very popular method for establishing Poisson approximations for sums
of (potentially) dependent Bernoulli random variables is the celebrated Chen–
Stein method; see Arratia, Goldstein and Gordon (1990) or the monograph by
Barbour, Holst and Janson (1992). This method can be used to compute an
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upper bound for the total variation distance between the law L(Wn,k,r) of the
random variable Wn,k,r and a Poisson distribution Po(λ), i.e.

dTV (L(Wn,k,r), Po(λ)) = sup
A

|P (Wn,k,r ∈ A) − P (Zλ ∈ A)| ,

where Zλ is a random variable following the Poisson distribution with E(Zλ) =
λ > 0, and A is any subset of non-negative integers.

Since the scan enumerating variable Wn,k,r takes into account clusters of
consecutive trials with a high concentration of successes and these events tend
to occur in clumps, the compound Poisson distribution is an even more natural
choice than the Poisson.

We recall that the term compound Poisson distribution with parameter λ
and compounding distribution G (notation: CP (λ, G)) refers to the distribu-
tion of the random sum U =

∑N
i=1 Zi, where N is a Poisson random variable

with λ = E(N), and Zi are i.i.d. variables, independent of N , with cumulative
distribution function G.

The probability generating function of U takes on the form

PU (t) = E(tU ) = e−λ(1−E(tZ)) = e−λ(1−PZ(t)). (3.3)

where PZ(t) is the probability generating function of Zi, i = 1, 2, . . .. As a conse-
quence, one could evaluate the probability mass function of U by considering the
power series expansion of PU (t) (provided that an explicit expression is available
for the probability generating function PZ(t) of the compounding distribution).

3.3.1 Bounds and approximations

Denote by b(x; l, p) and B(x; l, p) the probability mass function and cumulative
distribution function of a binomial random variable X, i.e.

b(x; l, p) = P (X = x) =
(

l

x

)

px(1 − p)l−x, x = 0, 1, . . . , n,

B(x; l, p) = P (X ≤ x) =
�x	∑

j=0

b(j; l, p), x ∈ �,

where the symbol x� indicates the integer part of x. In the following sections
we shall make use of the quantities

f(s; k, p) = P (S(1)
k < s, S

(2)
k < s, . . . , S

(k)
k < s, S

(k+1)
k ≥ s)

G(s; k, p) = P (S(1)
k < s, S

(2)
k < s, . . . , S

(k+1)
k < s),
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which can be expressed in terms of b(x; l, p) and B(x; l, p) as follows (see Glaz
and Naus (1991)):

f(s; k, p) =
p

s
b(s − 1; k − 1, p)[s(1 − p)b(s − 1; k − 1, p)

+(s − kp)B(s − 2; k − 1, p)], (3.4)
G(s; k, p) = B(s − 1; k, p)2 − b(s; k, p)[(s − 1)B(s − 2; k, p)

−kpB(s − 3; k − 1, p)],

with 1 ≤ s ≤ k (if s > k or s < 0 then we set f(s; k, p) = 0).
We shall start with a result pertaining to the binary scan statistic Sn,k which

was established by Arratia, Gordon and Waterman (1990) with the aid of the
Chen–Stein method. Let us introduce first the random variables

Ci =

⎧
⎨

⎩

1, if
i+k−1∑

j=i
Xj = r

0, else
, i = 1, 2, . . . , n − k + 1

(convention: Ci = 0 for i ≤ 0) and then define an auxiliary variable W by
summing up the quantities

Di = Ci

k∏

j=1

(1 − Ci−j), i = 1, 2, . . . , n − k + 1

i.e.

W =
n−k+1∑

i=1

Ci

k∏

j=1

(1 − Ci−j).

Arratia, Gordon and Waterman (1990) proved the following interesting result.

Theorem 3.3.1 If p < r/k < 1 then
∣
∣
∣P (Sn,k < r) − e−E(W )

∣
∣
∣ ≤ 7kb(r; k, p) + (1 − B(r; k, p)).

That is, P (Sn,k < r) is bounded below and above by the quantities e−E(W ) ±
UB, where UB denotes the quantity on the right-hand side (RHS) of the last
inequality, and E(W ) equals (n − k + 1)E(Di).

The same authors proved that E(W ) can be bounded as follows:

r

k
− p ≤ E(W )

(n − k + 1)b(r; k, p)
≤ (

r

k
− p) + 2(1 − r

k
)(1 − B(r; k, p)) (3.5)
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while an alternative upper bound is given by

E(W )
(n − k + 1)b(r; k, p)

≤ (
r

k
− p) + 2(1 − r

k
)e−kH(r/k, p),

where H(θ, p) denotes the Kullback–Leibler distance (or relative entropy)

H(θ, p) = θ ln
(

θ

p

)

+ (1 − θ) ln
(

1 − θ

1 − p

)

(3.6)

= ln
θθ(1 − θ)1−θ

pθ(1 − p)1−θ
, 0 < p < θ < 1.

For large values of k (with r/k kept fixed) the second summand on the RHS of
(3.5) becomes negligible; therefore, the next simple approximation formula can
be used:

E(W ) ≈ (
r

k
− p)(n − k + 1)b(r; k, p).

Dembo and Karlin (1992) used the Chen–Stein method to establish upper
bounds for the total variation distance between a scan process generated by
a sequence of i.i.d. positive random variables (not necessarily binary) and a
Poisson distribution. In the special case of i.i.d. binary variables, the following
simpler results ensue.

Theorem 3.3.2 If

λ = (n − k + 1)B(r − 1; k, p), μ = (n − k + 1)(1 − B(r − 1; k, p)),

then

a. dTV (L(Wn,k,r), Po(μ)) ≤ (1 − e−μ)[(2k − 1)(1 − B(r − 1; k, p))

+2
k−1∑

i=1

P (S(i+1)
k ≥ r|S(1)

k ≥ r)]

b. dTV (L(n − k + 1 − Wn,k,r), Po(λ)) ≤ (1 − e−λ)[(2k − 1)B(r − 1; k, p)

+2
k−1∑

i=1

B(r − 1; i, p)].

The conditional probabilities P (S(i+1)
k ≥ r|S(1)

k ≥ r) appearing in the first upper
bound can be easily expressed in terms of binomial probabilities as follows:

P (S(i+1)
k ≥ r|S(1)

k ≥ r) =
1

1 − B(r − 1; k, p)
·

k−i∑

s=0

(1 − B(r − s − 1; i, p))2b(k − i; s, p)
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with B(x; l, p) = b(x; l, p) = 0, for x < 0. The results of Theorem 3.3.2 can be
exploited to bound the probability mass function or the cumulative distribution
function of Wn,k,r by an interval centered on the probability mass function or
cumulative distribution function of a Poisson distribution, respectively, whose
length is two times the error bounds provided above.

As already mentioned, due to the fact that windows of high concentration
of successes tent to occur in clumps, one should expect that the Poisson ap-
proximations described in Theorem 3.3.2 would naturally provide poor results.
As a matter of fact, the upper bound in (a) converges to zero only for r = k
and p → 0 while the upper bound in (b) converges only for r = 1 and p → 1.

Motivated by a sequence matching problem where the need of an accu-
rate approximation of the discrete scan statistic was recognized, Goldstein and
Waterman (1992) used the declumping variables

Ei = I[r,∞)(S
(i)
k )

min(s,i−1)∏

j=1

(1 − I[r,∞)(S
(i−j)
k )), i = 1, 2, . . . , n − k + 1

(where s is a fixed positive integer)1 to establish total variation bounds for
the compound Poisson approximation of Wn,k,r. The binary variables Ei indi-
cate the occurrence of a clump where the starting point is the variable Xi, while
the distribution of the number C of occurrences of the event S

(j)
k ≥ r within

the clump is given by

P (C = c) = P (
β∑

j=i

I[r,∞)(S
(j)
k ) = c|Ei = 1), c = 1, 2, . . . ,

where

β = min(γ ≥ i : I[r,∞)(S
(γ)
k ) = 1, I[r,∞)(S

(γ+1)
k ) = 0, . . . , I[r,∞)(S

(γ+s)
k ) = 0).

Considering s = k, the following result can be established with the aid of the
Chen–Stein method (cf. Goldstein and Waterman (1992)).

Theorem 3.3.3 The total variation distance between Wn,k,r and a compound
Poisson distribution CP (λ, G) with λ = (n − k + 1)(1 − B(r − 1; k, p))/E(C)
and compounding distribution G(x) = P (C ≤ x) is bounded above as follows:

dTV (L(Wn,k,r), CP (λ, G)) ≤ 6λ2(1 + E(C))
k

n − k
+ 2λP (C > k).

Note that the above expression for λ was deduced upon ignoring the boundary
effects. The exact distribution of C is quite intricate; to overcome this, Goldstein

1Products of the form
∏i2

i=i1
f(i) with i1 > i2 are conventionally set equal to 1.
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and Waterman (1992) have suggested an alternative simpler but less accurate
approximation which will not be presented here. If one is interested only in
the distribution of Sn,k, and not the whole distribution of Wn,k,r, the following
simple lower and upper bounds for E(C) (given that s = k) may be useful:

r

k
− p ≤ 1

E(C)
≤ (

r

k
− p) + 2(1 − r

k
)e−kH(r/k, p).

A slightly different approach for deducing an upper bound for the distance
between the distribution of Wn,k,r and a compound Poisson distribution was
practiced by Boutsikas and Koutras (2002). They used the “truncated” de-
clumping variables

E′
i = (1 − I[r,∞)(S

(i−1)
k ))

k∑

j=1

i+j−1∏

l=i

(I[r,∞)(S
(l)
k )), i = 1, 2, . . . , n − k + 1

and, exploiting a general result that they also developed [Boutsikas and Koutras
(2001)], they proved the following theorem. For the presentation of the results
up to the end of this section, the evaluation of the S

(i)
k ’s is carried out by

assuming that the sequence of trials Xi, i = 1, 2, . . . , n is extended for i < 1
and i > n. Note that the distance involved in this result is no longer the total
variation distance, but the Kolmogorov distance, which is defined as follows
(U, V are any random variables with cumulative distributions functions FU and
FV , respectively):

dK(L(U),L(V )) = dK(FU , FV ) = sup
−∞<x<∞

|FU (x) − FV (x)|.

Theorem 3.3.4 Let λ = (n− k + 1)P (E′
1 > 0) and G(x) = P (E′

1 ≤ x|E′
1 > 0)

x = 0, 1, . . . , k. Then

dK(L(Wn,k,r), CP (λ, G)) ≤ (λ + 1)
k∑

i=r

(
k

i

)

pi(1 − p)k−i

+(λ(3k − 1) + k − 1)
(

k − 1
r − 1

)

pr(1 − p)k−r+1

+(n − k)
k−1∑

b=2

min{b−2,r−2}∑

i=
max{0,r−k+b−1}

(
k − b

r − i − 1

)(
b − 2

i

)

(
k − b

r − i − 2

)

p2r−i−1(1 − p)2k−b−2r+i+3.

The advantage of this result over the one stated in Theorem 3.3.3 is that both
the upper bound for the distance and the parameters λ, G of the compound
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Poisson distribution admit explicit expressions which are computationally
tractable. It can be easily verified that P (E′

1 > 0) =
(
k−1
r−1

)
prqk−r+1 and

therefore

λ = (n − k + 1)P (E′
1 > 0) = (n − k + 1)

(
k − 1
r − 1

)

prqk−r+1.

Moreover, the cumulative distribution function G(x) of the compounding dis-
tribution has been computed by Boutsikas and Koutras (2002) as

G(x) = 1 −
min{k−x−1,r−1}∑

j=max{0,r−x−1}

((
x

x−r+j+1

)(
k−x−1

j

)

(
k−1
r−1

)

)

·
((

x

x − r + j + 1

)

pr−j−1(1 − p)x−r+j+1 +

+
(

1 − (x + 1)(1 − p)
x − r + j + 2

)(
x−r+j∑

i=0

(
x

i

)

(1 − p)ipx−i−1

))

for x = 1, 2, . . . , k − 1, G(0) = 0, G(k) = 1. The upper bound described in
Theorem 3.3.4 is of order O(p) (for r < k); therefore it will produce reasonable
lower and upper bounds for the cumulative distribution function of Wn,k,r when
p → 0. Nonetheless, if p is fixed, the quality of the bounds will not be as good,
and it is conceivable that no asymptotic results could be established with their
use for fixed p and n, k → ∞.

In order to cover the last case, the following family of declumping variables
may be used:

E′′
i =

⎛

⎝
i−1∏

j=i−k

(1 − I[r,∞)(S
(j)
k ))

⎞

⎠ I[r,∞)(S
(i)
k )

(
i+k∑

l=i

I[r,∞)(S
(l)
k )

)

, i = 1, . . . .

The last bracket enumerates the number of scanning windows of length k that
begin at positions i, i + 1, . . . , i + k and contain at least r successes each. On
the other hand, the first bracket guarantees that in the previous k positions
i − k, i − k + 1, . . . , i − 1 all scanning windows of length k contain fewer than
r successes. As a matter of fact, it is the inclusion of this extra term that
makes the construction of sharp bounds feasible. Exploiting the new family of
declumping variables E′′

i , i = 1, 2, . . . , Boutsikas and Koutras (2006) arrived at
the next result.
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Theorem 3.3.5 Let λ = (n − k + 1)P (E′′
1 > 0) = (n − k + 1)f(r; k, p), and

G(x) = P (E′′
1 ≤ x|E′′

1 > 0)

= P

(
2k+1∑

l=k+1

I[r,∞)(S
(l)
k ) ≤ x

∣
∣
∣
∣
∣
I[r,∞)(S

(l)
k ) = 0, l = 1, . . . , k, I[r,∞)(S

(k+1)
k ) = 1

)

,

where x = 0, 1, . . . , k.
Then

dK(L(Wn,k,r), CP (λ, G))

≤ (2k − 1)λp(1 − p)b(r − 1; k − 1, p) + 3λkf(r; k, p) + (λ + 2)(1 − G(r; k, p)),

where f(r; k, p), G(r; k, p) are given in (3.4).

Although the evaluation of the compounding cumulative distribution function
G(x) is not easily accomplished, the above result is quite appealing for establish-
ing the asymptotic behavior of Wn,k,r for fixed p and n, k → ∞. Moreover, if the
interest is focused on Sn,k and not the whole distribution function of Wn,k,r, then
the cumulative distribution function of Sn,k, i.e. P (Sn,k < r) = P (Wn,k,r = 0),
can be effortlessly assessed by the aid of the following simpler result.

Corollary 3.3.1 The cumulative distribution function of Sn,k can be approxi-
mated by e−λ, λ = (n−k +1)f(r; k, p) with the error of approximation bounded
above as follows:

|P (Sn,k < r) − e−λ| ≤ (2k − 1)λp(1 − p)b(r − 1; k − 1, p) + 3λkf(r; k, p)
+(λ + 2)(1 − G(r; k, p)).

3.3.2 Asymptotic results

We are now presenting a number of asymptotic results pertaining to the Poisson
and compound Poisson convergence of the discrete scan statistics Sn,k and
Wn,k,r. Although we are not going to present the technical details of the proofs
of these results, alert readers may easily extract them by the aid of the bounds
(on the total variation or Kolmogorov distances) described in the previous
subsection.

In the light of Theorem 3.3.1 and the discussion following it, we may state
the next result, which was provided by Arratia, Gordon and Waterman (1990).

Corollary 3.3.2 If n, k, r are positive integers with p < r/k �= 1 and
λ = (n − k + 1)( r

k − p)b(r; k, p) then

P (Sn,k < r) can be approximated by e−λ

with the approximation error of order O( lnn
n ).
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In the next corollary, which can be easily proved by the aid of Theorem 3.3.4
(see Boutsikas and Koutras (2002) for details), a compound Poisson convergence
for Wn,k,r is established.

Corollary 3.3.3 Assume that k, r are kept fixed, while n → ∞, pn → 0 so that
λn = (n − k + 1)

(
k−1
r−1

)
pr

n(1 − pn)k−r+1 → λ ∈ (0,∞). Then Wn,k,r converges
weakly to a compound Poisson distribution with parameter λ and compounding
distribution

G(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ 0

1 − (k−x−1
r−1 )

(k−1
r−1)

, x = 1, 2, . . . , k − r,

1, x ≥ k − r + 1.

Under the same assumptions for the cumulative distribution of Sn,k we have

P (Sn,k < r) ≈ e−λ.

The probability mass function g(x) of the compounding distribution G(x) takes
on the form

g(x) = G(x) − G(x − 1) =

(
k−x−1

r−2

)

(
k−1
r−1

) , x = 1, 2, . . . , k − r + 1.

It is of interest to note that, in the special case r = 2 < k, g(x) reduces to the
discrete uniform distribution on the integers 1, 2, . . . , k− 1. Also, for k = r, the
compounding distribution becomes degenerate (with all its mass concentrated
at 1) and the limiting compound Poisson law CP (λ, G) reduces to an ordinary
Poisson distribution.

The probability generating function of the compound Poisson distribution
described in Corollary 3.3.3 reads (cf. (3.3))

P (t) = E(tWn,k,r) = e−λ(1−E(tZ)) = e−λ(1−
∑k−r+1

x=1 txg(x))

= exp

(

−λ

(

1 −
k−r+1∑

x=1

tx
(
k−x−1

r−2

)

(
k−1
r−1

)

))

and therefore we may easily compute the probabilities P (Wn,k,r = i) considering
the power series expansion of P (t) and extracting the coefficients of i-th order
term, i = 0, 1, . . .. This can be done numerically (for specific values of the
parameters) or analytically for small order terms. For example,

P (Wn,k,r = 0) =
1
0!

P (0) = e−λ,

P (Wn,k,r = 1) =
1
1!

dP (t)
dt

∣
∣
∣
∣
t=0

= λg(1)e−λ = λ
r − 1
k − 1

e−λ (3.7)

P (Wn,k,r = 2) =
1
2!

d2P (t)
dt2

∣
∣
∣
∣
t=0

= λ
(r − 1)(k − r)
(k − 1)(k − 2)

e−λ +
λ2

2!
(
r − 1
k − 1

)2e−λ
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etc. Alternatively, one may resort to the following recursive scheme (see Bowers
et al. (1997)):

P (Wn,k,r = 0) = e−λ,

P (Wn,k,r = i) =
λk

ri

(
k

r

)−1 min(k−r+1,i)∑

j=1

j

(
k − j − 1

r − 2

)

P (Wn,k,r = i − j),

i = 1, 2, . . . .

For r < k, the rate of convergence ascertained by Corollary 3.3.3 for the ap-
proximation P (Sn,k < r) ≈ e−λ is of order O(p). As a consequence, it is not
applicable for fixed p and n, k → ∞. The last case is covered by the next result
which can be inferred from Theorem 3.3.5; the interested reader is referred to
Boutsikas and Koutras (2006) for the technical details.

We shall use the symbol h(θ, p) to denote the derivative of the Kullback–
Leibler distance H(θ, p) (3.6) with respect to θ, i.e.

h(θ, p) =
d

dθ
H(θ, p) = ln

θ(1 − p)
p(1 − θ)

, 0 < p < θ < 1.

Corollary 3.3.4 Let p be fixed, θ ∈ (p, 1), and kn, rn be two sequences satisfy-
ing the condition

lim
n→∞

rn − θkn√
kn

= 0.

If ρn = rn − θkn and the sequence

ln = n
(θ − p)e−knH(θ,p)−ρnh(θ,p)

√
2πθ(1 − θ)kn

, n = 1, 2, . . .

is bounded from above, then

P (Sn,k < r) ∼ e−ln

with the rate of convergence of order O(ρ2
n+1
kn

).

Practically speaking, the last corollary states that, for large values of n, k, r
and p < r/k �= 1, the cumulative distribution function of Sn,k can be approx-
imated by the aid of the formula (replace rn, kn,θ by r, k, r/k, respectively, in
the formula of ln):

P (Sn,k < r) ∼ exp

(

−n
(r − kp)e−kH(r/k,p)−ρh(r/k,p)

√
2πrk(k − r)

)

.
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3.3.3 Extreme value results

Extreme value results pertaining to moving sums of i.i.d. random variables
(not necessarily binary) have been the subject of continuing interest for many
decades. They are usually referred to as Erdős-Rényi laws and deal with the
asymptotic distribution of

Un = max
1≤i≤n−k+1

i+k−1∑

j=i

Zj ,

where Z1, Z2, . . . is a sequence of i.i.d. random variables. The classical Erdős–
Rényi (1970) theorem establishes the almost sure convergence to 1 of the se-
quence of random variables Un/(akn) for a large class of distributions for Zi

(k = kn = c ln(n)� for some positive constant c and a > 0 is a number depend-
ing on c and the distribution of Zi). An extreme value theorem for Un obtained
by Deheuvels and Devroye (1987) states that, under the assumption that Zi

follow a non-lattice distribution with zero mean,

lim
n→∞

P (
Un − bn

an
≤ x) = Λ(x),

where Λ(x) = exp(−e−x), x ∈ � is the cumulative distribution of the Gumbel
distribution, and an, bn ∈ � are appropriate sequences of normalizing constants.

We shall now present two extreme value results for the discrete scan statistic
Sn,k; the fact that the original sequence of variables is binary (and therefore lat-
tice) makes it possible to express the normalizing constants by explicit formulae.

The following theorem is a slight restatement of a result established by
Arratia, Gordon and Waterman (1990).

Theorem 3.3.6 Let k > −(ln p)−1 lnn, denote by θ = θ(n, k, p) ∈ (p, 1) the
unique solution 2 of the equation

H(θ, p) =
lnn

k
,

and define the normalizing constants bn as follows:

bn = θ
ln n

H(θ, p)
− 1

2h(θ, p)
ln(lnn) − 1

2h(θ, p)
ln(

2πθ(1 − θ)
H(θ, p)

) +
ln(θ − p)
h(θ, p)

.

Then for each ε > 0 such that 1+ ε ≤ −(ln n)−1k ln p ≤ 1/ε the following result
holds true, uniformly for n, k → ∞:

sup
x

|P (Sn,k − bn < x) − Λ(h(θ, p)x)| → 0.

The supremum is evaluated over all x ∈ � such that x+ bn is a positive integer.

2Since d
dθ

H(θ, p)=h(θ, p) > 0, the quantity H(θ, p) varies monotonically from 0 to − ln p;
therefore, the equation H(θ, p) = c admits a unique solution θ ∈ (p, 1). for 0 < c < − ln p.
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Exploiting Corollary 3.3.4 it is not difficult to gain the following extreme
value theorem, which also establishes the convergence to the Gumbel distribu-
tion of an appropriate normalized version of Sn,k (cf. Boutsikas and Koutras
(2006)).

Theorem 3.3.7 For fixed p ∈ (0, 1), let θ be a number in the interval (p, 1)
and define

kn = �lnn/H(θ, p)� ,

bn = knθ +
1

h(θ, p)
ln

n(θ − p)e−knH(θ,p)

√
2πθ(1 − θ)kn

,

εn(y) =
(

bn +
y

h(θ, p)

)

−
⌊

bn +
y

h(θ, p)

⌋

.

Then

lim
n→∞

[

P

(
Sn,k − bn

1/h(θ, p)
< y

)

− Λ(y − εn(y)h(θ, p))
]

= 0

with convergence rate of order O( (ln kn)2

kn
).

3.4 Scan Statistic Exceedances

In this section we shall present some new results for the multiple scan statistic
under the threshold exceedance framework. More specifically, we consider a
sequence Y1, Y2, . . . , Yn of continuous i.i.d. random variables with cumulative
distribution function F , and a threshold u = un which varies with n. Exploiting
Corollary 3.3.3, we establish first a compound Poisson convergence theorem for
Wn,k,r(uan), where an is an appropriate sequence of positive real numbers. Then
we use this result to develop asymptotic results for Wn,k,r(uan) or equivalently
for the moving order statistic Ym:r:k(n) introduced in Section 3.2 under the
assumption that the distribution of Yi belongs to the domain of attraction of
one of the three classical extreme type distributions (Weibull, Fréchet, Gumbel).
Finally, application of the general results for typical continuous distributions
along with illustrative graphs exhibiting the quality of convergence are provided.

3.4.1 Compound Poisson approximation for W n,k,r(u)

Let us assume that the threshold un varies with n so that the event Yi > un

becomes a rare event, i.e. P (Yi > un) → 0 as n → ∞. A standard condition
that yields non-degenerate results is the following:

lim
n→∞

nP (Yi > un) = lim
n→∞

nF (un) = τ ∈ (0,∞).
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Denoting by an the sequence an = n1/r, n = 1, 2, . . . , it is clear that

lim
n→∞

nF (uan)r = lim
n→∞

(anF (uan))r = τ r.

Viewing Xi(uan) = I(uan ,∞)(Yi), i = 1, 2, . . . as a sequence of binary trials with
success probabilities pn = F (uan), we may apply Corollary 3.3.3 with

λn = (n − k + 1)
(

k − 1
r − 1

)

pr
n(1 − pn)k−r+1 →

(
k − 1
r − 1

)

τ r > 0

to conclude that Wn,k,r(uan) converges to a compound Poisson distribution.
Recalling formula (3.1) we arrive at the following interesting result.

Theorem 3.4.1 If there exists a sequence un such that limn→∞ nF (un)=
τ > 0, then the distribution of the number Wn,k,r(uan) of (overlapping) moving
windows of length k that contain at least r exceedances of the threshold uan

with an = n1/r (k and r are fixed positive integers) converges to a compound
Poisson distribution with parameter λ =

(
k−1
r−1

)
τ r and compounding distribution

with probability mass function

g(x) =

(
k−x−1

r−2

)

(
k−1
r−1

) , x = 1, 2, . . . , k − r + 1. (3.8)

Moreover, if we denote by fCP the probability mass function of the compound
Poisson distribution, we may write

lim
n→∞

P (Ym:r:k(n) ≤ uan) = lim
n→∞

P (Wn,k,r(uan) < m) =
m−1∑

i=0

fCP (i).

For the evaluation of the limiting distribution, see the discussion after
Corollary 3.3.3.

Although uan is typically defined over the set of positive integers n, here-
after we shall assume that such sequences can be extended in �+, i.e. ux = u(x),
x ∈ �+. Under this assumption, it makes sense to write uan , where an is any
sequence of (not necessarily integer) numbers, a notation that will be met fre-
quently in the following subsections. It is worth stressing that this technique
works in a nice way for all the examples illustrated in Subsection 3.4.3. If the
aforementioned extension is not feasible, one may use u�an	 in place of uan and
the results provided hereafter remain valid as well.

Note that, for the determination of the limiting value
(
k−1
r−1

)
τ r of λn, use was

made of the fact that

(1 − pn)k−r+1 =
(

1 − anF (uan)
an

)k−r+1

∼
(

1 − τ

an

)k−r+1

→
n→∞

1.
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However, this convergence is quite slow, even for small values of r. For example,
if k = 4, r = 2, τ = 2, then qk−r+1

100 ≈ 0.512, qk−r+1
1000 ≈ 0.822, qk−r+1

10000 ≈ 0.941.
Things get much worse when r is larger. Therefore, although the asymptotic
result in Theorem 3.4.1 is valid for n → ∞, the distribution of Wr,k,n(uan)
may be approximated more accurately by a compound Poisson distribution
CP (λ∗

n, G) with parameter

λ∗
n =

(
k − 1
r − 1

)

τ r

(

1 − τ

an

)k−r+1

= λ

(

1 − τ

an

)k−r+1

(3.9)

(instead of λ). This remark is exploited in the numeric experimentation carried
out in Subsection 3.4.3.

A result similar to the one stated in Theorem 3.4.1 has been given by
Dudkiewicz (1998); however his result covers only the special case of moving
minima and is applicable for different conditions on the parameters k, r.

In view of Theorem 3.4.1 and taking into account (3.2), we may write that

lim
n→∞

P (max(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ) ≤ uan)

= lim
n→∞

P (Wn,k,r(uan) = 0) = e−λ.

Apparently, the above formula displays the asymptotic behavior of the maxi-
mum of a family of dependent variables, namely Y

(i)
r:k , i = 1, 2, . . . , n − k + 1,

whose marginal tails can be expressed through the tail of the binomial distri-
bution with parameters k and F (uan), namely

nP (Y (i)
r:k > uan) = n

k∑

i=r

(
k

i

)

F (uan)iF (uan)k−i

∼
(

k

r

)

(anF (uan))r →
(

k

r

)

τ r.

If we assumed for the moment that Y
(i)
r:k were independent, the limiting behavior

of their maximum would reduce to

lim
n→∞

P (max(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ) ≤ uan)

= lim
n→∞

(

1 − nP (Y (i)
r:k > uan)

n

)n

= e−λind ,

where λind =
(
k
r

)
τ r. The ratio

λ

λind
=

(
k−1
r−1

)
τ r

(
k
r

)
τ r

=
r

k
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characterizes the extremal dependence between Y
(i)
r:k , i = 1, 2, . . . , n−k+1. This

quantity has been termed the extremal index by Embrechts et al. (1997) and, as
stated therein, it provides information on the local dependence of the variables
under study. According to the last result, the extremal index for the sequence
Y

(i)
r:k , i = 1, 2, . . . , n−k+1 decreases (and therefore the local dependence becomes

stronger) as k increases or r decreases, a fact that can be easily interpreted
intuitively.

3.4.2 Convergence of threshold-based scan statistics
under maximum domain of attraction assumptions

The probabilistic extreme value theory focuses on the stochastic behavior of
the maximum Mn = max(Z1, Z2, . . . , Zn) (and the minimum) of sequences of
i.i.d. random variables Z1, Z2, . . . , Zn. The asymptotic properties of extremes
(maxima or minima), intermediate order statistics and exceedances over (or
below) prespecified thresholds are determined by the upper and lower tails of
the underlying distribution.

Although extreme value theory seems to have originated mainly from the
needs of astronomers in accepting or rejecting outlying observations, after its
significant theoretical developments during 1920–1950, a substantial number of
articles appeared dealing with practical applications of extreme value statis-
tics in the stochastic analysis of meteorological phenomena (rainfalls, floods),
strengths of materials, seismic activity, insurance and actuarial models, radioac-
tive emissions etc. For a comprehensive bibliography of literature on extreme
value distributions and their applications, the interested reader is referred to the
monographs by Kotz and Nadarajah (2000), Reiss and Thomas (1997), Coles
(2001) and Embrechts et al. (1997).

In theory, the distribution of Mn can be derived exactly by the formula
P (Mn ≤ x) = F (x)n; however this is not immediately helpful in practice, since
the cumulative distribution function F of Zi is usually unknown. A typical
approach to overcome this is to look for approximate (asymptotic) families of
models for Fn which can be estimated on the basis of extreme data only. This is
analogous to the classical practice of approximating the distribution of sample
means by the normal distribution as justified by the central limit theorem.

Since limn→∞ P (Mn ≤ x) = limn→∞ F (x)n = 0 for all x such that F (x) < 1,
the asymptotic distribution of Mn does not provide any valuable information.
However, it is conceivable that more insight into the magnitude of maxima
would be given by the centered and normalized maxima (a fact that parallels
the normalization used in the central limit theorem).

The fundamental Fisher–Tippett theorem states that, if there exist constants
cn > 0 and dn ∈ � such that

lim
n→∞

P

(
Mn − dn

cn
≤ x

)

= H(x) (3.10)
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where H is a non-degenerate distribution function, then H belongs to the
location-scale family of one of the following three distributions:

Fréchet: Φa(x) =
{

0, x ≤ 0
exp(−x−a), x > 0

, a > 0

(Reversed) Weibull: Ψa(x) =
{

exp(−(−x)a), x ≤ 0
1, x > 0

, a > 0

Gumbel: Λ(x) = exp(−e−x), x ∈ �,

i.e. H(x) = Φa((x − μ)/σ) or H(x) = Ψa((x − μ)/σ), or H(x) = Λ((x − μ)/σ),
where μ ∈ � is a location parameter and σ > 0 a scale parameter. These families
have been termed extreme value distributions, while the respective sequences
cn, dn are called norming constants.

If (3.10) holds true for a cumulative distribution function F , then we shall
say that F belongs to the maximum domain of attraction (MDA) of H (nota-
tion: F ∈ MDA(H)). The next theorem characterizes the family of distribu-
tions that belong to an MDA (the reader may consult any of the monographs
provided earlier for the proof).

Theorem 3.4.2 The cumulative distribution function F belongs to the MDA
of the extreme value distribution H with norming constants cn > 0, dn ∈ � if
and only if

lim
n→∞

nF (cnx + dn) = − lnH(x), x ∈ �.

When H(x) = 0 the limit is interpreted as +∞.

We shall now establish some non-degenerate convergence results for the
threshold-based multiple scan statistic Wn,k,r, under the assumption that the
cumulative distribution function F of Yi belongs to the MDA of Φa, Ψa or Λ.

Theorem 3.4.3 If F ∈ MDA(H) with norming constants cn > 0, dn ∈ �,
then

lim
n→∞

P (
Ym:r:k(n) − dan

can

≤ x) = lim
n→∞

P (Wn,k,r(canx + dan) < m)

=
m−1∑

i=0

fCP (x; i),

where an = n1/r and fCP (x; ·) is the probability mass function of a compound
Poisson distribution with parameters

λ(x) =
(

k − 1
r − 1

)

(− lnH(x))r (3.11)

and compounding probability mass function given by (3.8).
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Proof. Since F ∈ MDA(H), we conclude by Theorem 3.4.2 that

lim
n→∞

nF (cnx + dn) = − lnH(x), x ∈ �.

Next applying Theorem 3.4.1 for un = cnx + dn and τ = − lnH(x), we deduce
that Wn,k,r(uan) converges weakly to a compound Poisson distribution with
parameter

(
k − 1
r − 1

)

τ r =
(

k − 1
r − 1

)

(− ln H(x))r = λ(x) (3.12)

and compounding probability mass function as described in (3.8). The assertion
for the asymptotic distribution of the moving window order statistic Ym:r:k

follows immediately by exploiting formula (3.1).
According to Theorem 3.4.3, the asymptotic distribution of Wn,k,r(canx +

dan) can be approximated for large values of n by a compound Poisson distri-
bution with parameter λ(x) given by (3.12). In view of the comments following
Theorem 3.4.1, one may improve the quality of the approximation by replacing
the parameter λ(x) by (cf. (3.9))

λ∗(x) = λ(x)
(

1 − τ

an

)k−r+1

=
(

k − 1
r − 1

)

(− lnH(x))r

(

1 +
lnH(x)

n1/r

)k−r+1

.

Applying specifically to the three classical extreme value distributions, we men-
tion in brief the following (we shall use the notation xF for the right end point
of F , i.e. xF = sup{x ∈ � : F (x) < 1}).
a. Maximum domain of attraction of Fréchet
If F ∈ MDA(Φa) then xF = ∞ and a possible choice of cn, dn is cn = F−1(1−
n−1) and dn = 0 (where F−1 denotes the generalized inverse function of F ).
Since − lnH(x) = − ln Φa(x) = x−a, the parameters λ(x), λ∗(x) reduce to

λ(x) =
(

k − 1
r − 1

)

x−ra, λ∗(x) =
(

k − 1
r − 1

)

x−ra

(

1 − x−a

n1/r

)k−r+1

, x > 0.

Typical members of this class are the classical heavy (right) tailed distributions,
e.g. Cauchy, Pareto, log-gamma.

b. Maximum domain of attraction of (reversed) Weibull
If F ∈ MDA(Ψa) then xF is finite and a feasible choice for cn, dn is cn = xF −
F−1(1 − n−1) and dn = xF . The parameters of the approximating compound
Poisson distributions are now

λ(x) =
(

k − 1
r − 1

)

(−x)ra, (3.13)

λ∗(x) =
(

k − 1
r − 1

)

(−x)ra

(

1 − (−x)a

n1/r

)k−r+1

, x ≤ 0. (3.14)

Typical members of this class are the uniform and beta distributions.
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c. Maximum domain of attraction of Gumbel
If F ∈ MDA(Λ) then F admits a representation of the form (see e.g. Embrechts
et al. (1997))

F (x) = c(x)e−
∫ x

z
g(t)
a(t)

dt
, z < x < xF ,

where z is a real number with z < xF and c, g are (measurable) functions such
that c(x) → c0 > 0, and g(x) → 1 when x ↑ xF . The function a(.) is a positive,
absolutely continuous function with density a′ such that a′(x) → 0 as x ↑ xF .
A valid choice for the function a is

a(x) =
∫ xF

x

F (t)
F (x)

dt,

while the norming constants can be defined as dn = F−1(1 − n−1) and cn =
a(dn). The parameters λ(x), λ∗(x) of the approximating compound Poisson
distributions now read

λ(x) =
(

k − 1
r − 1

)

e−rx, (3.15)

λ∗(x) =
(

k − 1
r − 1

)

e−rx

(

1 − e−x

n1/r

)k−r+1

. (3.16)

Typical members of this class are the normal, exponential and gamma
distributions.

The special case m = 1 of Theorem 3.4.3 reveals the asymptotic distribution
of the maximum of a specific order statistic evaluated on moving windows of
fixed length k, namely

Y1:r:k = max(Y (1)
r:k , Y

(2)
r:k , . . . , Y

(n−k+1)
r:k ).

In applications, Yi usually represent values of a process measured on a reg-
ular time scale, e.g. hourly measurements of sea level, daily claim sizes in a
specific portfolio, monthly mean temperatures. Then the statistic Y

(i)
r: k is a lo-

cation measure for fixed length periods (e.g. Yr: k might be the median for the
k observations obtained over k consecutive days), and therefore Y1:r:k will cor-
respond to the maximum of the location measures. Such a scenario arises in
quite a natural way if the collected data are erased after a certain period (due
to storage restrictions) or can be scanned by a scanner of restricted range. An-
other instance where Y1:r:k might be used is in a similar fashion with the MA
(moving average) charts, if we replace the average by a more robust location
measure such as the median (or any other order statistic of the moving sample).

The asymptotic distribution of Y1:r:k is described in the following corollary.
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Corollary 3.4.1 If F ∈ MDA(H) with norming constants cn > 0, dn ∈ �,
then

lim
n→∞

P

(
max(Y (1)

r:k , Y
(2)
r:k , . . . , Y

(n−k+1)
r:k ) − dan

can

≤ x

)

= e−λ(x),

where λ(x) is given by (3.11).

Proof. We obtain the results immediately by using the obvious formula

lim
n→∞

P

(
max(Y (1)

r:k , Y
(2)
r:k , . . . , Y

(n−k+1)
r:k ) − dan

can

≤ x

)

= lim
n→∞

P (Wn,k,r(canx + dan) < 1) = fCP (x; 0) = e−λ(x).

It is noteworthy that the asymptotic distribution of the maximum of the
moving window order statistics (properly centered and normalized) belongs to
the same domain of attraction as the original distribution of Yi; the only param-
eters that are affected are the location parameter μ and the scale parameter σ.
To establish a formal proof of this assertion it suffices to observe the following.

a. Maximum domain of attraction of Fréchet
If H(x) = Φa(x) then

λ(x) =
(

k − 1
r − 1

)

(− ln Φa(x))−r =
(

k − 1
r − 1

)

(x)−ra =
(

x − μ

σ

)−a′

, x > 0,

where

a′ = ar, μ = 0, σ =
(

k − 1
r − 1

)1/ra

and therefore

e−λ(x) = e−(x−μ
σ )−a′

= Φa′

(
x − μ

σ

)

.

b. Maximum domain of attraction of (reversed) Weibull
If H(x) = Ψa(x) then

λ(x) =
(

k − 1
r − 1

)

(− ln Ψa(x))−r =
(

k − 1
r − 1

)

(−x)ra =
(

−x − μ

σ

)a′

, x ≤ 0,

where

a′ = ar, μ = 0, σ =
(

k − 1
r − 1

)−1/ra
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and therefore

e−λ(x) = e−(x−μ
σ )−a′

= Ψa′

(
x − μ

σ

)

.

c. Maximum domain of attraction of Gumbel
If H(x) = Λ(x) then

λ(x) =
(

k − 1
r − 1

)

(− ln Λ(x))−r =
(

k − 1
r − 1

)

e−rx = e−
x−μ

σ , x ∈ �,

where

μ =
1
r

ln
(

k − 1
r − 1

)

, σ =
1
r

and therefore

e−λ(x) = e−e−
x−μ

σ = Λ
(

x − μ

σ

)

.

Finally, if Corollary 3.4.1 is to be used for approximating the distribution of
Y1:r:k for small values of n, the quality of approximation will be improved by
using λ∗(x) instead of λ(x).

3.4.3 Examples

In order to exemplify further the usefulness of extreme value theory as presented
in the previous sections we consider some typical continuous distributions and
illustrate the effectiveness of the approximations established by Theorem 3.4.3
and Corollary 3.4.1.

a. Pareto distribution
Let us assume that Y1, Y2, . . . follow a typical Pareto distribution with cumula-
tive distribution function

F (x) = 1 −
( c

x

)a
, x ≥ c,

where a and c are two positive parameters. This is perhaps the most popular
heavy-tailed distribution with a lot of applications in socioeconomic and insur-
ance/actuarial models, see e.g. Johnson et al. (1994) or the excellent text by
Arnold (1985).

In this case, letting cn = F−1(1 − n−1) = cn1/a, dn = 0, we get

nF (cnx + dn) = n
( c

cn1/ax

)a
= x−a, x > 0,
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which ascertains that F ∈ MDA(Φa). Hence, by Theorem 3.4.3

lim
n→∞

P (
Ym:r:k(n)
cn1/ra

≤ x) = lim
n→∞

P (Wn,k,r(cn1/rax) < m)

=
m−1∑

i=0

fCP (x; i), x > 0,

where fCP (x; ·) is the probability mass function of a compound Poisson distri-
bution with parameter

λ(x) =
(

k − 1
r − 1

)

x−ra, x > 0

and compounding distribution with the density (3.8). Moreover,

lim
n→∞

P

(
max(Y (1)

r:k , Y
(2)
r:k , . . . , Y

(n−k+1)
r:k )

cn1/ra
≤ x

)

= e−λ(x), x > 0,

while a better approximation could be achieved by using

λ∗(x) =
(

k − 1
r − 1

)

x−ra

(

1 − x−a

n1/r

)k−r+1

, x > 0

in place of λ(x).
By way of example we mention also that, should one be interested in the

distribution of the second largest among the moving order statistics Y
(i)
r:k , i =

1, 2, . . . , n− k + 1, he could resort to the approximate formula (apply Theorem
3.4.3 for m = 2 and recall (3.7))

P (Y2:r:k(n) ≤ x) ≈ e
−λ∗

(
x

cn1/ra

) (

1 +
r − 1
k − 1

λ∗
( x

cn1/ra

))

.

In Figure 3.1 we present the distribution of Ym:r:k(n) (adequately normalized)
for n = 50 and n = 500 for four choices of the parameters m, k, r. The smooth
curve displays the asymptotic distributions established above while the shaded
histogram was obtained by the 100,000 simulated values of Ym:r:k(n)/ (cn1/ra)
(where Yi, i = 1, 2, . . . , n follow a Pareto distribution with c = 1, a = 2).

b. Uniform distribution
As a second example let us consider a sequence of random variables Y1, Y2, . . .
which follow the uniform distribution

F (x) = x, 0 < x < 1.
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m = 3, r = 2, k = 4, n = 50

m = 2, r = 4, k = 7, n = 50 m = 2, r = 4, k = 7, n = 500
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Figure 3.1. Exact (simulated) and approximate distribution for Ym:r:k for the
Pareto distribution F (x) = 1 − x−2, x ≥ 1.

Since F ∈ MDA(Ψa) with right end point xF = 1, we may use the norming
constants cn = xF − F−1(1 − n−1) = n−1, dn = xF = 1 to gain the asymptotic
results

lim
n→∞

P

(
Ym:r:k(n) − 1

n−1/r
≤ x

)

= lim
n→∞

P (Wn,k,r(n−1/rx + 1)) < m)

=
m−1∑

i=0

fCP (x; i), x > 0

with the parameter λ(x) of the compound Poisson distribution given by (3.13).
In Figure 3.2 the exact distribution of Ym:r:k(n) (estimated by simulation)

is compared to the approximate distribution gained by the last formula for the
same set of choices for the parameters n, m, r, k as before (in order to achieve
a better accuracy for the asymptotic results, formula (3.14) was used for the
compound Poisson distribution parameters instead of (3.13).

c. Normal and exponential distribution
Two typical examples of the distributions belonging to the maximum domain
of attraction of the Gumbel distribution are the exponential with mean 1/β
and the standard normal distribution. A set of appropriate norming constants
is offered by (see e.g. Table 3.4.2 in Embrechts et al. (1997))

cn = β−1, dn = β−1 lnn,
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Figure 3.2. Exact (simulated) and approximate distribution for Ym:r:k for the
uniform distribution F (x) = x, 0 < x < 1.

and

cn = (2 lnn)−1/2, dn = (2 lnn)1/2 − ln 4π + ln lnn

2(2 ln n)1/2
,

respectively (the second pairs consists of a set of reasonable approximations for
the norming constants). A direct application of Theorem 3.4.3 reveals that the
asymptotic distribution of Ym:r:k(n), after carrying out a proper normalization,
may be approximated by the aid of a compound Poisson with the parameter
λ(x) obtained from formula (3.15) (for a better approximation for finite n, we
may use formula (3.16) instead the one given in (3.8)).

In Figures 3.3 and 3.4 a graphical comparison between the exact and asymp-
totic distributions of Ym:r:k(n) is carried out for exponential and normal se-
quences Y1, Y2, . . . , respectively. The low quality of the approximation observed
in Figure 3.4 should be attributed to the slow convergence of the distribution
of the maximum of normal variables to the Gumbel distribution (which is due
to the fact that the rate of convergence of nΦ(cnx + dn) to e−x is of order
O((lnn)−1).

In closing, we mention that a series of results relating to minima (in-
stead of maxima) and the asymptotic behavior under the assumption that the
underlying distribution belongs to a minimum domain of attraction of the three
extreme type distributions could also be established. Since these outcomes fol-
low immediately from the corresponding results established here by using −Yi

in the place of Yi, we shall not pursue these topics here.
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Figure 3.3. Exact (simulated) and approximate distribution for Ym:r:k for the
exponential distribution F (x) = 1 − e−x, x ≥ 0.
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Figure 3.4. Exact (simulated) and approximate distribution for Ym:r:k for the
(standard) normal distribution Φ(x), x ∈ �.
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tions, Birkhäuser, Boston, MA.

22. Glaz, J. and Naus, J. (1991). Tight bounds and approximations for scan
statistic probabilities for discrete data, The Annals of Applied Probability,
1, 306–318.

23. Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics, Springer-
Verlag, New York.

24. Goldstein, L. and Waterman, M. (1992). Poisson, compound Poisson and
process approximations for testing statistical significance in sequence com-
parisons, Bulletin of Mathematical Biology, 54, 785–812.

25. Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univari-
ate Distributions, Vol. 1, John Wiley & Sons, New York.

26. Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory
and Applications, Imperial College Press, London.

27. Koutras, M.V. and Alexandrou, V.A. (1995). Runs, scans and run model
distributions: a unified Markov chain approach, Annals of the Institute of
Statistical Mathematics, 47, 743–766.

28. Reiss, R.D. and Thomas, M. (1997). Statistical Analysis of Extreme Values,
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Boundary Crossing Probability Computations

in the Analysis of Scan Statistics
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Abstract: The theory of boundary crossing probabilities in the study of re-
peated likelihood ratio tests was developed by Lai, Siegmund and Woodroofe in
a series of articles and monographs appearing in the late 1970s and early to mid
1980s. This work formed part of the foundation for subsequent developments in
the analysis of maxima of Gaussian and Poisson random fields used to provide
accurate tail probability approximations of scan statistics. In this chapter, we
(i) track these theoretical developments, (ii) study their applications on spatial
scan statistics in astronomy and epidemiological studies and (iii) relate these
theoretical developments to scan statistics used recently in genomics.

Keywords and phrases: Astronomy, boundary crossing probability, DNA
copy number, epidemiology, genomics, maxima of random fields, neuroscience,
scan statistic

4.1 Introduction

The study of scan statistics to detect either a signal at an unknown location
or the presence of spatial clustering in a compact domain is a very active area
of research, and the areas of applications are diverse, including astronomy, epi-
demiology, genomics, neuroscience, botany and ecology. The basic idea is as
follows. A list of spatial or space-time vectors x1, . . . ,xJ associated with the
occurrence of certain events of interest is observed in a domain D. In addition,
there may also be a random variable or vector Xj that provides additional in-
formation on the jth occurrence for each 1 ≤ j ≤ J . If there is a source of a
cluster at an unknown location t (or a signal centered at t), it may result either
in an unusually large number of occurrences near t or the distribution of Xj

J. Glaz et al. (eds.), Scan Statistics: Methods and Applications, Statistics for Industry 87
and Technology, DOI 10.1007/978-0-8176-4749-0 4,
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might be different when xj is near t. For example, in case-control datasets in
epidemiological studies, Xj = 1 denotes the occurrence of a case and Xj = 0
the occurrence of a control. When there is a source of a cluster of cases at t, the
probability that Xj = 1 will be higher when xj is near t. A score S(t) is com-
puted from {(xj , Xj) : 1 ≤ j ≤ J} and a high score is expected when the source
of the cluster is at t. Since t is unknown, the scan statistic M := supt∈D S(t)
is the summary score for the presence of a cluster in D.

Lai and Siegmund (1977, 1979), Woodroofe (1978, 1982) and Siegmund
(1985) developed a set of techniques to study boundary crossing probabilities
of generalized likelihood ratio (GLR) sequential test statistics. These techniques
were subsequently refined and extended by many researchers so that they can
be applied on a wide variety of settings. We track these developments in Sec-
tion 4.2 and elaborate on their applications in scan statistics in astronomy
and epidemiology in Section 4.3 and genomics in Section 4.4. We conclude the
paper with a few brief remarks in Section 4.5.

4.2 Theoretical Developments

Throughout this paper, I shall denote the indicator function, | · | the Lebesgue
measure of a set or the determinant of a square matrix and ‖ ·‖ the L2 norm. In
addition, ϕ(x) = (2π)−1/2e−x2/2 and Φ(y) =

∫ y
−∞ ϕ(x) dx are the density and

cumulative distribution, respectively, of the standard normal. We write an ∼ bn

if limn→∞(an/bn) = 1. If t = (t1, . . . , td) ∈ Rd and A is a subset of Rd, then
for any w > 0, t + wA = {t + wu : u ∈ A}. Before proceeding to the analytical
techniques, we give a few examples to illustrate how the scores S(t) are defined
in different settings.

Example 4.2.1 Let J be either a fixed positive integer or a Poisson random
variable. Assume that under the null hypothesis of no clustering, x1, . . . ,xJ are
independent and identically distributed (i.i.d.) random variables uniformly dis-
tributed on a compact domain D. Let A be a nice compact set, for example, the
box kernel A = {u : maxi |ui| ≤ w/2} or the spherical kernel A = {u : ‖u‖ ≤ w}
for some w > 0. Let S(t) be the number of occurrences xj lying inside t+A and
M the corresponding scan statistic. Naus (1965, 1966, 1982), Huntington and
Naus (1975) and Glaz (1989) provided approximate and exact p-value calcula-
tions of M when A is the box kernel. See Glaz, Naus and Wallenstein (2001) for
comparisons against competing p-value approximations and bounds and also
for a good overview of recent developments in scan statistics.

Example 4.2.2 Let x1, . . . ,xJ be the points on a lattice grid in a compact do-
main D. The detection of a signal is of interest here. Under the null hypothesis
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of no signal, X1, . . . , XJ are i.i.d. random variables from a baseline distribu-
tion F with log moment generating function ψ(θ) := log EeθX1 . Assume that
Θ := {θ : ψ(θ) < ∞} is finite in a neighborhood of 0. Then the rate function
of F is given by φ(μ) = supθ∈Θ[θμ − ψ(θ)] and F can be embedded in an ex-
ponential family {Fθ, θ ∈ Θ}, with dFθ(x) = eθx−ψ(θ)dF (x). Let A be a given
signal shape and consider the alternative hypothesis

H1: there exists θ �= 0 and t ∈ D such that X1, . . . , XJ are independent
with Xj ∼ Fθ if xj ∈ t + A and Xj ∼ F otherwise,

indicating that a signal of shape A is centered at some unknown t ∈ D. The
log GLR score for testing the null hypothesis against the alternative hypothesis
is S(t) = ntφ(X̄t), where nt is the number of points xj lying in t + A and
X̄t = n−1

t

∑
xj∈t+A Xj . Tail probabilities for the maxima of S(t) were computed

in Siegmund and Yakir (2000) via a change of measure argument.

Example 4.2.3 Researchers in neuroscience are interested in knowing if a
neural spike time pattern, for example the pattern observed when a bird is
learning a new song while awake, is repeated when the bird is sleeping. See
Dave and Margoliasch (2000) for a more elaborate introduction to the problem.
Let T > 0 and Y = {y1, . . . , yN} be a given template spike time pattern with
0 ≤ yn ≤ T for all n and X = {x1, . . . , xJ} the neural spike times when the
bird is sleeping, with 0 ≤ xj ≤ U for all j, U large compared to T . We want to
check if the spike time pattern Y is repeated inside X ; in other words, if there
exists a time t such that t + Y and X ∩ [t, t + T ] are similar.

In Chi, Rauske and Margoliasch (2003), a pattern-filtering algorithm was
used to match the spike time patterns. Let f be a nonincreasing kernel scoring
function on [0,∞) with f(0) > 0 and limu→∞ f(u) < 0. Common examples
include the continuous Hamming window kernel

f(u) =
{

1
2(1 − β) + 1

2(1 + β) cos
(

πu
ε

)
if u < ε

−β if u ≥ ε,

or the box kernel

f(u) =
{

1 if u < ε
−β if u ≥ ε.

The score
S(t) =

∑

xj∈[t,t+T ]

max
1≤n≤N

f(|xj − t − yn|)

provides the value of a match between t + Y and X ∩ [t, t + T ]. In Chi (2004),
under the assumption that x1 and xi+1−xi, i ≥ 1, are i.i.d. exponential random
variables, the exponent of the tail probability of M = supt S(t) was obtained
using large deviation theory. Using the theory of boundary crossing probabili-
ties, Chan and Loh (2007) obtained a more precise estimate, an approximation
of the tail probability of M .
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We shall illustrate the techniques behind the computation of boundary cross-
ing probabilities with the signal detection problem described in Example 4.2.2.
Let d = 1 and X̄i,j = (j − i)−1

∑j
i+1 Xk when i < j. Let X1, . . . , XJ be i.i.d.

random variables with distribution F under the null hypothesis and let the
score

S(i, j) = (j − i)φ(X̄i,j),

where φ is defined in Example 4.2.2. Let the scan statistic

M = sup
0≤i<j≤J,w0≤(j−i)≤w1

S(i, j).

We shall consider here the computation of P{M ≥ c} when log J = o(c),
J/c → ∞ and wk ∼ αkc for some 0 < α0 < α1 as c → ∞. The problem has
applications in sequential change-point detection, and is solved, for normal Xj

when w0 = 0 and w1 = ∞, in Siegmund and Ventrakaman (1995) and extended
to Markovian Xj satisfying minorization and drift conditions and φ replaced by
a general function in Chan and Lai (2002, 2003).

Large deviation approximations
Let vμ = d2

dθ2 ψ(θ)|θ=θμ and Λ = {μ : α−1
1 ≤ φ(μ) ≤ α−1

0 }. Assume for conve-
nience that F has a continuous bounded density and Λ is a compact set lying
in the interior of the support of F . Then the saddlepoint approximation

P{X̄i0,j0 ∈ dμ} ∼
(

j0 − i0
2πvμ

)1/2

e−(j0−i0)φ(μ) dμ (4.1)

holds uniformly over μ ∈ Λ. Our interest is focused on μ satisfying (j0 − i0)
φ(μ) = c + x for some x either of order 1 or small compared to c.

Local random walk
The next step involves an analysis of the local behavior of S(i, j) for (i, j)
close to (i0, j0) when S(i0, j0) = c + x. Let μ = X̄i0,j0 and let θμ ∈ Θ satisfy
φ(μ) = θμμ−ψ(θμ). Since d

dμφ(μ) = θμ, it follows from a Taylor series expansion
that

S(i, j) = (j − i)φ((X̄i,j − μ) + μ) .= (j − i)[φ(μ) + (X̄i,j − μ)θμ]

= S(i0, j0) +
J∑

k=1

(I{k∈[i,j]} − I{k∈[i0,j0]})[θμXk − ψ(θμ)]. (4.2)

Clearly, Xk follows distribution F for k ≤ i0 and k > j0 irregardless of the
conditioning on X̄i0,j0 . In addition, by Siegmund (1988), Xk is asymptotically
of distribution Fμ (that is Fθμ) and asymptotically independent (for a fixed
number of random variables) for i0 < k ≤ j0, when we condition on X̄i0,j0 = μ.
Hence, under the conditioning,

J∑

k=1

(I{k∈[i,j]} − I{k∈[i0,j0]})[θμXk − ψ(θμ)] ⇒ Wi−i0 + W̃j−j0 , (4.3)
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where W and W̃ are independent random walks with independent increments
[θμXn − ψ(θμ)] and [θμX̃n − ψ(θμ)], respectively, with Xn ∼ Fμ for n ≥ 1,
Xn ∼ F for n ≤ 0, X̃n ∼ F for n ≥ 1 and X̃n ∼ Fμ for n ≤ 0. We shall
denote by Pμ the probability when W and W̃ have increments with these joint
distributions.

We are now left with the task of combining these large deviation approxi-
mations and local random walks, and we shall highlight three approaches here.

(I) Conditioning on the last-exit (or first-passage) time. This is
the method most closely identified with the techniques developed to analyze
sequential GLR test statistics. Unlike in sequential analysis where only one
index is involved and what the last time is needs no explanation, here we need
to deal with two indices i and j. We handle this by defining an ordering � with
(i, j) � (i0, j0) if either i > i0 and j = j0 both occur or if j > j0 occurs. By
(4.1)–(4.3), if (j0 − i0)φ(μ) = c + x, then

P{X̄i0,j0 ∈ dμ, (j − i)φ(X̄i,j) < c for all (i, j) � (i0, j0)}

∼
(

c + x

2πφ(μ)vμ

)1/2

e−c−xPμ

{

max
k≥1

Wk ≤ −x

}

×Pμ

{

max
k≤0

Wk + max
�≥1

W̃� ≤ −x

}

dμ. (4.4)

We sum (4.4) over j0 ≥ i0 + c/φ(μ) for a fixed i0, noting that x increases by
φ(μ) for each increase of j0 by 1, integrate over μ ∈ Λ and sum over 1 ≤ i0 ≤ J
to obtain

P{M ≥ c} ∼ J
( c

2π

)1/2
e−c

∫

Λ
γ(μ)(φ(μ))−3/2v−1/2

μ dμ, (4.5)

where

γ(μ) =
∫ ∞

0
e−xPμ

{

max
k≥1

Wk ≤ −x

}

Pμ

{

max
k≤0

Wk + max
�≥1

W̃� ≤ −x

}

dx.

A rigorous justification of (4.5) is more involved, as given in Siegmund and
Venkatraman (1995) for the case of normal Xi. They also provided a simplifi-
cation, relating γ to the overshoot constant

ν(x) = 2x−2 exp
{
− 2

∞∑

n=1

n−1/2Φ
(
− x

√
n

2

)}
(x > 0), (4.6)

in the normal case. This is achieved via an identity in Siegmund (1992). Analo-
gous overshoot constant expressions for general Xi, relevant to both p-value and
sample size calculations, can be found in Woodroofe (1979), Tu and Siegmund
(1999), Storey and Siegmund (2001) and Tu (2009).



92 H.P. Chan, I.-P. Tu, and N.R. Zhang

(II) Conditioning on local or global maxima. Let (i0, j0) be the indices
at which the maximal value M = S(i0, j0) ≥ c is attained. By (4.1)–(4.3), we
obtain (4.5) with the alternative representation

γ(μ) = Pμ

{

max
k =0

Wk < 0
}

Pμ

{

max
�=0

W̃� < 0
}

.

This approach is more commonly used when the score is obtained via a con-
tinuous kernel function. A good reference is Rabinowitz and Siegmund (1997),
which considers signal detection on a homogeneous Poisson process. This work
is discussed in more detail in Section 4.3.1.

(III) Conditioning below a high crossing. The first two approaches in-
volve conditioning above a high level c. There is yet another approach, adapted
by Hogan and Siegmund (1986) from tail probability approximations of Gaus-
sian random fields developed in Pickands (1969), Bickel and Rosenblatt (1973)
and Qualls and Watanabe (1973). Fix i0 and j0 and let them be multiples
of n for some large n. We condition on S(i0, j0) < c, compute the condi-
tional probability that S(i, j) exceeds c for some (i, j) lying in the domain
[i0, i0 + n] × [j0, j0 + n], then add up these probabilities over different i0 < j0.
By (4.1)–(4.3), if (j0 − i0)φ(μ) = c − x, then

P{X̄i0,j0 ∈ dμ, (j − i)φ(X̄i,j) ≥ c for some (i, j) ∈ [i0, i0 + n] × [j0, j0 + n]}

∼
(

c − x

2πφ(μ)vμ

)1/2

e−c+xPμ

{

max
0≤k≤n

Wk + max
0≤�≤n

W̃� ≥ x

}

dμ. (4.7)

We sum (4.7) over i0 ≤ j0 ≤ i0 + c/φ(μ) with j0 a multiple of n and i0 fixed,
integrate over μ ∈ Λ, then sum over 1 ≤ i0 ≤ J with i0 a multiple of n, while
choosing n large, to obtain (4.5) with

γ(μ) = lim
n→∞

n−2

∫ ∞

−∞
exPμ

{

max
0≤k≤n

Wk + max
0≤�≤n

W̃� ≥ x

}

dx.

Again, additional technical arguments are needed here for a rigorous justifica-
tion of these calculations. This approach was used in Chan and Zhang (2007)
to compute tail probabilities of weighted scan statistics and in Chan and Loh
(2007) to compute tail probabilities of template scoring scan statistics. The first
problem will be elaborated further in Section 4.4.1.

4.3 Applications in Spatial Scan Statistics

We focus here on two examples to illustrate how the theory of boundary crossing
probabilities can be used to obtain analytical p-values for spatial or space-time
scan statistics. We start off on a problem with motivations in astronomy. Note
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that the calculations for continuous kernel functions [Rabinowitz and Siegmund
(1997)] and kernels containing discontinuities [Loader (1991)] are different. We
then consider the problem of detecting clusters in a nonhomogeneous population
using a case-control dataset.

4.3.1 Searching for a source of muon particles in the sky

Continuous kernel functions
Consider a background of homogeneous random cosmic rays with known in-
tensity λ. By taking D sufficiently large, we may assume that edge effects are
absent and that the particles are observed on Rd. We shall denote the set of
observed particle locations by {xj}∞j=1. Let f be a non-negative kernel function
on Rd that satisfies

∫
f2(x)dx = 1, is smooth and symmetric in each argument

and vanishes rapidly at infinity. One concrete example is the Gaussian kernel
f(x) = π−d/4e−‖x‖2/2. Let μ =

∫
f(x)dx and let the score

S(t) = λ−1/2
[ ∞∑

j=1

f(xj − t) − λμ]. (4.8)

Let Pθ,t (Eθ,t) denote the probability measure (expectation) under which
{xj}∞j=1 is generated from a nonhomogeneous Poisson process with intensity

λθ,t(x) := λ exp[θf(x − t)], (4.9)

and let Pθ,0 be denoted more simply by Pθ. The nonhomogeneous Poisson pro-
cess motivates S(t) as the efficient score statistics as we let θ → 0 and also
provides the change of measure for computing the tail probabilities of the scan
statistic M = supt∈D S(t).

We provide an outline of the calculations and arguments given in Rabinowitz
and Siegmund (1997) and refer the reader to the article itself for the details. Fix
c > 0 and let b = cλ1/2. By the Poisson clumping heuristic, see, for example,
Siegmund (1988) or Aldous (1989),

P0{M ≥ b} ≈ 1 − e−E0K ,

where K is the number of local maxima in D exceeding the threshold b. Since
f is smooth, ∇S(t) and ∇2S(t), the gradient and Hessian, respectively, of S at
t, are both well defined and continuous. It follows from Theorem 6.1 of Adler
(1981), using a local maxima conditioning argument, that

E0K = |D|Eθ

[(
dP0

dPθ

)

|∇2S(0)|I{S(0)≥b,∇S(0)=0,∇2S(0)<0}

]

, (4.10)

where the statement “∇2S(0) < 0” means ∇2S(0) is a negative definite matrix,
and the expectation on the right-hand side of (4.10) is defined with respect to
a joint probability-density. Let
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ψ(θ) = log E0[eθλ1/2S(0)] = λ

∫

[eθf(x) − 1 − θf(x)] dx.

Then

Eθ(λ1/2S(0)) = ψ′(θ) = λ

∫

f(x)[eθf(x) − 1]dx,

Varθ(λ1/2S(0)) = ψ′′(θ) = λ

∫

f2(x)eθf(x)dx.

Let the rate function I(θ) = θψ′(θ) − ψ(θ) and select θ to satisfy ψ′(θ) = cλ.
By a Gaussian approximation on the process S(t) under Pθ, and making use of
the relations

Eθ[∇S(0)] = 0, Covθ(S(0),∇S(0)) = 0,

Eθ[λ1/2∇2S(0)] = −θCovθ(λ1/2∇S(0)), Eθ(∇2S(0),∇S(0)) = 0,

Covθ

(
∂

∂ti
S(0),

∂

∂tj
S(0)

)

= I{i=j}

∫ [
∂

∂xi
f(x)

]2

eθf(x)dx,

Covθ(S(0),∇2S(0)) =
∫

f(x)∇2f(x)eθf(x)dx,

Rabinowitz and Siegmund obtained the approximation

E0K ∼ θd−1e−I(θ)(2π)−(d+1)/2|D|

⎧
⎨

⎩

∏d
i=1 Varθ

(
λ1/2 ∂

∂ti
S(0)

)

Varθ(λ1/2S(0))

⎫
⎬

⎭

1/2

.

Rabinowitz and Siegmund (1997) also considered scaling of f by an unknown
σ to capture clusters of different sizes. Consider the more general score function

S(t, σ) = λ−1/2

⎡

⎣σ−d/2
∞∑

j=1

f

(
xj − t

σ

)

− σd/2λμ

⎤

⎦ ,

and let the scan statistic Mσ0,σ1 = supt∈D,σ0≤σ≤σ1
S(t, σ), where 0<σ0<σ1<∞.

We refer the reader to Rabinowitz and Siegmund (1997) pp. 175–179 for the
tail approximation of Mσ0,σ1 , which involves a more complicated derivation.

Kernel functions containing discontinuities
When f is not continuous, then S(t) is also not continuous, and the approach
given above does not work. We illustrate the general approach with the box-
shaped kernel

f = IAΔ
, where AΔ = {(x1, x2) : 0 ≤ x1 ≤ Δ1, 0 ≤ x2 ≤ Δ2},
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considered in Loader (1991). Let N(t, Δ) denote the number of points xj lying
inside t + AΔ. Let D = [0, 1]2 and consider (t, Δ) such that t + AΔ ⊂ D. We
shall use as our score function at (t, Δ), the log GLR test statistic for testing

H0: intensity of Poisson process is λ at all t ∈ D,
vs. H1: intensity at x is λ(x) = λ exp(θI{x∈t+AΔ}) for some θ > 0.

Let t ≺ u if ti < ui for all i. Then

S(t, Δ) =
{

N(t, Δ) log
(

N(t, Δ)
nΔ1Δ2

)

+[n − N(t, Δ)] log
(

n − N(t, Δ)
n(1 − Δ1Δ2)

)}
I{N(t,Δ)≥nΔ1Δ2}, (4.11)

where n is the total number of points in D, and we consider the scan statistic

Mw1,w2 = sup
w1≺Δ≺w2

[

sup
t+AΔ⊂D

S(t, Δ)

]

, (4.12)

for some 0 ≺ w1 ≺ w2.
Loader (1991) first considered the case of fixed Δ and n. Let D′ = [0, 1 −

Δ1] × [0, 1 − Δ2] and consider the lattice grid D′
δ = D′ ∩ (δZ)2. Let M =

supt∈D′ N(t, Δ) and Mδ = supt∈D′
δ
N(t, Δ). Let P (n) denote probability condi-

tioned on n. Using the first-passage time approach given in (I) of Section 4.2,
the tail approximations of Mδ := supt∈D′

δ
N(t, Δ) is first obtained. By using a

good bound of P (n){M − Mδ > 0} for small δ > 0, Loader (1991) showed that
for any ε > 0 with Δ1Δ2(1 + ε) rational,

P (n){M ≥ m} ∼ n2Δ1Δ2(1 − Δ1)(1 − Δ2)ε3

(1 − Δ1Δ2)3(1 + ε)
P (n){N(0, Δ) = m},

as m → ∞ with m = nΔ1Δ2(1 + ε) a positive integer.
We shall now proceed to the tail probabilities of Mw1,w2 . For given η > 0,

let h(Δ) be defined implicitly as a solution to the equation

h(Δ) log
(

h(Δ)
Δ

)

+ [1 − h(Δ)] log
(

1 − h(Δ)
1 − Δ

)

=
η2

2
, (4.13)

subject to the constraint h(Δ) > Δ. Let c = η
√

n. Then by (4.11) and (4.12),

{
Mw1,w2 ≥ c2/2

}
=

{

sup
w1≺Δ≺w2

sup
t+AΔ⊂D

[N(t, Δ) − nh(Δ1Δ2)] ≥ 0

}

.(4.14)

The local random walk analysis of S(t, Δ) involves both a tangent approximation

h(Δ′) .= h(Δ) + (Δ′ − Δ)h′(Δ)
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and a decomposition

N(t′, Δ′) − N(t, Δ) .= Z1(t′1 − t1) + Z2(t′2 − t2)

+Z3(t′1 − t1 + Δ′
1 − Δ1) + Z4(t′2 − t2 + Δ′

2 − Δ2),

where Z1, . . . , Z4 are independent two-sided Poisson processes. Then

P (n){Mw1,w2 ≥ c2/2} ∼ c7φ(c)
∫ u1

u0

u2

η7[h′(u)]3

(

h′(u) − 1 − h(u)
1 − u

)4

×
(

1 − h(u)
1 − u

− h(u)
u

)3
(
−(1 + u) log u − 2(1 − u)

√
h(u)(1 − h(u))

)

du, (4.15)

where u0 = w10w20 and u1 = w11w21 are the areas of the smallest and largest
windows, respectively. A simulation study conducted in Loader (1991) shows
(4.15) to be more accurate than the approximation obtained using an asymp-
totic Gaussian process argument.

4.3.2 Case-control epidemiological studies

In the detection of disease clusters, we have to adjust for the nonhomogeneity
of the underlying population, both in terms of the population, density and
the distribution of disease risk factors like gender, age or ethnic group. One
way to achieve this is through a case-control epidemiological study; see, for
example, Whittemore et al. (1987), Cuzick and Edwards (1990), Diggle (1990)
and Kulldorff (1997).

Assume we have a dataset of locations of disease cases and a corresponding
dataset of locations of healthy controls. We merge the two datasets into one
and denote it by {(xj , Xj) : 1 ≤ j ≤ J}, xj denoting the location of the jth
subject with Xj = 1 if it corresponds to a case and Xj = 0 if it corresponds to
a control.

We focus here on the model proposed in Diggle (1990) to test if there exists
a location risk factor that increases the occurrence rate of cases. Let λ(x) be
the rate of generating controls at position x and let ρλ(x)eθg(x,t) be the rate
of generating cases at position x with θ > 0 when there is a risk factor at
t and θ = 0 when there is no risk factor. The semi-parametric likelihood is
proportional to

J∏

j=1

{[λ(xj)ρeθg(xj ,t)]Xj [λ(xj)]1−Xj}

while the conditional likelihood for given x1, . . . ,xJ and I =
∑J

j=1 Xi is
∏J

j=1 eXjθg(xj ,t)

∑
α∈U

∏J
j=1 eI{j∈α}θg(xj ,t)

,
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where U is the class of all
(
J
I

)
subsets of {1, . . . , J} of size I. Let p̂0 = I/J

and ḡ(t) = J−1
∑J

j=1 g(xj , t). Then the efficient score statistic for testing the
presence of a localized risk factor at t is

Tt =
J∑

j=1

(Xj − p̂0)[g(xj , t) − ḡ(t)]. (4.16)

Let the normalized score S(t) = Tt/
√

Var(Tt), where Var(Tt) = p̂0(1 − p̂0)
(J − 2)

∑J
j=1[g(xj , t) − ḡ(t)]2/(J − 1). Rabinowitz (1994) obtained p-value

estimates of M = supt∈D S(t) by applying the tail probability approxima-
tion of a Gaussian process having the same covariance structure as S(t). Let
σt,u = Cov(S(t), S(u)), Λt a matrix with (i, j)th element −

(
∂2σ(s,u)
∂si∂sj

) ∣
∣
∣
s=u

and

Λ′
t = P T

t ΛtPt, where Pt is a d × (d − 1) matrix comprising of orthonormal
vectors of the tangent space of the boundary ∂D at t. Then by Knowles and
Siegmund (1989), Corollary 2,

P{M > b} ≈ (2π)−d/2bd−1ϕ(b)
(∫

D
|Λt|1/2dt

+(π/2)1/2b−1

∫

∂D
|Λ′

t|1/2dt
)

. (4.17)

The SaTScan software developed by Kulldorff (2006) and Information Man-
agement Services, Inc. considers g(x, t) = I{x−t‖≤w} for some w > 0. Let mt,w

and nt,w be the total number of cases and the total number of occurrences
(=cases+controls), respectively, in {u : ‖u − t‖ ≤ w}. Instead of the efficient
score statistic, they consider the log GLR score

S(t, w) = [nt,wφ(mt,w/nt,w)+(I−nt,w)φ((J−mt,w)/(I−nt,w))]I{mt,w/nt,w>p̂0},

where φ(p) = p log(p/p̂0)+(1−p) log[(1−p)/(1− p̂0)]. In the SaTScan software,
p-values of the scan statistics, including scan statistics involving other types of
data, are computed using permutation tests.

4.4 Recent Applications in Genomics

Scan statistics are useful for interpreting genomes in the post-sequencing phase.
They play an exploratory role, with the goal of locating genomic regions ex-
hibiting properties of extreme deviation to be singled out for further testing.
There is a rich source of statistical problems here, many still relatively unex-
plored. Due to space constraints, we focus only on two examples because the
description and solution of each category of problems require a different set of



98 H.P. Chan, I.-P. Tu, and N.R. Zhang

domain knowledge. The first problem is on the scanning of a DNA sequence
for predefined word patterns. The second is on the analysis of genomic profiling
data, in particular DNA copy number profiling.

4.4.1 Biomolecular sequence analysis

DNA and protein sequences can be modeled as a linear sequence drawn from a
stationary distribution on an alphabet representing either the 21 amino acids
in the case of protein sequences, or the bases A,C,G and T in the case of DNA
sequences. Over the years, researchers have identified specific word patterns
that are associated with either the encouragement or suppression of certain
biological activity.

Transcription factors are proteins that bind to specific parts of DNA, known
as transcription factor binding sites (TFBSs), to control the timing and rate
of transcription of DNA into RNA. The TFBSs are identified by scoring with
respect to certain scoring matrices, and the presence of a cluster of these sites
indicates that genes regulated by the associated transcription factors may be
located nearby. Lifanov et al. (2003) successfully used scan statistics to locate
clusters of binding sites in DNA sequences by counting the number of TFBS
located in a sliding window, while Rajewsky et al. (2002) weighed the TFBS
by the scores obtained from the scoring matrices.

A more classical application of scan statistics in counting word patterns is in
the identification of origins of replication in viruses, cf. Masse et al. (1992). The
four letters in the DNA alphabet can be divided into two complementary pairs
with A–T one pair and C–G the second pair. In DNA sequences, a palindrome
is a DNA word which, when read backwards, has the complementary spelling
of the original word. For example, the word ACGCGCGT is a palindrome be-
cause its letter-wise complementary spelling is TGCGCGCA. In bacterial and
viral genomes, palindromes occur with unusually high frequency near locations
associated with the initiation of replication, known as origins of replication.

Karlin and Brendel (1992) formulated the r-scan statistic to detect anoma-
lies in the spacing between occurrences of word patterns. Let n be the length
of the genomic sequence and x1 < · · · < xJ the locations of the patterns. Let
dj = xj+1 − xj be the inter-feature distances, A

(r)
i =

∑i+r−1
k=i dk the r-scan

process and A(r) = min1≤i≤J−r A
(r)
i the minimal r-scan. Let Nu(t) be the num-

ber of word patterns in the interval (t, t + u] and Mu = sup0≤t≤n−u Nu(t) the
maximal scan statistic. Then we have the duality

{Mu ≥ r + 1} = {A(r) ≤ u},

and the two scan statistics can be used interchangeably. P-value approximations
for the significance of r-scans were obtained by Arratia, Goldstein and Gordon
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(1989) and Glaz et al. (1994) using Poisson and compound Poisson approxima-
tions, respectively. See also Leung and Yamashita (1999) for the applications of
these p-value approximations on palindrome counting scan statistics.

In addition to Rajewsky et al. (2002), weighted scan statistics was also
considered in Chew, Choi and Leung (2005) for scoring palindromic patterns,
which we consider here to be palindromes having a length of at least ten DNA
letters. Since the length of a palindrome must be even, Chew et al. let Xj = �j/2,
where �j is the length of the jth palindromic pattern. Let Su(t) =

∑
xj∈(t,t+u] Xj

and let the weighted scan statistic Mn,u = sup0≤t≤n−u Su(t). Chan and Zhang
(2007) used a marked Poisson process approximation of Su(t) to obtain an
approximation of the p-value of Mn,u. Let F be the distribution of Xj , which
we assume to have positive mean μ. Let λ be the probability of observing a
palindromic pattern at any one location. Let K(θ) = E(eθX1) and for given
x > λμ, define θx(> 0) and αx(> λ) to be the unique constants satisfying

K ′(θx) = x/λ, αx = λK(θx). (4.18)

Let the large deviation rate function I(x) = −(αx − λ) + θxx and define Fθ

to be the tilted distribution of F satisfying Fθ(dx) = eθxF (dx)/K(θ), with
probability mass function (density) fθ when F is discrete (continuous). Let
Y1, Y2, . . . be i.i.d. random variables with the mixture probability mass function
(density)

g(y) =
( αx

λ + αx

)
fθx(y) +

( λ

λ + αx

)
f(−y), (4.19)

and let Rk = Y1 + · · · + Yk. Define the overshoot constant

νx = lim
b→∞

E[e−θx(Rτb
−b)], where τb = inf{k ≥ 1 : Rk ≥ b}, (4.20)

with b a multiple of η if F is arithmetic with span η, in other words, if F has sup-
port on the grid {0,±η,±2η, . . .} but not on a coarser lattice grid containing 0.
By the approach of conditioning below a high crossing, see (III) in Section 4.2,
Chan and Zhang (2007) showed that

P{Mn,u ≥ ux} ∼ 1 − exp

{

−(n − u)νxe−uI(x)(x − λμ)
√

2πuλK ′′(θx)

}

, (4.21)

if u → ∞ and (n − u) → ∞ as n → ∞.
In Figure 4.1, we use (4.21) to obtain threshold levels corresponding to a

p-value of 0.001 in the search for clusters of palindromic patterns with window
size u equal to 0.5 % of the genome length. For the unweighted case, Xj = 1 for
all palindromic patterns, while for the weighted case, we choose Xj = (�j/2)−4.
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Figure 4.1. The x coordinate represents the locations of three well-known virus
genomes. The y coordinate represents either half the length of the palindromic
patterns (top plots), u−1Nu(t − u/2) for the unweighted case (middle plots)
or u−1Su(t − u/2) for the weighted case (bottom plots). The dotted lines are
threshold levels corresponding to p-values of 0.001. The inverted triangles are
experimentally validated origins of replication.

4.4.2 Detecting changes in DNA copy number

The DNA copy number is the number of copies of DNA at a region of a genome,
the default being two for all human autosomes. The variation of this number,
known as the DNA copy number variation (CNV), corresponds to gains and
losses of specific chromosomal segments. These variations may be inherited
[Redon et al. (2006)], or they may occur due to mutation and are then associated
with certain diseases like cancer [Pinkel and Albertson (2005)]. In DNA copy
number data, the quantity of homologous DNA present in a population of cells is
measured by a set of probes, each mapping to a specific location in the genome.

Let Xj be the measured DNA quantity at probe j, relative to the expected
value of two, at a fixed location xj in the genome. We do not observe integer
valued Xj due to inhomogeneity of the cell sample and substantial measure-
ment error. Our objective is to partition the genome into segments of equal
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copy number. We shall disregard irregularities in the spacing of the probe loca-
tions, a reasonable assumption for most experimental platforms and accepted
in practice. Many different statistical methods have been applied to this prob-
lem; see Lai et al. (2005) for a broad survey of these methods. We shall focus
here on the approach taken by Olshen et al. (2004). Consider a segment of the
genome, containing J probes, which we would like to test for constant CNV.
Define X̄ = J−1

∑J
1 Xj and σ̂2 = J−1

∑J
1 (Xj − X̄)2. Let

U(s, t) =

∑t
j=s+1(Xj − X̄)

σ̂
√

(t − s)[1 − (t − s)/J ]
, (4.22)

and
M = max

0≤s<t≤J,v0<t−s<v1

U2(s, t). (4.23)

When a significant p-value is obtained, for example by using the approximation
in Siegmund (1986), we partition the segment and test each sub-segment further
in the same manner.

Since most genomic profiling studies involve cohorts of individuals, it is of
interest to pool samples together to gain power in detecting recurrent CNVs.
This problem was first analyzed using hidden Markov models, cf. Shah et al.
(2007), and has also been studied recently by Zhang et al. (2008) under the
framework of a simultaneous scan of multiple aligned sequences for recurrent
variant intervals of shared location. The formulation in Zhang et al. (2008) is as
follows. For each sequence i = 1, . . . , N and position j = 1, . . . , J , the random
variables Xij are mutually independent and normally distributed with mean
values μij and variances σ2

i . Under the null hypothesis, μi1 = · · · = μiJ for each
sample i, and under the alternative hypothesis, there exists J ⊂ {1, . . . , N}
(with J �= ∅), and τ1 < τ2 with v0 ≤ (τ2 − τ1) ≤ v1 for some 1 ≤ v0 ≤ v1 < J ,
such that for each i ∈ J , μij = μi0 + δiI{τ1<j≤τ2} for some δi �= 0. The GLR
test in this setting yields the scan statistic

M = max
0≤s<t≤J,v0≤t−s≤v1

Zs,t, where Zs,t =
N∑

i=1

[U2
i (s, t) − 1]√

2N
, (4.24)

and Ui(s, t) is defined as in (4.22) relative to the ith sequence.
The sum of chi-squares statistic in (4.24) pools signals from all samples,

however weak. Zhang et al. (2008) also proposed a weighted sum of chi-squares
statistic that requires individual sequences to show some evidence of a signal
before it is allowed to contribute significantly to the pooled scan. Let Qi(s, t) =
I{i∈J} (the presence of (s, t) in the notation will be clear later). If J is known,
then the log likelihood ratio statistic is

max
s<t

N∑

i=1

log{[1 − Qi(s, t)] + Qi(s, t)eU2
i (s,t)/2} = max

s<t

N∑

i=1

Qi(s, t)U2
i (s, t)/2.

(4.25)
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Since Qi(s, t) is not observable, a plug-in estimate is derived by using a Bayesian
formulation. Let p denote the prior probability that Qi(s, t) = 1. Then the pos-
terior mean of Qi(s, t), after maximizing with respect to the unknown parame-
ters, is

Q̂i(s, t) =
eU2

i (s,t)/2

rp + eU2
i (s,t)/2

, (4.26)

where rp = (1 − p)/p. Replacing Qi by Q̂i in (4.25) and standardizing leads to
the weighted sum of chi-squares statistic

Z(p)(s, t) =
∑N

i=1[w(Ui(s, t))U2
i (s, t) − μp]

σp

√
N

, (4.27)

where w(u) = eu2/2/{rp + eu2/2} and μp, σ2
p are the mean and variance, respec-

tively, of w(U)U2 when U is a standard normal random variable.
An approximation of the significance of scans using either (4.24) or (4.27)

can be obtained via a last-exit time approach. Instead of the process Z
(p)
s,t , we

consider more generally

Zf
s,t =

∑N
i=1[f(Ui(s, t)) − μ]

σ
√

N
,

where f is a well-behaved function, μ = Ef(U) and σ2 = Var(f(U)). Under the
assumption that the noise is independent between samples, Zf

s,t is a normalized
sum of N i.i.d. processes, and thus for large N is approximately a mean zero
Gaussian process on the two-dimensional indexing set D={(s, t) : 0≤s< t≤J,
v0 ≤ t − s ≤ v1} with covariance function

ρ(s, t, u, v) = Cov(Zf
s,t, Z

f
u,v) = σ−2Cov(f(U1(s, t)), f(U1(u, v))). (4.28)

The function ρ is not differentiable, but its left and right partial derivatives
exist and have the same magnitude. Hence, we may define

ρ′(s, t) = lim
a↑0

∣
∣
∣
∣
ρ(s, t, s + a, t) − ρ(s, t, s, t)

a

∣
∣
∣
∣ . (4.29)

By conditioning on the last-exit time, it follows from the calculations in
Siegmund (1988) that

P

{

max
(s,t)∈D

Zf
s,t > c

}

≈ ϕ(c)
c

∑

(s,t)∈D

∫ ∞

0
e−xP

{

max
n≥1

W (s,t)
n ≤ −x

}

×P

{

min
n≥0

W (s,t)
n + min

n≥1
W̃ (s,t)

n ≥ x

}

dx, (4.30)
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where W
(s,t)
n is a random walk of i.i.d. normal random variables with mean

−c2ρ′(s, t) and variance 2c2ρ′(s, t), and W̃
(s,t)
n is an identically distributed

random walk, independent of the first random walk. The formula in (4.30) uses
a Gaussian approximation on Zf

s,t, which is asymptotically a function of the
chi-square random variables.

A more accurate approximation can be obtained by correcting for the skew-
ness of f(U). Let ψ(θ) = log exp{θ[f(U)−μ]/σ} and select θ to be the positive
root of the equation N1/2ψ′(θ) = c. Replace ϕ(c)/c in (4.30) with the saddle-
point approximation [2πψ′′(θ)]−1/2 exp{−N [θψ′(θ)−ψ(θ)]} and use Lemma 21
of Siegmund (1992) to evaluate the integral to obtain

P

{

max
(s,t)∈D

Zf
s,t > c

}

≈ [2πψ′′(θ)]−1/2e−N [θψ′(θ)−ψ(θ)]c3

×
∑

(s,t)∈D

[ρ′(s, t)]2ν2
(
c0[2ρ′1(s, t)]

1/2
)

, (4.31)

where c0 = c/
√

N and ν is the overshoot constant given in (4.6).
The computation of the partial derivatives ρ′ can be simplified by using the

expression

ρ′(s, t) = (2σ2)−1{E[f(Us,t)f ′(Us,t)Us,t] − E[f(Us,t)f ′′(Us,t)]}κ(t − s), (4.32)

where κ(r) = [r(1 − r/J)]−1. For example, f(x) = x corresponds to the simple
one sample case and by (4.32), ρ′(s, t) = κ(t − s)/2. Substituting this in (4.31)
provides us with the significance level approximation of Siegmund (1992). The
sum of chi-squares statistic (4.24) corresponds to f(x) = x2 and ρ′(s, t) =
κ(t − s).

4.5 Concluding Remarks

In addition to DNA copy number, scan statistics can be applied on many other
types of genomic profiling data. Recent technological advancements have al-
lowed the measurement of many types of genomic activity, all of which produce
enormous quantities of data, where the primary goal is to locate regions of
change from baseline in a linear sequence. There is a common theme of scan-
ning for signals of unknown width and scanning for simultaneous signals in
multiple sequences. Hoh and Ott (2000), Ji and Wong (2005) and Keles et al.
(2006) are recent articles that apply scan statistics on the DNA genome. These
advancements and advancements in other applied fields like neuroscience have
resulted in the collection of a huge amount of data, and scan statistics have
been useful in identifying meaningful signals and patterns.
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In more traditional areas of scan statistics applications, for example in as-
tronomy and epidemiological studies, there are still many important issues that
can occupy the attention and time of researchers. Current scan statistics are
geared towards the detection of one cluster of a predetermined shape. It will be
interesting to study how scan statistics can be modified so that they can detect
multiple clusters or signals with irregular shapes more effectively.
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30. Lifanov, A., Makeev, V., Nazina, A. and Papatsenko, D. (2003). Homotypic
regulatory clusters in Drosophila, Genome Research, 13, 579–588.

31. Loader, C. (1991). Large-deviation approximations to the distribution of
scan statistics, Advances in Applied Probability, 23, 751–771.

32. Masse, M.J.O., Karlin, S., Schachtel, G.A. and Mocarski, E.S. (1992). Hu-
man cytomegalovirus origin of DNA replication (oriLyt) residues with a
highly complex repetitive region, Proceedings of the National Academy of
Science, 89, 5246–5250.

33. Naus, J. (1965). Clustering of random points in two dimensions, Biometrika,
52, 263–267.

34. Naus, J. (1966). Some probabilities, expectations, and variances for the size
of largest clusters and smallest intervals, Journal of the American Statistical
Association, 61, 1191–1199.

35. Naus, J. (1982). Applications for distributions of scan statistics, Journal of
the American Statistical Association, 77, 177–183.

36. Olshen, A.B., Venkatraman, E.S., Lucito, R. and Wigler, M. (2004). Circu-
lar binary segmentation for the analysis of array-based DNA copy number
data, Biostatistics, 5, 557–572.

37. Pickands, J. (1969). Upcrossing probabilities for stationary Gaussian pro-
cesses, Transactions of the American Mathematical Society, 145, 51–73.



Boundary Crossing Probability 107

38. Pinkel, D. and Albertson, D.G. (2005). Array comparative genomic hy-
bridization and its applications in cancer, Nature Genetics, 37, Suppl 11–
17.

39. Qualls, C. and Watanabe, H. (1973). Asymptotic properties of Gaussian
random fields, Transactions of the American Mathematical Society, 177,
155–171.

40. Rabinowitz, D. (1994). Detecting clusters in disease incidence, In Change-
points Problems (Ed., E. G. Carlstein, H.-G. Müller and D. Siegmund),
255–275, IMS, Hayward, CA.

41. Rabinowitz, D. and Siegmund, D. (1997). The approximate distribution
of the maximum of a smoothed Poisson random field, Statistica Sinica, 7,
167–180.

42. Rajewsky, N., Vergassola, M., Gaul, U. and Siggia, E. (2002). Computa-
tional detection of genomic cis-regulatory modules applied to body pat-
terning in the early Drosophila embryo, BMC Bioinformatics, 3, e30.

43. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H. et al. (2006).
Global variation in copy number in the human genome, Nature, 444,
444–454.

44. Shah, S.P., Lam, W.L., Ng, R.T. and Murphy, K.P. (2007). Modeling re-
current DNA copy number alterations in array CGH data, Bioinformatics,
23, 450–458.

45. Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals,
Springer-Verlag, New York.

46. Siegmund, D. (1986). Boundary crossing probabilities and statistical appli-
cations, Annals of Statistics, 14, 361–404.

47. Siegmund, D. (1988). Tail probabilities for the maxima of some random
fields, Annals of Probability, 16, 487–501.

48. Siegmund, D. (1992). Tail approximations for maxima of random fields, In
Probability Theory: Proceedings of the 1989 Singapore Probability Confer-
ence (Ed., L.H.Y. Chen, K.P. Choi, K. Hu and J.-H. Lou), pp. 147–158,
Walter de Gruyter, Berlin.

49. Siegmund, D. and Venkatraman, E.S. (1995). Using the generalized likeli-
hood ratio statistic for sequential detection of a change-point, Annals of
Statistics, 23, 255–271.



108 H.P. Chan, I.-P. Tu, and N.R. Zhang

50. Siegmund, D. and Yakir, B. (2000). Tail probabilities for the null distribu-
tion of scanning statistics, Bernoulli, 6, 191–213.

51. Storey, J.D. and Siegmund, D. (2001). Approximate p-values for local se-
quence alignments: Numerical studies. Journal of Computational Biology,
8, 549–556.

52. Tu, I. (2009). Asymptotic overshoots for arithmetic i.i.d. random variables,
to appear in Statistica Sinica, 19, 315–323.

53. Tu, I. and Siegmund, D. (1999). The maximum of a function of a Markov
chain and application to linkage analysis, Advances in Applied Probability,
31, 510–531.

54. Whittemore, A.S., Friend, N., Brown, B. and Holly, E. (1987). A test to
detect clusters of diseases, Biometrika, 74, 631–635.

55. Woodroofe, M. (1978). Large deviations of likelihood ratio statistics with
applications to sequential testing, Annals of Statistics, 6, 72–84.

56. Woodroofe, M. (1979). Repeated likelihood ratio tests, Biometrika, 66, 454–
463.

57. Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis,
SIAM, Philadelphia, PA.

58. Zhang, N.R., Siegmund, D., Ji, H. and Li, J. (2008). Detecting simultane-
ous change-points in multiple sequences. Technical Report, Department of
Statistics, Stanford University, Palo Alto, CA.



5

Approximations for Two-Dimensional Variable

Window Scan Statistics

Jie Chen1 and Joseph Glaz2

1Department of Mathematics, University of Massachusetts, Boston, MA, USA
2Department of Statistics, University of Connecticut, Storrs, CT, USA

Abstract: In this chapter, approximations for distributions of a two-
dimensional maximum scan score-type statistic and a minimum p-value scan
statistic are derived for independent and identically distributed binomial and
Poisson observations. Both unconditional and conditional models are con-
sidered. For the conditional models, it is assumed that the total number of
observations in the region is known. Numerical results are presented to evalu-
ate the accuracy of the specified probability of Type I error and to compare the
power of these variable window-type scan statistics with fixed single window
scan statistics.
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5.1 Introduction

In this chapter, we review the methods and approximations investigated in Glaz
and Zhang (2004) and (2006) for two-dimensional variable window scan statis-
tics. New approximations and algorithms are presented as well. The focus in
this article is on approximations for scan statistics based on observed data in a
rectangular region via approximations that have been derived for fixed window
scan statistics [Glaz, Naus and Wallenstein (2001) and Chen and Glaz (2002)].
Generalized likelihood ratio tests for variable window scan statistics, imple-
mented via simulations, have been extensively investigated in the statistical
literature, including: Duczmal and Buckeridge (2006), Kulldorff (1997, 2006),
Kulldorff and Nagarwalla (1995), Kulldorff, Tango and Park (2003), Song and
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Kulldorff (2003), Modarres and Patil (2007), Neill and Moore (2004, 2006),
Neill and Lingwall (2007), Patil and Taillie (2004), Tango (2007) and Tango
and Takahashi (2005). In this chapter, we will not discuss this important ap-
proach for implementing variable window scan statistics. Several chapters in
this volume will present recent developments using the likelihood ratio ap-
proach. Recently, methods of false discovery control have been employed for
variable window scan statistics in two dimensions [Perone-Pacifico, Genovese,
Verdinelli, Wasserman (2004, 2007)]. We will not discuss these methods here
either. A review chapter on this topic is included in this volume.

The chapter is organized as follows. In Section 5.2, we present a new ap-
proximation for a two-dimensional scan statistic for independent and identically
distributed (i.i.d.) observations modeled by a binomial or a Poisson distribution
that has been discussed for the Poisson model in Guerriero, Willett and Glaz
(2009). In Section 5.3, we investigate two variable window scan statistics, for
the unconditional case and for the conditional case when the total number of
observed events in the region is known. Algorithms and numerical results for
evaluating the performance of these variable window scan statistics as discussed
in Section 5.3 are given in Section 5.4. A brief summary and directions for future
research are presented in Section 5.5.

5.2 Two-Dimensional Discrete Scan Statistics

Let [0, T1] × [0, T2] be a given rectangular region. Let hi = Ti/ni > 0, where ni

are positive integers, i = 1, 2. In many applications the exact locations of the
observed events in the region are unknown. What is usually available are the
counts in small rectangular subregions. For 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, let Xij

be the number of events that have been observed in the rectangular subregion
[(i−1)h1, ih1]×[(j−1)h2, jh2]. We are interested in detecting unusual clustering
of these events under the null hypothesis that Xij are i.i.d. nonnegative integer-
valued random variables from a specified distribution. For 2 ≤ m1 ≤ n1 − 1,
2 ≤ m2 ≤ n2 − 1, 1 ≤ i1 ≤ n1 − m1 + 1 and 1 ≤ i2 ≤ n2 − m2 + 1, define

Yi1,i2 =
i1+m1−1∑

i=i1

i2+m2−1∑

j=i2

Xij (5.1)

to be the number of events in a rectangular region comprising m1 by m2 adjacent
rectangular subregions with area h1h2 and the southwest corner located at the
point ((i1 − 1)h1, (i2 − 1)h2). If Yi1,i2 exceeds a preassigned value of k, we will
say that k events are clustered within the inspected region. A two-dimensional
discrete scan statistic [Chen and Glaz (1999)] is defined as the largest number
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of events in any m1 by m2 adjacent rectangular subregions with area h1h2 and
the southwest corner located at the point ((i1 − 1)h1, (i2 − 1)h2):

Sm1,m2(N1, N2) = max{Yi1,i2 ; 1 ≤ i1 ≤ N1 − m1 + 1, 1 ≤ i2 ≤ N2 − m2 + 1}.
(5.2)

When the size of the rectangular region is fixed throughout the presentation
of the results, we abbreviate Sm1,m2(N1, N2) to Sm1,m2 . Sm1,m2 can be viewed
as an extension of the one-dimensional discrete scan statistic discussed in Glaz,
Naus and Wallenstein (2001, Chapter 13). It has been used in testing the null
hypothesis, H0, of randomness that assumes the Xij ’s are i.i.d. binomial random
variables with parameters L and 0 < p < 1 or i.i.d. Poisson random variables
with mean μ > 0, respectively. For the alternative hypothesis, H1, of clustering
one often specifies a rectangular subregion

R(i1, i2) = [(i1 − 1)h1, (i1 + m1 − 1)h1] × [(i2 − 1)h2, (i2 + m2 − 1)h2]

such that for any i1 ≤ i ≤ i1 + m1 − 1 and i2 ≤ j ≤ i2 + m2 − 1, Xij has
a binomial distribution with parameters L and p1, where p1 > p or a Poisson
distribution with mean μ1 where μ1 > μ, respectively. For ij /∈ [i1, i1 + m1 −
1] × [i2, i2 + m2 − 1], Xij is distributed according to the distribution specified
by the null hypothesis. It is well known that the generalized likelihood ratio
test rejects the null hypothesis in favor of the alternative hypothesis whenever
Sm1,m2 exceeds the value k, where k is determined from a specified significance
level of the testing procedure. Approximations for P (Sm1,m2 ≥ k) are discussed
in Glaz, Naus and Wallenstein (2001, Chapter 16.1).

The use of Sm1,m2 for testing the null hypothesis of randomness specified
above is of interest in many areas of science and technology, including astron-
omy [Darling and Waterman (1986)], computer science [Pfaltz (1983)], ecology
[Cressie (1991) and Koen (1991)], epidemiology [Cressie (1991) and Kulldorff
(1997)], image analysis [Rosenfeld (1978)], pattern recognition [Panayirci and
Dubes (1983)], minefield detection via remote sensing [Glaz (1996)] and reliabil-
ity theory [Barbour, Chryssaphinou and Roos (1996), Boutsikas and Koutras
(2000), Fu and Koutras (1994), Koutras, Papadopoulus and Papastavridis
(1993), Malinowski and Preuss (1995), and Salvia and Lasher (1990)].

In this chapter, we consider testing the null hypothesis specified above
against the following clustering type alternatives, in the special case when
N1 = N2 = N and m1 = m2 = m. Let 1 ≤ i0, j0 ≤ N − m + 1 and
2 ≤ m ≤ N/4 be unknown parameters. We assume that for i0 ≤ i ≤ i0 + m− 1
and j0 ≤ j ≤ j0 + m− 1, Xi,j are i.i.d. binomial random variables with param-
eters L and p1, 0 < p < p1 < 1, or i.i.d. Poisson random variables with mean
μ1, μ0 < μ1, respectively, while in the rest of the region Xi,j are i.i.d. binomial
random variables with parameters L and 0 < p < 1 or i.i.d. Poisson random
variables with mean μ0, respectively. Since the size of the rectangular window
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m is unknown, we propose in Section 5.3 two variable window scan statistics
based on a sequence of fixed window size scan statistics: Sm1×m1 , ...., Smn×mn ,
where 2 ≤ mj < mj+1 ≤ N/4, 1 ≤ j ≤ n − 1.

In retrospective investigations, the total number of observed events in the
entire region

N1∑

i=1

N2∑

j=1

Xij = a

is known. For a fixed rectangular scanning window of size m, a conditional two-
dimensional discrete scan statistic and its upper tail probabilities are denoted by

Sm1,m2(N1, N2; a) (5.3)

and

P (Sm1,m2(N1, N2; a) ≥ k) = P

⎧
⎨

⎩
Sm1,m2(N1, N2) ≥ k|

N1∑

i=1

N2∑

j=1

Xij = a

⎫
⎬

⎭
, (5.4)

respectively. When the size of the inspected region is clearly understood, we
abbreviate Sm1,m1(N1, N2; a) to Sm1,m2(a).

Let Xi,j be i.i.d. binomial random variables with parameters L and 0 < p < 1
or i.i.d. Poisson random variables with mean μ > 0, respectively. In this chapter,
to simplify the presentation of the results, for the unconditional and conditional
models, we will assume that N1 = N2 = N and m1 = m2 = m.

In the conditional model, under the null hypothesis of an i.i.d. binomial
model with parameters L and 0 < p < 1, the conditional distribution of
{Xij , 1 ≤ i, j ≤ N} given that

∑N
i=1

∑N
j=1 Xij = a, is multivariate hypergeo-

metric with a discrete density function given by

P

⎧
⎨

⎩
Xij = xij , 1 ≤ i, j ≤ N |

N∑

i=1

N∑

j=1

Xij = a

⎫
⎬

⎭
=

[
N∏

i=1

N∏

j=1

(
L

xij

)
]

(
N2L
a

) , (5.5)

where
∑N

i=1

∑N
j=1 xij = a and 0 ≤ xij ≤ L, 1 ≤ i, j ≤ N .

Under the null hypothesis of an i.i.d. Poisson model with mean μ, the con-
ditional distribution of {Xij , 1 ≤ i, j ≤ N}, given that

∑N
i=1

∑N
j=1 Xij = a, is

multinomial with a discrete density function given by

P

⎧
⎨

⎩
Xij = xij , 1 ≤ i, j ≤ N |

N∑

i=1

N∑

j=1

Xij = a

⎫
⎬

⎭
=
(

a
x12,....,xNN

)
(

1
N2

)a

, (5.6)

where
∑N

i=1

∑N
j=1 xij = a and 0 ≤ xij , 1 ≤ i, j ≤ N . Approximations for the

distribution and moments of the conditional scan statistic Sm1,m1(N1, N1; a)
for binomial and Poisson models are discussed in Glaz, Naus and Wallenstein
(2001, Chapter 16.2) and Chen and Glaz (2002).
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In this chapter, we consider testing the null hypothesis specified above
against clustering-type alternatives described below. One class of alternative
hypotheses has the following representation. Let 1 ≤ i0, j0 ≤ N − m + 1 and
2 ≤ m ≤ N/4 be unknown parameters. We assume that for i0 ≤ i ≤ i0 + m− 1
and j0 ≤ j ≤ j0 + m− 1, Xi,j are i.i.d. binomial random variables with param-
eters L and p1, 0 < p < p1 < 1, or i.i.d. Poisson random variables with mean
μ1, μ0 < μ1, respectively, and a1 events have been observed, while in the rest
of the region Xi,j are i.i.d. binomial random variables with parameters L and
0 < p < 1 or i.i.d. Poisson random variables with mean μ0, respectively, and
a − a1 events have been observed, where a1 is large in comparison to a − a1.
Therefore, the alternative hypotheses in the binomial or Poisson models com-
prise a class of a product of two multivariate hypergeometric distributions or a
product of two multinomial distributions, respectively, with parameters i0, j0,
m, a, and a1. More general classes of alternative hypotheses can be considered
as well. One can divide the locations {1 ≤ i, j ≤ N}\{i0 ≤ i ≤ i0 + m − 1}×
{j0 ≤ j ≤ j0 + m− 1} into M disjoint rectangular location regions and assume
that in each of these regions Xi,j are i.i.d. binomial random variables with pa-
rameters L and 0 < p0j < 1 or i.i.d. Poisson random variables with mean μ0j ,
1 ≤ j ≤ M . Moreover, one assumes that a0j events have been observed in the
jth region, 1 ≤ j ≤ M , where a1 +

∑m
j=1 a0j = a and a1 is large in compari-

son to a0j . Therefore, the alternative hypotheses here are a product of several
multivariate hypergeometric distributions or a product of several multinomial
distributions, respectively, with parameters i0, j0, m, a, a1, and a0j , 1 ≤ j ≤ M.

Since the size of the rectangular window m is unknown, in Section 5.3 we
propose two variable window scan statistics based on a sequence of fixed window
size scan statistics: Sm1×m1(a), ...., Smn×mn(a), where 2 ≤ mj < mj+1 ≤ N/4,
1 ≤ j ≤ n − 1.

For the unconditional case, we present below a new approximation for
P (Sm,m ≥ k). Note that the general formula is valid for any i.i.d. nonnegative
integer-valued observations. For the special case of i.i.d. Bernoulli observations,
this approximation has the same structure as an approximation in Glaz, Naus
and Wallenstein (2001, Equation 16.40) and is a member of a general class of
approximations in Boutsikas and Koutras (2000, Equation 16.33).

We first derive an approximation for P (Sm,m ≥ k) for i.i.d. binomial ob-
servations with parameters L and 0 < p < 1. An approach in Glaz, Naus and
Wallenstein (2001, Section 16.1.6) leading to an approximation in Glaz, Naus
and Wallenstein (2001, Equation 16.40) yields for 1 ≤ k < m2L:

P (Sm,m ≥ k) ≈ 1 − [P (Sm,m(m + 1, m + 1) ≤ k − 1)](N−m)2

[P (Sm,m(m, m + 1) ≤ k − 1)](N−m−1)(N−m)
(5.7)

×(qm,2m−1)(N−2m)(N−m−1)

(qm,2m)(N−2m+1)(N−m−1)
,
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where
qm,m+l−1 = P (Ac

1,1

⋂
Ac

1,2 · · ·
⋂

Ac
1,l), (5.8)

1 ≤ l ≤ N − m + 1, and

Ai1,i2 =
i1+m−1∑

i=i1

i2+m−1∑

j=i2

Xi,j ≥ k, (5.9)

1 ≤ i1, i2 ≤ N − m + 1. The quantities qm,2m−1 and qm,2m are evaluated via
an algorithm of Saperstein (1976) extended in Glaz and Naus (1991) or Karwe
and Naus (1997).

To evaluate P (Sm,m(m, m + 1) ≤ k − 1) and P (Sm,m(m + 1, m + 1) ≤
k − 1) one employs a conditioning approach. Let {Xi,j ; 1 ≤ i ≤ m + 1, 1 ≤
j ≤ m + 1} be i.i.d. binomial random variables with parameters L and p. Let

Y i2j2
i1,j1

=
j2∑

j=j1

i2∑

i=i1

Xi,j . To evaluate P (Sm,m(m, m + 1) ≤ k − 1), we condition on

Y m,m
1,2 = y, to get

P (Sm,m(m, m + 1) ≤ k − 1) (5.10)

=
(k−1)(m−1)mL∑

y=0

P (Sm,m(m, m + 1) ≤ k − 1|Y m,m
1,2 = y)P (Y m,m

1,2 = y).

Now,

P (Sm,m(m, m + 1) ≤ k − 1|Y m,m
1,2 = y)

= P (Y m,m
1,1 ≤ k − 1, Y m,m+1

1,2 ≤ k − 1|Y m,m
1,2 = y)

= P (Y m,1
1,1 ≤ k − 1 − y, Y m,m+1

1,m+1 ≤ k − 1 − y) =
[
P (Y m,1

1,1 ≤ k − 1 − y)
]2

.

Therefore,
P (Sm,m(m, m + 1) ≤ k − 1)

=
(k−1)∧(m−1)mL∑

y=0

[
P (Y m,1

1,1 ≤ k − 1 − y)
]2

P (Y m,m
1,2 = y),

where Y m,1
1,1 is a binomial random variable with parameters mL and p and Y m,m

1,2

is a binomial random variable with parameters (m−1)mL and p. We can express
the event

(Sm,m(m + 1, m + 1) ≤ k − 1) (5.11)

= (Y m,m
1,1 ≤ k − 1, Y m,m+1

1,2 ≤ k − 1, Y m+1,m
2,1 ≤ k − 1, Y m+1,m+1

2,2 ≤ k − 1).
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Also,

Y m,m
1,1 = Y m,m

2,2 + Y 1,1
1,1 + Y m,1

2,1 + Y 1,m
1,2 ,

Y m,m+1
1,2 = Y m,m

2,2 + Y 1,m+1
1,m+1 + Y 1,m

1,2 + Y m,m+1
2,m+1 ,

Y m+1,m
2,1 = Y m,m

2,2 + Y m+1,1
m+1,1 + Y m+1,m

m+1,2 + Y m,1
2,1 ,

and
Y m+1,m+1

2,2 = Y m,m
2,2 + Y m+1,m+1

m+1,m+1 + Y m+1,m
m+1,2 + Y m,m+1

2,m+1 .

Therefore, to evaluate P (Sm,m(m + 1, m + 1) ≤ k − 1) we need to condition on
Y m,m

2,2 , Y m,1
2,1 , Y 1,m

1,2 , Y m+1,m
m+1,2 , and Y m,m+1

2,m+1 . The condition is done in the following
order: Y m,m

2,2 = y1, Y
1,m
1,2 = y2, Y

m+1,m
m+1,2 = y3, Y

m,1
2,1 = y4, Y

m,m+1
2,m+1 = y5. We get

P (Sm,m(m + 1, m + 1) ≤ k − 1) =
(k−1)∧(m−1)2L∑

y1=0

(k−1−y1)∧(m−1)L∑

y2=0

(k−1−y1)∧(m−1)L∑

y3=0

(k−1−y1−(y2∨y3))∧(m−1)L∑

y4=0

(k−1−y1−(y2∨y3))∧(m−1)L∑

y5=0
[
P (Sm,m(m + 1, m + 1) ≤ k − 1|Y m,m

2,2 = y1, Y
1,m
1,2 = y2, Y

m+1,m
m+1,2 = y3,

Y m,1
2,1 = y4, Y

m,m+1
2,m+1 = y5)

]
× P

(
Y m,m

2,2 = y1

)
P
(
Y 1,m

1,2 = y2

)

P
(
Y m+1,m

m+1,2 = y3

)
P
(
Y m,1

2,1 = y4

)
P
(
Y m,m+1

2,m+1 = y5

)
. (5.12)

Then

P
(
Sm,m(m + 1, m + 1) ≤ k − 1|Y m,m

2,2 = y1, Y
1,m
1,2 = y2, Y

m+1,m
m+1,2 = y3,

Y m,1
2,1 = y4, Y

m,m+1
2,m+1 = y5

)

= P
(
Y 1,1

1,1 ≤ a1, Y
1,m+1
1,m+1 ≤ a2, Y

m+1,1
m+1,1 ≤ a3, Y

m+1,m+1
m+1,m+1 ≤ a4

)

= P
(
Y 1,1

1,1 ≤ a1

)
P
(
Y 1,m+1

1,m+1 ≤ a2

)
P
(
Y m+1,1

m+1,1 ≤ a3

)
P
(
Y m+1,m+1

m+1,m+1 ≤ a4

)
,

where

a1 = k − 1 − y1 − y2 − y4, a2 = k − 1 − y1 − y2 − y5

and

a3 = k − 1 − y1 − y3 − y4, a4 = k − 1 − y1 − y3 − y5.
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Therefore,

P (Sm,m(m + 1, m + 1) ≤ k − 1) =
(k−1)∧(m−1)2L∑

y1=0

(k−1−y1)∧(m−1)L∑

y2=0

(k−1−y1)∧(m−1)L∑

y3=0

(k−1−y1−(y2∨y3))∧(m−1)L∑

y4=0

(k−1−y1−(y2∨y3))∧(m−1)L∑

y5=0

(5.13)

[
P
(
Y 1,1

1,1 ≤ a1

)
P
(
Y 1,m+1

1,m+1 ≤ a2

)
P
(
Y m+1,1

m+1,1 ≤ a3

)
P
(
Y m+1,m+1

m+1,m+1 ≤ a4

)

×P
(
Y m,m

2,2 = y1

)
P
(
Y 1,m

1,2 = y2

)
P
(
Y m+1,m

m+1,2 = y3

)
P
(
Y m,1

2,1 = y4

)

P
(
Y m,m+1

2,m+1 = y5

)]
,

where Y 1,1
1,1 , Y 1,m+1

1,m+1 , Y m+1,1
m+1,1 and Y m+1,m+1

m+1,m+1 are i.i.d. binomial random variables
with parameters L and p, Y m,m

2,2 has a binomial distribution with parameters
(m− 1)2L and p, and Y 1,m

1,2 , Y m+1,m
m+1,2 , Y m,1

2,1 , Y m,m+1
2,m+1 are i.i.d. binomial random

variables with parameters (m− 1)L and p. All nine binomial random variables
are independent of each other.

A similar method is used to derive an approximation for the i.i.d. Poisson
model with mean μ. Here too the quantities qm,2m−1 and qm,2m are evaluated
via an algorithm of Saperstein (1976) extended in Glaz and Naus (1991) or
Karwe and Naus (1997). For the Poisson model,

P (Sm,m(m, m + 1) ≤ k − 1) =
k−1∑

y=0

[
P (Y m,1

1,1 ≤ k − 1 − y)
]2

P (Y m,m
1,2 = y),

(5.14)

where Y m,1
1,1 is a Poisson random variable with mean equal to mμ and Y m,m

1,2 is
a Poisson random variable with mean equal to m(m − 1)μ and

P (Sm,m(m + 1, m + 1) ≤ k − 1) =
k−1∑

y1=0

k−1−y1∑

y2=0

k−1−y1∑

y3=0

k−1−y1−(y2∨y3)∑

y4=0

k−1−y1−(y2∨y3)∑

y5=0

(5.15)

[
P
(
Y 1,1

1,1 ≤ a1

)
P
(
Y 1,m+1

1,m+1 ≤ a2

)
P
(
Y m+1,1

m+1,1 ≤ a3

)
P
(
Y m+1,m+1

m+1,m+1 ≤ a4

)

×P
(
Y m,m

2,2 = y1

)
P
(
Y 1,m

1,2 = y2

)
P
(
Y m+1,m

m+1,2 = y3

)
P
(
Y m,1

2,1 = y4

)

P
(
Y m,m+1

2,m+1 = y5

)]
,
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where
a1 = k − 1 − y1 − y2 − y4, a2 = k − 1 − y1 − y2 − y5,

a3 = k − 1 − y1 − y3 − y4, a4 = k − 1 − y1 − y3 − y5,

and Y 1,1
1,1 , Y 1,m+1

1,m+1 , Y m+1,1
m+1,1 and Y m+1,m+1

m+1,m+1 are i.i.d. Poisson random variables with
mean μ, Y m,m

2,2 has a Poisson distribution with mean equal to (m − 1)2μ and
Y 1,m

1,2 , Y m+1,m
m+1,2 , Y m,1

2,1 , Y m,m+1
2,m+1 are i.i.d. Poisson random variables with mean

(m − 1)μ.

5.3 Variable Window Discrete-Type Scan Statistics

Let Xi,j be i.i.d. binomial random variables with parameters L and 0 < p <
1 or i.i.d. Poisson random variables with mean μ > 0, respectively. We are
interested in the case where the window size 2 ≤ m ≤ N/4 is unknown. Glaz and
Zhang (2004) investigated the performance of multiple scan statistics in a two-
dimensional case for the i.i.d. Bernoulli model. The algorithms for implementing
the testing procedures based on multiple window scan statistics, which are
multivariate statistics, are quite complex. Therefore, we will not discuss them
here. We will investigate two variable window scan statistics: the maximum scan
score-type scan statistic [Glaz and Zhang (2006)] and the minimum p-value scan
statistic [Zhang and Glaz (2008)].

5.3.1 Unconditional case

In the unconditional case, the total number of observed events in the region
targeted for inspection is unknown. We first present a two-dimensional maxi-
mum scan score-type statistic. In Section 5.4, an algorithm for implementing
this scan statistic is discussed. This extends Glaz and Zhang (2006), where a
maximum scan score-type statistic is discussed for i.i.d. Bernoulli trials in a
one-dimensional case.

Let 2 ≤ m1 < m2 < ..... < mn ≤ N/4 be a given sequence of window lengths
with associated discrete scan statistics Sm1,m1 , Sm2,m2 , ...., Smn,mn , respectively.
We define a two-dimensional maximum scan score-type statistic

Tn = max
1≤j≤n

{
Smj ,mj − μj

σj

}

, (5.16)

where μj = E
(
Smj ,mj

)
and σj = SD

(
Smj ,mj

)
are the expected value and the

standard deviation of Smj ,mj , respectively. For a given significance level α, we
reject the null hypothesis that Xi,j are i.i.d. binomial random variables with
parameters L and 0 < p < 1 or i.i.d. Poisson random variables with mean
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μ > 0, if Tn ≥ t, where α = P (Tn ≥ t). To obtain the critical value t, an
accurate approximation for P (Tn ≥ t) is needed. Following the approach in
Glaz and Zhang (2006), we get

P (Tn ≥ t) = P

⎧
⎨

⎩

n⋃

j=1

(
Smj ,mj ≥ tσj + μj

)
⎫
⎬

⎭
= P

⎧
⎨

⎩

n⋃

j=1

(
Smj ,mj ≥ kj

)
⎫
⎬

⎭
,

(5.17)
where

kj =

{
[tσj + μj ] , tσj + μj is an integer
[tσj + μj ] + 1, otherwise (5.18)

and [x] denotes the integer part of x. For n ≥ 2, it follows from Equation (5.17)
and Glaz and Zhang (2004) that

P (Tn ≥ t) ≤
n∑

j=1

P
(
Smj ,mj ≥ kj

)

−
n−1∑

j=1

P
{(

Smj ,mj ≥ kj

)
∩
(
Smj+1,mj+1 ≥ kj+1

)}
, (5.19)

where

P{(Smj ,mj ≥ kj) ∩ (Smj+1,mj+1 ≥ kj+1)} (5.20)
= P{Smj ,mj ≥ kj |Smj+1,mj+1 ≥ kj+1}P (Smj+1,mj+1 ≥ kj+1).

One can approximate

P{Smj ,mj ≥ kj |Smj+1,mj+1 ≥ kj+1} (5.21)
≈ P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj} + P (Smj ,mj ≥ kj).

Approximation (5.21) is based on the fact that, conditional on Smj+1,mj+1 ≥
kj+1, the event Smj ,mj ≥ kj will either occur within a rectangle of size mj+1 ×
mj+1, where kj+1 1’s have been observed, or outside that rectangular region.
The latter event is approximated by P (Smj ,mj ≥ kj). If the event Smj ,mj ≥ kj

occurs within a rectangle of size mj+1 × mj+1, where kj+1 1’s have been ob-
served, we approximate that probability by P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj},
the tail probability of a two-dimensional conditional scan statistic, defined in
Equation (5.4). To implement this two-dimensional scan score-type statistic, we
approximate μj and σj using Chen and Glaz (1999) and the new approxima-
tion for the distribution of the unconditional scan statistic given in Section 5.2.
P (Smj ,mj ≥ kj) and P (Smj+1,mj+1 ≥ kj+1) are approximated as well via the
new approximation in Section 5.2. P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj} is ap-
proximated using Chen and Glaz (2002).
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The advantage of Tn over the multiple scan statistic, (Sm1,m1 , Sm2,m2 , ....,
Smn,mn) , investigated in Glaz and Zhang (2004), is derived from Tn being a
univariate statistic. Therefore, its range can be expressed as a union of disjoint
intervals on which Smj ,mj = kj , 1 ≤ j ≤ n, are fixed. This decomposition of
the range of Tn leads to a natural ordering of the values of {kj ; 1 ≤ j ≤ n},
with respect to P (Tn ≥ t), via Equation (5.18). This ordering yields an algo-
rithm for obtaining a unique rejection region for a given significance level α. In
Section 5.4, we discuss this algorithm and present numerical results to evaluate
the performance of Tn.

Now, let 2 ≤ m1 < m1 < · · · < mn ≤ N/4 be the sizes of n rectangular
windows. For 1 ≤ j ≤ n, let kj be the observed value of Smj ,mj and pj =
P (Smj ,mj ≥ kj | H0) the associated p-value. To test H0 vs. H1 we propose the
following test statistic:

Pmin = min{pj ; 1 ≤ j ≤ k}, (5.22)

to be called the minimum P-value statistic. In the context of variable win-
dow scan statistics, Pmin has been introduced in Hoh and Ott (2000) for a
one-dimensional 0 − 1 i.i.d. Bernoulli model. It has been extended to the two-
dimensional case in Zhang and Glaz (2008) for implementing a variable window
Bayesian scan statistic.

5.3.2 Conditional case

Let 2 ≤ m1 < m2 < · · · · · < mn ≤ N/4 be a given sequence of window lengths
with associated conditional discrete scan statistics Sm1,m1(a), Sm2,m2(a), ....,
Smn,mn(a), respectively. We define a two-dimensional maximum scan score-type
statistic

Tn(a) = max
1≤j≤n

{
Smj ,mj (a) − μj(a)

σj(a)

}

, (5.23)

where μj(a) = E
(
Smj ,mj (a)

)
and σj(a) = SD

(
Smj ,mj (a)

)
are the expected

value and the standard deviation of Smj ,mj (a), respectively. For a given signifi-
cance level α, we reject the null hypothesis that Xi,j are i.i.d. binomial random
variables with parameters L and 0 < p < 1 or i.i.d. Poisson random variables
with mean μ > 0, if Tn(a) ≥ t, where α = P (Tn(a) ≥ t). To obtain the critical
value t, an accurate approximation for P (Tn(a) ≥ t) is needed. Following the
approach in Glaz and Zhang (2006), we get

P (Tn(a) ≥ t) = P

⎧
⎨

⎩

n⋃

j=1

(
Smj ,mj (a) ≥ tσj(a) + μj(a)

)
⎫
⎬

⎭

= P

⎧
⎨

⎩

n⋃

j=1

(
Smj ,mj (a) ≥ kj

)
⎫
⎬

⎭
, (5.24)
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where

kj =

{
[tσj(a) + μj(a)] , tσj(a) + μj(a) is an integer
[tσj(a) + μj(a)] + 1, otherwise (5.25)

and [x] denotes the integer part of x. For n ≥ 2, it follows from Equation (5.24)
and Glaz and Zhang (2004) that

P (Tn(a) ≥ t) ≤
n∑

j=1

P
(
Smj ,mj (a) ≥ kj

)

−
n−1∑

j=1

P
{(

Smj ,mj (a) ≥ kj

)
∩
(
Smj+1,mj+1(a) ≥ kj+1

)}
, (5.26)

where

P{(Smj ,mj (a) ≥ kj) ∩ (Smj+1,mj+1(a) ≥ kj+1)} (5.27)

= P{Smj ,mj (a) ≥ kj |Smj+1,mj+1(a) ≥ kj+1}P (Smj+1,mj+1(a) ≥ kj+1).

One can approximate

P{Smj ,mj (a) ≥ kj |Smj+1,mj+1(a) ≥ kj+1} (5.28)
≈ P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj} + P (Smj ,mj (a − kj+1) ≥ kj).

Approximation (5.28) is based on the fact that conditional on Smj+1,mj+1(a) ≥
kj+1, the event Smj ,mj (a) ≥ kj will either occur within a rectangle of size
mj+1 × mj+1, where kj+1 1’s have been observed, or outside that rectangular
region. The latter event is approximated by P (Smj ,mj (a − kj+1) ≥ kj). If
the event Smj ,mj (a) ≥ kj occurs within a rectangle of size mj+1 × mj+1,
where kj+1 1’s have been observed, we approximate that probability by
P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj}, the tail probability of a two-dimensional
conditional scan statistic, defined in Equation (5.4). To implement this two-
dimensional scan score-type statistic, we approximate P (Smj ,mj (a) ≥ kj),
P (Smj ,mj (a− kj+1) ≥ kj), P{Smj ,mj (mj+1, mj+1; kj+1) ≥ kj}, μj(a) and σj(a)
using the methods in Chen and Glaz (2002).

Let 2 ≤ m1 < m1 < · · · < mn ≤ N/4 be the sizes of n rectangu-
lar windows. For 1 ≤ j ≤ n, let kj be the observed value of Smj ,mj (a) and
pj(a) = P (Smj ,mj (a) ≥ kj | H0) the associated p-value. To test H0 vs. H1 we
propose the following test statistic:

Pmin(a) = min{pj(a); 1 ≤ j ≤ k}, (5.29)

to be called the conditional minimum P-value statistic. In Section 5.4 an al-
gorithm for implementing this test statistic is presented along with numerical
results to evaluate its performance.
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5.4 Numerical Results

5.4.1 Unconditional case

In this section, numerical results are presented to evaluate the accuracy of
achieving a specified probability of Type I error for the variable window scan
statistics Tn and Pmin. The probability of Type I error for Tn is evaluated
using the new approximations derived in Section 5.2. Since there is no exact
distribution available for the Pmin statistic, for a given significant level α, the
critical value pα given by

PH0(Pmin ≤ pα) = α,

is evaluated via simulation with 10,000 trials.
For selected values of the parameters, we simulate the power of Tn and Pmin

and compare it with the power of fixed window scan statistics Smj ,mj , 1 ≤ j ≤ n,
for unconditional Bernoulli, binomial and Poisson models. The power of these
scan statistics is evaluated via simulation based on 10,000 trials for classes of
alternative hypotheses and listed in Tables 5.1–5.5, for the Bernoulli, binomial
and Poisson models, respectively.

5.4.2 Conditional case

In this section, the power and the accuracy of the probability of Type I error of
Pmin(a) and Tn(a) are compared with the individual fixed window scan statistics
Sm1,m1(a), Sm2,m2(a), . . . , Smn,mn(a), respectively. For a specified significance
level, the power of Smj ,mj (a), Tn(a) and Pmin(a) is evaluated for the following

Table 5.1. Comparison of power for i.i.d. Bernoulli distribution with p0 = .001.

n1 μ1 T3 Pmin S5,5 S10,10 S20,20

5 0.01 0.0254 0.0378 0.0516 0.0472 0.0355
0.05 0.1431 0.1585 0.1863 0.1319 0.0636

10 0.01 0.0569 0.0825 0.0821 0.1026 0.0512
0.05 0.7693 0.8119 0.6511 0.8171 0.6497

20 0.01 0.5587 0.3601 0.1967 0.3752 0.4567
0.05 1.0000 1.0000 0.9919 0.9995 1.0000

Type I error 0.0597 0.0486 0.0446 0.0556 0.0636
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Table 5.2. Comparison of power for i.i.d. Bernoulli distribution with p0 = .0025.

n1 μ1 T3 Pmin S5,5 S10,10 S20,20

5 0.01 0.0503 0.0493 0.0500 0.0423 0.0301
0.05 0.1273 0.1050 0.1385 0.0690 0.0373

10 0.01 0.0648 0.0606 0.0654 0.0531 0.0320
0.05 0.6434 0.6261 0.5123 0.6457 0.3835

20 0.01 0.2112 0.1672 0.1161 0.1440 0.1722
0.05 0.9998 1.0000 0.9300 0.9950 0.9999

Type I error 0.0348 0.0486 0.0431 0.0480 0.0349

Table 5.3. Comparison of power for i.i.d. Bernoulli distribution with p0 = .005.

n1 μ1 T3 Pmin S5,5 S10,10 S20,20

5 0.01 0.0577 0.0459 0.0474 0.0390 0.0247
0.05 0.0924 0.0806 0.0846 0.0481 0.0267

10 0.01 0.0607 0.0488 0.0511 0.0421 0.0234
0.05 0.4748 0.4634 0.3218 0.4499 0.1582

20 0.01 0.0882 0.0716 0.0623 0.0617 0.0400
0.05 0.9941 0.9945 0.8345 0.9713 0.9945

Type I error 0.0512 0.0496 0.0596 0.0543 0.0313

Table 5.4. Comparison of power for i.i.d. binomial distribution with L = 5 and
p0 = .001.

n1 p1 T3 Pmin S5,5 S10,10 S20,20

5 0.010 0.1005 0.1029 0.0957 0.0506 0.0296
0.050 0.8844 0.8852 0.8862 0.6934 0.3281

10 0.010 0.4804 0.4703 0.3327 0.4525 0.1605
0.020 0.9587 0.9537 0.8564 0.9477 0.7466

20 0.005 0.6375 0.6594 0.2690 0.4457 0.6166
0.008 0.9659 0.9716 0.6550 0.8787 0.9664
0.010 0.9962 0.9967 0.8409 0.9696 0.9962

Type I error 0.0564 0.0570 0.0529 0.0434 0.0288
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Table 5.5. Comparison of power for i.i.d. Poisson distribution with μ0 = .001.

n1 μ1 T3 Pmin S5,5 S10,10 S20,20

5 0.10 0.4730 0.4780 0.4774 0.4939 0.3739
0.20 0.8677 0.8678 0.8691 0.8741 0.7970

10 0.05 0.8190 0.8304 0.8234 0.6523 0.8094
0.10 0.9942 0.9939 0.9948 0.9688 0.9937

20 0.01 0.4907 0.4744 0.5003 0.2000 0.3686
0.02 0.9298 0.9147 0.9316 0.5577 0.8174

Type I error 0.0493 0.0554 0.0542 0.0505 0.0460

Table 5.6. Comparison of power for a = 10 for i.i.d. Bernoulli model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 2 3 0.2202 0.2180 0.1994 0.1950 0.1061
2 5 0.4142 0.4179 0.2652 0.3668 0.2516

10 2 5 0.3161 0.3142 0.1570 0.2829 0.2174
3 1 0.8016 0.8010 0.3119 0.7222 0.1678
3 5 0.8370 0.8452 0.3447 0.7441 0.4286

20 4 1 0.4446 0.5557 0.1580 0.4044 0.4773
4 5 0.5825 0.6839 0.1760 0.4681 0.5819
5 1 1.0000 1.0000 0.2374 0.6258 1.0000

25 4 5 0.3957 0.3967 0.1406 0.3330 0.4836
5 1 0.7004 0.7027 0.1741 0.4477 0.7622
5 3 0.7138 0.7201 0.1745 0.4592 0.7788

Type I error 0.0504 0.0522 0.0500 0.0478 0.525

classes of alternative hypothesis that lead to a larger number of occurrences of
events in the n1 × n1 and n1 × N − n1 rectangular subregions:

n1∑

i=1

n1∑

j=1

Xi,j = a1,

n1∑

i=1

N−n1∑

j=1

Xi,j = a2 and
N−n1∑

i=1

N∑

j=1

Xi,j = a − a1 − a2,

where n1 < N and a1 + a2 ≤ a. The selected values of a1, a2 and n1 are listed
in Tables 5.6–5.11 for the Bernoulli, binomial and Poisson models, respectively.
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Table 5.7. Comparison of power for a = 25 for i.i.d. Bernoulli model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 2 10 0.3940 0.4109 0.4033 0.3339 0.2574
2 15 0.7790 0.7850 0.7106 0.7003 0.6639

10 4 5 0.4118 0.4229 0.4069 0.5783 0.1789
4 10 0.5976 0.6050 0.4812 0.6499 0.4251
4 15 0.8730 0.8752 0.6400 0.8025 0.7875

25 5 5 0.0752 0.0738 0.0733 0.0799 0.0642
8 10 0.7996 0.7981 0.2569 0.4293 0.8401
8 15 0.9184 0.9174 0.3555 0.5570 0.9306

Type I error 0.0475 0.0499 0.0434 0.0435 0.0517

Table 5.8. Comparison of power for a = 50 for i.i.d. Bernoulli model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 3 5 0.1092 0.1067 0.1500 0.0737 0.0365
3 10 0.2344 0.2290 0.2291 0.1614 0.0889
5 5 1.0000 1.0000 1.0000 0.5905 0.1332

10 5 5 0.3507 0.3482 0.2804 0.3848 0.0801
5 10 0.4318 0.4248 0.2931 0.4268 0.1578
5 20 0.8198 0.8154 0.4847 0.7248 0.6348

25 10 10 0.3572 0.3309 0.1126 0.1958 0.4233
10 15 0.4122 0.3879 0.1266 0.2203 0.4756
10 25 0.8220 0.8086 0.2328 0.4515 0.8680

Type I error 0.0568 0.0521 0.0561 0.0479 0.0454

Table 5.9. Comparison of power for L = 5 and a = 50 for i.i.d. binomial model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 3 8 0.1740 0.1738 0.1678 0.0882 0.0435
10 0.2310 0.2306 0.2064 0.1213 0.0642

10 5 10 0.3941 0.3940 0.2664 0.2994 0.1129
20 0.8034 0.8026 0.4784 0.6681 0.5313

20 8 20 0.5643 0.5624 0.1782 0.3047 0.5429
30 0.9957 0.9957 0.4108 0.7199 0.9953

Type I error 0.0501 0.0499 0.0441 0.0307 0.0290
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Table 5.10. Comparison of power for a = 100 for i.i.d. Poisson model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 4 10 0.1293 0.1259 0.1695 0.0889 0.0401
5 20 1.0000 1.0000 1.0000 0.4287 0.2153

10 5 10 0.0665 0.0717 0.0753 0.0629 0.0427
10 20 1.0000 1.0000 0.7258 1.0000 0.6466

20 10 20 0.0999 0.0940 0.0674 0.0963 0.0730
10 25 0.1652 0.1518 0.0804 0.1329 0.1520
15 25 1.0000 1.0000 0.2193 0.5387 1.0000

Type I error 0.0496 0.0556 0.0470 0.0481 0.0483

Table 5.11. Comparison of power for a = 300 for i.i.d. Poisson model.

n1 a1 a2 T3 Pmin S5,5 S10,10 S20,20

5 6 50 0.5838 0.5840 0.5940 0.5010 0.3372
60 0.8737 0.8737 0.8411 0.8054 0.6222

10 12 50 0.5109 0.5116 0.2875 0.5497 0.2324
60 0.7383 0.7383 0.3941 0.7365 0.4597

10 70 0.9413 0.9415 0.5459 0.9286 0.7528
20 25 50 0.2088 0.2091 0.0906 0.1791 0.2380

75 0.4831 0.4848 0.1490 0.3151 0.6037
100 0.9987 0.9985 0.3639 0.8044 0.9999

Type I error 0.0489 0.0478 0.0480 0.0457 0.0461

5.5 Summary

In this chapter, we investigated the performance of a maximum scan score-
type statistic and a minimum p-value statistic, as two-dimensional variable
window-type statistics, for binomial and Poisson models, and for unconditional
and conditional models. From the numerical results it is evident that both
statistics perform quite well in comparison with fixed window scan statistics,
when the size of the scanning window is not known. From a computational point
of view, it is easier to implement the minimum p-value statistic. We intend to
investigate further the performance of this statistic for continuous-type data in
two-dimensional regions.
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Applications of Spatial Scan Statistics: A Review
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Abstract: In 1965, Joseph Naus published his now classical paper on spatial
scan statistics, entitled ‘Clustering of random points in two dimensions’. This
paper set in motion an important statistical theory of spatial scan statistics and
an avalanche of spatial scan statistics applications in a wide variety of fields, in-
cluding archaeology, astronomy, brain imaging, criminology, demography, early
detection of disease outbreaks, ecology, epidemiology, forestry, geology, history,
psychology and veterinary medicine. In this chapter, we survey this wide variety
of applications.

Keywords and phrases: Scan statistic, spatial, geography, applications

6.1 Introduction

Suppose we observe a number of points located within a geographical or spatial
region. These points may, for example, reflect the locations of trees, ant nests,
diseased individuals or post offices. The general aim of the spatial scan statistic
is to detect and evaluate the statistical significance of a spatial cluster of events
that cannot be explained by an underlying probability model defined by a null
hypothesis of spatial randomness. There are spatial scan statistics for two, three
and more dimensions. If the scanning is done over a three-dimensional area
defined by both space and time, we have a space-time scan statistic, which is
an important special case of the three-dimensional spatial scan statistic.

Since first presented by Naus in 1965, spatial scan statistics have been ap-
plied in many different fields such as infectious diseases, cancer, cardiology,
pediatrics, rheumatology, auto-immune diseases, neurological diseases, liver dis-
eases, diabetes, geriatrics, parasitology, alcohol and drugs, accidents, veterinary
medicine, demography, forestry, toxicology, psychology, medical imaging, his-
tory, criminology, astronomy and geology. The aim of this chapter is to present
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a review of the areas in which the spatial scan statistic has been applied, pro-
viding a broad sense of how it is being used across the globe and across scientific
disciplines. After a brief methodological review, we present examples of applica-
tions by field of study. A final discussion presents a brief summary of the main
findings.

Although this chapter emphasizes the use of spatial scan statistics, there
are many other important spatial statistical methods. From a user perspective,
the spatial scan statistic is best viewed as one of several important tools for the
successful analysis of geographical and spatial data. Other important methods
include visualization techniques, descriptive statistics of rates and proportions,
spatial smoothing methods, kriging, global clustering tests, regression for spa-
tially correlated data and so on.

6.2 Brief Methodological Overview

Suppose we have a square region with a number of points. In its original form,
studied by Naus (1965), the spatial scan statistic consists of a rectangular scan-
ning window with a fixed size and shape. This window is continuously moved
over the predefined square study region, covering all possible locations, and the
definition of the spatial scan statistic is the maximum number of points in the
scanning window at any given time. The next step is to find the probability of
observing at least that many points within the window, under the null hypoth-
esis of randomly located points, generated by a homogeneous Poisson process.
In mathematical language, we want to know the probability of finding at least
one rectangle with dimensions u and v with at least n out of N points uni-
formly distributed in the unit square. While simple to state, the complexity of
this problem lies in the multiple testing inherent in the many window locations
and the overlapping nature of those windows, resulting in the maximum being
taken from a set of highly dependent observations. Using some very beautiful
and powerful mathematics, Naus (1965) developed theoretical formulas to ob-
tain upper and lower bounds for those probabilities, showing that the bounds
converge to the true probability.

Following the pioneering paper by Naus, there have been a number of further
methodological developments of spatial scan statistics, in order to handle differ-
ent types of data. The spatial region to be scanned may be of different shapes;
the scanning window may be of different sizes and shapes; the analysis may or
may not be conditional on the total number of points observed; the observations
may be generated by a homogeneous Poisson process, an inhomogeneous Pois-
son process, or by a Bernoulli, multinomial, normal or exponential distribution
function; there may be a need to adjust for covariates or temporal trends; and
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so on. For each application, the scan statistic parameters and probabilistic mod-
els must be appropriately selected to fit the data and the scientific questions
asked.

The study region is usually defined directly by the data and can be of a
variety of shapes and sizes. The exact locations of the points may be known, so
that we have a spatial point process. Alternatively, the data may be spatially
aggregated, so that instead of points we have counts in a set of squares on a
lattice or in a set of administrative geographical areas such as postal codes,
census tracts or counties.

An important component of the spatial scan statistic is the shape and size
of the scanning window. Naus (1965) used a rectangular window of any fixed
shape and size, while Loader (1991) used a variable size rectangular window.
Alm (1997, 1998) used circles, ellipses and triangles. Kulldorff (1997) defined a
spatial scan statistic for any variably sized collection of windows, using a contin-
uously variable size circle in his example. More recently, spatial scan statistics
have also been defined using non-parametrically defined windows [Duczmal and
Assunção (2004), Patil and Taillie (2003, 2004), Assunção et al. (2006), Tango
and Takahashi (2005)], taking very irregular shapes. The shape of the window
does not need to be the same as the shape of the study region.

Rather than defining the null hypothesis based on a homogeneous Poisson
process, another assumption for the null hypothesis implies that intensity varies
within the region, following an underlying known population defined by an inho-
mogeneous Poisson process [Turnbull et al. (1990)]. Areas with higher popula-
tion are then expected to have more points under the null hypothesis, reflecting,
for example, the fact that there are more cancer cases per geographical unit in
urban compared to rural areas, simply because of the higher population density.
Spatial scan statistics have also been developed for discrete 0/1 Bernoulli data
[Chen and Glaz (1996), Kulldorff (1997)], as well as for multinomial [Jung,
Kulldorff and Klassen (2007)], normal [Kulldorff, Huang and Konty (2008);
Huang et al. (2009)] and survival type data [Huang, Kulldorff and Gregorio
(2007); Cook, Gold and Li (2007)].

An important extension of the spatial scan statistic is to three or more di-
mensions [Alm (1998)]. The most common of these is the space-time scan statis-
tic, where time is added as a third dimension [Kulldorff et al. (1998)]. The size
and shape of the study region and scanning window can be defined as before for
the purely spatial scan statistic, while time is added as a third dimension. Retro-
spective space-time scan statistics provide a mechanism to detect and evaluate
past or present clusters that might have appeared anytime during the study pe-
riod. Prospective space-time scan statistics only consider windows that touch
the current date in order to only detect and evaluate the existence of clusters
that are currently present. The latter method is used in early disease outbreak
detection surveillance systems [Kulldorff (2001); Kulldorff et al. (2005)].
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As we survey the application of spatial and space-time scan statistics, we
will consider most of the above variants of the spatial scan statistic, as different
versions are useful for different types of applications.

6.3 Applications in Medical Imaging

The spatial scan statistic has been applied to important problems in brain imag-
ing. Naiman and Priebe (2001) have used it for positron emission tomography
(PET) scan brain imagery data. Yoshida, Naya and Miyashita (2003) have ap-
plied it for neural response data in monkeys. Injections of retrograde tracers in
a specific region (cases) and adjacent regions (control) in the brain generated
maps with pixels associated to selective and non-selective neurons. Significant
clusters of selective neurons were found, assuming a Bernoulli model.

Spatial scan statistics have also been used for breast cancer digital mammog-
raphy data. The goal is the detection of clustered microcalcifications, which may
be indicative of a cancerous tumor [Priebe, Olson and Healy (1997a); Naiman
and Priebe (2001)]. Popescu and Lewitt (2006a, 2006b) mimic a cancer nodule
detection system. A circular scanning window with fixed radius and variable
center is used. The test statistic is the sum of the values of the pixels inside
the window. The null distribution of the test statistic is generated by scanning
background-only images.

6.4 Applications in Cancer Epidemiology

The incidence, prevalence or mortality rates of cancer may vary geographically
for a number of reasons, including spatial variation of environmental or behav-
ioral risk factors or the genetic make-up of the population. Spatial scan statistics
have often been used to detect and/or evaluate the statistical significance of ge-
ographical cancer clusters, as cancer clusters will also occur simply by chance in
some parts of the map. Leukemia was the first cancer that was observed using
spatial scan statistics, with Turnbull et al. (1990) studying leukemia in upstate
New York and Hjalmars et al. (1996) studying childhood leukemia in Sweden.
Hjalmars et al. (1996) did not find any statistically significant clusters in their
data, even though there had been one leukemia cluster alarm reported in the
press a few years earlier. While the cluster was detected, it was not statistically
significant and was not even among the three top clusters. In contrast, Viel
et al. (2000) found a statistically significant cluster of soft-tissue sarcoma and
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non-Hodgkins lymphoma clusters around a municipal solid waste incinerator
with high dioxin emission levels in France.

Under the null hypothesis, the incidence or mortality of cancer is assumed to
follow a Poisson distribution, where the expected number of cases in a particular
location is proportional to the covariate-adjusted population in that location.
Age and other covariates are adjusted for by using indirect standardization. Let
b(i,k) be the population in age group k in location i and let B(k) be the total
population in age group k. Let C(k) be the total number of cases in age group k.
The indirectly age standardized expected number of cases in location i is then

μi =
∑

k

b(i,k) · C(k)/B(k) (6.1)

Age must always be adjusted for in cancer incidence and mortality studies.
If not, there will be significant clusters in areas with a predominately older
population, since older people are at higher risk of being diagnosed with and
dying from cancer. It is often interesting to also adjust for other known risk
factors, including socio-economic variables such as ethnicity, educational levels
or urbanicity, as well as biological variables such as skin color for skin cancer
or parity for breast cancer studies [Kulldorff et al. (1997); Hsu et al. (2004);
Klassen, Kulldorff and Curriero (2005)]. A very interesting approach is to reduce
the number of socio-economic variables by only taking a few components from
principal component analysis [Sheehan et al. (2004), Sheehan and DeChello
(2005), Fukuda et al. (2005)], usually two independent components. After an
adjustment, cancer clusters will disappear if they can be explained by the covari-
ates that were adjusted for. However, the number of clusters can also increase,
as a true cluster can be hidden in an unadjusted analysis.

The spatial scan statistic is able to detect and evaluate the statistical sig-
nificance of individual clusters, but it won’t provide an estimate of incidence
or mortality rates throughout the map. For that, other statistical methods are
needed as a complement, such as the mapping of smoothed rates using con-
ditional autoregressive models [Thomas and Carlin (2003) and Buntinx et al.
(2003)].

For most cancer sites, there may be a long time between exposure and
diagnosis and an even longer time between exposure and death. Han et al.
(2004) presents a notable approach for breast cancer clustering analysis by using
place of residency at the (i) time of birth, (ii) time of menarche and (iii) time
of birth of the first child, as alternative geographical coordinates in separate
spatial analyses. In this way, the study provides an opportunity to examine
geographical clustering of breast cancer at various points during life. Significant
clusters were found for the time of birth and time of menarche analyses, with
similar results. There were fewer clusters when the data was analyzed using
place of residence at time of diagnosis.
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Spatial scan statistics can also be used to study the geographical variation
of a particular subtype, in order to determine if there are geographical clusters
of late stage cancer or cancer of a particular type or grade [Roche, Skinner
and Weinstein (2002); Gregorio et al. (2002); Sheehan and DeChello (2005);
Klassen, Kulldorff and Curriero (2005)]. The detection of a geographical cluster
with a high proportion of late stage breast cancer cases may indicate a need to
improve breast cancer mammography screening in that geographical area. In
these analyses, no census population data are used. Rather, the total number
of diagnosed cancer cases is the ‘population’ while the ‘cases’ are those cancer
cases that are of a certain type, such as late stage. A Bernoulli probability model
is suitable for this type of data. These types of spatial scan statistics have also
been used to study the geographical variation in cancer treatments [Gregorio
et al. (2001)]. When there are more than two different stages or grades, it is
possible to use a spatial scan statistic for ordinal data, which Jung, Kulldorff
and Klassen (2007) did for prostate cancer stage in Maryland, United States.

There may also be an interest in the geographical variation in the survival
time after a cancer diagnosis, to determine if there are geographical areas with
exceptionally poor survival. This is a continuous outcome. Such analyses must
be able to handle censored data and adjust for differences in prognostic factors
such as the age of the patient and the stage or grade of the cancer. Using a
spatial scan statistic for exponentially distributed data with censoring, Huang,
Kulldorff and Gregorio (2007) studied prostate cancer survival in Connecticut,
United States.

6.5 Applications in Infectious Disease Epidemiology

In infectious disease surveillance, the spatial and space-time scan statistics are
used for two different purposes. The first is retrospective in nature, where his-
torical data are used to detect geographical areas with many cases of the disease.
Such clusters can either be temporary in nature, due to an outbreak, or long
lasting, if the area or population is especially prone to infection. Different as-
pects of the infectious disease will influence the proper choice of spatial scan
statistic parameters. The incubation time of the disease, for example, is a very
important feature to incorporate in the selection of the scanning time window
length.

Cousens et al. (2001) describe the spatial investigation of 84 cases of variant
Creutzfeldt–Jakob disease (vCJD), a rare and fatal disease caused by the same
transmissible agent as in bovine spongiform encephalopathy (mad cow disease)
and therefore hypothetically associated with the consumption of beef products.
With the spatial scan statistic, one statistically significant cluster with five
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cases was detected. A subsequent investigation revealed a local butcher shop as
a likely common source of infection.

Fevre et al. (2001) used the spatial scan statistic to study sleeping sickness
in Uganda. Sleeping sickness is caused by a parasite that is transmitted to
humans by the tsetse fly, which picks up the infection from domestic cattle. A
purely spatial analysis was performed using the number of cases diagnosed over
a 32-day period, from the time of the first recorded case to the time when vector
control measures started to be implemented. A case control study was designed,
where each case was matched with one control by age, gender and month of
admission. Consequently, the spatial analysis was carried out assuming that
cases and controls followed a Bernoulli distribution. One significant cluster was
found around an important regional cattle market.

Chaput, Meek and Heimer (2002) provide some useful insights into exploring
the data through evaluating separate data streams from just-confirmed and
confirmed plus probable cases of human granulocytic ehrlichiosis. A spatial
analysis in a 12-town area for tick-borne infections is presented using cases
during four years of surveillance. The cluster analyses were conducted using
either confirmed or both confirmed and probable disease cases obtained from
active and passive surveillance system reports. Both datasets provided similar
results.

A purely spatial analysis of a variation of vCJD in France is presented by
Huillard d’Aignaux et al. (2002). In addition to the use of the spatial scan statis-
tic for cluster detection and evaluation, exploratory analyses are also provided,
including maps and tests for global spatial clustering. Due to evidence that the
incubation period for the disease can be longer, the cluster analyses were done
for both place of residency and place of birth.

Listeriosis is a bacterial food-borne pathogen that may be present in 1 to 5
percent of common ready-to-eat food products and which can cause a rare severe
invasive disease manifestation and even death in humans [Sauders et al. (2003)].
In particular, since the spread of the bacteria is associated with contaminated
food, the source of exposure might come from either global food distribution
or local sources. As a consequence, spatial-temporal clustering might detect
large or small clusters. A cluster analysis using the spatial scan statistic was
conducted using different molecular subtyping strategies (ribotype) from sterile
sites. Clusters with the same subtyping may represent clusters with a common
source of exposure, potentially increasing the ability to detect outbreaks.

When studying sexually transmitted diseases, Wylie, Cabral and Jolly
(2005) also used the spatial scan statistic by differentiating the cases by geno-
type. According to the authors, the underlying assumption behind genotyping
is that two individuals infected by the same strain of an infectious agent are
more likely to have an epidemiological link to each other than two individuals
infected by a different strain.
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Pearl et al. (2006) used the scan statistic to detect outbreaks of Escherichia
coli O157. The study used a sequential cluster detection procedure, which starts
with a purely temporal analysis followed by a purely spatial analysis for each
year and finally by a spatio-temporal analysis.

The second purpose for using scan statistics for infectious disease data is
prospective in nature, when continuously collected data are analyzed in real or
near real time in order to quickly detect an emerging infectious disease outbreak.
In most cases, a space-time scan statistic is then used. As soon as a new cluster
is detected, specific actions to contain and eradicate the contaminant source of
the disease or to stop the disease dynamics would be taken.

Mostashari et al. (2003) have proposed a surveillance system for West Nile
virus through the daily reporting of dead birds by the public. The county-level
density of dead birds and crows was strongly correlated with levels of West
Nile virus activity in 2000, suggesting that dead bird surveillance could detect
subsequent outbreaks in. Multiple dead bird reports for the same location on
the same day were counted as one. Results show that in most cases, dead bird
clusters not only preceded the time of collection of mosquitoes and birds that
were tested positive for West Nile virus but also the reports of human cases
near the cluster area.

Space-time scan statistics have also been used for syndromic surveillance,
where a daily feed of automated medical health records is used for the early
detection of infectious disease outbreaks [Kulldorff et al. (2005)].

6.6 Applications in Parasitology

Enemark et al. (2002), Washington et al. (2004), Odoi et al. (2004) and
Reperant and Deplazes (2005) have all used spatial statistics in parasitology.
A very nice subtype clustering analysis is presented by Enemark et al. (2002)
for Crypstosporidium parvum, a protozoan parasite that infects the gastroin-
testinal tract and is recognized as a major cause of diarrhea. Washington et al.
(2004) performed clustering analysis in sentinel sites before and after a public
intervention program for the elimination of lymphatic filariasis in Haiti. After
the intervention occurred, the most significant cluster was found in an area
where drug coverage was low. Odoi et al. (2004) used the spatial scan statistic
to study giardiasis in Canada and Reperant and Deplazes (2005) used it to
study Capillaria hepatica infection in Switzerland.
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6.7 Other Medical Applications

Hypoplastic left heart malformation is a congenital cardiovascular malforma-
tion. Parental exposure to various categories of solvents is correlated to the
occurrence of cases in newborn children. Kuehl and Loffredo (2006) used the
spatial scan statistic to search for disease clusters and evidence of industrial
release of solvents in Baltimore, Maryland, United States. After geographical
clusters were detected, the results were used to fit different multiple logistic
regression models stratified by residence within or outside the clusters at the
time of conception.

Several papers [Sankoh et al. (2001), George et al. (2001), Forand et al.
(2002), Andrade et al. (2004), Ozdenerol et al. (2005), Ali et al. (2005)] have
used spatial and space-time scan statistics for pediatric data. Sankoh et al.
(2001) analyzed childhood mortality in northwest Burkina Faso (West Africa)
in the 1993–1998 period. A purely spatial analysis was performed for each year
of data, providing time-independent analyses that detect clusters for specific
years. Their results show that a particular village was found as the most likely
cluster in both the purely spatial and space-time analyses. When this village
was omitted from the analysis, a new analysis was conducted which identified
the previous secondary cluster as the most likely. Data exclusion is one way to
focus spatial clustering away from an evident area.

Sabel et al. (2003) used the spatial scan statistic to detect and evaluate geo-
graphical clusters of amyotrophic lateral sclerosis in Finland. Separate analyses
were done using place of birth and place of death as the geographical coor-
dinates. The cluster found using the place of birth overlapped with the most
significant cluster found using the place of death.

Using the spatial scan statistic, Ala et al. (2006) showed that the prevalence
of primary biliary cirrhosis patients listed for transplantation was higher near a
New York City superfund toxic waste site. In this particular analysis, a focused
cluster analysis was also done by including the longitude and latitude of each
New York City superfund site. This approach changed the center of the most
significant cluster to a new location.

The spatial scan statistic has also been used for systemic sclerosis in the
United States [Walsh and Fenster (1997)], lupus in the United States [Walsh and
DeChello (2001)], diabetes in Canada [Green et al. (2003)], multiple sclerosis in
Scotland [Donnan et al. (2005)] and asthma in the United States [Cook, Gold
and Li (2007)], among many other diseases and locations. It has also been used
to study the geography of alcohol and drug use [Hanson and Wieczorek (2002)]
and pesticide exposure [Sudakin, Horowitz and Giffin (2002)].
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6.8 Applications in Veterinary Medicine

In veterinary medicine, spatial scan statistics have been used for domestic an-
imals as well as wildlife. Many different domestic animals have been studied,
including cattle [Norström, Pfeiffer and Jarp (2000)], horses [USDA (2001)],
sheep [Ward (2001); Falconi, Ochs and Deplazes (2002)], pigs [Berke and Grosse
(2003)], chickens and turkeys [Guerin et al. (2005)], farmed salmon [Knuesel,
Segner and Wahli (2003)] and dogs [Ward (2002)]. The spatial scan statistic has
been especially popular for epidemiological investigations of bovine spongiform
encephalopathy (mad cow disease), with studies in Switzerland [e.g. Schwermer
et al. (2002)], France [Abrial et al. (2003)], Ireland [Sheridan et al. (2005)],
Spain [Allepuz et al. (2007)] and the Netherlands [Heres, Brus and Hagenaars
(2008)].

For wildlife data, the spatial scan statistic has been used to study various
diseases among foxes in Germany [Berke et al. (2002)], sea otters in California
[Miller et al. (2002)], coyotes in California [Hoar et al. 2003], deer in Wisconsin
[Joly et al. (2003)] and badgers in Ireland [Olea-Popelka et al. (2003)]. When
evaluating spatial clusters for wildlife data, a main challenge is the nonstation-
arity of many animals, and their ability to travel a long distance before being
sampled [Hoar et al. 2003]. Miller et al. (2002) tried to detect spatial clusters
of parasites in sea otters, but possibly due to high mobility, the spatial analysis
did not detect any statistically significant clusters. An alternative is to sample
static sources of isolates such as animal carcasses [Smith et al. (2000)].

In the geographical analysis of disease, it is often useful to use multiple spa-
tial statistical methods to investigate different aspects or features of the spatial
pattern. For example, in their study of acute respiratory disease in Norwegian
cattle, Norström, Pfeiffer and Jarp (2000) also used the Knox test (1964) and
Jacquez’s k -nearest neighbor test (1996) to look at space-time interaction and a
kernel-density interpolation for exploratory analysis. Sheridan et al. (2005) used
the coordinates of major cattle feed suppliers to evaluate clusters around such
prespecified locations by using a focused cluster test. Results provided evidence
of association between significant clusters and feed sources.

6.9 Applications in Forestry

Coulston and Riitters (2003) and Riitters and Coulston (2005) have used the
spatial scan statistic for forest data from the eastern United States. In a purely
spatial analysis, the population size is the number of 0.009-ha units of forest
land in a county and the number of cases are the number of units with perforated
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forest, which is forest located near holes in an otherwise intact and continuous
forest cover. So, counties with a higher population mean more forest land, and
counties with a high ratio of cases to population mean a high proportion of
perforated forest. In a posterior spatial analysis, they take a previously detected
primary cluster as the new study region and apply the spatial scan statistic a
second time to see if there are any new smaller clusters within the old larger
cluster. In this way, they have found several small clusters arranged in a linear
fashion along the I-95 highway. This result shows that the primary cluster had
an irregular spatial component. In another analysis, using the space-time scan
statistic and 10 years of data, they defined cases as the number of units with
insects or pathogens.

Tuia et al. (2008) used the spatial scan statistic to detect and evaluate space-
time clusters of forest fires. They conclude that the ‘evaluation of the presence
of spatial and temporal patterns in fire occurrence and their significance could
have a great impact in forthcoming studies on fire occurrences prediction’.

6.10 Applications in Geology

Conover, Bement and Iman (1979) applied the spatial scan statistic to geology
data, where the aim was to detect uranium deposits by using radiation mea-
surement taken from an airplane. As the measurements contain a fair amount
of random background noise, the goal was to detect clusters of high radiation
readings.

6.11 Applications in Astronomy

Astronomy would seem like a natural area of application for the three-
dimensional scan statistic, but we are not aware of any such application.
However, the two-dimensional scan statistic has been applied in astronomy. In
a study on star formation, Marcos and Marcos (2008) used the two-dimensional
scan statistic to study the spatial clustering of ‘open star clusters’, which are
physically related groups of stars held together by mutual gravitational attrac-
tion. The ‘spatial’ study regions were defined by galactic longitude as the first
dimension and either radial velocity, proper motion or inclination as the second
dimension, in three different analyses. A number of statistically significant
clusters were found.
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6.12 Applications in Psychology

Margai and Henry (2003) used the spatial scan statistic to detect geographical
clusters of high prevalence of learning disabilities among children in Bingham-
ton, New York, United States. They found a statistically significant cluster in
the northwestern part of the city. As a complement to the spatial scan statistic,
they used Moran’s I to evaluate whether there was general evidence of global
spatial clustering throughout the city. They also explored a set of socio-economic
variables potentially correlated to the spatial occurrence of individuals with
learning disabilities. They compared the means of these variables inside and
outside the detected spatial cluster through t-tests. They also applied discrimi-
nant analysis using the cluster status as the dependent variable and significant
variables obtained from previous t-test analyses. This last approach represents
an alternative and indirect method to associate detected geographical clusters
to a set of socio-economic variables.

6.13 Applications to Accidents

Nkhoma et al. (2004) applied spatial scan statistics for accidental poisoning
mortality data. Cases were divided according to specific toxic agents. Both
spatial and space-time scan statistics were used to evaluate the data with and
without the influence of a time trend. Yiannakoulias et al. (2003) used the
spatial scan statistic to study the geography of fall injuries in the elderly.

6.14 Applications in Criminology and Warfare

Beato et al. (2001) used both the spatial scan statistic and Bayesian smooth-
ing techniques to study the geographical distribution of homicides in Belo
Horizonte, Brazil. Statistically significant clusters were found in areas known
for drug trafficking activities. Ceccato and Haining (2004) used the spatial scan
statistic to compare the location of crime events during two distinct periods in
Malmö, Sweden, before and after the building of the new Öresund bridge con-
necting Malmö with Copenhagen, Denmark. No significant clusters were found
close to the vicinity of the bridge, but there were notable shifts in the geograph-
ical locations of some clusters as well as new clusters for some of the crimes.
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Priebe, Olson and Healy (1997b) have used the spatial scan statistic for
minefield detection using remote sensing data.

6.15 Applications in Demography

Callado Chavez (2003) has used the spatial scan statistic to evaluate the geog-
raphy of fecundity, the potential for reproduction, in Costa Rica.

6.16 Applications in the Humanities

Spatial scan statistics are not widely used in the humanities, but there are
some examples from anthropology, archaeology and history. In a very interesting
study, Witham and Oppenheimer (2004) used the spatial scan statistic to study
the geographical distribution of excess deaths in England due to the 1783 Laki
Craters volcanic eruption in Iceland, which fumigated many parts of Europe
with volcanic gases and particles. They found that the eastern part of England
was the most affected region. In anthropology, Usher and Allen (2005) used
the scan statistic for spatial genetic analysis to evaluate kinship clusters in
cemeteries. Waller (2006) used the spatial scan statistic as well as many other
spatial statistical techniques to compare the geographical distribution of early
versus late period archaeological sites from the Anasazi culture in Black Mesa,
Arizona.

6.17 Scan Statistic Software

Different versions of the spatial scan statistic have been included in a cou-
ple of statistical software packages. The freely available SaTScanTM software
(www.satscan.org) can be used to run the purely spatial and space-time scan
statistics for Poisson, Bernoulli, multinomial, normal and exponentially dis-
tributed data. ClusterSeer (www.terraseer.com) is a commercial software that
includes the purely spatial and space-time scan statistics together with a num-
ber of other spatial statistical methods.
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6.18 Discussion

Different types of data require different forms of the spatial scan statistic, but
the underlying principle is the same as in the pioneering paper by Naus in
1965. In this chapter, we have presented a partial sample of the applications for
which the spatial scan statistic has been used. As can be seen from the literature
review, the spatial scan statistic has been applied in a remarkable number of
different subject areas, from the small spatial scale of medical imaging to the
large spatial scale of astronomy. The method is most commonly used in cancer,
infectious disease and veterinary epidemiology. These are areas with a long
and strong interest in epidemiology in general. They are also areas with a long
tradition of disease cluster and outbreak investigations, for which the spatial
scan statistic is ideally suited.

The spatial scan statistic is increasingly being used for other diseases as
well. The number of applications in non-medical areas is more limited, but
we think that may change with time. With the increasing use of geographical
information systems in many different disciplines, there will be an increase in the
use of formal methods of statistical inference to complement the beautiful maps
that are created. Areas for which we think that the spatial scan statistic will
play an especially important role include archaeology, astronomy, criminology,
demography, ecology, geography and medical imaging.

The spatial scan statistic is also used in ways that do not lead to publica-
tions in scientific journals. For example, many public health officials use it for
routine disease surveillance on a daily, weekly or yearly basis to monitor the
geographical distribution of disease. Likewise, spatial scan statistics are used
by law enforcement agencies for the routine monitoring of crime activities.
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Abstract: Naus’s early 1965 paper [Naus (1965)] on spatial scan statistics
paved the way for a considerable amount of research on geographic-based
statistical analysis, inspiring intensive work in the most diverse contexts and
applications, including epidemiology, syndromic surveillance, criminality and
environmental sciences. Following one line of work, several methods for the
detection of irregularly shaped clusters were developed. New tools were devised
in order to account for the spatial mobility of individuals, the study of the spa-
tial distribution of individuals according to their survival times and multiple
data streams from different sources of syndromic counts. Several algorithms ex-
plored the utilization of parametric models other than the Poisson or Bernoulli
distributions, and also non-parametric and learning models. We expect that
this strong trend of application-driven methodologies in spatial scan statistics
should continue in the foreseeable future.

Keywords and phrases: Spatial scan statistic, epidemiology, syndromic
surveillance, disease cluster, irregularly shaped spatial cluster

7.1 Introduction

Algorithms for the detection and evaluation of the statistical significance of
spatial clusters are important geographic tools in epidemiology, syndromic and
disease surveillance, crime prevention and environmental sciences. The eluci-
dation of the etiology of diseases, the availability of reliable alarms for detect-
ing intentional and non-intentional outbreaks, the study of spatial patterns of
criminal activities and the geographic monitoring of environmental changes are
current topics of intense research. Methods for finding spatial clusters were re-
viewed in Elliott, Martuzzi and Shaddick (1995), Waller and Jacquez (2000),

J. Glaz et al. (eds.), Scan Statistics: Methods and Applications, Statistics for Industry 153
and Technology, DOI 10.1007/978-0-8176-4749-0 7,
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Kulldorff (1999), Lawson et al. (1999), Moore and Carpenter (1999), Glaz, Naus
and Wallestein (2001), Lawson (2001), Balakrishnan and Koutras (2002) and
Buckeridge et al. (2005).

A descendant of Naus’s pioneering spatial scan statistic, Kulldorff’s spatial
scan statistic [Kulldorff (1997) and Kulldorff (1999)] is currently the most popu-
lar method for finding spatial clusters. The significance of the most likely cluster
is estimated through a Monte Carlo simulation [Dwass (1957)]. It can be used
for data with exact point locations or for aggregated data, where a study region
is partitioned into cells. The circular scan [Kulldorff and Nargawalla (1995)],
the most commonly used spatial scan statistic, completely sweeps the configu-
ration space of circularly shaped clusters, but in many situations we would like
to recognize spatial clusters in a much more general geometric setting. Several
proposals for finding arbitrarily shaped spatial clusters are reviewed in Section
7.2. Section 7.3 examines a number of recent data-driven algorithms for cluster
detection that have been developed to include spatial mobility, survival time,
multiple data streams, alternative parametric models, and non-parametric and
learning models. Finally, Section 7.4 presents a small list of recent interesting
applications.

7.2 Irregularly Shaped Spatial Clusters

When searching for clusters with unlimited freedom of geometric shape, the
power of detection is diminished. This happens because the collection of all
connected zones, irrespective of shape, is very large; the maximum value of the
objective function is likely to be associated with ‘tree-shaped’ clusters, which
merely link the highest likelihood ratio cells of the map, without contributing
to the discovery of geographically meaningful solutions that correctly delineate
the ‘true’ cluster. In other words, there is much ‘noise’, against which the legiti-
mate solutions cannot be distinguished. This problem occurs in every irregularly
shaped cluster detector. In this section several proposed solutions for this issue
are reviewed.

The upper level sets (ULS) scan statistic [Patil and Taillie (2004)] con-
trols the excessive freedom of shape, exploring a very small collection of graph-
connected candidate zones z, evaluated according to their rate (number of cases
divided by the population at risk) in the study area of n regions. The ULS-tree
is constructed such that selected zones with the highest rates consisting of only
one individual region, which are local maxima for the rate, form the leaves
of the ULS-tree. Neighboring regions in the study area are successively joined
to the individual regions represented by the leaves, forming larger zones with
lower rates which are then identified with the lower inner nodes of the ULS-tree.
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Eventually, those aggregated zones coalesce, creating even larger, lower rated
zones, represented as inner nodes closer to the root. The root itself represents
the entire study area. The collection of zones represented by the ULS-tree nodes
constitutes the ULS reduced parameter space, its cardinality being at most n.
The ULS-tree needs to be calculated again for each new Monte Carlo repli-
cation. This procedure is fast, but it may possibly overlook many interesting
clusters, due to the small cardinality of the ULS-tree. This issue is tackled in
Patil et al. (2006), where an extension of the original ULS set is constructed.
Modarres and Patil (2007) discussed an extension of the ULS scan statistic to
bivariate data. The sensitivity of the joint hotspots to the degree of association
between the variables is studied.

Duczmal and Assunção (2004) proposed a simulated annealing (SA) algo-
rithm. The collection of connected irregularly shaped zones consists of all those
zones for which the corresponding subgraphs are connected. This collection is
very large, and it is impractical to calculate Kulldorff’s log likelihood ratio
(LLR) scan statistic for all of them. Instead the SA algorithm tries to visit only
the most promising zones, as follows. Two zones are neighbors when they differ
by a single region. For each individual region of the study area, the circular
scan is used to define a starting cluster z0. The algorithm chooses some neigh-
bor z1 among all the neighbors of z0. In the next step, another neighbor z2 is
chosen among the neighbors of z1, and so on, until a predefined threshold in the
number of regions is attained. Thus, at each step a new zone is built, adding or
excluding one cell from the zone in the previous step. Instead of always behav-
ing like a greedy algorithm, always choosing the highest LR neighbor at every
step, the SA algorithm evaluates if there has been little or no LR improve-
ment during the latest steps; in that case, the SA algorithm opts for choosing a
random neighbor. This is done while trying to avoid getting stuck at LR local
maxima. The search is restarted many times, each time using each individual
cell of the map as the initial zone. Thus, the effect of this strategy is to keep
the program openly exploring the most promising zones in the configuration
space and abandoning the directions that seem uninteresting. The best solution
found by the program, which maximizes the LR is the most likely cluster. It
is called a quasi-optimal solution, and is a compromise due to computer time
restraints for the identification of the geographical location of the clusters.

The flexibly shaped (FS) spatial scan statistic [Tango and Takahashi (2005)]
made an exhaustive search of all possible first-order connected clusters con-
tained within a set encompassing the nearest K neighbors of a given region.
For each region i, the FS scan considers K concentric circles plus all the sets of
connected regions whose centroids are located within the Kth largest concen-
tric circle. The procedure is repeated for each region of the map, enabling all
connected clusters to be enumerated up to a size limit K. The set of potential
clusters is stored in memory, so the runs under the null hypothesis are executed
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without rebuilding them every time. For computational reasons, the search is
restricted to relatively small clusters. The authors consider that a practical
value for K is about 30—finding clusters larger than that should take more
than one week of computation on a desktop PC. Compared to the SA without
bounds on cluster size, the FS algorithm finds more compact clusters, but when
the SA predefined number of regions threshold is set to the same size limit K,
both algorithms give similar results. Takahashi et al. (2007) further extended
the FS scan to detect space-time irregularly shaped clusters.

The static minimum spanning tree (SMST) proposed by Assunção et al.
(2006) used a greedy algorithm to aggregate regions. Starting with a zone con-
sisting of one individual region, the algorithm selects the adjacent region that
maximizes the LR scan statistic and aggregates it to the zone successively until
a maximum population proportion is attained, or all regions are used. The pro-
cedure is repeated for each region of the study area. The paper describes this
algorithm as the growth of a minimum spanning tree; it minimizes the sum of
edge weights, defined as the difference in rates between vertices within the tree.
Each step of tree growth represents a new candidate cluster. The most likely
cluster is defined as the cluster that maximizes the LR.

The density-equalizing Euclidean minimum spanning tree (DEEMST)
method [Wieland et al. (2007)] was an improvement of the SMST idea. A study
region is provided with n points in the data set of cases and controls. Neigh-
boring points are connected through edges, forming the complete graph T of
the whole study area. Initially, a Voronoi diagram of the control locations is
built, subdividing the study area into regions, satisfying the property that the
density, or the number of controls in each region divided by the region’s area,
is kept constant. This constitutes the density-equalizing cartogram, a distorted
map in which the regions are magnified or demagnified according to their local
density. Next, the method finds all the potential clusters, here defined as the
subset of points S such that each subset of S is closer to at least one other
point in S than to any other point outside of S. The authors prove that it is
not necessary to consider all connected subgraphs of T : aside from the trivial
n individual points, there are only n − 1 non-trivial potential clusters. They
are found from the Euclidean minimum spanning tree (EMST) solution using a
greedy edge deletion algorithm. This method does not use the LR statistic, but
instead the sum of the Euclidean distances of the minimum spanning tree. This
method was compared with the circular SaTScan. It was found that the EMST
has more power to detect irregularly shaped clusters, but the circular scan
has more power to detect large circular clusters. Compared with the circular
SaTScan, EMST obtained higher average fraction of true cluster detected for
noncircular clusters, accompanied by a diminished average fraction of the most
likely cluster coinciding with the true cluster. That suggests that the EMST
method reports fewer false negatives, but more false positives, than SaTScan.
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Demattëı, Molinari and Daurès (2007) proposed a method based on the
construction of a trajectory for multiple cluster detection using the spatial scan
statistic in point data sets. It begins by determining a certain trajectory link-
ing the data set points. The general idea of the method is based on the assump-
tion that the consecutive points inside a cluster have lower associated distances
than those of points outside the cluster, because the density of points is higher
within the cluster. Potential clusters are located by modelling the multiple
structural changes of the distances on the selection order, and the best model
(containing one or several potential clusters) is selected. Finally a p-value is
obtained for each potential cluster. The authors discuss the possibility that the
trajectory leaves the cluster before going through all the cluster points. They
conclude that the remaining cluster points will be detected as a second compo-
nent cluster and that the proximity analysis of these two component clusters
by specialists could allow them to build a new bigger cluster as the union of the
two clusters detected. It is not clear, however, how a fast automatic procedure
could be devised to construct these unions, particularly when there are more
than just a few components.

Kulldorff et al. (2006) presented an elliptic version of the spatial scan statis-
tic, generalizing the circular shape of the scanning window. It uses an elliptic
scanning window of variable location, shape (eccentricity), angle and size, with
and without an eccentricity penalty. The elliptic scan has more power to detect
elongated clusters, compared to the circular scan statistic.

Duczmal, Kulldorff and Huang (2006) developed a geometric penalty for ir-
regularly shaped clusters. Many algorithms frequently produce a solution that
is nothing more than the collection of the highest incidence cells in the map,
linked together forming a tree-shaped cluster spread through the map; the as-
sociated subgraph resembles a tree, except possibly for a few additional edges.
This kind of cluster does not add new information with regard to its special
geographical significance in the map. One easy way to avoid this problem is
simply to set a smaller upper bound on the maximum number of cells within a
zone. This approach is only effective when the cluster size is rather small (i.e.,
for detecting those clusters occupying roughly up to 10% of the cells of the
map). For larger upper bounds in size, the increased geometric freedom favors
the occurrence of very irregularly shaped tree-like clusters, thus impacting the
power of detection. Another way to deal with this problem is to have some shape
control for the zones that are being analyzed, penalizing the zones in the map
that are highly irregularly shaped. For this purpose the geometric compactness
of a zone is defined as the area of z divided by the circle with the perimeter
of the convex hull of z. Compactness is dependent on the shape of the object,
but not on its size. Compactness also penalizes a shape that has a small area
compared to the area of its convex hull. A user-defined exponent α is attached
to the penalty to control its strength; larger values of α increase the effect of



158 L. Duczmal, A.R. Duarte, and R. Tavares

the penalty, allowing the presence of more compact clusters. Similarly, lower α
values allow more freedom of shape. The idea of using a penalty function for
spatial cluster detection, based on the irregularity of its shape, was first used
for ellipses [Kulldorff et al. (2006)], although a different formula was employed.

The greedy algorithm idea was used by Yiannakoulias, Rosychuk and
Hodgson (2007) to explore the space of all possible configurations. A new
penalty function is now defined as the ratio of the number of edges e(Z) to the
total possible number of edges in the candidate cluster Z. The total possible
number of edges is computed as 3(v(Z)− 2) based solely on the number of ver-
tices v(Z) in the candidate cluster. The non-connectivity penalty is employed
as an exponent to the LR, analogously to the geometric compactness penalty.
In the same way, a user-defined exponent α is attached to the non-connectivity
penalty to control its strength. Instead of stopping the candidate clusters’
aggregation process before reaching a prespecified population proportion limit,
another criterion is used, based on the failure to increase the LR to a higher
value after a certain number u of steps. The parameter u is set by the user;
larger values of u relax the search constraint, and making u = 0 halts the
search when no vertices can be added that increase the LR. Although the
non-connectivity penalty is in many ways similar to the geometric compact-
ness penalty, it has an important difference: it does not rely on the geometric
shape of the candidate cluster, which could be an interesting advantage when
searching for real clusters that are highly irregularly shaped, but present good
connectivity properties.

Conley, Gahegan and Macgill (2005) proposed a genetic algorithm to explore
a configuration space of multiple agglomerations of ellipses for point data sets.
The method employed a strategy to clean up the best configuration found in
order to geometrically simplify the cluster.

Sahajpal, Ramaraju and Bhatt (2004) also used a genetic algorithm to find
clusters shaped as intersections of circles of different sizes and centers in point
data sets.

Duczmal et al. (2007) described a genetic algorithm scan for the detection
and inference of irregularly shaped spatial clusters. Assuming a map divided
into regions with given populations at risk and cases, the graph-related opera-
tions are minimized by means of a fast offspring generation and evaluation of
Kulldorff’s spatial scan statistic. The penalty function of Duczmal, Kulldorff
and Huang (2006), based on the geometric non-compactness concept, is em-
ployed to avoid excessive irregularity of cluster geometric shape. This algorithm
is an order of magnitude faster and exhibits less variance compared to the SA
scan, and it is more flexible than the elliptic scan. It has about the same power
of detection as the SA scan for mildly irregular clusters and is superior for the
very irregular ones.

The oblique decision tree (ODT) of Gaudart et al. (2005) was a modification
of the classification and regression tree (CART) strategy to obtain an optimal
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partitioning procedure in order to detect spatial patterns and find the candidate
clusters without prior specifications. Instead of using rectangular partitions of
the covariate space as in CART, ODT provides oblique partitions maximizing
the interclass variance of the independent variable, providing polygonal candi-
date clusters. Classical ODT algorithms in Rn rely on evolutionary algorithms
or heuristics, but in this work an optimal ODT algorithm is developed in R2,
based on the directions defined by each couple of point locations. The proce-
dure consists in finding several partitions of the plane. The first step finds the
best oblique split of the plane between two adjacent classes, maximizing the in-
terclass variance. Operating recursively, this algorithm will split the plane into
several partitions, until it reaches a specific stopping criterion. Monte Carlo
replications are used to test significance. The ODT is compared with Kulldorff’s
spatial scan.

Multi-resolution methods (MR) [Neill and Moore (2003) and Neill and
Moore (2004)] maximized Kulldorff’s scan statistic over the square regions S of
a grid of g×g squares, each one with an assigned number of cases and controls.
Instead of using a näıve approach, which would require O(g3) calculations (mul-
tiplied by R Monte Carlo replications), the MR algorithm partitions the grid
into overlapping regions, bounds the maximum score of subregions contained in
each region and prunes regions which cannot contain the maximum density re-
gion. The maximum density region is found using O(g2), for sufficiently dense re-
gions. Neill et al. (2005) later introduced another algorithm, the fast spatial scan
(FS), generalizing the original bidimensional MR to arbitrary dimensions and
using rectangles instead of squares. Applications include multiple data streams
in syndromic surveillance (emergency department visits and over-the-counter
drug sales) and discovery of regions of increased brain activity corresponding
to given cognitive tasks (from functional magnetic resonance imaging data).

Given n baseline and case points, Agarwal et al. (2006) presented an algo-
rithm to compute exactly the maximum discrepancy rectangle in time O(n4).
If the points lie in a g × g grid, the algorithm runs in time O(g4). This algo-
rithm has the same asymptotic running time as the MR algorithm. A much
better performance is achieved for the general family of discrepancy functions
(including Kulldorff’s scan), through the approx-linear Algorithm (AL) by rep-
resenting the discrepancy function as the upper envelope of a collection of linear
functions. It is shown that a thoroughly linear approximation of the discrepancy
function, which would require many linear functions, is not strictly necessary,
because the approximation needs only to preserve the ordering of points along
the direction of the search. As a result, a much better algorithm can maximize
the discrepancy function over axis parallel rectangles in time O(n2 log n). The
algorithm is also extended to aggregate data sets using a regular g × g grid. A
further technique is presented, using sampling to compute an approximation to
the maximum linear discrepancy.
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Aldstadt and Getis (2006) proposed the AMOEBA (Multidirectional
Optimum Ecotope-Based Algorithm). An ecotope or habitat is defined in the
literature as a specialized region within a larger region. A local spatial auto-
correlation statistic is employed to construct a spatial weights matrix, used to
describe the association between contiguous spatial units. The weights matrix
is used in the determination of the geometric form of spatial clusters. It searches
for spatial association in all specified directions, starting from a selected col-
lection of seed spatial units. The main objective is to identify the ecotopes,
the spatially homogeneous subregions within the study area. AMOEBA is
compared with SaTScan.

Duczmal, Cançado and Takahashi (2008) proposed an approach to the
geographic delineation of irregularly shaped disease clusters, treating it as a
multi-objective optimization problem. Irregularly shaped spatial disease clus-
ters occur commonly in epidemiological studies, but their geographic delineation
is poorly defined. Most current spatial scan software usually displays only one
of the many possible cluster solutions with different shapes, from the most
compact round cluster to the most irregularly shaped one, corresponding to
varying degrees of penalization parameters imposed on the freedom of shape.
Even when a fairly complete set of solutions is available, the choice of the most
appropriate parameter setting is left to the practitioner, whose decision is of-
ten subjective. A quantitative criterion for choosing the best cluster solution
is presented, simultaneously maximizing two competing objectives: regularity
of shape (K(z)), and scan statistic value (LLR). The Pareto set is defined as
the set of all cluster candidates z such that no other cluster has both higher
LLR and higher regularity than z. For each value of K(z), a separate empirical
distribution of LLR under the null hypothesis is computed, constituting a two-
dimensional p-value surface. The cluster with the lowest p-value is considered
the most likely cluster. Instead of running a cluster-finding algorithm with vary-
ing degrees of penalization, the complete set of solutions is found in parallel,
through a genetic algorithm. The p-value surface is computed using Gumbel
approximations [Abrams, Kulldorff and Kleinman (2006)]. Although different
shapes are dealt with simultaneously, multiple testing does not occur, since the
null hypothesis maps also produce Pareto sets using exactly the same algorithm
as the observed cases map. The introduction of the concept of Pareto set in this
problem, followed by the choice of the most significant solution, is shown to
allow a rigorous statement about what is such a ‘best solution’, without the
need of arbitrary parameters.

Maps with irregularly shaped or multiple clustering, when there is not a
clearly dominating primary cluster, occur frequently. Moura et al. (2007) de-
veloped a method to analyze more thoroughly the several levels of clustering
that arise naturally in a disease map divided into m regions. Instead of using
a genetic algorithm, this method incorporates the simplicity and speed of the
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circular scan, being able to detect and evaluate irregularly shaped clusters. The
circular occupation (CO) of a cluster candidate is defined roughly as its popula-
tion divided by the population inside the smallest circle containing it. The CO
concept, computationally faster and relying on familiar concepts, substitutes
here the compactness definition as the measure of regularity of shape. A multi-
objective modification of the circular scan algorithm is applied, using CO and
LLR as the objectives. The comparison of Pareto sets for observed cases with
those computed under the null hypothesis provides valuable hints for the spatial
occurrence of diseases. The potential for monitoring incipient spatial-temporal
clusters at several geographic scales simultaneously is a promising tool in syn-
dromic surveillance, especially for contagious diseases when there is a mix of
short- and long-range spatial interactions. The presence of knees in the Pareto
sets indicates sudden transitions in the clusters structure, corresponding to re-
arrangements due to the coalescence of loosely knitted (usually disconnected)
clusters.

Yiannakoulias et al. (2007) employed quad trees to generate non-uniform
grid points in order to detect spatial clusters in study areas provided with a
large number of points. This strategy is compared with another scheme, which
uses uniform grid points. The quad tree approach is more sensitive to high-
resolution spatial clusters and is also more flexible, compared with the uniform
grid approach.

Boscoe (2003) proposed a tool to visualize relative risk and statistical signif-
icance simultaneously. Given a map of n regions, with their respective centroids,
the procedure builds a grid of equidistant points between all combinations of
two, three and four adjacent region centroids. For each grid point the distances
to the region centroids are computed and sorted. These distances are used to
define almost circular groupings of regions, with their respective cumulative
numbers of observed and expected cases. The relative risk and the LLR are
then calculated for each circular grouping. The LLR values are compared to
the results of a Monte Carlo simulation under the null hypothesis. Groupings
with LLR values exceeding 95% of those obtained from the simulation are stored
and stratified into ten levels of relative risk. Within each risk level, the grouping
with the largest LLR is then mapped. Circular groupings with lower LLR are
also mapped if they did not overlap any grouping previously mapped. The final
result is a ten-color-shaded map of regions with statistically significant relative
risks, providing a very effective visualization tool to grasp these two concepts.

There exist many methods to detect boundaries and to detect clusters;
Jacquez, Kaufmann and Goovaerts (2007) proposed the b-statistic as a tool
for the simultaneous detection of boundaries and clusters. It evaluates bound-
aries between adjacent areas with different values, and also the existing links
between adjacent areas with similar values. Clusters are constructed by joining
similarly high valued areas, which are then connected through a link. Unlike the
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local Moran and other statistics, which describe local spatial variation in the
immediate local neighborhood about a central location, the b-statistic describes
properties of the edge between two areas. The b-statistic was compared with
polygon wombling [cf. Womble (1951)] for detecting boundaries and the local
Moran test [Moran (1948) and Moran (1950)].

Haiman and Preda (2002) derived approximations for the estimation of the
distribution of scan statistics for a two-dimensional Poisson process. Through
extensive numerical tests, Abrams, Kulldorff and Kleinman (2006) showed that,
under the null hypothesis, the empirical distribution of values of Kulldorff’s
scan statistic for circular clusters is approximated by the well-known Gumbel
distribution. The authors calculated that, using this semi-parametric approach,
100 Monte Carlo replications suffice to provide the same accuracy in significance
estimation as 10,000 replications using the usual empirical distribution.

Kulldorff, Tango and Park (2003) presented a large collection of simulated
benchmark data sets generated under different cluster models and the null hy-
pothesis, to be used for power evaluations. These data sets are used to compare
the power of the spatial scan statistic, the maximized excess events test and
the non-parametric M statistic.

Duczmal et al. (2007) described a graph-based model for cluster detection
and inference on networks based on the scan statistic. Nodes, associated to
cities, are linked by means of edges, which represent routes between cities. In-
stead of forming cluster candidates by grouping neighboring nodes of the orig-
inal graph, the cluster candidates are chosen among the connected subgraphs
of the dual graph. The objective is to find collections of plausible pathways
by which the disease could be transmitted. The most likely cluster is naturally
the most structurally stable connected subgraph, or arrangement of pathways,
meaning that adding or subtracting pathways to it should decrease the observed
signal-to-noise proportion. In this model, traffic between cities is analogous to
population in the usual scan, and the number of syndromic individuals traveling
between cities corresponds to the number of cases.

The prospective time periodic scan [Kulldorff (2001)] is a space-time scan
statistic for regular time periodic disease surveillance to detect any active geo-
graphical clusters of disease. The statistical significance of such clusters is ad-
justed for multiple testing, taking account of all possible geographical locations
and sizes, time intervals and time periodic analyses.

The pyramidal flexible shape space-time scan for point data sets proposed
by Iyengar (2004), instead of building space-time cylinders, adopted the more
flexible pyramid or cone shapes with its axis perpendicular to the space plane.
It represents an advance over the usual cylindrical approach, because it is now
possible to model emerging spatially growing or shrinking clusters over time.

Kulldorff et al. (2005) presented the space-time permutation scan statistics
(STPSS) for outbreak detection in syndromic surveillance systems. Emerging
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clusters are detected using cylinders of variable radius and height to scan
the space-time region in order to select the candidate cluster with maximum
likelihood. A data permutation procedure is executed through Monte Carlo
simulations in order to estimate the p-value of the most likely cluster. This
method does not require the previous knowledge of the population at risk.
Costa, Kulldorff and Assunção (2007) extended the STPSS to detecting irreg-
ular space-time clusters.

7.3 Data-Driven Spatial Cluster Detection Models

In this section we review data-tailored algorithms for spatial cluster detection
including censored survival data, spatial mobility, multiple data streams, para-
metric models different from the usual Poisson or Bernoulli distributions and
non-parametric and learning models.

Cook, Gold and Li (2007) considered a spatial scan statistic for censored
outcome data. In contrast to the traditional scan statistics, which usually re-
quire a complete specification of the model, this paper uses a statistic score of
the model of proportional risks to allow more flexibility. Cluster significance is
estimated through permutation tests.

Huang, Kulldorff and Gregorio (2007) proposed a spatial scan statistic based
on an exponential model to include uncensored or censored continuous survival
data. The method achieves good power and sensitivity for several survival dis-
tribution functions including the exponential, gamma and log-normal distri-
butions. Huang et al. (2007) applied the previous methodology to investigate
possible relationships between the cluster locations and social and health con-
ditions using non-parametric methods, and to compare socioeconomic factors
inside and outside of the detected clusters and evaluate the effect of related
covariates on significant long- and short-survival detected clusters.

Kulldorff et al. (2007) proposed the multivariate scan statistic. Frequently,
more than one data stream may be available in disease surveillance systems.
When analyzed separately instead of combined, the power of detection of an
outbreak signal that is present in all data streams may diminish due to low
counts in each. Besides, the simple summation of all data stream counts may
obliterate a signal that is primarily present in just one data stream, due to
random noise present in the other data sets. These two problems are tackled
by defining an extension of the space-time scan statistic as the sum of the
individual log likelihoods for those data sets for which the observed case count
is more than the expected.

The multivariate Bayesian scan statistic (MBSS) of Neill, Moore and Cooper
(2007) proposed modeling different outbreak types employing multiple data
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streams. However, this approach uses fixed methods and models for analysis,
and cannot improve their performance over time. Neill and Makatchev (2007)
incorporated machine learning algorithms in the MBSS system. Two methods
were devised for overcoming this limitation, employing a priori information over
outbreak regions and learning outbreak models from user feedback. The authors
demonstrate through simulations that learning can enable systems to improve
detection performance over time.

Motivated by the fact that the regions inside a cluster candidate are not ho-
mogeneous, Takahashi and Tango (2007) proposed an alternative scan statistic
that can take the variability of the relative risks of regions included in Z into
account, employing Anscombe’s variance stabilization transformation.

Tango (2007) proposed a modified likelihood ratio test statistic which ac-
counts for each individual region’s risk. This modified scan includes an indicator
variable based on the p-value for the zone consisting of the individual region i.
Given a prespecified α1 p-value, and if pi is the p-value of the zone consisting
of the individual region i, then the modified LR scan for a cluster including i
is taken as zero when pi > α1.

Neill and Moore (2006) presented the expectation-based scan statistic
(EBSS) as an extension of the usual spatial and space-time scan statistics
by inferring expected counts for each location from past data and detecting
regions where recent counts are higher than expected. Neill and Lingwall (2007)
presented the nonparametric scan statistic (NPSS), a general detector of space-
time clusters in syndromic surveillance using multiple data streams. It does
not assume a parametric model, but instead combines empirical p-values across
multiple locations, days and data streams to detect anomalies.

A discrete event model was used by Beeker, Bauer and Mohtashemi (2007)
to simulate the spread of infectious diseases through an agent-based, stochastic
model of transmission dynamics. The objective is to generate a benchmark
from a network of individual contacts in an urban environment using publicly
available population data. This benchmark can be used to test the performance
of various temporal and spatio-temporal detection algorithms when real data
are not available or cannot be used due to confidentiality issues.

Duczmal and Buckeridge (2006) have derived an extension to the spatial
scan statistic that accounts for the mobility of individuals between home address
and workplace. An analyst can use the workflow scan statistic to search for
disease clusters due to workplace exposure when health records contain only
the residential address. The effect of the workflow scan statistic is to pull back
the scattered workers that were contaminated in the workplace. Simulation
studies demonstrate that in most scenarios, the workflow scan statistic has
greater power than the usual scan statistic for detecting disease outbreaks due
to workplace exposures. The workflow scan statistic is particularly useful when
clusters are not circularly symmetrical, and thus more easily recognized by the
workflow scan than by the usual spatial scan algorithm.
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Cami, Wallstrom and Hogan (2007) presented a refinement of a Bayesian al-
gorithm used for aerosol detection (BARD) incorporating a model that includes
the mobility of the individuals. The population is subdivided into groups based
on the residential and workplace information.

Local, global and focused tests were developed by Jacquez et al. (2005) to
evaluate clustering in case-control data that take into account individual mo-
bility. Matrices of nearest neighbor relationships are employed to represent the
changing topology of cases and controls. The model includes the latency between
exposure and disease manifestation. Jacquez et al. (2006) analyzed case-control
clustering with individual mobility accounting for risk factors and covariates.
Meliker and Jacquez (2007) extended those previous ideas to space-time clus-
tering of case-control data with individual mobility. Using the Q-statistic, a
statistic that includes time-dependent nearest-neighbors, the authors evalu-
ate empirical induction periods, age-specific susceptibility and calendar year-
specific effects.

Zhang and Lin (2007) presented a decomposition of Moran’s I test into
three components so that each component represents a global test statistic.
The three components test for the existence of high-value clustering low-value
clustering and negative autocorrelation. A set of simulations shows that the first
test statistic is likely to be significant only for high-value clustering, the second
test statistic is likely to be significant only for low-value clustering and the
last test statistic is likely to be significant only for negatively correlated spatial
structures. Two real data examples were studied, and in both cases low-value
clustering and high-value clustering were shown to exist simultaneously.

Lin and Zhang (2007) combined the permutation test of Moran’s I to the
residuals of a log-linear model under the asymptotic normality assumption. It
provides the versions of Moran’s I based on Pearson residuals and deviance
residuals so that they can be used to test for spatial clustering while at the
same time account for potential covariates and heterogeneous population sizes.

Aggregation is commonly used as a mask to protect health data confidential-
ity of individuals. Ozonoff et al. (2007) studied the association between spatial
resolution and power of detection through thousands of simulations with the
spatial scan statistic. Power to detect clusters decreased from nearly 100% when
using exact locations to roughly 40% at the coarsest level of spatial resolution.
The authors conclude that aggregation has the potential to obliterate existing
clusters.

The usefulness of individual-level health data point locations in provid-
ing high quality data for epidemiological research must be balanced with the
easiness of breaking the confidentiality of the identities of the individuals.
Geographic masking is being employed as a tool for achieving an appropri-
ate balance between data utility and confidentiality. Usually the masks employ
perturbation, aggregation of areas and a combination of both. Zimmerman and
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Pavlik (2008) discussed whether certain characteristics of the mask (mask meta-
data) should be disclosed to data users and whether two or more distinct masked
versions of the data can be released without breaching confidentiality.

Glaz and Zhang (2006) defined a maximum scan score-type statistic for
testing the null hypotheses that the observed data are independent and iden-
tically distributed according to a specified distribution, against a class of win-
dow clustering-type alternatives. The maximum scan score-type statistic detects
clustering effectively in the situation where the window size is unknown. The
extension to multivariate data is discussed by the authors.

In disease surveillance, anomalies may be detected either by computing con-
fidence intervals for region rates or by running a disease cluster detection al-
gorithm. Rosychuk (2006) attempts to determine when those two approaches
give the same answers. The study compared Besag and Newell’s (1991) cluster
detection method with confidence intervals for crude and directly standardized
rates. Simulations suggest that the cluster detection method is preferred when
the cluster size exceeds the number of cases in a region or when the expected
number of cases exceeds a threshold.

In some situations of disease surveillance, it is preferable to use disease-
related events instead of individuals as the units of analysis.

Rosychuk, Huston and Prasad (2006) proposed a compound Poisson method
that detects event clusters by testing individual areas that may be combined
with their nearest neighbors. This technique is useful where the population
sizes are diverse and the population distribution by important strata may differ
by area.

Song and Kulldorff (2003) compared the statistical power of several dis-
ease clustering tests: Besag–Newell’s R, Cuzick–Edwards’ k -nearest neigh-
bors (k-NN), the spatial scan statistic, Tango’s maximized excess events test
(MEET), Swartz’ entropy test, Whittemore’s test, Moran’s I and a modifica-
tion of Moran’s I. Except for Moran’s I and Whittemore’s test, all other tests
have good power for detecting some kind of clustering. The spatial scan statis-
tic is good at detecting localized clusters. Tango’s MEET is good at detecting
global clustering. With appropriate choice of parameter, Besag–Newell’s R and
Cuzick–Edwards’ k-NN also perform well.

Aamodt, Samuelsen and Skrondal (2006) conducted a simulation study to
compare three methods: SaTScan, generalized additive models and Bayesian
disease mapping.

Ozdenerol et al. (2005) compared the results of Kulldorff’s spatial scan
statistic with the results of Rushton’s spatial filtering technique through in-
creasing sizes of spatial filters.
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7.4 Applications

We finish this review by providing a short list of interesting applications. Of
course, this list is not exhaustive. Its only purpose is to illustrate some of
the ideas presented in the previous sections, in disease surveillance [Croner
and De Cola (2001), Dunyak, Mohtashemi and Mandl (2006), Heffernan et al.
(2004), Gardner, Strickland and Correa (2007), Grannis et al. (2007), Nordin
et al. (2005), Gunn, Pendarvis and Barry (2006), Sabhnani, Neill and Moore
(2005), Goranson et al. (2006) and Johnson et al. (2005)], terrorism surveillance
[Porter and Brown (2007)] and epidemiology [Ali et al. (2006), Brooker et al.
(2004), Dunchin (2003), Chaput, Meek and Heimer (2002), Durand and Wilson
(2006), Viel, Floret and Mauny (2005), Kulldorff et al. (1998), Fukuda et al.
(2005), Onozuka and Hagihara (2007), Goovaerts, Jacquez and Greiling (2005),
Kulldorff et al. (1997), Mather et al. (2006), Moore (2005), Myers et al. (2006),
Norström, Pfeiffer and Jarp (2000), Nunes (2007), Oliver et al. (2006), Hanson
and Wieczorek (2002), Ozonoff et al. (2005), McNally and Colver (2008), Perez
et al. (2005), Sabel et al. (2002), Sanchez et al. (2005), Tiwari et al. (2006),
Ward and Carpenter (2000), Washington et al. (2004), Wheeler (2007)].
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1-Dependent Stationary Sequences

and Applications to Scan Statistics
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Abstract: A new method of estimating the distribution function of scan statis-
tics was presented and studied by the authors in a series of papers. This method
is based on the application of some results concerning the distribution function
of the partial maximum sequence generated by a 1-dependent stationary se-
quence. We present a review of our results and compare the method with other
existing methods.

Keywords and phrases: Scan statistic, 1-dependence, Poisson process

8.1 Introduction

Let N be a Poisson process of intensity λ on the real line and let u > 0 and
T > u be fixed constants. Let νt = N(t + u)−N(t) be the number of points in
the interval [t, t + u[, t ∈ [0, T − u].

The one-dimensional continuous scan statistic is defined [see Glaz et al.
(2001)] as

S = S(u, λ, T ) = max
0≤t≤T−u

νt. (8.1)

Let T = τu, τ ∈ N and let

Xn = max
(n−1)u≤t<nu

νt, n = 1, . . . , τ − 1. (8.2)

It can be easily seen that {Xn} forms a 1-dependent stationary sequence and

S = Sτ = max
1≤n≤τ−1

Xn. (8.3)
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Then, in order to approximate the distribution function (d.f.) of S, we can apply
either one of the following equivalent versions of Haiman (1999), Theorems 3
and 4.

Let {Xn} be a general 1-dependent stationary sequence of random variables
(r.v.’s) and let

qn = qn(x) = P {max(X1, . . . , Xn) ≤ x} , n ≥ 1.

Theorem 8.1.1 For any x such that 1 − q1(x) ≤ 0.025 and any integer n > 3
such that 88n(1 − q1)3 ≤ 1, we have

∣
∣
∣
∣qn−

4q3 − 3q4 + 6(q1 − q2)2

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)n

∣
∣
∣
∣
/
qn

(8.4)
≤(1−q1)3[88n(1 + 124n(1−q1)3) + 561].

Theorem 8.1.2 For any x such that 1 − q1(x) ≤ 0.025 and any integer n > 3
such that 3.3n(1 − q1)2 ≤ 1, we have

∣
∣
∣
∣qn − 2q1 − q2

(1 + q1 − q2 + 2(q1 − q2)2)n

∣
∣
∣
∣
/
qn

(8.5)
≤ (1 − q1)2[3.3n(1 + 4.7n(1 − q1)2) + 9 + 561(1 − q1)].

From Theorem 8.1.1 and Theorem 8.1.2 we deduce, respectively, the
approximations

P(Sτ ≤ x) ≈ 4q3 − 3q4 + 6(q1 − q2)2

(1 + q1 − q2 + q3 − q4 + 2q2
1 + 3q2

2 − 5q1q2)τ−1
(8.6)

with a relative error bound of about 88τ(1 − q1)3 and

P(Sτ ≤ x) ≈ 2q1 − q2

(1 + q1 − q2 + 2(q1 − q2)2)τ−1
(8.7)

with a relative error bound of about 3.3τ(1 − q1)2.
The approximations (8.6) and (8.7) for the d.f. of continuous scan statistics

have been introduced and studied in Haiman (2000). A characteristic of these
approximations is that they depend on a prior knowledge of qi = qi(x) =
P(Si+1 ≤ x), i = 1, . . . , 4, respectively, i = 1, 2.

Let Z1, . . . , ZN be a sequence of integer-valued r.v.’s that are independent
and identically distributed (i.i.d.), typically Bernoulli B(1, p). Let 1 ≤ m ≤ N
be a fixed positive integer, let

μt =
t+m−1∑

i=t

Zi, i ≤ t ≤ N − m + 1, (8.8)



1-Dependence and Scan Statistics 181

and define the one-dimensional discrete scan statistic [see Glaz et al. (2001)] by

S = S(m, p, N) = max
1≤t≤N−m+1

μt. (8.9)

Let N = τm, τ ∈ N, τ ≥ 1, and let

Yn = max
(n−1)m+1≤t≤nm+1

μt, n ∈ N, n ≥ 1. (8.10)

Then {Yn} similarly forms a stationary 1-dependent sequence, S = Sτ =
max1≤n≤τ−1 Yn and the d.f. of S can again be approximated by either one
of the corresponding versions of approximations (8.6) and (8.7).

This type of approximation for the d.f. of discrete scan statistics was intro-
duced and studied in Haiman (2007).

In Section 8.2 we present and discuss the main aspects related to the ap-
plication of approximations (8.6) and (8.7) to continuous and discrete one-
dimensional scan statistics.

Let N be a two-dimensional Poisson process of intensity λ. For fixed positive
u and v, let νt,s(u, v) be the number of points in the rectangle [t, t+u)×[s, s+u),
i.e.,

νt,s = νt,s(u, v) = N([t, t + u) × [s, s + v)). (8.11)

For 0 < u < L and 0 < v < K, the two-dimensional continuous scan statistic

S = S((u, v), λ, L, K) = max
0 ≤ t ≤ L − u
0 ≤ s ≤ K − v

νt,s (8.12)

represents the largest number of points in any rectangle of dimension u × v
within the rectangular region [0, L] × [0, K]. Observing that for any 0 < u < L
and 0 < v < K we have

P (S((u, v), λ, L, K) ≤ k) = P
(

S((1, 1), λuv,
L

u
,
K

v
) ≤ k

)

,

we now suppose that u = v = 1.
Let K and L be positive integers and let

Xk = max
0 ≤ t ≤ L − 1
k − 1 ≤ s ≤ k

νt,s, k = 1, . . . , K − 1. (8.13)

We first observe that {Xk} is a stationary 1-dependent sequence and

S = SL,K = max
1≤k≤K−1

Xk.
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Then, a first application of Theorem 8.1.2 (under the required conditions)
leads to the approximation

P(S ≤ n) ≈ (2q1 − q2)(1 + q1 + q2 + 2(q1 − q2)2)−(K−1), n ∈ N. (8.14)

with an error bound of about 3.3(K − 1)(1 − q1)2. Here q1 = P(X1 ≤ n)
and q2 = P(X1 ≤ n, X2 ≤ n). In order to obtain the final approximation of
P(S ≤ n), q1 and q2 are replaced in (8.14) by their approximations obtained
using again Theorem 8.1.2. Indeed,

Yl = max
l − 1 ≤ t ≤ l
0 ≤ s ≤ 1

νt,s, l = 1, . . . , L − 1 (8.15)

is a 1-dependent stationary sequence and

q1 = P
(

max
0≤l≤L−1

Yl ≤ n

)

. (8.16)

Analogously,
Zl = max

l − 1 ≤ t ≤ l
0 ≤ s ≤ 2

νt,s, l = 1, . . . , L − 1

is also a 1-dependent stationary sequence and

q2 = P
(

max
0≤l≤L−1

Zl ≤ n

)

. (8.17)

Then, Theorem 8.1.2 provides the approximations

q1 ≈ (2q2,2 − q2,3)(1 + q2,2 + q2,3 + 2(q2,2 − q2,3)2)−(L−1), (8.18)

and

q2 ≈ (2q3,2 − q3,3)(1 + q3,2 + q3,3 + 2(q3,2 − q3,3)2)−(L−1), (8.19)

where q2,2 = P(S2,2 ≤ n), q2,3 = q3,2 = P(S2,3 ≤ n) and q3,3 = P(S3,3 ≤ n).
Thus, in the two-dimensional case, the final approximation of P(SL,K ≤ n)

depends on a prior knowledge of q2,2, q2,3 and q3,3. If q2,2, q2,3 and q3,3 are known
and L ≤ K, it can be shown that the resulting error on the approximation of
P(S ≤ n) is bounded by about

e = 3.3(L−1)(K −1)
(
(1 − q2,2)2 + (1 − q3,2)2 + (L − 1)(q2,2 − q3,2)2

)
. (8.20)

The main difficulty in the two-dimensional case arises from the fact that cur-
rently there are no, exact formulas for q2,2, q3,2 and q3,3. This type of approx-
imation for the d.f. of two-dimensional scan statistics generated by a Poisson
process was introduced and studied in Haiman and Preda (2002).
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As in the one-dimensional case, the method can be adapted to the two-
dimensional discrete scan statistics defined as follows.

Let N1 and N2 be positive integers and {Xi,j ; 0≤ i≤N1 −1, 0≤ j ≤N2 −1}
be a family of i.i.d. nonnegative integer valued r.v.’s from some specified distri-
bution (typically B(n, p) or Poisson(λ)). For ≤ i ≤ N1 − 1 and 0 ≤ j ≤ N2 − 1,
Xi,j represents the number of some events observed in the elementary square
subregion [i, i + 1] × [j, j + 1]. Let m1, m2 be positive integers, 1 ≤ m1 ≤ N1,
1 ≤ m2 ≤ N2. For 0 ≤ t ≤ N1 − m1, 0 ≤ s ≤ N2 − m2, let

νt,s = νt,s(m1, m2) =
t+m1−1∑

i=t

s+m2−1∑

j=s

Xi,j . (8.21)

The two-dimensional discrete scan statistic is defined as the largest number of
events in any m1 × m2 rectangular scanning window within the rectangular
region [0, N1] × [0, N2], i.e.,

S = SN1,N2(m1, m2) = max
0≤t≤N1−m1
0≤s≤N2−m2

νt,s. (8.22)

Let N1 = Lm1, N2 = Km2, with L and K integers, L > 3, K > 3. In this case,
the same arguments and formulas as those leading to the approximation for the
continuous scan statistics can be used with the following changes:

- Xk in formula (8.13) is now

Xk = max
0≤t≤(L−1)m1

(k−1)m2≤s≤km2

νt,s, k = 1, . . . , K − 1,

- Yl in formula (8.15) becomes

Yl = max
(l−1)m1≤t≤lm1

0≤s≤m2

νt,s, l = 1, . . . , L − 1,

- and Zl is
Zl = max

(l−1)m1≤t≤lm1
0≤s≤2m2

νt,s, l = 1, . . . , L − 1.

This type of approximation for the d.f. of discrete two-dimensional scan statis-
tics was studied in Haiman and Preda (2006).

The main aspects related to the application of this method to two-
dimensional scan statistics are presented and discussed in Section 8.3.



184 G. Haiman and C. Preda

8.2 Application of the Approximations (8.6)
and (8.7) to One-Dimensional Scan Statistics

The approximations (8.6) and (8.7) require a prior knowledge of qi = qi(x) =
P(Si+1 ≤ x), i = 1, 2, 3, 4, respectively, i = 1, 2. In the one-dimensional case,
for both continuous and discrete scan statistics, there are exact formulas for
qn (see the references in Subsections 8.2.1 and 8.2.2). However, these formulas
become rapidly intractable as n becomes large. There are also bounds and
approximations as those mentioned below. The approximation formulas are
based on heuristics, and their accuracy is evaluated using simulation results
only in some particular configurations.

Our formulas include error bounds from which one can characterize com-
pletely their domain of applicability. A typical application of our method is the
following. Suppose we want to establish, for a large τ ∈ N, the value of x0.95

such that qτ−1(x0.95) ≈ 0.95. In the case of the continuous scan statistic, x0.95

represents the critical value for testing the intensity λ of the underlying Pois-
son distribution at the 5% level of significance, i.e., reject the null hypothesis
(λ = λ0) if Sτ−1 > x0.95(λ0).

Under the condition “large τ”, 1− q1 is then necessarily small with respect
to 0.05 and condition 1 − q1 ≤ 0.025 is satisfied. Indeed, we then have

qτ−1(x0.95) ≈ (2q1 − q2)
(
1 + (q1 − q2) + 2(q1 − q2)2

)−(τ−1)

≈ 1 − (τ − 1)(q1 − q2) ≈ 0.95 as q1 → 1.
(8.23)

By Haiman et al. (1998), Proposition 2.1, page 490, if 1−q1 is sufficiently small,
we have 1 − q1 ≤ 2(q1 − q2).

Thus,

1 − qτ−1(x0.95) ≈ 0.05 ≈ (τ − 1)(q1 − q2) ≥ 2(τ − 1)(1 − q1), (8.24)

whereas the error bound is about 3.3τ(1− q1)2, thus very small with respect to
the approximated value of 0.05. When q3 and q4 are available, the approximation
(8.6) is more accurate (error of order (1−q1)3 instead of (1−q1)2), but generally,
the approximation (8.7) appears to be sufficiently precise.

We now examine separately the application of the method to continuous
and discrete scan statistics.

8.2.1 Application to one-dimensional continuous scan statistics

Let S = S(u, λ, T ) be the scan statistic generated by a Poisson process as
defined in (8.1). Huntington and Naus (1975) give an exact formula for P(S ≤ n)
for n ≥ 0 and T ≥ u that sums many products of determinants and for large



1-Dependence and Scan Statistics 185

T requires excessive computation time. This formula is used in Neff and Nauss
(1980) to establish tables for the d.f. of S(1, λ, τ) (notice that S(u, λ, T ) =
S(1, λu, T

u )) for several discrete values of λ and τ ≤ 100.
In Haiman (2000) we have applied the approximation (8.7) with q1 and

q2 from Neff and Naus tables and τ = 1000. Notice that when we mention a
numerical application of the approximations (8.6) or (8.7), it means that we
also provide the corresponding error bound.

Naus (1982), making a reasoning based on the hypothesis of a Markov-like
behavior of the sequence {Xn} defined in (8.2), proposes the approximation

qτ = qτ(x) = P(Sτ ≤ x) ≈ q1

(
q2

q1

)τ−2

, τ > 2. (8.25)

He shows, using the exact formula, that for λ and τ ranging in a certain domain,
and also compared to other existing approximations, approximation (8.25) is
remarkably accurate. This fact is not surprising: if we denote, respectively, by
qH
τ and qN

τ the approximations in (8.7) and (8.25), it can be shown that for
τ sufficiently large we have |qH

τ − qN
τ | ≤ 5(1 − q1)2. Table 8.1 presents some

numerical examples of these approximations and illustrates this fact.
Another scan statistic of interest generated by a Poisson process is defined as

S∗ = S∗(u, λ, T ) = min
0≤t≤T−u

νt, (8.26)

where, as in (8.1), νt = N(t + u) − Nt.
Let T = τu, τ ∈ N, τ > 0 and let

X∗
k = − min

(k−1)u≤t≤ku
νt. (8.27)

Then {X∗
k} forms a 1-dependent stationary sequence and

q∗τ (n) = P(S∗
τ > n) = P

(

max
1≤k≤τ−1

X∗
k < −n

)

, n ≥ 0. (8.28)

Theorems 8.1.1 and 8.1.2 can also be applied here and corresponding versions
of the approximations (8.6) and (8.7) can be used to estimate q∗τ (n). The values

Table 8.1. Approximations for P(S ≤ x) by approximations (8.25) and (8.7).
T = 1001.

x λ Naus (1982) Haiman (2000) Error
4 0.1 0.985399334 0.9854 2 × 10−6

6 0.5 0.930142831 0.9302 2.5 × 10−5

9 1.3 0.940503808 0.9405 1.7 × 10−5
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of q∗i (n), i = 1, 2, 3, 4, or i = 1, 2 used in these approximations can be obtained
from the exact formulas established in Huntington (1978) (these exact formulas
also become intractable as τ becomes large).

Janson (1984) gives upper and lower bounds for qτ and q∗τ . In Haiman (2000)
we have shown that the approximation (8.7) and Janson’s bounds have similar
precision.

The waiting time until the first occurrence of n points within an interval of
length u, Wn, is an r.v. whose distribution is important in several applications
(see Naus (1982)). For n ≥ 1 and t ≥ 2 we have

P(Wn > t) = P
(

max
0≤s≤t−u

νs < n

)

. (8.29)

Let W ∗
n be the corresponding discretized waiting time defined as

W ∗
n =

[
min{s ≥ 0 : νs = n}

u

]

u, (8.30)

where [ · ] stands for integer part.
For n ≥ 1 and τ = 2, 3, . . ., we have

P(W ∗
n > τ) = P(Sτ ≤ n − 1) = qτ−1(n − 1). (8.31)

We then can apply the approximations (8.6) or (8.7) to estimate the ex-
pected waiting time, E(W ∗

n). Details about this application and a numerical
example are given in Haiman (2000).

Let M(T ) be the number of subintervals, each of length u, dropped so that
their midpoints are the occurrence points of a homogenous Poisson process N
in the interval [0, T ]. We say that a point x is covered by a subinterval with
midpoint y if y− u

2 ≤ x ≤ y + u
2 . The calculation of the probability of the event

En = “all points of the interval [0,T] are covered by at least n subintervals” is
of interest in several applications [see Glaz and Naus (1978)]. Let T = τu,
τ = 2, 3, . . .. In Haiman (2000) we use the fact that the calculation of P(En)
is related to the calculation of q∗τ . Thus, via the approximation (8.7) we obtain
an approximation formula for P(En).

Let Fn be the event “there does not exist a subarc of length u = 1 of a
circle with circumference τ , τ = 2, 3, . . . , that contains n points.” Using similar
arguments, in Haiman (2000) we obtain an approximation formula for P(Fn).

8.2.2 Application to one-dimensional discrete scan statistics

Let Z1, . . . , ZN be a sequence of integer-valued r.v.’s that are i.i.d. and consider
the discrete scan statistic S defined in (8.9). Exact formulas for P(S ≥ k) exist,
and some of them are tractable only in a limited number of situations. The
Bernoulli case (Zi ∼ B(1, p)) plays an important role in the applications. In
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this case, exact formulas have been obtained by Naus (1982) for N = 2m and
N = 3m, i.e., for q1 and q2. As for continuous scan statistics, Naus uses q1

and q2 to estimate qτ = qτ (k) = P(Sτ ≤ k) (N = τm, τ ≥ 3) by formula (8.25).
Fu (2001) employed a finite Markov chain embedding method to derive

exact formulas for P(Sτ ≤ k). However, this method involves quite complicated
computations, and it may become difficult to use for large or very large values
of m and τ = N

m .
Thereby, various approximation methods and bounds for P(S ≤ k) have

been proposed by several authors. However, the quality of these approximations
and bounds can be evaluated for a limited number of particular configurations.
An overview of these results as well as a complete bibliography on the subject
are given in Glaz et al. (2001). In Haiman (2007) we have illustrated by several
numerical examples the application of our approximation (8.7) in parallel with
formula (8.25) of Naus. In these examples, m = 30, p = 0.1 and N ranges from
256× 30 to 1024× 30. As for continuous scan statistics and for a similar reason
(see Section 8.2.1) the approximations (8.7) and (8.25) give very close results.

Let V (N) denote the length of the longest success run in N Bernoulli B(1, p)
trials (1 = success, 0 = failure). We then have

P(V (N) ≥ m) = P(S ≥ m) = P(S = m). (8.32)

Thus, if N = τm, τ ≥ 2,

P(V (N) ≥ m) = P(Sτ ≥ m) = 1 − qτ−1(m). (8.33)

An exact formula for P(V (N) ≥ m) of Bateman (1948) allows in this case an
easy calculation of qi(m), i = 1, 2, 3, 4, from which P(V (N) ≥ m) can be ap-
proximated by either one of the approximations (8.6) or (8.7). In Haiman (2007)
we have used numerical examples to illustrate and compare these two approxi-
mations. It appears that the approximations (8.6) and (8.7) provide very close
results. Table 8.2 presents some numerical examples of these approximation and
illustrates this fact.

Fu et al. (2003) have used the finite Markov chain embedding to obtain the
exact distribution of V (N). They also obtained a large deviation approximation
of the above distribution [in relationship to this problem, see also Lou (1996),
Vaggelatou (2003) and the references quoted in these papers].

In Haiman (2007), we also compare the approximation (8.6) and exact values
of V (N) calculated in Fu et al. (2003).

Let k and m, 1 ≤ k ≤ m, be positive integers and define the waiting time,
until “k − in − m quota” by

T = Tk,m = inf{t ≥ 1 : μt ≥ k}, (8.34)

where μt is defined in (8.8).
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Table 8.2. Approximations for P(S ≤ x) by Haiman (2007) and Naus (1982),
Xi ∼ B(1, p), p = 0.1, m = 30.

x 9 10 11
P(S(30, 256 × 30) ≤ x) :
App. (8.7) 0.5161 0.85979 0.970613
Error 0.008 0.0023 10−6

App. (8.25) 0.5172 0.86028 0.970726
P(S(30, 512 × 30) ≤ x) :
App. (8.7) 0.2658 0.73888 0.941997
Error 0.017 0.00046 0.000017
App. (8.25) 0.2663 0.739295 0.9421067

Huntington (1974) derives an exact and quite complicated formula for E(T ),
in terms of ratios of determinants of some matrices. Naus (1982), using the fact
that

E(Tk,m) =
∞∑

N=0

(1 − P(SN < k)),

uses the approximation (8.25) to obtain the approximation

E(Tk,m) ≈ 2m +
q2

(1 − q2

q1
)

1
m

. (8.35)

In Haiman (2007), we similarly use the approximation (8.7) to establish upper
and lower bounds for E(Tk,m) and give some numerical examples.

Let now r.v. Zi, i = 1, . . . , N take values −1, 0 and 1. The corresponding
discrete scan statistic S is associated to the “charge problem.” Exact results for
P(S ≤ k) have been obtained in this case by Saperstein (1976) for N ≤ 2m and
by Karwe (1993) for N ∈ {2m − 1, 2m (thus q1), 3m − 1 and 3m (thus q2)}. In
Haiman (2007) we give numerical examples and compare the approximations
(8.7) and (8.25) using values of q1 and q2 provided in Karwe (1993).

8.3 Application of the Method to Two-Dimensional
Scan Statistics

As mentioned in Section 8.1, the main difficulty in applying the method to
both, continuous and discrete two-dimensional scan statistics arises from the
fact that at present there are no exact formulas allowing us to calculate qi,j ,
i, j = 2, 3.
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There are some approximation formulas (see references below) based on
heuristics; their accuracy is evaluated using simulation results only in some
particular configurations. As in the one-dimensional case, the characteristic of
our approximation formulas is that they include error bounds.

8.3.1 Application to continuous scan statistics

Let S be defined in (8.12) and for u = v = 1 and K, L integers, K, L > 3, put

SL,K = S = S((1, 1), λ, L, K). (8.36)

Previously, Aldous (1989) and Alm (1997) have established approximation for-
mulas for the d.f. of SL,K .

Let

qn
L,K(k) = P

(

SL,K ≤ k

∣
∣
∣
∣N([0, L] × [0, K]) = n

)

, 1 ≤ k ≤ n (8.37)

denote the d.f. of the conditional scan statistic, i.e., the scan statistic given
that a fixed number n of points fall in [0, L]× [0, K]. Notice that qn

L,K is the d.f.
of the r.v. Sn

L,K = maximum number of points obtained by scanning with the
[0, 1] × [0, 1] window a rectangle [0, L] × [0, K] in which n independent points
are drawn uniformly.

We then have

qL,K(k) = P (SL,K ≤ k)

= e−λLK

⎛

⎝
k∑

j=0

(λLK)j

j!
+

kLK∑

j=k+1

qj
L,K(k)

(λLK)j

j!

⎞

⎠ .
(8.38)

In Haiman and Preda (2002) we have developed a method of “perfect” sim-
ulation of independent replications of r.v.’s Sn

i,j , i, j = 2, 3. We construct (Theo-
rem 2) a stopping time T with respect to the filtration generated by a sequence
{Zn}n≥1 of Bernoulli B(1, 1

2) i.i.d. r.v’s together with functions ft(z1, . . . , zt)
such that the r.v. Sn

i,j = fT (Z1, . . . , ZT ) has the same distribution as Sn
i,j . We use

this method to obtain via formula (8.38) empirical estimations of qn
i,j(k), i, j =

2, 3 and then we calculate (see Section 8.1) the final approximation of qL,K(k).
The empirical estimation of qn

i,j generates additional errors. These errors

are bounded at the 95% confidence level by εi,j , where εi,j ≈ 1.96
√

qn
i,j(1−qn

i,j)

M .
M is the number of replications of r.v.’s Sn

i,j , i, j = 2, 3. The total error on
P(SL,K ≤ k) is then bounded by about

E = e + LK(ε2,2 + ε2,3 + ε3,3), (8.39)

with e, the error bound when qi,j are known, given in (8.20). Naus (1965) and
Neff (1978) give exact formulas for qm

L,K(m − 1) and qm
L,K(m − 2). In Haiman
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Table 8.3. Approximation for P(S ≤ n). L = 500, K = 500, λ = 0.01.
n App. (8.14) Error Alm (1997) Aldous (1989)
2 0.69318103 0.008570775 0.7839302629 0.8484459199
3 0.998401542 6.37679E-05 0.9987785770 0.9990759644

and Preda (2002) we use these formulas for L, K = 2, 3 to evaluate our sim-
ulation results. We then give numerical examples for several values of L, K
and λ (L, K = 10, 50, 100, 1000, λ = 0.01, 0.05, 0.1, 1) and compare our results
with corresponding results obtained by other approximation formulas in Aldous
(1989) and Alm (1997).

In order to obtain error bounds εi,j such that their contribution to the total
error E has the same order of magnitude as e, we use in our examples up to
107 replications of r.v.’s Sn

i,j , i, j = 2, 3.
Table 8.3 presents some numerical examples of application of our method

and the corresponding results obtained using the methods of Aldous and Alm.

8.3.2 Application to discrete scan statistics

Let S = SN1,N2 be defined in (8.22) where the underlying Xi,j are binomial
B(n, p) or Poisson P(λ). Since there are no exact formulas for P(S ≤ k),
various methods of approximation and bounds have been proposed by sev-
eral authors. An overview of these methods as well as a complete bibliog-
raphy on the subject are given in Glaz et al. (2001). In particular, the case
where Xi,j are binary variables, with application to reliability (two-dimensional
r − within m1 × m2 − out − of N1 × N2) has received considerable research
interest during the last years. In this framework, several approximations and
bounds have been proposed and studied in the literature [see, e.g., Chen and
Glaz (1996), Boutsikas and Koutras (2003) and references therein].

Let N1 = Lm1 and N2 = Km2 with L and K integers, L, K > 3. In Haiman
and Preda (2006) we have applied our approximation method of P(SN1,N2 ≤ k)
using, similarly to the previous continuous case, empirical estimations of

qi,j(k) = P(Sim1,jm2 ≤ k)

obtained by simulating i.i.d. replications of r.v.’s Sim1,jm2 , i, j = 2, 3. The error
bound due to simulation, esim, is then also proportional to LK√

M
, where M is the

number of replications and the total error bound, as in (8.39), is

E = e + esim.

For Xi,j binomial and Poisson we give numerical examples and compare our
results with those obtained using the product-type approximation, the Poisson
approximation and Bonferroni inequality techniques, as presented in Glaz et al.
(2001).
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Table 8.4. Approximation for P(S ≤ x) : Xi,j ∼ Poisson(0.25), m1 = m2 =
5, L = 5, K = 5, M = 109.

x P̂(S ≤ x) P-T Bonferroni Poisson H-P Error
15 0.8596 0.8374 0.7700 0.8292 0.860427482 0.067409646
16 0.9402 0.9351 0.9130 0.9314 0.940749305 0.010867255
17 0.9783 0.9764 0.9691 0.9750 0.977260378 0.001546897
18 0.9930 0.9920 0.9896 0.9916 0.991966851 0.000217233

Table 8.5. Approximation for P(S ≤ x) : Xi,j ∼ B(5, 0.05), m1 = m2 = 5,
L = 5, K = 5, M = 109.

x P̂(S ≤ x) P-T Bonferroni Poisson H-P Error
15 0.8932 0.8830 0.8387 0.8768 0.896135764 0.035108915
16 0.9617 0.9577 0.9441 0.9554 0.960112719 0.004770939
17 0.9868 0.9862 0.9819 0.9854 0.986256278 0.000584065
18 0.9948 0.9958 0.9946 0.9956 0.995633424 8.08015E-05

For binary Xi,j we compare our approximations with bounds obtained in
Boutsikas and Koutras (2003).

In all these examples we use up to M = 109 replications of r.v. Sim1,jm2 ,
i, j = 2, 3. Tables 8.4 and 8.5 present some numerical examples of the application
of our method and the corresponding results obtained using the product-type
(P-T), the Poisson and the Bonferroni approximation methods. P̂(S ≤ x) de-
notes the empirical estimation of P(S ≤ x) using 10,000 trials [see Glaz et al.
(2001)].

For binomial Xi,j , and in particular Bernoulli, the current work of the au-
thors consists in constructing computer algorithms allowing one to obtain, with-
out using simulations, exact values or sufficiently accurate (with respect to the
method) approximations of qi,j(m), i, j = 2, 3.
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Abstract: In genome-wide genetic scans for disease susceptibility loci, true
peaks have been shown to be wider than false peaks. We describe scan statistics
to make use of this extra information, which is not generally taken into account
otherwise. Our methods are applied to four disease datasets.
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9.1 Introduction

We have used the scan-statistics approach on linkage mapping by jointly analyz-
ing information at a number of microsatellite marker loci covering a contiguous
region of the genome [Hoh and Ott (2000), Hoh and Ott (2003)]. This paper
is based on our previous work, which will be extended to mapping with single
nucleotide polymorphisms (SNPs) in genome-wide association studies.

In linkage analysis, logarithms of likelihood ratios (lod scores) are computed
for many DNA markers on the genome. The likelihood in the numerator refers
to the presence of a susceptibility locus at a given position, and the likelihood in
the denominator assumes absence of that locus. Methods implemented in pro-
grams such as Aspex [Schwab et al. (1995)], Genehunter [Kruglyak et al. (1996),
Friddle et al. (2000)], and Allegro [Gudbjartsson et al. (2000)] can make use
of microsatellite marker loci on a chromosome and render any point along the
chromosome as informative as possible. True peaks of such lod score curves are
known to be wider than false peaks [Terwilliger et al. (1997)]. Consequently,
higher positive lod scores and a larger number of them are expected around
true rather than around false peaks. This property of lod scores is not generally
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taken into account in the search for susceptibility loci, but ad hoc approaches
have suggested increased power when information from a small number of neigh-
boring markers is combined [Goldin and Chase (1997), Goldin et al. (1999)].
Theoretical investigations show that the power gain from this information for a
single susceptibility locus might be modest [Siegmund (2001)] but can be more
substantial for two loci in close proximity [Hernandez et al. (2005)].

Further extension of the traditional linkage methods using scan statistics is
a novel way of testing for disease association/linkage. This new method com-
bines information from marker loci clustering around a local peak and assesses
its genome-wide significance by permutation tests. The information to be com-
bined is based on single-marker statistics, which might be lod scores in general
small families, allele-sharing proportions for sib pairs, or Pearson χ2 association
statistics in case-control association studies. For a given “length” (the number
of combined single-marker statistics) of the scan statistic, we assess its signif-
icance by permutation tests. Comparing p-values for varying lengths of scan
statistics, we treat the smallest observed p-value as our statistic of interest and
determine its overall significance level. This method has been illustrated in an
autism pedigree dataset. A susceptibility region was found (genome-wide sig-
nificance level = 0.038), which was missed in conventional analyses (see below).

9.2 Methods

Consider a sequence of random variables, X1, ..., XN . For 1 ≤ L ≤ N , let
YL(t) =

∑t+L−1
i+t Xi be a moving sum of L consecutive observations. The linear

(unconditional) scan statistic is then defined as

SL = max[YL(1), YL(2), ..., YL(N − L + 1)], (9.1)

that is, as the largest moving sum of length L [Glaz and Balakrishnan (1999)].
Scan statistics have been used in epidemiology, molecular biology, and many
other areas of science and engineering to detect clustering, for example, in DNA
sequence analysis [Karlin and Brendel (1992)].

Here, Xi is an observation or a statistic based on the genotypes at the
i-th marker, and the sum YL(t) refers to the combined information of ordered
markers, moving along the chromosomes. Alternatively, there is precedent for
using log likelihood ratios as “observations”—correlations between lod scores
[MacLean et al. (1993)] or allele sharing proportions [Cox et al. (1999)] at
specific loci have been interpreted as evidence for genetic interaction between
these loci. It is clear that a scan statistic based on lod scores captures the
particular feature of true peaks being wider than false peaks (see Introduction).
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Therefore, scan statistics are expected to be more powerful for detection of
susceptibility loci than a statistic focused only on a single marker locus.

The corresponding statistical test is mathematically intractable but can be
achieved by computer-based methods, bootstrap or permutation, which have
been proven effective [Efron and Tibshirani (1991)]. Below, we employ permu-
tation tests to search for clusters of consecutive markers that point to a gene
underlying the trait studied.

Under the null hypothesis of no disease association or linkage, any set of
marker genotypes in an individual is equally likely to occur with a binary out-
come. This implies that data matrices with any permutation of the n binary
outcomes have equal probabilities of occurrence. For each permutation sample,
the proportion, pL, of permutation samples with a scan statistic at least as
large as an observed scan statistic, SL, represents the significance level associ-
ated with SL.

The pL-value so computed represents the global significance level, as opposed
to a locus-specific significance level [Lander and Kruglyak (1995)], for a given
value of L. However, there may be no a priori reason for choosing any particular
value for L. Rather, one would like to try any one of the values from 1 through,
say, Lmax = 10 and focus on the smallest pL-value obtained. This minimum
pL-value, pmin, then represents the statistic whose significance level is to be
determined. It is obtained from the permutation samples as follows. We view
the statistics, S1, S2, ..., SLmax , as multiple (correlated) measurements. In each
permutation sample, a minimum significance level, p∗min, is obtained in analogy
to the one observed in the real data. Then, the overall significance level, pglobal,
associated with pmin is given by the proportion of permutation samples with
p∗min ≤ pmin [Manly (2006)].

We recommend the following strategy to make this approach as efficient as
possible: testing by adding lengths sequentially until the scan statistic starts
decreasing, which is equivalent to the sequential test until the p-value starts
increasing.

9.3 Applications

9.3.1 Autism data

In a genome screen for autism, independent sib pairs were genotyped for a total
of 324 microsatellites [Liu et al. (2001)]. With a broad disease definition, 86
affected-affected (AA) and 91 affected-unaffected (AU) sib pairs were available.
At each marker locus, the Allegro program [Gudbjartsson et al. (2000)] deter-
mined the lod score associated with the allele-sharing proportion in each sib
pair. The statistic used for the i-th marker was the difference, Xi = uAA−uAU ,
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where uAA and uAU are total lod scores in AA and AU sib pairs, respectively.
Scan statistics of lengths 1 through 10 were tried.

For marker number 159, the total lod score observed in AA pairs was 1.21
and that for AU pairs was −2.29. Neither lod score is remarkable. The difference
in lod scores, 3.50, is the largest such difference observed in the data and, in a
permutation test, is associated with a genome-wide significance level of 0.131.
With an associated significance level of pmin = 0.015, the most significant scan
statistic is that of length 6.

The genome-wide significance level associated with pmin, pglobal = 0.038, was
estimated with 100,000 permutations. For a map of 400 microsatellite markers,
a genome-wide significance level of pglobal = 0.05 corresponds to a locus-specific
significance level of p = 0.000022 or a lod score of 3.6 [Lander and Kruglyak
(1995)]. Similarly, pglobal = 0.038 translates into p = 0.0000163 or a lod score
of 3.8.

9.3.2 Schizophrenia data

Over the years, various genome screens for schizophrenia susceptibility loci had
generally furnished rather modest results. On chromosome 10, two peaks rela-
tively close to each other had been observed in European-American families but
none of them was significant [Faraone et al. (1998)]. The experiment-wise sig-
nificance level for the peak seen at marker D10S1423 was only p ≈ 0.20. In our
analysis with permutation testing in multipoint analysis, the peak nonpara-
metric linkage score at D10S1423 in those data reached an experiment-wise
significance level of p = 0.016 while application of scan statistics resulted in
p = 0.008 [Dewan and Ott (2004)].

9.3.3 Parkinson’s disease data

We carried out association tests for Parkinson’s disease (PD) data [Fung et al.
(2006), Simon-Sanchez et al. (2007)]. To reduce the computational effort, we
focused on chromosome 11 because some SNPs on that chromosome were pre-
viously reported as being associated with PD [Fung et al. (2006)]. A total of
19,494 SNPs had been genotyped on 270 case and 271 control individuals and
passed our quality control measures. Genotypes AA, AB, and BB were coded
1, 2, and 3, respectively. As a test statistic, we applied a t-test to each SNP,
that is, we tested for a difference in the mean number of A alleles between cases
and controls. All p-values were estimated on the basis of 20,000 randomization
samples. The single best SNP (scan statistic of length 1) had an associated
p-value of 0.2404, so was far from significant. The best scan statistic had length
13 and comprised SNPs between rs7951781 and rs647248 that are 61,810 bp
apart. Its p-value was pmin = 0.0142 with a corresponding significance level
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of pglobal = 0.0620. Thus, these results provide a hint of a region of disease
association, but genome-wide statistical significance is lacking.

As is often the case, different test statistics provide different answers. For ex-
ample, when we apply a chi-square test to 2×3 tables of genotypes (case/control
versus 3 genotypes), the single best SNP has p-value 0.0010 while the best scan
statistic with length > 1 has p-value 0.0486. Evidently, this statistic gives no
evidence for a cumulative effect of neighboring SNPs over that of single SNPs.

9.3.4 Age-related macular degeneration (AMD) data

We applied the scan statistics method to our two AMD genome-wide association
(GWA) datasets [Klein et al. (2005), Dewan et al. (2006)]. Single SNPs were
found highly significant in these data. Neither scan statistics nor haplotypes
gained further information surrounding these SNPs.

9.4 Discussion

In the autism data of the Applications section, the significance level is improved
from 0.131 by traditional analysis to 0.038 by our scan statistics method. It
demonstrates the usefulness of the scan statistic approach. This method can
also be useful in association studies when thousands of dense SNP markers are
tested.

Different single-marker statistics may have unequal properties. For example,
if markers have different numbers of alleles, and allele frequencies are compared
between cases and controls, a suitable statistic is chi-square for a 2 × n table,
with n being the number of alleles. Markers with different numbers of alleles will
yield statistics with different numbers of degrees of freedom. One may convert
these statistics to empirical significance levels, p, and use log[log(p)] as the
statistics of interest, which now are all on an equal scale.

The increased power provided by scan statistics may yield a stronger re-
sult than conventional statistics. That is, with a given number of observations,
conventional methods will detect susceptibility loci of some minimum effect,
but scan statistics will detect loci of smaller effects. However, the proposed
scan statistics method does not aim at narrowing a candidate region to a point
mutation, which is always the ultimate goal in gene mapping.

In the GWA studies, using dense SNP information from scan statistics may
be comparable with using that obtained from the haplotype effects.
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Abstract: Switching rules between different levels of sampling are widely used
in quality control, as in the well-known Military Standard 105E (MIL STD
105E) and similar acceptance-sampling schemes. These switching rules are typ-
ically defined by specific patterns of inspection outcomes within a sequence of
previous inspections. The probability distributions of the rules are usually hard
to find, and many of them remain unknown. In this chapter, we will provide
a general and simple method, the finite Markov chain imbedding technique, to
obtain the distributions of switching rules. We demonstrate the utility of this
method primarily by (i) deriving the generating function of a basic switching
rule (k consecutive acceptances) for the practically important case of a two-
state, first-order autoregressive AR(1) sequence, (ii) treating jointly the normal
and tightened inspection regimes of MIL STD 105E including the overall prob-
ability of discontinuing inspection, and (iii) considering a stratified sampling
scheme with three possible inspection outcomes.

Keywords and phrases: Runs and patterns, finite Markov chain imbedding,
acceptance sampling, switching rules

10.1 Introduction

Acceptance sampling is an important tool of statistical quality control. Rather
than 100% inspection of lots, only random samples are tested and used as the
basis for lot sentencing (acceptance or rejection). In the simplest and most
common case, only one random sample is tested per lot, and sample items are
classified by attributes (e.g. pass/fail, or poor/acceptable/good) as opposed to
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



204 W.Y.W. Lou and J.C. Fu

variables on a quantitative scale; such procedures are called “single-sampling
plans by attributes.” Montgomery (2001) gives a detailed review of acceptance
sampling.

Military Standard 105E (MIL STD 105E) of the United States Department
of Defense, and its nearly equivalent civilian counterpart ANSI/ASQ Z1.4-2003,
have generally been the most prevalent set of acceptance-sampling plans for at-
tributes worldwide. Contained within these (and other) sampling systems are
switching rules between different sampling plans to allow for normal, tightened,
and reduced levels of inspections, depending on the vendor’s recent quality his-
tory. Switching rules are usually defined by the occurrences of specific patterns
in the outcomes of recent inspections, and are often designed based more on
empirical experience rather than exact probabilistic considerations.

There are a few theoretical and numerical analyses of switching rules in
the literature, including Dodge (1963, 1965), Brown and Rutmiller (1975), and
Schilling and Sheesley (1978a and 1978b). Hald (1981) derived the probabil-
ity generating functions for some switching rules using the theory of recur-
rent events [Feller (1968)], but only means and variances of the distributions
were computed due to the complexity of the generating functions; Shmueli and
Cohen (2000) used the method of partial fraction expansion to obtain the exact
probability distributions of several switching rules from their known generating
functions. However, there are many switching rules with generating functions
and probability distributions that remain unknown, especially when consid-
ering several switching rules jointly (e.g. normal, tightened, and discontinua-
tion rules in MIL STD 105E) to examine the overall distributions of waiting
times. This has led to the introduction of alternatives to MIL STD 105E in
the Japanese counterpart [see Koyama et al. (1970), Koyama (1978), and Hald
(1981)]. Furthermore, with regard to MIL STD 105E, Montgomery (2001) states
the following:

In particular, some engineers dislike the switching rules because
there is often a considerable amount of misswitching from normal to
tightened or normal to reduced inspection when the process is actu-
ally producing lots of AQL (acceptable quality level) quality. Also,
there is a significant probability that production would even be dis-
continued, even though there has been no actual quality deterioration
(p. 714).

There is an urgent need to study the probability structures of complex switching
rules and their interactions within sampling systems.

Let’s consider a sequence of lots under the level of tightened inspection,
and a switching rule for shifting to normal inspection that is defined by the
occurrence of the pattern Λ = AA . . . A of k consecutive lots accepted under
tightened sampling inspection. Let W (Λ) be the waiting time for switching
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from tightened to normal inspection. Under the assumption that the sequence of
inspections is one of Bernoulli trials, Feller (1968), using the theory of recurrent
events, provided the generating function for the waiting time W (Λ):

ϕw(s) =
pksk(1 − ps)

1 − s + qpksk+1
, (10.1)

where 0 < p < 1 is the probability of acceptance. Hirano (1986) and Philippou
and Makri (1986), independently using combinatory analysis, obtained the
exact distribution of W (Λ):

P (W (Λ) > n) =
k−1∑

m=0

∑

x1+2x2+···+kxk=n−m

(
x1 + · · · + xk

x1, x2, · · · , xk

)

pn

(
q

p

)x1+···+xk

.

(10.2)
Recently, a sequence of papers by Fu and Koutras (1994), Koutras and

Alexandrou (1995), Fu (1996), and Lou (1996) treated the distributions of runs
and patterns using the finite Markov chain imbedding technique. In another
sequence of papers, Hirano and Aki (1993), Han and Aki (1998), and Aki and
Hirano (1999) studied the distributions of runs and patterns via the method
of conditional probability generating functions. Since most current switching
rules are based either on simple or compound patterns, in this chapter, we will
present a general and numerically efficient method based on the finite Markov
chain imbedding technique for studying the distributions of switching rules not
only under the assumption that the sampling inspections {Xi} are Bernoulli
trials, but also allowing for two-state AR(1) trials and multi-state Markov-
dependent trials. This paper is organized as follows. Section 10.2 introduces the
notation and the finite Markov chain imbedding. The main results are presented
in Section 10.3. Section 10.4 provides four numerical examples to illustrate the
implementation of the results. Section 10.5 discusses more general cases and
extensions.

10.2 Notation and Finite Markov Chain Imbedding

Suppose the quality of each lot is classified into m (m ≥ 2) levels denoted by the
m symbols a1, a2, . . . , am. Let S = {a1, . . . , am}, and X1, . . . , Xn be a sequence
of sampling inspections with outcomes in S.

Definition 10.2.1 A pattern Λ is called a simple pattern if Λ is composed of
a specified sequence of k symbols: i.e. Λ = ai1ai2 · · · aik , where the length of
the pattern k is finite, and the symbols are allowed to be repeated.
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Let Λ1 and Λ2 be two distinct simple patterns (neither Λ1 nor Λ2 is a
subsequence of the other). We define the union of Λ1 and Λ2, Λ = Λ1

⋃
Λ2, as

the occurrence of either Λ1 or Λ2.

Definition 10.2.2 Λ is called a compound pattern if it is a union of l
(2 ≤ l<∞) distinct simple patterns Λ1, Λ2, . . . , Λl, i.e. Λ =

⋃l
i=1 Λi.

Throughout this chapter, we shall consider only switching rules that are
based purely on simple or compound patterns. In MIL STD 105E, for example,
the switching rules to and from the reduced level of inspection involve several
qualitative conditions unrelated to the inspection outcomes, such as whether
the production is deemed steady or irregular; most switching rules, however,
are entirely pattern based.

Given a pattern Λ, let Xn(Λ) be the number of patterns Λ that have occurred
in the sequence of sampling inspections {Xi}n

i=1. Define the indicator random
variable

In(Λ) =
{

0 if Xn(Λ) = 0
1 if Xn(Λ) > 0,

(10.3)

where In(Λ) = 0 means that no pattern Λ has occurred in the sequence {Xi}n
i=1,

and In(Λ) = 1 means that there has been at least one occurrence of the pattern
Λ. It has been shown that the random variables Xn(Λ) and In(Λ) are finite
Markov chain imbeddable in the following sense.

Definition 10.2.3 A non-negative integer random variable Xn(Λ) is finite
Markov chain imbeddable if there exists

(a) a finite Markov chain {Yt : t = 1, 2, . . . , n} defined on a finite state space
Ω = {b1, . . . , br} with initial probability ξ0,

(b) a finite partition {Cx : x = 0, 1, . . . , l} on the state space Ω, and

(c) for every x = 0, 1, . . . , l, a probability such that

P (Xn(Λ) = x|ξ0) = P (Yn ∈ Cx|ξ0). (10.4)

To simplify the notation, unless specified otherwise, the probability P (Xn(Λ) =
x|ξ0) will be written as P (Xn(Λ) = x) throughout this manuscript.

10.3 Main Results

Let Λ be the pattern corresponding to a specific switching rule. Then the fol-
lowing result holds.
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Theorem 10.3.1 If Λ is a simple (or compound) pattern of length k and
{Xi}n

i=1 is a sequence of homogeneous Markov dependent (or i.i.d.) multi-state
trials, then In(Λ) is finite Markov chain imbeddable, and the distribution of the
waiting time W (Λ) for the switching rule is given by, for n = k, k + 1, . . . ,

P (W (Λ) = n) = (1, 0, . . . , 0)Mn−1(I − M)(1, 1, . . . , 1, 0)
′
, (10.5)

where M is a (k + 1) × (k + 1) transition probability matrix associated with an
imbedded homogeneous Markov chain {Yt : t = 0, 1, . . . , n}.

The detailed proof of the above general theorem can be seen from Fu (1996);
here we omit the proof. The above result can also be extended as follows to the
case where {Xi}n

i=1 corresponds to a sequence of independent but not identically
distributed multi-state sampling inspections:

P (W (Λ) = n) = (1, 0, . . . , 0)
(n−1∏

t=1

Mt

)

(I − Mn)(1, 1, . . . , 1, 0)
′
, (10.6)

where the imbedded Markov chain {Yt} has transition probabilities Mt, t =
0, 1, . . . , n.

Next we show how the finite Markov chain imbedding technique can be
applied in cases where the sequence of inspections is taken as two-state AR(1)-
dependent trials (autocorrelation is often found in manufacturing processes for
sufficiently small lot sizes—see Montgomery, 2001). In particular, for the com-
mon switching rule defined by the occurrence of the pattern Λ = AA · · ·A of
k (k = 1, 2, . . .) consecutive acceptances, we show how to use this technique to
readily derive the probability generating function for its waiting time W (Λ).

Let {Xi} be a sequence of two-state AR(1) trials with autocorrelation coef-
ficient ρ: i.e.

ρ =
Cov(Xi, Xi+1)

V ar(Xi)
, ∀i = 1, . . . , n − 1,

where the two states, acceptance (A) and rejection (R), carry the marginal prob-
abilities P (Xi = A) = p and P (Xi = R) = q, respectively, for i = 1, 2, . . . , n.
For clarity, to distinguish the transition probabilities pij of this dependent se-
quence, we use 1 and 0 as the subscripts instead of A and R, respectively.

Theorem 10.3.2 If {Xi} is a sequence of two-state AR(1) sampling inspection
outcomes, then

(i) for ρ �= 0, the probability generating function for W (Λ) is

ϕW(Λ)(t) =
(p − pp00t + qp01t)pk−1

11 tk

1 − p00t −
∑k

i=2 pi−2
11 p10p01ti

, (10.7)

where p11 = 1 − p10 = p + ρ(1 − p) and p00 = 1 − p01 = (1 − p) + ρp,
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(ii) for ρ = 0, the recursive equation for P (W (Λ) = n) is given by

P (W (Λ) = n) =
k∑

i=1

qpi−1P (W (Λ) = n − i), (10.8)

(iii) for ρ = 0,

ϕW(Λ)(t) =
pktk

1 −
∑k

i=1 qpi−1ti
. (10.9)

Proof. By definition, ρ = Cov(Xi, Xi−1)/V ar(Xi), so that p11 = p + ρ(1− p).
Further, using the ergodic property of the sequence {Xi},

(p, 1 − p)
(

p + ρ(1 − p) 1 − p − ρ(1 − p)
1 − p00 p00

)

= (p, 1 − p),

which yields p00 = (1 − p) + ρp. This implies that {Xi}n
i=1 is also a two-state

Markov chain with transition matrix

A =
(

p11 p10

p01 p00

)

≡
(

p + ρ(1 − p) 1 − p − ρ(1 − p)
p − ρp (1 − p) + ρp

)

. (10.10)

Since W (Λ) is finite Markov chain imbeddable, we can construct a correspond-
ing finite Markov chain {Yt} defined on the state space

Ω = {∅} ∪ {A, R} ∪ {A, AA, . . . , A . . . A︸ ︷︷ ︸
k−1

, A . . . A︸ ︷︷ ︸
k

= α}

= {∅, R, A, AA, . . . , A . . . A︸ ︷︷ ︸
k−1

, A . . . A︸ ︷︷ ︸
k

= α},

where ∅ stands for the dummy state and α for the absorbing state, with the
transition probability matrix

M =

∅
R
A

AA
...

A · · ·A
α

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 q p 0 · · 0 0
0 p00 p01 0 · · 0 0

0 p10 0 p11
. . . · · ·

0 p10 0 0 p11
. . . · ·

...
... · · 0 ·

...
...

0 p10 0 · · · · · 0 p11

0 0 · · · · · · · · · · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

N C

0 1

)

, (10.11)

where pij , i, j = 0, 1, are defined by Equation (10.10). The dummy state ∅ is
used for handling the initial distribution ξ0, especially when {Xi} is Markov
dependent. It follows from the general result in Theorem 10.3.1 that

P (W (Λ) > n) = P (Yn ∈ Ω − α|ξ0) = ξ0N
n1

′
, (10.12)
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where ξ0 = (1, 0, . . . , 0. )1×(k+1), 1 = (1, 1, . . . , 1)1×(k+1), and N is given by
Equation (10.11). Applying Theorem 10.3.1, a result by Fu and Chang (2002,
p. 74), and the matrix N defined by Equation (10.11), we have

ϕW(Λ)(t) = 1 + (1 − 1
t
)ΦW (t), (10.13)

ΦW (t) = φ1(t) + · · · + φk+1(t), (10.14)

where (φ1(t), . . . , φk+1(t)) is the solution of the simultaneous equations

φi(t) = tξ0e
′
i + t(φ1(t), . . . , φk+1(t))N(i) (10.15)

for i = 1, . . . , k + 1, with N(i) denoting the i-th column of the matrix N . After
some simple algebra, this yields

ϕW(Λ)(t) =
(p − pp00t + qp01t)pk−1

11 tk

1 − p00t −
∑k

i=2 pi−2
11 p10p01ti

.

This completes the proof of (i).
For ρ = 0, {Xi}n

i=1 is a sequence of Bernoulli trials. Inserting p11 = p01 = p
and p00 = p10 = q into the matrix M in Equation (10.11), the result (ii) follows
from Equation (10.12) and

P (W (Λ) = n) = P (Yn−1 ∈ Ω − α) − P (Yn ∈ Ω − α) = ξ0N
n−11

′ − ξ0N
n1

′
,

with e1N = qe2 +pe3 and eiN = qe2 +pei+1, for i = 2, . . . , k+1. The result (iii)
follows directly from the result (i) by taking p11 = p01 = p and p00 = p10 = q.
This completes the proof.

The result (ii) yields the equation

ϕW(Λ)(t) = tkpk +
k∑

i=1

qpi−1tiϕW(Λ)(t). (10.16)

Hence the result (iii) is also an immediate consequence of result (ii). With
some modifications, it can be extended to switching rules based on compound
patterns. The probability of W (Λ) = n can also be obtained by using the
probability generating function (10.7), since

P (W (Λ) = n) =
1
n!

ϕ
(n)
W(Λ)(t)|t=0,

where ϕ
(n)
W(Λ)(t) stands for the n-th derivative of ϕW(Λ)(t). Several applications

of our methodology are presented in the following section.
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10.4 Numerical Examples of Switching Rules

10.4.1 Example 1: Tightened to normal inspection

Let us consider the common switching rule from tightened to normal inspection
defined as the occurrence of k consecutive acceptances (Λ = A . . . A) of lots
under tightened inspection. We assume the sequence {Xi} follows a two-state,
AR(1) model with autocorrelation coefficient ρ and ergodic probabilities P (X =
A) = p and P (X = R) = q. Based on the methodology presented in the
previous section, Table 10.1 provides the waiting time distributions W (Λ) for
some selected ρ, p, and k.

10.4.2 Example 2: Normal to tightened inspection

Let us consider a switching rule from normal to tightened sampling inspection
defined as the occurrence of 2 rejected lots out of a maximum of k consecutive
lots under normal inspection. For k = 5, this is the switching rule from normal
to tightened inspection in MIL STD 105E. Let Λ1 = RR, Λ2 = RAR, . . . ,
Λk−1 = RA . . . AR be (k − 1) distinct simple patterns, and Λ =

⋃k−1
i=1 Λi be a

compound pattern generated by the Λi. Hence, the above switching rule from
normal to tightened inspection is equivalent to the compound pattern Λ having
occurred in a maximum of k consecutive lots under normal sampling inspection.

Table 10.1. Distribution of W (Λ) for some selected ρ, p and k in Example 1.

k = 2, p = 0.95 k = 5, p = 0.8594 k = 3, p = 0.5
n ρ = 0 ρ = 0.5 n ρ = 0 ρ = 0.3 n ρ = 0 ρ = 0.3
2 0.9025 0.9263 5 0.4688 0.5678 3 0.1250 0.2113
3 0.0451 0.0233 6 0.0659 0.0559 4 0.0625 0.0739
4 0.0451 0.0233 7 0.0659 0.0559 5 0.0625 0.0739
5 0.0044 0.0124 8 0.0659 0.0559 6 0.0625 0.0739
6 0.0024 0.0068 9 0.0659 0.0559 7 0.0547 0.0630
7 0.0003 0.0037 10 0.0659 0.0559 8 0.0508 0.0559

11 0.0350 0.0337 9 0.0469 0.0499
12 0.0307 0.0248 10 0.0430 0.0443
13 0.0263 0.0200 11 0.0396 0.0394
14 0.0220 0.0163 12 0.0364 0.0350
15 0.0176 0.0131 13 0.0334 0.0311
16 0.0133 0.0099 14 0.0308 0.0276
17 0.0110 0.0076 15 0.0283 0.0246
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The waiting time W (Λ) is the sooner waiting time of the individual waiting
times W (Λi), i = 1, . . . , k, i.e.

W (Λ) = inf{W (Λi), i = 1, . . . , k}. (10.17)

It is easy to see that there are k − 1 distinct intermediate states R, RA, RAA,
. . ., R A . . . A︸ ︷︷ ︸

k−2

generated by the (k − 1) simple patterns Λi, i = 1, . . . , k − 1.

Define a state space Ω = {0, 1, . . . , k − 1, α}, where the states 0 ≡ A, 1 ≡ R,
2 ≡ RA, . . ., k − 1 ≡ RA . . . A, are referred to as ending blocks. We also define
a finite Markov chain {Yt} on Ω as

Yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if no pattern Λ has occurred in the first t trials and
no R has occurred among the Xt−k+1, . . . , Xt trials,

E if no pattern Λ has occurred in the first t trials
and Xt−E+1 = R, Xt−E+2 = · · · = Xt = A,

α if a pattern Λ has occurred in the first t trials,

(10.18)

where E = 1, . . . , k − 1, and α is an absorbing state. To make our defi-
nition of Yt in Equation (10.18) more transparent, we present the follow-
ing example. Consider k = 5 and the 15 outcomes of normal inspections
ARAAAARAAAARARR. Then the realization of the Markov chain {Yt : t =
1, 2, . . . , 15} is {Y1 = 0, Y2 = 1, Y3 = 2, Y4 = 3, Y5 = 4, Y6 = 0, Y7 = 1, Y8 = 2,
Y9 = 3, Y10 = 4, Y11 = 0, Y12 = 1, Y13 = 2, Y14 = α, Y15 = α}. If {Xi} consists
of i.i.d. two-state trials with probability q of rejecting a lot, then the Markov
chain Yt has transition probability matrix

M =

0
1
2
·
·

k − 1
α

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p q 0 0 · · · 0 0 0
0 0 p 0 · · · 0 0 q
0 0 0 p · · · 0 0 q
. . . . . . . . . . . . . . . . . . . .
0 0 0 · · · · · · 0 p q
p 0 · · · · · · · · · 0 0 q
0 0 · · · · · · · · · 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10.19)

The distribution of the waiting time W (Λ) for this switching rule can then be
computed by using Equation (10.5) with Mt = M for all t = 1, . . . , n, where
the transition probability matrix M is given by Equation (10.19), or by using
the recursive equation in Theorem 10.3.2(ii). Samples of this distribution for
k = 5, in accordance with MIL STD 105E, are given in Table 10.2.

10.4.3 Example 3: Discontinuation of inspection

In this example, we wish to demonstrate the utility of the finite Markov chain
imbedding technique by considering the waiting-time distribution for discontin-
uation of inspections in MIL STD 105E, a distribution for which the generating
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Table 10.2. Samples of the waiting time distribution of W (Λ) in Example 2
with Λ =

⋃4
i=1 Λi and k = 5.

n p = 0.789 p = 0.9 p = 0.95
2 0.0445 0.0100 0.0025
3 0.0703 0.0180 0.0048
4 0.0831 0.0243 0.0068
5 0.0875 0.0292 0.0086
6 0.0690 0.0262 0.0081
7 0.0581 0.0243 0.0078
8 0.0516 0.0230 0.0076
9 0.0475 0.0223 0.0075
10 0.0446 0.0220 0.0075

function is not known. Since switching to/from a reduced level of inspection
involves various inspection-independent conditions, such as on the regularity
of production, only the normal and tightened inspection regimes are consid-
ered here. Switching from normal to tightened inspection occurs when two out
of five consecutive lots are rejected, as treated in Example 2. From tightened
inspection, a switch back to the normal regime requires the acceptance of five
consecutive lots; on the other hand, inspection is discontinued (and not restarted
until corrective action has been taken) if the cumulative number of rejections
under the tightened regime reaches five.

As described in the book by Montgomery (2001), in using MIL STD 105E,
one first selects the AQL, determines the lot size to be inspected, and chooses
the General Inspection Level (I, II, or III). Let’s suppose we desire an AQL of
1 percent, have a total lot size to be inspected at each inspection of 10,000,
and choose Inspection Level I, the least stringent level. Then, based on the
tables of the standard, a random sample of the lot of size N = 80 should
be examined, and the acceptance number, the allowable number of rejections
within the sample, is either cn = 2 under normal inspection, or ct = 1 un-
der tightened inspection. The actual distribution of the number of defectives
in a random sample of N items is approximately binomial with parameters
N and f , where f is the fraction of defective items in the lot. Here we fo-
cus on the case where the manufacturer is producing so that f is equal to
the AQL, i.e. f = 0.01. The probabilities pn and pt that the observed num-
ber of defectives, d, is less than cn and ct under the normal and tightened
regimes, respectively, may then be determined using the binomial distribution
as pn = P{d ≤ 2} = 0.953 and pt = P{d ≤ 1} = 0.809. The probabilities
pn and pt represent the acceptance/success probabilities of the sequence as-
suming the manufacturer is producing at exactly the desired AQL. In general,
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pt < pn, so that rejection is more likely under tightened as opposed to nor-
mal inspection. For Inspection Level II, a similar calculation yields pn = 0.984,
pt = 0.858, and for Inspection Level III, the most stringent level, pn = 0.985,
pt = 0.901.

Hence, we are considering here a two-state sequence of inspections that
start off with success probability pn (normal inspection), and then if two out of
five trials are failures, the success probability decreases to pt < pn (tightened
inspection). Then, if there are five consecutive successes under the tightened
inspection, the success probability returns to pn (normal inspection); on the
other hand, if there are a total of five failures under tightened inspection, then
inspection is discontinued. To determine the distribution of the waiting time
for discontinuation of inspection, we define the following state space:

Ω = {N, A, R, RA, RAA, RAAA, T, (S1, S2), α},

where S1 ∈ {A, AA, AAA, AAAA} and S2 ∈ {0, 1, 2, 3, 4}. This state space dif-
fers from that of Example 2 by the addition of states N and T to account for the
switching between normal and tightened regimes, and by the two-dimensional
array of states (S1, S2) to capture the switching from tightened inspection to
normal inspection or to the absorbing state α. The two coordinates of the array,
S1 and S2, represent counters for the number of consecutive acceptances and
for the total number of rejections, respectively, within the tightened regime.
The total number of states is 32. A Markov chain {Yt} to obtain the distribu-
tion of the waiting time for discontinuation of inspection, P [W (D) = n], may
be constructed in a manner similar to that in Example 2, and we omit the
details here.

Figure 10.1 shows the distribution of P [W (D) = n] versus the number of
sampling inspections n for the three inspection levels discussed above, where
n = 1 is the first inspection under the normal level of sampling. After about
25 inspections, the distribution for each inspection level follows a very slow
exponential decay governed by a single time-constant, as implied by the straight
line of slightly negative slope on the semi-log plot shown. This is to be expected,
since in repeated matrix multiplications the largest relevant eigenvalue will
eventually dominate the multiplications (see, for example, Fu, Wang, and Lou
2003). The expected values of the waiting time for discontinuation of inspection,
W (D), are EW (D) = 1271, 24421, and 109381, for Inspection Levels I, II, and
III, respectively (rounded to the nearest integer). Based on the results from this
example, it appears that, somewhat contrary to the engineers’ suspicions quoted
in Section 10.1, the probabilities of discontinuing inspections within MIL STD
105E are sufficiently small for practical purposes, even under the least stringent
Inspection Level I, when the lots are produced so that the fraction of defectives
matches the AQL.
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Figure 10.1. The distributions of the waiting time for discontinuation of inspec-
tion, P [W (D) = n] versus n for the three inspection levels of MIL STD 105E in
Example 3. For Inspection Level I, pn = 0.953, pt = 0.809, and EW (D) = 1271;
for Inspection Level II, pn = 0.984, pt = 0.858, and EW (D) = 24421; and for
Inspection Level III, pn = 0.985, pt = 0.901, and EW (D) = 109381.

10.4.4 Example 4: Three-level modeling

Traditionally, each lot under sampling inspection is sentenced as either a rejec-
tion or an acceptance. For more general practical applications, we may assume
that each lot is classified into one of the three Levels 1, 2, and 3, where Level
1 indicates highest quality, Level 2 indicates intermediate quality, and Level 3
indicates lowest quality; i.e. Xi = 1, 2, or 3, for i = 1, . . . , n. Consider a more
complex switching rule from normal to tightened inspection defined as the oc-
currence of l, where l = 2 or 3, consecutive lots whose qualities are at Level 2
or Level 3, and whose sum is greater than or equal to 6. Mathematically, this
switching rule can be stated as the existence of an i and an l such that

{Xi + Xi+1 + · · · + Xi+l−1 ≥ 6, Xj ≥ 2, i ≤ j ≤ i + l − 1}. (10.20)

This switching rule may be desirable from a practical point of view, but such
complex rules are often not used in practice due to the difficulty in determining
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their probabilistic structures. Here we show how the finite Markov chain imbed-
ding technique can be readily applied to complex switching rules.

Let Λ1 = 33, Λ2 = 323, Λ3 = 322, Λ4 = 232, Λ5 = 233, Λ6 = 223, and
Λ7 = 222 be seven simple patterns, and Λ =

⋃7
i=1 Λi be the compound pat-

tern generated by the seven simple patterns. The switching rule from normal
to tightened inspection defined by Equation (10.20) can be viewed as the oc-
currence of the pattern Λ under normal inspection.

The intermediate states generated by the seven simple patterns are 2, 3, 22,
23, and 32. Let Ω = {1, 2, 3, β, α} be the state space with five states, where β
represents the intermediate states 22, 23, and 32, and the absorbing state α rep-
resents the simple patterns Λ1, Λ2, . . ., Λ7. With respect to a sequential counting
procedure, we define the imbedded Markov chain {Yt : t = 1, 2, . . . , n} as

Yt =

⎧
⎨

⎩

E if no pattern Λ has occurred in the first t inspections
with ending block E, E = 1, 2, 3, β,

α if the pattern Λ has occurred in the first t normal inspections,
(10.21)

for t = 1, . . . , n.
Let’s consider the following sequence of outcomes of ten normal inspections:

1221321332. It follows from the definition of Yt that we have Y1 = 1, Y2 = 2,
Y3 = β, Y4 = 1, Y5 = 3, Y6 = β, Y7 = 1, Y8 = 3, Y9 = α, and Y10 = α.
Furthermore, It(Λ) = 0 for t = 1, . . . , 8, It(Λ) = 1 for t = 9, 10, and the
switching time W (Λ) = 9. Assuming the sequence {Xi}n

i=1 consists of i.i.d.
trials having probabilities p1, p2, and p3 for the three quality levels 1, 2, and 3,
respectively, then the imbedded Markov chain {Yt : t = 0, 1, 2, . . . , n} has the
following transition probability matrix:

M =

1
2
3
β
α

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p2 p3 0 0
p1 0 0 p2 + p3 0
p1 0 0 p2 p3

p1 0 0 0 p2 + p3

0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10.22)

The distribution of the waiting time for this switching rule can be com-
puted by

P (W (Λ) = n) = (1, 0, 0, 0, 0)Mn−1(I − M)(1, 1, 1, 1, 0)
′
, (10.23)

for n = 2, 3, . . ., where M is given by Equation (10.22). For example, the dis-
tribution of W (Λ) for p1 = 0.7, p2 = 0.2, and p3 = 0.1 is shown in Figure 10.2.



216 W.Y.W. Lou and J.C. Fu

Figure 10.2. Distribution of W (Λ) for Example 4 with Λ =
⋃7

i=1 Λi and p1 =
0.7, p2 = 0.2, p3 = 0.1.

10.5 Summary and Discussion

In view of the examples in Section 10.4, the imbedded Markov chain {Yt} is
defined by whether the sequence contains the pattern of interest Λ and by suit-
able ending blocks E that keep track of intermediate states. The construction
of the imbedded Markov chain {Yt} is simple and direct. Regardless of what the
switching rule is, as long as it is defined by a simple or compound pattern, the
imbedded Markov chain {Yt} always exists and the formula for computing the
distribution remains the same. In Example 1, if the sequence {Xi} of inspections
has a Markov chain structure, with only simple modifications to the transition
probability matrix M , the exact distribution of the waiting time W (Λ) could
also be computed with the same formula. This is a great advantage of the finite
Markov chain imbedding technique, one which would be difficult to achieve by
any other method.

Since Equation (10.6) involves only the multiplication of the transition prob-
ability matrix n times, the size of the state space Ω (or M) is a good index for
the speed of computation. For most switching rules, the size of the transition
probability matrix M is rather small. All of our numerical results given in Sec-
tion 10.4 were computed on an average PC with the S-plus program, and the
CPU times were only a fraction of a second. With the speed of today’s comput-
ers, the accuracy and computability of exact distributions, means, and variances
for switching rules should not be an issue in most applications.
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In general, the imbedded Markov chain {Yt} associated with the specified
switching rules is not unique. For the switching rule of Example 4, we could
define a Markov chain {Y �

t } on the state space Ω� = {1, 2, 3, 22, 23, 32, and α}
with transition probability matrix

M� =

1
2
3
22
23
32
α

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1 p2 p3 0 0 0 0
p1 0 0 p2 p3 0 0
p1 0 0 0 0 p2 p3

p1 0 0 0 0 0 p2 + p3

p1 0 0 0 0 0 p2 + p3

p1 0 0 0 0 0 p2 + p3

0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The distributions of the switching rule obtained from two different imbedded
Markov chains {Yt} and {Y �

t } are the same. However, the size of the state space
Ω is smaller than the size of Ω�, and from a computational point of view, the
imbedded Markov chain {Yt} is more efficient.

Our results could also be extended to switching rules defined by the multiple
occurrence of a pattern, say m times. For example, consider a switching rule
from tightened to normal sampling inspection defined as m = 2 occurrences of
k consecutive acceptances (using non-overlap counting) under tightened inspec-
tion. An imbedded Markov chain {Yt} associated with this switching rule could
be defined on the state space

Ω = {(0, 0), (0, 1), . . . , (0, k − 1), (1, 0), . . . , (1, k − 1), α}.

We leave the details of constructing such a Markov chain and its transition
probability matrix to the reader. Further, and more generally, this method
could also be extended to the case of switching rules defined by the occurrences
of a sequence of m specified simple or compound patterns. For example, let
Λ1, Λ2, . . . ,Λm be compound patterns. The waiting time for the sequence of
patterns Λ1, Λ2, . . . ,Λm is very different from the waiting time for a compound
pattern Λ = ∪m

i=1Λi.
The finite Markov chain imbedding technique is a useful tool for determining

the probabilistic structure of complex switching rules in sampling inspection,
and even exact results for dependent sequences of inspection outcomes can
be readily computed. Other possible applications of this technique in the
area of quality control lie in the study of complex quality control charts,
such as the Shewhart chart with runs rules (see Koutras, Bersimis, and
Maravelakis, 2007).



218 W.Y.W. Lou and J.C. Fu

Acknowledgments

This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada and the Canada Research Chairs Program.

References

1. Aki, S. and Hirano, K. (1999). Sooner and later waiting time problems
for runs in Markov dependent bivariate trials, Annals of the Institute of
Statistical Mathematics, 51, 17–29.

2. Brown, G. G. and Rutmiller, H. C. (1975). An analysis of the long range
operating characteristics of the MIL-STD-105D sampling scheme and some
suggested modifications, Naval Research Logistics Quarterly, 22, 667–679.

3. Dodge, H. F. (1963). A general procedure for sampling inspection by
attributes-based on the AQL concept, ASQC Annual Convention Transac-
tions 1963, 7–19.

4. Dodge, H. F. (1965). Evaluation of a sampling inspection system having
rules for switching between normal and tightened inspection, Technical Re-
port, 14, Statistics Center, Rutgers University, Piscataway, NJ.

5. Feller, W. (1968). An Introduction to Probability Theory and Its Applica-
tions, (Vol. 1, 3rd ed.), Wiley, New York.

6. Fu, J. C. (1996). Distribution theory of runs and patterns associated with
a sequence of multi-state trials, Statistica Sinica, 6, 957–974.

7. Fu, J. C. and Chang, Y. M. (2002). On probability generating functions for
waiting time distributions of compound patterns in a sequence of multistate
trials, Journal of Applied Probability, 39, 70–80.

8. Fu, J. C. and Koutras, M. V. (1994). Distribution theory of runs: A Markov
chain approach, Journal of the American Statistical Association, 89, 1050–
1058.

9. Fu, J. C., Wang, L., and Lou, W. Y. W. (2003). On exact and large deviation
approximation for the distribution of the longest run in a sequence of two-
state Markov dependent trials, Journal of Applied Probability, 40, 346–360.

10. Hald, A. (1981). Statistical Theory of Sampling Inspection by Attributes,
Academic Press, London.



Complex Switching Rules in Sampling Inspection 219

11. Han, Q. and Aki, S. (1998). Formulae and recursions for the joint dis-
tributions of success runs of several lengths in a two-state Markov chain,
Statistics and Probability Letters, 40, 203–214.

12. Hirano, K. (1986). Some properties of the distributions of order k. Fibonacci
Numbers and Their Applications (eds. A. N. Philippou, G. E. Bergum, and
A. F. Horadam), Reidel, Dordrecht, 43–53.

13. Hirano, K. and Aki, S. (1993). On number of occurrences of success runs of
specified length in a two-state Markov chain, Statistica Sinica, 3, 313–320.

14. Koutras, M. V. and Alexandrou, V. A. (1995). Runs, scans and urn model
distributions: A unified Markov chain approach, Annals of the Institute of
Statistical Mathematics, 47, 743–766.

15. Koutras, M. V., Bersimis, S., and Maravelakis, P. E. (2007). Statistical pro-
cess control using Shewhart control charts with supplementary runs rules,
Methodology and Computing in Applied Probability, 9, 207–224.

16. Koyama, T. (1978). Modified switching rules for sampling schemes such as
MIL-STD-105D, Technometrics, 20, 95–102.

17. Koyama, T., Ohmae, Y., Suga, R., Yamamoto, T., Yokoh, T. and Pabst,
W. R. (1970). MIL-STD-105D and the Japanese modified standard, Journal
of Quality Technology, 2, 99–108.

18. Lou, W. Y. W. (1996). On runs and longest run tests: A method of finite
Markov chain imbedding, Journal of the American Statistical Association,
91, 1595–1601.

19. Montgomery, D. C. (2001). Introduction to Statistical Quality Control (4th
ed.), John Wiley, New York.

20. Philippou, A. N. and Makri, F. S. (1986). Success runs and longest runs.
Statistics and Probability Letters, 4, 211–215.

21. Schilling, E. G. and Sheesley, J. H. (1978a). The performance of MIL-STD-
105D under the switching rules, Part 1: Evaluation, Journal of Quality
Technology, 10, 76–83.

22. Schilling, E. G. and Sheesley, J. H. (1978b). The performance of MIL-STD-
105D under the switching rules, Part 2: Tables, Journal of Quality Tech-
nology, 10, 104–124.

23. Shmueli, G. and Cohen, A. (2000). Run-related probability functions ap-
plied to sampling inspection, Technometrics, 42, 188–202.



11

Bayesian Network Scan Statistics for Multivariate

Pattern Detection

Daniel B. Neill,1,2 Gregory F. Cooper,3 Kaustav Das,2 Xia Jiang,3

and Jeff Schneider2

1H.J. Heinz III College, Carnegie Mellon University, Pittsburgh, PA, USA
2School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA
3Department of Biomedical Informatics, University of Pittsburgh,
Pittsburgh, PA, USA

Abstract: We review three recently proposed scan statistic methods for multi-
variate pattern detection. Each method models the relationship between multi-
ple observed and hidden variables using a Bayesian network structure, drawing
inferences about the underlying pattern type and the affected subset of the
data. We first discuss the multivariate Bayesian scan statistic (MBSS) pro-
posed by Neill and Cooper (2008). MBSS is a stream-based event surveillance
framework that detects and characterizes events given the aggregate counts for
multiple data streams. Next, we describe the agent-based Bayesian scan statis-
tic (ABSS) proposed by Jiang et al. (2008). ABSS performs event detection
and characterization given individual-level data for each agent in a population.
Finally, we review the anomalous group detection (AGD) method proposed by
Das, Schneider, and Neill (2008). AGD is a general pattern detection approach
which learns a Bayesian network structure from data and detects anomalous
groups of records.

Keywords and phrases: Pattern detection, event detection, scan statistic,
Bayesian networks, biosurveillance

11.1 Introduction

In this chapter, we focus on the problem of multivariate event surveillance, in
which we monitor multiple data sources with the goal of identifying patterns
that correspond to emerging events. More generally, our goal is pattern detec-
tion: we wish to find subsets of a large, complex dataset that are relevant,
either because the group of data records corresponds to some known statistical
pattern which we are interested in detecting, or because it is highly anomalous
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given our current understanding of the data. Here we review three recently pro-
posed Bayesian variants of the spatial scan statistic [Kulldorff (1997)], which
extend the scan statistic methodology to enable rapid detection and accurate
characterization of events in multivariate datasets. The three methods include
the multivariate Bayesian scan statistic (MBSS) method proposed by Neill and
Cooper (2008), the agent-based Bayesian scan statistic (ABSS) method pro-
posed by Jiang et al. (2008), and the anomalous group detection (AGD) method
proposed by Das, Schneider, and Neill (2008). MBSS is a stream-based event
surveillance framework that detects and characterizes events given the aggre-
gate counts for multiple data streams, while ABSS performs event detection
and characterization given individual-level data for each agent in a population.
Finally, AGD is a general pattern detection approach which detects anomalous
groups of records in categorical datasets. These methods use Bayesian networks
to model the relationship between multiple observed variables, extending the
univariate Bayesian spatial scan statistic methodology of Neill et al. (2006)
to integrate multiple data streams and differentiate between multiple types of
events. MBSS and ABSS assume fixed Bayesian network structures, focusing on
stream-based and agent-based event surveillance scenarios, respectively, while
AGD learns the Bayesian network structure from data and can be applied to
pattern detection in general multivariate datasets.

11.1.1 Event surveillance

Event surveillance systems monitor massive quantities of multivariate data in
order to detect and identify emerging patterns. For example, government agen-
cies responsible for public safety must respond rapidly to potential threats in-
cluding wars, disease outbreaks, crime waves, natural disasters, and terrorist
attacks. Timely and informed responses to such events may substantially re-
duce the resulting costs to society, while delayed or incorrect responses can
have catastrophic results. As a concrete example, we consider the task of dis-
ease surveillance, in which we monitor electronically available public health
data such as hospital visits and medication sales in order to detect emerging
outbreaks of disease. Major health threats such as emerging infectious diseases
or bioterrorist attacks require rapid and appropriate responses in order to con-
trol the spread of disease and treat infected individuals. However, taking ap-
propriate actions often requires knowledge of the characteristics of the disease
(e.g. source, method of transmission, and available treatments) and which areas
have been affected. Similarly, serious outbreaks requiring urgent responses must
be distinguished from less serious outbreaks (e.g. seasonal influenza) and from
irrelevant patterns in the data (e.g. increases in medication sales due to store
promotions).

The main goals of event surveillance are to achieve early detection and
accurate characterization of events, identifying which events have occurred and
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which subsets of the data have been affected by each event. However, the massive
size, high dimensionality, and complex spatial and temporal structure of the
multivariate data make these goals difficult to achieve. As discussed by Neill and
Cooper (2008), an event surveillance system must meet three general criteria
to achieve timely and accurate detection.

1. To achieve high detection power, the system must integrate spatial and
temporal information from multiple data streams (or from multiple indi-
viduals in a population) in a coherent probabilistic framework, incorpo-
rating both prior knowledge and historical data into its models.

2. To achieve accurate characterization of events, the system must be able
to model and differentiate between multiple types of events.

3. To achieve a rapid response to emerging events, the system must be com-
putationally efficient, detecting patterns in large real-world datasets in
near real time.

We now discuss a variety of commonly used methods for event detection, and
consider how well the methods fit these criteria.

11.1.2 The spatial scan statistic

The spatial scan statistic [Kulldorff and Nagarwalla (1995), Kulldorff (1997)] is
a well-known method for spatial cluster detection. It is in wide use for monitor-
ing health data, detecting clusters of disease cases due to chronic environmental
exposures [Kulldorff et al. (1997), Hjalmars et al. (1996)], infectious disease out-
breaks [Mostashari et al. (2003)], or bioterrorist attacks [Neill (2006)]. Given a
set of spatial locations si, each with a count (e.g. number of disease cases) ci

and an underlying population pi, the spatial scan finds the most significant clus-
ters by searching over a given set of spatial regions, finding those regions which
maximize a likelihood ratio statistic, and computing the statistical significance
of the detected regions by randomization testing (Figure 11.1). Assuming that
the counts in region S are distributed with some unknown rate of incidence
q, the goal of the scan statistic is to find regions where the incidence rate is
higher than expected. We can either compare the counts inside and outside
region S [Kulldorff (1997)], or alternatively, compare the counts inside region S
to their expected values obtained from historical data [Neill et al. (2005b)]. In
either case, we define the null hypothesis H0, which assumes no clusters, and
the alternative hypothesis H1(S), which assumes a cluster in region S. We then
find the region that maximizes the likelihood ratio statistic:

F (S) =
Pr(Data | H1(S))

Pr(Data | H0)
. (11.1)
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Figure 11.1. Demonstration of the spatial scan statistic.

The original presentation of the spatial scan statistic [Kulldorff (1997)] con-
siders two different models, the Bernoulli model and the Poisson model. In
the Bernoulli model, each individual is characterized by some binary variable
(e.g. whether the individual goes to the emergency department with a fever).
Under the null hypothesis of no clusters, H0, every individual has a constant
probability qall of having this property, while under the alternative hypothesis
of a cluster in region S, H1(S), the incidence rate is higher inside region S than
outside (i.e. qin > qout). In the Poisson model, we measure the total count of
some event type (for example, the number of over-the-counter cough/cold drugs
sold) in each spatial region. Assuming that counts are Poisson distributed with
mean proportional to the product of the population pi and the incidence rate
q, we can again compare the rates inside and outside region S. Likelihood ratio
statistics for each model are derived by Kulldorff (1997).

While Kulldorff’s original spatial scan statistic did not take the time di-
mension into account, later work generalized this method to the “space-time
scan statistic” by considering a time series of counts ct

i for each spatial location
si and scanning over variable size temporal windows [Kulldorff et al. (1998),
Kulldorff (2001)]. Recent extensions such as the expectation-based scan statis-
tic [Neill et al. (2005b)] and model-based scan statistic [Kleinman et al. (2005)]
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also take the time dimension into account by using historical data to model the
expected distribution of counts in each spatial location.

Many variants of the spatial and space-time scan statistics have been pro-
posed, differing in both the set of regions to be searched and the underlying
statistical models. While Kulldorff’s original method [Kulldorff (1997)] assumed
circular search regions, other methods have searched over rectangles [Neill et al.
(2005a)], ellipses [Kulldorff et al. (2006)], and various sets of irregularly shaped
regions [Duczmal and Assuncao (2004), Patil and Taillie (2004), Tango and
Takahashi (2005)]. Similarly, many different statistical models have been consid-
ered, ranging from simple Poisson and Gaussian statistics [Neill et al. (2005b),
Neill (2006)] to robust and non-parametric models [Neill and Sabhnani (2007),
Neill and Lingwall (2007)].

Kulldorff et al. (2007) recently proposed a multivariate variant of the Poisson
spatial scan statistic. This work directly extends the original spatial scan to
multiple data streams by assuming that all data streams are independent, thus
calculating the likelihood ratio score for a given region as the product of the
likelihood ratios for each individual data stream. However, we expect streams to
be correlated by spatial and temporal trends and other covariates under the null
hypothesis, and by the parameters of an event (e.g. outbreak severity) under the
alternative hypothesis. Additionally, Kulldorff’s method does not characterize
events, differentiate between multiple event types, or incorporate prior informa-
tion. Nevertheless, it can integrate information from multiple data streams for
faster and more accurate detection, and it performs well as a “general detector”
of anomalous patterns when no prior knowledge of events is assumed. Neill and
Cooper (2008) use this method as a baseline for comparison when evaluating
the detection power of their MBSS method.

11.1.3 The univariate Bayesian spatial scan statistic

The spatial scan approaches described in Section 11.1.2 fulfill some, but not
all, of the criteria for event surveillance discussed above. Spatial scan methods
integrate information from multiple spatial locations and multiple time steps,
but with the exception of the multivariate Poisson spatial scan [Kulldorff et al.
(2007)], they can monitor only a single data stream. These methods are also
computationally expensive because randomization testing is used to determine
the statistical significance of detected clusters, requiring a search over all spa-
tial regions S for many randomly generated datasets. Most importantly, none
of these methods can model and differentiate between multiple event types,
limiting their usefulness for event characterization.

The Bayesian spatial scan statistic (BSS) method, developed by Neill et al.
(2006), enables the incorporation of prior information into the event detection
process. In the BSS framework, we are given a dataset D, consisting of a time
series of counts ct

i for each spatial location si, and we consider a given set of
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space-time regions S with prior probabilities Pr(H1(S)). For some recent past
period of time (e.g. the current day), BSS computes the posterior probability
that an event has occurred in each spatial region using Bayes’s theorem:

Pr(H1(S) | D) =
Pr(D | H1(S))Pr(H1(S))

Pr(D)
(11.2)

Pr(H0 | D) =
Pr(D | H0)Pr(H0)

Pr(D)
. (11.3)

The likelihood of the data under each hypothesis is computed using a gamma-
Poisson model, and we can specify a probability distribution for the effects of
an event on the affected region S. Neill et al. (2006) demonstrated that the
Bayesian approach has several advantages over frequentist methods. Compu-
tation is much faster in the Bayesian framework since randomization testing
is unnecessary, and the results of the BSS method (the posterior probability
that each region has been affected) are easy to interpret and visualize. Most
importantly, the BSS framework allows us to model the spatial and temporal
distribution of events by specifying the region priors Pr(H1(S)), as well as mod-
eling the effects of an event H1(S) on the monitored data stream in the affected
region S. While the original BSS method only considers a single data stream
and a single event type, the recently proposed MBSS [Neill and Cooper (2008)]
extends this framework to multiple streams and multiple types of events. We
discuss the MBSS method in more detail in Section 11.2. More generally, the
Bayesian framework can be extended to multivariate data by specification of
a Bayesian network relating the observed variables and the underlying event.
Each of the three methods discussed in this chapter considers a different set of
observations and thus assumes a different Bayesian network structure. In the
following section, we briefly review Bayesian networks and their application to
pattern detection.

11.1.4 Bayesian networks

A Bayesian network [Pearl (1988), Heckerman et al. (1995)], or Bayes net, is
a commonly used graphical representation of the joint probability distribution
of a set of variables. Bayes Nets are a valuable statistical tool for efficient
inference and learning of multivariate probability distributions, and they pro-
vide a concise and interpretable visualization of the conditional dependencies
between variables. They have been used in many anomaly detection applica-
tions, including network intrusion detection [Bronstein et al. (2001), Ye and
Xu (2000)], detecting malicious e-mails [Dong-Her et al. (2004)] and outbreak
detection [Wong et al. (2003a, 2003b)]. Formally, a Bayesian network can be
represented as a directed acyclic graph, where each vertex Xi represents a vari-
able, and each edge from a “parent” vertex Xp to a “child” vertex Xc represents
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the dependence of Xc on Xp. The joint probability distribution can be concisely
expressed as the product of each variable’s conditional distribution given the
values of that variable’s parents: Pr(X1 . . . XM ) =

∏
i=1...M Pr(Xi|Parents(Xi)).

Conditional independencies between variables can also be easily inferred from
the network structure: for example, any variable is conditionally independent
of its non-descendents given its parents. Inference and learning in Bayesian net-
works are described in detail by Pearl (1988), Heckerman et al. (1995), and
many others.

One general approach to anomaly detection using Bayesian networks is to
report any individual records with unusually low likelihoods as potential anoma-
lies. In this case, a Bayesian network is learned automatically from a large
“training dataset.” Established machine learning methods such as “optimal
reinsertion” [Moore and Wong (2003)] can be used to efficiently learn the net-
work structure, and the parameters can be optimized by maximum likelihood.
We then compute the likelihood of each record in a separate “test dataset” given
the Bayes net model, and report the least likely records. Unlike the scan statis-
tic methods considered here, this method treats each individual data record
separately, and does not incorporate any spatial or temporal data or other in-
formation about group structure. Das et al. (2008) use this method as a baseline
for comparison in their evaluation of AGD, as discussed below.

Also relevant to our discussion is the PANDA system for disease surveillance
proposed by Cooper et al. (2004, 2007), which uses Bayesian network models
to differentiate between multiple outbreak types (e.g. the CDC Category A dis-
eases), assuming an underlying agent-based model of emergency department
visits. Unlike the event detection methods considered here, the baseline version
of PANDA-CDCA [Cooper et al. (2007)] does not incorporate spatial informa-
tion, and thus cannot determine which subset of the data has been affected by
an event. However, Section 11.3 describes the agent-based Bayesian scan statis-
tic [Jiang et al. (2008)], which extends the PANDA-CDCA model to spatial
data.

In the remainder of this chapter, we discuss three recently proposed mul-
tivariate event detection methods: the MBSS [Neill et al. (2007), Neill and
Cooper (2008)], the ABSS [Jiang et al. (2008)], and the AGD method [Das
et al. (2008)]. All of these methods incorporate a Bayesian network structure to
efficiently model the relationships between variables in the multivariate dataset,
using the observed variables to draw inferences about which type of event has
occurred and which subset of the data has been affected. The MBSS and ABSS
methods each assume a fixed Bayesian network structure relating the underly-
ing event to the observed variables and unobserved state variables, while the
AGD method learns the Bayesian network structure from data. All three meth-
ods can be considered generalizations of the simple Bayesian network anomaly
detection method discussed above, detecting self-similar groups of anomalous
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records and characterizing the discovered patterns. They also generalize the use
of scan statistics to detect clusters of counts, extending spatial scan methods
from simple univariate models to multivariate datasets, thus providing a general
and powerful framework for event detection. AGD can also be applied to more
general pattern detection problems which may not have a spatial or temporal
structure, such as knowledge discovery from scientific databases.

11.2 The Multivariate Bayesian Scan Statistic

The multivariate Bayesian scan statistic (MBSS) is a general framework for
event detection and characterization using multivariate stream-based data. The
MBSS method was first presented by Neill et al. (2007) and further developed
by Neill and Cooper (2008). This approach extends the original, univariate
BSS [Neill et al. (2006)] in two ways. First, rather than detecting patterns in a
single stream of data, it integrates information from multiple data streams, im-
proving the timeliness and accuracy of event detection. Second, MBSS extends
the Bayesian framework to model and distinguish between multiple different
types of events, thus enabling both detection and characterization of events.

In the stream-based event detection problem, we are given a dataset D con-
sisting of multiple data streams Dm. Each data stream contains spatial time
series data collected at a set of spatial locations si. For each stream Dm and
location si, we have a time series of counts ct

i,m, where t = 0 represents the cur-
rent time step and t = 1, . . . , T represent the counts from 1 to T time steps ago,
respectively. In disease surveillance, the data streams may include emergency
department (ED) visits, with each stream representing the number of visits
with a different chief complaint type, and over-the-counter (OTC) medication
sales, with each stream representing the number of sales of a different product
group. Thus a given count ct

i,m might represent the number of respiratory ED
visits, or the number of cough/cold drugs sold, for zip code si on day t.

The goals of the MBSS method are event detection and characterization:
to detect any relevant events occurring in the data, identify the type of event,
and determine the event duration and affected locations. Thus, MBSS compares
the set of alternative hypotheses H1(S, Ek), each representing the occurrence
of some event of type Ek in some space-time region S, against the null hypoth-
esis H0 that no events have occurred. In disease surveillance, the event types
may be either specific illnesses (e.g. influenza, anthrax), non-specific syndromes
(e.g. influenza-like illness), or other non-outbreak events that may result in
patterns of increased counts, such as promotional sales of OTC medications,
inclement weather, or tourism. More generally, an event can be thought of as
a process that affects some subset of the count data ct

i,m in some probabilistic
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manner. In addition to the set of event types Ek, MBSS is also given the set
of space-time regions S to search, where each region S contains some subset
of the counts ct

i,m. Typically, each search region represents some set of spatial
locations si for some time duration w, and regions of varying size, shape, and
duration are considered.

11.2.1 Methods

Given the set of event types Ek, the set of space-time regions S, and the multi-
variate dataset D, MBSS computes the posterior probability Pr(H1(S, Ek) |D)
that each event type Ek has affected each space-time region S, as well as the
posterior probability Pr(H0 | D) that no event has occurred. The prior prob-
ability of each event type occurring in each space-time region, Pr(H1(S, Ek)),
and the prior probability of no events, Pr(H0), are given. MBSS computes the
likelihood of the multivariate data given each hypothesis, and then calculates
the posterior probability of each hypothesis using Bayes’s theorem:

Pr(H1(S, Ek) | D) =
Pr(D | H1(S, Ek))Pr(H1(S, Ek))

Pr(D)
(11.4)

Pr(H0 | D) =
Pr(D | H0)Pr(H0)

Pr(D)
. (11.5)

Here the total probability of the data, Pr(D), is equal to Pr(D | H0)Pr(H0) +∑
S,Ek

Pr(D | H1(S, Ek))Pr(H1(S, Ek)).
In the MBSS framework, counts are assumed to have been generated from

the Bayesian network represented in Figure 11.2. The event type Ek is drawn

Figure 11.2. Bayesian network representation of the MBSS method. Solid ovals
represent observed quantities, and dashed ovals represent hidden quantities that
are modeled. The counts ct

i,m are directly observed, while the baselines bt
i,m and

the parameter priors for each stream (αm, βm) are estimated from historical
data.
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from a multinomial distribution: here k = 0 represents the null hypothesis H0

of no events, with probability Pr(H0), and k = 1 . . . K represent the occurrence
of event type Ek, with corresponding probabilities Pr(Ek). The region of effect
S is conditional on the event type, with probabilities Pr(H1(S, Ek) | Ek). The
distribution of event types and regions can be learned from training data or
obtained from expert knowledge.

The effects of an event H1(S, Ek) on the data are determined by a value
xt

i,m for each location si, data stream Dm, and time step t. These effects are
assumed to be multiplicative, increasing the expected value of each count ct

i,m

by a factor of xt
i,m. For the null hypothesis H0, no events have occurred, and

xt
i,m = 1 everywhere. For an event H1(S, Ek), only locations and time steps

inside the space-time region S have been affected, and thus xt
i,m = 1 for all

i, m, t �∈ S. Each event type can have a different joint probability distribution
over the effects xt

i,m.
The current implementation of MBSS [Neill and Cooper (2008)], as ap-

plied to the disease surveillance domain, makes several additional assumptions.
To determine the search regions S, spatial locations are mapped to a uniform
grid, and all gridded rectangular regions are considered. This method yields
computational efficiency and the ability to detect both compact and elongated
clusters [Neill et al. (2005a)]. MBSS assumes a hierarchical gamma-Poisson
model [Clayton and Kaldor (1987), Mollié (1999)]: each count ct

i,m is drawn
from a Poisson distribution with mean proportional to the product of the ex-
pected count bt

i,m and the relative risk qt
i,m. The expected counts (assuming

no events taking place) are inferred from historical data, accounting for day-
of-week and seasonal trends. Under the null hypothesis, all relative risks qt

i,m

for a given data stream Dm are drawn independently from a gamma distribu-
tion with parameters (αm, βm). These parameters are estimated for each data
stream by matching the mean and variance of the gamma-Poisson model to their
observed values in historical data. Under the alternative hypothesis H1(S, Ek),
the relative risks qt

i,m inside region S are drawn from a gamma distribution with
parameters (xt

i,mαm, βm). Neill and Cooper (2008) assume a simplified event
model, in which an event’s effect on each data stream Dm is some constant xm.
These constants are a function of the average effects xkm,avg of event type Ek

on data stream Dm, as well as the event severity θ: xm = 1+θ(xkm,avg −1). For
example, consider an event type Ek with average effects xkm,avg = 1.5, 1.2, and
1.0 on three data streams D1. . . D3. For an event of “average” severity (θ = 1),
the expected counts of streams D1 and D2 would be increased by 50% and 20%,
respectively, with no effect on stream D3. For a more severe event with severity
θ = 2, the expected counts of streams D1 and D2 would be increased by 100%
and 40%, respectively. Neill and Cooper (2008) assume a fixed, discrete distri-
bution for θ, and present a simple, smoothed maximum likelihood method for
learning the average effects xkm,avg from labeled training examples.
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The marginal likelihood of each observed count ct
i,m can be computed given

the effect xt
i,m, baseline bt

i,m, and parameter priors αm and βm. MBSS integrates
over all possible values of the relative risk qt

i,m, weighted by their respective
probabilities. Neill and Cooper (2008) derive a closed form (negative binomial)
solution for the marginal likelihood. Since the null hypothesis assumes xt

i,m = 1
everywhere, and since the counts are conditionally independent given the base-
lines, the α and β parameters, and the effects xt

i,m, the marginal likelihood of the
data under the null hypothesis can be easily computed. To calculate the likeli-
hood of the data given an alternative hypothesis H1(S, Ek), MBSS marginalizes
over the distribution of effects xt

i,m, computing a weighted average of the data
likelihoods given each effects vector (x1 . . . xM ), weighted by the conditional
probability of those effects given H1(S, Ek). The simplified event model makes
these marginals efficiently computable: for each possible event type and sever-
ity, MBSS computes log-likelihood ratios for each location, and then computes
the log-likelihood ratios for all regions under consideration by summing the lo-
cation log likelihoods. Alternatively, we can efficiently find those regions with
highest log-likelihood ratios, using a variant of the fast spatial scan [Neill and
Moore (2004)].

11.2.2 Evaluation

Neill and Cooper (2008) evaluated the event detection and characterization
performance of the MBSS method, with and without incorporating prior in-
formation, on simulated outbreaks of influenza-like illness (ILI) injected into
three streams of OTC medication sales data (cough/cold, anti-fever, and ther-
mometers) from Allegheny County, Pennsylvania. A “general” MBSS detector
was used to handle the case when no prior knowledge of events was available.
This detector assumed 2M − 1 event models (one for each non-empty subset of
the M data streams). Each event model assumed equal average effects on the
affected subset of streams, and assumed a uniform prior over the event types
and affected regions. A “specific” MBSS detector was used to handle the case
when prior knowledge of one or more event types was available. This detector
assumed a pre-specified event model for each event type, giving the average ef-
fects of this event type on each data stream. The main results of their evaluation
are as follows.

1. The “general” MBSS detector achieved 1.5 days faster detection than
univariate BSS detectors monitoring each data stream separately, demon-
strating that MBSS increases detection power by integrating information
from the multiple data streams.

2. The “general” MBSS detector and Kulldorff’s multivariate spatial scan
statistic [Kulldorff et al. (2007)] achieve very similar detection performance,
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suggesting that either method can be used to detect a broad range of event
types when no prior information is available.

3. The “specific” MBSS detector was able to detect outbreaks an average
of 1.3 days faster than either the “general” MBSS detector or Kulldorff’s
multivariate scan. This demonstrates that MBSS can achieve higher de-
tection power by incorporating information about an event’s effects on
the different data streams. Further performance gains result from using
informative region priors that incorporate knowledge of the distribution
of each event type in space and time [Neill (2007)].

4. Given an event model for each of two different outbreak types (one pri-
marily causing respiratory symptoms, and one primarily causing fever),
MBSS was able to accurately differentiate between the outbreaks by the
second outbreak day. The posterior probability of the correct outbreak
type increased rapidly over the course of the outbreak, while the proba-
bility of the incorrect outbreak type remained constant and small.

11.2.3 Discussion

Neill and Cooper (2008) demonstrate that the MBSS method has several ad-
vantages compared to prior event detection approaches. As in the univariate
Bayesian spatial scan method [Neill et al. (2006)], MBSS can incorporate prior
information of an event’s effects and its distribution in space and time, in-
creasing detection power. Similarly, the Bayesian scan statistics do not require
randomization testing, resulting in 2–3 orders of magnitude faster computation
compared to the standard frequentist spatial scan.

Extension of the Bayesian framework to the multivariate case has further,
substantial benefits. Integration of information from multiple data streams en-
ables MBSS to detect emerging patterns (e.g. the early stages of an emerging
outbreak of disease) that would not be visible from monitoring only a single
stream. Incorporating multiple event models not only increases detection power,
but also allows MBSS to characterize events by specifying models for multiple
event types and computing the probability that each type of event has occurred.
This enables the user to distinguish relevant events requiring urgent responses
from irrelevant events which can safely be ignored, as well as informing the
user’s response to these events. For example, patterns of ILI would be a high
priority for public health officials if these cases were due to pandemic avian
influenza or a bioterrorist anthrax attack, and different interventions would be
necessary in each case.

Finally, the outputs of MBSS (posterior probabilities of each event type in
each space-time region) are easy to interpret, visualize, and use for decision
making. For example, considering the posterior probabilities of a given event
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Figure 11.3. Example of a probability map computed by MBSS. Darker shading
indicates a higher probability that the given zip code has been affected.

Figure 11.4. General Bayesian network representation of stream-based scan ap-
proaches. Relative risks qt

i,m are conditioned on the event type Ek and region
S, and may be correlated. Counts ct

i,m are conditionally independent given the
relative risks qt

i,m and baselines bt
i,m.

type Ek on a given day t, we can compute the probability that each spatial
location has been affected by summing the probabilities of all regions containing
that location, and display the resulting “probability map” (Figure 11.3).

Comparison to prior methods

The Bayesian network shown in Figure 11.2 is a special case of the general
stream-based scan statistic in Figure 11.4. In the general case, the counts ct

i,m

are conditionally independent given the baselines bt
i,m and relative risks qt

i,m.
The joint distribution of the qt

i,m is conditional on the event type Ek and region
S. However, the values of qt

i,m (for each location si, stream Dm, and time step t)



234 D.B. Neill et al.

may be correlated by dependence on other hidden nodes. For example, in
Figure 11.2, observing a stream with a high count makes it more likely that
the event severity θ is large, and thus increases the probability that another
stream has a high count.

Both the univariate BSS [Neill et al. (2006)] and Kulldorff’s Poisson spatial
scan statistic [Kulldorff (1997)] can be considered special cases of the Bayesian
network in Figure 11.4, assuming a single data stream Dm and a single event
type (Ek = H1 or H0). In either case, we assume three additional nodes in
the Bayesian network (qin, qout, qall). Under the null hypothesis H0, qt

i,m =
qall everywhere, and under the alternative hypothesis H1(S), qt

i,m = qin inside
region S and qt

i,m = qout outside region S. Kulldorff’s Poisson scan statistic
assumes the maximum likelihood values for qin, qout, and qall. The BSS instead
marginalizes over each value, assuming that qin ∼ gamma(xinαin, βin), qout ∼
gamma(αout, βout), and qall ∼ gamma(αall, βall). The values of the α and β
parameters are learned from data, and a discrete uniform distribution of xin is
assumed.

We note that the MBSS model differs from the original univariate BSS
model [Neill et al. (2006)] even for the case of a single data stream and single
event type. Like Kulldorff’s spatial scan statistic [Kulldorff (1997)], the original
BSS assumes constant relative risks qin, qout, and qall. The MBSS model allows
these risks to vary over space, time, and for different data streams, assuming
that each risk is drawn independently from the gamma distribution for that
stream. Allowing risks to vary under the null hypothesis reduces the number of
false positives due to overdispersion of counts, and the MBSS framework defines
a simple and efficiently computable model for the impact of each event type on
each data stream.

Incorporating learning into pattern detection

One important aspect of MBSS is the ability to learn new event models (and
incrementally update existing models) from user feedback or from labeled train-
ing data. Neill and Cooper (2008) demonstrate that the average effects of each
event type can be learned from a small number of labeled examples, and that the
fitted models gained a large improvement (average of 1.3 days faster detection)
compared to the general multivariate detectors. We note that learning from
data may only be feasible for very common outbreaks (e.g. influenza), while
models of rare events would still rely heavily on expert knowledge. Another
possibility would be to learn models of common “confounding” events which
are not relevant for detection, and use these models to reduce the false positive
rates. For example, patterns of OTC sales of cough/cold medications may occur
due to cold weather, poor air quality, short-term population fluctuations due
to tourism, or even promotional sales of these medications.
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Future work

The incorporation of incremental model learning into the multivariate Bayesian
pattern detection framework will be an important aspect of future work.
In addition to the effects of each event type on the multiple data streams,
many other aspects of the event models can be learned from labeled data,
including the prevalence, size, shape, and spread of each type of event. The
preliminary results of Neill (2007) suggest that learning these aspects of the
event model can also lead to significant improvements in detection perfor-
mance. Additionally, “active learning” methods can be incorporated in order
to choose potential events that are both most relevant to the user and most
informative to the system, present these events to the user, and update models
based on the user feedback. Finally, the current MBSS implementation assumes
the occurrence of a single event, with constant effects over time. Future work
will include extending MBSS to “dynamic models” (where events can move
and grow over time, and can have spatially and temporally varying effects), as
well as “synergistic models” (where multiple events with interacting effects can
occur).

11.3 The Agent-Based Bayesian Scan Statistic

Most existing approaches to event detection are “stream-based” methods which
monitor the aggregate counts of a set of data streams and report patterns of
anomalously high counts. For example, a stream-based disease surveillance sys-
tem such as MBSS may look at the daily sales of anti-diarrheal medication
and numbers of gastrointestinal ED visits, with the goal of detecting an out-
break caused by Cryptosporidium. An alternative event detection approach is to
model each individual (agent) in a population, observe one or more variables for
each individual, and draw inferences about the underlying event. These “agent-
based” approaches often rely on an explicit Bayesian network representation
to model the causal relationships between the underlying event, the state of
each individual (which usually cannot be directly observed), and the observ-
able variables. The PANDA system developed by Cooper et al. (2004, 2007) is
an agent-based Bayesian network approach for disease surveillance using ED
data. Here we consider the agent-based Bayesian scan statistic (ABSS) method
proposed by Jiang et al. (2008), which extends PANDA by incorporating spatial
information.

The ABSS approach assumes a population of R agents, r = 1, . . . , R. Each
agent might represent an individual in the population, a measurement device
(e.g. a sensor that monitors for the presence of microbes), or some other entity.
Each agent r has a set of observable values Cr, which is conditioned on that
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agent’s underlying state Dr. As in Jiang et al. (2008), we assume here that
agents are individuals in the population, and that each individual has a single
observable value Cr drawn from some multivalued discrete distribution. For
example, in the disease surveillance domain, Dr may represent an individual’s
underlying disease state, which is not directly observed, and Cr may represent
that individual’s ED visit or purchase of OTC medication. The underlying
states, and therefore the observable values, are conditioned on the event type
Ek and the affected region S, enabling us to draw inferences about the event
and affected region given the set of observed values {Cr}.

11.3.1 Methods

As in the MBSS approach, the ABSS assumes a fixed set of event types Ek

and a fixed set of spatial regions S. Given the multivariate dataset D, the goal
of this method is to compute the posterior probability Pr(H1(S, Ek) | D) that
each event type has occurred in each spatial region, as well as the posterior
probability Pr(H0 |D) that no events have occurred. These probabilities can be
computed by Bayes’s theorem, Equation (11.4), combining the prior probability
of each hypothesis with the data likelihood given that hypothesis.

However, the agent-based approach, rather than being given spatial time se-
ries data, is given a value Cr for each individual in the population, r = 1, . . . , R.
These values are assumed to be drawn from some multivalued discrete distri-
bution, and are conditionally independent of other individuals’ values given the
individual’s underlying state Dr (drawn from a different multivalued discrete
distribution). As shown in the Bayesian network representation in Figure 11.5,
each individual’s state Dr is conditionally independent given the event type Ek,
the spatial region of effect S, and the fraction F of the population that has been
affected.

Figure 11.5. Bayesian network representation of the ABSS method. Solid oval
represents observed quantities, and dashed ovals represent hidden quantities
that are modeled. Each agent’s value of Cr is directly observed.
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Jiang et al. (2008) apply their agent-based approach to the detection of dis-
ease outbreaks using ED chief complaint data. The chosen Bayesian network
representation is an extension of the Bayesian network used in PANDA-CDCA
[Cooper et al. (2007)]. PANDA-CDCA does not incorporate spatial information,
but ABSS adds an extra node to the Bayesian network representing the spa-
tial region of effect S. In the ABSS framework, the event type Ek is assumed
to take on one of 14 values: the 13 different outbreak diseases considered in
PANDA-CDCA (influenza, anthrax, etc.) or H0 (no outbreak occurring). Each
individual’s underlying state Dr represents two quantities: whether or not the
individual goes to the ED, and in the event of an ED visit, what disease is
responsible for the visit. Thus Dr can take on 15 different values: the 13 dif-
ferent outbreak types, “other” (i.e. the individual goes to the ED for another
reason, such as an accident or broken bone), or “no ED” (i.e. the individual
does not visit the ED). The observed values Cr represent the chief complaints
for each ED patient (or “no ED” for individuals who did not visit the ED). As
in PANDA-CDCA, chief complaints were classified into 54 different categories,
and thus each Cr can take on 55 different values including “no ED”.

In Jiang et al. (2008), the conditional probability table for each node of
the Bayesian network in Figure 11.5 is pre-specified based on expert knowl-
edge of the domain. The prior distribution Pr(Ek) assumes Pr(H0) = 0.95,
Pr(influenza) = 0.04, and small priors on the 12 other outbreak types (for ex-
ample, Pr(botulism) = 0.0005). As in MBSS, the events are assumed to be
mutually exclusive, and thus Pr(H0) +

∑
k Pr(Ek) = 1. Each event type Ek is

assumed to have a uniform region prior, Pr(H1(S, Ek) | Ek) = 1
Nregions

, where
Nregions is the total number of spatial regions considered. More generally, each
event type could have a different spatial prior distribution over regions, and
these distributions could be either pre-specified by expert knowledge or learned
from labeled training data (e.g. known outbreaks). The variable F is assumed
to represent the fraction of the population that is affected by the outbreak and
goes to the ED. In the current implementation of ABSS, Jiang et al. (2008)
assume a fixed, discrete distribution for F . However, different outbreak types
might tend to affect different fractions of the population, or be more or less
likely to send affected individuals to the ED. The dependence of F on the event
type Ek in Figure 11.5 allows this information to be incorporated as well.

The distribution of Dr depends on whether any outbreak is occurring, and if
so, on whether individual r is in the affected spatial region S. In the event of no
outbreak, or for individuals outside S, Dr is assigned the values “other” or “no
ED”, where the probability of an individual visiting the ED is estimated using
historical data. For individuals inside region S when an outbreak is occurring,
Dr is assigned either the outbreak disease (with probability F ), “other”, or
“no ED”. Finally, each outbreak disease Dr (including “other”) has its own
probability distribution over chief complaints Cr, and these distributions were
specified by a domain expert.
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We now consider how to compute the likelihood of the data for a given event
type Ek, affected region S, and fraction F . For the null hypothesis H0, the same
inference can be performed, assuming that S = ∅. Given the observed value Cr

for each individual r = 1, . . . , R, Jiang et al. (2008) perform inference on the
Bayesian network, marginalizing over the values of the hidden nodes Dr:

Pr(D | H1(S, Ek, F )) =
∏

r

∑

Dr

Pr(Cr | Dr)Pr(Dr | H1(S, Ek, F ))

=
∏

r∈S

∑

Dr

Pr(Cr | Dr)Pr(Dr | H1(Ek, F )) ×
∏

r ∈S

∑

Dr

Pr(Cr | Dr)Pr(Dr | H0).

The total likelihood of the data given each hypothesis can be calculated by
marginalizing over the distribution of F , and the posterior probabilities can be
computed from the likelihoods and priors using Bayes’s theorem as above.

11.3.2 Evaluation

Jiang et al. (2008) evaluated ABSS on simulated outbreaks of influenza and
illness caused by Cryptosporidium, injected into real-world ED data from
Allegheny County, Pennsylvania. Detection power (average days to detection,
as a function of the allowable false positive rate) and spatial detection accu-
racy (average overlap between true and detected clusters) were compared to
two previously proposed methods, PANDA-CDCA [Cooper et al. (2007)] and
Kulldorff’s original (univariate) spatial scan statistic [Kulldorff (1997)]. Their
comparisons demonstrate that ABSS outperformed both PANDA-CDCA and
spatial scan by a substantial margin for both datasets and according to both
performance measures. The improvement over PANDA-CDCA, which does not
use spatial information, demonstrates that incorporation of spatial information
into the agent-based Bayesian network framework substantially improves detec-
tion power. The improvement over spatial scan, which only uses the aggregate
case count in each spatial area rather than the counts for each individual
symptom, demonstrates that incorporation of multivariate information (and
modeling of the underlying causal structure) also enables improved detection.

11.3.3 Discussion

The ABSS model can be considered a variant of standard scan statistic ap-
proaches where data is provided for each individual in the population rather
than for a set of data streams. This model is particularly appropriate when we
have individual-level data, but can be used for aggregate count data as well.
Using individual-level data, if it is available, has several advantages. Though the
current ABSS model assumes that each individual r has the same probability
distribution for their underlying state Dr and observed variable Cr, the model
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can be easily extended to the case where these distributions are conditioned on
individual-level covariates such as age, gender, and occupation. Additionally,
the agent-based model can be extended to the case where each individual has
a joint distribution over multiple observable variables. Observing a single indi-
vidual with multiple indicators of an event (for example, an ED patient who
has both a fever and a rash) may enable faster and more accurate detection
than separately considering the number of individuals with each indicator.

On the other hand, if only the aggregate counts are provided, then either the
agent-based (multinomial) or the stream-based (multivariate Poisson) method
may be more appropriate. For example, we may observe only the number of ED
patients with each chief complaint type, or the total sales of each category of
OTC medication. If the number of individuals in the population is known, and
each individual can take only one action (such as visiting the ED with a specific
chief complaint type) out of a predefined set of actions, then the ABSS model
may be preferable. If individuals can take multiple actions, and the population
size is not known, we might prefer to infer the expected counts from historical
data and compare actual to expected counts, as in MBSS.

Comparison to prior methods

The Bayesian network shown in Figure 11.5 is a special case of the general
agent-based scan statistic in Figure 11.6. In the general case, each individual r
has an observed value Cr. The joint distribution of the Cr is conditional on the
event type Ek and region S. However, different individuals’ values of Cr may
be correlated by the addition of hidden nodes to the Bayesian network. For ex-
ample, in Figure 11.5, observing an individual with disease symptoms increases
the likelihood that F (the fraction of the population affected) is large, and thus
increases the probability that another individual has disease symptoms.

Figure 11.6. General Bayesian network representation of agent-based scan ap-
proaches. Solid oval represents observed quantities, and dashed ovals represent
hidden quantities that are modeled. Each agent’s value of Cr is conditioned
on the event type Ek and region S, and these values may be correlated by
additional hidden nodes.
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The Bernoulli spatial scan statistic [Kulldorff (1997)] can also be considered
a special case of the Bayesian network in Figure 11.6, with one event type (Ek =
H1 or H0) and binary variables Cr. In this case, we assume three additional
nodes in the Bayesian network (qin, qout, qall). Under the null hypothesis H0,
Pr(Cr = 1) = qall everywhere, and under the alternative hypothesis H1(S),
Pr(Cr = 1) = qin inside region S and Pr(Cr = 1) = qout outside region S.
However, rather than marginalizing over qin, qout, and qall, the Bernoulli spatial
scan assumes the maximum likelihood values for each node.

Future work

Future work by Jiang et al. will compare the agent-based approach to other
multivariate spatial detection methods, including MBSS and Kulldorff’s multi-
variate spatial scan statistic. Additionally, the current implementations of ABSS
and PANDA-CDCA used a “specific” detector with pre-specified models of 13
outbreak diseases (including influenza, Cryptosporidium-caused illness, and the
CDC Category A diseases), and the simulated outbreaks were generated assum-
ing a distribution of chief complaints that is identical to these models. Future
work will evaluate ABSS on disease outbreaks generated according to different
chief complaint distributions (i.e. measuring performance as a function of the
difference between true and assumed distributions), and thus test the robustness
of this method to model misspecification. While the current implementation of
ABSS is specific to ED disease surveillance, ABSS can be extended to other
application domains using more general definitions of the individual’s underly-
ing state Dr, observed behavior Cr, and the fraction of the population affected
F . Finally, future versions of ABSS will include many of the current features of
MBSS, such as incorporation of temporal information, visualization of outputs,
and learning of event models from labeled data.

11.4 The Anomalous Group Detection Method

We now consider how the scan statistic framework can be extended from the
specific case of event surveillance to more general multivariate datasets. This
extension poses several challenges. Since many datasets have no explicit space or
time component, we cannot simply search over geographical regions, and thus it
is not clear which subsets of the data should be considered. Additionally, while
other scan statistic methods assume a fixed parametric model for the effects
of different types of patterns on the data, we may wish to detect anomalous
patterns in more general datasets where no such model is known. One solution to
these challenges is provided by the anomalous group detection (AGD) method,
recently proposed by Das et al. (2008). Rather than relying on a fixed parametric
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model, AGD learns the structure and parameters of a Bayesian network from
the data, and searches over self-similar subsets of the data to find anomalous
patterns.

The AGD method can be used to detect anomalous groups in arbitrary,
non-spatial datasets with discrete-valued attributes. For typical stream-based
scan statistic approaches, each data point consists of a set of real-valued “loca-
tion” attributes as well as real-valued “count” data. The set of search regions
is defined by the location attributes (e.g. spatial scan searches over geographi-
cally contiguous subsets of the data) while the likelihood under each hypothesis
H1(S) is a function of the counts inside and outside region S. In the more
general pattern detection problem, there may be no defined set of location at-
tributes, and thus we can no longer predefine a set of search regions based on
geographical attributes such as size, shape, or contiguity. Nevertheless, we want
to formulate a measure of how well a subset of data points fits as a group based
on the similarity between the data points. We must then perform a search over
all possible subsets of the data in order to find the most anomalous groups.

Another difference between the AGD method and other scan statistic ap-
proaches is in the definition of anomalousness for a data point or a group of
points. Scan statistics are usually applied to detect overdensities of records in
a given space: individual records are aggregated into counts, and clusters with
anomalously high counts are detected. In the AGD framework, however, each
record has many discrete-valued attributes, and can have an inherent degree of
anomalousness depending on its features. Most records are generated from the
“normal” distribution of data and hence are not relevant. Instead, the goal of
AGD is to detect groups of records that are both anomalous and also self-similar
in some respect.

11.4.1 Methods

The AGD framework assumes a multivariate dataset D, where each data record
Ri ∈ D has values for a set of discrete-valued attributes X1 . . . XM . As in the
original spatial scan statistic approach [Kulldorff (1997)], AGD finds the set of
records that maximizes the likelihood ratio statistic F (S) = Pr(D | H1(S))

Pr(D | H0)
, where

H0 is the null hypothesis that there are no anomalies present, and H1(S) is the
alternative hypotheses specifying that the set S is an anomalous group. AGD
assumes Bayesian network models for both the null and alternative hypotheses,
and computes the data likelihoods given these models. For the null hypothesis
H0, a Bayesian network model is inferred from a separate training dataset
(e.g. historical data), which is assumed to contain no anomalies, and all data
records are assumed to have been drawn independently from this model. Under
the alternative hypothesis H1(S), the records contained in subset S are assumed
to have been drawn from a different Bayes net model, while the rest of the
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data records are generated from the null model. The Bayesian network model
parameters for the alternative hypothesis H1(S) are learned directly from the
records in subset S, as discussed below.

This scoring metric gives a higher score to anomalous records, as well as
setting a constraint of similarity between the records in a group. If the records
in S are similar to each other, then H1(S) will be able to model them tightly.
This will result in a high value of the data likelihood under the alternative
hypotheses H1(S), thus increasing the score F (S). Also, records that are poorly
modeled by the training data will have low likelihoods under the null hypothesis
H0, again increasing the group score F (S). Hence, maximizing this score leads
to grouping of similar records and at the same time it prefers records that are
anomalous (i.e. that have low likelihoods under the null hypothesis).

As discussed by Das et al. (2008), the AGD algorithm consists of three steps:

1. Learn the Bayesian network model for the null hypothesis H0 from the
training data.

2. For all subsets of the data S:

(a) Fit the alternate hypothesis Bayesian network (H1(S)) parameters
using data from subset S.

(b) Compute the group likelihood ratio score F (S).

3. Output the groups with highest score.

Step 1 is to learn the Bayesian network corresponding to the null hypoth-
esis. The network structure is learned automatically from the training dataset
using the optimal reinsertion algorithm [Moore and Wong (2003)], and this
structure is assumed for the null hypothesis H0 and for all alternative hypothe-
ses H1(S). The probability table parameters of H0 are then learned from the
training dataset using smoothed maximum likelihood estimation. For a given
node corresponding to the variable Xi in the Bayes net, let XΠi denote the set of
variables corresponding to the parent nodes of Xi. The conditional probability
table of Xi has parameters corresponding to the conditional probability values
θijk = Pr(Xi = j | XΠi = k). Here we must estimate θijk for each variable Xi,
value j, and set of parent values k. The maximum likelihood parameter esti-
mates are given by θ̂ijk = Nijk∑

j′ Nij′k
, where Nijk denotes the number of instances

in the training dataset with Xi = j and XΠi = k. To deal with sparsity of the
training data, Das et al. (2008) apply Laplace smoothing to adjust the estimate
of each model parameter.

Steps 2–3 find groups of records S that maximize the likelihood ratio score
F (S) = Pr(D | H1(S))

Pr(D | H0)
, where the alternative hypothesis H1(S) assumes that the

records in subset S form an anomalous group, and the null hypothesis H0 as-
sumes that no anomalous groups are present. The optimal group can be found by
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searching over all subsets of the test data, but this exhaustive search would re-
quire exponential time. Thus Das et al. (2008) propose a greedy heuristic search
method which starts from each record as an initial seed and iteratively adds
the record that most improves the likelihood ratio score. This search method
can find high-scoring groups in a computationally efficient manner, but does
not guarantee that the optimal group will be found.

Step 2a fits the parameters of the Bayesian network for the alternative
hypothesis H1(S). Das et al. (2008) use an empirical Bayes approach in which
these parameters are estimated from the counts in the subset of the test dataset
represented by S, following an approach of smoothed maximum likelihood es-
timation similar to Step 1 above. In this case, Nijk denotes the corresponding
counts in region S. Since the number of records in group S may be small and
this data is used to fit a large number of Bayesian network parameters, data
sparsity is a serious problem, and computing the likelihood Pr(D |H1(S)) using
this model risks overfitting of the data.

Step 2b computes the group likelihood ratio score F (S), performing infer-
ence on the Bayesian networks corresponding to H1(S) and H0 to compute the
data likelihoods under each hypothesis. Since data points are assumed to be
conditionally independent given the model, and records not contained in subset
S have identical likelihoods given H1(S) and H0, the likelihood ratio statistic
simplifies to

F (S) =

∏
Ri∈S Pr(Ri | H1(S))
∏

Ri∈S Pr(Ri | H0)
. (11.6)

Das et al. (2008) deal with the overfitting problem mentioned above by using a
“leave-one-out” method based on the pseudo-likelihood of each record Ri in S.
In this case, the numerator of Equation (11.6) becomes

∏
Ri∈S Pr(Ri | H1(S −

{Ri})). To compute the likelihood of each record Ri, assuming the alternative
hypothesis H1(S), a Bayesian network model is learned from all the records in
S except for Ri, and this model is used to compute the likelihood of Ri. Since
the likelihood of each record is computed without using that record to estimate
the model parameters, this reduces the risk of overfitting.

Step 3 outputs the highest scoring groups found in step 2. Additionally,
Das et al. (2008) compute an anomalousness score for each individual record
R in the test data by finding the highest scoring group S∗(R) that contains
R. The score of record R can then be computed in one of two ways. In the
“group likelihood ratio” approach, Score(R) is set equal to the group score
F (S∗(R)). This approach gives a high score to any record that is contained in a
highly anomalous group, regardless of whether the record is itself anomalous or
just similar to other anomalous records. Alternatively, we can consider only the
contribution of record R to the score of S∗(R). In this “single record likelihood
ratio” approach, Score(R) is set equal to the partial record pseudo-likelihood
ratio, Pr(R | H1(S∗(R)−{R}))

Pr(R | H0)
.
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11.4.2 Evaluation

Das et al. (2008) compare the performance of their method to the baseline
method described above, which detects individual records with low likelihoods
given the null Bayes net model. Synthetic anomalies were injected into two real-
world datasets: a dataset of ED records from Allegheny County, Pennsylvania,
and the PIERS dataset of container shipping data. The former dataset contains
records of patients visiting Allegheny County EDs. Each record consists of six
categorical attributes (hospital ID, prodrome, age decile, home zip code, and
chief complaint class), and the goal is to detect anomalous groups of records
(e.g. spatial disease clusters, age/gender clusters, and increases in different
symptom types) that correspond to emerging disease outbreaks. The second
dataset consists of records describing containers imported into the country.
Each record consists of 10 attributes: country of origin, departing and arriving
ports, shipping line, shipper name, vessel name, commodity being shipped, and
the size, weight, and value of the container. In this case, the goal is to detect
anomalous groups of records corresponding to patterns of smuggling, terrorist
activity, or other illicit shipments.

Das et al. (2008) evaluated the performance of the algorithms in two dif-
ferent ways. The first evaluation criterion was the ability of each algorithm
to identify each individual anomaly correctly. Figure 11.7 plots the detection
precision, i.e. the ratio of number of true positives to the total number of pre-
dicted positives, against the detection rate, i.e. the proportion of total true
anomalies that were detected. For both the “group likelihood ratio” and “single
record likelihood ratio” methods, AGD performed significantly better than the
baseline method without grouping. Similar results were obtained when exam-
ining the ability of the algorithms to identify and distinguish between entire
datasets which have anomalous groups against ones which do not have any
anomalies, e.g. distinguishing datasets containing outbreaks from datasets with
no outbreaks. For these experiments, the grouping method again achieved signif-
icantly higher performance than the baseline anomaly detection method. While

Figure 11.7. Plot of detection precision vs. recall for (left) ED dataset and
(right) PIERS dataset, from Das et al. (2008).
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the set of anomalies was synthetically generated, current work by Das et al. in-
cludes evaluation on real anomalies, e.g. retrospective analysis of known disease
outbreaks.

11.4.3 Discussion

The primary advantage of the AGD method is its generality: unlike the MBSS
and ABSS methods, AGD can be directly applied to arbitrary multivariate
datasets without the need for a pre-specified Bayesian network model of how
the data is generated. Instead, the structure of the network and the parameters
for each node are learned from a training dataset, and the learned model is used
for detection. Although Das et al. (2008) exclusively deal with categorical val-
ued datasets, AGD can be generalized to handle datasets containing real-valued
attributes as well, using Bayesian network models that incorporate both cate-
gorical and real-valued nodes. However, AGD does have several disadvantages.
It cannot model and distinguish between multiple event types, since the param-
eters for the alternative hypothesis H1(S) are fitted directly from that subset
of the test data. Learning a model using the test data and then computing the
likelihood of the test data given that model can result in overfitting, and the
proposed solution (use of the pseudo-likelihood) gives outputs that cannot be
interpreted as posterior probabilities.

Comparison to prior methods

The AGD algorithm can be thought of as a generalization of scan statistic
methods such as MBSS and ABSS to arbitrary multivariate datasets without
predefined location or count attributes. All attributes of the data are used
to determine both the self-similarity of the group and the anomalousness of its
component records, as opposed to previous methods that determine the anoma-
lousness of the count attributes and use the location attributes for grouping.
While standard scan statistics implicitly or explicitly assume a fixed Bayesian
network model relating the observed variables (i.e. aggregate counts in stream-
based approaches, and individual-level variables in agent-based approaches) to
the underlying event and affected region, AGD learns the underlying model
from the training dataset. Additionally, standard scan statistics are geared to-
ward the event detection problem, searching over a set of contiguous spatial
regions that are predefined based on the location attributes of the data, while
AGD performs a heuristic search over arbitrary subsets of the data.

Future work

Future work by Das et al. will extend the AGD approach to incorporate mul-
tiple pattern types Ek, model the effects of each pattern type on the data, and
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distinguish between multiple pattern types (by computing the posterior proba-
bility that each pattern type Ek affects each subset of the data S). Each pattern
type can have a different prior probability Pr(Ek) and a different distribution
over subsets of the data. Models of how each pattern type will affect a given
subset of the data can be defined, allowing computation of the data likelihood
given each hypothesis H1(S, Ek). Different pattern types can have a different
distribution over Bayesian network structures and parameters, and the data can
be represented as a “mixture of Bayes nets.” Each alternative Bayes net model
can be related to the null Bayes net by changing the conditional distributions
of the output attributes based on the event model Ek. Finally, future work will
develop methods which can learn these models for each pattern type. These
extensions could be valuable for finding groups in new datasets that match
specific patterns of anomalous activity learned from earlier data.
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



252 G.P. Patil et al.

12.1 Introduction

The one-dimensional scan statistic has been exhaustively covered in two books
[Glaz and Balakrishnan (1999), Glaz et al., (2001)]. A wide variety of methods
has been proposed for modeling and analyzing geospatial data [Cressie (1991)].
More recently, the spatial scan statistic proposed by Kulldorff and Nagarwala
(1995) and Kulldorff (1997) has provided a popular tool in the form of the
SatScan software system developed by Kulldorff et al. (1998) for detection and
evaluation of disease clusters for discrete response data. It is available on the
web free of charge. A commercial software system [Biomedware (2001)] is also
available. With suitable modifications, the scan statistic approach can be used
for critical area analysis in fields other than the health sciences, and also for
continuous response data.

Basic components of the scan statistic are the topological structure un-
der investigation, the probability distribution used to model responses and the
shapes and sizes of the scanning window. In this paper, we present an approach
to the scan statistic: the upper level set (ULS) tree scan statistic, as well as its
software implementation, with characteristics that are different from a typical
spatial scan statistic software in the following ways.

• The ULS scan statistic uses an irregularly shaped scanning window, unlike
most other scan statistics, which are based on some regularly (circularly
or elliptically) shaped windows.

• Applicability of the ULS scan statistic is not limited to geospatial regions.
It can be conveniently used to detect hotspots in any structure with the
network topology.

• The software provides an option of the use of the gamma distribution to
model response data that are of a continuous nature in addition to the
binomial and the Poisson models.

In Sections 12.2, 12.3 and 12.4 we introduce basic ideas behind the ULS scan
statistic based on Patil and Taillie (2003, 2004). In Section 12.5 we discuss some
computational aspects. The gamma response model is presented in Section 12.6.
Section 12.7 contains a fairly detailed account of software implementation of
the ULS scan statistic. We conclude with an environmental application of the
software using the gamma response model.
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12.2 Basic Ideas

We consider the following scenario: A geospatial region R is partitioned or
tessellated into N cells. Response data on y1, y2, . . . , yN are available for the N
cells, ya being the response for cell a. y1, y2, . . . , yN are regarded as observed
values of independently distributed response variates Y1, Y2, . . . , YN . Also known
is the “size” Aa of cell a, a = 1, 2, . . . , N . Interpretation of size depends on the
context in which the data are collected. Thus, in a situation where response data
are counts of incidences of a certain disease in R, Aa is the size of the exposed
population of cell a. If ya is arable acreage, then Aa can be the geographic area
of the cell. Of essential interest are the response rates or response intensities,
Ga = ya/Aa, a = 1, 2, . . . , N .

The spatial scan statistic seeks to identify “hotspots,” which are clusters of
cells in R that have elevated response rates compared with the rest of the region.
A cluster of cells in R must satisfy two properties before it can be considered
as a hotspot candidate:

1. The cluster must be geographically connected. Such a cluster will be re-
ferred to as a zone. The set of all zones is denoted by Ω.

2. The zone should not be excessively large; otherwise, the zone rather than
its exterior would constitute background. Generally, we limit the search
for hotspots to zones that do not comprise more than, say, fifty percent
of the region.

To detect a hotspot, the circle-based scan statistic due to Kulldorff adopts a
hypothesis testing model. In order to illustrate the concept, let us consider
the case when each Ya ∼ Binomial(na, pa) where 0 < pa < 1 is an unknown
parameter and na is the cell size. With this, the following is a statement of the
null and the alternative hypotheses:

H0 : pa is the same for all cells a in R

H1 : there is a non-empty zone Z ∈ Ω and parameter values
0 < p0, p1 < 1 such that
pa = p1 for all cells a in Z

pa = p0 for all cells a in R − Z and
p1 > p0

H0 asserts that there is no hotspot. Z occurs in H1 as an unknown parameter
so that the full model H0 ∪ H1 involves three parameters, Z, p0, and p1.
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Under H1 we need to compute the likelihood L(Z, p0, p1) maximized over Z ∈ Ω,
and 0 < p0, p1 < 1. For a given Z, the profile likelihood

L(Z) = max{L(Z, p0, p1) : 0 < p0, p1 < 1}

is readily determined with maximum likelihood estimations (MLEs) of p0 and
p1. The difficult part is to maximize L(Z) over Z ∈ Ω since usually Ω is ex-
tremely large, making exhaustive, search for the maximum impractical. One
common approach to obtain at least an approximately optimal solution is to
use reduced parameter space, that is, to maximize L(Z) over a suitable subset
Ω0 of Ω. The success of this approach depends on whether Ω0 contains the
MLE of Z over Ω or at least a satisfactorily close approximation to it. The tra-
ditional circular scan statistic uses expanding circles with centers in each cell
to determine Ω0. This strategy tends to produce compact candidate zones and
may do a poor job of approximating actual clusters of arbitrary shapes. The
reduced parameter space is determined by the geometry of tessellation without
involving the response data.

The ULS scan statistic described below and implemented as a software
package described later also uses the approach of parameter space reduction.
Its central idea lies in the concept of upper level sets. This approach takes an
adaptive view so that the resulting reduced parameter space, ΩULS , depends
on data.

12.3 ULS Scan Statistic

The ULS approach views the response data as a surface in three dimensions.
With the region R in the xy-plane, the surface is constructed by erecting a solid
cylinder along the z-axis over each cell. The height of the cylinder over cell a is
proportional to the response rate of the cell.

To begin, we construct zones at different levels. A zone at level g is a con-
nected component of the upper level set

Ug = {a ∈ R : Ga ≥ g},

where g ∈ G = {Ga : a ∈ R}.
The reduced set of candidate zones, ΩULS , is the collection of all connected

components of all upper level sets. Graphically, the upper level set at level g
is the projection on R of the cross section of the response surface with the
horizontal plane z = g.

ΩULS can also be thought of as a data structure in the form of a tree.
All members of ΩULS are nodes of the ULS tree. To further describe the tree
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structure, let us assume the set G has m elements: g1 > g2 > . . . > gm and
define the sets

Ti = {a ∈ R : Ga = gi}, i = 1, 2, . . . , m.

Also, for brevity, denote the set Ug by Ui when g = gi. Then

Ui = T1 ∪ T2 ∪ . . . ∪ Ti, i = 1, 2, . . . , m.

With this notation, connected components of Ui are level i nodes. The root
of the ULS tree is Um = R, the lowest level node. Connected components of
U1, the highest level nodes, are leaf nodes. Given Ti, 1 < i < m, consider a
fixed connected component C of Ti. If C has no cell adjacent to any of the
higher level nodes, then C is also a leaf node. (Such a zone is a local peak of
the response surface.) On the other hand, if C has cells that are adjacent to
higher level nodes, say Z1, Z2, . . . , Zk, then we have a connected component
C ∪ Z1 ∪ Z2 ∪ . . . ∪ Zk of Ui as a level i node and this node is the parent node
of Z1, Z2, . . . , Zk. Figures 12.1, 12.2, and 12.3 illustrate the ULS tree building
process.

As implied in the discussion above, it is convenient for our purpose to orient
the ULS tree with the leaf nodes at the top and the root node at the bottom.
As we trace the ULS tree from the top node towards the root, each cell in R
makes its entry in the tree in a uniquely determined node. This implies that
the cardinality of ΩULS is less than or equal to N and is equal to N if m = N .
Thus, our search for the maximized L(Z) over ΩULS is at most N evaluations,
but actually substantially less than N , since we stipulate that a hotspot not be
more than fifty percent of the size of R.

Figure 12.1. Illustrative data.
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Figure 12.2. Cells topologically sorted.

Figure 12.3. The ULS tree.

12.4 Computational Aspects

A consequence of the adaptive approach of the ULS scan statistic is that ΩULS

must be computed fresh for each simulation run. Hence, it is important that
the algorithm to construct the ULS tree be efficient, especially for a large
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Table 12.1. Computational time for selected datasets.

Time in seconds to do the task
Response Number Total Data ULS tree Likelihood
model of population simulation construc- compu-

cells size tion tation
Gamma 211 N/A 1 84 138
Binomial 211 21,100 18 14 <1
Binomial 12 3,067,740 232 <1 <1

tessellation. At the same time, realize that construction of the ULS tree is
only a part of the overall computational effort. We can identify three main
tasks involved in the whole process: Construction of the ULS tree, generation
of simulated data and calculation of L(Z) for each Z in the (reduced) parame-
ter space. Major factors contributing to the execution time can be the type of
the response model (discrete or continuous), population size, and complexity of
the likelihood equations. These factors have effects on the three tasks in vary-
ing degrees. Table 12.1 illustrates the point. The numbers shown in the table
are derived from 999 iterations of simulation runs with actual datasets. The
results were obtained on a Dell Dimension� 8200 Series computer with Intel�
Pentium� 4 2.40GHz CPU and 2.39GHz, 1.12GB RAM, running a Windows
XP� operating system. The program was compiled using MicroSoft� Visual
Studio� 2005.

Of the three datasets, the one with the gamma response model is the subject
matter of the case study presented in Section 12.9. It is a part of a Pennsylvania
biodiversity research project [Joly (1996), Myers et al. (2000)]. The second
dataset is also a part of the same project. It consists of the percentage of the
land under forest in each cell. All 211 cells are identical in shape and size. We
processed the data to identify significantly forested parts of the state assuming
the binomial response model with a population of 100 units of area for each
cell. Details of the finding are not presented in this chapter. Only the processing
time statistics are included in the table to underscore some contrasts between
a continuous response model and a discrete response model with respect to the
three computational tasks. The third dataset has only 12 cells. In none of the
three cases presented in the table is construction of the ULS tree the most time-
consuming task, but of all the three it is most so for the gamma distribution.
Samples with the most distinct values are expected for a continuous distribution,
resulting in more levels for the ULS tree than for a discrete distribution. The
complexity of the likelihood equations for the gamma distribution is clearly
reflected by the time it takes to compute likelihoods. The effect of the large
population size in the case of the binomial response model is clear from the
third dataset. We point out that the sampling involved for the binomial model
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is actually from the multivariate hypergeometric distribution. To generate a
vector (y′1, y

′
2, . . . , y

′
N ) from the (N−1) dimensional hypergeometric distribution

one needs to generate t = y1+y2+· · ·+yN random numbers, and t is potentially
quite large. On the other hand, to generate a similar vector from the Dirichlet
distribution for the gamma model, the generation of only N random numbers
is required.

12.5 Testing Significance of the Scan Statistic

We will be primarily interested in determining the significance of the likeli-
hood of a candidate zone with the maximum likelihood. The distribution of the
scan statistic under the null hypothesis is intractable mathematically. Tradi-
tionally, the p-value of the statistic is determined using Monte Carlo methods.
The process involves obtaining the conditional distribution of Y1, Y 2, . . . , YN

under the null hypothesis conditioned on a suitable statistic. For binomial and
Poisson response models, it is obtained by holding Y1 + Y2 + · · · + YN fixed
at y1, +y2 + · · · + yN . This sum being sufficient for the respective parameter
under investigation, the conditional distribution (multivariate hypergeometric
and multinomial, respectively) is independent of the respective parameter. Sim-
ulated samples from the conditional distribution are used to construct the scan
statistic for comparison with the observed scan statistic. The entire process for
binomial and Poisson response models is straightforward. In some cases a suf-
ficient statistic may not exist or may not be suitable, as will be seen with the
gamma distribution in the next section.

12.6 Gamma Response Model

Binomial and Poisson response models have been studied extensively in hotspot-
ting because of their wide applicability to epidemiology. Relatively, continuous
distributions have received less attention. Here we use the gamma model to
illustrate application of the ULS scan statistic to continuous distributions.

The gamma distribution has two parameters, k and β, where k is the index
parameter and β is the scale parameter. Thus, if Y is a gamma variate,

E[Y ] = kβ and V ar [Y ] = kβ.

Here both k and β can vary from cell to cell, but additivity of the family of
gamma distributions with respect to the index parameter suggests that we take
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k to be proportional to the size Aa of the cell:

ka = Aa/c,

where c is an unknown but whose value is the same for all cells in R. Thus, we
have

E[Ya] = βaAa/c,

and given a candidate zone Z, the null hypothesis to test absence of a hotspot
becomes

H0 : βa are the same, say β0 for all cells in R

against the alternative hypothesis

H1 : βa =

{
β′

1 for all cells a in Z
β′

0 for all cells a outside Z and β′
1 > β′

0.

Incidentally, for the reparametrized gamma response model, the coefficient of
variation square is

CV 2[Ya] = c/Aa,

which says that the relative variability of the response decreases as the cell size
increases and is a desirable property of the model.

The likelihood equation for estimating c0 (c under H0), β0, c1 (c under H1),
β′

1, and β′
0 take the form

∑

R

Aa [log(Aa/c0) − ψ(Aa/c0)]

=(
∑

R

Aa) log(
∑

R

ya/
∑

R

Aa) −
∑

R

[Aa log(ya/Aa)] (12.1)

β0 = c0

∑

R

ya/
∑

R

Aa (12.2)

∑

R

[log(Aa/c1) − ψ(Aa/c1)]

=(
∑

NZ

Aa) log(
∑

NZ

ya/
∑

NZ

Aa) + (
∑

Z

Aa) log(
∑

Z

ya/
∑

Z

Aa)

−
∑

R

[Aa log(ya/Aa)] (12.3)
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β′
0 = c1(

∑

NZ

ya/
∑

NZ

Aa) (12.4)

and

β′
1 = c1(

∑

Z

ya/
∑

Z

Aa), (12.5)

where
∑

R,
∑

Z and
∑

NZ denote summation of summands for all cells belonging
to R, all cells inside Z, and all cells outside Z, respectively, and ψ(·) is the
digamma function.

It is known that

g(t) = log(t) − ψ(t), t ≥ 0,

is strictly increasing with g(0) = 0 and g(∞) = ∞. Further analysis shows that
Equations (12.1) and (12.3) give unique solutions for c0 and c1, respectively. It
has been verified that the Newton–Raphson algorithm gives rapid convergence.
In the software implementation discussed in the next section, starting with
moment estimates as initial guesses, satisfactory convergence never took more
than ten iterations, and frequently took much fewer.

12.6.1 Monte Carlo simulation

As noted above, the gamma model is additive with respect to the index param-
eter so that, under the null hypothesis,

∑
R Ya is a gamma variable with param-

eters (β,
∑

R Aa/c) and the conditional distribution of (Z1, Z2, . . . , ZN ), Za =
Ya/

∑
Ya, given

∑
R Ya = t is Dirichlet with parameters (k1, k2, . . . , kN ). Thus,

to generate simulated y1, y2, . . . , yN we simulate generation of Z1, Z2, . . . , ZN

from the Dirichlet distribution with parameters (k1, k2, . . . , kN ) and compute
ya = tZa. To generate simulated Z1, Z2, . . . , ZN it is enough to generate
x1, x2, . . . , xN from independent gamma distributions with (β̂0, Aa/ĉ0) as their
respective parameters. Here ĉ0 and β̂0 are MLEs of c and β under the null
hypothesis that there is no hotspot. Once x1, x2, . . . , xN are generated, one
computes Za as xa/(x1 + x2 + · · · + xN ) and finally, simulated response ya as
ya = tZa.

12.7 Details of Software Implementation

The program was written in C++ using Microsoft Visual Studio 2005 on the
Windows platform. While the software can still be considered as a prototype,
consideration was given to two important objectives so that the current version
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Class adjacentNode 
friend class cellNode 
member data: 
int          cellID 
adjacentNode *next

Class region
friend class ULSTree 
member data:
int          numCELLS
cellNode     **cellList
double       sizeTotal
double       responseTotal

Class ULSNode 
friend class ULSTree 
member data: 
double      gValue 
double      exposedSizeTotal 
double      exposedResponseTotal 
ULSNode     *downLink 
zoneNode    *zonePtr 

Class ULSTree 
member data:
responseModel *M 
ULSNode     *TreeTop 
int         levelCount 
int         zoneCount 
zoneNode    **zoneList; 
int         *rankIndexZ 
double      maxZoneLoglikelihood 
double      maxZoneSize 
double      maxZoneSizeFraction 
double      exposedSizeTotal 
double      exposedResponseTotal 

Class zoneNode 
friend class ULSNode 
friend class ULSTree 
member data: 
int          zoneNumber 
zoneNode     *parent 
double       gValue 
adjacentNode *memberList 
int          memberCount 
double       sizeTotal 
double       responseTotal 
double       logLikelihood 
int          exceeders 
double       p_value 
zoneNode     *next

Class cellNode 
friend class  zoneNode 
friend class  region 
member data: 
int           cellID 
double        size 
double        response 

rate 
        *zonePtr 

            zoneNumber 
           visited 

    *adjacent 
           exposed 

These boxes show classes and member data 
that model the geospatial data and the ULS
tree structure.  The abstract class to model
the distribution of response data is shown
separately in Figure 5 

double
zoneNod
int
bool

bool
adjacentNode

Figure 12.4. Overall data structure.

may form a basis for developing a production model. The first objective was to
model the data structure to closely match the geostatistical model while using
the computer memory economically. The second was to make it easily extensible
if one wishes to add a new distribution to model responses or to deal with multi-
response data or to construct confidence sets for hotspots. Figure 12.4 shows
how the objectives were met. The figure shows essential data definitions. We
suppress details of data, input/output and utility functions/methods used for
debugging or that do trivial things.

The most basic object is cellNode, which is used to store the cell response
value y (identifier named response in the program), area or N (represented
by the identifier size), rate (y/N), pointer to the list of cells adjacent to the
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given cell, and a link to the zone containing the cell. The Boolean data member
visited is used to construct connected components during the building of the
ULS tree. The exposed flag is set to true when the cell becomes a member of a
connected zone during the ULS tree construction. The object region is an array
of cellNode’s. The object zoneNode represents a set of connected cells in the
region and is a linked list of adjacentNodes, one adjacentNode for each cell in
the zone, such that the y/N (that is, response/size) value for the cell is greater
than or equal to a given g value. Each zoneNode except the root zone has a link
to its parent. It also stores other attribute values of the zone. For each level of
the ULS tree there is one instance of the object ULSNode. It points to a linked
list of connected components/zones making up the level. Each instance of UL-
SNode has a link to the ULSNode instance representing the next level down
(towards the root level) except for the root level ULSNode instance. Each UL-
SNode instance stores the corresponding g value. This linked list of ULSNodes
is a ULSTree that we construct. Finally, one instance of the object ULSTree
points to the linked list of ULSNodes making up one ULSTree. There are two
ULSTree node instances, one pointing to the ULSTree constructed from the
observed responses and the other pointing to the ULSTree constructed from a
simulated copy of responses. For every simulation run we destroy the linked list
of ULSNodes that makes up the tree and create a new list for the new tree.
Both trees (observed and simulated) share the same storage to store observed
and simulated responses and adjacency data. This is possible since all the infor-
mation necessary for processing observed data is saved into the corresponding
ULSTree structure consisting of ULSNodes and zoneNodes. The second objec-
tive of making the software flexible enough so that a new response model can
be included in the program is achieved by means of an abstract class response-
Model, as shown in Figures 12.4 and 12.5. In order to include a new response

Abstract class responseModel
friend   class ULSTree;
virtual void   computeMLE (void) = 0;
virtual void   computeMLE (zoneNode *zone)=0;
virtual void   computeLogLikelihoodNull(void)=0;
//             computes loglikelihood under H0
virtual double getLogLikelihoodNull(void)=0;
virtual void   computeZoneLogLikelihoodRatio(zoneNode* zone)=0;
virtual void   SimulateData(void)=0; 
member data: 
int            numCELLS
cellNode       **cellList
int            *V              // array to sort response rates
double         sizeTotal       // for the region
double         responseTotal   // for the region

Figure 12.5. Abstract response model class.
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model one needs to create a new concrete class derived from the base abstract
class responseModel and instantiate an object of the new concrete class in the
main program on the lines of the currently available concrete classes for the
binomial, Poisson and gamma models. The main program and the algorithm
used to construct the ULSTree are outlined next.

12.8 Construction of the ULS Scan Tree

Our algorithm to construct the ULS tree begins with sorting the array of n
cells representing the region in descending order by the g value (rate) using
a sort index V , that is, V [i] is the cellID with the i-th largest g value, for
i = 0, 1, 2, . . . , n − 1. Here n is the number of cells in the region. The following
algorithm expressed in pseudocode returns a pointer TreeTop to a linked list
of ULSNode’s. The number of nodes in this linked list will be the number of
distinct g values obtained from the data plus 1. The first node is only a header
node. Each of the remaining nodes in this list will point to the list of connected
zones of the ULSTree occurring at one particular level corresponding to one
distinct g value.

Algorithm construct ULSTree

oldgvalue = infinity
TreeTop = a new ULSNode with g value set to infinity.

//points to an empty list of zones
//serves as the header node for list of ULSNode

currentU = TreeTop
zoneCount = 0 // count of the zones created
create an empty stack // used in computation of connected

//component below
for i = 0 to n − 1 {

currentcellID = the cellID whose rank is i; call it currentCell
newgvalue = gvalue of currentcellID
if currentcellID is exposed

// do nothing, the cell is already exposed, continue with next
// i value

else { // we have either a new level or we continue with the same
// level in either case we have new connected zone

if ( newgvalue < oldgvalue ) { // we have a new level
newU = new ULSNode
set down link of currentU to newU
currentU = newU
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clear visited tag of all cellNodes
}
// we have new zone
Z = new zoneNode; initialize member data of Z
Increase zoneCount by one
Make currentcellID a member of Z - this also sets exposed tag
to true
append Z to the linked list of zones belonging to currentU
ULS Node
//at this point we do the standard depth-first traversal of all
//cells reachable from currentcellID and build up Z
//as a connected zone that contains currentcellID
// and all cells that are reachable from currentcellID
// whose gvalue is greater than or equal to newgvalue
set visited tag of currentCell
push currentCell
while (stack is not empty) {

cellC = pop()
for each neighbor neighborCell p of cellC do

if (visited tag of neighborCell is clear)
if (g value of neighborCell < newgvalue)

set visited tag of neighborCell
else if (g value of neighborCell is equal newgvalue) {

augment current zone Z with neighborCell
update all stats of the current zone Z
set visited tag of neighborCell
push neighborCell

}
else if (the neighborCell is not already in Z)

// case g value of neighborCell > newgvalue
set parent link of zone of neighborCell to Z
augment Z with all cells in the child zone

}
} // end of while stack is not empty

}
oldgvalue = newgvalue

} // end of for i = 0 to n − 1
Update totals for the root level, current.
// Finally, we construct an array of pointers pointing to each zone in the
//tree in the order in which zones were created for an easy access
// to the zones zoneList is an array of pointers to zoneNode
i = 0;
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currentU = TreeTop
while (curentU is not null) {

Z = current’zonePtr
while (Z is not null) {

zoneList[i] = Z
i = i + 1
Z = Z → next

}
currentU = currentU→downlink

} // end of algorithm constructULSTree

12.9 A Case Study

In this section we present an application of the gamma response model to data
collected to study biodiversity in the state of Pennsylvania. The section also
illustrates input data and its format.

12.9.1 Description of Pennsylvania hexagonal
biodiversity data

For the study, hexagonal tessellation of the state was used. The total number
of hexagons covering the state is 211. The area of each hexagon is 635 sq km.
The entire dataset consists of measurements, for each hexagon, of four different
variables reflecting biodiversity or characteristics favorable to biodiversity. The
four variables are bird species count, mammal species count, standard devia-
tion of elevation, and percentage of the area covered by forest. Out of the 211
hexagonal areas in Pennsylvania, Table 12.2 shows the first five rows of the
data for all the four variables. We will use the elevation data to locate highly
rough terrain. For the purpose of measuring the elevation standard deviation a
uniform grid of points was overlaid on the hexagonal tessellation. The elevation
standard deviation is based on elevation measurements at these grid points.

Table 12.2. Biodiversity data for Pennsylvania hexagonal tessellates.

HexID BirdSp MamlSp ElevSD PctForst
1714 55 34 11 35.4
1827 58 37 32 84.3
1828 116 37 27 50.3
1829 96 34 17 25.3
1941 86 37 51 100.0
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12.9.2 Pennsylvania elevation hotspot and illustrative
data items and format

The gamma distribution appears to be an appropriate model to treat the eleva-
tion data. First we shall square each standard deviation to obtain the variance
of the elevation measurements. Under the assumption of normality, the chi-
square distribution is ideally suited for the transformed data. Even if basic
measurements deviate from normality, the gamma distribution seems to be an
acceptable model. Figure 12.6 shows only the first five lines of the data file
actually used as input to the program. The input text file needs one line for
each cell in the region. The first entry in each line is the cell identification num-
ber (cellID). The current version of the program requires that the cellID’s be
sequentially numbered starting with 0. For the current dataset, HexID’s had
to be translated sequentially into 0, 1, 2, . . . , 210. The second entry in each line
is the “size” of the cell. The actual area of each hexagon is 635 sq km, but
since the unit of measurement of size is irrelevant, we use 1 as the area of each
cell. The third entry in each line is the value of the response variable for the
cell. For Figure 12.6, it is the square of the elevation standard deviation so
that the gamma model can be applied. The subsequent entries in each line are
identification numbers of cells that are adjacent to the cell. Entries in each line
are to be separated by one or more blank spaces or tabs. The end of line marks
the end of data for the current cell. The format of the input data file described
here remains the same irrespective of the response model used.

In addition to the basic data file in the form as shown in Figure 12.6, the user
needs to specify the threshold, the maximal size that a potential hotspot could
have. The threshold is a proper fraction relative to the size of the entire region.
For the Pennsylvania data, we specified it as 0.50 for the elevation hotspot (as
well as for the forest cover hotspot). In addition to the program run to detect
the hotspot with respect to the high elevation standard deviation, the program
was also run separately to detect the “coldspot,” that is, the hotspot with
respect to the low values of the elevation standard deviation, again with the
threshold fraction of 0.50. The idea is to see if certain marginal hexagons qualify
according to the program to be included in a hotspot as well as in a coldspot. An
occurrence of one or more cells of this type could present a dilemma to decision
makers. In our case three such cells were detected. The program outputs all

Figure 12.6. Input data file for elevation hotspot. The size is 1 here since all
cells have the same area.



ULS Scan Statistic 267

Figure 12.7. Elevation hotspot is in gray.

Figure 12.8. Topographical map of Pennsylvania.

hotspots, that is, the candidate zones with a p-value of 0.05 or less. With a
little manual processing and inspection, by working towards the leaf nodes of
the ULS tree, a maximal hotspot with no intersection with the coldspot was
discovered. This hotspot is shown in Figure 12.7.

We show in Figure 12.8 a topographical map of Pennsylvania to facilitate
comparison between the actual central high ridge terrain where rougher land-
scape is expected and the ULS hotspot.

12.10 Conclusions

We have presented the ULS scan statistic for geospatial hotspot detection and
its object-oriented software implementation. The ULS scan statistic provides an
effective means to handle arbitrarily shaped hotspots with significant reduction
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of the parameter space. The software implementation contains an object rep-
resenting the gamma response model, which is a continuous model, in addition
to objects representing the more traditional discrete response models, binomial
and Poisson. The flexibility of the software makes it convenient to introduce
objects representing additional response models. A comparison between the
gamma and the binomial response models with respect to the computational
activity shows that for the gamma model construction of the ULS tree and like-
lihood calculations are more computer intensive, while Monte Carlo simulation
is more so for the latter. Finally, a case study illustrating application of the
gamma response model has been presented.
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False Discovery Control for Scan Clustering

Marco Perone-Pacifico1 and Isabella Verdinelli1,2

1Department of Statistics, Sapienza University of Rome, Rome, Italy
2Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract: This chapter describes and summarizes methods for identifying the
presence of clusters in a random field. The approach is based on controlling
the fraction of false discoveries and considers a density estimator as the test
statistic. A procedure called shaving is adopted for correcting the bias of the
density estimator. This type of scanning for cluster identification does not use a
window of fixed size; the role of the window size is played by the bandwidth of
the kernel estimator. Clusters obtained using different bandwidths are combined
in order to increase the detection power of the procedure.

In this chapter we stress some more intuitive aspects of these procedures
and present some applications.

Keywords and phrases: False discovery control, false discovery rates, multi-
ple hypothesis testing, scan clustering, kernel density estimators

13.1 Introduction

Identifying unusual clusters, among events scattered over space or time, is a
problem that arises in a wide variety of applications. Typical examples include
localization of centers of infection in epidemiology or, in the analysis of magnetic
resonance images, detection of activity in different regions of the brain.

What constitutes an event and a cluster depends on each application, but
from a statistical perspective, events are data points drawn from a spatial or
temporal point process, and clusters are regions where the points are more
dense.

An important scan statistics method for cluster detection [Glaz, Naus, and
Wallenstein (2001), Patil and Taillie (2003)] counts the number of events Ns

observed in a fixed window (such as a rectangle or circle) centered at each s ∈ S,
where S is the domain of the point process. The null hypothesis that there are
no clusters is tested with the statistic T = sups∈S Ns, and the p-value for T
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is computed under the uniform distribution on S. The null is rejected if the
p-value is not greater than the significance level.

The window scan clustering presented above gives information about the
existence of clusters, but it neither identifies their number nor their location.
For finding and localizing clusters, Perone-Pacifico et al. (2004, 2007) presented
a method based on performing multiple tests in a random field’s domain. The
problem of controlling the type I error, the main task in multiple testing proce-
dures, in those papers is approached through bounds on the fraction of rejection
errors.

As in standard multiple testing problems, controlling the fraction of errors is
an alternative to the traditional approach of controlling the overall probability
of type I errors, also denoted as the family-wise error rate. In fact, controlling
the family-wise error rate provides a strong guarantee, but it can be conservative
in the sense of low power.

In Section 13.2 we present different approaches to controlling false rejections
in multiple testing and discuss their advantages and disadvantages. Section 13.3
describes a method proposed by Perone-Pacifico et al. (2004, 2007) for identify-
ing and localizing clusters in a point process. Section 13.4 shows how to correct
the clusters’ distortion due to the kernel estimator’s bias, and Section 13.5
illustrates how to combine information across different bandwidths while main-
taining type I error control. Section 13.6 provides a few numerical examples.

13.2 The Basics of Multiple Testing

Single test procedures are usually based on rejecting the null hypothesis when
the p-value is smaller than or equal to the desired significance level α. This
guarantees that the probability of a type I error is not greater than α.

Suppose now that m null hypotheses H0,1, . . . , H0,m need to be tested and,
for s = 1, . . . , m, denote by ps the p-value relative to the single test of H0,s.

A multiple test procedure that rejects all nulls corresponding to p-values
not greater than α would guarantee that each null hypothesis is tested at level
α, but it could result in a very high family-wise error rate (overall probability
of false rejections)

P(at least 1 false rejection) = P(
m⋃

s=1

false rejection of H0,s) > α.

Hence, to ensure control on type I errors, it is necessary to reduce the
significance level of the single tests. This can be achieved by rejecting all
null hypotheses whose corresponding p-values are either not greater than α/m
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(Bonferroni correction) or not greater than the α-quantile of the distribution,
under all the null hypotheses, of the minimum p-value mins=1,··· ,m ps.

The Bonferroni correction is simpler but, being based on the Bonferroni
inequality, usually results in family-wise error rates much smaller than their
target value. The second correction gives sharper type I error control but, since
it requires the null distribution of the minimum p-value, it can be difficult
to implement in the case of dependent test statistics. Both these procedures
guarantee strong control of type I errors, namely that the resulting family-wise
error rate is bounded by α. Conversely, they are not of practical relevance for a
large number m of null hypotheses, since the low significance level of the single
tests gives too little power to the whole procedure.

Based on these and other considerations, Benjamini and Hochberg (1995)
suggested a different point of view on the problem of multiplicity and introduced
a multiple testing error measure alternative to the family-wise error rate. This
quantity, called the false discovery rate, is the expected proportion of type I
errors among all rejected null hypotheses. Benjamini and Hochberg (1995) also
proposed a multiple testing procedure that rejects all null hypotheses whose
corresponding p-values are not greater than a data-dependent threshold. This
procedure is proved to control the false discovery rate below the target level and
to be often more powerful than traditional methods based on the family-wise
error rate.

Since the pioneering paper of Benjamini and Hochberg, many contributors
have proposed alternative error criteria and multiple testing procedures for
different situations. We briefly review here only the aspects that will be useful
to present our clustering procedure.

Genovese and Wasserman (2004) extended the theory by introducing the
realized false discovery rate (called false discovery proportion in later papers):
in a test procedure that rejects H0,s for all s ∈ R, the false discovery proportion
is defined as the fraction of type I errors

Γ(R) =
#(R ∩ S0)

#R
,

where S0 is the unknown set of indices whose corresponding null hypotheses
are true and # is the counting measure. The false discovery proportion Γ is
conventionally set to be zero when #R = 0.

The false discovery rate of Benjamini and Hochberg (1995) is the expected
value of Γ,

FDR(R) = E(Γ(R)).

As an alternative type I error measure, Genovese and Wasserman (2004) pro-
posed the false discovery exceedance as the tail probability of false discovery
proportion
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FDX(R) = P(Γ(R) > γ),

for given γ ∈ (0, 1). Clearly, controlling the false discovery exceedance instead
of the false discovery rate gives a stronger prevention from large fractions of
type I error.

The same paper also gave a unified formulation of the multiple testing theory
in terms of a threshold for p-values: a multiple test is equivalent to choosing a
threshold t and rejecting H0,s for all s ∈ Lt, where

Lt = {s : ps ≤ t} (13.1)

is the set of indices whose corresponding p-values are not greater than t. For
example, the uncorrected multiple testing corresponds to choosing t = α, and
the Bonferroni method corresponds to t = α/n.

In this framework, choosing a multiple testing procedure is equivalent to con-
trolling features of the random process Γ(Lt), and choosing the (possibly data-
driven) threshold T that satisfies the desired criterion. Genovese and Wasserman
(2004) proposed several procedures for choosing confidence thresholds to bound
the false discovery exceedance below a target level α.

A simple method for controlling false discovery exceedance is presented in
van der Laan, Dudoit, and Pollard (2006). This method, called augmentation,
is based on multiple testing procedures that control the family-wise error: let
R be a rejection set that controls the family-wise error rate at level α and let
A be any set of indices, disjoint from R, such that

#A ≤ γ

1 − γ
#R.

Rejecting all the nulls H0,s with s ∈ A ∪ R controls the false discovery ex-
ceedance at level α. Besides its operational relevance, this shows that testing
procedures based on family-wise error rate are more conservative than those
based on false discovery exceedance.

In the following sections we show how multiple testing can be extended to
the continuous case (i.e. with uncountably many null hypotheses) and can be
used to localize clusters in a field while keeping type I errors under control.

13.3 The Method

Perone-Pacifico et al. (2004, 2007) formalized a typical scan clustering problem
as follows: the observations (X1, . . . , Xn) are drawn from a point process on the
space S ⊂ R

d with some intensity function ν. Clusters are regions in S with
higher intensity, hence ν is assumed to be constant ν(s) = ν0 for all s in an
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unknown subset S0 ⊂ S, while ν(s) > ν0 for all s ∈ S1 = Sc
0. Each connected

component of S1 is a cluster.
In order to detect and localize clusters, one can test for each s ∈ S the local

hypothesis

H0,s : s ∈ S0 versus H1,s : s �∈ S0.

This rephrases the clustering problem in terms of testing simultaneously un-
countably many null hypotheses.

Denoting by f(s) = ν(s)∫
S ν(s) ds

the density of X1, . . . , Xn, the hypotheses can
also be formulated as

H0,s : f(s) =
ν0∫

S ν(s)ds
versus H1,s : f(s) >

ν0∫
S ν(s)ds

. (13.2)

The value of the integral
∫
S ν(s)ds is not known, but it is not less than

ν0 · λ(S), where λ denotes the Lebesgue measure. This consideration allows us
to construct a conservative clustering procedure, testing

H0,s : f(s) ≤ 1
λ(S)

versus H1,s : f(s) >
1

λ(S)
. (13.3)

Note that testing the hypotheses in (13.3) can be considerably more conservative
than testing (13.2) since, when there is an abundance of clusters, ν0∫

S ν(s)ds
can

be much smaller than 1
λ(S) .

13.3.1 False discovery control for uncountably many tests

The extension to the continuous case of multiple testing theory based on false
discovery control is, at least in theory, almost straightforward: in a test proce-
dure that rejects H0,s for all s ∈ R, the false discovery proportion is defined as

Γ(R) =
λ(R ∩ S0)

λ(R)
.

In the continuous case the test statistic Z is a random process over S. When
the null distributions of Z(s) are the same for all s ∈ S, rejection regions can
be defined either through thresholds for p-values as in (13.1) or in terms of the
test statistics

Lt = {s ∈ S : Z(s) ≥ t}. (13.4)

Perone-Pacifico et al. (2004) proposed a testing procedure that controls false
discovery exceedance and determined a confidence threshold T such that, for a
given 0 < α < 1 and 0 < γ < 1,

P(Γ(LT ) ≥ γ) ≤ α. (13.5)



276 M. Perone-Pacifico and I. Verdinelli

The method consists in finding a confidence superset U that contains S0

with probability at least 1− α. The confidence superset U is obtained through
a sequence of tests over subsets of the field’s domain

U =
⋃{

A ⊂ S : P0

(

sup
s∈A

Z(s) > sup
s∈A

z(s)
)

≥ α

}

, (13.6)

where z denotes the observed value of the test statistic Z and P0 denotes the
distribution of Z under the global null hypotheses that f(s) = 1

λ(S) for all s ∈ S.
From (13.6) it seems that the determination of U requires considering ev-

ery subset of S. Perone-Pacifico et al. (2004, Sections 2.1 and 2.2) presented
an algorithm that reduces the number of sets A for which p-values must be
computed to a level that is feasible in practice.

The set U permits us to define a confidence upper envelope for the false
discovery proportion

Γ(Lt) =
λ(U ∩ Lt)

λ(Lt)
,

with the property that

P
(
Γ(Lt) ≤ Γ(Lt) for all t

)
≥ 1 − α,

so that a threshold that satisfies (13.5) can be obtained as

T = inf{t ∈ R : Γ(Lt) ≤ γ}. (13.7)

The same authors, in Perone-Pacifico et al. (2007), extended to the con-
tinuous case the augmentation procedure, initially proposed in van der Laan,
Dudoit, and Pollard (2006) for finite S. They proved that if R controls the
family-wise error rate at level α and A is any set, disjoint from R, with λ(A) ≤

γ
1−γ λ(R), then rejecting all null hypotheses in

augγ(R) = R ∪ A

controls the false discovery exceedance at the same level α. Even if the result is
valid for any set A with the proper size, it is advisable to let the augmentation
set A contain the highest possible values of the test statistic.

In the same paper it is proved that the threshold in (13.7) can be obtained
through augmentation, considering as the initial R the complement of the su-
perset U defined in (13.6). This observation is crucial for dealing with the bias
problem.
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13.3.2 The test statistic

The scan clustering problem has been formalized in (13.3) as a multiple test
on the value of a density, hence the most natural test statistic is a density
estimator. We consider the kernel density estimator f̂H ,

f̂H(s) =
1
n

n∑

i=1

KH(s − Xi), (13.8)

where we dropped n from f̂H for ease of notation. The kernel KH in (13.8) is
based on a symmetric density ϕ, and it is defined for any s ∈ S and for any
non-singular diagonal bandwidth matrix H as

KH(s) =
1

det H
ϕ(H−1s). (13.9)

In order to allow combining density estimators over many bandwidths, an
asymptotic approximation to the distribution of f̂H is needed that holds uni-
formly over H and s. Theorem 4 in Perone-Pacifico et al. (2007) provides such
a result, extending the work of Chaudhuri and Marron (2000) to the case
det H → 0 as n → ∞.

For a fixed bandwidth matrix H, the asymptotic distribution of f̂H is Gaus-
sian with expected value and covariance given by

E(f̂H(s)) =
∫

KH(s − x)f(x)dx

C(f̂H(s), f̂H(r)) =
1
n

(∫

KH(s − x)KH(r − x)f(x)dx

−E(f̂H(s))E(f̂H(r))
)
.

Note that the f̂H is biased since E(f̂H) �= f .
The test statistic process used for cluster detection, for a given bandwidth

matrix H, is

ZH(s) =
f̂H(s) − 1

λ(S)

σH(s)
,

where σH(s) is the standard deviation of f̂H(s).
From the theorem quoted above, one can obtain the asymptotic null distri-

bution of the test statistic: under the null hypothesis ZH(s) is approximately a
normal random variable with mean less than or equal to 0. The variance σ2

H(s)
of the process depends on the unknown density, but it can be either estimated
from the data or approximated by the variance under the global null hypothesis,

σ2
H(s) ≈ 1

n

(
1

λ(S)

∫

KH(s − x)2dx − 1
λ(S)2

)

.
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In order to determine the set U in (13.6), it is necessary to evaluate the null
distribution of sups∈A ZH(s). The tail probability P0 (sups∈A ZH(s) > z) can be
approximated with the formulas in Adler (2000) or Worsley (1994, 1995) based
on the expected Euler characteristic. Perone-Pacifico et al. (2004) used instead
an approximation based on Piterbarg (1996, Theorem 7.1) that seems to be
more accurate when the set A is not convex. For normal kernels, under the
global null hypothesis f(s) = 1

λ(S) , the approximation to the tail probability is

P0

(

sup
s∈A

ZH(s) > z

)

�

λ(A)

(4π)
d
2 det H

(
λ(S)

λ(S) − (4π)
d
2 det H

) d
2 ( z

σ

)d (
1 − Φ

( z

σ

))
,

where Φ is the univariate standard normal cumulative distribution function.

13.4 Clusters Shaving for Bias Correction

As mentioned, the kernel density estimate (13.8) is biased, thus a test based on
f̂H (or, equivalently, on ZH) does not really test (13.3), but it tests the biased
null hypotheses

H0,s : fH(s) ≤ 1
λ(S)

versus H1,s : fH(s) >
1

λ(S)
, (13.10)

where

fH(s) = E[f̂H(s)] =
∫

KH(s − x)f(x) dx �= f(s).

Figure 13.1 illustrates the effect of bias in cluster detection: the expected
kernel density estimator (dashed lines) distorts the clusters, and the distortion
increases with the bandwidth H (compare panels A and B). In particular, the
clusters defined with respect to fH are larger than those defined with respect
to f . This could lead to an excess of false discoveries. Thus, some adjustment
is needed to guarantee control of false discoveries at the prescribed level.

Since the goal here is to test for identifying locations of high intensity, bias
correction is more feasible than in density estimation, because we only need to
adjust the bias at the edges of level sets. Moreover, the types of errors one can
make due to bias are asymmetric in nature: a bias that shrinks clusters does
not increase the false discovery proportion, only biases that enlarge clusters can
increase type I errors.
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A: small bandwidth B: large bandwidth

Figure 13.1. Bias in kernel density estimation: The solid line is the true
density f . The dashed line is the expected kernel density estimator fH , for
small (A) and large (B) bandwidths.

The bias correction procedure proposed in Perone-Pacifico et al. (2007),
called shaving, is based on the augmentation procedure presented in Section
13.3. For a fixed bandwidth matrix H, the bias correction can be schematically
summarized as follows:

1. let RH be a rejection set controlling the family-wise error rate at level α
for the biased null hypotheses in (13.10) (for instance, one can take RH

to be the complement of the superset U in (13.6));

2. let CH be the support of the kernel KH ;

3. consider the shaved version of RH as the Minkowsky difference between
RH and CH

sh(RH) = {s ∈ RH : s + CH ⊂ RH} ;

4. augment sh(RH) as described in Section 13.3, the resulting clusters are
the connected regions of the set augγ(sh(RH)).

Perone-Pacifico et al. (2007, Theorem 5) proved that under mild separation
conditions on the clusters, if the kernel has compact support, then sh(RH)
controls, family-wise error rate at level α and augγ(sh(RH)) controls the false
discovery exceedance, i.e.

P(Γ(augγ(sh(RH))) ≥ γ) ≤ α.

The condition on compactness of the kernel’s support does not seem to be
crucial. Perone-Pacifico et al. (2007) used Gaussian kernels, which have un-
bounded support, taking CH in step 2 to be an ellipse with radii equal to the
bandwidths.
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A: unshaved clusters B: shaved clusters

Figure 13.2. Bias correction: Vertical lines delimit the true clusters. Horizontal
lines show not bias-adjusted (A) and bias-adjusted (B) rejection regions for
different bandwidths.

Note that the rejection set augγ(sh(RH)) is not necessarily a level set defined
through some threshold as in (13.4). This set might contain some points whose
corresponding value of the test statistic is lower than other points that are not
in the set.

For the example of Figure 13.1, Figure 13.2 shows the rejection regions, both
bias-adjusted (panel B) and not bias-adjusted (panel A), as a function of the
bandwidth (y-axis). Due to the increasing bias of the density estimates, the size
of the unshaved rejection region (A) increases with the bandwidth. This results
in extra false discoveries. In the shaved regions (B) most extra false discoveries
are eliminated although, especially for large bandwidths, bias adjustment yields
low power. We will deal with this problem in the following section.

13.5 Power Increase Through Multiple Bandwidths

Bandwidth selection is always one of the main concerns when dealing with
kernel density estimates. In density estimation, one usually tries to choose H to
trade off bias and variance to obtain optimal squared error rates of convergence.
In the clustering context this might not be practical.

Instead of choosing a bandwidth, Perone-Pacifico et al. (2007) suggested
combining information across different bandwidths. Their procedure is based
on repeating steps 1–3 in Section 13.4 for k different bandwidths H1, . . . , Hk

starting with sets RH which controls the family-wise error rate at level α/k
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instead of α. The final rejection region is obtained through augmentation of the
union of all the shaved regions

R = augγ

⎛

⎝
k⋃

j=1

sh(RHj )

⎞

⎠ .

Perone-Pacifico et al. (2007, Theorem 6) proved that the resulting rejection
set R controls false discovery exceedance and has power close to the optimal
with high probability, where the measure of power for a rejection region R is

π(R) =
λ(R ∩ S1)

λ(S)
.

In their Remark 6, they also give some hints on how to choose the set of band-
widths.

13.6 Examples

This section shows the results obtained by applying the methods described in
the previous sections to two-dimensional data sets. All the data sets considered
consist of points scattered in the unit square [0, 1]2 (in the cosmological data
example, the data were normalized). Smoothing was performed using Gaussian
kernels with diagonal bandwidth matrix

H = h

(
σ̂1 0
0 σ̂2

)

.

For the parameter h, k = 20 equally spaced values were considered, ranging
between the pixel size 1/256 and the oversmoothing bandwidth hOS = 1.1 ×
n−1/6.

In all cases, the goal was to control false discovery exceedance with α = 0.05
and γ = 0.1.

In the two simulated examples the detected clusters are compared with the
true ones, and the actual false discovery proportion and power are computed.

13.6.1 Mixture of uniforms

The first data set consists of n = 15,000 points from a mixture of uniform
densities over [0, 1]2,

f(s) =
256
466

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3 s ∈ clusters 1 and 6
6 s ∈ clusters 2 and 5
9 s ∈ clusters 3 and 4
1 elsewhere.

(13.11)
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Figure 13.3. Contour plot of density in (13.11).

The generating density is shown in Figure 13.3, where the clusters are enumer-
ated clockwise from the top left.

The left panels (A, C, and E) in Figure 13.4 show the clusters aug(RH)
detected with small, intermediate, and large bandwidths, respectively, without
bias correction. The shaving procedure removes most false discoveries, as shown
in panels B, D, and F, which display the sets aug(sh(RH)). These plots confirm
that small bandwidths produce tests with low power due to the high variance of
the kernel estimate, while for large bandwidths the amount of shaving reduces
power again.

Figure 13.5 A shows the behavior of the false discovery proportion for the
unshaved and shaved rejection regions. Clearly, the unshaved regions have far
too many false discoveries, while the shaved ones always keep that measure
under control. Plot B in the same figure shows that the loss of power due to
shaving is small with respect to the reduction of the false discovery proportion.

Finally, Figure 13.6 shows the clusters detected using the procedure de-
scribed in Section 13.5. The final set has no false discoveries, and its power is
higher than the power obtained at each single bandwidth.

13.6.2 Smooth density with diagonal contours

The second simulated data set consists of n = 15,000 observations generated
from two bivariate normal densities over a uniform background,

f(s) ∝

⎧
⎪⎨

⎪⎩

ϕ2(s, μ1, Σ1) s ∈ cluster 1
ϕ2(s, μ2, Σ2) s ∈ cluster 2,

1 elsewhere
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A: unshaved clusters, small h B: shaved clusters, small h

C: unshaved clusters, intermediate h D: shaved clusters, intermediate h

E: unshaved clusters, large h F: shaved clusters, large h

Figure 13.4. Unshaved (left panels) and shaved (right panels) rejection regions
for small, intermediate, and large bandwidths.
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A: false discovery proportion B: power

Figure 13.5. False discovery proportion (panel A) and power (panel B) for
unshaved (dashed) and shaved (solid) rejection regions as functions of band-
width.

Figure 13.6. Clusters detected combining different bandwidths.

where ϕ2(·, μ,Σ) denotes the bivariate normal density with mean μ and covari-
ance matrix Σ. In this example the parameters are

μ1 =
(

0.4
0.6

)

Σ1 =
1
36

(
1 0.9

0.9 1

)

and

μ2 =
(

0.7
0.3

)

Σ2 =
1
72

(
1 0
0 1

)

and the resulting density is shown in Figure 13.7 A.
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A: true density B: detected clusters

Figure 13.7. True density (A) and detected clusters (B). In plot B, the solid line
represents the conservative null hypothesis in (13.3), the dashed line the null
in (13.2).

Also in this case, the final set, shown in Figure 13.7 B, does not have false
discoveries, and its power is higher than the power obtained at each single
bandwidth.

The clusters detected are much smaller than the true ones. This is partially
due to the smoothness of the density, which makes the clusters less pronounced,
but also to the fact that we are actually testing the conservative hypotheses
(13.3) instead of the true nulls (13.2). In fact, looking at the level set of the
density at ν0∫

S ν(s)ds
(dashed line in Figure 13.7 B), the clusters identified are still

smaller than the true ones, but the difference is less relevant.

13.6.3 Cosmological data

Galaxy maps present a network of filaments of various sizes, called the cosmic
web, with relatively empty voids between them and with clusters of galaxies
located at the intersection of filaments. Astronomers are interested in studying
the cosmic web, as it still retains a direct link to the matter distribution in
the primordial universe and thus contains a wealth of direct information on the
cosmic structure formation process.

Figure 13.8 A shows galaxies in a two-dimensional “slice” of the Millennium
run semi-analytic galaxy catalogue, publicly available online at http://www.
mpa-garching.mpg.de/galform/agnpaper. Figure 13.8 B shows the clusters
detected using the method presented in the previous sections. Clearly, in this
case there is no way to compare the clusters detected with the true ones, and
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A: observed data points B: detected clusters

Figure 13.8. Observed data points (A) and detected clusters (B).

the evaluation of neither false discoveries nor power is possible, but it seems
that the procedure has caught many of the clusters present.
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Abstract: We show how martingale techniques (both old and new) can be used
to obtain otherwise hard-to-get information for the moments and distributions
of waiting times for patterns in independent or Markov sequences. In particular,
we show how these methods provide moments and distribution approximations
for certain scan statistics, including variable length scan statistics. Each general
problem that is considered is also illustrated with a concrete example confirming
the computational tractability of the method.
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14.1 Introduction

The martingale method for waiting times for patterns in an independent se-
quence was pioneered in Li (1980), and in the intervening time many variations
on the original idea have been developed. Our first aim here is to survey these
developments using the unifying language of gambling teams. We further show
how the martingale method can be extended to cover a great variety of prob-
lems in applied probability, including the occurrence of patterns in Markov
sequences. One of the key intermediate steps is the development of a clear un-
derstanding of the distribution of the first time of occurrence of a pattern from
a finite set of patterns. It is this general problem that leads to methods that
are applicable to the theory of scan statistics.
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14.2 Patterns in an Independent Sequence

By {Zn, n ≥ 1} we denote a sequence of independent and identically distributed
(i.i.d.) random variables with values from a finite set Ω = {1, 2, . . . , M}, which
we call the process alphabet. To specify the distribution of Zn, we then set

p1 = P(Zn = 1) > 0, p2 = P(Zn = 2) > 0, . . . , pM = P(Zn = M) > 0.

By a pattern A we mean a finite ordered sequence of letters a1a2 · · · am over the
alphabet Ω. The random variable that is of most interest here is τA, the first
time that one observes the pattern A as a run in the sequence {Zn, n ≥ 1}. Our
main goal is to provide methods—and often explicit formulas—for the expected
value, the higher moments, and the probability generating function of τA.

14.2.1 A gambling approach to the expected value

We begin with a construction that originates with Li (1980) and that we frame
as a gambling scheme. Consider a casino game that generates the sequence
{Zn, n ≥ 1}, say, as the output of a biased roulette wheel. Next consider a
sequence of gamblers who arrive sequentially so that the nth gambler arrives
right before the nth round when Zn is generated. We also assume that this
casino pays fair odds, so that a dollar bet on an event that has probability p
would pay 1/p dollars to a winner (and zero to a loser).

Now we consider the strategy that is followed by the nth gambler, the one
who arrives just before the nth round of play. For specificity, we first consider
the gambler who enters just before the first round. This gambler bets one dollar
that Z1 = a1. If Z1 is not a1, the gambler stops betting after having lost one
dollar. If Z1 yields a1, the gambler wins 1/P(Z1 = a1). He then continues to
play, now betting his entire capital on Z2 = a2. If he loses, he stops gambling;
otherwise, he increases his bet by the factor 1/P(Z2 = a2). The gambler then
continues in the same fashion until the entire pattern A is exhausted or until
he has lost his original dollar, whichever comes first.

If the first gambler is very lucky and pattern A is observed after m rounds,
the gambler stops and has total winnings of

(

P(Z1 = a1)P(Z2 = a2) × · · · × P(Zm = am)
)−1

dollars. Otherwise, the first gambler simply loses his initial bet of $1.
In the meanwhile, additional gamblers enter the casino at successive times

2, 3, ... and each of these gamblers uses the same strategy that was used by the
first gambler. That is, he bets successively on the letters of the pattern, each
time “letting his stake ride.” We then let Xn denote the total net gain of the
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casino at the end of the nth round of play. The game was fair at each stage, so
the stochastic process {Xn, σ(Z1, ..., Zn)} is a martingale.

Now consider the random variable XτA ; this is the casino’s net gain at the
time when the pattern A is first observed. This random variable is well defined
since τA is finite with probability one. In fact, it is easy to show that τA is
bounded by a geometrically distributed random variable, so by Wald’s lemma
[or the optional stopping theorem, Williams (1991, p. 100)], we have the basic
relation

E(XτA) = 0.

Fortunately, we know more about XτA . Specifically, we know that

XτA = τA − W,

where W is the total amount of money that has been won by gamblers by time
τA. The key observation is that W is not a random variable. The value of W is
fully determined by the way in which the pattern A overlaps with itself.

Moreover, it is reasonably easy to calculate W . For a gambler to have any
capital left when pattern A is first observed, that gambler needs to still be
gambling, so in particular the gamblers who entered the game before τA −m +
1 must have all lost their dollar. The gambler who enters the game at time
τA−m+1 is the lucky guy who wins the most, but also some of those gamblers
who entered after him may have some amount in their pockets.

The total amount of money that these few players have is represented by
a certain measure of the overlapping of pattern A with itself. To describe this
measure, we first consider 0 ≤ i, j ≤ m and set

δij =
{

1/P(Z1 = ai), if ai = aj ,
0, otherwise.

With this notation we then find the explicit formula

W = δ11δ22 · · · δmm + δ21δ32 · · · δmm−1 + · · · + δm1, (14.1)

so from our earlier observation that E(XτA) = 0, we find

E(τA) = δ11δ22 · · · δmm + δ21δ32 · · · δmm−1 + · · · + δm1. (14.2)

The relation (14.2) really is quite explicit, and it provides an easily applied
answer to our first question, say, as one sees in the following example.

Example 14.2.1 Let Ω = {1, 2} and consider the pattern 1121 of length 4.
We then have

E(τA) = W = (p1 × p1 × p2 × p1)−1 + (p1)−1.
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14.2.2 Gambling on a generating function

By a natural modification of the preceding method, one can obtain a formula
for the generating function of τA. The trick is to change the initial bet for each
gambler. Now instead of $1, the nth gambler starts his betting by placing a
bet of size αn, where 0 < α < 1. Let ατAW (α) be the total winnings of all the
gamblers by time τA. As before, we let Xn denote the casino’s gain at the end of
the nth round and {Xn} is a martingale. For convenience, we denote the total
accumulated winnings of the gamblers when the pattern A is first observed by
ατAW (α). Again, the key is that we have a nice relation for the casino’s net
gain XτA . Specifically, we have

XτA = α1 + α2 + · · · + ατA − ατAW (α)

= α
ατA − 1
α − 1

− ατAW (α)

= ατA

(
α

α − 1
− W (α)

)

− α

α − 1
.

As in the previous subsection, W (α) is not a random variable, and it has an
explicit representation:

W (α) = δ11δ22 · · · δmm−1/αm−1 + δ21δ32 · · · δmm−1/αm−2 + · · · + δm1/1.

The optional stopping theorem implies

0 = E(XτA) = E(ατA)
(

α

α − 1
− W (α)

)

− α

α − 1
.

When we solve this relation for E(ατA), we obtain

E(ατA) =
(

1 +
1 − α

α
W (α)

)−1

.

Again, this is an explicit usable formula, as one sees in the following example.

Example 14.2.2 Let Ω = {1, 2} and again consider the pattern 1121. One
then has

W (α) =
α−3

p3
1p2

+
1
p1

,

so by substitution one has

E(ατA) =
p3
1p2α

4

1 − α + α3(1 − p2α)p2
1p2

= p3
1p2α

4 + p3
1p2α

5 + p3
1p1α

6 + p3
1p2(1 − p2

1p2)α7 + o(α7).

As a check, one should note that this formula can be used to confirm the
calculation of the mean from our first example:

∂E(ατA)
∂α

∣
∣
∣
α=1

=
1

p3
1p2

+
1
p1

= EτA.
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14.2.3 Second and higher moments

In theory, the ability to compute the probability generating function also gives
one the higher moments, but in practice it is often useful to have an alternative
method. Here it also seems instructive to show how the method of sequential
gamblers can be used to find E(τ2

A).
This time the trick is that the gambler who joins the game in the nth round

will bet n dollars. If, as always, we let Xn denote the casino’s net gain after
n rounds, then Xn is again a martingale. Moreover, in this case one can check
that at the stopping time τA we have

XτA = 1 + 2 + · · · + τA

−(τA − m + 1)δ11δ22 · · · δmm

−(τA − m + 2)δ21δ32 · · · δmm−1

· · ·
−(τA − m + m)δm1

= 1 + 2 + · · · + τA − τAW − N

=
τ2
A + τA

2
− τAW − N,

where

N = −δ11δ22 · · · δmm(m − 1) − δ21δ32 · · · δmm−1(m − 2) − · · · − δm10.

It is now time to apply the optional stopping theorem, but in this case the
increments of Xn are no longer uniformly bounded, so a more refined version
of Doob’s optional stopping theorem is needed. Here we can use the stopping
time theorem of Shiryaev (1995, p. 485) since we have Xn = O(n2) and since
P(τA > n) decays at an exponential rate. The application of this optional
stopping theorem leads us to

0 = E(XτA) = E(τ2
A)/2 + E(τA)/2 − WE(τA) − N.

Solving this equation for E(τ2
A) gives us

E(τ2
A) = (2W − 1)E(τA) + 2N = 2W 2 − W + 2N,

and as a corollary we have the nice formula

Var(τA) = W 2 − W + 2N.

Naturally, variations of this technique can be applied to obtain formulas for
any moment. For example, to find an expression for the third moment, the nth
gambler’s bet should now be taken to be n2.
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Example 14.2.3 For the traditional sample space Ω = {1, 2} and the pattern
1121 we now find

N = − 3
p1 × p1 × p2 × p1

,

and

Var(τA) =
(

1
p1

+
1

p3
1p2

)2

− 1
p1

− 7
p3
1p2

.

Here it is interesting to note that when either p1 → 0 or p2 → 0 one has the
limit relation

E(τA)
Var(τA)1/2

→ 1.

Moreover, there is an intuitive explanation for this limit. When either p1 → 0
or p2 → 0 the occurrence of the pattern 1121 becomes a rare event. By the
clumping heuristic [c.f. Aldous (1989)], one then expects the distribution of τA

to be well approximated by an exponential distribution, and for an exponential
X we have the equality E(X) =

√
Var(X).

14.3 Compound Patterns and Gambling Teams

In many important applications—such as scans—one is concerned about the
waiting time until the first occurrence of one out of many patterns from a finite
list of patterns. Here we call a finite collection of K patterns {A1, A2, . . . ,AK}
a compound pattern and denote it simply by A. Now, if τAi denotes the first
time until the pattern Ai has been observed as a completed run in the i.i.d.
series Z1, Z2, . . . , then the new random variable of interest is

τA = min{τA1 , . . . , τAK
}.

In words, τA is the first time when we observe a pattern from A, and one
should note that without loss of generality we assume that in A no pattern is
a subblock of another.

Gerber and Li (1981) studied compound patterns with the help of an appro-
priate Markov chain imbedding. We use an alternative method that has several
benefits. In particular, the new method gives us clear hints on how we should
extend the martingale approach to the case of Markov dependent trials. It also
guides us when we consider the case of highly regular patterns, such as those
associated with scans or structured motifs.
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14.3.1 Expected time

It seems natural in the case of compound pattern A to introduce K gambling
teams. The gamblers from each gambling team will bet on a pattern from the list
A. But now the problem is that the total amount of winnings of all the gamblers
at time τA is a random variable. It depends on how the game is stopped.

However, if one knows which simple pattern from A triggered the stop,
then the winnings of a gambling team are not random. This amount is fully
determined by the overlapping of two patterns: (1) the pattern associated with
the gambling team, and (2) the pattern associated with the ending scenario.
An explicit expression for this amount will be given a bit later.

As we will demonstrate in a moment, it is beneficial to allow every gambling
team to have their own size for an initial bet. More specifically, let yj be an
amount with which the gambler from the jth gambling team (the team that
bets on Aj) starts his betting. Let Wijyj be total winnings of the jth gambling
team in the case when the game was ended by the ith scenario (i.e., the pattern
Ai is observed at time τA). If Xn is, as before, the net casino gain, then it is
clear that it forms a martingale, because a weighted sum of martingales is a
martingale. The stopped martingale XτA is given by

XτA =
K∑

j=1

yjτA −
K∑

i=1

K∑

j=1

Wijyj1Ei ,

where 1Ei is the indicator that the game is ended by the ith scenario.
There is an analogy between the way gambling teams are used here and the

notion of hedging in finance. The trick, analogous to arbitrage constructions,
is to choose weights yj in such a way that the total winnings of all the teams
∑K

j=1 Wijyj is equal to 1 regardless of an ending scenario. Now, if the vector
{yj}1≤j≤K is a solution of the linear system

K∑

j=1

Wijyj = 1, 1 ≤ i ≤ K, (14.3)

then the stopped martingale is given by

XτA =
K∑

j=1

yjτA − 1.

This puts us on familiar ground. By another application of the optional stopping
theorem, we obtain a computationally effective representation of E(τA).

Theorem 14.3.1 If vector {yj}1≤j≤K solves the linear system (14.3), then the
expected value of τA is given by

E(τA) =
1

∑K
j=1 yj

.



296 V. Pozdnyakov and J.M. Steele

Here we should make two technical comments. First, in the course of their
Markov imbedding method, Gerber and Li (1981) showed that the matrix Wij

is nonsingular if no pattern from A is a subpattern of another. Consequently,
the solution {yj}1≤j≤K always exists.

Second, there is an explicit formula for Wij . For example, consider two
patterns A = a1a2 · · · am and B = b1b2 · · · bl. Next, we consider the measure of
t-overlap of a suffix of A with a prefix of B that is given by the formula

δt(A, B) =

⎧
⎨

⎩

1
∏t

s=1 P(Z1 = bs)
, if b1 = am−t+1, b2 = am−t+2, ..., bt = am,

0, otherwise.

Now, if the jth gambling team bets on A, and the ith ending scenario is asso-
ciated with pattern B, then

Wij =
min(m,l)∑

t=1

δt(A, B).

14.3.2 The generating function and the second moment

The method of gambling teams can be used to obtain a formula for the prob-
ability generating function E(ατA), 0 < α < 1, for any compound pattern A.
The solution is a little more complicated, but it mainly calls for the system-
atic elaboration of ideas that we have already seen. Here we consider the same
number of gambling teams and ending scenarios that we used before, but now
the gambler from the jth team who joins the game in the nth round will place
an initial bet of size yjα

n, where the weights {yj}1≤j≤K will be chosen later.
Let Wij(α)yjα

τA denote the winnings of the jth gambling team when the
game ends by the ith ending scenario. If Xn denotes the martingale that gives
us the casino’s net gain at time n, then the stopped martingale XτA is given by

XτA = α
ατA − 1
α − 1

K∑

j=1

yj −
K∑

i=1

K∑

j=1

Wij(α)yjα
τA1Ei ,

where, as before, 1Ei is the indicator of the ith ending scenario.
Again, the key fact is that Wij(α) is not a random variable. If the jth

gambling team bets on pattern A, and the ith ending scenario is linked with
pattern B, then

Wij(α) =
min(m,l)∑

t=1

δt(A, B)α1−t, (14.4)
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where δt(A, B) is defined as in the preceding section. If weights {yj(α)}1≤j≤K

are chosen such that
K∑

j=1

Wij(α)yj(α) = 1, 1 ≤ i ≤ K, (14.5)

then the stopped martingale XτA is given by

XτA = α
ατA − 1
α − 1

K∑

j=1

yj(α) − ατA .

After taking the expectation, a little algebra leads one to a strikingly simple
formula for the generating function for τA.

Theorem 14.3.2 If the vector {yj(α)}1≤j≤K solves the linear system (14.5),
then

E(ατA) = 1 − 1

1 +
∑K

j=1 yj(α)α/(1 − α)
.

We can use Theorem 14.3.2 to obtain the higher moments of τA, but it is
also possible to use the method of gambling teams more directly. For example,
to compute the second moment of τA we ask the gambler from the jth team that
starts gambling in the nth round to place an initial bet of yj +nzj dollars on the
first letter of Aj and to continue betting his fortune on the subsequent letters
of Aj until he either loses or until some gambler observes a pattern from A.

This time we write the winnings of the jth team in the case of the ith ending
scenario by the sum

Wijyj + τAWijzj + Nijzj ,

where Wij is as before, but where Nij is a new quantity for which we will give
an explicit formula shortly. The casino’s net gain at time XτA then is given by

XτA =
K∑

j=1

yj
τA(τA + 1)

2
+

K∑

j=1

zjτA

−
K∑

i=1

⎛

⎝
K∑

j=1

WijyjτA +
K∑

j=1

Nijyj +
K∑

j=1

Wijzj

⎞

⎠ 1Ei .

Now, if weights {yj}1≤j≤K and {zj}1≤j≤K are such that

K∑

j=1

Wijyj = 1, 1 ≤ i ≤ K,

(14.6)
K∑

j=1

(Nijyj + Wijzj) = 1, 1 ≤ i ≤ K,
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then the stopped martingale is equal to

K∑

j=1

yj
τA(τA + 1)

2
+

K∑

j=1

zjτA − τA − 1.

After the application of the optional stopping theorem we obtain a formula
for the second moment.

Theorem 14.3.3 If {yj}1≤j≤K and {zj}1≤j≤K solve the linear system (14.6),
then

E(τ2
A) =

1 + (1 −
∑K

j=1 zj −
∑K

j=1 yj/2)E(τA)
∑K

j=1 yj/2
.

As we mentioned above, Nij is just another measure of the overlap of two
patterns. Specifically, if the jth gambling team bets on pattern A and the ith
ending scenario corresponds to pattern B, then we have the explicit recipe:

Nij =
min(m,l)∑

t=1

δt(A, B)(1 − t).

Also note that from the representation (14.4) for Wij(α) we also have the nice
alternative formulas

Wij(1) = Wij ,
∂Wij(α)

∂α

∣
∣
∣
α=1

= Nij .

As before, an example shows that these representations are all quite explicit.

Example 14.3.1 As usual we take Ω = {1, 2}, but now we consider the com-
pound pattern A = {11, 121}. If we further assume that

P(Z1 = 1) = P(Z1 = 2) = 1/2,

then we find

Wij =
[

6 2
2 10

]

,

Wij(α) =
[

4α−1 + 2 2
2 8α−2 + 2

]

,

and

Nij =
[
−4 0

0 −16

]

.

The theorems of this section then give us the concrete answers:

E(τA) =
8
3
, and Var(τA) = 10,
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and

E(ατA) =
α2(α + 2)

8 − 4α − α3
=

α2

4
+

α3

4
+

α4

8
+

3α5

32
+

5α6

64
+

7α7

128
+ o(α7).

14.4 Patterns in Markov Dependent Trials

Gambling teams provide a handy way to deal with many questions about
sequences of independent symbols, but, when the symbols are generated by
a Markov chain, one finds that the method of gambling teams is especially
powerful—even though some new subtleties are introduced. For example, in
the Markov case one typically needs to introduce multiple teams of gamblers
who gamble according to different rules. To illustrate the basic ideas in the
simplest nontrivial case, we first apply the gambling team method to the calcu-
lation of the expected time until one observes a specified pattern in a sequence
generated by a two-state Markov chain.

14.4.1 Two-state Markov chains and a single pattern

In next two sections we take {Zn, n ≥ 1} to be a Markov chain with state space
Ω = {1, 2}. We suppose the chain has the initial distribution P(Z1 = 1) = p1,
P(Z1 = 2) = p2 and the transition matrix

[
p11 p12

p21 p22

]

.

Here, as usual, pij is shorthand for P(Zn+1 = j |Zn = i). Given a pattern
A = a1a2 · · · am, we then let τA denote the first time that the pattern is observed
in the sequence generated by the Markov chain.

Next, we need to make explicit the Markov version of a fair casino where a
gambler who bets on the event {Zn+1 = a} is assumed to have first observed
Zn. Here, if one first observes Zn = 1, then the bettor of one dollar on the
event {Zn+1 = a} receives p−1

1a dollars if Zn+1 = a occurs; otherwise, the bettor
receives 0. Similarly, if one first observes Zn = 2 and then bets that Zn+1 = a,
the payoffs are p−1

2a and 0, respectively.
There are now three distinct scenarios under which the pattern A can be

observed. Either

• the pattern A occurs at the beginning of the sequence {Zn, n ≥ 1}, or

• the pattern 1A occurs at the end of the sequence, or

• the pattern 2A occurs at the end of the sequence.

The probability of the first scenario is easy to find, but to determine the indi-
vidual probabilities of the last two scenarios would be more subtle. Instead we
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will use another gambling team trick to avoid such calculations. The new trick
is to consider two gambling teams and to allow the teams to bet differently on
the pattern A. The added flexibility will permit us to set things up so that the
teams’ total winnings are known if we know how the game ended.

For each time n two new gamblers are ready to take action, one from each
team. The gamblers now follow two rules:

1. For each n a gambler from the first team arrives before round n and
watches the result of the nth trial. He then bets y1 dollars on the first
letter of the sequence A and continues to bet his accumulated winnings
on the successive letters in the successive rounds until either he loses or
the patten A is observed, either by himself or by some other gambler from
one of the two teams. We call the gamblers on this team straightforward
gamblers.

2. Gamblers from the second team bet differently. If Zn �= a1 then the nth
gambler from the second team bets y2 dollars on the round n + 1 on the
first letter of the pattern A. This gambler then continues to “let his fortune
roll” until either he loses or until A is observed, either by himself or by
some other gambler. On the other hand, if Zn = a1 then this gambler
(intelligently!) bets y2 dollars on a2 on round n+1 and then he continues
to bet on the remaining letters of the pattern a3 · · · am until he loses or
until the pattern A is observed by himself or by some other gambler. We
call the gamblers of the second team smart gamblers.

Now, we let Wijyj , i = 1, 2, 3, j = 1, 2 be the amount of money that the jth
team wins if the game ends in the ith scenario. It is vital to note that the
deterministic quantities Wij are easy to compute. The stopped martingale XτA

that represents the net casino gain at time τA is given by

XτA = (y1 + y2)(τA − 1) −
3∑

i=1

2∑

j=1

Wijyj1Ei ,

where 1Ei is the indicator of the ith ending scenario. To see this, note that no
money was bet on the first round, and y1 + y2 was the amount bet by each of
the first-time bettors at each of the subsequent rounds.

Now, we assume that we can find {yj}1≤j≤2 such that

2∑

j=1

Wijyj = 1, 2 ≤ i ≤ 3.

The existence of y1 and y2 depends on the computed values {Wij}, but they
will exist except in isolated, degenerate cases. The stopped martingale is then
given by the simpler formula

XτA = (y1 + y2)(τA − 1) − (W11y1 + W12y2)1E1 − 1Ec
1
,
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where 1Ec
1

is the indicator of the complement of the first ending scenario. Taking
the expectation and employing the optional stopping theorem, we obtain

0 = (y1 + y2)(E(τA) − 1) − π1(W11y1 + W12y2) − (1 − π1),

where π1 is the probability of the first scenario. As we noted earlier, it is always
easy to compute π1, so at the end of the day one just solves for E(τA) to find

E(τA) = 1 +
π1(W11y1 + W12y2) + (1 − π1)

y1 + y2
.

Example 14.4.1 To see that this is indeed an explicitly computable formula,
consider the pattern A = 121. The straightforward gamblers start with a fortune
of y1 dollars and successively bet their accumulated fortunes on the successive
values of 121. On the other hand, the smart gamblers start with y2 dollars and
bet their accumulated fortune on the successive values of 121 if they observed 2
before placing their first bet, but they bet their money on the successive values
of 21 if they observed 1 before placing their first bet. The three scenarios are
(1) the game ends with 121 at the beginning, or (2) the game ends with 2121
at the end of some indeterminate number of rounds, or (3) the game ends with
1121 at the end of some indeterminate number of rounds. The 3× 2 (scenarios
by teams) matrix {Wij} is then given by

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
p21

1
p12p21

+ 1
p21

1
p21p12p21

+ 1
p21

1
p21p12p21

+ 1
p12p21

+ 1
p21

1
p11p12p21

+ 1
p21

1
p12p21

+ 1
p21

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

To determine the initial bet sizes y1 and y2, we then just solve the relations

y1

( 1
p21p12p21

+
1

p21

)
+ y2

( 1
p21p12p21

+
1

p12p21
+

1
p21

)
= 1,

y1

( 1
p11p12p21

+
1

p21

)
+ y2

( 1
p12p21

+
1

p21

)
= 1,

to find
y1 =

p11p12p21

p12 + p21 + p12p21
and y2 =

p12p21(p21 − p11)
p12 + p21 + p12p21

.

The probability π1 of the first scenario is just p1p12p21, so after substitution
and simplification we obtain the pleasingly succinct formula

E(τA) = 1 +
p2

p21
+

1
p2
21

+
1

p12p21
.
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14.4.2 Two-state Markov chains and compound patterns

The next natural challenge is to compute the expected value of τA the first
time that one observes a pattern from the set A = {A1, A2, . . . ,AK}. The
gambling teams method again applies, but one more nuance emerges. In partic-
ular, it is useful to refine the split notion of ending scenarios into initial-ending
scenarios and later-ending scenarios. Specifically, we consider K initial-ending
scenarios, where in the ith initial-ending scenario the pattern Ai, 1 ≤ i ≤ K
occurs in the beginning of the sequence {Zn, n ≥ 1}, and we consider 2K later-
ending scenarios, where either the pattern 1Ai for some 1 ≤ i ≤ K occurs
or else the pattern 2Ai for some 1 ≤ i ≤ K occurs after some indeterminate
number of rounds.

This gives us complete coverage of how one of the patterns from A can
appear; in fact the coverage is over complete since it is possible that some of
the later-ending scenarios need not be achievable as final blocks of the Markov
sequence at time τA. For example, if A = {212, 22}, then the doubling step for-
mally gives us four later-ending scenarios: {· · · 1212, · · · 2212, · · · 122, · · · 222},
but 221 and 222 cannot occur as a substring of the string Z1, Z2, ..., ZτA . Sim-
ilarly, if the initial collection is A = {21, 111}, then the only observable later-
scenarios are {· · · 121, · · · 221}.

Thus, one typically needs to do some cleaning of the initial list of later-
ending scenarios, and, if a later-ending scenario cannot be observed in a se-
quence that ends at time τA, then the scenario is eliminated from the original
list of 2K later-ending scenarios. The final list of ending scenarios is then the set
of initial-ending scenarios and later-ending scenarios that have not been elimi-
nated. We let N ′ denote the number of later-ending scenarios in the final list.

Now we introduce N ′ gambling teams, one for each of the later-ending sce-
narios. The rule is simple. If in the final list of scenarios there are two later-
ending scenarios associated with the pattern Ai, then we introduce two gambling
teams. One team bets on Ai in a straightforward way, and one team bets on
Ai in the smart way of the previous section. On the other hand, if in the final
list we have only one later-ending scenario associated with the pattern Ai we
will use only one gambling team of straightforward gamblers. Finally, if there
are no later-ending scenarios in the final list associated with Ai, no gambling
teams linked with Ai are needed.

We let Xn denote the casino’s net gain at time n. We take yj , 1 ≤ j ≤ N ′

to be the initial bet with which a gambler from the jth gambling team starts
his betting, and we let Wijyj , 1 ≤ i ≤ K be the total winnings of the jth
gambling team in the case of the ith initial-ending scenario. Finally, we let
yjWij , K + 1 ≤ i ≤ K + N ′ be the total winnings of the jth gambling team
in the case when the game is ended by the ith later-ending scenario. Then the
stopped martingale XτA is given by
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XτA =
N ′
∑

j=1

yj(τA − 1) −
K∑

i=1

N ′
∑

j=1

Wijyj1Ei −
K+N ′
∑

i=K+1

N ′
∑

j=1

Wijyj1Ei ,

where Ei is the event that the ith scenario occurs. Again, the Wij are not
random, and, parallel to our earlier calculations, we assume that one can find
{yj}1≤j≤N ′ such that

N ′
∑

j=1

Wijyj = 1, for all K + 1 ≤ i ≤ K + N ′. (14.7)

We then have the representation

XτA =
N ′
∑

j=1

yj(τA − 1) −
K∑

i=1

N ′
∑

j=1

Wijyj1Ei −
K+N ′
∑

i=K+1

1Ei ,

so the optional stopping theorem tells us that

0 = E(XτA) =
N ′
∑

j=1

yj(E(τA) − 1) −
K∑

i=1

N ′
∑

j=1

Wijyjπi − (1 −
K∑

i=1

πi),

where πi is the probability that the ith initial-ending scenario occurs. Solv-
ing this equation, we obtain a slightly untidy but still completely computable
formula for E(τA).

Theorem 14.4.1 If {yj}1≤j≤N ′ solves the linear system (14.7), then

E(τA) = 1 +
(1 −

∑K
i=1 πi) +

∑K
i=1 πi

∑N ′

j=1 yjWij
∑N ′

j=1 yj

. (14.8)

Example 14.4.2 For the collection of patterns A = {11, 212} we find after
the doubling and cleaning steps that the final list of later-ending scenarios is
{211, 1212, 2212}. Together with our initial-ending scenarios, we have a total of
five ending scenarios which we order as

{11, 212, 211, 1212, 2212}.
The scenario-by-team win matrix {Wij} is then given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
p11

0 0

0 1
p12

1
p21p12

+ 1
p12

1
p21p11

+ 1
p11

0 0

0 1
p12p21p12

+ 1
p12

1
p12p21p12

+ 1
p21p12

+ 1
p12

0 1
p22p21p12

+ 1
p12

1
p21p12

+ 1
p12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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and, after solving the corresponding linear system, we find that the appropriate
initial team bets are given by

y1 =
p21p11

1 + p21
, y2 =

p22p21p12

p21 + p12 + p21p12
, y3 =

p21p12(p12 − p22)
p21 + p12 + p21p12

.

The probabilities π1 and π2 that 11 and 212 are initial segments of the process
{Zn, n ≥ 1} are given by p1p11 and p2p21p12, respectively, so the formula (14.8)
leads one to the following result:

E(τA) = 2 + p1p12 +
1 − p1p11

p21
,

which we see was not so complicated after all.

Finally, one should note that when a martingale method for the expected
waiting time is developed, it is usually straightforward to extend the method to
obtain formulas for higher moments or generating functions. We have already
seen how this can be done in the independent model, and Glaz et al. (2006)
give a more detailed exposition that covers the case of the two-state Markov
chains.

14.4.3 Finite state Markov chains

Now consider a temporally homogeneous Markov chain {Zn, n ≥ 1} with a finite
state space Ω = {1, 2, ..., M}, initial distribution P(Z1 = m) = pm, 1 ≤ m ≤ M ,
and transition matrix P = {pij}1≤i,j≤M , where as always,

pij = P(Zn+1 = j|Zn = i).

We let A = {A1, A2, ...,AK} denote a compound pattern, and let

τA = min{τA1 , ..., τAK
}

denote the first time when we observe a pattern from A in the Markov sequence.
We also assume that the Markov chain has the following normalization and
regularization properties:

• We assume that no pattern of A contains another pattern of A as a
subpattern. This property holds without loss of generality, since if one
pattern is a subpattern of another, the longer one can be excluded from
our list.

• We assume that P(τA = τAi) > 0 for all 1 ≤ i ≤ K. If, on the contrary,
one were to have P(τ = τAi) = 0 for some i, then Ai could simply be
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excluded from the list. This possibility is excluded by the first assumption
for independent sequences, but for Markov sequences it often needs our
attention. For example, if the pattern Ai contains subpattern km and
pkm = 0, then Ai cannot happen as a run of {Zn, n ≥ 1}.

• We assume that P(τA < ∞) = 1. If the patterns of A all contain tran-
sient states, this condition can easily fail even for a finite Markov chain.
Here we should note that for finite Markov chains the basic finiteness
condition P(τA < ∞) = 1 already implies the formally stronger condition
E[τA] < ∞.

The Multi-state Chain Martingale Construction

When M = |Ω| > 2 the critical martingales require a more elaborate descrip-
tion. We begin by decomposing the possible occurrence of a single pattern Ai

into an initial list of 1 + M + M2 ending scenarios:

• Either the sequence Ai occurs as an initial segment of {Zn, n ≥ 1}, or

• for some 1 ≤ k ≤ M , the pattern kAi occurs as an initial segment of the
sequence {Zn, n ≥ 1}, or

• for some pair (k, m), 1 ≤ k, m ≤ M , the pattern kmAi occurs after some
indeterminant number of rounds.

The first 1 + M ending scenarios are called initial scenarios. The last M2 sce-
narios are called later scenarios. Since we have K patterns, we have an initial
list of (1 + M + M2)K scenarios.

For every later scenario associated with the pattern kmAi we introduce a
team of gamblers that we call the kmAi-gambling team. Gambler n + 1 from
the kmAi-gambling team arrives before round n+1 to observe the result of the
nth trial, Zn.

This gambler then starts his betting. If Zn = k he bets a certain amount of
money (which is the same for all gamblers from the kmAi-gambling team) on
the pattern mAi. If Zn �= k he bets on Ai. Here, of course, by “betting $1 on
the pattern A = a1a2 · · · am, when Zn = a0” we mean the following:

• After observing Zn the gambler bets a dollar that the next trial yields
a1. If Zn+1 �= a1, he loses his dollar and leaves the game. If Zn+1 = a1,
he gets 1/pa0a1 . Note that the odds are fair. If he wins he continues his
betting.

• Now he bets his entire capital that the n+2 round yields a2. If it is a2 he
increases his capital by factor 1/pa1a2 ; otherwise, he leaves the game with
nothing. He continues to bet his full fortune on the successive letters of
the pattern A until either the pattern A is observed, or until some other
gambler has succeeded.
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Now recall that it is possible that some of the scenarios on our initial list
simply cannot occur before the waiting time τA. Moreover, some ending sce-
narios are impossible simply because some new patterns associated with some
ending scenarios cannot be observed at all in the Markov chain. Thus, we need
to clean the initial list of ending scenarios.

Those scenarios that cannot occur at all and those that can occur only
after the time τA must be eliminated. Let K ′ denote the number of initial
scenarios, and let N ′ denote the number of later scenarios that we have in our
list after cleaning. For each jth later scenario in the new list, we introduce the
corresponding gambling team, and we assume that the inial amount with which
the gamblers of the jth team start their betting is yj . The values {yj} will be
chosen later.

Let yjWij , 1 ≤ i ≤ K ′ + N ′, 1 ≤ j ≤ N ′ be the amount of money that
the jth team wins in the ith ending scenario. Let Xn denote the casino’s net
gain from all teams at time n. The sequence {Xn} forms a martingale with
respect to the filtration generated by the Markov chain {Zn, n ≥ 1}. Indeed, for
every gambler in the game the bet size at a current round is fully determined
by previous rounds, and odds—as we have seen—are fair. By bookkeeping, one
finds for the stopped martingale XτA that

XτA =
N ′
∑

j=1

yj(τA − 1) −
K′
∑

i=1

N ′
∑

j=1

Wijyj1Ei −
K′+N ′
∑

i=K′+1

N ′
∑

j=1

Wijyj1Ei ,

where Ei is the event that the ith scenario occurs. Here, again Wij is not a ran-
dom variable; it depends only on the overlap properties of the pattern associated
with the ith scenario and the pattern associated with the jth gambling team.

If we now assume that we can find {yj}1≤j≤N ′ such that

N ′
∑

j=1

Wijyj = 1, for all K ′ + 1 ≤ i ≤ K ′ + N ′, (14.9)

then XτA has the more tractable representation

XτA =
N ′
∑

j=1

yj(τA − 1) −
K′
∑

i=1

N ′
∑

j=1

Wijyj1Ei −
K′+N ′
∑

i=K′+1

1Ei .

Since {Xn}n≥1 has bounded increments and E[τA] < ∞, the Doob’s optional
stopping theorem gives us

0 = E(XτA) =
N ′
∑

j=1

yj(E(τA) − 1) −
K′
∑

i=1

N ′
∑

j=1

Wijyjπi −
(

1 −
K′
∑

i=1

πi

)

,

where πi is the probability that the ith initial scenario occurs. Solving the
equation with respect to E(τA) we obtain the main result of this section.
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Theorem 14.4.2 If {yj}1≤j≤N ′ solves the linear system (14.9), then

E(τA) = 1 +
(1 −

∑K′

i=1 πi) +
∑K′

i=1 πi
∑N ′

j=1 yjWij
∑N ′

j=1 yj

. (14.10)

Example 14.4.3 Let Ω = {1, 2, 3} and A = {323, 313, 33}. Let the initial
distribution be given by

p1 = 1/3, p2 = 1/3, p3 = 1/3,

and let the transition matrix P be given by

P =

⎡

⎣
3/4 0 1/4
0 3/4 1/4

1/4 1/4 1/2

⎤

⎦ .

After eliminating the impossible scenarios we get 9 initial scenarios:

323 · · · , 313 · · · , 33 · · · , 1323 · · · , 2323 · · · , 1313 · · · , 2313 · · · , 133 · · · , 233 · · ·
and because transitions 1 → 2 and 2 → 1 are impossible we get just six later
scenarios:

· · · 11323, · · · 22323, · · · 11313, · · · 22313, · · · 1133, · · · 2233.

Now we need to calculate the matrix W and we first consider some sam-
ple entries. For instance, the 11323-gambling team in the initial scenario
323 · · · wins 1/p23 = 4. The same team in the later scenario · · · 11323 wins
1/(p11p13p32p23) + 1/p23 = 268/3, and in the later scenario · · · 22323 it wins
1/(p23p32p23) + 1/p23 = 68. Finally, the entries of matrix W that correspond
to the later scenarios—the ones that are needed for linear system (14.9)—are
given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

268/3 64 4 0 4 0

68 256/3 4 0 4 0

0 4 256/3 68 0 4

0 4 64 268/3 0 4

2 2 2 2 38/3 10

2 2 2 2 10 38/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally, from formula (14.10) we have the bottom line:

E(τA) = 8
7
15

.
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Higher Moments, the Generating Functions, and Efficiency

In parallel with our earlier examples, one can now take initial bets of size yj+zjn
to obtain a formula for the second moment, or take initial bets of size yjα

n to
obtain the corresponding generating function, see Pozdnyakov (2008).

Here we should note that while the method of this subsection is also appli-
cable to two-state Markov chains, it is certainly less efficient than the one given
in Subsection 14.4.2. Here, in the case of two-state Markov chains we would
have 4K ending scenarios, but the method of Subsection 14.4.2 needs only 2K.

Finally, one should note some of the computational differences between the
martingale technique and the Markov chain imbedding method. To find the
expected time E(τA) via an appropriate Markov chain imbedding, one needs
to solve a linear system associated with the transition matrix of the imbedded
Markov chain; see Fu and Chang (2002, p. 73). The size of the matrix depends on
the cardinality K of the compound pattern A and the lengths of single patterns
in A. Our matrix depends on K and the cardinality M of the alphabet. Thus,
there are situations when the martingale approach is computationally more
effective. For a very simple example, one can take A to consist of just one very
long pattern.

14.5 Applications to Scans

In its simplest form [see Naus (1965)], the scan statistic is the largest number
of “events that occur” in a window of a given fixed length when we scan the
window over a realization of a temporally homogeneous process up to a specified
terminal time. For a concrete example, consider a sequence of independent
Bernoulli trials {Zn, n ≥ 1} with

P(Zi = 1) = p = 1 − P(Zi = 0).

Now given 1 ≤ w ≤ T and 1 ≤ i ≤ T − w + 1, we consider the sums

Yi,w =
i+w−1∑

j=i

Zj ,

and we define the scan statistic Sw,T to be the maximum of Yi,w; that is,

Sw,T = max
1≤i≤T−w+1

Yi,w.

If τk,w denotes the first time when one first observes at least k occurrences of
the value 1 in a window of length w, then τk,w is related to the scan statistic by

P(Sw,T ≥ k) = P(τk,w ≤ T ).
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For us, the key observation is that the waiting time τk,w can be viewed as the
waiting time τA for an appropriate compound pattern A. For example, for k = 3
and w = 5 the compound pattern A is given by

{111, 1101, 1011, 11001, 10101, 10011}.

The bottom line is that knowledge of the distribution of τA gives us the dis-
tribution of the associated scan statistics. Moreover, this method of association
goes well beyond the simple scan of this example. Analogous transformations
permit one to treat the variable window scans of Glaz and Zhang (2006) or the
double scans considered by Naus and Stefanov (2002) and Naus and Wartenberg
(1997).

14.5.1 Second moments and distribution approximations

Since martingale methods yield effective computations of the moments of the
waiting time τA, it is natural to ask if martingale methods also suggest ap-
proximations of the distribution of τA that use the first two (or perhaps more)
moments of the waiting time.

It is reasonable from the clumping heuristic that the stopping time τA that
one associates with a scan statistic should have tail probabilities P(τA ≤ n)
that are close to those of the exponential distribution. Still, when one considers
the whole distribution, there are natural competitors to the exponential such
as the gamma, the Weibull, and the shifted exponentials. The main finding in
Pozdnyakov et al. (2005) was that in many natural situations it is the class of
shifted exponential distributions that provides the most accurate approximation
to the distribution of τA.

To make this approximation explicit, we first recall that X ′ is called a shifted
exponential, provided that X ′ = X+c where X has an exponential distribution.
We take X ′ as our moment matching approximation to τA, provided c is chosen
so that

E(X + c) = E(τA), Var(X + c) = Var(τA).

For the tail probabilities this approximation gives us the relation

P(τA ≤ n) ≈ 1 − exp(−(n + 0.5 + σ − μ)/σ), (14.11)

where μ = E(τA), σ = Var(τA), and the 0.5 term provides a continuity cor-
rection. As the following examples demonstrate, this approximation works re-
markably well for a wide variety of scan statistics.

Example 14.5.1 (Fixed window scans). Here {Zn, n ≥ 1} is a sequence of
Bernoulli trials. We consider two scans: at-least-3-out-of-10 (Table 14.1) and
at-least-4-out-of-20 (Table 14.2).
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Table 14.1. Fixed window scans: at least 3 failures out of 10 consecutive trials,
P(Zn = 1) = .01, μ = 30822, σ = 30815.

shifted upper lower
n exponential exponential gamma bound bound

500 0.01600 0.01589 0.01597 0.01588 0.01589
1000 0.03183 0.03173 0.03179 0.03171 0.03174
1500 0.04741 0.04731 0.04736 0.04729 0.04733
2000 0.06274 0.06265 0.06267 0.06262 0.06267
2500 0.07782 0.07773 0.07775 0.07770 0.07776
3000 0.09266 0.09258 0.09258 0.09254 0.09261
4000 0.12162 0.12155 0.12154 0.12150 0.12169
5000 0.14966 0.14960 0.14957 0.14954 0.14965

Table 14.2. Fixed window scans: at least 4 failures out of 20 consecutive trials,
P(Zn = 1) = .05, μ = 481.59, σ = 469.35.

shifted upper lower
n exponential exponential gamma bound bound
50 0.09110 0.07827 0.08268 0.07713 0.07940
60 0.10977 0.09770 0.10059 0.09543 0.09989
70 0.12807 0.11672 0.11828 0.11337 0.11991
80 0.14599 0.13534 0.13573 0.13095 0.13949
90 0.16354 0.15357 0.15292 0.14819 0.15864
100 0.18073 0.17141 0.16985 0.16508 0.17736

For the fixed window scan statistics, Glaz and Naus (1991) developed tight
lower and upper bounds which are provided in Tables 14.1 and 14.2 along
with the approximations based on the exponential, shifted exponential, and
gamma distributions. The Weibull distribution-based approximation is omitted,
because the performances of Weibull approximations are significantly worse
than those of the exponential and the gamma. As can be seen, the shifted
exponential approximation does consistently well. In the easy case when μ is
large and σ is close to μ, the differences between the various approximations
are marginal, and all of the estimates are close to the true probability. On the
other hand, if μ is relatively small and σ differs from μ, then the approximations
based on the exponential and gamma distributions do not perform nearly as
well as the shifted exponential approximations.

Example 14.5.2 (Variable window scans). Again we let {Zn, n ≥ 1} be a
sequence of Bernoulli trials, but this time we scan for the occurrence of either
of two situations: either we observe at least 2 failures in 10 consecutive trials,
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Table 14.3. Variable window: at least 2 failures out of 10 trials or at least 3
failures out of 50 trials, P(Zn = 1) = .01, μ = 795.33, σ = 785.85.

shifted simulated
n exponential exponential gamma N = 100,000
50 0.05857 0.05085 0.05542 0.05029
60 0.07033 0.06285 0.06685 0.06187
70 0.08195 0.07470 0.07817 0.07404
80 0.09342 0.08640 0.08939 0.08623
90 0.10474 0.09796 0.10050 0.09718
100 0.11593 0.10936 0.11150 0.11058

or we observe at least 3 failures in 50 consecutive trials. Here are interested in
the approximation for the distribution of the waiting time τ until one of these
two situations occurs. In this case we need a compound pattern A with 224
patterns in order for τ and τA to have the same distribution.

The numerical results are given in Table 14.3. Since analytical bounds for
this type of scan are not available, the performance of the approximation is
judged by comparison with estimated probabilities based on 100, 000 replica-
tions. Here, again, we see that the shifted exponential distribution approxima-
tion that is calibrated by two moments performs quite well.

Example 14.5.3 (Double scans). Let {Zn, n ≥ 1} be an i.i.d. sequence of ran-
dom variables with the three-valued distribution specified by

P(Zn = 1) = .04, P(Zn = 2) = .01, and P(Zn = 0).

Now we consider two types of “failures”; a type I failure corresponds to observ-
ing a 1 and a type II failure corresponds to observing a 2. Further, we assume
that we scan with a window of length 10 until we observe at least 2 failures of
type II or observe at least 3 failures (of any combination of kinds). Table 14.4
shows that the shifted exponential approximation works well even when μ and
σ are relatively small and significantly different.

The initial arguments of Pozdnyakov et al. (2005) in favor of the shifted
exponential approximation were predominantly empirical, but subsequently a
more theoretical motivation has emerged from the work of Fu and Lou (2006,
p. 307), which shows that for large n one has

P(τA ≥ n) ∼ C∗ exp(−nβ),

where the constants C∗ and β are defined in terms of the largest eigenvalue
(and corresponding eigenvector) of what Fu and Lou (2006) call the essential
transition probability matrix of the imbedded finite Markov chain associated
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Table 14.4. Double scans: at least 2 type II failures out of 10 trials or at least
3 failures of any kind out of 10 trials, P(Zn = 1) = .04, P(Zn = 2) = .01,
μ = 324.09, σ = 318.34.

shifted simulated
n exponential exponential gamma N = 100,000
10 0.02438 0.01480 0.02175 0.01401
15 0.03932 0.03015 0.03568 0.03084
20 0.05403 0.04527 0.04959 0.04508
25 0.06851 0.06015 0.06342 0.06169
30 0.08277 0.07479 0.07714 0.07590
35 0.09681 0.08921 0.09074 0.09134
40 0.11064 0.10340 0.10419 0.10529
45 0.12425 0.11738 0.11749 0.11878
50 0.13766 0.13113 0.13063 0.13342

with compound pattern A. One should note that this matrix is not a proper
transition matrix; rather it is a restriction of a transition matrix.

Now, if we omit the continuity factor correction in our shifted exponential
approximation (14.11), we have an approximation of exactly the same form:

P(τA ≥ n) ≈ exp(−(n + σ − μ)/σ) = exp((μ − σ)/σ) exp(−n/σ).

These relations suggest that there is a strong connection between the largest
eigenvalue of the essential transition matrix of the imbedded Markov chain and
the first and second moments of τA. In particular, we conjecture that (in the
typical case at least) the largest eigenvalue λ[1] of the essential transition prob-
ability matrix of the imbedded finite Markov chain associated with compound
pattern A will satisfy the approximation

λ[1] ≈ exp(−1/σ). (14.12)

14.5.2 Scan for clusters of a certain word

Let {Zn, n ≥ 1} be a sequence of i.i.d. random variables that takes values over
the alphabet Ω = {1, 2, ..., M} and let the distribution be given by

p1 = P(Zn = 1) > 0, p2 = P(Zn = 2) > 0, ... , pM = P(Zn = M) > 0.

Given a pattern A = a1a2 · · · am over the alphabet Ω, we then take a window
of length w ≥ m and scan the sequence until the time τ when in the window of
width w we have k (possibly overlapping) occurrences of pattern A.

One can show that τ is equal to the waiting time until the occurrence of
a certain compound pattern A, so formally the moments of τ follow from our
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previous results. Unfortunately, this approach runs into computational problems
since the cardinality of compound pattern A grows exponentially as the window
width w increases. There seems to be no way to circumvent this problem entirely,
but given that A can be computed, we can greatly cut down on much of the
other work.

A New Betting Scheme

The basic idea is to bet only on the pattern A and to pause the betting between
nonoverlapping occurrences of A. To make this explicit, we first take A as given
and consider a certain equivalence relation on the patterns from A. Specifically,
we say that elements Ai and Aj from A are similar provided that

• the lengths of Ai and Aj are the same,

• Ai and Aj have the same number of overlapping occurrences of A and,

• the patterns Ai and Aj have copies of A’s at the same positions.

Now, to each equivalence class under this relation, we can associate a unique
pattern over the extended alphabet Ω̄ = {1, 2, ..., M, ∗} by a simple rule. If the
simple pattern Ai ∈ A is a representative of an equivalence class, then to
construct what we will call the “star pattern” for the class, we replace each
symbol of Ai that is not part of a block equal to A by the symbol ∗. This recipe
is made clear with an example.

Example 14.5.4 Let Ω = {1, 2, 3} and let A = 121. Suppose we want to
scan until we find the occurrence of at least two copies of A’s in a window of
8 symbols. The compound pattern A associated with this scan consist of 11
simple patterns, none of which is a subpattern of another):

1. exactly-2-in-5: 12121,

2. exactly-2-in-6: 121121,

3. exactly-2-in-7: 1211121 and 1213121,

4. exactly-2-in-8: 12111121, 12122121, 12113121, 12123121, 12131121,
12132121, and 12133121.

Now, although we have 11 simple patterns in A, we have only 4 equivalence
classes, which we can enumerate with their star patterns:

12121, 121121, 121 ∗ 121, 121 ∗ ∗121.

Here, it is important to note that ∗ does not mean just “any symbol”, because,
for example, 12121121 is not in A, and, as a result, class 121 ∗ ∗121 does not
include 12121121.
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Given this reduction to equivalence classes, there are analogous reductions
for the rest of our tools, such as the ending scenarios. Now, we introduce a
list of ending scenarios associated with the list of equivalence classes (or star
patterns). As before, we associate a gambling team with each element of the
final list of ending scenarios.

The real key is the new betting rule. Now, a gambler from a gambling team
associated with a star pattern bets on a symbol if it is a symbol from Ω, but
he simply passes when it is a star. For example, a gambler from the gambling
team that corresponds to 121 ∗ ∗121 first bets on 121 in the sequential fashion
that should now be quite familiar. If he is successful after those three bets, he
then pauses for two rounds. After the pause he bets then successively bets his
entire capital on 121, the rest of the star pattern.

Assume that we have N ′ ending scenarios and N ′ gambling teams. A gambler
from the jth gambling team that joins the game in the nth round will bet yj

dollars. Next let yjWij , 1 ≤ i, j ≤ N ′ be the total winnings of the jth gambling
team in the case that the game was ended by the ith scenario. As before, Wij is
not random; it is fully determined by the pattern of overlap of the star patterns
associated with the given gambling team and ending scenario.

To make this explicit, we let E = e1e2 · · · em and T = t1t2 · · · tl be two
patterns over the extended alphabet Ω̄. We first define a measure of “two letters
coincidence”:

δ(ei, tj) =

⎧
⎨

⎩

1, if tj = ∗
1/P(Z1 = tj), if tj �= ∗, ei = tj ,
0, if tj �= ∗, tj �= ei.

Next, we define a general measure of overlap for E and T:

W (E, T) =
min(m,l)∑

i=1

i∏

j=1

δ(em−i+j , ej).

Finally, if the ith ending scenario is associated with the pattern E and the jth
gambling team bets on T, then we have the explicit (and deterministic) formula

Wij = W (E, T).

If Xn is the casino’s total net gain at the end of the nth round, then it is
again a martingale, since taking a pause preserves a martingale property. At
time τA the stopped martingale is given by

XτA =
N ′
∑

j=1

yjτA −
N ′
∑

i=1

N ′
∑

j=1

Wijyj1Ei ,
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where 1Ei is the indicator that the game is ended by the ith scenario, so if the
vector {yj}1≤j≤N ′ is a solution of the linear system

N ′
∑

j=1

Wijyj = 1, 1 ≤ i ≤ N ′, (14.13)

then the stopped martingale has the tidy representation

XτA =
N ′
∑

j=1

yjτA − 1.

Since E(XτA), we come very quickly to our final formula.

Theorem 14.5.1 If the vector {yj}1≤j≤N ′ solves the linear system (14.13),
then the expected value of τA is given by

E(τA) =
1

∑N ′
j=1 yj

.

Example 14.5.5 Let Ω = {1, 2, 3}, and A = 121, and suppose we scan for
at least two A’s in a window of 8 symbols. As we have seen, there are only 4
equivalence classes:

12121, 121121, 121 ∗ 121, 121 ∗ ∗121.

The matrix Wij in this case is
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
p3
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p3
1p2

+ 1
p2
1p2

+ 1
p1

2
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p3
1p2

+ 1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 14.5.1 gives us the following formula for the expected value:

E(τA) =
1 + p1p2(1 + p1p2)(1 + p1(3 − p2 − 2p1p2))

p3
1p

2
2(1 + p1(3 − p2 − 2p1p2))

.

One obviously can extend this technique to the case of the higher moments
and generating function.
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14.6 Concluding Remarks

The martingale method for studying the waiting time for a compound pat-
tern is now well developed—even the stubborn Markovian case. Still, from the
examples given here, one can see that successful application of the method re-
quires some detailed combinatorial information. Specifically, one almost always
needs to determine explicitly what we have called here the “final list of ending
scenarios.”

For problems, such as those that come from the theory of scan statistics,
this final list can be large. Nevertheless, by the introduction of appropriate
equivalence classes, one can still make steady progress. Explicit formulas for
moments are possible more often than one might guess.

There are two problems that we believe deserve consideration: one general
and one specific. The general problem is the identification of further problems
like the one developed in Subsection 14.5.2 for clusters of words. Generically,
the challenge is to identify the problems in which one can find a substantial
simplification of what would otherwise be the waiting time problem for a very
large class of patterns. Correspondingly, it would be useful to identify as many
problems as possible where one has a firm combinatorial understanding of the
final list of ending scenarios.

The more specific problem is the conjecture given in Equation (14.12). His-
torically, there has been considerable value in finding a good representation for
the largest eigenvalue for even very special matrices. The class of matrices that
are obtained as the essential (improper) transition probability matrix of the
imbedded finite Markov chain associated with compound pattern A is indeed
special, yet it is still reasonably large. For this class the conjecture (14.12) pro-
vides an explicit—and novel—approach to the analysis of the largest eigenvalue.
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Abstract: Statistics of motifs have been widely revisited in the last 15 years
due to the increasing availability of genomic sequences. The identification of
DNA motifs with biological functions is still a huge challenge of genome anal-
ysis. Many functional and essential motifs have the particularity to be very
frequent all along the chromosome or to be concentrated in some particular re-
gions (e.g. in front of genes) or to be co-oriented with the replication direction.
The prediction of functional motifs is then mostly based on statistical proper-
ties of pattern occurrences in Markovian sequences. This chapter is primarily
devoted to such properties with a special focus on pattern frequency. How does
one compute or approximate the count distribution to assess motif exception-
ality? How can we test if a motif is significantly unbalanced between two (sets
of) sequences? How should one deal with degenerated patterns? How can we
model occurrences to find regions significantly enriched with a given pattern?
Examples of functional motifs will illustrate all these questions, and we will see
how the Chi motif has been identified in Staphylococcus aureus because of its
statistical properties.

Keywords and phrases: Pattern statistics, word count, Markov chain, DNA
sequence, exceptional words, unexpected frequency, compound Poisson process

15.1 Introduction

For the last 15 years, genomic sequence analysis has probably offered the widest
variety of problems on pattern statistics. This variety is due to the huge length
of the sequences and to their heterogeneous composition and structure, but also
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c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009



320 S. Schbath and S. Robin

to the complexity of the functional motifs. These motifs take place in funda-
mental molecular processes like chromosome maintenance or gene transcription,
but few of them have been completely identified (i.e. their sequence of letters
is known). Moreover, they are rarely conserved through species, leading to a
very challenging area of DNA motif discovery. This chapter is related to the
statistical approach used to predict candidate functional motifs. Indeed, many
known functional motifs are characterized by an exceptional behavior of their
occurrences. Some of them are extremely frequent along the entire genome (or
along a particular DNA strand), others are avoided because their occurrences
are lethal for the chromosome, and some are preferred in particular genomic re-
gions. Thus, two main quantities have been widely studied from a probabilistic
and statistical point of view: the number of occurrences of a motif in a random
sequence and the distances (cumulated or not) between occurrences of a mo-
tif. To avoid a huge list of references, we recommend Chapters 6 and 7 from
Lothaire (2005) for technical expositions and Robin et al. (2005) for a more
applied exposition. In this chapter, we have chosen to present the main statis-
tical results that are really used in practice to help identify functional DNA
motifs. Many biological examples will then be given to illustrate the usefulness
of the approaches. Most will be devoted to the question of detecting words with
an exceptional frequency in a given sequence. Distribution of a word count in
Markovian sequences will be studied in Section 15.2. We will also consider the
related problem of comparing the exceptionality of a word frequency between
two independent sequences. Functional motifs can indeed be specific from known
parts of the chromosome (or from some particular chromosomes). In this case,
the word occurrences themselves are modeled and a statistical test is derived
from the two count processes (Section 15.3). However, when one look for regions
significantly enriched with (or devoid of) a given word, the quantity of interest
becomes the distance between occurrences. Section 15.3 also presents results
on the distance distribution when the occurrences are modeled by a compound
Poisson process. Other results on distances and waiting times can be found
in Stefanov (2009) when the sequence is Markovian. Section 15.4 addresses
the generalization to more complex patterns, namely degenerated patterns and
structured motifs. Finally, we end with some ongoing works and open problems.

15.2 Words with Exceptional Frequency

Many functional DNA motifs are extremely over-represented in complete
genomes, or in specific genomic regions, whichever compositional level of the
biological sequence one takes into account. This statistical property reveals a
strong constraint on the DNA sequence. For instance, if we look for the two
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Table 15.1. Expected counts of aagtgcggt and accgcactt in random sequences
having on average the same composition as the H. influenzae complete genome.

Markov fitted expected count expected count
model composition of aagtgcggt of accgcactt
M0 letters 4.694 3.779
M1 2-letter words 6.279 4.847
M2 3-letter words 8.603 6.208
M3 4-letter words 18.601 15.080
M4 5-letter words 55.704 48.658
M5 6-letter words 219.081 220.284
M6 7-letter words 549.815 574.734
M7 8-letter words 719.440 722.366

most over-represented 9-letter words in the complete genome of the bacteria
Haemophilus influenzae (1830140 letters long), we find the two reverse comple-
mentary oligonucleotides aagtgcggt and accgcactt which occur respectively
740 and 731 times. As an illustration, Table 15.1 gives the expected count of
these two words when fitting the sequence composition of smaller words. These
two 9-letter words are very well known from the biologists: they are the two
DNA uptake sequences involved in discriminating self from foreign entering
DNA during competence in the bacteria.

Another example is the word gctggtgg which is the “crossover hotspot in-
stigator” (Chi) motif in the bacteria Escherichia coli and is involved in chromo-
some maintenance. Chi is among the five most over-represented 8-letter words
in the E. coli genome (4638858 letters long). This example will be detailed in
Section 15.2.5.

In contrast, many restriction sites (generally 6-letter words) are strongly
under-represented along bacterial genomes, which is not surprising because
they induce a double-strand break of the bacterial DNA. The aim of this
section is precisely to show how to assess the significance of over- and under-
representations.

When we want to analyze the distribution of a word along a sequence or
when we want to know if a word occurs significantly more often in one sequence
compared to another one (Section 15.3), it is relevant to model the occurrences
themselves in order to fit the observed frequencies of this word. However, if the
problem is precisely to know if a given word occurs in a DNA sequence with
a frequency that seems either too low or too high, one needs to compare it
to an expected frequency. Usually, we compare the observation with what one
would expect in random sequences sharing common properties with the DNA
sequence. Under classical sequence models (Section 15.2.1), we can analytically
calculate the moments of the count (Section 15.2.2) and sometimes obtain its
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distribution or some approximations (Section 15.2.3), leading to p-values (Sec-
tion 15.2.4). We will end this section by presenting how the Chi motif of Staphy-
lococcus aureus was predicted, because of its exceptional frequency, before being
experimentally validated [Halpern et al. (2007)].

15.2.1 Sequence models

The commonly used sequence models have the property to fit the letter com-
position of the observed sequence and more generally its composition in small
words of a given length. For instance, it is common to fit the 3-letter word com-
position of coding DNA sequences because the letters of these sequences are
read 3 by 3 by the ribosome, which translates each disjoint triplet into amino
acids to form a protein. The most intuitive model is therefore the permutation
model (or shuffling model), consisting in shuffling the letters of the observed
sequence so that the composition remains exactly the same. Preserving exactly
the letter composition is an easy task, but it is more difficult for 2-letter words
or longer words, from both algorithmic and probabilistic points of view. In that
respect, stationary Markov chains are particularly interesting if one accepts fit-
ting the composition on average rather than exactly. Moreover, if one wants to
take some periodicity or a heterogeneous composition along the sequence into
account, permutation models become very complicated to manipulate.

In our discussion, we will consider a random sequence S = X1X2 · · ·Xn on
the 4-letter DNA alphabet, i.e. Xi ∈ A := {a, c, g, t}.

Permutation models These models assume that random sequences are uni-
formly drawn from the set Sm of sequences having exactly the same counts of
words of length 1 up to m as the observed DNA sequence, for a given integer
m ≥ 1. The probability of a sequence S is then 1/|Sm|. For m = 1 or m = 2,
for instance, we have

|S1| =
n!

Nobs(a)! × Nobs(c)! × Nobs(g)! × Nobs(t)!

|S2| =
∏

a∈A

Nobs(a+)!
∏

b∈A Nobs(ab)!
× HXn,X1(S),

where Nobs(·) denotes the count in the observed sequence Sobs, Nobs(a+) :=∑
b Nobs(ab) and HXn,X1(S) is the cofactor corresponding to row Xn and col-

umn X1 of the matrix
(
1I{a = b} − N(ab)/N(a+)

)
a,b∈A [Whittle (1955)]. Note

that the constraint for S ∈ S2 to have the same letter composition as Sobs is
equivalent to starting (resp. ending) with the first (resp. last) letter of Sobs.
Indeed, we have Nobs(a+) = Nobs(a) for all a ∈ A except for the last nucleotide
of Sobs for which the counts differ from 1. Knowing the letter composition in
addition to the dinucleotide composition determines the last letter Xn of the
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sequences S ∈ S. We use the same procedure for the first letter X1 by using
the numbers Nobs(+b) of dinucleotides that end with b.

Working with these permutation models requires a lot of combinatorics.

Stationary Markov chains Let us consider the first order stationary
Markov model, denoted by M1. This means that the random letters Xi are not
independent and satisfy the following Markov property:

P(Xi = b | X1, X2, . . . , Xi−1) = P(Xi = b | Xi−1), ∀b ∈ A.

The transition probabilities will be denoted as follows:

π(a, b) = P(Xi = a | Xi−1 = b),∀a, b ∈ A;

Π = (π(a, b))a,b will denote the transition matrix. Moreover, all Xi’s have the
same distribution, namely the stationary distribution μ which satisfies the re-
lation μ = μΠ.

The transition probabilities are estimated by their maximum likelihood es-
timators (MLEs), i.e.

π̂(a, b) =
N(ab)
N(a+)

, a, b,∈ A, (15.1)

where N(·) denotes the number of occurrences in the sequence S = X1X2 · · ·Xn.
Moreover, the letter probability μ(a) is usually estimated by μ̂(a) = N(a)

n .
An important consequence of this estimation is that the plug-in estimator of

the expected number of ab in model M1 is approximately equal to the observed
count of ab in the DNA sequence. Indeed, we will see in Section 15.2.2 that
E[N(ab)] = (n − 1)μ(a)π(a, b), which leads to

Ê[N(ab)] := (n − 1)μ̂(a)π̂(a, b) � N(ab).

In other words, model M1 fits on average the 2-letter word composition of the
observed sequence.

Similarly, the stationary m-th order Markov chain model (Mm) fits on aver-
age the (m + 1)-letter word composition of the observed sequence. In practice,
the choice of the order m of the model Mm is important because it defines the
set of reference sequences and, as we will see in Section 15.2.5, this choice often
has a strong influence on the statistical results. This influence can already be
observed in Table 15.1: the expected counts vary with respect to the chosen
model.

Since model Mm on the A alphabet can be considered as a model M1 on the
larger alphabet Am, we will focus on first order Markov chains in this chapter.
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Phased Markov chains for coding sequences The interest in considering
phased Markov chains comes from the analysis of coding DNA sequences. Such
sequences are split into adjacent 3-letter words called codons, each of which
is translated into an amino acid to form a protein. The succession of codons
ensures the reading frame for the translation. The nucleotides of a coding DNA
sequence are then alternatively the first letter of a codon, the second letter of
a codon, the third letter of a codon, and so on. The phase of a nucleotide is
its position with respect to the codons; a letter can then be in three different
phases in a coding sequence. The three positions of a codon do not have the
same importance. First of all, an amino acid is often determined by the two first
letters of a codon according to the genetic code. Moreover, the 3D structure
of the protein usually implies constraints on the succession of amino acids. It
is therefore important to take the phase of the nucleotides into account when
modeling coding DNA sequences.

In a phased Markov chain of order 1, the transition probability from letter
a to letter b depends on the phase φ ∈ {1, 2, 3} of the nucleotide b. We then
have the three following transition probabilities:

πφ(a, b) = P(X3i+φ = b | X3i+φ−1 = a), a, b ∈ A.

We can also define the distributions μφ of letters on each phase φ ∈ {1, 2, 3}.
They satisfy μ1 = μ3Π1, μ2 = μ1Π2 and μ3 = μ2Π3.

When estimating these parameters by the maximum likelihood method, we
can fit on average the composition of the coding DNA sequence in ab’s on phase
1, in ab’s on phase 2 and ab’s on phase 3, for all a, b ∈ A.

With an appropriate change of alphabet, the phased Markov model on the
A alphabet can be considered like a model M1 on A × {1, 2, 3}. It suffices
to rewrite the sequence S over the alphabet A × {1, 2, 3} by defining X�

i =
(Xi, i modulo 3). The transition probability from (a, φ′) to (b, φ) is then equal
to πφ(a, b) if φ = φ′ + 1 modulo 3, and 0 otherwise.

Heterogeneous Markov models Some entire chromosomes have been
completely sequenced for several years, and it was quickly noticed that their
composition is more or less heterogeneous. There may be many reasons for this
heterogeneity: genes are more constrained than intergenic regions because they
have to code for functional proteins, bacteria can exchange genomic regions
(horizontal transfers) but they all have their own signature in terms of com-
position, etc. It is thus natural to use heterogeneous Markov models. Usually
the heterogeneity is considered like a piecewise homogeneity, i.e. homogeneous
regions alternate along the genome. If the heterogeneity is known in advance
(for instance genes/intergenic regions), one may then use piecewise homoge-
neous Markov models. When the aim is precisely to recover the heterogeneous
structure, then the most popular models in genome analysis are hidden Markov
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models. Note that a hidden Markov chain with a hidden state space Q and an
observation space A can be considered as a Markov chain on A×Q.

15.2.2 Mean and variance for the count

The derivation of the expectation and the variance of a word count under the
permutation model based on S2 can be found in Cowan (1991) and Prum et al.
(1995) [see Schbath (1995b) and Robin et al. (2005) for the letter permutation
model].

In this section, we assume that the sequence S = X1X2 · · ·Xn is a first order
stationary Markov chain (model M1) with nonzero transition probabilities.

The number of occurrences N(w) of an h-letter word w = w1w2 · · ·wh in
the sequence S = X1X2 · · ·Xn can be simply defined by

N(w) =
n−h+1∑

i=1

Yi(w), (15.2)

where Yi(w) equals 1 if and only if an occurrence of w starts at position i
in the sequence and 0 otherwise. Therefore, to get the mean and variance of
the count, we need to study the distribution of the random indicators Yi(w)’s,
namely their expectation, variance and covariances.

Random indicator of an occurrence The position of an occurrence of w
is defined by the position of its first letter w1. We define the random indicator
Yi(w) of an occurrence of w at position i, 1 ≤ i ≤ n − h + 1, in S by

Yi(w) =
{

1 if (Xi, Xi+1, . . . , Xi+h−1) = (w1, w2, . . . wh),
0 otherwise.

It is a random Bernoulli variable with parameter P(Yi(w) = 1) given by

P(Yi(w) = 1) = P(Xi = w1, . . . , Xi+h−1 = wh)
= μ(w1) × π(w1, w2) × · · · × π(wh−1, wh).

For convenience, μ(w) will denote the probability for the word w to appear at
a given position in the sequence. The Yi(w)’s are then Bernoulli variables with
expectation μ(w) and variance μ(w)[1 − μ(w)], with

μ(w) = μ(w1) ×
h∏

j=2

π(wj−1, wj). (15.3)

However, these random indicators Yi(w) are not independent, not only because
the sequence is Markovian, but most importantly because occurrences of a given
word may overlap in a sequence. Consequently, their sum over the positions
i = {1, . . . , n − h + 1} (namely the number of occurrences—or count—of the
word) is not distributed according to a binomial distribution.
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S g a a t a a t g a g a a t a a a t a a t a a g

2

a a t a a

11 15 18

a a t a a

a a t a a

a a t a a

Figure 15.1. Four occurrences of aataa in sequence S leading to two clumps of
aataa, the first one of size 1 and the second one of size 3.

Overlaps Occurrences of a given word may overlap in a sequence. For in-
stance, w = aataa occurs four times in the sequence given in Figure 15.1, at
positions i = 2, 11, 15 and 18. The third occurrence overlaps both the second
and the fourth occurrences, leading to a clump of three overlapping occurrences
of aataa starting at position 11.

The overlapping structure of a word can be described by two equivalent
quantities: the overlapping indicators or the periods.

Overlapping indicators The overlapping indicator εu(w), for 1 ≤ u ≤ h, is
equal to 1 if two occurrences of w can overlap on u letters, meaning that the
last u letters of w are identical to its first u letters, and 0 otherwise:

εu(w) =
{

1 if (wh−u+1, wh−u+2, . . . , wh) = (w1, w2, . . . , wu),
0 otherwise.

By definition, εh(w) = 1. A non-overlapping word w is such that εu(w) = 0 for
all 1 ≤ u ≤ h − 1.

Periods of a word An integer p ∈ {1, . . . , h−1} is said to be a period of w if
and only if two occurrences of w can start at a distance p apart (εh−p(w) = 1).
It implies the following periodicity: wj = wj+p for all j ∈ {1, . . . , h − p}.

We denote by P(w) the set of periods of the word w. For instance,
P(aataataa) = {3, 6, 7}. Periods that are not a strict multiple of the smallest
period are said to be principal since they will be more important, as we will
see later. P ′(w) denotes the set of the principal periods of w; for instance,
P ′(aataataa) = {3, 7}.

In the rest of our discussion, we will use the periods rather than the over-
lapping indicators because this simplifies formulas. We will denote by wpw the
word composed of two overlapping occurrences of w starting at a distance p
apart:

wpw = w1 · · ·wpw1 · · ·wh.
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Dependence between occurrences The variables Yi(w) and Yi+d(w),
d > 0, are not independent. Their covariance is defined by

C[Yi(w), Yi+d(w)] = E[Yi(w) × Yi+d(w)] − E[Yi(w)] × E[Yi+d(w)]
= P(Yi(w) = 1, Yi+d(w) = 1) − [μ(w)]2. (15.4)

To calculate the probability P(Yi(w) = 1, Yi+d(w) = 1), we distinguish two
cases: 1 ≤ d < h (two overlapping occurrences) and d ≥ h (two disjoint
occurrences).

• The probability that w occurs both at positions i and i + d, 1 ≤ d < h,
is different from 0 only if d is a period of w. In this case, it is equal to
μ(wdw).

• The probability that two disjoint occurrences of w are separated by d−h
letters (d ≥ h) is given by μ(w)πd−h+1(wh, w1)μ(w)/μ(w1), where π�(·, ·)
denotes �-step transition probabilities in S.

The covariance between two random indicators of occurrence is thus

C[Yi(w), Yi+d(w)] =

⎧
⎪⎪⎨

⎪⎪⎩

−[μ(w)]2 if 0 < d < h, d∈/ P(w),
μ(wdw) − [μ(w)]2 if d ∈ P(w),

[μ(w)]2
[
πd−h+1(wh, w1)

μ(w1)
− 1

]

if d ≥ h.

(15.5)

Mean and variance of the count Finally, we get the following expression
for the expectation and the variance of N(w):

E[N(w)] =
n−h+1∑

i=1

E[Yi(w)] = (n − h + 1)μ(w) (15.6)

V[N(w)] =
n−h+1∑

i=1

V[Yi(w)] + 2
n−h+1∑

i=1

n−h+1∑

j=i+1

C[Yi(w), Yj(w)] (15.7)

= (n−h+1)μ(w)
(
1−μ(w)

)
+2

n−h+1∑

i=1

n−h−i+1∑

d=1

C[Yi(w), Yi+d(w)],

where μ(w) is given by Equation (15.3), and the covariance term is given by
Equation (15.5).

15.2.3 Word count distribution

We will now focus on the statistical distribution of the count N(w). Several
methods have been proposed to derive the exact distribution of N(w) in a se-
quence of independent letters (model M0) or in model M1. Most of them use
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pattern matching principles or language theory (see for instance Chapter 7 from
Lothaire (2005)). The most probabilistic approach is probably the one that uses
the following duality principle: P(N(w) ≥ j) = P(Tj ≤ n), where Tj denotes
the position of the j-th occurrence of the word w along a random sequence S of
length n. The distribution of Tj can be obtained via the distribution of the dis-
tance between two successive occurrences of w [see Robin and Daudin (1999)].
However, all these methods are fastidious to implement, with many technical
limitations as soon as the sequence is long, or if the order of the Markov model
is greater than 1, or if the motif is complex. In practice, approximate distribu-
tions are used. In this section, we will present two approximations of the word
count distribution that have been theoretically proved under some asymptotic
framework: the Gaussian approximation, which is valid if the expected count is
far enough from zero, and a compound Poisson approximation, which is adapted
for the count of rare and clumping events. The quality of these approximations
has been studied in Robin and Schbath (2001) and in Nuel (2006). No theoret-
ical result exists so far on the binomial approximation that would result from
neglecting the dependence between the occurrences.

Gaussian approximation

Recall that N(w) is a sum of (n−h+1) random Bernoulli variables Yi(w) with
mean μ(w) and variance μ(w)[1 − μ(w)].

Asymptotic normality If the Bernoulli variables Yi(w) were independent,
then the classical central limit theorem would ensure that the count the conver-
gence in distribution is a special probabilistic convergence for random variables
to a Gaussian variable. But the Yi(w)’s are not independent for two reasons:
the occurrences of w can overlap, and the letters of the sequence are not inde-
pendent. Nonetheless, by using a central limit theorem for Markov chains, the
asymptotic normality of the count can be established:

N(w) − E[N(w)]
√

V[N(w)]
D−→ N (0, 1) as n → +∞. (15.8)

Estimating the parameters In the previous convergence, both the expec-
tation and variance of the count depend on the model parameters, which are
not known in practice. Let us estimate the expected count by its plug-in es-
timator, i.e. by replacing the transition probabilities π(a, b) by their MLEs
π̂(a, b) = N(ab)/N(a+) and the probability μ(w1) by μ̂(w1) = N(w1)/n in
Equation (15.6). We then consider the following estimator:

Ê[N(w)] =
N(w1w2) × · · · × N(wh−1wh)

N(w2) × · · · × N(wh−1)
. (15.9)
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Because the estimator Ê1[N(w)] is expressed like a function of several asymp-
totically Gaussian counts, the δ-method ensures that there exists a constant
v2(w) such that

N(w) − Ê[N(w)]
√

(n − h + 1)v2(w)
D−→ N (0, 1) as n → +∞. (15.10)

However, since Ê[N(w)] is random, the variance of {N(w) − Ê[N(w)]} is dif-
ferent from V[N(w)] and (n− h + 1)v2(w) is therefore not related to V[N(w)].

Asymptotic variance Several approaches have been used to derive the
asymptotic variance (n−h+1)v2(w). The first one is the δ-method in Lundstrom
(1990): it uses the fact that n−1/2{N(w) − Ê[N(w)]} is a function of the
asymptotically Gaussian vector

(
N(w), N(w1w2), . . . , N(wh−1wh), N(w2), . . . ,

N(wh−1)
)

from (15.8). However, the function and the size of this vector depend
both on the length and on the 2-letter composition of w, so it does not give a
unified formula for the asymptotic variance.

Prum et al. (1995) proposed a second method: they showed that the estima-
tor Ê[N(w)] is asymptotically equivalent to E[N(w) |S2], the expected count of
N(w) under the 2-letter word permutation model, and that v2(w) is the limit
of n−1

V[N(w) | S2]. They obtained

v2(w) = μ(w) + 2
∑

p∈P(w), p<h−1

μ(wpw)

+ [μ(w)]2

⎡

⎣
∑

a

[Nw(a+)]2

μ(a)
−
∑

a,b

[Nw(ab)]2

μ(ab)
+

1 − 2Nw(w1+)
μ(w1)

⎤

⎦ ,

(15.11)

where Nw(·) stands for the count inside the word w. The overlaps of w on two
or more letters explicitly appear in this formula (p < h − 1). The overlap on a
unique letter is taken into account in the [μ(w)]2 term.

Since model M1 allows more variability than the corresponding permutation
model, one expects the variance (n−h+1)v2(w) to be smaller than the variance
V[N(w)]. This is not difficult to show in the Bernoulli model (m = 0); for higher
models, it has been numerically verified.

Generalizations to m > 1 and to phased models can be found in Schbath
et al. (1995) and Schbath (1995b). When m = h − 2, i.e. in the Markov chain
model fitting the counts of all the (h − 1)-letter words (we call this model the
maximal model regarding the analysis of h-letter words), a third approach can
be used to derive the asymptotic variance. This approach is based on martingale
theory and provides a simpler expression for the asymptotic variance [see Prum
et al. (1995) or Reinert et al. (2000)].



330 S. Schbath and S. Robin

Compound Poisson approximation

Poisson approximations can also be used for the count of rare events, i.e. when
E[N(w)] = O(1). Note that this condition implies that log n = O(h) (long
enough words). In this section, we will assume the rare event condition but also
assume that h = o(n).

A nice method to establish Poisson approximations of counts is the
Chen–Stein method [see Arratia et al. (1990) for an introduction and Barbour
et al. (1992b) for a more general presentation]. This method gives a bound on
the total variation distance between the distribution of a sum of dependent
Bernoulli variables and the Poisson distribution with the same expectation.
The lower the dependence, the better the Poisson approximation quality. Un-
fortunately, the local dependence between occurrences of an overlapping word
w is too important, and a Poisson approximation of the distribution of N(w)
generally does not hold. One can clearly show that the bound provided by the
Chen–Stein method does not converge to zero [it is of order μ(wp0w) with p0

the minimal period of w, see Schbath (1995a)]. But one can also show that a
geometric distribution (discrete version of the exponential distribution) does
not fit the distribution of the distance between two successive occurrences of
an overlapping word [Robin and Daudin (1999)].

The solution is to take advantage of the clump structure (clumps do not
overlap) and to use the following relations between the number of occurrences
N(w) and the clumps (size and count). Indeed we have

N(w) =
Ñ(w)∑

i=1

Ki(w), (15.12)

where Ñ(w) is the number of clumps of w and Ki(w) is the size of the i-th
clump, but we also have

N(w) =
∑

k>0

kÑk(w), (15.13)

where Ñk(w) is the number of clumps of w of size k in S. Since a compound Pois-
son variable is defined like

∑
k>0 k Zk where the Zk’s are independent Poisson

variables, or like
∑Z

i=1 Ci with Z a Poisson variable and the Ci’s independent
and identically distributed (i.i.d.) variables, the Poisson approximation of the
number of clumps (of any size or of size k) is the core of the compound Pois-
son approximation of the word count. In the remainder of this section, we will
explicitly define the clumps and give some of their probabilistic properties.

Random indicator of a clump occurrence A clump of a word w in a
sequence S is a maximal succession of overlapping occurrences of w. The size of
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a clump is the number of occurrences of w of which the clump is composed. For
instance, in Figure 15.1, there are two clumps of aataa: one of size 1 starting
at position 2, the other one of size 3 starting at position 11. The position of
a clump of w in the sequence is defined by the position (start) of the first
occurrence of w in the clump. Let us define Ỹi(w) as the random indicator that
an occurrence of a clump of w starts at position i in S. A clump of w occurs
at position i if and only if an occurrence of w occurs at position i without
overlapping a previous occurrence of w. Therefore, if we neglect end effects (i.e.
when i < h), we can write

Ỹi(w) = Yi(w)[1 − Yi−1(w)] × · · · × [1 − Yi−h+1(w)]. (15.14)

(End effects are corrected by considering an infinite sequence.) Now an occur-
rence of w which overlaps a previous occurrence of w is necessarily preceded by
a prefix w1 · · ·wp of w, where p is a period of w. If we restrict ourselves to prin-
cipal periods, this is a necessary and sufficient condition [Schbath (1995a)]. For
instance, an occurrence of aataataa overlaps a previous occurrence of aataataa
if and only if it is preceded either by aat (prefix of size 3) or by aataata (pre-
fix of size 7). If it was preceded by aataat (prefix of size 6), it would also be
preceded by aat.

Therefore, we have

Ỹi(w) =
∑

p∈P ′(w)

[1 − Yi−p(w1 · · ·wp)] × Yi(w).

Clump probability Let us denote by μ̃(w) the probability that a clump of
w occurs at a given position, i.e. μ̃(w) = E[Ỹi(w)]. The previous equation gives

μ̃(w) = [1 − a(w)] × μ(w), (15.15)

where a(w) is the probability that an occurrence of w overlaps a previous
occurrence of w and is given by

a(w) =
∑

p∈P ′(w)

p∏

j=1

π(wj , wj+1). (15.16)

Symmetrically, the probability that an occurrence of w overlaps a next occur-
rence of w is also equal to a(w). Therefore, a(w) will be simply called the
probability of self-overlap of w. Note that a(w) = 0 if and only if w is a non-
overlapping word (we assumed that all transition probabilities were nonzero).
In that case we also have Ỹi(w) = Yi(w) and μ̃(w) = μ(w).
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Poisson approximation for the number of clumps Let us define the
number of clumps of w by Ñ(w) :=

∑n−h+1
i=1 Ỹi(w). The mean number of

clumps is then equal to (n−h+1)μ̃(w) = [1−a(w)]E[N(w)] from (15.15). The
Poisson approximation of Ñ(w) follows from a direct application of the Chen–
Stein method to the Bernoulli variables Ỹi(w) [Schbath (1995a)]. The error
bound is indeed of order (ρh + hμ(w)) where 0 < ρ < 1 is the second largest
eigenvalue (in modulus) of the transition matrix Π. Recall that nμ(w) = O(1)
from the rare event condition and that h = o(n).

The exact distribution of the number of clumps of w in model M1 has been
recently derived through its generating function [Stefanov et al. (2007)] and
compared to the Poisson distribution; The conclusion was that the smaller the
expected count of the word, the better the Poisson approximation.

Size of a clump A clump is of size k if and only if the first occurrence
of w in the clump overlaps from the right a second occurrence (probability
a(w)), the second occurrence of w in the clump overlaps a third occurrence
(probability a(w)), . . . , the (k − 1)-th occurrence overlaps a k-th occurrence of
w (probability a(w)), and this k-th occurrence of w does not overlap a next
occurrence (probability 1− a(w)). Thus, if we denote by Ki(w) the size of the
i-th clump of w in the sequence, the random variable Ki(w) is geometrically
distributed:

P(Ki(w) = k) = [1 − a(w)] × [a(w)](k−1). (15.17)

Compound Poisson approximation for rare word counts As previously
stated, the Poisson approximations of the number of clumps of any size and
more particularly of size k for k ≥ 1 are the key ingredients for the compound
Poisson approximation of N(w). Indeed, let us denote by CP(λk, k ≥ 1) the
compound Poisson distribution of

∑
k>0 kZk with Zk ∼ P(λk). Since N(w) =

∑
k>0 kÑk(w), the total variation distance properties give

dTV(L(N(w)), CP(E[Ñk(w)], k ≥ 1)) ≤ dTV(L(Ñk(w), k ≥ 1),⊗P(E[Ñk(w)])).

The joint Poisson approximation of (Ñk(w), k ≥ 1) is more involved to obtain
than the one for Ñ(w) [Schbath (1995a)], but the error bound is of the same
order and

E[Ñk(w)] = [1 − a(w)]2[a(w)](k−1)
E[N(w)].

The above formula means that the limiting compound Poisson distribution
CP(E[Ñk(w)], k ≥ 1) is in fact a Pólya–Aeppli distribution (also called a
geometric-Poisson distribution) with parameter (E[Ñ(w), a(w)]) [Johnson et al.
(1992)].

Direct compound Poisson approximation methods exist and can be alterna-
tively applied to the word count [Erhardsson (1999), Erhardsson (2000)]. Their
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advantage is that they provide better error bounds, but they give the same lim-
iting compound Poisson distribution as above [see Lothaire (2005), Chapter 6].

Generalization to Mm and phased models As in the Gaussian approx-
imation, the generalization to the phased Markov model of order 1 is done by
rewriting the sequence with the new alphabet A×{1, 2, 3} (see Section 15.2.1).
However, note that the occurrence of a single word w in sequence S corresponds
to the occurrence of a word family composed of three phased words in the new
sequence. Therefore, one has to use the compound Poisson approximation for
the count of a set of words in M1 (see Section 15.4.1).

When one changes the alphabet (see Section 15.2.1) to generalize the com-
pound Poisson approximation in model M1 to model Mm, m > 1, one must be
very careful with the word overlaps. Indeed, there is no one-to-one transforma-
tion between clumps of w in S and clumps of w� (word w written on Am) in
the new sequence S�. Let us take an example with m = 2. Set w = aataa and
let S be the following sequence on the A alphabet:

S = gaataatgagaataaataataag.

S contains four occurrences of w and two clumps of w (one of size 1, the other
one of size 3). Now, we write the word and the sequence in the new alphabet
A2. For this, we set ga = γ, aa = α, at = β, ta = τ , tg = δ, ag = κ. We have

w� = αβτα and S� = γαβταβδγκγαβτα αβταβτακ.

We can see that the word w� still appears four times in the sequence S� (N(w) is
equal to the count of w� in S�) but there are now three clumps of w� in S� (two
of size 1 and one of size 2). This is due to the fact that w� has just one unique
period (P(αβτα) = {3}), whereas w has two periods (P(aataa) = {3, 4}).
Therefore, when the results for the word w� in M1 are “translated” into the
alphabet A, some overlaps will not appear explicitly in the formulas. In Mm,
only the overlaps on m letters or more will be taken into account since the
principal periods of w� are the periods of w that are less than or equal to
(h − m). The word w� is non-overlapping as soon as w is not sufficiently self-
overlapping.

15.2.4 p-values and scores of exceptionality

The significance of the over-representation of a word w in a given DNA sequence
is measured by the p-value p(w):

p(w) = P{N(w) ≥ Nobs(w)},

where Nobs(w) is the observed count of w in the DNA sequence. If p(w) is close
to 0, then the word is exceptionally frequent: there is no chance to observe it
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so many times in random sequences. On the other hand, the significance of an
under-representation is measured by the p-value p′(w) = P{N(w) ≤ Nobs(w)}.
If p′(w) is close to 0, then w is exceptionally rare under the model: there
is no chance that w occurs so rarely in random sequences. Since the exact
distribution of the count N(w) is rarely available in practice, approximate p-
values are calculated to detect exceptional words and are usually converted into
scores of exceptionality.

Approximate p-values A natural way of approximating p-values is to use
an approximate distribution of N(w); for instance, a Gaussian distribution for
highly expected words or a compound Poisson distribution for rarely expected
words, as we have seen in Section 15.2.3. Calculating approximate p-values only
requires us to compute the tail of the Gaussian or compound Poisson distribu-
tion. An efficient algorithm to compute tails of geometric-Poisson distributions
has been proposed by Nuel (2008).

For exceptional words, i.e. words whose count strongly deviates from what is
expected, large deviation theory is probably the most accurate way to approxi-
mate p-values. This approach has been studied in Nuel (2004). Since it requires
sophisticated numerical analysis and longer computation times, this method
should be restricted to the most exceptional words (filtered from Gaussian or
compound Poisson approximations for instance).

Score of exceptionality In practice, it is often more convenient to manipu-
late scores from R than probabilities of the form p(w) = P{N(w) ≥ Nobs(w)},
especially when the ones we are interested in are very close to 0 or very close
to 1. For symmetrical reasons we prefer to use the probit transformation rather
than the − log transformation. Therefore, to each probability p(w) we associate
the score u(w) such that

P{N (0, 1) ≥ u(w)} = p(w).

Therefore, words with a high positive score are exceptionally frequent, whereas
words with a negative but high absolute value score are exceptionally rare in
the observed sequence.

The Gaussian approximation of N(w) has a great practical advantage: it al-
lows us to directly calculate the score of exceptionality u(w) without calculating
the associated p-value. Indeed, if we set

u(w) =
N(w) − Ê[N(w)]

√
σ̂2(w)

, (15.18)

where Ê[N(w)] is the estimator of the expected count given by Equation (15.9),
and σ̂2(w) is a plug-in estimator of (n − h + 1)v2(w) (cf. Equation (15.11)),
namely
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σ̂2(w) = Ê[N(w)] + 2
∑

p∈P(w),p<h−1

Ê[N(wpw)] (15.19)

+{Ê[N(w)]}2

⎡

⎣
∑

a

[Nw(a+)]2

N(a)
−
∑

a,b

[Nw(ab)]2

N(ab)
+

1 − 2Nw(w1+)
N(w1)

⎤

⎦,

then we have

P{N(w) ≥ Nobs(w)} � P{N (0, 1) ≥ u(w)}.

15.2.5 Example of DNA motif discovery

Chi motifs in bacterial genomes Chi motifs have been identified in several
bacterial genomes, and they are not conserved through species. Their identi-
fication in a new species is still a challenge. They are involved in the repair
of double-strand DNA breaks by homologous recombination. More precisely,
they interact specifically with an enzyme that processes along the DNA and
degrades it (exonuclease activity). When the enzyme encounters a Chi site, its
exonuclease activity is strongly reduced and altered, but it still continues to
separate the two DNA strands, forming a substrate for homologous pairing and
repair of the deleted DNA parts. Since Chi motifs protect the bacterial genome
from degradation and stimulate its repair, it seems important that these motifs
appear as frequently as possible along the bacterial genome. Biologists expect
them to be significantly over-represented.

Moreover, Chi activity is strongly orientation dependent. The Chi motif is
only recognized when the enzyme enters a double-strand DNA molecule from
the right side of the motif. In many bacteria for which the Chi motif has been
identified, the Chi orientation is correlated with the direction of DNA repli-
cation, meaning that it occurs preferentially on the leading strand [El Karoui
et al. (1999), Halpern et al. (2007)]. The over-representation of Chi should
then be important on the leading strands. Biologists classically measure the
asymmetry strand of a motif by calculating its skew. The skew of a motif w is
simply the ratio N(w)/N(w), where w is the reverse complement of the word
w; in other words N(w) is simply the count of w in the complementary strand.
Therefore, biologists expect Chi to be relatively skewed, i.e. with a skew much
greater than one.

E. coli as a learning case The Chi motif of E. coli has been known for a
long time: it is the 8-letter word gctggtgg. If we study the statistical properties
of the Chi frequency along the E. coli genome, we note some significant charac-
teristics. First of all, its 762 occurrences in the complete genome (concatenation
of both leading stands, n = 4.6 106) are significantly high whatever model we
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Table 15.2. Statistics of gctggtgg in the complete genome (left) and in the
backbone genome (right) of E. coli K12 under various models Mm. The rank
is obtained while sorting the 65,536 scores by decreasing order.

complete genome backbone
762 occurrences 675 occurrences

m Êm[N ] σ̂2
m um rank Êm[N ] σ̂2

m um rank
0 85.9 85.8 72.96 3 73.10 73.02 70.44 3
1 84.9 84.8 73.54 1 71.47 71.32 71.46 1
2 206.8 203.9 38.88 1 186.68 183.82 36.02 1
3 355.5 338.9 22.08 5 315.26 299.68 20.78 1
4 355.3 314.4 22.94 2 309.79 272.90 22.11 2
5 420.9 298.0 19.76 1 376.68 262.42 18.42 1
6 610.1 203.3 10.65 3 539.09 176.02 10.24 1

choose. In other words, its high frequency cannot be explained by the genome
composition. As we can see in Table 15.2, Chi has very high over-representation
scores and is always among the five most exceptionally frequent 8-letter words.
Second, if we restrict the analysis to the E. coli backbone1 (n = 3.7 106), Chi
becomes the most exceptionally frequent 8-letter word in five models, especially
in the maximal model M6 (see Table 15.2). Analyzing only the backbone seems
therefore to reduce the noise produced by the regions which are either highly
variable or specific to one or few strains (mobile elements). Indeed, there is a
priori no biological reason for Chi to occur in such regions.

The choice of the model does not seem to affect the significance of the Chi
frequency (it is always exceptional), but this is not a general picture. Note
that, when the order of the Markov model increases, the model better fits the
sequence composition and fewer exceptional words are found. This is illustrated
by the boxplots of Figure 15.2. Moreover, in a high order model we have a more
accurate knowledge of the sequence composition than in a low order model: the
significance of a word frequency then has no reason to be the same. This point is
illustrated by the plot of Figure 15.2 which compares scores in models M1 and
M6. We recognize the Chi motif, which is clearly outside the cloud, but let us
take the case of the word ggcgctgg. It occurs 761 times in the E.coli backbone,
and it has a significantly high score of 62.4 in model M1 (it is the second most
exceptional word) but has a score of 0.8 in model M6 (rank 17100). It simply
means that its high frequency can be explained by the composition of 7-letter
words; indeed, it is expected about 749 times in M6.

1The backbone of a bacterial genome is composed of the genomic regions conserved in
several strains of the bacteria. Here, we used the backbone obtained from the alignment of the
three strains K12, O157:H7 and CFT and available at http://genome.jouy.inra.fr/mosaic/
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Figure 15.2. Exceptionality scores for the 65,536 8-letter words in the E. coli
backbone. Left: Boxplots of the scores under models M0 to m6. Right: Scores
under models M1 (x-axis) and M6 (y-axis).

The third characteristic of Chi in the E.coli backbone is that it is sig-
nificantly skewed. Its skew is equal to 3.20, and the method described in
Section 15.4.1 to assess skew significance gives a score of 6.53 in M6 (p-value
of 3.3 10−11).

Identification of Chi motif in S. aureus We will describe here the strategy
used in Halpern et al. (2007) to identify the Chi motif in the bacteria S. aureus.
The first step was to extract the backbone of the S. aureus genome by comparing
the genome of six strains of the bacteria. The obtained backbone contains about
2.44 106 letters.

The second step was to search for motifs which are frequent enough, ex-
ceptionally frequent and relatively skewed. They started by analyzing 8-letter
words (as for E. coli) but none of the most over-represented and skewed motifs
were frequent enough to be retained as potential Chi candidates. They thus
focused on 7-letter words. Scores of exceptionality were calculated with the
Gaussian approximation and in the maximal model, namely model M5. Six
motifs have an exceptionality score greater than 11 (see Table 15.3 or Figure
15.3 for a global view). Two of them have a negative skew score, so they were
not retained. A biological experiment was then performed to test for S. aureus
Chi activity of the four candidates: gaaaatg, ggattag, gaagcgg and gaattag.
The conclusion was that gaagcgg is necessary and sufficient to confer Chi ac-
tivity in S. aureus. This strategy has also been successfully used to predict and
validate the Chi motif of three species of the Streptococcus genus [Halpern et al.
(2007)].
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Table 15.3. The 10 most exceptionally frequent 7-letter words under model
M5 in the S. aureus complete genome. Columns correspond respectively to the
word, its observed count, its estimated expected count, its normalizing factor,
its score of over-representation under model M5, its observed skew and its skew
score under model M0.

w Nobs(w) Ê5[N(w)] σ̂2
5(w) u5(w) Skew Score

taaaaaa 1542 1214.3 603.4 13.34 1.61 −1.28
gaaaatg 1067 789.9 454.2 13.00 2.48 1.13
taaaatt 1356 1062.6 552.8 12.48 1.04 −1.53
ggattag 266 143.2 97.5 12.43 2.53 1.52
gaagcgg 272 162.4 88.1 11.67 7.56 2.91
gaattag 614 420.7 274.4 11.67 3.89 7.23
gaaaaag 1177 942.1 518.0 10.32 3.52 2.53
taagatt 316 201.3 130.9 10.03 1.07 −2.98
ttaaaag 1059 856.5 431.6 9.75 2.00 3.85
gatttag 657 488.1 305.9 9.66 2.16 4.25

Figure 15.3. Over-representation scores under M5 and skew scores under M0
for the most over-represented 7-letter words (over-representation scores greater
than 5) in the complete genome of S. aureus. The four best candidates (motifs
A to D) are indicated. Motif C (gaagcgg) is the functional Chi site of S. aureus.
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15.3 Words with Exceptional Distribution

The way the occurrences of a given motif w are spread along a sequence or
among different sequences or subsequences may provide functional information.
When the motif (and its functional properties) is known, this gives us hints
about the function of the regions where it occurs (or where it is avoided). Con-
versely, new interesting motifs may be discovered by comparing their relative
frequencies in different well-defined sequences or subsequences (e.g. regions of
a genome).

15.3.1 Compound Poisson process

For both problems, we need a probabilistic model describing the motif occur-
rences process to assess the significance of the observed results. In this section,
we will focus on the (compound) Poisson process, which is simple and provides
a surprisingly good approximation of the distribution of the word count [Robin
and Schbath (2001)].

In this model, the sequence is viewed as a continuous line. To account
for possible overlaps between occurrences, the word is assumed to occur in
clumps along the sequence. We assume that the counting process of the clumps
{C(x)}x≥0 is a homogeneous Poisson process with intensity λ (in all of Section
15.3, we will avoid indexing the quantities by (w) because there will be no am-
biguity). Each clump contains a random number of occurrences, referred to as
the clump size. The clump sizes {K1, K2, . . . } are supposed to be i.i.d. with dis-
tribution p(k). The counting process {N(x)}x≥0 is hence the compound Poisson
process defined as

N(x) =
∑

c=1...C(x)

Kc.

In the case of a single fixed word, the clump size has a geometric distribution:
p(k) = (1 − a)ak−1, where a stands for the overlapping probability of the word
(see Section 15.2.3). In the case of more complex motifs, p(k) may have a
more complicated form [Robin (2002)]. The estimates of parameters λ and a
depend on the biological question: empirical estimates will fit the observed word
frequency (and clumping), while estimates based on a Markov chain model will
account for the sequence composition.

15.3.2 Words significantly unbalanced between two sequences

We first consider the detection of motifs having different frequencies between
two sequences S1 and S2. To avoid artifacts and spurious detections, the test-
ing procedure must account for the different lengths and composition of the
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sequences, and for the fact that the word may have an unexpected frequency
in one or both of them.

We only consider the non-overlapping case (i.e. a = 0). In sequence Si

(i = 1, 2), the count Ni of w is supposed to have a Poisson distribution

Ni ∼ P(λi), λi = ki�iμi,

where �i is the length of Si, μi = μi(w) is the occurrence probability of w under
a Markov model fitted to the composition of Si (see Section 15.2.2) and ki is
the exceptionality coefficient of w in Si. This framework is described in Robin
et al. (2007).

Our purpose is to test if the counts of w in both sequences deviate from their
expected values in the same way. We hence want to test the hypothesis H0 :
{k1 = k2} versus {k1 �= k2}. A test procedure can be derived from the following
property: for two independent Poisson variables N1 and N2 with respective
means λ1 and λ2, the conditional distribution of N1 given the sum N1 + N2 is
binomial B(N1 + N2, λ1/(λ1 + λ2)). Hence, we have under H0:

N1|(N1 + N2) ∼ B (N1 + N2, �1μ1/[�1μ1 + �2μ2]) .

The distribution of the counts of overlapping words is characterized by two
parameters (λ and a). For such words, the frequency comparison must be stated
in both terms. Assuming that the overlapping probability is the same in the
two sequences leads us to define the same binomial test procedure as above on
the number of clumps (rather than the number of occurrences itself), which is
supposed to have a Poisson distribution (see Section 15.2.3).

To illustrate this procedure, we consider the occurrences of the Chi motif
w = gctggtgg in the genome of E. coli. This genome can be split into a
very conserved part (called the backbone) that is common to various strains
of E. coli and a remaining part (called variable segments) that is specific to
the strain under study: K12. The occurrences of Chi actually never overlap
in the whole genome; the number of clumps is the number of occurrences.
Chi occurs 691 times in the backbone2 and 66 times in the variable segments,
while the expected numbers of clumps �iμ̃i under model M1 are 73.6 and 11.3,
respectively, so �1μ1/(�1μ1 +�2μ2) = 86.7%. It seems therefore more frequent in
the backbone than in the loops. To assess the significance of this difference, we
calculate the p-value Pr{B(757, 86.7%) ≥ 691} = 5.12 10−5, which shows that
Chi is significantly more frequent in the most conserved regions of the genome,
which is consistent with its favorable function.

Testing the equality of the two overlapping probabilities (H0 : {a1 = a2})
leads to a hypergeometric test [see Robin et al. (2007)].

2In contrast to Section 15.2.5, the backbone here is the one obtained from the alignment
of two strains: K12 and 0157:H7.
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15.3.3 Detecting regions significantly enriched
with or devoid of a word

We now want to detect genome regions where the occurrences of a given word
w are unexpectedly frequent (or rare). The standard strategy in such a sit-
uation is to use scan statistics, i.e. distances between successive occurrences.
This strategy was first proposed in a genomic context by Karlin and Macken
(1991). In this setting, the occurrences are supposed to occur according to a
homogeneous Poisson process, which actually corresponds to a non-overlapping
word.

Overlapping words can be studied in the compound Poisson model. Since the
clump size has a geometric distribution, the distance D between two successive
occurrences is either (i) 0 (if the two occurrences belong to the same clump)
or (ii) exponential (if they belong to two successive clumps). (i) occurs with
probability a and (ii) with probability (1 − a). The cumulative distribution
function (cdf) of D is hence F (y) = 1 − (1 − a)e−λy. The analogous exact
distribution is derived in Robin and Daudin (2001) in the Markov chain model.
Because the occurrence process is a renewal process, the cdf Fr of the r-scan,
i.e. the cumulated distance Dr between the i-th occurrence and the (i + r)-th
is simply the r times self-convolution of F : Fr = F⊗r.

Let Dr
1, D

r
2, . . . denote the successive r-scans. The richest region in terms

of occurrences is characterized by the smallest Dr
min = mini D

r
i . To check if

the observed minimum distance dr
min is significantly small, we need to evaluate

Pr{Dr
min ≤ dr

min}. A Poisson approximation strategy is proposed by Dembo and
Karlin (1992):

Pr{Dr
min ≤ dr

min} ≈ 1 − exp[−(N − r)Fr(dmin)],

where N is the total number of occurrences. Chen–Stein bounds for this ap-
proximation are provided. These results can be applied for both the compound
Poisson process [Robin (2002)] and Markov chain [Robin and Daudin (2001)]
frameworks.

As an illustration, we consider the occurrences of the Chi motif in the
genome of Haemophilus influenzae, and study their distribution using 3-scans
(see Section 15.2.5 to get the description of the Chi motif). The x-axis of
Figure 15.4 gives the positions in Mbps, and the y-axis gives the intensity 3/D3

multiplied by 103 (in log scale); peaks correspond to rich regions. We observe
several peaks, the highest one being near the center, i.e. near the terminus of
replication. Chi motifs are expected to be frequent here because this region is
crucial in the replication mechanism of the cell. The four horizontal lines give,
in ascending order, the theoretical mean intensity, the lower bound of the Chen–
Stein approximation, the Chen–Stein threshold and the upper bound. We see
that several peaks are significant under the M1 model, but the mean intensity
of the occurrence process is highly underestimated by this model. Using MLEs,
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Figure 15.4. Significance of the intensity peaks for the occurrences of the Chi
site of H. influenzae.

the compound Poisson model fits the observed mean intensity. In this model,
even the highest peak is no longer significant.

15.4 More Sophisticated Patterns

Biological motifs are not always exact and simple words. They often contain
some uncertainties (degenerated motifs) like the Chi motif gntggtgg of H.
influenzae (the n stands for any of the four DNA letters). In this case, we have
to consider the occurrences of a set of words rather than a single word. In the
case of transcription factor binding sites, we have to deal with several (exact
or not) words that should occur at a constrained distance apart (structured
motifs). In Section 15.4.1, we give major extensions required to generalize the
results on simple words presented in the previous sections to a set of words.
Then, we present some results for structured motifs in Section 15.4.2.

15.4.1 Family of words

Let W be a set (family) of r words: W = {w1, . . . ,wr}. To simplify the expo-
sition, we will assume that all of the r words have the same length h. In the
general case, one just makes the assumption that no word from the family, is
part of another word of the family, and the results can be easily generalized.

Distribution of the count of a word family (model M1) The number
of occurrences of the word family, denoted by N(W), is simply the sum of the
counts of each word taken from W:

N(W) =
r∑

j=1

N(wj).
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The expected count E[N(W)] is then simply the sum of the r expected counts
E[N(wj)], j = 1, . . . , r. For the variance, we have V[N(W)] =

∑r
j=1 V[N(wj)]+

2
∑

j<j′ C[N(wj), N(wj′)], so we just need to derive the covariance between two
word counts (see below). The Gaussian approximation of N(W) is immediate,
and it is easy to derive a score of exceptionality for any family of words. For
the compound Poisson approximation, it is much more involved. A first strat-
egy could be to approximate separately the clumps of each word, and then to
combine the associated Poisson variables [Reinert and Schbath (1998)]. Unfor-
tunately, words from W can overlap each other, and this will lead to a bad
approximation for overlapping families. The alternative is to consider clumps
of the word family itself, i.e. clumps composed of overlapping occurrences of
W [Roquain and Schbath (2007)]. This leads to a compound Poisson distri-
bution, whose parameters are derived from an overlapping probability matrix
(A(wj , wj′))1≤j,j′≤r, but which is not a geometric Poisson distribution. Tails of
general compound Poisson distributions can be calculated by using the algo-
rithm from Barbour et al. (1992a).

Covariance between two word counts in M1 Let there be two different
words w and w′ of length h. The covariance C[N(w), N(w′)] is given by

C[N(w), N(w′)] = −E[N(w)] E[N(w′)] +
∑

i=j

E[Yi(w)Yj(w′)].

Because of symmetry, let us restrict ourselves to the calculation of
E[Yi(w)Yi+d(w′)] for d > 0. If 0 < d < h, an occurrence of w′ at position
i + d would overlap an occurrence of w at position i. We then need to intro-
duce the possible lags between an occurrence of w and a following overlapping
occurrence of w′.

w′

w′
1 w′

h

w1 wp
︸ ︷︷ ︸

p∈P(w,w′)

wh

w
Let P(w,w′) be the set of these possible lags, namely

p ∈ P(w,w′) ⇐⇒ w′
j = wj+p, ∀j ∈ {1, . . . , h − p}.

Overlaps are not necessarily symmetric so P(w,w′) �= P(w′,w). For in-
stance, atcg can be overlapped from the right by cgct after a lag of 2
(P(atcg, cgct) = {2}), whereas cgct cannot be overlapped from the right
by atcg (P(cgct, atcg) = ∅).

If p ∈ P(w,w′), let wpw′ be the word composed of two overlapping occur-
rences of w and w′: wpw′ = w1 · · ·wpw

′
1 · · ·w′

h.
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By analogy with Equation (15.5), one can show that

E[Yi(w), Yi+d(w′)] =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ d < h, d∈/ P(w,w′),
μ(wdw′) if d ∈ P(w,w′),

μ(w)μ(w′)πd−h+1(wh,w′
1)

μ(w′
1)

if d ≥ h,

which finally leads to the following expression for the covariance:

C[N(w), N(w′)] = − E[N(w)] E[N(w′)] +
∑

p∈P(w,w′)

(n − h − p + 1)μ(wpw′)

+
∑

p∈P(w′,w)

(n − h − p + 1)μ(w′pw)

+ μ(w)μ(w′)

×
n−2h+1∑

t=1

(n − 2h − t + 2)
[
πt(wh, w′

1)
μ(w′

1)
+

πt(w′
h, w1)

μ(w1)

]

.

Note that it is also possible to calculate the asymptotic variance of N(W) −∑
j Ê[N(wj)] by using the conditional covariances of (N(wj), N(w�)) in the

permutation model (see Schbath et al. (1995)).

Skew distribution As we have seen in Section 15.2.5, biologists may be
interested in the statistical significance of the skew of a word w. The skew
is defined like the ratio N(w)/N(w) where w is the reverse complementary3

word of w (for instance, if w = gctggtgg then w = ccaccagc). To calculate the
significance of the skew, one then has to get (or to approximate) the following
p-value:

P

(
N(w)
N(w)

≥ b

)

,

where b is the observed skew. This requires at least the joint distribution of
(N(w), N(w)).

If we assume that (N(w), N(w)) can be approximated by a Gaussian vector
with mean (Ê[N(w)], Ê[N(w)]) and covariance matrix Σ, the above p-value can
be approximated by

P

(

N (0, 1) ≥ bÊ[N(w)] − Ê[N(w)]√
Σ11 − 2bΣ12 + b2Σ22

)

.

The right term of the preceding inequality will then be considered like a score
to measure the significance of the skew. Typically, Σ11 and Σ22 are given by
Equation (15.19), and Σ12 can be obtained similarly because of the conditional
covariances between counts.

3a is the complement of t whereas c is the complement of g.
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If N(w) and N(w) are more likely to be (compound) Poisson distributed,
no solution exists for now. If w and w do not overlap each other, their counts
can be approximated by two independent geometric Poisson variables [Reinert
and Schbath (1998)], but it does not help to derive an asymptotic distribution
for the skew.

Distances between multiple words Because of the possible overlaps be-
tween words of the family, the distribution of the intersite distances between two
word family occurrences depends on which word actually occurs first and which
word occurs next [Robin (2002)]. Therefore, in the general case, the occurrences
of a set of words do not constitute a renewal process, and the methodology de-
scribed in Section 15.3.3 cannot be used to get the r-scan distribution. In the
Markov chain framework, the occurrences of a set of words turns out to be a
semi-Markov process.

15.4.2 Structured motifs

A structured motif is composed of several words which should occur in a given
order and at some distance apart from each other. Let consider the simple case
of two fixed words u and v. We define a structured motif m like a pattern
whose u is a prefix, v is a suffix and whose length is |u| + d + |v|, d ≥ 0.
Moreover, we impose d1 ≤ d ≤ d2. Since d1 can be large (typically 12 to 20
for transcription factor binding sites), it is not reasonable to view a structured
motif like a set of words (i.e. a very degenerated word). Dedicated methods
should then be provided. The two main questions related to structured motif
occurrences are: (i) what is the probability that a random sequence contains at
least one occurrence of a given structured motif? (ii) Is this structured motif
more over-represented in front of genes than along the whole chromosome? For
the first question, an approximate probability has been derived by assuming
that the random indicator of occurrence Yi(m) only depends on Yi−1(m) [Robin
et al. (2002)]. More recently, the generating function of the waiting time for the
first occurrence of a structured motif was proposed [Stefanov et al. (2007); see
also Stefanov (2009)]. For the second question, one can use the test described
in Section 15.3.2 which just requires us to compute μ(m) = E[Yi(m)], the
occurrence probability of m. An example of the transcription factor binding
site discovery method can be found in Touzain et al. (2008).

Occurrence probability The probability for m to occur at a given position
in a random sequence X1, X2, . . . , Xn (model M1) is given by

μ(m) = μ(u)
d2∑

d=d1

P(Du,v = d)μ(v)/μ(v1),
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where Du,v is the random distance between an occurrence of u and the next
occurrence of v, and v1 is the first letter of v. The distribution of Du,v is given
in Robin and Daudin (2001) [see also Stefanov (2009)].

15.5 Ongoing Research and Open Problems

Multiple testing problem Multiple testing problems immediately arise in
motif detection studies: looking for exceptional 8-letter words leads to perform-
ing thousands of tests at the same time. The control of the false discovery rate
[Benjamini and Hochberg (1995)] has received huge attention in the last few
years in the gene expression context, but it is still neglected in most motif
statistic studies. The main difficulty comes from the dependency between the
counts—and hence between the tests—of all words under study. Under the null
(Markov) model, all word counts are correlated, since they are observed on the
same sequence. The covariance between any pair of counts is actually known
(see Section 15.4.1), but is difficult to account for in multiple testing procedures,
partly because of high dimensionality problems.

Sequence classification Many genomes, e.g. bacterial ones, can be char-
acterized in terms of oligonucleotides composition. This phenomenon is often
referred to as the “genome signature.” Several new genomic approaches aim at
classifying sequences with similar origins: comparative genomics aims at finding
similarities between complete genomes, typically in an evolutionary perspective;
meta-genome analysis considers sets of hundreds of species living in the same
environment (soil, human intestine) and deals with mixtures of subsequences
coming from these different species.

As seen before, the Mm Markov chain model accounts for the composition
of a sequence in (m + 1)-letter works. Mixture models [McLachlan and Peel
(2000)] provide a natural framework to classify objects into unknown groups.
Such a model assumes that the sequences actually come from Q groups, each
characterized by one transition matrix; sequence i coming from group number
q is a random path with transition matrix Πq. The expectation-maximization
algorithm is the standard way to estimate both group proportions and matrices
Πq, which make (Q − 1) + 3Q4m independent parameters. However, mixture
models generally lead to model selection problems, typically to choose the un-
known number of groups Q. In the case of sequences, this problem turns out to
be very complex because of different sequence lengths: long sequences tend to
discriminate very easily from each other, while small sequences have almost no
influence on the global model. Combinatorial arguments are needed to evaluate
the number of “efficient” parameters, i.e. the number of transition probabilities
for which some information can actually be derived from the data.
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High throughput sequencing This new technology is likely to be used in
many biological experiments in the next decade, typically in the place of micro-
arrays. It consists in sequencing a huge number (40 millions) of small DNA
fragments (25 nucleotides) in one run. It can be used to count the number of
copies of the transcripts of a given gene, to evaluate its expression level, or to
explore the meta-genome of a given ecosystem. Dealing with such large datasets
is an open problem. Markov models and motif statistics can probably help to
organize all this information, but we admit that we still do not really know
how.
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34. Stefanov, V., Robin, S. and Schbath, S. (2007). Waiting times for clumps
of patterns and for structured motifs in random sequences, Discrete Applied
Mathematics, 155, 868–880.



350 S. Schbath and S. Robin

35. Touzain, F., Schbath, S., Debled-Rennesson, I., Aigle, B., Leblond, P. and
Kucherov, G. (2008). SIGffRid: a tool to search for σ factor binding sites
in bacterial genomes using comparative approach and biologically driven
statistics, BMC Bioinformatics, 9, 1–23.

36. Whittle, P. (1955). Some distribution and moment formulae for the Markov
chain, Journal of the Royal Statistical Society, B, 17, 235–242.



16

Occurrence of Patterns and Motifs

in Random Strings

Valeri T. Stefanov

School of Mathematics and Statistics, University of Western Australia,
Crawley, Australia

Abstract: Patterns and motifs on finite alphabets are of interest in many
applied areas, such as computational molecular biology, computer science, com-
munication theory, and reliability theory. The exact distribution theory associ-
ated with occurrences of patterns (single or compound) and motifs, in random
strings of letters, is treated in this chapter. The strings are generated by a
Markov source, and for the case of single patterns, they are generated by gen-
eral discrete-time or continuous-time models. Here, the interest is in finding
closed-form expressions for the distributions of the following quantities: (i) the
waiting time until the first occurrence of a pattern (motif), (ii) the intersite
distances between consecutive occurrences of such, and (iii) the count of occur-
rences of a pattern, or more generally, the weighted count of occurrences of a
compound pattern, both within a finite time horizon. General exact distribu-
tion results are discussed. Also, a brief guide on various methodological tools
used in the area is provided in the Introduction.

Keywords and phrases: Pattern, motif, waiting time, Markov chain, semi-
Markov process

16.1 Introduction

Patterns and motifs on finite alphabets are of interest in many applied areas,
such as computational molecular biology, computer science, communication the-
ory, and reliability theory. A word on an alphabet is called a single pattern,
and a set of distinct single patterns (words) is called a compound pattern. The
strings (texts) of letters can be generated either by independent and identically
distributed multinomial trials, or by general discrete-time or continuous-time
models (Markov chains or semi-Markov processes). The main interest, from a
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probabilistic/statistical point of view, is in finding practicable closed-form ex-
pressions for the distributions of the following quantities: the waiting time until
the first occurrence of a pattern (single or compound) or motif, the intersite
distances between consecutive occurrences of such, and the count(s) of occur-
rences of a pattern(s) or motif within a finite time horizon. Motifs are special
cases of compound patterns which usually contain a huge number of distinct
single patterns.

The theory on pattern occurrence attracted a variety of methodological
tools. For example, the following methodologies have been widely used in the
literature: combinatorial methods and classical probabilistic methods based on
conditioning arguments, Markov chain embeddings, Markov renewal embed-
dings, exponential families, martingale techniques, and automata theory. The
usefulness of these methodologies to the area is well illustrated in the sources
which follow.

Runs are the simplest patterns. Feller (1950) showed how recurrent event
theory can be used to solve problems about success runs. For a comprehensive
account of the literature on runs see Balakrishnan and Koutras (2002). The
key to handling complex patterns was provided by Conway’s leading numbers,
which account for the overlapping structure of a pattern. Guibas and Odlyzko
(1981) derived results applying elementary methods, and Chryssaphinou and
Papastavridis (1990) extended them to more general models [see also Robin
and Daudin (1999, 2001), Rukhin (2002, 2006), Han and Hirano (2003), and
Inoue and Aki (2007)]. Li (1980) introduced martingale techniques to the area,
and Gerber and Li (1981) combined the latter with a relevant Markov chain
embedding. Martingale tools have also been used in Pozdnyakov et al. (2005),
Glaz et al. (2006), and Pozdnyakov (2008).

Markov chain embeddings have been widely used in the area for treating
problems on pattern occurrence; a few relevant sources are Fu (1996), Chadji-
constantinidis, Antzoulakos, and Koutras (2000), Antzoulakos (2001), Fu and
Chang (2002), and Fu and Lou (2003). Blom and Thorburn (1982) made con-
nections with Markov renewal theory, and this was systematically exploited by
Biggins and Cannings (1987) and Biggins (1987). Stefanov and Pakes (1997)
introduced exponential family methodology, combined with a minimal Markov
chain embedding, and Stefanov (2000) extended it in combination with suitable
Markov renewal embeddings to handle some special compound patterns (sets
of runs).

Nicodème, Salvy, and Flajolet (2002) used automata theory comprehen-
sively. Nuel (2008) combined automata theory with Markov chain embeddings
and elaborated on a route which leads, for any given pattern(s), to a mini-
mal embedding Markov chain. Reinert, Schbath, and Waterman (2000) pro-
vided a survey on some probabilistic tools used in the theory of patterns, and
Szpankowski (2001) treated problems on pattern occurrence associated with
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average case analysis of string searching algorithms. The first exact distribu-
tional results on structured motifs are found in Stefanov, Robin, and Schbath
(2007) [cf. also Robin et al. (2002), Nuel (2008), and Pozdnyakov (2008)].

In this chapter, results are discussed which provide explicit, closed-form
solutions for the distributions of the aforementioned random quantities associ-
ated with the occurrence of patterns and structured motifs. These results are
derived using predominantly simple probabilistic tools. Also, for a given alpha-
bet, they require a preliminary (easy) evaluation of a few basic characteristics,
and then each pattern case is covered in an automated way.

In Sections 16.2 and 16.3 we discuss single patterns. The strings are gen-
erated by discrete- or continuous-time semi-Markov processes. The exact dis-
tribution of the waiting time until the first occurrence of a pattern, given any
(fixed) portion of it has been reached, is found. Also joint distributional results
are discussed. The method relies on the knowledge of basic characteristics as-
sociated with the underlying model used to generate the strings. These basic
characteristics are the probability generating functions (pgf’s) of the waiting
times until another letter of the alphabet is reached. In other words, we need
to know only the pgf’s of the waiting times until the simplest special patterns
consisting of a single letter from the alphabet are first reached. These pgf’s
can be evaluated using well-known analytical results if the underlying model
is a discrete- or continuous-time finite-state semi-Markov process. In terms of
these basic characteristics, simple recurrence relations are provided; these lead
to exact evaluation of the relevant pgf’s for any pattern. The results on single
patterns, as provided in Sections 16.2 and 16.3, lead to an easy solution for
compound patterns, which consist of a small to moderate number of distinct
single patterns. This is discussed in Subsection 16.4.1. The distribution of the
count, and more generally the weighted count, of a compound pattern within a
finite time horizon is discussed in Subsection 16.4.2. A neat explicit expression
is derived for this distribution in terms of the aforementioned waiting time dis-
tributions. The result in Subsection 16.4.2 has not appeared in the literature
before. Structured motifs are covered in Subsection 16.4.3. It is shown that re-
sults on compound patterns, consisting of only two single patterns, are enough
to derive exact distribution results on structured motifs.

16.2 Patterns: Discrete-Time Models

In this section we explain how to derive a closed-form expression for the pgf of
the waiting time to reach a pattern (word) starting from either a given letter or
an already-achieved portion of the pattern. The strings of letters are generated
by a finite-state discrete-time Markov chain whose state space and states are
also called alphabet and letters, respectively.
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Let {X(n)}n≥0 be an ergodic finite-state Markov chain with discrete-time
parameter, state space {1, 2, . . . , N}, and one-step transition probabilities pi,j ,
i, j = 1, 2, . . . , N. Denote by gi,j(t) the pgf of the waiting time, τi,j , to reach
state j from state i, that is gi,j(t) = E(tτi,j ), and

τi,j = inf{n : X(n) = j|X(0) = i}.

We assume τi,i = 0, and therefore gi,i(t) = 1, for each i. The first return time
to state i is denoted by τ̃i,i, that is,

τ̃i,i = inf{n > 0 : X(n) = i|X(0) = i},

and its pgf is denoted by g̃i,i(t).
The pattern of interest is wk = w1w2 . . . wk, where 1 ≤ wi ≤ N, i =

1, 2, . . . , k. For j < k, the subpattern wj is also called a prefix of wk. For each
j, j = 2, 3, . . . , k − 1, and r < j, and each n, n = 1, 2, . . . , N, denote by Ir,j,n

the indicator function which is equal to one if and only if none of the strings
wiwi+1 . . . wjn for i = 2, 3, . . . , r is a prefix of wk but wr+1wr+2 . . . wjn is. Also,
the indicator function Ij,j,n is equal to one if and only if none of the strings
wiwi+1 . . . wjn for i = 2, 3, . . . , j is a prefix of wk.

Denote by G
(s)
j (t) (G̃(s)

j (t)), j = 1, 2, . . . , k, the pgf of the waiting time to
reach the pattern wj from state s, allowing (not allowing) the initial state s to
contribute to the pattern. Also, denote by G

(wr)
j (t), 1 ≤ r ≤ j, the pgf of the

waiting time to reach the pattern wj , given that the pattern wr has already
been reached (note that G

(wj)
j (t) = 1). The following theorem provides a simple

route for evaluating these pgf’s knowing the pgf’s, gi,j(t), of the transition
times between the states of the original Markov chain X(n). The expressions
for the pgf’s gi,j(t) are easily recoverable from well-known analytical results [see
Theorem 2.19 on page 81 of Kijima (1997)], for any given finite-state Markov
chain with not too large a state space.

Theorem 16.2.1 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j (with
the convention

∑0
i=1 = 0):

G̃
(s)
j+1(t) =

pwj ,wj+1tG̃
(s)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj ,wj+1tG
(wr)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,
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where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(s)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,ntgn,w1(t),

and the gi,j(t) and the indicator functions Ii,j,n are as above.

The pgf of the intersite distance between consecutive occurrences of the
pattern wk is given by G

(wj)
k (t), where j is the largest integer such that wj is a

proper prefix as well as a suffix of the pattern wk. Also, the pgf of the waiting
time until the r-th occurrence of the pattern wk, given the initial state i, is

equal to G
(i)
k (t)

(
G

(wj)
k (t)

)r−1
, where j has the same property as above.

The proof of Theorem 16.2.1 is based on the following simple idea. Let
τwj |w̄j+1

be the waiting time for the first return (strictly positive) from pattern
wj to itself given that the pattern wj+1 is not achieved. Of course, the pattern
wj+1 is not achieved if the first state visited is not state wj+1. Therefore, the
pgf of τwj |w̄j+1

is equal to

gτwj |w̄j+1
(t) =

N∑

n=1, n=wj+1

pwj ,nt

1 − pwj ,wj+1

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

)

.

Then, the waiting time to reach pattern wj+1 starting from state s is equal to
one plus a geometric sum of independent random variables, Y1, Y2, . . . , say, such
that Y1 has the distribution of the waiting time to reach subpattern wj from
state s and the remaining Yn have the distribution of τwj |w̄j+1

. This implies
that

G̃
(s)
j+1(t) =

pwj ,wj+1tG̃
(s)
j (t)

1 −
N∑

n=1, n=wj+1

pwj ,nt

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) .

A detailed proof of Theorem 16.2.1 is found in Stefanov (2003).



356 V.T. Stefanov

16.3 Patterns: General Discrete-Time
and Continuous-Time Models

In this section, extensions of the result from the preceding section are presented.
Finite-state semi-Markov processes, with either discrete- or continuous-time
parameters, are the underlying models for generating the strings. Also, joint
distributions of the waiting time to reach a pattern, together with the associated
counts of occurrences of each letter, are of interest.

16.3.1 Waiting times

The notation from the preceding section is further used here for identifying the
counterparts of similar quantities. For example, gi,j(t) will again denote the pgf
of the waiting time to reach state j from state i in the more general discrete-
or continuous-time model considered here.

Let {X(u)}u≥0 (the time parameter u may be either discrete or continuous)
be a semi-Markov process whose associated embedded discrete-time Markov
chain has a finite state space {1, 2, . . . , N} and one-step transition probabilities
pi,j , i, j = 1, 2, . . . , N. For a formal definition of a semi-Markov process see
Çinlar (1975). Denote by φi,j(t) the pgf of the holding (sojourn) time in state i,
given that the next state to be visited is state j (if the holding time distributions
are discrete, then the time parameter is discrete). We denote by gi,j(t) the pgf
of the waiting time, τi,j , to reach state j from state i; that is, gi,j(t) = E(tτi,j ),
where

τi,j = inf{u : X(u) = j|X(0) = i}.

We assume τi,i = 0, and therefore gi,i(t) = 1, for each i. The first return time to
state i is denoted by τ̃i,i and its pgf by g̃i,i(t). Of course, if X(u) is a discrete-time
Markov chain,

τ̃i,i = inf{u > 0 : X(u) = i|X(0) = i},

and if X(u) is a continuous-time Markov chain,

τ̃i,i = inf{u > 0 : X(u) = i, X(u−) �= i|X(0) = i}.

If X(u) is a general semi-Markov process, then τ̃i,i is understood to be the wait-
ing time to reach state i from itself given that at least one transition has been
made in the associated embedded discrete-time Markov chain. This clarifies the
interpretation of τ̃i,i in case one-step transitions are allowed from a state to
itself in the embedded discrete-time Markov chain.

Again, as in the preceding section, the pattern of interest is denoted by
wk. Denote by G

(s)
j (t) (G̃(s)

j (t)), j = 1, 2, . . . , k, the pgf of the waiting time
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to reach the pattern wj from state s, allowing (not allowing) the initial state
s to contribute to the pattern. Also denote by G

(wr)
j (t), 1 ≤ r ≤ j, the pgf

of the waiting time to reach the pattern wj , given that the pattern wr has
already been reached (note that G

(wj)
j (t) = 1). The following theorem provides

a simple route for evaluating these pgf’s in terms of the following characteristics
of the original semi-Markov process X(u): the pgf’s, gi,j(t), of the transition
times between the states, the pgf’s, φi,j(t), of the holding time distributions,
and the transition probabilities, pi,j , of the embedded discrete-time Markov
chain.

Theorem 16.3.1 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j (with
the convention

∑0
i=1 = 0):

G̃
(s)
j+1(t) =

pwj,wj+1φwj,wj+1 (t)G̃
(s)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,nφwj ,n(t)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj,wj+1φwj,wj+1 (t)G
(wr)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,nφwj ,n(t)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(w1)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,nφw1,n(t)gn,w1(t).

The proof is based on the same idea as that used to prove Theorem 16.2.1.
Similarly to the preceding section, denote by τwj |w̄j+1

the waiting time to reach
wj from itself given that the pattern wj+1 is not achieved. Then one may notice
that the waiting time to reach pattern wj+1 starting from state s is equal to
the sum of two independent random variables, where the first has a pgf which
equals φwj ,wj+1(t) and the second one is a geometric sum of independent random
variables, Y1, Y2, . . . , say, such that Y1 has the distribution of the waiting time
to reach subpattern wj from state s and the remaining Yn have the distribution
of τwj |w̄j+1

.
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16.3.2 Joint generating functions associated with waiting times

In this subsection we consider the same general semi-Markov model X(u) that
has been introduced in the preceding subsection. Recall that its embedded
discrete-time Markov chain has N states. Throughout this subsection these
states will be called ‘symbols’. Again the notation from the preceding subsec-
tions is further used in this subsection for identifying the counterparts of similar
quantities (such as G

(s)
j (·), etc.). Note that basic quantities of the underlying

model, such as τi,j and φi,j , have the same meaning as that in the preceding
subsection.

Let Ci(u) be the count of occurrences of symbol i up to time u, and let
gi,j(t), where t = (t0, t1, . . . , tN ), be the joint pgf of (τi,j , C1(τi,j), . . . , CN (τi,j)),
where the τi,j have been introduced in the preceding subsection. Likewise, let
g̃i,i(t) be the joint pgf of (τ̃i,i, C1(τ̃i,i), . . . , CN (τ̃i,i)), where again the τ̃i,i have
been introduced in the preceding subsection. Note that gi,i(t) = 1. Denote by
ν

(s)
j the waiting time to reach the pattern wj from state s. Let G

(s)
j (t), (G̃(s)

j (t)),

be the joint pgf of ν
(s)
j , C1(ν

(s)
j ), . . . , CN (ν(s)

j ), allowing (not allowing) the first

symbol to contribute to the pattern. Further, let ν
(wr)
j be the waiting time

to reach the pattern wj from the already-reached prefix wr, and let G
(wr)
j (t)

be the joint pgf of ν
(wr)
j , C1(ν

(wr)
j ), . . . , CN (ν(wr)

j ). Note that the methodology
introduced in Stefanov (2000; see Section 3) yields explicit expressions for the
pgf’s gi,j(t) associated with any given semi-Markov process, whose embedded
discrete-time Markov chain has a relatively small number of states. Therefore,
the recurrence relations in the following theorem provide a simple route for
explicit evaluation of the joint pgf’s of the waiting time to reach, or the intersite
distance between two consecutive occurrences of, a pattern and the associated
counts of occurrences of the corresponding symbols (letters).

Theorem 16.3.2 Let the pattern of interest be wk. The following recurrence
relations hold for each j, j = 1, 2, . . . , k − 1, and each r, r = 1, 2, . . . , j:

G̃
(s)
j+1(t) =

pwj,wj+1 twj+1φwj,wj+1 (t0)G̃
(s)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,ntnφwj ,n(t0)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,

G
(wr)
j+1 (t) =

pwj,wj+1 twj+1φwj,wj+1 (t0)G
(wr)
j (t)

1−
N∑

n=1,
n=wj+1

pwj ,ntnφwj ,n(t0)

(
j−1∑

i=1

Ii,j,nG
(wj−i+1)
j (t) + Ij,j,nG

(n)
j (t)

) ,
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where

G̃
(s)
j+1(t) = G

(s)
j+1(t), if s �= w1,

G̃
(w1)
j+1 (t) = g̃w1,w1(t)G

(w1)
j+1 (t),

G
(s)
1 (t) = gs,w1(t),

G̃
(w1)
1 (t) = g̃w1,w1(t) =

N∑

n=1

pw1,ntnφw1,n(t0)gn,w1(t).

The proof of this theorem is found in Stefanov (2003).

16.4 Compound Patterns

Throughout this section we assume that the strings are generated by discrete-
time Markov chains.

16.4.1 Compound patterns containing a small number
of single patterns

Denote by W a compound pattern which consists of k distinct single patterns,
w(1),w(2), . . . ,w(k). The latter may have different lengths, and it is assumed
that none of them is a proper substring of any of the others. Let a be an arbitrary
pattern; in particular, if a has length 1, that is, it is equal to a particular letter,
s say, then we will denote a by s. Introduce the following quantities.

Ta,W — the waiting time, starting from pattern a, to reach for the
first time the compound pattern W; if a equals one of the w(i), then
this waiting time is assumed to be greater than 0;

Ta,W|w(j) — the waiting time, starting from pattern a, to reach for
the first time the compound pattern W, given that W is reached
via w(j);

Ta,b — the waiting time to reach pattern b starting from pattern a;

Xi,j — the interarrival time between two consecutive occurrences of
pattern W, given that the starting pattern is w(i) and the reached
pattern is w(j);

ri,j — the probability that the first reached pattern from W is w(j),
given that the starting pattern is w(i).
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Of course, Xi,j = Tw(i),W|w(j) . Introduce the following pgf’s:

Ga,W,j(t) =
∞∑

n=1

P
(
Ta,W = Ta,W|w(j) = n

)
tn, j = 1, 2, . . . , k,

and recall that by GY (t) we denote the pgf of a random variable Y. Clearly,

ri,j = P
(
Tw(i),W = Tw(i),W|w(j)

)
= Gw(i),W,j(1).

Also, it is easy to see that

GXi,j (t) =
Gw(i),W,j(t)

ri,j
.

Therefore, both the ri,j and the pgf’s GXi,j (t) can be recovered from the pgf’s
Gw(i),W,j(t). The following theorem [see Chryssaphinou and Papastavridis
(1990) and Gerber and Li (1981)] provides, for each pattern a, a system of
linear equations from which one can recover the pgf’s Ga,W,j(t) and GTa,W

(t)
in terms of the pgf’s GT

w(i),w(j)
(t). The GT

w(i),w(j)
(t) are derived from the results

in Section 16.2.

Theorem 16.4.1 The following identities hold:

GTa,W
(t) =

k∑

j=1

Ga,W,j(t),

GT
a,w(i)

(t) =
k∑

j=1

GT
w(i),w(j)

(t)Ga,W,j(t), i = 1, 2, . . . , k.

In particular, we get the following explicit expressions for the Gw(i),W,j(t) in
terms of the GT

w(i),w(j)
(t) if the compound pattern W = {w(1),w(2)} consists

of two patterns. For brevity, GTi,j below stands for GT
w(i),w(j)

(t).

Gw(1),W,1(t) =
GT1,1GT2,2 − G2

T1,2

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(1),W,2(t) =
GT1,1GT1,2 − GT1,1GT2,1

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(2),W,1(t) =
GT2,1GT2,2 − GT1,2GT2,2

GT1,1GT2,2 − GT1,2GT2,1

,

Gw(2),W,2(t) =
GT1,1GT2,2 − G2

T2,1

GT1,1GT2,2 − GT1,2GT2,1

.
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16.4.2 Weighted counts of compound patterns

A quantity of interest is the count of occurrences of a compound pattern, W
say (as introduced in Subsection 16.4.1), within a finite time horizon. A more
general quantity is the weighted count of pattern occurrences which attaches
a weight, hi say, to each occurrence of a single pattern, w(i), from W. More
specifically, introduce

HW(t) =
k∑

i=1

hiNw(i)(t),

where Nw(i)(t) is the count of occurrences of pattern w(i) within a time inter-
val of length t. Recall the meaning of the ri,j , Xi,j , and Ts,W|w(j) which are
introduced in Subsection 16.4.1. Of course, the occurrence of W can be mod-
elled by a k-state semi-Markov process, where an entry to state i identifies an
occurrence of pattern w(i). The one-step transition probabilities of the embed-
ded discrete-time Markov chain of this semi-Markov process are the ri,j . The
holding time at state i, given that the next state to be visited is state j, is
identified by the random variable Xi,j . For each initial letter, s say, we augment
this semi-Markov process with one initial state, 0 say, and relevant one-step
transition probabilities and holding times as follows (we denote the probability
to move from state 0 to state j by r0,j):

r0,0 = 0, r0,j = Gs,W,j(1), j = 1, 2, . . . , k,

and the holding time at state 0, given that the next state to be visited is state
j, is identified by Ts,W|w(j) , where the latter and Gs,W,j(t) are introduced in
Subsection 16.4.1. Now consider the semi-Markov processes, Yt say, derived
from that above as follows. The state space has (k+1)2 states, identified by the
pairs (i, j), i, j = 0, 1, . . . , k. The process Yt enters state (i, j) if pattern w(i) is
reached, given that the next occurrence of W is via pattern w(j). The initial
states are the states (0, j) for j = 1, 2, . . . , k, and the initial probabilities are the
r0,j . Clearly, the holding time distributions for this new semi-Markov process
do not depend on the next state visited. Also, the holding time in state (i, j)
is identified by the random variable Xi,j , and that in state (0, j) by Ts,W|w(j) .
Then the weighted count HW(t), introduced above, is equal to

HW(t) =
k∑

i=0

k∑

j=0

hiN(i,j)(t),

where N(i,j)(t) counts the number of visits of Yt to state (i, j) within a time
interval of length t. Denote by ν(i1,j1),(i2,j2) the first passage time of Yt from state
(i1, j1) to state (i2, j2) and by L

ν(i1,j1),(i2,j2)

HW
(s1, s2) the joint Laplace transform

of the random variables ν(i1,j1),(i2,j2) and HW

(
ν(i1,j1),(i2,j2)

)
, that is,

L
ν(i1,j1),(i2,j2)

HW
(s1, s2) = E

(
exp

(
−s1ν(i1,j1),(i2,j2) − s2HW(ν(i1,j1),(i2,j2))

))
.
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Closed-form expressions for the L
ν(i1,j1),(i2,j2)

HW
(s1, s2) are derivable in terms of

the ri,j and the Laplace transforms of the Xi,j and the Ts,W|w(j) , as explained
in Stefanov (2006) for general reward functions on semi-Markov processes. Let

L
(s)
t,HW

(s1, s2) =
∫ ∞

0

∫ ∞

0
e−s1t−s2xP (HW(t) ≤ x| the initial letter is s) dxdt

The following theorem follows from a general result on reward functions for
semi-Markov processes [see Theorem 2.1 in Stefanov (2006)]. It provides an
explicit, closed-form expression for the Laplace transform, L

(s)
t,HW

(s1, s2), of the
weighted count of W occurrences within a time interval of length t, in terms
of the ri,j , the Laplace transforms, L[Xi,j ](·), of the interarrival times Xi,j of
the compound pattern W, and the Laplace transforms, L[Ts,W|w(j) ](·), of the
waiting time to reach W from an initial letter s, for s = 1, 2, . . . , N.

Theorem 16.4.2 The following identity holds for the Laplace transform
L

(s)
t,HW

:

L
(s)
t,HW

(s1, s2) =
k∑

m=1

r0,m

k∑

i,j=1

(1 − L[Xi,j ](s1 + s2hi))L
ν(0,m),(i,j)

HW
(s1, s2)

s2(s1 + s2hi)
(
1 − L

ν(i,j),(i,j)

HW
(s1, s2)

) ,

where the joint Laplace transforms L
ν(i1,j1),(i2,j2)

HW
(s1, s2) have been introduced

above.

16.4.3 Structured motifs

Structured motifs are special compound patterns, usually containing a huge
number of single patterns. In this subsection we consider both the waiting time
until the first occurrence, and the intersite distance between consecutive occur-
rences, of a structured motif. The interest in these waiting times is due to the
biological challenge of identifying promoter motifs along genomes. A structured
motif is composed of several patterns separated by a variable distance. If the
number of patterns is n, then the structured motif is said to have n boxes. The
formal definition of a structured motif with 2 boxes follows. Let w(1) and w(2)

be two patterns of length k1 and k2, respectively. The alphabet size equals N ,
and the strings are generated by the Markov chain introduced in Section 16.2.
A structured motif m formed by the patterns w(1) and w(2), and denoted by
m = w(1)(d1 : d2)w(2), is a string with the following property. Pattern w(1) is
a prefix and pattern w(2) is a suffix of the string, and the number of letters be-
tween the two patterns is not smaller than d1 and not greater than d2. Also, it is
assumed that patterns w(1) and w(2) appear only once in the string. The pgf’s
of both the waiting time, τ

(s)
m , to reach for the first time the structured motif
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m from state s, and the intersite distance, τ
(intersite)
m , between two consecutive

occurrences of m, are of interest.
Let W = {w(1),w(2)} be a compound pattern consisting of two patterns. For

brevity, denote by Ti,j , i, j ∈ {1, 2}, the waiting time to reach pattern w(j) from
pattern w(i), and by T

(s)
j the waiting time to reach pattern w(j) from state s.

The quantities ri,j and Xi,j , i, j ∈ {1, 2}, are introduced in Subsection 16.4.1.
Let

ai,j(x) = P (Xi,j = x).

In order to reach the structured motif m, we need to reach first the pattern
w(1) and, from this occurrence of w(1), to reach the pattern w(2) such that
d1 + k2 ≤ X1,2 ≤ d2 + k2. Introduce the following random variables:

F12 = (X1,2 | X1,2 < d1 + k2 or X1,2 > d2 + k2),
S12 = (X1,2 | d1 + k2 ≤ X1,2 ≤ d2 + k2).

F12 corresponds to an occurrence of w(2) that fails to achieve the structured
motif, whereas for S12, w(2) achieves the structured motif. One may notice that
the pgf’s of F12 and S12 are given by

GF12(t) =

⎛

⎝GX12(t) −
d2+k2∑

x=d1+k2

a1,2(x)tx

⎞

⎠ (1 − qS)−1

GS12(t) =

⎛

⎝
d2+k2∑

x=d1+k2

a1,2(x)tx

⎞

⎠ q−1
S ,

where qS is the probability of ‘success’ (w(2) achieves the structured motif),
i.e., the probability that d1 + k2 ≤ X1,2 ≤ d2 + k2. Namely, we have

qS =
d2+k2∑

x=d1+k2

a1,2(x).

The following theorem provides explicit and calculable expressions for the
pgf’s of both the waiting time to reach for the first time the structured motif
m = w(1)(d1 : d2)w(2) from state s, and the intersite distance between two
consecutive occurrences of m.

Theorem 16.4.3 The pgf, G
(s)
m (t), of the waiting time to reach for the first

time a structured motif m starting from state s, and the pgf, G
(intersite)
m (t),

of the intersite distance between two consecutive occurrences of m, admit the
following explicit expressions:

G
(s)
m (t) =

r1,2 qS G
T

(s)
1

(t)GS12(t)

(1 − (1 − r1,2)GX1,1(t))
(

1 − (1 − qS)
(

r1,2 GT2,1
(t) GF12

(t)

1−(1−r1,2)GX1,1
(t)

)) ,
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G
(intersite)
m (t) =

r1,2 qS GT2,1(t)GS12(t)
(
1 − (1 − r1,2)GX1,1(t)

)
(

1 − (1 − qS)
(

r1,2 GT2,1
(t) GF12

(t)

1−(1−r1,2)GX1,1
(t)

)) ,

where GF12(t), GS12(t), and qS are given above.

The proof of this theorem is found in Stefanov, Robin, and Schbath (2007).
Note that, in view of this theorem, the availability of the pgf’s GXi,j (t), i, j =

1, 2, is enough to calculate explicit, closed-form expressions for G
(s)
m (t) and

G
(intersite)
m (t). Explicit expressions for the GXi,j (t), in terms of the GT

w(i),w(j)
(t),

are derived from the identities at the end of Subsection 16.4.1. Also, recall that
the GT

w(i),w(j)
(t) are calculated from Theorem 16.2.1 in Section 16.2.

Neat closed-form expressions for the relevant pgf’s associated with struc-
tured motifs with n boxes are found in Stefanov, Robin, and Schbath (2009).
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Detection of Disease Clustering

Toshiro Tango

Department of Technology Assessment and Biostatistics,
National Institute of Public Health, Wako-shi, Japan

Abstract: In epidemiological studies, it is often of interest to evaluate whether
a disease is randomly distributed over time and/or space after being adjusted
for a known heterogeneity, which may provide clues to the etiology of disease.
To do this, we can apply tests for spatial randomness, or disease clustering.
In this paper, I review the existing tests for disease clustering and discuss the
advantages and disadvantages of these test statistics. These tests are illustrated
and compared with several real temporal and spatial data sets.

Keywords and phrases: Cluster detection test, epidemiology, global cluster-
ing test, likelihood ratio, relative risk, spatial statistics

17.1 Introduction

There has been great public concern about the clustering of health events such
as the occurrence of childhood leukemia, birth defects, and cancer. To investi-
gate whether clustering is real and significant, many different tests have been
proposed for different purposes. Besag and Newell (1991) classified these tests
into two families: focused tests and general tests. The former family of tests
assesses the clustering around a pre-fixed point like a nuclear installation. The
latter is aimed at investigating the question of whether clustering occurs over
the study region. General tests were further classified by Kulldorff (1998) into
two groups: the first group, global clustering tests (GCTs), is designed for evalu-
ating whether cases tend to come in groups or whether cases are located close to
each other no matter when and where they occur, and the second group, cluster
detection tests (CDTs), is designed to both detect local clusters and evaluate
their significance. Recently, Kulldorff (2006) discussed the general framework
into which most of the many different proposed test statistics for spatial ran-
domness can be placed.

J. Glaz et al. (eds.), Scan Statistics: Methods and Applications, Statistics for Industry 369
and Technology, DOI 10.1007/978-0-8176-4749-0 17,
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This paper is concerned with general tests and is organized as follows.
Section 17.2 reviews tests for detecting temporal clustering, and Section 17.3
reviews tests for spatial clustering. This paper concludes with a discussion in
Section 17.4.

17.2 Temporal Clustering

17.2.1 Disjoint tests

Ederer, Myers, and Mantel (1964) developed a GCT for temporal clustering
using a cell-occupancy approach. They divided the time period into m disjoint
subintervals. Under the null hypothesis of no clustering, the n cases are ran-
domly distributed among the subintervals (i.e., are multinomially distributed).
The test statistic M is the maximum number of cases occurring in a subinterval,
i.e., M = max(n1, ..., nm). If the health event is rare and of unknown etiology,
M is summed over several locations and time periods. The sum is tested by
using a single degree of freedom chi-square test. Ederer, Myers, and Mantel
(1964) and Mantel, Kryscio, and Myers (1976) provide tables of the exact null
distribution of M for selected values of m and n.

17.2.2 Scan statistics for individual time points data

Naus (1965) proposed a CDT for temporal clustering that is known as the
scan statistic and is applicable when individual time points data (t1, . . . , tn) are
available during the study period. The test statistic Sd, the maximum number
of cases observed in an interval of length d, is found by “scanning” all intervals
of length d, known as the scanning window of fixed size d, in the time period.
In certain cases, this approach is intuitively more appealing than the disjoint
interval approach of Ederer, Myers, and Mantel (1964), but it is more compli-
cated mathematically. A major challenge with the scan statistic has been to find
analytical results concerning its statistical significance. Unfortunately, the com-
putations necessary to obtain exact p-values for the scan statistic are complex
and often not feasible. For selected interval lengths, time lengths, and sample
sizes, the tables of p-values provided by Naus (1966) and Wallenstein (1980)
can be used. Knox and Lancashire (1982) found a pragmatic approximation to
the p-value but it was not so good. In 1987, Wallenstein and Neff proposed a
simple but excellent approximation for small p-values such as p < 0.10. Let T
denote the length of the entire study period and w = d/T . Then we have

Pr{Sd ≥ k | n, T} ≈ (
k

w
− n − 1)b(k | n, w) + 2

n∑

i=k+1

b(i | n, w), (17.1)
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where

b(i | n, w) =
(

n

i

)

wi(1 − w)n−i.

Although this formula often gives a poor approximation for larger p-values, it
does not matter in terms of statistical significance. For example, when n = 62,
k = 7, d = 1, T = 24 in examples of trisomy data, we have p ≈ 1.09 > 1,
indicating that the test result is not significant anyway.

Naus (1996) compared the power of the scan test with that of the Ederer,
Myers, and Mantel (1964) test and concluded that if the scanning interval is
small and the data are continuous over the interval, the scan test is the more
powerful of the two. Weinstock (1981) proposed a generalization of the scan
test that adjusts for changes in the population at risk. Later, Nagarwalla (1996)
extended the scan statistic to one with a variable window, whose size does not
need to be chosen a priori. Let (t1, ..., tn) denote a random sample of n points
from the density f(t) in an interval [0, T ]. For the hypothesis testing problem
H0 : f(x) = 1/T , H1 : f(x) = 1/T + δ for a ≤ x ≤ a + d, the test is the
maximized likelihood ratio test statistic λ, which allows for clusters of variable
width d:

λ = supd, k≥n0

(
k

n

)k (n − k

n

)n−k (T

d

)k ( T

T − d

)n−k

, (17.2)

where k = k(a, d) is the number of points in the window (a, a + d]. Nagarwalla
gave a simple algorithm for the implementation of the method, but Monte Carlo
hypothesis testing is used to obtain the p-value since it is not possible to obtain
the null distribution of λ analytically.

17.2.3 Clustering index

Tango (1984) developed a GCT for temporal clustering based on the distribu-
tion of counts in m disjoint subintervals. However, it can provide a statistic to
estimate the clustering periods which made large contributions to significant
clustering. The test is useful when the data are grouped. The test statistic,
known as a clustering index, is a quadratic form involving the relative frequen-
cies in each subinterval and a measure of closeness between subintervals,

C = rtAr =
m∑

i=1

m∑

j=1

ninj

n2
aij , (0 < C ≤ 1), (17.3)

where rt = (n1, ..., nm)/n and the entries aij of the m × m symmetric matrix
A are arbitrary known measures of closeness between the ith and jth subinter-
vals with the property aii = 1 and where aij is a monotonically nonincreasing
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function of dij , the time between the ith and jth subintervals. Tango used the
following form as a natural choice:

aij = exp(−dij) = exp(− | i − j |).

The clustering index obtains a maximum value of 1 when all cases occur in
the same subinterval. Although the statistic is easy to calculate, the proposed
asymptotic null distribution was rather complex for simple use. Whittemore and
Keller (1986) showed that the distribution of Tango’s index is asymptotically
normal with mean and variance that are simple to compute. However, later on,
Tango (1990) showed that their normal approximation was very poor for mod-
erately large sample sizes and suggested a central chi-square distribution with
degrees of freedom ν adjusted by the skewness as a better approximation, i.e.,

Pr{C > c | H0} ≈ Pr

{

χ2
ν > ν +

√
2ν

(
c − E(C)
√

V ar(C)

)}

, (17.4)

where

E(C) = m−2{1tA1 + n−1tr[AV ]}
Var(C) = m−4n−1{41tAV A1 + 2n−2tr[(AV )2]}

ν = 8/(
√

β1(C))2

√
β1(C) =

8{31t(AV )2A1 + n−1tr[(AV )3]}√
n{41tAV A1 + 2n−1tr[(AV )2]}3/2

1 = (1, ..., 1)t (length m)
V = diag(m1) − 11t,

where diag(x) is the m × m diagonal matrix with the vector x. If the null
hypothesis of no clustering is rejected, we can apply the same idea adopted
in the spatial clustering index [Tango (2000)], i.e., the most likely center of
clustering period may be identified by the subinterval i with maximum of

Ui =
1
C

m∑

j=1

ninj

n2
aij , (

m∑

i=1

Ui = 1), (17.5)

which denotes the percentage of the ith subinterval’s contribution to the sig-
nificant clustering. Empirically, the subintervals with high outlying percentages
will be likely periods of clusters.

17.2.4 Other methods

Bailar, Eisenberg, and Mantel (1970) suggested a GCT for detecting temporal
clustering based on the number of pairs of cases in a given area that occur
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within a specified length of time d of each other. The numbers of close pairs
occurring in q areas are summed. The test statistic is assumed to be approx-
imately normally distributed. Larsen, Holmes, and Heath (1973) developed a
rank order GCT for detecting temporal clustering. The time period is divided
into disjoint subintervals that are numbered sequentially (i.e., ranked). The test
statistic K is the sum of absolute differences between the rank of the subin-
terval in which a case occurred and the median subinterval rank. Small values
of K indicate unimodal clustering. Generally, the K statistics for multiple geo-
graphic areas are summed. The resulting statistic is asymptotically normal with
simple mean and variance. This test is sensitive only to unimodal clustering;
it cannot distinguish multiple clustering from randomness. Molinari, Bonaldi,
and Daures (2001) proposed a CDT by applying a piecewise-constant regres-
sion model which allows for multiple cluster detection. They used the Akaike
information criterion and the Bayesian information criterion to determine the
optimal model including the number of clusters.

17.2.5 Illustration with congenital oesophageal atresia data

The data we use to illustrate several tests here consists of individual dates of
birth of n = 35 cases of the birth defects oesophageal atresia and tracheo-
oesophageal fistula observed in a hospital in Birmingham, U.K., from 1950
through 1955. The study was first published by Knox (1959) and subsequently
analyzed by Weinstock (1981) using a scan statistic with a fixed window and
by Nagarwalla (1996) using a scan statistic with a variable window. The data is
shown in Table 17.1. The second column is the number of days past 1 January
1950 on which each case was observed. The third, fourth, and fifth columns
of the table denote the frequency of cases per 100 days, 200 days, and 365
days (one year), respectively. Visual inspection of the data suggests that there
occurs a clustering during three close subintervals [1200, 1299], [1300, 1399],
[1400, 1499] and another less striking concentration occurs in the last three
subintervals [1900, 1999], [2000, 2099], [2100, 2199]. We shall show the results
of application of the scan statistic with a fixed window, the scan statistics with
a variable window, and the clustering index.

1. Scan statistic with a fixed window d = 100

Sd = 7 for the cluster of 7 cases from the day 1233 (17 May 1953) to
the day 1305 (28 July 1953). Using the approximation (17.1) we obtain
p = 0.088.

2. Scan statistic with a fixed window d = 200

Sd = 10 for the cluster of 10 cases from the day 1233 (17 May 1953) to
the day 1390 (21 October 1953). Using (17.1) we obtain p = 0.0499.
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Table 17.1. n = 35 cases of oesophageal atresia and tracheo-oesophageal fistula
over 2191 days from 1950 to 1955. Day 1 was set as 1 January 1950. (Data from
Knox, 1959)

Interval Day number Frequency per d days
d = 100 200 365

0–99 0
100–199 170 1 1
200–299 0
300–399 316 1 1 2
400–499 445, 468 2
500–599 0 2
600–699 0
700–799 0 0 2
800–899 0
900–999 938 1 1

1000–1099 1034 1 2
1100–1199 1128 1 2
1200–1299 1233, 1248, 1249, 1252, 1259, 1267 6
1300–1399 1305, 1385, 1388, 1390 4 10
1400–1499 1446, 1454, 1458, 1461, 1491 5 14
1500–1599 1583 1 6
1600–1699 1699 1
1700–1799 1702, 1787 2 3
1800–1899 0 6
1900–1999 1924, 1974 2 2
2000–2099 2049, 2051, 2067, 2075 4
2100–2199 2108, 2151, 2174 3 7 9

Total 35

3. Scan statistic with a fixed window d = 300

Sd = 15 for the cluster of 15 cases from the day 1233 (17 May 1953) to
the day 1491 (30 January 1954). Using (17.1) we obtain p = 0.0014.

4. Scan statistic with a fixed window d = 365 [Weinstock (1981)]

Sd = 16 for the cluster of 16 cases from the day 1233 (17 May 1953) to
the day 1583 (2 May 1954). Using (17.1) we obtain p = 0.0027.

5. Scan statistic with a variable window [Nagarwalla (1996)]

Results of four different scan statistics with fixed windows d =
100, 200, 300, and 365 suggest the optimal window could exist between 200
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and 365. With n0 = 5, the maximum likelihood ratio (17.2) is λ∗ = 43, 968,
and the most likely cluster is the set of 15 cases from the day 1233 (17
May 1953) to the day 1491 (30 January 1954), which is the same as that
of the scan statistic with fixed window d = 300. The optimal and mini-
mum window is 1491 − 1233 + 1 = 259. Using Monte Carlo testing with
9999 replicates, the observed rank of λ∗ due to Nagarwalla’s computation
is 58, i.e., p = 0.0058.

6. Clustering index for the frequency data per 100 days

Observed standardized clustering index is c = 5.015 and using the ap-
proximation (17.4) we obtain p = 0.00027. By examining the percent
contribution Ui to C, we can see that three successive subintervals
[1200, 1299], [1300, 1399], [1400, 1499] (15 cases from the day 1233
to the day 1491) have quite large values compared with those of other
subintervals, and their contribution is 61.7%, indicating strong cluster-
ing period in these three successive subintervals. Furthermore, we can
indicate another possible clustering period in two successive subintervals
[2000, 2099], [2100, 2199] (7 cases from the day 2049 to the last day
2174) which contributed about 18.7%.

7. Clustering index for the frequency data per 200 days

Observed standardized clustering index is c = 5.222 and using (17.4) we
obtain p = 0.0004. By examining the percent contribution Ui to C, we can
see a cluster in the two successive subintervals [1200, 1399], [1400, 1599]
(16 cases from the day 1233 to the day 1583) which has 61.8% contribu-
tion. Furthermore, we can indicate another possible clustering period in
the last subinterval [2000, 2199] (7 cases from the day 2049 to the last
day 2174) which contributed about 18.0%.

8. Clustering index for the frequency data per one year (365 days)

Observed standardized clustering index is c = 4.745 and using (17.4) we
obtain p = 0.0014. By examining the percent contribution Ui to C, we
can see a cluster in the subinterval [1095, 1459] (14 cases from the day
1128 to the day 1458) which has about 51.3% contribution. Furthermore,
we can indicate another possible clustering period in the last subinterval
[1825, 2190] (9 cases from the day 1924 to the last day 2174) which
contributed about 23.6%.

17.2.6 Illustration with trisomy data

In this section, we shall consider a grouped data of N = 62 cases of trisomy
among karyotyped spontaneous abortions of pregnancies, by calendar month of
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the last menstrual period, July 1975 to June 1977, in three New York hospitals.
This study was first analyzed by Wallenstein (1980) and subsequently by Tango
(1984, 1990). The data is shown in Table 17.2. The trisomy data was tabulated
in two ways: (1) monthly data over 24 months, (ii) bimonthly data over 24
months. Visual inspection of the data suggests that a cluster seems to occur
during the period November 1976 to January 1977. The results are as follows.

1. Scan statistic [Wallenstein (1980)]

Wallenstein (1980) applied the scan statistic with a fixed window to
individual trisomy data (not shown in his paper). In his illustration, he
set d = 60 days and found Sd = 14, p = 0.038 based on his unpub-

Table 17.2. Frequency of trisomy among karyotyped spontaneous abortions of
pregnancies, by calendar month of the last menstrual period, July 1975 to June
1977, in three New York hospitals. (Data from Wallenstein, 1980; Tango, 1984)

Year Month Frequency
per month per two months

1975 7 0
8 4 4
9 1

10 2 3
11 1
12 3 4

1976 1 1
2 3 4
3 2
4 2 4
5 3
6 4 7
7 1
8 1 2
9 1

10 2 3
11 4
12 7 11

1977 1 7
2 2 9
3 2
4 6 8
5 1
6 2 3

Total 62
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lished extensive table. Linear interpolation based on his Table 17.1 yields
p = 0.040. Using the approximation (17.1) we obtain p = 0.037. In this ex-
ample, the maximum number of trisomies in two consecutive months was
also 14. In general, inspection of all 60-day intervals may yield a higher
value than the maximum number of two consecutive months.

2. Clustering index [Tango (1984, 1990)]

All the following three results are significant at the 5% level: (i) for
monthly data over 24 months, C = 0.1139, p = 0.023, (ii) for bimonthly
data over 24 months, C = 0.1975, p = 0.035, and (iii) for monthly data
over the last 12 months, C = 0.2354, p = 0.0046. Using Ui, we can find
a likely cluster in the period from November 1976 to January 1977 which
has 18 cases and 45.5% contribution.

3. Use of SaTScan

SaTScan is a free software developed by Kulldorff et al. (2007) imple-
menting several types of spatial, temporal, and space-time scan statistics.
Purely temporal, analysis is essentially the same idea as Nagarwalla’s scan
statistic with a variable window for individual data. The details will be
described in the next section. We shall show the results only for monthly
data over 24 months. The most likely cluster is the set of 28 cases from
November 1976 to April 1977. Using Monte Carlo testing with 999 repli-
cates, the observed rank of the log-likelihood ratio statistic is 22, i.e.,
p = 0.022.

17.3 Spatial Clustering

For spatial analysis, it was/is sometimes practically impossible to obtain
individual point location data in space due to confidentiality restrictions on
individual privacy. Therefore, most tests for spatial clustering developed so far
have been designed for regional count data. Although there are some important
tests using individual point data or a sample of case-control location data,
e.g., Cuzick and Edwards’s test (1990) based on k-nearest neighbors and its
generalized version by Tango (2007), in what follows, I shall confine myself to
considering the situation where an entire study area is divided into m adminis-
trative regions (for example, county, census tract, block group) and the region
i(= 1, ..., m) has the observed number of cases ni and the expected number of
cases ei under the null hypothesis of no clustering such that
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n =
m∑

i=1

ni =
m∑

i

ei. (17.6)

17.3.1 Tests based on adjacencies

Geary (1954) developed a test of spatial clustering that assesses whether rates
for adjacent areas are more similar than would be expected if they were ran-
domly distributed among the geographic areas. The test statistic is the ratio of
the sum of mean squared differences between rates for pairs of adjacent areas
to the weighted sum of mean-squared differences between rates for all pairs of
areas. If the rates are geographically distributed at random, the test statistic
is close to one; otherwise, it is less than one. Geary derived an expression for
the approximate variance of the ratio. If the number of areas is not too small,
the ratio is asymptotically normally distributed. Ohno, Aoki, and Aoki (1979)
and Ohno and Aoki (1981) developed a simple test for spatial clustering that
uses rates for geographic areas (e.g., census tracts, counties, or states) rather
than data for individual cases. The test assesses whether the rates in adjacent
areas are more similar than would be expected under the null hypothesis of no
clustering. For this test, the rate for each area is classified into one of several
categories, and each pair of adjacent areas is identified. The test statistic is the
number of adjacent concordant pairs; i.e., the number of pairs of areas that
are adjacent and have rates in the same category. An overall clustering mea-
sure summed across all categories can be obtained as well as category-specific
clustering measures. The observed number of adjacent concordant pairs is com-
pared with the expected number by using a chi-square test. Ohno, Aoki, and
Aoki (1979) provide a simple formula for calculating the expected number of
pairs. Grimson, Wang, and Johnson (1981) proposed a test of spatial clustering
for use in detecting clusters of geographic areas designated as high risk. The
null hypothesis is that high-risk areas are randomly distributed within a larger
area and do not cluster. Given the number of high-risk areas, the test statistic
is the number of pairs of high-risk areas that are adjacent to each other. This
statistic is equivalent to the category-specific statistic from Ohno, Aoki, and
Aoki (1979).

Note that, although these tests based on adjacencies are easy to use, they
do not properly take the sampling variability of rates into account, and so they
are not recommendable in the sense that they may produce spurious results in
practice.

17.3.2 Tests based on scanning regions

As the first method using scanning local regional rates, Openshaw et al. (1988)
developed a geographical analysis machine (GAM) that is an exploratory tool
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for searching for potential clusters. GAM constructs overlapping circles of differ-
ent radii centered at each grid point defined a priori, counts the number of cases
and the number of people at risk within the circle, and displays those circles
with local incidence proportions exceeding some predefined threshold. However,
GAM has attracted much criticism since it produces large numbers of highly
correlated ovelapped circles. Turnbull et al. (1990), on the other hand, proposed
a more statistically sound cluster evaluation permutation procedure (CEPP),
where, for each region, a window is constructed by absorbing the nearest neigh-
boring regions such that each window contains just a pre-fixed population size
R. These windows vary in geographic shape and size but maintain a constant
population size at risk so that observed counts are identically distributed. How-
ever, these windows of cases and populations overlap, and the counts are not
independently distributed. The test statistic of the CEPP is given by the max-
imum number of cases in the window, which is not necessarily integer due to
the adjustment of each population size to R. Monte Carlo testing is needed to
obtain the p-value for the test statistic.

Besag and Newell (1991) considered windows with a pre-fixed number of
cases k rather than a pre-fixed population size. It was originally designed for
quite rare diseases, and thus a typical value of k might be small such as k =
2, 4, .... Each region with nonzero cases is considered in turn as the center of
a possible cluster. When considering a particular region, we label it as region
0 and order the remaining regions by their distance to the region 0. We label
these regions j = 1, 2, ..., m − 1 and define

Di =
i∑

j=0

n(j), ui =
i∑

j=0

ξ(j),

where n(j) and ξ(j) denote the number of cases and population in the region la-
belled j, respectively. Then, the test statistic for detecting individual clusters is

S = min{i : Di ≥ k}. (17.7)

Namely, the nearest S regions contain the closest k cases. A small observed
value of S indicates a cluster centered at region 0. The significance level for
each potential cluster is

Pr{S ≤ s} = 1 −
k−1∑

t=0

exp(−usQ)(usQ)t/t!, Q = n+/ξ+. (17.8)

As the test statistic of overall clustering within the entire study area, Besag and
Newell (1991) suggested the total number TBN of significant (p < 0.05, say)
individual clusters. The significance of the observed TBN may be determined
by Monte Carlo simulation.
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17.3.3 Spatial scan statistics

Kulldorff and Nagarwalla (1995) and Kulldorff (1997) proposed the spatial scan
statistic, which is a spatial version of the scan statistic with a variable window
size and is a generalization of CEPP. The spatial scan statistic imposes a circular
window Z on each centroid of a region. For any of those centroids, the radius of
the circle varies from zero to some preset upper limit. If the window contains
the centroid of a region, then that whole region is included in the window. In
total, a very large number of different but overlapping circular windows are
created, each with a different location and size, and each being a potential
cluster. Let Zik, k = 1, . . . , Ki, denote the window composed by the (k − 1)-
nearest neighbors to region i. Then, all the windows to be scanned by the spatial
scan statistic are included in the set

Z1 = {Zik | 1 ≤ i ≤ m, 1 ≤ k ≤ Ki}.

Under the alternative hypothesis, there is an elevated risk within some window
Z as compared to outside:

H0 : E(N(Z)) = e(Z), for all Z,

H1 : E(N(Z)) > e(Z), for some Z,

where N() and e() denote the random number of cases and the null expected
number of cases within the specified window, respectively. For each window, it
is possible to compute the likelihood to observe the observed number of cases
within and outside the window, respectively. Under the Poisson assumption,
which is a typical distribution for rare diseases, the test statistic is the likelihood
ratio maximized for Z:

sup
Z∈Z1

(
n(Z)
e(Z)

)n(Z) (n(Zc)
e(Zc)

)n(Zc)

I

(
n(Z)
e(Z)

>
n(Zc)
e(Zc)

)

, (17.9)

where Zc indicates all the regions outside the window Z, and n() denotes the
observed number of cases within the specified window and I() is the indicator
function. The window Z∗ that attains the maximum likelihood is defined as the
most likely cluster (MLC). To find the distribution of the test statistic under the
null hypothesis, Monte Carlo hypothesis testing is required. Kulldorff’s spatial
scan statistic has been applied to a wide variety of epidemiological studies
and also to disease surveillance for the detection of disease clusters along with
SaTScan Software (Kulldorff et al. 2007).

However, since it uses a circular window to scan the potential cluster areas,
it has difficulty in correctly detecting actual noncircular clusters. To detect
arbitrarily shaped clusters which cannot be detected by the circular spatial
scan statistic, Patil and Taillie (2004), Duczmal and Assunção (2004), Tango
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and Takahashi (2005), and Assunção et al. (2006) have proposed different spatial
scan statistics. Patil and Taillie (2004) used the notion of “upper level set” to
reduce the size of windows to be scanned and proposed the “upper level set
scan statistic.” However, they do not discuss how to select the level g which
defines the upper level set. Duczmal and Assunção (2004), on the other hand,
have applied a simulated annealing method, in which they try to examine only
the most promising windows using a graph-based algorithm to obtain the local
maxima of a certain likelihood function over a subset of the collection of all
the connected regions. Their method seems to be very complicated, but they
do not show any programmable procedure for it. Tango and Takahashi (2005)
called their spatial scan statistic the flexible spatial scan statistic in contrast
to Kulldorff’s circular spatial scan statistic and provided FleXScan Software
[Takahashi, Yokoyama, and Tango (2007)].

The flexible spatial scan statistic imposes an irregularly shaped window Z on
each region by connecting its adjacent regions. For any given region i, we create
the set of irregularly shaped windows with length k consisting of k connected
regions including i and let k move from 1 to the preset maximum length of
cluster K. To avoid detecting a cluster of unlikely peculiar shape, the connected
regions are restricted as the subsets of the set of regions i and (K − 1)-nearest
neighbors to the region i. In total, as in the circular spatial scan statistic, a
very large number of different but overlapping arbitrarily shaped windows are
created. Let Zik(j), j = 1, . . . , Jik denote the jth window which is a set of
k regions connected starting from the region i, where Jik is the number of j
satisfying Zik(j) ⊆ Zik for k = 1, . . . , Ki = K. Then, all the windows to be
scanned are included in the set

Z2 = {Zik(j) | 1 ≤ i ≤ m, 1 ≤ k ≤ K, 1 ≤ j ≤ Jik}. (17.10)

In other words, for any given region i, the circular spatial scan statistic considers
K concentric circles, whereas the flexible scan statistic considers K concentric
circles plus all the sets of connected regions (including the single region i) whose
centroids are located within the Kth largest concentric circle. So, the size of
Z2 is far larger than that of Z1, which is at most mK. Under the Poisson
assumption, the test statistic is the same form as (17.9) where Z1 is replaced
by Z2.

17.3.4 Clustering index

Tango (1995) proposed the following test statistic for spatial disease clustering:

C = (r − p)tA(r − p)

=
m∑

i=1

m∑

j=1

(
ni − ei

n

)(
nj − ej

n

)

aij , (17.11)
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where rt = (n1, ..., nm)/n denotes a vector of the observed relative frequencies,
p = EH0(r), and ei = npi, i = 1, ..., m. This is a generalization of his tem-
poral clustering index in that it allows for heterogeneous population size and
confounding factors based on indirect standardization. Namely, let us partition
the population into K categories and let nik and ξik denote the observed num-
ber of cases and the population size, respectively, in the kth category of the
confounding factor of the ith region. Then, we have

p =
K∑

k=1

n+k

n
pk =

K∑

k=1

n+k

n
(p1k, ..., pmk)t, (17.12)

where pik = ξik/
∑m

j=1 ξjk. As a measure of closeness, aij(λ), between the regions
i and j, Tango (1995, 2000) recommended the double exponential form:

aij = exp

{

−4
(

dij

λ

)2
}

, (17.13)

where λ is a measure of cluster size and is essentially equal to the maximum
distance between cases, such that any pair of cases far apart beyond the distance
λ cannot be considered as a cluster. Large λ will give a test sensitive to a large
cluster and small λ to a small cluster. In practical application, it is rare that
we can predict the cluster size before examining data. Therefore, we usually
repeat the procedure using different parameter settings and, consequently, face
multiple testing problems. To take this problem into account, Tango (2000)
propose, as an extended test statistic, the minimum of the profile P -value of C
for λ where λ varies continuously from a small value near zero upwards until
λ reaches about one-fourth the maximum distance dij in the study area. The
proposed test statistic Pmin is defined as

Pmin = min
λ

Pr{C > c | H0, λ} = Pr{C > c | H0, λ = λ∗}, (17.14)

where λ∗ attains the minimum p-values of C. A practical implementation of this
procedure is to use “line search” by discretization of λ. The null distribution of
Pmin can be obtained by using Monte Carlo simulation. This test is also called
Tango’s MEET (maximized excess event test) in the literature [e.g., Kulldorff
et al. (2003, 2006); Song and Kulldorff (2003, 2005)].

Given λ and under the null hypothesis H0, the test statistic C was shown
to be asymptotically approximated by the same type of chi-square distribution
as (17.4), where
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E(C) = n−1tr(AV )
V ar(C) = 2n−2tr(AV )2

ν = 8/{
√

β1(C)}2

√
β1(C) = 2

√
2tr(AV )3/{tr(AV )2}3/2

V =
K∑

k=1

n+k

n
{diag(pk) − pkp

t
k}.

This chi-square approximation is generally quite accurate even for small n. If
the null hypothesis of no clustering is rejected, we can use a statistic similar to
(17.5) to indicate the most likely center i of clustering area with large values of

Ui =
1
C

m∑

j=1

(
ni − ei

n

)(
nj − ej

n

)

aij , (17.15)

which denote the percentage of the ith region’s contribution to the significant
clustering. More specifically, we may use the following condition of standardized
Ui to suggest the center of clustering areas:

(Ui − Ū)/SDU ≥ 2.0 or 3.0.

17.3.5 Other methods

Whittemore et al. (1987) developed a test statistic for spatial clustering,

W = rtDr,

which is identical in form to Tango’s clustering index C (17.3), but for which
D = (dij) is used as a measure of distance. They proved the asymptotic distri-
bution of this index to be normal and insisted that the clustering index C (17.3)
also has an asymptotic normal distribution. However, it does depend largely on
the element A or D used. When the distance measure D is used, convergence to
normality is very fast. On the contrary, when the closeness measure A is used,
the speed is shown to be too slow, and thus normality is not valid even for
fairly large sample sizes such as n = 1000 [Tango (1986, 1990)]. Furthermore,
more substantially, it has been shown that (1) the quadratic form in (r − p)
should be used to properly adjust for heterogeneous populations, and (2) the
power of W often falls below the nominal α level depending on the clustering
models due to the use of distance measure D [Tango (1995, 1999)]. Therefore,
the test of Whittemore et al. cannot be recommended for practical use. Bonetti
and Pagano (2005) proposed a test using the interpoint distance distribution
for spatial clustering, but it generally does not perform quite as well as the
spatial scan statistic and Tango’s clustering index [Kulldorff et al. (2003), Song
and Kulldorff (2003)].
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17.3.6 Illustration with gallbladder cancer mortality data

As an illustration, we shall apply three tests, 1) circular spatial scan statistic,
2) flexible spatial scan statistic, and 3) spatial clustering index, to the mortality
data from gallbladder cancer (male, 1993–1997) in the areas of three adjacent
prefectures (Niigata, Fukushima, and Yamagata) in Japan. The total observed
number of deaths for five years was 665 in this area with m = 246 regions
(cities and villages). Before applying these three tests for spatial clustering,
we drew a disease map based on the standardized mortality ratio (SMR) in
Figure 17.1, which shows the maximum likelihood estimates for the relative
risks. No clear spatial pattern emerges from this map. SMRs are commonly used
in disease mapping, but they are very unstable in the sense that they can yield
large changes in estimate with relatively small changes in expected number of
cases. So, to overcome the drawbacks of the SMRs in disease mapping, Bayesian
approaches have been used to obtain more smoothed estimates [for example,
see Lawson, Browne, and Vidal Rodeiro (2003)]. In this paper we shall omit
Bayes estimates of for disease mapping.

The results of Kulldorff’s circular spatial scan statistic and Tango–
Takahashi’s flexible spatial scan statistic are shown in Figure 17.2 and Figure
17.3, respectively, where K = 20. The most likely cluster and the secondary
cluster detected by the flexible spatial scan statistic are very similar to, but
have a slightly different shape than, those of the circular spatial scan statistic.
Regarding the application of Tango’s clustering index, we took a sequence of

Figure 17.1. The SMRs of gallbladder cancer (male) in three prefectures,
Niigata, Fukushima, and Yamagata, in Japan (1996–2000).
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Figure 17.2. The most likely cluster (shaded area) and the secondary cluster
(a lighter shaded area) detected by SaTScan for gallbladder cancer mortality
data (male) in three prefectures, Niigata, Fukushima, and Yamagata, in Japan.

Figure 17.3. The most likely cluster (shaded area) and the secondary cluster
(a lighter shaded area) detected by FleXScan for gallbladder cancer mortality
data (male) in three prefectures, Niigata, Fukushima, and Yamagata, in Japan.
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Figure 17.4. Two centers of clustering areas (shaded area) detected by Tango’s
spatial clustering index for gallbladder cancer mortality data (male) in three
prefectures, Niigata, Fukushima, and Yamagata, in Japan.

values of cluster size λ as λ = 0.1, 5, 10, 15, ..., 100 (km) to obtain the test
statistic

Pmin = min
λ∈{0.1,5,10,...,100}

Pr{C > c | H0, λ}

and obtained Pmin = 0.00004 at λ = 45. This Pmin value is the second largest
among 999 Monte Carlo replicates and, therefore, the adjusted p-value of Pmin

was 2/(999 + 1) = 0.002. As possible centers of clusters, regions with standard-
ized Ui ≥ 2.0 are indicated in Figure 17.4, and these regions are found to be
included in the most likely cluster and secondary cluster detected by both the
circular scan statistic and flexible scan statistic.

17.4 Discussion

Many different test statistics have been designed for detecting disease clustering
in time and in space. Most tests proposed before 1995, however, suffer from
multiple testing problems due to one or two unknown parameters that must
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be set prior to their applications. For example, Naus’s scan statistic (1965) for
individual time points data has an unknown length d of the scanning window,
the procedure by Turnbull et al. (1990) has an unknown parameter regarding
the common size of the population at risk R, Cuzick and Edwards’s test (1995)
has an unknown number of k-nearest-neighbors, and Besag and Newell’s test
(1991) has an unknown number of cases k for the size of the cluster. However,
tests proposed in recent years tend to take such multiple testing into account.
For example, such tests include Nagarwalla’s scan statistic with variable window
(1996), Kulldorff’s spatial scan statistic (1997), Tango and Takahashi’s flexible
spatial scan statistic (2005), and Tango’s clustering index (2000), where we have
only to specify the maximum possible cluster size.

In recent power comparisons of disease clustering tests including CDTs and
GCTs by Kulldorff et al. (2003) and Song and Kulldorff (2003), 1) Kulldorff’s
circular spatial scan statistic is shown to be the most powerful for detecting lo-
calized clusters, and 2) Tango’s clustering index is the most powerful for general
clustering throughout the study area. Note, however, that the power estimates
provided reflect only the “power to reject the null hypothesis for whatever rea-
son” and that the probability of both rejecting the null hypothesis and detecting
the true cluster correctly is a different matter. To investigate the performance
of power of the CDT, Tango and Takahashi (2005) proposed a new bivariate
power distribution P (l, s), which is the probability that the significant MLC has
length l(≥1) and includes s regions within the true cluster with length s∗. The
usual power is defined by

∑
l

∑s∗

s=1 P (l, s). Our simulation study using P (l, s)
revealed that the circular spatial scan statistic shows a high level of accuracy
in detecting circular clusters exactly and reasonably good power for includ-
ing some true cluster regions into the MLC. However, the circular spatial scan
statistic is also shown to have a tendency to detect a cluster much larger than
the true cluster assumed in the simulation, even when the true cluster is circu-
lar. The flexible spatial scan statistic, on the other hand, exhibits no such high
power regarding exact identification of clusters, but the support of the power
distribution is shown to be concentrated in a relatively narrow range of length
l on the line s = s∗, indicating that an observed significant MLC contains the
true cluster with quite high probability.

Tango and Takahashi (2005) have also shown examples which cast a doubt
on the validity of the model selection based on maximizing the likelihood ratio:
Duczmal and Assunção’s procedure (2004) detected a quite large and peculiar
shaped MLC that had the largest likelihood ratio among the three different
MLCs, identified by three different spatial scan statistics, Kulldorff’s (1997),
Duczmal and Assunção’s (2004), and Tango and Takahashi’s (2005). Such a
doubt can also be seen in the above-stated simulation results of the circular
spatial scan statistic that had nonnegligible probabilities of detecting much
longer clusters, than the true cluster. The flexible spatial scan statistic, on the
other hand, is shown not to detect such an unexpected long cluster, probably
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because it has the restriction that our windows are constructed only from mem-
bers of the (K−1)-nearest neighbors to the starting region. Nevertheless, these
undesirable properties produced by the maximum likelihood ratio might suggest
the use of a different criterion for model selection.

In this chapter, we did not include tests for space-time disease clustering
due to the limitation of space. As far as I know, Kulldorff (2001) proposed a
procedure for prospective time periodic geographical disease surveillance using
a scan statistic for the first time. In the aftermath of the World Trade Center
attacks on September 11, 2001 and the anthrax-laden letters that followed in
October 2001, a syndromic surveillance has been poised for deployment across
the USA [Lawson and Kleinman, (2005)]. Therefore, statistical methods for
timely detection of an outbreak threat, which are closely related to tests for
space-time clustering, will be increasingly needed.
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