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Foreword

I am very grateful to Jianqing, Yanki, and Jeff for organizing this collection of
high points in my wanderings through probability theory and statistics, and to the
friends and colleagues who commented on some of these works, and without whose
collaborations many of these papers would not exist.

Statistics has contacts with, contributes to, and draws from so many fields that
there is a nearly infinite number of questions that arise, ranging from those close to
particular applications to ones that are at a distance and essentially mathematical.
As these papers indicate I’ve enjoyed all types and have believed in the mantra
that ideas developed for solving one problem may unexpectedly prove helpful in
very different contexts. The field has, under the pressure of massive, complex, high
dimensional data, moved beyond the paradigms established by Fisher, Neyman, and
Wald long ago. Despite my unexpectedly advanced age I find it to be so much fun
that I won’t quit till I have to.

Berkeley, California, USA Peter J. Bickel
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Preface

Our civilization depends largely on our ability to record major historical events,
such as philosophical thoughts, scientific discoveries, and technological inventions.
We manage these records through the collection, organization, presentation, and
analysis of past events. This allows us to pass our knowledge down to future
generations, to let them learn how our ancestors dealt with similar situations that
led to the outcomes we see today. The history of statistics is no exception. Despite
its long history of applications that have improved social wellbeing, systematic
studies of statistics to understand random phenomena are no more than a century
old. Many of our professional giants have devoted their lives to expanding the
frontiers of statistics. It is of paramount importance for us to record their discoveries,
to understand the environments under which these discoveries were made, and to
assess their impacts on shaping the course of development in the statistical world.
It is with this background that we enthusiastically edit this volume.

Since obtaining his Ph.D. degree at the age of 22, Peter Bickel’s 50 years of
distinguished work spans the revolution of scientific computing and data collection,
from vacuum tubes for processing and small experimental data to today’s supercom-
puting and automated massive data scanning. The evolution of scientific computing
and data collection has a profound impact on statistical thinking, methodological
developments, and theoretical studies, thus creating evolving frontiers of statistics.

Peter Bickel has been a leading figure at the forefront of statistical innovations.
His career encompasses the majority of statistical developments in the last half-
century, which is about half of the entire history of the systematic development of
statistics. We therefore select some of his major papers at the frontiers of statistics
and reprint them here along with comments on their novelty and importance at that
time and their impacts on the subsequent development. We hope that this will enable
future generations of statisticians to gain some insights on these exciting statistical
developments, help them understand the environment under which this research
was conducted, and inspire them to conduct their own research to address future
problems.

Peter Bickel’s research began with his thesis work on multivariate analysis
under the supervision of Erich Lehmann, followed by his work on robust statistics,
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semiparametric and nonparametric statistics, and present work on high-dimensional
statistics. His work demonstrates the evolution of statistics over the last half-century,
from classical finite dimensional data in the 1960s and 1970s, to moderate-
dimensional data in the 1980s and 1990s, and to high-dimensional data in the first
decade of this century. His work exemplifies the idea that statistics as a discipline
grows stronger when it confronts the important problems of great social impact
while providing a fundamental understanding of these problems and their associated
methods that push forward theory, methodology, computation, and applications.
Because of the varied nature of Bickel’s work, it is a challenge to select his papers
for this volume. To help readers understand his contributions from a historical
prospective, we have divided his work into the following eight areas: “Rank-based
nonparametric statistics”, “Robust statistics”, “Asymptotic theory”, “Nonparametric
function estimation”, “Adaptive and efficient estimation”, “Bootstrap and resam-
pling methods”, “High-dimensional statistical learning”, and “Miscellaneous”. The
division is imperfect and somewhat artificial. The work of a single paper can impact
the development of multiple areas. We acknowledge that omissions and negligence
are inevitable, but we hope to give readers a broad view on Bickel’s contributions.

This volume includes new photos of Peter Bickel, his biography, publication list,
and a list of his students. We hope this will give the readers a more complete picture
of Peter Bickel, as a teacher, a friend, a colleague, and a family man. We include a
short foreword by Peter Bickel in this volume.

We are honored to have the opportunity to edit this Selected Work of Peter Bickel
and to present his work to the readers. We are grateful to Peter Bühlmann, Peter
Hall, Hans-Georg Müeller, Qiman Shao, Jon Wellner, and Willem van Zwet for
their dedicated contributions to this volume. Without their in-depth comments and
prospects, this volume would not have been possible. We are grateful to Nancy
Bickel for her encouragement and support of this project, including the supply of
a majority of photos in this book. We would also like to acknowledge Weijie Gu,
Nina Guo, Yijie Dylan Wang, Matthias Tan and Rui Tuo for their help in typing
some of the comments, collecting of Bickel’s bibliography and list of students,
and typesetting the whole book. We are indebted to them for their hard work
and dedication. We would also like to thank Marc Strauss, Senior Editor, Springer
Science and Business Media, for his patience and assistance.

Princeton, NJ, USA Jianqing Fan
Jerusalem, Israel Ya’acov Ritov
Atlanta, GA, USA C.F. Jeff Wu
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Biography of Peter J. Bickel

Peter John Bickel was born Sept. 21, 1940, in Bucharest, Romania, to a Jewish
family. His father, Eliezer Bickel, was a medical doctor, researcher and philosopher.
His mother, Madeleine, ran the household. After World War II, the family left
Romania for Paris in 1948, and moved to Toronto in 1949. His father died in 1951
when he was eleven. He moved to California with his mother in 1957, having
finished 5 years of high school in Ontario. He started his undergraduate study at
Caltech in 1957 but only stayed for 2 years before transferring to the University of
California, Berkeley in 1959. For some inexplicable reason, a substantial number
of leading statisticians of his generation came from Caltech, where statistics was
not taught. They include Larry Brown, Brad Efron, Carl Morris, and Chuck Stone,
among others. At Berkeley he obtained his bachelor’s degree in mathematics in
1 year. After quickly obtaining a Master’s degree in mathematics, he started his
doctoral study in 1961 in the Statistics Department. He obtained his Ph.D. degree
in 1963 at the age of 22 under the supervision of Erich Lehmann. He and Lehmann
later became close friends. He was immediately hired by the Department, which
marked the beginning of his long association with and loyalty to Berkeley. He served
as Chair of the Statistics Department (twice) and Dean of the Physical Sciences
(twice). He officially retired from Berkeley in 2006 but has continued to maintain
his office and an active research program in the Department.

When Bickel joined the Berkeley Statistics Department in the early 1960s, it
boasted some of the leading figures in the statistics profession: Jerzy Neyman
(its founder), David Blackwell, Joe Hodges, Lucien LeCam, Erich Lehmann,
Michel Loeve, and Henry Scheffe, among others. During his student days, he met
Kjell Doksum and Yossi Yahav who became close friends and collaborators. He
coauthored a widely used textbook (Bickel and Doksum 2001) in mathematical
statistics with Doksum. He made several visits to Israel to collaborate with Yahav,
including his sabbatical in 1981 in Jerusalem, when Yahav introduced him to a
graduate student named Ya’acov Ritov. Bickel became Ritov’s chief thesis advisor.
They have subsequently collaborated on many papers for the next 30 years. Among
Bickel’s coauthors, Ritov has the unique honor of having written the most papers
with him. Another of his long term collaborators and close friends is Willem van
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xiv Biography of Peter J. Bickel

Zwet from the University of Leiden. They met briefly in the 1960s but started
working together in asymptotic theory when van Zwet visited Berkeley in 1972.
On the personal side, he married Nancy Kramer in 1964; they had two children
Amanda and Stephen and five grandchildren. His attachment to his children and
grandchildren has influenced his latest choices of research in weather prediction
and genomics, since his daughter Amanda lives in Boulder and his son Stephen
outside Washington, D.C. (Ritov 2011). He and Nancy have enjoyed a “loving and
intellectually lively family life”.

Bickel has made wide-ranging contributions to statistical science. As his stu-
dents, each of us had just a glimpse of the total picture. Only during the compilation
of this volume, did we begin to comprehend the breadth of his research and the
magnitude of his impact. It did not take long for us to realize that, in order to
include the necessary in-depth discussions, we would have to divide the collection
of papers in this volume into eight categories. The readers may consult another
review (Doksum and Ritov 2006) of his research contributions. His research in the
early period was mostly theoretical, including rank-based nonparametrics, classical
asymptotic theory, robust statistics, higher order asymptotics, and nonparametric
function estimation. His ability, at a young age, to pursue serious work in a broad
range of areas is unusual. However, he did not shy away from doing applied work.
In a 1975 Science paper (Bickel et al. 1975), he and coauthors gave an explanation
of an apparent gender bias in graduate admissions at UC Berkeley by relating it to
Simpson’s paradox. Over the years he has continued to expand his research horizon
into other areas such as bootstrap/resampling, semiparametric and nonparametric
estimation, high dimensional statistics and statistical learning. During this period,
his work and impact have grown beyond theoretical statistics. He once said that as
he got older, he “became bolder in starting to think seriously about the interaction
between theory and applications, - -” (Ritov 2011). His interest in real world
applications is evident in his major work in molecular biology, traffic analysis, and
weather prediction. The breadth and impact of his work is also reflected in the 60
Ph.D. students (list in this volume) he has supervised so far. The dissertation topics
of these 60 students are as varied as one can imagine. He is known to be an effective,
helpful and supportive thesis advisor.

For the depth, breadth and impact of his work, Bickel is widely viewed as
one of the greatest statisticians and a leading light of his time. He has received
many distinguished awards and honors. Only a few are mentioned here. He was
the Wald Lecturer and Rietz Lecturer of the IMS and the first recipient of the
COPSS Presidents’ Award. He received a MacArthur Fellowship, was elected to the
National Academy of Sciences, the American Academy of Arts and Sciences, and
the Royal Netherlands Academy of Arts and Sciences. He has also received an hon-
orary doctoral degree from the Hebrew University of Jerusalem and was appointed
Commander in the Order of Oranje-Nassau by Queen Beatrix of the Netherlands.
Among his doctoral students, three have received the COPSS Presidents’ Award,
which must be a record for a thesis advisor. In spite of the fame and recognition
he has received since early days, he remains a very modest person. As his former
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students, we were surprised to read a statement like “I became more self-confident
(after getting the MacArthur Fellowship)” (Ritov 2011).

Besides his busy research, he has rendered dedicated service to the profession
and the country. He was the President of the Institute of Mathematical Statistics
(IMS) and of the Bernoulli Society. He has served on many national committees
and commissions, including those in the National Academy of Sciences, National
Research Council, the American Association for the Advancement of Science, and
EURANDOM.

While most people at his age either decelerate or become idle, he has maintained
a vigorous research program and started working in some new directions in biology
and computer science. Some may even claim that since his retirement, he has
become more active than before. He once confided to one of us that, without the
bounds of official duties, he can now choose the course he wants to teach, and go to
the meetings he feels comfortable attending. He seems to enjoy the freedom from
his retirement and has found more energy for research “despite his unexpectedly
advanced age” (Bickel this volume). In a decade or two from now, we will need to
undertake a major update of his career and research.
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652

135. Bickel PJ, Kechris KJ, Spector PC, Wedemayer GJ, Glazer AN (2002) Finding
important sites in protein sequences. PNAS 99:14764–14771

136. Bickel PJ, Ritov Y, Rydén T (2002) Hidden Markov model likelihoods and
their derivatives behave like i.i.d. ones. Annales de l’Institut Henri Poincare
(B) Probability and Statistics 38:825–846

137. Berk R, Bickel PJ, Campbell K, Fovell R, Keller-McNulty S, Kelly E, Linn
R, Park B, Perelson A, Rouphail N, Sacks J, Schoenberg F (2002) Workshop
on statistical approaches for the evaluation of complex computer models. Stat
Sci 17:173–192

138. Bickel PJ, Ritov Y (2003) Inference in hidden Markov models. In: Proceed-
ings of the international congress of mathematicians, vol 2. World Publishers,
Hong Kong

139. Kim N, Bickel PJ (2003) The limit distribution of a test statistic for bivariate
normality. Stat Sin 13:327–349

140. Bickel PJ, Ritov Y (2003) Nonparametric estimators which can be “plugged-
in”. Ann Stat 31:1033–1053

141. Kechris KJ, van Zwet E, Bickel PJ, Eisen MB (2004) Detecting DNA
regulatory motifs by incorporating positional trends in information content.
Genome Biol 5:1–21

142. Ge Z, Bickel PJ, Rice JA (2004) An approximate likelihood approach to
nonlinear mixed effects models via spline approximation. Comput Stat Data
Anal 46:747–776

143. Bickel PJ (2004) Unorthodox bootstraps. J Korean Stat Soc 32:213–224
144. Chen A, Bickel PJ (2004) Robustness of prewhitening of heavy tailed sources.

Springer Lect Notes Comput Sci
145. Bickel PJ, Levina E (2004) Some theory for Fisher’s linear discriminant

function, “naive Bayes”, and some alternatives when there are many more
variables than observations. Bernoulli 10:989–1010

146. Chen A, Bickel PJ (2005) Consistent independent component analysis and
prewhitening. IEEE Trans Signal Process 53:3625–3633

147. Levina E, Bickel PJ (2005) Maximum likelihood estimation of intrinsic
dimension. In: Saul LK, Weiss Y, Bottou L (eds) Advances in NIPS, vol 17

148. Olshen AB, Cosman PC, Rodrigo AG, Bickel PJ, Olshen RA (2005) Vector
quantization of amino acids: analysis of the HIV V3 loop region. J Stat Plan
Inference 130:277–298



Publications by Peter J. Bickel xxv

149. van Zwet EW, Kechris KJ, Bickel PJ, Eisen MB (2005) Estimating motifs
under order restrictions. Stat Appl Genet Mol Biol 4:1–16. Art.1

150. Bickel PJ, Ritov Y, Zakai A (2006) Some theory for generalized boosting
algorithms. JMLR 7:705–732

151. Kechris KJ, Lin JC, Bickel PJ, Glazer AN (2006) Quantitative exploration of
the occurrence of lateral gene transfer by using nitrogen fixation genes as a
case study. PNAS 103:9584–9589

152. Bickel PJ, Li B (2006) Regularization in statistics (with discussion). Test
15:271–344

153. Levina E, Bickel PJ (2006) Texture synthesis and nonparametric resampling
of random fields. Ann Stat 34:1751–1773

154. Bickel PJ, Ritov Y, Stoker TM (2006) Tailor-made tests for goodness-of-fit to
semiparametric hypotheses. Ann Stat 34:721–741

155. Chen A, Bickel PJ (2006) Efficient independent component analysis. Ann Stat
34:2825–2855

156. Bickel PJ, Li B (2007) Local polynomial regression on unknown mani-
folds. In: Complex datasets and inverse problems: tomography, networks and
beyond. IMS lecture notes-monograph series, vol 54, pp 177–186

157. The ENCODE Project Consortium (2007) Identification and analysis of
functional elements in 1% of the human genome by the ENCODE pilot
project. Nature 447:799–816

158. Margulies EH et al (2007) Analyses of deep mammalian sequence alignments
and constraint predictions for 1% of the human genome. Genome Res 17:760–
774

159. Bickel PJ, Kleijn B, Rice J (2007) On detecting periodicity in astronomical
point processes. In: Challenges in modern astronomy IV: ASP conference
series, vol 371

160. Bickel PJ, Chen C, Kwon J, Rice J, van Zwet E, Varaiya P (2007) Measuring
traffic. Stat Sci 22:581–597

161. Bickel PJ, Levina E (2008) Regularized estimation of large covariance
matrices. Ann Stat 36:199–227

162. Bengtsson T, Bickel PJ, Li B (2008) Curse-of-dimensionality revisited:
collapse of the particle filter in very large scale systems. In: IMS collections:
probability and statistics: essays in Honor of David A. Freedman, vol 2, pp
316–334

163. Bickel PJ, Li B, Bengtsson T (2008) Sharp failure rates for the bootstrap
particle filter in high dimensions. In: IMS collections: pushing the limits of
contemporary statistics: contributions in Honor of Jayanta K. Ghosh, vol 3,
pp 318–329

164. Bickel PJ, Sakov A (2008) On the choice of m in the m out of n bootstrap and
its application to confidence bounds for extreme percentiles. Stat Sin 18:967–
985

165. Rothman AJ, Bickel PJ, Levina E, Zhu J (2008) Sparse permutation invariant
covariance estimation. Electron J Stat 2:494–515



xxvi Publications by Peter J. Bickel

166. Snyder C, Bengtsson T, Bickel PJ, Anderson J (2008) Obstacles to high-
dimensional particle filtering. Mon Weather Rev 136:4629–4640

167. Bickel PJ, Kleijn B, Rice J (2008) Event-weighted tests for detecting period-
icity in photon arrival times. Astrophys J 685:384–389

168. Bickel PJ, Levina E (2008) Covariance regularization by thresholding. Ann
Stat 36:2577–2604

169. Bickel PJ, Yan D (2008) Sparsity and the possibility of inference. Sankhyā
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Chapter 1
Rank-Based Nonparametrics

Willem R. van Zwet

1.1 Introduction to Two Papers on Higher Order
Asymptotics

1.1.1 Introduction

Peter Bickel has contributed substantially to the study of rank-based nonparametric
statistics. Of his many contributions to research in this area I shall discuss his work
on second order asymptotics that yielded surprising results and set off more than a
decade of research that deepened our understanding of asymptotic statistics. I shall
restrict my discussion to two papers, which are Albers et al. (1976) “Asymptotic
expansions for the power of distribution free tests in the one-sample problem” and
Bickel (1974) “Edgeworth expansions in nonparametric statistics” where the entire
area is reviewed.

1.1.2 Asymptotic Expansions for the Power of Distribution
Free Tests in the One-Sample Problem

Let X1,X2, · · · be i.i.d. random variables with a common distribution function Fθ
for some real-valued parameter θ . For N = 1,2, · · · , let AN and BN be two tests of
level α ∈ (0,1) based on X1,X2, · · · ,XN for the null-hypothesis H : θ = 0 against a
contiguous sequence of alternatives KN,c : θ = cN−1/2 for a fixed c > 0. Let πA,N(c)
and πB,N(c) denote the powers of AN and BN for this testing problem and suppose
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that AN performs at least as well as BN , i.e. πA,N(c) ≥ πB,N(c). Then we may look
for a sample size k = kN ≥ N such that Bk performs as well against alternative KN,c

as AN does for sample size N, i.e. πB,k(c(k/N)1/2) = πA,N(c). For finite sample
size N it is generally impossible to find a usable expression for k = kN , so one
resorts to large sample theory and defines the asymptotic relative efficiency (ARE)
of sequence {BN} with respect to {AN} as

e = e(B,A) = lim
N→∞

N/kN .

If πA,N(c) → πA(c) and πB,N(c) → πB(c) uniformly for bounded c, and πA and πB

are continuous, then e is the solution of

πB(ce−1/2) = πA(c).

Since we assumed that AN performs at least as well as BN , we have e ≤ 1.
If e < 1, the ARE provides a useful indication of the quality of the sequence

{BN} as compared to {AN}. To mimic the performance of AN by Bk we need
kN − N = N(1 − e)/e + o(N) additional observations where the remainder term
o(N) is relatively unimportant. If e = 1, however, all we know is that the number of
additional observations needed is o(N), which may be of any order of magnitude,
such as 1 or N/ log logN. Hence in Hodges and Lehmann (1970) the authors
considered the case e = 1 and proposed to investigate the asymptotic behavior of
what they named the deficiency of B with respect to A

dN = kN −N,

rather than kN/N. Of course this is a much harder problem than determining the
ARE. To compute e, all we have to show is that kN = N/e+ o(N), and only the
limiting powers πA and πB enter into the solution. If e = 1, then kN = N + o(N),
but for determining the deficiency, we need to evaluate kN to the next lower order,
which may well be O(1) in which case we have to evaluate kN with an error of
the order o(1). To do this, one will typically need asymptotic expansions for the
power functionsπA,N and πB,N with remainder term o(N−1). For this we need similar
expansions for the distribution functions of the test statistics of the two tests under
the hypothesis as well as under the alternative.

In their paper Hodges and Lehmann computed deficiencies for some parametric
tests and estimators, but they clearly had a more challenging problem in mind.
When Frank Wilcoxon introduced his one- and two-sample rank tests (Wilcoxon
1945) most people thought that replacing the observations by ranks would lead to a
considerable loss of power compared to the best parametric procedures. Since then,
research had consistently shown that this is not the case. Many rank tests have ARE
1 when compared to the optimal test for a particular parametric problem, so it was
not surprising that the first question that Hodges and Lehmann raised for further
research was: “What is the deficiency (for contiguous normal shift alternatives) of
the normal scores test or of van der Waerden’s X-test with respect to the t-test?”.
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In the paper under discussion this question is generalized to other distributions
than the normal and answered for the appropriate one-sample rank test as compared
with the optimal parametric test. Let X1,X2, · · · ,XN be i.i.d. with a common
distribution function G and density g, and let Z1 < Z2 < · · · < ZN be the order
statistics of the absolute values |X1|, |X2|, · · · , |XN |. If Zj = |XR( j)|, define Vj = 1
if XR( j) > 0 and Vj = 0 otherwise. Let a = (a1,a2, · · · ,aN) be a vector of scores and
define

T = ∑
1≤ j≤N

a jVj. (1.1)

T is the linear rank statistic for testing the hypothesis that g is symmetric about
zero. Note that the dependence of G, g and a on N is suppressed in the notation.
Conditionally on Z, the random variables V1,V2, · · · ,VN are independent with

Pj = P(Vj = 1|Z) = g(Zj)/{g(Zj)+ g(−Zj)}. (1.2)

Under the null hypothesis, V1,V2, · · · ,VN are i.i.d. with P(Vj = 1) = 1/2. Hence
the obvious strategy for obtaining an expansion for the distribution function of T
is to introduce independent random variables W1,W2, · · · ,WN with p j = P(Wj =
1) = 1 − P(Wj = 0) and obtain an expansion for the distribution function of
∑1≤ j≤N a jWj. In this expansion we substitute the random vector P=(P1,P2, · · · ,PN)
for p = (p1, p2, · · · , pN). The expected value of the resulting expression will then
yield an expansion for the distribution function of T .

This approach is not without problems. Consider i.i.d. random variables Y1,
Y2, · · · ,YN with a common continuous distribution with mean EYj = 0, variance
EY 2

j = 1, third and fourth moments μ3 = EY 3
j and μ4 = EY 4

j , and third and fourth

cumulants κ3 = μ3 and κ4 = μ4 − 3μ2
2 . Let SN = N−1/2∑1≤ j≤N Yj denote the

normalized sum of these variables. In Edgeworth (1905) the author provided a
formal series expansion of the distribution function FN(x) = P(SN ≤ x) in powers
of N−1/2. Up to and including the terms of order 1, N−1/2 and N−1, Edgeworth’s
expansion of FN(x) reads

F∗
N(x) = Φ(x)−φ(x) · [(κ3/6)(x2 − 1)N−1/2

+{(κ4/24)(x3 − 3x)+ (κ2
3/72)(x5 − 10x3 + 15x)}N−1].

(1.3)

We shall call this the three-term Edgeworth expansion. Though it was a purely
formal series expansion, the Edgeworth expansion caught on and became a popular
tool to approximate the distribution function of any sequence of continuous random
variables UN with expected value 0 and variance 1 that was asymptotically standard
normal. As λ3,N = κ3N−1/2 and λ4,N = κ4N−1 are the third and fourth cumulants
of the random variable SN under discussion, one merely replaced these quantities
by the cumulants of UN in (1.3). Incidentally, I recently learned from Professor
Ibragimov that the Edgeworth expansion was first proposed in Chebyshev (1890),
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which predates Edgeworth’s paper by 15 years. Apparently this is one more example
of Stigler’s law of eponymy, which states that no scientific discovery – including
Stigler’s law – is named after its original discoverer (Stigler 1980).

A proof of the validity of the Edgeworth expansion for normalized sums SN

was given by Cramér (cf. 1937; Feller 1966). He showed that for the three-term
Edgeworth expansion (1.3), the error F∗

N(x)− FN(x) = o(N−1) uniformly in x,
provided that μ4 < ∞ and the characteristic function ψ(t) = E exp{itYj} satisfies
Cramér’s condition

limsup
|t|→∞

|ψ(t)|< 1. (1.4)

Assumption (1.4) can not be satisfied if Y1 is a discrete random variable as then its
characteristic function is almost periodic and the limsup equals 1. In the case we
are discussing, the summands a jWj of the statistic ∑1≤ j≤N a jWj are independent
discrete variables taking only two values 0 and a j. However, the summands are not
identically distributed unless the a j as well as the p j are equal. Hence the only case
where the summands are i.i.d. is that of the sign test under the null-hypothesis, where
a j = 1 for all j, and the values 0 and 1 are assumed with probability 1/2. In that
case the statistic ∑1≤ j≤N a jWj has a binomial distribution with point probabilities of
the order N−1/2 and it is obviously not possible to approximate a function FN with
jumps of order N−1/2 by a continuous function F∗

N with error o(N−1).
In all other cases the summands a jWj of ∑1≤ j≤N a jWj are independent but not

identically distributed. Cramér has also studied the validity of the Edgeworth expan-
sion for the case that the Yj are independent by not identically distributed. Assume
again that EYj = 0 and define SN as the normalized sum SN = σ−1∑1≤ j≤N Yj with
σ2 = ∑1≤ j≤N EY 2

j . As before FN(x) = P(SN ≤ x) and in the three-term Edgeworth

expansion F∗
N(x) we replace κ3N−1/2 and κ4N−1 by the third and fourth cumulants

of SN . Cramér’s conditions to ensure that F∗
N(x)−FN(x) = o(N−1) uniformly in x,

are uniform versions of the earlier ones for the i.i.d. case: EY 2
j ≥ c> 0,EY 4

j ≤C <∞
for j = 1,2, · · · ,N, and for every δ > 0 there exists qδ < 1 such that the characteristic
functions ψ j(t) = E exp{itYj} satisfy

sup
|t|≥δ

|ψ j(t)|< qδ for all j. (1.5)

As the a jWj are lattice variables (1.5) does not hold for even a single j
and the plan of attack of this problem is beginning to look somewhat dubious.
However, Feller points out, condition (1.5) is “extravagantly luxurious” for val-
idating the three-term Edgeworth expansion and can obviously be replaced by
sup|t|≥δ |Π1≤ j≤Nψ j(t)| = o(N−1) (cf. Feller 1966, Theorem XVI.7.2 and Prob-
lem XVI.8.12). This, in turn, is slightly too optimistic but it is true that the condition

sup
δ≤|t|≤N

|Π1≤ j≤Nψ j(t)|= o((N logN)−1) (1.6)
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is sufficient and the presence of logN is not going to make any difference. Hence
(1.6) has to be proved for the case where Yj = a j(Wj− p j) and SN =∑1≤ j≤N a j(Wj−
p j)/τ(p) with τ(p)2 = ∑1≤ j≤N p j(1 − p j)a2

j and ρ(t) = ∏1≤ j≤Nψ j(t) is the
characteristic function of SN .

This problem is solved in Lemma 2.2 of the paper. The moment assumptions
(2.15) of this lemma simply state that N−1τ(p)2 ≥ c > 0 and N−1∑1≤ j≤N a4

j ≤
C < ∞, and assumption (2.16) ensures the desired behavior of |∏1≤ j≤Nψ j(t)| by
requiring that there exist δ > 0 and 0 < ε < 1/2 such that

λ{x : ∃ j : |x−a j|< ζ , ε ≤ p j ≤ 1−ε}≥ δNζ for some ζ ≥ N−3/2 logN, (1.7)

where λ is Lebesgue measure. This assumption ensures that the set of the scores a j

for which p j is bounded away from 0 and 1, does not cluster too much about too
few points. As is shown in the proof of Lemma 2.2 and Theorem 2.1 of the paper,
assumptions (2.15) and (2.16) imply

sup
δ≤|t|≤N

| ∏
1≤ j≤N

ψ j(t)| ≤ exp{−d(logN)2}= N−d logN , (1.8)

which obviously implies (1.6). Hence the three-term Edgeworth expansion for SN =

∑1≤ j≤N a j(Wj − p j)/τ(p) is valid with remainder o(N−1), and in fact O(N−5/4).
This was a very real extension of the existing theory at the time.

To obtain an expansion for the distribution of the rank statistic T =∑1≤ j≤N a jVj,
the next step is to replace the probabilities p j by the random quantities Pj in (1.2)
and take the expectation. Under the null-hypothesis that the density g of the Xj

is symmetric this is straightforward because Pj = 1/2 for all j. The alternatives
discussed in the paper are contiguous location alternatives where G(x) = F(x−θ )
for a specific known F with symmetric density f and 0 ≤ θ ≤ CN−1/2 for a fixed
C > 0. Finding an expansion for the distribution of T under these alternatives is
highly technical and laborious, but fairly straightforward under the assumptions
N−1∑1≤ j≤N a2

j ≥ c, N−1∑1≤ j≤N a4
j ≤C,

λ{x : ∃ j : |x− a j|< ζ} ≥ δNζ for some ζ ≥ N−3/2 logN (1.9)

and some technical assumptions concerning f and its first four derivatives. Among
many other things, the latter ensure that ε ≤ Pj ≤ 1− ε for a substantial proportion
of the Pj. Having obtained expansions for the distribution function of (2T −
∑a j)/(∑a2

j)
1/2 both under the hypothesis and the alternative, an expansion for the

power is now immediate.
It remains to discuss the choice of the scores a j = a j,N . For a comparison between

best rank tests and best parametric tests we choose a distribution function F with a
symmetric smooth density f and consider the locally most powerful (LMP) rank
test based on the scores

a j,N = EΨ(Uj:N) whereΨ(t) =− f ′F−1((1+ t)/2)/ f F−1((1+ t)/2) (1.10)
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and Uj:N denotes the j-th order statistic of a sample of size N from the uniform
distribution on (0,1). Since F−1((1+t)/2) is the inverse function of the distribution
function (2F − 1) on (0,∞), F−1((1 +Uj:N)/2) is distributed as the j-th order
statistic Vj of the absolute values |X1|, |X2|, · · · , |XN | of a sample X1,X2, · · · ,XN from
F . Hence a j = −E f ′(Vj)/ f (Vj). As f is symmetric, the function f ′/ f can only be
constant on the positive half-line if f is the density f (x) = 1/2γe−γ|x| of a Laplace
distribution on R1 for which the sign test is the LMP rank test. We already concluded
that this test can not be handled with the tools of this paper, but for every other
symmetric four times differentiable f , the important condition (1.9) will hold.

If, instead of the so-called exact scores a j,N = EΨ(Uj:N), one uses the approx-
imate scores a j,N =Ψ( j/(N + 1)), then the power expansions remain unchanged.
This is generally not the case for other score generating functions thanΨ .

The most powerful parametric test for the null-hypothesis F against the contigu-
ous shift alternative F(x−θ ) with θ = cN1/2 for fixed c > 0 will serve as a basis for
comparison of the LMP rank test. Its test statistic is simply∑1≤ j≤N{log f (Xj −θ )−
log f (Xj)} which is a sum of i.i.d. random variables and therefore its distribution
function under the hypothesis and the alternative admit Edgeworth expansions under
the usual assumptions, and so does the power. Explicit expressions are found for the
deficiency of the LMP rank test and some examples are:

Normal distribution (Hodges-Lehmann problem). For normal location alterna-
tives the one-sample normal scores test as well as van der Waerden’s one-sample
rank test with respect to the most powerful parametric test based on the sample
mean equals

dN = 1/2loglogN + 1/2(u2
α− 1)+ 1/2γ+ o(1),

where Φ(uα) = 1−α and γ = 0.577216 is Euler’s constant. Note that in the paper
there is an error in the constant (cf. Albers et al. 1978). In this case the deficiency
does tend to infinity, but no one is likely to notice as 1/2loglogN = 1.568 · · · for
N = 1010 (logarithms to base e).

It is also shown that the deficiency of the permutation test based on the sample
mean with respect to Student’s one-sample test tends to zero as O(N−1/2).

Logistic distribution. For logistic location alternatives the deficiency of Wilcoxon’s
one-sample test with respect to the most powerful test for testing F(x) = (1+e−x)−1

against F(x− bN−1/2) tends to a finite limit and equals

dN = {18+ 12u2
α+(48)1/2buα + b2}/60+ o(1).

It came as somewhat of a surprise that Wilcoxon’s test statistic admits a three-term
Edgeworth expansion, as it is a purely lattice random variable. As we pointed out
above, the reason that this is possible is that its conditional distribution is that of a
sum of independent but not identically distributed random variables. Intuitively the
reason is that the point probabilities of the Wilcoxon statistic are of the order N−3/2

which is allowed as the error of the expansion is o(N−1).
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The final section of the paper discusses deficiencies of estimators of location.
It is shown that the deficiency of the Hodges-Lehmann type of location estimator
associated with the LMP rank test for location alternatives with respect to the
maximum likelihood estimator for location, differs by O(N−1/4) from the deficiency
of the parent tests.

The paper deals with a technically highly complicated subject and is therefore not
easy to read. At the time of appearance it had the dubious distinction of being the
second longest paper published in the Annals. With 49 pages it was second only to
Larry Brown’s 50 pages on the admissibility of invariant estimators (Brown 1966).
However, for those interested in expansions and higher order asymptotics it contains
a veritable treasure of technical achievements that improve our understanding of
asymptotic statistics. I hope this review will facilitate the reading. While I’m about
it, let me also recommend reading the companion paper (Bickel and van Zwet 1978)
where the same program is carried out for two-sample rank tests. With its 68 pages
it was regrettably the longest paper in the Annals at the time it was published, but
don’t let that deter you! Understanding the technical tricks in this area will come in
handy in all sorts of applications.

1.1.3 Edgeworth Expansions in Nonparametric Statistics

This paper is a very readable review of the state of the art at the time in the area
of Edgeworth expansions. It discusses the extension of Cramér’s work to sums of
i.i.d. random vectors, as well as expansions for M-estimators. It also gives a preview
of the results of the paper we have just discussed on one-sample rank tests and the
paper we just mentioned on two-sample rank tests. There is also a new result of
Bickel on U-statistics that may be viewed as the precursor of a move towards a
general theory of expansions for functions of independent random variables. As we
have already discussed Cramér’s work as well as rank statistics, let me restrict the
discussion of the present paper to the result on U-statistics.

First of all, recall the classical Berry-Esseen inequality for normalized sums SN =
N−1/2 ·∑1≤ j≤N Xj of i.i.d. random variables X1, · · · ,XN , with EX1 = 0 and EX2

1 = 1.
If E|X1|3 < ∞, and Φ denotes the standard normal distribution function, then there
exists a constant C such that for all N,

sup
x
|P(SN ≤ x)−Φ(x)| ≤CE|X1|3N−1/2. (1.11)

In the present paper a bound of Berry-Esseen-type is proved for U-statistics.
Let X1,X2, · · · be i.i.d. random variables with a common distribution function F
and let ψ be a measurable, real-valued function on R2 where it is bounded, say
|ψ | ≤ M < ∞, and symmetric, i.e. ψ(x,y) = ψ(y,x). Define

γ(x) = E(ψ(X1,X2)|X1 = x) =! (0,1)ψ(x,y) dF(y)
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and suppose that Eψ(X1,X2) = Eγ(X1) = 0. Define a normalized U-statistic TN by

TN = σ−1
N ∑

1≤i< j≤N

ψ(Xi,Xj) with σ2
N = E{ ∑

1≤i< j≤N

ψ(Xi,Xj)}2, (1.12)

and hence ETN = 0 and ET 2
N = 1. In the paper it is proved that if Eγ2(X1)> 0, then

there exists a constant C depending on ψ but not on N such that

sup
x
|P(TN ≤ x)−Φ(x)| ≤CN−1/2. (1.13)

When comparing this result with the Berry-Esseen bound for the normalized
sum SN , one gets the feeling that the assumption that ψ is bounded is perhaps
a bit too restrictive and that it should be possible to replace it by one or more
moment conditions. But it was a good start and improvements were made in
quick succession. The boundedness assumption for ψ was dropped and Chan and
Wierman (1977) proved the result under the conditions that Eγ2(X1) > 0 and
E{ψ(X1,X2)}4 < ∞. Next Callaert and Janssen (1978) showed that Eγ2(X1) > 0
and E|ψ(X1,X2)|3 < ∞ suffice. Finally Helmers and van Zwet (1982) proved the
bound under the assumptions Eγ2(X1)> 0, E|γ(X1)|3 <∞ and Eψ(X1,X2)

2 < ∞.
Why is this development of interest? The U-statistics discussed so far are a

special case of U-statistics of order k which are of the form

T = ∑
1≤ j(1)< j(2)<
···< j(k)≤N

ψk(Xj(1),Xj(2), · · · ,Xj(k)), (1.14)

where ψk is a symmetric function of k variables with Eψk(X1,X2, · · · ,Xk) = 0 and
the summation is over all distinct k-tuples chosen from X1,X2, · · · ,XN . Clearly the
U-statistics discussed above have degree k = 2, but extension of the Berry-Esseen
inequality to U-statistics of fixed finite degree k is straightforward. In an unpublished
technical report (Hoeffding 1961) Wassily Hoeffding showed that any symmetric
function T = t(X1, · · · ,XN) of N i.i.d. random variables X1, · · · ,XN that has ET = 0
and finite variance σ2 = ET 2 −{ET}2 < ∞ can be written as a sum of U-statistics
of orders k = 1,2, · · · ,N in such a way that all terms involved in this decomposition
are uncorrelated and have several additional desirable properties. Hence it seems
that it might be possible to obtain results for symmetric functions of N i.i.d. random
variables through a study of U-statistics. For the Berry-Esseen theorem this was
done in van Zwet (1984) where the result was obtained under fairly mild moment
conditions that reduce to the best conditions for U-statistics when specialized to
this case. A first step for obtaining Edgeworth expansions for symmetric functions
of i.i.d. random variables was taken in Bickel et al. (1986) where the case of U-
statistics of degree k = 2 was treated. More work is needed here.
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Chapter 2
Robust Statistics

Peter Bühlmann

2.1 Introduction to Three Papers on Robustness

2.1.1 General Introduction

This is a short introduction to three papers on robustness, published by Peter Bickel
as single author in the period 1975–1984: “One-step Huber estimates in the linear
model” (Bickel 1975), “Parametric robustness: small biases can be worthwhile”
(Bickel 1984a), and “Robust regression based on infinitesimal neighbourhoods”
(Bickel 1984b). It was the time when fundamental developments and understanding
in robustness took place, and Peter Bickel has made deep contributions in this area.
I am trying to place the results of the three papers in a new context of contemporary
statistics.

2.1.2 One-Step Huber Estimates in the Linear Model

The paper by Bickel (1975) about the following procedure. Given a
√

n-consistent
initial estimator θ̃ for an unknown parameter θ , performing one Gauss-Newton
iteration with respect to the objective function to be optimized leads to an asymptot-
ically efficient estimator. Interestingly, this results holds even when the MLE is not
efficient, and it is equivalent to the MLE if the latter is efficient. Such a result was
known for the case where the loss function corresponds to the maximum likelihood
estimator (Le Cam 1956). Bickel (1975) extends this result to much more general
loss functions and models.
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ETH Zürich, Rämistrasse 101, HG G17 8092, Zürich, Switzerland
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The idea of a computational short-cut without sacrificing statistical was relevant
more than 30 years ago (summary point 5 in Sect. 3 of Bickel 1975). Yet, the idea
is still very important in large scale and high-dimensional applications nowadays.
Two issues emerge.

In some large-scale problems, one is willing to pay a price in terms of statistical
accuracy while gaining substantially with respect to computing power. Peter Bickel
has recently co-authored a paper on this subject (Meinshausen et al. 2009): having
some sort of guarantee on statistical accuracy is then highly desirable. Results as
in Bickel (1975), probably of weaker form which do not touch on the concept of
efficiency, are underdeveloped for large-scale problems.

The other issue concerns the fact that iterations in algorithms correspond to some
form of (algorithmic) regularization which is often very effective for large datasets.
A prominent example of this is with boosting: instead of a Gauss-Newton step,
boosting proceeds with Gauss-Southwell iterations which are coordinatewise up-
dates based on an n-dimensional approximate gradient vector (where n denotes
sample size). It is known, at least for some cases, that boosting with such Gauss-
Southwell iterations achieves minimax convergence rate optimality (Bissantz et al.
2007; Bühlmann and Yu 2003) while being computationally attractive. Furthermore,
in view of robustness, boosting can be easily modified such that each Gauss-
Southwell up-date is performed in a robust way and hence, the overall procedure
has desirable robustness properties (Lutz et al. 2008). As discussed in Sect. 3 of
Bickel (1975), the starting value (i.e., the initial estimator) matters also in robustified
boosting.

2.1.3 Parametric Robustness: Small Biases Can Be Worthwhile

The following problem is studied in Bickel (1984a): construct an estimator that
performs well for a particular parametric model M0 while its risk is upper-bounded
for another larger parametric model M1 ⊃M0. As an interpretation, one believes
that M0 is adequate but one wants to guard against deviations coming from M1. It
is shown in the paper that the corresponding optimality problem has not an explicit
solution: however, approximate answers are presented and interesting connections
are developed to the Efron-Morris (Efron and Morris 1971) family of translation
estimates, i.e., adding a soft-thresholded additional correction term to the optimal
estimator under M0. (The reference Efron and Morris (1971) is appearing in the text
but is missing in the list of references in Bickel’s paper).

The notion of parametric robustness could be interesting in high-dimensional
problems. Guarding against specific deviations (which may be easier to specify
in some applications than in others) can be more powerful than trying to protect
nonparametrically against point-mass distributions in any direction. In this sense,
this paper is a key reference for developing effective high-dimensional robust
inference.
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2.1.4 Robust Regression Based on Infinitesimal
Neighbourhoods

Robust regression is analyzed in Bickel (1984b) using a nice mathematical frame-
work where the perturbation is within a 1/

√
n-neighbourhood of the uncon-

taminated ideal model. The presented results in Bickel (1984b) give a clear
(mathematical) interpretation of various procedures and suggest new robust methods
for regression.

A major issue in robust regression is to guard against contaminations in X-space.
Bickel (1984b) gives nice insights for the classical case where the dimension of X
is relatively small: a new challenge is to deal with robustness in high-dimensional
regression problems where the dimension of X can be much larger than sample
size. One attempt has been to robustify high-dimensional estimators such as the
Lasso (Khan et al. 2007) or L2Boosting (Lutz et al. 2008), in particular with respect
to contaminations in X-space. An interesting and different path has been initiated
by Friedman (2001) with tree-based procedures which are robust in X-space (in
connection with a robust loss function for the error). There is clearly a need of
a unifying theory, in the spirit of Bickel (1984b), for robust regression when the
dimension of X is large.
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Chapter 3
Asymptotic Theory

Qi-Man Shao

3.1 Introduction to Four Papers on Asymptotic Theory

3.1.1 General Introduction

Asymptotic theory plays a fundamental role in the developments of modern
statistics, especially in the theoretical analysis of new methodologies. Some asymp-
totic results may borrow directly from the limit theory in probability, but many need
deep insights of statistical contents and more accurate approximations, which have
in turn fostered further developments of limit theory in probability. Peter Bickel
has made far-reaching and wide-ranging contributions to modern statistics. He is
a giant in theoretical statistics. In asymptotic theory, besides his contributions to
bootstrap and high-dimensional statistical inference, in this paper I shall focus on
four of his seminal papers on asymptotic expansions and Bartlett correction for
Bayes solutions, likelihood ratio statistics and maximum-likelihood estimator for
general hidden Markov models. The papers will be reviewed in chronological order.

3.1.2 Asymptotic Theory of Bayes Solutions

The paper of Bickel and Yahav (1969) deals with the asymptotic theory of Bayes
solutions in estimation and hypothesis testing. It proves that Bayes estimates arising
from a loss function are asymptotically efficient and that the mean of the posterior
distribution is asymptotically normal, which confirms a long time statistical folklore.
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The results also significantly extend some early work of Le Cam. More importantly,
the paper provides asymptotic expansions for the posterior risk in the estimation
problem. The expansion can be viewed in the same sprit of Badahur’s work, which
is now commonly called the Bahadur representation. It is noted that Bickel and
Yahav derived the expansion from an entirely different viewpoint.

The method, setup and results in Bickel and Yahav (1969) have a significant
impact to the later wok in this area directly and indirectly. For example, Yuan (2009)
proposed a joint estimation procedure in which some of the parameters are estimated
Bayesian, and the rest by the maximum-likelihood estimator in the same parametric
model. The proof of the consistency of the hybrid estimate is based on the method
in Bickel and Yahav (1969). The paper of He and Shao (1996) on the Bahadur
expansion for M-estimators follows a similar setup as Bickel and Yahav (1969).
Belloni and Chernozhukov (2009) also follow the setup of B-Y and extend some of
their results. The results of Bickel and Yahav (1969) have considerable applications
in asymptotic sequential analysis. For recent results and extensions on this topic we
refer to Hwang (1997), Ghosal (1999), and Belloni and Chernozhukov (2009) and
references therein.

3.1.3 The Bartlett Correction

The Bartlett (1937) correction is a scalar transformation applied to the likelihood
ratio (LR) statistic that yields a new improved test statistic which has a chi-squared
null distribution to order O(1/n). This represents a clear improvement of O(1) for
the the original LR statistic. A general frame work for Bartlett corrections was
proposed by Lawley (1956). One can refer to Cribari-Neto and Cordeiro (1996)
and Jensen (1993) for surveys on Bartlett corrections. The Bartlett correction is also
closely related to Edgeworth expansions and saddlepoint approximations.

The main contributions of Bickel and Ghosh (1990) are twofolds: (1) it gives a
generalization of Efron’s (1985) result to vector parameters and applies this exten-
sion to establish the validity of Bartlett’s correction to order n−3/2, in particularly,
verifies rigorously Lawley’s (1956) result giving the order of the error in the Bartlett
correction as O(n−2); (2) it gives Bayesian analogues of both of above results that
provide a key to understanding the Bartlett phenomenon.

The Bayesian idea in Bickel and Ghosh (1990) is creative. This enables to
clear up mysteries such as why the Wald’s or Rao’s statistic is not Bartlett
correctible and to explore the duality between the Bayesian and the frequentist
setup. Let X = (X1, . . . ,Xn) be a vector of observations with joint density p(x,θ ),
θ = (θ 1, . . . ,θ p) ∈Θ open in Rp. For given θ , let θ̂0 be the unrestricted MLE and
θ̂ j be the MLE of θ when θ 1, . . . ,θ j are fixed, i.e.,

l(θ̂ j) = max
{

l(τ) : τ1 = θ 1, . . . ,τ j = θ j}, 1 ≤ j ≤ p.
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Assume that these quantities exist and are unique and define T = T (θ ,X) =
(T 1, . . . ,T p) as the signed square roots of the likelihood ratio statistics, where

Tj = n1/2{2
[
l(θ̂ j−1)− l(θ̂ j)

]}1/2
(
θ̂ j

j−1 −θ j
)
.

The Bayesian route begins with putting a prior density π onΘ . Let P denote the joint
distribution of (θ ,X) and P(·|X) the conditional (posterior) probability distribution
of (θ ,X) given X. The posterior density of

√
n(θ − θ̂) is given by

π(h|x)≡ exp
{

l(θ̂ + rh)− l(θ̂)
}
π(θ̂ + rh)/N(X),

where N(X) =
∫

exp{l(θ̂ + rh)− l(θ̂ )}π(θ̂ + rh)dh. Let πT (t|X) denote the pos-
terior density of T and φ(t) = (2π)−p/2 exp{∑p

i=1(ti)
2/2} be the standard p

variate normal density. Bickel and Ghosh’s (1990) first result is that, under certain
“Bayesian” regularity conditions,

EP

∫
|πT (t|X)−π2(t,X)|dt = O(n−3/2),

where

π2(t,X) = φ(t)
{

1+P21(X,π)n−1/2 +P22(X,π)n−1 +Q2(n
−1/2t)

}
I{X ∈ S}

for t ∈ R
p. Here Q2 is a polynomial in n−1/2t of degree 2 without a constant term

and S is a set such that P(X /∈ S) = O(n−3/2).
The second result in Bickel and Ghosh (1990) is to use above expansion in the

Bayesian setup to establish the corresponding result in the frequentist case. Under
certain frequentist conditions in an analogous fashion, the characteristic function
of the density of T , pT (t|θ ), differs from that of N (n−1/2R1 j, Ip + n−1(2R2i j −
Ri1R1 j)) by O(n−3/2).

In addition, an asymptotic expansion for the distribution of the p deviances
statistics up to O(n−2) is also derived. More specifically, the vectors of deviances
D = (D1, . . . ,Dp) and its Bartlett corrected version D̃ = (D̃1, . . . , D̃p) are given by

D j = (T j)2 = 2n
[
l(θ̂ j−1)− l(θ̂ j)

]

and

D̃ j = D j/(1+ 2n−1Q2 j j).

Then, under regularity conditions, with error O(n−1), the joint distribution of D is
that of p independent χ2

1 , while for D̃ the same claims holds with error O(n−2).
Note that the required assumptions, i.e., the regularity conditions in both

Bayesian and frequentist settings, might appear rather strong. However, by exam-
ining several cases, including independent non-identically distributed and Markov
dependent observations in Bickel et al. (1985) and exponential families in some
regression and GLIM models, they hold quite generally. Indeed, similar type of
regularity conditions were also assumed or served as basic assumptions in different
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problems for the validity of Edgeworth expansions. See, for example, Datta et al.
(2000), Mukerjee and Reid (2001), Fang and Mukerjee (2006) and Fraser and
Rousseau (2008).

Bickel and Ghosh (1990) addressed the rationale that why such accurate
expansions, which hold for the likelihood ratio, would fail for Wald’s or Rao’s
statistic. Moreover, a nice feature of their approach is that calculations are kept to
a minimum such that the phenomena are transparent. Bickel and Ghosh’s Bayesian
results may be viewed as technical lemmas for proving frequentist theorems. This
ingenious Bayesian argument has come a widely used statistical methodology
after the appearance of Bickel and Ghosh’s paper. In particular, Fan et al. (2000)
applied a similar argument to provide a geometric understanding of the classical
Wilks theorem as well as a useful extension of the likelihood ratio theory. For
further extensions and related work, we refer to Dudley and Haughton (2002) and
Schennach (2007).

It is noted that the Bartlett correction provides a measure of absolute error for the
approximation. Since the tail probability of chi-squared distribution is exponentially
decay, it would be interesting to see if a similar result holds for the relative error, or
if a Cramér type moderate deviation with error O(n−2) is valid.

3.1.4 Asymptotic Distribution of the Likelihood Ratio Statistic
in Mixture Model

Mixture models are useful in describing data from a population that is suspected
to be composed of a number of homogeneous subpopulations. The models have
been used in econometrics, biology, genetics, medicine, agriculture, zoology, and
population studies.

Bickel and Chernoff (1993) is the first paper that gives the asymptotic distribution
of the likelihood ratio statistic in normal mixture model. Let X1,X2, · · · ,Xn be i.i.d.
N(0,1) random variables and set M∗

n = supt S∗n(t), where

S∗n(t) = n−1/2
n

∑
i=1

y∗(Xi, t),

y∗(x, t) = (etx−t2/2 − 1− tx)/(et2 − 1− t2)1/2.

Hartigan (1984) proved that M∗2
n is stochastically equal to the logarithm of the

likelihood ratio test statistic based on a normal mixture model (1 − p)N(0,1) +
pN(θ ,1) and that M∗

n → ∞ in probability. Hartigan also conjectured that M∗
n =

O((log2 n)1/2), where log2 n = log(logn). In Bickel and Chernoff (1993), Bickel
and Chenoff confirm the Hartigan conjecture and more importantly, give an explicit
asymptotic distribution of M∗

n as n → ∞

P(Vn ≤ v)→ exp(−e−v), (3.1)
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where

Vn = M∗
n(log2 n)1/2 − log2 n+ log(

√
2π).

The main idea of the proof of (3.1) is to first deal with a simpler process

Sn(t) = n−1/2
n

∑
i=1

(
etX−i−t2/2 − 1

)
e−t2/2,

which can be approximated by a Gaussian process by using the strong approxi-
mation (see Komlos et al. 1975; Csörgő and Révész 1981), and then apply the
asymptotic distribution for maximal of stationary Gaussian process (Leadbetter
et al. 1983). The approach in Bickel and Chernoff (1993) is applicable to other
mixture and change point problems as the strong approximation works not only for
sums of independent random variables but also for a lot of dependent variables. The
paper has also inspired many follow-up studies on this topic, including Chen et al.
(2004) and Charnigo and Sun (2004) and many others.

It is noted that the limiting distribution in (3.1) is called the extreme distribution
of type I. It is commonly believed that the rate of convergence is extremely slow. Liu
et al. (2008) show that an “intermediate approximation” may give a much faster rate
of convergence. We also remark that a useful approach to deal with the asymptotic
distribution of extreme values is Stein-Chen method, see Arratia et al. (1989).

3.1.5 Hidden Markov Models

A hidden Markov model (HMM) is a discrete-time stochastic process {(Xk,Yk)}
such that (1) {Xk} is a finite-state Markov chain, and (2) given {Xk}, {Yk} is a
sequence of conditionally independent random variables. Hidden Markov models
have been successfully applied in various areas of dependent data analysis, including
speech recognition (Rabiner 1989), neurophysiology (Fredkin and Rice 1992),
biology (Leroux and Puterman 1992; Holzmann et al. 2006), econometrics (Rydén
et al. 1998) and medical statistics (Albert 1991) or biological sequence alignment
(Arribas-Gil et al. 2006).

Inference for HMMs was initiated by Baum and Petrie (1966) for the case
when {Yk} takes values in a finite set, where consistency and asymptotic normality
of the maximum-likelihood estimator (MLE) are proved. For general HMMs,
Lindgren (1978) constructed consistent and asymptotically normal estimators of
the parameters determining the conditional densities of Yn given Xn. Leroux (1992)
proved consistency of the MLE for general HMMs under mild conditions, and
Bickel and Ritov (1996) proved the local asymptotic normality, by using a quite
long tedious analysis with more than 20 lemmas. Bickel et al. (1998) is the first
article to establish rigorously the asymptotic normality of the MLE for general
HMMs, which, together with the consistency proved by Leroux (1992), provides
theoretical foundation for the validity and effectiveness of MLE. The impact of their
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paper is substantial. The results are obtained under mild regularity conditions of
Cramér type that could not be weaken markedly and serve as basic assumptions in
most subsequent statistical methodologies related to asymptotic studies for HMMs.
Their results also provide possibilities on inference for a great many HMM related
statistical problems due to the intrinsic nature of MLE.

Let {Xk,k ≥ 1} be a stationary Markov chain on {1, . . . ,K} with transition
probabilities αϑ (a,b), where the parameter ϑ ∈ Θ ⊆ R

q. Also let {Yk} be an
Y -valued sequence such that given {Xk}, {Yk} is a sequence of conditionally
independent random variables with Yn having conditional density gϑ (t|Xn). The
MLE, denoted by ϑ̂n, maximizes the joint density of (Y1, . . . ,Yn), say pϑ (y1, . . . ,yn),
over the parameter setΘ . The true parameter is denoted by ϑ0. Bickel et al. (1998)
showed that under Cramér-type conditions at ϑ0 and ergodicity of {αϑ0(a,b)},

n1/2(ϑ̂n −ϑ0
)→N (0,I −1

0 ), Pϑ0 -weakly as n → ∞,

where I0 denotes the Fisher information matrix for {Yk} and is nonsingular.
In order to establish above main result, they first proved a central limit theorem

for the score function (i.e. Ln(ϑ) = log pϑ (Y1, . . . ,Yn)) at ϑ0 with limit covariance
matrix I0, that is,

n−1/2DLn(ϑ0)→N (0,I −1
0 ), Pϑ0-weakly as n → ∞.

A second result was a uniform law of large numbers for the Hessian of the log-
likelihood, i.e.

n−1D2Ln(ϑ̂n)→−I0 in Pϑ0-probability

as n → ∞. Here D and D2 form the gradient and the Hessian, respectively.
The paper of Bickel et al. (1998) furnishes the mathematical tools to studying

HMMs and also opens a door for developing asymptotic theory of other statistical
objects based on HMMs. For instance, Bickel et al. (2002) gave explicit expressions
for derivatives and expectations of the log-likelihood function of HMMs and
obtain second order asymptotic normality. Douc and Matias (2001) considered the
consistency and asymptotic normality of the MLE for a possibly non-stationary
hidden Markov model. After a relatively mature development on the statistical
inference, Fuh (2004) studied the issue of hypothesis testing for HMM, in particular
the problem of sequential probability ratio tests for parametrized HMMs. More
recently, Dannemann and Holzmann (2009) discussed how the relevant asymptotic
distribution theory for the likelihood ratio test when the true parameter is on the
boundary can be extended from the i.i.d. situation to HMMs. Bickel et al. (1998)
has inspired many subsequent work, including Douc et al. (2004), Vandekerkhove
(2005), Fuh and Hu (2007), Anderson and Rydén (2009) and Sun and Cai (2009),
among others. One can refer to Moulines et al. (2005) for recent developments in
this area.
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Chapter 4
Function Estimation

Hans-Georg Müller

4.1 Introduction to Three Papers on Nonparametric
Curve Estimation

4.1.1 Introduction

The following is a brief review of three landmark papers of Peter Bickel on
theoretical and methodological aspects of nonparametric density and regression
estimation and the related topic of goodness-of-fit testing, including a class of
semiparametric goodness-of-fit tests. We consider the context of these papers, their
contribution and their impact. Bickel’s first work on density estimation was carried
out when this area was still in its infancy and proved to be highly influential for the
subsequent wide-spread development of density and curve estimation and goodness-
of-fit testing.

The first of Peter Bickel’s contributions to kernel density estimation was
published in 1973, nearly 40 years ago, when the field of nonparametric curve
estimation was still in its infancy and was poised for the subsequent rapid expansion,
which occurred later in the 1970s and 1980s. Bickel’s work opened fundamental
new perspectives, that were not fully developed until much later. Kernel density
estimation was formalized in Rosenblatt (1956) and then developed further in
Parzen (1962), where bias expansions and other basic techniques for the analysis
of these nonparametric estimators were showcased.

Expanding upon an older literature on spectral density estimation, this work set
the stage for substantial developments in nonparametric curve estimation that began
in the later 1960s. This earlier literature on curve estimation is nicely surveyed
in Rosenblatt (1971) and it defined the state of the field when Peter Bickel made
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the first highly influential contribution to nonparametric curve estimation in Bickel
and Rosenblatt (1973). This work not only connected for the first time kernel
density estimation with goodness-of-fit testing, but also did so in a mathematically
elegant way.

A deep study of the connection between smoothness and rates of convergence
and improved estimators of functionals of densities, corresponding to integrals of
squared derivatives, is the hallmark of Bickel and Ritov (1988). Estimation of
these density functionals has applications in determining the asymptotic variance
of nonparametric location statistics. Functional of this type also appear as a factor
in the asymptotic leading bias squared term for the mean integrated squared error.
Thus the estimation of these functional has applications for the important problem
of bandwidth choice for nonparametric kernel density estimates.

In the third article covered in this brief review, Bickel and Li (2007) introduce a
new perspective to the well-known curse of dimensionality that affects any form of
smoothing and nonparametric function estimation in high dimension: It is shown
that for local linear smoothers in a nonparametric regression setting where the
predictors at least locally lie on an unknown manifold, the curse of dimensionality
effectively is not driven by the ostensible dimensionality of the predictors but rather
by the dimensionality of the predictors, which might be much lower. In the case of
relatively low-dimensional underlying manifolds, the good news is that the curse
would then not be as severe as it initially appears, and one may obtain unexpectedly
fast rates of convergence.

The first two papers that are briefly discussed here create a bridge between den-
sity estimation and goodness-of-fit. The goodness-of-fit aspect is central to Bickel
and Rosenblatt (1973), while a fundamental transition phenomenon and improved
estimation of density functionals are key aspects of Bickel and Ritov (1988). Both
papers had a major impact in the field of nonparametric curve estimation. The third
paper (Bickel and Li 2007) creates a fresh outlook on nonparametric regression and
will continue to inspire new approaches. Some remarks on Bickel and Rosenblatt
(1973) can be found in Sect. 2, on Bickel and Ritov (1988) Sect. 3, and on Bickel
and Li (2007) in Sect. 4.

4.1.2 Density Estimation and Goodness-of-Fit

Nonparametric curve estimation originated in spectral density estimation, where
it had been long known that smoothing was mandatory to improve the properties
of such estimates (Daniell 1946; Einstein 1914). The smoothing field expanded to
become a major field in nonparametric statistics around the time the paper Bickel
and Rosenblatt (1973) appeared. At that time, kernel density estimation and other
basic nonparametric estimators of density functions such as orthogonal least squares
(Čencov 1962) were established. While many results were available in 1973 about
local properties of these estimates, there had been no in-depth investigation yet of
their global behavior.
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This is where Bickel’s influential contribution came in. Starting with the
Rosenblatt-Parzen kernel density estimator

fn(x) =
1

nb(n)

n

∑
i=1

w

(
x−Xi

b(n)

)
=

∫
1

b(n)
w

(
x− u
b(n)

)
dFn(u), (4.1)

where b(n) is a sequence of bandwidths that converges to 0, but not too fast, w a
kernel function and dFn stands for the empirical measure, Bickel and Rosenblatt
(1973) consider the functionals

D1 = sup
a1≤x≤a2

| fn(x)− f (x)|/( f (x))1/2, (4.2)

D2 =

∫ a2

a1

[ fn(x)− f (x)]2

f (x)
. (4.3)

The asymptotic behavior of these two functionals proves to be quite different.
Functional D1 corresponds to a maximal deviation on the interval, while functional
D2 is an integral and can be interpreted as a weighted integrated absolute deviation.
While D2, properly scaled, converges to a Gaussian limit, D1 converges to an
extreme value distribution. Harnessing the maximal deviation embodied in D1

was the first serious attempt to obtain global inference in nonparametric density
estimation. As Bickel and Rosenblatt (1973) state, the statistical interest in this
functional is twofold, as (i) a convenient way of getting a confidence band for f . (ii)
A test statistic for the hypothesis H0 : f = f0. They thereby introduce the goodness-
of-fit theme, that constitutes one major motivation for density estimation and has
spawned much research to this day. Motivation (i) leads to Theorem 3.1, and (ii) to
Theorem 3.2 in Bickel and Rosenblatt (1973).

In their proofs, Bickel and Rosenblatt (1973) use a strong embedding technique,
which was quite recent at the time. Theorem 3.1 is a remarkable achievement. If
one employs a rectangular kernel function w = 1[− 1

2 ,
1
2 ]

and a bandwidth sequence

b(n) = n−δ , 0 < δ < 1
2 , then the result in Theorem 3.1 is for centered processes

P

[
(2δ logn)1/2

(
[nb(n) f−1(t)]1/2 sup

a1,a2

[ fn(t)−E( fn(t))]− dn

)
< x

]
→ e−2e−x

,

where

dn = ρn − 1
2
ρ−1

n [log(π + δ )+ loglogn], ρn = (2δ logn)1/2.

The slow convergence to the limit that is indicated by the rate (logn)1/2 is typical
for maximal deviation results in curve estimation, of which Theorem 3.1 is the first.
A multivariate version of this result appeared in Rosenblatt (1976).
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A practical problem that has been discussed by many authors in the 1980s and
1990s has been how to handle the bias for the construction of confidence intervals
and density-estimation based inference in general. This is a difficult problem. It is
also related to the question how one should choose bandwidths when constructing
confidence intervals, even pointwise rather than global ones, in relation to choosing
the bandwidth for the original curve estimate for which the confidence region is
desired (Hall 1992; Müller et al. 1987). For instance, undersmoothing has been
advocated and also other specifically designed bias corrections. This is of special
relevance when the maximal deviation is to be constructed over intervals that include
endpoints of the density, where bias is a particularly notorious problem.

For inference and goodness-of-fit testing, Bickel and Rosenblatt (1973), based
on the deviation D2 as in (4.3), propose the test statistic

Tn =

∫
[ fn(x)−E( fn(x))]

2a(x)dx

with a weight function a for testing the hypothesis H0. Compared to classical
goodness-of-fit tests, this test is shown to be better than the χ2 test and incorporates
nuisance parameters as needed. This Bickel-Rosenblatt test has encountered much
interest; an example is an application for testing independence (Rosenblatt 1975).

Recent extensions and results under weaker conditions include extensions to the
case of an error density for stationary linear autoregressive processes that were
developed in Lee and Na (2002) and Bachmann and Dette (2005), and for GARCH
processes in Koul and Mimoto (2010). A related L1-distance based goodnes-of-
fit test was proposed in Cao and Lugosi (2005), while a very general class of
semiparametric tests targeting composite hypotheses was introduced in Bickel et al.
(2006).

4.1.3 Estimating Functionals of a Density

Kernel density estimators (4.1) require specification of a kernel function w and of a
bandwidth or smoothing parameter b = b(n). If one uses a kernel function that is a
symmetric density, this selection can be made based on the asymptotically leading
term of mean integrated squared error (MISE),

1
4

b(n)4
∫

w(u)u2 du
∫
[ f (2)(x)]2 dx + [nb(n)]−1

∫
w(u)2 du,

which leads to the asymptotically optimal bandwidth

b∗(n) = c

(
n
∫
[ f (2)(x)]2 dx

)−1/5

,
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where c is a known constant. In order to determine this optimal bandwidth, one
is therefore confronted with the problem of estimating integrated squared density
derivatives

∫
[ f (k)(x)]2 dx, (4.4)

where cases k > 2 are of interest when choosing bandwidths for density estimates
with higher order kernels. These have faster converging bias at the cost of increasing
variance but are well known to have rates of convergence that are faster in terms of
MISE, if the underlying density is sufficiently smooth and optimal bandwidths are
used. Moreover, the case k = 0 plays a role in the asymptotic variance of rank-based
estimators (Schweder 1975).

The relevance of the problem of estimating density functionals of type (4.4)
had been recognized by various authors, including Hall and Marron (1987), at the
time the work Bickel and Ritov (1988) was published. The results of Bickel and
Ritov however are not a direct continuation of the previous line of research; rather,
they constitute a surprising turn of affairs. First, the problem is positioned within
a more general semiparametric framework. Second, it is established that the

√
n of

convergence that one expects for functionals of type (4.4) holds if f (m) is Hölder
continuous of order α with m+α > 2k+ 1

4 , and, with an element of surprise, that it
does not hold in a fairly strong sense when this condition is violated.

The upper bound for this result is demonstrated by utilizing kernel density
estimates (4.1), employing a kernel function of order max(k,m− k) + 1 and then
using plug-in estimators. However, straightforward plug-in estimators suffer from
bias that is severe enough to prevent optimal results. Instead, Bickel and Ritov
employ a clever bias correction term (that appears in their equation (2.2) after
the plug-in estimator is introduced) and then proceed to split the sample into two
separate parts, combining two resulting estimators.

An amazing part of the paper is the proof that an unexpected and surprising
phase transition occurs at α = 1/4. This early example for such a phase transition
hinges on an ingenious construction of a sequence of measures and the Bayes risk
for estimating the functional. For less smooth densities, where the transition point
has not been reached, Bickel and Rosenblatt (1973) provide the optimal rate of
convergence, a rate slower than

√
n. The arguments are connected more generally

with semiparametric information bounds in the precursor paper Bickel (1982).
Bickel and Ritov (1988) is a landmark paper on estimating density functionals

that inspired various subsequent works by other authors. These include further
study of aspects that had been left open, such as adaptivity of the estimators
(Efromovich and Low 1996), extensions to more general density functionals with
broad applications (Birgé and Massart 1995) and the study of similar problems
for other curve functionals, for example integrated second derivative estimation in
nonparametric regression (Efromovich and Samarov 2000).
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4.1.4 Curse of Dimensionality for Nonparametric Regression
on Manifolds

It has been well known since Stone (1980) that all nonparametric curve estima-
tion methods, including nonparametric regression and density estimation, suffer
severely in terms of rates of convergence in high-dimensional or even moderately
dimensioned situations. This is born out in statistical practice, where unrestricted
nonparametric curve estimation is known to make little sense if moderately sized
data have predictors with dimensions say D ≥ 4. Assuming the function to be
estimated is in a Sobolev space of smoothness p, optimal rates of convergence of
Mean Squared Error and similar measures are n−2p/(2p+D) for samples of size n. To
circumvent the curse of dimensionality, alternatives to unrestricted nonparametric
regression have been developed, ranging from additive, to single index, to additive
partial linear models. Due to their inherent structural constraints, such approaches
come at the cost of reduced flexibility with the associated risk of increased bias.

The cause of the curse of dimensionality is the trade-off between bias and
variance in nonparametric curve estimation. Bias control demands to consider data
in a small neighbourhood around the target predictor levels x, where the curve
estimate is desired, while variance control requires large neighbourhoods containing
many predictor-response pairs. For increasing dimensions, the predictor locations
become increasingly sparse, with larger average distances between predictor loca-
tions, moving the variance-bias trade-off and resulting rate of convergence in an
unfavorable direction.

Using an example where p = 2 and the local linear regression method, Bickel
and Li (2007) analyze what happens if the predictors are in fact not only located on
a compact subset of RD, where D is potentially large, but in fact are, at least locally
around x, located on a lower-dimensional manifold with intrinsic dimension d < D.
They derive that in this situation, one obtains the better rate n−2p/(2p+d), where
the manifold is assumed to satisfy some local regularity conditions, but otherwise
is unknown. This can lead to dramatic gains in rates of convergence, especially if
d = 1,2 while D is large.

This nice result can be interpreted as a consequence of the denser packing of
the predictors on the lower-dimensional manifold with smaller average distances as
compared to the average distances one would expect for the ostensible dimension
D of the space, when the respective densities are not degenerate. A key feature is
that knowledge of the manifold is not needed to take advantage of its presence.
The data do not even have to be located precisely on the manifold, as long as their
deviation from the manifold becomes small asymptotically. Bickel and Li (2007)
also provide thoughtful approaches to bandwidth choices for this situation and for
determining the intrinsic dimension of the unknown manifold, and thus the rate of
effective convergence that is determined by d.

This approach likely will play an important role in the ongoing intensive quest for
flexible yet fast converging dimension reduction and regression models. Methods
for variable selection, dimension reduction and for handling collinearity among
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predictors, as well as extensions to “large p, small n” situations are in high demand.
The idea of exploiting underlying manifold structure in the predictor space for these
purposes is powerful, as has been recently demonstrated in Mukherjee et al. (2010)
and Aswani et al. (2011). These promising approaches define a new line of research
for high-dimensional regression modeling.

Acknowledgements Supported in part by NSF grant DMS-1104426.

References

Aswani A, Bickel P, Tomlin C (2011) Regression on manifolds: estimation of the exterior
derivative. Ann Stat 39:48–81

Bachmann, D, Dette H (2005) A note on the Bickel-Rosenblatt test in autoregressive time series.
Stat Probab Lett 74:221–234

Bickel P (1982) On adaptive estimation. Ann Stat 10:647–671
Bickel P, Li B (2007). Local polynomial regression on unknown manifolds. In: Complex datasets

and inverse problems: tomography, networks and beyond. IMS lecture notes-monograph series,
vol 54. Institute of Mathematical Statistics, Beachwood, pp 177–186

Bickel P, Ritov Y (1988) Estimating integrated squared densiuty derivatives: sharp best order of
convergence estimates. Sankhya Indian J Stat Ser A 50:381–393

Bickel P, Rosenblatt M (1973) On some global measures of the deviations of density function
estimates. Ann Stat 1:1071–1095

Bickel P, Ritov Y, Stoker T (2006) Tailor-made tests for goodness of fit to semiparametric
hypotheses. Ann Stat 34:721–741
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Chapter 5
Adaptive Estimation

Jon A. Wellner

5.1 Introduction to Four Papers on Semiparametric
and Nonparametric Estimation

5.1.1 Introduction: Setting the Stage

I discuss four papers of Peter Bickel and coauthors: Bickel (1982), Bickel and
Klaassen (1986), Bickel and Ritov (1987), and Ritov and Bickel (1990).

The four papers by Peter Bickel (and co-authors Chris Klaassen and Ya’acov
Ritov) to be discussed here all deal with various aspects of estimation in semi-
parametric and nonparametric models. All four papers were published in the period
1982–1990, a time when semiparametric theory was in rapid development. Thus
it might be useful to briefly review some of the key developments in statistical
theory prior to 1982, the year in which Peter Bickel’s Wald lectures (given in 1980)
appeared, in order to give some relevant background information. Because I was
personally involved in some of these developments in the early 1980s, my account
will necessarily be rather subjective and incomplete. I apologize in advance for
oversights and a possibly incomplete version of the history.

A key spur for the development of theory for semiparametric models was the
clear recognition by Neyman and Scott (1948) that maximum likelihood estimators
are often inconsistent in the presence of an unbounded (with sample size) number
of nuisance parameters. The simplest of these examples is as follows: suppose that

(Xi,Yi)∼ N2((μi,μi),σ2), i = 1, . . . ,n (5.1)
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are independent where μi ∈ R for i = 1, . . . ,n and σ2 > 0. Then the maximum
likelihood estimator of σ2 is

σ̂2
n = (4n)−1

n

∑
i=1

(Xi −Yi)
2 →p

σ2

2
.

This is an example of what has come to be known as a “functional model”. The
corresponding “structural model” (or mixture or latent variable model) is: (Xi,Yi)
are i.i.d. with density pσ ,G where

pσ ,G(x,y) =
∫

1
σ
φ
(

x− μ
σ

)
1
σ
φ
(

y− μ
σ

)
dG(μ)

where φ is the standard normal density, σ > 0, and G is a (mixing) distribution on R.
Equivalently,

(
X
Y

)
=

(
Z
Z

)
+σ

(
δ
ε

)

where Z ∼ G is independent of (δ ,ε) ∼ N2(0, I), and only (X ,Y ) is observed. Here
the nuisance parameters {μi, i = 1, . . . ,n} of the functional model (5.1) have been
replaced by the (nuisance) mixing distribution G. Kiefer and Wolfowitz (1956)
studied general semiparametric models of this “structural” or mixture type, {pθ ,G :
θ ∈Θ ⊂R

d , G a probability distribution}, and established consistency of maximum
likelihood estimators (θ̂n, Ĝn) of (θ ,G). (Further investigation of the properties of
maximum likelihood estimators in structural models (or semiparametric mixture
models) was pursued by Aad van der Vaart in the mid 1990s; I will return to this
later.)

Nearly at the same time as the work by Kiefer and Wolfowitz (1956) and Stein
(1956) studied efficient testing and estimation in problems with many nuisance
parameters (or even nuisance functions) of a somewhat different type. In particular
Stein considered the one-sample symmetric location model

P1 = {pθ , f (x) = f (x−θ ) : θ ∈ R, f symmetric about 0, I f < ∞}
and the two-sample (paired) shift model

P2 = {pμ,ν, f (x,y) = f (x− μ) f (y−ν) : μ ,ν ∈ R, I f < ∞};

here I f ≡ ∫
( f ′/ f )2 f dx. Stein (1956) studied testing and estimation in models

P1 and P2, and established necessary conditions for “adaptive estimation”: for
example, conditions under which the information bounds for estimation of θ in the
model P1 are the same as for the information bounds for estimation of θ in the
sub-model in which f is known. Roughly speaking, these are both cases in which
the efficient score and influence functions are orthogonal to the “nuisance tangent
space” in L0

2(P); i.e. orthogonal to all possible score functions for regular parametric
submodels for the infinite-dimensional part of the model. Models of this type, and in
particular the symmetric location model P1, remained as a focus of research during
the period 1956–1982.
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Over the period 1956–1982, considerable effort was devoted to finding sufficient
conditions for the construction of “adaptive estimators” and “adaptive tests” in
the context of the model P1: Hájek (1962) gave conditions for the construction
of adaptive tests in the model P1, while van Eeden (1970) gave a construction
for the sub-model of P1 consisting of log-concave densities (for which the
score function for location is monotone non-decreasing), Beran (1974) constructed
efficient estimators based on ranks, while Stone (1975) gave a construction of
efficient estimators based on an “estimated” one-step approach.

This, modulo a key paper by Efron (1977) on asymptotic efficiency of Cox’s
partial likelihood estimators, was roughly the state of affairs of semiparametric
theory in 1980–1982. Of course this is an oversimplification: much progress had
been underway from a more nonparametric perspective from several quarters: the
group around Lucien Le Cam in Berkeley, including P. W. Millar and R. Beran, the
Russian school including I. Ibragimov and R. Has’minskii in (now) St. Petersburg
and Y. A. Koshevnik and B. Levit in Moscow, and J. Pfanzagl in Cologne. Over the
decade from 1982 to 1993 these two directions would merge and be understood as
a whole piece of cloth, but that was not yet the case in 1980–1982, the period when
Peter Bickel gave his Wald Lectures (and prepared them for publication).

5.1.2 Paper 1

The first of these four papers, On Adaptive Estimation, represents the culmination
and summary of the first period of research on the phenomena of adaptive estimation
uncovered by Stein (1956): it gives a masterful exposition of the state of “adaptive
estimation” in the early 1980s, and new constructions of efficient estimators in
several models satisfying Stein’s necessary conditions for “adaptive estimation” in
the sense of Stein (1956). Bickel (1982) begins in Sect. 5.1.2 with an explanation
of “adaptive estimation”, with focus on the “i.i.d. case”, and introduces four key
examples to be treated: (1) the one-sample symmetric location modelP1 introduced
above; (2) linear regression with symmetric errors; (3) linear regression with a
constant and arbitrary errors, a model closely related to the two-sample shift model
P2 introduced above; and (4) location and variance-covariance parameters of
elliptic distributions. The paper then moves to an explanation of Stein’s necessary
condition and presentation of a (new) set of sufficient conditions for adaptive
estimation involving L2(Pθm,G)−consistent estimation of the efficient influence
function (“Condition H”). Bickel shows that the sufficient conditions are satisfied
in the Examples (1)–(4), and hence that adaptive estimators exist in each of these
problems. It was also conjectured that Condition H is necessary for adaptation.
Necessary and sufficient conditions only slightly stronger than “Condition H” were
established by Schick (1986) and Klaassen (1987); also see Bickel et al. (1993,
1998), Sect. 7.8.

According to the ISI Web of Science, as of 20 June 2011, this paper has
received 228 citations, and thus is the most cited of the four papers reviewed
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here. It inspired the search for necessary and sufficient conditions for adaptive
estimation (including the papers by Schick (1986) and Klaassen (1987) mentioned
above). It also implicitly raised the issue of understanding efficient estimation in
semiparametric models more generally. This was the focus of my joint work with
Janet Begun, W. J. (Jack) Hall, and Wei-Min Huang at the University of Rochester
during the period 1979–1983, resulting in Begun et al. (1983), which I will refer to
in the rest of this discussion as BHHW.

5.1.3 Paper 2

Neyman and Scott (1948) had focused on inconsistency of maximum likelihood
estimators in functional models, and Kiefer and Wolfowitz (1956) showed that
inconsistency of likelihood-based procedures was not a difficulty for the corre-
sponding structural (or mixture) models. Bickel and Klaassen (1986) initiated
the exploration of efficiency issues in connection with functional models, with a
primary focus on functional models connected with the symmetric location model
P1. In particular, this paper examined the functional model with Xi ∼ N(θ ,σ2

i )
independent with σ2

i ∈R
+, θ ∈R, for 1≤ i≤ n. The corresponding structural model

is the normal scale mixture model with shift parameter θ , and hence is a subset of
P1. In fact, it is a very rich subset with nuisance parameter tangent spaces (for
“typical” points in the model) agreeing with that of the model P1. The main result
of the paper is a theorem giving precise conditions under which a modified version
of the estimator of Stone (1975) is asymptotically efficient, again in a precise sense
defined in the paper.

This paper inspired further work on efficiency issues in functional models: see
e.g. Pfanzagl (1993) and Strasser (1996). According to the ISI Web of Science (20
June 2011), it has been cited 15 times. These types of models remain popular (in
September 2011, MathSciNet gives 414 hits for “functional model” and 480 hits for
“structural model”), but many problems remain.

Between 1982 and publication of this paper in 1986, the paper Begun et al. (1983)
appeared. In June 1983 Peter Bickel and myself had given a series of lectures at
Johns Hopkins University on semiparametric theory as it stood at that time, and had
started writing a book on the subject together with Klaassen and Ritov, Bickel et al.
(1993, 1998), which was optimistically announced in the references for this paper
as “BKRW (1987)”.

5.1.4 Paper 3

This paper, Bickel and Ritov (1987), treats efficiency of estimation in the structural
(or mixture model) version of the errors-in-variables model dating back at least to
Neyman and Scott (1948) and Reiersol (1950), and perhaps earlier. As noted by the
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authors: “Estimates of β in the general Gaussian error model, with Σ0 diagonal, have
been proposed by a variety of authors including Neyman and Scott (1948) and Rubin
(1956). In the arbitrary independent error model, Wolfowitz in a series of papers
ending in 1957, Kiefer, Wolfowitz, and Spiegelman (1979) by a variety of methods
gave estimates, which are consistent and in Spiegelman’s case n1/2−consistent and
asymptotically. Little seems to be known about the efficiency of these procedures
other than that in the restricted Gaussian model . . .”. This model is among the first
semiparametric mixture models involving a nontrivial projection in the calculation
of the efficient score function to receive a thorough analysis and constructions of
asymptotically efficient estimators. The authors gave an explicit construction of
estimators achieving the information bound in a very detailed analysis requiring
17 pages of careful argument.

The type of construction used by the authors involves kernel smoothing esti-
mators of the nonparametric part of the model, and hence brings in choices of
smoothing kernels and smoothing parameters (εn, cn and νn in the authors’ notation,
with nc2

nν6
n →∞). This same approach was used by van der Vaart (1988) to construct

efficient estimators in a whole class of structural models of this same type; van der
Vaart’s construction involved the choice of seven different smoothing parameters.
On the other hand, Pfanzagl (1990a) pages 47 and 48 (see also Pfanzagl 1990b)
pointed out that the resulting estimators are rather artificial in some sense, and
advocated in favor of maximum likelihood or other procedures requiring no (or at
least fewer) smoothing parameter choices. This approach was pursued in van der
Vaart (1996). Forty years after Kiefer and Wolfowitz established consistency of
maximum likelihood procedures, Van der Vaart proved, efficiency of maximum
likelihood in several particular structural models (under moment conditions which
are sufficient but very likely not necessary), including the errors-in-variables model
treated in the paper under review. The proofs in van der Vaart (1996) proceed via
careful use of empirical process theory. Furthermore, Murphy and van der Vaart
(1996) succeeded in extending the maximum likelihood estimators to confidence
sets via profile likelihood considerations.

This paper has 35 citations in the ISI Web of Science as of 20 June 2011,
but it inspired considerable further work on efficiency bounds and especially on
alternative methods for construction of efficient estimators.

5.1.5 Paper 4

In the period 1988–1991 several key questions on the “boundary” between non-
parametric and semiparametric estimation came under close examination by van
der Vaart, Bickel and Ritov, and Donoho and Liu. The lower bound theory under
development for publication in BKRW (1993) relied upon Hellinger differentiability
of real-valued functionals. (The lower bound theory based on pathwise Hellinger
differentiability was put in a very nice form by van der Vaart (1991).)
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But the possibility of a gap between the conditions for differentiability and
sufficient conditions to attain the bounds became a nagging question. In Ritov
and Bickel (1990), Peter and Ya’acov analyzed the situation in complete detail
for the real-valued functional ν(P) =

∫
p2(x)dx defined for the collection P of

distributions P on [0,1] with a density p with respect to Lebesgue measure. This
functional turns out to be Hellinger differentiable at all such densities p with an
information lower bound given by

I−1
ν = 4Var(p(X)) = 4

∫
(p(x)−ν(P))2 p(x)dx.

However, Theorem 1 of Ritov and Bickel (1990) shows that there exist distributions
P ∈P such every sequence of estimators of ν(p) converges to ν(p) more slowly
than n−α for every α > 0. It had earlier been shown by Ibragimov and Hasminskii
(1979) that the

√
n− convergence rate could be achieved for densities satisfying a

Hölder condition of order at least 1/2, and in a companion paper to the one under
discussion Bickel and Ritov (1988), Peter and Ya’acov showed that this continued
to hold for densities p satisfying a Hölder condition of at least 1/4.

These results have been extended to obtain rates of convergence in the “non-
regular” or nonparametric domain: see Birgé and Massart (1993, 1995) and Laurent
and Massart (2000). More recently the techniques of analysis have been extended
still further Tchetgen et al. (2008) and Robins et al. (2009). As of 20 June 2011, this
paper has been cited 45 times (ISI Web of Science).

5.1.6 Summary and Further Problems

The four papers reviewed here represent only a small fraction of Peter Bickel’s work
on the theory of semiparametric models, but they illustrate his superb judgement in
the choice of problems suited to push both the theory of semiparametric models
in general terms and having relevance for applications. They also showcase his
wonderful ability to see his way through the technicalities of problems to solutions
of theoretical importance and which point the way forward to further understanding.
Paper 1 was clearly important in development of general theory for the adaptive case
beyond the location and shift models P1 and P2. Paper 2 initiated efficiency theory
for estimation in functional models quite generally. Paper 3 played an important
role in illustrating how semiparametric theory could be applied to the structural
(or mixing) form of the classical errors in variables model, hence yielding one of
the first substantial models to be discussed in detail in the “non-adaptive case” in
which calculation of the efficient score and efficient influence function requires a
non-trivial projection.

As noted by Kosorok (2009) semiparametric models continue to be of great
interest because of their “. . . genuine scientific utility . . . combined with the breadth
and depth of the many theoretical questions that remain to be answered”.
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Fig. 5.1 Numbers of papers with “semiparametric” in title, keywords, or abstract, by year, 1984–
2010. Red = MathSciNet; Green = Current Index of Statistics (CIS); Blue = ISI Web of Science

Figure 5.1 gives an update of Fig. 2.1 of Wellner et al. (2006). The trend is clearly
increasing!
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Chapter 6
Boostrap Resampling

Peter Hall

6.1 Introduction to Four Bootstrap Papers

6.1.1 Introduction and Summary

In this short article we discuss four of Peter Bickel’s seminal papers on theory and
methodology for the bootstrap. We address the context of the work as well as its
contributions and influence. The work began at the dawn of research on Efron’s
bootstrap. In fact, Bickel and his co-authors were often the first to lay down the
directions that others would follow when attempting to discover the strengths, and
occasional weaknesses, of bootstrap methods.

Peter Bickel made major contributions to the development of bootstrap methods,
particularly by delineating the range of circumstances where the bootstrap is
effective. That topic is addressed in the first, second and fourth papers treated here.
Looking back over this work, much of it done 25–30 years ago, it quickly becomes
clear just how effectively these papers defined the most appropriate directions for
future research.

We shall discuss the papers in chronological order, and pay particular attention
to the contributions made by Bickel and Freedman (1981), since this was the first
article to demonstrate the effectiveness of bootstrap methods in many cases, as
well as to raise concerns about them in other situations. The results that we shall
introduce in Sect. 6.1.2, when considering the work of Bickel and Freedman (1981),
will be used frequently in later sections, especially Sect. 6.1.5.

The paper by Bickel and Freedman (1984), which we shall discuss in Sect. 6.1.3,
pointed to challenges experienced by the bootstrap in the context of stratified
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sampling. This is ironic, not least because some of the earliest developments of
what, today, are called bootstrap methods, involved sampling problems; see, for
example, Jones (1956), Shiue (1960), Gurney (1963) and McCarthy (1966, 1969).

Section 6.1.4 will treat the work of Bickel and Yahav (1988), which contributed
very significantly to methodology for efficient simulation, at a time when the interest
in this area was particularly high. Bickel et al. (1997), which we shall discuss
in Sect. 6.1.5, developed deep and widely applicable theory for the m-out-of-n
bootstrap. The authors showed that their approach overcame consistency problems
inherent in the conventional n-out-of-n bootstrap, and gave rates of convergence
applicable to a large class of problems.

6.1.2 Laying Foundations for the Bootstrap

Thirty years ago, when Efron’s (1979) bootstrap method was in its infancy, there was
considerable interest in the extent to which it successfully accomplished its goal of
estimating parameters, variances, distributions etc. As Bickel and Freedman (1981)
noted, Efron’s paper “gives a series of examples in which [the bootstrap] principle
works, and establishes the validity of the approach for a general class of statistics
when the sample space is finite.” Bickel and Freedman (1981) set out to assess the
bootstrap’s success in a much broader setting than this.

In the early 1980s, saying that the bootstrap “works” meant that bootstrap
methods gave consistent estimators, and in this sense were competitive with
more conventional methods, for example those based on asymptotic analysis.
Within about 5 years the goals had changed; it had been established that bootstrap
methods “work” in a very wide variety of circumstances, and, although there were
counterexamples to this general rule, by the mid 1980s the task had become largely
one of comparing the effectiveness of the bootstrap relative to more conventional
techniques. But in 1981 the extent to which the bootstrap was consistent was still
largely unknown. Bickel and Freedman (1981) contributed mightily to the process
of discovery there.

In particular, Bickel and Freedman (1981) were the first to establish rigorously
that bootstrap methodology is consistent in a wide range of settings. The impact of
their paper was dramatic. It provided motivation for exploring the bootstrap more
deeply in a great many settings, and furnished some of the mathematical tools for
that development. In the same year, in fact in the preceding paper in the Annals,
Singh (1981) explored second-order properties of the bootstrap. However, Bickel
and Freedman (1980) also took up that challenge at a particularly early stage.

As a prelude to describing the results of Bickel and Freedman (1981) we give
some notation. Let χn = X1, . . . ,Xn denote a sample of n independent observations
from a given univariate distribution with finite variance σ2, write X̄n = n−1 ∑i Xi for
the sample mean, and define

σ̂2
n =

1
n

n

∑
i=1

(Xi − X̄n)
2 ,



6 Boostrap Resampling 363

the bootstrap estimator of σ2. Let χ∗m = {X∗
1 , . . . ,X

∗
m} denote a resample of

size m drawn by sampling randomly, with replacement, from χ , and put X̄∗
m =

m−1 ∑i≤m X∗
i . Bickel and Freedman’s (1981) first result was that, in the case of

m-resamples, the m-resample bootstrap version of σ̂2
n , i.e.

σ̂∗2
m =

1
m

m

∑
i=1

(X∗
i − X̄∗

m)
2 ,

converges to σ2 as both m and n increase, in the sense that, for each ε > 0,

P(|σ̂∗
m −σ |> ε |χn)→ 0 (6.1)

with probability 1. Moreover, Bickel and Freedman (1981) showed that the condi-
tional distribution of m1/2 (X̄∗

m − X̄n), given χn, converges to the normal N(0,σ2)
distribution. Taking m = n, the latter property can be restated as follows:

the probabilities P{n1/2 (θ̂ ∗ − θ̂)≤ σ x |χn} and P{n1/2 (θ̂ −θ )≤ σ x}
both converge to Φ(x), the former converging with probability 1, (6.2)

where Φ denotes the standard normal distribution and, on the present occasion,
θ = E(Xi), θ̂ = X̄n and θ̂ ∗ = X̄∗

n .
The second result established by Bickel and Freedman (1981) was a generali-

sation of this property to multivariate settings. Highlights of subsequent parts of
the paper included its contributions to theory for the bootstrap in the context of
functionals of a distribution function. For example, Bickel and Freedman (1981)
considered von Mises functionals of a distribution function H, defined by

g(H) =

∫ ∫
ω(x,y)dH(x)dH(y) ,

where the function ω of two variables is symmetric, in the sense that ω(x,y) =
ω(y,x), and where

∫ ∫
ω(x,y)2 dH(x)dH(y)+

∫
ω(x,x)2 dH(x)< ∞ . (6.3)

If we take H to be either F̂n, the empirical distribution function of the sample χn, or
F̂∗

n , the version of F̂n computed from χ∗n , then

g(F̂n) =
1
n2

n

∑
i1=1

n

∑
i2=1

ω(Xi1 ,Xi2) , g(F̂∗
n ) =

1
n2

n

∑
i1=1

n

∑
i2=1

ω(X∗
i1 ,X

∗
i2) .
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Bickel and Freedman (1981) studied properties of this quantity. In particular they
proved that if (6.3) holds with H = F , denoting the common distribution function
of the Xis, then the distribution of n1/2{g(F̂∗

n )− g(F̂n)}, conditional on the data, is
asymptotically normal N(0,τ2) where

τ2 = 4

[∫ {∫
ω(x,y)dF(y)

}2

dF(x)− g(F)2
]
.

This limit distribution is the same as that of n1/2{g(F̂n)− g(F)}, and so the
above result of Bickel and Freedman (1981) confirms, in the context of von Mises
functions of the empirical distribution function, that (6.2) holds once again, provided
that σ there is replaced by τ and we redefine θ = g(F), θ̂ = g(F̂n) and θ̂ ∗n =
g(F̂∗

n ). That is, the bootstrap correctly captures, once more, first-order asymptotic
properties. Subsequent results of Bickel and Freedman (1981) also showed that the
same property holds for the empirical process, and in particular that the process
n1/2 (F̂∗

n − F̂n) has the same first-order asymptotic properties as n1/2 (F̂n−F). Bickel
and Freedman (1981) also derived the analogue of this result for the quantile
process.

Importantly, Bickel and Freedman (1981) addressed cases where the bootstrap
fails to enjoy properties such as (6.2). In their Sect. 6 they gave two counterex-
amples, one involving U-statistics and the other, spacings between extreme order
statistics, where the bootstrap fails to capture large-sample properties even to first
order. In both settings the problems are attributable, at least in part, to failure of
the bootstrap to correctly capture the relationships among very high-ranked, or very
low-ranked, order statistics, and in that context we shall relate below some of the
issues to which Bickel and Freedman’s (1981) work pointed. This account will be
given in detail because it is relevant to later sections.

Let X(1) < .. . < X(n) denote the ordered values in χn; we assume that the common
distribution of the Xis is continuous, so that the probability of a tie equals zero.
In this case the probability, conditional on χn, of the event εn that the largest Xi,
i.e. X(n), is in χ∗n , equals 1 minus the conditional probability that X(n) is not contained
in in χ∗n . That is, it equals 1− (1−n−1)n = 1− e−1+O(n−1). Therefore, as n → ∞,

P(X∗
(n) = X(n) |χn) = P(X(n) ∈ χ∗n |χn)→ 1− e−1 ,

where the convergence is deterministic. Similarly, for each integer k ≥ 1,

πnk ≡ P(X∗
(n) = X(n−k) |χn)→ πk ≡ e−k (1− e−1) (6.4)

as n → ∞; again the convergence is deterministic. Consequently the distribution
of X∗

(n), conditional on χn, is a mixture, and in particular is equal to X(n−k) with
probability πnk, for k ≥ 1. Therefore:
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given ε>0 and any metric, for example the Lévy metric, between distributions, we
may choose k = k(ε)≥ 1 so large that the distribution of X∗

(n), conditional on χn,

is no more than ε from the discrete mixture ∑0≤ j≤k X(n− j) I j,where (a) exactly one
of the random variables I1, I2, . . . is nonzero, (b) that variable takes the value 1, and
(c) P(Ik = 1) = πk for k ≥ 0. The upper bound of ε applies deterministically, in that
it is valid with probability 1, in an unconditional sense.

(6.5)

To indicate the implications of this property we note that, for many distributions
F , there exist constants an and bn, at least one of them diverging to infinity in
absolute value as n increases; and a nonstationary stochastic process ξ1,ξ2, . . .; such
that, for each k ≥ 0, the joint distribution of (X(n) − an)/bn, . . . ,(X(n−k) − an)/bn

converges to the distribution of (ξ1, . . . ,ξk). See, for example, Hall (1978). In view
of (6.5) the distribution function of (X∗

(n)− an)/bn, conditional on χn, converges to
that of

Z =
∞

∑
j=0

ξ j I j ,

where the sequence I1, I2, . . . is distributed as in (6.5) and is chosen to be independent
of ξ1,ξ2, . . .. In this notation,

P(X∗
(n)− an ≤ bn z |χn)→ P(Z ≤ z) (6.6)

in probability, whenever z is a continuity point of the distribution of Z. On the other
hand,

P(X(n)− an ≤ bn z)→ P(ξ1 ≤ z) . (6.7)

A comparison of (6.6) and (6.7) reveals that there is little opportunity for estimat-
ing consistently the distribution of X(n), using standard bootstrap methods. Bickel
and Freedman (1981) first drew our attention to this failing of the conventional
bootstrap. The issue was to be the object of considerable research for many years
after the appearance of Bickel and Freedman’s paper. Methodology for solving
the problem, and ensuring consistency, was eventually developed and scrutinised;
commonly the m-out-of-n bootstrap is used. See, for example, Swanepoel (1986),
Bickel et al. (1997) and Bickel and Sakov (2008).

6.1.3 The Bootstrap in Stratified Sampling

Bickel and Freedman (1984) explored properties of the bootstrap in the case of
stratified sampling from finite or infinite populations, and concluded that, with
appropriate scaling, the bootstrap can give consistent distribution estimators in cases
where asymptotic methods fail. However, without the proper scaling the bootstrap
can be inconsistent.
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The problem treated is that of estimating a linear combination,

γ =
p

∑
j=1

c j μ j , (6.8)

of the means μ1, . . . ,μp of p populations Π1, . . . ,Πp with corresponding distribu-
tions F1, . . . ,Fp. The c js are assumed known, and the μ js are estimated from data.
To construct estimators, a random sample χ( j) = {Xj1, . . . ,Xjn j} is drawn from the

jth population, and the sample mean X
¯
( j) = n−1

j ∑i Xji is computed in each case.
Bickel and Freedman (1984) considered two different choices of c j, valid in two
respective cases: (a) if it is known that each E(Xji) = μ , not depending on j, and
that the variance σ2

j of Π j is proportional to r j, say, then

c j =
n j/r j

∑k (nk/rk)
;

and (b) if the populations are finite, and in particularΠ j is of size Nj for j = 1, . . . , p,
then

c j =
Nj

∑k Nk
.

In either case the estimator γ̂ of γ reflects the definition of γ at (6.8):

γ̂ =
p

∑
j=1

c j X̄( j) ,

where X̄( j) is the mean value of the data in χ( j).
In both cases Bickel and Freedman (1984) showed that, particularly if the

sample sizes n j are small, the bootstrap estimator of the distribution of γ̂ − γ is
not necessarily consistent, in the sense that the distribution estimator minus the true
distribution may not converge to zero in probability. The asymptotic distribution
of γ̂ − γ is normal N(0,τ2

1 ), say; and the bootstrap estimator of that distribution,
conditional on the data, is asymptotically normal N(0,τ2

2 ); but the ratio τ2
1/τ2

2
does not always converge to 1. Bickel and Freedman (1984) demonstrated that this
difficulty can be overcome by estimating scale externally to the bootstrap process, in
effect incorporating a scale correction to set the bootstrap on the right path. Bickel
and Freedman also suggested other, more ad hoc remedies.

These contributions added immeasurably to our knowledge of the bootstrap.
Combined with the counterexamples given earlier by Bickel and Freedman (1981),
those authors showed that the bootstrap was not a device that could be used naively
in all cases, without careful consideration.

Some researchers, a little outside the statistics community, had felt that bootstrap
resampling methods freed statisticians from influence by a mathematical “priest-
hood” which was “frank about viewing resampling as a frontal attack upon their own
situations” (Simon 1992). To the contrary, the work of Bickel and Freedman (1981,
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1984) showed that a mathematical understanding of the problem was fundamental
to determining when, and how, to apply bootstrap methods successfully. They
demonstrated that mathematical theory was able to provide considerable assistance
to the introduction and development of practical bootstrap methods, and they
provided that aid to statisticians and non-statisticians alike.

6.1.4 Efficient Bootstrap Simulation

By the mid to late 1980s the strengths and weaknesses of bootstrap methods were
becoming more clear, especially the strengths. However, computers with power
comparable to that of today’s machines were not readily available at the time, and
so efficient methods were required for computation. The work of Bickel and Yahav
(1988) was an important contribution to that technology. It shared the limelight
with other approaches to achieving computational efficiency, including the balanced
bootstrap, which was a version for the bootstrap of Latin hypercube sampling and
was proposed by Davison et al. (1986) (see also Graham et al. 1990); importance
resampling, suggested by Davison (1988) and Johns (1988); the centring method,
proposed by Efron (1990); and antithetic resampling, introduced by Hall (1990).

The main impediment to quick calculation for the bootstrap was the resampling
step. In the 1980s, when for many of us computing power was in short supply,
bootstrap practitioners nevertheless advocated thousands, rather than hundreds, of
simulations for each sample. For example Efron (1988), writing for an audience
of psychologists, argued that “It is not excessive to use 2,000 replications, as in this
paper, though we might have stopped at 1,000.” In fact, if the number of simulations,
B, is chosen so that the nominal coverage level of a confidence interval can be
expressed as b/(B+1), where b is an integer, then the size of B has very little bearing
on the coverage accuracy of the interval; (see Hall 1986). However, choosing B too
small can result in overly variable Monte Carlo approximations to endpoints for
bootstrap confidence intervals, and to critical points for bootstrap hypothesis tests.

It is instructive here to relate a story that G.S. Watson told me in 1988, the year
in which Bickel and Yahav’s paper was published. Throughout his professional
life Watson was an enthusiast of the latest statistical methods, and the bootstrap
was no exception. Shortly after the appearance of Efron’s (1979) seminal paper he
began to experiment with the percentile bootstrap technique. Not for Watson a tame
problem involving a sample of scalar data; in what must have been one of the first
applications of the bootstrap to spatial or spherical data, he used that technique to
construct confidence regions for the mean direction derived from a sample of points
on a sphere. He wrote a program that constructed bootstrap confidence regions,
put the code onto a floppy disc, and passed the disc to a Princeton geophysicist
to experiment with. This, he told the geophysicist, was the modern alternative to
conventional confidence regions based on the von Mises-Fisher distribution. The
latter regions, of course, took their shape from the mathematical form of the fitted
distribution, with relatively little regard for any advice that the data might have to
offer. What did the geophysicist think of the new approach?
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In due course Watson received a reply, to the effect that the method was very
interesting and remarkably flexible, adapting itself well to quite different datasets.
But it had a basic flaw, the geophysicist said, that made it unattractive—every time
he applied the code on the floppy disc to the same set of spherical data, he got a
different answer! Watson, limited by the computational resources of the day, and
by the relative complexity of computations on a sphere, had produced software
that did only about B = 40 simulations each time the algorithm was implemented.
Particularly with the extra degree of freedom that two dimensions provided for
fluctuations, the results varied rather noticeably from one time-based simulation
seed to another.

This tale defines the context of Bickel and Yahav’s (1988) paper. Their goal was
to develop algorithms for reducing the variability, and enhancing the accuracy in that
sense, of Monte Carlo procedures for implementing the bootstrap. Their approach,
a modification for the bootstrap of the technique of Richardson extrapolation (a
classical tool in numerical analysis; see Jeffreys and Jeffreys 1988, p. 288), ran as
follows. Let F̂n (not to be confused with the same notation, but having a different
meaning, in Sect. 6.1.2) denote the data-based distribution function of interest, and
let Fn be the quantity of which F̂n is an approximation. For example, F̂n(x) might
equal P(θ̂ ∗n − θ̂n ≤ x |χn), where θ̂n denotes an estimator of a parameter θ , computed
from a random sample χn of size n, in which case θ̂ ∗n would be the bootstrap version
of θ̂n. (In this example, Fn(x) = P(θ̂n − θ ≤ x).) Instead of estimating F̂n directly,
compute estimators of the distribution functions F̂n1 , . . . , F̂nr , where the sample sizes
n1, . . . ,nr are all smaller than n, and in fact so small that n1+ . . .+nr is markedly less
than n. In some instances we may also know the limit F∞ of Fn, or at least its form,
F̃∞ say, constructed by replacing any unknown quantities (for example, a variance)
by estimators computed from χn. The quantities F̂n1 , . . . , F̂nr and F̃∞ are much less
expensive, i.e. much faster, to compute than F̂n, and so, by suitable “interpolation”
from these functions, we can hope to get a very good approximation to F̂n without
going to the expense of actually calculating the latter.

In general the cost of simulating, or equivalently the time taken to simulate, is
approximately proportional to Cn B, where Cn depends only on n and increases with
that quantity. Techniques for enhancing the performance of Monte Carlo methods
can either directly produce greater accuracy for a given value of B (the balanced
bootstrap has this property), or reduce the value of Cn and thereby allow a larger
value of B (hence, greater accuracy from the viewpoint of reduced variability)
for a given cost. Bickel and Yahav’s (1988) method is of the latter type. By
enabling a larger value of B it alleviates the problem encountered by Watson and
his geophysicist friend.

Bickel and Yahav’s (1988) technique is particularly widely applicable, and
has the potential to improve efficiency more substantially than, say, the balanced
bootstrap. Today, however, statisticians’ demands for efficient bootstrap methods
have been largely assuaged by the development of more powerful computers. In
the last 15 years there have been very few new simulation algorithms tailored to the
bootstrap. Philippe Toint’s aphorism that “I would rather have today’s algorithms on
yesterday’s computers, than vice versa,” loses impact when an algorithm is to some
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extent problem-specific, and its implementation requires skills that go beyond those
needed to purchase a new, faster computer.

6.1.5 The m-Out-of-n Bootstrap

The m-out-of-n bootstrap is another example revealing that, in science, less is often
more. Bickel and Freedman (1981, 1984) had shown that the standard bootstrap can
fail, even at the level of statistical consistency, in a variety of settings; and, as we
noted in Sect. 6.1.2, the m-out-of-n bootstrap, where m is an order of magnitude
smaller than n, is often a remedy. Swanepoel (1986) was the first to suggest this
method, which we shall define in the next paragraph. Bickel et al. (1997) made major
contributions to the study of its theoretical properties. We shall give an example that
provides further detail than we gave in Sect. 6.1.2 about the failure of the bootstrap
in certain cases. Then we shall summarise briefly the contributions made by Bickel
et al. (1997).

Consider drawing a resample χ∗m = {X∗
1 , . . . ,X

∗
m}, of size m, from the original

dataset χn = {X1, . . . ,Xn} of size n, and let θ̂ = θ̂n denote the bootstrap estimator of
θ computed from χn. In particular, if we can express θ as a functional, say θ (F), of
the distribution function F of the data Xi, then

θ̂n = θ (F̂n) , (6.9)

where F̂n is the empirical distribution function computed from χn. Likewise we can
define θ̂ ∗m = θ (F̂∗

m), where F̂∗
m is the empirical distribution function for χ∗m. As we

noted in Sect. 2, Bickel and Freedman (1981) showed that first-order properties of
θ̂ ∗m are often robust against the value of m. In particular it is often the case that, for
each ε > 0,

P(|θ̂ ∗m − θ̂n|> ε |χn)→ 0 , P(|θ̂n −θ |> ε)→ 0 (6.10)

as m and n diverge, where the first convergence is with probability 1. Compare (6.1).
For example, (6.10) holds if θ is a moment, such as a mean or a variance, and if the
sampling distribution has sufficiently many finite moments.

The definition (6.9) is conventionally used for a bootstrap estimator, and it does
not necessarily involve simulation. For example, if θ =

∫
xdF(x) is a population

mean then
θ̂n =

∫
xdF̂n(x) = X̄ , θ̂ ∗m =

∫
xdF̂∗

m(x) = X̄∗

are the sample mean and resample mean, respectively. However, in a variety of
other cases the most appropriate way of defining and computing θ̂n is in terms of
the resample χ∗n ; that is, χ∗m with m = n. Consider, for instance, the case where

θ = P
(
X(n)−X(n−1) > X(n−1)−X(n−2)

)
, (6.11)
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in which, as in Sect. 6.1.2, we take X(1) < .. . < X(n) to be an ordering of the data
in χn, assumed to have a common continuous distribution. For many sampling
distributions, in particular distributions that lie in the domain of attraction of an
extreme-value law, θ depends on n but converges to a strictly positive number as n
increases.

In this example the bootstrap estimator, θ̂n, of θ , based on a sample of size n, is
defined by

θ̂n = P
(

X∗
(n)−X∗

(n−1) > X∗
(n−1)−X∗

(n−2)

∣
∣∣ χn

)
, (6.12)

where X∗
(1) ≤ . . . ≤ X∗

(n) are the ordered data in χ∗n . Analogously, the bootstrap

version, θ̂ ∗n , of θ̂n is defined using the double bootstrap:

θ̂ ∗n = P
(

X∗∗
(n)−X∗∗

(n−1) > X∗∗
(n−1)−X∗∗

(n−2)

∣
∣
∣ χ∗n

)
,

where X∗∗
(1) ≤ . . . ≤ X∗∗

(n) are the ordered data in χ∗∗n = {X∗∗
1 , . . . ,X∗∗

n }, drawn by
sampling randomly, with replacement, from χ∗n . However, for the reasons given
in the paragraph containing (6.5), property (6.10) fails in this example, no matter
how we choose m. (The m in (6.2) is different from the m for the m-out-of-n
bootstrap.) The bootstrap fails to model accurately the relationships among large
order statistics, to such an extent that, in the example characterised by (6.11), θ̂n

does not converge to θ .
This problem evaporates if, in defining θ̂n at (6.12), we take the resample χ∗m to

have size m = m(n), where

m → ∞ and m/n → 0 (6.13)

as n → ∞. That is, instead of (6.12) we define

θ̂n = P
(

X∗
(m)−X∗

(m−1) > X∗
(m−1)−X∗

(m−2)

∣
∣
∣ χn

)
, (6.14)

where X∗
1 , . . . ,X

∗
m are drawn by sampling randomly, with replacement, from χn. In

this case, provided (6.5) holds, (6.2) is correct in a wide range of settings.
Deriving this result mathematically takes a little effort, but intuitively it is rather

clear: By taking m to be of strictly smaller order than n we ensure that the probability
that X∗

(m) equals any given data value in χn, for example X(n), converges to zero,
and so the difficulties raised in the paragraph containing (6.5) no longer apply. In
particular, instead of (6.4) we have:

P(X∗
(m−k) = X(m−�) |χn)→ 0

in probability, for each fixed, nonnegative integer k and �, as n →∞. Further thought
along the same lines indicates that the conditional distribution of X∗

(m) − X∗
(m−1)

should now, under mild assumptions, be a consistent estimator of the distribution
of X(n)−X(n−1).
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Bickel et al. (1997) gave a sequence of four counter-examples illustrating cases
where the bootstrap fails, and provided two examples of the success of the bootstrap.
The first two counter-examples relate to extrema, and so are closely allied to the
example considered above. The next two treat, respectively, hypothesis testing and
improperly centred U and V statistics, and estimating nonsmooth functionals of the
population distribution function. Bickel et al. (1997) then developed a deep, general
theory which allowed them to construct accurate and insightful approximations to
bootstrap statistics θ̂n, such as that at (6.9), not just in that case but also when θ̂n

is defined using the m-out-of-n bootstrap, as at (6.14). This enabled them to show
that, in a large class of problems for which (6.13) holds, the m-out-of-n bootstrap
overcomes consistency problems inherent in the conventional n-out-of-n approach,
and also to derive rates of convergence.

A reliable way of choosing m empirically is of course necessary if the m-out-
of-n bootstrap is to be widely adopted. In many cases this is still an open problem,
although important contributions were made recently by Bickel and Sakov (2008).
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Chapter 7
High-Dimensional Statistics

Jianqing Fan

7.1 Contributions of Peter Bickel to Statistical Learning

7.1.1 Introduction

Peter J. Bickel has made far-reaching and wide-ranging contributions to many
areas of statistics. This short article highlights his marvelous contributions to high-
dimensional statistical inference and machine learning, which range from novel
methodological developments, deep theoretical analysis, and their applications. The
focus is on the review and comments of his six recent papers in four areas, but only
three of them are reproduced here due to limit of the space.

Information and technology make data collection and dissemination much easier
over the last decade. High dimensionality and large data sets characterize many
contemporary statistical problems from genomics and neural science to finance
and economics, which give statistics and machine learning opportunities with
challenges. These relatively new areas of statistical science encompass the majority
of the frontiers and Peter Bickel is certainly a strong leader in those areas.

In response to the challenge of the complexity of data, new methods and greedy
algorithms started to flourish in the 1990s and their theoretical properties were
not well understood. Among those are the boosting algorithms and estimation
of insintric dimensionality. In 2005, Peter Bickel and his coauthors gave deep
theoretical foundation on boosting algorithms (Bickel et al. 2005; Freund and
Schapire 1997) and novel methods on the estimation of intrinsic dimensionality
(Levina and Bickel 2005). Another example is the use of LASSO (Tibshirani
1996) for high-dimensional variable selection. Realizing issues with biases of the
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Lasso estimate, Fan and Li (2001) advocated a family of folded concave penalties,
including SCAD, to ameliorate the problem and critically analyzed its theoretical
properties including LASSO. See also Fan and Lv (2011) for further analysis.
Candes and Tao (2007) introduced the Dantzig selector. Zou and Li (2008) related
the family folded-concave penalty with the adaptive LASSO (Zou 2006). It is Bickel
et al. (2009) who critically analyzed the risk properties of the Lasso and the Dantzig
selector, which significantly helps the statistics and machine learning communities
on better understanding various variable selection procedures.

Covariance matrix is prominently featured in many statistical problems from
network and graphic models to statistical inferences and portfolio management.
Yet, estimating large covariance matrices is intrinsically challenging. How to reduce
the number of parameters in a large covariance matrix is a challenging issue. In
Economics and Finance, motivated by the arbitrage pricing theory, Fan et al. (2008)
proposed to use the factor model to estimate the covariance matrix and its inverse.
Yet, the impact of dimensionality is still very large. Bickel and Levina (2008a,b)
and Rothman et al. (2008) proposed the use of sparsity, either on the covariance
matrix or precision matrix, to reduce the dimensionality. The penalized likelihood
method used in the paper fits in the generic framework of Fan and Li (2001) and
Fan and Lv (2011), and the theory developed therein is applicable. Yet, Rothman
et al. (2008) were able to utilize the specific structure of the covariance matrix and
Gaussian distribution to get much deeper results. Realizing intensive computation of
the penalized maximum likelihood method, Bickel and Levina (2008a,b) proposed
a simple threshold estimator that achieves the same theoretical properties.

The papers will be reviewed in chronological order. They have high impacts on
the subsequent development of statistics, applied mathematics, computer science,
information theory, and signal processing. Despite young ages of those papers, a
google-scholar search reveals that these six papers have around 900 citations. The
impacts to broader scientific communities are evidenced!

7.1.2 Intrinsic Dimensionality

A general consensus is that high-dimensional data admits lower dimensional
structure. The complexity of the data structure is characterized by the intrinsic
dimensionality of the data, which is critical for manifold learning such as local
linear embedding, Isomap, Lapacian and Hessian Eigenmaps (Brand 2002; Donoho
and Grimes 2003; Roweis and Saul 2000; Tenenbaum et al. 2000). These nonlinear
dimensionality reduction methods go behond traditional methods such as principal
component analysis (PCA), which deals only with linear projections, and multidi-
mensional scaling, which focuses on pairwise distances.

The techniques to estimate the intrinsic dimensionality before Levina and Bickel
(2005) are roughly two groups: eigenvalue methods or geometric methods. The
former are based on the number of eigenvalues greater than a given threshold.
They fail on nonlinear manifolds. While localization enhances the applicability of



7 High-Dimensional Statistics 449

PCA, local methods depend strongly on the choice of local regions and thresholds
(Verveer and Duin 1995). The latter exploit the geometry of the data. A popular
metric is the correlation dimension from fractal analysis. Yet, there are a couple of
parameters to be tuned.

The main contributions of Levina and Bickel (2005) are twofolds: It derives the
maximum likelihood estimate (MLE) from a statistical prospective and gives its
statistical properties. The MLE here is really the local MLE in the terminology
of Fan and Gijbels (1996). Before this seminal work, there are virtually no formal
statistical properties on the estimation of intrinsic dimensionality. The methods were
often too heuristical and framework was not statistical.

The idea in Levina and Bickel (2005) is creative and statistical. Let X1, · · · ,Xn

be a random sample in Rp. They are embedded in an m-dimensional space via Xi =
g(Yi), with unknown dimensionality m and unknown functions g, in which Yi has
a smooth density f in Rm. Because of nonlinear embedding g, we can only use the
local data to determine m. Let R be small, which asymptotically goes to zero. Given
a point x in Rp, the local information is summarized by the number of observations
falling in the ball {z : ‖z− x‖ ≤ t}, which is denoted by Nx(t), for 0 ≤ t ≤ R. In
other words, the local information around x with radius R is characterized by the
process

{Nx(t) : 0 ≤ t ≤ R}. (7.1)

Clearly, Nx(t) is a binomial distribution with number of trial n and probability of
success

P(‖Xi − x‖ ≤ t)≈ f (x)V (m)tm, as t → 0, (7.2)

where V (m) = πm/2[Γ (m/2+ 1)]−1 is the volume of the unit sphere in Rm. Recall
that the approximation of the Binomial distribution by the Poison distribution. The
process {Nx(t) : 0 ≤ t ≤ R} is approximately a Poisson process with the rate λ (t),
which is the derivative of (7.2), or more precisely

λ (t) = n f (x)V (m)mtm−1 (7.3)

The parameters θ = log f (x) and m can be estimated by the maximum likelihood
using the local observation (7.1).

Assuming {Nx(t),0 ≤ t ≤ R} is the inhomogeneous Poisson process with rate
λ (t). Then, the log-likelihood of observing the process is given by

L(m,θ ) =
∫ R

0
logλ (t)dNx(t)−

∫ R

0
λ (t)dt. (7.4)

This can be understood by breaking the data {Nx(t),0 ≤ t ≤ R} as the data

{N(Δ),N(2Δ)−N(Δ), · · · ,N(TΔ)−N(TΔ −Δ)}, Δ = R/T (7.5)

with a large T and noticing that the data above follow independent poisson
distributions with mean λ ( jΔ)Δ for the j-th increment (The dependence on x
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is suppressed for brevity of notation). Therefore, using the Poisson formula, the
likelihood of data (7.5) is

T

∏
j=1

exp(−λ ( jΔ)Δ)[λ ( jΔ)Δ ]dN( jΔ )/(dN( jΔ)!)

where dN( jΔ) = N( jΔ)−N( jΔ − Δ). Taking the logarithm and ignoring terms
independent of the parameters, the log-likelihood of the observing data in (7.5) is

T

∑
j=1

[logλ ( jΔ)]dN( jΔ)−
T

∑
j=1

λ ( jΔ)Δ .

Taking the limit as Δ → 0, we obtain (7.4).
By taking the derivatives with parameters m and θ in (7.4) and setting them to

zero, it is easy to obtain that

m̂R(x) =
{

log(R)−Nx(R)
−1

∫ R

0
(log t)dNx(t)

}−1

. (7.6)

Let Tk(x) be the distance of the k-th nearest point to x. Then,

m̂R(x) =

{

Nx(R)
−1

Nx(R)

∑
j=1

log[R/Tj(x)]

}−1

. (7.7)

Now, instead of fixing distance R, but fixing the number of points k, namely, taking
R = Tk(x) for a given k, then, Nx(R) = k by definition and the estimator becomes

m̂k(x) =

{

k−1
k

∑
j=1

log[Tk(x)/Tj(x)]

}−1

. (7.8)

Levina and Bickel (2005) realized that the parameter m is global whereas the
estimate m̂k(x) is local, depending on the location x. They averaged out the n
estimates at the observed data points and obtained

m̂k = n−1
n

∑
i=1

m̂k(Xi). (7.9)

To reduce the sensitivity on the choice of the parameter k, they proposed to use

m̂ = (k2 − k1 + 1)−1
k2

∑
k=k1

m̂k (7.10)

for the given choices of k1 and k2.
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The above discussion reveals that the parameter m was estimated in a semi-
parametric model in which f (x) is fully nonparametric. Levina and Bickel (2005)
estimates the global parameter m by averaging. Averaging reduces variances, but
not biases. Therefore, it requires k to be small. However, when p is large, even with
a small k, Tk(x) can be large and so can be the bias. For semiparametric model,
the work of Severini and Wong (1992) shows that the profile likelihood can have
a better bias property. Inspired by that, an alternative version of the estimator is to
use the global likelihood, which adds up the local likelihood (7.4) at each data point
Xi, i.e.

L(θx1 , · · · ,θxn ,m) =
n

∑
i=1

L(θxi ,m). (7.11)

Following the same derivations as in Levina and Bickel (2005), we obtain the
maximum profile likelihood estimator

m̂∗
R =

⎧
⎨

⎩
[

n

∑
i=1

Nxi(R)]
−1

n

∑
i=1

Nxi (R)

∑
j=1

log[R/Tj(xi)]

⎫
⎬

⎭

−1

. (7.12)

In its nearest neighbourhood form,

m̂∗
k =

{

[n(k− 2)]−1
n

∑
i=1

k

∑
j=1

log[Tk(xi)/Tj(xi)]

}−1

. (7.13)

The reason for divisor (k− 2) instead of k is given in the next paragraph. It will be
interesting to compare the performance of the method (7.13) with (7.9).

Levina and Bickel (2005) derived the asymptotic bias and variance of estimator
(7.8). They advocated the normalization of (7.8) by (k− 2) rather than k. With this
normalization, they derived that to the first order,

E(m̂k(x)) = m, var(m̂k(x)) = m2/(k− 3). (7.14)

The paper has huge impact on manifold learning with a wide range of ap-
plications from patten analysis and object classification to machine learning and
statistics. It has been cited nearly 200 times within 6 years of publication.

7.1.3 Generalized Boosting

Boosting is an iterative algorithm that uses a sequence of weak classifiers, which
perform slightly better than a random guess, to build a stronger learner (Freund
1990; Schapire 1990), which can achieve the Bayes error rate. One of successful
boosting algorithms is the AdaBoost by Freund and Schapire (1997). The algorithm
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is powerful but appears heuristic at that time. It is Breiman (1998) who noted
that the AdaBoost classifier can be viewed as a greedy algorithm for an empirical
loss minimization. This makes a strong connection of the algorithm with statistical
foundation that enables us to understand better theoretical properties.

Let {(Xi,Yi)}p
i=1 be an i.i.d. sample where Yi ∈ {−1,1}. Let H be a set of weak

learners. Breiman (1998) observed that the AdaBoost classifier is sgn(F(X)), where
F is found by a greedy algorithm minimizing

n−1
n

∑
i=1

exp(−YiF(Xi)), (7.15)

over the class of function

F∞ =
∞⋃

k=1

{
k

∑
j=1

λ jh j : λ j ∈ R,h j ∈H }.

The work of Bickel et al. (2005) generalizes the AdaBoost in two important
directions: more general class of convex loss functions and more flexible class
of algorithms. This enables them to study the convergence of the algorithms and
classifiers in a unified framework. Let us state in the population version of their
algorithms to simplify the notation. The goal is to find F ∈ F∞ to minimize
w(F) = EW (YF) for a convex loss W (·). They proposed two relaxed Guass-
Southwell algorithms, which are basically coordinatewise optimization algorithms
in high-dimensional space. Given the current value Fm and coordinate h, one intends
to minimize W (Fm + λh) over λ ∈ R. The first algorithm is as follows: For given
α ∈ (0,1] and F0, find inductively F1,F2, . . . , by Fm+1 =Fm+λmhm, λm ∈R, hm ∈H
such that

W (Fm+1)≤ α min
λ∈R,h∈H

W (Fm +λh)+ (1−α)W(Fm). (7.16)

In particular, when λm and hm minimize W (Fm + λh), then (7.16) is obviously
satisfied with equality. The generalization covers the possibility that the minimum
of W (Fm +λh) is not assumed or multiply assumed. The algorithm is very general
in the sense that it does not even specify a way to find λm and hm, but a necessary
condition of (7.16) is that

W (Fm+1)≤W (Fm).

In other words, the target value decreases each iteration. The second algorithm is
the same as the first one but requires

W (Fm+1)+ γλ 2
m ≤ α min

λ∈R,h∈H
[W (Fm +λh)+ γλ 2]+ (1−α)W(Fm). (7.17)

Under such a broad class of algorithms, Bickel et al. (2005) demonstrated
unambiguously and convincingly that the generalized boosting algorithm converges
to the Bayes classifier. They further demonstrated that the generalized boosting
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algorithms are consistent when the sample versions are used. In addition, they
were able to derive the algorithmic speed of convergence, minimax rates of the
convergence of the generalized boosting estimator to the Bayes classifier, and the
minimax rates of the Bayes classification regret. The results are deep and useful.
The work puts boosting algorithms in formal statistical framework and provides
insightful understanding on the fundamental properties of the boosting algorithms.

Regularization of Covariation Matrices

It is well known that the sample covariance matrix has unexpected features when
p and n are of the same order (Johnstone 2001; Marčcenko and Pastur 1967).
Regularization is needed in order to obtain the desire statistical properties. Peter
Bickel pioneered the work on the estimation of large covariance and led the
development of the field through three seminal papers in 2008. Before Bickel’s
work, the theoretical work is very limited, often confining the dimensionality to
be finite [with exception of Fan et al. (2008)], which does not reflect the nature of
high-dimensionality. It is Bickel’s work that allows the dimensionality grows much
faster than sample size.

To regularize the covariance matrices, one needs to impose some sparsity
conditions. The methods to explore sparsity are thresholding and the penalized
quasi-likelihood approach. The former is frequently applied to the situations in
which the sparsity is imposed on the elements which are directly estimable. For
example, when the p× p covariance matrix Σ is sparse, a natural estimator is the
following thresholding estimator

Σ̂t = (σ̂i, j I(|σ̂i, j| ≥ t)) (7.18)

for a thresholding parameter t. Bickel and Levina (2008b) considered a class of
matrix

{
Σ : σii ≤ M,

p

∑
j=1

|σi j|q ≤ cp,∀i
}
, (7.19)

for 0≤ q< 1. In particular, when q= 0, cp is the maximum number of nonvanishing
elements in each row. They showed that when the data follow the Gaussian
distribution and tn = M′(n−1(log p))1/2 for a sufficiently large constant M′,

‖Σ̂tn −Σ‖= Op

(
cp

(
n−1 log p

)(1−q)/2
)
, (7.20)

and

p−1‖Σ̂tn −Σ‖2
F = Op

(
cp

(
n−1 log p

)1−q/2
)
. (7.21)

uniformly for the class of matrices in (4.3), where ‖A‖2 = λmax(AT A) is the
operator norm of a matrix A and ‖A‖2

F = ∑i, j a2
i j is the Frobenius norm. Similar
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results were derived when the distributions are sub-Gaussian or have finite moments
or when tn is chosen by cross-validation which is very technically challenging and
novel. This along with Bickel and Levina (2008b) and El Karoui (2008) are the first
results of this kind, allowing p � n, as long as cp does not grow too fast.

When the covariance matrix admits a banded structure whose off-diagonal
elements decay quickly:

∑
j:|i− j|>k

|σi j| ≤Ck−α , ∀i and k, (7.22)

as arising frequently in time-series application including the covariance matrix of
a weak-dependent stationary time series, Bickel and Levina (2008a) proposed a
banding or more generally tapering to take advantage of prior sparsity structure. Let

Σ̂B,k = (σ̂i jI(|i− j| ≤ k)

be the banded sample covariance matrix. They showed that by taking kn �
(n−1 log p)−1/(2(α+1)),

‖Σ̂B,kn − Σ̂‖= Op

[
(n−1 log p)α/(2(α+1))

]
= ‖Σ̂−1

B,kn
− Σ̂−1‖ (7.23)

uniformly in the class of matrices (7.22) with additional restrictions that

c ≤ λmin(Σ)≤ λmax(Σ)≤C.

This again shows that large sparse covariance matrix can well be estimated even
when p ≥ n. The results are related to the estimation of spectral density (Fan and
Gijbels 1996), but also allow non-stationary covariance matrices.

When the precision matrix Ω = Σ−1 is sparse, there is no easy way to apply
thresholding rule. Hence, Rothman et al. (2008) appealed to the penalized likelihood
method. Let �n(θ ) be the quasi-likelihood function based on a sample of size n and
it is known that θ is sparse. Then, the penalized likelihood admits the form

�n(θ )+∑
j

pλ (|θ j |). (7.24)

Fan and Li (2001) advocated the use of folded-concave penalty pλ to have a better
bias property and put down a general theory. In particular, when the data X1, · · · ,Xn

are i.i.d. from N(0,Σ), the penalized likelihood reduces to

tr(ΩΣ̂ )− log |Ω |+∑
i, j

pλ (|ωi j|), (7.25)

where the matrix Ω is assumed to be sparse and is of primary interest. Rothman
et al. (2008) utilized the fact that the diagonal elements are non-vanishing and
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should not be penalized. They proposed the penalized likelihood estimator Ω̂λ ,
which maximizes

tr(ΩΣ̂ )− log |Ω |+λ ∑
i�= j

|ωi j|. (7.26)

They showed that when λ � [(log p)/n]1/2,

‖Ω̂λ −Ω‖2
F = OP

(√
(p+ s)(log p)

n

)

, (7.27)

where s is the number of nonvanishing off diagonal elements. Note that there are
p+ 2s nonvanishing elements in Ω and (7.27) reveals that each nonsparse element
is estimated, on average, with rate (n−1(log p))−1/2.

Note that thresholding and banding are very simple and easy to use. However,
they are usually not semi-definite. Penalized likelihood can be used to enforce the
positive definiteness in the optimization. It can also be applied to estimate sparse
covariance matrices and sparse Chelosky decomposition; see Lam and Fan (2009).

The above three papers give us a comprehensive overview on the estimability
of large covariance matrices. They have inspired many follow up work, including
Levina et al. (2008), Lam and Fan (2009), Rothman et al. (2009), Cai et al. (2010),
Cai and Liu (2011), and Cai and Zhou (2012), among others. In particular, the
work inspires Fan et al. (2011) to propose an approximate factor model, allowing
the idiosyncratic errors among financial assets to have a sparse covariance matrix,
that widens significantly the scope and applicability of the strict factor model in
finance. It also helps solving the aforementioned semi-definiteness issue, due to
thresholding.

7.1.4 Variable Selections

Peter Bickel contributions to high-dimensional regression are highlighted by his
paper with Ritov and Tsybakov (Bickel et al. 2009) on the analysis of the risk
properties of the LASSO and Dantzig selector. This is done in least-squares setting
on the nonparametric regression via basis approximations (approximate linear
model) or linear model itself. This is based the following important observations
in Bickel et al. (2009).

Recall that the LASSO estimator β̂L minimizes

(2n)−1‖Y−Xβ‖2+λ
p

∑
j=1

|β j|. (7.28)
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A necessary condition is that 0 belongs to the subgradient of the function (7.28),
which is the same as

‖n−1X(Y−Xβ̂L)‖∞ ≤ λ . (7.29)

The Danzig selector (Candes and Tao 2007) is defined by

β̂D = argmin
{
‖β‖1 : ‖n−1X(Y−Xβ )‖∞ ≤ λ

}
. (7.30)

Thus, β̂D satisfies (7.29), having a smaller L1-norm than LASSO, by definition.
They also show that for both the Lasso and the Danzig estimator, their estimation
error δ satisfies

‖δJc‖1 ≤ c‖δJ‖1

with probability close to 1, where J is the subset of non-vanishing true regression
coefficients. This leads them to define restricted eigenvalue assumptions.

For linear model, Bickel et al. (2009) established the convergence rates of

‖β̂D −β‖p for p ∈ [1,2] and ‖X(β̂D −β )‖2. (7.31)

The former is on the convergence rate of the estimator and the latter is on the
prediction risk of the estimator. They also established the rate of convergence for
the Lasso estimator. Both estimators admit the same rate of convergence under the
same conditions. Similar results hold when the method is applied to nonparametric
regression. This leads Bickel et al. (2009) to conclude that both the Danzig selector
and Lasso estimator are equivalent.

The contributions of the paper are multi-fold. First of all, it provides a good
understanding on the performance of the newly invented Danzig estimator and its
relation to the Lasso estimator. Secondly, it introduced new technical tools for the
analysis of penalized least-squares estimator. Thirdly, it derives various new results,
including oracle inequalities, for the Lasso and the Danzig selector in both linear
model and nonparametric regression model. The work has a strong impact on the
recent development of the high-dimensional statistical learning. Within 3 years of
its publications, it has been cited around 300 times!
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Chapter 8
Miscellaneous

Ya’acov Ritov

8.1 Introduction to Four Papers by Peter Bickel

8.1.1 General Introduction

We introduce here four paper coauthored by P. J. Bickel. These papers have very
little in common. Two of them can be considered mainly as papers dealing with
concepts, while the two others are mainly tedious hard technical work that aims in
developing complicated probabilistic results, which can be applied to the asymptotic
theory of estimators.

8.1.2 Minimax Estimation of the Mean of a Normal
Distribution When the Parameter Space Is Restricted

The paper “Minimax Estimation of the Mean of a Normal Distribution when the
Parameter Space is Restricted”, Bickel (1981), discusses mainly a very simple
problem, which is almost a textbook problem. Suppose that X ∼ N(θ ,1), θ should
be estimated with a quadratic loss function. So far, this is the most trivial example of
an estimation problem, where X is the minimax decision. However, when it is known
a priori that |θ | ≤m, for some m∈ (0,∞), the problem is not anymore trivial. In fact,
prior to 1981, the answer was known only m small enough (slightly larger than 1).
The minimax decision then is the Bayes decision with respect to prior which puts
all its mass on the two end points of the interval.

Y. Ritov (�)
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J. Fan et al. (eds.), Selected Works of Peter J. Bickel, Selected Works in Probability
and Statistics 13, DOI 10.1007/978-1-4614-5544-8 8,
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Now, the following claims are relatively simple.

1. We consider the “game” between the statistician and Nature, in which Nature
selects θ ∈ [−m,m] according to some π . The statistician observes X ∼ N(θ ,1),
selects a real d(X), and then he pays Nature

(
d(X)−θ)2

. This game has a saddle
points (π ,d). Clearly, given π , d should be δπ , the Bayes with respect to π . The
existence of π follows from a general argument involving continuity, convexity,
and compactness.

2. Since π is a maxmin strategy for Nature. Its support is included in A(d) = {s :
|s| ≤ m,Rs(δπ) = maxt Rt(δπ )}, where Rs(d) is the risk of the decision d at s.

3. A(d) is a finite set. This follows since for any d, R·(d) is analytic in s, and hence
there cannot be a dense set in which R·(δπ ) achieves its maximum. On the other
hand the support of π cannot be too sparse, because then it would be likely that
θ is the support point closest to X .

Peter makes these observations precise, and then characterizes the asymptotic
behavior of π . He shows that if π = πm, then mπm(ms) converges weakly to the
distribution on (−1,1) with density g(s) = cos2(πs/2). Moreover the asymptotic
risk is 1−π2/m2 + o(m−2).

This result is generalized to the multivariate case, where the prior is restricted to a
ball. It would be generalized then further by Melkman and Ritov (1987) to a general
real distribution, but notably by Donoho et al. (1990) for a very general asymptotic
result.

8.1.3 What Is a Linear Process?

The paper “What is a linear process?” (Bickel and Bühlmann 1996) shows that
modeling an empirical phenomena may be tricky. Testing for abstract notion like
stationarity is, essentially, impossible. Looking on a long time series and say,
‘Clearly, it is not stationary’, is not necessarily possible.

A linear process, or a moving average, is defined to be the stationary process

Xt =
∞

∑
j=0

ψ jεt− j , t = . . . ,−1,0,1, . . . ,

where εi are i.i.d., with mean 0 and finite variance, and ψ1,ψ2, . . . are given
constants with a finite sum of squares. Since the authors consider an infinite moving
average, their model includes the causal autoregressive process. The authors define
some natural topologies over these process, and consider the closure of this set. The
closure includes all objects that naturally should be there like MA process and all
mean 0 Gaussian process. But it includes a surprising type of processes. To describe
this set, we consider independent processes: ξ...,i, j, where, for each i, ξ·,i,1,ξ·,i,2, . . .
are i.i.d. copies of a stationary process, and then consider the set of all processes that
can be described as X· = ∑∞i=1∑

Ni
j=1 ξ·,i, j, where N1,N2, . . . are independent (non-

identical) Poisson random variables.
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This latter type of limit is what makes the paper exciting. In Fig. 1, ten realization
of a MA process with a finite window size. In the different graphs a realization of
sample size which is ten times the window size is given. The realization of the same
process look impressively different. Recall that different realizations behave like far
away pieces of the same process.

How all this related to testing? Fact 1.3 of the paper is very clear: “In testing the
hypothesis HO about MA representation against any fixed one-point alternative HA

about a nonlinear, stationary process, there is no test with asymptotic significance
level α < 0.36 having limiting power 1 as the sample size tends to infinity.”

8.1.4 Sums of Functions of Nearest Neighbor Distances,
Moment Bounds, Limit Theorems and a Goodness
of Fit Test

It is simple to see that if X1, . . . ,Xn are i.i.d. from a the uniform U(0,1) distribution,
the spacing between the observations behave like a sample from exponential
distribution. More generally, if they are a sample from a distribution with a
smooth density f (·), and Ri = min |Xj −Xi|, j �= i, then Ri is a the minimum of
two independent exponential random variables with mean 1/ f (Xi), that is 2Ri is
asymptotically like an exponential random variable with mean 1/ f (Xi).

This was relatively simple, because, we could use the probability transformation
to assume WLOG that the random variables are uniform. And then it is well known
that the time of the events of a Poisson process divided by the time of the n-th event
are distributed like the order statistics of a sample from the U(0,1) distribution. But,
how much can this results extended to the general case of m > 1 dimension?

The somewhat surprising result, given by Bickel and Breiman (1983), is that
this is true. If, similarly to the above, Ri = min‖Xj −Xi‖, j �= i, and V (r) is the
volume of the m-dimensional ball of radius r, then Wi = exp

(−n f (Xi)V (Ri)
)
,

i = 1, . . . ,n behave like a sample from the uniform distribution. In fact, the paper
shows that if Ĥ is the empirical cumulative distribution function of W1, . . . ,Wn,
then Zn(t) =

√
n
(
Ĥ(t)−EĤ(t)

)
converges weakly to a zero mean Gaussian process

whose covariance does not depend on the f . It makes sense that Ĥ is asymptotically
normal, since although the Wi’s are not independent, there is enough mixing and far
away points are almost independent. The actual proof is hard and a long complicated
paper was needed.

8.1.5 Convergence Criteria for Multiparameter Stochastic
Processes and Some Applications

In the fourth paper of this section, Bickel and Wichura (1971) generalized a
univariate result of Billingsley (1968), in which weak convergence of D(0,1)
processes. They took the ideas from Billingsley, and prove results which may be
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not the stronger, and may lead to not to the most elegant prove, but they are
typically cheap and based mostly on moments on the fluctuation of the functions.
The difficulty is as above in moving from the well ordered world of the real line, to
the general Euclidean space, where boundaries are not finite.

To get the general feeling of the result we quote Nielsen and Linton (1995), which
gives a simplified result:

Lemma 8.1. Let X(t) be a stochastic process with t = (t1, . . . , td) ∈ [0,1]d. For any

t ∈ [0,1]d and v ∈ [0,1], let t j,v = (t1, . . . , t j−1,v, t j+1, . . . , td). If for C > 0: X(t)
p→ 0

for all t ∈ [0,1]d, and E
(
X(t)−X(t j,u)

)2
< C(t j − u)2 for all t ∈ [0,1]d and j =

1, . . . ,d. Then sup |X(t)| p→ 0.

Nielsen and Linton then go and prove the uniform convergence of the hazard rate
estimate in a nonparametric setup with time dependent hazard rate, with multivariate
regressors.
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