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Preface

The main focus of this book is on the modeling of binary response data. Binary

outcomes can be observed directly or through the dichotomization of a continuous

variable; however, binary data analysis has some unique challenges when compared

to continuous data analysis. Some potential issues a researcher needs to consider

when analyzing binary data are:

• Are the trials based on a mechanism that produces independent or correlated

observations?

• Are the data based on repeated measures or are they cross-sectional?

• Are the covariates time dependent or time independent?

• Are the covariates entered into the model as a fixed or random effect?

• Are there marginal models being fitted or subject-specific models? In other

words, is the interest to model the mean or to be subject specific?

This book is based on real examples and data we have encountered over

several years of research and teaching statistics at the Master’s and Ph.D. levels

at Arizona State University. In fact, several of the chapters are based on the applied

projects and theses of Master’s and Ph.D. students in the university’s statistics

programs. The examples in this book were analyzed whenever possible using SAS,

SPSS, and R. While the SAS, SPSS, and R outputs are contained in the text

with partial data tables, the completed datasets can be found at the web address

www.public.asu.edu/~jeffreyw.

The aim of this book is to concentrate on making complicated ideas and

propositions comprehendible, specifically those ideas related to modeling different

types of binary response data (Fig. 1). The chapters in this book are designed to help

guide researchers, practitioners, and students (at the senior or Master’s degree

levels who have some basic experience with regression as well as some knowledge

of statistical packages like SAS, SPSS, and R) in understanding binary regression

models using a variety of application areas.

This book presents existing studies and recent developments in statistical

methods, focusing on their applications to correlated binary data and other related

vii

http://www.public.asu.edu/~jeffreyw


research. The data and computer programs used throughout the text and analyzed

using SAS, SPSS, and R are publicly available so that readers can replicate the

models and the results presented in each chapter. This allows the reader to easily

apply the data and methods to his or her own research. The book strives to bring

together in one place the key methods used in the analysis of dependent observa-

tions with binary outcomes, and present and discuss recent issues in statistical

methodological development, as well as their applications. The book is timely

and has the potential to impact model development and correlated binary data

analyses of health and health-related research, education, banking, and social

studies, among others. In an academic setting, the book could serve as a reference

guide for a course on binary data with overdispersion, particularly for students at

the graduate level (Master’s or Doctoral students) seeking degrees in related

quantitative fields of study, though not necessarily in statistics. In addition, this

book could serve as a reference for researchers and data analysts in education, the

social sciences, public health, and biomedical research.

Fig. 1 Types of binary models
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Each chapter consists of seven sections and is organized as follows:

Section 1: Motivating Example

1.1. Description of the Case Study

1.2. Study Hypotheses

Section 2: Definitions and Notations

Section 3: Exploratory Analyses

Section 4: Statistical Model

Section 5: Analysis of Data

Section 6: Conclusions

Section 7: Examples

The book comprises four major parts, and all of the chapters are arranged within

them. Below, we provide a short summary for each of the chapters found within the

four major parts of the book.

Part I: Introduction and Review of Modeling Uncorrelated
Observations

1. Introduction to Binary Logistic Regression

Statistical inference with binary data presents many challenges, whether or not

the observations are dependent or independent. Studies involving dependent

observations tend to be longitudinal or clustered in nature, and therefore provide

inefficient estimates if the correlation in the data is ignored. This chapter, then,

reviews binary data under the assumption that the observations are independent.

It provides an overview of the issues to be addressed in the book, as well as the

different types of binary correlated data. It introduces SAS, SPSS, and R as the

statistical programs used to analyze the data throughout the book and concludes

with general recommendations.

2. Short History of the Logistic Regression Model

The logistic regression model, as compared to the probit, Tobit, log–log, and

complementary log–log models, is worth revisiting based upon the work of

Cramer (2002, 2003). The ability to model the odds has made the logistic

regression model a popular method of statistical analysis, in addition to the

fact that the model can be used for prospective, retrospective, or cross-sectional

data while the probit, Tobit, log–log, and the complementary log–log models can

only be used with prospective data to model probability. This chapter provides a

summary of Cramer’s work (2002, 2003) and relies heavily on Cramer’s own
excellent but terse history of the evolution of the logistic regression model.
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3. Standard Binary Logistic Regression Model

The logistic regression model is a type of predictive model that can be used when

the response variable is binary, as in the cases of: live/die, disease/no disease,

purchase/no purchase, win/lose, etc. In short, we want to model the probability

of getting a certain outcome by modeling the mean of the variable (which is the

same as the probability in the case of binary variables). A logistic regression

model can be applied to response variables with more than two categories;

however, those cases, though mentioned in this text, are less common. This

chapter also addresses the fact that the logistic regression model is more effec-

tive and accurate when analyzing binary data as opposed to the simple linear

regression. We will therefore present three significant problems that a researcher

may encounter if the linear regression model was fitted to binary data:

1. There are no limits on the values predicted by a linear regression, so the

predicted response (mean) might be less than 0 or greater than 1, which is

clearly outside the realm of possible values for a response probability.

2. The variance for each subpopulation is different and therefore not constant.

Since the variance of a binary response is a function of the mean, if the mean

changes from subpopulation to subpopulation, the variance will also change.

3. Usually, the response is binary and so the assumption of normal distribution is

not appropriate in these cases.

The chapter provides an example using cross-sectional data and a binary

(two-level) response, and then fits the model in SAS, SPSS, and R. The models

are based on data collected for one observation per sampling unit, and the

chapter also summarizes the application to independent binary outcomes.

There are several excellent texts on this topic, including Agresti (2002), which

is referenced in the chapter.

Part II: Analyzing Correlated Data Through Random
Component

4. Overdispersed Logistic Regression Model

When binary data are obtained through simple random sampling, the covariance

of the responses follows the binomial model (two possible outcomes from

independent observations with constant probability). However, when the data

are obtained under other circumstances, the covariances of the responses differ

substantially from the binomial case. For example, clustering effects or subject

effects in repeated measure experiments can cause the variance of the observed

proportions to be much larger than the variances observed under the binomial

assumption. The phenomenon is generally referred to as overdispersion or extra

variation. The presence of overdispersion can affect the standard errors and
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therefore also affect the conclusions made about the significance of the pre-

dictors. This chapter presents a method of analysis based on work presented in:

Wilson, J. R., & Koehler, K. J. (1991). Hierarchical models for cross-

classified overdispersed multinomial data. Journal of Business and Economic
Statistics, 9(1), 103–110.

5. Weighted Logistic Regression Model

Binary responses, which are common in surveys, can be modeled through binary

models that can provide a relationship between the probability of a response and

a set of covariates. However, as explained in Chap. 4, when the data are not

obtained by simple random sampling, the standard logistic regression is not

valid. Rao and Scott (1984) show that when the data come from a complex

survey designed with stratification, clustering, and/or unequal weighting, the

usual estimates are not appropriate. In these cases, specialized techniques must

be applied in order to produce the appropriate estimates and standard errors.

Clustered data are frequently encountered in fields such as health services,

public health, epidemiology, and education research. Data may consist of

patients clustered within primary care practices or hospitals, or households

clustered within neighborhoods, or students clustered within schools. Subjects

nested within the same cluster often exhibit a greater degree of similarity, or

homogeneity of outcomes, compared to randomly selected subjects from differ-

ent clusters (Austin et al., 2001; Goldstein, 1995; Kreft & De Leeuw, 1998;

Raudenbush & Bryk, 2002; Snijders & Boskers, 1999). Due to the possible lack

of independence of subjects within the same cluster, traditional statistical

methods may not be appropriate for the analysis of clustered data. While

Chap. 4 uses the overdispersed logistic regression and the exchangeability

logistic regression model to fit correlated data, this chapter incorporates a series

of weights or design effects to account for the correlation. The logistic regression

model on the analysis of survey data takes into account the properties of the

survey sample design, including stratification, clustering, and unequal

weighting. The chapter fits this model in SAS, SPSS, and R, using methods

based on:

Koehler, K. J., &Wilson, J. R. (1986). Chi-square tests for comparing vectors

of proportions for several cluster samples. Communications in Statistics, A15
(10), 2977–2990.

Wilson, J. R. (1986). Approximate distribution and test of fit for the clustering

effect in Dirichlet multinomial model. Communications in Statistics, A15(4),
1235–1249.

Wilson, J. R. (1989). Chi-square tests for overdispersion with multiparameter

estimates. Journal of Royal Statistics Society Series C, Applied Statistics, 38(3),
441–454.

6. Generalized Estimating Equations Logistic Regression

Many fields of study use longitudinal datasets, which usually consist of repeated

measurements of a response variable, often accompanied by a set of covariates

for each of the subjects/units. However, longitudinal datasets are problematic
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because they inherently show correlation due to a subject’s repeated set of

measurements. For example, one might expect a correlation to exist when

looking at a patient’s health status over time or a student’s performance over

time. But in those cases, when the responses are correlated, we cannot readily

obtain the underlying joint distribution; hence, there is no closed-form joint

likelihood function to present, as with the standard logistic regression model.

One remedy is to fit a generalized estimating equations (GEE) logistic regression

model for the data, which is explored in this chapter. This chapter addresses

repeated measures of the sampling unit, showing how the GEE method allows

missing values within a subject without losing all the data from the subject, and

time-varying predictors that can appear in the model. The method requires a

large number of subjects and provides estimates of the marginal model param-

eters. We fit this model in SAS, SPSS, and R, basing our work on the method

best presented by Ziang and Leger (1986), and Liang and Zeger (1986).

7. Generalized Method of Moments Logistic Regression Model

When analyzing longitudinal binary data, it is essential to account for both the

correlation inherent from the repeated measures of the responses and the corre-

lation realized because of the feedback created between the responses at a

particular time and the covariates at other times (Fig. 2). Ignoring any of these

correlations can lead to invalid conclusions. Such is the case when the covariates

Covariate over time Responses over time

Fig. 2 Two types of correlation structures
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are time dependent and the standard logistic regression model is used. Figure 2

describes two types of correlations: responses with responses and responses with

covariates. We need a model that addresses both types of relationships. In Fig. 2,

the different types of correlation presented are:

1. There is the correlation among the responses which are denoted by y1, . . . , yT
as time t goes from 1 to T and

2. There is the correlation between response Yt and covariate Xs:

(a) When responses at time t impact the covariates in time t+ s
(b) When the covariates in time t impact the responses in time t+ s.

These correlations regarding feedback from Yt to the future Xtþs and vice

versa are important in obtaining the estimates of the regression coefficients.

This chapter provides a means of modeling repeated responses with time-

dependent and time-independent covariates. The coefficients are obtained using

the generalized method of moments (GMM). We fit these data with SAS Macro

(Cai & Wilson, 2015) using methods based on:

LaLonde, T., Wilson, J. R., & Yin, J. (2014). GMM logistic regression

models for longitudinal data with time-dependent covariates and extended

classifications. Statistics in Medicine, 33(27).

8. Exact Logistic Regression Model

As computers’ abilities to do tedious calculations have increased, using exact

logistic regression models has become more popular in healthcare, banking, and

other industries. Traditional methods (which are based on asymptotic theory)

when used for analyzing small, skewed, or sparse datasets are not usually

reliable. When sample sizes are small or the data are sparse or skewed, exact

conditional inference is necessary and applicable (Derr, 2008). Exact methods of

inferences are based on enumerating the exact distributions of certain statistics

to estimate the parameters of interest in a logistic regression model, conditional

on the remaining parameters. This is a method of testing and estimation that uses

conditional methods to obtain exact tests of parameters in binary and nominal

logistic models. Exact methods are appropriate for small-sample or sparse data

situations that often result in the failure (nonconvergence or separation) of the
usual unconditional maximum likelihood estimation method. However, exact

methods can take a great deal of time and memory as sample or model sizes

increase. For sample sizes too large for the default exact method, a Monte Carlo

method is provided. The chapter uses EXACT statement in PROC LOGISTIC or

PROC GENMOD, and we also fit models in SAS, C+, and R. Our methods are

based on:

Troxler, S., Lalonde, T. L., & Wilson, J. R. (2011). Exact logistic models for

nested binary data. Statistics in Medicine, 30(8).
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Part III: Analyzing Correlated Data Through Systematic
Components

9. Two-Level Nested Logistic Regression Model

Studies including repeated measures are expected to give rise to correlated data.

Such data are common in many disciplines including healthcare, banking, poll

tracking, and education. Subjects or units are followed over time and are

repeatedly observed under different experimental conditions, or are observed

in clusters. Often times, such data are available in hierarchical structures

consisting of a subset of a population of units at several levels. We review

methods that include the clustering directly in the model (systematic component)

as opposed to methods that include the clustering within the random component.

These methods belong to the class of generalized linear mixed models. The basic

idea behind generalized linear mixed models is conceptually straightforward

(McCulloch, 2003) and incorporates random effects into the systematic compo-

nent of a generalized linear model to account for the correlation. Such

approaches are most useful when researchers wish to account for both fixed

and random effects in the model. The desire to address the random effects in a

logistic model makes it a subject-specific model. This is a conditional model that

can also be used to model longitudinal or repeated measures data. We fit this

model in SAS, SPSS, and R. Our method of modeling is based on:

Lalonde, T., Nguyen, A. Q., Yin, J., Irimata, K., & Wilson, J. R. (2013).

Modeling correlated binary outcomes with time-dependent covariates. Journal
of Data Science, 11(4), 715–738

10. Hierarchical Logistic Regression Model

This chapter expands upon the results of Chap. 9. It is common to come into

contact with data that have a hierarchical or clustered structure. Examples

include patients within a hospital, students within a class, factories within an

industry, or families within a neighborhood. In such cases, there is variability

between the clusters, as well as variability between the units which are nested

within the clusters. Hierarchical models take into account the variability at

each level of the hierarchy, and thus allow for the cluster effects at different

levels to be analyzed within the models (Shahian et al., 2001). This chapter

tells how one can use the information from different levels to produce a

subject-specific model. We concentrate on fitting logistic regression models

to these kinds of nested data at three levels and higher (Fig. 3). In Fig. 3, as an

example, patients are nested within doctors and doctors are nested within

hospitals. This is a three-level nested design but can be expanded to higher

levels, though readily available computing may be challenge.

11. Fixed Effects Logistic Regression Model

If a researcher wants to know whether having a job reduces recidivism

among chronic offenders, that researcher could compare an individual’s arrest
rate when he/she is employed with his/her arrest rate when unemployed.
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The difference in arrest rates between the two periods is an estimate of the

employment effect for that individual. Similarly, a researcher might want to

know how a child’s performance in school differs depending on how much

time he/she spends watching television. The researcher could compare how the

child does when spending significant time watching television versus when

he/she does not watch television. Fixed effects logistic regression models can

be used for both of these scenarios. Such models are used to analyze longitu-

dinal data with repeated measures on both the response and the covariates.

These models treat each measurement on each subject as a separate observa-

tion, and the set of subject coefficients that would appear in an unconditional

model are eliminated by conditional methods. This is a conditional, subject-

specific model (as opposed to a population-averaged model like the GEE

model). We fit this model in SAS, SPSS, and R. An excellent discussion with

examples can be found in P. D. Allison (2005), Fixed Effects Regression
Methods for Longitudinal Data Using SAS. For binary response data, we use

the STRATA statement in PROC LOGISTIC.

Part IV: Analyzing Correlated Data Through the Joint
Modeling of Mean and Variance

12. Heteroscedastic Logistic Regression Model

Correlated binomial data can be modeled using a mean model if the interest is

only on the mean and the dispersion is considered a nuisance parameter.

However, if the intraclass correlation is of interest, then there is a need to

apply a joint modeling of the mean and the dispersion. Efron (1986) was one of

the first to model both the mean and the variance. The dispersion sub-model

allows extra parameters to model the variance independent of the mean, thus

allowing covariates to be included in both the mean and variance sub-models.

In this chapter, we present a sub-model that analyzes the mean and a sub-model

Simulated Hierachical Data

Patient 1

Hospital i
Level 3

Doctor 1 Doctor j
Level 2

Doctor ni

Level 1

Patient 2 ........... Patient ni1 Patient 1 Patient 2 ........... Patient niJ Patient 1 Patient 2 ........... Patient niJ

... ...

Fig. 3 Hierarchical structure of three levels
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that analyzes the variance. This model allows both the dispersion and the mean

to be modeled. We use the MODEL statement in the SAS/ETS procedure

QLIM to specify the model for the mean, and use the HETERO statement to

specify the dispersion model. We fit this model in SAS and SPSS. Our results

and presentation are based on work done in some recent Masters’ research
papers at Arizona State University.

The authors of this book owe a great deal of gratitude to many who helped in

the completion of the book. We have been fortunate enough to work with a

number of graduate students at Arizona State University: Anh Nguyen, who

provided the graphics and had a lot to do with extracting and analyzing the

Medicare dataset in the initial stages; Hong Xiang, who, through her Master’s
applied paper, contributed to findings regarding PROC NLMIXED and hier-

archical analyses; Jianqiong Yin, who provided insight and unwavering con-

tributions to our statistical programming through her thesis and associated

work; Katherine Cai, who helped with SAS Macro; and Chad Mehalechko,

who provided overwhelming support in doing the SAS, SPSS, and R program-

ming for all chapters. Many thanks to the staff in the Department of Economics

and the computing support group in the W. P. Carey School of Business. To

everyone involved in the making of this book, we say thank you!

Finally, a special thanks to our families, who have provided both of us with

the support needed to achieve this great endeavor.

Tempe, AZ Jeffrey R. Wilson

Phoenix, AZ Kent A. Lorenz
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Chapter 1

Introduction to Binary Logistic Regression

Abstract Statistical inference with binary data presents many challenges, whether

or not the observations are dependent or independent. Studies involving dependent

observations tend to be longitudinal or clustered in nature, and therefore provide

inefficient estimates if the correlation in the data is ignored. This chapter, then,

reviews binary data under the assumption that the observations are independent. It

provides an overview of the issues to be addressed in the book, as well as the

different types of binary correlated data. It introduces SAS, SPSS, and R as the

statistical programs used to analyze the data throughout the book and concludes

with general recommendations.

1.1 Motivating Example

The need to profile or describe a unit based on a binary outcome is often of utmost

importance. While there are other models (probit, log–log, complementary log–log)

that can be used to model binary data, in this book we concentrate on logistic

regression models. The advantage of the logistic regression model lies in the

model’s ability to explain and predict the outcomes in terms of the odds, and how

applicable it is to cases where the data were obtained from prospective, retrospec-

tive, or cross-sectional settings. For example, we wish to detect the factors which

determine whether patient’s cancer is in remission. In that simulated data, there is a

three-level, hierarchical structure with patients nested within doctors within hospi-

tals. The study is meant to be a large study of lung cancer outcomes across multiple

doctors and sites. The response variable is whether or not the cancer is in remission.

The covariates at the patient level are age, length of stay, family history, cancer

stage, and CRP. At the doctor’s level, we have their identification and their years of
experience. At the hospital level, we have the hospital identification.

This book deals with the topic of logistic regression models concentrating on

binary data. The statement leads naturally to the following questions. What is a

binary logistic regression model? What does one mean by binary data? Why do we

need logistic regression models? Why is it not adequate to use the standard

regression analysis to analyze binary data?

© Springer International Publishing Switzerland 2015
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1.2 Definition and Notation

1.2.1 Notations

Let N denote the number of units in the population while n denotes the sample size,

and T times t ¼ 1, . . .T; with P covariates j ¼ 1, . . . J.

1.2.2 Definitions

A variable is defined as any measure that varies from individual to individual. For

example, if we measured the blood pressure for ten individuals, we would expect

the values to be different, making blood pressure the “variable” of interest. Another

example of a variable would be measuring the ages of 8000 Japanese–American

men to analyze the variable of age.

The output variable Y is also called the response variable, or dependent variable
or outcome variable. It is the variable of interest.

A quantitative variable is an individual measure taken on a numerical scale. It is

often referred to as a continuous variable, meaning that these observations may lie

on a continuum. Thus, a continuous variable takes on an infinite number of possible

values and its reported value is limited only by physical measurement accuracy. We

will make references to quantitative variables measured on two scales as follows:

An interval scale pertains to variables that can be ordered and give precise

measures of the distances between categories. Measuring temperature in degrees

Celsius is an example of this type of quantitative variable.

A ratio scale is for ratio variables, which are interval variables with a true zero

value. Using temperature as our example, a reading of zero degrees on the Celsius

scale does not actually denote an absence of heat or energy. Therefore, we classify

it as an interval variable. However, zero degrees on the Kelvin scale refer to an

absolute zero, or an absence of temperature or energy. Therefore, we classify it as a

ratio variable. A key difference between interval and ratio scales is that, with ratio

scales, the distance between measurements may be equal (i.e., the difference

between 10 and 20 �C is the same as between 25 and 35 �C. However, 20 �C is

not twice as much “temperature” as 10 �C. Only when using a ratio scale could you
make those statements (i.e., 20 K is twice as much as 10 K)).

A qualitative variable is one whose values vary in type rather than in magnitude.

It expresses a qualitative attribute, meaning that its values are not numerical. The

observations cannot be said to vary in magnitude, and a natural hierarchical

ordering is not possible.

A binary random variable is usually symbolized or coded as a 1 or 0. It is

appropriate when the assessment of a characteristic is in terms of any two categories

such as yes/no, present/absent, and favorable/unfavorable. These are called cate-

gories. The corresponding variable is called binary or dichotomous or indicator.
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The coded values do not have any meaning or rank, so they cannot be interpreted

numerically. However, several statistical programs require 1 or 0 coding for

analysis. With a 0 or 1 coded value, a researcher can find the mean. Such a summary

value is referred to as the proportion. Examples include: “Do you smoke?” Propor-

tion: those who smoke. Or “Do you drink?” Proportion: those who drink. Thus, the

mean of a binary variable is called the proportion.

A categorical variable is a variable measured on a nominal scale whose cate-

gories determine class or group membership. A categorical variable can take

“values” which denote non-numerical categories or classes. Some definitions are:

A categorical variable represents a set of discrete events, such as groups, decisions,
or anything else, that can be classified into categories. Categorical variables are also

referred to as discrete variables, meaning a limited set of numerical values that are

typically counting numbers, or whole numbers. Two main types of categorical

variables are nominal and ordinal variables.

Ordinal variables consist of a rank, or a rating. One example would be: “How

was the performance?” Some possible responses on a measurement scale could be:

1 for “Excellent,” 2 for “Above Average,” 3 for “Average,” 4 for “Below Average,”

and 5 for “Poor.” There is an obvious limitation to this type of measurement: The

examiner cannot be assured of the preciseness of a measurement like satisfaction. In

this example, “Excellent” is higher than “Above Average,” but it is not very precise

because it does not show how much higher an “Excellent” rating is compared to an

“Above Average” rating. This limitation also means that there can be no guarantee

that a difference between a score of 1 and 2 is the same as a difference between a

score of 4 and 5.

Nominal variables have characteristics that are mutually exclusive and exhaus-

tive. This means that nominal variables can only be measured in terms of whether

an individual belongs to a certain category. Some examples are: “What region of

the country are you from (Northeast, Northwest, Midwest, etc.)?” Or “Are you

single, married, widowed, or divorced?”

Categorical Variable in the Form of a Series of Binary Variables

Categorical variables can be reformulated and treated like a set of binary variables.

Consider the categorical variable “Region,” with levels (East, West, North, and

South).

When converted to four binary variables representing “Region,” it looks like:

1. East with levels (yes, no)

2. West with levels (yes, no)

3. North with levels (yes, no)

4. South with levels (yes, no)

Example:
Consider the following data given about “Region” in Table 1.1.
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Instead of the variable called “Region,” we now have East, West, North, and

South. Thus, the focus will be on binary and continuous variables. However, when

we reformulate a categorical variable into a series of binary variables, we use all but

one to represent the categorical variable from there on out. In our example we can

use East, West, and North as binary variables to represent Region for any modeling.

Information about South is achieved by letting East, West, and North take on a

value of 0 instead of 1. When interpreting the binary variable coefficient and

significance, it is compared to the one category that was left out.

Relationship Between Response and Predictor Variables

The response variable is the variable of interest to the experimenter. The main goal

of an experiment usually is to determine if there are some relationships between the

predictor variable and the response variable. There are two types of relationships

that are used to explain the relationship between the predictor variables and the

response variable: “functional” and “statistical.” When a relationship can be

expressed by a mathematical formula or expression, then it is known as a functional
relationship. For example: Distance¼Velocity by Time. The other type of rela-

tionship is called a statistical relationship.
A Statistical relationship is not exact and has two identifiable markers. Its two

parts: First, an experimenter knows there is a statistical relationship when the

response variable has a distribution associated with it (known or unknown) and

has a relationship that can be described by the mean and its predictor variables in a

systematic fashion. This relationship would give rise to a line (one predictor) or

plane (two or more predictors) with the expected value as the central point of a

distribution of possible responses. In addition, with statistical relationships there

will be a variation of the Y observations around the systematic part. For example,

the relationship between blood pressure after an experiment and blood pressure

before an experiment would be a statistical relationship (Fig. 1.1).

1.3 Exploratory Analyses

Consider the following diagram, Fig. 1.2. This is our input–output system, where X

is the input and Y is the output. Figure 1.2 provides a diagrammatic view of a set of

predictors (binary, continuous, or categorical) being fed into a system from which a

Table 1.1 Dichotomization

of a categorical variable
Observations Region East West North South

#124 East 1 0 0 0

#246 South 0 0 0 1

#513 North 0 0 1 0

#734 West 0 1 0 0
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binary output is produced. Each production relies on a single sampling unit inde-

pendent of other units.

In Fig. 1.2, Y denotes the output variable in the system, and X represents the set

of input variables also referred to as independent, explanatory, concomitant, prog-

nostic factor, predictor, driver, covariate, or factor variables, depending on the

discipline. Our known information denoted by X can be a quantitative or continu-

ous variable, a binary variable, or a categorical or qualitative variable. The input of

a system may consist of all or some combination of these different types of vari-

ables. While we can also have Y consisting of characteristics similar to X, we will

concentrate on binary responses.

A general view of most statistical models is that we have a set of covariates with

known information, being placed into a system that produces a known outcome. We

shall call the known information the input variable(s) and the outcome produced the

output variable. The set of variables going into or coming out of the system may be

different kinds:

Blood Pressure After versus Before the Experiment
After

180

170

160

150

140

130

150 160 170 180 190 200 210
Before

Fig. 1.1 Two-dimensional graph

Categorical

Continuous

Binary

(0,1)

Input Output

One observation

per sampling unit

Model
Produced

Fig. 1.2 An input–output system
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• Quantitative: like age in years, income, or weight

• Binary: like gender, smoker, or eligible to vote

• Categorical: like race, region, or marital status

The output variable produced from this system can be binary, quantitative, or

categorical; but in this chapter, we will focus on binary responses.

1.4 Statistical Models

Logistic or logit regression models are very common in the fields of healthcare,

business, banking, and sociology. We categorize these models into a single

response versus repeated responses on the sampling unit, population-averaged

versus subject-specific model, fixed versus random effects, and time-independent

versus time-dependent covariates. We can further categorize the responses as

binary, ordinal, or nominal, but this book focuses on binary logistic regression

models. We fit these types of models using SAS and, whenever possible, SPSS and

R. The reader can always choose the appropriate statistical software when the data

are analyzed in section five of each chapter.

This book provides an overview of modeling binary responses through logistic

regression models. Though we do mention nominal and ordinal models, we con-

centrate mainly on binary response cases. We investigate independent versus

correlated responses, cross-sectional versus longitudinal data, time-dependent ver-

sus time-independent covariates, fixed versus random effects, and subject-specific

versus population-averaged models.

This book covers the following topics and statistical models:

1.4.1 Chapter 3: Standard Binary Logistic Regression Model

We use a binary (two-level) response and examine cross-sectional data. We fit this

model in SAS, SPSS, and R. We present models based on data collected for one

observation per sampling unit, where the observations are considered to be

independent.

1.4.2 Chapter 4: Overdispersed Logistic Regression Model

When binary data are not obtained through simple random sampling, the covariance

for the sample proportion can differ substantially from the covariance

corresponding to the binomial model. We present a model based on a factor for

the correction of the overdispersion. We fit this model in SAS, SPSS, and R.
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1.4.3 Chapter 5: Survey Data Logistic Regression Model

The logistic regression model on the analysis of survey data incorporates properties

of the survey sample design, including stratification, clustering, and unequal

weighting. We fit this model in SAS, SPSS, and R.

1.4.4 Chapter 6: Generalized Estimating Equations
Logistic Regression Model

This chapter addresses repeated measures on the sampling unit. The Generalized

Estimating Equations (GEE) method allows missing values within a subject without

losing all the data from the subject, and time-dependent predictors can appear in the

model. The method requires a large number of subjects and provides estimates of

the marginal or population-averaged model parameters. We fit this model in SAS,

SPSS, and R.

1.4.5 Chapter 7: Generalized Method of Moments
Logistic Regression Model

This model provides a means of modeling repeated responses with time-dependent

and time-independent covariates. The coefficients are obtained using generalized

method of moments (GMM). We fit these data with PROC IML in SAS.

1.4.6 Chapter 8: Exact Logistic Regression Model

This is a method of testing and estimation that uses conditional methods to obtain

exact tests of parameters in binary and nominal logistic models. We found that

asymptotic methods are not appropriate for small sample sizes or sparse data

situations because they often result in failure (nonconvergence or separation) if
the usual unconditional maximum likelihood estimation method is used. However,

exact methods can take a great deal of time and memory as the sample size or

number of parameters increase. We use the EXACT statement in PROC LOGISTIC

or PROC GENMOD. We fit models in SAS, C+, and R.
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1.4.7 Chapter 9: Two-Level Nested Logistic Regression
Model

It allows random effects in a logistic model, resulting in a subject-specific model.

This is a conditional model that can also be used to model longitudinal or repeated

measures data. We use PROC GLIMMIX, but the model can also be fitted in PROC

NLMIXED by using a different methodology that typically limits the number of

random effects to one or two. However, in recent research, we show how it can be

expanded. We fit this model in SAS, SPSS, and R.

1.4.8 Chapter 10: Hierarchical Logistic Regression Model

These models are applicable for cases where responses are taken more than once on

each unit (or item), either at multiple times or under multiple conditions. There are

three primary types of models: marginal (or population-averaged), subject-specific

(includes fixed effects and random-effects model), and transitional. We use the

NLMIXED procedure to fit models and concentrate on the subject-specific models.

We fit these models in SAS.

1.4.9 Chapter 11: Fixed Effects Logistic Regression Model

This model treats each measurement on each subject as a separate observation, and

the set of subject coefficients that would appear in an unconditional model are

eliminated by conditional methods. This is a conditional, subject-specific model

(as opposed to a population-averaged model like the GEE model). We fit this model

in SAS, SPSS, and R.

1.4.10 Chapter 12: Heteroscedastic Logistic Regression
Model

The heteroscedastic logistic regression model allows the dispersion and mean to be

modeled. We use the MODEL statement in the procedure QLIM to specify the

model for the mean, and use the HETERO statement to specify the dispersion

sub-model. We fit this model in SAS.
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1.5 Analysis of Data

Throughout this book, we fit several types of the logistic regression models, as

previously mentioned. These models can consist of one or more of the following:

• Independent or correlated responses

• Covariates that change with time and/or those that do not

• Fixed and/or random effects

• Marginal or subject specific

Figure 1.3 below summarizes the content of each chapter in the book. In each

chapter, we describe the model and then provide an analysis of a dataset based on a

particular model using SAS, SPSS, and R, whenever possible.

Model Identification

Responses Possible 
Outcomes Modeling Covariates Chapter-Models

Binary

Uncorrelated

Marginal

Marginal Chapter # 3

Chapter 12

Correlatted

Subject-
specific

Marginal

Chapter 5/Random component

Chapter 7/Random component

Chapter 10/Systematic component

N/A

Time
Independent

Time
Independent

Time
Independent

Time
Dependent

Time
independent

Time
Dependent

Chapter 6/Random component

Chapter 4/Random component

Chapter 8/Random component

Chapter 9/Systematic component

Chapter 11/Systematic component

Fig. 1.3 Chart of binary models
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1.5.1 SAS Programming

SAS is a programming language that has powerful capabilities for data manipula-

tion, statistical analysis, report writing, and generating plots. SAS was developed in

the early 1970s at North Carolina State University and stands for “Statistical

Analysis System.” The Institute was founded in 1976 by two North Carolina

State University professors, Dr. James Goodnight and Dr. John Sall. The two

professors developed a statistical analysis software package that became popular

with faculty at a number of universities first throughout the South and expanded

into the rest of the country. Because of its capabilities and popularity, we will use

SAS programming for much of the modeling in this book.

1.5.2 SPSS Programming

SPSS (Statistical Package for the Social Sciences) is a data management and

analysis program produced by SPSS, Inc., Chicago. First created in 1968, it is a

software package used for conducting statistical analyses, manipulating data, and

generating tables and graphs that summarize data. Statistical analyses range from

basic descriptive statistics, such as averages and frequencies, to advanced inferen-

tial statistics, such as regression models, analysis of variance, and factor analysis.

SPSS has several capabilities for manipulating data, recoding data, and computing

new variables, including merging and aggregating datasets. SPSS, like SAS, can

summarize and display data in the form of tables and graphs.

1.5.3 R Programming

R is an implementation of the S language, a language for manipulating objects. R

provides a suite of software facilities for statistically analyzing of data, manipulat-

ing data, as well as computing and displaying the results. R is a programming

environment for data analysis and graphics. The book S Programming by Venables
and Ripley (2000) provides a comprehensive overview of programming principles

using S and R. For more details on the S language, readers are referred to Becker,

Chambers, and Wilks (1988) and Venables and Ripley (2000). It is our understand-

ing that the language was initially written by Ross Ihaka and Robert Gentleman at

the Department of Statistics at the University of Auckland. Since then, many
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analysts and researchers have contributed to the package. R provides a platform for

the development and implementation of new algorithms and technology transfer.

One can use R in three possible ways: using functions that make use of existing

algorithms within R, using functions that call on external programs written in either

C or FORTRAN, or combining pieces of code that have specific parts attached to

handle certain aspects of the data.

We fit most of these models using SAS, SPSS, and R procedures, though at times

we may only use SAS. We have the book organized based on the responses

(independent or correlated) and the assumptions of correlation, if correlated then

part of random component or part of systematic component.

• We begin with one measurement per sampling unit and model the mean.

– When the data originate from an independent sources

– When the data are overdispersed

– When the data are from surveys

• We look at cases when more than one response comes from the sampling unit.

– When the responses are correlated

– When the responses are correlated but the data are hierarchical

• We look at cases with repeated measures and time-dependent covariates.

• We look at cases with fixed effects.

• We look at exact methods.

• We look at joint modeling of mean and dispersion.

1.6 Conclusions

Even though we have been studying techniques for analyzing logistic regression

data since the early 1980s, we are still impressed by the continual need for more

methods to analyze binary data. We have used logistic regression models to find

construction defects, model FDA submissions, analyze heart surgery data, profile

shoplifters, conduct High School and Beyond data analyses, model statistics for

patient rehospitalization, identify cheating on the LSAT, and more. We know that

there are many papers on the topic of logistic regression, some even authored by

us. However, we wanted to make sure non-statisticians could have a full under-

standing of the applications of logistic regression models without needing a rigor-

ous, in-depth education on the topic. We wrote this book to serve that purpose.

A binary logistic regression model can be used to identify the predictors that

influence the binary outcome. Binary data is the result of one of two possible

outcomes. The logistic regression is necessary since one must be certain that

predicted values lie between [0, 1]. Also, the usual regression has a mean that is

not related to the variance. It is not sufficient to use the usual regression analysis.

The usual regression satisfies the assumptions required for continuous data. The

fitting of logistic regression models is widespread and readily accepted across
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several disciplines. Each chapter in this book addresses the fit of binary logistic

regression models under varying conditions. We begin each chapter with questions

that readers may be interested in as they analyze the datasets. We hope that the way

we present the material makes it easy for you to use SAS, SPSS, and R with little

difficulty to analyze your data.

1.7 Related Examples

Our data examples were used by graduate students at Arizona State University in

theses and applied projects in their pursuit of a graduate degree in statistics. We

describe the datasets as they will be used in the chapters throughout the text. These

data are available at www.public.asu.edu/~jeffreyw.

1.7.1 Medicare Data

Medicare is a social insurance program administered by the US government,

providing health insurance coverage to people who are aged 65 and over, or who

meet other special criteria. Medicare currently pays for all rehospitalization, except

those in which patients are rehospitalized within 24 h after discharge for the same

condition for which they had initially been hospitalized (Jencks, Williams, &

Coleman, 2009). We extracted data from the Arizona State Inpatient Database

(SID) for use in this textbook. Our dataset contains patient information from

Arizona hospital discharges for a 3-year period from 2003 through 2005. This

dataset contains information for those who were admitted to a hospital exactly

four times. We selected diseases based on the 7 most common diseases and 3 pro-

cedures that accounted for 50 % of hospitalizations in Arizona hospitals for the

period 2003–2005. There are 1626 patients in the dataset with complete informa-

tion; each has three observations indicating three different instances of

rehospitalization.

1.7.2 Philippines Data

Data were collected by the International Food Policy Research Institute in the

Bukidnon Province in the Philippines and focused on quantifying the association

between body mass index (BMI) and morbidity 4 months into the future. Data were

collected at four time points, separated by 4-month intervals (Bhargava, 1994).

They had 370 children with 3 observations each. The predictors were BMI, age,

gender, and time as a categorical variable, but represented by two indicator

variables.
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1.7.3 Household Satisfaction Survey

Brier (1980) examined data from a study of housing satisfaction performed by

H.S. Stoeckler and M.G. Gate for the US Department of Agriculture. Households

around Montevideo, Minnesota, were stratified into two populations: those in the

metropolitan area and those outside the metropolitan area. A random sample of

20 neighborhoods was taken from each population, and 5 households were ran-

domly selected from each of the sampled neighborhoods. One response was

obtained from the residents of each household concerning their satisfaction with

their home. The possible responses were “unsatisfied (US),” “satisfied (S)” and

“very satisfied (VS).” Only data from neighborhoods in which responses were

obtained from each of the five households sampled are used to illustrate the

usefulness of the model. This reduces the original dataset toK1 ¼ 18neighborhoods

from the non-metropolitan area and K2 ¼ 17 neighborhoods from the metropolitan

area. These data were analyzed using a Dirichlet Multinomial model (Koehler &

Wilson, 1986).

1.7.4 NHANES: Treatment for Osteoporosis

This example uses the demoadv dataset, a subset from the National Health and

Nutrition Examination Survey (NHANES) database (Centers for Disease Control

and Prevention, 2009). We want to know the association between calcium supple-

ment use (anycalsup) and the likelihood of receiving treatment for osteoporosis

(treatosteo) among participants, aged 20 years and older, after controlling for

selected covariates. The covariates include gender (riagendr), age (ridageyr),
race/ethnicity (ridreth1), and body mass index (bmxbmi). Information on the use

of vitamin, mineral, herbal, and other dietary supplements is collected from all

NHANES participants during the household interview.

Stage 1: Primary sampling units (PSUs) are selected from strata defined by

geography and proportions of minority populations. These are mostly single

counties or, in a few cases, groups of contiguous counties selected with probability

proportional to a measure of size (PPS). Most strata contain two PSUs. Additional

stages of sampling are performed to select various types of secondary sampling

units (SSUs), namely the segments, households, and individuals that are selected in

Stages 2, 3, and 4.

Stage 2: The PSUs are divided into segments (generally city blocks or their

equivalent). As with each PSU, sample segments are selected with PPS.

Stage 3: Households within each segment are listed, and a sample is randomly

drawn. In geographic areas where the proportion of age, ethnic, or income groups

selected for over-sampling is high, the probability of selection for those groups is

greater than in other areas.
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Stage 4: Individuals are chosen to participate in NHANES from a list of all

persons residing in selected households. Individuals are drawn at random within

designated age–sex–race/ethnicity screening sub-domains. On average, 1.6 persons

are selected per household.
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Chapter 2

Short History of the Logistic Regression
Model

Abstract The logistic regression model, as compared to the probit, Tobit, and

complementary log–log models, is worth revisiting based upon the work of Cramer

(http://ssrn.com/abstract¼360300 or http://dx.doi.org/10.2139/ssrn.360300) and

(Logit models from economics and other fields, Cambridge University Press,

Cambridge, England, 2003, pp. 149–158). The ability to model the odds has

made the logistic regression model a popular method of statistical analysis. The

logistic regression model can be used for prospective, retrospective, or cross-

sectional data while the probit, Tobit, and the complementary log–log models can

only be used with prospective data because they model the probability of the event.

This chapter provides a summary (http://ssrn.com/abstract¼360300 or http://dx.

doi.org/10.2139/ssrn.360300; Logit models from economics and other fields,

Cambridge University Press, Cambridge, England, 2003, pp. 149–158).

2.1 Motivating Example

More than 175 years after the advent of the growth curve, we have fully embraced

the logistic regression model as a viable tool for binary data. Today, the logistic

regression model is one of the most widely used binary models in the analysis of

categorical data. The logistic regression model is based on modeling the odds of an

outcome, and the idea of odds (as used commonly by the average person) has lots of

appeal. Many seem to be familiar with the odds of certain outcomes, whether their

discussions are in sports, illness, or almost anything else. Additionally, it is quite

interesting from a statistical point of view that whether the data were obtained from

prospective, retrospective, or cross-sectional sampling, the covariate’s impact on

the binary outcome will be the same.

Since this book concentrates on fitting logistic regression models, it is reason-

able to spend time elaborating on the history and the origination of those models.

The advent of the logistic regression model, as compared to the probit, Tobit, log–

log, and complementary log–log models, is worth revisiting (Cramer, 2002, 2003).

The ability to model the odds has made it very attractive since the logistic

regression relies on the odds, and the odds can always be computed whether the
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data are prospective, retrospective, or cross-sectional. However, since the probit,

Tobit, log–log, and complementary log–log models rely on probabilities, they are

only applicable to prospective data. Logistic regression models model the proba-

bility (nonlinear) or, equivalently, the odds (nonlinear) or logit (linear) of

the outcome of an event. Logistic regression models have been used in

countless ways, analyzing anything from election data to credit card data to

healthcare data. Logistic regression analysis is a useful tool for all of these disci-

plines because it is ideal for identifying, discriminating, and profiling different

types of subpopulations.

2.2 Definition and Notation

2.2.1 Notation

In this discussion, we use the following symbols:

Pt is the probability of the outcome at time t being one.

1� Pt is the probability of the outcome being zero at time t.
log is the natural logarithm.

logit denotes the log of the odds, i.e.,
�
log Pt= 1� Ptð Þ½ �.

β0 represents the value of the logit when the covariate is zero.

β1 represents the increase in the logit for a unit increase in the covariate (when

continuous) or the difference from one category to the next if the covariate is

binary.

2.2.2 Definition

A monotonic function is a function which is either entirely nonincreasing or

nondecreasing. A function is said to be monotonic if its rate of increase or decrease

remains the same in direction. So, for x > 0, then f xð Þ ¼ x2 is monotonic increasing

since f xþ 2ð Þ > f xð Þ for any x > 0 but is not for all x.

A probit model is a type of regression for binary data on a scale that depends on

the cumulative distribution function of normal distribution.

A prospective study is a study designed to determine the relationship between an

outcome and a certain characteristic of the units involved. The researcher follows

the population group over a period of time, noting when or how often the event or

nonevent (e.g., lung cancer) occurs in the smokers and in the nonsmokers. Pro-

spective studies produce an opportunity to determine probabilities for each group

(event or nonevent) and as such provide the relative risk.

A retrospective study is a study in which the event or nonevent is unknown, and

the information gathered depends on what occurred in the past. One example is

18 2 Short History of the Logistic Regression Model



conducting a study of patients with AIDS and whether or not they had used dirty

needles or other common practices.

A case–control study is a non-experimental research design where researchers

collect information on previous cases and compare that information with a control

group of persons who have not had those cases (called the control). The two groups

(case and control) are matched for age, sex, and other personal data, and are then

examined to determine which possible factor (e.g., cigarette smoking, watching

television) may account for the increase or decrease in the case group.

A Tobit model is also referred to as a censored regression model. The Tobit

model is best suited to cases when the response variable is either left- or right-

censoring, and we are interested in the linear relationships between variables. For

example, in the 1980s there was a time when the law restricted speedometer

readings to at most 85 mph. So experiments involving predicting a vehicle’s

top-speed from a combination of horsepower and engine size, your largest speed

value would be 85, regardless of how fast the vehicle was speeding. This is a perfect

example of right-censoring (censoring from above) the data. The one thing we are

certain about, is that those vehicles recorded as traveling at 85 mph were at least

85 mph. Introduction to SAS. UCLA: Statistical Consulting Group. http://www.ats.

ucla.edu/stat/sas/notes2/ (accessed November 24, 2007).

2.3 Exploratory Analyses

The logistic regression model is a tool for presenting the relation between a binary

response or a multinomial response and several predictors. Its use is very familiar

and common in the fields of health and education, as well as with elections, credit

card companies, mortgages, and other cases, where there is a need to profile the

sampling unit (Fig. 2.1).

Some example questions to guide a study might be as follow:

1. How do education, ideology, race, and gender predict a vote in favor or not in

favor of a US Senator?

Categorical

Continuous

Binary

(0,1)

Input Output

One observation

per sampling unit

Model
produced

Fig. 2.1 A schematic diagram as X impacts Y
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2. What factors predict the type of registered voters who would support the

reelection of a President or a Governor?

3. What are the characteristics of the consumer who should be offered a credit

card?

4. What are the characteristics of a traveler that will make him or her choose one

mode of transportation over another (rail, bus, car, or plane)?

2.4 Statistical Model

The origin of the logistic regression model is in bioassay and some other disci-

plines. We learned that the logistic function was invented for the purpose of

describing the population growth. Also it was given its name by a Belgian math-

ematician, Verhulst. Figure 2.2 provides a description of the function:

Pt ¼ eβ0þβ1t=
�
1þ eβ0þβ1t

�

This figure shows the relation of proportion Pt as time increases. Let the linear

relation be

logit Pt½ � ¼ β0 þ β1t;

where β0 denotes the value at time equal to zero, β1 denotes the rate of change of

logit [Pt] with regard to time and

logit Pt½ � ¼ log Pt=
�
1� Pt

� ��

The logistic function rises monotonically as t increases. We concur with authors

who have noted that for Pt from 0.3 to 0.7, the shape of the logistic curve closely

resembles that of the normal probability cumulative distribution function (Fig. 2.3).

One account of the emergence of the logistic function from the growth curve is

dated as far back as 1838 when it became a popular formula for certain places in

North Africa (Cramer, 2002). In more recent times, Dr. Pearl of the U.S. Food

Administration was preoccupied with the food needs of a growing population

during World War I and decided to use logistic functions to address

it. Additionally, President Dr. Lowell Reed of Johns Hopkins used an application

of the logistic curve to catalytic agent formed during a reaction (Reed & Berkson,

1929). The logistic function was also used in chemistry at the same time, but it

appears that the basic idea was for logistic growth. Our research support the fact

that the function is still used to model population growth as well as the market

penetration of new products and technologies.
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There is a close resemblance of the logistic to the normal distribution function

(Wilson, 1925; Winsor, 1932). As an alternative to the normal probability function,

in 1944 Berkson turned his attention to the statistical methodology of bioassay and

proposed the use of the logistic instead of the normal probability function of Pt,

coining the term “logit” as compared to the “probit” presented by Bliss (1934a,

1934b). The logistic function has presented itself in bioassay in that the logit model

of bioassay can easily be generalized to logistic regression, where binary outcomes

are related to a number of determinants without a specific theoretical background.

We learned that the earliest developments in statistics and epidemiology took

place in the late 1950s and the 1960s. We learned that in the discipline of statistics,

Fig. 2.2 A logistic curve Pt versus time

Fig. 2.3 Cumulative distribution function of normal distribution
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the analytical advantages of the logit transformation as a means of dealing with

discrete binary outcomes were put at the forefront of the discussion. This was

supported by Dr. Cox as a pioneer in the field by publishing a series of papers in the

1960s about the topic, and then following them up with the outstanding textbook

titled Analysis of Binary Data, Cox (1969). Later, the close proximity of the logistic

model to discriminant analysis was recognized, as well as its unique relationship to

log linear models (Bishop, Fienberg, & Holland, 1975). We further learned that

epidemiologists were busy developing case–control studies even earlier since the

discipline of epidemiology is more directly concerned with odds, odds ratios,

log-odds, or logit transformation. It appears that researchers were already clamor-

ing about the theoretical justification, Cornfield (1951, 1956), and we must mention

the works of Berkson (1944, 1951).

Our research led us to believe that the first comprehensive textbook with medical

applications was published by Hosmer and Lemeshow (1989). I remember using

their first edition in my graduate categorical data class in Statistics at Arizona State

University shortly after I arrived in Tempe. Until recently, I was unaware that I was

touching part of history. I remember back then talking to some researchers from the

marketing department and being told that logistic regression was brought to their

discipline by certain researchers. The presence of logistic regression models in the

behavioral sciences is believed to be due to the works of McKelvey and Zavoina

(Cramer, 2003). They adopted the approach based on an ordered probit analysis of

the voting behavior of US Congressmen. However, the generalization of logistic

regression to the multinomial or polychotomous case is due to Gurland, Lee, and

Dahm (1960), Mantel (1966), and Theil (1969).

2.5 Analysis of Data

Our analyses of binary data with logistic regression models will be done mostly

with SAS, SPSS, and R. There are several procedures in SAS, SPSS, and R for

modeling binary responses under varying conditions and certain assumptions. We

attempt to use the most common procedures as we demonstrate the fit of logistic

regression models to correlated data with and without time-dependent covariates

and with fixed and random effects. There are a few chapters when we were unable

to duplicate the fit of the model in all three statistical packages.

2.6 Conclusions

The logistic regression is often preferred as a model for binary responses as it is

appropriate for any kind of data: cross-sectional, prospective, and retrospective. Its

reliance on the odds makes it an excellent candidate for interpretation as society can
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easily relate to such findings. On the contrary, using probit or complementary log–

log is only appropriate for modeling prospective data as they rely on probabilities.
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Chapter 3

Standard Binary Logistic Regression Model

Abstract The logistic regression model is a type of predictive model that can be

used when the response variable is binary—for example: live/die; disease/no

disease; purchase/no purchase; win/lose. In short, we want to model the probability

of getting a certain outcome, in effect modeling the mean of the variable (which is

the same as the probability in the case of binary variables). A logistic regression

model can be applied to response variables with more than two categories; how-

ever, those cases, though mentioned in this text, are less common. This chapter also

addresses the fact that the logistic regression model is more effective and accurate

when analyzing binary data as opposed to the simple linear regression. We present

three significant problems that one may encounter if the linear regression model

was fitted to binary data:

1. There are no limits on the values predicted by a linear regression, so the

predicted response (mean) might be less than 0 or greater than 1, which is clearly

outside the realm of possible values for a response probability.

2. The variance for each subpopulation is different and therefore not constant.

Since the variance of a binary response is a function of the mean, then if the

mean changes from subpopulation to subpopulation, the variance will also

change.

3. Usually, the response is not a linear function of the input variable not in the data
scale. Especially, as we have come to rely heavily on linear relationships,

although it is not appropriate in these cases.

The chapter provides an example using cross-sectional data and a binary

(two-level) response, while fitting the model in SAS, SPSS, and R. The models

are based on data collected for one observation per sampling unit, and the chapter

also summarizes the application to independent binary outcomes. There are several

excellent texts on this topic, including Agresti (2002), which is referenced in the

chapter.
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3.1 Motivating Example

Hospital administrators were convinced they could predict rehospitalization within

30 days of a patient’s release based on the number of procedures each patient had

undergone, the length of stay, and the disease or diseases connected with each

patient at the time of dismissal. They collected a random selected set of charts for

1625 patients to see if they could predict future outcomes based on that sample data.

In the collected data, the response variable was binary, (rehospitalized in 30 days

versus not) so the experience they had with multiple linear regression models,

which is appropriate with continuous response data would not be appropriate.

3.1.1 Study Hypotheses

The administrators wanted to know if the number of procedures, length of stay, and

number of diseases associated with each patient were significant predictors of

rehospitalization. They were particularly interested in knowing how they could

predict the rehospitalization of future patients based on these characteristics. In a

sense they wanted to be able to profile the patients, a practice that is not unique to

rehospitalization research, but common in other scenarios such as admission pro-

cesses for colleges and universities where administrators use predictors to deter-

mine whether prospective students will be successful in their programs.

3.2 Definition and Notation

Sampling unit is the item or subject exposed to the measurement of the response

independently of other units. It constitutes a single value for the variable of interest.

It may consist of a single element, or groups of elements.

Subpopulation is a set of units belonging to a distinct combination of the

covariate values in the data.

Proportion is the mean of a binary variable and referred to as the probability. It

stems from coding your outcomes as one or zero and finding the average.

Sampling error describes the variation among identically and independently

treated sampling units. One looked at a sample and not the entire population. The

various origins of sampling error include natural variation among sampling units

and variability in measurement of the response. Statistical procedures do require an

estimate of the sampling error.
Odd is the ratio of the probability of an event to the probability of a nonevent.

For example, flipping a coin and getting a head as an event versus getting tail as the

nonevent.
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Odds ratio is the ratio of the odds of an event for a particular group versus the

odds of that event for a different group.

Logit is the natural logarithm of the odds. It is log (probability of event/

probability of nonevent).

Bernoulli trial is a single random event for which there are two and only two

possible outcomes. These outcomes are mutually exclusive. The custom is to define

one outcome termed a success and assigned the score of 1, while the other is a

failure and given the score of 0. For example, a patient survived the operation

versus not is a Bernoulli trial.

Binomial random variable is a sum of independent Bernoulli trials.

Binomial distribution is used for handling the errors associated with regression

models for binary/dichotomous responses (i.e., yes/no, dead/alive) in the same way

that the normal distribution is used in simple or multiple linear regression models.

Binary models often use logistic regression models, which are widely used

because of their many desirable properties such as interpretation in terms of the

odds (Cox & Snell, 1989; Hosmer & Lemeshow, 1989; McCullagh & Nelder, 1989;

Pregibon, 1981). Other, less commonly used binomial models include normit/probit

and complementary log–log.

Maximum likelihood is a method of finding the smallest possible difference

between the observed and the predicted (model) values. We assume the probability

of the outcome has a known distribution. Once this smallest value has been

obtained, then the best solution for the parameter is the “negative two log likeli-

hood” (Cohen et al., 2003; Hosmer & Lemeshow, 1989).

Exponential family—a set of distributions which has great flexibility in the

relations between the variance as related to the mean of the response variable.

They provide natural links between the mean of the response variable and the

covariates in the model (McCullagh & Nelder, 1989). Some examples are binomial,

Poisson, and normal distribution.

Canonical link—once the distribution in the exponential family is written in a

certain form it provides a link (called the canonical link) that relates the mean of the

response distribution to the covariates.

Hessian Matrix—was developed in the nineteenth century by the German

mathematician Ludwig Otto Hesse and later named after him. It is a square

symmetric matrix with cells consisting of the second derivatives of the function

of interest.

Likelihood function is a function of the parameters of a statistical model, defined

as follows: the likelihood of a set of parameter values, given some observed

outcomes, is equal to the probability of those observed outcomes, given those

parameter values. The non-statistical world usually sees “likelihood” as a synonym

for “probability.” However, asking, “If I were to flip a fair coin 100 times, what is

the probability of it landing heads-up every time?” and asking, “Given that I have

flipped a coin 100 times and it has landed heads-up 100 times, what is the likelihood
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that the coin is fair?” are two very different questions that show how improper it is

to use “likelihood” and “probability” interchangeably. The likelihood function

indicates how likely a parameter value is in light of the observed data.

A prospective study or cohort study may involve the selection of two comparable

groups, one for treatment and the other for control, to be observed over a period of

time. The result of the outcome for each individual according to whether or not the

event being studied is recorded. A prospective study is often conducted in order to

determine if there is an association between certain covariates and the occurrence

(probability) of a particular event. This relationship can then be investigated

through the fit of certain generalized linear models (GLMs) with probit, logit, or

complementary log–log links.

Retrospective (or case control) studies are good for studying rare conditions

because they are relatively inexpensive, the sample sizes do not have to be

extremely large, they require less time than prospective studies because the out-

come being studied has already occurred, and they can simultaneously look at

multiple risk factors. A retrospective study is an etiologic (etiologic treatment of a

disease seeks to remove or correct its cause) study in which comparisons are made

between individuals who have a particular event, known as cases, and individuals

who do not have the event, known as controls. A sample of cases is selected from a

population of individuals who have the event being studied and a sample of controls

is selected from individuals who do not have the event. Information about the

factors, which might be associated with the event, is obtained retrospectively for

each person in the study (Wang & Carroll, 1999).

3.3 Exploratory Analyses

While using a simple linear regression to test the administrators’ rehospitalization

hypothesis might seem like a good idea at first, there are significant challenges

when analyzing the collected data in that way. Many studies have mistakenly used

simple linear regression for such tasks when a logistic regression would be better

suited. Therefore, let us consider the Medicare data and explore using simple linear,

Fig. 3.1. Figure 3.1 provides a plot of predicted values from a linear regression of

rehospitalization using the multitude of diseases.

Figure 3.2 provides a plot of predicted probabilities from a simple linear

regression of rehospitalization using the multitude of diseases, length of stay, and

the presence of atherosclerosis.
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Fig. 3.1 Predicted probabilities versus NDX (multitude of diseases)
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Fig. 3.2 Predicted values versus NDX (multitude of diseases)

3.3 Exploratory Analyses 29



Source DF Sum of squares Mean square F value Pr> F

Model 3 5.06901 1.68967 6.88 0.0001

Error 1621 398.37714 0.24576

Corrected total 1624 403.44615

Root MSE 0.49574 R-square 0.0126

Dependent mean 0.54154 Adj R-sq 0.0107

Coeff var 91.54326

Parameter estimates

Parameter standard

Variable Label DF Estimate Error t value Pr> |t|

Intercept 1 0.43330 0.04632 9.36 <0.0001

DX101 1 �0.07259 0.03127 �2.32 0.0204

NDX 1 0.01468 0.00620 2.37 0.0181

LOS 1 0.00304 0.00208 1.46 0.1433

Comments: Of course whatever you put into the computer will produce results but the interpre-

tation is what makes the difference. We have a linear model based on ordinary least squares as:

P̂ biRadmit¼1 ¼ 0:433� 0:073DX101þ 0:015NDXþ 0:003LOS

The challenges with using a simple linear regression on binary data are:

1. There are no limits on the values predicted by a linear regression, so the

predicted response (mean) might be less than 0 or greater than 1, which is clearly

outside the realm of possible values for a response probability.

2. The variance of the outcomes for each subpopulation is different and is not

constant. The variance is a function of the mean. As the mean changes from

subpopulation to subpopulation, the variance will also change. Hence, we cannot

claim homogeneity of variance (as required) in this situation as we can in

ordinary linear regression.

3. While using a weighted linear regression model might seem to solve the issue,

we would still be faced with the problem of predicted values not lying between

zero and one.

The problems encountered while trying to fit a simple linear regression model

can be best addressed by fitting a logistic regression model. Logistic regression

models describe the relationship between a binary or categorical response variable

and a set of predictor variables. In this chapter, we concentrate on independent

binary responses while the rest of the book examines correlated binary

observations.

Consider the following system where X denotes a set of input variables in the

system and Y denotes the output variable, Fig. 3.3. Here, X represents multiple of

input variables, also referred to as independent, explanatory, concomitant, and

predictor variables, or drivers or factors depending on the discipline or topic. Our

known information, denoted by X, can consist of quantitative or continuous vari-

able, a binary variable, or a categorical variable. The input of the system may
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consist of all or some combination of these different types of variables. The binary

output variable denoted by Y is referred to as the response or dependent variable.

Figure 3.3 illustrates that given a set of p explanatory variables, where

X ¼ X1,X2, . . .Xp

� �
the average value of Y can be explained by some or all of

these variables. In this chapter, we fit a standard logistic regression model

log
P1

P0

� �
¼ β0X0 þ β1X1 þ � � �βIXI

where P1 and P0 denote the probability of a favorable response and an unfavorable

response, respectively, and βi denotes the ith regression coefficients (providing the

weights) associated with the Xi for i ¼ 1, . . . I ; and where X0 is defined as the

constant value of one.

3.4 Statistical Models

The logistic regression model is a type of predictive modeling that can be used

when the response variable is binary, meaning that there are only two possible

outcomes such as live/die, disease/no disease, purchase/no purchase, and win/lose.

In short, logistic regression models are used when we want to model the probability

of a certain outcome. In fact, we are modeling the mean of the response (which is

the probability in the case of binary variables). A logistic regression model can be

applied to response variables with more than two categories; however, those cases,

though referred to from time to time in this book, are not the focus but can surely be

explored further for independent observations (Agresti, 2002).

As the responses are not on a continuous measure and as such is not continuous,

the use of logistic regression differs somewhat from the well-known linear regres-

sion, because, while in both cases we are modeling the mean, the mean in regression

lies anywhere between (�1, +1) whereas the mean (or the probability) in logistic

regression lies between [0, 1]. Thus, we are predicting the probability that Y is equal

to 1 (rather than 0) given certain cases of the predictors X1, . . ., Xp. It is important to

make the distinction between these logistic and linear regression models so we can

Categorical

Continuous

Binary

(0,1)

Input Output

One observation

per sampling unit

Model
Produced

Fig. 3.3 Modeling a binary response
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think about how the observed data may be 0 or 1, but the predicted value may lie

between [0, 1]. For example, we might try to predict the probability of whether a

patient will live or die based on the patient’s age as well as the number of years of

experience his or her operating physician has.

The general form of the logistic regression model is

log
p1

1� p1

� �
¼ β0 þ β1X1 þ � � �βIXI

where p1 is the probability that Y¼1 (the event), given X1 . . .XI are the covariates

(predictors), and β1i ¼ 1, 2 . . . p are known as the regression coefficients, which

have to be estimated from the data. Logistic regression model forms a linear

combination of the explanatory variables to impact the logit, which is log {proba-

bility of event/probability nonevent}. On the logit scale the relation is linear, on the

probability scale it has the shape of an S, and on the odds scale it is also nonlinear.

3.4.1 Probability

Let probability p1 denote success and 1� p1 denote failure with the results

constrained to lie between 0 and 1. On the probability scale, we define

p1 ¼
exp β0 þ β1X1 þ � � �βIXI½ �

1þ exp β0 þ β1X1 þ � � � þ βIXI½ �

The constraints of 0 � p1 � 1 make it impossible to construct a linear equation for

predicting probabilities.

3.4.2 Odds

On the odds scale, we define

p1
1� p1

¼ exp β0 þ β1X1 þ � � � þ βIXI½ �

They are constrained by 0� p1
1� p1

< 1, with 1 as the point for which both outcomes

are equally likely. Odds are asymmetric. If we invert the odds or consider the two

outcomes as switched, each value in the range 0 to 1 is transformed by taking its

inverse (1/value) to a value in the range 1 to + 1. For example, if the odds of

rehospitalization are 1/4, the odds of not being rehospitalized are 4/1.
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3.4.3 Logits

On the logit scale, we define

log
p1

1� p1

� �
¼ β0 þ β1X1 þ � � � þ β pX p:

On this scale, we have linearity. The logits are symmetric. They lie in the range

�1 to þ1. The value that is equally likely for both outcomes is 0. If the

identification of the two outcomes are switched, the log odds are multiplied by

�1, since log(a/b)¼�log(b/a). For example, if the log odds of rehospitalization are

0.6026, the log odds of not being rehospitalized are �0.6026. As the probability of

an outcome increases, the odds and log odds also increase. The log odds of an event

relays equally the same message as the probability of the event, so if a certain

predictor has a positive impact on the logit then it has the same directional effect on

the odds. When the log odds take on any value between �1 and þ1, the

coefficients form a logistic regression equation that can be interpreted in

the usual way, meaning that they represent the change in log odds of the response

per unit change in the predictor.

3.4.4 Logistic Regression Versus Ordinary Least Squares

In this section, we addressed the differences between using a linear regressionmodel

(i.e., obtaining estimates through ordinary least squares) on binary data as opposed

to logistic regression model and presented a summary of their comparatives. When

fitting logistic regression models, the researcher is predicting the probability of a

binary outcome (the mean). In a logistic regression model, the errors follow a

logistic distribution, whereas in the ordinary least squares model, the errors are

normally distributed. The logistic regression model takes the logit of the probability

of a favorable outcome and provides an explanation for its variation through a set of

possible input variables. In such case, the underlying distribution is Bernoulli; the

link between the probability (mean of the distribution) and the covariates is logit.

Thus, the logistic regression belongs to a class of models called GLMs.

Unlike ordinary linear regression models, logistic regression models do not

assume that the relationship between the covariates and the mean of the response

variable is a linear one. Nor does it assume that the response variable or the error

terms are distributed normally. When fitting a logistic regression model, there is no

R2 to gauge the variance accounted for in the overall model (at least not one that has

been agreed upon by statisticians). Instead, we rely on a goodness-of-fit chi-square

test to indicate how well the logistic regression model fits the data (Agresti, 2002)

and Hosmer and Lemeshow’s goodness-of-fit, (Hosmer & Lemeshow, 1989).

For logistic regression models, the response variable is an indicator of some

characteristic, that is, a binary variable, whereas in the ordinary linear least squares
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regression, the response variable is continuous and hence it cannot have a binomial

distribution. Logistic regression is used to determine whether certain factors influ-

ence the presence of some characteristics; for example, whether certain character-

istics are predictive of the probability that a customer would default on a loan, or the

probability of a driver getting in an accident, or the probability of a patient

surviving an operation, or probability of a student succeeding in graduate school.

Although the response variable in a logistic regression model is binary, the

logistic regression equation, which is a linear equation, does not predict

the outcome of the binary variable but rather the probability of the outcome. The

importance of the regression coefficients denotes how the specific covariate has

predictive capability in the system of variables. Instead of classifying an observa-

tion into one group or the other, logistic regression predicts the probability that the

binary response is an event. To be precise, the logistic regression equation does not

directly predict the probability that the outcome is an event. It predicts the log odds

that an observation will have an event outcome with certain characteristics.

3.4.5 Generalized Linear Models

A logistic regression model belongs to a class of models referred to as GLM. GLMs

are defined by three components:

1. A random component that specifies the probability distribution of the response

variable. The data are assumed to be as a result of independent observations from

a distribution belonging to the exponential family (component 1).

2. A systematic component, which specifies a linear function of the covariate so

β0 þ β1X1 þ � � � þ β pX p (component 2).

3. The link function, which relates a linear combination of predictors (component

2) and the mean of the response variable (component 1).

So in the use of logistic regression models, component 1 is the binomial distribu-

tion with mean np and variancen p 1� pð Þ. Component 2 will be the right side of our

model, β0 þ β1X1 þ � � � þ β pX p, and component 3 is the logit that combines np and

β0 þ β1X1 þ � � � þ β pX p to result in log
n p1

n�n p1

� �
¼ β0 þ β1X1 þ � � � þ β pX p. The GLMs

provide a unified approach to modeling the mean of a random variable (in this case,

the probability of the binary variable outcome) with known distribution (Nelder &

Wedderburn, 1972). Essentially, a GLMdescribes how a function of the mean relates

linearly to the set of predictors. In particular, we look at the logit link, such that

log
P1

P0

� �
¼ β0 þ β1X1 þ � � � þ βIXI

where P1 denotes the probability of the event and P0 denotes the probability of the

nonevent, it links the probability p1 with the set of Xi: i ¼ 1, . . . , I. The effect of a

34 3 Standard Binary Logistic Regression Model



unit change in xi changes the log odds by an amount β̂ i, an estimate of βi, which is

the ith element in the set of parameters. Equivalently, the effect of a unit change in

xi leads to an increase in the odds of a positive response multiplicatively by the

factor exp β̂ i

� �
, while other predictors are accounted for. The idea of GLMs

(McCullagh & Nelder, 1989) provides an extension of linear models, since it allows

us to use other distributions that negate the need for the assumptions of normality,

constant error variance, and a linear relationship between the covariate effects and

the mean.

3.4.6 Response Probability Distributions

In GLMs, the response is assumed to possess a probability distribution from the

exponential family. That is, the probability density of the response y for continuous

response variables, or the probability function for discrete responses, can be

expressed in a special form, (Dobson & Barnett, 2008). In this form, we can easily

determine the mean and variance and the so-called canonical link, a special link

obtained when the distribution is written in a certain form, the so-called

canonical form.

3.4.7 Log-Likelihood Functions

Let the ith observation have a response yi either one or zero with mean μi and
dispersion parameter φ. Then, for each observation there is a likelihood function li
so the joint log-likelihood function is

L y; μ;φð Þ ¼ Sumi of lif g,
where Sumi represents the sum of the likelihood function over the independent

observations.

3.4.8 Maximum Likelihood Fitting

The aim is to maximize the log-likelihood function L(y, μ,φ) with respect to the

regression parameters. It is useful to note, at this point, that while maximum

likelihood estimators have desirable properties, they are not useful for analyzing

correlated observations. In most of the remaining pages in this book, we concentrate

on correlated data. Therefore, the joint likelihood will be unknown and other

methods must be explored. The correlated observations deny us the opportunity

to sum the likelihood function

3.4 Statistical Models 35



3.4.9 Goodness of Fit

Two statistics that are helpful in assessing the goodness of fit of a GLM are the

scaled deviance and Pearson’s chi-square statistic. For a fixed value of the disper-

sion parameter φ, the scaled deviance is defined to be twice the difference between

the maximum achievable log likelihood and the log likelihood at the maximum

likelihood estimates of the regression parameters. The scaled version of both of

these statistics, under certain regularity conditions, has a limiting chi-square distri-

bution, with degrees of freedom equal to the number of observations minus the

number of parameters estimated. The scaled version can be used as an approximate

guide to the goodness of fit of a given model. Use caution before applying these
statistics to ensure that all the conditions for the asymptotic distributions hold.
McCullagh and Nelder (1989) advised that differences in deviances for nested

models can be better approximated by chi-square distributions than the deviances

can themselves. In cases where the dispersion parameter is not known, an estimate

can be used to obtain an approximation to the scaled deviance and Pearson’s

chi-square statistic. One strategy is to fit a model that contains a sufficient number

of parameters so that all systematic variation is removed, estimate φ from this

model, and then use this estimate in computing the scaled deviance of sub-models.

The deviance or Pearson’s chi-square divided by its degrees of freedom is

sometimes used as an estimate of the dispersion parameter φ. For example, since

the limiting chi-square distribution of the scaled deviance has n� p degrees of

freedom, where n is the number of observations and p is the number of

parameters, equating scaled deviance to its mean and solving for φ yields

φ̂ ¼ deviance
n� p

¼ ϕ̂ ¼ D= n� pð Þ. Similarly, an estimate of φ based on Pearson’s

chi-square is φ̂ ¼ X2= n� pð Þ.

3.4.10 Other Fit Statistics

The Akaike information criterion (AIC) is a measure of goodness of model fit that

balances model fit against model simplicity, no variables included. An alternative

form is the corrected

AICC ¼ AICþ 2p p� 1ð Þ
n� p� 1

where n denotes the total number of observations used and p is the number of

parameters. The Bayesian information criterion (BIC) is a similar measure of

goodness of fit (Akaike, 1981). Simonoff (2003) provides information for using

AIC, AICC, and BIC with GLMs. These criteria are useful in selecting among

regression models, with smaller values representing better model fit.
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3.4.11 Assumptions for Logistic Regression Model

When fitting a standard binary logistic regression model, there are important

assumptions need to be satisfied: Observations are assumed independent, and the

effect of any clustering is ignored. If there is a violation of the independence

assumption, then this may result in incorrect inferences about the regression

coefficient or inefficient estimates of regression coefficients.

3.4.12 Interpretation of Coefficients

The β̂ i represents the change in log
p̂

1� p̂

� �
with one unit change in Xi while the other

X variables are held constant or, equivalently, the change in the odds ratio with one

unit change in eβ̂ i .

3.4.13 Interpretation of Odds Ratio (OR)

In exploring the interpretation of the odds ratio, let us consider two cases, one where

Xi is binary and one when it is continuous:

WHEN Xi IS BINARY, consider:

Xi ¼ 1 Xi ¼ 0

Y¼1 P Y¼1 f or Xi¼1ð Þ P Y¼1 f or Xi¼0ð Þ
Y¼0 P Y¼0 f or Xi¼1ð Þ P Y¼0 f or Xi¼0ð Þ

OR ¼ P Y¼1 f or Xi¼1ð Þ P Y¼0 f or Xi¼0ð Þ
P Y¼0 f or Xi¼1ð Þ P Y¼1 f or Xi¼0ð Þ

If we were to take the logarithm of OR, we would see that it is the difference of

two logistic functions, and hence, an estimate of OR is the partial regression

coefficient eβ̂ i when all other predictors are held constant. Thus, the log of the

odds ratio is the βi.
WHEN Xi IS CONTINUOUS, then consider a particular value and that value plus one.

Xi ¼ 1þ certain value Xi ¼ a certain value

Y¼1 P Y¼1 f or Xi¼1þa certain valueð Þ P Y¼1 f or Xi¼a certain valueð Þ
Y¼0 P Y¼0 f or Xi¼1þa certain valueð Þ P Y¼0 f or Xi¼a certain valueð Þ

Thus, an estimate of OR is the partial regression coefficient eβ̂ i when all other

predictors are held constant. Thus, the log of the odds ratio is the βi.
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3.4.14 Model Fit

We use chi-square as a measure of model fit. It is the comparison of the observed

values to the expected (model) values. The bigger the difference (or “deviance”) of

the observed values from the expected values, the poorer the fit of the model.

Therefore, we want a “small chi-square” if possible. Small in this case is measured

by the size of the p-value. As we add more variables to the equation, the deviance

should get smaller, indicating an improvement in fit. However, more variables bring

additional challenges.

Instead of using the deviance to judge the overall fit of a model, we can

compare the fit of the model with and without the predictor(s). This is similar to

the change in R2 (when fitting normal regression models) when another variable

has been added to the equation. But here, we expect the deviance to decrease

because the degree of error in prediction decreases as we add another variable. To

conduct such comparisons, we compare the deviance with just the intercept to the

deviance when the new predictor or predictors have been added. The difference

between these two deviance values is often referred to as G2, (Hosmer &

Lemeshow, 1989).

While there are several measures to answer how well the model fits, there is still

debate on what makes a good measure. Measures are either predictive in nature or

goodness-of-fit tests (such as the Pearson chi-square). The Hosmer and Lemeshow

test is shown to have some serious problems, since its result can depend on the

number of groups. The measures based on Tjur (2009) and McFadden R-square,

McFadden (1974) are some preferred by many for certain reasons. The Tjur statistic

has upper bound of 1.0 and bears some resemblance to coefficient of determination

for normal linear data.

3.4.15 Null Hypothesis

The statistical null hypothesis is that the simultaneous effects of the predictors do

not impact the probability of the response. This means that on the logit scale the

regression coefficient for the linear fit has a value of zero. There are several

different ways of obtaining and estimating the p-value associated with the hypoth-

esis. The Wald chi-square is fairly popular, but it may yield inaccurate results with

small sample sizes. The likelihood ratio method may be better alternative because it

uses the difference between the probability of obtaining the observed results under

the logistic regression model and as opposed to the probability of obtaining the

observed results in a model with no relationship between the response and

covariates, (Allison, 2012).

38 3 Standard Binary Logistic Regression Model



3.4.16 Predicted Probabilities

When modeling a binary response and obtaining predicted probabilities based on a

fitted binary model, it is common to overlook the fact that predicted probabilities

might differ with respect to the nature of the data (prospective or retrospective) used

to fit the model. The difference in the predicted probabilities will depend on the

inclusion probability, the probability of being in the sample based on its presence in

the population, (Fang, Chong, & Wilson, 2015). They fitted probit, logit, and

complementary log–log to retrospective data knowing that only the logit was

appropriate for such data, if we are interested in predicting probabilities. They

found that, in all three models, with an inclusion probability of 14 %, the predicted

probability based on retrospective data was different from what it should have been

if perceived as prospective data. It is crucial to understand the difference between

predicted probabilities presented based on a retrospective study and predicted

probabilities presented based on a prospective study, especially in the context of

binary models. In particular, if the number of events to nonevents ratio in the

sample is not the same as that in the population, then fitting models based on

retrospective data will present certain challenges regarding predicted probabilities.

In particular, if the inclusion probability for an event is larger than the inclusion

probability for a nonevent, then the estimated predicted probabilities in retrospec-

tive studies are larger than in prospective studies. The magnitude of the predictive

probabilities for the logit, complementary log–log link, and the probit link model in

the analysis of prospective data as opposed to retrospective data is crucial. In

addition, the predictive probabilities based on retrospective and prospective prob-

abilities differ based on the inclusion probabilities. Thus, for the binary links based

on logit, probit, and complementary log–log, the magnitudes of the predicted

probabilities based on retrospective versus prospective are not the same. Moreover,

with these links if the inclusion probability for an event is equal to the inclusion

probability for a nonevent, then the predictive probabilities are the same regardless

of whether the data are sampled prospectively or retrospectively. If the inclusion

probability for an event is larger than the inclusion probability for a nonevent, then

the estimated probabilities in retrospective studies are larger than those from

prospective studies. In particular, if the ratios of the events to the nonevents in

the sample are not in the same ratio as in the population, then fitting models based

on retrospective data cannot use the predicted probabilities unless they are adjusted.

A predicted probability can be found for any combination of covariate values. In

addition, confidence intervals for the predicted probabilities can be determined, but

they are expected to be wide as they will incorporate variability for all of the beta

coefficients in the model. Some researchers have suggested providing the p-values

for the beta coefficients to indicate whether the covariates contribute statistically

(statistical significance) and predicted probabilities (without CI) to show what that

contribution means (practical significance).

Just as we might be concerned about predicting beyond the scope of the data in

linear regression model, there is a danger in using covariate values that are far from

the observed values in logistic regression. Some researchers suggested that our
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focus should remain on model subjects or others of particular interest, and then vary

just a few covariate values to demonstrate the implications of the model (Oken,

Kleinman, Belfort, Hammitt, & Gillman, 2009).

3.4.17 Computational Issues Encountered with Logistic
Regression

1. Failure to converge

If the different covariates have certain values, you may have problems with

obtaining regression coefficient estimates and may get a message of “failure to
converge.” The covariate values are important to the makeup of the so-called

Hessian matrix that is used to guide the convergence process. If the Hessian

matrix is singular (unable to invert), the logistic regression procedure will be

unsuccessful and a warning message will be displayed.

2. Complete and quasi-complete separation of values

The estimation of the regression coefficients may also encounter complete

separation, a condition where one predictor or a linear combination of predictors

perfectly predicts the target value. For example, consider a situation where every

value of the response variable is 0 if a certain predictor is less than 10, and every

value is 1 if the predictor is greater than 10. The value of response, then, can be

perfectly predicted by checking if the predictor is less than or greater than 10. In

this case, it is impossible to compute the maximum likelihood values for the

regression parameters because the slope of the logistic function would be infinite.

At the beginning of each logistic regression analysis, a check should be made for

complete separation on each predictor variable. If complete separation is detected,

a report (computer output) will be generated with some procedures but not with

others (Allison, 2008). The estimation of the regression coefficient may also

encounter quasi-complete separation, a condition when values of the target vari-

able overlap or are tied at a single value, or only a few values, of a predictor

variable. The analysis may not always check for quasi-complete separation, but

the symptoms are extremely large calculated values for the regression parameters

or large standard errors. The analysis also may fail to converge. If complete or

quasi-complete separation is detected, the predictor variable(s) showing separa-

tion should be removed from the analysis (Webb, Wilson, & Chong, 2004).

3.5 Analysis of Data

In this chapter, we will look at situations involving Bernoulli trials where the

sampling units are independent, each unit provides one observation, and the

outcome is binary. We will examine a Medicare dataset based on rehospitalization

and use SAS, SPSS, and R to analyze the data.
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3.5.1 Medicare Data

We considered the Medicare data (Sect. 1.7) and modeled the probability of

rehospitalization after the first visit using the number of procedures, length of

stay, and the presence of coronary atherosclerosis as factors that would influence

rehospitalization within 30 days of a patient’s release from the hospital. There were

1625 patients in the dataset with complete information. We use the Medicare
dataset to demonstrate how to fit a logistic regression model, test hypotheses, and

interpret the data. Our response is binary, meaning that a patient is either

rehospitalized or not rehospitalized within 30 days after discharge. We refer to

this as biRadmit denoting readmittance. The predictors are the number of pre-

scriptions [NDX], length of stay [LOS], and whether or not the patient has coronary

atherosclerosis [DX101]. We used SAS, SPSS, and R to conduct the fit of the

standard logistic regression model. For the fit to the binary data, we had three

choices. We could fit the data with the model using the logit scale, or the odds scale,

or the probability scale. Thus, we had:

logit Pið Þ ¼ β0 þ β1NDXi þ β2LOSi þ β3DX101i

Pi

1� Pi½ � ¼ eβ0þβ1NDXiþβ2LOSiþβ3DX101i

Pi ¼ eβ0þβ1NDXiþβ2LOSiþβ3DX101i

1� eβ0þβ1NDXiþβ2LOSiþβ3DX101i

The advantage of using the logit scale for interpretation is that the relationship

between the logit and the predictors is a linear one. However, it is just as convenient

to state things in terms of probabilities. We must keep in mind that the relationship

between the probabilities and the predictors is not a linear relationship. In fact,

logistic regression models on the probability scale are at times considered nonlinear

models.

SAS Program

Data mydata; set perm.Anhdata; run;

where time¼1;

ID ¼ _N_;

run;

proc means data ¼ mydata mean std min max N;

var biRadmit NDX LOS DX101;

run;

Comments: PROC MEANS is an SAS procedure that provides the summary of the data for time¼1

Table 3.1 Cross-

classification of

rehospitalization by DX101
biRadmit

DX101

0 1

0 567 178

1 725 155
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SAS Output

The MEANS procedure

Variable Label Mean Std dev Minimum Maximum N

biRadmit biRadmit 0.5415385 0.4984250 0 1.0000 1625

NDX NDX 7.2523077 2.1187868 1.000 9.0000 1625

LOS LOS 5.4738462 6.2967042 0 142.0000 1625

DX101 DX101 0.2049231 0.4037697 0 1.0000 1625

Comments: The mean of the binary responses (biRadmit ) is 0.542 (when rounding) which is the

percentage of patients responding with a “1” that they had been rehospitalized within 30 days

SAS Program

/* Other Features of Proc Logistic */

* CLASS statement, for illustration purpose ;

proc logistic data ¼ mydata ;

class DX101 (ref¼’0’) /parm ¼ ref;

model biRadmit (event¼’1’) ¼ DX101 NDX LOS ;

run;
* CONTRAST statement, for illustration purpose;

proc logistic data ¼ mydata ;

class DX101 /parm ¼ glm ;

model biRadmit (event¼’1’) ¼ DX101 NDX LOS;

contrast ’0 vs 1 of DX101’ DX101 1 -1 / estimate;

run;

Comment: The event¼ “1” allows us to model “1” so that probability of the event¼ 1 is in

the numerator. So we have log PbiRadmit¼1=PbiRadmit¼0ð Þ instead of log PbiRadmit¼0=PbiRadmit¼1ð Þ.
The CLASS statements identify which level will be the reference level

SAS Output

Model information

Dataset WORK.MYDATA

Response variable biRadmit biRadmit

Number of response levels 2

Model Binary logit

Optimization technique Fisher’s scoring

Comment: We are fitting a binary logit. We use the Fisher’s scoring method to obtain the

estimates of the regression coefficient

Number of observations read 1625

Number of observations used 1625

Comment: There are no missing values. We were able to use all 1625 observations

Response profile

Ordered value biRadmit Total frequency

1 0 745

2 1 880

Comment: There are 880 cases with output 1 and 745 cases with output 0. Probability modeled is

biRadmit¼ ’1’
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We are modeling the probability of the outcome is 1 thus

log PbiRadmit¼1=PbiRadmit¼0ð Þ.
Class level information

Class Value Design variables

DX101 0 0

1 1

Model convergence status

Convergence criterion (GCONV¼ 1E-8) satisfied

Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 2243.500 2228.875

SC 2248.893 2250.448

-2 log L 2241.500 2220.875

Comment: There are three statistics that tell us about the fit: the difference between “Intercept

Only” and “Intercept” and the “covariates.” We have AIC¼ (Akaike Information Criterion) and

SC (¼Schwarz Criterion) and �2 log L¼ (�twice log likelihood), where smaller values represent

a model that is a better fit to the data. The differences in the model fit statistics are:

Difference

AIC 14.625

SC 1.555

�2 log L 20.625

The difference serves as a joint test for the significance of the three covariates.

Testing global null hypothesis: BETA¼0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 20.6254 3 0.0001

Score 20.4170 3 0.0001

Wald 20.0557 3 0.0002

Comment: The three tests (LikelihoodRatio, Score,Wald) are significant.We see that from the very

small p-values, DX101, NDX, and LOS together have a jointly significant effect on rehospitalization

The LOGISTIC procedure

Type 3 analysis of effects

Effect DF Wald chi-square Pr>ChiSq

DX101 1 5.2328 0.0222

NDX 1 5.1968 0.0226

LOS 1 2.1013 0.1472

Comment: The added effect of each of the three covariates shows that DX101 (p¼ 0.0222) and

NDX (p¼ 0.0222) are significant but LOS is not. [We used α ¼ 0:05 as a yardstick for comparison

for significance]
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Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.2699 0.1876 2.0693 0.1503

DX101 1 �0.2903 0.1269 5.2328 0.0222

NDX 1 0.0580 0.0254 5.1968 0.0226

LOS 1 0.0141 0.00974 2.1013 0.1472

Comment: The logistic regression model is best represented by

log P̂ biRadmit¼1=P̂ biRadmit¼0

� � ¼ �0:270� 0:290DX101þ 0:058NDXþ 0:014LOS

These beta coefficients are estimated through the method of maximum likeli-

hood. To obtain such estimates, we have to assume a distribution. We assumed the

Bernoulli trial, which led to the binomial distribution (the sum of independent

Bernoulli trials). The intercept has a parameter estimate of �0.270. This is the

estimated logit when DX101¼ 0, LOS¼ 0, and NDX¼ 0, meaning that the patient

had no diagnosis, was not hospitalized, and had no coronary atherosclerosis. This

really makes no sense here. There are times when the intercept is not interpretable,

and this is one such time. The coefficient for the binary variable DX101 is �0.290,

which means that for patients with coronary atherosclerosis versus those without

coronary atherosclerosis, the expected change in the log of odds is .290 given that

NDX and LOS stay fixed. In other words, if two patients are compared and the only

thing that differs is that one has DX101 (coronary atherosclerosis) and the other

does not, then the difference is 0.290 on the logit scale.

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

DX101 1 versus 0 0.748 0.583 0.959

NDX 1.060 1.008 1.114

LOS 1.014 0.995 1.034

Comment: We can also interpret the results on the scale of the odds ratio. The odds for a DX101

patient are exp �0:2699� 0:2903þ 0:0580þ 0:0141ð Þ ¼ 0:6138 and the odds for a non-DX101

patient are exp �0:2699þ 0:0580þ 0:0141ð Þ ¼ 0:8205. Therefore, taking the ratio of these two

odds, we get the odds ratio for DX101¼ 1 versus DX101¼ 0 as 0.6138/0.8205¼ 0.7481. We are

also given the 95 % Wald confidence limits as [0.583, 0.959]. In terms of probabilities, the

probability for a DX101 patient to be rehospitalized (all other things being equal) is (.6138)/(1

+ 0.6138)¼ 0.3803. The probability for non-DX101 is 1� 0.3803¼ 0.6197. One should not

confuse the adjusted odds ratio, 0.748, which is the conditional, with the unadjusted odds ratio

0.681, {¼(567� 155)/(178� 725)}¼ 0.68 computed from the Table of Frequencies

biRadmit DX101 Frequency Percent Cumulative frequency Cumulative percent

0 0 567 34.89 567 34.89

0 1 178 10.95 745 45.85

1 0 725 44.62 1470 90.46

1 1 155 9.54 1625 100.00

Comment: The unadjusted odds ratio is 155*567/725*178¼ 0.681, which is different from 0.748

which is computed when all the variables are in the model
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Readmit DX101¼ 0 DX101¼ 1

0 567 178

1 725 155

The former is the unadjusted odds ratio while the latter is the adjusted odds ratio.

Too often researchers use the two-variable-at-a-time approach in research to ana-

lyze the data, when in fact these covariates all exist simultaneously.

Association of predicted probabilities and observed responses

Percent concordant 56.8 Somers’ D 0.157

Percent discordant 41.1 Gamma 0.161

Percent tied 2.1 Tau-a 0.078

Pairs 655600 c 0.579

Comment: Once the model is fitted, we can then go back and compute the probability of

rehospitalization for each patient. Those so-called predicted probabilities will not be 0 or 1 but

will lie between [0, 1]. To make comparisons (though not usually advisable) among the given

responses in the data, we need to dichotomize those predicted probabilities. We can do that based

on 0.50 or based on the prior probabilities observed in the dataset, 880/1625¼ 0.5415 (as obtained

from the Response Profile). However, in this case SAS used 0.50 and obtained a 2 by 2 table of

observed versus predicted probabilities. The percent concordant and discordant as well as the other

values are computed from that table

Contrast estimation and testing results by row

Contrast Type Row Estimate

Standard

error Alpha

Confidence

limits

Wald

chi-square

Pr>
ChiSq

0 versus

1

PARM 1 0.2903 0.1269 0.05 0.0416 0.5391 5.2328 0.0222

Comment: Using the contrast statement in the second program allows for a specific test of model

parameters using an asymptotic Wald chi-square test of the null hypothesis, showing that a linear

combination of the coefficients is zero. In this case, we test whether or not the patient has

NDX101¼ 0 versus NDX101¼1

SAS program

* TEST Statement;

PROC LOGISTIC data ¼ mydata ;

model biRadmit (event¼’1’) ¼ DX101 NDX LOS;

test_LOS_NDX: test LOS, NDX; * tested on the joint effect of LOS and NDX. ;

test_equal: test LOS ¼ NDX; * tested on the hypothesis that the effect of LOS

and NDX are the same on rehospitalization;

run;
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SAS Output

The output consists of the previously stated output plus the following:

Linear hypotheses testing results

Label Wald chi-square DF Pr>ChiSq

test_LOS_NDX 10.5609 2 0.0051

test_equal 2.1314 1 0.1443

Comment: We have first the test that βlos ¼ βndx ¼ 0 that is the joint effect of LOS and NDX equal

zero. A p-value of 0.0051 shows that the joint effect is significant. The test βlos ¼ βndx has a p-value
with 0.1443, meaning the effects of LOS are not significantly different from the effects of NDX in

the model

SAS Program

* LACKFIT AND RSQUARE OPTION;

PROC LOGISTIC DATA ¼ MYDATA;

MODEL BIRADMIT(EVENT¼’1’) ¼DX101 LOS NDX / RSQ LACKFIT;

RUN;

Comment: This provides a test of the model we refer to as lack of fit and gives the so-called

R-square value

SAS Output

The output consists of the previously stated output plus the following:

R-square 0.0126 Max-rescaled R-square 0.0169

Partition for the Hosmer and Lemeshow test

biRadmit¼ 1 biRadmit¼ 0

Group Total Observed Expected Observed Expected

1 162 73 69.66 89 92.34

2 170 78 81.76 92 88.24

3 163 76 82.41 87 80.59

4 162 84 85.23 78 76.77

5 168 92 91.91 76 76.09

6 189 93 106.87 96 82.13

7 157 95 90.30 62 66.70

8 149 89 86.73 60 62.27

9 175 118 103.73 57 71.27

10 130 82 81.42 48 48.58
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Hosmer and Lemeshow goodness-of-fit test

Chi-square DF Pr>ChiSq

11.3524 8 0.1825

Comment: The model is a good fit. The R2 statistic that is produced in the MODEL line is a

generalized coefficient of determination proposed by Cox and Snell (1989). The max-rescaled R2

is adjusted to have a maximum value of 1.0, as proposed by (Nagelkerke, 1991). Since the

so-called response variable is binary, any attempt to look at the predicted values versus the

observed values will not result in useful information regarding the fit of the model. However,

through the Hosmer and Lemeshow goodness-of-fit test we can decide whether the model is a good

fit. A p-value of 0.1825 suggests that there is no significant residual after this model was fitted

PNUM_R biRadmit NDX LOS DX101 PRE_1

127 0 9 6 1 0.51161

560 1 9 8 0 0.59025

746 1 6 12 0 0.56156

750 0 9 6 0 0.58341

1117 0 9 5 1 0.50808

1395 1 9 6 0 0.58341

1568 1 8 2 0 0.55535

2076 1 9 8 1 0.51866

2390 0 7 2 0 0.54098

2413 0 9 17 0 0.62060

3008 0 5 2 0 0.51208

3123 1 9 3 0 0.57308

3710 1 6 3 0 0.53007

3970 0 9 1 0 0.56615

3982 0 7 1 0 0.53748

4236 0 9 5 0 0.57997

4581 1 9 3 1 0.50102

4873 0 9 1 1 0.49396

5387 0 3 3 0 0.48662

6255 0 9 5 0 0.57997

7497 0 8 4 0 0.56231

7599 0 7 4 1 0.47558

SPSS Program Code

LOGISTIC REGRESSION VARIABLES biRadmit

/METHOD¼ENTER NDX DX101 LOS

/PRINT¼SUMMARY

/CRITERIA¼PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
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SPSS Pull Down Menu

Step 1:

Click “Analyze” on the toolbar

Select “Regression”

Click “Binary Logistic”

Step 2:

Select the dependent variable in the left column

Click the arrow next to “Dependent”

Select the independent variables in the left column

Click the arrow next to “Covariates”

Click “OK” at the bottom of the window

SPSS Output

Case processing summary

Unweighted casesa N Percent

Selected cases Included in analysis 1625 100.0

Missing cases 0 .0

Total 1625 100.0

Unselected cases 0 .0

Total 1625 100.0

Comment: All observations were used. There were no missing values
aIf weight is in effect, see the classification table for the total number of cases

Model summary

Step �2 log likelihood Cox & Snell R square Nagelkerke R square

1 2220.875a .013 .017

Comment: The Cox & Snell and Nagelkerke generalized R2 values are meant to mimic the R2 in

the regression model for continuous data.
aEstimation terminated at iteration number 3 because parameter estimates changed by less

than .001

Classification tablea

Observed

Predicted

biRadmit

Percentage correct0 1

Step 1 biRadmit 0 195 550 26.2

1 163 717 81.5

Overall percentage 56.1

The cut value is .500

Comment: The predicted values lie between [0,1]. So any comparisons with the original data

require a dichotomization of the predicted probabilities. One such method is to use 0.50 as the

cutoff. The classification table depends on the cut point chosen. Some researchers may choose to

use 0.54 as the cutoff as it coincides with prior probabilities
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Variables in the equation

B S.E. Wald DF Sig. Exp(B)

Step 1a NDX .058 .025 5.197 1 .023 1.060

DX101 �.290 .127 5.233 1 .022 .748

LOS .014 .010 2.101 1 .147 1.014

Constant �.270 .188 2.069 1 .150 .763
aVariable(s) entered on step 1: NDX, DX101, LOS

Comment: The B column has the results from the maximum likelihood esti-

mates in the logit scale, and the exp(B) values give the odds ratio values. Note that

SPSS uses three significant digits, so values may appear to be different from other

programs but that is due purely to rounding. The logistic regression model is best

represented by

log P̂ biRadmit¼1=P̂ biRadmit¼0

� � ¼ �0:270� 0:290DX101þ 0:058NDX
þ 0:0141LOS

PNUM_R biRadmit NDX LOS DX101 PRE_1

127 0 9 6 1 0.51161

560 1 9 8 0 0.59025

746 1 6 12 0 0.56156

750 0 9 6 0 0.58341

1117 0 9 5 1 0.50808

1395 1 9 6 0 0.58341

1568 1 8 2 0 0.55535

2076 1 9 8 1 0.51866

2390 0 7 2 0 0.54098

2413 0 9 17 0 0.62060

3008 0 5 2 0 0.51208

3123 1 9 3 0 0.57308

3710 1 6 3 0 0.53007

3970 0 9 1 0 0.56615

3982 0 7 1 0 0.53748

4236 0 9 5 0 0.57997

4581 1 9 3 1 0.50102

4873 0 9 1 1 0.49396

5387 0 3 3 0 0.48662

6255 0 9 5 0 0.57997

7497 0 8 4 0 0.56231

7599 0 7 4 1 0.47558

These beta coefficients are estimated through the method of maximum likeli-

hood. To obtain such estimates, we had to assume a distribution. We assumed the

Bernoulli trial, which led to the binomial distribution (the sum of independent

Bernoulli trials). The intercept has a parameter estimate of �0.270. This is the
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estimated logit when DX101¼ 0, LOS¼ 0, and NDX¼ 0. It is when the patient had

no diagnosis, was not hospitalized, and had no coronary atherosclerosis. This really

makes no sense here. There are times when the intercept is not interpretable, and

this is one such time. The coefficient for the binary variable DX101 is�0.290. That

means that for patients with coronary atherosclerosis versus those without coronary

atherosclerosis, the expected change in the log of odds is .290 given that NDX and

LOS stay fixed. In other words, if two patients were to be compared and the only

thing that differs between them is that one has DX101 (coronary atherosclerosis)

and the other does not, then the difference is 0.290 on the logit scale. So a patient

with DX101 has a higher chance of being readmitted.

R Program

> glm.out¼glm(biRadmit ~ DX101+LOS+NDX, family¼binomial(logit), data¼data2)

> summary(glm.out)

Call: glm(formula ¼ biRadmit ~ DX101 + LOS + NDX, family ¼ binomial(logit),

data ¼ data2)

R Output

Deviance residuals

Min 1Q Median 3Q Max

�2.1710 �1.2412 0.9995 1.0794 1.3905

Coefficients

Estimate Std. error z value Pr(>|z|)

(Intercept) �0.269890 0.187617 �1.439 0.1503

DX101 �0.290320 0.126914 �2.288 0.0222 *

LOS 0.014120 0.009741 1.450 0.1472

NDX 0.057994 0.025440 2.280 0.0226 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Comment: The estimate column contains the maximum likelihood estimates based on the

logit scale. Note that the test statistics are z-scores, or the square root of the Wald chi-square

statistics in the Type 3 Analysis of Effects table in SAS (Wald χ2¼ z2). The p-values are the same

so the interpretation about the unique effect of the predictor variables is identical between the

programs

(Dispersion parameter for binomial family taken to be 1)

Null deviance 2241.5 on 1624 degrees of freedom

Residual deviance 2220.9 on 1621 degrees of freedom

AIC 2228.9

Number of Fisher Scoring iterations 4

Comment: These are the values for model fit, and the null deviance matches the Intercepts Only

�2 log likelihood in SAS, and the residual deviance is equivalent to the Intercepts and Covariates

value. The AIC value here is the same as the AIC value for Intercepts and Covariates in the SAS

output. The logistic regression model is best represented by

log P̂ biRadmit¼1=P̂ biRadmit¼0

� � ¼ �0:2699� 0:2903DX101þ 0:05799NDXþ 0:0141LOS
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> exp(coef(glm.out))

Odds ratio

(Intercept) DX101 LOS NDX

0.7634632 0.7480241 1.0142199 1.0597085

Comment: These odds ratios are calculated by emaximumlikelihoodestimate, where the maximum

likelihood estimate is for the regression coefficient in the logit scale

3.6 Conclusions

A standard logistic regression model with binary and continuous covariates can be

very useful in a variety of situations. We modeled the probability of rehospita-

lization for patients within 30-days of discharge based on three predictors. The

rehospitalization for each patient was considered a binary response. Through the

standard logistic regression model, we were able to determine the odds of rehospita-

lization as related to the number of prescriptions, length of stay, and the presence of

coronary atherosclerosis. We were able to get a logistic regression model from

which we could obtain predicted probabilities. However, we were careful with the

characteristic values used for extrapolation and how they may have deviated from

the present data. We were able to determine that the number of procedures, and

whether or not certain diseases were important predictors of rehospitalization.

In future chapters, we will look at the larger dataset where patients were

repeatedly observed regarding hospitalization and as such the data were correlated.

In those cases, the standard logistic regression as presented in this chapter will not

be appropriate.

3.7 Related Examples

Example 1 Consider the case where we are interested in the factors that determine

whether a credit card company will issue a person a new credit card. The outcome

(response) variable is binary (0/1); the person will either get a new card or will not.

The predictor variables of interest are the potential cardholder’s income, age,

amount of money spent on rent or mortgage, years of education, the amount of

past dues on his or her credit report, and whether the applicant has ever filed for

bankruptcy. The researcher, if possible can look at previous data on customers with

credit card. Fit a logistic regression model and use the fitted regression to determine

the probability that the new customer repays the card.

Example 2 A researcher is interested in how variables such as GRE (Graduate

Record Exam) scores, undergraduate GPA (grade point average), and the prestige
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of the undergraduate institution effect admission into graduate school. The outcome

variable, admitted/not admitted, is binary. http://www.ats.ucla.edu/stat/sas/dae/

logit.htm

Questions

1. Describe why you would choose to analyze the graduate school data using a

logistic regression as compared to a standard linear regression.

2. Using the maximum likelihood estimates from your output describe the influ-

ence of GPA on the logit scale and on the probability of being accepted into

graduate school.

3. Convert the maximum likelihood estimate and the upper and lower confidence

limits of GPA into an odds ratio and confirm your answer with the output.

4. Write one sentence that describes the influence of GPA on the odds of being

accepted into graduate school.

5. Determine the influence of the institutions’ prestige rankings on being accepted

into graduate school by comparing the significance tests and confidence

intervals.

6. Imagine you are giving a short speech to a high school class about the factors that

influence acceptance into graduate school. Using the results from this example,

write a short paragraph that describes what they should think about when

applying for undergraduate programs to give them the best chance of being

accepted into a graduate program in the future.

Appendix: Partial Medicare Data time¼ 1

PNUM_R biRadmit NDX LOS DX101 Time

127 0 9 6 1 1

560 1 9 8 0 1

746 1 6 12 0 1

750 0 9 6 0 1

1117 0 9 5 1 1

1395 1 9 6 0 1

1568 1 8 2 0 1

2076 1 9 8 1 1

2390 0 7 2 0 1

2413 0 9 17 0 1

3008 0 5 2 0 1

3123 1 9 3 0 1

3710 1 6 3 0 1

3970 0 9 1 0 1

3982 0 7 1 0 1

4236 0 9 5 0 1

4581 1 9 3 1 1

(continued)
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PNUM_R biRadmit NDX LOS DX101 Time

4873 0 9 1 1 1

5387 0 3 3 0 1

6255 0 9 5 0 1

7497 0 8 4 0 1

7599 0 7 4 1 1

8181 0 9 4 0 1

9677 1 2 1 1 1

10464 0 8 4 0 1

11050 0 4 1 0 1

11274 0 9 13 0 1

11279 0 9 14 0 1

11787 0 4 3 1 1

13420 0 7 8 0 1

13436 0 6 1 0 1

13761 0 9 7 0 1

14955 0 8 3 0 1

16160 0 2 0 0 1

16464 1 9 4 0 1

16971 0 8 8 0 1

17748 0 9 3 0 1

18638 0 9 6 0 1

18697 1 7 3 0 1
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Chapter 4

Overdispersed Logistic Regression Model

Abstract When binary data are obtained through simple random sampling, the

covariance for the responses follows the binomial model (two possible outcomes

from independent observations with constant probability). However, when the data

are obtained under other circumstances, the covariances of the responses differ

substantially from the binomial case. For example, clustering effects or subject

effects in repeated measure experiments can cause the variance of the observed

proportions to be much larger than the variances observed under the binomial

assumption. The phenomenon is generally referred to as overdispersion or extra

variation. The presence of overdispersion can affect the standard errors and there-

fore also affect the conclusions made about the significance of the predictors. This

chapter presents a method of analysis based on work presented in:

Wilson, J. R., & Koehler, K. J. (1991). Hierarchical models for cross-classified

overdispersed multinomial data. Journal of Business and Economic Statistics, 9(1),
103–110.

4.1 Motivating Example

A homeowner’s association was interested in comparative housing satisfaction in

two areas in a large city. The association wanted to determine if the satisfaction of

owners was somewhat related to whether or not they were living in a metropolitan

city. At first glance, a researcher might have considered using a simple analysis,

such as the Pearson chi-square test, and conduct a 2� 2 analysis of satisfaction

versus city or even a test of homogeneity depending on the sampling scheme.

However, we learned that the data were not obtained from a simple random sample,

but rather from clusters (neighborhoods) within metropolitan and non-metropolitan

areas of the city. The sampling scheme was not simple random sampling and the

clustering resulted in observations that were not independent. As such, the standard

logistic regression model was not applicable because the data were collected from

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-319-
23805-0_4) contains supplementary material, which is available to authorized users. Videos can

also be accessed at http://link.springer.com/chapter/10.1007/978-3-319-23805-0_4

© Springer International Publishing Switzerland 2015

J.R. Wilson, K.A. Lorenz, Modeling Binary Correlated Responses using SAS,
SPSS and R, ICSA Book Series in Statistics 9, DOI 10.1007/978-3-319-23805-0_4
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households (clusters), and households tend to have common mechanisms, making it

difficult to believe the outcomes were independently generated. Since we were

unable to use the standard logistic regression model, we had to use a new technique

to determine whether the households in the metropolitan area had the same satis-

faction levels as those in the non-metropolitan area. It is well known that standard

errors differ with clustering, as opposed to when information is obtained based on a

simple random sample. How will the predictors impact the outcome since the data

are based on clustering? Will the clustering result in less significance or more

significance than if we had a simple random sample?

4.2 Definition and Notation

Since “overdispersion” is the key to this chapter, we want to provide a somewhat

long discussion here with different expressions and definitions related to it.

Overdispersion is a measure of the extent to which the clustered data are spread

as compared to data consisting of independent observations. When binary data are

obtained through simple random sampling, the covariance for the responses can be

expected to satisfy the binomial model (two possible outcomes from independent

observations with constant probability). However, when the data are obtained under

cluster sampling, the covariance of the responses differs substantially from that of

independent binomial trials. For example, clustering effects or subject effects in

repeated measure experiments can cause the variance of the observed proportions to

be much larger than the variance under the binomial assumption. The phenomenon

is generally referred to as overdispersion or extra variation. The presence of

overdispersion can affect the standard errors, and hence the conclusions made

about the significances of the predictors. The term overdispersion refers to the

condition when the variance of an observed-dependent (response) variable exceeds

the nominal variance. This condition occurs frequently when fitting generalized

linear models to correlated response data. Usually, the assumed distribution is

binomial, multinomial, ordinal multinomial, or Poisson, wherever the variance

and means are related. Overdispersion is not related to the so-called linear regres-

sion models because the variance is not related to the mean. When overdispersion

occurs, the standard errors of the parameter estimates and related statistics (e.g.,

standard errors of predicted and residual statistics) must be computed, taking into

account the overdispersion (Agresti, 2002); otherwise, you may incorrectly inter-

pret the test statistics. It is crucial to point out that there are various reasons for

overdispersion. It may be due to outliers, misspecification of the model, variation

between the response probabilities, or correlation between the binary outcomes.

Simple random sampling means that the researcher is using a subset of a

population in which each unit of the subset has an equal chance of being chosen.

A simple random sample is meant to be an unbiased representation of the popula-

tion. Consider this example of a simple random sample: A researcher chooses

200 households out of a metropolitan area which consists of 1000 households in

total, and out of a non-metropolitan area which consists of 2000 households in total.
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Thus, there is a simple random sample of 200 from a total of 3000. The sample is

simple and random because each household has an equal chance of being chosen.

However, the sample may not be a good representation if there is a notably mixed

population. Simple random sampling is more commonly used when the researcher

knows little about the population, but if the researcher knows more, it would be better

to use a different sampling technique. Schemes such as stratified random sampling,

which helps to account for the differences (such as economic level or household size

or age of head of household) within the population require more information.

4.3 Exploratory Data Analyses

In the household satisfaction survey, the response (satisfied versus unsatisfied)

versus area (metropolitan versus non-metropolitan) results in a 2� 2 classification,

as presented in Table 4.1.

The odds ratio is 3.68 (p¼ 0.0241), which suggests that homeowners in

non-metropolitan¼ 0 were 3.68 times more likely to be unsatisfied than

homeowners living in the metropolitan¼ 1. The data in Table 4.1 are based on

the results of the clustering or grouping received for each of the 35 clusters (18 from

non-metropolitan¼ 0 and 17 from metropolitan¼ 1). Any differential effects due to

the neighborhoods were ignored. By ignoring any such effects, the researcher is in

fact saying that the neighborhood effects are all the same. This is dangerous because

ignoring clustering or overdispersion leads to incorrect standard errors. The

overdispersion denies us the opportunity to have a joint likelihood of the 175 obser-

vations since we do not have independent observations.

This chapter presents a method of analyzing binary grouped data in the presence

of overdispersion. The assumed distribution of the sample proportion is not known,

but it is assumed that the variance and covariance are functions of the population

proportions with a limited number of scaling parameters. Parameter estimates are

Table 4.1 Cross-

classification of response

by city

Response Non-metropolitan¼ 0 Metropolitan¼ 1

Unsatisfied 47 30

Satisfied 43 55

Categorical

Continuous

Binary

(0,1)

Input Output

One observation

per sampling unit

Model
Produced

Fig. 4.1 Schematic diagram of X impacting Y
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obtained through a combination of generalized least squares and moment estima-

tion techniques, and large sample chi-square tests are developed. Our model in

Fig. 4.1 allows any kind of covariate (binary, categorical, or continuous) as input.

The output is binary. However, each outcome is dependent on the other.

If we used the standard logistic regression to model these data, then the model

variance would be smaller than what it really is in the data. This phenomenon, as we

have stated, is known as overdispersion because the true model variance is greater

than expected. It allows us to conclude that things are significant when in fact they

are not. Such is the case in the household satisfaction survey analyzed in Sect. 4.5.

4.4 Statistical Model

It has often been observed that variances of sample proportions exceed those

implied by Poisson, binomial, or multinomial distributions. This “variance discrep-
ancy” (Ehrenberg, 1959) limits the direct applicability of models involving these

distributions. In these cases, the sample proportions are often referred to as being

overdispersed. Efron (1986) suggested that such a phenomenon may be caused by

clumped sampling. Cox (1983) pointed out that overdispersion in general has two

effects:

1. Summary statistics from the clustered data have a larger variance than antici-

pated under the simple model (so, if ignored, one can say that something is

significant when in fact it is not).

2. There is a possible loss of efficiency when using statistics that are appropriate for

the single-parameter family. The independent binomial is a member of a single-

parameter family, but the overdispersed binomial model introduces a second

parameter through the overdispersion factor.

There are three basic approaches (Wilson & Koehler, 1991) to solving problems

with such overdispersed data:

1. The first approach depends on constructing appropriate quadratic forms, usually

seen as Wald statistics. This approach relies on the properties of the sampling

distribution of the observed vectors of frequencies.

2. A second approach is to accept that while the distribution of the observations

may be difficult or impossible to detect, the form of the mean–variance rela-

tionship is often much easier to present. This common technique is a type of

method of moment approach because it relies only on the form of the mean and

variance (Altham, 1978; Williams, 1982). Similarly, Bartlett (1936) presented

var yið Þ ¼ ϕ2μ 1þ aμð Þ for counts from field trials, while Armitage (1957) found

that in the variability of pock counts var yið Þ ¼ ϕ2μb with 1< b< 2 to be useful,

and for the most part ϕ2 > 1. Another similar approach is the quasi-likelihood

approach (McCullagh &Nelder, 1989; Wedderburn, 1974; Wilson, 1989). These

methods rely on the asymptotic properties of the estimators (Moore, 1986).
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3. Another approach is to allow the distributions to have an additional parameter to

account for the overdispersion. This results in the generalization of the distribu-

tion. Examples include the beta-binomial (Chatfield & Goodhart, 1970;

Crowder, 1978; Williams, 1975) and the Dirichlet-multinomial models (Brier,

1980; Koehler &Wilson, 1986). Crowder (1978) investigated the extra variation

in the regression analysis of proportions. Brier (1980) and Koehler and Wilson

(1986) presented models based on the use of the Dirichlet-multinomial models.

The models are referred to as constant design effects models (Rao & Scott,

1981). Rao and Scott provided an approximate method of rescaling chi-square

tests to adjust for the effects of overdispersion arising from complex sample

surveys. Bedrick (1983) used partial information about the covariance matrix of

the observed vector of frequencies to make adjustments to test statistics for

log-linear models. McCullagh and Nelder (1989) presented examples in which

extra variation is modeled by multiplying the covariance matrix for a vector of

binomial, Poisson, or multinomial proportions by a single scaling factor. The

advantage of these distributional assumptions is that the parameters may be

estimated by maximum likelihood. Maximum likelihood estimators are known

to be consistent, asymptotically normally distributed, and efficient (Moore,

1986). In addition, Pack (1986) found that likelihood ratio tests (these are

based on maximum likelihood estimators) are at least as powerful as the simpler

approaches and, in certain situations, can be significantly more powerful.

In this chapter, we fit overdispersed logistic regression models based on Wil-

liams’ method and an exchangeable logistic regression model to the grouped data.

Both models provide an accounting of the overdispersion through the variance and

covariance. One model applied a factor to the variance under independent obser-

vations while the latter model applied a common correlation between any two

observations. They give similar results.

4.4.1 Williams Method of Analysis

Consider m neighborhoods and within each neighborhood (cluster), we measure

each unit or sample of units and take note of each binary outcome. We fit a logistic

regression model to the correlated binomial responses. The correlation is inherent

due to the clustering effect. On account of this clustering, we cannot use maximum

likelihood since the joint distribution of the responses is not fully specified. We

cannot take the product of the individual probabilities to create a likelihood

function when data are correlated. However, we specify a mean–variance relation-

ship and apply a quasi-likelihood approach to account for overdispersion. In fact,

we postulate that the probability of success is the same within the cluster but differs

across clusters. Thus, we present a two-level nested logistic regression model in

which the top-level response is binomially distributed, conditional on the probabil-

ity of success (Williams, 1982). This probability of success varies across clusters

and, as such, has an unknown distribution. We assume that we have a known
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mean–variance relationship that accounts for overdispersion through a multiplica-

tive factor.

The model (Williams, 1982) assumes that the response Yi in level 1 is binomially

distributed conditional on the probability pi such that

Yi

�� pi � Bin mi, pið Þ

where mi is the total sample size at cluster i. At level 2, we have a distribution

(though unknown) of the probabilities such that

pi � Dist pi θi; σ
2
pi

� �

where

σ2pi ¼ φθi 1� θið Þ;

suggesting

Variance ¼ factorf g times function of the mean½ �:

0 < θi < 1 is an unknown parameter, φ > 0 is the overdispersion factor, andDist pi
denotes the distribution of pi. The distributionDist pi is still unknown, but the mean–

variance relationship is known up to the parameter φ. Once this parameter has been

estimated, we can fit the overdispersion logistic regression model. The

overdispersion factor, sometimes referred to as the heterogeneity factor, inflates

the elements of the covariance matrix of the parameter estimates. One way to

estimate the overdispersion factor is to use the ratio of Pearson or deviance statistic

to its degrees of freedom. The model assumes the relationship.

log
P Y ¼ 1ð Þ
P Y ¼ 0ð Þ

� �
¼ β0X0 þ β1X1 þ � � � β pX p

with variance factored by a constant. We fit such models using PROC GENMOD

in SAS, SPSS, and R. One can also fit such overdispersed models using the

generalized estimating equations (GEE) method (Morel & Neerchal, 1997)

presented in Chap. 6.

4.4.2 Overdispersion Factor

In practice, if an estimate of the overdispersion factor after fitting (i.e., as measured

by the deviance or Pearson’s chi-square, divided by the degrees of freedom) is not

near 1, then the data might be overdispersed (if the overdispersion factor is greater
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than 1) or underdispersed (if the overdispersion factor is less than 1). It is useful

to note that an overdispersion factor of significance might also indicate other

problems such as an incorrectly specified model or outliers in the data. Thus,

researchers need to carefully assess whether this type of model is appropriate for

the data. While one approach to obtain the overdispersion factor is to take the ratio

of the goodness-of-fit statistics to the degrees of freedom, applying this adjustment

causes other issues. Using the function obtained by dividing a log-likelihood

function for the binomial or Poisson distribution by a dispersion parameter is not

a legitimate log-likelihood function. In fact, it is considered a quasi-likelihood

function. However, the asymptotic theory for log likelihoods applies to quasi-

likelihoods, which justifies computing standard errors and likelihood ratio

statistics by using quasi-likelihoods instead of proper log likelihoods (Hardin &

Hilbe, 2003; McCullagh & Nelder, 1989; Chap. 9).

4.4.3 Datasets

In this chapter, we present two datasets: the Housing Satisfaction Survey and Use of
Word Einai. We will analyze the first example in Sect. 4.6 and provide the readers

with a second example to help them use the overdispersed model.

4.4.4 Housing Satisfaction Survey

A study of housing satisfaction was conducted to analyze the degrees of satisfaction

homeowners felt based on their types of living conditions (Brier, 1980). These data

were obtained on the basis of a stratified two-stage cluster sampling scheme. The

variance of sample proportions for the categories of satisfaction is expected to be

overdispersed. Thus, different weights are associated with the categories of the

vector of proportions from different strata. This seems to be a clear case when

overdispersion may be present and no need to use the standard logistic regression

model.

4.5 Analysis of Data

In this chapter, we will revisit data from a study of housing satisfaction performed

by H.S. Stoeckler and M.G. Gate for the US Department of Agriculture (Brier,

1980). Households around Montevideo, Minnesota, were stratified into two

populations: those in the metropolitan area and those outside the metropolitan

area. A random sample of 20 neighborhoods was taken from each population, and

5 households were randomly selected from each of the sampled neighborhoods.
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One response was obtained from the residents of each household concerning their

satisfaction with their home. The possible responses were “unsatisfied (US),”

“satisfied (S),” and “very satisfied (VS).” For our analysis, however, we did a

binary variable of US versus (S and VS) (Koehler & Wilson, 1986). Only data

from neighborhoods in which responses were obtained from each of the five

households sampled were used to illustrate the usefulness of the model. Thus, the

dataset contains K1 ¼ 18 neighborhoods from the non-metropolitan area and K2

¼ 17 neighborhoods from the metropolitan area. We fit a logistic regression model

to a binary response of unsatisfied versus satisfied with area as a covariate. The data

(Table 4.2) are given in grouped form rather than ungrouped (where each row

corresponds to an individual measure). The COUNT represents the number of satisfied

homeowners in each neighborhood and, as such, the data are considered grouped.

The TOTAL is the cluster size. We fit the standard logistic and then the overdispersed

logistic regression using PROC GENMOD in SAS, SPSS, and R. We also fit the

exchangeable logistic regression model.

4.5.1 Standard Logistic Regression Model

We fitted the standard logistic model in Chap. 3, and in this chapter we are going to

revisit applications to Brier’s data for completeness in our comparisons. Since

Table 4.2 Housing satisfaction survey by city and neighborhood

Metro Nghbd Count Total Metro Nghbd Count Total

0 1 2 5 1 1 5 5

0 2 2 5 1 2 5 5

0 3 5 5 1 3 5 5

0 4 2 5 1 4 2 5

0 5 5 5 1 5 3 5

0 6 1 5 1 6 4 5

0 7 2 5 1 7 1 5

0 8 3 5 1 8 1 5

0 9 1 5 1 9 5 5

0 10 5 5 1 10 4 5

0 11 3 5 1 11 5 5

0 12 1 5 1 12 2 5

0 13 1 5 1 13 3 5

0 14 4 5 1 14 3 5

0 15 1 5 1 15 1 5

0 16 4 5 1 16 5 5

0 17 1 5 1 17 1 5

0 18 0 5
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Chap. 3 provides all the details for a standard logistic regression model using SAS,

SPSS, and R, we only repeat results we obtained from SAS.

SAS Program

DATA brier19801;

set Brier1980;

PROC LOGISTIC DATA¼brier19801;

MODEL count/total¼metro/SCALE¼NONE;

TITLE ’FULL MODEL WITH SCALE¼NONE’; RUN;

Comment: PROC LOGISTIC is used to fit a standard logistic regression model to the data, with

metropolitan area {rural versus urban} as a covariate. There is an option “scale” in this procedure
that was used to display goodness-of-fit statistics. This model with “SCALE¼NONE” ignores the

clustering inherent in the neighborhoods.

SAS Output

The LOGISTIC procedure

Model information

Dataset WORK.BRIER19801

Response variable (events) Count

Response variable (trials) Total

Model Binary logit

Optimization technique Fisher’s scoring

Number of observations read 35

Number of observations used 35

Sum of frequencies read 175

Sum of frequencies used 175

Comment: The number of observations read is the number of clusters corresponding to the

primary sampling units. The frequencies read of 35� 5¼ 175 is the total number of observational

or secondary units. The data are grouped

Response profile

Ordered value Binary outcome Total frequency

1 Event 98

2 Nonevent 77

Model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied
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Deviance and Pearson goodness-of-fit statistics

Criterion Value DF Value/DF Pr>ChiSq

Deviance 90.8733 33 2.7537 <.0001

Pearson 73.2012 33 2.2182 <.0001

Comment: Results of fitting the model indicate a poor fit. Both the Pearson statistic¼ 73.20 and

deviance statistics¼ 90.87 are highly significant with p < 0:0001, suggesting that the model does

not fit. It is possible that the lack of fit is due to overdispersion. As we pointed out, the cause of that

overdispersion is multifold. Its overdispersion depends on whether the link function {i.e., link

between probability and the covariate, in this case the logit} and the model specification are correct

and if there are no outliers. We will assume that we have the correct model specification and

correct link function. If we do not adjust for the overdispersion, the standard errors we assumed

based on the binomial assumption are likely to be smaller than their true values. Thus, if there is

correlation and it is ignored, then the statistical tests are too sensitive and the test may show

significance when there is none

SAS Output

Model fit statistics

Criterion Intercept only Intercept and covariates With constant

AIC 242.075 238.961 143.240

SC 245.240 245.290 149.569

�2 log L 240.075 234.961 139.240

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 5.1146 1 0.0237

Score 5.0839 1 0.0241

Wald 5.0300 1 0.0249

Comment: The test for the effect of the covariate is significant. The goodness-of-fit tests for the
standard logistic regression model were all based on the assumption that the satisfaction within

each of the neighborhoods was independent Bernoulli trials (and the trials across neighborhoods

were independent)

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.0889 0.2110 0.1777 0.6734

Metro 1 0.6951 0.3099 5.0300 0.0249

Comment: Under this within-neighborhood independence assumption, we rejected the standard

logistic regression model. However, in the standard logistic regression model within neighborhood

independent trial assumption is not practical, the goodness-of-fit tests are of questionable validity.

The approximate standard error is 0.3099 which corresponds to the common probability estimate

for metropolitan area versus non-metropolitan area {of significance (p¼ 0.0249)}. The probability

estimate is also of questionable validity as its computation used the independence assumption.

Thus, we reject the model of

log ps
pus

n o
¼ �0:0889þ 0:6951Metro
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As such, we do not interpret the odds ratio of [1.092, 3.678]. The standard error

for metro is 0.3099.

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

Metro 2.004 1.092 3.678

Association of predicted probabilities and observed responses

Percent concordant 34.3 Somers’ D 0.172

Percent discordant 17.1 Gamma 0.334

Percent tied 48.6 Tau-a 0.085

Pairs 7546 c 0.586

Comment: The fact that the standard logistic regression probability model was rejected (using the

independence assumption) could be due to at least two reasons:

1. The common probability assumption across the neighborhoods within the city is in fact not true

2. The common probability assumption across the neighborhoods could be true, but the indepen-

dence assumption is not; if there is positive within-neighborhood correlation, we would expect

overdispersion

4.5.2 Overdispersed Logistic Regression Model

Though the metropolitan area showed a significant impact on satisfaction, one

cannot interpret the results to reflect that because the model does not fit. Instead,

we must address the overdispersion and then fit the overdispersed logistic regres-

sion model. We will model the potential overdispersion through the binomial

assumption and use the semi-parametric (quasi-binomial) model:

Yi

��householdieBin ni; phouseholdi
� �

phouseholdieDistunknowni πi, φπi 1� πið Þð Þ:

So, the unconditional distribution of Yi is not fully known, but the mean–variance

relation is var Yið Þ ¼ φniπi 1� πið Þ. Here, yi is the number of satisfied households i,

i¼ 1, 2,. . ., nj; and j ¼ 1, 2; represents the two areas. To fit this model, we used

PROC LOGISTIC with option scale¼Williams.

SAS Program

PROC LOGISTIC DATA¼BRIER19801;

MODEL COUNT/TOTAL¼METRO/SCALE¼WILLIAMS;

TITLE ’OVERDISPERSION MODEL WITH SCALE¼WILLIAMS’;

RUN;

Comment: The SCALE¼ option in the MODEL statement enables you to specify a value of σ
¼ ffiffiffi

φ
p

for the binomial and Poisson distributions. If you specify the SCALE¼DEVIANCE option

in the MODEL statement, the procedure uses the deviance divided by degrees of freedom as an

estimate of φ, and all statistics are adjusted appropriately. You can use Pearson’s chi-square

instead of the deviance by specifying the SCALE¼ PEARSON option.
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SAS Output

Overdispersion model with scale¼Williams

The LOGISTIC procedure

Model information

Dataset WORK.BRIER19801

Response variable (events) Count

Response variable (trials) Total

Weight variable 1/(1 + 0.304556� (total� 1))

Model Binary logit

Optimization technique Fisher’s scoring

Comment: The overdispersion factor is estimated to be 0.3046

Number of observations read 35

Number of observations used 35

Sum of frequencies read 175

Sum of frequencies used 175

Sum of weights read (44.18 + 34.71)¼ 78.89191

Sum of weights used 78.89191

Response profile

Ordered value Binary outcome Total frequency Total weight

1 Event 98 44.179470

Comment: The weights changed from 98:77 in the standard logistic regression model to

44.18:34.71 in this one. An estimate of φ is 0.3046, and it is given in the formula for the weight

variable. If φ ¼ 0, then the weight variable is 1. If φ ¼ 1, then the weight variable is 1/total.

Model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied

Deviance and Pearson goodness-of-fit statistics

Criterion Value DF Value/DF Pr>ChiSq

Deviance 40.9667 33 1.2414 0.1606

Pearson 32.9999 33 1.0000 0.4673

Comment: Based on the value/DF, we are inclined to say that the model fits. Since the Williams

method was used to accommodate overdispersion, the Pearson chi-squared statistic and the

deviance can no longer be used to assess the goodness of fit of the model. Therefore, we must

rely on the other fit indices to compare the relative fit of the model accounting for overdispersion.

However, the metropolitan city is not statistically significant (p¼ 0.1321)

Number of events/trials observations: 35

Model fit statistics

Criterion Intercept only Intercept and covariates With constant

AIC 110.229 109.923 66.771

SC 113.393 116.253 73.100

�2 log L 108.229 105.923 62.771
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Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 2.3057 1 0.1289

Score 2.2919 1 0.1301

Wald 2.2676 1 0.1321

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.0889 0.3143 0.0801 0.7772

Metro 1 0.6951 0.4616 2.2676 0.1321

Comment: The estimates are the same as in the standard logistic regression, but the standard

errors are changed. It was 0.3099, and it is now 0.4616. A multiplicative factor is 1.4895¼ 0.4616/

0.3099 for the standard errors and 2.2182¼ 1.48952 for the variance.

log ps
pus

n o
¼ �0:0889þ 0:6951Metro

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

Metro 2.004 0.811 4.952

Association of predicted probabilities and observed responses

Percent concordant 34.3 Somers’ D 0.172

Percent discordant 17.1 Gamma 0.334

Percent tied 48.6 Tau-a 0.085

Pairs 7546 c 0.586

Comment: The estimates of the logit and odds ratio do not change (still equal to 0.6951), but their

standard errors do change. The results show that once we adjust for the overdispersion, the

perceived difference between metropolitan and non-metropolitan areas is no longer significant,

(p¼ 0.1321). Our results from using Williams’ methodology show that an estimate of φ is 0.3046

and is given in the formula for the weight variable at the beginning of the displayed output. The

overdispersion factor is included in the weight variable with the observations weighted by [1/(1

+ 0.3046(N� 1))]. That represents the scaling factor matrix for the standard errors. If there were

within-neighborhood correlation among the neighborhoods, it would most likely be of a positive

nature, meaning either the neighborhood is satisfied or not. The within-neighborhood positive

correlation will tend to result in more neighborhood-to-neighborhood variability in the proportion

of satisfied households than would be expected if the within-neighborhood satisfaction were

independent. So, the within-neighborhood correlation leads to more similar responses within

that cluster, and therefore when examining between neighborhoods, there is a greater variation

in expected values of satisfaction scores. Since we are modeling between-neighborhood influ-

ences, the clustering within a neighborhood introduces an extra source of variation that we are not

accounting for under the assumption of independence. That is, within-neighborhood positive

correlation will likely lead to overdispersion relative to what is expected in the binomial model

that assumes independence
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SPSS Program

Steps

To fit this model in SPSS, from the pull down menu we need to first create a proportion (i.e.,

create the variable count/total). To do this in SPSS, follow these steps:

Step 1:

Click “File” on the toolbar

Select “New”

Click “Syntax”

Step 2:

Paste the following code into the new Syntax window:

GENLIN count OF total WITH Metro

/MODEL Metro INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/CRITERIA METHOD¼FISHER(1) SCALE¼1 COVB¼MODEL MAXITERATIONS¼100

MAXSTEPHALVING¼5 PCONVERGE¼1E

/MISSING CLASSMISSING¼EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

* Generalized Linear Models With Correlation Type Exchangeable.

GENLIN count OF total WITH Metro

/MODEL Metro INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/repeated subject ¼ NGHBD corrtype ¼ exchangeable

/CRITERIA METHOD¼FISHER(1) SCALE¼1 COVB¼MODEL MAXITERATIONS¼100

MAXSTEPHALVING¼5 PCONVERGE¼1E

/MISSING CLASSMISSING¼EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

Step 3:

Click “Run” on the toolbar

Click “All”

SPSS Pull Down Menu

This cannot be achieved from the pull down menus as one must first create a proportion of two

variables (i.e., create the independent variable: count/total). To run a set of code in SPSS follow

these steps:

Step 1:

Click “File” on the toolbar

Select “New”

Click “Syntax”

Step 2:

Paste the code into the new Syntax window

Step 3:

Click “Run” on the toolbar

Click “All”

Comment: SPSS will not perform a generalized linear model using the distribution binomial and

link logit. SPSS returns an error explaining the dependent variable must take on two distinct

values. Since our data are in grouped form, the dependent variable does not take on two distinct

values. It will not let us model Yc¼metro using binomial and logit link.
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SPSS Output

Generalized linear models

Model information

Events variable Count

Trials variable Total

Probability distribution Binomial

Link function Logit

Case processing summary

N Percent (%)

Included 35 100.0

Excluded 0 0.0

Total 35 100.0

Categorical variable information

N Percent (%)

Dependent variablea Count Events 98 56.0

Nonevents 77 44.0

Total 175 100.0

Comment: SPSS separates the reporting of clusters (n¼ 35) from the case processing summary

table, and individual observations (n¼ 175) from the categorical variable table
aTrials variable: total

Continuous variable information

N Minimum Maximum Mean Std. deviation

Covariate Metro 35 0 1 .49 .507

Goodness of Fita

Value DF Value/DF

Deviance 90.873 33 2.754

Scaled deviance 90.873 33

Pearson chi-square 73.201 33 2.218

Scaled Pearson chi-square 73.201 33

Log likelihoodb �69.620

Akaike’s information criterion (AIC) 143.240

Finite sample corrected AIC (AICC) 143.310

Bayesian information criterion (BIC) 149.569

Consistent AIC (CAIC) 151.569

Events: count; Trials: total; Model: (Intercept), Metro
aInformation criteria are in small-is-better form
bThe full log-likelihood function is displayed and used in computing information criteria
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Omnibus testa

Likelihood ratio chi-square DF Sig.

5.115 1 .024

Events: count; Trials: total; Model: (Intercept), Metro
aCompares the fitted model against the intercept-only model

Tests of model effects

Source

Type III

Wald chi-square DF Sig.

(Intercept) .178 1 .673

Metro 5.030 1 .025

Events: count; Trials: total; Model: (Intercept), Metro

Comment: Metro is significant in the model, p¼ 0.025.

Parameter estimates

Parameter B Std. error

95 % Wald confidence

interval Hypothesis test

Lower Upper Wald chi-square DF Sig.

(Intercept) �.089 .2110 �.503 .325 .178 1 .673

Metro .695 .3099 .088 1.303 5.030 1 .025

(Scale) 1a

Events: count; Trials: total; Model: (Intercept), Metro
aFixed at the displayed value

R Program

Call:

glm(formula ¼ count/total ~ Metro, family ¼ quasibinomial(logit), data ¼ data1)

Comment: This is the code for running the model in R. We need the quasi-binomial

R Output

Deviance residuals

Min 1Q Median 3Q Max

�1.13988 �0.57801 �0.09758 0.79852 1.21541

Comment: The residuals are given as they give insight into the fit of the model. The residuals lie

within [�1.140, 1.215]
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Coefficients:

Estimate Std. error t value Pr(>|t|)

(Intercept) �0.08895 0.31430 �0.283 0.779

Metro 0.69508 0.46158 1.506 0.142

Comment: The estimates are the same as in the standard logistic regression, but the standard errors

have changed. It was 0.3099, and now it is 0.4616. There is a multiplicative factor of

1.4895¼ 0.4616/0.3099 for the standard errors and 2.2182¼ 1.48952 for the variance

log ps
pus

n o
¼ �0:0889þ 0:6951Metro

(Dispersion parameter for quasi-binomial family taken to be 0.4436451)

Null deviance: 19.198 on 34 degrees of freedom

Residual deviance: 18.175 on 33 degrees of freedom

AIC: NA

Number of Fisher Scoring Iterations: 3

Comment: Based on the value/DF, we are inclined to say that the model fits. Since the Williams

method was used to accommodate overdispersion, the Pearson chi-squared statistic and the

deviance can no longer be used to assess the goodness of fit of the model. Therefore, we must

rely on the other fit indices to compare the relative fit of the model accounting for overdispersion.

However, the metropolitan city is not statistically significant (p¼ 0.142).

4.5.3 Exchangeability Logistic Regression Model

In similar fashion, we fitted an exchangeable logistic regression model. In this

model, we assumed that the correlation between any two units is the same. We fitted

the model with SAS, SPSS, and R.

SAS Program

PROC GENMOD DATA¼BRIER19801 DESC;

CLASS NGHBD;

MODEL COUNT/TOTAL¼METRO/dist¼binomial link¼logit aggregate¼(NGHBD)

scale¼p;

REPEATED SUBJECT¼NGHBD/TYPE¼ EXCH;

RUN;

Comment: We fitted a model where we assumed that the correlation is the same in each

neighborhood within each area. This is essentially the compound symmetry or exchangeable

model in GEE. We computed this in SAS with PROC GENMOD and TYPE¼EXCH (invoking

the common correlation assumption). The advantage of using the compound symmetry/exchange-

ability assumption, which may not always be practical, is the fact that we only have one extra

parameter to estimate
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SAS Output

The GENMOD procedure

Model information

Dataset WORK.BRIER19801

Distribution Binomial

Link function Logit

Response variable (events) Count

Response variable (trials) Total

Number of observations read 35

Number of observations used 35

Number of events 98

Number of trials 175

Comment: The number read refers to the clusters. The data were presented in group form. There

are 175 units total, of which 98 units are satisfied

Class level information

Class Levels Values

Nghbd 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Comment: There are 18 clusters listed, but there are 17 and 18 in the two cities. It lists the larger of
the number of clusters

Response profile

Ordered value Binary outcome Total frequency

1 Event 98

2 Nonevent 77

Parameter information

Parameter Effect

Prm1 Intercept

Prm2 Metro

Algorithm converged

GEE model information

Correlation structure Exchangeable

Subject effect Nghbd (18 levels)

Number of clusters 18

Correlation matrix dimension 2

Maximum cluster size 2

Minimum cluster size 1

Algorithm converged
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Exchangeable working correlation

Correlation 0.3270

Comment: In the William’s model, we had a factor of 0.3046 as opposed to 0.3270 in the

exchangeability model. Although we present clusters of size 5, we see a correlation matrix

dimension of 2

Analysis of GEE parameter estimates

Empirical standard error estimates

Parameter Estimate Standard error 95 % confidence limits Z Pr> |Z|

Intercept �0.0889 0.2963 �0.6697 0.4918 �0.30 0.7640

Metro 0.6566 0.3691 �0.0669 1.3801 1.78 0.0753

Comment: The common correlation model is estimated to have a value of rperiodiperiod j
¼ 0:3270

that is used to compute the overdispersion factor and, as this correlation approaches 1.0,

overdispersion poses a serious problem in the analysis and must be addressed. The overdispersion

factor in the William’s model was φ̂ ¼ 0:3046. The exchangeable model also reported whether or

not the neighborhood was in a metropolitan or non-metropolitan area. The model is:

log ps
pus

n o
¼ �0:0889þ 0:6566Metro

SPSS Program

* Generalized Linear Models with EXCHANGEABLE CORRELATION Matrix.

GENLIN count OF total WITH Metro

/MODEL Metro INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/repeated subject ¼ NGHBD corrtype ¼ exchangeable

/CRITERIA METHOD¼FISHER (1) SCALE¼1 COVB¼MODEL

MAXITERATIONS¼100

MAXSTEPHALVING¼5 PCONVERGE¼.00001

/MISSING CLASSMISSING¼EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

SPSS Pull Down Menu

Model information

Events variable Count

Trials variable Total

Probability distribution Binomial

Link function Logit

Subject effect 1 Nghbd

Working correlation matrix structure Exchangeable

Case processing summary

N Percent (%)

Included 35 100.0

Excluded 0 0.0

Total 35 100.0
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Correlated data summary

Number of levels Subject effect Nghbd 18

Number of subjects 18

Number of measurements per subject Minimum 1

Maximum 2

Correlation matrix dimension 2

Categorical variable information

N Percent (%)

Dependent variablea Count Events 98 56.0

Nonevents 77 44.0

Total 175 100.0
aTrials variable: total

Continuous variable information

N Minimum Maximum Mean Std. deviation

Covariate Metro 35 0 1 .49 .507

Goodness of fita

Value

Quasi Likelihood under Independence Model Criterion (QIC)b 462.804

Corrected Quasi Likelihood under Independence Model Criterion (QICC)b 458.511

Events: count; Trials: total; Model: (Intercept), Metroa

aInformation criteria are in small-is-better form
bComputed using the full log quasi-likelihood function

Tests of Model Effects

Source

Type III

Wald chi-square DF Sig.

(Intercept) .090 1 .764

Metro 3.164 1 .075

Events: count; Trials: total; Model: (Intercept), Metro

Comment: Metro is not significant (p¼ 0.075) in explaining the satisfaction among households

Parameter estimates

Parameter B Std. error

95 % Wald confidence

interval Hypothesis test

Lower Upper Wald chi-square DF Sig.

(Intercept) �.089 .2963 �.670 .492 .090 1 .764

Metro .657 .3691 �.067 1.380 3.164 1 .075

(Scale) 1

Events: count; Trials: total; Model: (Intercept), Metro

log ps
pus

n o
¼ �0:089þ 0:657Metro
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R Program

GEEGLM (with repeated subject¼nghbd and correlation type ¼exchange)

Call:

geeglm(formula ¼ count/total ~ Metro, family ¼ binomial(logit),

data ¼ data1, id ¼ nghbd, corstr ¼ "exchangeable")

Comment: The R code for the exchangeable logistic regression model

R Output

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.08895 0.29633 0.090 0.764

Metro 0.69508 0.44953 2.391 0.122

Comment: The fitted logistic regression model is

log ps
pus

n o
¼ �0:0889þ 0:6951Metro

Metro is not significant in the model in explaining household satisfaction.

Estimated scale parameters:

Estimate Std.err

(Intercept) 0.4183 0.06529

Comment: A measure of the correlation or overdispersion is measured as 0.4183. There is a

standard error of 0.06529. A test suggests that (0.4183/0.06529)¼ 6.41 is significant

Correlation: structure¼ exchangeable link¼ identity

Estimated correlation parameters

Estimate Std. err

alpha 0 0

Number of clusters: 35 Maximum cluster size: 1

Comment: Metro is not significant in the model

4.6 Conclusions

Routine use of the standard logistic regression model in the presence of any kind of

complex sampling schemes should be avoided. The assumption of independence,

thereby ignoring the overdispersion, seriously underestimates the standard errors

for the regression coefficients. One alternative approach is to assume the GEE

model with compound symmetry as the covariance structure, or to use the Williams

overdispersed logistic regression which adjusts for the extra variation. In our

example, the metropolitan area was no longer a significant factor once we adjusted

for the extra variation. The responses in the survey about homeowner satisfaction

seem to be consistent whether the homeowners were in metropolitan or

non-metropolitan areas. We used SAS, SPSS, and R to analyze the data.
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Both the overdispersed logistic regression model and the exchangeable logistic

regression model use adjustments to the covariance matrix to account for the

clustering leading to correlation and overdispersion. The difference in these models

is minimal. One model assumes that all relationships are assumed to be the same,

and the adjustment is to factor up the standard error from independent observations.

The second model also allows a common relationship. It corrects for overdispersion

through the adjustment at the different stages. Thus, the covariance matrix provides

only slight differences numerically in the standard error. One model assumes the

adjustment was a single factor while the other model assumes the relationship

between any two units within the cluster.

4.7 Related Example

4.7.1 Use of Word Einai

Overdispersed data concerning the use of the word einai (the Greek word meaning

“to be”) are presented in Morton (1965). Books were randomly sampled from each

of the oeuvres of two Greek authors, Thucydides and Herodotus. The occurrences

of einai in the chosen sentences within each book were categorized according to the
number of einai (no einai, one einai, two einai, three einai, or greater than three

einai). The sample vectors of proportions were expected to be overdispersed with

different weights associated with each category. We considered the books as

clusters. These data are provided in http://www.public.asu.edu/~jeffreyw

Some relevant questions:

1. Suppose the researcher wants to know if the use of einai (used or not used)

differs between the two Greek authors and uses a standard logistic regression.

What will be his/her conclusions?

2. Suppose you were told that the rate of occurrences differs across books. What

would you do to analyze the data while taking into consideration the added

information?

3. Do you have any evidence that the data are overdispersed?
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Chapter 5

Weighted Logistic Regression Model

Abstract Binary responses, which are common in surveys, can be modeled

through binary models which can then provide a relationship between the proba-

bility of a response and a set of covariates. However, as explained in Chap. 4, when

the data are not obtained by simple random sampling, the standard logistic regres-

sion is not valid. When the data come from a complex survey designed with

stratification, clustering, and/or unequal weighting, the usual estimates are not

appropriate (Rao & Scott, 1984). In these cases, specialized techniques must be

applied in order to produce the appropriate estimates and their standard errors.

Clustered data are frequently encountered in fields such as health services, public

health, epidemiology, and education research. Data may consist of patients clus-

tered within primary care practices or hospitals, or households clustered within

neighborhoods, or students clustered within schools. Subjects nested within the

same cluster often exhibit a greater degree of similarity, or homogeneity, of out-

comes compared to randomly selected subjects from different clusters (Multilevel

analysis: an introduction to basic and advanced multilevel modeling, Thousand

Oaks, CA; Hierarchical linear models: applications and data analysis methods,

Thousand Oaks, CA; Introduction to multilevel modeling, Thousand Oaks, CA;

Multilevel statistical models, London; Canadian Journal of Public Health 92:150–

154, 2001). Due to the possible lack of independence of subjects within the same

cluster, traditional statistical methods may not be appropriate for the analysis of

clustered data. While Chap. 4 uses the overdispersed logistic regression and the

exchangeability logistic regression model to fit correlated data, this chapter incor-

porates a series of weights or design effects to account for the correlation. The

logistic regression model on the analysis of survey data takes into account the

properties of the survey sample design, including stratification, clustering, and

unequal weighting. The chapter fits this model in SAS, SPSS, and R, using methods

based on:

Wilson, J. R. (1989). Chi-square tests for overdispersion with multiparameter

estimates. Journal of Royal Statistics Society Series C, Applied Statistics, 38(3),
441–454.
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effect in Dirichlet multinomial model. Communications in Statistics A, 15(4),
1235–1249.

Koehler, K. J., & Wilson, J. R. (1986). Chi-square tests for comparing vectors of

proportions for several cluster samples. Communications in Statistics A, 15(10),
2977–2990.

5.1 Motivating Example

It is common to have binary responses in surveys. These responses can be modeled

through binary models which can provide a relationship between the probability of

that response and a set of covariates. However, as we saw in Chap. 4 when the data

are not obtained by simple random sampling, the standard logistic regression is not

valid. When binary data are obtained from clusters of different sizes, we can use a

factor to adjust the variance, as discussed in Chap. 4. However, in this chapter we will

present a more efficient method than using a common dispersion factor adjustment.

When the data come from a complex survey designs with stratification, clustering,

and/or unequalweighting the usual estimates are not appropriate, Rao andScott (1984).

In these cases, specialized techniques must be applied in order to produce reliable and

consistent estimates for their standard errors. In Chap. 4, we used the overdispersed

logistic regression and exchangeability logistic regression model to fit correlated data.

In this chapter, we will use an approach other than using a common factor and

incorporate a series of weights or design effects to account for the correlation.

5.2 Definition and Notation

To make the information in this chapter clearer and simpler, it is worth looking at

Gene Shackman’s discussion on design effects which he presented at the Albany

Chapter of the American Statistical Association on March 24 2001. Below is the

text of his exposito:

Cluster sampling is commonly used, rather than simple random sampling,

mainly as a means of saving money when, for example, the population is spread

out and the researcher cannot sample from everywhere. However, “respondents in

the same cluster are likely to be somewhat similar to one another.” As a result, in a

clustered sample “selecting an additional member from the same cluster adds less

new information than would a completely independent selection.” Thus, for exam-

ple, in single-stage cluster samples, the sample is not as varied as it would be in a

random sample so that the effective sample size is reduced. The loss of effective-

ness by the use of cluster sampling, instead of simple random sampling, is the

design effect.
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The design effect is basically the ratio of the actual variance, under the sampling

method actually used, to the variance computed under the assumption of simple

random sampling. For an example, “The interpretation of a value of (design effect),

say, 3.0, is that the sample variance is three times bigger than it would be if the

survey were based on the same sample size but selected randomly. An alternative

interpretation is that only one-third as many sample cases would be needed to

measure the given statistic if a simple random sample (SRS) were used instead of

the cluster sample with its (design effect) of 3.0.” The main components of the

design effect are the intraclass correlation and the cluster sample sizes. Thus,

the design effect is DEFF¼ 1 + δ(n� 1), where DEFF is the design effect, δ is the

intraclass correlation for the statistic in question, and n is the average size of

the cluster. Therefore, the design effect increases both as the cluster sizes increase

and as the intraclass correlation increases. The intraclass correlation “represents the

likelihood that two elements in the same cluster have the same value, for a given

statistic, relative to two elements chosen completely at random in the population. A

value of 0.05 is interpreted, therefore, to mean that the elements in the cluster are

about 5 % more likely to have the same value than if the two elements were chosen

at random in the survey. The smaller the value, the better the overall reliability of

the sample estimate will be.

Design effects vary from survey to survey and, even within the same survey, will

vary from question to question. For example, “respondents who live near each other

(in the same sampled cluster) are likely to have similar poverty characteristics but

are not likely to have similar disability characteristics.”

This explanation presents all the beginner needs to know to have a grasp on this

chapter.

5.3 Exploratory Analyses

Researchers often use the sample survey methodology to obtain samples and to

estimate parameters. It is customary that we would fit logistic regression models

based on the covariates measured in the survey data. For example, the National

Health and Nutrition Examination Survey (NHANES) is a program of studies

designed to assess the health and nutritional statuses of adults and children. “The

survey is unique in that it combines interviews and physical examinations. It is the

National Center for Health Statistics (NCHS) most in-depth and logistically com-

plex survey, operating out of mobile examination centers that travel to randomly

selected sites throughout the country to assess the health and nutritional status of

Americans. This survey combines personal interviews with standardized physical

examinations, diagnostic procedures, and laboratory tests to obtain information

about diagnosed and undiagnosed conditions; growth and development, including

overweight and obesity; diet and nutrition; risk factors; and environmental expo-

sures” (http://www.cdc.gov/nchs/nhanes.htm). We looked at the following

example.
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5.3.1 Treatment for Osteoporosis

This example uses the demoadv dataset, a subset from NHANES database (Centers

for Disease Control and Prevention, 2009). We desired to know the association

between calcium supplement use (anycalsup) and the likelihood of receiving treat-

ment for osteoporosis (treatosteo) among participants aged 20 years and older after

controlling for selected covariates. The covariates included gender (riagendr), age
(ridageyr), race/ethnicity (ridreth1), and body mass index (bmxbmi). Information on

use of vitamin, mineral, herbal, and other dietary supplements was collected from all

NHANES participants during the household interview.

Stage 1: Primary sampling units (PSUs) were selected from strata defined by

geography and proportions of minority populations. These were mostly single

counties or, in a few cases, groups of contiguous counties selected with probabil-

ities proportional to a measure of size (PPS). Most strata contained two PSUs.

Additional stages of sampling were performed to select various types of secondary

sampling units (SSUs), namely the segments, households, and individuals that were

selected in Stages 2, 3, and 4.

Stage 2: The PSUs were divided into segments (generally city blocks or their

equivalent). As with each PSU, sample segments were selected with PPS.

Stage 3: Households within each segment were listed and a sample was ran-

domly drawn. In geographic areas where the proportion of age, ethnic, or income

groups selected for over-sampling was high, the probability of selection for those

groups was greater than in other areas.

Stage 4: Individuals were chosen to participate in NHANES from a list of all

persons residing in selected households. Individuals were drawn at random within

designated age-sex-race/ethnicity screening sub-domains. Between one and two

persons on average were selected from each household.

SAS User’s Group International (SUGI) 27 provides information suitable for

logistic regression on survey data. Survey data researchers, among others, have

addressed the problems with using a standard logistic regression in sample surveys

(Rao & Scott, 1981; Scott & Rao, 1981; Williams 1982). Others include Binder

(1981, 1983), Roberts, Rao, and Kumar (1987), Skinner, Holt, and Smith (1989),

Morel (1989), Wilson (1989), and Lehtonen and Pahkinen (1995).

SUGI 27 suggests that, due to the variability of characteristics among items in

the population, researchers apply scientific sample designs in the sample selection

process to reduce the risk of a distorted view of the population. They will make

inferences about the population based on the information from the sample survey

data. Rao and Scott (1981) laid the foundation for understanding that, in order to

make statistically valid inferences for the population, researchers must incorporate

the sample design in the data analysis. We looked at procedures that allowed us to

fit logistic regression models to survey data. We needed it to fit linear logistic

regression models for binary response survey data by the method of maximum

likelihood. For our analysis, we incorporated complex survey sample designs,

including designs with stratification, clustering, and unequal weighting.

84 5 Weighted Logistic Regression Model



5.4 Statistical Model

Complex surveys usually comprise data based on sample designs that have adjusted

for non-response and differing probabilities of selection. Complex samples differ

from SRSs in that SRS designs assume independence of observations while com-

plex samples do not. In most cases, default statistics programs and procedures

assume an SRS and result in underestimation of variances when analyzing data

from complex samples. In such situations, we are more likely to conclude there is

significance when in fact there is not. Therefore, the analysis of data from complex

surveys should include specific calculations of variance estimates that account for

these sample characteristics (National Center for Health Statistics, 2005). Also,

weights are used to adjust for the non-response and for differing probabilities of

selection used in analyses. We used survey procedures incorporating weights,

strata, and cluster variables as they ensured that we had variance estimates that

incorporated the complex sample design and reflected the inflation of the estimate

due to the design effect.

In Chap. 3, we used methods to compute statistics under the assumption that a

sample is drawn from an infinite population by simple random sampling. However,

most sample survey data are collected from a finite population with a probability-

based complex sample design (Rao & Scott, 1981). A logistic regression model is

often used to profile certain respondents based on the binary outcome with input

variables for survey data. However, there are many examples of logistic regression

in surveys that can be found (Korn v Graubard, 1999). The link function (logit) in

logistic regression combines the probabilities of an outcome with a function of a

linear combination of the explanatory variables. As it is customary in the analysis of

survey data to make statistically valid inferences for the population, the sample

design used to obtain the sample data should be incorporated in the data analysis.

The use of complex sampling schemes to obtain the data impacts the standard error

of the estimates.

When a complex sample design is used to draw a sample from a finite popula-

tion, the sample design should be incorporated in the analysis of the survey data in

order to make statistically valid inferences for the finite population. The weighted

logistic regression model accommodates three common types of complex survey

data, as listed and explained below.

1. Survey weights: Survey data are often published along with weights for each

observation. For example, if a survey intentionally over-samples a particular

type of case, weights can be used to correct for the over-representation of that

type of case in the dataset. Survey weights come in two forms:

(a) Probability weights report the probability that each case is drawn from the

population. For each stratum or cluster, this is computed as the number of

observations in the sample drawn from that group divided by the number of

observations in the population in the group.

(b) Sampling weights are the inverse of the probability weights.
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2. Strata/cluster identification: A complex survey dataset may include variables

that identify the strata or cluster from which observations are drawn. For

stratified random sampling designs, observations may be nested in different

strata. There are two ways to employ these identifiers:

(a) Use finite population corrections to specify the total number of cases in the

stratum or cluster from which each observation was drawn.

(b) For stratified random sampling designs, use the raw strata IDs to compute

sampling weights from the data.

3. Replication weights: To preserve the anonymity of survey participants, some

surveys exclude strata and cluster IDs from the public data and instead release

only pre-computed replicate weights.

5.5 Analysis of Data

In this section, we use the data from NHANES to demonstrate the fit of weighted

logistic regression models. Our binary response variable of interest is receiving

treatment for osteoporosis (treatosteo). We want to know how calcium supplement

use (anycalsup) impacts the probability of receiving treatment for osteoporosis

(treatosteo) among participants, aged 20 years and older after controlling for gender

(riagendr), age (ridageyr), race/ethnicity (ridreth1), and body mass index

(bmxbmi). The variables are coded as

AGEGRP (1¼’20-39’ 2¼’40-59’ 3¼’>¼ 60’;) and YESNO (1¼’Yes’ 2¼’No’)

and 1¼’Used any calcium supp’ 2¼ ’No supp use’; with GENDER 1¼ ’Male’

2¼ ’Female’. Information on use of vitamin, mineral, herbal, and other dietary

supplements was collected from all NHANES participants during the household

interview. We present two models:

1. Weighted logistic regression model, demonstrating the assignment of weights

without giving heed to strata or clusters.

2. Weighted logistic regression model, incorporating weights while identifying the

strata or clusters and adjusting the weights accordingly.

5.5.1 Weighted Logistic Regression Model
with Survey Weights

A weighted logistic regression model was fitted. These required weights are

contained in a weight variable referred to as “newweight.” This allows the units

to have different levels of importance in the model fitting.

86 5 Weighted Logistic Regression Model



SAS Program

We fit a weighted logistic regression model using SAS. Both PROC LOGISTIC and

PROC SURVEYLOGISTIC were used. While they use the same method to com-

pute the maximum likelihood estimates of the regression coefficients, the standard

errors are different and the methods used to compute them differ. The logistic

regression model with survey data incorporates the variance as applicable for

stratification, clustering, and unequal weighting. The PROC SURVEYLOGISTIC

uses the results of variances within each stratum and then pools the variance

estimates together to give a joint estimate. An adjustment can also be obtained in

the variance estimation to reduce the bias when the sample size is small and the

sample is drawn without replacement (Morel, 1989).

Model 1—Weighted logistic regression model

proc logistic data¼work.chap5;

weight newweight;

class age riagendr anycalsup bmigrp /param¼ref;

model treatosteo ¼anycalsup riagendr age bmigrp;

run;

Comment: This runs the weighted logistic regression model. The weights are contained in the

variable newweight. Param¼ ref refers to the categorical variables and their reference category

SAS Output

The LOGISTIC procedure

Model information

Dataset WORK.CHAPTER5

Response variable treatOSTEO

Number of response levels 2

Weight variable newweight

Model Binary logit

Optimization technique Fisher’s scoring

Number of observations read 5023

Number of observations used 4623

Sum of weights read 2.049E8

Sum of weights used 2.0111E8

Comment: Not all the observations are used because not all variables have complete information

Response profile

Ordered value treatOSTEO Total frequency Total weight

1 0 4385 192516945

2 1 238 8597732

Probability modeled is treatOSTEO¼ ’0’

Comment: We are modeling the probability that they are not receiving treatment for osteoporosis.

As we will see, it is very easy to model receiving treatment for osteoporosis by changing the signs

in the logistic regression model. There are 4485 cases of 0 and 238 of 1
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Class level information

Class Value Design variables

age 1 1 0

2 0 1

3 0 0

RIAGENDR 1 1

2 0

ANYCALSUP 1 1

2 0

bmigrp 1 1 0

2 0 1

3 0 0

Comment: Since these are class (categorical) variables, we need to present them as a series of

binary variables (see Sect. 1.6). So, we have

Age ¼ 3� 1ð Þ þ Riagendr ¼ 2� 1ð Þ þ Anycalsup ¼ 2� 1ð Þ
þ bmigrp ¼ 3� 1ð Þ ¼ 6þ interceptparameter ¼ 7

Model convergence status

Convergence criterion (GCONV¼ 1E–8) satisfied

Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 71029139 52689533

SC 71029145 52689578

�2 log L 71029137 52689519

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 18339617.9 6 <.0001

Score 18408564.5 6 <.0001

Wald 10461411.8 6 <.0001

Comment: The covariates, collectively, have a significant impact on non-treatment of osteopo-

rosis. The model fit statistics provide values with the covariates and without the covariates

Type 3 analysis of effects

Effect DF Wald chi-square Pr>ChiSq

ANYCALSUP 1 342591.094 <.0001

RIAGENDR 1 3319345.29 <.0001

age 2 6413787.54 <.0001

bmigrp 2 202151.263 <.0001
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Analysis of maximum likelihood estimates

Parameter DF Estimate

Standard

error

Wald

chi-square Pr>ChiSq

Intercept 1 1.7340 0.000939 3410931.30 <.0001

ANYCALSUP 1 1 �0.4820 0.000823 342591.094 <.0001

RIAGENDR 1 1 2.1072 0.00116 3319345.29 <.0001

age 1 1 4.0852 0.00229 3174953.84 <.0001

age 2 1 1.6604 0.000834 3965962.69 <.0001

bmigrp 1 1 �0.3657 0.000925 156354.817 <.0001

bmigrp 2 1 �0.0323 0.000945 1166.7900 <.0001

Comment: The fitted logistic regression model is

logit Pno treatð Þ ¼ 1:734� 0:482Anycalsupþ 2:107Riagendr þ 4:085Age1
þ1:660Age2 � 0:366bmigr p1 � 0:032bmigr p2

All the covariates are significant in the model. Those who used calcium supple-

ment (ANYCALSUP¼ 1) are more likely to have treatOSTEO¼ ’1’.

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

ANYCALSUP 1 vs. 2 0.618 0.617 0.619

RIAGENDR 1 vs. 2 8.225 8.206 8.244

age 1 vs. 3 59.455 59.188 59.723

age 2 vs. 3 5.262 5.253 5.270

bmigrp 1 vs. 3 0.694 0.692 0.695

bmigrp 2 vs. 3 0.968 0.966 0.970

Comment: The odds ratios are all significant. For example, age 2 vs. 3 with odds 5.270 says that

those in age class¼ 2 are 5.27 times more likely not to have the treatment than those in age

class¼ 3

Association of predicted probabilities and observed responses

Percent concordant 85.4 Somers’ D 0.745

Percent discordant 11.0 Gamma 0.772

Percent tied 3.6 Tau-a 0.073

Pairs 1043630 c 0.872

SPSS Program

Model 1—Weighted Logistic Regression Model

The SPSS syntax for weighted logistic regression cannot be done with the pull down menus

because there is no weight option in Binary Logistic in SPSS.

*To run a set of code in SPSS for weighted logistic regression, follow these steps:

Step 1

Click “File” on the toolbar

Select “New”

Click “Syntax”

(continued)
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SPSS Program

Step 2:

Paste the following code into the new Syntax window:

WEIGHT BY newweight.

LOGISTIC REGRESSION VARIABLES treatOSTEO

/METHOD¼ENTER ANYCALSUP RIAGENDR age bmigrp

/CONTRAST (age)¼Indicator

/CONTRAST (bmigrp)¼Indicator

/CONTRAST (RIAGENDR)¼Indicator

/CONTRAST (ANYCALSUP)¼Indicator

/CRITERIA¼PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Step 3:

Click “Run” on the toolbar

Click “All”

SPSS Output

Case processing summary

Unweighted casesa N Percent

Selected cases Included in analysis 4623 45.7

Missing cases 5499 54.3

Total 10,122 100.0

Unselected cases 0 .0

Total 10,122 100.0

Comment: There were 5499 missing cases that were excluded
aIf weight is in effect, see classification table for the total number of cases

Dependent variable encoding

Original value Internal value

0 0

1 1

Comment: This coding is important to know how to write the logit

Categorical variables codings

Frequency

Parameter coding

(1) (2)

bmigrp 1 1465 1.000 .000

2 1624 .000 1.000

3 1534 .000 .000

age 1 1626 1.000 .000

2 1306 .000 1.000

3 1691 .000 .000

RIAGENDR 1 2228 1.000

2 2395 .000

(continued)
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Categorical variables codings

Frequency

Parameter coding

(1) (2)

ANYCALSUP 1 2155 1.000

2 2468 .000

Comment: The distribution of observations in each category of each covariate is given. For

example, there are 2228 men and 2395 women with complete data to be included in this model.

There are 3� 3� 2� 2¼ 36 subpopulations. However, the missing data made many of the

combinations useless

Block 0: Beginning Block

Classification tablea,b

Observed Predicted

treatOSTEO

Percentage correct0 1

Step 0 treatOSTEO 0 4385 0 100.0

1 238 0 .0

Overall percentage 94.9

Comment: We are modeling the probability that they are not receiving treatment for osteoporosis.

As we will see, it is very easy to model receiving treatment for osteoporosis by changing the signs

in the logistic regression model. There are 4485 cases of not getting treatment and 238 who are

getting treatment
aConstant is included in the model
bThe cut value is .500

Variables not in the equation

Score DF Sig.

Step 0 Variables ANYCALSUP(1) 73.041 1 .000

RIAGENDR(1) 127.287 1 .000

age 253.870 2 .000

age(1) 129.706 1 .000

age(2) 21.322 1 .000

bmigrp 3.790 2 .150

bmigrp(1) 2.744 1 .098

bmigrp(2) .003 1 .956

Overall statistics 417.520 6 .000

Block 1: Method¼Enter

Omnibus tests of model coefficients

Chi-square DF Sig.

Step 1 Step 479.352 6 .000

Block 479.352 6 .000

Model 479.352 6 .000

Comment: SPSS with the “Enter” option provides information as it reaches the solution
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Model summary

Step �2 log likelihood Cox & Snell R Square Nagelkerke R Square

1 1396.247a .098 .295

Comment: These model summary statistics tell about the fit of the model. There are opposing

views over the use of these statistics
aEstimation terminated at iteration number 9 because parameter estimates changed by less than

.001

Classification tablea

Observed Predicted

treatOSTEO

Percentage correct0 1

Step 1 treatOSTEO 0 4385 0 100.0

1 238 0 .0

Overall percentage 94.9

Comment: The classification table provides a relation between the observed and the predicted.

The predicted must be dichotomized to form this 2 by 2 table
aThe cut value is .500

Variables in the equation

B S.E. Wald DF Sig. Exp(B)

Step 1a ANYCALSUP(1) .789 .158 24.906 1 .000 2.200

RIAGENDR(1) �2.008 .202 98.849 1 .000 .134

age 104.071 2 .000

age(1) �4.752 .713 44.426 1 .000 .009

age(2) �1.519 .189 64.594 1 .000 .219

bmigrp 7.218 2 .027

bmigrp(1) .470 .179 6.882 1 .009 1.601

bmigrp(2) .170 .179 .910 1 .340 1.186

Constant �2.118 .176 143.992 1 .000 .120

Comment: The fitted logistic regression model Logit P treatð Þ ¼ �2:118þ 0:789Anycalsup�
2:008Riagendr � 4:752Age1 � 1:519Age2 þ 0:470bmigr p1 þ 0:170bmigr p2. These variables

are significant in the model

Variables in the equation

95 % C.I. for EXP(B)

Lower Upper

Step 1a ANYCALSUP(1) 1.614 2.999

RIAGENDR(1) .090 .199

age

age(1) .002 .035

age(2) .151 .317

bmigrp

bmigrp(1) 1.126 2.275

(continued)
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Variables in the equation

95 % C.I. for EXP(B)

Lower Upper

bmigrp(2) .835 1.683

Constant

Comment: The values for the logit estimates have different signs due to modeling the event¼ 1.

This changes the interpretation of the odds ratios in association with the change in likelihood of an

event based upon a different reference category
aVariable(s) entered on step 1: ANYCALSUP, RIAGENDR, age, bmigrp

Comment: Note the weight variable defined before the analysis syntax. These weights are user

defined and available from, in this example, the NHANES website. The SPSS Syntax forWeighted

Logistic Regression cannot be done with the pull down menus because there is no weight option in

Binary Logistic in SPSS.

*To run a set of code in SPSS follow these steps:

Step 1:

Click “File” on the toolbar

Select “New”

Click “Syntax”

Step 2:

Paste the code into the new Syntax window

Step 3:

Click “Run” on the toolbar

Click “All”

Logistic regression

Case processing summary

Unweighted casesa N Percent

Selected cases Included in analysis 4623 97.8

Missing cases 104 2.2

Total 4727 100.0

Unselected cases 0 .0

Total 4727 100.0
aIf weight is in effect, see classification table for the total number of cases

Dependent variable encoding

Original value Internal value

0 0

1 1
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Categorical variables codings

Frequency

Parameter coding

(1) (2)

bmigrp 1 1465 1.000 .000

2 1624 .000 1.000

3 1534 .000 .000

age 1 1626 1.000 .000

2 1306 .000 1.000

3 1691 .000 .000

RIAGENDR 1 2228 1.000

2 2395 .000

ANYCALSUP 1 2155 1.000

2 2468 .000

Block 0: Beginning Block

Classification TABLEa

Observed Predicted

treatOSTEO

Percentage correct0 1

Step 0 treatOSTEO 0 192516945 0 100.0

1 8597732 0 .0

Overall percentage 95.7

Comment: The above SPSS tables for weighted logistic regression reflect the changes to the

model while incorporating individual-level sample weights. Note that the SPSS Classification

table reports a weighted value and not the raw observations only. The ratio of treatOSTEO level

0 to 1 in the weighted case reflects the influence of the non-probability sampling (4385/

238¼ 18.42 non-weighted vs. 192516945/8597732¼ 22.39 weighted). The values for the Omni-

bus tests and Model Fit statistics are based upon the weighted value, not the observed data.

Therefore, the chi-squared and log-likelihood values are very large due to the increase in the

frequency of the dependent variables in the model after weighting
aConstant is included in the model

Variables in the equation

B S.E. Wald DF Sig. Exp(B)

Step 0 Constant �3.109 .000 79535815.327 1 .000 .045

Variables not in the equation

Score DF Sig.

Step 0 Variables ANYCALSUP(1) 1785391.323 1 .000

RIAGENDR(1) 5192909.366 1 .000

age 13452164.362 2 .000

age(1) 5051210.701 1 .000

age(2) 677316.384 1 .000

bmigrp 82991.126 2 .000

bmigrp(1) 71565.183 1 .000

bmigrp(2) 2037.300 1 .000

Overall statistics 18408564.478 6 .000
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Block 1: Method¼Enter

Omnibus tests of model coefficients

Chi-square DF Sig.

Step 1 Step 18339617.917 6 .000

Block 18339617.917 6 .000

Model 18339617.917 6 .000

Model summary

Step �2 log likelihood Cox & Snell R Square Nagelkerke R Square

1 52689518.884a .087 .293

aEstimation terminated at iteration number 9 because parameter estimates changed by less than

.001

Classification tablea

Observed Predicted

treatOSTEO

Percentage correct0 1

Step 1 treatOSTEO 0 192516945 0 100.0

1 8597732 0 .0

Overall percentage 95.7
aThe cut value is .500

Variables in the equation

B S.E. Wald DF Sig. Exp(B)

Step 1a ANYCALSUP(1) .482 .001 342590.806 1 .000 1.619

RIAGENDR(1) �2.107 .001 3319343.261 1 .000 .122

age 6413762.099 2 .000

age(1) �4.085 .002 3174916.020 1 .000 .017

age(2) �1.660 .001 3965962.639 1 .000 .190

bmigrp 202151.111 2 .000

bmigrp(1) .366 .001 156354.703 1 .000 1.442

bmigrp(2) .032 .001 1166.789 1 .000 1.033

Constant �1.734 .001 3410929.320 1 .000 .177

Comment: The fitted logistic regression model is

Logit Pno treatð Þ ¼ 1:734� 0:482Anycalsupþ 2:107Riagendr þ 4:085Age1 þ 1:660Age2
�0:366bmigr p1 � 0:032bmigr p2
aVariable(s) entered on step 1: ANYCALSUP, RIAGENDR, age, bmigrp

R Program

> data1$ANYCALSUP.f <- factor(data1$ANYCALSUP)

> data1$RIAGENDR.f <- factor(data1$RIAGENDR)

(continued)

5.5 Analysis of Data 95



R Program

> data1$age.f <- factor(data1$age)

> data1$bmigrp.f <- factor(data1$bmigrp)

> glm.out¼glm(treatOSTEO ~ ANYCALSUP.f + RIAGENDR.f + age.f + bmigrp.f,

family¼binomial(logit), data¼data1)

> summary(glm.out)

Call:

glm(formula ¼ treatOSTEO ~ ANYCALSUP.f + RIAGENDR.f + age.f +

bmigrp.f, family ¼ binomial(logit), data ¼ data1)

Comment: We fit the unweighted logistic regression model

R Output

Deviance residuals

Min 1Q Median 3Q Max

�0.8405 �0.2873 �0.1245 �0.0456 3.4882

Coefficients

Estimate Std. error z value Pr(>|z|)

(Intercept) �7.6188 0.7377 �10.328 <2E�16 ***

ANYCALSUP.f1 �0.7885 0.1580 �4.991 6.02E�07 ***

RIAGENDR.f1 2.0078 0.2019 9.942 <2E�16 ***

age.f1 3.2327 0.7286 4.437 9.LE�06 ***

age.f2 4.7520 0.7129 6.666 2.64E�11 ***

bmigrp.f1 �0.3000 0.1701 �1.763 0.07784 .

bmigrp.f2 �0.4704 0.1793 �2.623 0.00871 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1875.6 on 4622 degrees of freedom

Residual deviance: 1396.2 on 4616 degrees of freedom

(400 observations deleted due to missingness)

AIC: 1410.2

Number of Fisher Scoring iterations: 9

Comment: The fitted unweighted logistic regression model is

Logit Pno treatð Þ ¼ �7:619� 0:789Anycalsupþ 2:008Riagendr þ 3:233Age1 þ 4:752Age2
�0:300bmigr p1 � 0:470bmigr p2:
> design1<-svydesign(ids¼~0, weights¼data1$newweight, data¼data1)

> svyglm.out¼svyglm(treatOSTEO ~ ANYCALSUP.f + RIAGENDR.f + age.f + bmigrp.f,

family¼quasibinomial(logit), data¼data1, design¼design1)

> summary(svyglm.out)

Call:

svyglm(formula ¼ treatOSTEO ~ ANYCALSUP.f + RIAGENDR.f + age.f +

bmigrp.f, family ¼ quasibinomial(logit), data ¼ data1, design ¼ design1)

Survey design:

svydesign(ids ¼ ~0, weights ¼ data1$newweight, data ¼ data1)

Comment: We fit the weighted logistic regression model.
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Coefficients

Estimate Std. error t value Pr(>|t|)

(Intercept) �7.0787 0.7504 �9.433 <2E�16 ***

ANYCALSUP.f1 �0.4820 0.1954 �2.467 0.0137 *

RIAGENDR.f1 2.1072 0.2265 9.301 <2E�16 ***

age.f1 2.4248 0.7423 3.267 0.0011 **

age.f2 4.0852 0.7230 5.651 1.69E�08 ***

bmigrp.f1 �0.3334 0.1964 �1.698 0.0896 .

bmigrp.f2 �0.3657 0.2271 �1.611 0.1073

---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 0.9146361)

Number of Fisher Scoring iterations: 8

Comment: The fitted weighted logist regression is

Logit Pno treatð Þ ¼ �7:619� 0:789Anycalsupþ 2:008Riagendr þ 3:233Age1 þ 4:752Age2 � 0:300
bmigr p1 � 0:470bmigr p2. The BMI is not significant in the model.

5.5.2 Weighted Logistic Regression Model with Strata
and Clusters Identified

We fit the weighted logistic regression model and include the identity of the strata

and clusters through their weights. We use PROC Surveylogistic to fit these data.

SAS Program

proc surveylogistic data¼work.chap5;

stratum sdmvstra;

cluster sdmvpsu;

weight newweight;

class age riagendr anycalsup bmigrp /param¼ref;

model treatosteo ¼anycalsup riagendr age bmigrp;

run;

quit;

Comment: The results are similar to the earlier logistic regression model fit with survey weights.

However, the covariate body mass index shows no significant contribution and the covariate

calcium use is not as significant. The stratum is identified through sdmvstra and the cluster is

identified through sdmvpsu

SAS Output

The SURVEYLOGISTIC procedure

Model information

Dataset WORK.CHAPTER6

Response variable treatOSTEO

Number of response levels 2

Stratum variable SDMVSTRA

Number of strata 15

Cluster variable SDMVPSU

(continued)

5.5 Analysis of Data 97



SAS Output

The SURVEYLOGISTIC procedure

Number of clusters 30

Weight variable newweight

Model Binary logit

Optimization technique Fisher’s scoring

Variance adjustment Degrees of freedom (DF)

Variance estimation

Method Taylor series

Variance adjustment Degrees of freedom (DF)

Number of observations read 5023

Number of observations used 4623

Sum of weights read 2.049E8

Sum of weights used 2.0111E8

Comment: The variance estimation, which is a key component for analysis, was done based on the

Taylor series method. The sum of the weights used is seen below: 2.0111� 108¼ 192516945

+ 8597732. These are the same weights as in Model 1

Response profile

Ordered value treatOSTEO Total frequency Total weight

1 0 4385 192516945

2 1 238 8597732

Probability modeled is treatOSTEO¼ ’0’

Class level information

Class Value Design variables

age 1 1 0

2 0 1

3 0 0

RIAGENDR 1 1

2 0

ANYCALSUP 1 1

2 0

bmigrp 1 1 0

2 0 1

3 0 0

Model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied

Comment: The model converged
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Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 71029139 52689533

SC 71029145 52689578

�2 log L 71029137 52689519

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 18339617.9 6 <.0001

Score 18408564.5 6 <.0001

Wald 1201.6698 6 <.0001

Comment: The results in Model 2 have a simultaneous significant impact on no treatment as in

Model 1

Type 3 analysis of effects

Effect DF Wald chi-square Pr>ChiSq

ANYCALSUP 1 5.5436 0.0185

RIAGENDR 1 138.1695 <.0001

age 2 697.7815 <.0001

bmigrp 2 3.3351 0.1887

Comment: While these covariates (Anycalsup, Riagendr, Age, and Bmigrp) are significant the

additional effect of BMIGRP is not significant

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 1.7340 0.2019 73.7907 <.0001

ANYCALSUP 1 1 �0.4820 0.2047 5.5436 0.0185

RIAGENDR 1 1 2.1072 0.1793 138.1695 <.0001

age 1 1 4.0852 0.1917 454.1055 <.0001

age 2 1 1.6604 0.2245 54.6801 <.0001

bmigrp 1 1 �0.3657 0.2007 3.3207 0.0684

bmigrp 2 1 �0.0323 0.1832 0.0310 0.8602

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

ANYCALSUP 1 vs. 2 0.618 0.413 0.922

RIAGENDR 1 vs. 2 8.225 5.788 11.688

age 1 vs. 3 59.455 40.833 86.570

age 2 vs. 3 5.262 3.388 8.171

bmigrp 1 vs. 3 0.694 0.468 1.028

bmigrp 2 vs. 3 0.968 0.676 1.386

Comment: Correspondingly, the odds ratios are significant in all cases except with BMIGRP
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Association of predicted probabilities and observed responses

Percent concordant 85.4 Somers’ D 0.745

Percent discordant 11.0 Gamma 0.772

Percent tied 3.6 Tau-a 0.073

Pairs 1043630 c 0.872

Comment: The BMI_Grp is not significant in the model. The fitted weighted logistic regression

model is:

Logit Pno treatð Þ ¼ 1:734� 0:482Anycalsup þ 2:107Riagendr þ 4:085Age1
þ1:660Age2 � 0:366bmigr p1 � 0:032bmigr p2

5.5.3 Comparison of Weighted Logistic Regression Models

We fitted a weighted logistic regression model with the set of weights (Model#1)

and another with weights based on the strata and clusters (Model#2) to which the

observations belong. The parameter estimates are the same in both models but the

variances are different. The ratio of the standard errors is given in Table 5.1.

Model #2 took into account the strata and the clusters so it expected that the

variance will be greater.

5.6 Conclusions

When binary data are obtained from clusters of different sizes, there are some

methods more efficient to use other than a common dispersion factor, Chap. 4. So

instead of forcing a common factor on the data, one can use the weighted logistic

regression model. It is possible to fit the varying clusters as a categorical variable in

the model. If the clusters are the only ones of interest, then one may need to include

dummy variables to address the clusters. When you have survey data, the estimates

are affected as opposed to if you had assumed the observations were independent.

Ignoring the correlation present results in the variance being underestimated, thus

estimates may be presented as significant when in fact they are not.

5.7 Related Examples

The initial year of the High School and Beyond data survey was conducted in the

spring of 1980. The survey design included a highly stratified national probability

sample of 1106 secondary schools as the first-stage units of selection. In the second

stage, 36 seniors and 36 sophomores were selected per school. Sampling rates for

each stratum were set so as to select in each stratum the number of schools needed
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to satisfy study design criteria regarding minimum sample sizes for certain types of

schools. As a result, some schools had a very high probability of inclusion. The total

number of schools selected for the sample was 1122, from a frame of 24,725

schools with grades 10, 12, or both. The data concentrated on the TV viewing

habits of black and white seniors in alternative and regular catholic schools in the

west north central region. One can fit a weighted logistic regression model to model

those who watch lots of television vs. those who do not.

Wilson, J. R., &Wilson, P. M. (1191). A comparison of chi-squared statistics for

testing homogeneity of survey data: High school and beyond survey Journal of
Applied Statistics, 18(2), 203–213.
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Chapter 6

Generalized Estimating Equations Logistic
Regression

Abstract Many fields of study use longitudinal datasets, which usually consist of

repeated measurements of a response variable, often accompanied by a set of

covariates for each of the subjects/units. However, longitudinal datasets are prob-

lematic because they inherently show correlation due to a subject’s repeated set of

measurements. For example, one might expect a correlation to exist when looking

at a patient’s health status over time or a student’s performance over time. But in

those cases, when the responses are correlated, we cannot readily obtain the

underlying joint distribution; hence, there is no closed-form joint likelihood func-

tion to present, as with the standard logistic regression model. One remedy is to fit a

generalized estimating equations (GEE) logistic regression model for the data,

which is explored in this chapter. This chapter addresses repeated measures of the

sampling unit, showing how the GEE method allows missing values within a

subject without losing all the data from the subject, and time-varying predictors

that can appear in the model. The method requires a large number of subjects and

provides estimates of the marginal model parameters. We fit this model in SAS,

SPSS, and R, basing our work on the variance means relationship methods, Ziang

and Leger (Biometrics 42:121–130, 1986a, Biometrics 73:13–22, 1986b), and

Liang and Zeger (Biometrika 73:13–22, 1986).

6.1 Motivating Example

6.1.1 Description of the Rehospitalization Issues

Longitudinal datasets usually consist of repeated measurements on a response

variable, often accompanied by a set of covariates for each of the subjects/units.

However, longitudinal datasets are problematic because they inherently show

correlation due to a subject’s repeated set of measurements. For example, one

might expect that a correlation exists between a patient’s health status and its
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progress over time, or a student’s grade performance and its progress over time, but

it does not allow us to draw a correlative relationship between the two. In looking at

the longitudinal datasets, consider this example regarding rehospitalization, an

important issue for health insurance reimbursement. A hospital has obtained infor-

mation about rehospitalization for 1625 patients on 3 successive occasions. The

CFO of the hospital wants to know if there are some indicators to help determine the

probability of rehospitalization within 30 days. The data are given in the Medicare
dataset www.public.asu.edu/~jeffreyw. The covariates under consideration are total
number of diagnoses, total number of procedures, length of previous stay, and

whether or not they had coronary atherosclerosis.

Study Hypotheses

The CFO is particularly interested in: NDX¼ total number of diagnoses at hospi-

talization, NPR¼ total number of procedures performed previously, LOS¼ length

of stay at the previous stay, and whether or not they had DX101¼ coronary

atherosclerosis as they impact rehospitalization. By analyzing the data, the CFO

wants to know the probability of a patient being rehospitalized within 30 days of

release, based on the number of drugs the patient is taking, the total number of

procedures he/she has had, the length of his/her previous stay, and whether or not

he/she has coronary atherosclerosis.

6.2 Definition and Notation

Longitudinal studies are studies in which the outcome variable is repeatedly

measured on two or more occasions over time.

Clustered data are data created with a common mechanism. The units are not

independently and identically distributed, but rather come in groups or clusters that

consist of units which are correlated. Such units of data can be put into any number

of distinct groups or “clusters” within a particular study (Galbraith, Daniel, &

Vissel, 2010). Additionally, the sampling units in a study can be grouped into

clusters if they share a common feature.

Repeated measures data consist of data which are longitudinal or clustered.

Most researchers refer to repeated measures data to denote those data that are taken

repeatedly over time, as well as those not taken over time, but have otherwise

correlated outcome data; we will do likewise. Thus, we use the term “repeated

measures” to include both longitudinal and clustered data.

Amarginal model, also known as a population-averaged model, is used when the

researcher is modeling the mean of the distribution of the population of responses

and wishes to do so as a function of the covariates. From these models, researchers

can make conclusions about comparisons between subpopulations that differ

according to chosen covariates.
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Generalized estimating equations (GEEs) is a method used for obtaining esti-

mates of the coefficient when analyzing correlated data without relying on a joint

distribution of the responses which is usually unknown. The method is usually used

for cases which could normally be modeled as generalized linear models (GLMs),

but because of correlation among the observations cannot. http://support.sas.com/

rnd/app/da/new/dagee.html (Hardin & Hilbe, 2003; Liang & Zeger, 1986).

A consistent estimator is one which, if allowed to be computed each time with a

larger sample size, will result in the value it was set to estimate. More so, a sequence

of estimators for a parameter is said to be consistent (or asymptotically consistent) if

this sequence converges in probability to the parameter. It means that the distributions

of the estimators become more and more concentrated near the true value of the

parameter being estimated, so that the probability of the estimator being arbitrarily

close to the parameter converges to one. An estimator for a parameter is consistent
if the estimator converges in probability to the true value of the parameter, that is,

the limit in probability of the estimator, as the sample size goes to infinity, is the

parameter itself. In other words, an estimator is consistent if it has an asymptotic

power of one (Parson, Illustrated Dictionary of Economics, p. 47).
An efficient estimator is an estimator that estimates the parameter of interest with

the smallest variance. In other words, it has minimum variance among estimates of

its kind.

Missing completely at Random (MCAR) refers to missing observations, but the

way they are missing does not depend on observed or unobserved measurements.

Some refer to this sample as uniform non-response. The key fact is that we expect

consistent results with missing data. Of course, there will generally be some loss of

information. However, in practice, MCAR means that the analysis of only those

units with complete data can provide the opportunity for valid inferences. An

example of this phenomenon would be if one of the patients from the study dies

in a car accident, there is no information about this patient that can be used to

conduct the study and analyze the data. We do not see anything based on the data

collected that would have led to the accident, and the patient’s data can no longer be

used in analysis because the patient cannot be rehospitalized.

The score function is a weighted product of the information from the covariate and

the residual.When this function is set to zero, we obtain the estimates of the regression

coefficient in the systematic component. In a repeated data setting, the repeats for an

individual are connected through the so-called working covariance matrix. This is

similar in form to the estimating equation (called normal equations when dealing

with standard normal regressionmodels) for β in the well-known normalmodel. Upon

convergence, standard errors associated with β are obtained as the square root of

the diagonal elements of the information matrix (Gibbons & Hedeker 1997).

Information matrix or the observed information, or observed Fisher information,

is the negative of the second derivative (the Hessian matrix) of the “log likelihood”

(the logarithm of the likelihood function). It is important to obtaining the variance

of the estimator.

Information criteria provide a measure of the information lost by considering a

model in place of the raw data, so smaller values of information criteria suggest

better fit.
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Estimating equations is a relationship involving the parameters of a statistical

model thereby leading to a method of estimation.

Working correlation matrix is usually unknown and must be estimated. It pro-

vides weights for the combination of the correlated responses as the regression

coefficients are estimated.

Marginal models are used to demonstrate that the model for the mean response at

each occasion depends only on the covariates of interest, and not on any random

effects or previous responses.

Wald confidence intervals are sometimes called the normal confidence intervals.

They are based on the asymptotic normality of the parameter estimators and

obtained by taking the estimator, plus or minus the reliability coefficient times

the standard error.

6.3 Exploratory Analyses

Correlated outcomes are encountered in many areas of research and occur for a

variety of different reasons. Valid statistical inferences require that we properly

account for the correlation among outcomes within subjects. Ignoring the correla-

tion will likely lead to an underestimation of the variance. This type of within-

subject correlation may be due to a single outcome measured repeatedly over time

on the same subject, as in longitudinal studies and in the Medicare data, or may be

due to multiple outcomes measured one or more times, each on the same subject, as

in clinical trials involving multiple endpoints. Correlation may also be due to a

commonality related to output among units (families or litters) which is the case in

the so-called clustered data.

For example, there is a sample of 1625 patients in the Medicare dataset with

complete information; each has 3 outcomes indicating the different times he/she

was rehospitalized. Though there are methods for dealing with unbalanced data,

this chapter only considers those subjects who have complete data at all 3 consec-

utive time-points, resulting in 1625 subjects with 3 observations for each. Table 6.1

shows some lines of that data.

The standard logistic regression model (Chap. 3) addresses the odds and, as

such, the parameters are readily interpretable. The standard logistic regression

model relies on the assumption that the observations are independent; thus, they

cannot be utilized here as we have correlated observations. Our interests lie in the

cases or situations when the observations are not independent. For example:

• Subjects are followed; the covariates and responses are repeatedly measured.

• Subjects/units exist in a cluster or family or group.

• Subjects/units provide several responses over time.

• Subjects/units are treated under different experimental conditions.

Figure 6.1 presents the structure as deemed useful for GEE logistic regression

models. The responses are correlated as they are produced and reproduced by the
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same mechanism. These unit outcomes are denoted by y1j, y2j, . . . ynj where yij
represents the jth measure on the ith unit. The covariates XB, XA,XC represent the

input variables, which are considered to be fixed for each individual. These can be

categorical XA, binary XB, or continuous XC.

Assumption: The model assumes that the units yij are independent though the yij
and yst are not when i and s are equal. The outcomes are binary. In other words, units

Table 6.1 Partial data in the Medicare data as used for analysis

PNUM_R biRadmit NDX NPR LOS DX101 Time

127 0 9 6 6 1 1

127 0 6 4 1 1 2

127 0 9 5 3 1 3

560 1 9 3 8 0 1

560 0 9 1 17 0 2

560 0 7 1 6 0 3

746 1 6 4 12 0 1

746 0 6 1 1 0 2

746 0 9 1 2 0 3

750 0 9 3 6 0 1

750 1 7 3 4 0 2

750 1 9 2 4 0 3

1568 1 8 1 2 0 1

1568 1 9 1 4 0 2

1568 0 8 3 2 0 3

2076 1 9 5 8 1 1

2076 0 9 6 17 0 2

2076 1 9 1 6 0 3

2390 0 7 2 2 0 1

2390 0 7 2 3 0 2

2390 0 5 1 3 0 3

2413 0 9 6 17 0 1

2413 0 8 3 9 1 2

Fixed

XB
XC
XA

.

Fig. 6.1 Depicting GEE logistic regression model
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within a cluster are correlated, but units across clusters are independent. There are

two basic approaches for modeling binary responses that account for correlation:

1. The marginal model addresses the autocorrelation through the random compo-

nent, where we address the distribution of the responses.

2. The subject-specific model assumes that there is a natural heterogeneity due to

the random effects. This heterogeneity can be modeled by a probability distri-

bution and is addressed in the systematic component, where we talk about the

covariates that are included in the model. We concentrate on approach I in this

chapter.

We present a GEE logistic regression model for analyzing these binary data

because GEE models are useful for situations when the data are correlated. They are

also useful when the sampling units are repeatedly measured. GEE logistic models

allow missing completely at random (MCAR) values within a subject without

losing all the data from that subject. It also allows time-dependent predictors in

the model. However, the GEE model requires a large number of subjects and takes

into consideration autocorrelation in the responses. Such correlation is addressed in

the random component of the GLM setup of random, systematic, and link compo-

nents. It is a population-averaged model. However, since the distribution of the

repeated observations is unknown, we cannot use the maximum likelihood method

(Zeger & Liang, 1986).

GEEs were developed as a means of analyzing longitudinal data when correla-

tion is present (Breslow, 1989; Davidian & Carroll, 1987). The presence of corre-

lation makes it impossible to write down the joint likelihood, thus a quasi-

likelihood-based approach for modeling correlated responses is used. We are

unable to present the likelihood due to the non-independence, thereby losing the

opportunity to use the product of the probabilities to obtain the likelihood.

The GEEs procedure extends the GLM to allow for the analysis of repeated

measurements or other correlated observations, such as clustered data. The GEE

approach of Zeger and Liang facilitates the analysis of data collected in longitudi-

nal, nested, or repeated measures designs. Though the specification of a working

correlation matrix accounts for the form of within-subject correlation of responses,

GEEs provide more efficient and unbiased regression parameters relative to ordi-

nary least squares. The individual response may come from one of many distribu-

tions, including binomial and Poisson (Ballinger, 2004). It is the joint distribution

of the repeats that necessitates the GEE approximations.

The true distribution of responses does not necessarily have to be specified for

estimating the regression coefficients. We just need to specify a mean–variance

relation. As GEE models are based on “quasi-likelihood” methods, the joint

distribution of a subject’s responses does not need to be specified. We only need

the marginal distribution of a subject’s response y11 at each time-point. Thus, GEE

models avoid the need to specify the joint distributions for binary longitudinal data.

If we were to use the standard logistic regression model, we will get the following

results.
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Response profile

Ordered value biRadmit Total frequency

1 0 2433

2 1 2442

Probability modeled is biRadmit¼ 1

It treats the 4875 observations as though they are independent. So they can use

the log likelihood to obtain the Analysis of Maximum Likelihood Estimates with the
following results.

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.3675 0.1263 8.4600 0.0036

NDX 1 0.0648 0.0154 17.6382 <.0001

NPR 1 �0.0306 0.0186 2.7115 0.0996

LOS 1 0.0344 0.00555 38.4549 <.0001

DX101 1 �0.1143 0.0913 1.5667 0.2107

T2 1 �0.3876 0.0716 29.2711 <.0001

T3 1 �0.2412 0.0721 11.1925 0.0008

Effect

Odds ratio estimates

Point estimate 95 % Wald confidence limits

NDX 1.067 1.035 1.100

NPR 0.970 0.935 1.006

LOS 1.035 1.024 1.046

DX101 0.892 0.746 1.067

T2 0.679 0.590 0.781

T3 0.786 0.682 0.905

Using the standard logistic regression model suggest that NDX (p< .0001), LOS

(<.0001), and time (<.0001) were significant. However, it makes no allowances for

the fact that responses on a patient are correlated.

6.4 Statistical Models: GEE Logistic Regression

6.4.1 Medicare Data

We fit several different GEE logistic regression models, where the estimates depend

on the covariance structure. One may assume independence, compound symmetry,

autoregressive (AR (1)), unstructured, and user-defined working correlation struc-

tures, but the possibilities are not limited to these familiar relations.
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6.4.2 Generalized Linear Model

The GLM (Chap. 3) provides a framework for modeling response and predictor

variables by extending traditional linear model theory to non-normal data. In cross-

sectional studies, each subject has a single observation and a GLM (McCullagh &

Nelder, 1989) can be used to regress a variety of covariates. However, since GLMs

assume that all observations are independent of each other, they are not appropriate

for the analysis of longitudinal data. Moreover, in studies, such as prospective

cohort studies, where individuals are observed for multiple occurrences, the out-

comes are often correlated. Such correlation should be treated with statistical

consideration by including the repeated measures. In such cases, the GEEs can be

used to analyze the data with reasonable statistical efficiency (Zeger & Liang

1986a, 1986b). However, in these cases, when the responses are correlated, we

cannot readily obtain the underlying joint distribution; hence, there is no closed-

form joint likelihood function to present, as we had with the standard logistic

regression model. One remedy for the correlated observations is to fit a GEE

logistic regression model. We fit such types of correlated models in this chapter

and present alternatives approaches in Chaps. 7 and 8.

6.4.3 Generalized Estimating Equations

When the effects of the covariates on the outcome variable are the primary focus,

the GEE model can be looked upon as an extension of GLMs as applied to the

analysis of longitudinal data (Liang & Zeger, 1986). Since GEE models can be

thought of as extensions of the GLM to correlated data, we refer to the components

(random, systematic, and link) in the GEE as we did with the GLM. Instead of a

random component providing full information on the distribution, there is limited

information. The systematic and link functions provide information as they did in

GLM. So, for example, the linear predictor for a GEE logistic regression model

with two covariates is given with its systematic and logit link functions as

ηt ¼ β0 þ β1X1t þ β2X2t

ηt ¼ log p1t= p0t½ �

where X1t andX2t are two covariates for subject i at time t, with a logit link function.

Liang and Zeger developed the GEE models (Liang & Zeger, 1986; Zeger &

Liang, 1986). They did not fully define the likelihood, but they used a quasi-

likelihood estimation method. The estimates are obtained from the quasi-score

function. So, a GLM comes with systematic and link functions and a fully described

distribution, while a GEE has link and systematic functions, but the distributional

assumption is based only on the mean and variance relation.
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When GEE logistic regression models consider a given subject as measured at

all T time-points, then it is the full T� T correlation matrix of the longitudinal data

to which we refer. It is the average over all the observations, and hence the reason

that GEE can accommodate missing data on a subject. So, if the largest number of

repeats on a subject is three but one subject only has two repeats, then we present a

matrix of the larger dimension of 3.

6.4.4 Marginal Model

The GEE logistic regression models are considered marginal models since they

seek to characterize the expectation of a subject’s response y at time t as a function
of the subject’s covariates at time t. As a marginal model, the GEE model is

appropriate when inferences about the population average is of primary interest

(Diggle, Liang, & Zeger, 1994), or when the expectation of the response variable is

being regressed on some function of covariates in order to make future applications

with the results (Pepe & Anderson, 1994).

Marginal models assume that repeated observations from the same subject are

generally correlated. Thus, for a particular time t, the marginal density of yit is
assumed to follow a GLM (McCullagh & Nelder, 1989) with the random distribu-

tion of the outcome values belonging to the exponential family. The regression of

the response on explanatory variables is modeled separately from the within-person

correlation. We model the mean of the response over the subpopulation sharing a

common value of the covariates, and interpretation relates to the population and not

the individual (Hu, Goldberg, Hedeker, Flay, & Pentz, 1998).

6.4.5 Working Correlation Matrices

The GEE models consist of a matrix referred to as the working correlation matrix
representing the structure of the repeated measures on a subject. This matrix

includes the assumption made regarding the association between the observations

for each subject. In fitting the model, we assume that the form of the relation, and

not necessarily the degree of that relation, is the same for all subjects. Therefore, if

we assume that there is compound symmetry for one subject, we assume this is true

for all subjects. In reality, however, even if the structure is the same, the strength of

that association may differ across subjects. Thus, the model takes the average across

all subjects and uses that as the correlation. The typical working correlations for

GEE models are independence, compound symmetry or exchangeability,

autoregressive AR (1), unstructured, and user-defined correlation structure:

• Independence indicates that repeated observations are uncorrelated. It is the

simplest form of working correlation, namely the identity matrix of dimension
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T. This form indicates that the longitudinal data are not correlated. In general,

this is not intuitive and would be difficult to accept. However, Pepe and

Anderson (1994) indicate that use of the independence structure does have

certain advantages if the models include time-dependent covariates (Chap. 7).

• Exchangeable indicates correlation between any two responses if the ith subject/
unit is the same. The exchangeable or compound-symmetry correlation assumes

that all of the correlations are the same. So, if a subject is measured four times,

then correlation of observations at times (1, 2); (1, 3); (1, 4); (2, 3); (2, 4); and

(3, 4) are all the same.

• Autoregressive (AR (1)) indicates another useful correlation for longitudinal

data. It tells us that the correlation between any two observations is assumed

to be less as they become further apart and is measured by ρ{time period difference}.

Since it depends only on one parameter term, it is very parsimonious for

longitudinal data. This autoregressive assumption (also referred to as a “transi-

tional model”) is used when the analysis must account for a time dependency.

• Unstructured or unspecified indicates that the correlation within any two

responses is unknown and must be estimated. Thus, no structural form is

assumed, and it may be that all correlations per subject/unit are different. This

unstructured form is the most efficient, but is only useful if the numbers of time-

points are small; otherwise, there are too many parameters to be estimated.

• User-defined structure indicates that the analyst decides (maybe from past

studies or experience) what the correlations at any two responses ought to

be. This choice for working correlation is not well advised since it can lead to

nonconvergence.

Modeling the correlation with the GEE approach accounts for the association

across time and the association between observations for the same subject. As such,

it allows an arbitrary working correlation structure for the correlation matrix of a

subject’s outcomes. We present an average of these correlation matrices.

6.4.6 Model Fit

When fitting the standard logistic regression, the appropriateness of the fit was

measured since we had likelihoods and joint likelihoods on account of the inde-

pendent observations with known distribution. However, the fit of GEE logistic

regression model cannot be assessed in such a manner because of the lack of

independence with correlated observations. The most common fit statistic for the

GEE logistic regression model is the quasi-likelihood information criterion, or QIC

(Pan & Connett 2002). QIC can be used to compare models with different working

correlation structures, where the model with the smallest QIC is selected. QIC can

also be used to select among models with different combinations of predictors.
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6.4.7 Properties of GEE Estimates

It is natural to question how these estimates in a GEE logistic regression model

perform. The regression coefficient estimators in the GEE models have the follow-

ing properties:

1. They are consistent and asymptotically normal even with misspecification of the

correlation structure (Liang & Zeger, 1986). That is appealing since one may not

always select the corrected correlation matrix.

2. The standard errors can be consistently estimated regardless of whether or not

the working correlation structure is correctly specified. However:

3. Their efficiency is reduced if the choice of correlation matrix is incorrect; and

the loss of efficiency gets small as the number of subjects gets large (Zeger &

Liang, 1992).

The GEE logistic regression model is best suited for scenarios with only a few

time-points and when each subject has complete data with a good choice of the

working correlation matrix (Diggle et al., 1994).

6.5 Data Analysis

6.5.1 GEE Logistic Regression Model

We fit GEE logistic regression models to the Medicare data using SAS, SPSS, and

R for the analysis of the probability of rehospitalization. These models adjusted for

the correlation through the random component. We fitted the logistic regression

model,

log Py¼1

��Py¼0

� � ¼ β0 þ β1NDXþ β2NPRþ β3LOSþ β4DX101þ β5T2 þ β6T3

with several working correlation structures, where Py¼1 denotes the probability of

rehospitalization within 30 days, Py¼0 denotes the probability of not being

rehospitalized within 30 days, NDX denotes the total number of diagnoses, NPR

denotes the number of prescriptions, LOS denotes the length of stay, DX101 is

binary and denotes the presence of coronary atherosclerosis, T2 denotes period

2, and T3 denotes period 3. We fitted each of the working correlation matrices:

independence, compound symmetry, autoregressive, unstructured, and user

defined. We used SAS, SPSS, and R.
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SAS Program

data mydata; set chapter6;

T2¼(time¼2); T3¼(time¼3);run;

title ’GEE with AR(1) corr structure’;

proc genmod data¼mydata descend; * to model Prob(y¼1);

class PNUM_R time;

model biRadmit¼NDX NPR LOS DX101 T2 T3 / dist¼BIN;

repeated subject¼PNUM_R /within¼time corr¼AR(1) corrw;

output out¼GEEout xbeta¼xb RESRAW ¼ rraw;

run;

Comment: BIRADMIT denotes the binary outcome; PNUM_R denotes the patient ID. This identifies

the cluster, and in this case the patient is the cluster (of size 3 in this case); CORR¼AR (1) signifies to

SAS to use the autoregressive working correlation structure order 1. Other working structures can

be used by using the appropriate name. The program runs the GEEmodel with working correlation

structure. The repeat (cluster) is identified by SUBJECT¼. The program inherently assumes that

the data have been saved in “long” format, meaning each observation time for each individual

corresponds to a unique row in the dataset. The working correlation is invoked with the

WITHIN¼time CORR¼ AR (1). OUT is an SAS word. GEEout is our name for the dataset

with the results of the predicted probabilities in xbeta ¼ β0 þ β1NDXþð β2NPRþ β3LOSþ β4D
X101þ β5T2 þ β6T3Þ and the raw residuals is in RESRAW (¼observed� predicted)

Comment: OUT is an SAS word. GEEout is our name for the dataset with the

results of the predicted logits in xbeta, and the raw residual is RESRAW.

SAS Output

GEE with AR (1) CORR structure

The GENMOD procedure

Model information

Dataset WORK.MYDATA

Distribution Binomial

Link function Logit

Dependent variable biRadmit biRadmit

Number of observations read 4875

Number of observations used 4875

Number of events 2442

Number of trials 4875

Comment: There are 4875 data points because the analysis is looking at of 1625 patients with

3 measures each (1625� 3¼ 4875)

Class level information

Class Levels Values

PNUM_R 1625 127 560 746 750 1117 1395 1568 2076 2390 2413 3008

3123 3710 3970 3982 4236 4581 4873 5387 6255 7497

7599 8181 9677 10464 11050 11274 11279 11787 13420

13436 13761 14955 16160 16464 16971 17748 18638

18697 19349 19674 19730 20112 20973 21410 21800

Time 3 1 2 3

Comment: There are 3 time-points and the 1625 patients are presented with their ID numbers. We

truncated the list of class levels for space reasons, but the program will list all
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Response profile

Ordered value bi Radmit Total frequency

1 1 2442

2 0 2433

PROC GENMOD is modeling the probability that biRadmit¼ ’1’

Comment: GENMOD is modeling log [(Prob Radmit¼ 1)/(Prob Radmit¼ 0)]. Adding the num-

bers in the total frequencies column shows that we have the correct amount of total data points

(2442 + 2433¼ 4875¼ 1625� 3)

Parameter information

Parameter Effect

Prm1 Intercept

Prm2 NDX

Prm3 NPR

Prm4 LOS

Prm5 DX101

Prm6 T2

Prm7 T3

Comment: These are the parameters in the model presented to SAS to run.

log Py¼1

��Py¼0

� � ¼ β0 þ β1NDXþ β2NPRþ β3LOSþ β4DX101þ β5T2 þ β6T3

The GENMOD procedure

Algorithm converged

GEE model information

Correlation structure AR (1)

Within-subject effect Time (3 levels)

Subject effect PNUM_R (1625 levels)

Number of clusters 1625

Correlation matrix dimension 3

Maximum cluster size 3

Minimum cluster size 3

Algorithm converged

Comment: The AR (1) model is autoregressive. There are three points (times) in each cluster. The

program converged. They do not always

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.0294 0.0009

Row2 0.0294 1.0000 0.0294

Row3 0.0009 0.0294 1.0000

Comment: The working correlation matrix is the AR (1)¼ the autoregressive of order 1. Note that

(Row1, Col2)¼ (Row2, Col3)¼ (Row2, Col1)¼ (Row3, Col2)¼ 0.0294. Responses from obser-

vation times that differ by one are equally correlated. Similarly (Row1, Col3)¼ (Row3, Col1)

¼0.0009¼ (0.0294)2. The autocorrelation is squared to correspond to responses taken two periods

away. Responses from observation times differing by two are equally correlated
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GEE fit criteria

QIC 6648.5528

QICu 6646.6229

Comment: This is a measure of the fit of the model. However, since there is no declared

distribution, one has nothing to compare it to. You can, however, use it to compare nested models

Analysis of GEE parameter estimates

Empirical standard error estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z|

Intercept �0.3614 0.1258 �0.6079 �0.1148 �2.87 0.0041

NDX 0.0645 0.0160 0.0331 0.0958 4.03 <.0001

NPR �0.0290 0.0191 �0.0665 0.0084 �1.52 0.1282

LOS 0.0331 0.0076 0.0182 0.0481 4.35 <.0001

DX101 �0.1239 0.0936 �0.3073 0.0595 �1.32 0.1854

T2 �0.3865 0.0710 �0.5258 �0.2473 �5.44 <.0001

T3 �0.2401 0.0688 �0.3750 �0.1053 -3.49 0.0005

Comment: The fitted logistic regression model is

log P1

P0

h i
¼ �0:361þ 0:065NDX� 0:029NPRþ 0:033LOS� 0:124DX101� 0:387T2 � 0:240T3

The variables NDX (p< 0.001) and LOS (p< 0.001), as well as T2 and T3, are

significant.

We present the results from some other working correlation matrices. We chose

only to include the outputs as they pertained to the coefficients and the working

matrix.

SAS Program with CORR¼UNSTR

title ’GEE with UNSTR corr structure’;

proc genmod data¼mydata descend; * to model Prob(y¼1);

class PNUM_R time;

model biRadmit¼NDX NPR LOS DX101 t2 t3 / dist¼bin ;

repeated subject¼PNUM_R /within¼time corr¼unstr corrw;

output out¼GEEout xbeta¼xb RESRAW ¼ rraw;

run;

Comment: This is the code using the unstructured working correlation CORR¼UNST. There is no

desired relationship

SAS Output

GEE with unstructured CORR structure

Working correlation matrix

Col1 Col2 Col3

Row1 1.0000 0.0149 0.0977

Row2 0.0149 1.0000 0.0464

Row3 0.0977 0.0464 1.0000

Comment: The working correlation matrix cell values are determined based on the data. The row1

col2¼ row2 col1¼ 0.0149. The row1 col3¼ row 3 col1¼ 0.0977. The row2 col3¼ row

3 col2¼ 0.0464
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GEE fit criteria

QIC 6648.7280

QICu 6646.8674

Analysis of GEE parameter estimates

Empirical standard error estimates

Parameter Estimate Standard error 95 % confidence limits Z Pr> |Z|

Intercept �0.3874 0.1255 �0.6334 �0.1414 �3.09 0.0020

NDX 0.0686 0.0160 0.0373 0.0999 4.30 <.0001

NPR �0.0272 0.0190 �0.0645 0.0101 �1.43 0.1531

LOS 0.0314 0.0075 0.0167 0.0462 4.18 <.0001

DX101 �0.1260 0.0934 �0.3090 0.0570 �1.35 0.1771

T2 �0.3868 0.0710 �0.5259 �0.2477 �5.45 <.0001

T3 �0.2390 0.0688 �0.3739 �0.1041 �3.47 0.0005

Comment: {complete output not provided except for the derived coefficients} The fitted logistic

regression model is

log P1

P0

h i
¼ �0:387þ 0:068NDX� 0:027NPRþ 0:031LOS� 0:126DX101� 0:387T2 � 0:239T3

The variables NDX, LOS, T2, and T3 are significant. The variable NDX has a

positive, significant coefficient, meaning that between the two populations with

different average numbers of diagnoses, the population with the higher average

number of diagnoses had a higher expected probability of rehospitalization within

30 days. Specifically, between two populations that differ by one diagnosis, the

odds of rehospitalization within 30 days for the population with one more diagnosis

increases by a multiple of exp(0.0645)¼ 1.066. In other words, the odds of

rehospitalization increase by about 6 % for an increase of one diagnosis. The

negative coefficient for time 2 indicates that the probability of rehospitalization

decreases the second time, as compared to the first time.

SAS Program with CORR¼ user defined

Title ’GEE with FIXED (user specified) corr structure’;

proc genmod data¼mydata descend; * to model Prob(y¼1);

class PNUM_R time;

Model biRadmit¼NDX NPR LOS DX101 t2 t3 / dist¼bin;

Repeated subject¼PNUM_R /within¼time corr¼fixed (1.0 0.8 0.0

0.8 1.0 0.5

0.0 0.5 1.0) corrw;

Output out¼GEEout xbeta¼xb RESRAW ¼ rraw; run;

Comment: This is the code used with the working correlation, a user-defined matrix

(CORR¼ Fixed (. . .. . .. . .)). The researcher decides the correlation among responses within sub-

jects. The user chose row1 col2l2¼ row2 col1¼ 0.80. The row2 col3¼ row3 col2¼ 0.50
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SAS Output

GEE with INDEP and EXCH CORR structure

Comment: One can obtain results for independence or compound symmetry by

using CORR¼ INDEP or CORR¼EXCH, respectively, in the “repeated line.” Then, the

results are:

Comment: The fitted logistic regression model is

log
P1

P0

� �
¼ �0:368þ 0:065NDX� 0:031NPRþ 0:034LOS� 0:114DX101

� 0:388T2 � 0:241T3

The variables NDX, LOS, T2, and T3 are significant. This is based on CORR¼ INDEP.

Comment: The fitted logistic regression model is

log
P1

P0

� �
¼ �0:371þ 0:066NDX� 0:027NPRþ 0:031LOS� 0:133DX101

� 0:386T2 � 0:239T3

The variables NDX, LOS, T2, and T3 are significant. This is based on CORR¼EXCH.

SAS Output

GEE with user-defined CORR structure

Working correlation matrix

Col1 Col2 Col3

Row1 1.0000 0.8000 0.0000

Row2 0.8000 1.0000 0.5000

Row3 0.0000 0.5000 1.0000

Comment: The working correlation matrix is the user-defined correlation. So the values were

stated by the user

GEE fit criteria

QIC 6738.5916

QICu 6720.3236

Analysis of GEE parameter estimates

Empirical standard error estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z|

Intercept �0.0454 0.2118 �0.4605 0.3696 �0.21 0.8301

NDX 0.0285 0.0275 �0.0254 0.0825 1.04 0.2999

NPR 0.0333 0.0302 �0.0259 0.0924 1.10 0.2707

(continued)
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Analysis of GEE parameter estimates

Empirical standard error estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr> |Z|

LOS �0.0028 0.0087 �0.0199 0.0142 �0.33 0.7449

DX101 �0.3640 0.1578 �0.6733 �0.0547 �2.31 0.0211

T2 �0.3525 0.0712 �0.4920 �0.2129 �4.95 <.0001

T3 �0.1914 0.0714 �0.3313 �0.0516 �2.68 0.0073

Comment: Only DX101 is significant besides the usual indicator time variable T2 and T3 . The

fitted logistic regression model is

log P1

P0

h i
¼ �0:045þ 0:029NDX� 0:033NPRþ 0:003LOS� 0:364DX101� 0:352T2 � 0:191T3

With the user-defined working correlation matrix, we obtained results in direct

conflict with the working correlation matrices of independence, exchangeability,

autoregressive of order 1, and unstructured. This is not surprising since those

working correlation matrices, when given a predetermined defined data structure,

were able to use the data to determine the strength of the association. This was not

the case when the user-defined matrix was specified.

We used SPSS to fit the GEE logistic regression models.

SPSS Program

We fitted these models in SPSS with GENLIN.

* GENERALIZED ESTIMATING EQUATIONS.

GENLIN BIRADMIT (REFERENCE¼LAST) WITH NDX NPR LOS DX101 T2 T3

/MODEL NDX NPR LOS DX101 T2 T3 INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/CRITERIA METHOD¼FISHER (1) SCALE¼1 MAXITERATIONS¼100

MAXSTEPHALVING¼5

PCONVERGE¼1E-006(ABSOLUTE) SINGULAR¼1E-012 ANALYSISTYPE¼3(WALD)

CILEVEL¼95

LIKELIHOOD¼FULL

/REPEATED SUBJECT¼PNUM_R WITHINSUBJECT¼TIME SORT¼YES

CORRTYPE¼UNSTRUCTURED ADJUSTCORR¼YES COVB¼ROBUST

MAXITERATIONS¼100

PCONVERGE¼1E-006(ABSOLUTE) UPDATECORR¼1

/MISSING CLASSMISSING¼EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

Or for Independence Working Correlation Matrix
* GENERALIZED ESTIMATING EQUATIONS.

GENLIN BIRADMIT (REFERENCE¼LAST) WITH NDX NPR LOS DX101 T2 T3

/MODEL NDX NPR LOS DX101 T2 T3 INTERCEPT¼YES

DISTRIBUTION¼BINOMIAL LINK¼LOGIT

/CRITERIA METHOD¼FISHER (1) SCALE¼1 MAXITERATIONS¼100

MAXSTEPHALVING¼5

PCONVERGE¼1E-006(ABSOLUTE) SINGULAR¼1E-012 ANALYSISTYPE¼3(WALD)

CILEVEL¼95 LIKELIHOOD¼FULL

/REPEATED SUBJECT¼PNUM_R WITHINSUBJECT¼TIME SORT¼YES

CORRTYPE¼INDEPENDENT ADJUSTCORR¼YES COVB¼ROBUST

MAXITERATIONS¼100

PCONVERGE¼1E-006(ABSOLUTE) UPDATECORR¼1

(continued)
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SPSS Program

/MISSING CLASSMISSING¼EXCLUDE

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

SPSS Pull Down Menu

Step 1:

In the data editor window select “Variable View” in the bottom left corner

Make sure the following variables are set to the following “Measure”

1. PNUM_R!Scale

2. biRadmit!Nominal

3. NDX!Scale

4. NPR! Scale

5. LOS! Scale

6. DX101!Scale

7. T2!Nominal

8. T3!Nominal

Step 2:

Click “Analyze” on the toolbar

Select “Generalized Linear Models”

Click “Generalized Estimating Equations”

Step 3:

Click the first tab labeled “Repeated”

Select the subject variable in the left column

Click the arrow next to “Subject variables:”

Select the Within-subject variable in the left column

Click the arrow next to “Within-subject variables:”

Click the box next to “Structure:” under “Working Correlation Matrix”

Select “Exchangeable”, “Independent”, “AR (1)”, or “Unstructured” accordingly

Step 4:

Click the second tab labeled “Type of Model”

Select “Binary logistic” under “Binary Response or Events/Trials Data”

Step 5:

Click the third tab labeled “Response”

Select the Dependent variable in the left column

Click the arrow next to “Dependent Variable”

Step 6:

Click the third tab labeled “Predictors”

Select the Independent variables in the left column

Click the arrow next to “Covariates:”

Step 7:

Click the fourth tab labeled “Model”

Select the Independent variables in the left column

Click the arrow under “Build Term(s)”

Click “OK” at the bottom of the window
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SPSS Output

Model information

Dependent variable biRadmita

Probability distribution Binomial

Link function Logit

Subject effect 1 PNUM_R

Within-subject effect 1 Time

Working correlation matrix structure Independent

Comment: The procedure models 0 as the response (log [(Prob Radmit¼ 0)/(Prob Radmit¼ 1)]),

treating 1 as the reference category. The working correlation matrix is independent. Hence, the

working correlation matrix is the identity matrix

Case processing summary

N Percent (%)

Included 4875 100.0

Excluded 0 0.0

Total 4875 100.0

Correlated data summary

Number of levels Subject effect PNUM_R 1625

Within-subject effect Time 3

Number of subjects 1625

Number of measurements per subject Minimum 3

Maximum 3

Correlation matrix dimension 3

Comment: There are 1625 clusters, each with 3 observations. The correlation matrix which has the

2 repeats + 1¼3 as used to model the supposed variance ignored in a standard logistic regression

model

Categorical variable information

N Percent (%)

Dependent variable biRadmit 0 2433 49.9

1 2442 50.1

Total 4875 100.0

Comment: There are 4875 total observations of which 2442 were rehospitalized within 30 days.

There are 2443 or 49.9 % who were not hospitalized within 30 days of discharge

Continuous variable information

N Minimum Maximum Mean Std. deviation

Covariate NDX 4875 1 9 7.47 2.045

NPR 4875 1 6 2.83 1.741

LOS 4875 0 142 5.91 6.792

DX101 4875 0 1 .15 .356

(continued)
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Continuous variable information

N Minimum Maximum Mean Std. deviation

T2 4875 0 1 .33 .471

T3 4875 0 1 .33 .471

Comment: This represents the summary statistics of the 4875 observations across the covariates.

They are called continuous variable information, as the binary DX101 is considered continuous.

Of course, the binary variables have means which are the proportions. For example, DX101 has

minimum 0 and maximum 1. The mean is 0.15 and is the proportion of patients with “1.” However,

the standard deviation is 0:356 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:15*0:85ð Þp

which is not the standard error

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:15x0:85
4875

¼ 0:0051
� �q

based on the variance for proportion under a binomial

Goodness of fita

Value

Quasi-likelihood under independence model criterion (QIC)b 6648.521

Corrected quasi-likelihood under independence model criterion (QICC)b 6646.560
aInformation criteria are in small-is-better form
bComputed using the full log quasi-likelihood function

Parameter estimates for unstructured working correlation

Parameter B Std. error

95 % Wald

confidence

interval Hypothesis test Hypothesis test

Lower Upper Wald chi-square DF Sig.

(Intercept) .367 .1258 .121 .614 8.527 1 .003

NDX �.065 .0160 �.096 �.033 16.381 1 .000

NPR .031 .0192 �.007 .068 2.555 1 .110

LOS �.034 .0077 �.049 �.019 20.067 1 .000

DX101 .114 .0937 �.069 .298 1.489 1 .222

T2 .388 .0711 .248 .527 29.761 1 .000

T3 .241 .0688 .106 .376 12.273 1 .000

(Scale) 1

Comment: For the unstructured working correlation matrix, we use

CORRTYPE¼UNSTRUCTURED in the code or select the unstructured option in the pull

down menu. The 95 % Wald confidence interval is based on Wald (1949). For NDX, the 95 %

interval is [�0.096,�0.033]. Since zero is not covered, it implies that NDX is significant in the

model. As for the Wald chi-square test, for example, NDX¼ (�0.065/0.0160)2¼ 16.381

log P1

P0

h i
¼ 0:367� 0:065NDXþ 0:031NPR� 0:034LOSþ 0:114DX101þ 0:388T2 þ 0:241T3

or

log P0

P1

h i
¼ �0:367þ 0:065NDX� 0:031NPRþ 0:034LOS� 0:114DX101� 0:388T2 � 0:241T3

The variables NDX (p< 0.0001) and LOS (p< 0.0001), as well as T2 and T3, are

significant.

If we were to use the corrtype¼ autoregressive, we will get the following:
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Parameter estimates for autoregressive working correlation

Parameter B Std. error

95 % Wald

confidence

interval Hypothesis test Hypothesis test

Lower Upper Wald chi-square DF Sig.

(Intercept) .387 .1255 .141 .633 9.529 1 .002

NDX �.069 .0160 �.100 �.037 18.475 1 .000

NPR .027 .0190 �.010 .064 2.041 1 .153

LOS �.031 .0075 �.046 �.017 17.513 1 .000

DX101 .126 .0934 �.057 .309 1.822 1 .177

T2 .387 .0710 .248 .526 29.691 1 .000

T3 .239 .0688 .104 .374 12.066 1 .001

(Scale) 1

Comment: For the AR (1) working correlation matrix, we use CORRTYPE¼AR (1) in the code

or choose the AR (1) option in the pull down menu. The information on the output is similar but for

the parameter estimates we have. Then, the fitted model is

log P1

P0

h i
¼ 0:387� 0:069NDXþ 0:027NPR� 0:031LOSþ 0:126DX101þ 0:387T2 þ 0:239T3

AR (1) says that the correlation between adjacent time when squared as the

correlation between two time periods apart.

Parameter estimates for AR (1) working correlation

Parameter B Std. error

95 % Wald

confidence

interval Hypothesis test Hypothesis test

Lower Upper Wald chi-square DF Sig.

(Intercept) .361 .1258 .115 .608 8.253 1 .004

NDX �.064 .0160 �.096 �.033 16.265 1 .000

NPR .029 .0191 �.008 .066 2.315 1 .128

LOS �.033 .0076 �.048 �.018 18.958 1 .000

DX101 .124 .0936 �.059 .307 1.754 1 .185

T2 .387 .0710 .247 .526 29.617 1 .000

T3 .240 .0688 .105 .375 12.187 1 .000

(Scale) 1

Comment: The fitted model is

log P1

P0

h i
¼ 0:361� 0:064NDXþ 0:029NPR� 0:033LOSþ 0:124DX101þ 0:387T2 þ 0:240T3

We fitted the GEE logistic regression models with the R program. NDX, LOS,

and time are all significant in the model.

The R Program

Correlation Structure “Independence”

> my Data ¼ read.table(myData.txt,header¼TRUE)

> library(geepack)

> geeglm.out¼geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

data¼data1, family¼binomial, corstr¼"independence", id¼PNUM_R)

(continued)

6.5 Data Analysis 123



The R Program

> summary(geeglm.out)

Call:

geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

family ¼ binomial, data ¼ data1, id ¼ PNUM_R, corstr ¼ "independence")

Comment: There are numerous options for fitting a GEE logistic regression model using R. For

example, the function GEE is available in the package of the same name. Here, we will use the

function geeglm within the geepack package. Family¼ binomial refers to the distribution assumed

for the outcomes in a certain year. The CORSTR¼“INDEPENDENCE” determines the working correla-

tion matrix structure, and ID¼ PNUM_R indicates the variable that identifies subjects or clusters.

The summary function will provide most of the statistics of interest

R Output

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.36747 0.125842 8.527 0.0035 **

NDX 0.06477 0.016003 16.381 5.18E�05 ***

NPR �0.030615 0.019153 2.555 0.10996

LOS 0.034426 0.007685 20.067 7.48E�06 ***

DX101 �0.114293 0.093666 1.489 0.22238

T2 �0.387639 0.071057 29.761 4.89E�08 ***

T3 �0.241169 0.068841 12.273 0.00046 ***

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Estimated scale parameters

Estimate std. err (intercept) 1.031 0.3447

Correlation: structure¼ independence

Number of clusters 1625

Maximum cluster size 3

Comment: The fitted logistic regression model is

log P1

P0

h i
¼ �0:367þ 0:065NDX� 0:031NPRþ 0:034LOS� 0:114DX101� 0:388T2 � 0:241T3

or

log P0

P1

h i
¼ þ0:367� 0:065NDXþ 0:031NPR� 0:034LOSþ 0:114DX101þ 0:388T2 þ 0:241T3

The variables NDX (p< 0.0001) and LOS (p< 0.0001), as well as T2 and T3,,

are significant. The Wald test provides a means of testing the significance of the

variable in the model.

R Program

CORRELATION STRUCTURE “UNSTRUCTURED”

> geeglm.out¼geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

data¼data1, family¼binomial, corstr¼"unstructured", id¼PNUM_R)

> summary(geeglm.out)

Call:

(continued)
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R Program

geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

family ¼ binomial, data ¼ data1, id ¼ PNUM_R, corstr ¼ "unstructured")

Comment: We fit GEE logistic regression model using R program and the working correlation is

unstructured

R Output

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.38735 0.1255 9.53 0.00203 **

NDX 0.06862 0.01597 18.47 1.70E�05 ***

NPR �0.02719 0.01902 2.04 0.15296

LOS 0.03145 0.00751 17.52 2.80E�05 ***

DX101 �0.12597 0.09336 1.82 0.17723

T2 �0.3868 0.07099 29.69 5.10E�08 ***

T3 �0.239 0.06881 12.07 0.00051 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Estimated scale parameters

Estimate std. err (intercept) 1.02 0.191

Correlation: Structure¼ unstructured Link¼ identity

Estimated correlation parameters

Estimate Std.err alpha.1:2 0.0148 0.0248

alpha.1:3 0.0974 0.0302

alpha.2:3 0.0462 0.0252

Number of clusters 1625

Maximum cluster size 3

Comment: The link is the logit link and not the identity as stated. The scale parameter is 1.02 with

standard error 0.191. The correlation matrix (off diagonal elements) is given as the estimate with

standard error in parentheses

0.0148 (0.0248) 0.0974 (0.0302)

0.0462 (0.0252)

R Program

CORRELATION STRUCTURE “EXCHANGEABLE”

> geeglm.out¼geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

data¼data1, family¼binomial, corstr¼"exchangeable", id¼PNUM_R)

> summary(geeglm.out)

Call:

geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3, family ¼ binomial,

data ¼ data1, id ¼ PNUM_R, corstr ¼ "exchangeable")
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R Output

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.371002 0.125646 8.719 0.00315 **

NDX 0.066412 0.015967 17.3 3.19E�05 ***

NPR �0.026805 0.019008 1.989 0.158496

LOS 0.031394 0.007512 17.464 2.93E�05 ***

DX101 �0.132649 0.093429 2.016 0.155669

T2 �0.385894 0.070997 29.543 5.47E�08 ***

T3 �0.23897 0.068775 12.073 0.000511 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Estimated scale parameters:

Estimate std.err (intercept) 1.019 0.1881

Correlation: Structure¼ exchangeable Link¼ identity

Estimated correlation parameters

Estimate std.err alpha 0.05291 0.01711

Number of clusters 1625

Maximum cluster size 3

Comment: The fitted logistic regression model is log P1

P0

h i
¼ �0:371þ 0:066NDX� 0:027NPR

þ0:031LOS� 0:132DX101� 0:386T2 � 0:239T3. NDX, LOS, and time are significant factors in

rehospitalization

R Program

Correlation Structure “User Defined”

> cor.fixed <- matrix(c(1.0, 0.8, 0.0, 0.8, 1.0, 0.5, 0.0, 0.5, 1.0), 3, 3)

> cor.fixed

[,1] [,2] [,3]

[1,] 1.0 0.8 0.0

[2,] 0.8 1.0 0.5

[3,] 0.0 0.5 1.0

> zcor <- fixed2Zcor(cor.fixed, id¼data1$PNUM_R, waves¼data1$time)

> geeglm.out¼geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

data¼data1, family¼binomial, corstr¼"fixed", id¼PNUM_R, zcor¼zcor)

> summary(geeglm.out)

Call:

geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

family ¼ binomial, data ¼ data1, id ¼ PNUM_R, zcor ¼ zcor,

corstr ¼ "fixed")

Comment: Family¼Binomial refers to the distribution assumed for the outcomes in a certain

year. The CORSTR¼“FIXED” determines the user-defined working correlation matrix structure
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R Output

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.360725 0.125793 8.223 0.004136 **

NDX 0.06444 0.015986 16.25 5.55E�05 ***

NPR �0.028863 0.019082 2.288 0.130386

LOS 0.033004 0.007605 18.835 1.43E�05 ***

DX101 �0.124956 0.09357 1.783 0.181736

T2 �0.386425 0.071023 29.603 5.30E�08 ***

T3 �0.240034 0.068787 12.177 0.000484 ***

---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Estimated scale parameters

Estimate std. err

(Intercept) 1.024 0.2587

Correlation: Structure¼ ar1 Link¼ identity

Estimated correlation parameters

Estimate std. err

Alpha 0.03264 0.01921

Number of clusters 1625

Maximum cluster size 3

Comment: The fitted logistic regression model is

log P1

P0

h i
¼ �0:361þ 0:064NDX� 0:029NPRþ 0:033LOS� 0:125DX101� 0:386T2 � 0:240T3

NDX, LOS, and time are significant factors in rehospitalization. We are sur-

prised by these results as SPSS, and SAS gave us different results.

R Program

> geeglm.out¼geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

data¼chapter6, family¼binomial, corstr¼"ar1", id¼PNUM_R)

> summary(geeglm.out)

Call:

geeglm(formula ¼ biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3,

family ¼ binomial, data ¼ chapter6, id ¼ PNUM_R, corstr ¼ "ar1")

Comment: Family¼Binomial refers to the distribution assumed for the outcomes in a certain

year. The CORSTR¼“ar1” determines the autoregressive (1) working correlation matrix structure

R Output

Coefficients

Coefficients

Estimate Std. err Wald Pr(>|W|)

(Intercept) �0.3607 0.1258 8.22 0.00414 **

NDX 0.0644 0.0160 16.25 5.6E�05 ***

NPR �0.0289 0.0191 2.29 0.13039

(continued)
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R Output

Coefficients

Coefficients

Estimate Std. err Wald Pr(>|W|)

LOS 0.0330 0.0076 18.84 1.4E�05 ***

DX101 �0.1250 0.0936 1.78 0.18174

T2 �0.3864 0.0710 29.60 5.3E�08 ***

T3 �0.2400 0.0688 12.18 0.00048 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Estimated scale parameters

Estimate Std.err

(Intercept) 1.02 0.259

Correlation: Structure¼ ar1 Link¼ identity

Estimated correlation parameters

Estimate Std.err

Alpha 0.0326 0.0192

Number of clusters 1625 3

Maximum cluster size

Comment: The fitted logistic regression model is

log P1

P0

h i
¼ �0:361þ 0:064NDX� 0:029NPRþ 0:033LOS� 0:125DX101� 0:386T2 � 0:240T3

NDX, LOS, and time are significant factors in rehospitalization. The correlation

is 0.0326 with a standard error of 0.0192.

6.6 Conclusions

There were repeated measurements on the rehospitalization of the patient as well as

patients’ lengths of stay, numbers of diagnoses, and others as covariates. These

were correlated observations. In analyzing these data, we demonstrated the fit of

GEE models to Medicare data using SAS, SPSS, and R. The GEE logistic regres-

sion models were fitted to correlated data using GEEs. The approach with this

model, when accounting for the dependency in the data, is to treat the correlation as

a nuisance. In particular, the correlation was addressed by assuming certain

assumptions about the association among the observations. In practice, it addressed

the problem through the random component of the model. The GEE logistic

regression models were fitted to the rehospitalization data using five different

(independence, exchangeability, autoregressive, unstructured, and user-defined)

working correlation matrices. As the subjects were repeatedly measured, we

expected inherent correlation among the responses per subject. The results
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pertaining to the predictors, NDX, NPR, LOS, and DX101, were similar in four of

the five cases. A summary of the results is given in Table 6.2. From Table 6.2, we

see that NDX and LOS were significant in all four cases, where the data determined

the estimates of the correlation. This was not the case when a user-defined working

correlation matrix was given with no information from the data. Though this was

not a simulation study, it is useful to note that standard errors were larger for user-

defined matrices than any of the other type of working matrices. Also, the results for

the dummy variables T2 and T3 (indicating the period of rehospitalization) were

identical regardless of the working correlation matrix chosen. This is expected as

we were fitting main effects models. Because the GEE logistic regression model is a

population-averaged or marginal model, the parameter estimates described

expected differences in the mean response between populations that differed

according to values of the predictors.

These parameter estimates do not allow us to make conclusions about changing

values for individuals. The parameter results were similar, except those for the user-

defined matrix. The user-defined working correlation matrix gave conflicting

results. This contradiction reminded us that while GEE may be a viable resource,

the prescribed covariance matrix cannot be arbitrary, and otherwise the predictors

could have values assumed to be what they are not. These GEE models assumed

that the covariates were time independent. The models did not take into account the

fact that these covariates could be time dependent. In Chap. 7, we revisit these data

and take into account the time-dependent covariates.

6.7 Related Examples

The 1980 National Center for Education Statistics’ National Longitudinal Survey,

“High School and Beyond,” has among other things the aspirations regarding

college question that was asked at each wave, Wilson and Wilson (1992). One

can find the sample design, sample selection, and sample results at http://eric.ed.

gov/?id¼ED214990 in Chap. 2, where it discusses the construction of the sample

frame of high schools in the United States. Chapter 3 presented the frame with

respect to its stratified design, while the actual school selection procedures and

Table 6.2 Estimates and standard errors for GEE logistic regression models

Parameter

Independence Symmetry Autoregressive Unstructured User-defined

Est./std.err Est./std.err Est./std.err Est./std. err Est./std.err

Intercept �0.368/0.126 �0.371/0.126 �0.361/0.126 �0.387/0.126 �0.045/0.212

NDX 0.065/0.016 0.066/0.016 0.065/0.016 0.069/0.016 0.029/0.028

NPR �0.030/0.019 �0.027/0.019 �0.029/0.019 �0.027/0.019 0.033/0.030

LOS 0.034/0.008 0.031/0.008 0.033/0.008 0.031/0.008 �0.003/0.009

DX101 �0.114/0.094 �0.133/0.093 �0.123/0.094 �0.126/0.093 �0.364/0.158

T2 �0.388/0.071 �0.386/0.071 �0.387/0.071 �0.387/0.071 �0.353/0.071

T3 �0.241/0.069 �0.239/0.069 �0.240/0.069 �0.239/0.069 �0.191/0.071
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results are reviewed in Chap. 4. Chapter 5 then describes the construction of the

student sampling frame, the selection of students, and certain results. The survey

design included a highly stratified national probability sample of 1106 secondary

schools as the first-stage units of selection. In the second stage, 36 seniors and

36 sophomores were selected per school. Sampling rates for each stratum were set

so as to select in each stratum the number of schools needed to satisfy study design

criteria regarding minimum sample sizes for certain types of schools. One can fit a

GEE logistic regression model to determine the baseline characteristics that may

influence their aspirations to go to college over time.
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Chapter 7

Generalized Method of Moments Logistic
Regression Model

Abstract When analyzing longitudinal binary data, it is essential to account for

both the correlation inherent from the repeated measures of the responses, as well as

the correlation realized because of the feedback created between the responses at

a particular time and the covariates at other times. Ignoring any of these corre-

lations can lead to invalid conclusions. Such is the case when the covariates are time

dependent and the standard logistic regression model is used. There are two types

of correlations: responses with responses, and responses with covariates. We need

a model that addresses both types of relationships. We postulate that there are

different types of correlation presented. There is the correlation among the

responses. There is the correlation between response and covariate: When responses

at time t impact the covariates in time t + s; and when the covariates in time t impact

the responses in time t + s. These correlations regarding feedback from Yt on to the

future Xtþs and vice versa are important in obtaining the estimates of the regression

coefficients. This chapter provides a means of modeling repeated responses with

time-dependent and time-independent covariates. The coefficients are obtained

using generalized method of moments. We fit these data with SAS Macro, (How

to use SAS® for GMM logistic regression models for longitudinal data with time-

dependent covariates (SUGI Paper 3252-2015)). Our methods are based on:

Lalonde, T., Wilson, J. R., & Yin, J. (2014, November). GMM logistic regres-

sion models for longitudinal data with time-dependent covariates and extended

classifications. Statistics in Medicine, 33(27).

7.1 Motivating Example

7.1.1 Description of the Case Study

Medicare is a social insurance program. It is administered by the US government. It

provides health insurance coverage to people who are aged 65 and over, or those

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-319-
23805-0_7) contains supplementary material, which is available to authorized users. Videos can

also be accessed at http://link.springer.com/chapter/10.1007/978-3-319-23805-0_7

© Springer International Publishing Switzerland 2015

J.R. Wilson, K.A. Lorenz, Modeling Binary Correlated Responses using SAS,
SPSS and R, ICSA Book Series in Statistics 9, DOI 10.1007/978-3-319-23805-0_7
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who meet other special criteria. We used a subset of data obtained regarding patient

information obtained from an Arizona hospital discharge database for a 3-year

covered over a period from 2003 to 2005. The dataset contained the information of

patients who were admitted to a hospital four times. There were 1625 patients in the

dataset with information for all variables; each had 3 observations indicating the

3 different times each person was rehospitalized after the first visit to the hospital.

Our response variable classification is based on those who returned to the hospital

within 30 days as one, and those who did not return as zero. The covariates

considered are multitude of diseases (NDX), number of procedures (NPR), length

of stay (LOS), and coronary atherosclerosis (DX101) are time dependent. Our

interest lies in modeling the probability of rehospitalization by identifying factors

that may have an impact on rehospitalization. Besides the usual relation of

covariates on responses at a particular point, we now propose that responses in a

present time-period will impact covariates in a future time-period and covariates in

a present time-period will likewise impact responses in future time-periods. The

problem is that such predictors have an inherent correlation that must be fully

explored and factored into any covariance matrix that may be necessary to obtain

estimates of the regression coefficients. The repeated measures of rehospitalization

lead to correlation which, if ignored, underestimates the standard errors.

Study Hypotheses

In the present data, we have sampling units of patients and observational units

corresponding to each time a patient was observed. The binary response as well as

the covariate values can change over time. So, researchers might wonder how the

time-dependent covariates impact future covariate values as well as the responses.

More importantly, the researchers might want to know if NPR, NDX, and DX101

have a significant impact on rehospitalization and how the covariates might impact

change differently over time.

7.2 Definition and Notation

A sampling unit is an individual item in a sample. It is associated with some

probability of selection and is used to help ensure that the process is random.

An observational unit is an entity in which the value or the measurement is taken

or obtained. The observational unit is a realization of the sampling unit.

Moment conditions is a method used to estimate the parameters of a statistical

model. The method is based on obtaining a set of simultaneous equations that

connect the sample data and the model parameters that can be solved, thereby

obtaining estimates of the parameters. For example, E X
� � ¼ μ gives a moment

estimate as μ̂ ¼ n�1
X n

i¼1
Xi.
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Generalized method of moments (GMM) is an extension of moment condition

for estimating parameters in statistical models. This method involves combining the

moment conditions through a weighted matrix, functions of the model parameters,

and the data be specified such that the expected value is zero when computed at the

true values of the parameters.

The GMM estimators are known to be consistent, asymptotically normal, and

efficient since they belong to a class of estimators that does not use any extra

information, aside from the data contained in the moment conditions (Hansen, 1982).

Continuously updating generalized method of moments estimator (CUGMM) is

(Hansen, Heaton, & Yaron, 1996): Instead of estimating in two (or more) steps, it is

based on one-time optimization: Computing this estimator may be computationally

cumbersome.

A time-dependent covariate is a regressor that changes over time. If the regressor

does not change over time, we refer to it as a time-independent covariate.
A consistent estimator or asymptotically consistent estimator is an estimator

having the property that, as the number of data points used increases indefinitely,

the resulting sequence of estimates converges in probability to the parameter value.

This means that the distribution of the estimates becomes more and more concen-

trated close to the true value of the parameter being estimated, hence the probability

that the estimator, being arbitrarily close to the parameter value, converges to one.

Efficiency is a term used in the comparison of various statistical procedures and,

in particular, it refers to an experimental design or a hypothesis testing procedure.

Essentially, a more efficient estimator necessitates a smaller sample size than a less

efficient one to achieve the same goal. Efficiencies are often defined using the

variance or mean square error as the measure of desirability.

The relative efficiency of two estimators is the ratio of their efficiencies. The

efficiencies and the relative efficiency of two estimators depend on the sample size

available for the given estimators. The asymptotic relative efficiency is defined as

the limit of the relative efficiencies as the sample size grows. It is a common

measure of comparison.

The eta measure is a measure of correlation between a binary variable and an

ordinal model. One variable is identified as the response and the other as the

covariate. The value changes depends on which is the binary measure. As a

descriptive index of strength of association between an experimental factor (main

effect or interaction effect) and a dependent variable, classical eta-squared is

defined as the proportion of total variation attributable to the factor, and it ranges

in value from 0 to 1 (Cohen, Cohen, West, & Aiken, 2003; Hays, 1994; Maxwell &

Delaney, 2000).

7.3 Exploratory Analyses

Since the Medicare data is composed of patient information with three time-points,

suggesting that there are trends over time, it is natural to wonder if there is a pattern

that could predict the responses based on future covariates. An exploratory analysis
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is summarized, Table 7.1, and was conducted with some simple statistical tests to

observe the relation between variables. A similar analysis was done to see the

impact of present covariates on future responses, Table 7.2. Table 7.1 provides the

bivariate relationships and the p-values for those simple statistical tests.

Based on these results, it seems that whether or not a patient was rehospitalized

in 30 days has a significant impact on his or her LOS the next time hospitalized,

(p¼ 0.000). Similarly, in Table 7.2, NDX at the previous hospitalization (in period

1—NDX_1) has a significant impact on whether or not the patient was

rehospitalized within 30 days in periods 2 and 3 (Admit_2 and Admit_3) with

p-values 0.000 and 0.003, respectively. The exploratory analysis suggests that there

may be correlations that need to be accounted for.

Figure 7.1 depicts the different types of correlations one may encounter as data

are collected where the responses and input variables have different values at each

time-period. Figure 7.1 describes two types of correlations: responses with

responses and responses with covariates.

1. There is the correlation among the responses y1, . . ., yT as time t goes from 1 to T

2. There is the correlation between responses at time t, Yt and covariate values at

time s, Xs:

(a) When responses at time t impact the covariates in time t + s.

(b) When the covariates in time t impact the responses in time t + s.

These types of correlations regarding feedback from Yt on to the future Xtþs and

vice versa are important in obtaining the estimates of the regression coefficients

when the responses and covariates are not measured in the same time-period. In

Fig. 7.1, the arrows indicate the direction of the impact. For example, Xi1 ! Y1

denotes that Xi1 impacts Y1.
When analyzing longitudinal data of the kind presented in this chapter, it is

essential to account both for the correlation inherent from the repeated measures of

the responses as well as the correlation realized on account of the feedback created

between the responses at a particular time and the predictors at other times. The

Table 7.1 p-Values for impact of response (Admit) on covariates (NDX, LOS, and DX101)

NDX_2 NDX_3 LOS_2 LOS_3 DX101_2 DX101_3

Admit_1 0.151 0.016 0.000 0.014 0.194 0.357

Admit_2 – 0.975 – 0.634 – 0.328

Table 7.2 p-Values for

impact of covariates (NDX,

LOS, and DX101) on

response (Admit)

Admit_2 Admit_3

NDX_1 0.000 0.003

NDX_2 – 0.721

LOS_1 0.000 0.000

LOS_2 – 0.404

DX101_1 0.179 0.008

DX101_2 – 0.900
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relation between response and covariate in a linear model allows moment condi-

tions that one may use to obtain the regression coefficients in the linear model. In

particular, in cross-sectional data the expected value of the product of the error and

covariate equates to zero and is used to obtain regression coefficient estimates.

However, when one encounters data collected over time and responses in different

time-periods are modeled with covariates in other time-periods, the use of this set of

moment conditions is not that straightforward. In this chapter, we will present two

methods (Lai & Small, 2007; LaLonde, Wilson, & Yin, 2014) that make use of all

the valid moment conditions necessary with each time-dependent and time-

independent covariate. The method used to determine these valid conditions is

the key difference between the two methods.

Moment conditions become an issue and are not straightforward when we have a

situation of feedback. This is particularly in the case of feedback. The length of the

feedback over time is not assumed to remain present at the same degree. Further-

more, we make use of CUGMM in obtaining these regression estimates. We fit the

GMM logistic regression model with time-dependent covariates using SAS Macro,

Cai and Wilson (2015). Since we are presented with many equations based on

moment conditions from the same data, we used p-values adjusted for multiple

correlated tests to determine the appropriate moment conditions for determining the

regression coefficients.

Covariate over time Responses over time

Fig. 7.1 Types of correlation structures
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7.4 Statistical Model

The use of longitudinal studies addresses, among other things, how each unit or

subject measure changes over time. In addition, it determines the differences among

units or subjects in their changes over time. The issue with longitudinal data is that

they often contain repeated measurements of units or subjects at different time-

points. We encounter correlated observations commonly in studies such as educa-

tion, polling, healthcare, marketing, and other types of behavioral research. Among

other things, the major advantage of longitudinal studies is the opportunity it

affords to separate change over time within units or subjects and differences

among units or subjects (cohort effects) (Diggle, Heagerty, Liang, & Zeger,

2002). The challenge is when dealing with longitudinal data, the predictors or

covariates can change over time besides that fact that the response variables change

over time. Addressing the presence of time-dependent covariates in the analysis of

longitudinal data allows the researcher to make convincing statistical inferences

about the presence of any dynamic relationships and also provide more efficient

estimators than if the researcher had analyzed the data as if it came from a cross-

sectional dataset (Hedeker & Gibbons, 2006). Independent observations are at the

heart of the generalized linear models (GLMs). As such, they are inappropriate in

analyzing longitudinal data due to the clustering. The clustering comes from the

repeated measures or from the clusters or groups which results in the correlation or

non-independence. We have seen the effective use of generalized estimating

equations (GEE) in the presence of clustering when one is fitting population-

averaged logistic regression models (Liang & Zeger, 1986; Zeger & Liang, 1986)

and Lalonde, Wilson, and Yin (2014).

It is common to address the analysis of longitudinal data with population-

averaged models. This approach for analyzing correlated response data has

received considerable attention (Zeger & Liang, 1992). Population-averaged

models for longitudinal data concentrate on modeling the mean (the expectation)

of a subject’s response at time t as it relates to a function of the subject’s covariates

at time t. When the population mean is the primary parameter of interest in the

analysis, then marginal models are appropriate (Diggle et al., 2002) or when a

function of current covariates is required to explain some property of the expecta-

tion of the response variable (Sullivan Pepe & Anderson, 1994).

In Chap. 6, we analyzed the Medicare data as it pertains to rehospitalization and

repeated responses but did not give full account of the repeated measures presented

on the time-dependent covariates. When there are time-dependent covariates, Hu,

Goldberg, Hedeker, Flay, and Pentz (1998) and Sullivan Pepe and Anderson (1994)

have pointed out that one may not have consistent estimates when fitting GEE

logistic regression models as we did in Chap. 6. This is because the covariance

matrix used in the computation of the estimates may not be the correct choice.

While consistency is a desired property of an estimator, this may be a reason for

concern unless, if a diagonal working covariance matrix is chosen. The need for

concern is also negated if one can validate that in a given time, the marginal
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expectation of the response, given a particular covariate, is the same as the

expectation of the response given all the covariates,

E Yt

��X1
t

� �� � ¼ E Yt

��X1
t ,X

2
t . . .X

p
t

� �� �

where X1
t denotes the first covariate at time t and X2

t denotes the second covariate at

time t and so on. In other words, if the expected value of the response given one

covariate is the same as if that covariate along with others were given.

In this chapter, we use the method of a moment condition equation to obtain

estimates for the regression parameters in the logistic regression model. The

moment condition equations are based on the expected value of the product of a

covariate, and residual is zero. The residual comes from the logistic regression

model based only on a model with response for rehospitalization with each of the

covariates. Thus, for each parameter there are T2 moment conditions (given that we

collected data over T times) and, hence, there are at most T2 equations. Not all of

these moments may be valid. However, all the valid moments when appropriate

must be combined, and we can do that through a weighted matrix based on the

covariances. Such a combination of equations is not unfamiliar—it is similar to

techniques to what is done with GEE models when used for regression parameter

estimates.

7.4.1 GEE Models for Time-Dependent Covariates

Even though we successfully used GEE models in Chap. 6, they may not be the best

choice for time-dependent covariates. In particular, Lai and Small (2007) showed

that while one can combine moment conditions with time-independent covariates

this is not the case with time-dependent covariates. They showed when dealing

with time-dependent covariates some of the moment conditions combined when

using the GEE with the usual arbitrary working correlation structure are not valid.

More importantly, the GEE approach ignores some valid moment conditions on

account of having to combine the response in one time-period with the covariate of

a different time-period. Nevertheless, it is now an established fact that using the

GEE models and treating the covariates as time-independent covariates (though it

ignores some valid moments) is not so bad an approach, since the estimates

provided are consistent regardless of the correlation structures for the subjects’

repeated measurements. However, this is totally contingent on the selection of the

correct working correlation matrix. As we saw in Chap. 6, a user-defined working

correlation gave some less-than-satisfactory results. Recall that the GEE estimates

with time-independent covariates are efficient estimates once the working correla-

tion structure is correctly specified. The appealing fact is that the GEE estimates

remain consistent, and they provide the correct standard errors whether or not the

working correlation structure is correctly specified.

7.4 Statistical Model 137

http://dx.doi.org/10.1007/978-3-319-23805-0_6
http://dx.doi.org/10.1007/978-3-319-23805-0_6


One need not rely on selecting a working correlation, so instead of relying on

GEE with its diagonal working correlation matrix, we will make use of the fact that,

when time-dependent covariates are present, the GMM approach provides more

efficient estimators than the GEE. We will look at two GMM approaches, one based

on Lai and Small (2007) and the other based on recent findings, LaLonde

et al. (2014).

7.4.2 Lai and Small GMM Method

In presenting the GMM method, Lai and Small (2007), it is necessary to begin by

first classifying the time-dependent covariates into one of four types. This catego-

rization depends on the relationship existing among responses in one time-period

with covariates in other time-periods. For convenience, we will only consider

complete response data in this example, but similar procedures would apply just

the same to incomplete response data.

For subject i, example ID#560 of Table 7.3 has the response is (1, 0, 0) for the

three time-points. Each covariate consists of a vector of values. In ID#560, NDX is

(9, 9, 7) and LOS is (8, 17, 6). The data matrix consists of the covariate vector.

Types of Classification of Time-Dependent Covariates

Let us consider having repeated observations taken over T times on N subjects with

J covariates such that (yit, xitj, . . ., xitJ )
0 present data for subjects i ¼ 1, . . . , N; for

covariates j ¼ 1, . . . , J; and times t ¼ 1, . . . , T; where yit denotes the response for
subject i at time t and xitj. In the present example, T¼ 3, N¼ 1625, and J¼ 5

covariates (made up of NDX, LOS, DX101, and two binary variable representing

time) . Let us assume the marginal distribution of yit conditioned on the time-

dependent vector of covariates can be represented by a GLM. Within a particular

time, there is no presence of clustering so the correlation is absent and GLM is

applicable. Assume that observations yis and ykt are independent (different units at

different times are independent). Thus, whenever i 6¼ k (different units) but not

necessarily when i ¼ k and s 6¼ t (same unit but different times). There are four

conditions on which we can base the classification of the time-dependent

covariates.

Condition (1): At any given time for the model yt ¼ β0 þ β1xt þ εt, the covariate
xt and the error εt are independent. We referred to the covariate as xt for ease of

reference but really refers to (all the values for a particular covariate in a certain

time) xitj in what follows. This is similar to the condition in regression with cross-

sectional data. There are T such cases, since there are T time-periods. Both the

covariate and the response occur in the same time-period.
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Condition (2): At different times for the model ytþs ¼ β0 þ β1xt þ εtþs, the

covariate xt from an earlier period with residual from a later period are independent.

Thus, the present covariates do not impact the later responses. There are T T � 1ð Þ
=2 such cases.

Condition (3): At different times for the model yt ¼ β0 þ β1xtþs þ εt, the

covariate from a later period with residual from an earlier period are both indepen-

dent. Thus, the responses do not impact the later covariates. There are T T � 1ð Þ=2
such cases.

Collectively conditions (1), (2), and (3) are classified as type I covariates;

conditions (1) and (2) collectively as type II covariates; and condition (1) as a

Table 7.3 Partial data used in analysis

PNUM_R biRadmit NDX NPR LOS DX101 Time

127 0 9 6 6 1 1

127 0 6 4 1 1 2

127 0 9 5 3 1 3

560 1 9 3 8 0 1

560 0 9 1 17 0 2

560 0 7 1 6 0 3

746 1 6 4 12 0 1

746 0 6 1 1 0 2

746 0 9 1 2 0 3

750 0 9 3 6 0 1

750 1 7 3 4 0 2

750 1 9 2 4 0 3

1117 0 9 6 5 1 1

1117 1 9 3 1 0 2

1117 0 9 6 4 1 3

1568 1 8 1 2 0 1

1568 1 9 1 4 0 2

1568 0 8 3 2 0 3

2076 1 9 5 8 1 1

2076 0 9 6 17 0 2

2076 1 9 1 6 0 3

2390 0 7 2 2 0 1

2390 0 7 2 3 0 2

2390 0 5 1 3 0 3

2413 0 9 6 17 0 1

2413 0 8 3 9 1 2

2413 0 9 2 6 0 3

3008 0 5 2 2 0 1

3008 1 6 2 3 0 2

3008 0 9 1 7 0 3
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type III covariate, Lai and Small (2007). Covariates are classified as Type IV when

conditions (1) and (3) collectively are satisfied, LaLonde et al. (2014).

Lai and Small (2007) found that GMM estimates provided substantial gains in

efficiency over the GEE if the covariates are type I or type II, and we suspect the

same for type IV. When the covariates are type III, the estimates still remain

consistent and comparable in efficiency. Thus, it is clear through omission or

inclusion of moment conditions that the conclusions we make about covariates

affecting our responses over time can vary. We treat the time-independent

covariates as type I.

To fit GMM logistic regression models with Lai and Small’s approach:

1. First identify the type of covariate, whether it is type I, type II, type III, or type

IV. This differs from the method LaLonde et al. (2014) in that the moment

conditions are grouped (no test is necessarily conducted) based on the

researcher’s beliefs. Therefore, all the moment condition equations for that

covariate are determined to be of a special type of covariate. In our example

of 3 time-periods, there are 3� 3¼ 9 equations based on type I, 3� 2/2¼ 3

equations based on type II, 3� 2/2 equations due to type IV, and 3 equations due

to type III.

2. Once we have identified the set of valid moment conditions, we can obtain the

GMM estimates of the coefficients through a combination of the valid equations

thereby providing a quadratic objective function that we minimize with suitable

weights.

LaLonde et al. (2014) provided a method to choose valid moment conditions

when determining the effect of time-dependent covariates on binary responses.

Their method differs in that it does not require pre-classification of the covariates as

of any particular type. While these classifications may be applicable in many cases,

they rely on the premise that certain correlations remain fixed and will not change

even when the time between periods become larger. In other words, the correlation

associated with a type II covariate will assume that correlation between time 1 and

time 2 remains the same for time 1 and time 5.

7.4.3 Lalonde Wilson and Yin Method

However, instead of identifying covariates as types I, II, III, or IV, we could choose

to treat each moment condition separately. Thus, we will fit the LWY-CUGMM

(continuous updating GMM) model. To summarize, how one may fit the GMM

logistic regression models with the LWY-CUGMM:

1. First, for each time-dependent covariate, we identify the moment conditions

associated with it. We accomplish this by examining the bivariate correlations

ρ̂ etxs

� �
between the residuals and the covariate to determine the equations to use

as it pertains to each covariate.
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2. We take all cases of s ¼ t as our base set of T moment conditions. They are in the

same time-period so the data is similar to cross-sectional.

3. We then examine simultaneously the T T� 1ð Þ moment conditions associated

with s 6¼ t to determine which are valid. We do that by considering at each time t

the model:

logit ptð Þ ¼ β0 þ β1xt; ð7:1Þ

where β0 and β1 are regression coefficients, xt is the covariate at time t, and pt is

the probability that yt ¼ 1. Let et denote the residual at time t, estimating the

errors at time t. Let ρ̂ etxs
denote the estimator for the correlation between the

errors at t and the covariate at s, ρetxs . By design we know that the correlation,

ρetxs ¼ 0when s ¼ t but not necessarily when s 6¼ t . We posit that when ρetxs ¼ 0

for s 6¼ t then the corresponding moment condition is valid.

4. This leads us to conduct a test for the correlation ρetxs ¼ 0 and neglects the

equations for the cases when the correlations are significant. We use a method to

address the multiple comparisons, thereby avoiding inflating the type I error.

5. Once we have identified the set of valid moment conditions, we obtain the GMM

estimates of the coefficients through a quadratic objective function that we

minimize with suitable weights.

7.5 Analysis of Data

7.5.1 Modeling Probability of Rehospitalization

Medicare is a social insurance program. It is administered by the US government. It

provides health insurance coverage to people who are aged 65 and over, or those

who meet other special requirements. Medicare currently pays for all rehospita-

lizations, except those in which patients are rehospitalized within 24 h after

discharge for the same condition for which they had initially been hospitalized

(Jencks, Williams, & Coleman, 2009).

In analyzing these data, we chose covariates as multitude of diseases (NDX),

number of procedures (NPR), length of stay (LOS), and coronary atherosclerosis

(DX101). These covariates are time dependent. The covariates associated with

intercept and time indicators were treated as type I. We fit a GMM logistic

regression models with time-dependent covariates to analyze these correlated

data with time-dependent covariates. In analyzing these data, we first identify the

appropriate and valid moment conditions associated with the time-dependent

covariates and present an approach that makes use of all the valid moment condi-

tions available with each time-dependent and time-independent covariate. In decid-

ing which moment conditions to use, we relied on the p-value for the particular

combination of s and t (LaLonde et al., 2014) and other techniques (Lai & Small,
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2007). We engaged the use of all these procedures in the SAS Macro. We fit GMM

logistic regression models to the Medicare data using an SAS Macro, Cai and

Wilson (2015).

7.5.2 SAS Results

To analyze longitudinal data with binary outcomes, SAS has procedures, which

utilize the statistical methods based on the GEE and also based on generalized

linear mixed models (GLMM). We make use of a macro that fits GMM logistic

regression. This macro can appropriately take into account the correlation between

covariate values, Cai and Wilson (2015).

SAS Program

Comment:

DATA Medicare;

Input PNUM biRadmit NDX NPR LOS DX101 Time;

Datalines;

127 0 9 6 6 1 1

127 0 6 4 1 1 2

127 0 9 5 3 1 3

560 1 9 3 8 0 1

560 0 9 1 17 0 2

560 0 7 1 6 0 3

.

;

run;

Comment: These are the Medicare partial data. The entire dataset is available at www.public.asu.

edu/~jeffreyw/

%MVIntegration(reflib¼"C:\Users\Documents\Code");

Comment: This macro requires that the reference library (REFLIB), where an SAS

Catalog of the IML modules is stored, is specified in the macro call. Sample code to

call %MVINTEGRATION is shown:

%GMM(ds¼’C:\Users\Documents\Data’,

Comment: The second macro call to %GMM identifies the covariate types and

performs GMM logistic regression

file¼ Medicare,

reflib¼"C:\Users\Documents\Code ",

timeVar¼time,

outVar¼Radmit,

predVar¼NDX,

predVar¼NPR,

predVar¼LOS,
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predVar¼DX101,

idVar¼PNUM,

alpha¼0.05);
predVar¼ NDX NPR LOS DX101;,

Comment: This code runs the GMM logistic regression

PROC GENMOD data¼Morbidity descending;

class PNUM time(ref¼"1");

model Radmit ¼ NDX NPR LOS DX101 time / dist ¼ bin link ¼ logit;

repeated subject ¼ PNUM / within¼time corr¼un corrw;

run;

Comment: We use the SAS PROC GENMOD to model correlated data by using

the REPEATED statement. This option requests GEE to account for the presence of

clustering. The GEE can be used to produce a population-averaged model, which is

comparable to the GMM procedure. In this example, clustering or correlation is due

to the repeated measurements on the patient (indicated by PNUM). The within-

patient correlation structure can be specified using the CORR option. The results

based on the use of PROC GENMOD is displayed:

7.5.3 SAS OUTPUT (Partial)

Comment: The fitted GMM logistic regression model is

log
P1

P0

� �
¼ �0:368þ 0:065NDX� 0:031NPRþ 0:034LOS� 0:114DX101

� 0:388T2 � 0:241T3

The variables NDX (p¼ 0.0004), NPR (p¼ 0.0180), and LOS (p¼ 0.0000), as well

as T2 and T3, are significant. GEE can be used to produce a population-averaged

model, which is comparable to the GMM technique, Table 7.4.

Both methods showed that NDX, LOS, and time have an impact on the proba-

bility of rehospitalization. Unlike the GEE model, the GMMmodel found that NPR

had some significant impact on the probability of rehospitalization.

Table 7.4 Parameter

estimates/p-value based

on GEE and GMM
Parameter

GEE GMM

Est p-Value Est p-Value

Intercept �0.3675 0.0035 �0.3641 0.0034

NDX 0.0648 <.0001 0.0543 0.0004

NPR �0.0306 0.11 �0.0453 0.0180

LOS 0.0344 <.0001 0.0531 0.0000

DX101 �0.1143 0.2224 0.0133 0.8878

T2 �0.3876 <.0001 �0.4419 0.0000

T3 �0.2412 0.0005 �0.2674 0.0001

7.5 Analysis of Data 143



7.6 Conclusions

When there are time-dependent covariates, we have added challenges in data

analysis. This is in part mainly due to the response feedback present in the data.

While the present literature has methods which allows us to address repeated

measurement issues in longitudinal data, many of these methods are limited in

addressing appropriately time-dependent covariates. A %GMMmacro was recently

developed to perform GMM logistic regression with time-dependent covariates,

Cai and Wilson (2015). This MACRO incorporates valid moment conditions

through checking for significant correlation between the residuals and covariates.

The approach based on GMM estimates require one to use estimates from the GEE

model, and then performing an optimization with the valid moment conditions

using Newton-Raphson Optimization. A demonstration is performed by using the

Medicare data to the fit of a GMM logistic regression model. Our results differed

from our model used in Chap. 6. The standard logistic regression, (Chap. 3) GEE

with an unstructured working correlation matrix, (Chap. 6) and GLMM (Chap. 9)

produced similar results. All models failed to identify NPR as a statistically

significant predictor of rehospitalization. The problem is the standard logistic

regression does not appropriately handle the repeated observations nor does it

address the time-dependent covariates, since many of the valid moment conditions

are left out. The GEE method is not assured to have consistent estimators when

using time-dependent covariates, as it models the correlation as a nuisance param-

eter in the random component and GLMM similarly is unable to produce appropri-

ate estimates.

Most researchers are aware of the consequences when analyzing repeated binary

measures data, the correlations present on account of the repeated measures in the

responses, must be addressed. However, until recent times, most researchers have

ignored the dependency also present in the covariates that changes over time due to

factors other than natural growth. In general, the modeling of repeated measures

data must address the two sets of correlation inherent: One due to the responses, and

the other due to the covariates. The GMM is an alternative choice over GEE with an

independent working correlation matrix. One can easily fit GMM logistic regres-

sion models with SAS Macro but may choose to use PROC IML. The GMM

approach is appropriate for marginal models for time-dependent covariates, both

for binary and non-binary responses. Interestingly, LaLonde et al. (2014) showed

that incorrectly specifying the type of covariate may result in significant changes in

the standard errors and thereby lead to erroneous conclusions. Most researchers

realize that in the analysis of repeated binary measures data the correlations present

on account of the repeated measures in the responses must be addressed.
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7.7 Related Examples

Data collected by the International Food Policy Research Institute in the Bukidnon

Province in the Philippines were analyzed by Lai and Small (2007) and later

Lalonde, Wilson, and Yin (2004). They analyzed data consisting of body mass

index (BMI) and morbidity measured for 370 children at 3 separate time-points,

separated by 4-month intervals. The study purpose was to predict morbidity for

children over time based on various factors. There is a total of 1110 observations,

with 3 different BMI measurements for each of the 370 children. For children

(labeled by childID), with the visit number (time) and the BMI were taken and

recorded. For each of the three visits, it was noted whether the child was sick

(sick¼ 1) or healthy (sick¼ 0) at the time of measurement. There were additional

information collected in the study, pertaining prediction of morbidity based on the

visit number and the child’s BMI. These data can be analyzed based on the models

presented in this chapter.
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Chapter 8

Exact Logistic Regression Model

Abstract With the increase in the computer’s capacity to do tedious calculations,

the use of exact logistic regression models has become increasingly popular in

healthcare, banking, and other industries. Traditional methods (which are based on

asymptotic theory) when used for analyzing small, skewed, or sparse datasets are

not usually reliable. When sample sizes are small or the data are sparse or skewed,

exact conditional inference is necessary and applicable (Derr, 2000). We enumerate

the exact distributions of certain statistics in obtaining estimates for the parameters

of interest in a logistic regression model, conditioned on the remaining parameters.

This is a method of testing and estimation that uses conditional methods to obtain

exact tests of parameters in binary and nominal logistic models. Exact methods are

appropriate for small-sample or sparse data situations that often result in the failure

(nonconvergence or separation) of the usual unconditional maximum likelihood

estimation method. However, exact methods can take a great deal of time and

memory as sample or model sizes increase. For sample sizes too large for the

default exact method, a Monte Carlo method is provided. The chapter uses EXACT

statement in PROC LOGISTIC or PROC GENMOD, and we also fit models

in SAS, C+, and R. Our methods are based on: Troxler, S., Lalonde, T. L., &

Wilson, J. R. (2011). Exact logistic models for nested binary data. Statistics in
Medicine, 30(8).

8.1 Motivating Example

A recent study of the effect of phensic aspirin on migraine involved 16 patients.

Eight of the 16 patients received the phensic aspirin and the others received a

placebo. The patients were observed for a period of 4 h and whether or not they got

relief for a certain time was compared with the non-phensic pill. The data are

summarized in Table 8.1.
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Later, we learned that the patients were not randomly assigned but rather were

clustered in groups of four, where some groups were under a physician’s care and

some self-monitored. This study consisted of a small sample size, and it appears

that the observations are not necessarily independent, but clustered. As such we

present the exact logistic regression model. This technique is reasonable and fitting

since the outcome variable is binary, the sample size is small, and some empty cells.

Since the standard logistic regression relies on asymptotic theory then datasets with

small sample sizes and empty cells (cells with no subjects), will find that fitting such

logistic regression model is not advisable, and it might not even be estimable.

The increase in computer capacity makes the use of exact methods to analyze

data to become increasingly popular in healthcare, banking, and other industries.

This is a result of the fact that the traditional methods (which are based on

asymptotic theory) for analyzing small, skewed, or sparse datasets are not always

reliable. In fact, the use of asymptotic methods is not advised when sample sizes are

small or when the data are sparse or skewed. In such cases, exact conditional

inference is necessary and applicable (Derr, 2000). We also examine the analysis

of small sample size data when the sample data were collected based on correlated

observations. In addition, one may also wonder how we analyze small sample data

if the sample data were based on a one-stage clustering, two-stage clustering, or

higher levels of clustering. We address exact methods for both small samples with

independent observations and also with correlated observations in this chapter.

The exact methods of inferences considered are based on enumerating the exact

distributions of certain statistics in order to estimate the parameters of interest in a

logistic regression model, which is conditioned on the remaining parameters. While

asymptotic theory allows us to fit certain statistical models to large datasets, it is not

applicable to small or sparse datasets. However, when confronted with small

datasets in a multivariable setting the inclination by some non-statisticians is to

either analyze two variables at a time, or ignore the warnings and proceed.

8.2 Definition and Notation

Asymptotic theory or as some refer to as large-sample theory is a method referring

to the behavior or properties of estimators and the statistical test that they gave rise

to. Asymptotic theory tells how these estimators behave when the sample size (for

appropriate subpopulation) is sufficiently large.

Exact logistic regression is a useful tool to model binary outcome with small

sample sizes in which the logit (i.e., log odds of the outcome) is modeled as a linear

combination of the covariates. The exact model is used when the sample sizes are

too small for the standard logistic regression (recall the standard logistic regression

Table 8.1 Summary data for

phensic aspirin study
Phensic aspirin Non-phensic aspirin

Relief 3 1

No relief 5 7
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model relies on the maximum likelihood-based estimation) and/or when some of

the cells frequencies are zero. The exact method is void of asymptotic theory. For

example, the Pearson’s chi-squared test is not exact because the distribution of the

test statistic is satisfied only asymptotically.

Parametric tests are exact tests when the parametric assumptions are fully met. It

has become the norm to use exact (significance) test for those tests that do not rest

on parametric assumptions. So we adopt the school of thought that when the result

of a statistical analysis is said to be an “exact test” or an “exact p-value,” that the
test is defined without parametric assumptions and evaluated without using approx-

imate algorithms (Siegel, 1957).

Fisher’s exact test is exact because the sampling distribution, conditional on the

marginal, is known exactly.

Sufficient statistic is a simple function of the data. For example, the sum of all the

data points. It is sufficient such that “no other statistic which can be calculated from

the same sample provides any additional information pertaining to the value of the

parameter.” For a given unknown parameter, a sufficient statistic is a function whose

value contains all the information needed to compute any estimate of the parameter.

Ancillary statistics As is called an ancillary statistics for parameter θ means the

distribution of As does not depend on θ.
Clustered data occur frequently in statistical practice. In some areas of applica-

tion, clustered data are the rule rather than the exception. An example is in

ophthalmology. In such a setting, standard logistic regression models are invalid,

due to the lack of independence among responses for individual sample-points

within a cluster, the left and right eye.

Exact methods date back to the Fisher’s exact test for 2� 2 tables and the multi-

hypergeometric version for larger dimensions. Corcoran, Ryan, Mehta, Patel, and

Monenbergs (2001) and Troxler, Lalonde, and Wilson (2011) presented exact

methods to analyze correlated data.

The penalized log likelihood can be seen as a method for measuring the conflict

between smoothness and goodness-of-fit to the data. Penalized maximum likelihood
estimation (PMLE) is “a more rigorous method because adjustment for over fitting

is directly built into the model development, instead of relying on shrinkage

afterwards.” Penalized Maximum Likelihood Estimation to predict binary out-

comes: Moons, K. G., Donders, A. R., Steyerberg, E. W., & Harrell, F. E. (2004).

Journal of Clinical Epidemiology, 57(12), 1262–1270.

8.3 Exploratory Analysis

8.3.1 Artificial Data for Clustering

We have a somewhat artificial set of data based on some real (but without permis-

sion to use fully publicly) experiments conducted by the Statistics Research group

at Arizona State University, W.P. Carey School of Business. The data are void of its
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real names to protect the sensitivity and the lack of permission to use with

identifiers. However, these data have a known nested correlation structure. The

data with its generic names are given in Table 8.2. In Table 8.2, we have the

information for one-stage clustered data, where ni denotes the number of units in

cluster i, zi is the total number of events in cluster i, and xi is the covariate value for

cluster i. We want to fit a logistic regression model logit pi j

h i
¼ β0 þ β1xi, where

pi j ¼ 1 is the probability of a positive response for outcome j in cluster i.

8.3.2 Standard Logistic Regression

If we were to ignore the clustering and only concentrate on the size of the data, we

can present the data as in the last two columns of Table 8.2. Then, the tests for

significance of the covariate X are all nonsignificant ( p> 0.2189). The fitted

standard logistic regression model is logit Pið Þ ¼ 2:61� 1:21X, and the odds ratio

is [0.037, 2.403]. The covariate has no significant impact on the response. The fit of

logistic regression models to independent binary data has relied heavily on asymp-

totic theory (see Chap. 3) and to a lesser extent on exact distributions in the case of

small samples.

Sparse and Skewed Correlated Binary Data

The fit of logistic regression models to correlated binary data based on an exact

distribution is not so common. Some attention has been given to one-stage clustered

data as opposed to higher dimensions as there is less complexity. The fit of logistic

regression models is performed through the unconditional likelihood function,

when the statistical inferences for studies involve large-sample approximations.

However, when the data are sparse, exact methods of estimation, based on sufficient

statistics, are generally preferred. The large-sample theory estimates have been

shown to be unreliable when data are sparse, skewed, display complete separation,

or there are many covariates relative to the number of observations (Troxler et al.,

2011).

Cox (1970) suggested computing the conditional distribution of the sufficient

statistics for the parameters of interest over all possible outcomes that lead to the

observed values of the ancillary statistics. This method, at times, may involve a

Table 8.2 Generic data for one-stage cluster

Cluster Number ni Count zi xi Response probability Covariate

1 4 2 2 0.50 2

2 2 0 4 0.00 4

3 6 2 3 0.33 3
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number of parameters, having exponential growth relative to the sample size and as

such may prove time consuming. Derr (2000) and Mehta and Patel (1995) have

given a complete description of the theoretical aspects of exact logistic regression

model with a discussion of its implementation. Mehta and Patel (1995) pointed out

the major differences between the results based on the exact method as compared to

those based on maximum likelihood estimation.

8.3.3 Two-Stage Clustered Data

In Table 8.3, we have a two-stage clustered data, where “cluster” labels the first

stage clusters, nij denotes the number of observations in each cluster, zij is the

number of positive responses in each cluster, and the predictor is xij. Our interest is
fitting an exact logistic regression model to such data. Mehta and Patel (1995)

examined the analysis of binary data using the logistic model with independent

observations, but the issues due to correlated observations have received less

attention. Connolly and Liang (1988), among others have proposed methods of

performing large-sample logistic estimation when the observations are correlated,

but exact methods for correlated data have not become the focal point until recent

times. In practice, the use of the standard logistic model to analyze independent

binary data depends for the most part on asymptotic theory in large samples, and we

usually reserve the exact distributions for small samples. However, the use of

logistic models for correlated data based on exact analysis is not so common. In

fact, the common practice when confronted with two-stage and higher level is

usually to apply the data as obtained from one-stage clustering. In this chapter, we

use an exact method of analysis to address hypothesis testing (estimation is not

addressed) for data with second stage and probably higher levels of clustering. We

allow correlation among observations within the one-stage model. We present the

models with a single covariate. We examine cases when the covariates differ within

clusters in a two-stage binomial model (Troxler et al., 2011). Computations using

the C++ programming are given in http://www.public.asu.edu/~jeffreyw.

Table 8.3 Generic data for

two-stage cluster
Cluster Number nij Count zij xij

1 4 2 2

1 2 0 4

1 6 2 3

2 5 0 0

2 5 0 1

3 3 1 7

3 7 6 6

3 4 2 7

3 2 1 5
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8.4 Statistical Models

8.4.1 Independent Observations

When analyzing data with independent observations, Cox (1970) proposed a

method for dealing with sparse data. This method is based on treating some of

the regression parameters of interest and the other parameters as nuisance param-

eters. This approach relies in part on the fact that the logistic regression model has

its random component belonging to the exponential family which can be used to

determine sufficient statistics for the parameters of interest and ancillary statistics

sufficient for the nuisance parameters. We used the method as available in SAS with

EXACT option to analyze. We direct the reader interested in the development of

this method and procedure to see SAS manual PROC FREQ Chap. 28. We also use

R to fit the exact logistic regression.

8.4.2 One-Stage Cluster Model

An exact method for clustered data by relying on the conditioning arguments

similar to that which was used with exponential family models for samples of

independent observations was proposed, Troxler et al. (2011). Consider the data for

the one-stage cluster in Table 8.4 (a revision of Table 8.2) and fit the logistic

regression model logit pi½ � ¼ αþ βxi. To fit such model with exact analysis, we

demonstrate using data from Table 8.2 but computed in Table 8.4.

There are three clusters. We have the sample size ni for each cluster and the

number of events zi in each cluster. Let the reference set Γ(s1, s2) contains all

possible outcomes of zi that would have resulted in the observed values for s1
and s2. So based on Table 8.4 s1 ¼ 2þ 0þ 2 ¼ 4 and s2 ¼ 2 2ð Þ þ 0 2ð Þ þ 2 4ð Þ
¼ 12 and t ¼ 2 2ð Þ þ 0 4ð Þ þ 2 3ð Þ ¼ 10. The set Γ(s1, s2) consists of all cases whereX

j
z j ¼ 4 such that s1 ¼ 4 and s2 ¼ 12. Thus, the set Γ(s1, s2) is given in Table 8.5.

Thus, a conditional distribution argument can be used to test Ho : β ¼ 0 against

Ha: β> 0. Under Ho, the conditional distribution of Z¼ z reduces to

Pr Zi ¼ zi
��xi; s1, s2� � ¼

YN

i¼1

ni
zi

� �

X
z*2Γ s1;s2ð Þ

YN

i¼1

ni
z*i

� � ð8:1Þ
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Pr Zi ¼ 4
��xi; 4, 12� � ¼

2

2

� �
4

0

� �
3

2

� �

2

2

� �
4

0

� �
3

2

� �
þ 2

1

� �
4

0

� �
3

3

� �
þ 2

1

� �
4

1

� �
3

2

� �

¼ 3

3þ 2þ 24
¼ 0:103448, with t ¼ 10:

Since the likelihood ratio is decreasing in t, a one-sided p-value for this test is

Pr t > tobs
��H0, x, s

� � ¼ X
z*2Γ s1, s2ð Þ:t z*ð Þ�t

YN

i¼1

ni
zi

� �

X
z*2Γ s1;s2ð Þ

YN

i¼1

ni
z*i

� �
2
664

3
775

¼ 0:069 t ¼ 11ð Þ þ 0:827 t ¼ 12ð Þ ¼ 0:896

We reject H0 if the p-value is less than our significance level α. In http://www.

public.asu.edu/~jeffreyw, we provide the C++ program to compute the p-values.

Table 8.4 Generic data for one-stage cluster

Cluster Number ni Count zi xi

1 4 2 2 2(4-2) 2 2(2)

2 2 0 0 0(2-0) 4 0(4)

3 6 2 2 2(6-2) 3 2(3)X
j

z j ¼ 4 s1¼ 4 s2¼ 12 t¼ 10

Table 8.5 Generic data for one-stage cluster

Cluster 1 Cluster 2 Cluster 3 n1 � z1 n2 � z2 n3 � z3 s1 s2 t

0 0 4 4 2 2 4 8 12

0 1 3 4 1 3 4 10 13

0 2 2 4 0 4 4 8 14

1 2 1 3 0 5 4 8 13

Γ(s1, s2) 1 1 2 3 1 4 4 12 12

Γ(s1, s2) 1 0 3 3 2 3 4 12 11

Γ(s1, s2) 2 0 2 2 2 4 4 12 10

3 0 1 1 2 5 4 8 9

3 1 0 1 1 6 4 4 10

4 0 0 0 2 6 4 0 8
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8.4.3 Two-Stage Cluster Exact Logistic Regression Model

Similarly, Troxler et al. (2011) also presented the case of two stages of clustering,

where the design consists of second-stage clusters nested within the first-stage

clusters. We demonstrate this fit with the data in Table 8.3 and reproduce their

results.

Let Yijk be the kth observation from the jth secondary cluster contained in the ith

primary cluster i ¼ 1, 2 . . . , n; j ¼ 1, 2, . . . , ni; k ¼ 1, 2, . . . , ni j
� �

. Let the value

of the covariate for all observations in the ijth secondary cluster be xij. Let

Zi j ¼
Xni j

k¼1
Yi jk, with s1 ¼

Xn

i¼1

Xni

j¼1
zi j, with s2 ¼

Xn

i¼1

Xni

j¼1
zi j ni j � zi j

� �
and s3 ¼

Xn

i¼1

Xni

j¼1
zi j

Xni

j¼1
ni j � zi j
� �h i

with t ¼
Xni

j¼1
xi jzi j

h i
. Let Γ(s1,

s2, s3) contain all possible outcomes of Zi that would have resulted in the observed

values for s1, s2 and s3. To address statistical tests or inferences about β in

logit pi½ � ¼ αþ βxi, we focus on the conditional distribution of the sufficient statis-

tic t, given the observed values of the sufficient statistics s1, s2, and s3. Then, the
conditional distribution of Zi ¼ zi reduces to

Pr Zi ¼ zi
��x; s1, s2, s3� � ¼

YK

i¼1

Y I

i¼1

YJi

j¼1

ni j
zi j

� �

X
z*2Γ s1;s2;s3ð Þ

Y I

i¼1

YJi

j¼1

ni j
zi j

� � ð8:2Þ

Thus, the likelihood ratio for β ¼ 0 versus β > 0 is decreasing in t, so a one-sided p-
value for this test is

Pr t > tobs
��H0, x, s

� � ¼ X
z*2Γ s1;s2;s3ð Þ:t z*ð Þ�tobs

YK

i¼1

Y I

i¼1

YJi

j¼1

ni j
zi j

� �

X
z*2Γ s1;s2;s3ð Þ

Y I

i¼1

YJi

j¼1

ni j
zi j

� �
2
664

3
775

Thus, we reject H0 if the p-value is less than our significance level α, or equiva-
lently, if tobs > tα, where tα is the smallest value of t for which

Pr t > tobs
��H0, x, s

� � � α. We found it is relatively easy to exceed the memory

capacity of a given computer when we tried to fit exact logistic regression models

with correlated data (Troxler et al., 2011). We run these models with our C++

program as given http://www.public.asu.edu/~jeffreyw.
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8.5 Analysis of Data

We used exact logistic regression models for nested binary data to fit the data in

Tables 8.2 and 8.3 (Troxler et al., 2011). We used this approach as the response

variable is binary, the sample size is small, and data are sparse. These properties of

the data negates the use of the standard logistic regression model. Also it is not

reliable due to the small sample size and the presence of cells with no values. In

fact, the cell probabilities might not even be estimable. We fit a logistic regression

model logit pð Þ ¼ αþ βx, where p is the probability of a single positive response for
the data in Table 8.3. We use SAS and R.

Exact logistic regression is a useful tool tomodel binary outcomewith small sample

sizes in which the logit (i.e., log odds of the outcome) is modeled as a linear combi-

nation of the covariates. The exact model is used when the sample sizes are too small

for the standard logistic regression (recall the standard logistic regression model relies

on the maximum likelihood-based estimation) and/or when some of the cells frequen-

cies are zero. The exact method is void of asymptotic theory. Our data suggest that

response is zero or one.We have the group it belongs to and the covariate X. Table 8.6

consists of the data in grouped form while Table 8.7 has the data in ungrouped form.

We are interested in how does the covariate X impact the response, but taking

the group into account. The response variable is binary (0/1): 0 or 1. The predictor

variables of interest is X, and the group can be seen as a nuisance variable. We need

to consider a model that addresses binary outcome variables appropriately when the

data are sparse. As the number of individuals in a group is small, we prefer a method

that can adequately account for the estimation with a small sample size.

8.5.1 Exact Logistic Regression for Independent
Observations

The exact conditional logistic regression model was fitted using the LOGISTIC

procedure in SAS. Two procedures for testing null hypothesis that the parameters

are zero are given: the exact probability test and the exact conditional scores test.

Table 8.6 Grouped data for

response with covariate X
Group Total # Events X

1 4 2 2

1 2 0 4

1 6 2 3

2 5 0 0

2 5 0 1

3 3 1 7

3 7 6 6

3 4 2 7

3 2 1 5

8.5 Analysis of Data 155



It gives a test statistic, an exact p-value, and a mid p-value. The latter adjusts for the
discreteness of the distribution. It also gives individual hypothesis tests for the

parameter of each continuous effect, and in addition joint tests for the parameters of

classification variable (Jones & Huddleston, 2009). Consider fitting

logit pi½ � ¼ αþ βxi. The data have sample size which is small. Using SAS, we

have:

SAS Program

DATA chap8;

INPUT GROUP N COUNT X;

*Data from Table 8.3 for two stage clustered;

DATALINES;

1 4 2 2

1 2 0 4

1 6 2 3

2 5 0 0

2 5 0 1

3 3 1 7

3 7 6 6

3 4 2 7

3 2 1 5

;

PROC LOGISTIC DATA ¼ chap8 DESC;

MODEL COUNT/N ¼ X/ firth clodds ¼ pl;

ods output cloddspl ¼ firth;

EXACT X/ ESTIMATE¼BOTH; RUN;

Comment: We conducted the exact logistic analysis using PROC LOGISTIC with the EXACT

statement. We included the option estimate¼BOTH on the EXACT statement. That allowed us to

obtain both the point estimates and the odds ratios in the output

SAS Output

The LOGISTIC procedure

Model information

Dataset WORK.CHAP8

Response variable (events) COUNT

Response variable (trials) N

Model Binary logit

Optimization technique Fisher’s scoring

Likelihood penalty Firth’s bias correction

Number of observations read 9

Number of observations used 9

Sum of frequencies read 38

Sum of frequencies used 38

(continued)
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SAS Output

The LOGISTIC procedure

Model information

(continued)

Table 8.7 Ungrouped data

for response with covariate X
Group Event x

1 1 2

1 1 2

1 0 2

1 0 2

1 0 4

1 0 4

1 1 3

1 1 3

1 0 3

1 0 3

1 0 3

1 0 3

2 0 0

2 0 0

2 0 0

2 0 0

2 0 0

2 0 1

2 0 1

2 0 1

2 0 1

2 0 1

3 1 7

3 0 7

3 0 7

3 1 6

3 1 6

3 1 6

3 1 6

3 1 6

3 1 6

3 0 6

3 1 7

3 1 7

3 0 7

3 0 7

3 1 5

3 0 5
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SAS Output

The LOGISTIC procedure

Model information

Comment: There are nine rows in the table. There are 38 responses. These results are not related to
asymptotic or to exact methods

Response profile

Ordered value Binary outcome Total frequency

1 Event 14

2 Nonevent 24

Comment: There are 14 of the 38 who responded as an event, “1.” This is a small dataset

Intercept-only model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied

Model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied

Model fit statistics

Criterion Intercept only

Intercept and covariates

Log likelihood Full log likelihood

AIC 45.823 40.301 20.243

SC 47.460 43.577 23.518

�2 Log L 43.823 36.301 16.243

Comment: These tests give the value with and without the covariates. The difference provides a

test of the significance of the simultaneous effect of the covariates

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 7.5213 1 0.0061

Score 7.5246 1 0.0061

Wald 5.9699 1 0.0146

Comment: Predictor X is significant (p¼ 0.0146; p¼ 0.0061) in the model. These p-values were

obtained on the large-sample theory based on independent observations

Analysis of penalized maximum likelihood estimates

Parameter DF Estimate Std. error Wald chi-square Pr>ChiSq

Intercept 1 �2.0854 0.7838 7.0796 0.0078

X 1 0.3935 0.1610 5.9699 0.0146

(continued)
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Analysis of penalized maximum likelihood estimates

Parameter DF Estimate Std. error Wald chi-square Pr>ChiSq

Comment: The model logit Presponse¼1

� � ¼ �2:0854þ 0:3935X is the fitted logistic regression

model with a significant covariate. The coefficient estimates are based on the penalized maximum

likelihood estimates. This makes adjustment for the challenge between goodness of fit and

smoothness. The likelihood ratio and the score test showed that the covariate is significant

Association of predicted probabilities and observed responses

Percent concordant 70.2 Somers’ D 0.497

Percent discordant 20.5 Gamma 0.548

Percent tied 9.2 Tau-a 0.238

Pairs 336 c 0.749

Odds ratio estimates and profile-likelihood confidence intervals

Effect Unit Estimate 95 % confidence limits

X 1.0000 1.482 1.112 2.089

Comment: Through the confidence intervals based on the profile-likelihood the odds ratio lies

between [1.112 and 2.089]. But these are based on a distribution of the responses. This confidence

interval is plotted in the following graph. These results assume that the usual assumptions are

satisfied

Comment: This confidence interval is based on the profile-likelihood method and

not on the exact methods
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The LOGISTIC procedure

Exact conditional analysis

Exact conditional tests

Effect Test Statistic

p-Value

Exact Mid

X Score 7.3876 0.0067 0.0061

Probability 0.00124 0.0067 0.0061

Comment: For each parameter estimate, the procedure displays either the exact maximum

conditional likelihood estimate or the median unbiased estimate. In addition, the exponential of

the estimate, the one- or two-sided confidence limits, and a one- or two-sided p-value for testing
that the parameter is equal to zero are displayed

Exact parameter estimates

Parameter Estimate Standard error 95 % confidence limits Two-sided p-value

X 0.4149 0.1634 0.1028 0.7779 0.0069

Comment: Hypothesis tests can be generated for each individual effect in an EXACT statement or

for all effects simultaneously. However, parameter estimates are computed for each effect

individually. Two tests for the null hypothesis that the parameters for the effects specified in the

EXACT statement are zero: the exact probability test and the exact conditional scores test. For

each test, the “Conditional Exact Tests” table displays the following:—a test statistic—an exact

p-value, which is the probability of obtaining a more extreme statistic than the observed value,

assuming the null hypothesis—a mid p-value, which adjusts for the discreteness of the distribution

parameter estimates and odds ratios for each effect in the EXACT statement conditional on the

values of all the other parameters in the model. Predictor X is significant (p¼ 0.0069). This is the

exact method based on independent observations

Exact odds ratios

Parameter Estimate 95% confidence limits Two-sided p-value

X 1.514 1.108 2.177 0.0069

Comment: The hypothesis tests can be generated for each individual effect in an EXACT

statement or for all effects simultaneously. The intercept is not included in the output because

its sufficient statistic was conditioned out when creating the joint distribution of the predictor. The

predictor is significant in the model (p¼ 0.0069). The odds ratio ranged from [1.108, 2.177]

The predicted values based on any model is usually helpful. We obtained

predicted values using the following SAS code.

SAS Program

PROC LOGISTIC DATA ¼ chap8 DESC;

MODEL COUNT/N ¼ X/ firth clodds ¼ pl;

ods output cloddspl ¼ firth;

(continued)
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SAS Program

EXACT X/ ESTIMATE ¼ BOTH;

output out ¼ ch8_predicted pred ¼ predicted;

RUN;

SAS Output

Group N Count X Predicted

1 4 2 2 0.214419

1 2 0 4 0.374826

1 6 2 3 0.288018

2 5 0 0 0.110523

2 5 0 1 0.155519

3 3 1 7 0.661238

3 7 6 6 0.568407

3 4 2 7 0.661238

3 2 1 5 0.470507

The exact logistic regression is appropriate because the outcome variable is

binary, the sample size is small, and some cells are empty. The standard logistic

regression will not perform well due to the small sample size and the presence of

cells with no units, and it might not even be estimable. We fitted the data in

Table 8.6 using exact logistic regression analysis using R with elrm package.

R-Program

> elrm.out ¼ elrm(Count/N ~ X, interest ¼ ~ X, iter ¼ 22,000, burnIn ¼ 2000, dataset ¼ ch8)

> summary(elrm.out)

Call:

[[1]] elrm(formula ¼ Count/N ~ X, interest ¼ ~X, iter ¼ 22,000, dataset ¼ ch8, burnIn ¼ 2000)

Comment: elrm implements a modification proposed by Forster, McDonald, and Smith (2003) to

approximate exact conditional inference for logistic regression models. The modifications can

handle larger datasets. Exact conditional inference is based on the distribution of the sufficient

statistics for the parameters of interest given the sufficient statistics for the remaining nuisance

parameters. Using model formula notation, users specify a logistic model and model terms of

interest for exact inference (ELRM Package in R)

Results

Estimate p-value p-value_se mc_size

X 0.41503 0.0036 0.00084 20,000
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95% confidence intervals for parameters

Lower Upper

X 0.1032715 0.8773408

8.5.2 Exact Logistic Regression for One-Stage
Clustered Data

Data in Table 8.2 were obtained from a one-stage cluster.

R-Program

This was fitted using an R program http://www.public.asu.edu/~jeffreyw that allows an

exhaustive search through all possible outcomes to compute the conditional distribution

R-Output

We first fit the model of [1], logit pi½ � ¼ αþ βxi using the probability mass function (8.1) and

(8.2), ignoring the first stage clustering of group. The p-value for the one-sided parameter test

H0⋮β ¼ 0 vs Ha⋮β > 0 is p1 ¼ 0:033. The model described in Sect. 8.4 was also fitted using

probability mass function (10), where the group level of correlation is accounted for in the

model. The p-value for the one-sided parameter test is now p2 ¼ 0:095

Comment: The test statistic for the model with only first stage clustering is clearly inflated by

ignoring the additional level of clustering built into the data. The R program was unable to

complete this calculation

C++ Program

The data were analyzed using a C++ program http://www.public.asu.edu/~jeffreyw (reproduced

here for ease of reference) which can handle larger datasets than the R program. In addition to

being faster and more efficient with memory, the C++ program uses feasibility checks, to avoid

computing the entire distribution. These feasibility checks allow the use of reasonably large

datasets when the total number of successes remains small.

C++ Output

The data in Table 8.3 were analyzed similarly to the data in Table 8.2. The model described was

fitted using probability mass function, where the group level of correlation is accounted for in the

model. The C++ program computed the one-sided p-value of 0.0085 for the test of Ho : β ¼ 0

against Ha: β> 0 in logit pi½ � ¼ αþ βxi. The R program was unable to complete this calculation

Comment: Exact logistic regression is a very memory-intensive procedure, and it is relatively

easy to exceed the memory capacity of a given computer. Exact logistic regression is an alternative

to conditional logistic regression if you have stratification, since both conditioned on the number

of positive outcomes within each stratum. The estimates from these two analyses will be different

because conditional logit conditions only on the intercept term, while exact logistic regression

conditions on the sufficient statistics of the other regression parameters as well as the intercept

term. www.ats.ucla.edu/stat/sas/dae/exlogit.htm
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8.5.3 Exact Logistic Regression for Two-Stage
Clustered Data

C++ Program

The data were analyzed using a C++ program http://www.public.asu.edu/~jeffreyw (and

reproduced here for ease of reference) which can handle larger datasets than the R program. In

addition, to being faster and more efficient with memory, the C++ program uses feasibility

checks, to avoid computing the entire distribution. These feasibility checks allow the use of

reasonably large datasets when the total number of successes remains small

C++ Output

The data in Table 8.7 were analyzed similarly to the data in Table 8.6. The model described was

fitted using probability mass function (8.4), where the group level of correlation is accounted for

in the model. The C++ program computed the one-sided p-value of 0.0085 for the test of

H0⋮β ¼ 0 vs Ha⋮β > 0. For cases in which the dataset may be very small, as in Table 8.2, an

exhaustive program will suffice. But for a situation as in Table 8.3, where the probability of a

success is very low, the more efficient program is necessary. In fact, even with reasonably large-

sample sizes, the asymptotic theory will not apply well. In this case, for Table 8.7 the asymptotic

generalized moment conditions approach fails to produce positive definite covariance structures

for parameter estimates, but our exact method is able to perform a one-sided hypothesis test.

8.6 Conclusions

The use of large-sample theory for fitting logistic models is well documented both

for correlated and for uncorrelated observations. However, the use of exact analysis

is not as well known. This chapter presented exact models for correlated sparse data

through different levels of clustering. We reviewed a one-sided test,

H0⋮β ¼ 0 vs Ha⋮β > 0. To conduct the testH0⋮β ¼ 0 vs Ha⋮β < 0, in logit

pi½ � ¼ αþ βxi we could either perform the given test using Y
0
i j ¼ 1� Yi j, or we

could equivalently use a p-value obtained by summing over t < tobs instead of

t > tobs. However, to conduct a two-sided test of H0⋮β ¼ 0 vs Ha⋮β 6¼ 0 given

that the conditional distribution of t is not symmetric, we should find tα/2 and t1�α=2

where for 0 < p < 1, t p is the smallest value of t0 satisfying

Pr t < t
0⋮H0, x, s

� � � p. We reject the null hypothesis if the observed value of t,

tobs is either greater than t1�α=2 or less than tα/2.
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8.7 Related Examples

Consider this hypothetical situation. Suppose that we are interested in the factors

that influence whether or not an Executive is admitted into the very competitive

Executive MBA ranked #12th Business school program in W. P. Carey School of

Business at Arizona State University. The outcome variable is binary (0/1): admit

or not admit. The predictor variables of interest include student gender and whether

or not the student took had an undergraduate degree in Business. Because the

response variable is binary, we need to use a model that handles 0/1 outcome

variables correctly. Also, because of the number of students involved is small, we

will need a procedure that can perform the estimation with a small sample size.

8.7.1 Description of the Data

The data for this exact logistic data analysis include the number of students

admitted, the total number of applicants broken down by gender (the variable

GENDER), and whether or not they had an undergraduate Business degree (the

variable DEGREE).

Gender Degree Admit Frequency

0 0 0 5

0 0 1 2

0 1 0 4

0 1 1 6

1 0 0 6

1 0 1 0

1 1 0 1

1 1 1 6

8.7.2 Clustering

Later, we learned that these 30 students came from four companies (A¼ 5; B¼ 6;

C¼ 9; D¼ 10). These companies have a working relationship with the school and

will provide financial support for the students who are admitted. These companies

are seen as clusters.

164 8 Exact Logistic Regression Model



References

Connolly, M. A., & Liang, K. (1988). Conditional logistic regression models for correlated binary

data. Biometrika, 75(3), 501–506.
Corcoran, C. L., Ryan, P. S., Mehta, C., Patel, N., & Monenbergs, G. (2001). An exact trend test

for correlated binary data. Biometrika, 57, 941–948.
Cox, D. R. (1970). Analysis of binary data. London: Metheun.

Derr, R. E. (2000). Performing exact logistic regression with the SAS system. In Proceedings of
the Twenty-Fifth Annual SAS Users Group International Conference.

Forster, J. J., McDonald, J. W., & Smith, P. W. F. (2003). Markov chain Monte Carlo exact

inference for binomial and multinomial logistic regression models. Statistics and Computing,
13, 169–177.

Jones, A., & Huddleston, E. (2009). SAS/STAT 9.2 user’s guide. Cary, NC: SAS Institute.

Mehta, C. R., & Patel, N. R. (1995). Exact logistic regression: Theory and examples. Statistics in
Medicine, 14, 2143–2160.

Siegel, S. (1957). Nonparametric statistics. The American Statistician, 11(3), 13–19.
Troxler, S., Lalonde, T., & Wilson, J. R. (2011). Exact logistic models for nested binary data.

Statistics in Medicine, 30(8), 866–876.

References 165



Part III

Analyzing Correlated Data Through
Systematic Components



Chapter 9

Two-Level Nested Logistic Regression Model

Abstract Studies including repeated measures are expected to give rise to corre-

lated data. Such data are common in many disciplines including healthcare, bank-

ing, poll tracking, and education. Subjects or units are followed over time and are

repeatedly observed under different experimental conditions, or are observed in

clusters. Often times, such data are available in hierarchical structures consisting of

a subset of a population of units at several levels. We review methods that include

the clustering directly in the model (systematic component) as opposed to methods

within the random component. These methods belong to the class of generalized

linear mixed models. The basic idea behind generalized linear mixed models is

conceptually straightforward (NSF-CBMS Regional Conference Series in Proba-

bility and Statistics. Institute of Mathematical Statistics and the American Statisti-

cal Association, Bethesda, MD, pp. 1–84, 2003) and incorporates random effects

into the systematic component of a generalized linear model to account for the

correlation. Such approaches are most useful when researchers wish to account for

both fixed and random effects in the model. The desire to address the random

effects in a logistic model makes it a subject-specific model. This is a conditional

model that can also be used to model longitudinal or repeated measures data. We fit

this model in SAS, SPSS, and R. Our method of modeling is based on:

Lalonde, T., Nguyen, A. Q., Yin, J., Irimata, K., & Wilson, J. R. (2013).

Modeling correlated binary outcomes with time-dependent covariates. Journal of
Data Science, 11(4), 715–738.

9.1 Motivating Example

9.1.1 Description of the Case Study

The subset of the Medicare data analyzed in earlier chapters concentrated on the

chance of rehospitalization of 1625 patients on three different but successive

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-319-
23805-0_9) contains supplementary material, which is available to authorized users. Videos can

also be accessed at http://link.springer.com/chapter/10.1007/978-3-319-23805-0_9
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occasions during 2003–2005. We revisit these data in this chapter but concentrate

on methods that contribute to prediction for an individual. Previously, the CFO of a

hospital wants to know whether the total number of diagnoses, total number of

procedures performed, length of stay during the previous stay, and whether the

patient has coronary atherosclerosis have any impact on rehospitalization within

30 days of discharge. In considering the data about the patients’ histories and

characteristics, we suspect that patient outcomes may be affected in some way by

their different characteristics as well as the repeated measures on an individual must

have an impact on the future outcomes. In addition, there may be effects that are

attributable to the individual patient. In other words, we may have some

unmeasurable effects. We wish to take all these potential factors into account as

we analyze these data for the ultimate time. We want to be able to use our findings

to make predictions about the possibility of rehospitalization.

9.1.2 Study Hypotheses

Though we addressed these data earlier, we want to revisit them in this chapter since

we believe that there are unobservable and unmeasurable effects that exist among

the patients that could be attributed to their outcomes. In particular, we want to know

the probability of whether a patient with certain characteristics will be rehospitalized

in 30 days. Most of the patients in the sample had previous experiences at the

hospital, as shown by the data measures indicating the lengths of their previous

stays at the hospital. Based on thosemeasurements, we want to identify the impact of

those covariates on the hospitalization if we were to look at the initial hospitaliza-

tion, as opposed to subsequent hospitalizations. Because we will be looking at

individual unobservable effects in this analysis of the data, we will need to fit a

subject-specific model as opposed to a marginal model like we did in Chap. 6 based

on the GEE model. The GEE method looks at adjusting the variance in the random

component to address the correlation, but in this chapter, we will introduce random

effects into the systematic component to address the correlation. The two different

approaches, GEE and subject specific, answer two different questions. One is the

probability for the average outcome while the other is the probability for an

individual. Based on our fitted models and analysis, if the unobservable effects

among patients are not different, then the two models will give the same results.

9.2 Definition and Notation

A generalized linear mixed model is considered an extension of the generalized

linear model (Chap. 3 with independent observations) in which the linear predictor

contains random effects in addition to the fixed effects. It is called a “mixed” model

because it looks at fixed and random effects at the same time.
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Random effects are the unobservable differential effects among clusters. They

are useful in avoiding erroneous conclusions (Hox &Maas, 2002). They are used to

estimate population variance and include sampling variation (McCulloch, 2003).

They consist of a sample of items from a large population that have varying effects

on the response. They are therefore unobservable, but believed to belong to a

population with a certain mean and variance. They are used to address clustering,

spatial correlation, and other forms of dependence among outcomes, and are

usually assumed to be normally distributed (Wolfinger, 1993). Our interest is in

their variance. If the variance is estimated to be different from zero, we assume that

there are differential effects.

The fixed effects are those that assume no sampling error or random variance. They

are the only factors of interest (Allison, 1999), and our interest is in their means.

A random intercept model is a model in which intercepts or constant terms are

allowed to vary based on a certain distribution. Thus, the scores of the dependent

variable for each individual observation differ based on the prediction and an

intercept with a distribution. This distribution on the intercept is what distinguishes

one prediction from another.

A random slope model is a model in which slopes are allowed to vary, and

therefore, the slopes are different across groups. It implies that the slope based on a

certain variable follows a certain distribution.

A random intercept and slope model is a model that includes both random

intercepts and random slopes, and is likely to be the most realistic type of model,

although it is also the most complex. In this model, both intercepts and slopes are

allowed to vary across groups. Thus, they are allowed to take certain shapes and

values free of any common presumption.

Quadrature can be thought of as the process of dividing something into small

squares. It is a technique for finding the area of a nonlinear surface. It involves the

construction of a square with an area equal to that of a specified surface.

9.3 Exploratory Analyses

Let us consider a simple approach to these data based on intuition and an assumed

knowledge of standard logistic regressions. Suppose we will fit a logistic regression

model for each time period that the patient was in the hospital based on the length of

stay (LOS) predictors. Then, we will have three logistic regression models. We will

notice that these models are essentially different. This suggests that there are other

factors than LOS working to influence rehospitalization within 30 days. We also

fitted 1625 logistic regression models, one for each patient (cluster). It suggested

that not all patients have the same factors contributing to hospitalization. Each

patient provides certain effects whether negative or positive relative to other

patients and as such must be accounted for. We propose that the repeatedness

within each patient provides certain effects whether negative or positive relative

to other patients and as such must be accounted for. These are the so-called random

effects. In this chapter, we fit a two-way nested level logistic regression model.
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The generalized linear mixed model is an extension of the generalized linear

model in that the linear predictor contains random effects in addition to fixed

effects. As such, the model gives rise to subject-specific or individual types of

interpretations. The generalized linear mixed model models the conditional prob-

abilities rather than the marginal probabilities. While one can choose to use

indicator variables to denote the categorical variable (patient), there are certain

disadvantages with that indicator approach. In particular, in such a case we will

need 1625� 1¼ 1624 indicator variables thus resulting in a large number of

parameters (indicator variables) into the model. Also our results will be applicable

to the 1625 patients we sampled.

A generalized linear mixed model is depicted in Fig. 9.1, which shows a set of

three types of X variables: XA, XB, XC, as well as two Z variables: (ZA, ZR). The X

variables can be continuous (XA), categorical (XB), or binary XC, but represent the

fixed effects. Alternatively, the Z variables (ZA, ZR) denote the random effects

where both X and Z are impacting the response variable Y, resulting in repeated

measures on unit i ((yi : yi1, yi2, . . ., yiT). While generalized linear models (no Z

variables) specify a distribution of the responses, generalized linear mixed models

(X, Z) specify a distribution for the conditional response (Breslow & Clayton,

1993). When observations exhibit some form of dependency, as with measurements

taken from the same experimental unit, observations collected over time, hierar-

chical situations, clustered structures, or more commonly nested sources of vari-

ability, it is appropriate to fit a generalized linear mixed model.

If we were to use the standard logistic regression model to analyze correlated

data (where the repeated observations are affected by a common mechanism), it

would result in statistical inferences that might not be valid. Therefore, we will

instead fit both conditional models and marginal models in this chapter to show how

the two models do not necessarily answering the same question.

ZA

ZB

Fixed

Random

XA

XB

XC

Fig. 9.1 Depicting a generalized linear mixed model
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9.3.1 Medicare

When the Medicare data were analyzed in Chap. 6 using GEE, the correlation

among responses per patient was accounted for in the random component. How-

ever, in this chapter we will analyze the data accounting for the correlation through

the systematic component. In Chaps. 6 and 7, we fitted marginal models to show the

probability of rehospitalization, whereas in this chapter we will fit subject-specific

models and therefore model the probability of rehospitalization given the random

effect. The dataset used for this analysis has complete information for 1625

patients, and each patient has three outcomes (time from discharge to rehospitalized

greater than 30 days) indicating four different times of rehospitalization. We can

think of these as “times or occasions” nested within each patient (see Fig. 9.2).

These kinds of data lend themselves to a set of models that are sometimes referred

to as mixed models, multilevel models, random coefficient models, and covariance

component models (Breslow & Clayton, 1993; Goldstein, 2003; Hox, 2002; Long-

ford, 1993). We will refer to them as generalized linear mixed models in this book.

Specifically, we will be presenting the nested logistic regression model as it

pertains to allowing one random effect, which is equivalent to a two-level nested

logistic regressionmodel.We fit the nested logistic regressionmodel with both PROC

NLMIXED and PROC GLIMMIX in SAS, as well as in SPSS, and in R. We fit both

the random intercept model and the random intercept and random slope model.

9.4 Statistical Model

Studies including repeated measures are expected to give rise to correlated data.

Such types of data are common in many disciplines including healthcare, banking,

poll tracking, and education. Subjects, or units, are followed over time and are

repeatedly observed under different experimental conditions, or are observed in

clusters. Often times, such data are available in hierarchical structures consisting of

a subset of a population of units at several levels. For our analysis of the Medicare

data, we would want to use a method that includes the clustering directly into the

model, unlike in Chaps. 4 and 6, where the clusters were virtually ignored. We will

analyze these data and test hypotheses based on a method that belongs to the class

Patient i
level 2

time 1 ....... time j

time-level 1

Fig. 9.2 Hierarchical

structure for two levels
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of generalized linear mixed models. The basic idea behind generalized linear mixed

models is conceptually straightforward (McCulloch, 2003). It can be seen as

incorporating random effects into the systematic component of a generalized linear

model to account for the sampling. As such, it allows us to model correlation in the

context of a broad class of models with non-normally distributed responses. These

models are most useful when we wish to account for both fixed and random effects

in the model. This method of analyzing the data does not necessarily answer the

same question as in Chap. 6.

The generalized linear mixed model is a specific type of statistical model and can

be thought of as within the larger family of generalized linear models. It is used to

analyze correlated data, and allows for non-normal data with random effects as well

as correlation among responses. We consider it as an extension of the class of

generalized linear models in that it allows normally distributed random effects and

incorporating random effects into the linear predictor in the systematic component

(McCulloch, 2003).

9.4.1 Marginal and Conditional Models

Whenever we talk about random effects, it is important to make clear the distinction

between marginal and conditional models. It is not often that one speaks of the

comparisons between marginal and random effects models. However, it is impor-

tant to note that they do not measure the same thing. One measures or predicts the

marginal probability and the other measures or predicts the conditional probability.

To assist in clarifying this important distinction, consider the following situation

with a sample of J hospitals each with nij patients: j¼ 1, . . . , J. We want to interview

these patients to measure whether or not their satisfaction with their hospital stays

differ based on whether or not the patient had signed up for a new healthcare plan. If

we consider fitting the marginal logistic model:

log
Pi j

1� Pi j

� �
¼ β0 þ β1Hc¼1

where Pij is the probability of Yi j ¼ 1 (the event, whether the patient is satisfied or

not), Hc¼1 denotes whether or not they signed up. Then, var yi j

� �
¼ Pi j 1� Pi j

� �
and cov yi j; yi j

� �
¼ α. This is the marginal model that tells us about healthcare

status and satisfaction, but it ignores the hospitals to which the patient belongs. If

we want to talk about only the J hospitals in the sample, we can add a series of J-1

binary variables to account for the specific hospitals. This would require J-1 extra

parameters and we would not be able to say anything about the hospitals that are not

represented in our sample. Because this sums over the hospitals, it is only a

marginal model.
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Let us consider the random effects logistic model, log
ps
pns

��γ j

� �
¼ β0 þ β1Hc¼1

þγ j where γj denotes the differential effects among hospitals considered to be

rescaled to a mean of zero, with γ jeN 0, δ2
� �

as distributed as normal with mean

zero and variance δ2. The random intercept γj represents the combined effect of all

omitted subject-specific covariates that cause some outcomes to be more prone to

the event versus nonevent. In this model, the correlation is due to the fact that

patients in the same hospital share similar experiences. Once we have accounted for

the hospital, in other words, given the hospital, we have eliminated the common

difference so we assume that the observations are independent. The marginal model

assumes that the impact of a patient’s healthcare status on satisfaction was the same

across hospitals, whereas the random effects model tells us about what can be

expected in terms of patient satisfaction for each hospital. It is a conditional model,

meaning the satisfaction of patients is conditional on which hospital in which they

received treatment. Because the patients do not answer the same question or model

the same probability, we can refer to a marginal or population-averaged model, and

also to a subject-specific model. Using the set of binary variables to introduce the

hospital factor leads to a number of additional parameters, leading us to use a fixed

effects model since the results are restricted to the hospital observed. However, the

use of the random intercept measuring differences between hospitals extends the

conclusions that can be made to hospitals that were not in the data.

The key distinction lies in the fact that logistic regression models provide a

nonlinear function on the probability scale, and the average of a nonlinear function

is not the same as a linear function of the average. However, that relation holds with

linear functions where the regression coefficients in random effects models and

marginal models are identical. Such is the case with regression models with identity

link (meaning that the mean is related to the covariates with the identity function).

9.4.2 Two-Level Nested Logistic Regression with Random
Intercept Model

The random intercept model is the simplest of the generalized linear mixed models.

It augments the linear predictor with a single random effect for each unit:

logit Probof outcome
��covariates	 
 ¼ β0 þ β1Xi j1 þ � � � þ βPXi jP þ γi

where γi is the random effects associated with cluster i, which may represent a

patient, for example, with repeated observations. So, differences among the patients

are denoted by specific log odds ratio parameters.

In the Medicare data, the random effect pertains to the heterogeneity due to the

patient i. So, instead of having a categorical variable representing the patients that

only differentiates among patients in the data, we allow patients to be a subset of the
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population of patients and to have a different baseline but same rate of change over

time. It allows each patient to have a different intercept but the same slope. These

random effects represent the influence of the difference over time (units) on the

outcomes that were not captured by the observed covariates. The random effect

approach captures any unaccounted variation beyond the covariates in the data.

Thus, the model is

logit μi j
��Xi j1 . . .Xi jP, γi

n o
¼ β0 þ β1Xi j1 þ � � � þ βPXi jP þ γi

γieNormal 0, δ2γ
� �

where μij is the mean of the distribution of the random component, βi represents the
regression coefficients and the parameter δ2γ indicates the variance in the population
of random effect distribution, and as such measures the degree of heterogeneity

among patients (Blackwelder, Armitage, & Colton, 1998). We model the condi-

tional distribution of the probability of outcome given the random effects due to

patients. Thus, we provide a conditional model in which we model the conditional

mean of a binary response given the random effects. We are modeling

g E yi j
��γi� �h i

¼ g μi j
� � ¼ β0 þ β1Xi j1 þ � � � þ βPXi jP

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
þ γi
z}|{

:

We specify a distribution for the conditional response yi j
��γi and a distribution for γi.

As such we present two parts, the random variation for the conditional part that we

refer to as the R-side and the random variation for the distribution of the random

effects that we refer to as the G-side. The R-side is due to the random component

while the G-side terms are in the systematic component. The G-side effects are

inside the link function and are thus interpretable. In addition, we talk about the

R-side random effect, which is what we retain when no random effects are in the

model {þβ1Xi j1 þ � � � þ βPXi jP



. R-side effects are outside the link function and,

as such, are considered more difficult to interpret. When there is a G- and R-side, we

refer to this as a generalized linear mixed model or as a subject-specific model.

When there is no G-side, but only R-side, we refer to this as a marginal model that is

a generalized linear model. In such a case, we are modeling the expected value of

the outcome E(Y) (Dean & Nielsen, 2007; Have, Kunselman, & Tran, 1999). The

observations have the same correlation for given covariate values regardless of the

cluster to which these observations belong.

9.4.3 Interpretation of Parameter Estimates

An important consideration for this type of model is how to interpret unobserved γi.
When γi ¼ 0, we consider all effects as zero. We can think of γi as unmeasured

covariates, or as a way to model heterogeneity in the correlated data. We can
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interpret β0 as the log odds of yi j ¼ 1 when Xi j1 ¼ 0 and γi ¼ 0; β1 is the effect on
the log odds for a unit increase in Xij1 for individuals in the same group, which will

have the same value of γi. We can look at γi as the effect of being in group i, or the
residual at level i,. The [β1 . . ..., βP] parameters are referred to as cluster specific or

patient specific of Xij1.

To interpret the coefficient β1, we can keep the subject-specific latent effect γ0i
the same and let the covariate change from X1 to X1 þ 1.

logit Prob of rehospitalization
��patient� � ¼ β0 þ β1 X1 þ 1ð Þ þ β2X2 þ γ0i�

logit Prob of rehospitalization
��patient� �¼ β0 þ β1X1 þ β2X2 þ γ0i

¼ β1:

Then, the difference in the two logits is β1. So, in order to make comparisons, as we

did with the standard logistic regression, we must keep the random effects the same.

Therefore, patients with the same random effects and same X2 are exp(β1) times

more likely to be rehospitalized if they are X1 þ 1ð Þ as opposed to X1.

The exponent βi (eβi) is an odds ratio, comparing odds for patients one unit

different on Xij1, but in the same group. The response probability for individual i in
group j calls for some values for γi. Larsen et al. (2000) discussed that conditioning
on the random effects yields the same nice interpretation in terms of odds ratios as

in the case for ordinary logistic regression models. However, it is not necessarily

possible to condition on unobservable random effects. The odds ratio is a random

variable rather than a fixed parameter, and as such should be kept in mind when

interpreting the model.

Observations within a cluster are assumed to be independent given the random

cluster effect (conditional independence). Thus, we can get the product of the

conditional probabilities across the time-points within a cluster to yield the condi-

tional probability. These models are fit by maximizing the product of conditional

probabilities over cluster i, and the marginal likelihood for cluster i. We rely on

numerical integration achieved by working with approximations for the product of

integrals. In particular, we have a combination of a binomial distribution as the

conditional distribution and a normal distribution for the random effects. The joint

distribution involves a procedure that allows integrating out the random effects but

that can be very tedious instead we rely on the conditional distribution.

9.4.4 Two-Level Nested Logistic Regression Model
with Random Intercept and Slope

In the two-level nested logistic regression model with random intercepts, we are

assuming that the rate of change remains the same for each patient (cluster). Now,

consider the following model:
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logit P1
��γ0, γ1� � ¼ β0 þ β1X1 þ β2X2 þ γ0i þ γ1iZ1

where γ0i is distributed as normal with a mean of zero and the variance δ2γ0 and γ1i is
distributed as normal with a mean of zero and variance δ2γ1 (Schabenberger, 2005).

This model assumes that, given γ0i and γ1i, the responses from the same cluster are

mutually independent, or rather, that the correlation between units from the same

cluster is completely explained by them having been in the same cluster. As such,

these are called subject-specific parameter models (Hu, Goldberg, Hedeker, Flay, &

Pentz, 1998). Each cluster has its own intercept and slope. In the random intercept

model, we assumed that those intercepts have a normal distribution with mean zero

and variance δ2γ0. The model assumed that each cluster starts at a different point and

changes at different rates. However, if that variance is found to be different from

zero, then we can conclude that there is a need for assuming different intercepts.

Similarly, we assume that the rate of change over a particular variable has a normal

distribution with mean zero and variance δ2γ1.

9.4.5 Analysis of Data

We used the two-level nested logistic regression model with random intercepts

(Model 1) and the two-level nested logistic regression model with both random

intercepts and random slopes (Model 2) to analyze the Medicare data. We used

PROC NLMIXED and PROC GLIMMIX in SAS, and also used SPSS and R. We

used the three periods of complete data and treated the patients as clusters with

random effects. Thus, time is nested within each patient.

SAS Program

We present the PROC GLIMMIX and PROC NLMIXED in SAS to fit these two models. We

chose to present both procedures, as at times convergence may be a problem. This gives us the

opportunity to discuss with the reader possible solutions. We now present some noted changes

between the two procedures

9.4.6 Comparisons of Procedures (PROC NLMIXED Versus
PROC GLIMMIX)

We can fit generalized linear mixed models with PROC NLMIXED and PROC

GLIMMIX. There are several important differences between PROC NLMIXED

and PROC GLIMMIX worth stating based on our experience, as can be seen in

examples in this chapter and the next.
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1. Both SAS procedures approach parameter estimation as an optimization

problem.

2. Both SAS procedures are appropriate when the models are simple and limited to

two levels, the number of random effects is small, and the number of level-2

groups is relatively large.

3. The PROC NLMIXED procedure is recommended for analysis of binary data

that require accurate covariance parameter estimates, or for cases where nested

models need to be compared.

4. PROC NLMIXED is superior for multilevel analysis involving small groups,

such as family studies (Murray, Varnell, & Blitstein, 2004).

5. PROC NLMIXED delivers exact maximum likelihood estimates of the param-

eters if the number of quadrature points is large enough. We make use of this in

Chap. 10.

6. The PROC NLMIXED procedure does not have a class statement, so the user

must use indicator variables when faced with categorical variables.

7. For repeated binary responses with few repeated measures on each subject,

PROC GLIMMIX can produce biased results (Breslow & Clayton, 1993).

8. PROC GLIMMMIX provides less accurate estimates and produces potentially

biased estimates for both fixed effects and covariance parameters

(Schabenberger, 2005).

9.4.7 Model 1: Two-Level Nested Logistic Regression Model
with Random Intercepts

SAS Program Code

The GLIMMIX procedure

We first present the use of PROCGLIMMIX to analyze these data. We present NDX, NPR, LOS,

DX101, and the categorical variable time presented by T2 and T3. A partial presentation of the

data is given in Table 9.1.

DATA MYDATA; SET CHAPTER9; RUN;

T2¼(TIME¼2); T3¼(TIME¼3);
TITLE ’GLIMMIX WITH RANDOM INTERCEPT’;

PROC GLIMMIX DATA¼MYDATA METHOD¼QUAD;

CLASS PNUM_R;

MODEL BIRADMIT(EVENT¼’1’)¼NDX NPR LOS DX101 T2 T3 /DIST¼BINARY LINK¼LOGIT

DDFM¼BW SOLUTION OR;

RANDOM INTERCEPT/ SUBJECT¼PNUM_R;

RUN;

Comment: The model statement provides results for the R-side with fixed effects. This takes care

of the R-side with fixed effects

RANDOM statement denotes the parameter on which the random effects are

associated. This takes care of the distribution of the random effects. This program

code yields the following SAS output:
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SAS Output

The GLIMMIX procedure

Model information

Dataset WORK.MYDATA

Response variable biRadmit

Response distribution Binary

Link function Logit

Variance function Default

Variance matrix blocked by PNUM_R

Estimation technique Maximum likelihood

Likelihood approximation Gauss-Hermite quadrature

Degrees of freedom method Between-within

The GLIMMIX procedure

Class level information

Class Levels Values

PNUM_R 1625 127 560 746 750 1117 1395 1568 2076 2390 2413 1371713

Comment: These are the cluster ID numbers. There are ID numbers through “PNUM_R.” All

1625 were listed, but were truncated for space issues

Number of observations read 4875

Number of observations used 4875

Comment: There are 4875 observations read as 1625� 3¼ 4875. Read and Used are equal since

the data are complete

Table 9.1 Partial look of the medicare data

PNUM_R biRadmit NDX NPR LOS DX101 Time T2 T3

127 0 9 6 6 1 1 0 0

127 0 6 4 1 1 2 1 0

127 0 9 5 3 1 3 0 1

560 1 9 3 8 0 1 0 0

560 0 9 1 17 0 2 1 0

560 0 7 1 6 0 3 0 1

746 1 6 4 12 0 1 0 0

746 0 6 1 1 0 2 1 0

746 0 9 1 2 0 3 0 1

750 0 9 3 6 0 1 0 0

750 1 7 3 4 0 2 1 0

750 1 9 2 4 0 3 0 1
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Response profile

Ordered value biRadmit Total frequency

1 0 2433

2 1 2442

The GLIMMIX procedure is modeling the probability that biRadmit¼ ’1’

Comment: Each patient had three visits which is 1625� 3¼ 4875 observations. Of the 4875

observations, 2442 were rehospitalized within 30 days, given by biRadmit¼ ’1’

Dimensions

G-side cov. parameters 1

Columns in X 7

Columns in Z per subject 1

Subjects (blocks in V) 1625

Max observations per subject 3

Comment: This (G-side Cov) is the variance of random effects. There are seven fixed effects

covariates (intercept, NDX, NPR, LOS, DX101, T2, T3). There was one random effect covariate in

the G-side (columns in Z) as represented by random intercept. This (1625) represents the number

of clusters. The maximum size of the clusters is three

Optimization information

Optimization technique Dual Quasi-Newton

Parameters in optimization 8

Lower boundaries 1

Upper boundaries 0

Fixed effects Not profiled

Starting from GLM estimates

Quadrature points 5

Comment: Sometimes the model may not converge and you will need to increase the quadrature

points to get convergence, as well as to get an estimate for the random effects variance and

standard error

The GLIMMIX procedure

Iteration history

Objective

iteration Restarts

Max

evaluations Function Change Gradient

0 0 4 6735.2172141 153.4744

1 0 4 6733.7716779 1.44553618 143.9054

2 0 5 6733.349135 0.42254286 141.7167

3 0 2 6667.5705532 65.77858185 507.3751

4 0 5 6652.2001902 15.37036297 206.4346

5 0 3 6644.4503699 7.74982030 264.8008

6 0 4 6621.9315943 22.51877565 117.7424

7 0 3 6618.9815278 2.95006646 35.97061

8 0 4 6618.81057 0.17095779 18.10109
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The GLIMMIX procedure

Iteration history

Objective

iteration Restarts

Max

evaluations Function Change Gradient

9 0 2 6618.6997135 0.11085648 45.43903

10 0 3 6618.6591506 0.04056298 15.15351

11 0 4 6618.657243 0.00190758 2.848396

12 0 3 6618.6570395 0.00020348 1.052471

13 0 3 6618.6570292 0.00001034 0.1689

Convergence criterion (GCONV¼ 1E�8) satisfied

Comment: The model converges and the coefficients are acceptable

Fit statistics

�2 log likelihood 6618.66

AIC (smaller is better) 6634.66

AICC (smaller is better) 6634.69

BIC (smaller is better) 6677.80

CAIC (smaller is better) 6685.80

HQIC (smaller is better) 6650.67

Comment: These fit statistics are supposed to tell about the fit of the model. However, without a

p-value it is difficult to make a conclusion with these statistics. They are best suited if you are

comparing nested models

Fit statistics for conditional distribution

�2 log L(biRadmit | r. effects) 6114.57

Pearson chi-square 4479.14

Pearson chi-square/DF 0.92

Comment: The fit of the model is measured by generalized: chi-square/DF¼ 0.98. This is usually

compared to the value 1.0. The other two statistics, �2 log L(biRadmit | r. effects) and Pearson

chi-square, are also fit statistics for the conditional distribution. They tell about the conditional part

of the model where the random effects are given

Covariance parameter estimates

Cov Parm Subject Estimate Standard error

Intercept PNUM_R 0.2525 0.07773

Comment: The variance of the random effects is (0.07773)2 and the estimate is 0.2525. Thus, the

standardized value is 0.2525/.07773¼ 3.248, which suggests that there is heterogeneity among the

patients (clusters). The random effects are significant. It was prudent to have differential effects

among the patients

Solutions for fixed effects

Effect Estimate Standard error DF t value Pr> |t|

Intercept �0.3933 0.1351 1624 �2.91 0.0037

(continued)
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Solutions for fixed effects

Effect Estimate Standard error DF t value Pr> |t|

NDX 0.07056 0.01655 3244 4.26 <.0001

NPR �0.02789 0.01979 3244 �1.41 0.1587

LOS 0.03267 0.005827 3244 5.61 <.0001

DX101 �0.1413 0.09749 3244 �1.45 0.1474

T2 �0.4086 0.07401 3244 �5.52 <.0001

T3 �0.2528 0.07433 3244 �3.40 0.0007

Comment: The conditional model is log P̂ y¼1

��P̂ y¼0

� � ¼
�0:393þ 0:070NDXþ 0:028NPRþ 0:033LOSþ 0:141DX101� 0:409T2 � 0:263T3

Odds y¼1

��NDX¼nþ1, NPR¼0, LOS¼ p, DX101¼0, T2¼0, T3¼0, for patient j
� �

Odds y¼1

��NDX¼n, NPR¼0, LOS¼ p, DX101¼0, T2¼0, T3¼0, for patient j
� � ¼ exp βNDXð Þ ¼ exp 0:0706ð Þ

The odds of rehospitalization per NDX for each patient with no coronary atherosclerosis is exp

(0.0706)¼ 1.073. The odds of rehospitalization per NDX for each patient with coronary athero-

sclerosis and all other things equal is exp(0.0706� 0.1413)¼ 0.932. The odds decrease by 7 % for

patients with coronary atherosclerosis

The fixed effects, based on the added effects given other covariates, show that NDX (p< 0.0001)

and LOS (p< 0.0001) were significant

Odds ratio estimates

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 _T3

8.466 2.827 5.913 0.1485 0.333 0.333 7.467 2.827 5.913 0.1485 0.333 0.333

7.466 3.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.333

7.466 2.827 6.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.333

7.466 2.827 5.913 1.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.333

7.466 2.827 5.913 0.1485 1.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.333

7.466 2.827 5.913 0.1485 0.333 1.333 7.467 2.828 5.913 0.1485 0.333 0.333

The effects of continuous variables are assessed as one unit offset from the

mean. The AT suboption modifies the reference value and the UNIT suboption

modifies the offsets.

Odds ratio estimates

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 Estimate

8.466 2.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.149 0.333 1.073

7.466 3.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.149 0.333 0.972

7.466 2.827 6.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.149 0.333 1.033

7.466 2.827 5.913 1.1485 0.333 0.333 7.467 2.828 5.913 0.149 0.333 0.868

7.466 2.827 5.913 0.1485 1.333 0.333 7.467 2.828 5.913 0.149 0.333 0.665

7.466 2.827 5.913 0.1485 0.333 1.333 7.467 2.828 5.913 0.149 0.333 0.777

The effects of continuous variables are assessed as one unit offset from the mean. The AT

suboption modifies the reference value and the UNIT suboption modifies the offsets.

Comment: The estimate of the odds ratio are 1.073; 0.972; 1.033; 0.868; 0.665; and 0.777 for exp

(0.07056); exp(�0.02789); exp(0.03267); exp(�0.1413); exp(�0.4086); and exp(�0.2528) for

NDX, NPR, LOS, DX101, T2, and T3, respectively.
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Odds ratio estimates

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 DF

8.466 2.827 5.913 0.1485 0.333 0.3333 7.467 2.828 5.913 0.1485 0.333 3244

7.466 3.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 3244

7.466 2.827 6.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 3244

The effects of continuous variables are assessed as one unit offset from the

mean. The AT suboption modifies the reference value and the UNIT suboption

modifies the offsets.

Odds ratio estimates

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 DF

7.466 2.827 5.913 1.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 3244

7.466 2.827 5.913 0.1485 1.333 0.333 7.467 2.828 5.913 0.1485 0.333 3244

7.466 2.827 5.913 0.1485 0.333 1.333 7.467 2.828 5.913 0.1485 0.333 3244

The effects of continuous variables are assessed as one unit offset from the

mean. The AT suboption modifies the reference value and the UNIT suboption

modifies the offsets.

Odds ratio estimates 95 % confidence

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 Limits

8.466 2.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.039

7.466 3.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.935

7.466 2.827 6.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.021

7.466 2.827 5.913 1.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.717

7.466 2.827 5.913 0.1485 1.333 0.333 7.4667 2.828 5.913 0.1485 0.333 0.575

7.466 2.827 5.913 0.1485 0.3333 1.333 7.467 2.828 5.913 0.1485 0.333 0.671

The effects of continuous variables are assessed as one unit offset from the mean. The AT

suboption modifies the reference value and the UNIT suboption modifies the offsets

Comment: The lower limit of the odds ratio is given here

Odds ratio estimates 95% confidence

NDX NPR LOS DX101 T2 T3 _NDX _NPR _LOS _DX101 _T2 Limits

8.466 2.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.109

7.466 3.827 5.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.011

7.466 2.827 6.913 0.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.045

7.466 2.827 5.913 1.1485 0.333 0.333 7.467 2.828 5.913 0.1485 0.333 1.051

7.466 2.827 5.913 0.1485 1.333 0.333 7.467 2.828 5.913 0.1485 0.333 0.768

7.466 2.827 5.913 0.1485 0.333 1.333 7.467 2.828 5.913 0.1485 0.333 0.898

The effects of continuous variables are assessed as one unit offset from the mean. The AT

suboption modifies the reference value and the UNIT suboption modifies the offsets

Comment: The upper limit of the odds ratio is given here

184 9 Two-Level Nested Logistic Regression Model



Type III tests of fixed effects

Effect Num DF Den DF F value Pr> F

NDX 1 3244 18.17 <.0001

NPR 1 3244 1.99 0.1587

LOS 1 3244 31.44 <.0001

DX101 1 3244 2.10 0.1474

T2 1 3244 30.49 <.0001

T3 1 3244 11.57 0.0007

Comment: NDX and LOS show a significant impact on rehospitalization. The periods 2 and 3 are

significantly different from period 1. The probability of being rehospitalized within 30 days the

second or third time seems to be lower with each subsequent return

Proc Nlmixed

The use of PROC NLMIXED for higher levels is important to later chapters. We present PROC

NLMIXED here for comparison with PROC GLIMMIX and as a stepping stone to Chap. 10

when we analyze multilevels.

TITLE ’NLMIXED WITH RANDOM INTERCEPT’;

PROC NLMIXED DATA ¼ MYDATA;

PARMS b0 ¼ -0.3675 b1 ¼ 0.0648 b2 ¼ -0.0306 b3 ¼ 0.0344 b4 ¼ -0.1143 b5 ¼ -0.3876 b6 ¼
-0.2412;

Comment: To run NLMIXED, values for the coefficients must first be selected carefully in order

to ensure convergence. We usually start with the estimates from GEE

ETA¼U+b0 + b1 *NDX+b2 *NPR+ b3 *LOS+ b4 *DX101 + b5 *T2 + b6 *T3;
Comment: This is the right hand side of the systematic function

EXPETA ¼ EXP(ETA);

Comment: This is the link function

P ¼ (EXPETA/(1 + EXPETA));

Comment: This is the probability on the probability scale

MODEL BIRADMIT ~ BINARY (P);

RANDOMμ ~ NORMAL (0, SIGMAU*SIGMAU) SUBJECT ¼ PNUM_R;

Comment: The random effects and their distribution are now incorporated. PARMS lists names of

parameters and specifies initial values. Choosing adequate and precise initial parameter estimates

promotes convergence. Parameters not listed in PARMS statement are assigned an initial value of

1. Random defines the random effects and their distribution. The only distribution currently

available for the random effects is normal (0, δ2). The subject¼ PNUM_R determines when

new realizations of the random effects are assumed to occur. The input dataset should be clustered

according to this variable

RUN;

SAS Output

The NLMIXED procedure

Specifications

Dataset WORK.MYDATA

Dependent variable biRadmit

Distribution for dependent variable Binary

Random effects U

Distribution for random effects Normal

(continued)
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SAS Output

The NLMIXED procedure

Specifications

Subject variable PNUM_R

Optimization technique Dual Quasi-Newton

Integration method Adaptive Gaussian quadrature

Dimensions

Observations used 4875

Observations not used 0

Total observations 4875

Subjects 1625

Max observations per subject 3

Parameters 8

Quadrature points 5

Parameters

b0 b1 b2 b3 b4 b5 b6 SIGMAU NegLogLike

�0.368 0.065 �0.031 0.034 �0.114 �0.388 �0.241 1 3336.808

Comment: It provides the starting values for the beta coefficients and for the variance of the

random effects. Quadratures can be adjusted to help with convergence

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 4 3335.05945 1.748835 172.6995 �867.441

2 7 3334.01585 1.0436 277.225 �2032.36

3 10 3311.42307 22.59278 152.5156 �5036.34

4 13 3310.24422 1.178855 186.5742 �302.486

5 15 3309.95789 0.286329 165.9054 �7.17299

6 16 3309.58343 0.374462 50.42165 �2.03796

7 18 3309.37733 0.2061 36.70599 �1.38376

8 20 3309.34154 0.035788 17.07284 �0.11548

9 22 3309.32887 0.012671 2.106064 �0.08173

10 24 3309.3287 0.000166 0.460901 �0.00103

11 25 3309.32852 0.000179 0.344287 �0.00041

12 27 3309.32851 7.854E�6 0.118542 �0.00002

GCONV convergence criterion satisfied

Comment: To know that you have convergence is important but not always possible. At times,

you may need to adjust the number of quadrature points to facilitate convergence

Fit statistics

�2 log likelihood 6618.7

AIC (smaller is better) 6634.7

(continued)
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Fit statistics

AICC (smaller is better) 6634.7

BIC (smaller is better) 6677.8

Comment: These are fit statistics that really cannot tell us if the model is a good fit

Parameter estimates

Parameter Estimate

Standard

error DF t value Pr> |t| Alpha Lower Upper Gradient

b0 �0.393 0.135 1624 �2.91 0.0037 0.05 �0.658 �0.1282 0.0035

b1 0.071 0.017 1624 4.26 <.0001 0.05 0.0381 0.103 0.0339

b2 �0.028 0.020 1624 �1.41 0.159 0.05 �0.067 0.011 �0.0116

b3 0.033 0.006 1624 5.61 <.0001 0.05 0.021 0.044 �0.1185

b4 �0.141 0.097 1624 �1.45 0.148 0.05 �0.333 0.050 0.001

b5 �0.410 0.074 1624 �5.52 <.0001 0.05 �0.554 �0.264 �0.001

b6 �0.253 0.074 1624 �3.40 0.0007 0.05 �0.399 �0.107 0.003

SIGMAU 0.502 0.077 1624 6.50 <.0001 0.05 0.351 0.654 0.0008

Comment: The parameters take on the names b0, b1, b2, b3, b4, b5, and b6. The order follows the

way they were presented in the systematic component. NDX (b1) and LOS (b3) are significant.

The results are similar to those obtained with PROC GLIMMIX

log P̂ y¼1

��P̂ y¼0

� � ¼
�0:393þ 0:071NDX� 0:028NPRþ 0:033LOS� 0:141DX101� 0:410T2 � 0:253T3

Odds y¼1

��NDX¼nþ1, NPR¼0, LOS¼ p, DX101¼0, T2¼0, T3¼0, for patient
� �

Odds y¼1

��NDX¼n, NPR¼0, LOS¼ p, DX101¼0, T2¼0, T3¼0, for patient
� � ¼ exp βNDXð Þ ¼ exp 0:071ð Þ

SPSS Model 1: Logistic Regression Model with Random Intercepts

SPSS Program

We fit the two-level logistic regression model with random intercepts using SPSS

SPSS Pull Down Menu

Step 1:

In the data editor window select “Variable View” in the bottom left corner

Make sure the following variables are set to the following “Measure”

(1) PNUM_R!Nominal (NOTE this is different than Chap. 6)

(2) biRadmit!Nominal

(3) NDX!Scale

(4) NPR! Scale

(5) LOS!Scale

(6) DX101! Scale

(7) T2!Nominal

(8) T3!Nominal

Step 2:

(continued)
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SPSS Program

Click “Analyze” on the toolbar

Select “Mixed Models”

Click “Generalized Linear”

Step 3:

Click the first tab labeled “Data Structure”

Select the subject variable in the left column

Drag the subject variable to the area under “Subjects” in the “Canvas:” area

Step 4:

Click the second tab labeled “Fields & Effects”

Select “Target” in the left column

Under “Target” in the right column, select “Use custom target”

Select the dependent variable from the pull down menu under “Target:”

Select “Binary logistic regression” under “Target Distribution. . .”

Step 5:

Select “Fixed Effects” in the left column

Select the independent variable and drag them under “Main” in the “Effect builder:” area

Step 6:

Select “Random Effects” in the left column

Click “Add Block” near the bottom

Step 6-1:

In the Add Block window click the check box next to “Include intercept”

Under “Subject combination” select PNUM_R

If performing the random intercept analysis only then click “OK”

If performing the random intercept and random slope for LOS analysis drag LOS from the left

column to the area under “Main” and then click “OK”

Step 7:

Click the third tab labeled “Build Options”

Under “Sorting Order” select “Descending” for both options

Click “Run” near the bottom of the window

The SPSS procedure presents the following output

SPSS Output

Fixed coefficients

Target: biRadmit

Reference category: 0

Model term Coefficient Std. error t Sig. Lower Upper

Intercept �0.372 0.130 �2.861 .004 �0.626 �0.117

NDX 0.066 0.016 4.181 .000 0.035 0.097

NPR �0.028 0.019 �1.462 .144 �0.065 0.009

LOS 0.032 0.006 5.709 .000 0.021 0.043

DX101 �0.128 0.094 �1.365 .172 �0.311 0.056

T2¼ 1 �0.388 0.072 �5.403 .000 �0.529 �0.247

T3¼ 1 �0.240 0.072 �3.327 .001 �0.382 �0.099

(continued)
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SPSS Output

Fixed coefficients

Target: biRadmit

Reference category: 0

Model term Coefficient Std. error t Sig. Lower Upper

Probability distribution: Binomial

Link function: Logit

This coefficient is set to zero because it is redundant

Comment: The fitted logistic regression model is

log P̂ y¼1

��P̂ y¼0

� � ¼ �0:372

þ0:066NDX� 0:028NPRþ 0:032LOS� 0:128DX101� 0:388T2 � 0:240T3. The covariates,

NDX, LOS, T2, and T3, are significant. The link is logit¼ log P̂ y¼1

��P̂ y¼0

� �

Covariance parameters

Target: biRadmit

Covariance parameters Residual effect 0

Random effects 1

Design matrix columns Fixed effects 9

Random effects 1a

Common subjects 1625

Common subjects are based on the subject specifications for the residual and random effects and

are used to chunk the data for better performance
aThis is the number of columns per common subject

Random effect Estimate Std. error Z Sig.

95 % confidence interval

Lower Upper

Var(Intercept) 0.158 0.054 2.906 0.004 0.080 0.310

Covariance structure: variance components

Subject specification: PNUM_R

Comment: The variance of the random effects lies between [0.080, 0.310] based on a 95 %

confidence level. There is variation among the patients in regard to rehospitalization. The

significance difference is also shown through the p-value¼ 0.004

R Program

We fit the two-level logistic regression model with random intercepts using R

Random intercept

> glmer.out ¼ glmer(biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3 + (1|PNUM_R), data

¼ data1, family ¼ binomial)

> summary(glmer.out)

Generalized linear mixed model fit by the Laplace approximation

Formula: biRadmit ~ NDX + NPR + LOS + DX101 + T2 + T3 + (1|PNUM_R)

Data: data1

(continued)
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Random intercept

AIC BIC logLik Deviance

6639 6691 �3311 6623

Random effects

Groups name Variance Std. dev.

PNUM_R (Intercept) 0.17115 0.4137

Comment: The standard deviation of the variance of the random effects is 0.4137

Number of observations: 4875, groups: PNUM_R: 1625

Fixed effects

Estimate Std. error z value Pr(>|z|)

(Intercept) �0.386178 0.130272 �2.964 0.003033 **

NDX 0.068966 0.015915 4.333 1.47E�05 ***

NPR �0.028793 0.019114 �1.506 0.131971

LOS 0.033239 0.005681 5.851 4.87E�09 ***

DX101 �0.133469 0.093952 �1.421 0.155432

T2 �0.4031 0.07192 �5.605 2.08E�08 ***

T3 �0.249785 0.072377 �3.451 0.000558 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1

Comment: The fitted logistic regression model is log P̂ y¼1

��P̂ y¼0

� � ¼
�0:386þ 0:069NDX� 0:029NPRþ 0:033LOS� 0:133DX101� 0:388T2 � 0:240T3. The

covariates, NDX, LOS, T2, and T3, are significant. The link is logit

Correlation of fixed effects

(Intr) NDX NPR LOS DX101 T2

NDX �0.812

NPR �0.285 �0.061

LOS 0.114 �0.286 �0.262

DX101 �0.156 0.145 �0.368 0.202

T2 �0.272 �0.038 0.080 �0.036 0.039

T3 �0.248 �0.073 0.094 �0.041 0.067 0.510

Number of observations: 4875

Number of groups: 1625

Comment: The above correlation estimates and standard errors of the fixed effects match those

produced in SAS GLIMMIX, though R presents more significant digits. The output for random

effects is different in R from SAS or SPSS. The values for the intercept and standard deviation are

in the logit scale, and the standard deviation is the square root of the variance of the random

intercept estimate, and not the standard error of the estimate. See http://www.ats.ucla.edu/stat/r/

dae/melogit.htm for more information
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9.4.8 Two-Level Nested Logistic Regression Model Random
Intercept and Slope

In these models, we believe the length of stay impacts other things during the

previous visit and have an indirect varying effect for each patient. This varying

effect is measured through the slope for each patient. These slopes are members of a

population of slopes with a mean and variance from a normal population. Thus, the

intercept and the slope represent random effects which are allowed to vary

according to a normal distribution. Thus, the length of stay has significant influence,

but does not affect all patients in the same way. We present results with SAS and

SPSS.

SAS Program

GLIMMIX with Random Intercept and Random Slope

TITLE ’GLIMMIX WITH RANDOM COEFFICIENTS (RANDOM INTERCEPT AND

RANDOM SLOPE FOR LOS)’;

PROC GLIMMIX DATA ¼ MYDATA;

CLASS PNUM_R;

MODEL BIRADMIT (EVENT ¼ ’1’) ¼ NDX NPR LOS DX101 T2 T3/DIST ¼ BINARY

LINK ¼ LOGIT DDFM ¼ BW SOLUTION;

RANDOM INTERCEPT LOS/ SUBJECT ¼ PNUM_R;

RUN;

Comment: The slope now joins the set of random effects in the RANDOM statement through

the LOS. We are assuming that each patient has their own slope as it pertains to LOS

SAS Output

GLIMMIX WITH RANDOM COEFFICIENTS (RANDOM INTERCEPT AND RANDOM

SLOPE FOR LOS)

The GLIMMIX procedure

Model information

Dataset WORK.MYDATA

Response variable biRadmit

Response distribution Binary

Link function Logit

Variance function Default

Variance matrix blocked by PNUM_R

Estimation technique Residual PL

Degrees of freedom method Between-Within

Comment: This information tells about the properties used to fit the data
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Class level information

Class Levels Values

PNUM_R 1625 127 560 746 750 1117 1395 1568 2076 2390 2413 3008 3123

3710 3970 3982 4236 4581 4873 5387. . .1370458 1370470

1371713

Number of obser-

vations read

4875

Number of obser-

vations used

4875

Comment: This is a list of the clusters (patients) that provides the random effects

Response profile

Ordered value biRadmit Total frequency

1 0 2433

2 1 2442

The GLIMMIX procedure is modeling the probability that biRadmit¼ ’1’

Dimensions

G-side cov. parameters 2

Comment: The G-side parameters are now two (intercept and slope). The matrix X still has seven

parameters. With the random slope there are now two parameters, slope and intercept

Columns in X 7

Columns in Z per subject 2

Subjects (blocks in V) 1625

Max observations per subject 3

Comment: There are seven columns in X representing Intercept, NDX, NPR, LOS, DX101, T2,

and T3. There are two columns in Z, a column of ones and column of LOS

Optimization information

Optimization technique Newton-Raphson with ridging

Parameters in optimization 2

Lower boundaries 2

Upper boundaries 0

Fixed effects Profiled

Starting from Data

Comment: In fitting this model we are using numerical techniques as there is no closed form. The

optimization algorithm used is Newton-Raphson with ridging

192 9 Two-Level Nested Logistic Regression Model



Iteration history

Objective

Iteration Restarts

Max

subiterations Function Change Gradient

0 0 4 20,926.525523 0.83921200 0.000018

1 0 2 20,786.013825 0.13054164 0.024436

2 0 2 20,781.964519 0.00700036 2.674E�8

3 0 1 20,781.707196 0.00041156 0.000073

4 0 1 20,781.691382 0.00002434 3.099E�7

5 0 1 20,781.690393 0.00000145 2.365E�9

6 0 1 20,781.690326 0.00000009 1.31E�10

7 0 1 20,781.690321 0.00000001 1.773E�7

Convergence criterion (PCONV¼ 1.11022E�8) satisfied

Comment: These are results at each iteration. The convergence criterion was met

Fit statistics

�2 Res log pseudo-likelihood 20,781.69

Generalized chi-square 4660.29

Generalized chi-square/DF 0.96

Comment: The ratio is expected to be one or close to one when the model fits

Covariance parameter estimates

Standard cov. parameter Subject Estimate Error

Intercept PNUM_R 0.1193 0.05646

LOS PNUM_R 0.000886 0.000426

Comment: Those estimates for the covariance can be used by computing the

standardized values 0.1193/0.05646¼ 2.113 (greater than 1.96) for the intercepts

and 0.000886/0.000426¼ 2.0798 (greater than 1.96) for the slopes to determine

their significance. Thus, there are definite differences among the patients with

regard to the length of stay over hospitalizations, meaning that each patient has a

distinct intercept and slope

Solutions for fixed effects

Effect Estimate Standard error DF t value Pr> |t|

Intercept �0.3563 0.1295 1624 �2.75 0.0060

NDX 0.06115 0.01582 3244 3.86 0.0001

NPR �0.03214 0.01911 3244 �1.68 0.0928

LOS 0.03879 0.005984 3244 6.48 <.0001

DX101 �0.1086 0.09353 3244 �1.16 0.2456

T2 �0.3951 0.07203 3244 �5.49 <.0001

T3 �0.2455 0.07249 3244 �3.39 0.0007

Comment: The fitted logistic regression model is log P̂ y¼1

��P̂ y¼0

� � ¼
�0:356þ 0:061NDX� 0:032NPRþ 0:039LOS� 0:108DX101� 0:395T2 � 0:245T3. The

covariates, NDX, LOS, T2, and T3, are significant. The link is logit
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Type III tests of fixed effects

Num Den effect DF F value Pr> F

NDX 1 3244 14.94 0.0001

NPR 1 3244 2.83 0.0928

LOS 1 3244 42.01 <.0001

DX101 1 3244 1.35 0.2456

T2 1 3244 30.09 <.0001

T3 1 3244 11.47 0.0007

Comment: These tests are for the fixed effects and are based on F-test. Since ¼ t2, the results are
the same as the t-test in the earlier frame. Only NDX and LOS are significant

SAS Program NLMIXED

WITH RANDOM INTERCEPT AND RANDOM SLOPE FOR LOS

PROC NLMIXED DATA ¼ MYDATA;

PARMS b0 ¼ -0.3675 b1 ¼ 0.0648 b2 ¼ -0.0306 b3 ¼ 0.0344 b4 ¼ -0.1143 b5 ¼ -0.3876 b6 ¼
-0.2412 S2U ¼ 1 S2LOS ¼ 1;

ETA ¼ U + b0 + b1*NDX + b2*NPR + b3*LOS + b4*DX101 + b5*T2 + b6*T3 + RB1*LOS;

EXPETA ¼ EXP(ETA);

P ¼ (EXPETA/(1 + EXPETA));

MODEL BIRADMIT ~ BINARY (P);

RANDOM U RB1 ~ NORMAL ([0, 0], [S2U, 0, S2LOS]) SUBJECT ¼ PNUM_R;

RUN;

Comment: The slope RB1 (random slope) is now a random effect in the model. It is entered

through the use of the RANDOM statement. So both intercept (U) with mean zero and variance,

S2u with the slope (RB1) mean zero and variance S2u are random such that

Intercept
Slope

� �eN S2u 0

0 S2LOS

� �

SAS Output

NLMIXED—RANDOM COEFFICIENTS (RANDOM INTERCEPT AND RANDOM SLOPE

Specifications

Dataset WORK.MYDATA

Dependent variable biRadmit

Distribution for dependent variable Binary

Random effects U RB1

Distribution for random effects Normal

Subject variable PNUM_R

Optimization technique Dual Quasi-Newton

Integration method Adaptive Gaussian quadrature
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Dimensions

Observations used 4875

Observations not used 0

Total observations 4875

Subjects 1625

Max observations per subject 3

Parameters 9

Quadrature points 21

Parameters

b0 b1 b2 b3 b4 b5 b6 S2U S2LOS NegLogLike

�0.367 0.065 �0.031 0.034 �0.114 �0.388 �0.2412 1 1 3985.95

Comment: It took 21 quadrature points to converge. One can use “qpoints” option and alter to help
facilitate convergence

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 3 3952.89822 33.05146 652.6519 �2027.89

2 17 3451.79827 501.0999 1368.364 �11,834

3 21 3451.55573 0.242544 1376.242 �1276.69

4 25 3430.06379 21.49194 1993.033 �881.591

5 30 3367.71291 62.35088 3974.255 �521.382

6 33 3337.85233 29.86058 9668.193 �1606.06

7 34 3322.33101 15.52132 1535.352 �768.946

8 35 3316.79634 5.534667 637.2635 �52.3535

9 36 3307.4585 9.337846 525.5986 �39.5151

10 38 3303.57473 3.883763 780.9579 �24.7329

11 41 3302.86298 0.711757 225.9084 �2.87157

12 43 3302.46157 0.401411 286.0091 �0.95141

13 45 3302.40055 0.061016 279.0208 �0.09333

14 46 3302.34857 0.051976 89.90324 �0.05577

15 48 3302.33585 0.01272 5.172229 �0.0279

16 50 3302.33572 0.000134 0.871102 �0.00032

17 52 3302.3357 0.000016 0.190776 �0.00005

18 54 3302.3357 9.25E�7 0.218643 �3.89E�6

Note: GCONV convergence criterion satisfied

Comment: The model converged on the 18th iteration and stopped

Fit statistics

�2 log likelihood 6604.7

AIC (smaller is better) 6622.7

AICC (smaller is better) 6622.7

BIC (smaller is better) 6671.2

Comment: The fit statistics tell how well the model fits the data. However, since there is no

distribution or p-value, they cannot be used to tell about this model by itself
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Parameter estimates

Parameter Estimate

Standard

error DF t value Pr> |t| Alpha Lower Upper Gradient

b0 �0.369 0.134 1623 �2.74 0.006 0.05 �0.633 �0.1048 0.004

b1 0.059 0.0167 1623 3.52 0.0004 0.05 0.026 0.092 0.0323

b2 �0.035 0.020 1623 �1.76 0.078 0.05 �0.07483 0.004015 0.037

b3 0.050 0.008 1623 6.06 <.0001 0.05 0.03369 0.06593 0.091

b4 �0.099 0.098 1623 �1.01 0.312 0.05 �0.292 0.093 �0.005

b5 �0.420 0.075 1623 �5.63 <.0001 0.05 �0.5672 �0.274 0.003

b6 �0.258 0.075 1623 �3.45 0.001 0.05 �0.4060 �0.1117 0.001

S2U 0.175 0.083 1623 2.12 0.035 0.05 0.0128 0.337 0.001

S2LOS 0.003 0.001 1623 1.99 0.047 0.05 0.00034 0.005 �0.219

Comment: The fitted logistic regression model is log P̂ y¼1

��P̂ y¼0

� � ¼
�0:356þ 0:061NDX� 0:032NPRþ 0:039LOS� 0:108DX101� 0:395T2 � 0:245T3. The

covariates, NDX, LOS, T2, and T3, are significant. The link is logit. We got similar results with

PROC GLIMMIX and NLMIXED

SPSS Program

We used SPSS to fit the two-level nested logistic regression model with random intercept and random

slope

GENLINMIXED

/DATA_STRUCTURE SUBJECTS ¼ PNUM_R

/FIELDS TARGET ¼ biRadmit TRIALS ¼ NONE OFFSET ¼ NONE

/TARGET_OPTIONS DISTRIBUTION ¼ BINOMIAL LINK ¼ LOGIT

/FIXED EFFECTS ¼ NDX NPR LOS DX101 T2 T3 USE_INTERCEPT ¼ TRUE

/RANDOM EFFECTS ¼ LOS USE_INTERCEPT ¼ TRUE SUBJECTS ¼ PNUM_R

COVARIANCE_TYPE ¼ VARIANCE_COMPONENTS

/BUILD_OPTIONS TARGET_CATEGORY_ORDER ¼ ASCENDING INPUTS_CATE-

GORY_ORDER ¼ ASCENDING MAX_ITERATIONS ¼ 100 CONFIDENCE_LEVEL ¼
95 DF_METHOD ¼ RESIDUAL COVB ¼ MODEL

/EMMEANS_OPTIONS SCALE ¼ ORIGINAL PADJUST ¼ LSD.

Comment: Similar to the logistic regression model with random intercept and that output, SPSS

performs a significance test automatically for both the random intercept and slope. Note the fewer

significant digits that may limit our ability to report values precisely (particularly a standard error

for the length of stay (LOS) of zero)

Comment: Here are the fixed effects parameter estimates with similar notes to the random

intercept only model, highlighting differences in displaying significant digits, the reference

category used, and the signs of certain estimates. Similar interpretations can be made using

SPSS, though care must be taken to ensure the correct reference category is being discussed
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9.4.9 Model 2: Logistic Regression with Random Intercept/
Random Slope for LOS

SPSS Output

Fixed coefficients

Target: biRadmit

Reference category: 0

Model term Coefficient Std. error t Sig. Lower Upper

Intercept �0.356 0.129 �2.751 .006 �0.610 �0.102

NDX 0.061 0.016 3.865 .000 0.030 0.092

NPR �0.032 0.019 �1.681 .093 �0.070 0.005

LOS 0.039 0.006 6.482 .000 0.027 0.051

DX101 �0.109 0.094 �1.161 .246 �0.292 0.075

T2¼ 1 �0.395 0.072 �5.485 .000 �0.536 �0.254

T3¼ 1 �0.246 0.072 �3.327 .001 �0.388 �0.103

Comment: The fitted logistic regression model is log P̂ y¼1

��P̂ y¼0

� � ¼ �0:356þ
0:061NDX� 0:032NPRþ 0:039LOS� 0:109DX101� 0:395T2 � 0:246T3. The covariates,

NDX, LOS, T2, and T3, are significant. The link is logit

Probability distribution: Binomial

Link function: Logit
aThis coefficient is set to zero because it is redundant

Covariance parameters

Target: biRadmit

Covariance parameters Residual effect 0

Random effects 2

Design matrix columns Fixed effects 9

Random effects 2a

Common subjects 1625

Comment: Common subjects are based on the subject specifications for the residual and random

effects and are used to chunk the data for better performance
aThis is the number of columns per common subject

Random effect Estimate Std. error Z Sig.

95 % confidence interval

Lower Upper

Var(Intercept) 0.119 0.056 2.113 0.035 0.047 0.302

Var(LOS) 0.001 0.000 2.081 0.037 0.000 0.002

Covariance structure: variance components

Subject specification: PNUM_R

Comment: The estimate of variance of the random effects is 0.119 with a 95 % confidence interval

of (0.047, 0.302). This suggests that the variance is significantly different from zero. Thus, the

random effects are present. An estimate of the variance of the slope is 0.001 with a 95 %

confidence interval of (0.000, 0.002) and p-value of 0.037. Thus, the patients have different rate

of change when length of stay is considered
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R Program

We tried many R program codes to run the logistic regression with random intercepts and

random slopes but was unable to get useful results

9.5 Conclusions

In Chap. 6, we presented the GEE logistic regression model as a means of

addressing correlated data. We pointed out that this method of analyzing correlated

data was done through the random component. In this chapter, we presented a

generalized linear mixed model as another approach to analyzing correlated data.

This method of analysis of correlated data was done through the systematic

component. We reiterate that these two methods of analysis are not necessarily

answering the same question. One model presents the probability of rehospita-

lization, and the other model tells us about the probability of rehospitalization for a

particular patient. We found that the probability of a patient being rehospitalized in

30 days depends on the length of stay and the number of prescriptions. We found

that the assumption of independence realizes smaller standard errors as opposed to

correlated data. It is evident that the marginal model (Chap. 6) provides results that

are different than those from the subject-specific model, unless the random effects

are not significant. Thus, it is relevant to ask the question, how do they compare?
While the GEE model provides a simple alternative for correlated clustered data, is

computationally simple, and robust against misspecification of correlation struc-

tures, it is not necessarily efficient. As such, the interpretations of the fixed effect

coefficient in a GEE model are usually different than those in the generalized linear

mixed model. The GEE model has a covariance structure mainly due to the random

component referred to as the R-side, while the generalized linear mixed model has a

covariance structure due to the random and systematic components. This results in

two sides to the covariance structure: the R- and G-side. More importantly, GEE fits

marginal models, while PROC GLIMMIX fits subject-specific models.

9.6 Related Examples

9.6.1 Multicenter Randomized Controlled Data (Beitler &
Landis, 1985)

A similar set of data that may necessitate this type of analysis is multicenter

randomized controlled data (Beitler & Landis, 1985). Data were collected in a

multicenter randomized controlled clinical trial conducted in eight different clinics.

The primary purpose of the study was to assess the effect of a topical cream
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treatment on curing nonspecific infections, as compared to a placebo. In each of the

eight clinics, the numbers of treated persons and successfully cured persons were

recorded for both the treatment and placebo groups. This is an example of patients

nested within clinics. The data as presented by Kuss: How to Use SAS for Logistic

Regression with Correlated Data, SUGI 2002, Orlando.

DATA INFECTION;

INPUT CLINIC TREATMENT X N;

DATALINES;

1 1 11 36

1 0 10 37

. . .
8 1 4 6

8 0 6 7

RUN;

One may be interested in certain questions such as: Does the treatment impact

the cure? Is there an impact of the clinic on the cure? What are the results if we had

treatment and clinic simultaneously on cure with clinic as a fixed effect? What are

the results if we had treatment and clinic simultaneously on cure with clinic as a

random effect?
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Chapter 10

Hierarchical Logistic Regression Models

Abstract This chapter extends the results in Chap. 9. It is common to come into

contact with data that have a hierarchical or clustered structure. Examples include

patients within a hospital, students within a class, factories within an industry, or

families within a neighborhood. In such cases, there is variability between the

clusters, as well as variability between the units which are nested within

the clusters. Hierarchical models take into account the variability at each level of

the hierarchy, and thus allow for the cluster effects at different levels to be analyzed

within the models (The Annals of Thoracic Surgery 72(6):2155–2168, 2001). This

chapter tells how one can use the information from different levels to produce a

subject-specific model. This is a three-level nested design but can be expanded to

higher levels, though readily available computing may be challenge.

10.1 Motivation

10.1.1 Description of Case Study

In surveys of discharged patients from hospitals, it is common for administrators to

be interested in obtaining a measure of the patient’s overall experience at the

hospital upon discharge. Therefore, identifying factors that contribute to making

patients’ stays better is of the utmost importance. As such, hospital administrators

often like to know the responses from patients who were hospitalized for different

reasons with different procedures, and with a specific number of prescriptions as

well as their medical histories, among other things. For planning purposes, they

may wish to identify any significant characteristics of the doctors that may have

contributed to the patients’ satisfaction levels.

In this chapter, we are going to look at a set of questions about overall hospital

stay experience designed for cancer patients in remission. We will model cancer

remission as it pertains to hospital differentials in terms of patients’ characteristics,

doctor’s experience, and the size of the hospital.
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Data simulated with hospitals, doctors, and patients (HDP) are analyzed in this

chapter. This dataset consists of a three-level, hierarchical structure with patients

nested within doctors, and doctors within hospitals. We used the simulated data to

show a variety of analytical techniques as they pertain to fitting logistic regression

models to hierarchical data. The simulated data are meant to be a large study of lung

cancer outcomes across multiple doctors and hospitals (www.ats.ucla.edu/stat/r/

pages/mesimulation.htm).

10.1.2 Study Hypotheses

The hierarchical logistic regression models incorporate different sources of varia-

tions. At each level of hierarchy, we use random effects and other appropriate fixed

effects. This chapter demonstrates the fit of hierarchical logistic regression models

with random intercepts, random intercepts, and random slopes to multilevel data. If

we were to use the standard binomial logistic regression model to analyze such

hierarchical data, we would be ignoring several sources of variation. Instead, we

use a hierarchical model to identify factors such as testing how patients’ character-

istics, doctors’ experience, and hospital factors contribute to the remission.

10.2 Definitions and Notations

Nested, hierarchical, and multilevel are different terms essentially representing the

same concept.

Nested design is a design in which every level of a given factor appears within

only a single level of any other factor.

Hierarchical, as the word implies, is a level of hierarchy where a classification is

arranged in levels, usually in order of rank. Hierarchical data consist of units

grouped at different levels.

Multilevel modeling allows modeling to distinguish multiple levels of informa-

tion in a model. Coefficients can be fixed or random and, as such, at one level can be

presented on the input and at the next level can be output.

Complete separation occurs when the response variable separates a predictor

variable or a combination of predictor variables completely. You do not need the

predictors to tell you of the next output value. See Table 10.1.

In this example, the response is zero when covariate X is less than 5 and 1 when

the covariate X is more than 4. So covariate X predicts the response perfectly. We

realized this without having to do any kind of estimation. Thus, mathematically the

maximum likelihood estimate for the X coefficient does not exist.

Quasi-separation in a logistic regression occurs when the outcome variable

separates a predictor variable or a combination of predictor variables to certain

degree. The response S separates the covariate X2 except for values of X2¼ 4.

Thus, the covariate predicts perfectly when X2 is less than 4 or greater than 4. The

maximum likelihood estimate for the coefficient of X2 does not exist http://www.

ats.ucla.edu/stat/mult_pkg/faq/general/complete_separation_logit_models.htm.
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10.3 Exploratory Analyses

It is common to be presented with data that have hierarchical or nested clustered

structures. Examples include patients within a hospital, hospitals within counties,

students within a class, and classes within a school (all at two-level structures).

Examples of three-level structures would be factories within an industry within

states or families within a neighborhood within cities (all three levels). In such

cases, there is variability between the clusters, as well as variability between the

units which are nested within the clusters. Modeling hierarchical data should

include the variability at each level of the hierarchy, and thus allow for the cluster

effects at different levels to be analyzed within the models (Shahian et al., 2001).

We are interested in how one can incorporate the information from different levels

into a model, thereby presenting a subject-specific logistic regression model.

In this chapter, we concentrate on fitting logistic regression models to these

kinds of nested data at three levels and higher. In Fig. 10.1, we have patients nested

within doctors and doctors nested within hospitals, making it a three-level nested

design. We wish to fit a logistic regression model to reflect the differences between

doctors and between hospitals.

Simulated Hierachical Data

Patient 1

Hospital i
Level 3

Doctor 1 Doctor j
Level 2

Doctor ni

Level 1

Patient 2 ........... Patient ni1 Patient 1 Patient 2 ........... Patient niJ Patient 1 Patient 2 ........... Patient niJ

... ...

Fig. 10.1 Nested structure of the hospital, doctor, and patient

Table 10.1 Demonstration of separation

Response C Covariate X Covariate W Response S Covariate X2 Covariate W2

0 1 0 0 1 0

0 2 1 0 2 1

0 3 0 0 3 0

0 4 1 0 4 1

1 5 0 1 4 0

1 6 0 1 6 0

1 7 1 1 7 1
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If we were to use the standard logistic regression model to these data with

remission event ¼1 and age, length of stay (as patient’s information) and experi-

ence (as the doctor’s information) as covariates, we will receive the following

results

Criterion Intercept only Intercept and covariates

AIC 10354.637 10038.505

SC 10361.688 10066.708

�2 log L 10352.637 10030.505

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 322.1325 3 <.0001

Score 316.5248 3 <.0001

Wald 304.8871 3 <.0001

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.2882 0.2254 1.6348 0.2010

Age 1 �0.0213 0.00434 23.9521 <.0001

Length of stay 1 �0.1842 0.0260 50.1282 <.0001

Experience 1 0.0838 0.00605 192.0264 <.0001

Odds ratio estimates

Effect Point estimate 95 % wald Confidence limits

Age 0.979 0.971 0.987

Length of stay 0.832 0.790 0.875

Experience 1.087 1.075 1.100

It appears that age, length of stay, and the doctor’s experience had significant

impact on cancer remission. However, this analysis ignores the fact that age and

length of stay are measured on patients who are nested within doctors and experi-

ence is measured on the doctors who are nested within the hospitals.

10.4 Statistical Model

It is common in fields such as public health, education, demography, and sociology

to encounter data structures, where the information is collected based on a hierar-

chy. An appropriate approach to analyze such data is, therefore, to include the

nested sources of variability coming from the different levels of the hierarchy.

The different levels provide variability that must be accounted for. The total
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variability consists of several components, each accounting for correlation. At each

level, we have intraclass correlation because there are units within clusters and

between units at different levels, resulting in correlated data. This type of hierarchy

leads to correlated data. As a result of the correlation at each level inherent from

these hierarchical structures, the standard logistic regression is inappropriate

(Rasbash, Steele, Browne, & Goldstein, 2012).

10.4.1 Multilevel Modeling Approaches with Binary
Outcomes

Binary outcomes are very common in healthcare research, for example, one may

refer to the patient has improved or recovered after discharge from the hospital or

not. For healthcare and other types of research, the logistic regression model is one

of the preferred methods of modeling data when the outcome variable is binary. In

its standard form, it is a member of a class of generalized linear models specific to

the binomial random component. As is customary in regression analysis, it makes

use of several predictor variables that may be either numerical or categorical.

However, a standard logistic regression model assumes that the observations

obtained from each unit are independent. If we were to fit a standard logistic

regression to nested data, the assumption of independent observations is seriously

violated. This violation could lead to an underestimation of the standard errors and

as such declare significance when in fact it is not.

One common approach when analyzing nested data is, therefore, to use multilevel

modeling approaches while incorporating the nested sources of variability at each

level. One approach formultilevel linearmodeling but applied to dyadic data analysis

with continuous outcomes is seen, Raudenbush (1992). That work was extended with

two-level approaches with binary outcomes (McMahon, Pouget, & Tortu 2006).

In this chapter, we analyze some three-level nested binary data, but it is possible

to analyze higher level data. The key with higher levels lies with the use of random

effects at each level. We make use of two models each with two random effects at

level 2 and level 3 with intercept only and with random slopes only. For analysis of

multilevel data random effects are added into the model to account for unobservable

effects that are known to exist but were not measured. Here, we will consider two

models at three levels. One is a model with random effects at level 2 and level 3. The

other models the data with random intercepts and random slopes at levels 2 and 3.

10.4.2 Potential Problems

We found that convergence of parameter estimates is sometimes difficult to

achieve, especially when fitting models with random slopes and higher levels of

nesting. Some researchers have found that convergence problems may occur if the
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outcome is skewed for certain clusters or if there is quasi-separation or complete

separation. Such phenomena destroy the variability within clusters which is essen-

tial to the solutions. In addition, we found that including too many random effects

may not be computationally possible (Schabenberger, 2005).

We also found what other researchers did. That for hierarchal logistic models for

nested binary data, it is often not feasible to estimate random effects for both

intercepts and slopes at the same time in a model. Also, Newsom (2002) showed

that we can have models with too many parameters to be estimated given the

number of covariance elements included. Others found that such models can lead

to severe convergence problems, limiting the modeling. Before fitting these condi-

tional models, McMahon et al. (2006) suggested that one should determine whether

there is significant cluster interdependence to justify the use of multilevel modeling.

For the simulated data, we fitted random slopes at different levels without random

intercepts. The fit of these models can be performed through SAS with PROC

NLMIXED. One researcher claimed that only one random statement is supported in

PROC NLMIXED so that nonlinear mixed models cannot be assessed at more than

two levels (Maas & Hox, 2004). However, Hedeker, Mermelstein, and Demirtas

(2008, 2012) showed how more than one random statement can be used for

continuous data in PROC NLMIXED with more than two levels. We adopted

some of their techniques and applied them to the analysis of binary data when

using PROC NLMIXED in SAS. We fit models with random effects using SAS.

10.4.3 Three-Level Logistic Regression Models with Multiple
Random Intercepts

In the analysis of multilevel data, each level provides a component of variance that

measures intraclass correlation. Consider a hierarchical model at three levels for the

kth patient seeing the jth doctor in the ith hospital. The patients are at the lower

level (level 1) and are nested within doctors (level 2) which are nested within

hospitals at the next level (level 3). We consider the hospital as the primary unit,

doctors as secondary unit, and patients as the observational unit. These clusters are

treated as random effects. We make use of random effects as we believe there are

some nonmeasurable benefits based on the doctor and also based on the hospital.

Some effects may be positive and some effects may be negative but overall, we

assume their average effect is zero.

At level 1, we take responses from different patients noting their age (Age) and

length of stay (LOS). Then, the outcomes are modeled through a logistic regression

model

log
pijk

1� pijk

" #
¼ γoij þ γ1ijAgeijk þ γ2ijLosijk ð10:1Þ
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where γoij is the intercept, γ1ij is the coefficient associated with the predictor Ageijk,
and γ2ij is the coefficient associated with the predictor Losijk (length of stay) for

k¼ 1, 2, . . . , nij patients; j¼ 1, 2, . . . , ni doctors and i¼ 1, . . . , n; hospitals. Each
doctor has a separate logistic model. If we allow the effects of Age and LOS on the

outcome to be the same for each doctor, but allow the intercept to be different than

on the logit scale, we have parallel planes for their predictive model. The γoij
intercept represents those differential effects among doctors.

At level 2, we assume that the intercept γoij (which allows a different intercept

for doctors within hospitals) depends on the unobserved factors specific to the ith

hospital, the covariates given as associated with the doctors of the ith hospital, and a

random effect uoij associated with doctor j within hospital i. Thus,

γoij ¼ γoi þ γ1iExperienceij þ uoij ð10:2Þ

where Experienceij is the experience for doctor j of the ith hospital. Similarly,

hospital administration policies may have different effects on doctors. At level

3, the model assumes that differential hospital policies depend on the overall fixed

intercept β0 and the random effect uoi associated with the intercept for hospital i.

Thus,

γoi ¼ β0 þ uoi ð10:3Þ

By successive substitution into the expression for γoi in (10.3) into (10.2), and then

by substituting the resulting expression for γoij into (10.1), we obtained

log
pijk

1� pijk

" #
¼ β0 þ γ1iExperienceij þ γ1ijAgeijk þ γ2ijLosijk þ uoi þ uoij

ð10:4Þ

The combination of random and fixed terms results in a generalized linear mixed

model with two random effects, hospitals denoted by uoi � N 0, σ2uið Þ and doctors
denoted by uoij � N 0, σ2uij

� �
with covariance σuoi, uoij . From (10.4), the model

consists of all overall mean plus experience of doctors plus age of patient, length of

stay plus effects due to hospitals, and effects due to doctors for each individual.

Hence, we have a subject-specific model.

10.4.4 Three-Level Logistic Regression Models with Random
Intercepts and Random Slopes

Consider the three-level random intercept and random slope model consisting of a

logistic regression model at level 1,
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log
pijk

1� pijk

" #
¼ γoij þ γ1ijAgeijk þ γ2ijLosijk ð10:5Þ

where both γoij and γ2ij are random, for k¼ 1, 2, . . . , nij; j¼ 1, 2, . . . , ni; and

i¼ 1, . . ., n. So each doctor has a different intercept and the rates of change with

respect to length of stay are not the same for all the doctors. However, there are

some unobserved effects related to LOS that impact remission. There are factors

associated with LOS and the doctors’ impacts on patients vary as LOS varies. The

intercept represents a group of unidentifiable factors that impact the overall effect

of the doctor on the patient’s success. While the slope represents the differential

impact that the particular variable (LOS) has that results in differences among

patients.

So, at level 2, γoij and γ2ij are treated as response variables within the model,

γoij ¼ γoi þ γ1iExperienceij þ uoij ð10:6Þ
γ2ij ¼ γ2i þ u2ij ð10:7Þ

where γoi and γ2i are random effects. Equation (10.6) assumes the intercept γoij for
doctors nested within hospital j, the unobserved intercept specific to the ith hospital,

the effects associated with the doctor’s experience in the hospital, and a random

term uoij associated with doctor j within hospital i. The slope γ2ij depends on the

overall slope γ2i for hospital i and a random term u2ij.

γoi ¼ β00 þ uoi ð10:8Þ
γ2i ¼ β22 þ u2i ð10:9Þ

At level 3, the model shows that the hospitals vary based on random effects and that

the intercept depends on the overall fixed intercept β00 and the random term uoi
associated with the hospital i, while the hospital slope γ2i depends on the overall

fixed slope β22 and the random effect u2i associated with the slope for hospital i. By
substituting the expression for γoi and γ2i into (10.7) and (10.8), and then substitut-

ing the resulting expression for γoij and γ2ij into (10.9), we obtained

log
pijk

1� pijk

" #
¼ β00 þ γ1ijAgeijk þ γ1iExperienceij þ uoi þ uoij

þ β22 þ u2i þ u2ij
� �

Losijk ð10:10Þ

Thus, we have a generalized linear mixed model with random effects uoi , uoij , γ1i,
and γ1ij. Therefore, Losijk is associated with both a fixed and random part. We take

advantage of this regrouping of terms to incorporate the random effects and their

variance-covariance matrix, so that uoi , uoij , γ1i, and γ1ij are jointly distributed

normally with a mean of zero and a covariance matrix reflecting the relationships

between the random effects.
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10.4.5 Nested Higher Level Logistic Regression Models

For higher than three level nested we can easily present a hierarchical model,

through executing the necessary computations must be tedious. Imagine if we had

the data with another level, hospitals nested within cities (level 4 denoted by h).
Cities may have their own way of monitoring healthcare within their jurisdiction.

We also believed that the number of beds within the hospital is a necessary variable.

For such we will have the kth patient is nested within the jth doctor which is nested

within ith hospital which is nested into the hth city. Then, the model is as follows:

log
phijk

1� phijk

" #
¼ β00 þ γ1hijAgehijk þ γ1hiExperiencehij þ γ1hBedhi

þ uoh þ uohi þ uohij þ β22 þ u2hi þ u2hij
� �

Loshijk ð10:11Þ

10.4.6 Cluster Sizes and Number of Clusters

Regardless of the number of clusters, Austin (2010) found that for all statistical

software procedures, the estimation of variance components tended to be poor

when there were only five subjects per cluster. The number of clusters on the

mean number of quadrature points was negligible. However, when the random

effects were large, Rodriquez and Goldman (1995) found substantial decreases in

the estimation of fixed effects and/or variance components. They also found

that there was bias in the estimation when the number of subjects per cluster

was small.

10.4.7 Parameter Estimations

The joint distribution of conditional distribution of the responses and the distribu-

tion of the random effects provide a joint likelihood not necessarily readily written

down in closed form. However, we still need to estimate the regression coefficients

and the random components. In so doing, it is imperative for us to use some form of

approximations. Sometimes, researchers have used the quasi-likelihood approach

through a Taylor series expansion to approximate the joint likelihood. The approx-

imate likelihood is maximized to produce maximized quasi-likelihood estimates.

The disadvantage that many have pointed out with this approach is the bias

involved with quasi-likelihoods (Wedderburn, 1974). Other researchers have

resorted to numerical integration approximation of the true likelihood. These

integrals are split up into quadratures. The more the quadratures, the more accurate
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is the result. More integration points will increase the number of computations and

thus impede the speed to convergence, although it increases the accuracy. Each

added random component increases the integral dimension. A random intercept is

one dimension (one added parameter); a random slope is two dimensions. Our

experience is that the three-level nested models with random intercepts and slopes

often create problems regarding convergence. There were analyses where we had to

try certain options to get convergence.

10.5 Analysis of Data

10.5.1 Modeling Random Intercepts for Levels 2 and 3

We fitted a logistic regression model (10.4) with random effects for doctors and

hospitals, covariates age and length of stay at the patient level, and experience at the

doctor level. We used SAS to fit these models.

SAS Program

We used PROC NLMIXED with the Qpoints option and also with the ABSFCONV option. We

found that making use of these options sometimes facilitated convergence. We demonstrate the

use of the Qpoints, then we look at the ABSFCONV

PROC NLmixed

/* Model with random effects of u0 (hospital) and u01 (doctors)*/

proc nlmixed data ¼ HDPDATA Qpoints ¼ 80;
parms b0 ¼ 3.4462 b1 ¼ 0.01128 b2 ¼ -0.04626 b4 ¼ 0.0925 s11 ¼ 1.2 s22 ¼ 1 c12 ¼ -1;
xb ¼ b0 + u0 + u01 + b1*Age + b2*LengthofStay + b4*Experience;

p ¼ exp(xb)/(1 + exp(xb));

model remission � binary(p);

random u0 u01 � normal([0, 0], [s11, c12, s22]) subject ¼ DID;

run;

Comment: Option Qpoints helps to get convergence. Parms is used to provide these starting

values. We recommend getting those values from the standard logistic regression for the coeffi-

cients and being conservative by choosing values for the variance component as one and that

should suffice. The random term provides (Hedeker et al. 2012)

u0
u1

� �
� 0

0

� �
,

s11 c12
c21 s22

� �

s11 refers to the variance for hospitals as random effects, and s22 refers to the variance for doctors

as random effects. Subject¼DID represents the doctors ID, the first level of clustering. Patients

are nested within doctors.
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SAS Output

The NLMIXED procedure

Specifications

Dataset WORK.HDPDATA

Dependent variable remission

Distribution for dependent variable Binary

Random effects u0 u1
Distribution for random effects Normal

Subject variable DID

Optimization technique Dual quasi-Newton

Integration method Adaptive Gaussian quadrature

Comment: u0 and u1 are the random effects; normal specifies the distribution of the random

effects; DID is the doctor’s identity number; dual quasi-Newton and adaptive Gaussian quadrature

identify the method used to integrate the joint likelihood

Dimensions

Observations used 8525

Observations not used 0

Total observations 8525

Subjects 407

Max observations per subject 40

Parameters 7

Quadrature points 80

Comment: There were 8525 patients and 407 doctors, with a max number of patients as 40 with

7 parameters. We used as many as 80 quadrature points to get convergence

Parameters

b0 b1 b2 b4 s11 s22 c12 NegLogLike

3.4462 0.01128 �0.04626 0.0925 1.2 1 �1 21352.1772

Comment: These are the starting values as needed. One can obtain these from the standard logistic

regression model. The covariance parameters can start with one as an initial value

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 6 4884.74367 16,467.43 39,063.7 �7.926E8

2 9 4325.90128 558.8424 20,328.59 �2,677,275

3 12 4301.20122 24.70006 20,983.88 �4341.06

4 13 4261.07047 40.13075 19,811.95 �772.001

5 15 4081.54156 179.5289 820.7489 �318.791

6 17 4048.35486 33.18671 7240.287 �20.2565

7 18 3991.65021 56.70464 2690.859 �39.4563

8 20 3974.42772 17.22249 681.968 �25.9831

9 22 3964.58103 9.846687 2330.934 �4.28177

10 24 3887.36881 77.21222 1345.285 �11.9288

11 25 3865.75039 21.61842 2250.458 �27.1601

12 26 3839.45165 26.29874 529.1595 �36.5737

(continued)
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Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

13 28 3838.46318 0.988477 384.1197 �0.74142

14 30 3837.89746 0.565714 68.22016 �0.60805

15 32 3837.73962 0.157842 11.5509 �0.08972

16 34 3837.72846 0.011159 2.511876 �0.01885

17 36 3837.72835 0.000113 1.804009 �0.00018

18 38 3837.72834 0.000011 0.184286 �8.6E�6

Note: GCONV convergence criterion satisfied

Comment: Convergence was achieved. Note the difference in negative log likelihood

(NegLogLike) is very small (iteration 17 to 18). Also the slope is almost zero at the stopping point

Fit statistics

�2 log likelihood 7675.5

AIC (smaller is better) 7689.5

AICC (smaller is better) 7689.5

BIC (smaller is better) 7717.5

Comment: �2 log likelihood¼ 7675.5¼ 2 * 3837.72834 (from last line of the iterations). These

are fit statistic values. Since there are no p-values attached, it does not tell about the fit and its

significance

Parameter estimates

Parameter Estimate

Standard

error DF t value Pr> jtj Alpha Lower Upper Gradient

b0 �0.450 0.544 405 �0.83 0.4092 0.05 �1.520 0.621 0.004

b1(Age) �0.033 0.0064 405 �5.89 <.0001 0.05 �0.043 �0.022 0.184

b2(Los) �0.260 0.033 405 �7.89 <.0001 0.05 �0.325 �0.195 0.054

b4

(Experience)

0.118 0.027 405 4.46 <.0001 0.05 0.067 0.170 0.133

s11 1.795 0.064 405 27.96 <.0001 0.05 1.669 1.921 0.001

s22 1.595 0.064 405 24.84 <.0001 0.05 1.469 1.721 0.001

c12 0.190 0.128 405 1.48 0.1391 0.05 �0.062 0.443 0.001

Comment: The logistic regression model is log

P̂
y¼1

��
random effect

P̂
y¼0

��
random effect

0
@

1
A ¼ �0:450� 0:033Age

�0:260Losþ 0:118Experience
The variance components s11 and s22 are significant (<0.0001) and the covariance c12 is not

(0.1391). Thus, the variability among doctors (σ̂ 2
11 ¼ 1.795) is significant (<0.0001) and the

variability among hospitals (σ̂ 2
22¼ 1.595) is significant (<0.0001). It makes good sense to include

these random effects. Seeing certain doctors or having stayed at certain hospitals has an impact on

patient’s remission

Covariance matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s11 s22 c12

1 b0 0.2964 �0.00109 �0.00171 �0.01239 �0.00213 �0.00213 �0.00426

2 b1(Age) �0.00109 0.000031 �0.00008 �1.75E�6 �0.00001 �0.00001 �0.00003

3 b2(Los) �0.00171 �0.00008 0.001090 �0.00001 �0.00010 �0.00010 �0.00021

(continued)
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Covariance matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s11 s22 c12

4 b4

(Experience)

�0.01239 �1.75E�6 �0.00001 0.000703 0.000111 0.000111 0.000223

5 s11 �0.00213 �0.00001 �0.00010 0.000111 0.004123 0.004123 0.008245

6 s22 �0.00213 �0.00001 �0.00010 0.000111 0.004123 0.004123 0.008245

7 c12 �0.00426 �0.00003 �0.00021 0.000223 0.008245 0.008245 0.01649

Correlation matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s11 s22 c12

1 b0 1.0000 �0.3616 �0.09499 �0.8586 �0.06097 �0.06097 �0.06097

2 b1(Age) �0.3616 1.0000 �0.4244 �0.01194 �0.03984 �0.03984 �0.03984

3 b2(Los) �0.09499 �0.4244 1.0000 �0.01259 �0.04925 �0.04925 �0.04925

4 b4

(Experience)

�0.8586 �0.01194 �0.01259 1.0000 0.06539 0.06539 0.06539

5 s11 �0.06097 �0.03984 �0.04925 0.06539 1.0000 1.0000 1.0000

6 s22 �0.06097 �0.03984 �0.04925 0.06539 1.0000 1.0000 1.0000

7 c12 �0.06097 �0.03984 �0.04925 0.06539 1.0000 1.0000 1.0000

Comment: The covariance and the correlation matrix of the coefficient are given

SAS Program

proc nlmixed data ¼ HDPDATA ABSFCONV ¼ 0.4;
parms b0 ¼ 3.4462 b1 ¼ 0.01128 b2 ¼ -0.04626 b4 ¼ 0.0925 s11 ¼ 1.2 s22 ¼ 1 c12 ¼ -1;
xb ¼ b0 + u0 + u01 + b1*Age + b2*LengthofStay + b4*Experience;

p ¼ exp(xb)/(1 + exp(xb));

model remission ~ binary(p);

random u0 u01 ~ normal([0,0],[s11, c12, s22]) subject ¼ DID;

run;

Comment: Option ABSFCONV helps to get convergence. The clustering is at the doctor’s level.

There are patients within doctors. We propose that depending on the doctor a patient sees the

remission can be enhanced or delayed. They are not just delivering medication—their input can

differ based on certain unknown characteristics. The earlier comments are appropriate for the code

when we had the Qpoints option and will not be repeated

SAS Output

The NLMIXED procedure

Specifications

Dataset WORK.HDPDATA

Dependent variable remission

Distribution for dependent variable Binary

Random effects u0 u01

Distribution for random effects Normal

Subject variable DID

Optimization technique Dual quasi-Newton

Integration method Adaptive Gaussian quadrature

Comment: We use the Gaussian quadrature to fit this model with two random intercepts each

assumed to be normally distributed

Dimensions

Observations used 8525

Observations not used 0

Total observations 8525

Subjects 407

(continued)
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Dimensions

Max observations per subject 40

Parameters 7

Quadrature points 1

Comment: Quadrature points are listed at a value of one though that was not listed in the options

Parameters

b0 b1 b2 b4 s11 s22 c12 NegLogLike

3.4462 0.01128 �0.04626 0.0925 1.2 1 �1 21,352.1242

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 6 4885.06723 16467.06 39039.73 �7.926E8

2 9 4327.9919 557.0753 20321.8 �2,673,622

3 12 4303.35475 24.63715 20974.58 �4323.2

4 13 4263.15614 40.19861 19800.71 �773.213

5 15 4083.60116 179.555 816.551 �318.88

6 17 4050.72064 32.88052 7206.232 �20.2027

7 18 3994.4531 56.26753 2682.328 �39.1307

8 20 3977.24645 17.20666 683.8837 �26.0399

9 22 3967.55214 9.694306 2326.916 �4.19827

10 24 3891.72667 75.82547 1346.078 �11.7563

11 25 3872.69082 19.03585 2267.491 �26.5879

12 26 3845.82975 26.86107 786.9379 �37.7315

13 28 3844.93921 0.890542 298.9121 �1.22207

14 29 3844.37585 0.563361 268.6261 �0.47487

15 31 3844.12103 0.254816 5.407976 �0.42158

Note: ABSFCONV convergence criterion satisfied

Comment: Convergence is achieved a little earlier. It is at the 15th iteration

Fit statistics

�2 log likelihood 7688.2

AIC (smaller is better) 7702.2

AICC (smaller is better) 7702.3

BIC (smaller is better) 7730.3

Parameter estimates

Parameter Estimate

Standard

error DF t Value Pr> jtj Alpha Lower Upper Gradient

b0 �0.4047 0.5315 405 �0.76 0.4469 0.05 �1.4496 0.6402 0.2659

b1(Age) �0.0329 0.0055 405 �5.96 <.0001 0.05 �0.0438 �0.0221 �5.4078

b2(Los) �0.2600 0.0329 405 �7.89 <.0001 0.05 �0.3247 �0.1952 �0.4038

b4

(Experience)

0.1170 0.0257 405 4.55 <.0001 0.05 0.0665 0.1676 3.1116

(continued)
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Parameter estimates

Parameter Estimate

Standard

error DF t Value Pr> jtj Alpha Lower Upper Gradient

s11 1.7517 0.0575 405 30.45 <.0001 0.05 1.6386 1.8647 �1.0425

s22 1.5517 0.0575 405 26.98 <.0001 0.05 1.4386 1.6647 �1.0425

c12 0.1033 0.1150 405 0.90 0.3696 0.05 �0.1228 0.3295 �2.0850

Comment: The logistic regression model log

P̂
y¼1

��
random effect

P̂
y¼0

��
random effect

0
@

1
A ¼ �0:405� 0:033Age�

0:260Losþ 0:117Experience
The numerical values are slightly different than what was obtained with the Qpoints option;

however, patient’s age and length of stay as well as the doctor’s experience are still significant.

The variance components are significant and the covariance is not. Thus, the variability among

doctors (1.752) is significant (p< 0.0001), and the variability among hospitals (1.552) is signif-

icant. It makes sense to include these random effects (p< 0.0001)

Comment: The options Qpoints and ABSFCONV are used to help with convergence. Without

these options and values greater than 60, one may not get convergence with Qpoints

Graphical Representation

The logistic regression model with random effects can be represented graphically,

where a model with random intercept effects will have varying intercepts for each

doctor. The model fit above, using QPOINTS¼ 80, had significant random effects

which can be seen by the variation in the intercept value of log
P̂ y¼1

P̂ y¼0

� �
, the logit, for

each doctor. In Fig. 10.2, the variation in the probability of remission (using the

logit) is shown as the age of the patient varies, while holding the length of stay and

experience at the average values (5.49 and 17.64, respectively). In the random

intercept model, the intercept term varies for each doctor, while the slope for age

remains constant. We see that the negative slope indicates that the older people are

less likely to be in remission.

Three-Level Logistic Regression Model with Random Slopes

A three-level random intercept and random slope model (10.4) was fitted with both

doctors and hospitals as random effects and age of the patient and length of stay as

covariates, as well as the experience level of the doctor. We fit these data with two

different options: qpoints¼ 120 and ABSFCONV¼ 0.4.

SAS Program

proc nlmixed data ¼ HDPDATA qpoints ¼ 120;

parms b0 ¼ -3.4462 b1 ¼ -0.01128 b2 ¼ -0.04626 b4 ¼ 0.0925 s3u ¼ 0.02 s3f ¼ 0.003;

randomt ¼ (b2 + rb + rbi)*LengthofStay;

(continued)
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SAS Program

xb ¼ b0 + b1*Age + b4*Experience + randomt;

p ¼ exp(xb)/(1 + exp(xb)); model remission ~ binary(p);

RANDOM rb rbi ~ NORMAL([0,0], [S3U, 0, S3F]) SUBJECT ¼ DID;

run;

Comment: We used PROC NLMIXED with the Qpoints option and also with the ABSFCONV
option. For convergence performance, we fitted the slope as random effects and ignored the

intercept. Longford (1993) indicated that “for most purposes 5-point quadratre suffices”. However,

for the data we needed 120 quadrature points to get convergence. Hartzel, Agresti, and Caffo

(2001) said that the default number of quadrature points in SAS is often inadequate to give proper

convergence to ML estimates and their standard errors. They recommended sequential fitting with

a successively increasing number of quadrature points until convergence appears to have occurred.

We followed their suggestions and used 120. They further stated that for most datasets, however, it

is best if the number of clusters is large and not the number of observations within a cluster. We

will not repeat comments if they were already made in the chapter for any earlier outputs. We

present the results with Qpoints option first.

Fig. 10.2 Set of logits plotted versus age
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The NLMIXED procedure

Specifications

Dataset WORK.HDPDATA

Dependent variable remission

Distribution for dependent variable Binary

Random effects rb rbk

Distribution for random effects Normal

Subject variable DID

Optimization technique Dual quasi-Newton

Integration method Adaptive Gaussian quadrature

Comment: We fit a model with random slope for doctors and a random slope for hospitals

Dimensions

Observations used 8525

Observations not used 0

Total observations 8525

Subjects 407

Max observations per subject 40

Parameters 6

Quadrature points 120

Comment: There are 8525 observations. There were 407 doctors. We used 120 quadrature points.

There are six parameters

Parameters

b0 b1 b2 b4 s3u s3f NegLogLike

�3.4462 �0.01128 �0.04626 0.0925 0.02 0.003 4585.57352

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 6 4142.0575 443.516 11,191.1 �1.952E7

2 9 4047.18535 94.87215 5154.788 �713,016

3 11 3962.64894 84.53641 5057.467 �9452.22

4 12 3935.77374 26.8752 1893.521 �734.368

5 14 3871.65534 64.11841 1410.31 �102.331

6 16 3861.34088 10.31446 405.4874 �11.3993

7 17 3851.02883 10.31205 2554.258 �2.959

8 18 3834.80498 16.22385 773.647 �18.2427

9 20 3831.7372 3.067779 165.6531 �6.01279

10 22 3831.58851 0.148697 69.63882 �0.08806

11 24 3830.82567 0.762839 57.66965 �0.19246

12 26 3830.79617 0.029499 5.84372 �0.07769

13 28 3830.79407 0.002095 0.752518 �0.00404

14 30 3830.79407 3.101E�6 0.058845 �6.48E�6

Note: GCONV convergence criterion satisfied

Comment: The convergence is satisfied. This is not always the case. These models took some time

to run
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Fit statistics

�2 log likelihood 7661.6

AIC (smaller is better) 7673.6

AICC (smaller is better) 7673.6

BIC (smaller is better) 7697.6

Parameter estimates

Parameter Estimate

Standard

error DF t Value Pr> jtj Alpha Lower Upper Gradient

b0 0.7054 0.4780 405 1.48 0.1408 0.05 �0.2343 1.6451 �0.00111

b1 �0.03208 0.005518 405 �5.81 <.0001 0.05 �0.04293 �0.02123 �0.05885

b2 �0.4198 0.03936 405 �10.67 <.0001 0.05 �0.4972 �0.3425 �0.00243

b4 0.09605 0.02234 405 4.30 <.0001 0.05 0.05214 0.1400 �0.01537

s3u 0.07659 0.007093 405 10.80 <.0001 0.05 0.06265 0.09054 �0.00433

s3f 0.05959 0.007093 405 8.40 <.0001 0.05 0.04565 0.07354 �0.00433

Comment: The fitted logistic regression model is log

P̂
y¼1

��
random effect

P̂
y¼0

��
random effect

0
@

1
A ¼ �0:705� 0:032Age� 0:420Los

þ0:096Experience

where σ̂ 2
hospital ¼ 0.076 and σ̂ 2

doctors ¼ 0:060. The random slopes have significant variation

Covariance matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s3u s3f

1 b0 0.2285 �0.00112 �0.00259 �0.00897 0.000261 0.000261

2 b1 �0.00112 0.000030 �0.00008 �2.12E�7 �1.58E�6 �1.58E�6

3 b2 �0.00259 �0.00008 0.001549 0.000026 �0.00005 �0.00005

4 b4 �0.00897 �2.12E�7 0.000026 0.000499 �3.98E�6 �3.98E�6

5 s3u 0.000261 �1.58E�6 �0.00005 �3.98E�6 0.000050 0.000050

6 s3f 0.000261 �1.58E�6 �0.00005 �3.98E�6 0.000050 0.000050

Correlation matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s3u s3f

1 b0 1.0000 �0.4243 �0.1378 �0.8400 0.07708 0.07709

2 b1 �0.4243 1.0000 �0.3461 �0.00172 �0.04037 �0.04037

3 b2 �0.1378 �0.3461 1.0000 0.02920 �0.1956 �0.1956

4 b4 �0.8400 �0.00172 0.02920 1.0000 �0.02511 �0.02512

5 s3u 0.07708 �0.04037 �0.1956 �0.02511 1.0000 1.0000

6 s3f 0.07709 �0.04037 �0.1956 �0.02512 1.0000 1.0000

Comment: The correlation and covariance of parameter estimates are given

SAS Program

proc nlmixed data ¼ HDPDATA ABSFCONV ¼ 0.4;
parms b0 ¼ -3.4462 b1 ¼ -0.01128 b2 ¼ -0.04626 b4 ¼ 0.0925 s3u ¼ 0.02 s3f ¼ 0.003;
randomt ¼ (b2 + rb + rbi)*LengthofStay;

xb ¼ b0 + b1*Age + b4*Experience + randomt; p ¼ exp(xb)/(1 + exp(xb));

model remission ~ binary(p);

RANDOM rb rbi ~ NORMAL([0,0],[S3U,0,S3F]) SUBJECT ¼ DID;

run;

Comment: Now we fit using the option ABSFCONV
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SAS Output

The NLMIXED procedure

Specifications

Dataset WORK.HDPDATA

Dependent variable remission

Distribution for dependent variable Binary

Random effects rb rbi

Distribution for random effects Normal

Subject variable DID

Optimization technique Dual quasi-Newton

Integration method Adaptive Gaussian quadrature

Dimensions

Observations used 8525

Observations not used 0

Total observations 8525

Subjects 407

Max observations per subject 40

Parameters 6

Quadrature points 1

Comment: We have 6 parameters for fitting. We did not use the Qpoint option

Parameters

b0 b1 b2 b4 s3u s3f NegLogLike

�3.4462 �0.01128 �0.04626 0.0925 0.02 0.003 4586.46229

Iteration history

Iter Calls NegLogLike Diff MaxGrad Slope

1 6 4147.29531 439.167 11,155.52 �1.943E7

2 9 4053.28173 94.01358 5053.127 �702,647

3 11 3968.27972 85.00201 4964.807 �9500.67

4 12 3941.70888 26.57084 1816.474 �739.278

5 14 3878.13037 63.57852 1387.333 �101.972

6 16 3867.85683 10.27354 423.0389 �11.1649

7 17 3858.08097 9.775864 2703.897 �3.02822

8 18 3842.08382 15.99715 928.209 �18.2671

9 20 3837.61421 4.469606 147.1141 �8.62731

10 22 3837.45854 0.155666 72.42209 �0.10258

Note: ABSFCONV convergence criterion satisfied
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Fit statistics

�2 log likelihood 7674.9

AIC (smaller is better) 7686.9

AICC (smaller is better) 7686.9

BIC (smaller is better) 7711.0

Parameter estimates

Parameter Estimate

Standard

error DF t Value Pr> jtj Alpha Lower Upper Gradient

b0 1.0025 0.4897 405 2.05 0.0413 0.05 0.03981 1.9652 2.500237

b1 �0.03444 0.005543 405 �6.21 <.0001 0.05 �0.04534 �0.02355 46.67021

b2 �0.4239 0.04000 405 �10.60 <.0001 0.05 �0.5026 �0.3453 9.681662

b4 0.08667 0.02299 405 3.77 0.0002 0.05 0.04147 0.1319 26.49612

s3u 0.08259 0.008346 405 9.90 <.0001 0.05 0.06618 0.09900 72.42209

s3f 0.06559 0.008346 405 7.86 <.0001 0.05 0.04918 0.08200 72.42209

Comment: The fitted logistic regression model is log

P̂
y¼1

��
random effect

P̂
y¼0

��
random effect

0
@

1
A ¼ 1:003� 0:034Age�

0:424Losþ 0:087Experience

where σ̂ 2
hospital ¼ 0.083 and σ̂ 2

doctors ¼ 0:066. The random slopes have significant variation

Covariance matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s3u s3f

1 b0 0.2398 �0.00114 �0.00280 �0.00953 0.000444 0.000444

2 b1(Age) �0.00114 0.000031 �0.00008 2.756E�8 �2.09E�6 �2.09E�6

3 b2(Los) �0.00280 �0.00008 0.001600 0.000034 �0.00007 �0.00007

4 b4(Experience) �0.00953 2.756E�8 0.000034 0.000529 �0.00001 �0.00001

5 s3u 0.000444 �2.09E�6 �0.00007 �0.00001 0.000070 0.000070

6 s3f 0.000444 �2.09E�6 �0.00007 �0.00001 0.000070 0.000070

Correlation matrix of parameter estimates

Row Parameter b0 b1 b2 b4 s3u s3f

1 b0 1.0000 �0.4185 �0.1432 �0.8463 0.1086 0.1086

2 b1 �0.4185 1.0000 �0.3386 0.000216 �0.04527 �0.04527

3 b2 �0.1432 �0.3386 1.0000 0.03710 �0.2075 �0.2075

4 b4 �0.8463 0.000216 0.03710 1.0000 �0.05794 �0.05794

5 s3u 0.1086 �0.04527 �0.2075 �0.05794 1.0000 1.0000

6 s3f 0.1086 �0.04527 �0.2075 �0.05794 1.0000 1.0000

Graphical Representation

The logistic regression model with random effects can be represented graphically,

where a model with random slopes will have varying slopes for each doctor. The

model fit above, using QPOINTS¼ 120, had significant random effects which can
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be seen by the variation in the random slope, for each doctor. In Fig. 10.3, the

variation in the probability of remission (using the logit) is shown as the length of

stay of the patient varies, while holding the age and experience at the average values

(5.49 and 17.64, respectively). In the random slope intercept model, the slope varies

across doctors, while the slope for age remains constant. We see that the negative

slope indicates that the length of stay increased is less likely to be in remission.

Comment: The model fit implies that we had varying rates depending on the

length of stay effects. Thus, the differentiated effect that a patient has is also due in

part to the doctor, length of stay, and the hospital. The variation is accounted for in

the slope for each doctor. In the figure below, it can be seen that the effect of the

length of stay affects the probability of remission (using the logit) and varies for

each doctor. This can be evaluated by holding Age and Experience fixed at the

average values (50.97 and 17.64, respectively).

10.5.2 Interpretation

The interpretations of the coefficients in the generalized linear mixed model are

somewhat similar to the logic we used in Chap. 3 with the standard logistic

regression model. Whenever we use the logit link, we are on a linear scale, but

on the original scale (the inverse link function) there is no longer linearity scale.

Fig. 10.3 Set of logits plotted versus age
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The scale is nonlinear. On this original scale (data), we can talk about the proba-

bility of an outcome given some specific values of the predictors. This means that

the random intercepts are additive on link but have a multiplicative effect on

probabilities.

Binary Outcomes

Consider the hierarchical logistic model, predicting remission (yes¼ 1, no¼ 0)

from length of stay and experience. We allow the slopes to vary randomly for

each doctor and slopes to vary for each hospital. Essentially, the estimates can be

interpreted as usual for binary outcome data. For example, for age, a one-unit

increase in age is associated with a .032-unit decrease in the expected log odds of

remission. However, in a random effects model, the odds ratios are not the same as

in the fixed effects model. In the fixed effects model, the odds ratios are the

expected odds ratio while holding all or other predictors fixed. As for the mixed

effects logistic models, there is the addition of holding the random effect fixed. At

this point, one might be wondering how to keep random effect fixed. As known, the

odds ratio in the generalized linear mixed model is a conditional odds ratio. We

need to condition on same random effects. It is either the same doctor, or doctors

with the same random effects. However, when there is large variability between

doctors, the relative impact of the fixed effects may be decimated. In such situa-

tions, researchers have suggested that one should examine the effects at various

levels of the random effects or to get the average fixed effects and average out the

random effects.

10.6 Conclusions

It is not a new phenomenon that a statistical model should reflect the design and the

method whereby the data were collected. There seems to be where multiple sources

of variation and thus the hierarchical structures inherent in the data should be

addressed. In particular, in the data analyzed there was the variation due to the

clustering of observations from the same doctor and doctors from the same hospital.

As such, we addressed the variation between doctors through a random effect, as

well as the variation between hospitals with another random effect. We analyzed

these data through taking different levels of nesting into account when we

addressed factors impacting directly or indirectly the outcome.

There was the variation between doctors taken as a random effect as well as the

variation between hospitals also taken as random effect. Using the standard bino-

mial logistic regression model would ignore several sources of variation. However,

the hierarchical logistic regression model incorporates these different sources of

variation. We fit a nested three-level logistic regression model with random inter-

cept and with random intercept and random slopes. With these added parameters
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and inherent covariance matrices, one may encounter challenges with convergence.

The SAS procedures outlined in this chapter provide a practical guide for evaluating

nested three-level models and higher with binary outcomes. One of the challenges

to fitting these models in the SAS NLMIXED procedure is the use of quadrature

points. This becomes increasingly difficult when there are higher levels of nesting.

The best starting values are those obtained from fitting the standard logistic

regression model. Lesaffre and Spiessens (2001) said they were aware of the

dependence of the outcome of a logistic random effects model on the number of

quadrature points. They said that in MIXOR, Q¼ 10 (i.e., ten quadrature points) is

often sufficient and, when differences are found by increasing Q, they are minimal.

They believed that the Gauss-Hermite method robustly calculates the subject-

specific estimates of the parameters and did not need a routine check, as opposed

to the methods on which the SAS macro GLIMMIX is based. They were pleased to

see that adaptive Gaussian quadrature can be used in NLMIXED. However, we

share the experience that, even with adaptive Gaussian quadrature, increased

points, and relatively simple models, convergence to a global maximum can be

difficult to obtain. We believe this emphasizes the computational difficulties with

random effects models for binary outcome data at higher levels of nesting.

Both the random intercepts model, and the random intercepts and random slopes

model can be fitted with PROC NLMIXED. The NLMIXED procedure maximizes

the likelihood directly by numerical integration methods and adaptive Gaussian

quadrature (Kuss, 2002). We obtained exact maximum likelihood estimates of the

parameters when the number of quadrature points was large enough.

10.7 Related Examples

In his dissertation, Subedi (2004) used data taken from the National Assessment of

Educational Progress (NAEP). The subjects were students in the fourth grade. The

sample he used was formed by 7175 students, 1076 teachers, and 295 schools. The

primary purpose of this study was to demonstrate that Hierarchical Generalized

Linear Models can be applied to research in education, by measuring the reading

proficiency of students in fourth grade. The response variable was binary, with

reading proficiency or non-proficiency as the outcome. The data were leveled in the

following way: Student, teacher, and school represented level-1, level-2, and level-

3, respectively. In this study not only student-level variables were taken into

account, but also teacher-level and school-level predictors were taken into account.

This is an example of students nested within teachers nested within schools. Since

the outcome is binary, a Hierarchical Logistic Regression Model could be used for

this analysis. The citation for this work is “Subedi, B. R. (2004). A demonstration of
the three-level hierarchical generalized linear model applied to educational
research. Electronic The link to this dissertation is: Diginole.lib.fsu.edu/cgi/

viewcontent.cgi?article¼4896&context¼etd.
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Chapter 11

Fixed Effects Logistic Regression Model

Abstract If a researcher wants to know whether watching violent television has an

impact on juvenile delinquency, that researcher could compare a student’s delin-

quency rate when he/she is watching violent television with his/her delinquency rate

when not watching. The difference in delinquency rates between the two periods is

an estimate of the violent television effect for that student. Similarly, a researcher

might want to know how a child’s performance in school differs depending on how

much time he/she spends playing video games. The researcher could compare how

the child does when spending significant time playing video games versus when

he/she does not watch violent television. Fixed effects logistic regression models are

presented for both of these scenarios. These models treat each measurement on each

subject as a separate observation, and the set of subject coefficients that would

appear in an unconditional model are eliminated by conditional methods. This is a

conditional, subject-specific model (as opposed to a population-averaged model like

the GEE model). We fit this model in SAS, SPSS, and R. An excellent discussion

with examples can be found in Allison (Fixed effects regression methods for

longitudinal data using SAS, SAS Institute, Cary, NC, 2005).

11.1 Motivating Example

We are often reminded in our introductory statistics courses that we should talk about

relationships rather than cause and effects whenwe analyze observational data (Sobel,

2000). At times, the beginner to data analysis wonders about this statement and even

though they are faced with examples they are often puzzled to accept. Beginners are

equally puzzled when posed with the thought of unmeasured covariates. In a control

experiment, can we control for covariates that have not been measured? Or can we

account for covariates that cannot be measured?

In sociology and in particular the study of juvenile delinquency, it is common to

hear one wants to know whether watching violent television programs increases

Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-319-
23805-0_11) contains supplementary material, which is available to authorized users. Videos can

also be accessed at http://link.springer.com/chapter/10.1007/978-3-319-23805-0_11

© Springer International Publishing Switzerland 2015
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delinquency among teenagers. It is intuitive to think that one could compare an

individual’s delinquency rate when he/she is watching violent television programs

with his/her delinquency rate when he/she is not. The difference in delinquency

rates between the two cases is an estimate of the television effect for that individual.

Or, one might see how a child’s performance in school differs depending on how

much time he/she spends playing video games. So, one could compare how the

child does when spending significant time playing video games television versus

when he/she does not play video games. If these factors are possible and measur-

able, one can use the fixed effects and hence test the mean difference. In such cases

for binary responses, we will consider fixed effects logistic regression models. In

general, fixed effects logistic regression models are used to analyze longitudinal

data with repeated measures on both the response and the covariates. In fixed

models, we focus on what we have measured. While in random effects models,

we focus on what cannot be measured.

11.2 Definition and Notation

A fixed effects logistic regression model (with repeated measures on the covariates)

treats unobserved differences between individuals as a set of fixed parameters that

can either be directly estimated or cancel out. Fixed effects estimates are obtained

within-individual differences, and as such, any information about differences

between individuals is now excluded and unavailable for estimation (Allison,

2005).

In Chap. 9, we have introduced a random effects model. For such models, the

unobserved differences are treated as random variables with a specified probability

distribution, usually the normal distribution. In such models, the unobserved ran-

dom variables are assumed to be uncorrelated with all the observed variables.

However, the random effects model estimates information from both within and

between individuals (Wooldridge, 2002).

Conditional maximum likelihood estimation is an alternative to full-information

maximum likelihood estimation. Not all the parameters are unknown. Thus, the

maximization problem is simplified as there are less parameters to be estimated. As

some of these parameters are given certain values, the maximization is on condi-

tional log-likelihood function.

Conditional maximum likelihood estimates are consistent but are said to be less

efficient. They are found to be most useful when the full log-likelihood function is

difficult or impossible to derive or maximize.

Subject-specific models or random-effects models assume that the relationship

between the response and the covariate differs between subjects. They tell about the

individual.

Population-averaged or marginal models assume that the relationship between

the response and the covariate is the same for all subjects. They tell about the mean

of the population.
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11.3 Exploratory Analysis

11.3.1 Philippine’s Data

We choose to revisit the Philippine’s data first analyzed by Lai and Small (2007).

These data were collected by the International Food Policy Research Institute in the

Bukidnon Province in the Philippines and focused on quantifying the association

between body mass index (BMI) and morbidity 4 months into the future. Data were

collected at four time-points, separated by 4-month intervals (Bhargava, 1994).

There were 370 children with three observations each. The covariates were BMI,

age, gender, and time as a categorical variable, but represented by two indicator

variables. They modeled the sickness intensity measured by adding the duration of

sicknesses and taking a logistic transformation of the proportion of time for which a

child was sick with a continuity correction for extreme values.

As it is well known among researchers that through the use of experimental

research designs that unmeasured differences between subjects can often be

accounted for through the use of randomly assigning to treatment and control

groups (Allison, 2005). However, in the analysis of repeated measures data when

a subject is measured at two or more points in time, then we can consider the subject

as their own controls. Therefore, when analyzing longitudinal data, we can control

for characteristics that do not change across time whether they are measured or not.

Such characteristics include demographic variables such as race, gender, ethnicity,

intelligence, and genetic makeup. However, Allison tells us there are basically two

conditions under which one may use a fixed effects logistic regression model:

1. The response must be repeatedly observed for each individual. So an individual

is a cluster.

2. The covariates must be time dependent. That means the covariates must change

across time for some significant proportion of the subjects/units. In general,

these covariates may fall into one of three categories:

(a) Covariates unobserved

(b) Covariates observed but do not change over time

(c) Covariates observed but do change over time

In the analysis of the fixed effects logistic regression model, the unobserved

variables are basically treated as fixed parameters. In Chaps. 9 and 10, we have

treated the unobserved effects as random. In the fixed effects logistic regression

model, we make use of the variables that change over time. Thus, fixed effects

models do not produce any estimates of variable effects that are time independent.

Some researchers have shown that the estimates may have substantially larger

standard errors than random effects estimates, and as such lead to higher p-values
and hence wider confidence intervals, Allison (2005).
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11.4 Statistical Models

A fixed effects logistic regression model is used to analyze data when there are

repeated measures on the response and the covariates are time dependent. In fact, it

treats each measurement on each subject as a separate observation. The fixed effects

logistic regression is a conditional model also referred to as a subject-specific model

as opposed to being a population-averaged model. The fixed effects logistic regres-

sion models have the ability to control for all fixed characteristics (time indepen-

dent) of the individuals. This applies to those measured or not, Allison (2005).

Thus, the fixed effects logistic regression model uses only within-individual vari-

ation to estimate the regression coefficients. In fact, it implies that the set of subject

coefficients would be eliminated through conditional methods (Allison, 2005).

Allison pointed out that the strength of a fixed effects model is the fact that the

effects of stable characteristics, such as race and gender, are controlled for, whether

they are measured or not. However, the challenge is that the effects of these omitted

variables are not able to be estimated. While the omitted variables are not explicitly

measured as they are controlled for their effects are not estimated. Fixed effects

model estimates are based on only within-individual differences, as they ignore the

between individuals. As such the fixed effects estimates will be less accurate with

larger standard errors then if subjects only had between differences as opposed to

within. Allison pointed out and we concur that if you need to measure the effects of

the omitted variables you should fit a different logistic regression model. Of course,

you may lose the ability to control for that particular variable. Moreover, there is a

trade-off between bias and efficiency. Other models such as the random effects

model (Chaps. 9 and 10) will suffer from omitted variable bias.

Fixed effects logistic regression models help to control for omitted variable bias

by having individuals serve as their own control while random effects will help with

efficiency. In short, we see from Table 11.1 a comparison of models regarding bias

and efficiency. It shows for fixed effect less bias and less efficient, but random

effects models are more bias but more efficient. However, fixed effects will not

control for unobserved (omitted variable) time-dependent covariates. As such the

type of variable that is omitted will determine.

The fundamental principle of the fixed effects model is about differences

between time-periods. Suppose we averaged those differences across all persons

in the population, we would obtain an estimate of the average “treatment effect.” In

so doing, such a procedure will through averaging over time be controlling for time-

independent factors. While it does not control for time-dependent variables, these

can be handled by including them in a regression model. There are two basic data

requirements for using fixed effects methods.

Table 11.1 Bias and

efficiency and fixed versus

random effects model

Bias Efficiency

Fixed effects model � # � #
Random effects model + " + "
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11.4.1 Fixed Effects Regression Models with Two
Observations per Unit

We fit fixed effects logistic regression models first with two observations per unit

and then later with more than two observations per unit. Consider data obtained in

the same unit on two successive time-periods. If we were to fit the standard logistic

regression at each time, then we can answer questions about the response for each

of two occasions. Then, we write for unit/subject i, at time (1) and at time (2),

respectively, as

log
pi 1ð Þ

1� pi 1ð Þ

 !
¼ β0 þ β1Xi1 þ β2Xi2 þ γ1Wi1 1ð Þ þ γ2Wi2 1ð Þ þ τi 1ð Þ

log
pi 2ð Þ

1� pi 2ð Þ

 !
¼ β0 þ β1Xi1 þ β2Xi2 þ γ1Wi1 2ð Þ þ γ2Wi2 2ð Þ þ τi 2ð Þ

where β0 denotes an intercept that varies with time for all units (type of average), β1
is a regression coefficient related to the known X1, β2 is a regression coefficient

related to the known X2, and X1 and X2 are variables whose values remain the same

over time. The covariates W1 and W2 are variables whose values change over time,

and γ1 and γ2 are regression coefficients associated with W1 and W2 The τi
represents unobserved covariates for each person that are not represented by W1

and W2. Subtracting the equations for time (1) from time (2) gives

log
pi 2ð Þ

1� pi 2ð Þ

 !
=

pi 1ð Þ
1� pi 1ð Þ

 !)(
¼ γ1Wi1 2ð Þ � γ1Wi2 1ð Þ
� �
þ γ2Wi1 2ð Þ � γ2Wi2 1ð Þ
� �

since Xi remains the same. The left side is equivalent to log
1� pi 1ð Þð Þ pi 2ð Þ
1� pi 2ð Þð Þ pi 1ð Þ

� �� �
which

is the log of the ratio of the joint probability of nonevent on time 1 multiply by the

probability of an event on time 2 to joint probability of event on time 1 multiply by

the probability of nonevent on time 2. The left side represents those cases, where the

outcomes are different. We have in effect decreased the sample to concentrate only

on subjects whose responses have change from time 1 to time 2. The right side is the

difference; however, variables with the same values are canceled out. In fact, the

analysis concentrates on those units with different outcomes on the responses. The

right hand side now becomes the change in time-dependent covariates. We can look

upon this as a logistic regression model on a smaller dataset. In fact, if we ignore

covariate, this is the same as McNemar’s test.
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In order to analyze the data with two observations per subject, we will fit the

model on the data where there are different responses from time 1 to time 2 and

instead consider,

logit pi 2ð Þ
n o

¼ β0 2ð Þ � β0 1ð Þ
n o

þ γ1 Wi1 2ð Þ �Wi1 1ð Þ
� �

þ γ2 Wi2 2ð Þ �Wi2 1ð Þ
� �þ β1Xi1 þ β2Xi2 ð11:1Þ

The function eγ1 or eγ2 based on the change in covariates are interpreted as usual, the

odds ratio with unit change. However, the interpretation of the odds ratio eβ1 or eβ2

based on the covariates that do not change is not as clear. In fact,eβ1 is the odds of an

event in time for a unit change in X1. Similarly,eβ2 is the odds of an event in time for

a unit change in X2. Thus, we can consider X1 and X2 as interaction variables

interactions between the actual predictor and time. They can be best explained in

Table 11.2. ConsiderW1 ¼ 3 at t¼ t and t¼ t + 1,W2 ¼ 11 at t¼ t and t¼ t + 1 also

let X1 ¼ 4 X2¼ 5 and 6.

11.4.2 Modeling More than Two Observations per Unit:
Conditional Logistic

In this section, we will refer a great deal to the conditional logistic regression

model. Think of the data broken up into small groups or strata based on some factor

or factors. We will not necessarily use all the observations but just the cases where

the outcome has changed for at least one of the occasions in which they were

observed. So the final analysis is done on a subset of the original data. Thus, the

questions being answered may be related but not exact as if the full dataset

was used.

When there are more than two observations per unit, we can use conditional

logistic regression (CLR) (Agresti, 2007). Conditional logistic regression can be

considered as a standard logistic regression applied to a particular segment of the

data, so our useable dataset is a portion of the original dataset. In particular, this is

used when the data occur in clusters, where at least one of the observations is the

event. Then, we wish to condition on the number of events within a group. Thus, we

are fitting a logistic model to explain how observation 1 had an event in group

1 conditioned on one of the observations in the group having an event. In fact, we fit

Table 11.2 Example of

interpretation of variables
W1 W2 X1 X2

i¼ i t¼ t 3 11 4 5

i¼ i t¼ t + 1 3 11 4 5

i¼ r t¼ t 3 11 4 6

i¼ r t¼ t + 1 3 11 4 6
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a model that explains how observation 1 had an event in group 1, observation 3 had

an event in group 2, and so on (Harris et al., 1999). If we assumed the unconditional

probability of a positive outcome can be explained by the standard logistic model,

then the standard logistic regression model would not be appropriate model for our

data because it does not account for the conditioning. The two models are answer-

ing different questions. One model uses a subset of the data while the other uses the

full dataset. We are fitting a model that explains how the event occurred or the odds

of the event occurring. Therefore, we have a model fit such that

Prob EventandNonevent
��Event� � ¼ exp γ1Wi1 1ð Þ þ γ2Wi2 1ð Þ

	 

exp γ1Wi1 1ð Þ þ γ2Wi2 1ð Þ
	 
þ exp γ1Wi1 2ð Þ þ γ2Wi2 2ð Þ

	 

For a thorough discussion of the conditional logistic derivation and its implications,

see Harris et al. (1999). Groups that contain all-positive or all-negative outcomes

provide no information because the conditional probability of observing such

groups is 1 regardless of the values of the regression parameters. Thus, when the

process of analysis encounters such groups, it reports that so many groups were

dropped “due to all-positive or all-negative outcomes.”

11.5 Analysis of Data

11.5.1 Fixed Effects Logistic Regression Model with Two
Observations per Unit

We first fit the fixed effects logistic regression model with two observations per

child through differencing. Later, we fit a model for four time-points per person

using conditional maximum likelihood. We fit a fixed effects logistic regression

model with two observations per unit to the Philippine’s data for time-periods 2 and

3, Table 11.3. We use SAS, SPSS, and R.

The identification of the Child is Childid. We also have BMI, Age, and Gender.
Time denotes the period. T1, T2, and T3 are the binary variables derived from Time.
Sick is the binary output variable that we model.

SAS Program

DATA mydata; SET philippb; RUN;

TITLE ’Reshape long data into wide data’;

PROC SORT DATA ¼ mydata OUT ¼ mydatasort;

BY childid; RUN;

DATA mydatawide; SET mydatasort;

BY childid;

KEEP childid sick1-sick3 BMI1-BMI3 age1-age3 gender;

RETAIN sick1-sick3 BMI1-BMI3 age1-age3;

ARRAY asick(1:3) sick1-sick3;

(continued)
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SAS Program

ARRAY aBMI(1:3) BMI1-BMI3;

ARRAY aage(1:3) age1-age3;

IF first.childid THEN

DO;

DO i ¼ 1 to 3;

asick(i) ¼ .;

aBMI(i) ¼ .;

aage(i) ¼ .;

END;

END;

asick(time) ¼ sick;

aBMI(time) ¼ BMI;

aage(time) ¼ age;

IF last.childid THEN OUTPUT; RUN;

TITLE2 ’Using t ¼ 2 and t ¼ 3 observations for illustration’; * N ¼ 134;

DATA mydatadif3; SET mydatawide;

IF sick2 ¼ sick3 THEN DELETE;

BMI ¼ BMI3-BMI2; age ¼ age3-age2; RUN;

Childid BMI Age Gender Time T1 T2 T3 Sick Status

206 14.95059 59.26667 0 1 1 0 0 0 0

206 15.01923 63.4 0 2 0 1 0 0 0

206 14.79053 66.83334 0 3 0 0 1 0 0

407 18.08021 25.06667 0 3 0 0 1 0 1

407 17.02125 17.5 0 1 1 0 0 1 1

407 16.0064 21.66667 0 2 0 1 0 1 1

(continued)

Table 11.3 Partial dataset from Philippine

Childid BMI Age Gender Time T1 T2 T3 Sick Status

206 14.95 59.27 0 1 1 0 0 0 0

206 15.02 63.40 0 2 0 1 0 0 0

206 14.79 66.83 0 3 0 0 1 0 0

407 18.08 25.07 0 3 0 0 1 0 1

407 17.02 17.50 0 1 1 0 0 1 1

407 16.01 21.67 0 2 0 1 0 1 1

705 15.09 70.17 1 3 0 0 1 0 1

705 15.83 62.60 1 1 1 0 0 0 1

705 15.39 66.77 1 2 0 1 0 1 1

1105 16.07 29.03 1 2 0 1 0 1 0

1105 17.73 25.00 1 1 1 0 0 1 0

1105 15.94 32.53 1 3 0 0 1 1 0

. . . . . . . . . .

. . . . . . . . . .
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Childid BMI Age Gender Time T1 T2 T3 Sick Status

705 15.08541 70.16666 1 3 0 0 1 0 1

705 15.83377 62.6 1 1 1 0 0 0 1

705 15.39259 66.76667 1 2 0 1 0 1 1

1105 16.07259 29.03333 1 2 0 1 0 1 0

1105 17.7297 25 1 1 1 0 0 1 0

1105 15.9375 32.53333 1 3 0 0 1 1 0

1207 14.51247 75.13333 0 3 0 0 1 0 1

1207 14.66714 71.56667 0 2 0 1 0 0 1

1207 14.76285 67.56667 0 1 1 0 0 1 1

1304 17.61792 25.13333 1 3 0 0 1 0 0

1304 18.9726 17.56667 1 1 1 0 0 0 0

1304 15.14514 21.56667 1 2 0 1 0 0 0

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . .

PROC FREQ DATA ¼ mydatadif3; TABLES sick3*gender / LIST; RUN;

PROC LOGISTIC DATA ¼ mydatadif3 DESCEND; MODEL sick3 ¼ BMI age gender; RUN;

Comment: We fit the conditional model logit Probabilityevent at time 3ð Þ ¼ β0 þ β1BMI1þ
β2Age2 þ γ1Gender3
Covariates, Age, and BMI represent the difference between year 2 and year 3. Gender is a time-

independent covariate

SAS Output

Using time¼ 2 and time¼ 3 observations for illustration

The FREQ procedure

sick3 Gender Frequency Percent Cumulative frequency Cumulative percent

0 0 23 17.16 23 17.16

0 1 28 20.90 51 38.06

1 0 43 32.09 94 70.15

1 1 40 29.85 134 100.00

Comment: During time period 3, we had 134 useable observations where both, during periods

2 and 3 the outcomes are different

The LOGISTIC procedure

Model information

Dataset WORK.MYDATADIF3

Response variable sick3

Number of response levels 2

Model Binary logit

Optimization technique Fisher’s scoring

Number of observations read 134

Number of observations used 134
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Response profile

Ordered value sick3 Total frequency

1 1 83

2 0 51

Comment: Fisher’s scoring is an iterative reweighted least squares method for obtaining parameter

estimates and based on the expected information matrix. This subset of data consists of 134 observa-

tions. Therewere 83 observationswith a “1” response in time¼3.We have excluded 370� 134¼ 236

subjects as they had values “0 and 0” and “1 and 1” as opposed to “1 and 0” or “0 and 1”

Probability modeled is sick3¼ 1

Model convergence status

Convergence criterion (GCONV¼ 1E�8) satisfied

Model fit statistics

Criterion Intercept only Intercept and covariates

AIC 180.047 185.411

SC 182.945 197.002

�2 log L 178.047 177.411

Comment: These fit statistics gives the values with the intercept only and with the covariates

included. The difference tells about the significance of the covariates

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 0.6363 3 0.8881

Score 0.6351 3 0.8883

Wald 0.6336 3 0.8887

Comment: These values (likelihood ratio, Score, and Wald) tell about the significance of the

covariates

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.5033 4.4260 0.0129 0.9095

BMI 1 0.0105 0.1377 0.0058 0.9391

Age 1 0.3302 1.2935 0.0652 0.7985

Gender 1 �0.2789 0.3627 0.5913 0.4419

Comment: Neither BMI (p¼ 0.9391), Age (p¼ 0.7985), or Gender (p¼ 0.4419) was significant.

The fitted model equation is logit Probabilityevent at time 3ð Þ ¼ �0:503þ 0:011BMIþ 0:330Age�
0:279Gender

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

BMI 1.011 0.772 1.324

Age 1.391 0.110 17.557

Gender 0.757 0.372 1.540

Comment: The odds ratio has confidence intervals that all cover the value of 1. So the variables

(BMI, Age, and Gender) are not significant in the model
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SPSS

Conditional logistic regression models are designed for situations in which one or more “cases,”

who show the response of interest, are matched with one or more “controls,” who do not show the

response. However, this can be done in the NOMREG procedure, which is accessed in the menus

via Analyze>Regression>Multinomial Logistic (SPSS Advanced Statistical Procedures

Companion, by Marija Norusis). http://www-01.ibm.com/support/docview.wss?

uid¼swg21477360

SPSS Program

NOMREG sick3 (BASE ¼ LAST ORDER ¼ ASCENDING) WITH BMI Age gender

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP

(20) LCONVERGE(0) PCONVERGE(0.000001) SINGULAR(0.00000001)

/MODEL

/STEPWISE ¼ PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD

(LR) REMOVALMETHOD(LR)

/INTERCEPT¼ INCLUDE

/PRINT¼ PARAMETER SUMMARY LRT CPS STEP MFI.

SPSS Output

Case processing summary

N Marginal percentage (%)

sick3 0 51 38.1

1 83 61.9

Valid 134 100.0

Missing 0

Total 134

Subpopulation 134a

aThe dependent variable has only one value observed in 134 (100.0 %) subpopulations

Model fitting information

Model

Model fitting criteria Likelihood ratio tests

�2 log likelihood Chi-square df Sig.

Intercept only 178.047

Final 177.411 .636 3 .888

Pseudo R-square

Cox and Snell .005

Nagelkerke .006

McFadden .004

Comment: This is the pseudo R2. It plays a similar role as R2 in linear models. The values here are

very small, suggesting that the model is not a good fit
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Likelihood ratio tests

Effect

Model fitting criteria Likelihood ratio tests

�2 log likelihood of reduced model Chi-square df Sig.

Intercept 177.424 .013 1 .909

BMI 177.417 .006 1 .939

Age 177.476 .065 1 .798

gender 178.004 .593 1 .441

Comment: The chi-square statistic is the difference in�2 log likelihoods between the final model

and a reduced model. The reduced model is formed by omitting an effect from the final model.

Thenull hypothesis is that all parameters of that effect are 0

Parameter estimates

sick3a B

Std.

error Wald df Sig.

Exp

(B)

95 % confidence interval for

Exp(B)

Lower

bound

Upper

bound

0 Intercept .503 4.426 .013 1 .909

BMI �.011 .138 .006 1 .939 .990 .755 1.296

Age �.330 1.294 .065 1 .799 .719 .057 9.071

gender .279 .363 .591 1 .442 1.322 .649 2.691

Comment: Neither BMI (p¼ 0.939), Age (p¼ 0.799), or Gender (p¼ 0.442) was significant.

The model equation is logit Probabilityevent at time 3ð Þ ¼ �0:503þ 0:011BMIþ 0:330Age�
0:279Gender
aThe reference category is: 1

R Program

> glm.out ¼ glm(formula ¼ sick3 ~ BMI + age + gender, family ¼ binomial(link ¼ logit), data

¼ data1)

> summary(glm.out)

Call:

glm(formula ¼ sick3 ~ BMI + age + gender, family ¼ binomial(link ¼ logit),

data ¼ data1)

R Output

Deviance residuals

Min 1Q Median 3Q Max

�1.4839 �1.3352 0.9186 1.0209 1.0760

Comment: These fit statistics gives the values with the intercept only and with the covariates

included. The difference tells about the significance of the covariates

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 0.6363 3 0.8881

(continued)
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Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Score 0.6351 3 0.8883

Wald 0.6336 3 0.8887

Comment: These values (likelihood ratio, Score, and Wald) tell about the significance of the

covariates

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.5033 4.4260 0.0129 0.9095

BMI 1 0.0105 0.1377 0.0058 0.9391

age 1 0.3302 1.2935 0.0652 0.7985

gender 1 �0.2789 0.3627 0.5913 0.4419

Comment: Neither BMI (p¼ 0.9391), Age (p¼ 0.7985), or Gender (p¼ 0.4419) was significant.

The fitted model equation is logit Probabilityevent at time 3ð Þ ¼ �0:503þ 0:011BMIþ 0:330Age�
0:279Gender

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

BMI 1.011 0.772 1.324

age 1.391 0.110 17.557

gender 0.757 0.372 1.540

Comment: The odds ratio has confidence intervals that all cover the value of 1. So the variables

(BMI, age, and gender) are not significant in the model

SPSS

Conditional logistic regression models are designed for situations in which one or more “cases,”

who show the response of interest, are matched with one or more “controls,” who do not show the

response. However, this can be done in the NOMREG procedure, which is accessed in the menus

via Analyze>Regression>Multinomial Logistic (SPSS Advanced Statistical Procedures

Companion, by Marija Norusis). http://www-01.ibm.com/support/docview.wss?

uid¼swg21477360

SPSS Program

NOMREG sick3 (BASE ¼ LAST ORDER ¼ ASCENDING) WITH BMI Age gender

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP

(20) LCONVERGE(0) PCONVERGE(0.000001) SINGULAR(0.00000001)

/MODEL

/STEPWISE ¼ PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD

(LR) REMOVALMETHOD(LR)

/INTERCEPT ¼ INCLUDE

/PRINT ¼ PARAMETER SUMMARY LRT CPS STEP MFI.
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SPSS Output

Case processing summary

N Marginal percentage (%)

sick3 0 51 38.1

1 83 61.9

Valid 134 100.0

Missing 0

Total 134

Subpopulation 134a

aThe dependent variable has only one value observed in 134 (100.0 %) subpopulations

Model fitting information

Model

Model fitting criteria Likelihood ratio tests

�2 log likelihood Chi-square df Sig.

Intercept only 178.047

Final 177.411 .636 3 .888

Pseudo R-square

Cox and Snell .005

Nagelkerke .006

McFadden .004

Comment: This is the pseudo R2. It plays a similar role as R2 in linear models. The values here are

very small, suggesting that the model is not a good fit

Likelihood ratio tests

Effect

Model fitting criteria Likelihood ratio tests

�2 log likelihood of reduced model Chi-square df Sig.

Intercept 177.424 .013 1 .909

BMI 177.417 .006 1 .939

Age 177.476 .065 1 .798

Gender 178.004 .593 1 .441

Comment: The chi-square statistic is the difference in�2 log likelihoods between the final model

and a reduced model. The reduced model is formed by omitting an effect from the final model. The

null hypothesis is that all parameters of that effect are 0
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Parameter estimates

sick3a B

Std.

error Wald df Sig.

Exp

(B)

95 % confidence interval

for Exp(B)

Lower

bound

Upper

bound

0 Intercept .503 4.426 .013 1 .909

BMI �.011 .138 .006 1 .939 .990 .755 1.296

Age �.330 1.294 .065 1 .799 .719 .057 9.071

Gender .279 .363 .591 1 .442 1.322 .649 2.691

Comment: Neither BMI (p¼ 0.939), Age (p¼ 0.799), or Gender (p¼ 0.442) was significant.

The model equation is logit Probabilityevent at time 3ð Þ ¼ �0:503þ 0:011BMIþ 0:330Age�
0:279Gender
aThe reference category is: 1

R Program

> glm.out ¼ glm(formula ¼ sick3 ~ BMI + age + gender, family ¼ binomial(link ¼ logit), data

¼ data1)

> summary(glm.out)

Call:

glm(formula ¼ sick3 ~ BMI + age + gender, family ¼ binomial(link ¼ logit),

data ¼ data1)

R Output

Deviance residuals

Min Q Median 3Q Max

�1.4839 �1.3352 0.9186 1.0209 1.0760

Comment: The deviance residuals are as small as �1.4839 and the maximum as large as 1.0760

and median 0.9186. The first quartile is �1.3352, and the third quartile is 1.0209

Coefficients

Estimate Std. error z value Pr(>|z|)

Intercept �0.50334 4.42600 �0.114 0.909

BMI 0.01052 0.13770 0.076 0.939

Age 0.33018 1.29354 0.255 0.799

Gender �0.27891 0.36271 �0.769 0.442

Comment: The fitted model is logit Probabilityevent at time 3ð Þ ¼ �0:503þ 0:011BMI1þ
0:330Age2 � 0:279Gender

Dispersion parameter for binomial family taken to be 1

Null deviance: 178.05 on 133 degrees of freedom

Residual deviance: 177.41 on 130 degrees of freedom

AIC: 185.41

Number of Fisher scoring iterations: 4

Comment: Measure on the fit of the covariates in the model is measured by 178.05 with no

covariates, and 177.41 is the measure with three (BMI, Age, and Gender) covariates
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Fixed Effects Logistic Regression Model with More than Two

Observations

We fit a fixed effects logistic regression model with three observations. We

analyzed the complete dataset with three time-periods of repeated measures using

the conditional logistic regression model.

SAS Program

data chap11;

input childid bmi age gender time t1 t2 t3 sick status;

datalines;

206 15.0 59.3 0 1 1 0 0 0 0

206 15.0 63.4 0 2 0 1 0 0 0

206 14.8 66.8 0 3 0 0 1 0 0

407 18.1 25.1 0 3 0 0 1 0 1

407 17.0 17.5 0 1 1 0 0 1 1

407 16.0 21.7 0 2 0 1 0 1 1

705 15.1 70.2 1 3 0 0 1 0 1

705 15.8 62.6 1 1 1 0 0 0 1

705 15.4 66.8 1 2 0 1 0 1 1

. . . . . . . . . .

;

TITLE ’Model for three or more observations per person’;

PROC LOGISTIC DATA ¼ Chap11 DESCEND;

MODEL sick ¼ BMI age t1 t2;

STRATA childid;
RUN;

Comment: We need to identify the grouping variable. That is listed in the STRATA command. In

this case, it is childid

SAS Output

The LOGISTIC procedure

Conditional analysis

Model information

Dataset WORK.MYDATA

Response variable sick

Number of response levels 2

Number of strata 370

Number of uninformative strata 174

Frequency uninformative 522

Model Binary logit

Optimization technique Newton–Raphson ridge

Number of observations read 1110

Number of observations used 1110

Comment: We have 370 strata. Each stratum is identified by the ChildId. There are three measures

for each child
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Response profile

Ordered value sick Total frequency

1 1 314

2 0 796

Probability modeled is sick¼ ‘1’.

Comment: There are 1110¼ 370� 3 cases. The 370 units were measured three times each. There

are 314 cases when the event occurred

Class level information

Class Value Design variables

Time 1 1 0

2 0 1

3 0 0

Strata summary

Response pattern

sick

Number of strata Frequency1 0

1 0 3 159 477

2 1 2 123 369

3 2 1 73 219

4 3 0 15 45

Comment: There are four response patterns. Strata with all events; strata with all nonevent; strata
with one event; and strata with two events. We have 159 + 15 + 123 + 73¼ 370. The frequencies

477 + 369 + 219 + 45¼ 1110. There are 159 + 15¼ 174 strata with no added information. There are

123 + 73 strata with information

Newton–Raphson ridge optimization

Without parameter scaling

Convergence criterion (GCONV¼ 1E�8) satisfied

Model fit statistics

Criterion Without covariates With covariates

AIC 430.656 428.362

SC 430.656 448.411

�2 log L 430.656 420.362

Comment: These fit statistics measure with and without the covariates. The difference tells about

their significance

Testing global null hypothesis: BETA¼ 0

Test Chi-square DF Pr>ChiSq

Likelihood ratio 10.2938 4 0.0358

Score 10.1224 4 0.0384

Wald 9.9256 4 0.0417

Comment: The tests (likelihood ratio, Score, and Wald) provide measures for testing that

covariates (BMI, Age, Time) are significant. These p-values suggest that they are significant
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Type 3 analysis of effects

Effect DF Wald chi-square Pr>ChiSq

BMI 1 0.0000 0.9959

Age 1 1.5953 0.2066

Time 2 9.7153 0.0078

Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

BMI 1 �0.00044 0.0856 0.0000 0.9959

Age 1 �0.5536 0.4383 1.5953 0.2066

Time 1 1 �4.4856 3.4613 1.6794 0.1950

Time 2 1 �2.3939 1.5103 2.5124 0.1130

Comment: Neither of these covariates is significant (p¼ 0.9959, 0.2066, 0.1950, and 0.1130).

The model equation though not useful in this case is: logit Probabilityevent at timeð Þ ¼
�0:0004BMI1 � 0:5536Age2 � 4:4856T1 � 2:3939T2

Odds ratio estimates

Effect Point estimate 95 % Wald confidence limits

BMI 1.000 0.845 1.182

Age 0.575 0.244 1.357

Time 1 vs. 3 0.011 <0.001 9.959

Time 2 vs. 3 0.091 0.005 1.762

Comment: Of course the odds ratio will not be significant as the variable was not significant.

However, the odds ratios are [0.845, 1.182] for BMI [0.244, 1.357] for Age, and the comparison of

Time 1 and Times with Time 3 are [0, 9.959] and [0.005, 1.762]

SPSS Program

COXREG sick WITH bmi age t1 t2

/STATUS Status (1)

/STRATA ¼ ChildID.

SPSS Output

Cox regression

Case processing summary

N

Percent

(%)

Cases available in

analysis

Eventa 588 53.0

Censored 0 0.0

Total 588 53.0

Cases dropped Cases with missing values 0 0.0

Cases with negative time 0 0.0

Censored cases before the earliest event in a

stratum

522 47.0

Total 522 47.0

Total 1110 100.0

Comment: There are 196 informative strata each with three observations for a total of 588
aDependent variable: Sick
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Block 0: Beginning Block

Omnibus tests of model coefficients

�2 log likelihood 903.314

Block 1: Method¼Enter

Omnibus tests of model coefficients

�2 log

likelihood

Overall (score)

Change from previous

step

Change from previous

block

Chi-

square df Sig.

Chi-

square df Sig. Chi-square

898.711 4.630 4 .327 4.603 4 .331 4.603

Comment: The variables are not significant in the model (p¼ 0.331)

Omnibus tests of model coefficients

Change from previous block

df Sig.

4 .331

a. Beginning Block Number 1. Method¼Enter

Variables in the equation

B SE Wald df Sig. Exp(B)

BMI �.003 .058 .002 1 .965 .997

Age .223 .281 .631 1 .427 1.250

T1 1.821 2.220 .673 1 .412 6.176

T2 .990 .967 1.048 1 .306 2.692

Comment: logit Probabilityevent at timeð Þ ¼ �0:003BMI1 þ 0:223Age2 þ 1:821T1 þ 0:990T2. Nei-

ther BMI, Age, nor time is significant. We write out the model for clarity

Covariate means

Mean

BMI 15.368

Age 42.058

T1 .333

T2 .333

Case processing summary

Unweighted casesa N Percent

Selected cases Included in analysis 134 100.0

Missing cases 0 .0

Total 134 100.0

Unselected cases 0 .0

Total 134 100.0
aIf weight is in effect, see classification table for the total number of cases
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R Program

> data1$time.f < - factor(data1$time)

> clogit.out ¼ clogit(formula ¼ sick ~ 0 + bmi + age + relevel(time.f, ref ¼ 3) + strata(childid),

data ¼ data1)

> summary(clogit.out)

Call:

coxph(formula ¼ Surv(rep(1, 1110L), sick) ~ 0 + bmi + age + relevel(time.f,

ref ¼ 3) + strata(childid), data ¼ data1, method ¼ "exact")

Comment: We use clogit for conditional logit models

R Output

Deviance residuals

n¼ 1110, number of events¼ 314

coef exp(coef) se(coef) z Pr(>|z|)

BMI �0.0004359 0.9995642 0.0856364 �0.005 0.996

Age �0.5535719 0.5748927 0.4382821 -1.263 0.207

relevel(time.f, ref¼ 3)1 �4.4856334 0.0112697 3.4613209 �1.296 0.195

relevel(time.f, ref¼ 3)2 �2.3938713 0.0912756 1.5102823 �1.585 0.113

Comment: The variables are not significant in the model. You are given the coefficient (coef), the

exponential of (coef), i.e., ecoeff and the standard errors. The model though not significant (for

clarity) is: logit Probabilityevent at timeð Þ ¼ �0:0004BMI1 � 0:5536Age2 � 4:4856T1 � 2:3939T2

exp(coef) exp(�coef) lower .95 upper .95

bmi 0.99956 1.000 8.451e�01 1.182

age 0.57489 1.739 2.435e�01 1.357

relevel(time.f, ref¼ 3)1 0.01127 88.733 1.275e�05 9.959

relevel(time.f, ref¼ 3)2 0.09128 10.956 4.729e�03 1.762

Comment: If we were to take exp(�0.0004359)¼ 0.999564, the 95 % confidence interval is

[8.451� 10�1, 1.182]

Rsquare¼ 0.009 (max possible¼ 0.322)

Likelihood ratio test¼ 10.29 on 4 df, p¼ 0.03576

Wald test¼ 9.93 on 4 df, p¼ 0.0417

Score (logrank) test¼ 10.12 on 4 df, p¼ 0.03842

Comment: The likelihood ratio test, Wald test, and logrank test do not support significance for the

simultaneous effect of the covariates

11.6 Conclusions

Some researchers prefer fixed effects models because they are less likely to have

omitted variable bias, Allison (2005). Allison suggested that in cases where the

within-person variation is small relative to the between-person variation, the stan-

dard errors of the fixed effects coefficients may be too large to accept as an adequate
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approach. By using each individual as his or her own control, fixed effects regres-

sion methods provide a relatively easy and effective way to control for time-

independent variables that cannot be measured. However, analyzing the data

using the fixed effects logistic regression we can control for covariates that have

not been measured, we can make causal inferences from non-experimental data,

and we can account for covariates that cannot be measured.

11.7 Related Examples

To help the reader expand the thought process of situations where the fixed effects

logistic regression model may be useful, we refer the reader to the National

Longitudinal Surveys (NLS). NLS are a set of surveys that were designed to gather

information at successive points in time on the labor market and other significant

life events of several groups of men and women. The interviews began in 1966 for

the NLS older men, a group of 5020 men ages 45–59. Older men were near

retirement and needing to think about the timing and extent of their labor force

and deciding to stop. Data collection focused on topics such as work and nonwork

experiences, retirement planning, health conditions, insurance coverage, and the

approach to time spent with their leisure activities. The survey also tracked labor

market decisions such as middle-age job changes, retirement expectations and

experiences, and reentry to the labor market after initial retirement. Interviews

with this cohort ceased in 1981. In 1990, information was collected from respon-

dents and widows or other next-of-kin deceased sample members. Also includes

cause of death information collected from state vital records departments in 1990.

http://www.bls.gov/nls/oldyoungmen.htm. There are binary responses such that

one may wish to model. The types of information gathered in survey are Work

Experience, including Retirement, Education, Household Composition, Family

Background, Marital Status and Marital Transitions, Income and Assets, Health,

and Attitudes.
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Part IV

Analyzing Correlated Data
Through the Joint Modeling of Mean

and Variance



Chapter 12

Heteroscedastic Logistic Regression Model

Abstract Correlated binomial data can be modeled using a mean model if the

interest is only on the mean, and the dispersion is considered a nuisance parameter.

However, if the intraclass correlation is of interest, then one should consider to

apply a joint modeling of the mean and the dispersion. Efron (Journal of the

American Statistical Association 81(395):709–721, 1986) was one of the first to

model both the mean and the variance. The dispersion sub-model allows extra

parameters to model the variance independent of the mean, thus allowing covariates

to be included in both the mean and variance sub-models. In this chapter, we present

a sub-model that analyzes the mean and a sub-model that analyzes the variance.

This model allows both the dispersion and the mean to be modeled. We use the

MODEL statement in the SAS/ETS procedure QLIM to specify the model for the

mean, and use the HETERO statement to specify the dispersion model. We fit this

model in SAS. Our results and presentation are based on work done in some recent

graduate research projects at Arizona State University.

12.1 Motivating Example

There is increased interest in modeling correlated binary data. The correlation

presents some natural challenges over the complete independent observations

situation. In the fit of a logistic regression model, we can never include all the

predictors that affect the binary response. As such there will always be some

unobserved unmeasurable factors. As these are unmeasurable and unobservable,

it is customary to account for them through a random term. However, the omission

of relevant covariates leads to increased unobserved heterogeneity, and as such it

affects the regression coefficients of the remaining regressor as it pertains to

significance, Cramer (2006). Cramer found through a simulation that omitting a

relevant variable leads to severe misspecification of the disturbance. Further, he

pointed out that the unexplained variation is included in a disturbance term which is
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treated as a random variable. In so doing, we want to concentrate on the variance of

this random disturbance which without loss of generality is assumed to be of zero

mean. The problem is that if the variance of the random effects is not constant for all

subpopulations found in our mean model, then we have heterogeneity. It is an

established fact as a rule logistic regression is quite robust if the distribution of the

error term is incorrect. Such a phenomenon led us to concur that modeling both the

mean and the variance simultaneously is worth exploring.

The joint modeling of the mean and dispersion is not necessarily new. In the past,

we have used constant dispersion, but now we want to have nonconstant dispersion as

it seems more practical. Constant dispersion models have indeed in many ways been

addressed in this text in Chap. 4 when we used the overdispersed logistic regression

model. In particular, we used the beta-binomial model. In such cases, the intraclass

correlation was of interest. That is unlike the GEE logistic regression model (Chap. 6)

which is suitable for cases when there is no real interest in the dispersion or the

intraclass correlation. Methods involved in estimating the parameters in the mean

sub-model and dispersion sub-model include the extended beta-binomial, the quasi-

likelihood and other moment methods, the extended quasi-likelihood, the Gaussian

likelihood, and the quadratic estimating equations, Paul and Islam (1998).

We revisit the simulated Hospital, Doctor, Patient (HDP) dataset. This dataset

has a three-level, hierarchical structure with patients nested within doctors, and

doctors nested within hospitals. The purpose of the simulated data is to create a rich

dataset that can be used to show a variety of analytic techniques. We concentrate on

age, length of stay, and doctor’s experience as it pertains to cancer remission. The

study was meant to be a large study of lung cancer outcomes across multiple doctors

and sites. However, we do not believe that age, length of stay, and doctor’s

experience are enough to explain cancer remission. The other factors not observed

or measured are part of the random effects. These random effects are assumed to

have a mean of zero and an unknown variance and more often than not normally

distributed. We used age, length of stay, and doctor’s experience to model the

unobserved variation. We use a dispersion sub-model to investigate the variance as

we assume they are related to some known factors. In our demonstration, we use

age, length of stay, and doctor’s experience, but could have used other covariates

not considered in the mean sub-model. For a complete discussion and theoretical

derivation of the joint modeling of the mean and dispersion, we refer the interested

reader to Nelder and Lee (1992).

12.2 Definitions and Notations

Joint modeling refers to the simultaneous modeling of the response associated with

the mean and the response associated with the dispersion.

The mean sub-model is the portion of the joint model that addresses the mean of

the response, including distributional assumptions of the responses, the predictors

of the mean, and a possible link function of the mean and the covariates.
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The dispersion sub-model is the portion of the joint model that addresses the

response variation. It includes the distributional assumptions, the predictors of the

variance, and a possible link function of the variance and the covariates.

Random effects (Chap. 9) are the unobservable differential effects among clus-

ters. They are useful in avoiding erroneous conclusions. They are used to estimate

population variance and include sampling variation. They consist of a sample of

items from a large population that have varying effects on the response. They are

therefore unobservable, but believed to belong to a population with a certain mean

and variance. They are used to address clustering, spatial correlation, and other

forms of dependence among outcomes, and are usually assumed to be normally

distributed. Our interest is in their variance. If the variance is estimated to be

different from zero, we assume that there are differential effects.

12.3 Exploratory Analyses

The HDP data were analyzed in Chap. 10 using logistic regression with random

intercepts and random slopes to model the variability among patients and among

doctors. A subset of that dataset is given in Table 12.1

We revisit these data but now accounting for the heterogeneity through a

sub-model. Recall there were 8525 patients in the dataset with 407 doctors and

85 hospitals. We have an interest in assessing the impact of certain covariates on the

probability of remission, but want to account for the heterogeneity that may be

presently associated across subpopulations. If we were to fit the logistic regression

model, then we will have 6004 in remission (¼0) and 2521 not in cancer remission

(¼1) with age, length of stay, and doctor’s experience as covariates. The likelihood

ratio is 322.13 with three degrees of freedom, p< 0.0001. We found that for the

standard mean sub-model we obtained the results in Table 12.2. Hosmer and

Lemeshow statistic (p¼ 0.0414) showed that the model is not a good fit.

We cannot really proceed with the fitted model:

logit p̂ ¼ �0:288� 0:021Age� 0:184 LOSþ 0:084Experience

since the model is not a good fit. We took the deviance residuals and fitted with

covariates age, length of stay, and doctor’s experience. We obtained the results in

Table 12.3. The covariates, age, and doctor’s experience seem to be important in

addressing the heterogeneity. However, though it is not necessarily a scientific

approach we suggest examining some graphic exploration as they may be necessary

in understanding heterogeneity.

A graph of the predicted probabilities versus age shows that as age increases the

probability of remission decreases in the below figures. Also predicted probabilities

versus experience or versus length of stay also has definite patterns. It is clear that

heterogeneity is present.
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Table 12.1 Subset of HDP dataset

remission Age Length of stay Experience DID

0 64.96824 6 25 1

0 53.91714 6 25 1

0 53.3473 5 25 1

0 41.36804 5 25 1

0 46.80042 6 25 1

0 51.92936 5 25 1

0 53.82926 4 25 1

0 46.56223 5 25 1

0 54.38936 6 25 1

. . . . .

. . . . .

. . . . .

Table 12.2 Analysis of maximum likelihood estimates

Parameter DF Estimate Standard error Wald chi-square Pr>ChiSq

Intercept 1 �0.2882 0.2254 1.6348 0.2010

Age 1 �0.0213 0.00434 23.9521 <.0001

Length of stay 1 �0.1842 0.0260 50.1282 <.0001

Experience 1 0.0838 0.00605 192.0264 <.0001

Table 12.3 Parameter estimates for deviance

Variable DF Parameter estimate Standard error t value Pr> |t|

Age 1 �0.00314 0.00152 �2.07 0.0388

Length of stay 1 �0.02139 0.01224 �1.75 0.0806

Experience 1 0.00874 0.00256 3.41 0.0007
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12.3.1 Dispersion Sub-model

In his well-known paper, Professor Efron introduced the idea of joint modeling,

where both means and variances are allowed to depend on observed covariates,

Efron (1986). Prior, we normally relied on the one-parameter exponential family,

where the mean and variance are related. However, in the normal regression models

the variance is not related to the mean. Several researchers have considered

dispersion modeling for normal data (Aitkin, 1987; Carroll & Ruppert, 1987,

1988; Davidian & Carroll, 1987). Smyth (1989) showed that similar methods

could be used for a certain class of non-normal generalized linear models. However,

a similar structure using the residuals obtained from the mean sub-model as the

responses can be fit in the so-called dispersion sub-model. Thus, the extension

allowed the variance to be modeled through the deviance di from the mean

sub-model in the same manner as the responses were modeled in the original

mean sub-model. It also has three components: random, systematic, and link. The

systematic component may consist of either all, some, or none of the factors from

the mean sub-model, or may include some new factors. This gave rise to the joint

modeling of the mean and variance (Lee, Nelder, & Pawitan, 2006), as depicted in

Fig. 12.1.
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12.4 Statistical Model

It seems to be an established fact that correct modeling of the dispersion is

necessary, Wu and Li (2012). They reported that there is a loss in efficiency in

using constant dispersion models when there is significant heterogeneity. Others

have used the double generalized linear models to look at the joint modeling of the

mean and dispersion modeling, Smyth and Verbyla (1999). The joint modeling of

mean and dispersion consists of two sub-models, each following a generalized

linear model, for example, Table 12.4.

Consider the response, whether or not a person’s cancer is in remission as a

Bernoulli distribution with covariates age of patient, length of stay, and doctor’s

experience. When this model is fitted, the deviance component from the mean

sub-model becomes the response for the dispersion sub-model. The covariate in the

dispersion sub-model, Table 12.4, is length of stay. Once the dispersion sub-model

is fitted, we can use the fitted values to estimate the variance of the response in the

mean sub-model thereby providing useful weights to fit that model. A log link is

chosen for the dispersion sub-model. We can continue such a process for four or

five cycles, Nelder and Lee (1998). We have a model consisting of two interlinked

GLM’s, one for the mean and one for the dispersion, Nelder and Lee (1991).

Weights used in the mean sub-model are calculated using the results of the

dispersion sub-model. Thus the two models are connected through parameters in

one model calculated from the other. There are two important characteristics of this

model. First, the expected value of the deviance components do not equal the

parameter, so there is a small bias. Second, the assumed distribution of the deviance

is not necessarily a gamma, Nelder and Lee (1998). The choice of the link function

for the dispersion sub-model is not necessarily as key a component. However, in

many studies, the modeling of the dispersion will be sufficient to identify and

account for the sources of variability. Smyth and Verba used the chi-square

approximation for the deviance as is the case when we use PROC QLIM in SAS

to fit the joint modeling of the mean and dispersion.

Table 12.4 presents a joint generalized linear model consisting of three compo-

nents for the mean sub-model, and three components for the dispersion sub-model,

Fig. 12.1 Joint mean–variance schematic diagram
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as it pertains to the Medicare data. The di represents the deviance from the mean

sub-model with mean and variance.

In fact, the modeling of correlated binomial data can be accomplished through a

mean model if the interest is only on the mean and the dispersion is considered as a

nuisance parameter. However, if the intraclass correlation is of interest, then it is

necessary to use a joint modeling of the mean and the dispersion, Efron (1986) (one

of the first to model both the mean and the variance). The dispersion sub-model

allows extra parameters to model the variance independent of the mean, thus

allowing covariates to be included in both the mean and variance sub-models. In

this chapter, we present sub-models that analyze simultaneously the mean and the

dispersion. The two sub-models are based on the generalized linear model.

The theory of generalized linear models (Dobson, 1990; McCullagh & Nelder,

1989; Nelder & Wedderburn, 1972) provided an extension to linear models as it

allowed the response to have a distribution other than normal and the relation

between the mean and the covariates to be linked in other ways than the identity

link. In particular, a generalized linear model consists of three components (as it

concentrates on modeling the mean of the response distribution): the random

component, in which the distribution D of the response is known; the systematic

component, which tells about the combination based on the covariates X1, X2, . . .Xp;

and the link component, which tells the relationship g between the combination of

covariates and the response mean μi. In summary, the response Yi is distributed with

mean μi with a covariance σ2i and distribution D, which belongs to the exponential

family, such that g μið Þ ¼ f X1, X2, . . .X p

� �
. Generalized linear models allow us to

model responses which are not normally distributed (McCullagh & Nelder, 1989).

They are more general than linear model methods in that they allow modeling the

mean based on the assumption that certain covariates are approximately linear.

However, it is just as crucial to model the variance when there is heterogeneity. It is

a fact that efficient estimation of mean parameters in regression with covariates

depends on correctly modeling the dispersion (Smyth & Verbyla, 1999). The loss of

efficiency is great if we ignore heterogeneity when it is present. Modeling of the

dispersion is also necessary to obtain correct standard errors and confidence inter-

vals (Carroll & Ruppert, 1987, 1988; Smyth, 1989).

While the works of Efron (1986) introduced the joint modeling of the mean and

dispersion through likelihood techniques, Pregibon (1984) introduced the joint

modeling of the mean and dispersion through the use of the three components of

the generalized linear model for both the mean and dispersion. Smyth (1989) also

contributed to the joint modeling research. Efron’s approach made use of the double

exponential family through the addition of a parameter to the one-parameter

Table 12.4 Mean and dispersion sub-models of the joint modeling

Mean sub-model Dispersion sub-model

Remissioni e Bernoulli pi, pi 1� pið Þð Þ dieDd ϕi, Vdi ϕið Þð Þ
ηi ¼ β0 þ β1Ageþ β2LOSþ β4Experience ηdi ¼ γ0 þ γ1Ageþ γ2LOSþ γ3Experience

ηi ¼ logit pið Þ ηdi ¼ logϕi
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exponential family. Lalonde, Wilson, and Yin (2014) looked at hierarchical joint

models. The analysis of joint modeling of both the mean and the dispersion, each

with its own set of covariates is appropriate when the regression relationship is

being used to study any effect of covariates on both the mean and variance of the

responses. Joint modeling is also an appropriate approach when there is the main

interest in identifying the effects of covariates on the variance of the responses, as

an initial mean sub-model is often necessary when modeling dispersion. While

extended quasi-likelihood and generalized extended quasi-likelihood models

include additional components to account for modeling the dispersion. They are

both special cases of joint generalized linear models. They specify the form of the

mean–variance relationship for dispersion sub-model include no covariate thus

implicitly defining a systematic component with only a constant term.

The heteroscedastic logistic model when fitted using the Hetero option with

PROC QLIM in SAS assumed that you are using a log link with the overdispersion

sub-model with a normalizing constant. The two models (mean sub-model and

dispersion sub-model) are interlinked as shown in Fig. 12.2, Nelder and Lee (1998).

The process of fitting these sub-models work as follows. We first fit the mean

sub-model. The deviance from the fit of the mean sub-model with its covariates is

then used as the responses in the dispersion sub-model. Once we fit the dispersion

sub-model we used the fitted values as measures of dispersion becomes the weights

for the mean sub-model and the process is repeated. We learned from Nelder and

Lee (1998) and we concur that this takes about 4–5 cycles.

12.5 Analysis of Data

12.5.1 Heteroscedastic Logistic Regression Model

We revisit the HDP data. In so doing, we present the joint modeling of the mean and

dispersion. We had a reason to believe that the variance may be influenced by

sources related to the length of stay (LOS). Methods for modeling overdispersed

data are presented through the joint modeling of mean and variance. These methods

are of two kinds: a likelihood approach and a method-of-moments approach.

Likelihood methods require knowledge of the distribution. The likelihood method

facilitates computation of maximum likelihood estimates which can be obtained

through the same algorithm as that of weighted least squares. While the quasi-

likelihood or moment approaches (does not require knowledge of the distribution)

seem to be appropriate when severe overdispersion may be present. We fitted the

joint model using SAS and R.
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SAS Program

PROC QLIM DATA ¼ mydata;

MODEL biRadmit ¼ Age LOS Experience/ DISCRETE(D ¼ LOGIT);

HETERO biRadmit ~ Age LOS Experience;

RUN;

Comment: The QLIM (qualitative and Limited Dependent Variable model) procedure can be used

to analyze the joint mean and dispersion sub-model. The QLIM procedure mainly uses the

maximum likelihood (ML) method for the sub-model. The structural parameters are estimated

in the second stage using the least squares method (The QLIM Procedure in SAS manual). The

heteroscedastic logistic regression model has its dispersion sub-model estimated using the HET-

ERO statement. In the dispersion sub-model age, length of stay, and doctor’s experience are

believed to have an impact on the variance. In our analysis, the variance can be specified as

var dið Þ ¼ σ2exp γ1LOSþ γ2Ageþ γ3Experienceð Þ
where σ2 is the variance parameter, and γ1 γ2 and γ3 are coefficients for the covariates in the

dispersion sub-model. The HETERO statement specifies the covariates (age, length of stay, and

doctor’s experience) believed to influence the dispersion and the form of that relationship. It

assumes that the random component in the dispersion sub-model is normal with mean zero and

variance σ2

SAS Output

Discrete response profile of remission

Index Value Frequency Percent

1 0 6004 70.43

2 1 2521 29.57

Comment: There were 8525 observations with 2521 patients in remission of cancer and 6004 who

did not

Model fit summary

Number of endogenous variables 1

Endogenous variable remission

Number of observations 8525

Log likelihood �5006

(continued)

Fig. 12.2 Mean and dispersion sub-models of the joint modeling
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Model fit summary

Maximum absolute gradient 0.0001156

Number of iterations 46

Optimization method Quasi-Newton

AIC 10,027

Schwarz criterion 10,076

Comment: The endogenous variable is our output variable. A likelihood approach is used to tell if

the model is a good fit. The log likelihood is �5006 so �2 log likelihood is 10,012. AIC and

Schwarz criterion have values 10,027 and 10,076, respectively

Goodness-of-fit measures

Measure Value Formula

Likelihood ratio (R) 339.85 2 * (log L� log L0)

Upper bound of R (U) 10,353 �2 * log L0

Aldrich-Nelson 0.0383 R/(R +N)

Cragg-Uhler 1 0.0391 1� exp(�R/N)

Cragg-Uhler 2 0.0556 (1 – exp(�R/N))/(1� exp(�U/N))

Estrella 0.0397 1 – (1 –R/U)^(U/N)

Adjusted Estrella 0.0381 1 – ((log L –K)/log L0)^(–2/N * log L0)

McFadden’s LRI 0.0328 R/U

Veall-Zimmermann 0.0699 (R * (U+N))/(U * (R+N))

McKelvey-Zavoina 0.0347

N¼ # of observations, K¼ # of regressors

Comment: There are several goodness-of-fit measures given. These measures have receivedmixed

reviews in the literature. SAS PROC QLIM handout reveals that all measures except McKelvey-

Zavoina’s definition are based on the log-likelihood function value, see SAS Manual on PROC

QLIM. The likelihood ratio test statistic has chi-square distribution conditional on the null hypoth-

esis that all slope coefficients are zero. In this example, the likelihood ratio statistic is used to test the

hypothesis that coefficients; age, length of stay, and doctor’s experience are all equal to zero

Parameter estimates

Parameter DF Estimate Standard error t value Approx Pr> |t|

Intercept 1 �0.395745 0.145357 �2.72 0.0065

Age 1 0.000397 0.006027 0.07 0.9475

LOS 1 �0.131164 0.090128 �1.46 0.1456

Experience 1 0.032680 0.017840 1.83 0.0670

_H.Age 1 �0.054733 0.022064 �2.48 0.0131

_H.LOS 1 0.075753 0.139593 0.54 0.5874

_H.Experience 1 0.078591 0.028942 2.72 0.0066

Comment: Themean sub-model is logit p ¼ �0:396þ 0:0003Age� 0:131LOSþ 0:033Experience
The parameter estimates in the dispersion sub-model for heteroscedasticity is listed as H_age,

H_LOS, and H_experience. The HETERO statement specifies variables that are related to the

heteroscedasticity of the residuals and the way these variables are used to model the error variance.

The heteroscedastic regression model supported by PROC QLIM is

logσ2i ¼ �0:055Ageþ 0:076LOSþ 0:079Experience. When the LINK¼ option is not specified,

PROC QLIM assumes that the exponential link function, which was the case here.
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12.5.2 Standard Logistic Regression Model

SAS Program

PROC QLIM DATA ¼ mydata;

MODEL biRadmit ¼ Age LOS Experience/ DISCRETE(D ¼ LOGIT);

RUN;

SAS Output

Discrete response profile of remission

Index Value Frequency Percent

1 0 6004 70.43

2 1 2521 29.57

Comment: There are 29.57 % or 2512 patients with cancer in remission

Model fit summary

Number of endogenous variables 1

Endogenous variable remission

Number of observations 8525

Log likelihood �5015

Maximum absolute gradient 0.00639

Number of iterations 14

Optimization method Quasi-Newton

AIC 10,039

Schwarz criterion 10,067

Comment: The endogenous variable is cancer in remission versus it is not. The method used to

obtain parameter estimates is the quasi-Newton

Goodness-of-fit measures

Measure Value Formula

Likelihood ratio (R) 322.13 2 * (log L� log L0)

Upper bound of R (U) 10,353 �2 * logL0

Aldrich-Nelson 0.0364 R/(R +N)

Cragg-Uhler 1 0.0371 1� exp(�R/N)

Cragg-Uhler 2 0.0527 (1� exp(�R/N))/(1� exp(�U/N))

Estrella 0.0377 1� (1�R/U)^(U/N)

Adjusted Estrella 0.0367 1� ((log L�K)/log L0)^(�2/N * log L0)

McFadden’s LRI 0.0311 R/U

(continued)
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Goodness-of-fit measures

Measure Value Formula

Veall-Zimmermann 0.0664 (R * (U+N))/(U * (R +N))

McKelvey-Zavoina 0.1608

N¼ # of observations, K¼ # of regressors

Comment: These are goodness-of-fit measures for the model. We found that Cragg-Uhler to be

most useful.

Parameter estimates

Parameter DF Estimate Standard error t value Approx Pr> |t|

Intercept 1 �0.288241 0.225428 �1.28 0.2010

Age 1 �0.021259 0.004343 �4.89 <.0001

Length of stay 1 �0.184241 0.026023 �7.08 <.0001

Experience 1 0.083797 0.006047 13.86 <.0001

Comment: The mean sub-model is for the standard logistic regression model is

logit p ¼ �0:289� 0:021Age� 0:184LOSþ 0:084Experience
The covariates age, length of stay, and experience are significant. However, this was not the case in

heteroscedastic logistic regression model

12.5.3 Model Comparisons Mean Sub-model Versus
Joint Modeling

A comparison of the impact of the covariates as they exist in the mean model

(standard logistic regression model) versus in a mean and dispersion sub-model

(heteroscedastic logistic regression model) is made. Neither age, has length of stay,

nor did doctor’s years of experience seem to be significant when the extra variation

is modeled, Table 12.5. The covariates age, length of stay, and experience are

significant. However, this is not significant when the extra variation was modeled.

The sign of the covariate Age (though insignificant) was reversed.

Table 12.5 Mean sub-model covariates in mean model versus in the joint modeling

Mean and dispersion sub-models Mean sub-model

Age + sign with p¼ 0.9475 � sign with p< 0.0001

Length of stay � sign with p¼ 0.1456 � sign with p< 0.0001

Experience + sign with p¼ 0.0670 + sign with p< 0.0001
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12.6 Conclusions

A heteroscedastic logistic regression model is presented in which the data are

analyzed with a mean–dispersion relationship in the dispersion sub-models while

considering fixed and random effects. In addition, the model allows for covariates

to be included in both the mean and dispersion sub-models. While the pseudo-

likelihood model is applicable for response distributions belonging to the exponen-

tial family, its systematic component is approximated by restricting to a first-order

normal random variable and only allows for a constant dispersion correction, and as

such cannot include covariates in the dispersion sub-model. Though the double

extended quasi-likelihood model is applicable for any response with random effects

from distributions belonging to the exponential family, and does allow dispersion

sub-models with covariates, it imposes a specific mean–variance relationship for

both dispersion sub-models.

12.7 Related Examples

Many researchers have studied issues related to immigrant’s English proficiency.

Gender, educational level, age at migration can affect English proficiency, Jasso

and Rosenzweig (1986). Race can also be considered as a predictor variable since

immigrant from “Romance-language” countries may learn English better than

immigrant from Asian countries, Loo (1985). For immigrant children, it is

suggested that parents’ education level is highly related to student performance,

Abedi, Courtney, and Leon (2003). Also, immigrants with higher occupational

accomplishments are more proficient in English. Larger household size is associ-

ated with lower English proficiency. LEP students’ percent in a class and class size

may also influence English proficiency, Abedi (2004). Therefore, students’ gender,

students’ race, mother’s employment status, father’s employment status, race of

mother, race of father, students’ disability status, number of siblings in household,

total number in household, mother’s education level, father’s education level,

average prestige score for mother’s occupation, average prestige score for father’s

occupation, poverty status, percent of minority in class, teacher’s age, percent of

LEP students in class, teacher’s gender, and teacher’s education level may be key

factor in modeling success in proficiency. Data from Early Childhood Longitudinal

Studies-Kindergarten Class of 1998–1999 from National Center for Education

Statistics, the U.S. Department of Education can be considered. A total of 21,260

children was sampled across the United States. The data are longitudinal from fall

1998 through fifth grade. We chose a subset of the data from fall 1998 to spring

2000, including children who do not speak English language at home to predict

factors affecting their English proficiency. In fall 1998, 2005 students took the

exam and 867 passed. In spring 1999, 1066 students took the exam and 390 passed.

In fall 1999, 177 students took the exam and 41 passed. In spring 2000, 522 students

262 12 Heteroscedastic Logistic Regression Model



took the exam and 298 passed; our data shows that many students who did not take

the exam in fall 1999 took the exam in spring 2000. The data are unbalanced

longitudinal in that once a student pass the exam, he or she will not take the exam

again. Unlike traditional longitudinal data, it repeated measure one subject over

time. The data have a hierarchical structure. It was collected on students clustered

within classrooms, and classrooms were sampled within schools. The first level is

the student; the second level is classroom; and the third level is school.

remission Age Length of stay Experience DID Predicted deviance_resid

0 47.24938 5 14 2 0.358571 �0.9423983

1 43.7356 5 14 2 0.354057 1.44103978

1 53.14721 7 14 2 0.487 1.19957605

1 49.11262 5 14 2 0.360975 1.42754705

0 64.52788 4 14 2 0.324528 �0.88582607

0 47.63018 5 14 2 0.359062 �0.94321016

0 66.36314 6 14 2 0.44368 �1.08297036

1 50.98166 7 14 2 0.48397 1.204768

0 49.08775 4 14 2 0.305863 �0.85450095

1 45.9149 5 19 3 0.816431 0.63688785

0 51.0809 4 19 3 0.28661 �0.82185999

1 50.92295 5 19 3 0.526458 1.13276922

0 49.75095 6 19 3 0.802897 �1.80223616

1 56.18753 8 19 3 0.827903 0.61458883

1 47.53297 5 19 3 0.739699 0.77654541

0 53.50774 4 18 4 0.290181 �0.82794286

0 49.5336 6 18 4 0.19933 �0.66679371

0 56.47173 4 18 4 0.187851 �0.64509054

0 49.46599 6 18 4 0.201412 �0.67068601

0 49.68009 6 18 4 0.194876 �0.65842054

1 44.61022 5 18 4 0.546204 1.09978399

1 58.08923 6 18 4 0.045894 2.48250989

0 51.88174 6 18 4 0.136853 �0.54253126

0 52.8699 6 18 4 0.115929 �0.49642406

1 40.10036 5 18 4 0.741143 0.77403139

1 51.45639 3 18 4 0.532321 1.1229503

0 65.61566 7 18 4 0.005997 �0.10968328

1 45.40815 6 18 4 0.354852 1.43948315

0 60.88663 7 18 4 0.014748 �0.17238389

0 53.94108 5 18 4 0.166925 �0.60437049
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