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Introduction
In our everyday lives we often employ arguments to draw conclusions. In turn we expect others to follow 
our line of reasoning and thence agree with our conclusions. This is especially true in mathematics 
where we call such arguments ‘proofs’ But why are these arguments or proofs so convincing, why should 
we agree with their conclusions? What is it that makes them ‘valid’? In this course we will attempt to 
formalize what we mean by these notions within a context/language which is adequate to express almost 
everything we do in mathematics, and much of everyday communication as well.

The presentation given here derives from a lecture course given in the School of Mathematics at 
Manchester University between 2010 and 2013. Previous to that courses covering similar topics had 
run for many years with ever diminishing student numbers, the students seemingly finding the notation 
bewildering and the level of rigor and nit picking detail excessive. As a result they often gave up before 
the point of realizing how easy, self-evident and downright interesting the subject really is. The primary 
aim of this current version then was to adopt an approach which avoided as far as possible those initial 
barriers, and which reached some of the ‘good stuff ’ before any risk of disheartenment setting in.

That is not to say that the approach given here lacks rigor or is at some points ‘not quite right’. Far from 
it. But we will on occasions implicitly accept as obvious or self-evident facts which, looking back later, 
you might question. If so then that is the time to check for yourself that what has been taken for granted 
in the text is indeed perfectly correct.

In terms of the choice of material in the course the intention is that it will provide a firm grounding in 
Predicate Logic such as is necessary for further fields in Mathematical Logic, for example Proof Theory, 
Model Theory, Set Theory, as well as Philosophical Logic and the diverse applications in Computer 
Science. In addition, with its presentation of the Completeness Theorem, it aims to provide a broad picture 
and understanding of relationship between proof and truth and the nature of mathematics in general.

These notes can be studied at two levels, in UK terms Bachelors and Masters. The more demanding 
material and exercises, primarily aimed at the Master level is marked with an asterisk, *. Unmarked 
material is intended for both levels and is self contained, requiring nothing from the upper level.
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Motivation
Consider the following examples of ‘reasoning’:

1(a)	 10 4is a number which is the sum of squares

There is a number which is th∴ ee sum of squares4

2(a)	 Every student at thisUniversity pays fees

Monica is a student at thisUUniversity

Monica pays fees∴

In each case the conclusion seems to ‘follow’ from the assumptions/premises. But in what sense? What 
do we mean by ‘follows’? Since such arguments are common in our everyday lives, especially when as 
mathematicians we produce proofs of theorems, it would seem worthwhile to understand and answer 
this question, and that’s what logic is all about, it’s the study of ‘valid reasoning or argument’.

In both the above examples the reasoning seems to be ‘valid’ (which right now just equates with ‘OK’), 
but what does this mean? A first guess here is that it means: The conclusion is true given that the premises 
are true. This is close, but we have to be careful here. Consider for example the argument:

3(a)	  There is a number which is the sum of squares

Every number is the sum

4
∴ oof squares4

This does not seem to be ‘valid’ in the sense of the first two examples, despite the fact that the assumption 
and conclusion are actually true.

The reason the first two arguments are valid and the last is not is that they do not actually depend on 
the meaning of ‘sum of 4 squares’, ‘Monica’, ‘10’, ‘student at this university’, ‘pays fees’ nor what universe 
of objects (natural numbers in the first and last, people, say, in the second) we are referring to, whereas 
in the last the meaning of ‘is the sum of 4 squares’ does matter. For example if we change ‘sum of 4 
squares’ to ‘sum of 3 squares’ then the premiss is true but the conclusion false.

To see this let’s write

∀ for ‘for all’

∃ for ‘there exists’
c  for 10
P x( )  for ‘x is the sum of 4 squares’
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Then our first and last examples become:

1(b)	 P c( )

( )∴ ∃xP x

3(b)	 ∃
∴ ∀

x P x

x P x

( )

( )

Clearly the conclusion in the first of these ‘follows’ no matter what universe the x ranges over, no matter 
what element of that universe c  stands for and no matter what property of x P x( ) stands for. In other 
words no matter what they stand for if the premises are true then so is the conclusion. For example if 
we take this universe to be the set of all buses along Oxford Road, c to stand for the number 43 bus and 
P x( )  to mean that bus x goes to the airport then the first argument would become

1(c)	 The bus goes to the airport

There is a bus on Oxford Road which goes t

43
∴ oo the airport

which we would surely accept as ‘OK’.

However in the second case we obtain

3 (c)	
There is a bus on Oxford Road which goes to the airport

All buses along∴ OOxford Road go to the airport

and now the conclusion is false, whilst the premiss is true, so this is clearly not an OK argument.

Similarly in the Monica example if we let

m  stand for Monica
S x( )  stand for ‘x is a student at this university’
F x( )  stand for ‘x pays fees’

!  stand for ‘if … then’, equivalently ‘implies’,

then the example becomes

2 (b)	
8 !x S x F x

S m

F m

( ( ) ( ))

( )

( )∴

and again this looks an OK  argument no matter what universe of objects the variable x  ranges over, 
no matter what element of this universe m stands for and no matter what properties of such x S x, ( )  
and F x( ) stand for.
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In other words, no matter what meaning (or interpretation) we give to this universe, m and S x( ), F x( ), if the 
premises are true then so is the conclusion. The validity of the Monica example 2 derives from this fact. 
The non-validity of our ‘all numbers are the sum of 4 squares’ example 3 is a consequence of this failing 
in this case, despite the fact that in this interpretation the conclusion of 3(a) is true.

What we have learnt here is that to understand and investigate ‘valid’ arguments we need to study formal 
examples like the one above where all meaning has been stripped away, where we have been left with 
just the essential bare bones.

Before doing that however it will be useful to give two more examples which introduce another (small) 
point. Consider the following, where ‘number’ means ‘natural number’:

4 (a)	 There is anumberwhich is less or equal any number

For every number th∴ eere is anumberwhich is less or equal to it

5 (a)	 For every number there is anumberwhich is less or equal to it

There is∴ aanumberwhich is less or equal any number

In these cases both the premiss and conclusion are true. However it is only in the first that the conclusion 
seems to be valid, in other words to ‘follow’ from the premise. Again if we let x y,  range over natural 
numbers and let Q x y( , )  stand for x  is less or equal y  then they become respectively:

4 (b)	 ∃ ∀
∴∀ ∃

x yQ x y

y xQ x y

( , )

( , )

5 (b)	     ∀ ∃
∴∃ ∀

y xQ x y

x yQ x y

( , )

( , )

The validity of the former is (quite) easy to see. For clearly no matter what universe the x y,  range over 
and no matter what binary (or 2-ary) relation on the universe Q  stands for, if the premise is true then 
so is the conclusion. This holds simply because of the forms of the premise and conclusion, not because 
of how we interpreted them here.

On the other hand this ‘logical’ connection between the premise and the conclusion does not hold in 
the second case. If we interpret the variables x y,  as ranging over the universe   of natural numbers1 
but interpret Q  as the ‘greater or equal than’ relation then the argument interprets as:

5 (c)	 For every number there is anumberwhich is greater or equal to it

The

.

∴ rre is anumberwhich is greater or equal any other number

so the premise is true whilst the so-called conclusion is false. 
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As our final example consider:

6 (a)	 x x

ww w

5

5

= 2 1

= 2 1

−
∴ ∃ −

One’s first thought maybe is that the variable x  here is supposed to be a real number, and that the 
conclusion follows (trivially even) from the premiss. However the conclusion obviously follows whether  
we’re thinking here of x  being a real, or a complex number, or a 4 4×  matrix or indeed an element of 
any algebraic structure in which the functions x x 5  and x x 2 1−  have some meaning.

To sum up then we could say that in examples 1, 2, 4, 6 the conclusion follows logically from the premise(s) 
whereas in examples 3, 5, it does not. It is this notion of ‘logical consequence’ that this course, and Logic 
in general, is interested in.Our above considerations lead us to propose a rough definition of an assertion 
φ  being a logical consequence of assumptions/premises θ θ θ1 2, , , . n  Namely this holds if no matter 
how we interpret the range of the variables, the relations, the constants etc. if θ θ θ1 2, , , n  are all true 
then φ  will be true. To make this a precise definition we need to say what θ θ φ1,, ,n  can be, what 
we mean by an ‘interpretation’ and even what we mean by ‘true’. We start with the former.
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Formal Languages, Formulae 
and Sentences
We have seen in the last section that to study valid reasoning we are led to consider formalized, abstract, 
assertions such as P c( ), ∃xP x( ) , ∀ →x S x F x( ( ) ( )) , ∃ ∀x yQ x y( , ) , ∀ ∃y xQ x y( , ) , x x5 = 2 1+  
appearing in 1(b), 2(b) and 5(b). Expressions which can arise in this way will be called formulae of a 
language. Formally they are simply words built up from the symbols2 listed below in specified, ‘well-
formed’, ways (so as to make sense):

Symbol Standing for

Relation symbols e.g. P S Q, ,  etc unary, binary, etc. relations

Constant symbols, e.g. c m,  etc. constants

Function symbols, e.g. + etc. unary, binary, etc. functions

Equality symbol, = the binary relation of equality

Variables, x w,  etc. variable elements of the universe on which the quantifiers, relations, 
functions operate

Connectives: ! implication, ‘implies’ or ‘if  then’

^ conjunction, ‘and’

_ disjunction, ‘or’

: negation, ‘not’

Quantifiers: 8w for all w (Universal quantification)

9w there exists w (Existential quantification)

Parenthesis (, ) punctuation

The available relation, function, constant, and if present equality symbols3, are said4 to comprise the 
language of which such expressions are formulae. The language we are working in will vary whilst the 
remaining symbols are the same in all cases.

Definition A language L  is a set consisting of some relation symbols (possibly including = ) and 
possibly some constant, function symbols. Each relation and function symbol in L  has an arity (e.g. 
unary, binary, ternary, etc.).5

For example we could have L P Q c f= , , ,{ }  where P  is a 1-ary or unary relation symbol, Q  is a 
2-ary or binary relation symbol, f  is a unary function symbol and c  is a constant symbol.

We use L L L L, , ,1 2
¢ , etc. to denote languages.
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To make things ultimately simpler (though it might not seem like that at first) we will use x x x1 2 3, , ,  
for free variables, that is variables which are not linked to a quantifier, and w w w1 2 3, , ,  for bound 
variables, that is variables which are linked with a quantifier.

In order to avoid a flood of notation too early on we shall start by limiting ourselves to relational languages, 
that is languages which have no function, constant symbols, nor equality.

Definition For L  a (relational) language the formulae of L  are defined as follows:

Ll  If R  is an n -ary relation symbol of L  and x x xi i in1 2
, , ,  (not necessarily distinct) come from 

the set of free variables { }x x x1 2 3, , ,  then R x x xi i in
( , , , )

1 2
  is a formula of L .

L2  If µ Á,  are formulae of L  then so are ( )µ Á! , ( )µ Á^ , ( )µ Á_ , :µ .

L3 � If φ  is a formula of L  which does not mention wj  and Á j i( / )w x  is the result of replacing 
the free variable xi  everywhere in φ  by the bound variable wj  then ∃w w xj j iÁ( / ) , 
8w w xj j iÁ( / )  are formulae of L .

L4 φ  is a formulae of L  just if this follows in a finite number of steps from Ll-3.

We denote the set of all formulae of L  by FL . We use µ Á Ã Â, , ,  etc. to denote formulae and ¡ ¢ ­; ;  
etc. to denote sets of formulae, possibly empty. Notice that in L3 since we have infinitely many bound 
variables available and any one formula only mentions finitely many bound (or free) variables we can 
always pick one which doesn’t appear already.

Example

In this example let the language L P R= ,{ }  where P  is a unary relation symbol and R  a ternary 
relation symbol Then.

1.	 R x x x( , , )3 3 1  is a formula of L , equivalently R x x x FL( , , )3 3 1 ∈ , by Ll with 
i i i1 2 3= = 3, = 1. Similarly P x FL( )1 ∈ .

2.	 From 1 and L3, ∃ ∈w R w w x FL1 1 1 1( , , ) .
3.	 From 1, 2 and L2 ( ( , , ) ( ))1 1 1 1 1∃ ∈w R w w x P x FL! .
4.	 From 3 and L3, ∀ ∃ ∈w w R w w w P w FL2 1 1 1 2 2( ( , , ) ( ))! .
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Generally to show that some expression/word is a formula of L  you need to demonstrate that it can be 
constructed from the relation symbols of L  using Ll-3.

To show that some expression is not a formula of L  the following observation is valuable (and will find 
many more applications as we proceed):

Every formula θ  is actually just a finite string of symbols so we can talk about its length, | |θ , meaning 
the number of symbols in θ  where x wi i, , , , , , , , (, )∧ ¬ ∨ ∃ ∀! , R  (for R  a relation symbol of L ) 
all count as single symbols (commas don’t count). So for example

| |( ( , , ) ( )) = 15.1 1 1 1 1∃w R w w x P x!

A common way of proving that all formulae have some property   is to prove it by induction in the 
length of formulae. That is we show that if all formulae of length less than n  have property   then all 
formulae of length n  also have ,  and hence all formulae of length less than n + 1  have .  (Notice 
that the ‘base case’, that all formulae of length less than 0  have   is trivial true – they all do because 
there aren’t any!) If we can show this then by induction ‘for all n  all formulae of length less than n  
have ',  so all formulae have .  In fact in practice we do not even need to make n  explicit as the 
following example shows.
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Reading formulae

We ‘read’ formulae in the obvious way, for example

Not (pause) P of x1 and P of x2

Not P of x1 (pause) and P of x2

For every w2, if there exists w1 such that R of w w w1 1 2, ,  then P of w2

For every w2 there exists w1 such that if R of w w w1 1 2, ,  then P of w2

Notice the difference in the first two formulae above. In the first we first take the conjunction then negate 
it. In the second we first negate P x( )1  and then take its conjunction with P x( )2 . It is the parentheses 
which enable us to make such expressions unambiguous. For example without it : ^P x P x( ) ( )1 2  
could have two different readings.

That the use of brackets as we have them really does succeed in avoiding any ambiguity in reading 
formulae is confirmed by the following theorem.

Example  For L  as in the examples ( ( )1P x  is not a formula of L . 
To see this let  be the property of having the same number of left parentheses ‘(’ as right parentheses ‘)’.
Suppose θ ∈ FL , and every formulae of length less than | |θ  has  . There are 7 cases:

θ  is R x( )


 for some relation symbol R  of L .

θ  is one of :Á , ( )Á Ã^ , ( )Á Ã_ , ( )Á Ã!  for some Á Ã, ∈ FL .

θ  is one of 9w w xj j iÂ( ) , 8w w xj j iÂ( )  for some Â 2 FL .

By Inductive Hypothesis the Á Ã Â, ,  (being shorter than θ ) contain the same number of right as left 
round brackets so clearly this also must hold for θ  in all 7 cases.

Hence by induction on the length of formulae it must be true for all formulae. But it is not true for 
( ( )1P x  so this cannot be a formula of L .

¬ ∧( (
1
) (

2
))P x P x

( (
1
) (

2
))¬ ∧P x P x

∀ ∃w w R w w w P w
2
(

1
(

1
,

1
,

2
) (

2
))!

∀ ∃w w R w w w P w
2 1

( (
1
,

1
,

2
) (

2
))!
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The Unique Readability Theorem 1 Let µ 2 FL . Then exactly one of the following hold and furthermore 
in each case the R x w w xj j i, , , , , ( )



Á Ã ´  etc. are themselves unique:

1)	 µ = ( , , , )
1 2

R x x xi i ir
  for some r-ary-relation symbol R  of L,

2)	 µ Á= :  for some Á 2 FL ,
3)	 µ Á Ã= ( )^  for some Á Ã, 2 FL ,
4)	 µ Á Ã= ( )_  for some Á Ã, 2 FL ,
5)	 µ Á Ã= ( )!  for some Á Ã, 2 FL ,
6)	 µ ´= ( )9w w xj j i  for some wj  and ´ 2 FL  with wj  not occurring in ´,
7)	 µ ´= ( )8w w xj j i  for some wj  and ´ 2 FL  with wj  not occurring in ´.

Proof* The proof is by induction on the length of µ 2 FL . Assume the result (and uniqueness) for all 
formulae of length less than | |µ .

Since µ µ2 FL,  must be of at least6 one of the forms

	 i)   R x x xi i ir
( , , , )

1 2
  for some r-ary-relation symbol of L ,

	 ii)   : ^Á Á Ã, ( ) , ( )Á Ã∨ , ( )Á Ã!  for some Á Ã, 2 FL ,
	 iii)   9w w xj j i´( ) , 8w w xj j i´( )  for some wj  and ´ 2 FL , with wj  not occurring in ´ .

If µ  (as a sequence or symbols, i.e. word) starts with a relation symbol R  then we must be in case (i) 
and the R , and after that the x x xi i ir1 2

, , ,  (in that order), are uniquely determined by θ .

If µ  starts with :  the only possibility is that µ ´= :  with ´ 2 FL  and again µ  uniquely determines 
η . Similarly in cases (iii).

So suppose that θ  starts with ‘(’. By induction on the length of formulae we can show that any formula 
which starts with ‘(’ ends with ‘)’ and is of the form ( )³ ? ´  for ? 2 f^ _ !g, ,  and ³ ´, 2 FL  and 
what we have to prove is that θ  cannot be written like this in two different ways. So suppose it could, say

µ ° ± ¸ ¿= ( ) = ( ) y

where ° ± ¸ ¿ ?, , , , , , ,2 y 2 f^ _ !gFL  and ° =   ¸. Notice that if ° = ¸  then γ λ=  and hence  
also  = y  and ± ¿= . So without loss of generality assume that γ λ< . Then the explicitly exhibited 
connective   must occur as a symbol in λ , say that λ σ β=   where σ β,  are words. Clearly we 
must have σ γ= , so λ γ β=  .
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We now obtain our desired contradiction by establishing two properties of formulae by induction on the 
length. This first, which has already been proved in the notes in fact, is that if φ ∈ FL  then the number 
lφ  of left parentheses in φ  is the same as the number rφ  of right parentheses in φ . In particular then 
l rλ λ= . The second property is that if φ ∈ FL  and we consider a particular occurrence of a connective, 
 ¦ say, in φ , so Á = ν ε¦   for some strings of symbols ν ε, , then l rν ν> . [You are left to establish this 
fact.] Hence since ¸∈ FL  and ¸ ° ¯= , l rγ γ> , contradicting l rλ λ= .

The Unique Readability Theorem provides a rather more sophisticated (and in fact foolproof) method for 
showing that a particular word, i.e. finite string of symbols, from L  is not a formula of L . To illustrate 
this consider the word

( ( , ) ( ( , )) ( , ))1 1 1 1 1 1R x x R x x R x x! !

If this was a formula of L then by case (5) of Unique Readability the only possibility is that either R x x( , )1 1 , 
( ( , )) ( , )1 1 1 1R x x R x x!  are both in FL  or R x x R x x( , ) ( ( , ))1 1 1 1!  and R x x( , )1 1  are in FL . 
But R x x R x x( , ) ( ( , ))1 1 1 1!  does not fall under any of the cases of Unique Readability, so it would 
have to be the case that ( ( , )) ( , )1 1 1 1R x x R x x FL! 2 . But the only case (5) could apply again and 
R x x( ,1 1  would have to be a formula, which it is not since it does not fall under any of the Readability 
cases. It follows that (1) cannot be in FL .



(1)
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In fact this method of repeatedly breaking down a word provides a foolproof test of formulahood in that 
if it does not demonstrate that the word is not a formula then reversing the analysis yields a construction 
of the word which confirms that it is a formula.

It may appear at this point that we have been excessively fussy about the precise structures to which 
formulae need to conform and that this doesn’t really have much to do with logic. In response we would 
point out that at this stage it is most important to be able to write correct formulae, and recognize 
incorrect ‘formulae’, in order to avoid any possibility of ambiguity. In the logic you meet beyond this 
course you may be able to take liberties but, like the driving test, you need to start off by knowing and 
abiding by the rules.

Having emphasized the importance of parentheses we now mention a common abbreviation: In dealing 
with formulae ( )µ Á! , ( )µ Á_ , ( )µ Á^  in we may temporarily drop the outermost parentheses, so 
writing instead µ Á µ Á µ Á! _ ^, , , where this can cause no confusion.

Notation If Á  is a formula of L  and the free variables appearing in Á  are amongst7 x x xi i in1 2
, , ,  

then we may write Á( , , , )
1 2

x x xi i in
  (or Á( ))



x  for Á( = , , , )
1 2

where
� …x x x xi i in

. In this case 
Á( , , , )1 2t t tn  is to be the result of (simultaneously) replacing each xij

 in Á  by tj .8 So for example 
if Á  is

∀w R x x w P x2 1 3 2 3( ( , , ) ( ))^:

then we might write Á  as φ( , )1 3x x , in which case Á( , )1 2t t  would be

∀ ∧ ¬w R t t w P t2 1 2 2 2( ( , , ) ( )) .

Notice then that with this notation L3 can be written as:

If φ( , , , , , , , )1 2 1 1x x x x x xi i i n − +  is a formula of L  which does not mention wj  then 
∃ − +w x x x w x xj i j i nφ ( , , , , , , , )1 2 1 1  , ∀ − +w x x x w x xj i j i nφ( , , , , , , , )1 2 1 1   are 
formulae of L .

Convention If we quantify a formula θ( , )1x x


 to get, say, ∃w w xj jθ( , )


 you should take it as read that 
wj  does not already appear in θ( , )1x x



 – so ∃w w xj jθ( , )


 is again a formula.9 [For emphasis however 
we may sometimes still mention this assumed non-occurrence.]

Referring back to the question at the end of the previous section, we now know what the θ θ φ1 ,, , n  
are, namely formulae of a language L . We now come to clarify the second part of that question.
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Truth
Let L  be a relational language. We have seen from the introductory motivation section that, for example, 
we can give a meaning, or semantics, to a formula such as ∃ ∀w w Q w w1 2 1 2( , )  by interpreting the bound 
variables w w1 2,  as ranging over some universe (such as the set of natural numbers  ), interpreting 
the free variables xi  as elements of this universe, interpreting the binary relation symbol Q  as a binary 
relation (such as ‘greater than’) on this universe, and interpreting the quantifiers and connectives in the 
obvious way appropriate to their names. We can then talk about a formula being true in this interpretation.

For example, with this interpretation of Q  etc. and interpreting x1  as the number 2 2  ,

∃w Q w x2 2 1( , )

is true since there does exist a number w2 2   such that w2  is greater than 2.

However with this same interpretation

∀ ∃w w Q w w1 2 1 2( , )

is false since it is not the case that for every w1 ∈  there is a w2 ∈  such that w1 is greater than w2 
(because this fails for w1 = 0).

We now want to make precise what we mean by an ‘interpretation’ To do that we first need to say what 
we mean by a ‘relation’ on a non-empty set A.

In the example given above we have interpreted Q  as the binary relation of ‘greater than’ between natural 
numbers. Now clearly we could identify

`greater than  between

natural numbers

the set' 



≡
〈{ 〉 ∈ ×n m,   | nn m> }







In other words we can think of the relation of ‘greater than’ as a specific subset of 2 . But this is a quite 
general phenomenon, we can identify any n -ary relation   on A  with a subset of An , namely the 
subset

{ | }〈 〉a a a A a a an
n

n1 2 1 2, , , ( , , , ) . 2 
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Conversely any subset S of An  determines an n -ary relation on A , namely the relation   such that

 ( , , , ) ,1 2 1 2a a a a a a Sn n holds ⇔ 〈 〉, , .2

The upshot of all this is that we now see that effectively n -ary relations on A  and subsets of An  are 
the same thing. Realizing this our definition of an interpretation becomes much easier to state.

It turns out (for reasons which hopefully will be clear later) that it is best to split this notion of 
an interpretation into two parts, the interpretation of the universe and the relations of L and the 
interpretation of the free variables. The former we call a structure for L :

Definition

A structure M  for a relational language L  consists of:

•	 a non-empty set10 M , called the universe (or domain) of M ,
•	 for each n -ary relation symbol R  of L  a subset RM  of | |M n (equivalently an n -ary 

relation on | |M )11

In this case we sometimes write

M M R RM M= , , ,1 2〈 〉

where R R1 2, ,  are the relation symbols in L .

Examples

Let L P Q= ,{ }  with P  1-ary and Q  2-ary.

Then examples of structures for L  are:

a)	 Universe of M  is  , i.e. M =  ,

Q n m n mM = , ,2{ | > }〈 〉 ∈ 

P n nM = ∈{ } | is prime .
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b)	 Universe of M  is  ,

Q s t s tM = , = 5 ,2 2〈 〉 ∈ +{ } |

P s sM = =∈{ }R Q| is rational .

c)	 Universe of M  is {1, 2, 3},

QM = 1,1 , 1,2 , 3,2 , 2,3 ,〈 〉 〈 〉 〈 〉 〈 〉{ }

		  PM = .;

The second part of the ‘interpretation’, the interpretation of the free variables xi  as elements of the 
universe of the structure M , we shall refer to as an assignment, possibly writing x ai i  to indicate 
that the variable xi is being assigned the value a Mi 2 , or being interpreted as a Mi 2 .

We are now ready to clarify the third ‘unknown’ in the last paragraph of the initial ‘motivation’ section, 
what it means for a formula to be true in an interpretation.
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Recall that for a relational language L we have split an ‘interpretation’ into two parts: a structure for L  
and an assignment of elements in the universe of that structure to the free variables. Given a formula 
φ( , , , )1 2x x xn  of L  we now wish to define

φ( , , , )

, , ,

1 2

1 2

x x x

M L

x x x

n



is true in the

structure for when the

nn

na a a

M M

are assigned values

resp. from the

universe of

1 2, , ,

)
wwritten M a a an φ( , , , )1 2  .

[Recall that when we write φ  as φ( , , , )1 2x x xn  it is implicit that all the free variables mentioned in 
φ  are amongst x x xn1 2, , ,  though they do not necessarily all need to actually occur in φ. ]

For a fixed structure M  for L , with universe M , and any choice of assignment x ai i  to the free 
variables, we define

M a a anη( , , )1 2 ,

by induction on the length of η( )


x FL∈  (for all assignments simultaneously) in the obvious way:

Tl For R x x x FLi i in
( , , , )

1 2
 ∈ , where R  is an n -ary relation symbol in L ,

M R a a a a a a Ri i in i i in

M ( , , , ) ,
1 2 1 2

 ,

,

, , ∈

the relation interpretiing in

holds for

R M

a a ai i in1 2
, , , .

T2 For formulae θ( , , , )1 2x x xn , φ( , , , )1 2x x xn  etc. of L  and 
� …a a a Mn= ,1 , ∈ ,

M a M a M a

M a a M a M

  
  

¬
∧

φ φ φ
θ φ θ φ

( ) ( ) ( )

( ) ( ) ( )

  

  

,
,

not i.e.

and

,

(( )

( ) ( ) ( ) ( )

( ) ( ) ( )



   

  

a

M a a M a M a

M a a M a

  
 

θ φ θ φ
θ φ θ

∨
→

,
,

or

orMM a φ( )


.
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T3 

M w w a b M M b a

M w w a b
j j

j j

 


∀ ∈
∃

Ã Ã

Ã

( , ) , ( , )

( , )

 



,
,

For all

For some

.

∈∈ M M b a, ( , ) Ã


.

Notice that by Theorem 1 (Unique Readability) for a given formula η( )


x  exactly one of the above cases 
applies and hence whether or not M aη( )



 is unambiguously determined by Tl-3.

Notation If M a a an φ( , , , )1 2   we say that φ( , , , )1 2a a an  is true in M  or that φ( , , , )1 2x x xn  
is satisffied by a a an1 2, , ,  in M .

Examples

1.  Let M  be as in (a) above, so the universe of M  is , PM  is the set of primes and

Q n m n mM = , .2{ | > }〈 〉 ∈ 

Then using Tl, M P (7)  since 7 ∈ PM , i.e. 7 is a prime. Also M Q (4,7)  since 〈4, 7〉 ∈ QM , 
i.e. not (4 7)> , so by T2, M Q : (4,7).

Hence by T2,

M P Q (7) (4,7)∧ ¬

and12 by T3,

M w P w Q w ∃ ∧ ¬2 2 2( ( ) (4, )) .

In the above example we have moved from simple to more complicated formulae. However in practice 
when checking if a formula is true in an interpretation we usually start at the complicated end and 
successively break it down using T1-T3 until we (hopefully) reach a stage where we can ‘see’ whether 
or not it is true. For example

M w w Q w w P w

m M w Q w m P w




∀ ∃ ∧
∈ ∃ ∧

1 2 2 1 2

2 2 2

( ( , ) ( ))

, ( ( , ) ( )), for all b , yy T3,

for all there is some such that, m n

M Q n m P n T

∈ ∈
∧

 ,

( , ) ( ) 3 , ,,
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, for all there is some such

that and by T2

m n

M Q n m M P n

∈ ∈ ,

( , ) ( )  ,

,, for all there is some such

that and by T1

m n

n m Q n PM M

∈ ∈

〈 〉 ∈ ∈

 ,

, , ,

,, for all there is some such

that and is prime,

m n

n m n

∈ ∈
>

 ,

– which is true, there are unboundedly many primes.

2.	 Let M  be as in (c) above, so M  is {1, 2, 3}, PM = ; .

QM = 1,1 , 1,2 , 3,2 , 2,3 .{ }〈 〉 〈 〉 〈 〉 〈 〉

Then M Q (3,2)  since 〈 〉 ∈3 2, QM  but M Q M Q (2,1) ( (2,1))so :  since 〈 2, 1〉 ∈ QM .   
Hence by T3,

M w Q w ∃ 1 1(3, ). � (2)
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Similarly since 〈 1, 2 ,〉 〈 2, 3 , (1,2)〉 ∈ Q M QM   and M Q (2,3) , and hence

M w Q w M w Q w ∃ ∃1 1 1 1(1, ) (2, )and . � (3)

Finally, since 1, 2, 3 are all the elements in the universe of M , from these we obtain from (2) and (3),

M w w Q w w ∀ ∃2 1 2 1( , ) .

We are now ready to put these three features, formulae, interpretation, truth, together to capture our 
initial intuitions about ‘logical consequence’.

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Logical Consequence

25 

Logical Consequence
Definition Let L  be a relational language, Γ  a set (possibly empty) of formulae of L i e FL( . . )Γ ⊆  
and θ 2 FL . Then θ  is a logical consequence of Γ  (equivalently Γ  logically implies θ), denoted Γ  θ , 
if for any structure M  for L  and any assignment of elements of M  to the free variables x x1 2, ,  
appearing in the formulae in Γ  or θ , if every formula in Γ  is true in that interpretation then θ  is true 
in that interpretation.13

So, for example if

¡ 1 1 2 n 2 1 2 n m 1 2 n= ( , , , ), ( , , , ), ( , , , )f gÁ x Á Áx x x x x x x x   ,

then

 

¡  θ( , , , )

,
1 2

1 2

x x x M L

a a a
n

n





, for all structures for and for all

, iin the universe of if

for

then

M

M a a a i m

M
i n

,

, ,


Á ( , , , ) = 1,21 2  

µµ( , , , )1 2a a an .

In the case ¡ = ;  we usually write  θ  instead of ;  µ. Notice that in this case since every formula 
in the empty set is true in any interpretation (because there aren’t any!)  µ( , , )1x xn  holds just if for 
every structure M  for L  and a a M M a an n1 1, ( , , ), , . 2  θ 14 A formula θ  with this property is 
known as a tautology. A formula which is false in all interpretations (equivalently its negation is a 
tautology) is referred as a contradiction. An example of a tautology is (Á Á_: ), and an example of 
a contradiction is ( )Á Á^: , for Á 2 FL .

Examples In what follows take it as read that Á µ,  etc. are formula from a relational language L  and 
Γ  is a set of formulae from L , equivalently ¡ µ FL .

1.	 Á Á( , , , , ) ( , , , , )1 2 3 1 1 2 3x x x x w w x x xn n  9 .
15

Proof  Let M  be a structure for L  with universe M  and a a a Mn1 2, , , 2 . Suppose that

M a a an Á( , , ) .1 2 ,

Then certainly for some b M2 ,

M b a a an Á( , , , ),2 3 ,

namely b a= 1  will do, so by T3

M w w a a an ∃ 1 1 2 3( , , , ) .Á ,
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Since M  was an arbitrary structure for L  and a a an1 2, , ,  arbitrary elements of the universe of M 
the required result follows.

2.	 8w w x x x x x x xn n1 1 2 3 1 2 3( , , , , ) ( , , , , )Á Á  .

Proof  Let M  be a structure for L  with universe M  and a a a Mn1 2, , , 2 . Suppose that

M w w a an ∀ 1 1 2( , , ) .Á ,

Then from T3, for all b M2 ,

M b a a an Á( , , , ) .2 3 ,

In particular

M a a a an Á( , , , ) ,1 2 3 ,

from which the required result follows.
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3.	 9w w x1 1( , )Á


, 8 ! 9w w x w x w w x1 1 1 1 1( ( , ) ( , )) ( , )Á µ µ
   ,

where � …x x x x xn= , ,1 2 3, , .

Proof  Let M  be a structure for L  with universe M  and � …a a a a Mn= ,1 2, , 2 . Suppose that

M w w a 9 1 1( , )Á


, � (4)

M w w a w a 8 !1 1 1( ( , ) ( , ))Á µ
 

. � (5)

Then from (4) and T3, for some b M2 ,

M b a φ( , )


. 	�  (6)  

From (5) and T3,

M b a b a Á µ( , ) ( , ).
 !

From T2,

M b a φ( , )
  or M b a θ( , )

 .

By (6) the first of these doesn’t hold so it must be the case that

M b a µ( , ).


T3 now gives that

M w w a 9 1 1( , ),µ


as required.

Note that there was nothing special about the choice of variable w1  here, we could in general have been 
using wj .

Another Example

Γ Γ θ φ θ φ( ) ( ) , ( ) ( )
   

x x x x→ ⇔ 16
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Proof  Assume that

¡  µ Á( ) ( )
 

x x! , � (7)

so we want first to show that

¡, ( ) ( ).µ Á
 

x x

To this end let M  be a structure for L  with universe M  and suppose we have some assignment to 
the free variable such that � � �x a  and under this interpretation every formula in Γ  is true and θ( )



a  
is true. Then

M a θ( )


� (8)

and from (7), since even formula in Γ  is true in this interpretation,

M a a θ φ( ) ( ).
 →

By T2 then,

M a θ( )
  or M a φ( )

 .

Using (8) we must have M a φ( )
 .

In summary then we have shown that if all the formulae in Γ  and θ( )


x  are true in an interpretation 
then so is φ( )



x . Hence

Γ, ( ) ( ).θ φ 

x x

Conversely assume that

Γ, ( ) ( )θ φ 

x x . � (9)

We wish to show that

Γ  θ φ( ) ( ).
 

x x→

So suppose we have a structure M  and an assignment to the free variables (where � � �x a ) under which 
every formula in Γ  is true. There are now two cases.
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Case 1: M a θ( )
 .

In this case every formula in Γ  along with θ( )


x  is true under this interpretation so from (9),

M a φ( ).


Hence (trivially)

M a θ( )
  or M a φ( )



so from T2

M a a θ φ( ) ( ).
 →

Case 2: M a θ( )
 .

In this case again (trivially)

M a θ( )
  or M a φ( )


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so from T2

M a a θ φ( ) ( ).
 →

Either way then

M a a θ φ( ) ( ).
 →

In summary what we have shown then is that under assumption (9) if we have a structure and an assignment 
to the free variables in which every formula in Γ  is true then θ φ( ) ( )

 

x x!  is also true under that  
interpretation, i.e.

Γ  θ φ( ) ( ),
 

x x→

as required.

We have now given several examples of demonstrating that some logical implication does hold. Conversely 
to show that Γ  θ  does not hold, denoted Γ  θ , it is enough to find a structure and an assignment 
to the free variables as elements of the universe of that structure in which every formula in Γ  is true 
but θ  is false.

Example

∃ ∃ ∃w w R w w w R w w1 2 1 2 1 1 1( , ) ( , ).

Proof  Let M  be a structure for L  with universe { }0,1  and let RM = 0,1{ }〈 〉  (we don’t need to bother 
here about any assignment to the free variables –because there aren’t any!). 

Then M R (0,1)  so M w w R w w ∃ ∃1 2 1 2( , ) . However if M w R w w ∃ 1 1 1( , )  we would have to have

M R (0,0)  or M R (1,1) ,

equivalently

〈 〉0,0 2 RM  or 〈 1, 1〉 2 RM

both of which are false. Hence

M w R w w ∃ 1 1 1( , ),
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giving the required counter-example to

∃ ∃ ∃w w R w w w R w w1 2 1 2 1 1 1( , ) ( , ).

Sentences

Notice that in this last example we did not need to bother about the assignment to free variables because 
there were none involved.

A formula of L  without free variables is called a sentence of L . So for example 
∀ ∃ →w w R w w w P w2 1 1 1 2 2( ( , , ) ( ))  is a sentence whereas ( ( , , ) ( ))1 1 1 1 1∃ →w R w w x P x  is a formula but 
not a sentence (because a free variable, x1  in this case, occurs in it).

We denote the set of sentences of L  by SL .

In most applications of logic we deal with sentences, in which case the assignment of values to free 
variables doesn’t figure and we only need talk about truth in a structure.17 So if θ 2 SL  it makes sense 
to write M  θ  without specifying any assignment of values to the (non-existent!) free variables. In 
this case we say that M  is a model of θ . Similarly if Γ ⊆ SL  and M  θ  for every θ 2 Γ  we say that 
M  is a model of Γ  and write M  Γ .

Very often a proof given for sentences trivially generalizes to formulae, as we shall now see.

Example

If Γ, ∆ ⊆ SL  and θ φ, , Ã 2 SL  and Γ, θ  Ã  and ¢, Á Ã  then18 Γ, ,¢ θ _ Á Ã .

Proof  Let M  be a structure for L  such that M  Γ ∪ ∆ ∪ { }θ φ_ , meaning that M η  for 
every sentence η θ φ2 _Γ ∪ ∆ ∪ { }. Then M M Γ, ∆  and M  θ φ_ , so from T2 either 
M  θ  or M  φ . Without loss of generality assume M  θ  (since there is complete symmetry 
here between Γ, θ  and ∆, φ ). Then M  Γ ∪{ }θ  so since Γ, ,θ  Ã ÃM . Hence

Γ, , .∆ θ φ_  Ã

Logical Equivalence

Definition Formulae µ Á( ) ( )
 

x x FL, 2 , are logically equivalent, written µ Á( ) ( )
 

x x´ , if for all structures 
M  for L  and a  from M ,

M a M a µ Á( ) ( ).
 ,
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Notice that

µ Á µ Á

Á µ

( ) ( ) , , [ ( ) ( )]

[ ( ) ( )]

    

 

x x M a M a M a

M a M a

M

≡ ∀ ⇒
⇒

∀

,

,

 
 and

,, , [ ( ( ) ( ))]

[ ( ( ) ( ))]

, , [ ( ( )

  

 

 

a M a a

M a a

M a M a





µ Á

Á µ

µ

→
→

∀
and

, ↔↔
↔
→ →

Á

µ Á

µ Á Á µ

µ

( ))]

( ( ) ( ))

( ( ) ( )) & ( ( ) ( ))

(



 

   



a

x x

x x x x

,
,
,


 
xx x x x) ( ) & ( ) ( ) Á Á µ

  

where ( )µ Á$  is shorthand for (( ) ( ))µ Á Á µ! ^ ! .

Clearly ´ is an equivalence relation, that is it is:

Reflexive, i.e. it satisfies µ µ´  for all µ 2 FL

Symmetric, i.e. it satisfies µ Á Á µ´ ) ´  for all µ Á, 2 FL,

Transitive, i.e. it satisfies ( )µ Á Á Ã µ Ã´ ´ ) ´&  for all µ Á Ã, , 2 FL.
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If two formulae are logically equivalent they ‘say the same thing’ or ‘have the same meaning’ in the 
sense that one is true just if the other is. Very often in logic this is the important relationship between 
formulae, rather than equality. For that reason it is important to be able to recognize some simple logically  
equivalent formulae:

Some useful logical equivalents

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) (

µ Á Á µ µ Á Á µ

µ µ µ Á µ Á

µ Á µ Á µ Á

^ ´ ^ _ ´ _
:: ´ ! ´ : _

: ^ ´ : _: : _ )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

´ : ^:
: ! ´ ^: ! ´ : ! :
´ ^ _ ^: ´ _ ^

µ Á

µ Á µ Á µ Á Á µ

µ µ Á µ Á µ µ Á (( )

( ) ( ) ( ) ( ) ( ) ( )

( , )

µ Á

µ Á Ã µ Á µ Ã µ Á Ã µ Á µ Ã

µ

_:
^ ´ _ ^ _ ^ _ ´ ^ _ ^

: ´
∨
∃w w xj j

 ∀∀ ∀ ∃
∃ ∃

w w x w w x w w x

w w x w w

j j j j j j

j j k k

: : ´ :
´

µ µ µ

µ µ

( , ) ( , ) ( , )

( , ) ( ,

  

   

x w w x w w xj j k k) ( , ) ( , )∀ ∀µ µ´

	

9 9 ´ 9 9w w w w x w w w w xj k j k k j j kµ µ( , , ) ( , , )
 

∀ ∀ ∀ ∀w w w w x w w w w xj k j k k j j kµ µ( , , ) ( , , )
 ´

∃ ∃w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   ^ ´ ^

∀ ∀w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   ^ ´ ^

9 _ ´ _ 9w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   

∀ ∀w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   _ ´ _

9 ! ´ ! 9w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   

8 ! ´ !w x w x x w w xj j j j( ( ) ( , )) ( ) ( , )Ã µ Ã µ
   ∀

9 ! ´ !w w x x w w x xj j j j( ( , ) ( )) ( , ) ( )µ Ã µ Ã
   ∀

8 ! ´ 9 !w w x x w w x xj j j j( ( , ) ( )) ( , ) ( )µ Ã µ Ã
   

where throughout wj  does not occur in Ã( )


x  (and of course wk  does not occur in 9w w xj jµ( , ))
 .

These can be checked directly from the definition of ´. We give a couple of examples. Throughout let 
M  be an arbitrary structure for L  with a  from M .
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Then

M a a M a a

M a M a

 
 

: ^ ,
,

( ( ) ( )) ( ( ) ( ))

[ ( ) ( )

µ Á µ Á

µ Á

   

 

not 

not and

∧
]]

( ) ( )

( ) ( )

( ( ) (

,
, : :
, : :

not or not

or

M a M a

M a M a

M a

 
 


µ Á

µ Á

µ Á

 

 

 

aa)) .

 

	
∴ : _ ´ : _:( ( ) ( )) ( ( ) ( )).µ Á µ Á

   

x x x x

M w w a xj j 9 !( ( , ) ( ))µ Ã
 

, 9 2 !
, 9 2
, 9 2

b M M b a a

b M M b a M a

b M M

, ( ( ( , ) ( ))

, ( ( , ) ( ))

[ ,


 

µ Ã

µ Ã

 

 

or

 
 



µ Ã

µ Ã

µ

( , )] ( )

, ( , )] ( )

(

b a M a

b M M b a M a

M w wj

 

 

or

[not or, 2
,

∀
∀

�

jj

j j

a M a

M w w a a

, ) ( )

( ( , ) ( )).

 

 

or 


Ã

µ Ã, !∀
	

∴ ∀9 ! ´ !w w x x w w x xj j j j( ( , ) ( )) ( ( , ) ( )).µ Ã µ Ã
   

Lemma 2

If µ µ Á Á1 2 1 2,´ ´  and Ã Ã1 2( , ) ( , )x x x xi i

 ´  then19:

( ) ( ) ( ) ( ),1 1 2 2 1 1 2 2µ Á µ Á µ Á µ Á^ ´ ^ _ ´ _,

( ) ( )1 1 2 2 1 2µ Á µ Á µ µ! ´ ! : ´ :,

9 ´ 9 8 ´ 8w w x w w x w w x w w xj j j j j j j jÃ Ã Ã Ã1 2 1 2( , ) ( , ) ( , ) ( , )
   

,

Proof  Let µ µ1 1= ( )


x  etc., M  a structure for L  and a M2 . Then when µ µ Á Á1 2 1 2,´ ´ ,

M a a M a M a

M a M

  
 

µ Á µ Á

µ Á
1 1 1 1

2 2

( ) ( ) ( ) ( )

( ) (

   

 

^ ,
,

and by T2

and aa

M a a

)

( ) ( ) ,1 1, ^ µ Á
 

and hence ( ) ( )1 1 2 2µ Á µ Á^ ´ ^ . The cases for the other connectives are exactly similar.

Now suppose that Ã Ã1 2( , ) ( , )x x x xi i

 ´ . Then if M w w aj j 9 Ã1( , )
  there is some b M2  such 

that M b a Ã1( , )


.  By the assumed logical equivalence, for this same b M b a, ( , )2 Ã
 . Hence 

M w w aj j ∃ Ã2( , )
 . Obviously the same proof works in the other direction, giving the required result 

that 9 ´w w x w w xj j j jÃ Ã1 2( , ) ( , )
 ∃ . The case for ∀ is exactly similar.				       
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The Prenex Normal Form Theorem
The next theorem turns out to be a very useful representation result in many areas of logic.20

The Prenex Normal Form Theorem, 3

Every formula θ( )


x  of L  is logically equivalent to a formula in Prenex Normal Form (PNF), that is of 
the form

Qw Q w Q w w w w xj j k jk j j jk1 1 2 2 1 2
( , , , )… … �

Ã ,

where the Qi = ∀  or ∃, = 1,2i k, ,  and there are no quantifiers appearing in Ã .

Proof*  The proof is by induction on the length of θ . Assume the result for formulae of length less than 
θ . As usual there are various cases.

Case 1: µ = ( )R x
  where R is a relation symbol of L.

In this case θ  is already in PNF.
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Case 2: µ Á= : .

By the Inductive Hypothesis we have that

Á Ã´ Qw Q w Q w w w w xj j k jk j j jk1 1 2 2 1 2
( , , , )… … �

,

for some quantifier free Ã. In this case, by Lemma 2

µ Á Ã= ( , ).1 1 2 2
: ´ :Qw Q w Q w w xj j k jk

… � �

We now prove by induction on k  that this right hand side is logically equivalent to a formula in PNF 
(which does it for this case of course). Clearly this is true if k = 0  since such a formula would already 
be in PNF. So assume it’s true for k − 1 . Then by the ‘useful logical equivalents’

: ´ :Qw Q w Q w w x Q w Q w Q w w xj j k jk j j k jk1 1 2 2 1 1 2 2
( , ) ( , )… � � … � �

Ã Ã′ .

where

Q
Q

Q1

1

1

=
= ,

= .
′

∃ ∀
∀ ∃

(
if

if

Also, by the Inductive Hypothesis

:Q w Q w Q w x w w w xj j k jk i j j jk2 2 3 3 1 2 3
( , , , , )… … �

Ã ,

is logically equivalent to a formula χ( , )
1

x xi

  in PNF. (Here xi1
 is some variable which has not already 

occurred.) So by Lemma 2

:Qw Q w Q w w w w xj j k jk j j jk1 1 2 2 1 2
( , , , )… … �

Ã ,

´ :Q w Q w Q w w w w xj j k jk j j jk1 1 2 2 1 2
( , , , )′ … … �

Ã ,

´ :Q w Q w Q w w w w xh j k jk h j jk1 2 2 2
( , , , )′ … … �

Ã , by Lemma 2,

where wh  does not occur in χ( , )
1

x xi

 , Ã( , , , )
1

w w xj jk
… � ,

´ Q w w xh h1 ( , )′ χ  , by using Lemma 2,

and this last formula is in PNF.
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Case 3: µ Á Á= ( )1 2^ .

By the Inductive Hypothesis we have that

Á Ã1 1
1

1 2
1

2

1

1 2
( , , , ),´ Q w Q w Q w w w w xj j k jk j j jk

… … �
,

Á2 1
2

1 2
2

2

2

1 2
( , , , )´ Q w Q w Q w w w w xs s u su s s su

… … �η ,

for some such right hand side PNF formulae. By Lemma 2 ( )1 2φ φ^  is logically equivalent to

Q w Q w Q w w w w xj j k jk j j jk1
1

1 2
1

2

1

1 2
( , , , )… … �

Ã , ^

Q w Q w Q w w w w xs s u su s s su1
2

1 2
2

2

2

1 2
( , , , , )… … �η

�
(10)

so it is enough to show that such a conjunction is logically equivalent to a formula in PNF. This we now 
prove by induction on k u+ .

If k u+ = 0  then the conjunction (10) is already in PNF. Suppose the result holds for ′ + ′ +k u k u< . 
Without loss of generality we may suppose that u > 0 , otherwise we can suppose that k > 0  and 
transpose the conjuncts (which is logically equivalent). By the Inductive Hypothesis let χ( , )

1
x xi

  be a 
formula in PNF logically equivalent to

Q w Q w Q w w w w xj j k jk j j jk1
1

1 2
1

2

1

1 2
( , , , )… … �

Ã , ^

	 Q w Q w x w w xs u su i s su2
2

2

2

1 2
( , , , , )… … �η � (11)

(where xi1
 is a previously unmentioned free variable). Pick h  such that wh  does not occur in (10) or 

Â( , )
1

x xi

 . Then by the ‘useful logical equivalences’ and Lemma 2 the PNF formula Q w w xh h1
2 ( , )Â

  is 
logically equivalent to each of

Q w Q w Q w Q w w w w xh j j k jk j j jk1
2

1
1

1 2
1

2

1

1 2
( ( , , , )… … �

Ã , ^

Q w Q w w w w xs u su h s su2
2

2

2

2
( , , , ))… … �
´ ,

Q w Q w Q w w w w xj j k jk j j jk1
1

1 2
1

2

1

1 2
( , , , )… … �

Ã , ^

Q w Q w Q w w w w xh s u su h s su1
2

2
2

2

2

2
( , , , ))… … �
´ ,

Q w Q w Q w w w w xj j k jk j j jk1
1

1 2
1

2

1

1 2
( , , , )… … �

Ã , ^

Q w Q w Q w w w w xs s u su s s su1
2

1 2
2

2

2

1 2
( , , , )… … �
´ ,

and hence finally to Á Á1 2^  and µ. The proofs for the cases for µ Á Á= ( )1 2_  and µ Á Á= ( )1 2!  are 
similar and are left as amusing exercises.
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Case 4: µ Á= ( )9w w xj j i .

This case is easy. Since Á µ<  by the Inductive Hypothesis there is a formula Â  in PNF logically 
equivalent to Á . Let h  be such that wh  does not occur in χ  or Á . Then

µ Á Á Â= ( ) ( ) ( )9 ´ 9 ´ 9w w x w w x w w xj j i h h i h h i

and ∃w w xh h iχ( )  is in PNF, as required.

The case for µ Á= ( )8w w xj j i  is exactly similar. 	 					       

Example

Find a formula in PNF logically equivalent to : 8 ^ 9( ( ) ( ))1 1 1 1w R w w P w : 

: ^ 9 ´ : _:9
´ 9 _ :

( ( ) ( )) ( ) ( )

( ) (
1 1 1 1 1 1 1 1

1 1 1

∀ ∀
¬ ∀

w R w w P w w R w w P w

w R w w P w11)


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by Lemma 2 and the ‘Useful Equivalents’, UEs, : ^ ´ : _:( ) ( )µ Á µ Á

¬∀ ¬w R w w R w1 1 1 1( ) ( )´ 9 , ¬∃ ¬w P w w P w1 1 1 1( ) ( )´ 8 ,

´ 9 : _ 8 :w R w w P w1 1 2 2( ) ( )

by Lemma 2, reflexivity of ≡  and the UE∀w P w w P w1 1 2 2( ) ( ): ´ 8 : ,

´ 8 : _:w w R w P w2 1 1 2( ( ) ( ))∃ , 				�     (12)

by the UEs. Also by the UEs,

( ( ) ( )) ( ( ) ( ))

( ( ) ( ))
1 1 2 2 1 1

1 2 1

9 : _ : ´ : _ :
´ : _:

w R x P x P x w R w

w P x R w

∃
∃

so by Lemma 2,

8 : _ : ´ 8 : _:w w R w P w w w P w R w2 1 1 2 2 1 2 1( ( ) ( )) ( ( ) ( ))∃ ∃

and from this, (12) and transitivity of ´,

: ^ 9 ´ 8 : _:( ( ) ( )) ( ( ) ( )),1 1 1 1 2 1 2 1∀ ∃w R w w P w w w P w R w

a PNF equivalent (it’s not unique, obviously).

Generally the more quantifiers (or the more alternations of blocks of universal and existential quantifiers) 
there are in a formula in Prenex Normal Form the more it can express, in the sense for example of not 
being logically equivalent to a formula in Prenex Normal Form with few quantifiers (or alternating 
blocks of quantifiers). Indeed in several areas of logic this is used as a measure of the complexity of sets 
defined by formulae.

An exception to this pattern however is when the formula only contains unary relation symbols.21 In 
this case having more than one alternation of quantifiers does not give you anything new, as we shall 
shortly demonstrate. Firstly however we need a little notation.

Given φ φ φ1 2, , , m FL∈  we write

φ φ φ φ1 2

1

^ ^ ^ m

n

i
or

i =

V

for the formula

(( ((( ) ) ) ) ).1 2 3 4 1 φ φ φ φ φ φ^ ^ ^ ^ ^ ^m m−
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More precisely we define by induction

i i i= 1

1

1
= 1

1

= 1
1= , =

V V V
φ φ φ φ φi

n

i

m

i n

+

+

















^ .

So what we are doing here is is repeatedly taking conjunctions, starting from the left.

It is now rather clear, and certainly straightforward to prove by induction on n , that 
i

n

i=1

V
φ  is true in 

an interpretation just if each conjunct φi  for i n= 1, ,  is true in that interpretation. This is an valuable 
observation because it means that if we change the order of the φi , or insert or remove repeats, in this 
big conjunction then the formula we obtain is logically equivalent to the one we started with. Since 
much of the time in logic we are only interested in formulae up to logical equivalence this can allow us 
a useful freedom. 

For example for a finite set S  of formulae we might simply write 
V
S  for a conjunction of the formulae 

in S  without specifying the precise order in which this conjunction is supposed to be taken since up to 
logical equivalence this does not matter.

It is also convenient to identify the conjunction of the set of formulae in the empty set, i.e.

^
;  or 

i = 1

0V
Ái

with some tautology, the precise tautology chosen being irrelevant when we are only interested in 
formulae up to logical equivalence. Notice that with this convention we still have that that 

V
;  is true 

in an interpretation just if every formula Á 2 ;  is true in that interpretation, since they all are,22 and 
V
;  must also be true because it is a tautology.

Exactly similarly given Á Á Á1 2, , , m FL2  we write

Á Á Á Á1 2
1

_ _ _ m
i

n

ior
=

W

for the formula

(( ((( ) ) ) ) ) .1 2 3 4 1 φ φ φ φ φ φ_ _ _ _ _∨ −m m

In this case we take the disjunction of the formulae in the empty set to be a contradiction and we have, 
even for n = 0 , that 

i

n

i
=1

W
Á is false in an interpretation just if each Ái  is false in that interpretation.
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Having got that bit of useful notation out of the way let µ( , , )1x x FLn 2  and suppose that the relation 
symbols occurring in µ  are R R Rm1 2, , ,  and these are all unary. Writing Á1  for Á  and Á0  for :Á  
we call a formula of L  an atom ( , , , )1 2for R R Rm  if it has the form

R x R x R xm
m

1
1

1 2
2

1 1( ) ( ) ( )
ε ε ε^ ^ ^

for some ε ε ε1 2, 0,1, , m 2 { }.

For example

R x R x R x R x R xm
m

m
m

1 1 2 1 3 1 1
1

1 1( ) ( ) ( ) ( ) ( )^: ^: ^ ^ ^: −
−ε ε

is the atom for R R Rm1 2, , ,  with

ε ε ε ε ε1 2 3 1= 1, = 0, = 0, = 1, = 0., m m−

Since there are 2m  choices for the finite sequence ε ε ε1 2, 0,1, , m 2 { } there are 2m  such atoms, which 
we shall denote by α α α1 1 2 1 2 1( ) ( ) ( )x x xm, , , .
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Now suppose that we are given an interpretation for L. Let µ( , , )1x xn  be as above and let 1∙   i   ∙   m .     
Then exactly one of R xi1( ) , :R xi1( )  is true in this interpretation. In other words there is a unique 
ε1 0,12 { } such that R xi1

1( )
ε  is true in this interpretation. Similarly there is a unique ε2 0,12 { }  such 

that R xi2
2( )
ε  is true in this interpretation. Continuing in this way we see that there is a unique atom 

αhi
 such that αhi ix( )  is true in this interpretation. 

Similarly for each 1∙    k     ∙2m exactly one of ∃w wk1 1( )α  and :∃w wk1 1( )α  is true in this interpretation. 
In other words there is a unique δk 2 { }0,1  such that ( ( ))1 1∃w wk

kα δ  is true in this interpretation. 
Putting these observations together then there are unique finite sequences j j jn

m
1 2, 1,2, , 2, , 2 { } 

and δ δ δ1 2 2
, 0,1, , m 2 { }  such that the formula

i j= 1 = 1

2

1 1( ) ( ( ))

n

ji i

m

j
jx w w

V V
α α

δ^ 9   					�        (13)

is true in this interpretation. Call a formula of this form for some j j jn
m

1 2, 1,2 2, , , , 2 { } and 
± ± ±1 2 2

, 0,1, , m 2 { }  a diagram for x xn1, , .

Theorem 4¤ Let µ( , , )1x x FLn 2  and suppose that the relation symbols occurring in µ  are R R Rm1 2, , ,  
and these are all unary. Then θ( , , )1x xn  is logically equivalent to a disjunction of diagrams for x xn1, , .

Before we give the proof it is worth noticing that not all diagrams are satisfiable since a diagram might for 
example have conjuncts α1 1( )x  and ¬∃w w1 1 1( )α . Clearly we could, without loss, drop these unsatisfiable 
diagrams from the representation given in this theorem.

Proof   ¤ The proof is by induction on | |µ( , , )1x xn , where n  can vary but the R Rm1, ,  are fixed.

In the case that θ = ( )R xr i , with, say, 1∙  i   ∙n, we have from the above discussion that in any 
interpretation

µ � �

� �

is true is true

some atom with i

,

,

R x

R x

r i

k

m

k
k

i r

( )

( ) = 1=1

V
ε ε ss true

some diagram 13  where

with

,

� �
( ) α

ε

ε
ji

k

m

k
k

j

r

R x= ( )

= 1
=1

V

iis true.

In other words R xr i( )  is logically equivalent to the disjunction of all such diagrams.

Now suppose that µ Á Ã( , , ) = ( ( , , ) ( , , ))1 1 1x x x x x xn n n  ^ . By inductive hypothesis Á  is logically 
equivalent to a disjunction of diagrams for � …x x x xn= ,1 2, ,  so given an interpretation Á  is true in that 
interpretation just if the unique diagram which is true in that interpretation is one of these disjuncts. 
Similarly for Ã .
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Hence µ  is true in an interpretation just if the diagram true in that interpretation is a disjunct for both 
Á  and Ã . Or to put it another way µ  is logically equivalent to the disjunction of diagrams which appear 
in the corresponding forms for both Á  and Ã . The cases for the other connectives are exactly analogous.

The tricky cases concern the quantifiers. So now suppose that θ φ( , , ) = ( , , , )1 1x x w x x wn j n j ∃ . By 
inductive hypothesis then there are diagrams for x x xn n1 1,, , + , say ξg n nx x x( , , , )1 1 +  for g u= 1, , , 
such that

Á »( , ) ( , ).1 1
=1

1 1x x x x xn
g

u

g n n , , ,+ +´
W

Then from the ‘Useful Logical Equivalents’, ULE’s,

9 ´

´

w x x w w x x w

w x

j n j
g

u

g n

g

u

g

φ ξ

ξ

( , , ) ( , , )

( ,

1 2
1

1 2

1
2 1

 



, ,∃

∃

=

=

µ ¶

µ

W

W
,, .x wn , )2

¶

Since each ξg nx x w( , , , )1 2  is a conjunction of expressions only one of which actually mentions w2 , 
and that one has the form αv w( )2  for some atom αv x( )1 , the ULE’s give that this ∃w x x wg n2 1 2( , , , )ξ   
is logically equivalent to a formula of the form

9 ^w w x xv n2 2 1( ) ( , )α ³ ,

where ³ is a diagram for x xn1, , . If ( ( ))1 2
1∃w wvα  already appears in ³ then (15) is logically equivalent 

to ³. On the other hand if ( ( ))1 1
1∃w wvα  does not already appear in ³ then ( ∃w wv1 1

0( ))α , i.e. ¬∃w wv1 1( )α , 
must appear in ³ and in that case (15) is not satisfiable.

From the ULE’s it now follows that ∃w x x wj n jφ( , , , )1   is logically equivalent to the disjunction of the 
(distinct) diagrams for which the (15) yielded a satisfiable ³, giving the required result.

Finally in the case θ( , , ) = ( , , , )1 1x x w x x wn j n j 8 Á  we have by the ULE’s that 
θ( , , ) = ( , , , )1 1x x w x x wn j n j ¬∃ ¬Á . To treat this formula it is simplest to use three of the cases 
already covered, namely going from Á( , , , )1 1x x xn n +  (where we can use the Inductive Hypothesis) 
to ¬ +Á( , , , )1 1x x xn n  (for which we then have the Inductive Hypothesis), thence to ∃ ¬w x x wj n jÁ( , , , )1  ,  
and finally to ¬∃ ¬w x x wj n jÁ( , , , )1  .					     	       		

(14)

(15)


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Formal Proofs
We have now given a formulation of what it means for, say, a formula φ  to follow logically from a set Γ  
of formulae by introducing a semantics, a notion of interpretation (or meaning) and truth, and saying 
that this ‘following’ happens just if whenever every θ 2 Γ  is true then so is φ. This seems to have worked 
out very well, all our initial intuitions have been proved to be spot on.

But there is another way that we might have tried to capture this notion of ‘follows’. Namely we could 
have just written down the properties we think ‘follows’ should have and once we have what appears 
to be an exhaustive list say that φ  follows from Γ  just if this can be shown purely on the basis of these 
properties. In other words we try to pin down ‘follows’ solely in terms of syntactic rules. [This may not 
make much sense to you right now but it will later.]

These ‘rules’ will be of the form

Γ Γ Γ
Γ

1 1 2 2, , ,| | |
|

θ µ µ

µ

 s s
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where the Γ Γ Γ Γ1 2, , , , s  are sets of formulae, possibly empty. The ‘idea’ behind these rules is that they 
represent situations where one feels that:

If I thought that θi  follows from Γi  for i s= 1,2, ,  then I should think that θ  follows from Γ .

While that might be the motivation however these rules can be viewed as purely formal, syntactic objects. 
In particular the |  need have no meaning, it’sjust a device for separating the two sides. [Expressions like 
Γ | θ  are called sequents.] We now give a list of such rules.23 In these rules the Γ, ∆  stand for sets of 
formulae, and the µ Á Ã, ,  stand for formulae of some relational language L .

The Rules of Proof for the Predicate Calculus
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These ‘rules’ will be of the form

Γ1 | θ1, Γ2 | θ2, . . . ,Γs | θs
Γ | θ

where the Γ1,Γ2, . . . ,Γs,Γ are sets of formulae, possibly empty. The ‘idea’
behind these rules is that they represent situations where one feels that:

If I thought that θi follows from Γi for i = 1, 2, . . . , s then I should
think that θ follows from Γ.

While that might be the motivation however these rules can be viewed as
purely formal, syntactic objects. In particular the | need have no meaning,
it’s just a device for separating the two sides. [Expressions like Γ | θ are called
sequents.] We now give a list of such rules.23 In these rules the Γ,∆ stand
for sets of formulae, and the θ, φ, ψ stand for formulae of some relational
language L.

The Rules of Proof for the Predicate Calculus

And In (AND)
Γ | θ, ∆ |φ
Γ ∪∆ | θ ∧ φ

And Out (AO)
Γ | θ ∧ φ

Γ | θ
Γ | θ ∧ φ

Γ |φ

Or In (ORR)
Γ | θ

Γ | θ ∨ φ

Γ | θ
Γ |φ ∨ θ

Disjunction (DIS)
Γ, θ |ψ, ∆, φ |ψ
Γ ∪∆, (θ ∨ φ) |ψ

Implies In (IMR)
Γ, θ |φ

Γ | θ → φ

Modus Ponens (MP)
Γ | θ, ∆ | θ → φ

Γ ∪∆ |φ

23You may at this point feel that they are not obviously exhaustive.
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Not In (NIN)
Γ, θ |φ, ∆, θ | ¬φ

Γ ∪∆ | ¬θ

Not Not Out (NNO)
Γ | ¬¬θ
Γ | θ

Monotonicity (MON)
Γ | θ

Γ ∪∆ | θ

All In (∀I) Γ | θ
Γ | ∀wj θ(wj/xi)

where xi does not occur

in any formula in Γ and
wj does not occur in θ

All Out (∀O)
Γ | ∀wj θ(wj, �x)

Γ | θ(xi, �x)

Exists In (∃I) Γ | θ
Γ | ∃wj θ′

where θ′ is the result of

replacing any number of
occurences of xi in θ by
wj and wj does not occur
in θ.

Exists Out (∃O)
Γ, φ | θ

Γ, ∃wj φ(wj/xi) | θ
where xi does not occur in

θ nor any formula in Γ
and wj does not occur in φ.

Finally we have a rule, or axiom, which requires no assumptions:

REF Γ | θ whenever θ ∈ Γ.

We can now give a second formulation of what we mean by ‘θ follows from
Γ’, namely that we can derive Γ | θ using just REF and the rules AND-∃O,
and investigate its relation to logical consequence, Γ |= θ.

First however we need to make precise what we mean by ‘derive using just
REF and the rules AND-∃O’.
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Finally we have a rule, or axiom, which requires no assumptions:

REF wheneverΓ Γ| µ µ 2 .

We can now give a second formulation of what we mean by ‘θ  follows from Γ', namely that we can derive 
Γ | θ using just REF and the rules AND-∃O, and investigate its relation to logical consequence, Γ  θ .

First however we need to make precise what we mean by ‘derive using just REF and the rules AND-∃O'.

Definition A (formal) proof is a sequence of sequents

¡ ¡ ¡1 1 2 2,| | |Á Á Á, m m

where the ¡i are finite subsets of FL , the Ái FL2  and for i = 1,2, . . . , m, either Γi i| Á  is an instance 
of REF or there are some j j j is1 2, , , <  such that

¡ ¡ ¡

¡

j j j j js js

i i

1 1 2 2
, , ,| | |

|

Á Á Á

Á



is an instance of one of the rules of proof.
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Not In (NIN)
Γ, θ |φ, ∆, θ | ¬φ

Γ ∪∆ | ¬θ

Not Not Out (NNO)
Γ | ¬¬θ
Γ | θ

Monotonicity (MON)
Γ | θ

Γ ∪∆ | θ

All In (∀I) Γ | θ
Γ | ∀wj θ(wj/xi)

where xi does not occur

in any formula in Γ and
wj does not occur in θ

All Out (∀O)
Γ | ∀wj θ(wj, �x)

Γ | θ(xi, �x)

Exists In (∃I) Γ | θ
Γ | ∃wj θ′

where θ′ is the result of

replacing any number of
occurences of xi in θ by
wj and wj does not occur
in θ.

Exists Out (∃O)
Γ, φ | θ

Γ, ∃wj φ(wj/xi) | θ
where xi does not occur in

θ nor any formula in Γ
and wj does not occur in φ.

Finally we have a rule, or axiom, which requires no assumptions:

REF Γ | θ whenever θ ∈ Γ.

We can now give a second formulation of what we mean by ‘θ follows from
Γ’, namely that we can derive Γ | θ using just REF and the rules AND-∃O,
and investigate its relation to logical consequence, Γ |= θ.

First however we need to make precise what we mean by ‘derive using just
REF and the rules AND-∃O’.
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So in order to be a proof every sequent ¡i i| Á  appearing in it must be justified, either by being an instance 
of the axiom REF or because it follows from some of the earlier (and so already justified) ¡jk jk

| Á . We 
require the ¡i  to be finite because we want proofs to be simply finite objects whose correctness can be 
checked mechanically in a finite time.

We can now formalize the above version of ‘follows’:

Definition For ¡ ⊆ FL  and µ 2 FL ,

¡ ¡ ¡

¡ ¡

 µ Á Á

µ Á

, ∃
⊆

a proof

such that
1 1

, =

| |, ,

.

 m m

m m

In this case we say that ¡ ¡1 1| |Á Á, , m m  is a proof of θ  from ¡ . We say ¡  ‘proves’ θ , or, ‘there is a 
proof of θ  from ¡' , for ¡  µ . Notice that in this definition ¡  can be infinite (but the ¡i  must be 
finite, we require that proofs are finite objects that we can physically write down). As with   the left 
hand side of |  or   is supposed to be a set of formulae but again we abbreviate ¡ ∪ { }Ã  to ¡, Ã  etc.
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Example To show that 8 9w w x w w x1 1 1 1 1 1( , ) ( , )Ã Ã

A suitable proof is given by the middle column below:

1.	   8 8w w x w w x1 1 1 1 1 1( , ) ( , )Ã Ã|  	 REF
2.	   8w w x x x1 1 1 2 1( , ) ( , )Ã Ã| 		  ∀O from 1
3.	   8 9w w x w w x1 1 1 1 1 1( , ) ( , )Ã Ã| 		 ∃I from 2

Notice

1.	 In this case the left hand side of the final sequent,

	 8 9w w x w w x1 1 1 1 1 1( , ) ( , )Ã Ã|

is the left hand side of 8 9w w x w w x1 1 1 1 1 1( , ) ( , )Ã Ã  though we actually only require it to be 
a subset of it.

2.	 Recall our convention that if we write a formula Ã  as Ã( )


x  then all the variable occurring in 
Ã  are amongst x . Hence on line 2 in this proof x2  does not already occur in Ã( , )1 1w x  and 
as a result subsequently replacing x2  by w1  in Ã( , )2 1x x  gets us back to the original Ã( , )1 1w x . 
[Notice also in this step that w1  cannot appear in Ã( , )2 1x x , as required by the ∃I  rule.]

3.	 Formally we don’t need columns 1 and 3 above. However for ease of marking (!) you should 
include them when I ask you for a (formal) proof. [The word ‘formal’ here is only include 
when there is a danger of confusing this sort of proof with the sort of ‘proof ’ you give of, say, 
a theorem.]

4.	 When writing out proofs such as the one above we may, to save repetition, replace the 
occurrences of 8w w x1 1 1( , )Ã  on lines 2  & 3  by simply ditto marks (or a vertical line) below 
the occurrence of this formula on line 1.

5.	 In this course we shall, for simplicity and to avoid any confusion, continue to use the xi  for 
free variables and the wi  for bound variables. However once you have got used to this system 
you will have the confidence to use x w y z t, , , , ,  for both free and bound variables, and 
indeed you will commonly meet this more relaxed usage in the other logic courses such as 
Model Theory and Gödel’s Theorems.

Another Example

The following is a proof of :9 8 :w w x w w x1 1 1 1 1 1( , ) ( , )µ µ :

1.	    µ( , )2 1x x ,          :9 :9w w x w w x1 1 1 1 1 1( , ) ( , )µ µ| 	 REF
2.	   µ( , )2 1x x ,          :9w w x x x1 1 1 2 1( , ) ( , )µ µ| 	        	 REF
3.	   µ( , )2 1x x ,          :9 9w w x w w x1 1 1 1 1 1( , ) ( , )µ µ| 		 ∃I , 2
4.	                          :9 :w w x x x1 1 1 2 1( , ) ( , )µ µ|    	             NIN, 1,3
5.	                          :9 8 :w w x w w x1 1 1 1 1 1( , ) ( , )µ µ| 	 8I , 4
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Notice

1.	 On line 3 w1 cannot already appear in µ( , )2 1x x  since we replaced it everywhere in µ( , )1 1w x  
in forming θ( , )2 1x x . When you do examples you need not mention that such conditions are 
fulfilled when they are as clear as it is here.

2.	 By our convention x2
 does not appear in :9w w x1 1 1( , )µ  so the places where x2 appears in 

θ( , )2 1x x  are just those that w1 occupied in :9w w x1 1 1( , )µ . Again when you write out a formal 
proof you need not mention such ‘obvious’ facts.

3.	 Again by our convention x2 does not appear in the left hand side formula on line 4 so the ∀I 
rule is being correctly applied.

Strategies for finding proofs

A good strategy if you are stuck trying to find a (formal) proof is to ask yourself ‘why do I think that the 
right hand side follows (in an informal sense) from the left hand side?’ In this case you might say: ‘Well, 
if there doesn’t exist a w1 such that µ( , )1 1w x  then I couldn’t have µ( , )2 1x x , that would be a contradiction. 
So I must have :µ( , )2 1x x . But I’ve shown this for any x2 so it must be true for all of them’. Once you’ve 
got that far you essentially have your formal proof, all you need to do is match the steps in your informal 
demonstration with the formal rules of proof of the Predicate Calculus.

Another hint if you are asked to find a proof of µ µ Á1, , m   is consider what you expect to be the final 
sequent in your proof, namely µ µ Á1, , m | , and consider what the line above that might be, and so on. 
In other words working backwards.

Again in this situation it seems reasonable to take as the first m lines of your proof the sequents µ µ µ1, , m i|  
(alternatively µ µi i| ) each justified by REF and see what can be obtained from these by an application of 
a rule, and so on. Hopefully applying these two processes you will see how to join up the two streams.

Yet another trick worth being aware of here is that if, in this case, you obtain a proof ending in 
µ µ Ã1, , m |  and you can also see a proof of Ã Á| , so (probably) ending in Ã Á| , then, by IMR, we 
can append | ( )Ã Á!  to this proof and concatenating it with the first proof allows you to add the final 
sequent µ µ Á1, , m | , justified by MP, to give the required proof.

Finally, if it is any consolation, the fact of the matter is that formal proofs are not easy to find, you’ll see 
just why if you ever study Gödel’s Theorems. It’s not simply because we human beings are actually pretty 
slow, overall even the fastest computers cannot do any better.
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The Completeness and 
Compactness Theorems
So now we have two formulations of what it means for µ to follow from ¡, namely ¡ µ and ¡  µ. The 
main part of this course involves determining the relationship between them. Before that however it 
will prove very useful to establish the following result:

Lemma 5

Let Γ Γ Γ1, , , s FL⊆  (possibly infinite) and µ µ µ1, , , s 2 FL . Then 

(i) If µ 2 ¡  then ¡  µ .

(ii) If ¡i i µ  for i = 1, , s  and 

¡ ¡

¡
1 1, ,| |

|
µ µ

µ

 s s

is an instance of a rule of proof then ¡  µ .

Proof  For (i) a suitable proof of Γ  µ is just the single sequent µ µ| , since it is justified by REF and 
f g µµ ¡.

For (ii) we need to check it for each of the rules AND O− 9 . We will do it for 9O. So in this case we 
have that s w w xj j i= 1, = , = ( / ) , =1 1Γ Γ∆ ∪ ∆ ∪ ∃{ } { }Á Á µ µ  and xi  does not appear in any formula in 
¢  nor in µ and wj does not already appear in Á.

By assumption ¢, Á µ . Let 

¢ ¢1 1, ,| |Á Á m m

be a proof of this, so ¢ ¢m mµ f g∪ Á Á µ, = . We claim that

¢ ¢ ¢ ¢1 1, , , ( ) , ( ) ( / )| | | |Á Á Á Á µ Á Á µ m m m m j j iw w x− ∪ −f g f g f g f9 g∪  � (16) 

is the required proof of ¡  µ, i.e. of ¢ ∪ f9 gw w xj j iÁ µ( / )  .

Firstly the second to last sequent in (16) is justified by MON from it’s immediate predecessor since 

¢ ¢m mµ f g f g( ) .− ∪Á Á
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Secondly notice that ¢ ¢m− f g µÁ  so xi  does not appear in any formula in ¢m− f gÁ  nor in µ so the 
last sequent in (16) is justified by 9O  from its immediate predecessor.

Finally 

( ) ( / ) ( / ) = ,∆ − ∪ ∃ ⊆ ∆ ∪ ∃m j j i j j iw w x w w x{ } { } { }φ φ φ Γ

as required.

The arguments for the remaining rules, some of which appear in the Exercises Section, are similar (and 
much easier in general). 							       		    

In what follows Lemma 5 will turn out to be very useful because it frequently enables us to avoid talking 
about actual formal proofs and instead talk directly about the provability relation  . For that reason it 
is well worth making sure you really have grasped what it is saying.

We now set about establishing some connections between   and  .

Lemma 6

Let ¡ ¡ ¡1, , , s µ FL be finite24 and µ µ µ1, , , s 2 FL. Then 

(i) If  µ 2 ¡ then ¡  µ .

(ii) If  ¡i i µ  for i = , ,1 s and 

¡ ¡

¡
1 1, ,| |

|
µ µ

µ

 s s

is an instance of a rule of proof then ¡  µ .

Proof  First notice that if ¡ is finite then there can only be finitely many free variables which are 
mentioned in formulae in ¡. In that case we might write ¡( )



x , where all these variables occur in x, and 
¡( )


a  for the result of replacing each xj in x in the formulae in ¡ by aj. With this notation then

¡( ) ( )
 

x x µ , For all structures M  for L and a 2 | |M  

	 M a M µ a ¡( ) ( )
 ) 		�   (17)

where M a ¡( )
  is short for M Á a ( )

  for all Á x( )
 2 ¡.


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Turning to the proof of (i) of the lemma then if µ 2 ¡ then trivially the above right hand side holds.

To show (ii) we need to check it for each of the rules AND O We ll− ′9 .  check it for 8I and leave the rest 
as exercises (some already appear in the Exercises). Without loss of generality in this case the instance 
of the rule looks like 

¡

¡

( , , ) ( , , , )

( , , ) ( , , , )
2 1 2

2 2

x x x x x

x x w w x x
n n

n j j n

 

 

|
|

Á

Á8

where x1 does not occur in any formula in ¡ and wj does not already appear in Á. We are told that 

¡( , , ) ( , , , )2 1 2x x x x xn n  Á . 				�     (18)

Let M  be any structure for L and a a2 3, , , an elements of the universe of M . Suppose that M  ¡( , , )2a an .

Then from (17) and (18):

for any a1 from the universe of M M a a an, ( , , , )1 2 φ  .

Hence 

M Á 8w w a aj j n( , , , ).2 

Since the structure M  for L  and a an2, ,  from the universe of M  were arbitrary we see that we have 
shown that 

¡( , , ) ( , , , ),2 2x x w w x xn j j n  8 Á

as required. 				    							         

Lemma 6 provides us with a useful means of checking that a strategy we might have for producing a 
certain formal proof is at least not just wishful thinking. For if we ever get to, or hope to get to as an 
intermediate step, a sequent ¡ | µ where we do not have ¡  µ then this cannot be part of a correct proof. 
This is a practically useful check because it is often quite easy to see whether or not ¡  µ.

The Correctness Theorem (for Relational L ), 7

Let ¡ µ FL  (possibly infinite) and ζ 2 FL . Then 

¡ ¡� �ζ ζ⇒ .


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Proof  We use a proof technique called ‘induction on the length of proof ’. Assume that that ¡  ζ , 
say ¡ ¡1 m| |µ µ1 m, ,  is a proof of this. So the ¡i are finite and ¡ ¡ =m mµµ , ζ . We prove by induction 
on i  for i m= 1,2, ,  that ¡i  µi.

Suppose that we have this already for all k < i  where 1∙   i   ∙ m . Notice that in the base case, when i = 1,

this is vacuously true.

If ¡i | µi  is justified in this proof because it is an instance of REF then µi 2 ¡i so ¡i  µi  by Lemma 
6(i). Otherwise ¡i | µi follows by one of the rules of proof from some earlier ¡ ¡j j js1 1

, ,| |µ µjs
 , so 

j j is1, , <  and 

¡ ¡j j js1 1
, , µ µjs


by inductive hypothesis. By now by Lemma 6(ii), ¡i  µi .

From this then we conclude that we must have ¡m  µm. Let M  be a structure for L and suppose that we have 
an assignment of elements of the universe of M  to the free variables appearing in the formulae in ¡ under 
which every formula in Γ was true in M. Then the same must be true of ¡m since ¡ ¡m µ . Hence ζ = µm 
must be true according to this interpretation, because ¡m µm. We have shown that ¡  ζ , as required. 	
										        


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The Correctness Theorem is valuable in that it gives us a way of showing that something is not provable. 
Specifically to show that ¡  µ it is enough to show that ¡  µ  and to do this we only have to exhibit 
a suitable structure and an assignment to the free variables under which everything in ¡  is true but µ  
is false.

Example

To show that 

8 9 ^ 8w w w w w w w w w1 2 1 2 2 2 1 1 1( ( , ) ( , )) ( , )R R R

let M  be the structure for L = f gR  (R a binary relation symbol) with universe f g0,1  and 

RM = f g〈 〉 〈 〉0,1 , 1,1 .

Then 

M  ( (0, 1) (1,1)),R R^   M  ( (1,1) (1,1))R R^ ,

so

M w w w w 9 ^2 2 2 2( (0, ) ( , ))R R , M w w w w 9 ^2 2 2 2( (1, ) ( , ))R R , 

and hence 

M w w w w w w 8 9 ^1 2 1 2 2 2( ( , ) ( , )).R R

However M R(0, 0) so M w w w 8 1 1 1( , )R . Hence 

8 ^ 8w w w w w w w w w1 2 1 2 2 2 1 1 1( ( , ) ( , )) ( , )∃ R R R

so by the Correctness Theorem 

8 9 ^ 8w w w w w w w w w1 2 1 2 2 2 1 1 1( ( , ) ( , )) ( , ).R R R
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From this Correctness (also sometimes called ‘Soundness’) Theorem for Predicate Logic (also called the 
Predicate Calculus) it follows that the notion  of ‘follows’ is at least as strong as that formalized by . 
But is it stronger? Given the Correctness Theorem we might suspect that it is not stronger, that in fact 
these two notions of follows are equivalent. This is indeed the case, and an amazing result it is too as will 
later be explained. This was first proved by Kurt Gödel in 1929, as ‘Gödel’s Completeness Theorem’, not 
to be confused with his ‘Incompleteness Theorems’, though what they do have in common is that they 
are amongst the most philosophically important theorems in the whole of mathematics.

To show the other direction of the Correctness Theorem, that 

¡ ¡� �ζ ζ⇒

we start by assuming that ¡  ζ  fails, i.e. there is no proof of ζ  from ¡ and then go on to show that ¡  ζ ,

that is that there is a structure for L and an assignment to the free variables in which all the formulae 
in ¡ come out to be true but ζ  comes out to be false. So what we need to do, starting from the fact that 
¡  ζ , is somehow construct the required M  and assignment to the free variables.

The first step is to rephrase the assumed ¡  ζ , as a statement about consistency – for which we will 
need some definitions and lemmas.

Definition ¡ µ FL is inconsistent if ¡  Á Á^:  for some Á 2 FL. ¡  is consistent if it is not inconsistent.

Lemma 8

For ¡ µ FL  the following are equivalent:

  i)   ¡ is inconsistent.
  ii)  ¡  Á  and ¡  :Á  for some Á 2 FL . 
  iii)   ¡  µ  for any µ 2 FL.

Proof  ( ) ( )i ii⇒  Assume that ¡  is inconsistent, say ¡  Á Á^: . Then since 

¡

¡

¡

¡

|
|

|
|

Á Á

Á

Á Á

Á

^: ^:
:

are instances of the AO rule, by Lemma 5(ii), ¡  Á  and ¡  :Á.

  ( ) ( )ii iii⇒  Suppose that ¡  Á  and ¡  :Á . Then by Lemma 5(ii) and the MON rule, 

¡ ¡, , , .: : :µ Á µ Á 
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Now by Lemma 5(ii) and the NIN rule, 

¡  ::µ

and by this same Lemma again and the NNO rule, ¡  µ.

( ) ( )iii i⇒  Exercise!! � 

We shall be dealing with consistent/inconsistent sets of formulae a lot in what follows and will be swapping 
between the equivalent formulations in Lemma 8 according to which is the most suitable at the time. 
We shall also be using Lemma 5 frequently in what follows and from now on we will not mention it 
explicitly, only the rule of proof involved.

The next lemma reveals the relationship between consistency and non-provability hinted at earlier.

Lemma 9

Let ¡ µ 2FL FL, µ . Then

¡ ¡ µ µ, f: g∪  is consistent.
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Proof  We prove the contra-positive. If ¡  µ  then by MON

¡ [ f: gµ µ  and by REF ¡ [ f: g :µ µ  so ¡ [ f: gµ  is inconsistent.

Conversely if ¡ [ f: gµ  is inconsistent, say ¡ [ f: gµ Á  and

¡ [ f: g :µ Á  then by NIN, ¡  ::µ  so ¡  µ  by NNO. 					       

So if ¡  ζ  then ¡ [ f: gζ  is consistent and to complete the proof of the Completeness Theorem it is 
enough to show that whenever ¢ µ FL is consistent then ¢ is satisfiable, that is there is a structure M  
for L and an assignment to the free variables according to which every formula in ¢  is true. So what 
we want to do is somehow use ¢  to construct such a structure M  and assignment to the free variables.

The next few lemmas provide key steps in this construction.

Lemma 10

Let ¡ µ FL  be consistent.

  i)  For µ 2 FL  at least one of ¡ ¡[ f g [ f: gµ , µ  is consistent. 
  ii)  If  9 2w Á w xj j( , )



¡  and xi  does not occur in any formula in ¡  then ¡ [ f gÁ x x( , )i

  is consistent.

Proof  i)  Suppose both were inconsistent. Then for some Á Á1 2,  

¡ ¡ ¡ ¡, , , , , , , .1 1 2 2µ Á µ Á µ Á µ Á   : : : :

Then by NIN, 

¡ ¡ : ::µ µ,

so ¡ is inconsistent, contradiction.

ii)  Suppose that ¡ [ f gÁ x x( , )i

  was inconsistent. Then by Lemma 8(ii) 

¡, ( , )Á x x µ µi

  ^:

where µ  is any sentence of L . By the 9O  rule25 

¡, ( , )9 ^:w Á w x µ µj j

 

so ¡ [ f9 gw Á w xj j( , )
  is inconsistent. But this is ¡  since 9w Á w xj j( , )

  is already a member of ¡, 
contradiction. 				    							         




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Lemma 11

Suppose that ¡ ¡ ¡0 1 2, , , are consistent subsets of FL  such that 

¡ ¡ ¡0 1 2 ,µ µ µ. � (19)

Then their union 

n
n

2
[ [ [

N
∪ …¡ ¡ ¡ ¡= 0 1 2

is consistent.

Proof  Suppose on the contrary that 
n n2N

¡  was inconsistent, say, 

n
n

2
^ :

N


¡  Á Á.

Let ¢ ¢1 m| |µ µ1 m, ,  be a proof of this, so 

¢ ¡m µ
2n

n
N


� (20)

and µ Á Ám = ^: . Now by definition of a proof ¢m is finite, say, 

¢ =m f gη η η1 2, , , . r

From (20) each ηi ki
2 ¡  for some ki 2 N. Let k  be the largest of these ki. [This is where we need the 

finiteness of ¢m, since an infinite set of natural numbers need not have a largest member.] By (19) the 
¡i  are increasing so for each i r= 1,2, , , 

ηi ki k2 µ¡ ¡ .

But that means that 

¢ = ¡m f g µη η η1 2, , , r k

so 

¢ ¢1 | |µ µ1 m, , m

is also a proof of θ φ φm = ( )∧ ¬  from ¡k, contradicting the assumed consistency of ¡k. The result 
follows. 						      					        
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At this point we are going to make an assumption about L  which will simplify the proof.26 We shall 
assume that we can list, or enumerate, the formulae of L  as

η η η η1 2 3, , , , , i   for 0 < i 2 N .

With this assumption in place we now prove the following:

Lemma 12

Let ¢ µ FL  be consistent and suh that there are infinitely many free variables which do not occur in 
any formula in ¢. Then there is a consistent ¢ ­µ µ FL  such that

i)  For any µ 2 FL  either µ 2­  or : 2µ ­ .
	 ii)  If 9 2w Á w xj j( , )



­  then Á x x( , )r

 2 ­  for some r.

Proof  Let η η η1 2 3, , , enumerate FL  and define ¢i  for i 2 N  inductively as follows.

For i = 0  set ¢ = ¢0 .

Now suppose that i > 0  and ¢i−1  has been defined and is consistent and has the property that there 
are infinitely many free variables not occurring in any formula in ¢i−1. Proceed as follows:
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If f g [ηi i¢ −1  is consistent and ηi j j= 9w Á w x( , )
  for some Á w, j  pick an xr  not appearing in any 

formula in f g [ηi i¢ −1  (possible because there are infinitely many not occurring in any formula in 
¢i−1  and at most finitely many of them have been ruled out because of occurring in ηi) and set 
¢ = ¢ -1i i r ixf g [η , ( , )Á



x . By Lemma 10(ii) ¢i is consistent. Also there are still infinitely many free 
variables not occurring in any formula in ¢i since all those for ¢ -1i  except the finitely many introduced 
by adding ηi rx, ( , )Á



x  are still available.

If f g [ηi i¢ -1 is consistent and η  is not of the form 9w wj jÁ( , )


x  for any Á  then put ¢ = ¢ -1i i if g [η . 
Again infinitely many free variables do not occur in any formula in ¢i and ¢i is consistent.

Finally if f g [ηi i¢ -1  is not consistent put ¢ = ¢ -1i i if: g [η . By Lemma 10(i) ¢i is consistent and 
again infinitely many free variables do not occur in any formula in ¢i.

Clearly by induction all the ¢i get defined and are consistent and satisfy 

¢ ¢ ¢0 1 2µ µ µ .

Now put 

­ = ¢
i

i
2N


.

Clearly ¢ = ¢ ­0 µ . By Lemma 11 ­  is consistent. To see that ­  has the other required properties let 
µ 2 FL. Then since the ηi enumerate FL i, µ =η  for some i . But then by the construction one of η ηi i, :  
(i.e. one of µ µ, ):  gets into ¢i and hence into ­  since ¢ ­i µ . This shows that ­  has property (i).

To show that ­  also satisfies (ii) suppose that µ Á= = ­9 2w w xj j( , )
 ηi . If in the construction of ¢i 

we put in ηi  then by the construction, for some r , 

Á( , )xr i



x 2 µ¢ ­

as required. On the other hand if we put :ηi  into ¢i  at this stage we would have both η ηi i, : 2 ­ so 
by Lemma 5(i)  ­ ηi and  ­  :ηi

 so  ­ would not be consistent by Lemma 8(ii), contradiction. 

It turns out that the  ­  constructed in the above lemma has some very nice properties, as we now 
demonstrate. 
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Lemma 13 

Let  ­ be as constructed in Lemma 12. Then for µ Á, , ( , )9 2w Ã w xj j



FL :

( )a ­ ­ µ µ, 2 .

( )b µ µ2 , : 2­ ­.

( ) ( )c µ Á µ^ 2 , 2­ ­  and Á 2 ­ .

( ) ( )d µ Á µ_ 2 , 2­ ­  or Á 2 ­ .

( ) ( )e µ Á µ! 2 , 2­ ­  or Á 2 ­ .

( ) ( , ) ( , )f 9 2 , 2w Ã w x Ã x xj j i

 

­ ­  for some free variable xi.  

( ) ( , ) ( , )g 8 2 , 2w Ã w x Ã x xj j i

 

­ ­  for all free variables xi.

Proof

(a)  µ µ2 )­ ­   by REF. Conversely µ 2 ­  implies that : 2µ ­  by Lemma 12(i) so  ­  :µ     and 
 ­  µ is impossible since otherwise ­  would be inconsistent.

(b)  µ µ2 )­ ­   by (a), so  ­  :µ otherwise ­  would be inconsistent. : 2µ ­  by (a). 
Conversely µ µ2 ) : 2­ ­  by Lemma 12(i).

(e)  Suppose µ 2 ­ . Then by (a), (b), ­  :µ. Therefore, since  : ! !µ µ Á( )  (see the Exercises), 
­  ( )µ Á!  by MP  and ( )µ Á! 2 ­  by (a). Similarly if Á 2 ­  then since  Á µ Á! !( ) (see 
the Exercises), we get by MP ­  ( )µ Á!  and the required conclusion follows by (a). This proves the  
⇐ direction.

To show the converse suppose that neither µ 2 ­  nor Á 2 ­  hold. Then from (a) and (b)  ­  µ   and  ­  :Á 
and by AND  ­  µ Á^: . Since  ( ) ( )µ Á µ Á^: ! : !  (see the Exercises) by MP ­  : !( )µ Á  and 
hence by (a), (b), ( )µ Á! 2 ­, as required.

(c),(d) –see the Exercises.

(f)  If 9 2w Ã w xj j( , )


­  then by Lemma 12(ii), Ã x x( , )i

 2 ­  for some free variable xi. Conversely if 
Ã x x( , )i

 2 ­  then by (a) ­  Ã( , )x xi

  and by 9 9I­  w w xj jÃ( , )
  so 9 2w w xj jÃ( , )



­  by (a).

(g)  If 8 2w w xj jÃ( , )


­  then by (a) ­  8w w xj jÃ( , )
  so by 8O ­  Ã( , )x xi

 , and by (a) Ã( , )x xi

 2 ­, 
for any free variable xi. Conversely suppose 8 2w Ã w xj j( , )



­, so by (a), (b), Ω  ¬∀w w xj jÃ( , )
 . Since 

(see the Exercises) 

 :8 9 :w Ã w x w Ã w xj j j j( , ) ( , )
 →
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so by MP, ( , )­  9 :w Ã w xj j

 . By (a) and (f) this gives : 2Ã x x( , )i



­  for some free variable xi so, as 
required, for this xi we cannot have Ã x x( , )i

 2 ­ otherwise ­  would be inconsistent. 	 	   

We are now ready to prove the big theorem from which the Completeness Theorem will follow as a 
corollary.

Theorem 14

Let ¢ µ FL. Then ¢  is consistent if and only if ¢  is satisfiable.

Proof  Right to left is easy: Suppose ¢  is satisfied, say in the structure M for some assignment to the 
free variables. If ¢  was inconsistent we would have

¢  Á  and ¢  :Á for some Á 2 FL. But then by the Correctness Theorem Á  and :Á  would both 
have to be true in this interpretation, contradiction!

In the other direction suppose that ¢  is consistent, and for the present that there are infinitely many free 
variables not mentioned in any formula in ¢ . We need to construct a structure M and an assignment 
to the free variables in M in which every formula in ¢  is true (or satisfied).


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The construction of M is rather surprising, as we shall now see. Let ­ ¢¶  be as in Lemmas 12 and 13. Set 

| |M = f gx x x1 2 3, , , ,

so the universe of M is the set of free variables (!), and for R  an r -ary relation symbol of L set 

〈 〉x x x R R x x xi i ir

M
i i ir1 2 1 2

, , , ( , , , ) , 2 , 2 ­

equivalently, 

M i i ir i i ir
 R x x x R x x x( , , , ) ( , , , ) .

1 2 1 2
 , 2 ­

[Notice that the x x xi i ir1 2
, , ,  here on the left hand side are elements of the universe of M  whilst on the 

right hand side they are free variables.]

Claim

For all µ x( )
 2 FL, 

M  µ x x( ) ( ) .
 , 2µ ­

Again it is important to appreciate that the x  appearing here are serving different roles. The x  appearing 
on the left is a vector of elements of the universe of M  whereas on the right it is a vector of free variables. 
So on the left it says that the formula µ x( )

  (here x  is a vector of free variables) is satisfied by, or true 
of, the elements x  from the universe of M .

Proof of Claim

The proof is by induction on the length of formulae. Assume the result is true for all formulae of length 
less than | |µ . There are the usual 7 cases.

If µ  is R x( )
  for R  a relation symbol of L  the result is true by definition.

If µ x Á x Ã x( ) ( ) ( )
  

= !  then, since | | | | | |Á x Ã x < µ x( ) , ( ) ( )
   , so by inductive hypothesis 

M  Á x Á x( ) ( ) ,
 , 2 ­ � (21)

M  Ã x Ã x( ) ( ) .
 , 2 ­ � (22)
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Then 

M M µ ( ) ( ) ( )
  

x Á x Ã x, !

, M  Á x( )
  or M  Ã x( )



, 2Á x( )


­  or Ã x( )
 2 ­  by (21), (22)

, ! 2( ( ) ( ))Á x Ã x
 

­  by Lemma 13(e) 

, 2µ x( ) .


­

The cases for the other connectives are similar.

If µ x w w x( ) ( , )
 

= 9 j jχ  then since for any x x x < µ xk , ( , ) ( )| | | |χ k

  , by inductive hypothesis 

M  χ χ( , ) ( , ) .x x x xk k

 , 2 ­ � (23)

Hence 

M M j j µ x w w x( ) ( , )
 , 9 χ

, M i χ( , )x x
  for some xi M2 | |  

, 2χ( , )x xi



­  by (23) for some xi
 

, 9 2w w xj jχ( , )


­  by Lemma 13(f) 

, 2µ x( ) .


­

The case for µ w w x= 8 j jχ( , )
  is similar and this completes the proof of the Claim.

But now we have that if µ x( )
 2 ¢ then µ x( )

 2 ­ (since by construction ¢ ­µ ) and in turn M  µ x( )
 . 

In other words the formula µ x( )
  is satisfied in M  by the elements x of the universe of M.

We are done, well almost! There is a small problem that we assumed at the start of all this that there were 
infinitely many free variables not occurring in any formula in ¢ . So what if that’s not the case? Well we 
first form ¢0 by replacing every free variable xi appearing in a formula in ¢  by x2 .i ¢0 is still consistent 
(see the Exercises) and now clearly there are infinitely many free variables not occurring in any formula 
in ¢0 (certainly all the xi  with i  odd). As above then we can construct M to satisfy ¢0. But then 

µ x x x µ x x x( , , , ) ( , , , )1 2 2 4 2 n n2 ) 2¢ ¢0

)M n µ x x x( , , , )2 4 2
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so ¢  is satisfied in M (but now by assigning to the free variable xi the element x2i of the universe of M).

Now we’re really done! 								        	       

The Completeness Theorem (for Relational L), 15

For ¡ µ 2FL FL, µ , 

¡ ¡� �ζ ζ, .

Proof  By the Correctness Theorem in the ⇐  direction and by Theorem 14 and the remarks following 
Lemma 9 in the ⇒  direction.									              

The Completeness Theorem is one of the most important results in, or about, mathematics. For taking 
¡ = ;  it tells us that 

� �ζ ζ, ,




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informally then, if something must be true then we can prove it, and conversely. So if this theorem did 
not hold in the ⇐  direction we would be in the position that there would be mathematical truths which 
could never actually be proved whilst if it failed in the ⇒  direction we would be able to prove statements 
which weren’t necessarily true.

This result also clarifies an earlier doubt we might have had about the ‘completeness’ of the rules of proof 
that we wrote down. For at the time it seemed entirely possible that we could, and perhaps should, have 
added further rules to AO O− 9 . But we can now see that any extra rule we might add will either enable 
us to prove nothing beyond what we could get from AO O− 9  alone, and so effectively be redundant, 
or will enable us to derive some new ‘¡  µ’ But in that latter case since it was not previously derivable, 
by the Completeness Theorem, we could not have ¡  µ so we would have a ‘proof ’ of µ from ¡ even 
though there was an interpretation in which every formula in ¡ was true whilst µ was false. In other 
words our ‘proofs’ would no longer preserve truth.

It is useful to bear the Completeness Theorem in mind when devising strategies for producing formal 
proofs because it can help one to set intermediate goals. To give an example suppose that you are 
looking for a proof of some assertion of the form µ Á Ã_  . Now if there is some such formal proof 
it must be the case, by the Completeness Theorem, that µ Á Ã_  . But then clearly µ Ã  and Á Ã , 
so by Completeness there must be proofs of µ Ã  and Á Ã , and if you can find such proofs you can 
put them together with DIS and obtain the proof you are looking for. The point here is that you have 
found two intermediate goals for which you know there must be proofs, and the tasks of finding them 
promises to be simpler that the one you were initially confronted with.

Apart from identifying proof and truth the Completeness Theorem is also remarkable for another 
reason. The assertion ‘¡  ζ ’ is a ‘FOR ALL’ statement, it says that ‘for all the infinitely many structures 
M if…’ . However the assertion ‘¡  ζ ’ is a ‘THERE EXISTS’ statement, it says ‘there exists a (finite in 
fact) proof such that…’ . To have a ‘FOR ALL’ statement equivalent to a ‘THERE EXISTS’ statement is 
very rare in mathematics27 and when it happens it hints at something profound.

Finally, of course, the Completeness Theorem shows that our two, superficially different, formulations 
of ‘follows’ are actually one and the same.

The fact that proofs are just finite objects enables us to prove a very useful corollary of the Completeness 
Theorem:

The Compactness Theorem (for relational L) 16

Let ¡ µ FL. Then ¡ is satisfiable if and only if every finite subset of ¡  is satisfiable.
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Proof  Clearly if ¡  is satisfiable, say in a structure M with some assignment to the free variables, 
then this same M and assignment also satisfies any subset of ¡ , finite or not.

Conversely suppose that ¡  is not satisfiable. Then by Theorem 14 ¡  is not consistent, say ¡  ( )Á Á^: . Let 

¡ ¡ ¡1 2| | |µ µ µ1 2 m, , , m

be a proof of this, so µ Á Ám = ( )^:  and ¡ ¡m µ , and, being a left hand side in a proof, ¡m  is finite. But 
then this proof is also a proof of ¡m  ( )Á Á^: , so ¡m  is a finite inconsistent subset of ¡  and hence 
by Theorem 14 a finite unsatisfiable subset of ¡. 							        

An Application of the Compactness Theorem

Let L have a single binary relation symbol R  and let M be a structure for L. We say that M is finitely 
colourable if there are some finitely many disjoint subsets of | |M , say A A Ak1 2, , , , with union | |M  (i.e. 
a finite partition of | |M ) such that whenever b c M, 2 | | and M R b c ( , )  then b c,  are in different Ai. 
(Thinking of the Ai as colours then this says that if there is a directed edge from b  to c i e b c RM( . . , )〈 〉 2 , 
then b  and c have different colours.)

Using the Compactness Theorem for Relational Languages we can show that there can be no sentence 
Ã  of L  such that, for any structure M for L,

M M Ã ,  is finitely colourable� (24)

For suppose there was such a Ã 2 SL  and consider the set of formulae 

¡ = f g f gR x x i ji j( , ) 1 .| ≤ ∪< Ã

We shall show that ¡  is satisfiable. Let ¢ ¡½     be finite, say m  is maximal such that the free variable xm 
occurs in some formula in ¢  (or m = 1  if no free variables occur in formulae in ¢). Then 

¢ µ f g[ f gR x x i j mi j( , ) 1| ≤ < Ã≤


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and this set of formulae is satisfied by x ii   in the structure Mm  for L  given by 

| | |M m R i j i j mm

Mm= 1,2, , , , 1 ,f g f g = 〈 〉 ≤ ≤<  

– notice that Mm  Ã  by (24) and the fact that the partition {1}, {2}, . . . , f gm  provides a finite colouring 
of Mm . Hence ¢  is satisfiable and hence by Compactness ¡  is also satisfiable.

Let M be a structure for L in which ¡  is satisfied, by x a Mi i 2 | | say. Since M  Ã, by (24) M has 
a finite colouring, A A Ak1 2, , ,  say. Also since R x xi j( , )2 ¡  for i j M R a ai j< , ( , )  so ai  and aj  
must get different colours, i.e. be in different An. But there are infinitely many ai  and only k  colours so 
this is impossible! We conclude that no such Ã  could exist.
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Adding Constants and Functions
Up to now we have, to avoid a lot of notation early on, limited ourselves to relational languages. However as 
we saw from the motivating examples at the start of the course in practice we often also include constants 
and functions in our reasoning. The plan now is to extend our languages to also include symbols for 
these ( )but not yet equality, = . Fortunately the main challenge this will involve is ‘getting one’s head 
round the notation’ – the same theorems will go through with almost no extra effort.

Our earlier definition gives that with this addition

A language L  (without equality) is a set consisting of some relation symbols and possibly some 
constant, function symbols. Each relation and function symbol in L  has an arity ( .e g. unary, 
binary, ternary, etc.). 

For this section let L  be such a language. The addition of constants c c1 2, , and functions f f f1 2 3, , , 
to our language means that not only do we have free variables acting as elements of the universe but 
also new ‘objects’ such as c f c x1 1 1 2, ( , ), f f x f c x1 2 1 1 1 2( ( ), ( , )), etc. for binary f1, unary f2 etc. The ‘old’ 
free variables together with these new objects are called the terms of the language L.

Precisely:

Definition For L a language the terms of L are defined as follows:

Te1 The free variables x x x1 2 3, , , ,  are terms of L.

Te2 If c  is a constant symbol in L then c is a term of L.

Te3 �If f  is an n-ary function symbol of L  and t t tn1 2, , ,  are terms of L  then f t t tn( , , , )1 2   is a term 
of L.

Te4 t  is a term of L  just if this follows in a finite number of steps from Tel-3.

We denote the set of all terms of L by TL. Analogously to Theorem 1 we can prove a unique readability 
results for terms (and for the soon to be introduced formulae of this language).
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Example Let L have a binary relation symbol R, a binary function symbol f  and a constant symbol 
c. Then

c x x TL, ,1 2 2 , by Tel, Te2

f x x( , )2 1 , f c c( , ) , f c x TL( , )2 2 , by Te3

f f c x x TL( ( , ), )2 2 2  by Te3

Clearly the definition of the terms of L  closely parallels that of the formulae of L  and we employ similar 
conventions. For example if we denote a term t  by t x x xi i in

( , , , )
1 2

  then it will be implicit that all the 
free variables occurring in t  are amongst x x xi i in1 2

, , ,  (though they don’t all have to occur in t) and 
t b b br( , , , )1 2   is the result of simultaneously replacing each xij

 in t  by bj  etc..

Generally we will use t t t s s, , , , ,1 2 1  for terms.

As with the formulae we can define the length of a term t , denoted | |t , as the number of symbols 
in t  where each free variable, constant symbol, function symbol has length 1. So for example 
| |f f x f c x1 2 1 1 1 2( ( ), ( , )) = 12  (again we don’t count commas). Again as with formulae we can prove 
results about terms by induction on the length of terms.

For example we can show that, as with formulae, every term contains as many left parentheses ‘(’ as 
right parentheses ‘)’

Notice that if L  is a relational language (i.e. has no constants or function symbols) then TL x x x= f g1 2 3, , ,  
is just the set of free variables.

The presence of terms in the language L  (in addition to the free variables) forces us to make a minor 
change to the definition of ‘formula of L’:

Definition For L a language the formulae of L are defined as follows:

L1 � � If R is an n-ary relation symbol of L and t t tn1 2, , ,  are terms of L then R t t tn( , , , )1 2   is a formula 
of L.

L2   If µ Á,  are formulae of L then so are ( )µ Á! , ( )µ Á^ , ( )µ Á_ , :µ .

L3  � If Á is a formula of L which does not mention wj  and Á wj( / )xi  is the result of replacing the free 
variable xi  in Á  by the bound variable wj  then 9w w xj j iÁ( / ), 8w w xj j iÁ( / ) are formulae of L.

L4   Á  is a formulae of L  just if this follows in a finite number of steps from Ll-3.

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Adding Constants and Functions

71 

We continue to denote the set of formulae of L  by FL  (etc.). Continuing with the example of the 
language L  above:

R c x( , )2 , R c f x x FL( , ( , ))2 1 2 ,     by Ll

( ( , ( , )) ( , ))2 1 2R c f x x R c x FL! 2 ,   by L2 

8 ! 2w R c f w x R c w FL3 3 1 3( ( , ( , )) ( , )) ,   by L3.

Interpretations

The examples at the start of this course already demonstrated how we interpret, or give a semantics 
to, the function and constants symbols. Namely a constant symbol is interpreted as a fixed element of 
the universe and an r-ary function symbol is interpreted as a function from r-tuples of element of the 
universe into the universe.
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To give an example for L  above if we set the universe to be N = f g0,1,2, , interpret c  as 3, assign 
x1  value 4, interpret f  as multiplication and R  as ‘divides’ then 

8 !w w x w3 3 1 3( ( , ( , )) ( , ))R c f R c

becomes

For all natural numbers n , if 3 divides n × 4  then 3 divides n

– which is true, though if we had instead assigned x1  the value 9 it would have been false.

As before we split an ‘interpretation’ into two parts, a structure, which interprets the relation, constant 
and function symbols of L, and an assignment to the free variables.

Definition

A structure M for a language L consists of: 

•	 a non-empty set | |M , called the universe of M,
•	 �for each n -ary relation symbol R  of L  a subset RM  of | |M n (equivalently an n -ary 

relation on | |M ),
•	 for each constant symbol c  of L  a fixed element cM  of | |M ,
•	 for each n -ary function symbol f  of L  a function fM  : | | | |M Mn! . 

In this case we often write 

M M R R c c f fM M M M M M= 〈 〉| |, , , , , , , , , ,1 2 1 2 1 2  

where R R1 2, , ,  c c1 2, , ,  and f f1 2, , are respectively the relation/constant/function symbols of L .

Examples

Let L c f= f gR, ,  as above, so R  and f  are both binary. Then some structures for L  are:

(a) Universe of M  is N , i.e. | |M = N,

RM n m n= f 2〈 〉, 2N |  divides mg ,

	 cM = 3,

f n m n mM ( , ) .= ×
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(b) Universe of M  is , 

RM s t t s t= f 2 2 g〈 〉 ≠, 0 & / ,2R Q|

	 cM = 0,

f r s
if r s

s
M ( , )

1 ,

.
=

<
otherwise





(c) Universe of M  is {1, 2, 3}, 

RM = f g〈 〉 〈 〉 〈 〉 〈 〉2,1 , 1,2 , 3,1 , 3,3 ,

	 cM = 3,

f fM M: 1,2,3 1,2,3 (1,1) 2,2f g ! f g by =

f f f fM M M M(1,2) 2, (1,3) 3, (2,1) 3, (2,2) 2,= = = =

f f f fM M M M(2,3) 1, (3,1) 1, (3,2) 2, (3,3) 3= = = =

or as an easier to read table: 

fM 1 2 3  

1

2

3

2

3

1

2

2

2

3

1

3

Truth

In order to now talk about the truth of a formula in an interpretation we need to first talk about the 
value of a term in an interpretation. So let t TLn( , , , )1 2x x x 2  and let M  be a structure for L. Then 
we define that value of t( )



x  in M  when xi is assigned value a Mi2 | | , written t a a aM
n( , , , )1 2  , by 

induction on | |t( )


x  as follows:

V1 For t t a ai
M

i( ) , ( )
 

x x= = .

V2 For t c( )


x = , where c  is a constant symbol of L t a cM M, ( )


= .

V3 For t f t t tr( ) ( ( ), ( ), , ( ))1 2

� � � … �
x x x x= , where f  is an r -ary function symbol of L  and t1( )



x , 
t t TLr2( ), , ( )
� … �
x x 2 , 

t a f t a t a t aM M M M
r
M( ) ( ( ), ( ), , ( )).1 2

� � � … �
=
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This may look rather complicated but all it really says is: To find t aM( )
  replace the xi by ai, the c by cM , 

the f  by fM  and evaluate. So for example in the last example above if t f f c( , ) ( ( , ), )1 2 1 2x x x x=  and 
a a1 21, 3= =  then 

t a a f f c a aM M M M( , ) ( ( , ), )1 2 1 2=

= f fM M( (3,1), 3)  since a a cM1 21, 3, 3,= = =  

= fM(1,3)  since fM(3,1) 1=

=  3 since fM(1,3) 3=

Having got the evaluation of terms out of the way we can now define the truth of a formula in a structure 
for an assignment to the free variables by a minor generalization of the definition for relational languages.

For η( , , , ) ,1 2x x x FL Mn 2  a structure for L  and any assignment x a Mi1  2| |  to the free variables, 
we define 

M a a anη( , , , ),1 2 
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said ‘η( , , , )1 2a a an  is true in M , or η( , , , )1 2x x xn  is satisfied in M  by a a an1 2, , , ', by induction 
on the length of η( )



x 2 FL  in the obvious way:

T1 � For R t t t FLn( ( ), ( ), , ( ))1 2

� � … �
x x x 2 , where R  is an n -ary relation symbol in L  and t1( )



x , 
t tn2( ), , ( )
� … �
x x  are terms of L ,

M R t a t a t a t an
M ( ( ), ( ), , ( )) ( )1 2 1

� � … � �, 〈 , t a t a RM
n
M M

2 ( ), , ( )
� … � 〉 2  

, the relation interpreting R  in M  

holds for t aM
1 ( )
 , t a t aM

n
M

2 ( ), , ( )
� … � .

T2  For formulae µ( , , , )1 2x x xn , Á( , , , )1 2x x xn  etc. of L and a a a Mn1 2, , , 2 | |,

M a :Á( )
 	 ⇔	 not M a Á( )

 ,  i.e.  M a Á( )


M a a µ Á( ) ( )
 ^ 	 ⇔	 M a µ( )

   and  M a Á( )


M a a µ Á( ) ( )
 _ 	 ⇔	 M a µ( )

   or  M a Á( )


M a a µ Á( ) ( )
 ! 	 ⇔	 M a µ( )



  or  M a Á( )
 .

T3 M a 8 ,w Ã wj j( , )
  For all b M M b a2 | |, ( , ) Ã

 .

M a 9 ,w Ã wj j( , )
  For some b M M b a2 | |, ( , ) Ã



.

Example

Let L have a constant symbol c, binary function symbol f , unary function symbol g and binary relation 
symbol E. Let M  be the structure for L  such that | |M c g n n f n m n mM M M= , 0, ( ) 1, ( , )N = = =+ +  
and EM  is just the equality relation. Then 

8 8 2w w w w w w1 2 1 2 1 2E f g g f FL( ( ( ), ), ( ( , )))
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and28

M E f g g f 8 8w w w w w w1 2 1 2 1 2( ( ( ), ), ( ( , ))

⇔	 For all n m M, ( )2 | | = N , M E f g n m g f n m ( ( ( ), ), ( ( , )))

⇔	, 8 2 2n m f g n m g f n m EM M M, , ( ( ( ), )) , ( ( ( , )))N 〈 〉 ,

⇔	, 8 2n m f g n mM M, , ( ( ), )N 〈 , g f n m EM M M( ( , ))〉 2 ,

⇔	, 8 2n m f g n m g f n mM M M M, , ( ( ), ) ( ( , ))N = ,

		 since EM  is equality,
⇔	, 8 2n m n m n m, , ( 1) ( ) 1N + + + += ,

		 since gM( ) 1k k= +  and f n m n mM( , ) = + ,

which we know is true.

Note  In examples like this we often in practice use more descriptive symbols than E g f c, , ,  typically 
using the symbols -= - in place of E( )-,- , - -+  in place of f( , )- - , the symbol 0  in place of c  etc. We also 
often abbreviate 8 8w w1 2  by 8w w1 2, , as well as using x y z, , ,w , etc., for both free and bound variables. 
As your confidence grows you will easily adopt these standard practices (!)

Another Example

Let M  be as in the example (c) above, so | |M = 1,2,3f g, 

RM = f g〈 〉 〈 〉 〈 〉 〈 〉2,1 , 1,2 , 3,1 , 3,3 ,

cM = 3,

fM 1 2 3  

1

2

3

2

3

1

2

2

2

3

1

3

 

Then 9 8w w w w1 2 1 2R f x( ( , ), )1  is true in M  when x1  is assigned value 1 (equivalently is satisfied by 1 
in M ) since

M R f (( (1,1), 1) ,   because f RM M(1,1) 2, 2 1 ,= 〈 〉, 2   
M R f ( (1,2), 1) ,   because f RM M(1,2) 2, 2 1 ,= 〈 〉, 2  
M R f ( (1,3), 1) ,   because fM M(1,3) 3, 3 1= 〈 〉. 2 R , 
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so 

M f 8w R w2 2( (1, ), 1)

and hence 

M f 9 8w w R w w1 2 1 2( ( , ), 1).

We can now define logical consequence by directly generalizing the previous version, viz:

Definition Let L be a language, ¡ a set (possibly empty) of formulae of L i e FL( . . )¡ µ  and µ 2 FL. Then 
µ is a logical consequence of ¡ (equivalently ¡ logically implies µ), denoted ¡  µ, if for any structure M  
for L and any assignment to the free variables x x1 2, , appearing in the formulae in ¡  or µ , if every 
formula in ¡  is true in that interpretation then µ  is true in that interpretation.29

If ¡ µ 2SL SL, µ  (i.e. µ and every formula in ¡ is actually a sentence), the usual situation in fact when 
logic is being applied, then we can drop mention of the assignment part of the interpretation to obtain: 
¡ logically implies µ µ, ¡  , if for every structure M  for L, if M  Á for each Á 2 ¡30 then M  µ.
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Example

Let L f= f gR, ,  with R a binary relation symbol and f  a unary function symbol. Then 

8 8 9wR w w w w R w w1 1 1 1 2 1 2( , ( )) ( , )f  � (25)

Proof  Let M  be a structure for L such that31 

M f 8w R w w1 1 1( , ( )).

Then by (T3), for all a M2 | | , 

M a f a so a f aM M R R( , ( )) , ( ), 〈 〉 2

by (T1). Hence 

M a f a so M aM R w R w( , ( )) ( , ).2 2, 9

Finally since a M2 | | was arbitrary, 

M  8 9w w R w w1 2 1 2( , ),

which completes the proof of (25).

Notice that in the above example we have gone from M a f a R( , ( )) to M a f aM R( , ( )). And we 
could equally have gone in the other direction. In fact this facility of ‘replacing a term’ by its value is 
quite general, as the next two lemmas show.

Lemma 17

Let s TLn( , , , )1 2x x x 2  and t1( )


x , t t TLn2( ), , ( )
� … �
x x 2 . Then s t t t TLn( ( ), ( ), , ( ))1 2

� � … �
x x x 2  and for 

any structure M  for L  and a M2 | |, 

( ( ( ), ( ), , ( ))) ( ( ), ( ), , ( ))1 2 1 2s t a t a t a s t a t a t an
M M M M

n
M� � … � � � … �

= ..

Proof *   The proof is by induction on the length | |s  of s . Assume the result holds for terms of length 
less than | |s . There are 3 cases.

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Adding Constants and Functions

79 

Case 1: s i= x , a free variable.

In this case 

s t t t t TLn i( ( ), ( ), , ( )) ( )1 2

� � … � �
x x x x= 2

and by Vl

( ( ( ), ( ), , ( ))) ( ( )) ( ) ( ( ),1 2 1s t a t a t a t a t a s t an
M

i
M

i
M M M� � … � � � �

= = = tt a t aM
n
M

2 ( ), , ( ))
� … � , as required.

Case 2:  s c= , a constant symbol.

In this case 

s t t t c TLn( ( ), ( ), , ( ))1 2

� � … �
x x x = 2

and by V2

( ( ( ), ( ), , ( ))) ( ( ), ( ), , (1 2 1 2s t a t a t a c s t a t a tn
M M M M M

n
M� � … � � � … �

= = aa)) ,

as required.

Case 3: s f s sn r n= ( ( , , ), , ( , , ))1 1 1x x x x    where s s TLr1, , 2  and f is an r-ary function symbol of L.

In this case,

s t t x t f s t t s tn n r( ( ), ( ), , ( )) ( ( ( ), , ( )), , ( (1 2 1 1 1

� � … � � … � … �
x x x x x= )), , ( )))… �

tn x .

Since the | | | |s si <  the result already holds for them, so the s t t TLi n( ( ), , ( ))1

� … �
x x 2  by inductive 

hypothesis, and hence 

f s t t s t t TLn r n( ( ( ), , ( )), , ( ( ), , ( )))1 1 1

� … � … � … �
x x x x 2
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by Te3. Also, using V3,

( ( ( ), ( ), , ( )))1 2s t a t a t an
M� � … �

=  

= ( ( ( ( ), , ( )), , ( ( ), , ( ))))1 1 1f s t a t a s t a t an r n
M� … � … � … �

= f s t a t a s t a t aM
n

M
r n

M(( ( ( ), , ( ))) , ,( ( ( ), , ( ))) )1 1 1

� … � … � … �

= f s t a t a s t a t aM M M
n
M

r
M M

n
M( ( ( ), , ( )), , ( ( ), , ( )))1 1 1

� … � … � … �

– by inductive hypothesis,

= s t a t aM M
n
M( ( ), , ( ))1

� … � , as required. 					       

Lemma 18

Let µ x x x( , , , )1 2  n FL2  and t1( )


x , t t TLn2( ), , ( )
� … �
x x 2 .32 Then µ x x x( ( ), ( ), , ( ))1 2t t t FLn

� � … � 2  and 
for any structure M  for L and a M2 | |,

M t a t a t a M t a t a t an
M M

n
M µ µ( ( ), ( ), , ( )) ( ( ), ( ), , ( ))1 2 1 2

� � … � � � … �,

Proof*  The proof is by induction on the length of µ x x x( , , , )1 2  n . Assume true for all formulae of 
length less than | |µ . There are various cases.


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Case 1: µ R x x x x= ( ( , , ), , ( , , ))1 1 1s sn r n    where the s s s TLr1 2, , , 2 , and R  is an r-ary relation 
symbol of L .

Then the s t t TLi n( ( ), , ( ))1

� … �
x x 2  as shown in Lemma 17 so

µ x x R x x x( ( ), , ( )) ( ( ( ), , ( )), , ( ( ), , (1 1 1 1t t s t t s t tn n r n

� … � � … � … � …=
��
x))) 2 FL

by L1 and

M t a t an µ( ( ), , ( ))1

� … � ,

, M s t a t a s t a t an r n R( ( ( ), , ( )), , ( ( ), , ( )))1 1 1

� … � … � … �

, 2〈 〉( ( ( ), , ( ))) , ,( ( ( ), , ( ))))1 1 1s t a t a s t a t an
M

r n
M M� … � … � … �

R   by T1,

, 2〈 〉s t a t a s t a t aM M
n
M

r
M M

n
M M

1 1 1( ( ), , ( )), , ( ( ), , ( )))
� … � … � … �

R   by Lemma 17,

, M s t a t a s t a t aM
n
M

r
M

n
M R( ( ( ), , ( )), , ( ( ), , ( )))1 1 1

� … � … � … �
  by T1,

, M t a t aM
n
M µ( ( ), , ( ))1

� … �
 by T1,

as required.

Case 2: µ x x Á x x( , , ) ( , , )1 1 n n= : .

In this case since | | | |Á < µ Á x x, ( ( ), , ( ))1t t FLn

� … � 2  by inductive hypothesis so

µ x x Á x x( ( ), , ( )) ( ( ), , ( ))1 1t t t t FLn n

� … � � … �
= : 2  by L2.

Also

M t a t a M t a t an n� �µ Á( ( ), , ( )) ( ( ), , ( ))1 1

� … � � … �,

, M t a t aM
n
M Á( ( ), , ( ))1

� … �  by ind. hyp.

, M t a t aM
n
M µ( ( ), , ( ))1

� … �  by T2,

as required. The cases for the other connectives are similar.

Case 3: µ x x w Á x x w( , , ) ( , , , )1 1 n j n j= 9  where Á x x x( , , , )1 1 n n FL+ 2 . 33

Let xk not appear in x or x x x1 2, , , n. Then since 

| | | |Á x < µ x x( , , , ) ( , , ) ,1 1 1 x xn n n+
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by inductive hypothesis 

Á x k( ( ), , ( ), )1t x t x FLn

� … � 2

and so by L3 

9 2w Á x x w µj n j nt t t x t x FL( ( ), , ( ), ) = ( ( ), , ( )) .1 1

� … � � … �

Also

M t a t an µ( ( ), , ( ))1

� … �  

, 9M t a t aj n j w Á w( ( ), , ( ), )1

� … �

, 9 2b M M t a t a bn| |, ( ( ), , ( ), )1 Á
� … �

, 9 2b M M t a t a bM
n
M| |, ( ( ), , ( ), )1 Á

� … �  by ind. hyp. 

, 9M t a t aj
M

n
M

j w Á w( ( ), , ( ), )1

� … �

, M t a t aM
n
M µ( ( ), , ( )),1

� … �

as required.

The case for 8 is similar.

The following corollary to Lemma 18 will prove useful later on.

Corollary 19 Let M  be a structure for L t x TL x x FLn, ( ) , ( , )1

 2 2Ã +  and a M2 | |, where � …x x= x n1, ,  
etc. Then

    ( )a  If M ai i 8w Ã w( , )
  then M t a a Ã( ( ), )

  .

    ( )b  If M t a a Ã( ( ), )
   then M w w ai i 9 Ã( , )

 .

Before we commence with the proof notice that this corollary is not quite as obvious as it might appear at 
first glance. In (a) for example it says that if the formula 8wi iÃ w x( , )

  is satisfied in M  by the assignment 
x ai i  then the formula Ã( ( ), )t x x

   is also satisfied in M  by this assignment.

Proof For (a), if M w ai i 8w Ã( , )
  then M t a aM Ã( ( ), )

   by T3. Hence by Lemma 18, M t a a Ã( ( ), )
  .

Part (b) follows similarly, if M t a a Ã( ( ), )
   then M t a aM Ã( ( ), )

   by Lemma 18 and M w w ai i 9 Ã( , )
  

follows by T3. 											             




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Formal Proofs with Constants and Functions

In the case where the language has constant  and/or function symbols the rules of proof are the same 
except that 8O and 9I generalize from a free variable substitution (in the case of a relational language 
where the only terms we have are the free variables) to a general term as follows:

The Rules of Proof for the Predicate Calculus (possibly with constant and function symbols)

And In (AND)

And Out (AO)

Or In (ORR)

¡ ¢

¡ ¢

¡

¡

¡

| |
|

|
|

µ Á

µ Á

µ Á

µ

,

[ ^

^

||
|

|
|

| |
|

µ

µ Á

µ

Á µ

µ Ã Á Ã

µ Á Ã

¡

¡

¡

¡, ¢

¡ ¢

_ _

[ _

Disjunction (DIS)

Impli

, ,

,

ees In (IMR)
¡

¡

¡

¡

,µ Á

µ Á

µ Á

Á

|
|

|
|

→

^

Modus Ponens (MP)

Not In (NIN)

¡ ¢

¡ ¢

¡ ¢

¡

| |
|

| |

µ µ Á

Á

µ Á µ Á

,

, , ,

→

[

:  
[[ :

::

[

¢

¡

¡

¡

¡ ¢

|

|
|

|
|

µ

µ

µ

µ

µ

Not Not Out (NNO)

Monotonicity (MON)

All In I
 

All Out O

( )
( / )

( ) ( )

( (

)

8
8

8 8

¡

¡

¡

¡

|
|

|
|

µ

µ w

µ

µ

w x

w w x

t

j j i

j j





xx x) ))



where  does not occur in any formula in 

 and  does no

x

w
i

j¡ tt occur in µ

for t x TL( )
 2
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Exists In I

Exists Out O

( )

( )
( / )

9
9

9
9

¡

¡

¡

¡

|
|

|
|

µ

µ

Á µ

Á µ

w

w w x

j

j j i

′

,

,

where  is the result of replacing any number of

occurence

′µ
ss of the term in by 

in by  and  does not occu

t x w

w w

j

j j

( )


µ

µ rr in µ.

where  does not occur 

in  nor any formula in  and 

 d

x

w

i

j

µ ¡

ooes not occur in .Á

REF 		  ¡ | µ 	 whenever µ 2 ¡.

We now define (formal) proofs as before but now with these enhanced rules.

Example

A formal proof of 8 8 9w R w1 1 1 1 2 1 2( , ( )) ( , )f w w w R w w .

1.	 8 8w R w f w w R w f w1 1 1 1 1 1( , ( )) ( , ( ))| , REF 

2.	 8 8w R w f w R x f x1 1 1 1 1( , ( )) ( , ( )) , 1| , O

3.	 8 9 9w R w f w w R x w1 1 1 2 1) 2( , ( )) ( ) , 2| , I

4.	 8 8 9 8w R w f w w w R w w1 1 1 1 2 1) 2( , ( )) ( ) , 3| , I

Within this enlarged context Lemmas 5, 6 go through just as before except that for the latter we need 
to quote Lemma 18 for the two enhanced rules.

In more detail suppose the instance of the 8O  rule is: 

¡

¡

|
|
8w w x

t x x

j jÃ

Ã

( )

( ( ) )

,

,



 

where t x TL( )
 2  and 

¡  8w Ã w xj j;( )


. � (26)

Let M  be any structure for L and x a Mi i 2 | | an assignment to the free variables such that every 
formula in ¡ is true in this interpretation. Then from (26), since t a MM ( )

 2 | |, 

M t a aM Ã( ( ), ).
 

Therefore by Lemma 18, 

M t a a Ã( ( ), ).
 
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This shows that 

¡  Ã x x( ( ) )t
 

, ,

as required.

The demonstration for the enhanced 9I rule follows similarly. This then gives the Correctness Theorem:

The Correctness Theorem for L, 20 Let ¡ µ FL ( possibly infinite)  and ζ 2 FL. Then 

¡ ¡� �ζ ζ⇒ .

Defining consistency and satisfiability as before Lemmas 8, 9, 10, 11, 12 go through without alteration. 
We can now follow the same route to the Completeness Theorem as previously by reducing it to showing 
that any consistent ¢ µ FL  not mentioning infinitely many of the free variables has a maximal consistent 
extension34  ­  satisfying ( ) ( )a g−  of Lemma 13. Indeed a simple use of the new 9I and 8O rules now 
allows us to slightly improve parts (f), (g) of that lemma to now give:

Lemma 21

Let ¢ µ FL  be consistent and not mentioning infinitely  many of the free variables. Then there is a 
consistent ¢ ­µ µ FL  such that for µ Á w Ã w xj j, , ( , )9 2 FL :

( ) a ­   µ  ,   µ 2 ­.

( )b µ 2          ­    ,   : 2µ ­.

( )c ( )µ Á^ 2 ­   ,    µ 2 ­  and Á 2 ­.

( )d ( )µ Á_ 2 ­    ,    µ 2 ­  or Á 2 ­.

( )e ( )µ Á! 2 ­   ,    µ 2 ­   or Á 2 ­.

( )f 9 2w Ã w xj j( , )


­ �  ,    Ã x( , )xi

 2 ­  for some free vbl xi , 
  ,    Ã x x( ( ), )t

  2 ­  for some term t( )


x . 

( ) ( , )g 8 2w Ã w xj j



­   � ,    Ã x( , )xi

 2 ­  for all free vbl xi , 
,    Ã x x( ( ), )t

  2 ­  for all terms t( )


x .

Proof To show the enhanced version of (g) suppose that Ã x x( ( ), )t
  2 ­  for all terms t( )



x . Then certainly 
Ã x( , )xi

 2 ­  for all free variables xi since the xi  are terms. Now by the old version of Lemma 13(g), 
8 2w Ã ;xj ( )wj



­. By part (a) ­  8w Ã w xj j( , )
  and by the enhanced 8O rule, ­  Ã x x( ( ), )t

   for (any) 
t TL( )


x 2 . Hence by part (a) again Ã x x( ( ), )t
  2 ­  for any t TL( )



x 2 , which takes us full circle.
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The proof for (f) follows similar lines. 

Now recall that at this point in the case of a purely relational language we constructed a structure M  
by setting

| |M x x x= , ,1 2 3f g, −  the set of free variables  
〈 〉x x x R R x x xi i ir

M
i i ir1 2 1 2

( ) ,, , , , , , 2 , 2 ­

for R  an r -ary relation symbol of L , equivalently,

M R x x x R x x xi i ir i i ir
 ( , ) ( , , )

1 2 1 2
, , , , 2 ­.

Now however we may have constant and function symbols in L -so how to interpret them in M? The 
answer is staring us in the face!

Set:

| |M TL=  –  the set of terms of L  
c c TLM = 2  for c  a constant symbol of L,


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and for s s s M TL fr1 2, , , = , 2 | |  an r-ary function symbol of L and R an r-ary relation symbol of L set35 

f s s s f s s s TLM
r r( , , , ) ( , , , )1 2 1 2 = 2  

〈 〉s s s R R s s sr
M

r1 2 1 2, , ( , , ) ,, , 2 , 2 ­

equivalently, 

M R s s s R s s sr r ( , , , ) ( , , , )1 2 1 2 , 2 ­.

Proposition 22 With M  defined in this way,

a)	   For t x x x TLn( , , , )1 2  2  and s s s M TLn1 2, , , ( ) 2 | | = , 

		  t s s s t s s s TL MM
n n( , , , ) ( , , , )1 2 1 2 = =2 | |.� (27)

b)	    For µ( , , , )1 2x x x FLn 2  and s s s M TLn1 2, , , ( ) 2 | | = ,

		   M s s s s s sn n µ µ( , , ,, ) ( , , , )1 2 1 2 , 2 ­ .� (28)

Proof* (a) We show this by induction on | |t x x xn( , , , )1 2  . If t xi( )


x =

t s s s s t s s sM
n i n( , , ) ( , , )1 2 1 2, , = =  by V1

If t c( )


x =  for c  a constant symbol of L  then by V2

t s s s c cM
n

M( , , , )1 2  = =  (by defn. of cM) = t s s sn( , , , )1 2 

Finally if t x f t x t x t xr( ) ( ( ), ( ), , ( ))1 2

� � � … �
=  where f  is an r-ary function symbol of L  and t x t xr1( ), , ( )

� … �  
are terms of L (and necessarily shorter than t x( ))

  then (abbreviating ‘Inductive Hypothesis’ by IH),

t s s s f t s t s t sM
n

M M M
r
M( , , , ) = ( ( ), ( ), , ( ))1 2 1 2… � � … �  by V3 

= ( ( ), ( ), , ( ))1 2f t s t s t sM
r

� � … �
by IH

= ( ( ), ( ), , ( ))1 2f t s t s t sr

� � … �  by defn. of fM

= t s( )


,  as required.

(b) We show this by induction on | |µ( , , , )1 2x x xn .

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Adding Constants and Functions

88 

In the case µ( ) ( ( ), ( ), , ( )1 2

� � � … �
x R t x t x t xr=  for R an r-ary relation symbol of L  and  t x1( )

 , t x t x TLr2( ), , ( )
� … � 2 ,

M s s sn µ( , , , )1 2 
 

,   M t s t s t sr R( ( ), ( )), , ( ))1 2

� � … �

,  
〈 〉t s t s t sM M

r
M M

1 2( ) ( ), , ( )
� � … �

, 2 R

,   〈 〉t s t s t sr
M

1 2( ) ( ) ( ) (27)
� � … �

, , , 2 R by

,   R( ( ), ( ), , ( ))1 2t s t s t sr

� � … � 2 ­  by defn. of RM

,   µ( , , , )1 2s s sn 2 ­ ,  as required

The remaining cases now go through just as before in Theorem 14 but using Lemma 21 in place 
Lemma 13 and the enhanced (f), ( )g  in the cases of the quantifiers. To illustrate this last suppose that 
µ Ã( ) = ( , )
 

x w w xj j8 . Then

M s M w w sj j µ Á( ) ( , )
 , 8  

, 8 2t M M t s| |, ( , ) Á


, 8 2 2t TL t s, ( , )Á


­,    by IH ,

, 8 2w w sj jÁ( , )


­     by Lemma 21(g)

, µ( )


s 2 ­,    as required. 

From (28) it follows that if µ x( )
 2 ¢  then M x µ( )

 , since ¢ ­µ . In other words ¢  is satisfied in the 
interpretation with structure M  by assignment x x Mi i 2 | |, as required.

By the same trick as previously we can now dispense with the requirement that there are infinitely many 
free variables not mentioned in ¢  and the Completeness and Compactness Theorems then follow exactly 
as before (but now for a language possibly containing constant and function symbols):

The Completeness Theorem for L, 23 

For ¡ µ 2FL FL, ,ζ  

¡ ¡� �ζ ζ, .

The Compactness Theorem for L, 24

Let ¡ µ FL. Then ¡ is satisfiable if and only if every finite subset of ¡  is satisfiable.


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Herbrand’s Theorem
A natural if somewhat vague conjecture which might posit one at this juncture is that if a simple formula 
is provable then it should have a relatively simple proof. This of course depends what one means by 
‘simple’ and there are measures of simplicity for which it is true and others for which it is false. One 
such positive result however which is of some practical importance is when a formula Á  being ‘simple’ 
means that Á  is quantifier free, i.e. 8  and 9  do not occur anywhere in Á.

Theorem 25 Suppose there is a proof of the quantiffier free formula Ã. Then there is a proof of Ã which 
only mentions quantifier free formulae, so does not use any of the rules 8 8 9 9I O I O, , , ,  only the rules 
AND-MON.

Proof  We first derive a somewhat stronger result which will shortly have another application. For 
¡ a set of quantifier free formulae and µ quantifier free write ¡ QF µ  to mean that there is a proof of 
µ from ¡ only mentioning quantifier free formulae (so using just the rules AND-MON) and say that 
¡ is QF -inconsistent if ¡ QF Ã Ã:̂  for some (necessarily quantifier free) formula Ã. Say that ¡ is 
QF -consistent if not QF -inconsistent etc.
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Let ¡ be a QF -consistent set of quantifier free formulae. Just as in the proof of the Completeness 
Theorem on page 90, but without the need to consider quantified formulae at all, we can extend ¡  to 
an QF -consistent set ­  of quantifier free formulae which is maximally consistent in the sense that if Á 
is quantifier free and Á 2 ­  then  ­ [ f gÁ  is QF -inconsistent. Similarly, as in the proof of Lemma 13 
(or Lemma 21), ­  can be shown to satisfy that for quantifier free µ Á, :

( )a ­ QF µ   ,  µ 2 ­.

( )b µ 2 ­   ,  : 2µ ­.

( )c ( )µ Á^ 2 ­  ,  µ 2 ­  and Á 2 ­ .

( )d ( )µ Á_ 2 ­  ,  µ 2 ­  or Á 2 ­ .

( )e ( )µ Á! 2 ­   ,  µ 2 ­  or Á 2 ­ .

Analogously to the account on page 92 define a structure M  by

| |M TL=  – the set of terms of L, 
c c TLM = 2  for c  a constant symbol of L,

f s s s f s s s TLM
r r( , , , ) = ( , , , )1 2 1 2  2  for f  an r-ary function symbol of L and s s s M TLr1 2, , , 2 | |= , 

and 

〈 〉s s s R R s s sr
M

r1 2 1 2, , , ( , , , ) , 2 , 2 ­

equivalently, 

M R s s s R s s sr r ( , , , ) ( , , , ) ,1 2 1 2 , 2 ­

for R an r-ary relation symbol of L and s s s M TLr1 2, , , = 2 | | .

Just as in Proposition 22 we can now show that

a)	   For t x x x TLn( , , , )1 2  2  and s s s TL Mn1 2, , , ( ) 2 =| | , 

t s s s t s s s TLM
n n( , , , ) ( , , , ) .1 2 1 2 = 2

b)	   For µ( , , , )1 2x x x FLn 2  quantifier free and s s s TL Mn1 2, , , ( ) 2 =| | ,

M s s s s s sn n µ µ( , , , ) ( , , , )1 2 1 2 , 2 ­. 

(29)

(30)
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In particular then (b) gives that ¡ is satisfiable, and hence consistent by the Correctness Theorem on 
page 90.

Returning to the main statement of the theorem to be proved, suppose that 
QF

Ã. Then analogously to the 
proof of Lemma 8 f: gÃ  is QF -consistent. But that means by the above that f: gÃ  is consistent, so Ã,  
as required.� 

Earlier in these notes it was mentioned that a good idea if you are stuck on trying to concoct a formal 
proof is to ask yourself why you expect the conclusion to follow from, or more accurately be a logical 
consequence of, the assumptions and try to use that as a basis for constructing the required proof. 
Since this often seems to be a successful strategy one might be led to wonder just how fool proof it is. 
More pointedly, is it the case that if there is a proof then there must be a proof along the lines of ones 
semantic argument?

Without wishing to spend time clarifying and discussing this question in general one situation where it 
seems particularly pertinent is when we are asked to find a (formal) proof that 

 9w w w w x x1 2 1 2 1 2, , ( , , , , )., , , ,  w µ w xm m n

It this case you might feel that the obvious way to prove the existence of w w w1 2 m, , ,  satisfying 
µ w w w x x x1 2 m 1 2 n( , , , , , , , )   would be to actually exhibit some w w w1 2 m, , ,  with this property, 
necessarily some terms of the language since these are all we have available.

Whilst this intuition is not completely sound in general36 it nearly holds in the case when µ x( )
  is quantifier 

free, as the following theorem shows

Theorem 26 Suppose that µ x x1 2( , , , ) xn m+  is quantifier free and

 9w w w µ x x ;w w w1 2 m 1 2 1 2 m, , , ( , , , , , , )  xn . � (31)

Then for some r  and terms t TLi j, 2 , where i r= 1,2, ,  and j m= 1,2, , ,  

QF

i

r

n i i i mx x x t t t
_

=1
1 2 ,1 ,2 ,( , , , , , , , ).µ  

Proof  Suppose on the contrary that for any choice of t TLi j, 2 , 

QF

i

r

n i i i mx x x t t t
_

=1
1 2 ,1 ,2 ,( , , , , , , , )µ   ,
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equivalently by Theorem 25, 


_

i

r

n i i i mx x x t t t
=1

1 2 ,1 ,2 ,( , , , , , , , )µ   .

� (32)

Then the set ¡ of all formulae of the form 

^

i

r

n i i i mx x x t t t

= 1

1 2 ,1 ,2 ,( , , , ):µ , , , , 

is satisfiable.

To see this suppose not. Then by the Compactness Theorem there would be a finite unsatisfiable subset of 
¡. Furthermore since ¡ is closed under conjunction, meaning that whenever Á;Ã 2 ¡ then ( )Á Ã^ 2 ¡,

it follows by taking the conjunction of the sentences in this finite subset that there is a single sentence 
in ¡ which is unsatisfiable. Let

^

i

r

n i i i mx x x t t t

= 1

1 2 ,1 ,2 ,( , , , ):µ , , , , 

be such a sentence. Then its negation must be a tautology and hence, by logical equivalence, 

_

i

r

n i i i mx x x t t t
=1

1 2 ,1 ,2 ,( , , , , , , , )µ  
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must also be a tautology. By the Completeness Theorem then 


_

i

r

n i i i mx x x t t t
=1

1 2 ,1 ,2 ,( , , , , , , , )µ  

which contradicts (32).

To sum up then, under this assumption ¡ must be consistent. By the construction in the proof of 
Theorem 25 there is a structure M  with | |M TL=  and satisfying (30) such that M  ¡. From (31), the 
Completeness Theorem and Lemma 18 (with the assignment x xi i ),

M  9w w w µ x x x w w w1 2 m 1 2 n 1 2 m, , , ( , , , , , , , )   .

Hence by (30) and Lemma 18 for some t t t M TLm1 2, , , = 2 | | , 

M x t t tn m µ x x1 2( , , , , , , , ).1 2 

But this is a contradiction since : 2µ x x1 2( , , , , , , , )1 2 x t t tn m ¡ so 

M t t tm :µ x x x1 2 n( , , , , , , , ).1 2 

We conclude that our initial assumption in this proof is false and hence that the required result 
follows. 

Theorem 26 is a special case of Herbrand’s Theorem which gives an analogous result without the restriction 
that µ be quantifier free. To go a little deeper into this suppose that Á x x x x1 2 3 4( , , , )2 FL is quantifier 
free and 8 8 9w w w Á x w w w1 2 3 1 1 2 3( , , , ) is satisfiable, say 

M  8 8 9w w w Á x w w w1 2 3 1 1 2 3( , , , ) � (33)

for some structure M  for L and a M2 | |. Now let L+ be the language L augmented with a new binary 
function symbol f  and extend M  to L+ by picking fM to be some function such that for c d M, 2 | |, 

M a c d f c dM Á( , , , ( , )).

Notice that from (33) for every c d M, 2 | | there indeed is some b M2 | | such that Á( , , , )a c d b  holds in 
M . By Lemma 18 then for all c d M, 2 | |, 

M a c d f c d Á( , , , ( , ))


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so37 

M a f 8 8w w Á w w w w1 2 1 2 1 2( , , , ( , )).� (34)

This shows that if 8 8 9w w w x w w w1 2 3 1 1 2 3( , , , )Á  is satisfiable then so is 8 8w w x w w f w w1 2 1 1 2 1 2( , , , ( , ))Á , 
and clearly the converse also holds.

Using the Completeness Theorem and Theorem 26 we now have that for Á µ= : ,

 9 9 8w w w x w w w1 2 3 1 1 2 3( , , , )µ

  ,   9 9 8w w w x w w w1 2 3 1 1 2 3( , , , )µ

  ,  8 8 9w w w w w1 2 3 1 1 2 3( , , , )Á x w  is not satisfiable

  ,   8 8w w x w w f w w1 2 1 1 2 1 2( , , , ( , ))Á  is not satisfiable 

  ,   9 9w w x w w f w w1 2 1 1 2 1 2( , , , ( , ))µ

  ,   9 9w w x w w f w w1 2 1 1 2 1 2( , , , ( , ))µ

  ,  
_

i

m

i i i ix t t f t t
=1

1 2 1 2 2 1 2( , , , ( , ))µ − −  for some m

and t t t TLm1 2 2, , , 2 +.

To sum up then we have shown that the provability of 

9 9 8w w w x w w w1 2 3 1 1 2 3( , , , )µ

is equivalent to the provability, and hence QF -provability, of some quantifier free formula. Furthermore 
the method we have use here, introducing Skolem Functions and using Theorem 26, can be iterated so 
as to apply to any formula in Prenex Normal Form, and indeed any formula since the provability of a 
formula is equivalent to the provability of a Prenex Normal Form version of the formula. This result it 
is known as Herbrand’s Theorem. 

The practical value of this resides in the fact that QF -provability essentially lands us in Propositional 
Logic where there are well developed techniques for constructing proofs.
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Equality
Many structures that we deal with in mathematics have relations, constant, functions and the binary 
relation of equality, for example groups, rings, vector spaces. Such structures are said to be normal:

Definition A structure M  for a language containing the binary relation symbol = is normal if the 
interpretation =M of the equality symbol is equality, i.e.

=M   is f 2 g〈 〉x x, 2y M y| | | = ,

equivalently, for a a M1 2, 2 | |,38

( ) .1 2 1 2M a a a a = =,
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In particular then a group is a normal structure for the language with the equality symbol, a constant 
symbol e and a binary function symbol which satisfies the Axioms of Group Theory, GPAx:39 

8 ¢w w w1 1 1e =  

8 9 ¢w w w w1 2 2 1 = e  

8 8 8 ¢ ¢ ¢ ¢w w w w w w w w w1 2 3 1 2 3 1 2 3( ) ( )= � (35)

Unfortunately as they currently stand our Completeness and Compactness Theorems do not ‘work’ if 
we try to limit ourselves to normal structures.

Initially that might cause you some surprise, after all why not include =  as one of the relation symbols 
of L, isn t′  that enough?

Well, there’s no harm at all in including it as a relation symbol – the trouble is that in general there is no 
reason why M=  should look anything like equality! For example there’s nothing to stop us landing up with

M a  ¹ a,  or  M a b b = ^  ¹ a.

The point is that equality has a number of special properties and we certainly have to build these in if 
we want =M  to look anything like equality.

To get a feel for these properties let L be a language with equality, i.e. containing (possibly amongst 
other relation symbols) the binary relation symbol =. Then the following should be true in M  if 
the symbol = is to be interpreted in M  as genuine equality:40

Eql   8w w w1 1 1=

Eq2  8w w w w w w1 2 1 2 2 1, ( = )→ =

Eq3  8w w w1 2 3 1 2 2 3 1 3, , (( = ) = )w w w w w w= ∧ →

Eq4    8 ! $w w

r

w w w w w R w w wr i r i r r r r1 2 1 2 1 2 2, ,
=1

( ( , , , ) ( , , , )  

µÃ !V
i

= + + +R ))

¶

for R an r-ary relation symbol of L (other than equality).

Eq5    8 !w w

r

w w f w w w f w w wr i r i r r r r1 2 1 2 1 2 2, ,
=1

( , , , ) ( , , , )  

µÃ ! ¶V
i

= =+ + +

for f  an r-ary function symbol of L.

Let EqL stand for the sentences Eql-5. Notice that if L is finite then so is EqL.

The next lemma is so obvious it would be a waste of paper bothering to write down a proof.
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Lemma 27

Let L contain equality and let M  be a normal structure for L. Then M EqL i e M , . . Á for each Á 2 EqL.

Lemma 28

Let M  be a structure (not necessarily normal) for the language L with equality and such that Eq1-5 are 
true in M. Then the following are true in M  for t x x TLn( , , )1  2  and µ( , , )1x x FLn 2 :

Eq6  8 !w w

n

w w t w w w t w w wn i n i n n n n1 2 1 2 1 2 2, ,
=1

( , , , ) = ( , , , )  

µÃ ! ¶V
i

= + + +

Eq7  8 ! $w w

n

w w w w w w w wn i n i n n n n1 2 1 2 1 2 2, ,
=1

( ( , , , ) ( , , , )  

µÃ !V
i

= + + +µ µ ))

¶

Proof*  Eq6: By induction on | |t . Assume that Eq6 holds for all s TL( )


x 2  of shorter length.

If t c= , a constant symbol, then 

t tn n n n( , , , ) ( , , , )1 2 1 2 2w w w w w w = + +

amounts to c c=  which holds in M  by Eql. So the required version of Eq6 in this case is 

8 !w w

n

w w c cn i n i1 2, ,
=1



µÃ ! ¶V
i

= =+

which also holds in M.

If t xi=  then Eq6 is just 

8 !w w

n

w wn i n i i n i1 2, ,
=1

=

µÃ ! ¶V
i

= + +w w

which is in fact a tautology (i.e. always true in any structure for L).

If t f s sr( , , ) ( ( , , ), , ( , , ))1 1x x x x x x1 n 1 n n   =  for s1 , ,  sr 2 TL and f  an r-ary function symbol 
of L then by inductive hypothesis

M

n

w w s s wn i n i i i n 8 !w w w w w1 n 2n1 2 1, ,
=1

( , , ) = ( , , )  

µÃ ! ¶V
i

= + +  � (36)

for i r= 1,2, , . Let a a a Mn1 2 2, , , 2 j j be such that 

c)	 M

n

a ai n i
i =1

.

V
= +
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Then from (36), 

M s a a a s a a ai n i n n n ( , , , ) ( , , , ),1 2 1 2 2 = + +

and hence 

M

r

s a a a s a a ai n i n n n
i =1

( , , , ) ( , , , )1 2 1 2 2

V
 = + +

and from Eq5 and Corollary 19 (which henceforth we shall use without mention)

M f s a a s a an r n ( ( , , ), , ( , , ))1 1 1     
	 = f s a a s a an n r n n( ( , , ), , ( , , )),1 1 2 1 2+ +  

equivalently 

M t a a a t a a an n n n ( , , , ) ( , , , ).1 2 1 2 2 = + +
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We have now shown that

M

n

a a t a a a t a a ai n i n n n n

Ã !V
i =1

( , , , ) = ( , , , )1 2 1 2 2= + + +!  

for any a a Mn1 2, , 2 | | and Eq6 now follows.

Eq7: The proof is by induction on the length of µ. Assume the result is true for formulae shorter than µ.

Suppose that µ R( , , ) ( ( , , ), , ( , , ))1 1 1 1x x t x x t x xn n r n   =  for some r-ary relation symbol R in L 
(R not =) and terms t n1 1( , , ), ,x x   t x xr n( , , )1   of L and 

M

n

a ai n i
i =1

.

V
= +

Then by Eq6

M t a a t a aj n j n n ( , , ) ( , , )1 1 2 = +  for j r= 1,2, , ,

hence 

M

n

t a a t a aj n j n n
j =1

( , , ) ( , , )1 1 2

V
 = +

and by Eq4

M t a a t a an r n R( ( , , ), , ( , , ))1 1 1   $  
	 R( ( , , ), , ( , , )),1 1 2 1 2t a a t a an n r n n+ +  

equivalently 

M a a a an n n µ µ( , , ) ( , , ),1 1 2 $ +

as required.

If µ( , , )1x xn  is t s x xn n( , , ) ( , , )1 1x x =  then the required version of Eq7 is:

M w w

n

w wr i n i 8 !1 2, ,
=1



µÃ !V
i

= +

( ( , , ) = ( , , )

( , , ) = ( , , ))
1 1

1 2 1 2

t w w s w w

t w w s w w
n n

n n n n

 

    $ + +

¶
� (37)
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Let a a Mn1 2, , 2| | and suppose that 

M

n

a ai n i
i =1

V
= +

and 

M t a a s a an n ( , , ) ( , , )1 1 = .

Then by Eq6 

M t a a t a an n n ( , , ) ( , , )1 1 2 = + ,

M s a a s a an n n ( , , ) = ( , , )1 1 2 + .

From Eq2 and (40) we obtain 

M t a a t a an n n ( , , ) ( , , )1 2 1+  = ,

and Eq3 and (39), (42) now give 

M t a a s a an n n ( , , ) = ( , , )1 2 1+   .

Another application of Eq3 with (41),(43) gives 

M t a a s a an n n n ( , , ) = ( , , ).1 2 1 2+ + 

A similar argument starting with 

M t a a s a an n n n ( , , ) = ( , , )1 2 1 2+ + 

in place of (39) yields 

M t a a s a an n ( , , ) = ( , , ).1 1 

In summary then from (38) we have concluded

M t a a s a a t a a s a an n n n n n ( , , ) = ( , , ) ( , , ) ( , , )1 1 1 2 1 2   $ + += .

Since a a n1 2, ,  were arbitrary elements of | |M , (37) follows.

(38)

(39)

(40)

(41)

(42)

(43)
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If µ Á( , , ) ( , , )1 1x x x xr r = :  then by inductive hypothesis, 

M w w w wr
i

r
i r i 8 1 2

=1

, , =

µ³ ´V
+

 

! $( ( , , ) ( , , ))1 1 2Á Áw w w wr r r +

¶

Let a a Mr1 2, , 2 j j and assume that 

M

r

a ai r i
i =1

.

V
= +

Then from (44), 

M a a a a a ar r r r Á Á( , , , ) ( , , , )1 2 1 2 2 $ + +

equivalently

M a a a M a a ar r r r Á Á( , , , ) ( , , , )1 2 1 2 2 , + + .

(44)

(45)
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But from this

M a a a M a a ar r r r Á Á( , , , ) ( , , , )1 2 1 2 2 , + +

so

M a a a M a a ar r r r : , :Á Á( , , , ) ( , , , )1 2 1 2 2 + + .

Since µ Á= :  working back gives the required version of Eq7 for µ .

The cases for the other connectives are similar.

Now suppose that µ Á( , , ) ( , , , )1 1x x w x x wr j r j = 9 . By inductive hypothesis

M w w

r

w wr i r i 8 !1 2( 1) 1, ,
=1

1

= + + +

+³
Ã !V
i

 

		  ( ( , , ) ( , , )))1 1 2 2( 1)Á Áw w w wr r r + + +$ .

Let a a Mr1 2, , 2 | |  and suppose that 

M

r

a ai r i
i =1

=

V
+

and 

M a a ar µ( , , , )1 2  .

Then for some b M2 | |, 

M a a a br Á( , , , , )1 2  .

By Eql M b b = , and using this with (47) and (46) we obtain that 

M a a a b a a a br r r r Á Á( , , , , ) ( , , , , ).1 2 1 2 2 $ + +

Using this and (49) we obtain that 

M a a a br r r Á( , , , , )1 2 2+ + 

(46)

(47)

(48)

(49)
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and hence 

M a a ar r r µ( , , , ).1 2 2+ + 

Similarly if we assumed this instead of (48) (and (46), (47)) we would have been able to show (48). 
Overall then we have shown that

M

r

a a a a a a a ai r i r r r r

Ã !V
i =1

( ( , , , ) ( , , , ))1 2 1 2 2= + + +! $µ µ 

 

without any assumptions on the a a r1 2, ,  and hence the required version of Eq7 follows.

The case for µ Á( , , ) = ( , , , )1 1x x w x x wr j r j 8  is similar. �   

Lemma 28 has shown that 

EqL Eq Eq 6 7+

and hence by the Completeness Theorem41, 42

Corollary 29 

EqL Eq Eq 6 7.+

Convention* When writing out formal proofs with EqL on the left we will adopt the convention of 
omitting mention of subsets of EqL on the left of sequents and introduce instances of these axioms (plus 
Eq6, Eq7) on the right of sequents by quoting as justification which one of Eql, Eq2, , Eq7 they fall under 
rather than introducing the instant on both sides of the sequent and quoting REF as the justification –or 
splicing in a proof of instances of Eq6, Eq7 from EqL. [This will be clear from the following example.]
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Example* A formal proof  43 of 

EqL w w c w w c, ( ( ) ( )) :1 1 1 19 ^: 9 :µ µ  =

1	 x c x c x c1 1 1, ( ) ( ) ( ) ( )= µ µ µ µ^: ^:| 	 REF,

2	 x c x c x AO1 1 1, ( ) ( ) ( )= µ µ µ^: | 	 AO, 1 

3	 x c x c c AO1 1, ( ) ( ) ( )= µ µ µ^: :| 	 AO, 1

4		  | 8 ! $w w w w w w1 2 1 2 1 2, ( = ( ( ) ( )))µ µ 	 Eq7, 

5		  j 8 ! $w x w x w2 1 2 1 2( = ( ( ) ( )))µ µ 	 8O,4 

6		  j ! $x c x c1 1( ( ) ( ))= µ µ 	 8O,5

7	 x c x c x c1 1 1= , ( ) ( ) =µ µ^: | 	 REF,

8	  x c x c x c1 1 1= , ( ) ( ) ( ( ) ( ))µ µ µ µ^: $| 	 MP, 6, 7 

9	 x c x c x c1 1 1= , ( ) ( ) ( ) ( )µ µ µ µ^: j ! 	 AO, 8 

10	 x c x c c1 1= , ( ) ( ) ( )µ µ µ^: j 	 MP, 2, 9

11		  µ µ( ) ( ) =1 1x c x c^: j : 	 NIN, 3, 10 

12		  µ µ( ) ( ) =1 1 1x c w w c^: j 9 : 	 9I, 11

13	 9 ^: j :w w c w w c1 1 1 1( ( ) ( )) =µ µ ∃ 	 9O, 12

We now have in place the syntactic, or proof theoretic, part of the Completeness Theorem for Normal 
Structures that we are seeking. The appropriate semantic notion is:

Definition For L a language with equality, ¡ µ FL and ζ ζ2 FL,  is a normal logical consequence of ¡, 
denoted ¡ = ζ , if for all normal structures M  for L and assignments to the free variables by elements 
of | |M , if every formula in ¡ is true in M  then ζ  is true in M .

In other words ¡ = ζ  is the same as ¡  ζ  except that we restrict ourselves entirely to normal structures, 
that is structures that interpret =  as actual equality.

Many results in mathematics actually amount to showing that ¡ = ζ  for some ¡, ζ . For example when we 
show that in any group the left identity e  is also a right identity we are actually showing (recall(35)) that 

GPA w w e wx = 8 ¢1 1 1=
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Our next result then provides a valuable link between the Predicate Calculus and mainstream Pure 
Mathematics:

The Completeness Theorem for Normal Structures, 30

Let L be a language with equality, ¡ µ FL and ζ 2 FL. Then 

¡ ¡ ¡� � �= .ζ ζ ζ, ,+ +EqL EqL

Proof *

⇐ : Suppose that ¡ + EqL  ζ . By the already proven version of the Completeness Theorem we have that 

¡ + EqL  ζ ,� (50)

and conversely. Now let M  be a normal structure for L such that for some assignment to the free variables 

M  ¡.� (51)

Then since M  is normal, by Lemma 27, M EqL  so with (50) and (51), M  ζ . We have shown that ¡↑ = ζ.
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⇒ : Suppose that 

¡ + EqL  ζ .� (52)

Analogously to the proof of the previous Completeness Theorem we will show that ¡ = ζ  by constructing 
a normal structure M  and an assignment to the free variables for which M  ¡ but M  ζ .

The first step is to apply the previous Completeness Theorem to conclude from (52) that there is a 
structure N  and an assignment to the free variables such that 

N EqL N� �¡ + but ζ . � (53)

Unfortunately this N  may not be normal . We need to ‘factor’ N  in a similar way to factoring a group G 
by a normal subgroup K  to get the group G/K .

To this end define a binary relation  between elements of | |N  by 

a b N a b ,  = .

Since N EqL N ,  is a model of 

8w w w1 1 1= , 
8 !w w w w w w1 2 1 2 2 1, ( = = ), 

8 ^ !w w w w w w w w w1 2 3 1 2 2 3 1 3, , (( = = ) = ).

Consequently for any a b c N, , 2 | |, 

a a a b b a a b b c a c     , , ( & ) .⇒ ⇒

In other words  is an equivalence relation on | |N .

For a N2 | | let [ ]a  be the equivalence class of a with respect to , . 44i e . 

[ ] = .a b N a bf 2 j jj g

Now define a structure M  for L  by: 

j j f j 2 j jgM a a N= [ ] ,
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for R an r-ary relation symbol of L, including the binary relation symbol =, set

R RM
r r

Na a a a a a= [ ], [ ], ,[ ] , , ,1 2 1 2f 2 g〈 〉 〈 〉 |  

= [ ], [ ], ,[ ] ( , , , ) .1 2 1 2f g〈 〉a a a N a a ar r |  R � (54)

In particular 

[ ] = [ ] = ( = )a b a b N a bM N, ,   
	 , ,a b a b [ ] = [ ]

so M  is normal. For c a constant symbol of L set 

c cM N= [ ],

and for f  an r-ary function symbol from L set 

f a a a f a a aM
r

N
r([ ], [ ], ,[ ]) = [ ( , , , )].1 2 1 2 

M  will be the normal structure in which will satisfy ¡ and :ζ .
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However first of all we need to show that M is well defined. To see the problem here suppose we had 
a a a b br1 2 1 2, , , , , ,  b Nr 2 | | with [ ] = [ ] ( , = )a b a b or N a bi i i i i iequivalently    for i r= 1,2, ,  and 

N R a a a N R b b br r� �( , , , ) ( , , , )1 2 1 2 , . � (55)

In that case according to (54) we'd have to set

〈 〉[ ], [ ], ,[ ]1 2a a a Rr
M

 2  and 〈 〉[ ], [ ], ,[ ]1 2b b b Rr
M

 2 .

But 〈 〉[ ], [ ], ,[ ]1 2a a ar  and 〈 〉[ ], [ ], ,[ ]1 2b b br  are the same thing! 

Fortunately (55) cannot happen. For if R is not = then since N EqL , by Eq4

N w w

r

w wr i r i 8 1 2, ,
=1



µÃ !V
i

= +
 

! $( ( , , ) ( , , )) .1 1R Rw w w wr r r r + +

¶

Hence, since N a bi i =  for i r= 1,2, , , 

N R a a a R b b br r ( , , , ) ( , , , )1 2 1 2 $

so

〈 〉 〈 〉[ ], [ ], ,[ ] [ ], [ ], ,[ ]1 2 1 2a a a R b b b Rr
M

r
M

 2 , 2 .

In the case R is =, if [ ] = [ ], [ ] = [ ]1 1 2 2a b a b  and N a a 1 2=  then a b a b1 1 2 2,  , and a a1 2  so since 
 is an equivalence relation b b1 2 , i.e. N b b 1 2=  as required.

A similar situation also pertains for the definition of fM , again it initially seems possible that this might 
not be well defined since we could have [ ] = [ ]( . . )a b i e N a bi i i i =  for i r= 1,2, ,  but

f a a a f a a aM
r

N
r([ ], [ ], ,[ ]) = [ ( , , , )]1 2 1 2   

[ ( , , , )] = ([ ], [ ], ,[ ]).1 2 1 2f b b b f b b bN
r

M
r 

However again this cannot happen because, since N Eq 5 ,

N w w

r

w wr i r i 8 1 2, ,
=1



µÃ !V
i

= +  

! f w w w f w w wr r r r( , , , ) = ( , , , )1 2 1 2 2 + +

¶

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Equality

109 

we get 

N f a a a f b b br r ( , , , ) = ( , , , ),1 2 1 2 

so by Lemma 18 

N f a a a f b b bN
r

N
r ( , , , ) = ( , , , ),1 2 1 2 

equivalently 

[ ( , , , )] = [ ( , , , )].1 2 1 2f a a a f b b bN
r

N
r 

Having disposed of that possible problem we can now go on to show that M  is a normal structure in 
which we can satisfy ¡ and :ζ . We show this via two claims:

Claim 1: For any term t x x x TLn( , , , )1 2  2  and a a a Nn1 2, , , 2 j j, 

t a a a t a a aM
n

N
n([ ], [ ], ,[ ]) = [ ( , , , )].1 2 1 2  � (56)

We prove this claim by induction on the length of t. If t xi=  then both sides of (56) are [ ]ai . If t is a 
constant symbol c then both sides are [ ]cN . So assume that 

t x x f s x x s x xn n r n( , , ) = ( ( , , ), , ( , , ))1 1 1 1   

for some terms s sr1, ,  (so shorter than t) and r-ary function symbol f  of L. Then

t a a f s a a s a aM
n

M M
n r

M
r([ ], ,[ ]) = ( ([ ], ,[ ]), , ([ ], ,[ ]))1 1 1 1     

= f s a aM N
n([ ( , , )], ,1 1   [ ( , , )])1s a ar

N
n   by IH

= [ ( ( , , ), ,1 1f s a aN N
n  s a ar

N
n( , , ))]1    by definition

= [ ( , , )],1t a aN
n

as required.

Claim 2: For any formula µ( , , , )1 2x x xn 2 FL and a a an1 2, , , 2 | |N

M a a a N a a an n µ µ([ ], [ ], ,[ ]) ( , , , )1 2 1 2 , .

We prove the claim by induction on the length of µ.
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If µ R( ) = ( ( ), , ( ))1

� � … �
x t x t xr  for some r-ary relation symbol R of L (possibly R is =) and t x t x TLr1( ), , ( )

� … � 2  
then

M R t a a t a an r n ( ([ ], ,, [ ]), , ([ ], ,[ ]))1 1 1  

, 2〈 〉t a a t a a RM
n r

M
n

M
1 1 1([ ], ,[ ]), , ([ ], ,[ ])  

, 2〈 〉[ ( , , )], ,[ ( , , )]1 1 1t a a t a a RN
n r

N
n

M
   ,  by Claim 1,

, 2〈 〉t a a t a a RN
n r

N
n

N
1 1 1( , , ), , ( , , )   ,  by definition,

, N R t a a t a an r n ( ( , , ), , ( , , ))1 1 1   ,  by T1,

as required.

Now suppose µ Á( ) = ( )
 

x x:  (so Á is shorter than µ). Then

M a a a M a a an n� �µ Á([ ], [ ], ,[ ]) ([ ], [ ], ,[ ])1 2 1 2 ,

, N a a an Á( , , , )1 2     by IH  

, N a a an µ( , , , ),1 2 

as required.
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The cases for the other connectives are similar.

Finally in the case µ Á( ) = ( , , , )1

� …x w x x wj n j9 ,

M a a an µ([ ], [ ], , [ ])1 2   

, 9 2[ ] , ([ ], [ ], ,[ ], [ ])1 2b M M a a a bn| |  Á 

, 9 2b N N a a a bn| |, ( , , , , )1 2 Á     by IH 

, N a a an µ( , , , ),1 2 

as required.

The case for 8 is similar and this concludes the proof of Claim 2.

Since there is some assignment to the free variables, say x ai i , for which in N  all the formulae in ¡ 
are satisfied but ζ  is not it follows from Claim 2 that for the assignment x ai i [ ] all the formulae in ¡ 
are satisfied in M  but ζ  is not. Finally since M  is normal this gives, as required, 

¡ 
=

.ζ

Corollary 31

Let EqL FLµ µ¡  and ζ 2 FL. Then 

¡ ¡ = .ζ ζ,

Proof  Since EqL µ ¡ by the two Completeness Theorems both sides of this equivalence are equivalent 
to ¡  ζ .

Note that in most areas of logic where the Predicate Calculus is applied, for example Model Theory and 
Gödel’s Incompleteness Theorems, we are only interested in normal structures. As a result most of the time 
logicians will omit mention of ‘normal’ and just take it as implicit that the structures under consideration 
are normal, writing  and ¡  µ for what in this course we would write as =  and ¡ + EqL  µ.

As a second corollary to the Completeness Theorem for Normal Structures we are able to give an extension 
of Herbrand’sTheorem 26 to languages with equality. For suppose that

EqL  9w w w µ x x x w w w1 2 m 1 2 n 1 2 m, , , ( , , , , , , , )    

with µ x x1 2( , , , ) xn m+  quantifier free. Then 

 9w w w x x x w w wm n m1 2 1 2 1 2, , , ( , , , , , , , )  µ





(57)
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and in this assertion it is clearly enough (see Exercise 10 on page 133) to consider only normal structures 
for the finite language consisting just of those relation, function and constant symbols actually appearing 
in µ. Without loss of generality then we may assume that L is this finite language. In this case the 
conjunction of Eql-5 for L is logically equivalent to a sentence of the form 

8w w w w w wk k1 2 1 2, , , ( , , , ) Ã

with Ã quantifier free and using the fact that Eq6-7 are derivable from Eql-5 we obtain from (57) that

8w w w w w wk k1 2 1 2, , , ( , , , ) Ã  

 9w w w x x x w w wm n m1 2 1 2 1 2, , , ( , , , , , , , ).  µ

In turn by IMR and the ‘Useful Logical Equivalents’,

 9w w w w w wm m m m1 2 1 2, , , ( ( , , , ) + + + +k kÃ  

! µ x( , , , , , , , ))1 2 1 2x x w w wn m  . � (58)

We are now in a position to apply the original Theorem 26 which gives us that for some r and terms 
t TLi j, 2 , where i r= 1,2, ,  and j m= 1,2, , , there is a quantifier free proof of 

_

i

r

n i i i mx x x t t t
=1

1 2 ,1 ,2 ,( , , , , , , , )µ  

from some finite set of quantifier free formulae ξ( , , , )1 2s s sg  where the s TLi 2  and 
8w w w w w wg g1 2 1 2, , , ( , , , ) ξ  is one of the axioms Eql-5 for L.

Just as previously this result can be extended to the provability of general formulae by the introduction 
of Skolem Functions.

The Completeness Theorem above for Normal Structures gives us as usual a Compactness Theorem:

The Compactness Theorem for Normal Structures, 32 

For L a language with equality and ¡ ¡µ FL,  is satisfiable in a normal structure if and only if every finite 
subset of ¡ is satisfiable in a normal structure.
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Proof  From left to right is clear. In the other direction suppose that ¡ cannot be satisfied in a normal 
structure. Then ¡ = Á Á^:  for some/any Á. Hence from the Completeness Theorem for Normal 
Structures, ¡ + EqL  Á Á^: , so ¡ + EqL is inconsistent. As in the proof of the ‘usual’ Compactness 
Theorem there must be a finite subset ¢ of ¡ for which ¢ + EqL is inconsistent, and hence not satisfiable. 
But then since EqL will automatically be satisfied in any normal structure this must mean that it is the 
¢ which cannot be satisfied in a normal structure. 			   	           

An application of the Compactness Theorem

Let L be a language with equality. Then there can be no sentence θ ∈ SL such that for M  a normal 
structure for L,

M M θ ⇔ | |  is finite

Proof  Suppose that there was such a sentence θ  and consider the set of formulae 

Γ = = 1 , , .{ } { | < }θ ∪ ¬ ≤x x i j i ji j 2 


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Let ¢ be a finite subset of ¡. Then there is a bound, k 2 N say, on the i j,  such that :x xi j=  is in ¡. Let

¡ ¢.k kx µ < <( , , , ) = = 11 2x x x x i j ki j f g [ f: g ¶|

Let M  be any normal structure for L with universe having exactly k elements, say 

| |M a a ak= , , ,1 2f g

– clearly we can easily make such a structure. Then since | |M  is finite M  µ and M a ai j : =  for 
1   ≤    i    <    j   ≤    k  so ¡k( , , , )1 2x x xk  is satisfied in M by x a ii i( , = 1,2, , )� … k . 

By the Compactness Theorem then ¡ is satisfiable, say in a normal structure K for L by b b b K1 2 3, ,  2 | |.  
Then | |K  must, by our assumption on µ, be finite since K  µ. But also K b bi j : =  for 1   ≤    i    <    j, so 
bi  

¹  bj  , and | |K  has infinitely many elements, contradiction!! � 

It is easy to see that even if we replaced the single sentence µ by a, possibly infinite, set of sentences Λ 
we would still obtain the same result, that we cannot define ‘finiteness’ within Predicate Logic.

Several other examples of the use of the Compactness Theorem are given in the Exercises.

In most areas of logic where the Predicate Calculus is applied, for example Model Theory and Gödel’s 
Incompleteness Theorems, we are only interested in normal structures. As a result most of the time 
logicians will omit mention of ‘normal’ and just take it as implicit that the structures under consideration 
are normal, writing   and ¡  µ for what in this course we would write as =  and ¡ + EqL  µ.
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Exercises
These questions are numbered in the form X pY( ). The Y  here refers to the page in the notes that you should 
be up to in order to be fully equipped to tackle the question. If the X is starred it means that the answer 
to this question relies starred material from the course notes.

It is important to attempt these questions, firstly because ‘hands on’ is very much the way to master the 
ideas (and notation.) in this course and secondly because the solutions to parts of these questions are quite 
often assumed later on in the course notes.

1(p8) Which of the following ‘arguments’ do you think the conclusion follows from the premises? Try 
to justify your answers.

(a)  If it rained last night the road would be wet 
      The road is wet

  ∴ It rained last night

(b)  Socrates is a man

     All men are mortal

    ∴ Socrates is mortal

(c)         311 is prime

      311 is not prime

    ∴ 311 is an odd number

(d)  Montevideo is the capital of Uruguay 

      ∴If you've gotta go you've gotta go

2 (pl2) Let the language L have a binary relation symbol R and a unary relation symbol P . Which of 
the following are formulae of L? You should justify your answers. 

a) ( ( , ) ( ))3 3 2 38 !w R w x P w

b) ( ( , ) ( ))1 1 1 1 19 ! 8w w w w P wR

c) ( )3P w

d) (((( ( ) ( )) ( )) ( ( , ) ( , )))1 2 3 1 2 2 3P x P x P x x x x x^ ^ ^ ^R R

e) ( ( , ) ( ))3 3 1 38 !x x x P xR

f) ( ( , ) ( ))*
1 1 1 1 19 ! 8w R w w w P w
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3 (pl2) Show by induction on the length of formulae that if µ 2 2FL s t, , N+ and µ( / )x xt s  is the result 
of replacing the variable xs everywhere in µ by xt then µ( / )x x FLt s 2 .

4 * ( 12)p  Suppose that S is a relation symbol of L of arity s and let ξ( , , , )x x x1 2 s 2 FL.

For Á 2 FL let Á be the result of replacing each occurrence of S t t ts( , , , )1 2   in Á by 
ξ( , , , )( )1 2t t ts where the t are variables, free or boundi . Show that if Á and ξ( , , , )1 2x x xs  have no 
free or bound variables in common then Á is also a formula of L.

5 (pl5) Use Theorem 1 (The Unique Readability Theorem) to show that the following words from the 
language L with a binary relation symbol R are not formulae of L:

i) ( ( , ) ( , ))9 !w w x x w1 1 1 1 1R R .
ii) 9 ^ 8w w x w x x1 1 1 1 1 1( ( , ) ( , ))R R .

6 (pl5) Show that if 9 2w Áj FL  then Á x wi j( / )2 FL.
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7 (p24) Let the language L have just a binary relation symbol R. Let M  be the structure for L such that 
| |M = 1,2,3f g and 

RM = f g〈 〉 〈 〉 〈 〉 〈 〉 〈 〉1,1 , 1,2 , 1,3 , 2,3 , 3,3 .

Which of the following hold?

a)  M R (1,2)  

b)  M R R (1,3) (1,1)! :

c)  M R R 9 ^w w w w1 1 1 1( ( ,2) ( , ))  

d)  M R 8w w2 2(1, )

e)  M R R R 8 8 ^ !w w w w w w1 2 1 2 2 1(( ( , ) ( ,2)) ( ,2))  

f)  M R 8 9 :w w w w2 1 1 2( , )

g)  M R R 8 9 !w w w w w w1 2 1 2 1 1( ( , ) ( , ))

h)  M R R 8 9 8 !w w w w w w w1 2 3 1 2 2 3( ( , ) ( , ))

8 (p24) Let the language L have binary relation symbols R S,  and a unary relation symbol P . Let M  be 
the structure for L such that | |M = 1,2,3,N+ = f g , let PM  be the set of primes and let

R n m n m S n m m nM M= = =f 2 g f 2 g〈 〉 〈 〉 +, , , 22 2N N| |< .

Which of the following are true in M?

a)  8w w1 1P( )

b)  8 9 ^w w w w w1 2 1 2 2( ( , ) ( ))R P

c)  8 8 ^ !w w w w w w1 2 1 1 2 2(( ( ) ( , )) ( ))P S P

d)  8 8 !w w w w w w1 2 1 2 1 2( ( , ) ( , ))S R

e)  8 8 ! :w w w w w w1 2 1 2 2 1( ( , ) ( , ))R R

f)  9 ! 8w w w w w1 1 1 1 1R P( , ) ( )

g)  8 9 9 ^ ^ ^w w w w w w w w w1 2 3 1 2 2 3 2 3((( ( , ) ( , )) ( )) ( ))R S P P .
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9 (p24) Let L be as in question 6 and let M  be the structure for L with

| | |M R n m nM= 1,2,3, , ,N N N+ + +〈 〉 ×= =f g f 2  divides mg. 

Which of the following hold? 

i)    M R R 8 !w w w3 3 3( ( ,3) ( ,9)),

ii)   M R R 8 !w w w3 3 3( ( ,4) ( ,6)) ,

iii)  M R R R 9 ^ ^ :w w w w3 3 3 3( ( ,12) ( ,18)) (3, )) .

Is the following sentence true in M?

8 8 9 ^w w w w w w w1 2 3 3 1 3 2

µ
( ( , ) ( , ))R R  

^8 ^ !w w w w w w w4 4 1 4 2 4 3(( ( , ) ( , )) ( , )) .R R R

¶

Find formulae Á x x1 1 2( , ), Á x2 1( ), Á x x3 1 2( , ), Á x4 1( ) of L such that for n m M, 2 | |, 

n m M n m= ,  Á1( , ),

n M n= 1 ( ),,  Á2

gcd n m M n mf g ,, 1 ( , ),=  Á3

n  is a power of a prime , M n Á4( ) .

Is it possible to find a formula χ( , )x x1 2  of L  such that 

n m M n m< ,  χ( , ) ? ( )* −ed, harder

Let K  be the structure for L  with j j f gK = 0,1,2,3,N =   and R n m n mK = f 2 g〈 〉 × ≤, N N | . Find 
a sentence η of L such that M η and K  :η.

10 (p24) Let L L, ′ be languages and let M M, ′ be structures for L L, ′ respectively such that | | | |M M= ′  
and for each relation symbol R of L L R RM M\ ′ ′, = . Show that for µ x( )

 2 \FL FL′ and a M2 | |, 

M a M a µ µ( ) ( ).
 , ′

Hence show that the notion of logical consequence is language independent in the sense that if  
Γ µ \FL FL′ and µ x( )

 2 \FL FL′ then µ x( )
  is true in every interpretation for L in which every 

formula in ¡ is true just if is true in every interpretation for ′L  in which every formula in ¡ is true.
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11 (p30) For ¡ ¢, µ SL and µ Á, 2 SL  show that 

i)    ¡ ¡, ( )µ Á µ Á , !

ii)   ¡  Á  & ¢ ¡ ¢ µ µ Á) ^, ( )

iii)  ¡  µ & ¢ ¡ ¢ ( ) ,µ Á Á! )

[Here, as usual, ¡, µ is an abbreviation for ¡ [ f gµ  and ¡ ¢,  is an abbreviation for ¡ ¢[ . Note that 
exactly the same results hold for ¡ ¢, µ FL and µ Á, 2 FL, it’s just that we need to argue not just about 
structures but also about interpretations of the free variables in those structures. In such cases we will, 
purely for notational simplicity, often prove a result for sentences since the generalization to formulae 
uses just the same ideas.]

12 (p30) For the language L with a single binary relation symbol R show that no two of the following 
sentences logically imply the third:

i)    8 8 8 ^ !w w w w w w w w w1 2 3 1 2 2 3 1 3(( ( , ) ( , )) ( , ))R R R ,

ii)   8 8 _w w w w w w1 2 1 2 2 1(( ( , ) ( , ))R R ,

iii)  9 8w w w w1 2 1 2R( , ).
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13* ( 30)p  Let ξ , ( )Á x
 , Á x( )

  etc. be as in question 4 with Á, ξ  having no variables, free or bound, in 
common. Given a structure M  for L let M  be the structure for L such that | | | |M M =  and for R an 
r-ary relation symbol of L,

R
R if R S

a a a M a a a if R S
M

M

s s

�

�
=

=

(
≠

〈 〉
,

, , , ( , , , ) .1 2 1 2f j g ξ
 

Show that for a M2 | |, 

M a M a� �� �Á Á( ) ( ).
 ,

Hence show that if Á is a tautology then so is Á

14 (p35) Show the following from the list of ‘useful logical equivalences’ (to simplify the notation you 
may assume that all the displayed formulae are actually sentences): 

a)  µ Á Á µ_ _≡ ,

b)  8 8w Ã w w Ã w1 1 2 2( ) ( ),≡

c)  ( ( ) ) ( ( ) ),8 ^ 8 ^w Ã w µ w Ã w µ1 1 1 1≡

d)  ( ( ) ) ( ( ) ).9 ! 8 !w Ã w µ w Ã w µ1 1 1 1≡

where in (b), (c) w1 does not occur in µ.

15 (p35) Which of the following hold ( , )for arbitrary µ Á  ? In each case justify your answer, either by 
giving a (informal!) proof that it holds or by providing a counter-example: 

a)   : ! ! :( ) ( )µ Á µ Á≡

b)   :9 8 :w µ w w µ w1 1 1 1( ) ( )≡

c)   8 ^ 8 ^ 8w µ w Á w w µ w w Á w1 1 1 1 1 1 1( ( ) ( )) ( ( ) ( ))≡

d)   9 ^ 9 ^ 9w µ w Á w w µ w w Á w1 1 1 1 1 1 1( ( ) ( )) ( ( ) ( ))≡

e)   8 ! 8 ! 8w µ w Á w w µ w w Á w1 1 1 1 1 1 1( ( ) ( )) ( ( ) ( ))≡

f)*  9 ! 8 ! 9w µ w Á w w µ w w Á w1 1 1 1 1 1 1( ( ) ( )) ( ( ) ( ))≡
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16(p35) For µ xi( )
 2 FL  we define V

i
n
=1

( ) µ xi

  and Wi
n
=1 ( )µ xi

  inductively by

i=1

1

( ) ( )
V

µ x µ xi 1

 

= , 
i

n

i

n

i n
=1

1

=1
1( ) ( ) ( ))

+

+

V Vµ ¶
µ x µ x µ xi

  

= ^

_

i=

=
1

1

( ) ( )µ x µ xi 1

  , 
_ µ_ ¶

i

n

i

i

n

i n

= =

=
1

1

1

1

1( ) ( ) ( )
+ +

+µ x µ x µ x
  _ .

Show that for M  a structure for L  and a M2j j,

M a M a

i

n

i i 
V
+1

( ) ( )µ µ
 ,  for all 1     ∙       i     ∙     n ,

M a n M a
i

n

i i 
_

=1

( ) ( )µ µ
 ,  for some 1     ∙       i     ∙     n .

17* ( 37)p  Write down formulae in Prenex Normal Form logically equivalent to: 

a)  :9 8w w w w1 2 1 2R( , ),

b)  8 ^ 9w w ; x w x ; w1 1 1 1 2 1R R( ) ( ),

c)  8 ! 9w w ; x w x ; w1 1 1 2 2 2R R( ) ( ).

18 (p47) Fill-in justifications for the steps in the following formal proof:

1.   8 8w w w w1 1 1 1P P( ) ( )|

2.   8 jw w x1 1 1P P( ) ( )

3.                     P P( ) ( )x x1 1|

4.                     P P P( ) ( ( ) ( ))x x x1 1 1| ^

5.   8 ^w w x x1 1 1 1P P P( ) ( ( ) ( ))|

6.   8 8 ^w w w w w1 1 1 1 1P P P( ) ( ( ) ( ))|

If we to append to this proof the sequents

7.   9 ^w w x x1 1 1 1P P P( ) ( ( ) ( ))|

8.   9 9 ^w w w w w1 1 1 1 1P P P( ) ( ( ) ( ))|

would it still be a correct proof? If not how might it be corrected to give the same final sequent?
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19 (p50) Give formal proofs of the following: 

a) ( ) µ µ!

b) ( ( )) Á µ Á! !

c) ( ) ( ) µ Á µ Á^: ! : !

d) ( ( )) : ! !µ µ Á

e) ( ) ( ): ^ : _:µ Á µ Á

f) ( ) ( )8 8w µ w w µ w1 1 2 2

g) ( ) ( )9 9w µ w w µ w1 1 2 2

h) ( ) ( )9 : : 8w µ w w µ w1 1 1 1

i)  8 : : 9w µ w w µ w1 1 1 1( ) ( )  

j) ( ( ) ( )) ( ( ) ( ))9 _ 9 _ 9w µ w Á w w µ w w Á w1 1 1 1 1 1 1

k ,) ( ( ) ( )) ( ) ( )8 ! 9 9w µ w Á w w µ w w Á w1 1 1 1 1 1 1

 l)  8 _ 8 _ 9w µ w Á w w µ w w Á w1 1 1 1 1 1 1( ( ) ( )) ( ) ( )

20* ( 53)p  Show that if Á x1( ) , µ x w1( ) ,
 2 FL  does not occur in Á x1( )  and Á x µ xi( ) ( )   for all i 2 N+  

then 9w Á w µ x1 1( ) ( )  .
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21 (p53) Prove Lemma 5(ii) in the case where the rule is (a) AND, (b) 8I, (c) DIS.

22 (p55) Prove Lemma 6(ii) in the case where the rule is (a) ORR, (b) 8O, (c) 9O.

23 (p64) Let ­    be as in Lemma 13. Show that:

c)  ( )µ Á µ^ 2 , 2­ ­  and Á 2 ­  .

d)  ( )µ Á µ_ 2 , 2­ ­  or Á 2 ­  .

24* ( 67)p  Let L have a single binary relation symbol R. Show that if ¡ µ SL is satisfiable then ¡ is 
satisfiable in a structure M  for L with | |M  infinite. Is it necessarily true that ¡ must also be satisfiable 
in a structure with finite universe?

25 (p70) Suppose that µn 2 2SL n, N , are such that for every structure M  for L  there is some n 2 N  
such that M  µn . Show that for some m  

: : :µ µ µ µ1 m0 1, , , . m− 

26 (p70) Suppose that ¡ ¢, µ SL are such that for any structure M  for L , 

M M� �¡ ¢,

Show that there are finite ¡¶ ¡µ  and ¢¶ ¢µ  such that for any structure M  for L , 

M M� �¡¶ ¢¶.,

27 (p70) Let L be the language with unary relation symbols Rn for n 2 N+ and let 

¡ = f 2 gR nn( ) .x1 | N+

Using the Compactness Theorem for Relational Languages show that there can be no sentence Ã 2 SL  
such that, for any structure M  for L ,

M  Ã , ¡ is satisfiable in M .
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28 (p70) Let L be the language with a single binary relation symbol R. Say that a structure M  for L is 
connected if for any g h M, 2 | | there are some a a a Mn1 2, , , 2 | | such that a g a hn1 ,= =  and 

M R a a
i

n

i i

n

n

 V

W
=1

1

1

1

1

( , ).
−

+

−

−
Show that there is no sentence µ  of L  such that for a (normal) structure M  for L ,

M M µ ,  is connected.

[Hint: Assume that such a sentence µ  did exist and consider the set of formulae

f:9 ^ ^ 2 g[ fw w x ; w w ; x w ; w µ1 n 1 1 n 2 i, , (( ( ) ( )) ( ))
=1

1

1 R R R n
i

n

i

−

−
+

V
| N ,, ( ) .]: gR x ; x1 2

29 (p73) Let the language L have a binary function symbol f , a unary function symbol g and a constant 
symbol c. Which of the following are terms of L? Justify your answers.

(i)  f g f x x c( ( ( , )), )1 1 , (ii)  gg c( ) , (iii)  f f g( ( ), ( ))x ; w x1 1 1 ,

(iv)  f f g f c f f g f f g g g c( ( ( ( , ( ( ( ( , ( ( ), ( ( ))))))), )), )x x x x1 2 3 2 .

30 (p78) Let L be as in the previous question and let M be a structure for L with 
| |M f x y x y g x x cM M M= , ( , ) , ( ) , 42Z = = =− . Evaluate tM(2, 5)−  when t( )x ; x1 2  is

(i) f g( ( ), )x x1 2 , (ii) f f g c( ( ( ), ), )x x1 2 , (iii) g f f c g( ( ( , ), ( )))x x1 2 .

31(p88) Give formal proofs of the following where R is a unary relation symbol, f  is a unary function 
symbol: 

a) ( ) ( ( ))8 8w w w w1 1 1 1R R f

b) ( ( )) ( )9 9w w w w1 1 1 1R f R

32(p88) Let M K,  be structures for a language L and t TL FL( ) , ( )
 

x Á x2 2 . Suppose that | | | |M K=  
and R R c c f fM K M K M K= = =, ,  for every relation, constant, function symbol R c f, ,  occurring in 
t( )


x  or Á x( )
 . Show that for   

a M t a t aM K2 | | , ( ) ( )=  and 

M a K a Á Á( ) ( ).
 ,
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Suppose c  is a constant symbol of L  and let µ x1( )2 FL  be such that c  does not occur in µ . Use the 
above result to show that

i)*  If  µ( )c  then  8w µ wj j( ).

Show directly (so without appealing to the Completeness Theorem) that:

ii)*  If  µ( )c  then  8w µ wj j( ).

33 *( 88)p  Let c c1 2,  be constant symbols of L and let µ x ; x1 2( ) be a formula of L which does not mention 
c1  or c2 . Show that if f gµ( , )1 2c c  is inconsistent then so is f gµ( , )1 1c c .

Is the converse true, that if f gµ( , )1 1c c  is inconsistent then so is f gµ( , )1 2c c ?

34 (p95) Let L be the language with constant symbols cn for n 2 N, binary function symbols f f+ ×,  and 
binary relation symbol R< and let L( )ε  be L augmented with a new constant symbol ". Let  be the 
structure for L with 

| | |<  = , , ,  c n R r s r sn = = f 2 g〈 〉 × <

f r s r s f r s rs+ ×+ ( , ) , ( , ) .= =
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Show that there is a model45 M  of

­ = f 2 g [ f g [ f 2 gµ SL R c R f c c nn| |< <R � θ ε ε( , ) ( ( , ), )0 1× N .

35 (pl05) Let L be the language with equality, a binary relation symbol R, a binary function symbol 

f , unary function symbol g and constant symbol c. Which of the following are formulae of L? Justify 
your answers.

(i) 8w x w1 1 1( )= ,   (ii) 8 _w x w x w1 1 1 1 1( )= = ,    (iii) 9w w ; x3 3 1f( ) ,    (iv) 8 !w x ; w w x1 1 1 1 2( ( ) )R = .

Let M  be the (normal) structure for L  with | |M = N+ =

{1,2,3, .  . .}, f x y x y g x x cM M M( , ) , ( ) , 22= = =+ ,

R n m n mM = f 2 j j〈 〉 +, ( )2N  i.e. n  divides mg .

Which of the following are true in M ?

1)  8w w ; w1 1 1f c( ) = ,

2)  9w w1 1c g= ( ) ,

3)  8 8 !w w w ; w w w1 2 1 2 1 2( ( ) ( , ( )))R R g ,

4)  9 8 8 !w w w w w ; w w ; w1 2 3 2 1 3 2 3( ( , ( )) ( ))R f R .

Find µ x1 1( ) , µ x2 1( ) , µ x3 1( ) , µ x ; x ; x4 1 2 3( ) , µ x5 1( ) , µ x ; x ; x6 1 2 3( )2 FL  such that for n m k M, , 2 | |,

M n n µ1( ) 4, = ,

M n n µ2( ) 3, = ,

M n n µ3( ),  is the sum of two squares (of elements of N+ ), 

M n m k n m k µ4( , , ) ( , ), = gcd ,

M n n µ5( ),  is prime,

M n m k n mk µ6( , , ), = .

Let K be the (normal) structure for L with 

| | |K q q= 0 , + = f 2 g>
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f x y x y x y g x x cK K K( , ) ( , ) ( ) , 22= = =+ +2  of course , 

R q s q sK = f 2 g〈 〉 +, ( ) .2 | <

Find Á 2 SL  such that M K� �Á Á, .

36 (pl05) Write down sentences µ ; µ ; µ1 2 3 of L such that for a normal structure M  for L,

M M µ1 , | |   has at most 3 elements, 

M M µ2 , | |   has at least 3 elements, 

M M µ3 , | |   has exactly 3 elements.

Suppose that f  is a unary function symbol of L. Show that

8 8 ! ^ 9 8 :w w w w w w w w w w1 2 1 2 1 2 1 2 2 1( ( ) ( ) ) ( )f f f= = =

is satisfied in some normal structure for L but is not satisfied in any finite normal structure for L.

37 (pl05) In a certain football league every team plays every other team exactly once and either wins, 
loses or draws. Let M  be the structure for the language L with equality and a binary relation symbol R 
such that | |M  is the set of teams in the league and

RM = {〈 〉 ≠b c M R S, 2 j jj , and team b  beats team c}.

Write down formulae µ x ; x1 1 2( ) , µ x2 1( ) , µ ; µ3 4 , of L  such that for b c M b c, ,2 | | ↑ 〈 〉 ≠b c M R S, 2 j jj ,

M b c µ1( , ),  the match between team b  and team c  is drawn,

  M b µ2( ),  team b  loses all its matches,

      M  µ3 ,  no team wins all its matches,

    M  µ4 ,  some team wins all its matches except one.

38 (pl06) Show that 

8 ! : 8 :w µ w w µ w µ w1 1 1 1 1( ( ) ) ( ) ( ).= c c, 

[Purely to simplify the notation you may assume that these are all sentences of L.]
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39¤ (p115) Let the language L have a binary relation symbol R, a unary function symbol f  and a constant 
symbol c. Give formal proofs of the following:

a)  EqL t s f t f s, ( ) ( )= = , where t s TL, 2 , 

b)  EqL x c R x c R c c, ( ( , ) ( , )),1 1=  !

c)  EqL c c, ( ) ( ) ( ( ) ),9 : 9 ^:w µ w µ w µ w w1 1 1 1 1,  =

d)  EqL c c, ( ( ) ) ( ) ( ).8 ! : 8 :w µ w w µ w µ w1 1 1 1 1= , 

40 (pl24) For L  as in the previous question show that

(a)  EqL f x f x x x, ( ) ( )1 2 1 2= = ,

(b)  EqL c R R c c, ( ( )) ( , )9 : ^ :w w w ; w1 1 1 1= 

(c)  Eq Eq Eq1, 3 2 .
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41¤  (p127) The language of arithmetic, LA , has equality, binary function symbols ± −, :  and constants 
0, 1 . Let N  be the structure for LA  with j jN

N N
= , 0 0, 1 1N = = , and ± −

N N, :  the usual addition 
and multiplication resp. on N . For 1   ∙ 1 ″ n 2 N  what is 

± ± ± ± ± ±(1, (1, (, (1, (1, (1, 1))) )) 

N

when there are n  copies of ± ?

Let

TA SLA N= =f 2 gµ µ|   ‘True arithmetic’.

N  is called the standard model of true arithmetic. By using the Compactness Theorem show that there 
are ‘non-standard models of true arithmetic’, that is (normal) models which are not isomorphic to N  
(i.e. not just N  with the elements of | |N  renamed).

42¤ (p127) By using the Compactness Theorem for Normal Structures prove König’s Lemma:

Let H  be a set of finite strings a a a a ak0 1 2 3  of 0’s and 1’s such that

1. If a a a a a Hk0 1 2 3 2  and n ∙ k           then a a a an0 1 2 2 

2. For each n 2 N  there is a string a a a a Hn0 1 2 2  ( i e. . a string in H  of length n + 1).

Then there is an infinite string b b b0 1 2 of 0’s and 1’s such that for all n b b b b Hn2 2N, 0 1 2 .

[Only for those who think this course is too easy.]
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Solutions to the Exercises
1 (a) This does not follow. For suppose we put P  for ‘it rained last night’ and Q  for ‘the road is wet’. 
Then the argument becomes:

If P  then Q i e P Q( . . )!  
Q

∴P

But clearly this isn t′  correct in general, for example let P  stand for ‘the moon is made of green cheese’ 
and Q  stand for ‘5 is prime’. Then both P Q!  and Q  are true but P  is not true.

(b) This does follow. For let M x( )  stand for ‘x is a man’, let E x( )  stand for ‘x is mortal’, let s  stand for 
Socrates and let the variables range over, say, objective things. Then the argument becomes 

M s( )

8 !x M x E x( ( ) ( ))

∴E s( )

But clearly this conclusion must be true whenever the premises are both true no matter what properties 
M and E  stand for, no matter what the range of the variable x  is and no matter what element of this 
range s  denotes.

(c) This does follow. For let P  stand for ‘311 is prime’ and Q  stand for ‘311 is odd’. Then the argument 
becomes 

P

:P
∴Q

But because P  and :P  cannot both be true, if they are both true then Q  will be true, no matter what 
P Q,  stand for. So this conclusion does follow from the premises.

(d) This does follow. For let P  stand for ‘Montevideo is the capital of Uruguay’ and and Q  stand for 
‘you gotta go’ Then the argument becomes 

P

∴Q Q!
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But no matter what Q  stands for Q Q!  is true (such an assertion is called a tautology) so certainly 
this conclusion is always true when P  is true, no matter what P  stands for.

2 (a) This is a formula since

P x( )1 , R( , )1 2x x FL2  by Ll,

( ( , ) ( ))1 2 1R x x P x FL! 2  by L2,

8 ! 2w R w x P w FL3 3 2 3( ( , ) ( ))  by L3.

(b) This is a formula since

P x( )1 , R( , )1 1x x FL2  by Ll,

8w P w1 1( ) , 9 2w w w FL1 1 1( , )R  by L3,

( ( , ) ( ))1 1 1 1 19 ! 8 2w R w w P w FLw  by L2.
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(c) �This is not a formula. The idea is to state some property P for which we can prove by induction on 
the length of formulae that all formulae have P but P w( )3  does not. (In answering an exam question 
it would be enough to simply state such a property without actually proving that it works.) There 
are lots of different properties we could choose here for , for example that if some wi  occurs in 
the expression then so must either 8  or 9 .

So suppose that µ 2 FL  and P  holds for all formulae of length less that | |µ . As in the example on page 
12 there are 7 cases: 

Case 1  µ = ( )R x
  for some relation symbol R  of L . In this case no wi  is mentioned in µ so   holds 

vacuously.

Case 2  µ Á Ã= ( )^ . In this case if some wi  occurs in µ  then it must occur in one of Á  or Ã. Without 
loss of generality suppose it is Á. Then since | | | |Á < µ  must hold for Á. In other words one of 9 8,  
must occur in Á and hence in µ. The cases for the other connectives : _ !, ,  are exactly similar. [In such 
situations just say this rather than plodding through each case separately.] 

Case 3  µ Á= ( / )9w w xj j i  where Á 2 FL  does not mention wj . In this case µ  does mention 9  so the 
required property P  holds trivially for µ  (and similarly for µ Á= 8w w xj j i( / )).

So by induction on the length of formulae every formula of L must satisfy P . But P( )w3  does not satisfy 
P  so it cannot be a formula of L.

(d) This is not a formula. To see this let P  be the property of containing the same number of left 
parentheses ‘(’ as right parentheses ‘)’. Then P  fails for

(((( ( ) ( )) ( )) ( ( , ) ( , )))1 2 3 1 2 2 3P Rx P x P x x x x x^ ^ ^ ^

so it is enough to show by induction on the length of formulae that P  holds for all formulae. This is 
obvious of simple inspection (and in answering an exam question it would be enough to leave it at that) 
but if you want to go through some details there are the usual 7 cases:

If µ = R x( )
  then µ  has P  since µ  contains one ‘(’ and one ‘)’.

If µ Á Ã= ( )^  then by inductive hypothesis the number, lÁ, of ‘(‘ in is the same as the numberÁ rÁ, ,  
of ‘)’ in Á and similarly for Ã Á Ã < µ( , )since . Hence 

l l l r r rµ Á Ã Á Ã µ= 1 = 1 ,+ + + + =

as required. Similarly for the other connectives.
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If µ w Á w= ( )8 j j ix  then l l r rµ Á Á µ= 1 = 1+ + ( )by IH = , as required. Similarly for µ s Á x= ( )9 j j iw .

(e) Not a formula. In this case take P  to be, say, ‘whenever 8 appears in a formula it is followed 
immediately by wj for some j’.

(f) Not a formula, but in this case the required property P to exclude 9 !w w w w1 1 1 1 1( ( , ) ( ))R w P∀  
from the set FL is harder to find and it seems simplest to take a different tack. So suppose that this was 
a formula of L. Then by the way formulae are formed it must be the case that 

9 ! 8 9w R w w w P w w w xi1 1 1 1 1 1 1( ( , ) ( )) ( )= Á

for some Á FL2  not mentioning w1. Hence 

Á R P w( ) ( ( , ) ( ))1 1 1 1 1w x w w wi = ! 8

and since Á does not mention w1 it must be the case that all the w1 on this left hand side were xi in Á, 
in other words 

Á P= ( ( , ) ( )).R x x x xi i i i! 8

But by the proof of (e) immediately above this right hand side is not a formula, giving the required 
contradiction.

3 Assume the result is true ( , )for all s t 2 N+  for all formulae of length less than µ .

If µ = R x xi ir
( , , )

1
  where R is an r-ary relation symbol of L then µ( ) ( , , )

1
x x R x xt s j jr

=   where 
jk ki=  if 〈 〉 ≠b c M i sk, 2| ||  and j tk =  if i sk = . Then ′µ FL2  by L1.

If µ Á Ã= ( )^  the µ Á Ã( ) ( ( ) ( ))x x x x x xt s t s t s= ^  and since Á( )x xt s , Ã( )x x FLt s 2  by inductive 
hypothesis, µ( )x x FLt s 2  by L2. The cases for the other connectives are exactly similar. [In situations 
like this it is enough to just do the case for one connective, similarly for just one quantifier.]

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Solutions to the Exercises

134 

Finally suppose that µ Á= 9w w xj j i( ). If 〈 〉 ≠b c M i s, 2| ||  then Á x Á x( ) = ( )( )w x x wj i t s j i  and 
µ Á x( ) = ( )( )x x w x x wt s j t s j i9  so since Á( )x x FLt s 2  (by Inductive Hypothesis) so µ( )x x FLt s 2  
by L3. If i s=  then µ does not mention xs so µ µ= ( )x x FLt s 2 . If i t=  let k be such that xk does not 
occur in Á and write Á Á= ( , , )x x xs t

  where x are the other free variable occurring in Á. Then by Inductive 
Hypothesis Á Á( ) = ( , , )x x x x x FLk t s k

 2 . Hence in turn { }Á Á( ) ( ) = ( , , )x x x x x x x FLk t t s t k

 2 , and

µ Á x

Á

Á

( / ) = ( ) ( )

= ( , , )

= ( , , )

x x w w x x

w x w x

w x x x

t s j j t t s

j t j

j t k

{ }

{

9
9
9





(( ) ) 3w FLj kx }2 by L .

where the {},  are not part of the syntax but have been introduced here just to make clear the order of 
the substitutions. The case for 8 is exactly similar.

4 Assume the result is true for all formulae of length less than j jÁ  and that Á has no variables, free or 
bound, in common with ξ.

If Á = R x x xi i ir
( , , , )

1 2
  for some relation symbol R of L then either 〈 〉 ≠b c M R S, 2 j jj , in which case Á Á = , or 

R S= ,in which case Á = ( , , , )
1 2

ξ x x xi i ir
 . Either way Á 2 FL.
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If Á µ Ã= ( )^  then Á µ Ã  = ( )^ . Since µ; Ã must also have no variables in common with ξ, by 
the Inductive Hypothesis µ Ã , 2 FL so Á 2 FL by L2. The cases for the other connectives are 
exactly similar.

If Á Ã= 9w w xj j i( ) then Á Ã Ã  = ( ( )) ( ( ))9 9w w x w w xj j i j j i= . We may assume that xi does not 
occur in ξ, otherwise by question 3 above we can replace xi in Ã by some xk which does not occur in Á 
or ξ  to get Ã( )x x FLk i 2  and useinstead that Á Ã= ( ( ))( )9w x x w xj k i j k . By the Inductive Hypothesis 
then Ã 2 FL, since Ã < Á . Also ( ( )) ( )Ã Ãw x w xj i j i

 =  since because Á and ξ have no variables in 
common replacing S by ξ in Á to get Á does not introduce any new occurrences of xi, and hence this 
operation commutes with that of replacing xi by wj. Furthermore since wj occurs in Á by assumption it 
does not occur in ξ , so wj does not occur in Ã and Á Ã Ã  = ( ( )) ( )9 9 2w w x w w x FLj j i j j i=  by L3. 
The case for 8 is exactly similar and the desired result follows by induction on the length of formulae.

5 (i) Suppose on the contrary that ( ( , ) ( , ))1 1 1 1 19 !w R w x R x w  was a formula. Then the only case from 
Theorem 1 that can apply is (5), which means that both 9w R w x1 1 1( , ) and R x w( , )1 1  must be formulae. 
But this latter does not fall under any case (not even case (1) because it contains a bound variable) so it 
cannot be a formula. Hence ( ( , ) ( , ))1 1 1 1 19 !w R w x R x w  cannot be a formula.

(ii) Again suppose on the contrary that 

9 ^ 8w R w x w R x x1 1 1 1 1 1( ( , ) ( , ))

was a formula. Then the only case in Theorem 1 that applies is (7) and we must have that 
9 ^ 8w R w x w R x x1 1 1 1 1 1( ( , ) ( , )) is 9w w xj j iη( ) for some wj and η 2 FL with wj not occurring in η. 
Clearly j must equal 1 and η( )w xj i  must be ( ( , ) ( , ))1 1 1 1 1R w x w R x x^ 8 . Since w wj ( )1i.e.  does not 
occur in η it must be that η is 

( ( , ) ( , )).1 1R x x x R x xi i i^ 8

But now by case (3) of Theorem 1 8x R x xi i( , )1  must be a formula, which (since xi is a free, not 
a bound    a variable) is impossible since it does not correspond to any case in that theorem. The 
required conclusion follows.

6  By the Unique Readability Theorem 1, if 9 2w FLj Á  then it must be the case that 9 9w w w xj j j kÁ Ã= ( ) 
for some k and Ã 2 FL in which wj does not occur. Since as words (i.e. strings of symbols from 
9 8, , , , (,)x wh r ,etc.) these two are the same it must be that Ã Á( ) =w xj k . Hence 

Á Ã Ã( ) = ( ) ( ) = ( )x w w x x w x xi j j k i j i k{ }

and this right hand side expression is a formula by problem 3 above.
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7 (a) M  R RM(1,2) 1,2, 2〈 〉  by T1 – which holds.

(b) M R R ( (1,3) (1,1))! :

, :
,
,

M R M R

M R M R

RM

 
 

(1,3) (1,1)

(1,3) (1,1)

1,3

or by T2

or by T2

〈 〉 ∈ oor by T2〈 〉 ∈1 1, RM

– which does not hold since both 〈 〉1 3,  and 〈 〉1 1,  are in RM.

(c) M w R w R w w 9 ^1 1 1 1( ( ,2) ( , ))

, 2
^

, 2

for some

by T3

for some

b M

M R b R b b

b M

= 1,2,3

( , 2) ( , )

= 1,

{ }

{

 , ,

22,3

( , 2) ( , )

1,2,3

, 2

}

{ }

,

, ,M R b M R b b

b M

b

 and by T2

for some, 2
2

=

〈 〉 RR b b RM Mand by T1〈 〉, 2 , ,

– which holds (when b = 1) since 〈 〉 〈 〉1 2 1 1, , , .2RM

(d) M w R w 8 2 2(1, )

, 2
,

for all  by T3

and and

b M M R b

M R M R M R

, (1, )

(1,1) (1,2) (1,3)


  

,

,, 2 2 2〈 〉 〈 〉 〈 〉1 1 1 2 1 3, , ,R R RM M Mand and

– which holds.

(e) M w w R w w R w R w 8 8 ^ !1 2 1 2 2 1(( ( , ) ( ,2)) ( ,2))

, 2

,

for all if and

then

for all

b c M M R b c M R c

M R b

b c

, ( , ) ( , 2)

( , 2)

,

,  

22 2 2
2
M b c R c R

b R

M M

M

,

.

if and

then

〈 〉 〈 〉
〈 〉

, , 2

, 2

On the face of it we now have to check this for all b c M, 1,2,32 = { }. However since 〈 〉1 2, 2 RM  we 
have right hand side of the implication for the cases for b = 1 (for any c). For b = 2, and again for b = 3, 
one of 〈 〉 〈 〉b c c, , , 2  is not in RM for any choice of c 2 { }1,2,3 , as can be easily checked. Hence the original  
assertion holds.

(f) M w w R w w 8 9 :2 1 1 2( , )

,  for each b M2  there is a c M2  such that 〈 〉 ∈c b RM, .
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This does not hold since for b = 3 we have 〈 〉 〈 〉 〈 〉1 3 , 2 3 , 3 3 ,, , , 2RM so there is no c M2  for which 
〈 〉 ∈c RM, 3 .

(g) M w w R w w R w w 8 : !1 2 1 2 1 1( ( , ) ( , ))∃

,  for all b M2 , if there is c M2  such that 〈 〉 ∈b c RM,  then 〈 〉b b RM, 2 .

This fails (and so the assertion does not hold) since when b = 2 there is a c such that 〈 〉b c RM, 2 , namely 
c = 3, but 〈 〉b b,  (i.e. 〈 〉2 2, ) is not in RM .

(h) M w w w R w w R w w 8 9 8 !1 2 3 1 2 2 3( ( , ) ( , ))

⇔
〈 〉

for all there is a such that for all

if th

� �a M b M

c M a b RM

2 2
2 2, een 〈 〉b c RM, 2 .

We need to check cases. When a = 1 we can take b = 1. Then 〈 〉a b RM, 2  and for each choice of 
c a c RM= 1,2,3, ,〈 〉 2 . When a = 2 we can take b = 1. Then 

〈 〉 〈 〉a b R b c RM M, ,2 ) 2
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holds for any c since the left hand side is false. Similarly for a = 3 we can take b = 2. Hence the original 
assertion holds.

8 (a) M w P w 8 ,1 1( )  every n 2 +  is prime

– so this clearly is not true in M .

(b) M w w R w w P w 8 9 ^ ,1 2 1 2 2( ( , ) ( ))  for every n 2 + there is an m 2 + such that n m<  and  
m is prime

– true since there are infinitely many (hence arbitrarily large) primes.

(c)  M w w P w w w P w 8 8 ^ ! ,1 2 1 1 2 2(( ( ) ( , )) ( ))S  for all n m, 2 +, if n is prime and m n= + 2 
then m is prime

– not true since 2 is a prime and 4 2 2= +  but 4 is not prime.

(d)  M w w S w w R w w 8 8 ! ,1 2 1 2 1 2( ( , ) ( , ))  for all n m, 2 +, if m n= 2+  then n m<  – true.

(e)  M w w R w w R w w 8 8 ! : ,1 2 1 2 2 1( ( , ) ( , ))  for all n m, 2 +, if n m<  then (not m n< ) – true.

(f)  M  ( ( , ) ( ))1 1 1 1 19 ! 8 ,w R w w w P w  if there is a number n 2 + such that n n<  then every 
m 2 +  is primetrue, since ‘there is a number n 2 + such that n n< ’ is false.

(g)  M w w w R w w S w w P w P w 8 9 9 ^ ^ ^ ,1 2 3 1 2 2 3 2 3((( ( , ) ( , )) ( )) ( ))  for all n 2 +  there are 
m k, 2 +  such that n m<  and k m= + 2 and m, k are both primes.

Is this true?!!! [This example illustrates the point that even when you understand perfectly well what it 
means for a sentence to be true in a particular structure you may still not have any idea whether or not 
it actually is true in that structure.]

9 (i) M w R w R w 8 ! ,3 3 3( ( ,3) ( ,9))  for all n 2 +  if nj3  (i.e. n divides 3) then nj9. True.

(ii) M w R w R w 8 ! ,3 3 3( ( , 4) ( ,6))  for all n 2 +, if n j4 then n j6. False since 4 4j  but 4 6-  (i.e. 4 
does not divide 6)
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(iii) M w R w R w R w 9 ^ ^: ,3 3 3 3(( ( ,12) ( ,18)) (3, ))  there is a number n 2 + such that nj12 and 
nj18 but 3-n. True, 2 is such a number.

M w w w R w w R w w 8 8 9 ^ ^1 2 3 3 1 3 2(( ( , ) ( , ))

8 ^ !w R w w R w w R w w4 4 1 4 2 4 3(( ( , ) ( , )) ( , )))

,  for all n m, 2 +  there is a k 2 +  such that k nj  and k mj

and whenever r 2 + is such that r nj  and r mj  then r kj ,

– true, when we take for k the greatest common divisor of n and m.

Let Á1 1 2 1 2 2 1( , ) ( ( , ) ( , ))x x R x x R x x= ^ , Then for n m M, ,2 j j

n m n m= , j  and m n M n mj ,  Á( , ).

Let Á2 1 1 1 1( ) = ( , )x w R x w8 . Then for n M2 j j,

n n= 1 ,  divides every m M n2 ,+  Ã( ).

Let Á3 1 2 1 1 1 1 2 2 1 2( , ) (( ( , ) ( , )) ( , ))x x w R w x R w x w R w w= 8 ^ ! 8 . Then for n m M, 2 ,

M Á 3( , ) = 1

, = 1.

n m k n k m k

gcd n m

, j j
,

whenever and then

{ }

Let Á R w R4 1 1 2 1 1 2 1 1 2 2 1( ) (( ( , ) ( , )) ( ( , ) ( , )))x w w w x R x w w R w w= 8 8 ^ ! _ . Then for n M2 ,

M n k n r n k r r k Á4( ) , j j j j
)

whenever and then or

any two prime divisorrs of are the same

is a power of a prime

whenever and

n

n

k n r

)
) j jj j j
,

n r r k

M n

then ork

Á

.

 4( ).

It is not possible to find a formula χ( , )1 2x x  of L such that 

n m M n m< ,  χ( , ).
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In short, to see this let ¾      be the permutation of + which maps a number with prime decomposition 
2 3 5 71 2 3 4n n n n

r

nrp , where pr is the rth prime, to the number 2 3 5 72 1 3 4n n n n

r

nrp , so in particular 2 gets 
mapped to 3. Then we can show by induction on the length of a formula µ( , , , )1 2x x xm  that for 
k k km1 2, , , 2 + ,

M k k k M k k km m µ µ ¾ ¾ ¾( , , , ) ( ( ), ( ), , ( ))1 2 1 2 , .

Hence there can be no such χ( , )1 2x x  for if there was we would have to have

2 3 (2, ) (3,2) 3 2< M <, , , χ χ3 M ,

– Contradiction!.

A suitable sentence η  is 9 9 : ^:w w R w w R w w1 2 1 2 2 1( ( , ) ( , ))  since 2 3-  and  3 2- , so M η but for any 
n, m 2   either n     ∙     m or m     ∙      n so K  : ^:R n m R m n( , ) ( , )  and hence K  η.

10 The first part is proved by induction on µ( )


x . Assume the result for formulae of length less than 
µ x( )


.As usual there are various cases.
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If µ x( ) ( )
 

= R x  for some relation symbol R of L and ′L  then from the given condition

M a a R a R M aM M µ µ( ) ( )
   , 2 , 2 ,′ ′ .

If µ Á Ã( ) ( ( ) ( ))
  

x x x FL FL= ^ 2 \ ′ then both Á( )


x , Ã( )


x FL FL2 \ ′ and by the Inductive Hypothesis

M a M a M a

M a M a

M a

  
 


µ Á Ã

Á Ã

µ

( ) ( ) ( )

( ) ( )

( ).

  

 



,
,
,

and

and′ ′
′

The cases for the other connective follow similarly.

If µ Ã wj( ) ( , )
 

x w xj= 9  let xi not be in x. Then Ã < µ( , ) ( )x x xi

   and by the Inductive Hypothesis

M a b M M b a

b M M b a M M

b M

 


µ Ã

Ã

( ) , ( , )

, ( , )

,

 



, 2
, 2
, 2

∃
∃ ′ ′

∃ ′ ′
, , since =

MM b a

M a




Ã

µ

( , )

( ).



, ′

The case for 8 follows similarly.

For the second part we shall show the contrapositive. So suppose that there is a structure M  for L and 
assignment x a Mi i 2  for which each formula in ¡ is true but µ( )



x  is not true. Define a structure ′M  
for ′L  by setting ′ ′M M R RM M= , =  for R a relation symbol common to L and ′L  and, say, RM ′ = ; 
for R a relation symbol of ′L  which is not a relation symbol of L. Then for the interpretation of ′L  given 
by ′M  and the assignment x a M Mi i 2 j j j j= ′ , by the first part, every formula in ¡ is true but µ( )



x  
is not true. Since this argument is obviously symmetric in L L, ′ the required conclusion now follows.

11 (i) Assume that ¡, µ Á . Let M  be a structure for L such that M  ¡. Then either M  µ, in which 
case M  µ Á→ , or M  µ, in which case from the assumption Γ, ,µ Á Á M , so again M  µ Á:→  
Hence since M  was an arbitrary model of ¡ ¡, ( ) µ Á→ .

In the other direction assume that ¡  ( )µ Á!  and let M  ¡, µ. Then since M M ¡, µ Á!  and 
since also M  µ it must be the case that M  Á (since by T2, M  µ Á!  if and only if M  µ  or 
M  Á). Again since M  was an arbitrary model of ¡, this shows that ¡, µ Á .

(ii) Assume that ¡  Á and ¢  µ and let M  ¡ ¢, . Then M  ¡ so M  Á (from ¡  Á) and similarly 
M  ¢  so M  µ. Hence, from T2, M  µ Á^ . Since M  was an arbitrary model of ¡ ¢,  this gives 
¡ ¢,  µ Á^ , as required.
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(iii) Assume that ¡  µ and ¢  ( )µ Á→ . Let M  ¡ ¢, . Then since M  ¡, from ¡  µ µ, M . Similarly 
since M M ¢, ( )µ Á→ , in other words either M  µ or M  Á. Since we already have that M  µ 
it must be the case that M  Á. Hence since M  was an arbitrary model of ¡, ¢ we can conclude that 
¡, ¢  Á;as required.

12 For each of (i), (ii), (iii) we need to find a structure for L  in which that sentence does not hold but 
the other two do.

(i), ( ii) /) ( iii):

Let M  be the structure for L with j jM = N  and R n mM = f 2〈 〉, N N× j ¸ gn m . Then (i) holds (in M) 
since ¸  is transitive, (ii) holds since for n m, 2 N  either n m≥  or m n≥ . However (iii) does not hold 
since if it did there would have to be a largest natural number – which there ain’t!

(i), (iii) /) ( ii):

Let M  be the structure for L with j j f g f gM RM= 0,1 , = 1,0 , 1 1〈 〉 〈 〉, . Then by checking cases (i) holds in 
M  and (iii) holds in M  since M R w 8w2 (1, )2 . However (ii) does not hold in M  since neither R(0, 0) 
nor R(0, 0) hold (!) .

(ii), (iii) /) ( )i :

Let M  be the structure for L  with j j f gM = 0,1,2 ,

RM = f g〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉 〈 〉0,0 , 0,1 , 1,1 , 1,2 , 2,2 , 2,0 , 0,2 .

Then (ii) holds since for any i, 0,1,2j 2 f g  either 〈 〉i j RM, 2  or 〈 〉j i RM, 2 , and (iii) holds since 
M w R w 8 2 2( , )O . However (i) fails because 〈 〉 〈 〉2,0 , 0,1 2 RM  but 〈 〉2,1 2 RM .

13 The proof is by induction on j jÁ  where Á  has no variables in common with ξ . Assume that the result 
holds for formulae of length less than j jÁ .

If Á = R x x xi i ir
( , , , )

1 2
 , where R is an r-ary relation symbol of L, then either 〈 〉 ≠b c M R S, 2| || R S↑ , Á Á =  and

M a a a M R a a ai i ir i i ir

� �� �Á( , , , ) ( , , , )
1 2 1 2

 ,

, 2

, 2

,

〈 〉

〈 〉

a a a R

a a a R R R

M R a

i i ir

M

i i ir

M M M

1 2

1 2

, , ,

, , , =

(





�

�

�

, ,since

ii i ir

i i ir

a a

M a a a
1 2

1 2

, , , )

( , , , )



, � �Á
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or R S=  and

M a a a M R a a ai i ir i i ir

� �� �Á( , , , ) ( , , , )
1 2 1 2

 ,  

, 2

,

〈 〉a a a R

M a a a S

i i ir

M

i i ir

1 2

1 2

, ,

( , , , )





,

,

�

� ξ  by definition of MM

i i ir
M a a a

�

��

,

,, Á ( , , ).
1 2



If Á µ Ã= ( )^  then Á µ Ã  = ( )^ . Since µ Ã,  must also have no variables in common with ξ , by 
the Inductive Hypothesis

M a M a M a

M a M a

M a

� � �

� �

�

� � �
� �
�

Á µ Ã

µ Ã

Á

( ) ( ) ( )

( ) ( )

( ).

  

 



,
,
,

and

and

The cases for the other connectives are exactly similar.
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If Á Ã( ) = ( / , )
 

x w w x xj j i9  then, as in question 3, we may assume that xi does not occur in ξ. So 
Á Ã = ( )9w w xj j i  with Ã and ξ  having no variables in common. Hence by the Inductive Hypothesis 
and the fact that j j j jM M = ,

M a b M M b a

b M M b a

� � �

�

� �
�

Á Ã

Ã

( ) , ( , )

, ( ,

 



, 2 j j
, 2 j j

for some

for some ))

( ).

,

, M a� �Á


The case for 8  is exactly similar and the desired result follows by induction on the length of formulae.

If Á( )


x  is a tautology then for every structure N  for L and 
 

a N N a2 j j, ( ) Á . Hence for every structure 
M  for L and  

a M M a2 j j, ( )� � Á , so by the first part M a� �Á ( )
 . It follows then that Á( )



x  is a tautology.

14 Throughout let M  be an arbitrary structure for the language. So to show that µ µ1 2≡  for µ µ1 2, 2 SL 
we simply need to show that M M µ µ1 2,

(a) M M M

M M

M

  
 


µ Á µ Á

Á µ

Á µ

_ ,
,
, _

or by T

or

,

,

2

.

(b)

M w w b M M b

M w w

 


8 , 2 j j
, 8

1 1

2 2

( ) , ( )

( ).

Ã Ã

Ã

for all by T3

(c)

M w w M w w M

b M M b

  


( ( ) ) ( )

, ( )
1 1 1 18 ^ , 8

, 2 j j
Ã µ Ã µ

Ã

and by T2

for all andd

by T3

for all

M

b M M b

M w w






µ

Ã µ

Ã µ

, 2 j j ^
, 8 ^

, ( )

( ( ) ).1 1

(d)

M w w M w w M

b M M b M

  
 

( ( ) ) ( )

, ( )
1 1 1 19 ! , 9

, 2 j j
,

Ã µ Ã µ

Ã µ

/
/

or

for all or

ffor all b M M b

M w w

2 j j !
, 8 !

, ( ( ) )

( ( ) ).1 1




Ã µ

Ã µ
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15 (a) This fails for some µ Á,  since let, say, L have the single unary relation symbol P  and let M  be the 
structure for L  with j j f g f gM PM= 0 , 0= . Let µ = ( )1 19 :w P w  and Á = ( )1 19w P w . Then M  :µ Á,  
so M  µ !:;  but M / : !( )µ Á  (since M  µ Á! ).

(b) This holds. For given a structure M  and an interpretation of the free variables in M ,

M w w

b M M b

b




:9 ,
9 2 j j

, 2

1 1( )

, ( )

µ

µ

it is not the case that

for all jj j
, 2 j j :
, 8 :

M M b

b M M b

M w w

, ( )

, ( )

( ).1 1

/




µ

µ

µ

for all

(c) This holds since for M  etc. as in (b),

M w w w b M M b b 8 ^ , 8 2 j j ^1 1 1( ( ) ( )) , ( ) ( )µ Á µ Á

, 8 2 j j
, 8 2 j j 8 2 j j
, 8

b M M b M b

b M M b b M M b

M w

, ( ) ( )

, ( ) , ( )

 
 



µ Á

µ Á

and

and

11 1 1 1( ) ( ))µ Áw M w wand  8

(d) This fails in general. Since let L  have a single unary relation symbol P  and let M  be the 
structure for L  with j j f gM = 0,1  and PM = 0f g. Then M P (0) and M P : (1) so M w P w 9 1 1( ) 
and M w P w 9 :1 1( ) so M w P w w P w ( ( ) ( ))1 1 1 19 ^ 9 : . However, clearly, M  cannot be a model of 
9 ^ :w P w P w1 1 1( ( ) ( )).

(e) This does not hold in general. To see this let M  be as in

(d). Then M w P w/ 8 1 1( )  so M w P w w P w ( ( ) ( ))1 1 1 18 ! 8 : .

However M P P (0) (0)!:  so M w P w P w 8 ! :1 1 1( ( ) ( )) .

(f) This holds. Since given a structure M  and an interpretation of the free variables suppose that 
M w w w 9 !1 1 1( ( ) ( ))µ Á . Then for some b M M b b2 !, ( ) ( ) µ Á . ∴M b µ( )  or M b Á( ) . 
Hence M w w 8 1 1( )µ  or M w w 9 1 1( )Á , so M w w w w 8 ! 91 1 1 1( ) ( )µ Á .

Conversely suppose that M w w w w 8 ! 91 1 1 1( ) ( )µ Á , so either M w w 8 1 1( )µ  or M w w 9 1 1( )Á . 
In the former case there must be some b M2 j j such that M b µ( ) , in which case M b b ( ( ) ( ))µ Á!  
and hence M w w w 9 !1 1 1( ( ) ( ))µ Á . In the latter case M b Á( )  for some b M2 j j so again 
M b b ( ( ) ( ))µ Á!  and hence M w w w 9 !1 1 1( ( ) ( ))µ Á . Either way then we draw this same 
conclusion, as required.
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16 The proof is by induction on n 2 N+.  For n = 1 , 

M a M a

M a

M a

i

n

i

i

i

i

 




=1 =1

1

1

( ) ( )

( )

( )

V V
µ µ

µ

µ

 





,

,
,

by defn.

for alll  

Now assume the result for n . Then

M a M a M a

i

n

i

i

n

i n  
=

+

=

+

1

1

1

1( ) ( ) ( )
V Vµ µ µ

  , and

by T2 and denit

,

iion of

for and

by IH

i

n

i

n

i

M a i n

M a

M a

=

+

+

≤ ≤

1

1

1

( ) 1

( )

(

V
,

,

,

,





µ

µ

µ







)) 1 1for ≤ ≤ +i n .

1     ∙      i     ∙     1.
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Similarly for disjunction, for n = 1 ,

M a M a

M a

M a

i

n

i

i

i

i

 




= =1 1

1

1

( ) ( )

( )

( )

W W
µ µ

µ

µ

 





,

,
,

by defn

for s

.

oome1 1≤ ≤i

and assuming the result for n,

M ai
n

i
W

=1
1 ( )+ µ


,

,

M a M a

M

i

n

i n

i

n

i

 



=

+
=

+

1

1

1

1

( ) ( )

(

W W
µ µ

µ

 



or by T2 and dfn of, ,

aa i n M a

M a i n
n

i

) 1 ( )

( ) 1 1
1for some or by IH,

for some

≤ ≤
≤ ≤ +

+


µ

µ





,

.,

17 For these we use the list of ‘useful logical equivalences’ (ule) in the notes and Lemma 2

( ) ( , ) ( , )1 2 1 2 1 2 1 2a :9 8 8 :8w w R w w w w R w w≡

				        ≡ 8 9 :w w R w w1 2 1 2( , )  by Lemma 2 and a ule.

(b)		    8 8w R w x w R w x1 1 1 2 2 1( , ) ( , )≡

Hence

( ( , ) ( , )) ( ( , ) ( , ))1 1 1 1 2 1 2 2 1 1 2 18 ^ 9 8 ^ 9w R w x w R x w w R w x w R x w≡ � (59)

by Lemma 2 ( ( , ) ( , )))1 2 1 1 2 1and the fact that 9 9w R x w w R x w) .≡

By Lemma 2,

( ( , ) ( , )) ( ( , ) ( , ))2 2 1 1 2 1 2 2 1 1 2 18 ^ 9 8 ^ 9w R w x w R x w w R w x w R x w≡ . � (60)

Again by Lemma 2,

( ( , ) ( , )) ( ( , ) ( , ))3 1 1 2 1 1 3 1 2 1R x x w R x w w R x x R x w^ 9 9 ^≡

so by this Lemma again,

8 ^ 9 8 9 ^w R w x w R x w w w R w x R x w2 2 1 1 2 1 2 1 2 1 2 1( ( , ) ( , )) ( ( , ) ( , ))≡ . � (61)
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Since ≡  is an equivalence relation, putting together (59), (60), (61) gives

( ( , ) ( , )) ( ( , ) ( , ))1 1 1 1 2 1 2 1 2 1 2 18 ^ 9 8 9 ^w R w x w R x w w w R w x R x w≡ ,

– a suitable logically equivalent formula in Prenex Normal Form. [Clearly this equivalent is not unique, 
this is but one of many correct possible answers here.]

(c) 	 By the ule’s ( ( , ) ( , ))1 1 1 2 2 28 ! 9w R w x w R x w

≡ 9 ! 9w R w x w R x w1 1 1 2 2 2( ( , ) ( , )), � (62)

( ( , ) ( , ))3 1 2 2 2R x x w R x w! 9

≡ 9 !w R x x R x w2 3 1 2 2( ( , ) ( , )),

so by Lemma 2,

9 ! 9w R w x w R x w1 1 1 2 2 2( ( , ) ( , ))

≡ 9 9 !w w R w x R x w1 2 1 1 2 2( ( , ) ( , )). � (63)

Putting together (62), (63) gives

( ( , ) ( , ))1 1 1 2 2 28 ! 9w R w x w R x w  

≡ 9 9 !w w R w x R x w1 2 1 1 2 2( ( , ) ( , )),

an equivalent in the required Prenex Normal Form.

18 Fill-in of justifications:

1.   8 8w P w w P w1 1 1 1( ) ( )|   REF

2.   8 8w P w P x1 1 1( ) ( ) 1| O ,

3.       P x P x( ) ( )1 1|   REF

4.       P x P x P x( ) ( ( ) ( ))1 1 1| ^   AND 3, 3,

5.   8 ^w P w P x P x1 1 1 1( ) ( ( ) ( ))|   AND 2, 2,

6.   8 8 ^ 8w P w w P w P w1 1 1 1 1( ) ( ( ) ( ))| I ,   5.

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Solutions to the Exercises

149 

If we were to append to this proof the sequents

7.   9 ^w P w P x P x1 1 1 1( ) ( ( ) ( ))|

8.   9 9 ^w P w w P w P w1 1 1 1 1( ) ( ( ) ( ))|

it would not be a correct proof because the only way we could get the left hand side of 7 is by using 
9O with line 4 and that would be incorrect since x1 also occurs in the formula on the right hand side. 
Nevertheless we could reach the same final conclusion by appending the following lines to the initial proof:

7. P x w P w P w( ) ( ( ) ( ))1 1 1 1| 9 ^ , 9I , 4

8. 9 9 ^w P w w P w P w1 1 1 1 1( ) ( ( ) ( ))| , 9O , 7.

19   (a)                                 1.  µ µ| ,  REF,

                                2.         | ( )µ µ! ,  IMR, 1 

   (b)               1.   µ Á µ, , ,| REF

               2.          µ Á µ| ( )! ,  IMR, 1

             3.                           | ( ( ))µ Á µ! ! ,  IMR, 2 
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  (c)            1.    µ Á µ Á µ Á! ^: ^:, , ,| REF

                              2.         µ Á µ Á µ Á! ^: !, | ,  REF, 

                         3.              µ Á µ Á µ! ^:, , , 1| AO

                         4.       µ Á µ Á Á! ^:, , , 2, 3| MP

                         5.    µ Á µ Á Á! ^: :, , , 1| AO

                           6.            µ Á µ Á^: : !| ( ) ,   NIN, 4,5.

(d)            1.  µ µ Á µ, , , ,: : j REF

2.   µ µ Á µ, ,: : j : ,  REF,

3.          µ µ Á, : j :: ,  NIN, 1,2

4.          µ µ Á, : j ,  NNO, 3

5.         : j !µ µ Á( ),   IMR, 4

6.             j : ! !µ µ Á( ),   IMR, 5 

(e)              1.       : ^( )µ Á ,          : : _:( )µ Á ,             : j :µ µ,   REF

2.   : ^( )µ Á , : : _:( )µ Á , : j : _:µ µ Á( ) ,  ORR, 1

3.   : ^( )µ Á , : : _:( )µ Á , : j : : _:µ µ Á( ) ,  REF,

4.       : ^( )µ Á , : : _: j ::( )µ Á µ ,  NIN, 2,3

5.       : ^( )µ Á , : : _: j( )µ Á µ ,  NNO, 4

6.   : ^( )µ Á , : : _:( )µ Á , : j :Á Á ,  REF,

7.   : ^( )µ Á , : : _:( )µ Á , : j : _:Á µ Á( ) ,  ORR, 6

8.   : ^( )µ Á , : : _:( )µ Á , : j : : :Á µ Á( )∨ ,  REF,

9.            : ^( )µ Á , : : _: j ::( )µ Á Á ,  NIN, 7,8

10.                          : ^( )µ Á , : : _: j( )µ Á Á ,  NNO, 9

11.                        : ^( )µ Á , : : _: j ^( ) ( )µ Á µ Á ,  AND, 5,10

12.                        : ^( )µ Á , : : _: j : ^( ) ( )µ Á µ Á ,  REF,

13.                                       : ^ j :: : _:( ) ( )µ Á µ Á ,  NIN, 11, 12

14.                                        : ^ j : _:( ) ( )µ Á µ Á ,  NNO, 13 

(f)  1.  1. ( ) ( ) ,1 1 1 18 j 8w w w wµ µ , REF

2. 2. ( ) ( ) , 11 18 j 8w w xiµ µ , O

3. 3. ( ) ( ) , 21 1 2 28 j 8 8w w w wµ µ , I
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[Here xi is chosen so that it does not already occur in θ. This is always possible since there are infinitely 
many free variables but only finitely many occur in θ.]

(g)	 1.	 θ θ( ) ( ) ,1 1x x| , REF  REF,

	 2.	 θ θ( ) ( ) , 11 2 2x w w| ∃ ∃, I

	 3.	 ∃ ∃ ∃w w w w1 1 2 2( ) ( ) , 2θ θ| , O

[On line 2 notice that x
1
 does not appear in ∃w w2 2( )θ  since in forming this formula we replaced all 

occurrences of x
1
 in θ( )1x  by w2.]

(h)	 1.	
¬ ∀ ¬θ θ θ( ) ( ) ( )1 1 1 1x w w x, | , REF,

	 2.	 ¬ ∀ ∀θ θ θ( ) ( ) ( )1 1 1 1 1x w w w w, | , REF,

	 3.	
¬ ∀ ∀θ θ θ( ) ( ) ( )1 1 1 1x w w x, , O,|  2

	 4.	 : θ(x
1
) j:8w

1
θ  (w

1
), NIN, 1, 3

	 5.	
∃ ¬ ¬∀ ∃w w w w1 1 1 1( ) ( )θ θ| , I,  4.

[On line 4 notice that x
1
 does not appear in ∃w w1 1( )θ  since in forming this formula we replaced all 

occurrences of x
1
 in θ( )1x  by w1.]

(i)	 1.	 ∀ ∀ ¬w w w w x x1 1 1 1 1 1( ) ( ) ( ) ( )θ θ θ θ, , ,|   REF,

	 2.	 8w
1
θ(w

1
); 8w

1
 :θ(w

1
);  0(x

1
) j8w

1
 :θ(w

1
),  REF,

	 3.	 ∀ ∀ ¬ ¬ ∀w w w w x x1 1 1 1 1 1( ) ( ) ( ) ( ) , 2θ θ θ θ, , , O|

	 4.	 ∀ ¬w w1 1( )θ ,θ θ( ) ( )1 1 1x w w| ¬∀ ,  NIN, 1, 3

	 5.	 ¬∀w w1 1( )θ ,∀ ¬w w1 1( )θ ,θ θ( ) ( )1 1x x| ,  REF,

	 6.	 ¬∀w w1 1( )θ ,∀ ¬w w1 1( )θ , θ θ( ) ( )1 1 1x w w|∀ ¬ ,  REF,

	 7.	 ¬∀ ∀ ¬ ¬ ∀w w w w x x1 1 1 1 1 1( ) ( ) ( ) ( ) ,θ θ θ θ, , , O|  6

	 8.	 ∀ ¬w w1 1( )θ ,θ θ( ) ( ),1 1 1x w w| ¬¬∀ ,  NIN, 5, 7

	 9.	 ∀ ¬ ∃ ¬∀ ∃w w w w w w1 1 1 1 1 1( ) ( ) ( ) ,θ θ θ, , O|  4

	 10.	 ∀ ¬ ∃ ¬¬∀ ∃w w w w w w1 1 1 1 1 1( ) ( ) ( ) ,θ θ θ, ,, O|  8

	  11.	 θ θw w( )w ( )1 1 1 1|∀ ¬ ¬∃w ,  NIN, 9, 10.

[On line 9 notice that x
1
 does not appear in ∀w w1 1( )θ , ∀w w1 1( )θ
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since in forming these formulae we replaced all occurrences of x
1
 in θ( )1x  by w1.]

(j)  1.	 θ θ( ) ( )1 1x x| ,  REF,

    2.	 θ  (x
1
) j9w

1
0(w

1
),  ∃I, 1

    3.	 θ θ( ) ( ) ( )1 1 1 1 1x w w w w| ∃ ∃_ Á ,  ORR, 2

    4.	 Á Á( ) ( )1 1x x| ,  REF,

    5.	 Á Á( ) ( )1 1 1x w w| ∃ ,  ∃I, 4

    6.	 Á Á( ) ( ) ( )1 1 1 1 1x w w w w| ∃ ∃θ _ ,  ORR, 5

    7.	 ( ( ) ( )) ( ) ( )1 1 1 1 1 1θ θx x w w w w_ _Á Á| ∃ ∃ ,  DIS, 3,6

    8.	 ∃ ∃ ∃w w w w w w w1 1 1 1 1 1 1( ( ) ( )) ( ) ( )θ θ_ _Á Á| ,  ∃O, 7.
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(k) 1.  8 !w w w1 1 1( ( ) ( ))µ Á , µ µ( ) ( )1 1x x| ,  REF,

   2.  8 !w w w1 1 1( ( ) ( ))µ Á , µ µ Á( ) ( ( ) ( ))1 1 1 1x w w w| 8 ! ,  REF,

   3.  8 !w w w1 1 1( ( ) ( ))µ Á , µ µ Á( ) ( ( ) ( ))1 1 1x x x| ! ,  8O,  2

   4.  8 !w w w1 1 1( ( ) ( ))µ Á , µ Á( ) ( )1 1x x| ,  MP, 1,3

   5.  8 !w w w1 1 1( ( ) ( ))µ Á , µ Á( ) ( )1 1 1x w w| 9 ,  9I, 4

   6.  8 !w w w1 1 1( ( ) ( ))µ Á , 9 9w w w wi µ Á( ) ( )1 1 1| ,  9O, 5.

(l)1.  ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  | ∀w w w1 1 1( ( ) ( ))θ _Á   REF

  2.  Á( )1x , ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á | Á( )1x   REF

  3.  Á( )1x , ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  |∃ ∃w w1 1( ) , 2Á I

  4.  Á( )1x , ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  |∀ ∃w w w w1 1 1 1( ) ( )θ _ Á   ORR 3

  5.  Á( )1x , ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  | ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á   REF

  6.  ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  |:Á( )1x   NIN, 4, 5

  7.  ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  | µ Á( ) ( ) , 11 1x x_ 8O

  8.  θ( )1x , :θ(x
1
), ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  |Á( )1x   REF

  9.  Á( )1x , :Á( )1x , ¬ ∀ ∃( , ( ) ( ))1 1 1 1w w w wθ _ Á , ∀w w w1 1 1( ( ) ( ))θ _Á  |Á( )1x   REF

 10.  :µ( )1x , : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á  | :Á( )1x   MON, 6

 11.  Á( )1x , : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á  |::µ( )1x   NIN, 9, 10

  12.  Á( )1x , : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á | µ( )1x   NNO, 11

  13.  µ Á( ) ( )1 1x x_ , : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w x1 1 1 1( ( ) ( )) ( )µ Á µ| | µ( )1x   DIS, 8, 12

  14.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á  | ( ( ) ( )) ( )1 1 1µ Á µx x x_ !   IMR, 13

  15.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á  | 8 _w w w1 1 1( ( ) ( ))µ Á   REF

  16.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á | µ Á( ) ( ) , 151 1x x_ 8O

  17.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á | µ( ) , 14, 161x MP

  18.        : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á | 8 8w w1 1( ) , 17µ I

  19.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á  | 8 _ 9w w w w1 1 1 1( ) ( )µ Á   ORR, 18
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  20.  : 8 _ 9( , ( ) ( ))1 1 1 1w w w wµ Á , 8 _w w w1 1 1( ( ) ( ))µ Á   | : 8 _ 9( ( ) ( ))1 1 1 1w w w wµ Á   REF

  21.  8 _ :: 8 _ 9w w w w w w w1 1 1 1 1 1 1( ( ) ( )) ( ( ) ( ))µ Á µ Á|   NIN, 19, 20

  22.  8 _ 8 _ 9w w w w w w w1 1 1 1 1 1 1( ( ) ( )) ( ) ( )µ Á µ Á|   NNO, 21.

[We can assume that the free variable x1  chosen does not appear anywhere in the other formulae on 
line 1.]

20  We have that for every i 2 + ,

Á µ( ) ( )x xi � �

Since θ( )

x  only mentions finitely many free variables we can pick i  such that xi  does not occur in x . 

But then by Lemma 5 we can apply ∃O to   to get 9w w x1 1( ) ( )Á µ  .

21  AND:

In this case the ‘instance of the rule’ is

¡ ¢

¡ ¢

| |
|

µ Á

µ Á

,

[ ^

and we have that ¡  µ  and ¢  Á, say that

I I k k1 1 2 2, ,| | |µ µ µ,¡

¢ ¢ ¢1 1 2 2, ,| | |Á Á Á, h h

are proofs of these respectively, so ¡ ¡ = ¢ ¢k k hµ µ, ,µ µ  and Á Áh = . In this case

¡ ¡ ¡ ¢ ¢ ¢ ¡ ¢1 1 2 2 1 1 2 2, , , , , , , , ( )| | | | | | |µ µ µ Á Á Á µ Á k k h h k h k h[ ^

is the required proof of ¡ ¢[ ^ ( )µ Á  since ¡ ¢k h[  is a finite subset of ¡ ¢ =[ ^ ^, ( ) ( )µ Á µ Ák h  
and the last step in this proof is justified by AND from the earlier ¡k k|µ  and ¢h h| Á .

8I

In this case the ‘instance of the rule’ is

¡

¡

|
|

µ

µ8w w xj j i( )
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where xi  does not occur in any formula in Γ and we are given that ¡  µ, say

¡ ¡ ¡1 1 2 2, ,| | |µ µ µ, k k

is a proof of this, so ¡ ¡k µ  and µ µk = . In this case

¡ ¡ ¡ ¡1 1 2 2, , , ( )| | | |µ µ µ µ, k k k j k j iw w x8

is a proof of ¡  8w w xj j iµ( ) since ¡ ¡ =k j k j i j j iw w x w w xµ 8 8, ( ) ( )µ µ , the last sequent in this 
proof being justified by ∀I from the earlier ¡k k| µ  since xi  cannot occur in any formula in Γk  as ¡ ¡k µ .

DIS

In this case the ‘instance of the rule’ is

¡ ¢

¡ ¢

, , ,

,

µ Ã Á Ã

µ Á Ã

| |
|[ _
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and we are given that ¡, µ Ã , and ¢, Á Ã , say

¡ ¡ ¡1 1 2 2, ,| | |µ µ µ, k k  
¢ ¢ ¢1 1 2 2, ,| | |Á Á Á, h h

are proofs of these, so ¡ ¡ ¢ ¢k hµ [ f g µ [ f gµ Á,  and Ã µ Á= =k h. Notice then that

Γ Γk h− −{ } { }µ µ µ, .¢ ¢Á � (64)

In this case a suitable proof of ¡ ¢[ [ f _ gµ Á Ã  is

¡ ¡ ¢ ¢ ¡1 1 1 1, , , , ( )| | | | |µ µ Á Á µ µ Ã , , , ,k k h h k − f g

( )¢h − f gÁ , Á Ã µ Á| , ( ) ( )¡ ¢− −f g [ f gh
, ( )µ Á Ã_ |

these last three sequents following from earlier ones by MON (notice that ( )¡ ¡k k− f g [ f g ¶µ µ  etc.), 
MON again and DIS, since from (64),

¡ ¢ ¡ ¢[ ¶ f g [ f g( ) ( ).k h− −µ Á

22 Throughout let M be an arbitary structure for the overlying language and a M2 .

(a) ORR: In this case the instance of the rule looks like

Γ
Γ

( ) ( )

( ) ( ) ( )

 

  
x x

x x x

|
|

µ

µ Á_

Assume that ¡( ) ( )
 
x x µ  and suppose that M a ¡( ).


. Then M a µ( )

  so M a a µ Á( ) ( )
 _ . Hence since 

M a,
 are arbitrary, ¡( ) ( ) ( )

  
x x x µ Á_ .

(b) 8O In this case the instance of the rule looks like

¡

¡

( ) ( , )

( ) ( , )

 

 
x w w x

x x x

j j

i

|
|
8 µ

µ

and we are assuming that ¡( ) ( , )
 
x w w xj j 8 µ . Suppose that M a ¡( )

 . Then M w w aj j 8 µ( , )
  so for 

all b M M b a2 , ( , ) µ
 . In particular then for any interpretation46 of x x ai iµ( , )

  will be true in M. Hence
Γ( ) ( , )
 
x x xi θ .
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(c) 9O In this case the instance of the rule looks like

¡

¡

( ) ( , ) ( )

( ) ( , )

  

 
x x x x

x w w x
i

j j

,

,

Á µ

Á µ

|
|9

where xi  does not occur in x  (so not on µ( )

x  nor any formula in Γ( ))


x  and (as in the usual implicit 

convention) wj  does not occur in Á( , )x xi

 . We are assuming that

Γ( ) ( , ) ( )
  
x x x xi, .Á µ � (65)

Suppose that M a Γ( )
 , 9w w aj jÁ( , )

 , say b M2  is such that M b a Á( , )
 . Then since also M a Γ( )

  
from (65), Γ( )


x , Á( , )x xi


 is true in M  when x  is interpreted as a  and xi  is interpreted as b . [It is 

important to notice here that because xi  does not appear in x  this is a valid interpretation. If xi  had 
appeared in x  then the ‘interpretation’ could be invalid since we might be interpreting xi  as b  in one place 
and as the ai  for the interpretation a  of x  in another place.] Hence from (65), M a µ( )

 , confirming 
that Γ( )


x , 9w w x xj jÁ µ( , ) ( )

  .

23 (c) If ( )µ Á^ 2 ­ then Ω·  µ Á^  by REF (and Lemma 5( ))i . Hence ­  µ Á,  by AO (and Lemma 
5(ii)). Hence from (a) of Lemma 13, µ Á, 2 ­. Conversely suppose µ Á, 2 ­. Then ­  µ Á,  by REF so  
Ω ·  µ Á^  by AND. By Lemma 13(a) then ( )µ Á^ 2 ­.

(d) Suppose that ( )µ Á_ 2 ­. If µ 2  Ω and Á 2  Ω then by Lemma 13(b), : : 2µ Á, ­ so by (a) of 
this Lemma,

­  µ Á, .: � (66)

Then by MON, ­, µ µ : . Also by REF, ­, µ µ  so by AND,

­, .µ µ µ ^: � (67)

Also from (66) ­, : :µ; Á Á  by MON and by REF ­, :µ; Á Á  so by NIN ­, Á µ ::  and by NNO, 
­, Á µ . Using (66) and MON we also have ­, Á µ :  so by AND

­, .Á µ µ ^: � (68)

Using DIS with (67) and (68) now gives ­, ( )µ Á µ µ_ ^: , i.e. Ω Ω  θ θ^:  since ( )µ Á_ 2 ­. But this 
means that Ω is inconsistent, contradiction! So it must be that if ( )µ Á_ 2 ­ then either θ 2 Ω Ω or Á 2  Ω.

In the other direction suppose without loss of generality that µ 2 · Ω. Then by (a),  Ω  θ , so Ω   ( )µ Á_  
by ORR and ( )µ Á_ 2 ­ by (a), as required.
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24 Suppose that Γ is satisfied in the structure K  (equivalently K  is a model of Γ since Γ is a set of sentences). 
Let M  be the structure for L  with M K= ×  and for R  an r -ary relation symbol of L  let

R b b b b b b RM
r m

K= , , , ( ), ( ), , ( )1 2 1 2{ | }〈 〉 〈 〉 σ σ σ 2 ,

where σ : | M | → | K | by σ (〈b, n〉) = b.

Claim that for θ( )

x FL2  and c M2 ,

M c K c µ µ( ) ( ( ))
 ⇔ σ . � (69)

Clearly this will be enough because M  is infinite and (69) ensures that M  Γ  too. The proof of (69) is by 
induction on the length of µ. If µ( ) = ( )

 
x R x  for R  a relation symbol of L  the result is true by definition 

of RM . Assume the result for formulae shorter than µ. If θ( ) = ( )
 
x x¬Á  then the result holds for Á  so

M c M c

K c

K c

 



µ Á

Á

µ

( ) ( )

( ( ))

( ( )),

 





⇔
⇔
⇔

σ
σ
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as required. The cases for the other connectives are similar. Now suppose that µ Á( ) = ( , )
 
x w w xj j∃ . Then 

again the result holds for Á( , )x xi

  and

M c d n M M d n c

d K K d

 


µ Á

Á

( ) , , ( , , )

, ( , (

 ⇔ 〈 〉 〈 〉
⇔

for some

for some

2
2 ¾







c

d n d

K w w c

K c

j j

))

( , ) =

( , ( ))

( ( )),

,

,by IH since¾

¾

¾

〈 〉
⇔ ∃
⇔




Á

µ

as required. The case for ∀ is completely similar.

In contrast it is not necessarily true that Γ is satisfied some finite model. For let L  as above have a single 
binary relation symbol R  and let Γconsist of

(i) ∀w
1
9w

2
 R(w

1
;w

2
), (ii) ∀ ∀w w R w w R w w1 2 1 2 2 1( ( , ) ( , ))!: ,

(iii) ∀ ∀ ∀w w w R w w R w w R w w1 2 3 1 2 2 3 1 3(( ( , ) ( , )) ( , ))^ ! .

Then if M M Γ,  must be infinite. For let a M0 2 | | . Then by (i) there is some a M1 2  such that 
M R a a ( , )0 1  and we cannot have a a0 1=  otherwise by (ii) we would also have that M R a a ( , )0 1 . 
In turn there must by (i) be an a M2 2  such that M R a a ( , )1 2 . By (iii) then also M R a a ( , )0 2  
and by the same reasoning as before we cannot have that a a1 2=  or a a0 2= . Continuing in this way 
then we see that we can construct and infinite sequence a a a a0 1 2 3, , , , . . . of distinct elements of M  so 
|M  must be infinite and so Γ cannot be satisfied in any finite structure.

25 Suppose on the contrary that for all m ,

¬ ¬ ¬ −µ µ µ µ0 1 1, , ., m m � (70)

Consider the set of sentences

¡ = f: 2 gµn n| N .

Let Δ be a finite subset of Γ, say,

¢ = f: : : gµ µ µj j js1 2
, ,,

with j j js1 2< ::: << . Then by our assumption Δ must be satisfiable. For if not then any model of

f: : : gµ µ µj j js1 2 1
, ,,

−

Download free eBooks at bookboon.com



A Short Course in Predicate Logic Solutions to the Exercises

160 

would also have to be a model of µjs (otherwise it would be a model of :µjs and hence of Δ). In other words

: : :µ µ µ µj j js js1 2 1
, ,,

−


contradicting (70).

Having shown that any finite subset of Γ must be satisfiable (under assumption (70) of course) we conclude 
by the Compactness Theorem that Γ must be satisfiable, say M  is a model of Γ. But then M n :µ  for 
all n 2  , contradicting the fact that every structure for L  satisfies some µn. We conclude then that 
the assumption (70) must be false and hence that for some m

: : :µ µ µ µ0 1 1, , ., m m− 

26 Let Γ, ¢ µ SL be such that for any structure M  for L ,

M M� � �Γ ⇔ ¢ .

Assume on the contrary that there do not exist finite ′Γ Γµ  and finite ′¢ ¢µ  such that for any structure 
M  for L ,

M M ′ ⇔ ′Γ ¢.

Let ­ ¢µ [Γ  be finite and ′ ′Γ Γ= , =­ ¢ ­ ¢\ \ , so Γ´ is a finite subset of Γ, ′¢  is a finite subset 
of Δ and ′ ′Γ \¢ ­= . By the assumption there is a structure M  such that

M M ′ ′Γ and ¢ y

or

M M ′ ′Γ and ¢ z

If z  then clearly M  Γ and M  ¢ which contradicts the given fact   that

M M Γ ⇔ ¢.

Hence it must be that y  holds. Since Ω was an arbitrary finite subset of Γ ∪ ¢ the Compactness Theorem 
now gives that Γ ∪ ¢ is satisfiable.So there is a structure N  for L  such that N  Γ  and N  ¢. But 
that too contradicts  . It follows then that such ′ ′Γ , ¢  must exist.
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27 Suppose on the contrary that a sentence Ã  such that

M M Ã ⇔ Γ is satisfiable in . � (71)

did exist.

We shall show that Γ [{ }¬Ã  is satisfiable. Let ¢ µ [Γ { }¬Ã  be finite, say m 2 +  is such that

¢ ⊆ ≤ ≤ ¬{ | } { }R x n mn( ) 1 .1 [ Ã

Let Mm  be the structure for L  with M Rm n

Mm= 0 , = 0{ } { }  for { | }R x n mn( ) 11 £ £  and Rn

Mm = Á  for n > m. Then 
M Rn ( )0  for n ≤ m so fRn(x1

) j 1 ≤  n ≤ mg is satisfied in Mm  by x1 0 .

Also Mm  :Ã  from (71) since, for example, R xm+1 1( ) is not satisfied in Mm. Hence ¢ is satisfied in Mm.

By Compactness then Γ [{ }¬Ã  is satisfiable, say in the structure M . But then trivially Γ is satisfiable in 
M  so M  Ã  by (71), contradicting the fact that ¬ℜÃ  is satisfiable i.e. true, since :Ã  is a sentence, in M . 
We conclude that no such sentence Ã  can exist.
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28 Suppose on the contrary there was such a sentence θ . Then we claim that Γ, the set of formulae

{ | } {¬∃ −
+

+w w R x w R w x R w w nn n
i

n
i i1 1 1 2

=1

1
1, (( ( , ) ( , )) ( , )), ^ ^ 2 [V  θ ,, ( , )1 2¬R x x },

is satisfiable. By the Compactness Theorem it is enough to show that every finite subset of Γ is. So let 
Δ be a finite subset of Γ and let k 2   be an upper bound on the subscripts of bound variables wi  
appearing in ¢. Then ¢ is a subset of the set Γk  of formulae

{ | < } {¬∃ ≤−
+w w R x w R w x R w w n kn n

i

n
i i1 1 1 2

=1

1
1, (( ( , ) ( , )) ( , )) 0, ^ ^ [V θθ , ( , )1 2¬R x x },

and it is enough to show that Γk is satisfiable. But it clearly is, by x a x ak1 1 2 2,  + , in the structure 
Mk  for L  with M a a a a ak k k k= , , , ,1 2 1 2{ }, + + ,

R a a i j i j k
Mk

i j= , 1, 1 , 2{ | | | }〈 〉 − ≤ ≤ ≤ +

– notice that Mk  θ  by assumption on θ  since Mk  is connected. 

Having established that Γ is satisfiable suppose it is satisfied by c c1 2,  in the structure M  for L . Then 
since Γ  θ , by assumption on θM  is connected. So either M R c c ( , )1 2  or for some n ≥ 1 and 
b b b Mn1 2, , , 2 ,

M R c b R b b R b b R b b R b cn n n ( , ) ( , ) ( , ), , ( , ) ( , )1 1 1 2 2 3 1 2, , , −

so

M w w w R c w R w c

i

n
R w wn n i i ∃

−
+1 2 1 1 2 1, , (( ( , ) ( , ))

=1

1
( , ))..., ^ ^ V .

But either way this contradicts the assumption that c c1 2,  satisfies Γ, contradiction. We conclude that 
such a sentence θ  cannot exist.

29 (i) f g f x x c( ( ( , )), )1 1  is a term of L  since x TL1 2  by Te1, c TL2  by Te2. ∴f x x TL( , )1 1 2  by Te3, 
and g f x x TL( ( , ))1 1 2  by Te3 again. Finally f g f x x c TL( ( ( , )), )1 1 2  by Te3.
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(ii) gg c( )  is not a term of L . To prove this we show by induction on the length of a term t  that the 
number ft  of function symbols occurring in t  equals the number rt  of occurrences of the right round 
bracket ‘)’ in t . For clearly this is true if t xi=  or t c=  (there are none of either) and if we assume 
t f t t tm= ( , , , )1 2   where f  is an m -ary function symbol in L  and t t tm1 2, , ,  are terms of (necessarily 
of length less than t ), then

f f f f

r r r

r

t t t tm

t t tm

t

=

=

=

1

1

,

1 2

1 2

+ + +

+ + +



 by IH

as required.

However since this property is not satisfied by gg c( )  it cannot be a term of L .

(iii) f f x w g x( ( , ), ( ))1 1 1  is not a term of L . We prove by induction on the length of a term t  that no 
wj  occurs in t . Again this is true if t xi=  or t wj= , and if t f t t tm= ( , , , )1 2   and we assume the 
Inductive Hypothesis for the shorter terms t t tm1 2, , ,  then it holds for t . Hence this property holds 
for all terms. But it does not hold for f f x w g x( ( , ), ( ))1 1 1  so this cannot be a term of L .

(iv) f f g f c f f g f x f g x g g x c x( ( ( ( , ( ( ( ( , ( ( ), ( ( ))))))), )), )1 2 3 2  is not a term of L  by the same proof as in (ii).

30	(i)	 t f g f g gM M M M M(2, 5) = ( ( (2), 5)) = ( (2), 5) = (2) ( 5) = (2) ( 5) = 92− − − − − − − .

	 (ii)	 t f f g c f f g c g cM M M M M M M M(2, 5) = ( ( ( ( ), 2), 5)) = ( ( ( ), 2), 5) = ( ( ) 2)− − − − −− − − +( 5) = ((4) 2) 5 = 192

t f f g c f f g c g cM M M M M M M M(2, 5) = ( ( ( ( ), 2), 5)) = ( ( ( ), 2), 5) = ( ( ) 2)− − − − −− − − +( 5) = ((4) 2) 5 = 192 .

	 (iii)	 t g f f c gM M(2, 5) = ( ( ( (2, ), ( 5)))) =− −

g f f c gM M M M M( ( (2, ), ( 5))) = (((2 4) ( 5) ) = 7292 2− − − − .

31 (a) 	   1.  ∀ ∀w R w w R w1 1 1 1( ) ( )j ,  REF

2.  ∀ ∀w R w R f x1 1 1( ) ( ( )) , 1j , O

3.  ∀ ∀ ∀w R w w R f w1 1 1 1( ) ( ( )) , 2j , I

	 (b)	   1.      R f x R f x( ( )) ( ( ))1 1j , REF

2.      R f x w R w( ( )) ( ) , 11 1 1j ∃ ∃, I

3.  ∃ ∃ ∃w R f w w R w1 1 1 1( ( )) ( ) , 2j , O
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32 We first prove by induction on the length of the term t x( )
  that if M  and K  have the same 

universe and interpret all the constant and function symbols in t x( )
  the same then t a t aM K( ) = ( )

   for 


a M K2 = . [Clearly this is vacuously true if constant or function symbols occur in t x( )
  on which 

M  and K  do not agree so we can limit attention to those terms which do satisfy this (and similarly 
for the case of formulae which comes next). ]  If t x xi( ) =

  then

t a a t aM
i

K( ) = = ( )
 

, .as required

If t x( ) =
  constant c  then

t a c c t aM M K K( ) = = = ( )
 

, ,as required

since M  and K  agree on c . Finally suppose that

t x f t x t xm( ) = ( ( ), , ( )).1

� � … �

Then since the t ti <  and M K,  must also agree on all the constant and function symbols occurring 
in these ti , by Inductive Hypothesis t a t ai

M
i
K( ) = ( )

   for i m= 1,2, ,  and hence

t a f t a t a f t a t a t aM M M
m
M K K

m
K K( ) = ( ( ), , ( )) = ( ( ), , ( )) = ( )1 1

� � … � � … � � ,

as required.
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For the formula Á( )


x  we analogously prove it by induction on the length of Á( )


x . In case 
Á( ) = ( ( ), , ( ))1

� � … �
x R t x t xm  we have

M a t a t a R

t a t a R

K a

M
m
M M

K
m

K





( ) ( ) ( )

( ) ( )

( )

1

1

� � … �
� �
�

, 2
, 2
,

〈 〉
〈 〉

, ,

, K

Á

since R RM K=  and t a t ai
M

i
K( ) = ( )

   for i m= 1,2, ,  by the early result for terms. [Notice that M  
and K  must agree on the function and constant symbols in the ti  since obviously these must occur 
too in Á.]

The remaining cases for Á a negation, conjunction etc. follow immediately from T2-3.

(i) Let M  be a structure for L  and let b M2 . Let K  be the structure for L  which is the same as 
M  except 47 that c bK = . Then since  µ( )c , K cK µ( ) so by Lemma 18, K b µ( ). Since c  no longer 
appears in µ( )1x , by the first part of this question then M b µ( ). Hence since b M2  was arbitrary 
M w wj j 8 µ( ) and hence  8w wj jµ( ) since M  was an arbitrary structure for L .

(ii) Let I c c1 1( ) ( )| Á , I c c c c2 2( ) ( ), , ( ) ( )| |Á Ák k ¡  be a proof of  µ( )c  where we have explicitly exhibited 
the occurrences of the constant symbol c . So ¡k Á( ) =c  and Á µk( ) = ( )c c . Assume that the free variable 
xs  does not occur in any formula in this proof –there must be such an s  since there are only finitely 
many formulae (hence free variables) mentioned in the proof. We claim that is also a proof.

¡ ¡ ¡1 1 2 2( ) ( ) ( ) ( ) ( ) ( )x x x x x xs s s s s s| | |Á Á Ák k, , ,

To see this we consider the justification for Γi ic c( ) ( )| Á  being in the original proof and show that the 
same justification applies here in (72).

If the justification is REF then Á( ) ( )c ci2 Γ , so Ái s i sx x( ) ( )2 Γ .

If the justification is that Γi ic c( ) ( )| Á  follows by 8O from Γr rc c( ) ( )| Á  (with r i< ) then 
Á Ái j r j hc w c w x( ) = ( , )∀  for some xh  not mentioned in Γr (c). If h ≠ s then Á Ái s j r s j hx w x w x( ) = ( )( )8  
and xh  still cannot occur in any any formula in Γr (xs) so again this step in (72) can be justified by 8O. 
If h s=  then in fact xh  never did occur in Ár c( ). In this case pick g  so that g ≠ s and xg  appears in 
no formula in the original proof. Then

Á Á Ái j r j h j r j gc w c w x w c w x( ) = ( , ) = ( , )8 8

and we are essentially back in the case where h ≠ s(!!)

(72)
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If the justification is that Γi ic c( ) ( )| Á  follows by ∃I from Γr rc c( ) ( )| φ  (with r i< ) then Á Ái j rc w c( ) = ( )∃ ′  
where Ár c′( )  is the result of replacing some occurrences of a term t c( )  in Ár c( )  by wj . In that case 
Á Ái s j r sx w x( ) = ( )∃ ′  where Ár sx′( )  is the result of replacing these corresponding occurrences of, now, 
t xs( )  in Ár sx( )  by wj  so this step again has the same justification in (72) as it had in the original proof. 
The remaining cases go through similarly.

Since (72) is a proof we now have that  Ák sx( ) , equivalently  µ( )xs  and hence by ∀ ∀I, ( ) w wj jµ ,  
as required.

33 Suppose that f gµ( , )1 2c c  is inconsistent, so µ Á Á( , ) ,1 2c c  :  for some Á  and hence by NIN, 
 :µ( , )1 2c c . By the previous question then  θ( , )1 1c c . Hence by MON µ µ( , ) ( , )1 1 1 1c c c c :  and by 
REF µ µ( , ) ( , )1 1 1 1c c c c  so f gµ( , )1 1c c  is inconsistent.

The converse is not true. For consider the language with just a unary relation symbol P  and constants 
c c1 2,  and let µ( , ) = ( ) ( )1 2 1 2c c P c P c^: . Then µ( , )1 2c c  is certainly satisfiable, for example in the 
structure M  for L  with M c cM M= 0,1 , = 0, = 11 2{ }  and PM = 1{ } , so { }θ  must be consistent by 
the precursor to the Completeness Theorem. However { } { }θ( , ) = ( ) ( )1 1 1 1c c P c P c^ ¬  is certainly not 
consistent since by REF

{ } { }θ( , ) = ( ) ( )1 1 1 1c c P c P c^ ¬{ } { }θ( , ) = ( ) ( )1 1 1 1c c P c P c^ ¬{ }P c P c P c P c( ) ( ) ( ) ( ).1 1 1 1^ ^ℜ ℜ{ }P c P c P c P c( ) ( ) ( ) ( ).1 1 1 1^ ^ℜ ℜ

34 Let ¢ ­½  be finite, say m  is such that if the constant symbol cn  appears in a sentence in Δ then 
n ≤ m. Then

¢ ¡µ f 2 g[ f g [ f g= ( , ) ( ( , ), )0 1µ µ
< <SL R c R f c c n mn| |R � ε ε× ≤ .

Let   be the structure for L( )ε  with | | =  which agrees with   on f f R c c c+ ·, , , , ,0 1 2< ,  and 
interprets " = ( 1) 1m + − .

Then for µ µ2 SL, K �  whenever R � µ (by problem 28 above). Also 0 < "  and for 
n m f c n m cn≤ × +×

−, ( , ) = ( 1) 1 =1
1

   " <  so

K � K �R c R f c c n mn< <( , ) ( ( , ), )0 1ε εand for× ≤ .

Hence Γ, and so ¢ , is satisfiable and by the Compactness Theorem ¢ ­½  is satisfiable, equivalently has a 
model since ¢ ­½  µ SL .
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35 (i)  ∀w x w1 1 1( = ) is not a formula of L . To confirm this we can, for example, prove by induction on 
its length that for a formula θ  of L  the number of left round brackets ‘(’ occurring in θ  equals the 
number of occurrences of the binary connectives ^ _, ,→  in µ plus the number of relation symbols 
different from =  occurring in θ  plus the number of occurrences of function symbols in µ. For the base 
cases t t1 2=  and R t t tm( , , , )1 2   with t t t TLm1 2, , , 2  we use the result proved in (ii) of the previous 
question. The cases when θ  is one of ¬ℜÁ Á, ( )_ Ã , ( )Á ^ Ã , ( )Á → Ã , ∀w w xj j iÁ( ), ∃w w xj j iÁ( ) 
are now easy to check. So all formulae of L  have this property, and hence ∀w x w1 1 1( = ) cannot be a 
formula of L  since it does not possess this property. 

(ii)  ∀w x w x w1 1 1 1 1( = = )_  is a formula of L , since x x1 2=  is a formula of L  by L1 and so 
( = = )1 2 1 2x x x x_  is by L2 and ∀w x w x w1 1 1 1 1( = = )_  is by L3.

(iii)  ∃w f w x3 3 1( , )  is not a formula of L . An easy way to see this is to show by induction on 
| |µ  for µ 2 FL  that the equality symbol ‘=’ or one of the other relation symbols must occur in 
µ ( ( , )3 3 1which obviously fails for ∃w f w x ). Clearly this is true for µ  of the form R t tr( , , )1   or of the 
form t t1 2= . Assuming the result for all formulae shorter than µ, if µ Á Ã= ( )_  with Á , Ã 2 FL  then it 
is true for Á , since Á < µ , and hence true for µ. The cases for the other connectives are similar. Finally 
if µ Á Á= ( )( ( ))8 9w w x w w xj j i j j ior  then by the Inductive Hypothesis Á  mentions some relation 
symbol (possibly = ) of L  and this is still there when we go to ∀w w xj j iÁ( ) , i.e. θ .
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(iv) , )∀w R x w w x1 1 1 1 2( ( = )→  is a formula of L  since x x R x x FL3 2 1 3= , ( , ) 2  by Ll, 
( ( , ) = )1 3 3 2R x x x x FL→ 2  by L2 and ∀ →w R x w w x FL1 1 1 1 2( ( , ) = ))2  by L3.

(1)  M w f w w c n n n ∀ ⇔ ∀ ++
1 1 1( , ) = = 22  ,

	 which is obviously false.

(2)  M w c g w n n ∃ ⇔ ∃ +
1 1

2= ( ) 2 =2  ,

	 which again is clearly false.

(3)  M j= 8w
1
8w

2
 (R(w

1
;w

2
) ! R(w

1
; g(w

2
)))

⇔ ∀ +n m, 2   if n m|  then n m| 2,

–which is true.

(4)  M j= 9w
1
 8w

2
8w

3
 (R(w

2
; f(w

1
;w

3
)) ! R(w

2
;w

3
))

⇔ ∃ +n 2   such that ∀ +m k, 2   if m n kj ( )+  then m kj ,

– which is false since for any n n n n2 j+ +, 2  but 2n nj .

Choices for µ1 1( )x , µ2 1( )x , µ3 1( )x , µ4 1 2 3( , , )x x x , µ5 1( )x ,

µ6 1 2 3( , , )x x x FL2  with the required properties are:

µ1 1 1( ) : = ( )x x g c ,

µ2 1 1 1 1 1 1( ) : ( ( , ) = ( , ) = ( ))x w f w c x f w x g c9 ^ ,

µ3 1 1 2 1 1 2( ) : = ( ( ), ( ))x w w x f g w g w9 9 ,

µ4 1 2 3( , , )x x x  : (( ( , ) ( , ))1 2 1 3R x x R x x^
^ ^∀ →w R w x R w x R w x1 1 2 1 3 1 1(( ( , ) ( , )) ( , ))),

µ5 1( )x  : ( = ( ) ( ( , )1 1 1 1 1¬ ∀x g x w R w x^ .
→ ( = = ( )))),1 1 1 1w x w g w_

µ6 1 2 3( , , )x x x  : g f x x f f g x g x f x x( ( , )) = ( ( ( ), ( )), ( , ))2 3 2 3 1 1 .

For the last part there are many possible Á. One such is

∃ ∃ ¬ ¬ ¬w w w w R w w R w w1 2 1 2 1 2 2 1( = ) ( ( , ) ( , )))^ ^

which holds in M  (such w w1 2,  here are 2, 3 for example, but fails in K  since for any two rational 
numbers p q,  either p q=  or p q<  or q p< .
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36	 µ1 1 2 3 4 4 1 4 2 4 3: ( = ( = = ))9 9 9 8 _ _w w w w w w w w w w

µ2 1 2 3 1 2 1 3 2 3: ( = ( = = ))9 9 9 : ^ : ^:w w w w w w w w w

µ µ µ3 1 2: ( )^

For the second part let M  be the (normal) structure for L  with | |M =   and for n f n nM2 , ( ) = 1+ . 
Then

fM(n) = fN(m) )    n + 1 = m + 1 ) n = m

so M j= 8w
1
8w

2
 (f(w

1
) = f(w

2
) ! w

1
 = w

2
). Also for all n f n nN2 , ( ) = 1 0+ ≠  so 

M w w f w w ∃ ∀1 2 2 1( ) =  (and hence is a model of the conjunction of these two sentences).

However suppose that K was a normal model of

∀ ∀ → ∃ ∀ ¬w w f w f w w w w w f w w1 2 1 2 1 2 1 2 2 1( ( ) = ( ) = ) ( ) =^ � (73)

and K  was finite, say K a a am= , , ,1 2{ } . Then from the first conjunct of (73) the function fK  
maps { }a a am1 2, , ,  one-to-one into { }a a am1 2, , ,  whilst from the second conjunct fK  does not map 
{ }a a am1 2, , ,  onto { }a a am1 2, , , . But this contradicts the pigeon-hole principle!

37	   µ1 1 2( , )x x  : ( ( , ) ( , ))1 2 2 1: ^:R x x R x x

µ2 1 1 1 1 1 1( ) : ( = ( , ))x w w x R w x8 : !

µ3 1 2 2 1 1 2: ( = ( , ))8 9 : ^:w w w w R w w

µ4 1 2 1 2 1 2: (( = ( , ))9 9 : ^: ^w w w w R w w

	 ∀w w w w w R w w3 3 1 3 2 1 3(( = = ) ( , )))

38  Let M  be a normal structure for the (default) language L  with equality and suppose that

M w w w c ∀ 1 1 1( ( ) = )µ ! � (74)

M c :µ( ). � (75)

Let a M2  and suppose that M a µ( ). From (74),

∀ →b M M b b c2 , ( ( ) = ) µ

so M a c =  and

M a cM = � (76)
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by Lemma 17. From Eq7 we know that

M a c a cM M = ( ( ) ( ))! $µ µ

Hence with (76) and our assumption we have M cM µ( )  and hence M c µ( )  my Lemma 
17, contradiction! We conclude that M a :µ( )  and hence since  was an arbitrary element of 

j j 8 :M M w w, ( )1 1 µ . Since M  was an arbitrary model of 8 !w w w c1 1 1( ( ) = )µ , :µ( )c  we conclude 
that 8 !w w w c1 1 1( ( ) = )µ , : 8 :µ µ( ) ( )1 1c w w .

39 (a)	   1.	       j∀ ∀ →w w w w f w f w1 2 1 2 1 2( = ( ) = ( )) ,  Eq5,

2.	       j∀ → ∀w s w f s f w2 2 2( = ( ) = ( ))) , 1, O

3.	       j ( = ( ) = ( )) , 2s t f s f t→ ∀, O

4.	  s t s t= =j ,  REF,

5.	  s t f s f t= ( ) = ( ) , 3,4.j , MP
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   (b)	   1.	 j 8 ^w w w w w w w w1 2 3 4 1 3 2 4, , , (( = = )

				    ! $( ( , ) ( , ))1 2 3 4R w w R w w ,  Eq4

2.	 j 8 ^w w w x w w w2 3 4 1 3 2 4, , (( = = )

				    ! $ 8( ( , ) ( , )) , 11 2 3 4R x w R w w , O

3.	 j 8 ^w w x w c w3 4 1 3 4, (( = = )

				    ! $ 8( ( , ) ( , )) , 21 3 4R x c R w w , O

4.	 j 8 ^ ! $ 8w x c c w R x c R c w4 1 4 1 4(( = = ) ( ( , ) ( , )), O,  3

5.	 j ^ ! $ 8(( = = ) ( ( , ) ( , )),1 1x c c c R x c R c c O,  5

6.	 j 8w w w1 1 1, = ,  Eq1

7.	 j 8c c= , O,  6

8.	 x c x c1 1= =j ,  REF

9.	 x c x c c c1 1= ( = = )j ^ ,  AND, 7, 8

10.	 x c R x c R c c1 1= ( , ) ( , )j $ ,  MP ,  5, 9

11.	 x c R x c R c c1 1= ( , ) ( , )j ! ,  AO, 10.

  (c) 	 1.		  j 8 ! $w w w w w w1 2 1 2 1 2, ( = ( ( ) ( )))µ µ ,  Eq4

2.		  j 8 ! $w x w x w2 1 2 1 2( = ( ( ) ( )))µ µ ,  8O,  1

3.		  j ! $( = ( ( ) ( )))1 1x c x cµ µ ,  8O,  2

4.	 x c x c1 1= =j ,  REF

5.	 x c x c1 1= ( ) ( )j $µ µ ,  MP,  3,4

6.	 x c x c1 1= ( ) ( )j !µ µ ,  AO, 5

7.      :µ( )c , µ µ( ) ( )1 1x xj ,  REF

8.	 x c c1 = , ( ):µ , µ µ( ) ( )1x cj ,  MP ,  6,7

9.	 x c c1 = , ( ):µ , µ µ( ) ( )1x cj : ,  REF

10.		  :µ( )c , µ( ) =1 1x x cj : ,  NIN, 8,9

11.		  :µ( )c , µ µ( ) ( ( ) = )1 1 1x x x cj ^ : ,  AND, 7, 10

12.		  :µ( )c , µ µ( ) ( ( ) = )1 1 1 1x w w w cj 9 ^ : , ∃I,  11

13.	 :µ( )c , 9 j 9 ^:w x w w w c1 1 1 1 1( ) ( ( ) = )µ µ , ∃O,  12
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(d)	 1.    8 !w w w c1 1 1( ( ) = )µ , : j 8 !µ µ( ) ( ( ) = )1 1 1c w w w c ,  REF

	 2.    8 !w w w c1 1 1( ( ) = )µ , : j !µ µ( ) ( ( ) = )1 1c x x c , 8O,  1

	 3.    µ µ( ) ( )1 1x x| ,  REF

	 4.    µ( )1x , 8 !w w w c1 1 1( ( ) = )µ , : jµ( ) = ,1c x c MP,  2,3

	 5.    j 8 ! $w w w w w w1 2 1 2 1 2, ( = ( ( ) ( )))µ µ ,  Eq7

	 6.    j 8 ! $w x w x w2 1 2 1 2( = ( ( ) ( )))µ µ , 8O ,  5

	 7.    j ! $( = ( ( ) ( )))1 1x c x cµ µ , 8O,  6

	 8.    µ( )1x , 8 !w w w c1 1 1( ( ) = )µ , : j $µ µ µ( ) ( ) ( )1c x c , MP,  4, 7

	 9.    µ( )1x , 8 !w w w c1 1 1( ( ) = )µ , : j !µ µ µ( ) ( ) ( )1c x c ,  AO, 8

      10.   µ( )1x , 8 !w w w c1 1 1( ( ) = )µ , : jµ µ( ) ( )c c , MP,  3, 9

      11.   µ( )1x , 8 !w w w c1 1 1( ( ) = )µ , : j :µ µ( ) ( )c c ,  REF

      12.   8 !w w w c1 1 1( ( ) = )µ , : j :µ µ( ) ( )1c x ,  NIN, 10, 11

     13.   8 !w w w c1 1 1( ( ) = )µ , : j :8 :µ µ( ) ( )1 1c w w , 8I ,  12

40 (a) Let M  be the normal structure for L  with | | { }M f f cM M M= 0,1 , (0) = (1) = 0, = 0  and 

RM  = fh0; 0i; h1; 1ig:

Then M f f (0) = (1) since f fM M(0) = (1)  but M  0 = 1  

since M  is normal (and of course M EqL ) so 

EqL f x f x x x, ( ) = ( ) =1 2 1 2

and by the Completeness Theorem 

EqL f x f x x x, ( ) = ( ) = .1 2 1 2

(b) Let M  be as in (a). Then M c R ( 1 = (1,1)): ^  since 1 ≠ cM and h 1,1〉 2 RM , so 
M w w c R w w ∃ ¬1 1 1 1( = ( , ))^ . However M R c c ( , ) since cM = 0  and 〈 〉0,0 2 RM so M 2 :R(c; 

c). Thus 

EqL w w c R w w R c c, ( = ( , )) ( , )1 1 1 1∃ ¬ ^ 

and the result follows by the Completeness Theorem.
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(c) Let M  be a structure for L  with | |M = 0 1 2f g; ;  and =M  the set of pairs 

fh i h i h i h i h i h ig0 0 1 1 2 2 0 1 1 2 2 0; ; ; ; ; ; ; ; ; ; ; :

Then it is easy to check that M   Eql, Eq3. However M   Eq2 since M M 0 = 1 ( . 0,1 = )i.e 〈 〉 2  
but M  1 = 0  (i.e. 〈1, 0 = )〉 2 M . The result follows by the Completeness Theorem.

41 When there is just one copy of ±,

± ± ± ± ± ± ± +(1, (1, ( (1, (1, (1, 1))) )) = (1, 1) = 1 1 = 2 , N N .

Now suppose by induction that for n copies of ±, 

± ± ± ± ± ± +(1, (1, ( (1, (1, (1, 1))) )) = 1. , N n

Then for n + 1 copies

± ± ± ± ± ±(1, (1, ( (1, (1, (1, 1))) )) , N

= (1 , [ ( (1 (1 (1 1))) ) ]),– – – – – –N N N 
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where the expression in square brackets has n ±’s, and by inductive hypothesis this is 

±N( 1N; n + 1) = 1 + (n + 1) = n + 2:

Hence by induction for n copies of ±, 

±( 1;+( 1;±(: : : ;±( 1;±( 1;±( 1; 1))) : : :))N = n + 1:

Denote the left hand side term here as n +−−−−1  so now we have that for  all n n n
N2 , = . Now let 

Γ( ) = = ,1 1x TA n x n[ 2{ | }¬ 

Appealing to the Compactness Theorem we show that Γ( )1x  is satisfiable (in a normal structure) by 
showing that every finite subset ¢( )1x  of Γ( )1x  is so satisfiable.

For let ¢( )1x  be such a subset. Then there must be some k 2   such that 

¢( ) ( ) = =1 1 1x x T A n x n kk½ [Γ { | }¬ ≤

and it is enough to show that Γk x( )1  is satisfiable. But clearly it is, in N  by x k1 1 + .

Given that Γ( )1x  is satisfiable let K  be a structure for LA  and b K2  such that K b Γ( ). Since 
K TAK  is a model of true arithmetic. Indeed if φ( , , , )1 2x x x FLAm 2  and k k km1 2, , , 2   then

N k k k N k k k

N k k k

m

N N

m

N

m

 



Á Á( , , , ) ( , , , )1 2 1 2

1 2

 



⇔

⇔ ( , , , ) by Lemma 117,

⇔

⇔

⇔

Á

Á

Á

( , , , )

( , , , )

.

k k k TA

K k k k

K k k k

m

m

K K

m

K

1 2

1 2

1 2( , , , )







2




In particular then for n m k, , 2  , 

205

For let ∆(x1) be such a subset. Then there must be some k ∈ N
such that

∆(x1) ⊂ Γk(x1) = TA ∪ {¬n = x1 |n ≤ k }

and it is enough to show that Γk(x1) is satisfiable. But clearly
it is, in N by x1 �→ k + 1.

Given that Γ(x1) is satisfiable let K be a structure for LA
and b ∈ |K| such that K |= Γ(b). Since K |= TA K is a
model of true arithmetic. Indeed if φ(x1, x2, . . . , xm) ∈ FLA
and k1, k2, . . . , km ∈ N then

N |= φ(k1, k2, . . . , km) ⇐⇒ N |= φ(k1
N , k2

N , . . . , km
N)

⇐⇒ N |= φ(k1, k2, . . . , km) by Lemma 17,

⇐⇒ φ(k1, k2, . . . , km) ∈ TA

⇐⇒ K |= φ(k1, k2, . . . , km)

⇐⇒ K |= φ(k1
K , k2

K , . . . , km
K).

In particular then for n,m, k ∈ N,

n+m = k ⇐⇒ N |= +(n,m) = k

⇐⇒ K |= +(n,m) = k

⇐⇒ +K(nK ,mK) = kK etc.

and we now see that the 0K , 1K , 2K , 3K , 4K , , . . . look and act
(with respect to the plus +K and product ·K of K) just like
0, 1, 2, 3, 4, . . . act with respect to the standard plus and product
of N . However for n ∈ N, K |= ¬n = b so the element b of |K|
is not equal to any of these 0K , 1K , 2K , 3K , 4K , , . . .. Clearly any
element n of N is equal to one of 0, 1, 2, 3, . . . (!!) so it follows
that K and N cannot be ‘isomorphic’.
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and we now see that the 0 , 1 , 2 , 3 , 4
K K K K K, , … look and act (with respect to the plus ±K and product 

.K of K ) just like 0,1,2,3,4 ,… act with respect to the standard plus and product of N . However for 
n K n b2 :N, =  so the element b  of | |K  is not equal to any of these 0 , 1 , 2 , 3 , 4

K K K K K , , . . . . Clearly 
any element n  of   is equal to one of 0,1,2,3,  (!!) so it follows that K  and N  cannot be ‘isomorphic’.

With a little more work we can show that in the sense of K  this b  must be larger than all the nK , i.e. 
all the standard n . We refer to b  as a  non-standard natural number and K  as a  non-standard model 
of true arithmetic. Finally notice that the construction in the proof of the Completeness Theorem would 
actually produce a K  here that was countable.

42 Sketch proof: Let the language L  have a unary relation symbol Pn  for each n 2   and constants 
ca  for each a a a a ak= 0 1 2 2 H . Set | |a a a ak0 1 2  to be the length of a a a ak0 1 2 , i.e. k + 1.

Let Γ µ FL  consist of: 

i)	

206

With a little more work we can show that in the sense ofK this b
must be larger than all the nK , i.e. all the standard n. We refer
to b as a non-standard natural number and K as a non-standard
model of true arithmetic. Finally notice that the construction in
the proof of the Completeness Theorem would actually produce
a K here that was countable.

42 Sketch proof: Let the language L have a unary relation sym-
bol Pn for each n ∈ N and constants ca for each a = a0a1a2 . . . ak ∈
H. Set |a0a1a2 . . . ak| to be the length of a0a1a2 . . . ak, i.e. k+1.
Let Γ ⊆ FL consist of:

(i)
∨

a∈H
|a|=k+1

∧k
n=0(Pn(x1) ↔ Pn(ca)), k ∈ N,

(ii) Pn(ca), whenever a = a0a1 . . . ak ∈ H and n ≤ k, an = 1,

(iii) ¬Pn(ca), whenever a = a0a1 . . . ak ∈ H and n ≤ k, an = 0.

Then every finite subset ∆ of Γ is satisfiable – indeed ifm is max-
imal such that some ca occurs in a formula in ∆ then ∆ is satis-
fied in the structure K given by |K| = H, PK

n = {b0b1b2 . . . br ∈
H |n ≤ r, bn = 1}, cKa = a when x1 �→ e for any (it doesn’t
matter which) e = e0e1e2 . . . em ∈ H.

Now by the Compactness Theorem let M be a structure for L
in which Γ is satisfied by some d ∈ |M | and set

dn =

{
1 if M |= Pn(d),

0 otherwise.

Then because d satisfies the formulae in (i) in M , for each k ∈ N
there is an a = a0a1 . . . ak ∈ H such that for all n = 0, 1, . . . , k

M |= Pn(d) ↔ Pn(ca)

ii)	 P cn a( ) , whenever a a a= 0 1 . . . a Hk 2  and n ≤ k; an = 1,

iii)	 :P cn a( ), whenever a a a= 0 1 . . . a Hk 2  and n ≤ k; an = 0.

Then every finite subset ¢  of Γ is satisfiable – indeed if m  is maximal such that some ca  occurs 
in a formula in ¢ then ¢  is satisfied in the structure K  given by | | {K H P b b b bn

K
r= , = 0 1 2 2

H n r b c
K
a an| }, = 1 , =  when x e1   for any (it doesn’t matter which) e e e e e Hm= 0 1 2 2 .

Now by the Compactness Theorem let M  be a structure for L  in which Γ is satisfied by some d M2  
and set

d
M P d

n

n=
1 ( ),

0 .f if

otherwise



Then because d  satisfies the formulae in (i) in M , for each k 2   there is an a a a a Hk= 0 1 2  such 
that for all n k= 0,1, ,  

M P d P can n ( ) ( )$

and with the fact that (ii), (iii) hold in M  this forces 

d d d d a a a a Hk k0 1 2 0 1 2= .  2

Hence d d d0 1 2  is the infinite sequence we are looking for.
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Appendix
For the sake of simplicity we will start by considering a finite language L  with just the relation symbols 
R R Rm1 2, , , . The idea is to code each formula θ 2 FL  with a unique number ]θ 2 +  We begin by 
giving a code to each of the symbols which can appear in a formula as follows:

Symbol X R x w V

X

j n m

j n m

: ^ ! 9 8 ( )

2 3 5 7 11 13 17 19 23 29 31#Code 

X R x w V

X

j n m

j n m

: ^ ! 9 8 ( )

2 3 5 7 11 13 17 19 23 29 31#

So for example R3  gets code 2 = 83  and w2  gets code 5 = 252 . Clearly given the code for a symbol 
we can recover that symbol. Some numbers, such as 6 for example, are not the codes for any symbol 
but that’s of no concern.

We now code a finite sequence of symbols X X X Xk1 2 3  by the number 

] ] ] ] ]
( ) = 2 3 51 2 3

2 31X X X X pk
X X X

k

Xk 

where pk  is the k’th prime, starting at p1 = 2 .
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Notice that because the decomposition of a number into a product of powers of primes is unique we can recover 
] ] ] ]X X X Xk1 2 3, , , ,  from ]( )1 2 3X X X Xk  and in turn then recover the original X X X Xk1 2 3 .  
In other words the map 

X X X X X X X Xk k1 2 3 1 2 3( )… � …]

is injective.

Since the formulae of L  are themselves such words (though of course not all such words are formulae) 
we can now produce a list θ θ θ1 2 3, , ,  in which every formula of L  appears at least once by, say, picking 
one particular formula Á  of L  and setting

θn
n FL

=
=Ã ]Ã Ãif and

otherwise.

2
Á





In this case our list will in fact contain infinitely many copies of Á. For the proof of the Completeness 
Theorem this is not problem but in any case we can refine our list to avoid repeats by simply deleting 
every occurrence of Á after the first and then telescoping down to fill the gaps.

From this proof it should be clear that the same trick will work if we start off with any countably infinite 
language, that is one where we can list, possibly with repeats, the symbols of the language as Sn  for 
n 2 +  (Indeed with enough Set Theory at our disposal we can produce lists, albeit uncountable, even 
for uncountable languages, and with some minor adjustments still prove the Completeness Theorem.)
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Endnotes
 1.	 In this course 0 is taken to be a natural number, so 0 2 .
 2.	 Commas are treated as invisible, they’re there simply for our convenience.
 3.	 In practice we often omit the word ‘symbol’ in this context.
 4.	 In this subject some practitioners use the word ‘language’ in a different sense.
 5.	 To simplify this account we will not include 0-ary relation symbols in our language, though if we did they 

would just act like the propositional variables of Propositional Logic. 0-ary functions are just the same thing as 
constants so there is no need to allow their inclusion.

 6.	 The whole point here is showing that it could not so arise in more than one way.
 7.	 They need not all actually appear in φ
 8.	 We leave it open here exactly what the tj  are because we will use this notation in a number of different contexts.
 9.	 I’ve introduced this convention (not all presentations have it) in order avoid the messy issue of interpreting 

formulae such as ∀ ∃w w Q w w1 1 1 1( , ). Similar the use of wi for bound variables and xi for free variables (again 
most accounts don’t do this) avoids the even more messy problem of determining whether a variable is or 
is not bounded by a quantifier.

10.	 Commonly outside of this course M  is also often used instead of M . This could cause confusion because M  
is being used for two different things, the structure and the universe of the structure. In practice however one 
quickly sees which of the two is meant.

11.	 Had we allowed 0-ary relation symbols in our language then M  would have to specify for each of them a truth 
value, true or false. In this way M  would look like an extension of the valuations of Propositional Logic and in 
turn the resulting development would show Predicate Logic to be an extension of the Propositional version.

12.	 Notice that we adopted the shorthand convention of omitting the outermost parentheses from P Q(7) (4,7)^: . 
However we need to make sure we include it when we subsequently introduce the existential quantier.

13.	 So the ‘two barred turnstile’   gets used in two different ways, for ‘logical consequence’ and for ‘truth in an 
interpretation’.

14. 	A possibly worrying feature of ‘logical consequence’ as a candidate for capturing our intuitive notion of ‘follows’ 
is that it appears to depend on the overlying language L, since it talks about ‘structures for L', whilst this 
seems irrelevant as far as our intuitive notion is concerned. Fortunately there is no such dependency, logical 
consequence is independent of the overlying language, the proof of which is left as Exercise 10 on page 133.

15.	 Since the left hand side here is supposed to be a set we should enclose it in braces { }, .
	 However we drop these if it cannot cause any confusion. Similarly if the left hand side is empty we may omit it 

altogether rather than writing ; 
16.	 Again we should really write this second left hand side as Γ ∪{ }θ( )



x .
17.	 This is why interpretations are split up into structures and assignments to free variables.
18.	 As usual this last left hand side is an abbreviation for Γ ∪ ∆ ∪ { }θ φ_ , etc..
19.	 Take it as read in such cases that xi  does not also appear in 



x

20.	 Although we give this here for relational languages is holds mutatis mutandis when we add functions, 
constants and equality.

21.	 Unary relation symbols are sometimes referred to as predicate symbols.
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22.	 Because you cannot find a formula in the empty set which is false in that interpretation, can you?!
23.	 You may at this point feel that they are not obviously exhaustive.
24.	 They could be infinite but it would make the notation trickier and we don’t need that strengthening in any case.
25.	 Notice that xi does not occur on the right hand side either because we chose µ 2 SL.
26.	 To have such an enumeration it is enough that L is countable (exercise!). Essentially the same proof of the 

Completeness Theorem that we shall give here goes through for general languages L provided L can be well-
ordered (as it can be assuming AC), the only real difference then is that we define the ¢α  by transfinite 
induction rather than standard induction on !0.

27.	 If you ever think you’ve proved such a result suspect you’ve made a mistake!
28.	 Notice that this formula is actually a sentence, i.e. mentions no free variables, so we do not need to specify any 

assignment to the free variables.
29.	 As with relational languages the notion of logical consequence is independent of the overlying language. This 

can be proved just as for Exercise 10 on page 133 except that we must first proved that if M M, ′ are structures 
for L L, ′  respectively, | | | |M M= ′  and the interpretations of constant and function symbols common to both 
languages is the same then for t TL TL( )



x 2 \ ′ and 
  

a M M t a t aM M2 | | | |= =′ ′, ( ) ( ).
30.	 Commonly shortened to M  ¡.
31.	 The formulae involved are all sentences so we don’t need to bother about assignment to the free variables.
32.	 To avoid lots of subscripts here we have chosen the free variables to be x x x1 2, , , n though it should be clear 

that replacing them by distinct x x xi i in1 2
, , ,  would make no difference.

33.	 Recall the footnote on page 83.
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34.	 Again for the proof we give we need to assume that we can make a list µ µ µ1 2 3, , ,  containing all the formulae 
of L  though with a little set theory we can dispense with this without introducing any new difficulties.

35.	 As before it is important to appreciate here that on the left hand side we are evaluating fM applied to the 
elements s s sr1 2, , ,  of | |M  whilst on the right hand side we are thinking of the s s sr1 2, , ,  as simply 
terms of L A.  similar splitting of roles happens frequently in what follows.

36.	 For example we may know that there are only Lebesgue measure zero real numbers of a certain sort, and 
hence uncountably many which are not of that sort, still that does not necessarily help us exhibit even one 
such number.

37.	 Functions with this role is usually referred to as a Skolem Functions after their originator the Norwegian 
Logician Thoralf Skolem.

38.	 In forming formulae we usually write t t1 2=  rather than = ( , )1 2t t  which we would use if we were thinking of 
= as just another relation symbol R.

39.	 Here w w1 2¢  etc. should be taken as shorthand for the formally correct but less immediately comprehensible 
¢( , )1 2w w .

40.	 Where 8w w n1 2,   is short for 8 8w w1 2  etc. and 
i =1

rV
  has been explained in the Exercises.

41.	 Here we are using the Completeness Theorem already proved. We are assuming nothing about = , it is just an 
arbitrary binary relation symbol at this point.

42�.	 For ¡ ¢ ¡ ¢, ,µ FL   stands for ¡  Á for each Á 2 ¢ , as you would have expected by analogy with 
¡ ¢.  Also when referring to sets of axioms we tend to use + instead of [, so e.g. Eq6 +Eq7 is another 
notation for Eq Eq6 7+ , alternatively Eq6, Eq7.

43.	 Level 3 students will not be asked to produce proofs involving equality.
44.	 Recall that for  an equivalence relation, 
	 a b a b a b a b , 2 , , \[ ] [ ] = [ ] [ ] [ ]  10.
45.  So as far as statements we can formulate in L are concerned M  looks just like the , the reals with the usual 

natural numbers, + ×,  and < . However in M  the element εM looks like a positive infinitesimal. Structures 
like M  have been studied quite extensively in the past 50 years because they offer an alternative approach to 
Analysis (called Non-standard Analysis) which uses infinitesimals in place of limits.

46.	 Of course if xi is in x then the interpretation of xi is already given – but that doesn’t change anything.
47.	 Of course K M=  if by chance c bM =  !
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