
Springer Proceedings in Mathematics & Statistics

Topics from 
the 8th Annual 
UNCG Regional 
Mathematics 
and Statistics 
Conference

Jan Rychtář · Sat Gupta
Ratnasingham Shivaji
Maya Chhetri Editors



Springer Proceedings in Mathematics & Statistics

Volume 64

This book series features volumes composed of select contributions from workshops
and conferences in all areas of current research in mathematics and statistics,
including OR and optimization. In addition to an overall evaluation of the interest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of leading
journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.

For further volumes:
http://www.springer.com/series/10533

http://www.springer.com/series/10533
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Preface

The Annual University of North Carolina Greensboro Regional Mathematics and
Statistics Conference (UNCG RMSC) has provided a venue for student researchers
to share their work since 2005. UNCG-RMSC is an annual one-day conference
promoting student research in mathematics, statistics, and their applications in
various fields. The 2012 conference was held on Saturday, November 3, 2012.

The conference was attended by a record number of 164 participants, of whom
78 were undergraduate students, 42 were graduate students, and 44 were faculty.
The participants formed a very diverse pool: 73 were women, 25 were Asian, 20
were African American, and 2 were Hispanic. Participants came from 36 different
universities and colleges. The schools with the biggest number of participants
were UNCG (44), NC State University (15), Clemson University (12), Winthrop
University (11), Bennett College (9), and Kennesaw State University (8).

The undergraduate students delivered a total of 30 presentations and the graduate
students delivered 27 presentations. The talks were on various topics of mathemat-
ical biology, differential equations, statistics, biostatistics, number theory, algebra,
combinatorics, applied mathematics, probability, and computational mathematics.
The North Carolina Chapter of the American Statistical Association sponsored the
best presentation competition. All presentations were evaluated by a group of faculty
volunteers and the selected presentations are as follows:

Undergraduate students: Graduate students:

1. Alison Miller, Elon University 1. Virginia Burger, CMU-Pittsburgh
University

2. Chris Miles, Lafayette College 2. John Steenbergen, Duke University
3. Thomas Parrish, UNCG 3. Andrew Snyder-Beattie, NC State

University

Apart from 57 student presentations, the conference featured three plenary
presentations by invited faculty speakers:

• Katia Koelle, Duke University: The use of mathematical models to understand
and control viral pathogens.
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vi Preface

• Sujit Ghosh, NC State University: A Statistician’s Journey Through the
“Bayesian” Path.

• Michael Dorff, Brigham Young University: Kidney transplants, the Iron Man
suit, and Pixar’s movie “the Incredibles.”

The conference would not have happened without the generous support of our
sponsors. Funding and support for this conference were provided by the National
Science Foundation (grant DMS–1229984), Mathematical Association of Amer-
ica (MAA) Regional Undergraduate Mathematics Conferences program (grant
DMS–0846477), North Carolina Chapter of the American Statistical Association,
Department of Mathematics and Statistics, UNCG, and the UNCG Office of
Undergraduate Research.

All presenters were invited to submit a manuscript to this issue and the submitted
papers subsequently went through a rigorous referee process. The topics covered in
this issue mimic the main topics of the conference and the reader will find papers on
differential equations, number theory, algebra, combinatorics, probability, statistics,
mathematical biology, and computational mathematics.

The first four papers describe four different programs aimed at research with
undergraduate students.

Dr. M. Dorff describes the highly successful national Center for Undergraduate
Research in Mathematics (CURM) that was established in 2006 at Brigham Young
University to support the undergraduate research nationwide. Dr. Sujit Ghosh
describes the Computation for Undergraduates in Statistics Program at NC State
University, Dr. Khan and his colleagues describe the Creative Inquiry established at
Clemson University, and Dr. Crowe and her colleagues describe the math biology
research program for undergraduate at UNCG.

The remaining papers have all substantial student coauthorship. Both the students
and the mentors deserve a large applaud for the work they have done. It is not
difficult to look beyond the papers to see the dedicated work of many faculty
mentors who go well beyond their duties to attract students to research projects
in mathematics and statistics. The mentors are now rewarded by the endless effort
by those excellent students who completed their research projects and finished it by
submitting and publishing their paper. Congratulations to all for this achievement!

Greensboro, NC, USA Jan Rychtář
Sat Gupta

Ratnasingham Shivaji
Maya Chhetri
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Chapter 1
CURM: Promoting Undergraduate Research
in Mathematics

Michael Dorff

1.1 Introduction

In order to help more students and professors have a successful experience in doing
undergraduate research in mathematics, the national Center for Undergraduate
Research in Mathematics (CURM) was established in 2006 with NSF grants totaling
over $2.5 million. CURM promotes academic year undergraduate research in the
mathematical sciences by:

• training faculty members as mentors for undergraduate research projects;
• having these faculty members mentor undergraduate students in research groups

that consist of two to five students who work together as a team on a research
project during the academic year at their own institution; and,

• preparing undergraduate students to succeed in graduate studies in mathematics.

To help achieve this, CURM administers mini-grants annually to 15 professors
working with about 45 undergraduate students on research during the academic year
at various institutions across the USA. These mini-grants include a $3,000 stipend
for each participating undergraduate student, a $6,000 stipend for each professor to
reduce her/his teaching load in order to adequately mentor the group of students
in research, and $250 in supply funds for each research group. Also, there is an
annual summer workshop to train the professors in mentoring skills, and there is a
culminating spring research conference in which the undergraduate students present
their research, learn more about mathematics and opportunities available to those
who study mathematics, and information to prepare them to attend and succeed in
graduate school.

M. Dorff (�)
Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
e-mail: mdorff@math.byu.edu

J. Rychtář et al. (eds.), Topics from the 8th Annual UNCG Regional Mathematics
and Statistics Conference, Springer Proceedings in Mathematics & Statistics 64,
DOI 10.1007/978-1-4614-9332-7__1, © Springer Science+Business Media New York 2013
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2 M. Dorff

For the past 4 years, CURM has awarded mini-grants to 64 professors (41%
female, 19% minority) from 54 different institutions to work with 195 undergraduate
students (54% female, 29% minority). During the first 3 years of CURM (the
years that have been completed), the 147 undergraduate students have written 60
joint research papers, 15 of which have been published in research journals such
as Discrete Math, Journal of Difference Equations, Journal of Pure and Applied
Math, International Journal of Biomathematics, Applied Probability Trust, and
Involve while some of the other papers are currently being refereed. In addition,
CURM students have given 123 single or joint conference presentations, 35 poster
presentations, and have received 29 awards for their presentations or research.
Finally, the data indicates that at institutions participating in the CURM program,
about 18% of the math majors go on to graduate school while 63% of the CURM
students at these schools go on to graduate school. More information about CURM
can be found at its web site http://curm.byu.edu.

1.2 Center for Undergraduate Research in Mathematics

The benefits for students who participate in undergraduate research in a STEM field
are significant as reports have shown [4,5,10,11]. These benefits can be summarized
to include gains in knowledge and skills, academic achievement and educational
attainment, professional growth and advancement, and personal growth [9]. For
students from underrepresented groups, a research experience with an experienced
faculty mentor is positively correlated with improvements in students’ grades,
retention rates, and motivation to pursue and succeed in graduate school [3, 6, 8].
Generally, there are two types of undergraduate research projects in mathematics:
multiple-week summer REUs and individualized academic-year projects at the
student’s own institution. CURM offers another model.

1.2.1 Mini-Grants

CURM offers 15 mini-grants each year to faculty mentors who are accepted
into the program. These mini-grants consist of training and financial support for
undergraduate research groups consisting of two to five undergraduate students.
These groups start during the fall semester and continue through the academic year.
Typically, the students commit to work 10 h/week at their own institution on the
research project for two semesters. The entire group meets at least 1 h a week
and the students meet and work together at least 3 h a week. The rest of the time
each individual student works on his/her research problem. CURM offers a $3,000
stipend for each student in the group ($1,000 to be paid at the beginning of the
fall semester, $1,000 to be paid at the beginning of the spring semester, $500 to
be paid after the student presents at the spring research conference, and $500 to

http://curm.byu.edu
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be paid after submitting the final research paper/report). By having students work
together in groups, they tend to motivate each other and they also learn to become
more independent of the faculty mentor. Of course, the faculty mentor needs to be
actively involved with the group. However, many of them are at institutions with a
teaching load of three to four courses per semester. Hence, CURM provides $6,000
for the professor to buy out at least one course from his/her teaching load during
the academic year in order to free up time to spend working with these mentored
groups.

1.2.2 Summer Training Workshop

Before the faculty members begin mentoring their students in the undergraduate
research group, they attend a 2-day summer workshop. The purposes of this
workshop are to discuss effective approaches in working with undergraduate
students in academic year research and develop a rapport among the professors.
There are specific presentations and discussions lead by the CURM directors.
These include such topics as developing a manageable timeline for academic year
undergraduate research, how to get started mentoring undergraduate students in
research, potential pitfalls and overcoming them during the mentoring journey,
working with group dynamics among students with different backgrounds and skills,
and helping students develop independence in doing research. Some of this has been
published in papers co-authored by various CURM directors and CURM professors
[1, 2, 7]. Finally, there is a CURM Facebook page that the professors are invited to
join to facilitate discussions about their experiences.

1.2.3 Spring Research Conference

Having the undergraduate students present their research in a supportive environ-
ment is very beneficial in motivating them to be consistent in their research, to feel
the excitement of the mathematical community, and to prepare for graduate school.
Therefore, we organize a CURM research conference that each student participant
and faculty mentor attends. The conference consists of activities to motivate and
intellectually stimulate students to continue to study mathematics and prepare for
graduate school, and 20-min sessions in which the student participants present their
research with written feedback and guidance from two CURM professors.

In the past, this conference has been held at Brigham Young University (BYU)
in March. We have brought in three keynote speakers known for giving interesting
mathematical talks appropriate for undergraduate students, such as Bob Devaney,
Joe Gallian, Aparna Higgins, Colin Adams, Laura Taalman, Tony DeRose, Dave
Kung, and Frank Morgan. Also, we have created the What is . . . ? series in which
professors, who are known for being excellent teachers and being able to connect
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with undergraduate students, give a 30-min presentation on advanced topics at a
level suitable for the students. Topics have included hyperbolic geometry, operations
research, minimal surfaces, coding theory, cryptography, and dynamical systems.
There have been panel discussions on attending graduate school in mathematics
with panelists. To help students build a sense of belonging to the mathematics
community, there were also social activities such as a banquet, a hike, and a
reception with games.

1.2.4 Research Reports

Having the undergraduate students write up a paper about their research is very
beneficial both in motivating them to be consistent in their research and in preparing
for graduate school. In the research paper, we encourage the group to not only
describe their research but also propose some open problems in the research area
that they would have worked on if they had more time. Thus, the paper is not only
a tangible end product for the initial research group but is also a written starting
resource with a set of research problems for future undergraduate students who are
recruited to work with that professor on research. We require all groups to submit
to CURM a final written research paper at the end of May of the academic year. We
encourage the CURM professors to have their undergraduate students submit their
research papers to refereed journals for publication if appropriate.

1.3 The Effectiveness of the CURM Program

CURM has a tremendous effect upon undergraduate students, their professors, and
their departments and institutions. It has been fantastic to witness the indirect benefit
of changing the practices and culture in mathematics departments and in some
cases even at institutions as groups have participated in the CURM program. As
CURM students and professors have shared the results and experiences in doing
undergraduate research (e.g., presentations of their research in the department,
awards from their institution or from conference presentations, university newspaper
articles, acceptance to graduate school, etc.), other students have listened and have
become interested in doing research. This has resulted in some departments creating
new courses in which students now can get academic credit for doing research
allowing a professor to count that research as part of his/her teaching assignment.
In some places, the dean has been impressed with the results of the CURM
research group and has offered internal funds to the CURM professor to continue
to work with undergraduate students on research after the CURM year is over.
At two minority-serving institutions, Jackson State University and California State
University—Channel Islands (CSUCI), the administrations have been so impressed
with the CURM program that they have introduced new university-wide programs
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promoting undergraduate research in all disciplines based upon the CURM model.
Below are some remarks by previous CURM participants on the effect the CURM
program has had.

1.3.1 Undergraduate Students

CURM has opened many doors for my future. It encouraged me to apply for a summer 2008
REU [got accepted into one, and attended it]. . . If it weren’t for CURM, I wouldn’t be where
I am today; I wouldn’t know what it meant to do research, and I wouldn’t be applying for
graduate school.

Amy Stockman, Concordia University

At my institution, students are mainly Hispanic origin. I have seen many of my students
struggling at school because they had to work outside of the classes to support themselves
or their families. This has tremendous impact on their academic achievements. Most of
them even do not think about continuing on higher education . . . CURM provided the hand
I needed to extend to my two female students . . . both of them will be the first generation
who will be going to a graduate school among their family members.

Gulhan Alpargu, California State University–Fullerton

[I want to mention] how important CURM grant was for me and my students here. Couple
of years ago there were [hardly any] students thinking of maybe applying to a graduate
program in the future, but now we have at least 2–3 per year that are actually taking the
GRE tests and applying for graduate schools.

Nicoleta Tarfulea, Purdue University–Calumet

1.3.2 Faculty and Institutions

Because of the CURM grant, I was able to work with a large number of students (7 total,
while only 2 were supported by CURM). All it took was this one year of the CURM grant
to fan the fire, and our department has begun to foster an environment that encourages
undergraduate research. This coming year there will be 4 professors working with students
or groups of students on research projects.

Joan Lind, Belmont University

After learning of my CURM group, the Dean of Faculty at CSUCI introduced a pilot
undergraduate research program where faculty in any discipline may apply to receive teach-
ing credit for offering a course where students work on research projects. More recently,
the Dean has established a Student Research Steering Council to embed student research
experiences across the curriculum. In other words, institutionalization of undergraduate
research at my university has been sparked by my CURM experience.

Kathryn Leonard, California State University–Channel Islands

Acknowledgements CURM has been funded by NSF grants DMS-0636648 and DMS-1148695
and by Brigham Young University.
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Chapter 2
NCSU-CUSP: A Program Making a Difference
in Quantitative Sciences

Sujit K. Ghosh

AMS Subject Classification: 62F03, 62F15, and 62P10

2.1 Introduction

The Department of Statistics at North Carolina State University (NCSU) established
a Computational Science Training for Undergraduates in the Mathematical Sciences
(CSUMS) program funded by the National Science Foundation (NSF) under the
leadership of the Principal Investigator, Professor Sujit K. Ghosh. The overarching
goal is to provide a rich applied computational statistics research experience to a
diverse population of undergraduate students that will encourage them to continue
their academic programs to the graduate level and will help them in making more
informed decisions about their academic or nonacademic careers.

The NSF-CSUMS project titled NCSU Computation for Undergraduates in
Statistics Program (NCSU-CUSP), prepares students to engage in a significant
research experience, and to be fluent in the languages of computing, mathematics,
and statistics. The program was launched on September 15, 2007, with funding
from the prestigious NSF-CSUMS award and the program has been awarded
a total of $770,714 to date (Award# NSF-DMS 0703392: http://www.nsf.gov/
awardsearch/showAward?AWD_ID=0703392). NCSU-CUSP targets rising senior
and junior mathematics majors at NCSU and Meredith College who have demon-
strated academic excellence. With rapid advances in technology, massive amounts
of new data are generated daily in many scientific disciplines and the volumes
are growing at a rate unprecedented in human history. For the USA to remain

S.K. Ghosh (�)
Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203, USA
e-mail: sujit_ghosh@ncsu.edu

J. Rychtář et al. (eds.), Topics from the 8th Annual UNCG Regional Mathematics
and Statistics Conference, Springer Proceedings in Mathematics & Statistics 64,
DOI 10.1007/978-1-4614-9332-7__2, © Springer Science+Business Media New York 2013
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competitive and innovative, a diverse pool of researchers trained in novel and
powerful techniques is critically needed to illustrate, model, and analyze these large-
sized, high-dimensional, and nonlinearly structured data.

Building on resources of one of the country’s largest statistics departments,
NCSU-CUSP has become one of the first computationally intensive statistics
programs for undergraduates in the nation. The cutting-edge projects from this
program have led to the development of new computationally intensive courses
and interdisciplinary courses, which will have a long-term impact. The project
is also committed at the outset to increasing diversity in the emerging field
of computational statistics. NCSU-CUSP has increased awareness of statistical
science among mathematics majors and faculty, it has fostered greater collaboration
between interdisciplinary programs, and it has encouraged a diverse pool of well-
prepared students to pursue graduate studies in quantitative sciences. To date, the
program has supported 34 undergraduate students who worked in a cohort of 6–8
students in each academic year since summer of 2008. Out of these 34 students, 27
(�80 %) are female out of which 2 are African-American students. Out of the 28
students who have completed the program, all of the graduating seniors have either
entered into a Masters’ program or a PhD program in Statistics, and a majority of
them have chosen NCSU as their graduate program.

The project has supported four bright students and a faculty member from
the local Meredith College, which has become one of the largest independent
private women’s colleges in the United States of America (USA). A letter from
Dr. E. Jacquelin Dietz (Professor and Head of the Department of Mathematics
and Computer Science at Meredith College) describes the impressive impact and
contribution of the NCSU-CUSP. In particular, Professor Dietz remarked “The rich
experiences that (NCSU)CUSP provided them (Meredith students) in statistics,
mathematics, computation and genetics will inform and inspire their teaching
of future generations of young students.” The NCSU-CUSP has also supported
faculty members with partial salaries (during summer) who have served as the lead
instructors and mentors over the past 4 years. The instructors have expressed a
strong sense of satisfaction and motivation to work with the young students.

The NCSU-CUSP begins with a 10 week summer program that usually starts
from the end of May through the end of July each year. During this period, three
to four teams of two to three students work collaboratively with program faculty
mentor. Topics explored to date range from environmental statistics (e.g., “Investi-
gation of blood lead levels in children”) to financial statistics (e.g., “Dynamics of
credit ratings”) to statistical genetics (e.g., “Optimization of Grammatical Evolution
Decision Trees for detecting Epistasis” and “Comparison of analytical methods
for genomic association studies”). The program couples extensive coursework
throughout the academic year in computing for contemporary statistical analysis
with a practicum and research lab focusing on an area of application mentioned
above. Dr. Alison Motsinger-Reif has been leading the program on Statistical
genetics projects for the past 2 years and in a supporting letter she succinctly
summarized the broad impact of the program in making a tremendous difference
with Statistics department and beyond. In particular Dr. Motsinger-Reif commented
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“The successes of (NCSU)CUSP are clear, in many ways. The program has
supported some of the most talented undergraduates at the university in performing
high-quality research. . . . This (financial support) ensures gifted students from many
economic background are able to participate in the program.”

The NCSU-CUSP not only provided financial support to all of the enrolled
students but also helped them to develop skills in data management and manipu-
lation, converting data to a form convenient for statistical analysis, and to develop
simple to complex statistical procedures and graphics. Training in communication
skills helped to develop graduates who can bring scientific research results to the
public and policy makers. The students benefitted from a significant, collaborative
interdisciplinary scientific research experience under the mentorship of faculty
working at the forefronts of their disciples. NCSU-CUSP supported all student
travel allowing them to present their research work at regional, national, and
international conferences. The activities of NCSU-CUSP are consistent with the
recommendations of the important National Academy of Sciences’ publication
“Rising Above The Gathering Storm: Engaging and Empowering America for a
Brighter Economic Future.” Through this program, it has developed one of the
first undergraduate-level computationally intensive and research oriented statistics
curricula in the nation. In summary, the NCSU-CUSP has made a significant
difference by

1. preparing undergraduate statistics/mathematics majors (in particular by engaging
and encouraging women in mathematical fields) to take advantage of computing
advances and make sophisticated computing an integral part of the curriculum
and a significant research experience;

2. improving students’ nontechnical skills, including public speaking, written
communication, ethical reasoning, and the ability to creativity in developing sta-
tistical and computing approaches to solving interdisciplinary scientific research
problems and

3. preparing and motivating a diverse pool of highly qualified students to pursue
interdisciplinary graduate studies in the quantitative sciences.

2.2 Program Activities and Findings

There are several key aspects of the program that have lead to its successes. The
program is very vertically integrated, with the program PI allowing the instructors
freedom to run their cohorts in a way that best fits the subdiscipline that they
are focusing on. The instructors work together as a team (there is a lecturer and
a computing instructor) to teach students the skills they need for their research
projects. Additionally, there have been graduate teaching assistants that have
volunteered to help in the mentoring process by working with research teams. The
undergraduates get the advantage of the expertise of all the team around them, and
the graduate students get valuable experience in mentoring a research project. This
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integration also really educates the students about the process of continuing on in
academia. By working so closely with both faculty and graduate students for a full
year, students get lots of opportunities to learn about life and expectation at each
level. Demystifying the field helps them make a more informed decision about
moving through the academic pipeline to the next step. The structure and length
of the program also helps to keep the students stay in the pipeline. NCSU-CUSP is
not just a summer program, its a year-long so that students have help/guidance in
applying for graduate school (letters, mentoring, etc.) in their senior year.

New courses have been developed in response to CSUMS activity and are
open to all students. In particular, the statistical computing and data management
course (which has become a required course for CSUMS students) provides a
solid background on the use of computers to manage, process, and analyze data.
The courses developed as a part of CSUMS activity are popular on campus and
provide a strong foundation in statistics and computing needed to implement
computationally intensive statistical methods. These courses have broad impacts on
student training as they motivate a diverse pool of highly qualified students to pursue
interdisciplinary graduate studies in the quantitative sciences. In particular, the
environmental statistics practicum course has motivated students to pursue research
activities in collaborations with scientists at US Environmental Protection Agency
(EPA). Also the statistics and financial risk practicum course has been instrumental
in motivating the students to understand and explore the mechanics of financial
risk. Also, during the summer of 2010, by taking the course “Statistical Genetics
Practicum,” the students learned about computer-intensive data-mining tools for
gene-mapping in human genetics and explore the relative performance of these
methods on both real and simulated data.

The entire group of six to eight students met with their faculty advisers on a
regular basis to discuss the project updates. All of them worked together on research
projects, shared their research findings, collaborated on performing statistical
simulations, and explored the impact of scientific theory using computational
approaches. The insights gained in this collaborative exploration involving all
students were then used to construct various statistical models. Computational
tools included statistical modeling and data-mining software. The graduate student
assigned to this project helped all eight students to learn computational methods
executed via SAS. In addition, they also explored the consequences of the choice
of distribution on the value of commonly used statistical metrics. All of the eight
students have not only used conventional techniques as far as possible but they
also used computer simulations to answer questions that these techniques cannot
answer. Students were introduced to computational tools using local computing,
as well as high-performance computing using NCSU’s supercomputing cluster.
Additionally, all students attended field trips to see how various data are collected,
as well as to super-computing facilities to see how high performing computing is
made possible. Although all eight students actively collaborate with their faculty
mentors on all three projects, a smaller subset of students work in teams of
two on the research projects. Later a smaller subset of students took the lead in
writing the manuscripts for possible publication in undergraduate research journals.
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The Statistics department at NCSU continues the development of its web site to
publicize the department’s CSUMS program: http://www.stat.ncsu.edu/cusp/. The
web site is intended to blend with other departmental web sites devoted broadly to
the academic, research, and human resource aspects of the department. The web
site provides a detailed list of CSUMS activities including program objectives,
information on financial aid, courses, research projects, and a photo gallery.

The undergraduate program has a Stat Club that serves both pre-professional and
social/group cohesiveness functions. One of these meetings included a presentation
focusing on graduate education, its benefits in expanded career opportunities,
suggestions for preparing one’s self for graduate study, and information about
assistantship, fellowships and traineeship and their associated benefits. Other
meetings featured speakers, sometimes past graduates of the program, who discuss
their experiences as statisticians, what aspects of their training were especially
valuable, and the opportunities they see for future graduates of our program. The
Stat Club took a trip to the Washington DC area to visit Federal agencies that
employ statisticians. The group also met with the board of directors of the American
Statistical Association where they discussed the opportunity for graduate study in
statistics. The undergraduates were chaperoned on this trip by a post doctoral fellow.

2.3 Program Impact

The program has encouraged participants to continue to graduate school, with ALL
of the graduates of the program continuing to a graduate program in a quantitative
area. This program has also had a direct impact on the career goals of several
students who would not have attended graduate school. The program has also had an
impact beyond the participants and helped expand NCSU’s course offerings in key
areas. The CUSP program recruits six of these students from NCSU each year. The
impact on these students is clear. ALL of the students who participate in CUSP
go on to graduate programs in quantitative fields. The extensive undergraduate
research training along with training in advanced computing makes CUSP students
attractive candidates for masters and PhD programs. In the first two cohorts all
of the participants went on to graduate programs. In later cohorts some students
have not yet graduated but are planning to go on to graduate programs. Several of
the students went on to the NCSU graduate program in statistics. These students
have exceptional academic records and compete well among the other students
in our highly competitive program. A large number of the students went on to
become part of the Masters of Science in Analytics (MSA) program at NCSU.
The director of this program has expressed how the computational training and
understanding of how to apply statistical theory to poorly defined problems has
made our students exceptional members of the MSA program. Other students went
on to graduate programs around the country. Almost every CUSP student was
accepted at multiple graduate institutions. CUSP achieves this impact by bringing
the participants together as a cohort that works on research projects. This cohort

http://www.stat.ncsu.edu/cusp/
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mentality allows the students to see role models not only in the faculty with
whom they are working but also among their peers. That allows them to envision
themselves working on research in graduate school that previously seemed daunting.

Overall, the CUSP program helps participants realize their desire to continue
into graduate school. Obviously there may be some selection bias in this result
in that many of the students who are involved in CUSP are very strong students
who may have gone on to graduate school in quantitative areas regardless of their
participation. However, in my role as academic advisor I have seen several students
who changed their long-term plans because of the CUSP programs. For example,
prior to participating in CUSP a student from the 2008 to 2009 cohort had discussed
her long-term career plans with me as part of our normal advising meetings. At
that time she felt that she was unsure as to how she would use statistics in a career.
Although she was doing well in the theoretical courses in the undergraduate program
she just did not see how these courses would apply to a “real-world” problem.
This sentiment is common among our students who tend to come into statistics
with a desire to solve real-world problems using quantitative methods. At that time,
the student felt she would probably not go on to graduate school but instead seek
employment. However, the CUSP program exposed her to how the more theoretical
aspects of statistics can be translated into advanced problems in statistical methods.
The program also exposed her to mentors who were working with advanced methods
to solve “real-world” problems. This exposure reinvigorated her interest in academic
pursuits. The student went on to the MSA program and now has started on a
distinguished career as an Analytical Engineer at The SAS Institute. This impact
of the CUSP program is not unique to a student. We are convinced that at least one
other student in each of the cohorts would not have gone on to graduate programs if
they had not participated in this program.

CUSP has also had an impact outside of the students who are directly involved
in the program. Traditionally, we had offered a single introductory course on
statistical computing. Over the last few years many students have expressed interest
in taking more courses in statistical computing. As part of the CUSP program the
department now offers a second course that gives students training in more advanced
statistical computing methods. This course is extremely popular with many of our
undergraduate students outside the CUSP program. Through this course, the CUSP
program has had an impact that is much broader than the six students enrolled in the
program each year.

2.4 Conclusions and Discussions

Aided by rapid advances in technology, massive amounts of new data are being gen-
erated daily across multiple scientific disciplines and are growing at an exponential
rate unprecedented in human history. Researchers trained in novel and powerful
techniques are critically needed to illustrate, model, and analyze these large-sized,
high-dimensional, and nonlinear-structured data. NCSU-CUSP has increased the
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awareness of statistical science among minority mathematics majors and faculty,
fostered greater collaboration between departments, and encouraged a diverse pool
of well-prepared students to pursue graduate studies in quantitative sciences.

CUSP is a model for how programs to improved undergraduate research
should work. Many programs implement Research Experiences for Undergraduates
(REUs). CUSP goes beyond this typical model by incorporating a cohort structure
that provides a built-in support mechanism for participants. It also supplements
traditional research activities with new courses that train students in methods that
they can apply immediately. This cohort structure combined with curricular trans-
formation creates a model that can make undergraduate research work elsewhere.
We firmly believe that CUSP is a program that is making a real difference among
the students at NCSU and can serve as a model for real transformation at other
institutions.

Acknowledgments This material is based upon the work supported by the National Science
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Chapter 3
Quantitative Methods in Biomedical
Applications: Creative Inquiry
and Digital-Learning Environments to Engage
and Mentor STEM Students in Mathematics
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3.1 Introduction

Research in science and engineering is increasingly reliant on mathematical and
statistical tools. The NSF has argued that to build a competitive international
workforce in STEM fields, colleges and universities must inspire a greater number
of students to learn a greater amount of mathematics and statistics [1]. The growing
field of biomedical science and bioengineering challenges students to make critical
decisions about people’s lives and diseases and demands a deep understanding of the
quantitative complexity both of the biological system and of the decision-making
process. Biomedical science and bioengineering as well as other medical majors are
among the most popular fields for college graduates today. For students to succeed
in such fields, mathematicians must do a better job of explaining to students how
mathematical concepts and quantitative analysis can be applied in biomedicine and
why it is important to succeed in the undergraduate mathematics curriculum. The
challenge is to catch the attention of STEM students by offering early applied
learning experiences that engage them with the application of mathematics and
statistics in professional practice and applied learning applications.

At a freshman or sophomore level, it can be a challenge to connect mathematical
concepts with bioengineering and medical applications, and to challenge the stu-
dents’ view of what mathematics can offer them. Many incoming freshmen declare
a STEM major, but know little about their declared field or about how Calculus can
be applied to a particular STEM field. Students can be insufficiently motivated to
work consistently in their Calculus courses in pursuit of undefined educational or
life-long goals. Consequently, they can underachieve in these fundamental STEM
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courses and possibly leave their STEM field. Too often, this STEM-attrition scenario
disproportionally involves women, undeserved minorities, first-generation college
students, and community-college transfer students [2]. The authors believe that
one benefit of using medical applications in applied learning environments is their
appeal to a broad range of students, as most everyone has personal experiences with
health issues.

Past research has focused on the importance of success in the first college math
course and its correlation with success in engineering, and other STEM fields
[3]. Calculus is particularly noted to be a stumbling block [4]. Since 2006, the
efforts by the authors’ home institution have been heavily invested in classroom
redesign of freshman Calculus courses. All sections of Calculus I adopted a
variation of the SCALE-UP active-learning instructional model which includes
short lectures, student collaboration at round tables, and graded group activities [5].
These changes are consistent with research emerging from the Calculus Reform
Movement showing that the longer you lecture the less students retain, as well as
with recommendations to include small-group or collaborative classroom learning
activities [6]. Initial results with this revised curriculum have been very promising,
with 2008 results showing a nearly 50 % reduction in the DFW (students receiving
a D, F, or withdrawing from the course) rate compared with Fall 2005 measures.
Despite these efforts however, approximately 20 % of students continue to earn a
DFW, and had to either repeat the course or abandon their STEM career goals.
Clearly, more innovative concepts in instruction should be considered to decrease
this rate of student loss.

Recent work in the authors’ home department has included the introduction of
Tablet PCs into several sections of Freshman Math courses in 2006. Student percep-
tions, behaviour, and performance (especially of weaker students) were shown to
improve [7]. With this the department created a dedicated technology classroom that
included workstations with high-powered software, multiple projection capability,
Smart screens, as well as Tablet PCs.

Another challenge to innovative and supplemental instruction is developing a
learning opportunity that can fit it into a student’s schedule and course-credit
structure, and to insure that all participants (faculty and students both) receive merit-
based credit for participation. At the authors’ home institution, “Creative Inquiry”
is a program course structure, which strives to engage students in the process of
learning and discovering through faculty-mentored research and outreach activities
across multi-disciplinary departments. Students who participate in these Creative
Inquiry classes have been shown to learn and to think in new ways, learn non-
class skills designed toward their interests, enhance their academic performance
in other classes, improve their satisfaction with their learning environment, and
improve their relationships with faculty. In addition, instructors who teach Creative
Inquiry classes develop mentoring relationships with students, have the opportunity
to develop courses toward a specific area of interest that spans several departments,
and rejuvenate and improve their teaching in other courses. At the authors’ home
institution, the university provides monetary support for courses taught under
the Creative Inquiry framework, and since its conception in 2005 the university
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has offered a total of 275 Creative Inquiry courses 12 of which are from the
Mathematical Sciences department.

In this paper, the authors describe the 2-year NSF funded collaborative project
between faculty from the Mathematical Sciences and Bioengineering departments
that combines inspiration in Biomedicine with retention in Calculus, directed at
freshman and sophomore students. This paper describes the initial results from
Module 1: Orthopedics and Pre-Calculus and Module 3: Health Hazards from Arc-
flash.

3.2 Methods for Module Organization

3.2.1 Program Structure

Students participated in 1-h modules where they discuss biomedical applications
to their current math courses interact with faculty and student mentors, participate
in field trips, and have access to a textbook repository. The goal of this program
is to have all participants engaged in the interplay of mathematical and biomedical
concepts in the context of interesting applications that may help them formulate
career goals while deepening their understanding. This program was designed to
emphasize mathematics and statistics relevant in four biomedical areas that are
directly linked to the students progression through their core calculus courses:

Module 1: Orthopaedics
Module 2: Disease epidemiology
Module 3: Health hazards from arc-flash
Module 4: Mammography and radiology

Students have the opportunity to enroll in one module per semester for up to
four semesters. They enter modules coordinated with their current or previous math
courses [whether pre-calculus, first semester calculus (calculus of one variable),
second semester calculus (calculus of one variable II), or third semester calculus
(calculus of several variables)]. By presenting interesting biomedical problems
as early undergraduate applied learning experiences, instructors are required to
decompose a difficult mathematical problem into its simpler parts that students
can manipulate. These modules are broken down into 5–7 weekly lessons of 1–2 h
each. The modules usually begin 3–5 weeks into the semester, to give students an
opportunity to learn the basics in their math courses before beginning these applied-
learning experiences. Students are introduced to the exciting field of study and given
an interesting problem to solve, with the mathematical component structured to
their level of understanding. Students work through a problem, identify what they
don’t fully understand and seek remedies. They are then given the opportunity to
interact with their peers in group activities and their instructors and participate in
on- and off-campus field trips. This level of communication, where students work
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on a problem of interest, invest in learning, and even discuss future learning for their
problem of interest, is impossible to achieve in large content heavy math classrooms
that have little time to spare.

In addition to these group activities, students have the opportunity to visit local
professional facilities that provide the services studied in the module. These field
trips are undertaken as the students have the opportunity to explore the mathematical
concepts that are relevant to the applied learning experience of interest and are used
to reinforce the practical applications and empowering nature of the mathematical
skills that they are acquiring in class and applying in their learning modules.

All participants receive mentoring from their active learning experience instruc-
tor and a designated advanced undergraduate mentor who works to enhance their
success in their mathematics courses. All participants are matched with faculty
or undergraduate-student mentors who will communicate with them both in-
person and through web-based technology at various times throughout each week.
Although the modules do not begin until 3–5 weeks into the semester (other than an
introductory meeting on week 1), the mentoring begins the first week of classes.

Copies of textbooks from the core calculus courses are also available for student
loan. Participation in the modules allows students to use these textbooks for the
semester the module is taken. The library consists of texts from pre-calculus,
single-variable calculus, multi-variable calculus, and topic specific biomedical and
statistics texts that enhance their individual learning module experience.

3.2.2 Module 1 Curriculum

3.2.2.1 Orthopedics: Fundamentals of Pre-Calculus in Orthopaedic
Medicine

This beginning module was intended to reinforce pre-calculus curriculum based on
the home institutions state pre-calculus standards. It was offered as a one credit
course that was spread out over one semester and it was intended to engage the
student in basic bioengineering problems requiring algebra and trigonometry, and
introduce areas of study and applied mathematics that required the use of pre-
calculus to effectively solve real-world problems. It reinforced scalar, algebraic
and trigonometric concepts that were relevant to orthopaedics and total joint
replacement. Students participating in this module were expected to have already
taken or current be taking course content equivalent to the following university level
courses: MTHSC 103 Elementary Functions, MTHSC 104 College Algebra, and
MTHSC 105 Precalculus.
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3.2.3 Module 1 Course Schedule

Week 1: Orientation and Introduction to Module
(1 h with introduction, orientation and syllabus)

Week 3: Tour of Clemson Bioengineering Department and Biomechanics Lab
(pre-survey and department tour, 1 h)

Week 4: Activity 1: Orthopaedics, Angles and Basic Trigonometry
(15-min lecture with 45-min applied learning activity)

Week 5: Tour of Local Orthopaedics and Sports Medicine Practice (2 h)
Week 6: Activity 2: Anthropometry, Measurement, Percentiles and Averages

(15-min lecture with 45-min applied learning activity)
Week 7: Student K-12 Outreach Project Development (1 h)
Week 8: Student K-12 Outreach Project Development (1 h)
Week 9: Activity 3: Orthopaedics, Angles and Polynomials

(15-min lecture with 45-min applied learning activity)
Week 10: Tour of Total Joint Replacement Testing Facility (1 h)
Week 11: Student K-12 Outreach Project Development (1 h)
Week 12: Total Joint Replacement Motion and Kinematics

(15-min lecture with 45-min applied learning activity)
Week 15: Student K-12 Outreach Presentations (one presentation and review)
Week 16: Module Review and Assessment (1 h summary and assessment)

3.2.4 Module 1 Activity Example and Details

3.2.4.1 Week 4 (1 H Applied Learning Module: Orthopaedics,
Angles and Basic Trigonometry)

In this module, students were given an opportunity to participate in a “life or death”
project that challenged them to formulate a treatment regimen for an orthopaedic
condition. This condition, known as a lower limb deformity, required the student
to apply simple concepts in angle measurement and trigonometry to correct a bony
anatomical deformity in a patient. This module began with in-class review of basic
geometry and trigonometry and an introduction to the pathologic conditions of
lower limb deformity. Students were then given a “patient’s” X-rays that showed
a common deformity of the lower limb. They were then asked to calculate a tibial
re-alignment treatment to correct the deformity. Using these X-rays, the students
used simple measures of bone length, width, and angular deformity, apply basic
trigonometry to “cure” the patient. The accuracy of the surgical correction was
then visualized on a surgical training bones and a computer model of this bony
system. The students were encouraged to explore a range of treatment options using
these interactive models. Discussions of actual before-after surgical treatments for
this condition using X-rays were presented. These concepts contained some of the
challenges for pre-calc students and therefore the reiteration and application of these
topics was intended to help strengthen their understanding.
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3.2.4.2 Week 4 Outcomes

Hands-on use of rulers and protractors. Applied knowledge of scalar quantities,
radians and degrees, relative and absolute angles, applied use of sines, cosines,
tangent functions. Participation in Team Activity. Discussions of experimental
variables. Mathematics applied: basic trigonometric functions

3.2.5 Student Projects

Students worked in-class and out-of-class in groups of 2–4 on class presentations
which demonstrated their understanding of the various heat propagation models
discussed in class, but did so in a pedagogical context where they tried to find
creative ways of explaining this material and the underlying formulas to college
students just beginning to learn calculus. Student and Instructor Reviews of all
projects were tabulated; instructors announced which student ideas would be
incorporated in the future development of the module, presentation at the conference
or the journal publication [8].

3.3 Assessment

Assessment focused on how this Creative-Inquiry project-based approach, com-
bined with introducing the students to mathematical skills they will need to learn
(in some cases next semester), enabled the student to more confidently approach an
entire mathematical concept in the context of applied learning.

Formative evaluations began with the first teaching of Modules and will continue
with every implementation of each module. External evaluations are to take place
midway through the 2-year program and again at the end of the program. Both
evaluations are designed to gather information in order to answer the following
questions:

• Goal 1: Does participation in these activity-based learning modules improve
student knowledge in current math courses?

• Goal 2: Do these modules improve student performance in current math courses?
• Goal 3: Does participation in these activity-based learning modules improve

student performance in future math courses?
• Goal 4: Does the implementation of activity-based learning using medical

applications affect the retention in STEM majors?
• Goal 5: Do applied learning modules, such as the ones proposed, have dissemi-

native potential to high-school, community college and other 4-year institutions
with an interest in adopting this approach to enhance early undergraduate applied
learning?
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3.3.1 Internal Evaluation

The formative evaluation consists of pre and post exams aimed at testing the basic
math skills utilized in the module. Student performance and major changes are mon-
itored in semesters following module participation until graduation. Pre and post
surveys are conducted focusing on the improvements needed in implementation.

3.3.2 Pre-survey

Pre-surveys were administered in the first week of each module semester (during the
introductory meeting) by the module instructor. These surveys gathered information
about the demographics of the students registered for the module. In addition, the
preliminary surveys gather information on the student’s math background and initial
perception of uses of mathematics in STEM fields. Instructors are then able to gage
the module according to the information obtained.

3.3.3 Post-survey

Post-surveys were administered at the last meeting of the module during the
semester by the module instructor. These surveys gathered information on the
students’ satisfaction of the instructors and the material taught. In addition, these
surveys gaged the students’ perception of how much their participation in the mod-
ules helped their performance in their math and biology courses. The information
obtained from these surveys was used to make improvements to the modules for
future implementation.

3.3.4 Follow-Up Surveys

After a student has completed at least a semester of study after the participation
in a module, participants will complete an online follow-up survey to gage the
retention and usefulness of the knowledge obtained from the modules in the
subsequent semesters. Students are asked to participate in these follow-up surveys
every semester until graduation.
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3.3.5 Student Performance and Retention in CES Majors

In the institutions’ core calculus courses, semester and final exams are recorded
for each student. Of this program comparisons will be made for participants in
these modules versus comparable students that did not participate for the semester
the student takes the module as well as subsequent semesters. In addition, the
participating students will be monitored for change in majors to a major outside of
STEM until graduation. Comparisons will be made on proportion of participating
students who switch majors (to outside STEM) to a comparable group of students
who did not participate in the modules. Comparable students will be obtained via
quantitative measures such as math SAT score, previous exam scores, and math
placement scores. These student control groups will be chosen with assistance from
an in-house statistician, and the identity of these participants will be kept blind from
the participating instructors and departments until the conclusion of each semester
and module.

3.3.6 Exit Interviews

Interviews with all participating students were conducted, with a project member or
undergraduate not associated with the module in question, at the end of the semester
the module is implemented. The interviews were intended to gather information
from students about the implementation of the modules and any concerns or
improvement suggestions the students may have. Information obtained from these
interviews will be used to improve the modules for future implementation.

3.4 Discussion

A key component of this work is the use of multi-departmental (or multi-
disciplinary) collaborations to arrive at a greater academic impact. In the case
of the authors host institution, collaborative educational activities between the
department of Mathematical Sciences and Bioengineering were originally sparked
by a creative inquiry project to that focused on bringing undergraduate students
and faculty from both departments together to explore research areas and ideas that
bridge the disciplines and require the expertise of both fields to address biomedical
and applied mathematical concepts. The work presented here is a further extension
of this collaboration, and offers a further bridge between the two departments.

Dissemination of this work is a key component of this project. As is the
case with the current work, the results of each module will be assembled for
conference dissemination. A project web site has been developed that can be used
by participating students, and this site will be opened to other institutions to assist in
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implementing similar programs at their high school, college or university. For each
module the web site will house video of lectures, worksheets, podcasts, pictures
from field trips, and more. In addition to the module information the web site
will have the results of all pre- and post-surveys, follow-up surveys, reports of
assessment from each evaluation period, and a final report from the entire 2-year
project.

Long-term plans for this work include expansion of the modules to include Data
Mining, Genetic Sequencing, Nano-Medicine, BioFluid Dynamics, and Network
simulation for the Smart Grid Technologies. Dissemination would hope to expand
the program into other institutions. An external evaluation model will be used
to assess the implementation of the program, and the final report will be shared
and published through the project website and by the project members at various
conferences.

The goal of engaging, mentoring and retaining STEM students can be empty
rhetoric without a lot of creative thinking. The project presented here stands
on the shoulders of creative projects in the Mathematics and Bioengineering
departments that involve new instructional methodology, new uses of technology,
and experience in creative inquiry connecting undergraduates with experts in various
fields in the university and industry. The project also stands on the shoulders
of the host institution’s efforts at developing undergraduate scholarship in the
Creative Inquiry program. The program strategy and plan involves faculty members
who have participated in projects like the ones described above and who have
experience in the development of applied-learning experiences in Biomedicine
that involve quantitative issues at the level of the students’ current math courses.
The evaluation of the project makes use of the extensive database on individual
student performance maintained by the Mathematics Department. The project
management team consisted of faculty members from Mathematical Sciences and
Bioengineering who were enthusiastic about working together to recruit students
for this project, implement the research experiences, accompany students on trips
to labs in medicine and industry, mentor the students in their mathematics courses,
and evaluate the project.
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Chapter 4
Proving the “Proof”: Interdisciplinary
Undergraduate Research Positively Impacts
Students

M.L. Crowe, J. Rychtář, O. Rueppell, M. Chhetri, D.L. Remington,
and S.N. Gupta

4.1 Introduction

The biological sciences encompass a broad spectrum of academic fields and
most sub-disciplines include mathematical modeling and statistical analysis as
an integrative component of their scientific process. Advances in computational
technology have promoted the growth of the newest interdisciplinary fields such
as epidemiology, systems biology, neuroscience, genomics and nanotechnology
and bioinformatics. These interdisciplinary areas of study are data rich, requiring
new mathematical models and tools to recognize patterns and manage informa-
tion. The increasingly sophisticated modeling and analytical techniques of these
and other biological fields require the twenty-first century biologist to possess
more advanced skills in mathematics. Conversely, the most productive contem-
porary mathematicians have a broad, interdisciplinary scientific training, with
most prospects interfacing with the biological sciences. Educational approaches
to prepare biology and mathematics students for these twenty-first century career
opportunities, however, have lagged behind the recent advances in mathematical and
computational applications in biology. The Mathematical Association of America
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report Undergraduate Programs and Courses in the Mathematical Sciences: CUPM
Curriculum Guide 2004 [2] outlined six approaches to improving campus-wide
quantitative literacy, including creating interdisciplinary undergraduate research
projects for students. These research projects help students develop quantitative
skills that are not often achieved in the traditional classroom setting [7]. Students
who are involved in undergraduate research gain self-confidence [5, 11] are more
likely to complete their undergraduate education [10, 12] and are more likely to go
onto graduate school compared to students who did not have a research experience
[1,4,6,12,16,19]. Furthermore, various intellectual gains result from undergraduate
research, including critical thinking and problem solving [8, 9, 13, 15, 17, 20].
The benefits of research projects include an increased understanding of content,
the ability to explain things to others, in general, improvement of writing and
communication skill [3, 14, 18, 21].

4.2 MathBio Program at UNCG

In 2006 faculty members within the Department of Biology, Department of
Mathematics and Statistics and the Office of Undergraduate Research (OUR) at the
University of North Carolina at Greensboro (UNCG) came together to develop a
year-long MathBio undergraduate research experience program, sponsored by the
National Science Foundation (NSF 0634182; 0926288).

The objectives of the program included:

• generating new knowledge at the interface of mathematics and biology,
• showcasing the importance of mathematics outside the discipline and the use of

mathematics and statistics in the field of biology,
• guiding students to an increased proficiency of research skills,
• preparing students for graduate program in biology, mathematics or for any

interdisciplinary program.

The primary activity of the program was to involve teams of biology majors and
mathematics majors working on interdisciplinary research projects co-mentored by
both biology and mathematical science faculty members. Over the course of a 12-
month period, each team was to develop a research question, a plan of action, and
a timetable to carry out experiments and/or simulations to investigate the questions.
Students were involved in every step of the research cycle from synthesizing primary
literature, collecting and analyzing data, to presenting the results of their projects.
They had to learn new software programs and find new ways of data analysis.
Students and faculty mentors participated in the program part-time during the
academic year and full-time for 10 weeks in the summer.
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4.3 Impact of the MathBio program

We have supported the research of eight to nine undergraduate students during
each of the past 6 years, with a total of 44 unique students involved in the
program. Some of the students participated for multiple years, as we typically attract
sophomore or juniors into the program. Forty-eight percent of our participants were
been women and 21% were from under-represented groups in STEM (specifically
African American). Fifteen faculty members in Biology and Mathematics and
Statistics have co-mentored the students. Students gained financial compensation
for their involvement in our program while faculty members got a small stipend and
funding for laboratory materials, supplies, and software.

4.3.1 Impact on Student Participant Post-Baccalaureate
Degree Plans

Thirty-four participants have graduated while ten are still enrolled in their under-
graduate degree programs. Twenty of the 34 graduates are enrolled with assis-
tantships in either graduate or MD/PhD programs, while two have already finished
their MS degrees (in Computer Sciences and Chemical Engineering) and one
already completed a PhD (in Statistics). This is noteworthy because fewer than 30%
of UNCG’s biology and mathematics majors indicate they plan to continue their
education by enrolling in post-graduate study (UNCG Fact Book 2011). Another
former participant in our program is now teaching high-school mathematics in a
rural county in North Carolina, directly improving STEM education.

4.3.2 Impact on Student Participant Learning

We have analyzed the impact our program has had on student learning by adopting
existing public surveys of student self-reported outcomes [17] and administering
them to student participants at the end of their involvement in our program. Our
participants reported “significant” gains in their ability to ready primary literature,
critically analyze information, define and solve problems, and in their ability to
communicate in writing. They report “some” gains in their oral communication
skills, in their ability to think innovatively, in understanding ethical issues faced
by scientists and clarification of a career path. They also report that their writing
ability improved as a result of their experience.
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4.3.3 Impact on Student Participant Professional Development

Our participants have given more than 200 poster and/or oral presentations at
regional, national, and international meetings. Thirteen of the participants won
awards for outstanding presentations at ten different meetings, including interna-
tional conferences. The program has resulted in 32 peer-reviewed publications with
undergraduates as co-authors in journals such as Journal of Mathematical Biology,
Journal of Theoretical Biology, Journal of Evolutionary Ecology, and Journal of
Interdisciplinary Mathematics.

4.3.4 Outreach

Faculty members and participants interacted with students/teachers by:

1. developing and presenting two full days of mathematical biology curriculum for
a summer 4-H camp;

2. developing and presenting hands-on materials for a high-school biology and
mathematics courses, a high-school environmental science class, and for an
elementary school, and

3. bringing home-schooled elementary students out in the field.

In 2009 another former undergraduate participant who had subsequently become a
high-school teacher in the region brought part of his high-school class to the UNCG
Mathematics and Statistics conference and the high-school students interacted with
our math-bio participants.

4.4 Conclusions

The UNCG MathBio program has achieved its objectives of setting undergraduate
Biology and Mathematics students on a path toward productive careers as twenty-
first century scientists and educators. Moreover, the publications resulting from
MathBio projects demonstrate the extent to which undergraduate research can
produce genuine scientific advancement. We hope our experience will motivate and
encourage others to pursue similar efforts.

Acknowledgments This material is based upon work supported by the National Science Foun-
dation under grant numbers DMS 0634182 and DBI 0926288. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author and do not
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Chapter 5
Modeling Heat Explosion for a Viscoelastic
Material

Irina Viktorova, Kyle Fairchild, and Jeff Fischer

5.1 Introduction

5.1.1 Heat Conduction

Heat conduction is a mechanism of heat transfer occurring through a solid material.
The rate equation for heat conduction is known as Fourier’s law. Fourier’s law
defines the heat transfer rate as directly proportional to some spatial temperature
difference �T . These temperature gradients within the material represent the
driving potential for heat propagation. One of the limiting factors of Fourier’s law
is that it implies infinite speed of heat propagation as well as infinite heat flux for
boundary conditions or extremely high rates of temperature change. The Maxwell–
Cattaneo equation of heat conduction allows for more apt modeling with respect
to problems of large heat fluctuations resulting in hyperbolic equations for heat
propagation [1, 2].

5.1.2 Heat Explosion

Material failure is a well-researched topic in material science, and although most
failure mechanics are observed in terms of crack initiation and subsequent crack
propagation, the exact situations determining material failure can become much
more complicated. One such complication occurs when the mechanism of loading
the material is no longer a static condition but becomes a repeated pattern of loading
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and unloading [4]. In the case of polymeric material and composites there are special
cases where the viscous resistance of the material can generate an internal thermal
energy proportionate to both the magnitude and frequency of loading [5]. Such
phenomena have been seen in studies with respect to tension compression testing
of glass reinforced plastic [6].

The two primary laws of heat conduction, Fourier’s law of heat conduction
and Maxwell’s heat conduction law, dictate that heat will diffuse proportionally to
temperature from high to low concentrations. Under ordinary conditions the thermal
energy is dissipated at approximately the same rate at which it is generated. Creating
a stationary thermal state, however, in cases where the heat generated is significantly
greater than the heat dissipated will lead to a phenomenon known as Heat Explosion.

Heat explosion is a catastrophic failure of the material analogous to what would
be expected from the sudden heat flux of an exothermic chemical reaction. The
focal point of heat explosion theory is the idea that although mechanical behavior of
a material can lead directly to fatigue failure, failure can also occur less intuitively
in the form of thermal failure [3].

5.1.3 Parameters

Cyclic loading occurs in engineering applications ranging from aviation composite
steel to automotive engine walls and artificial knee joints. The ultimate goal in
material selection and design for any of these applications is to be able to model
and predict the occurrence of thermal failure in the form of heat explosion. In
order to do this in increasingly complex systems, it is common practice to simplify
the conditions of the system by making assumptions on parameters for both the
environment and the material. Although these assumptions make the model more
manageable in terms of feasibility and complexity, they inherently detract from
the significance and accuracy of the result. For this reason the goal of this paper
is to develop a model that can predict heat explosion while limiting assumptions
regarding the condition of the system and in doing so, increasing the accuracy and
usefulness of the model.

The novel approach regarding the model proposed by this paper lies in its ability
to predict thermal failure using material properties, and in doing so limiting the
parameters that need to be assumed. This paper elaborates on the connection that can
be established between mechanical properties and thermal properties of a material.
These properties can be collectively referred to as properties of thermo-viscoelastic
parameters. Using standard material creep testing, material specific parameters
can be established empirically and applied using the ideas of Fourier’s law of
heat conduction. Because this model focuses heavily on mechanical properties of
a material, it is possible to devise a model that reduces the amount of required
assumptions of the system and in doing so the model becomes both more effective
and more significant.
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There are three main material parameters factored into this model. The material
property for heat retained by the system under cyclic loading .�/, the material
property for heat dissipated by the system .ˇ/, and the material property for
influence of the heat on the material .ı/. There also exists a delta critical .ı�/

which represents a unique condition of ı at the instant prior to heat explosion [7].
T represents the temperature of the system while Tm is the temperature of the
material. Eta .�/ is defined as the ratio of T to Tm and is used in the integration
equations [7]. Although these are defined parameters, it is very difficult to give a
physical manifestation of their meaning. For the time being these are all represented
as dimensionless material parameters that will be given concrete meaning in work
to be done in the future [7].

In modeling heat propagation, we will use the Maxwell–Cattaneo relativistic heat
equation. The common Laplace operator is given as .�/, the thermal diffusivity
coefficient .˛/, as well as constants for density given as .�/ and specific heat as
.c/. In the heat equation it is important to note that .T / represents the temperature
gradient, with .t/ relating to time and the heat release intensity being represented
as .Q/. When considering the relativistic heat equation, the material will have a
property called the relaxation time .�/. The relaxation time depends on the ability of
the material to recover to an equilibrium position when loads from external sources
are removed.

5.2 Governing Equations

5.2.1 Modeling Equations

The modeling equations for most heat transfer processes can be derived from
Fourier’s law of Heat Conduction. The equations for this specific study match the
Fourier system developed by Viktorova [6].

ı� D
(

1 C �
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"
T

1��
2
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Z 1

1
Tm

d�p
1 � �1C�

#2)
(5.1)

This equation is used to find the critical heat influence within a material that
causes heat explosion, delta critical. In this case, heat removal is assumed to be
zero. This represents a perfectly insulated scenario where no heat is dissipated. The
right side of the equation is a Cauchy problem setting in terms of Tm. Tm must also
satisfy the boundary conditions of the specimen in order to accurately model the
physical sample. The Cauchy process is used to find ı� as Tm is increased to infinity
[7]. The heat influence value rises quickly until the instant of heat explosion and then
rapidly declines. For any specimen, heat explosion occurs at only one temperature
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and that temperature is only dependent on � . This is important because it validates
comparison when ˇ is no longer zero. The next equation models that situation.
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5.2.2 Heat Transfer

The classical defining equation for the rate of heat transfer by conduction is given by
Fourier’s law. Fourier’s law for the one-dimensional plane wall having a temperature
distribution T .x/ is given by Eq. (5.3), where k is the thermal conductivity of the
material, and q00

x is the heat flux, or heat transfer rate per unit area, and dT
dx

is the
temperature gradient in the x direction [2].

q00
x D �k

dT

dx
(5.3)

Utilization of Fourier’s law is limited by the implication of an infinite rate of
heat propagation for extremely high rates of temperature variation. The Maxwell–
Cattaneo equation for heat transfer is more suited for modeling heat transfer for
condition with high temperature transience such as a series of pulses. This equation
is shown below as Eq. (5.4) [6].
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5.3 Results and Discussion

5.3.1 Results Based on ˇ

Figure 5.1 shows ı� ratios with respect to ˇ over nine different values of � . As ˇ

increases it can be seen that the ı� ratio also increases, such that the value of ı�
with ˇ is constantly increasing with respect to ˇ. In comparing different � values,
we can see that at lower levels of � , an increase in ˇ will have a greater effect on the
resulting ı� ratio. This is important as materials that relatively retain a lower value
of heat will require a much greater heat and thus a greater ı� value to undergo heat
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Fig. 5.1 Delta critical ratios are displayed as beta ranges from 0.1 to 0.9. Each line reflects a
different gamma value. These values are listed in the legend

explosion as expected. From Fig. 5.1, the ratio of ı� with respect to ˇ is not linear.
This suggests that an increase in heat removal will have a greater increase in delta
critical, and thus more heat will be required to experience heat explosion.

5.3.2 Effects of � on Delta Critical Ratios

Figure 5.2 depicts how the ı� ratios are greater for high values of ˇ and low values of
� . ı� ratios are about equally affected by � as they are ˇ for our range considered.
Given large values of � , ˇ has little effect on the ı� ratio. For small values of � ,
ˇ has a great effect on ı� ratios. Conversely, � affects ı� more greatly for larger
values of ˇ and less for lower values of ˇ. Figure 5.2 suggests that for materials that
have low heat retention, the effect of heat dissipation greatly affects the heat that is
required for heat explosion. For a material that has high heat retention, it is not as
important to consider the effects of heat dissipation as the effect on the temperature
at which heat explosion occurs.

Considering a situation where the factor of heat removal is considered constant,
if the heat removal factor is low, then the temperature at which heat explosions
occur does not vary with respect to the heat retention of the material. For high heat
removal factors, a small heat retention property in the material used will maximize
temperature at which heat explosion will occur.
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Fig. 5.2 3-D rendering of the delta critical ratios displayed in Fig. 5.1

5.3.3 Future Work: Mechanical Parameter of Loading

We wish to consider how the cyclic loading of heat will affect a viscoelastic
material given the use of the Maxwell–Cattaneo heat equation. The use of the
Maxwell–Cattaneo equation allows us to consider boundary conditions caused by
high-frequency pulsed heating conditions. When considering the cyclic loading, we
wish to vary the frequency as well as the parameters of the amplitude to determine
the effects on the overall temperature increase. That is, we wish to determine
whether the amplitude or frequency will affect the ability of the heat transfer to
increase temperature more rapidly. We wish to perform a sensitivity analysis on the
effects of both to determine which has a greater effect in increasing the heat rate.
Our current prediction is that the loading frequency will have a greater effect on the
overall temperature of the material [6].

5.4 Conclusions

This paper presents a mathematical approach to explain the causes of heat explosion.
The simplified approach to modeling heat explosion represents a direct comparison
between the effects of heat removal and the heat retention of the material. A
better understanding of the causes of heat explosion has been achieved, as well as
identifying the relative effect of heat removal and heat retention.

The Cauchy problem setting has shown that the material’s heat retention rate is
about an equivalent factor to the conditions relevant to heat removal. Considering a



5 Modeling Heat Explosion for a Viscoelastic Material 37

scenario of an airplane wing where the material property will be held constant due
to weight limits, it is important to consider that heat removal will have an influence
on the rate of heat explosion. This will allow a company to modify air flow about the
wing in order to improve the heat removal rate, and thus increase the heat required
for heat explosion to occur. Observing a scenario of a component of an engine block
where the boundary conditions are held constant, that is, when the heat removal
coefficient is constant, changing the material to be more resistant to heat change
will increase the total heat required to enter the system for heat explosion to occur.
When a company is experiencing heat explosion in a constant heat removal setting,
it is important to consider material changes that would require a greater heat before
heat explosion occurs.

Our future goal is to create a reliable model to predict thermal failure on a given
geometry for certain material properties with a cyclic loading boundary condition.
We wish to model the heat propagation through a material that is undergoing a
thermal cyclic load to determine when the material will undergo heat explosion.
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Chapter 6
Soliton Solutions of a Variation of the Nonlinear
Schrödinger Equation

Erin Middlemas and Jeff Knisley

6.1 Introduction

While linear partial differential equations (PDEs) give rise to low-amplitude waves
that occur frequently in the physical world [9], nonlinear waves with nondispersive
traits and soliton-like properties can occur naturally also. Soliton-like properties
have been observed in water waves, fiber optics, and biological systems such
as proteins and DNA [6, 9, 12, 14]. Since linear PDEs fail to take into account
phenomena produced by nonlinearity, other mathematical models are needed.
Thus, nonlinear PDEs such as the Kortweig de Vries equation and the nonlinear
Schrödinger (NLS) equation [5] are used to describe the characteristics of these
waves more accurately [2].

Cardiac action potentials (CAPs) also display soliton-like properties. Cardiac
cells, like neuron and muscle cells, are excitable cells and are electrically charged
by having the membrane act as a capacitor. Previous research [1] has shown CAPs
to be well-fit by solutions to the Fitzhugh–Nagumo model,

@u

@t
D @2u

@x2
C u.1 � u/.a � u/ � w (6.1)

@w

@t
D ".u � �w/; (6.2)

where u.x; t/ and w.x; t/ are the fast and slow voltage responses at time t and
distance x from origin of the CAP, � is the rate of decay of the slow signal when "

is small so as to model a slower response in u.x; t/, and a is the voltage threshold
parameter. These two equations account for the discharging of the membrane and
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the recovery of this charge. If a D 1 and " D 0, the fast voltage response is a
traveling wave of the form,

u.x; t/ D f .x � 2kt/ D 1

1 C P e�.x�2kt/
; (6.3)

where P is a constant term. This fast solution to the Fitzhugh–Nagumo model can
also be interpreted as a kink soliton [11]. Due to the characteristics of these traveling
waves, there is reason to believe soliton waves that are solutions to a perturbed NLS
equation could also describe CAPs.

In this paper, we look into the possibility of CAPs being soliton-like solutions
to a perturbed NLS equation. We first determine the perturbed NLS equation that
gives rise to solutions describing CAPs. We then study the symmetric properties of
the perturbed NLS in order to find more solutions that possibly describe CAPs. To
observe if the solutions to our perturbed NLS equation have soliton-like properties,
we numerically simulate these solutions.

We discuss our research in the following order. In Sect. 6.2, we introduce
background information to solitons and the reasoning behind the methods of our
research. In Sect. 6.3, we explain the procedure by which we find our perturbed
solution describing CAPs and the perturbed NLS equation. We then introduce
the symmetric properties of our perturbed NLS. Section 6.4 provides results and
discussion for numerical work. We also conclude with future goals in Sect. 6.4.

6.2 Theory

Solitary waves are waves that are localized within a region and retain their form over
a certain period of time [14]. These structures have the ability to pass through other
waves with only a change of phase. Solitons are solitary waves that are also solutions
to completely integrable PDEs. They tend to feature the following properties [14]:

1. They maintain their shape while traveling at a constant speed.
2. They are localized within a region at any given time.
3. They can pass through other waves with no change in amplitude, velocity, or

shape.

A particular example of a completely integrable PDE that has soliton solutions is
the NLS equation [5]:

i
@u

@t
D � @2u

@x2
C 2kjuj2u: (6.4)

The non-radiating solutions to the NLS are solitons. Due to the interaction of the
fast and slow excitation variables within the Fitzhugh–Nagumo model, there is
reason to believe that CAPs are soliton-like. If we can show that perturbed solutions
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of the Fitzhugh–Nagumo model are solutions to a perturbed NLS, then we have
evidence to support that CAPs are solitons. Perturbed solutions of the Fitzhugh–
Nagumo model can then be used to find a family of closed-form solutions to a
Gross–Pitaevskii equation,

i
@u

@t
D � @2u

@x2
C 2kjuj2u C ˚.x; t; u/u; (6.5)

where ˚.x; t; u/ is a potential function. After finding the perturbed solutions for a
suitable choice of the potential, a pseudo-spectral method is used to numerically
determine the properties of the resulting waves. The closed-form solutions to the
Gross–Pitaevskii equation are then utilized to generate more solutions.

6.3 Methods

6.3.1 Looking for Solitons in a Perturbed NLS

The goal is to find a simple form of ˚.x; t; u/ that allows CAP-like solutions.
Motivated by the perturbed Fitzhugh–Nagumo model, we look for solitons in the
form of

u.x; t/ D ei�r.x; t/;

where � D bx C ct with b and c as constants [5]. We thus obtain the following:

ut D ei�.icr C rt / (6.6)

ux D ei�.ibr C rx/ (6.7)

uxx D ei�.�b2r C 2ibrx C rxx/: (6.8)

We substitute ut , ux, and uxx into Eq. (6.5) and obtain

� cr � 2ikrt D �b2r C 2ibrx C rxx C F.r/r C ˚.x; t; u/r; (6.9)

where F.r/ D 2r2. By assumption, r D f .x � 2kt/ is a traveling wave with 2k

being the velocity, from which it follows that

rt D �2krx (6.10)

Substituting these values of rt and rx into Eq. (6.9) suggests the potential in Eq.
(6.5) is

˚.x; t/ D k4 � c � rxx

r
� F.r/; (6.11)
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where c is an arbitrary parameter. If c D k4, then Eq. (6.11) implies ˚.x; t/ D
3juju. Knowing what form of the potential to add to the NLS, we solve for the
perturbed solutions of the Fitzhugh–Nagumo model. Since our solution accounts
for only the fast variable of the Fitzhugh–Nagumo model, it has infinite energy. To
model the fast/slow interaction, we insert a perturbation term e�ıx for ı � 0. This
perturbation leads to finite energy solutions. For a D 1, our perturbed solutions is a
traveling wave of the form,

r.x; t/ D f .x � 2kt/ D e�ı.x�2kt/

1 C P e�.x�2kt/
: (6.12)

Thus,

u.x; t/ D ei�r.x; t/ D ei� e�ı.x�2kt/

1 C P e�.x�2kt/
(6.13)

is an approximate solution to

i
@u

@t
D � @2u

@x2
C 2juj2u � 3juju: (6.14)

6.3.2 Symmetries of the NLS Equation

Equation (6.14) is a special case of

i
@u

@t
D � @2u

@x2
C 2juj2u � M juju: (6.15)

Indeed, if M D 3, we recover (6.14), where if M D 0, we obtain the NLS
equation. Thus, solutions to (6.14) are not only perturbed solutions to the Fitzhugh–
Nagumo model, but may also be closely related to soliton solutions of the NLS.
The symmetry group of (6.14), therefore, is a subgroup of the symmetry group of
the NLS. The numerical simulations complement several analytic results we have
concerning soliton-like properties of CAPs. In particular, for all M > 3; Eq. (6.15)
admits solutions of the form

u.x; t/ D ei.kxCbt/r.x � 2kt/; (6.16)

where b D �k2 � 1 C 2M=3 and where

r.x/ D 2 .2 M � 3/ e1=3 x
p

6 M�9

2 e1=3 x
p

6 M�9M C M C e2=3 x
p

6 M�9M � 3 � 3 e2=3 x
p

6 M�9
: (6.17)
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These solutions can be extended to larger families of solutions by using Lie
symmetry groups, which are subgroups of the permutation groups of the solutions
that form smooth manifolds [3,10]. A Lie group symmetry maps a solution curve to
another solution curve. We have shown that Eq. (6.5) is invariant under the following
groups:

t ! t C t0; x ! x; u ! u: .t ime translation/ (6.18)

t ! t; x ! x C x0; u ! u: .spatial t ranslation/ (6.19)

t ! t; x ! x � ct; u ! uei c
2 .x� c

2 t/: .Gali lean invariance/ (6.20)

For example, substituting (6.26) into

i
@u

@t
D � @2u

@x2
C 2juj2u � M juju (6.21)

leads to

i
@.uei c

2 .x�

c
2 t//

@t
D � @2.uei c

2 .x�

c
2 t//

@.x�ct/2
C2juei c

2 .x�

c
2 t/j2uei c

2 .x�

c
2 t/�M juei c

2 .x�

c
2 t/juei c

2 .x�

c
2 t/:

(6.22)

However juei c
2 .x� c

2 t j D juj. Thus, we can simplify the equation to the following:

ei c
2 .x� c

2 t/i
@u

@t
D ei c

2 .x� c
2 t/

�
� @2u

@x2
C 2juj2u � M juju

�
: (6.23)

The exponential terms cancel. Therefore, the perturbed NLS is Galilean invariant.
Determining spatial and temporal symmetries follow the same procedure.

While Eq. (6.14) cannot be solved in closed form except for special cases, we can
explore (6.14) numerically to see if its solutions are soliton-like. Specifically, a sin-
gle soliton retains shape while traveling at a constant speed and also maintains shape
when passing through another soliton wave. We will observe these characteristics
by looking at not only solutions involving one wave but also solutions involving two
waves.

6.3.3 The Pseudo-Spectral Method

A pseudo-spectral method is used to numerically solve the Gross–Pitaevskii equa-
tion [4, 7, 8]. The method is based on the Fourier transform. If

R1
�1 jf j < 1 andR1

�1 jf j2 < 1, then the Fourier transform exists and is given by

F.f / D
Z 1

�1
f .x/e�2	i!xdx: (6.24)
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It can be shown that

F

�
@f

@x

�
D 2	i!F.f /: (6.25)

Therefore,

@f

@x
D F�1 .2	i!F.f // : (6.26)

Also, it follows that

@2f

@x2
D F�1

��4	!2F.f /
�

: (6.27)

Having our perturbed solutions as initial conditions to the equation, the pseudo-
spectral method utilizes special properties of the Fourier transform and its inverses
in order to solve the PDE [15]. Beginning with our perturbed NLS,

i
@u

@t
D � @2u

@x2
C 2juj2u � 3juju; (6.28)

Equation (6.28) is transformed into

i
@u

@t
D F�1

��4	!2F.u/
�C 2juj2u � 3juju (6.29)

An ode solver is then applied to the resulting ordinary differential equation in order
to integrate the solution over a time interval. The solutions are then plotted in order
to analyze the soliton-like characteristics of CAPs.

6.4 Results

6.4.1 Discussion

For Figs. 6.1 and 6.2, CAPs at ı D 0:3 and solutions to our perturbed NLS at
ı D 0:3 are compared. Although there is a translational difference within the
spatial component between the two waves in Figs. 6.1 and 6.2, there is remarkable
similarity of the wave shape between the solution and the actual CAP.

Numerical solutions to (6.15) are computed for different values of M and for the
Fitzhugh–Nagumo model initial wave-form. Observing these solutions leads to the
following conclusions:

• When M D 0, a completely radiating wave is produced.
• When M D 3, the wave is non-radiating.
• A smaller value of M , however, creates a less dispersive wave.
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Fig. 6.1 Ca cardiac action
potential

Fig. 6.2 ı D 0:3, pseudo-spectral method

• For small values of M (M < 0:3), the two waves tend to be stationary. This is
due to the pseudo-spectral method failing to observe the collision between two
waves at values less than 0:3.
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Fig. 6.3 M D 0

For Figs. 6.3 and 6.4, we observe differences between solutions at " D 0 and
solutions at M D 3. For M D 0, waves immediately radiate as they start to travel,
illustrating dispersive properties. At M D 3, solutions are hardly radiating. Also,
when two solutions of our perturbed NLS collide with each other they maintain their
wave-forms and only change by a slight shift in phase, behaving like solitons.

Despite the radiative properties of waves when M D 0 and the non-radiative
properties of waves when M D 3, smaller values of M create less dispersive
solutions. This is illustrated with Figs. 6.5 and 6.6. In these two figures, the
properties of waves at M D 1:5 and waves at M D 0:3 are compared. While
the wave in Fig. 6.5 disperses significantly after five seconds, the wave in Fig. 6.6
can be considered non-radiating.

We have verified results independently using a central differencing algorithm in
the CAS Maple.

6.4.2 Future Work

Analyzing the soliton-like properties of CAPs numerically is still in process.
Different parameters, such as M values within the Gross–Pitaevskii equation, wave
velocities, and ı terms within the solution from the Fitzhugh–Nagumo model still
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Fig. 6.4 M D 3

Fig. 6.5 M D 1:5
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Fig. 6.6 M D 0:3

need to be taken into account. Statistical information such as confidence intervals,
standard deviations, and variances of the results from numerical methods will
soon be calculated. However, due to errors stated previously, a new computational
method, such as the imaginary-time evolution method, will be adopted in the near
future. Also, the family of solutions describing CAPs will be discovered by working
with more Lie symmetry groups.

There is also value in extending these results to higher spatial dimensions.
Although not all the methods for working with one-dimensional NLS equations
translate into higher dimensional NLS contexts, some of the results in this paper
should extend to higher dimensional settings. Thus, we will also explore higher
dimensional, CAP-like solitons in the near future.

Appendix

The following is our code utilizing the pseudo-spectral method in order to solve
our perturbed NLS equation. The code was adapted from a Scipy Cookbook KdV
example [13].
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import numpy as np
from s c i p y . i n t e g r a t e import o d e i n t
from s c i p y . f f t p a c k import d i f f a s p s d i f f

# from m p l _ t o o l k i t s . mp lo t3 d i m p o r t Axes3D
from m a t p l o t l i b . c o l l e c t i o n s import P o l y C o l l e c t i o n
from m a t p l o t l i b . c o l o r s import c o l o r C o n v e r t e r

# from m p l _ t o o l k i t s . mp lo t3 d i m p o r t a x e s3 d
import m a t p l o t l i b . p y p l o t a s p l t

def s h r _ e x a c t ( x , c ) :
" " " P r o f i l e o f t h e e x a c t s o l u t i o n t o t h e KdV f o r a
s i n g l e s o l i t o n on t h e r e a l l i n e . " " "
#u = 1 . 2 � 1 / ( np . cosh ( 1 . 2 � ( x + 2 0 ) ) )

+np . exp (8 j � ( x ) ) � 0 . 8 � 1 / ( np . cosh ( . 8 � x ) )
eps = 2 . 0

d e l t a = 0 . 8

b e t a = ep s

gamma = 1 / ep s

u =( np . exp (� d e l t a �x ) ) / ( 1 + np . exp (�x ) )
+( np . exp (� d e l t a � ( x + 2 0 ) ) ) / ( 1 + np . exp ( �(x + 2 0 ) ) )
�np . exp (3 j � ( x ) )

# u = np . exp (� d e l t a � ( b e t a � ( x ) ) ) � np . exp (0 j � ( x ) ) /
(1+ np . exp ( �( b e t a � ( x ) ) ) )

#u = np . exp (� d e l t a � ( b e t a �x ) ) / ( 1 + np . exp ( �( b e t a �x ) ) )
u = gamma�u
u = np . a r r a y ( u , d t y p e=np . complex64 )
u = np . a r r a y ( [ u . r e a l , u . imag ] )
u = u . f l a t t e n ( )

re turn u

def s h r ( u , t , L ) :
" " " D i f f e r e n t i a l e q u a t i o n s f o r t h e KdV e q u a t i o n ,
d i s c r e t i z e d i n x . " " "
# Compute t h e x d e r i v a t i v e s u s i n g t h e
pseudo� s p e c t r a l method .

# ux = p s d i f f ( u , p e r i o d=L )
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eps = 2 . 0
gamma = 1 / ep s
n = l e n ( u )
uxxRe = p s d i f f ( u [ 0 : ( n / 2 ) ] , p e r i o d =L , o r d e r =2)
uxxIm = p s d i f f ( u [ ( n / 2 ) : n ] , p e r i o d =L , o r d e r =2)

uxx = np . a r r a y ( [ uxxRe , uxxIm ] )
uxx = uxx . f l a t t e n ( )

absu =np . s q r t ( u [ 0 : n /2 ]��2+ u [ n / 2 : n ]��2)
absu = np . a r r a y ( [ absu , absu ] )
absu = absu . f l a t t e n ( )

absu2 = u [ 0 : n /2 ]��2+ u [ n / 2 : n ]��2
absu2 = np . a r r a y ( [ absu2 , absu2 ] )
absu2 = absu2 . f l a t t e n ( )

# Compute du / d t = � i � ( �uxx � 2 abs ( u ) u )
= i � ( uxx + 2 ab s ( u ) u )
d u d t = (�1�2� absu2 )� u + uxx + ep s �(3� absu )� u
i d u d t = np . a r r a y ([ �1� d u d t [ ( n / 2 ) : n ] , d u d t [ 0 : ( n / 2 ) ] ] )
re turn i d u d t . f l a t t e n ( )
# r e t u r n ( i d u d t . r e a l , i d u d t . imag )

# S e t t h e s i z e o f t h e domain , and c r e a t e t h e
d i s c r e t i z e d g r i d .
eps = 2 . 0
b e t a = ep s
L = 1 6 0 . 0 / b e t a
N = 256
dx = L /N
x = np . l i n s p a c e (�L / 2 , L / 2 , N)
x1 = np . l i n s p a c e (�L / b e ta , L / b e ta , N)

# S e t t h e i n i t i a l c o n d i t i o n s .
# Not e x a c t f o r two s o l i t o n s on a p e r i o d i c domain , b u t
c l o s e enough . . .
u0 = s h r _ e x a c t ( x , 0 . 7 5 ) # + k d v _ e x a c t ( x �0.65�L , 0 . 4 )

# S e t t h e t i m e sample g r i d .
# ps = . 0 1
# a lp h a = ep s ��2
Tm = 7
t = np . l i n s p a c e ( 0 , Tm, 1000)
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# t = a lp h a� t

p r i n t " Computing t h e s o l u t i o n . "
from m p l _ t o o l k i t s . mplo t3d import Axes3D
from m a t p l o t l i b . c o l l e c t i o n s import P o l y C o l l e c t i o n
from m a t p l o t l i b . c o l o r s import c o l o r C o n v e r t e r
s o l = o d e i n t ( sh r , u0 , t , a r g s =(L , ) , mxstep =500)
s o l = s o l [ : , 0 :N] + 1 j � s o l [ : ,N: ( 2 �N) ]

p r i n t " IMshow . "

p l t . f i g u r e ( f i g s i z e = ( 6 , 5 ) )
p l t . imshow ( np . ab s ( s o l [ : : �1 , : ] ) , e x t e n t =[�L / 2 , L / 2 , 0 ,Tm] )
p l t . c o l o r b a r ( )
p l t . x l a b e l ( ’ x ’ )
p l t . y l a b e l ( ’ t ’ )
p l t . a x i s ( ’ normal ’ )
p l t . t i t l e ( ’ The N o n l i n e a r S c h r o d i n g e r on a P e r i o d i c
Domain ’ )
# p l t . show ( )

# p r i n t " Wire frame . "

# f i g = p l t . f i g u r e ( )
# ax = f i g . a d d _ s u b p l o t ( 1 1 1 , p r o j e c t i o n =’3d ’ )
# t i n d = range ( 0 , l e n ( t ) , 1 0 )
# x i n d = range ( 0 , l e n ( x ) , 5 )
# t t = t [ t i n d ]
# xx = x [ x i n d ]
# ux = abs ( s o l ) [ : , x i n d ]
#uu = ux [ t i n d , : ]
#X , T = np . mesh g r id ( xx , t t )
# ax . p l o t _ w i r e f r a m e (X , T , uu )

# p l t . show ( )

p r i n t ( " W a t e r F a l l . " )

## Redo t h e sa mp l in g
t i n d = r a n g e ( 0 , l e n ( t ) , 3 0 )
x in d = r a n g e ( 0 , l e n ( x ) , 1 )
t t = t [ t i n d ]
xx = x [ x in d ]
ux = ab s ( s o l ) [ : , x in d ]
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# The f i g u r e
f i g = p l t . f i g u r e ( )
ax = f i g . gca ( p r o j e c t i o n = ’ 3d ’ )

cc = lambda a r g : c o l o r C o n v e r t e r . t o _ r g b a ( arg , a l p h a = 0 . 6 )

v e r t s = [ ]
f o r i in t i n d :

v e r t s . append ( z i p ( xx , ux [ i , : ] ) )

p o ly = P o l y C o l l e c t i o n ( v e r t s , f a c e c o l o r s = [ cc ( ’ b ’ ) ] )
p o ly . s e t _ a l p h a ( 0 . 3 )
ax . a d d _ c o l l e c t i o n 3 d ( po ly , z s = t t , z d i r = ’ y ’ )

ax . s e t _ x l a b e l ( ’X’ )
ax . s e t _ x l i m 3 d (�L / 2 , L / 2 )
ax . s e t _ y l a b e l ( ’ t ’ )
ax . s e t _ y l i m 3 d ( 0 ,Tm)
ax . s e t _ z l a b e l ( ’Z ’ )
ax . s e t _ z l i m 3 d ( 0 , 1 . 1 � np . max ( ab s ( s o l ) ) )
p l t . t i t l e ( ’ The N o n l i n e a r S c h r o d i n g e r on a P e r i o d i c
Domain ’ )
p l t . show ( )

p l t . f i g u r e ( )
p l t . p l o t ( xx , ab s ( s o l [ 0 ] ) )
p l t . x l a b e l ( ’X’ )
p l t . y l a b e l ( ’Z ’ )
p l t . t i t l e ( ’ S o l u t i o n a t T = 0 ’ )
p l t . show ( )

p l t . f i g u r e ( )
p l t . p l o t ( xx , ab s ( s o l [ 9 9 9 ] ) )
p l t . x l a b e l ( ’X’ )
p l t . y l a b e l ( ’Z ’ )
p l t . t i t l e ( ’ S o l u t i o n a t Max Time ’ )
p l t . show ( )

D i f f = np . max ( ab s ( s o l [ 0 ] ) ) � np . max ( ab s ( s o l [ 9 9 9 ] ) )
D i f f = ab s ( D i f f )
p r i n t D i f f
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Chapter 7
Galois Groups of 2-Adic Fields of Degree 12
with Automorphism Group of Order 6 and 12

Chad Awtrey and Christopher R. Shill

7.1 Introduction

The p-adic numbers Qp are foundational to much of the twentieth and twenty-
first century number theory (e.g., number fields, elliptic curves, L-functions, and
Galois representations) and are connected to many practical applications in physics
and cryptography. Of particular interest to number theorists is the role they play
in computational attacks on certain unsolved questions in number theory, such as
the Riemann Hypothesis and the Birch and Swinnerton-Dyer conjecture (among
others). The task of classifying p-adic fields therefore has merit, since the outcomes
of such a pursuit can provide computational support to the aforementioned problems
as well as other number-theoretic investigations.

Classifying extensions of Qp entails gathering explicit data that uniquely deter-
mine the extensions, including

1. The number of nonisomorphic extensions for a given prime p and degree n

(necessarily finite [15, p. 54]),
2. Defining polynomials for each extension, and
3. The Galois group of the extension’s polynomial (a difficult computational

problem in general).

When p − n (i.e., tamely ramified extensions) or when p D n, then items (1)–(3)
are well understood (cf. [1, 12]). When p j n and n is composite, the situation is
more complicated.
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In this paper, we study items (1)–(3) for degree 12 extensions of Q2, as extensions
of smaller degree have already been discussed in the literature [3–6, 11–13].
Specifically, we focus on Galois extensions as well as those extensions whose
automorphism groups have order 6. After describing the computation of defining
polynomials of such extensions in the next section, we use the final sections of the
paper to show that the Galois groups of these polynomials can be computed solely
by knowing the Galois groups of their proper subfields. This approach is of interest,
since it offers a method for computing Galois groups of local fields that is different
from both the resolvent approach [10, 23, 24] and the Newton polygon approach
[9, 19].

7.2 The Number of Extensions and Defining Polynomials

In regard to counting the number of extensions of p-adic fields, some authors have
developed what are known as “mass” formulas [14, 18, 21], where the mass of
an extension K=Qp takes into account the degree of the extension as well as its
automorphism group. The mass is defined as:

mass.K=Qp/ D ŒK W Qp�

jAut.K=Qp/j :

The mass formulas previously mentioned compute the total mass for all extensions
of Qp of a given degree. As such, different embeddings are counted separately.
Therefore these formulas do not give the number of nonisomorphic extensions.
Since there is currently no known formula for computing the number of noniso-
morphic extensions of Qp for a given degree, the approach taken in the literature is
to resolve item (1) by first completing item (2) (cf. [4, 11–13]).

The most general reference for the computation of defining polynomials of
p-adic fields is [18]. Using the methods of Krasner [14], Pauli–Roblot develop an
algorithm for computing extensions of a p-adic field of a given degree by providing
a generating set of polynomials to cover all possible extensions. Essential to their
method is Panayi’s root-finding algorithm [16], which can be used to determine
whether two polynomials define isomorphic p-adic fields.

Table 7.1 shows the number of nonisomorphic extensions of Qp of degree n

where p j n and n � 12 is composite. This data can be verified by [17], which
includes an implementation of the Pauli–Roblot algorithm in its latest release.

Table 7.1 Number of certain nonisomorphic degree n extensions of Qp

.p; n/ (2,4) (2,6) (3,6) (2,8) (3,9) (2,10) (5,10) (2,12) (3,12)

# 59 47 75 1,834 795 158 258 5,493 785
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Table 7.2 Polynomials for all degree 12 Galois extensions of Q2, including ramification index e,
residue degree f , and discriminant exponent c

Polynomial e f c

1 x12 C x6 C x4 � x C 1 1 12 0
2 x12 � x10 � 6x8 � x6 C 2x4 C 7x2 C 5 3 4 8
3 x12 � 78x10 � 1621x8 C 460x6 � 1977x4 C 866x2 C 749 2 6 12
4 x12 � 162x10 C 26423x8 C 125508x6 � 64481x4 � 122498x2 � 86071 2 6 12
5 x12 � 16x10 C 24x6 C 64x4 C 64 2 6 18
6 x12 C 52x10 � 28x8 C 8x6 C 64x4 � 32x2 C 64 2 6 18
7 x12 � 156x10 C 9900x8 � 61856x6 C 33904x4 C 27712x2 C 47936 2 6 18
8 x12 � 52x10 C 1100x8 � 12000x6 � 61072x4 C 62144x2 � 62144 2 6 18
9 x12 C 12x10 C 12x8 C 8x6 C 32x4 � 16x2 C 16 6 2 16
10 x12 C x10 C 6x8 � 3x6 C 6x4 C x2 � 3 6 2 16
11 x12 � 84x10 C 444x8 C 32x6 � 272x4 � 320x2 C 64 6 2 22
12 x12 � 60x6 C 52 6 2 22
13 x12 C 2x10 C 4x8 C 4x6 C 4x4 C 4 6 2 22
14 x12 � 20x6 C 20 6 2 22
15 x12 � 4x11 � 10x10 C 16x9 � 6x8 C 16x7 C 4x6 � 8x5 C 16x4 4 3 24

C 16x3 C 16x2 C 8

16 x12 C 28x11 � 2x10 C 16x9 C 26x8 C 8x7 C 20x6 � 24x5 � 8x4 4 3 24
C 32x3 C 32x2 C 32x C 24

17 x12 C 32x11 � 10x10 C 8x9 � 18x8 C 32x7 C 20x6 C 24x5 � 24x4 4 3 24
C 32x3 C 16x2 � 24

18 x12 � 4x11 C 14x10 C 36x9 � 34x8 � 32x7 � 48x6 � 32x5 C 36x4 4 3 24
� 16x3 � 40x2 � 48x C 56

19 x12 � 2x11 C 6x10 C 4x9 C 6x8 C 12x7 � 4x6 � 8x3 C 16x2 � 8 4 3 18
20 x12 � 8x10 � 28x8 C 40x6 � 44x4 C 48x2 C 40 4 3 33
21 x12 C 8x10 � 12x8 � 24x6 C 20x4 � 16x2 � 24 4 3 33
22 x12 � 8x10 � 28x8 � 8x6 C 20x4 C 16x2 � 24 4 3 33
23 x12 C 4x10 C 10x8 � 8x6 C 8x4 C 32x2 C 8 4 3 33
24 x12 � 24x10 C 52x8 � 8x6 C 20x4 C 16x2 C 40 4 3 33
25 x12 C 28x10 � 6x8 C 40x6 � 56x4 � 32x2 � 56 4 3 33
26 x12 � 4x10 C 26x8 C 8x6 � 24x4 C 32x2 C 8 4 3 33
27 x12 C 36x10 C 42x8 � 40x6 C 40x4 C 32x2 � 56 4 3 33

Using the Pauli–Roblot algorithm [18], we see there are 5,493 degree 12
extensions of Q2. Using Panayi’s root-finding algorithm to compute the size of each
extension’s automorphism group, we can show that 27 are Galois extensions and
55 have an automorphism group of order 6. For convenience, Tables 7.2 and 7.3
give sample defining polynomials for these two cases, respectively, along with the
ramification index, residue degree, and discriminant exponent of the corresponding
extension field.
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7.3 Possible Galois Groups

Having computed a defining polynomial for each extension under consideration, we
now turn our attention to determining the Galois group of each polynomial.

Given one of the polynomials f in either Table 7.2 or 7.3, let K denote the
corresponding extension defined by adjoining to Qp a root of f . We wish to
compute the Galois group G of f , or equivalently the Galois group of the normal
closure of K . Since the elements of G act as permutations on the roots of f , once
we fix an ordering on the roots, G can be considered as a subgroup of S12, well
defined up to conjugation (different orderings correspond to conjugates of G). Since
the polynomial f is irreducible, G is a transitive subgroup of S12; i.e., there is a
single orbit for the action of G on the roots of f (each orbit corresponds to an
irreducible factor of f ). Therefore G must be a transitive subgroup of S12. Our
method for computing Galois groups thus relies on the classification of the 301
transitive subgroups of S12 [20].

However, not all of these 301 groups can occur as the Galois group of a degree
12 2-adic field, as we show next.

Definition 1. Let L=Qp be a Galois extension with Galois group G. Let v be the
discrete valuation on L and let ZL denote the corresponding discrete valuation ring.
For an integer i � �1, we define the i-th ramification group of G to be the
following set

Gi D f
 2 G W v.
.x/ � x/ � i C 1 for all x 2 ZLg:

The ramification groups define a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. A proof of the following result can be found in [22, Chap. 4].

Lemma 1. Let L=Qp be a Galois extension with Galois group G, and let Gi denote
the i -th ramification group. Let p denote the unique maximal ideal of ZL and U0 the
units in L. For i � 1, let Ui D 1 C pi .

(a) For i � 0, Gi =GiC1 is isomorphic to a subgroup of Ui =UiC1.
(b) The group G0=G1 is cyclic and isomorphic to a subgroup of the group of roots

of unity in the residue field of L. Its order is prime to p.
(c) The quotients Gi =GiC1 for i � 1 are abelian groups and are direct products of

cyclic groups of order p. The group G1 is a p-group.
(d) The group G0 is the semi-direct product of a cyclic group of order prime to p

with a normal subgroup whose order is a power of p.
(e) The groups G0 and G are both solvable.

Applying this lemma to our scenario, where the polynomial f is chosen from
Table 7.2 or 7.3, K=Q2 is the extension defined by f , and G is the Galois group of
f , we see that G is a solvable transitive subgroup of S12; of which there are 265
[20]. Furthermore, G contains a solvable normal subgroup G0 such that G=G0 is
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cyclic of order dividing 12. The group G0 contains a normal subgroup G1 such that
G1 is a 2-group (possibly trivial), and G0=G1 is cyclic of order dividing 2ŒGWG0� � 1.
Only 134 subgroups have the correct filtration. Moreover, since the automorphism
group of K=Q2 is isomorphic to the centralizer of G in S12, we need to only consider
those subgroups of whose centralizer orders are 12 or 6.

Direct computation on the 134 candidates shows that 5 groups with centralizer
equal to 12 and 5 groups with centralizer order equal to 6 can occur as the Galois
group of f (note: there are 8 transitive subgroups of S12 with centralizer order equal
to 6, but only 5 have the correct filtration). We identify these groups in the table
below using the transitive numbering system first introduced in [7]. We also give
an alternative notation (in the second column), which is based on naming system
currently implemented in [8].

12T1 C12

12T2 C6C2

12T3 D6

12T4 A4

12T5 1=2Œ3 W 2�4

12T14 D4C3

12T15 1=2Œ3 W 2�dD.4/

12T18 Œ32�E.4/

12T19 Œ32�4

12T42 C6 o C2

7.4 Computation of Galois Groups

While most methods for the determination of Galois groups rely on the machinery
of resolvent polynomials [10, 23, 24], ours does not. Instead, we use the list of
the Galois groups of the Galois closures of the proper nontrivial subfields of the
extension. We call this list the subfield content of f .

Definition 2. Let f be an irreducible monic polynomial defining the extension
K=Q2 with Galois group G. Suppose K has s proper nontrivial subfields up to
isomorphism. Suppose these subfields have defining polynomials f1; : : : ; fs . Let di

denote the degree of fi and let Gi be the Galois group of fi over Q2. Then Gi is a
transitive subgroup of Sdi . Let ji denote the T -number of Gi (as in [8]). The subfield
content of f is the set

fd1Tj1; d2Tj2; : : : ; dsTjsg;

customarily sorted in increasing order, first by di , then by ji .
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Example 1. For example, consider the first polynomial in Table 7.2, which defines
the unique unramified degree 12 extension of Q2. Thus the Galois group G of this
polynomial is cyclic of order 12. Since the transitive group notation in [8] lists cyclic
groups first, the T -number of G is 12T1. By the fundamental theorem of Galois
theory, since G has a unique cyclic subgroup for every divisor of its order, f has
unique subfields of degrees 2, 3, 4, and 6. The Galois groups of these subfields are
cyclic, and thus the subfield content of f is f2T1, 3T1, 4T1, 6T1g.

Example 2. As another example, consider the 15th polynomial in Table 7.3, which
is f D x12 C 2x6 C 4. The stem field of f clearly has subfields defined by the
polynomials x6 C 2x3 C 4 and x4 C 2x2 C 4. Using [12], we see that the degree
6 polynomial has Galois group 6T5 D C3 o C2 and the degree 4 polynomial has
4T2 D V4 as its Galois group. Since V4 has three quadratic subfields, we know the
subfield content of f must contain the set f2T1, 2T1, 2T1, 4T2, 6T5g. Consulting
Table 7.5, we see that this set must be equal to the subfield content of f , as no other
option is possible. Notice this also proves that the Galois group of f is 12T18.

In general, to compute the subfield content of one of our polynomials f , we can
make use of the complete lists of quadratic, cubic, quartic, and sextic 2-adic fields
determined in [12] (these lists include defining polynomials along with their Galois
groups). For each polynomial in these lists, we can use Panayi’s p-adic root-finding
algorithm [16, 18] to test if the polynomial has a root in the field defined by f . If it
does, then this polynomial defines a subfield of the field defined by f . Continuing
in this way, it is straightforward to compute the subfield content of f .

We could also compute subfield content by realizing each degree 12 extension as
a quadratic extension of a sextic 2-adic field. This approach can reduce the number
of times Panayi’s root-finding algorithm is used to compute the subfield content.
Details of this approach can be found in [2].

The process of employing the subfield content of a polynomial to identify its
Galois group is justified by the following result.

Proposition 1. The subfield content of a polynomial is an invariant of its Galois
group (thus it makes sense to speak of the subfield content of a transitive group).

Proof. Suppose the polynomial f defines an extension L=K of fields, and let G

denote the Galois group of f . Let E be the subgroup fixing L=K , arising from
the Galois correspondence. The nonisomorphic subfields of L=K correspond to the
intermediate subgroups F , up to conjugation, such that E � F � G. Furthermore,
if K 0 is a subfield and F is its corresponding intermediate group, then the Galois
group of the normal closure of K 0 is equal to the permutation representation of G

acting on the cosets of F in G. Consequently, every polynomial with Galois group
G must have the same subfield content, and this quantity can be determined by a
purely group-theoretic computation. ut

Therefore, if we know that the Galois group of a polynomial f must be contained
in some set S of transitive subgroups, and if the subfield contents for the groups in S
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Table 7.4 Subfield content for transitive subgroups of S12 that have centralizer order 12

T Subfields Polynomials

12T1 2T1, 3T1, 4T1, 6T1 1, 3, 7, 8, 20, 21, 22, 23, 24, 25, 26, 27
12T2 2T1, 2T1, 2T1, 3T1, 4T2, 6T1, 6T1, 6T1 4, 5, 6, 15, 16, 17, 18
12T3 2T1, 2T1, 2T1, 3T2, 4T2, 6T2, 6T3, 6T3 9, 11, 13
12T4 3T1, 4T4, 6T4 19
12T5 2T1, 3T2, 4T1, 6T2 2, 10, 12, 14

The Polynomials column references row numbers in Table 7.2; the corresponding
polynomials have the indicated Galois group

Table 7.5 Subfield content for transitive subgroups of S12 that have centralizer order 6

T Subfields Polynomials

12T14 2T1, 3T1, 4T3, 6T1 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31, 32
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

12T15 2T1, 3T2, 4T3, 6T2 6, 11, 19, 21
12T18 2T1, 2T1, 2T1, 4T2, 6T5 7, 15, 16
12T19 2T1, 4T1, 6T5 1, 12, 17, 18
12T42 2T1, 4T3, 6T5 8, 9, 10, 13, 14, 20, 22, 23

The Polynomials column references row numbers in Table 7.5; the corresponding
polynomials have the indicated Galois group

are all different, we can uniquely determine the Galois group of f by computing its
subfield content and matching it with its appropriate Galois group’s subfield content.

In light of this observation, our approach for determining the Galois groups of
the polynomials in Tables 7.2 and 7.3 involves three steps: (1) compute the subfield
content for each of the possible ten Galois groups mentioned at the end of Sect. 7.3;
(2) compute the subfield content for each of the 82 polynomials under consideration;
(3) match up the polynomial’s subfield content with the appropriate Galois group’s
subfield content to determine the Galois group of the polynomial.

Table 7.4 shows the subfield content for each transitive group of S12 whose
centralizer order is 12. The final column gives the row numbers of all polynomials
in Table 7.2 that have the corresponding Galois group. Similarly, Table 7.5 shows
the subfield content for each transitive subgroup of S12 whose centralizer order is 6.
The final column in this table references row numbers of polynomials in Table 7.3.
In each table, the entries in column Subfields were computed with [8].

As a final note, we can compute subfield content for the remaining 124 transitive
subgroups of S12 that are possible Galois groups of degree 12 2-adic fields. Except
for the unique group with centralizer order equal to 3 and a few groups with
centralizer equal to 4, none of these groups can be distinguished solely by their
subfield content. A complete description of subfield contents for the remaining 124
transitive groups of S12 can be found in [2]. Identifying the Galois groups of the
remaining 5,411 degree 12 2-adic fields from among these groups requires other
methods and is the subject of ongoing research.
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Chapter 8
Laplace Equations for Real Semisimple
Associative Algebras of Dimension 2, 3 or 4.

James S. Cook, W. Spencer Leslie, Minh L. Nguyen, and Bailu Zhang

8.1 Introduction

In 1893 Scheffers [11] wrote a foundational paper on a theory of differentiation
on a commutative unital algebra over C. Then in 1900 Hausdorff [6] and 1933
Ringleb [9] extended the theory of analytic functions to noncommutative cases.
In 1936 Spampinato [12] used the regular representation of the algebra to define
differentiability for commutative algebras. In 1928 Ketchum [7] found results about
power series of algebra variables. However, the background we present in this paper
is most aligned with the results of Ward [15, 16] and Wagner [14].

The organization of this paper is as follows: in Sect. 8.2 we review the essentials
of advanced calculus and associative algebras over R. In particular, we develop
three views of the algebra considered; A D Rn the primary object, L.A / the left-
linear maps, and MA the left regular representation. In Sect. 8.3 we explain how
that the differential of an A -differentiable function on A takes values in L.A /.
We also observe that the Jacobian takes values in MA and this requirement is
equivalent to the generalized Cauchy Riemann equations. In Sect. 8.4 we turn to
the question of generalizing Laplace’s equation. We present an n-th order partial
differential equation which we conjecture is solved by solutions of the generalized
Cauchy Riemann equations for any semisimple associative algebra over R. It
should be mentioned that Wagner constructed Laplace equations for the special
case of Frobenius algebras [14]. Our A -Laplacian has the advantage of applying
to noncommutative as well as commutative semisimple algebras.
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8.2 Preliminaries

8.2.1 Differential Calculus on Rn

The theory of differential calculus on Rn is the natural extension of calculus for
functions on R. Recall that f W R ! R has a derivative f 0.a/ at x D a if

f 0.a/ D lim
h!0

f .a C h/ � f .a/

h
:

Alternatively, we can express the condition above as

lim
h!0

f .a C h/ � f .a/ � f 0.a/h

h
D 0:

This gives an implicit definition for f 0.a/. This generalizes to higher dimensions as
follows. For F W U � Rn ! Rn if there exists a linear transformation dFa W Rn !
Rn such that

lim
h!0

F.a C h/ � F.a/ � dFa.h/

jjhjj D 0;

where jjhjj is the norm of a vector h 2 R
n; then we say that F is differentiable at

a with differential dFa. The matrix of the linear transformation dFa W Rn ! R
n

is called the Jacobian matrix F 0.a/ 2 R
n�n or simply the derivative of F at

a. It follows that the components of the Jacobian matrix have the form F 0.a/ij D
@j Fi .a/ where @j denotes partial differentiation with respect to the j -th Cartesian
coordinate. If the partial derivatives of F1; F2; : : : ; Fn are continuous on U , then
we say F is continuously differentiable on U . A well-known theorem of advanced
calculus states that continuous differentiability implies differentiability.

8.2.2 Associative Algebras on Rn

To construct an algebra on Rn it suffices to define a multiplication on the standard
basis e1; e2; : : : ; en. Denoting ? W Rn 	 Rn ! Rn we need to supply constants
C k

ij 2 R such that

ei ? ej D
nX

kD1

C k
ij ek:
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If v; w 2 Rn, then we define v ? w by linearly extending the multiplication for the
standard basis;

v ? w D
� nX

iD1

vi ei

�
?

� nX
j D1

wj ej

�
D

nX
iD1

nX
j D1

vi wj .ei ? ej / D
nX

i;j;kD1

C k
ij vi wj ek:

The algebra is technically a pair .A ; ?/; however, we adopt the usual practice of
refering to the pointset A as the algebra when the operation ? is unambiguous.
Also, for many standard examples we use juxtaposition rather than ? to denote the
product.

In the study of unital algebras it sometimes convenient1 to set e1 D
.1; 0; 0; : : : ; 0/ D 1 where 1 is the multiplicative unity in the algebra. Often in
such discussions the structure constants are instead replaced by relations between
generators which defined the algebra. As a simple principle, in such examples, it
is understood that we multiply objects by the usual distributive rules paired with
the given relation(s). For example, i 2 D �1 extended linearly defines the complex
number system. Or j 2 D 1 extend linearly defines the hyperbolic number system.

We say .A ; ?A / and .B; ?B/ are isomorphic and write A � B if and only if
there exists a bijective linear transformation ˚ W A ! B such that ˚.x ?A y/ D
˚.x/ ?B ˚.y/ for all x; y 2 A . Furthermore, a commutative associative algebra
A is called semisimple if its Jacobson radical is trivial.

The classification of associative, semisimple algebras over R was given by E .
Cartan in 1884 [2]. See Chap. 2 of [1] for further historical and mathematical
details. That said, we provide a classification argument based on several slightly
more modern sources. In particular, recall that Frobenius Theorem [5] states that
the only finite-dimensional division algebras over R are R, C and the quaternions
H. Next, recall that Wedderburn’s Theorem states that, up to isomorphism, any
semisimple algebra over R is formed by direct sums of matrix algebras over the
division rings of R (see pp. 855–856, Theorem 4 part (5) of Wedderburn’s Theorem
in [3]). Therefore, the only semisimple associative algebras over R are isomorphic
to direct sums of the matrix algebras over R;C, and H. We use Rm;Cm, and Hm to
denote the representation of the m 	 m matrix algebras on R

n with n D m2; 4m2,
and 16m2, respectively. Our focus in this article concerns semisimple associative
algebras of dimension 1; 2; 3; 4 hence the only nontrivial matrix algebra we consider
is that of R2�2 � R2. Consider, if n D 2, the theory allows only two semisimple
algebras up to isomorphism; namely R ˚ R and C. If n D 3, we have semisimple
algebras R ˚ R ˚ R and R ˚ C. In dimension n D 4 we have commutative and
noncommutative examples. For n D 4 commutative, R ˚ R ˚ R ˚ R, R ˚ R ˚ C,
and C ˚ C. For n D 4 noncommutative we have quaternions H and R2.

1This is not always assumed in this article.
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8.2.3 Left Regular Representations

Suppose A D Rn is an n-dimensional unital associative algebra over R with
multiplication denoted by ?. A linear mapping T W Rn ! Rn is left-A -linear
if and only if T .x ? y/ D T .x/ ? y for all x; y 2 A . Note that a left-linear map is
uniquely defined by its value on the unity:

T .x/ D T .1 ? x/ D T .1/ ? x:

This means T is a left-multiplication map of the algebra A . We define Lv.x/ D
v ? x and observe that an arbitrary left-multiplication map Lv W A ! A is a linear
transformation which, by associativity2 is left-linear:

Lv.x ? y/ D v ? .x ? y/ D .v ? x/ ? y D Lv.x/ ? y:

Therefore, we can identify the set of left-multiplication maps and the set of left-
linear maps as the same set of mappings on a unital associative algebra.

Definition 1. Let A be a unital associative algebra over R then we denote the set
of left-linear maps by L.A /.

Moreover, as Lx?y D Lx ı Ly for all x; y 2 A we find L.A / forms a subalgebra
of the endomorphisms of A which is isomorphic to A . To make this isomorphism
explicit it helps to develop some notation. Recall the standard matrix of T is given
by: ŒT � D ŒT .e1/jT .e2/j 
 
 
 jT .en/�. However, ej D 1 ? ej hence T .ej / D T .1 ?

ej / D T .1/ ? ej . Consequently:

ŒT � D ŒT .1/ ? e1jT .1/ ? e2j 
 
 
 jT .1/ ? en�:

Let t1; t2; : : : tn 2 R are given such that T .1/ D t1e1 C t2e2 C 
 
 
 C tnen. The
matrix ŒT � is uniquely specified by the constants ti and the structure constants of the
multiplication. In particular since ei ? ej D Pn

kD1 C k
ij ek we find:

T .ej / D T .1/ ? ej D
nX

iD1

ti ei ? ej D
nX

i;kD1

ti C
k
ij ek ) ŒT �kj D

nX
i;kD1

ti C
k
ij :

Therefore, ˚ W A ! L.A / with Œ˚.t/�kj D Pn
i;kD1 ti C

k
ij gives the isomorphism

A � L.A /.
Furthermore, the correspondence of each left-multiplication map to its standard

matrix provides an isomorphic image of L.A / in R n�n.

2To generalize to nonassociative algebras we would need a different technique, see, for example,
the paper on Cayley-Dickson calculus [8] which makes due with the weaker property of power
associativity.
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Definition 2. Let MA D fA 2 R n�n j A D ŒT � for some T 2 L.A /g. We say
the n 	 n matrix which corresponds to v 2 A is the left regular representation
of v.

Note MA forms a subalgebra of R n�n with respect to matrix multiplication. We
have three representations of the algebra considered: the pointset A D R

n which we
take as primary, the set of left-A -linear maps L.A / and perhaps most interestingly
the left regular representation MA . For convenience to the reader and clarity of
exposition we now list the left regular representations for our list of examples.

Example 1. The real numbers with their usual addition and multiplication is an
associative algebra over R. If a 2 R, then Œa� 2 MR D R1�1 is its left regular
representation. Usually we will not distinguish between a and Œa�.

Two-dimensional examples are a bit more exciting. Let it be noted that for the next
three examples we use the notation 1 D e1 D .1; 0/ and e2 is assigned to be
the generator of the algebra. We use juxtaposition rather than ? in the interest of
matching the standard literature.

Example 2. The complex numbers are defined by C D R ˚ iR where i 2 D �1.
If a C ib; c C id 2 C, then .a C ib/.c C id / D ac C iad C ibc C i 2bd D
ac�bd Ci.ad Cbc/. Note every nonzero complex number aCib has multiplicative

inverse a�ib
a2Cb2 , thus C has no zero-divisors. Note A D

�
a �b

b a

�
2 MC represents

a C ib.

Example 3. The hyperbolic numbers are given by H D R ˚ jR where j 2 D 1.
If a C jb; c C jd 2 H , then .a C jb/.c C jd/ D ac C adj C jbc C j 2bd D
acCbd Cj.ad Cbc/. There are zero-divisors in H . Observe .aCja/.a�ja/ D 0

for a ¤ 0. Observe A D
�

a b

b a

�
2 MH represents a C jb.

Example 4. The dual numbers are given by N D R ˚ �R where �2 D 0. If
a C �b; c C �d 2 N , then

.a C �b/.c C �d/ D ac C ad� C bc� C �2bd D ac C .ad C bc/�:

Observe N has many zero divisors. The dual number a C �b has representative

A D
�

a 0

b a

�
2 MN . Observe that the ideal generated by � is nontrivial and is

found in the Jacobson radical; hence, the dual numbers N are not semisimple (see
example 3.5.6 on p. 47 of [4] for a related discussion).

We now turn to higher-dimensional associative algebras. There are additional non-
semisimple examples for dimensions 3 and 4, but our focus is on the semisimple
case.



72 J.S. Cook et al.

Example 5. Let A D R˚ jR˚ j 2R where j 3 D 1. The matrix representatives of

these numbers have an interesting pattern; note: A 2 MA implies A D
2
4a c b

b a c

c b a

3
5.

We note an isomorphism A � R 	 C is given by mapping j to .1; !/ where ! is a
third root of unity.

Example 6. Let A D R	H where 1 D .1; 1 C 0j /. In the natural basis this gives

representatives A 2 MA which are block-diagonal; A D
2
4a 0 0

0 b c

0 c b

3
5. We can show

this algebra is isomorphic to R 	 R 	 R with the Hadamard product .a1; a2; a3/ ?

.b1; b2; b3/ D .a1b1; a2b2; a3b3/.

Example 7. Let A D R ˚ jR ˚ j 2R ˚ j 3R where j 4 D 1. Much as was the
pattern for the j 2 D 1 (hyperbolic numbers) or j 3 D 1 we find a beautiful pattern:

A 2 MA implies A D

2
664

a d c b

b a d c

c b a d

d c b a

3
775. This algebra is naturally isomorphic to C˚H

which is clearly isomorphic to C ˚ R ˚ R.

Example 8. Let A D H 	 H where 1 D .1 C 0j; 1 C 0j /. This means
.1; 1/ is naturally represented by the identity matrix. In total we have once more

a block-diagonal representation: A 2 MA implies A D

2
664

a b 0 0

b a 0 0

0 0 c d

0 0 d c

3
775 and this

matrix represents .a C bj; c C dj /. We can show this algebra is isomorphic to
R 	 R 	 R 	 R with the Hadamard product .a1; a2; a3; a4/ � .b1; b2; b3; b4/ D
.a1b1; a2b2; a3b3; a4b4/.

Example 9. Let A D C	C. Here we study the problem of two complex variables.
In this algebra .1C0i; 1C0i/ corresponds to the identity and hence .1; 1/ is naturally
represented by the identity matrix. In total we have once more a block-diagonal

representation: A 2 MA implies A D

2
664

a �b 0 0

b a 0 0

0 0 c �d

0 0 d c

3
775 and this matrix represents

.a C bi; c C di/.

Example 10. Let H D R˚ iR˚jR˚kR where i 2 D j 2 D k2 D �1 and ij D k.
These are Hamilton’s famed quaternions. We can show ij D �j i ; hence, these are
not commutative. With respect to the natural basis e1 D 1; e2 D i; e3 D j; e4 D k

we find the matrix representative of a C ib C cj C dk is as follows:
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A D

2
664

a �b �c �d

b a �d c

c d a �b

d �c b a

3
775 2 MH:

Example 11. Let A D R2 with the multiplication ? induced from the multiplica-
tion of 2 	 2 matrices. This again forms a noncommutative algebra. In particular,
this multiplication is induced in the natural manner:

�
a b

c d

� �
t x

y z

�
D
�

at C by ax C bz
ct C dy cx C d z

�
:

It follows that .a; b; c; d / ? .t; x; y; z/ D .at C by; ax C bz; ct C dy; cx C d z/.
We can read from this multiplication that the representative of .a; b; c; d / 2 R2 is
given by

A D

2
664

a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

3
775 D

"
aI bI

cI dI

#
2 MA :

Remark 1. The examples above provide a particular representation of each algebra.
There are other ways to place each of these algebras on R

n. For example, the
Hadamard product gives diagonal left representations MA . We choose to study
an isomorphic product which provides a less sparse regular representation. The
interplay between isomorphisms of algebras and coordinate changes of partial
differential equations is one of the features which captures our interest in this
problem. Note that [14, 16] show that A -differentiability is preserved under an
algebra isomorphism. See p. 457 of [14], but note that we prefer to replace the
term analytic with A -differentiable.

8.3 Differential Calculus on an Associative Algebra

Suppose .A ; ?/ is an associative unital algebra overR where as a pointset A D Rn.

Definition 3. Let U � A and consider f W U ! A . We say f is A -
differentiable at p 2 U if and only if f is differentiable at p and the differential
dpf 2 L.A /.

Since dpf 2 L.A / we find Œdpf � D f 0.p/ 2 MA . This means that A -
differentiability of f implies the Jacobian matrix of f is a left regular representation
of A . The statement f 0.p/ 2 MA implies equations amongst the partial derivatives
of f which are known as the generalized Cauchy Riemann equations.
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Remark 2. It is interesting to note that Ward showed in [15] that if one is given a set
of partial differential equations of a certain form, then it is possible to find an algebra
for which the given equations form the generalized Cauchy Riemann equations.

From our discussion in 8.2.3 we can expect n2 � n generalized Cauchy Riemann
equations. Since there is no danger of confusion we will simply refer to these as the
Cauchy Riemann equations in what follows.

Theorem 1. If f; g are A -differentiable at p 2 A , then f C g and cf are A
differentiable for each c 2 R. Moreover, if g is A -differentiable at f .p/ and f is
A -differentiable at p 2 A , then g ı f is A -differentiable at p.

Proof. From advanced calculus we know dp.f C g/ D dpf C dpg and dp.cf / D
cdpf for all c 2 R. Furthermore, the chain-rule can be stated as dp.g ı f / D
df .p/g ı dpf . We need to only show that A -linearity is preserved in view of these
formulas. Observe:

dp.f C g/.v ? w/ D dpf .v ? w/ C dpg.v ? w/

D dpf .v/ ? w C dpg.v/ ? w

D Œdpf .v/ C dpg.v/� ? w

D dp.f C g/.v/ ? w:

Thus dp.f C g/ 2 L.A /. The proof that cdpf 2 L.A / is similar. Finally:

dp.g ı f /.v ? w/Ddf .p/g.dpf .v ? w//Ddf .p/g.dpf .v/ ? w/Ddf .p/g.dpf .v// ? w;

hence dp.g ı f / 2 L.A /. �

The product of two functions on A is defined by .f ? g/.p/ D f .p/ ? g.p/.

Theorem 2. If f; g are A -differentiable at p 2 A , then dp.f ? g/.v/ D dpf .v/ ?

g.p/ C f .p/ ? dpg.v/ for all v 2 A . However, f ? g need not be A -differentiable.

Proof. The proof follows from direct calculation with the structure constants and
the usual product rules for functions of n-real variables. Let f D P

i fi ei and
g D P

j gj ej we calculate from ei ?ej D P
k C k

ij ek that f ?g D P
i;j;k fi gj C k

ij ek .
Observe:

@l .f ? g/ D
X
i;j;k

@l .fi gj /C k
ij ek D

X
i;j;k

Œ.@l fi /gj C fi .@l gj /�C k
ij ek

D
X
i;j;k

.@lfi /gj C k
ij ek C

X
i;j;k

fi .@l gj /C k
ij ek

D @l f ? g C f ? @lg:
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It follows that dp.f ? g/.v/ D dpf .v/ ? g.p/ C f .p/ ? dpg.v/. Observe that
.dp.f ? g//.v ? w/ ¤ .dp.f ? g/.v// ? w due to non-commutative examples.
There is no general reason to allow the A -element w to commute past g.p/ without
introducing unwanted terms. It follows that f ? g is not generally A -differentiable.

�

Remark 3. A -differentiability is a strong condition for noncommutative examples.
In [10] Rosenfeld indicates that the only left and right differentiable functions
in the noncommutative case are linear functions. We expect his claim applies in
our context. The only A -differentiable functions for noncommutative associative
algebras are linear functions. On the other hand, the theorem above clearly
suggests that polynomials of A -variables will form A -differentiable functions for
commutative algebras.

We now turn to the explicit calculation of the Cauchy Riemann equations for our
set of examples.

Example 12. If f W U � R ! R is differentiable at p 2 R, then it follows
dpf .h/ D f 0.p/h hence differentiability at p implies R-linearity of the differential.
In other words, differentiability at p 2 R implies R-differentiability at p.

If A D R2 then it is convenient to denote f W A ! A by f D ue1 C ve2

where u and v are the component functions with respect to the basis e1 and e2. The

Jacobian for a real-differentiable function is simply f 0 D
�

ux uy

vx vy

�
. If we impose

f 0 2 MA , then we must find certain relations on the components of the Jacobian,
these are Cauchy Riemann equations.

Example 13. The standard Cauchy Riemann equations for f D u C iv W C ! C

are derived from Example 2. Following the pattern we find f 0 D
�

ux �vx

vx ux

�
D�

ux uy

vx vy

�
hence ux D vy and uy D �vx .

Example 14. To determine the Cauchy Riemann equations for f D uCj v W H !
H we use results derived in Example 3. By supposing the Jacobian matrix is a

representative of the algebra H we find f 0 D
�

ux vx

vx ux

�
D
�

ux uy

vx vy

�
, hence ux D vy

and uy D vx.

Example 15. The Cauchy Riemann equations for f D u C �v W N ! N are

derived from Example 4. Imposing the pattern we find f 0 D
�

ux 0

vx ux

�
D
�

ux uy

vx vy

�
,

hence ux D vy and uy D 0.
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For three-dimensional examples it is convenient to denote f D ue1 C ve2 C we3,

hence the Jacobian for a real-differentiable function is simply f 0 D
2
4 ux uy uz

vx vy vz

wx wy wz

3
5.

Example 16. Cauchy Riemann equations for A D R ˚ jR ˚ j 2R are easily

extrapolated from Example 5. Observe f 0 D
2
4 ux wx vx

vx ux wx

wx vx ux

3
5 D

2
4 ux uy uz

vx vy vz

wx wy wz

3
5.

Therefore, the Cauchy Riemann equations are:

ux D vy D wz; uy D vz D wx; uz D vx D wy:

Example 17. Cauchy Riemann equations for A D R 	 H are easily lifted from

Example 6. Observe f 0 D
2
4 ux 0 0

0 vy wz

0 wz vy

3
5 D

2
4 ux uy uz

vx vy vz

wx wy wz

3
5. Therefore, the Cauchy

Riemann equations are:

vx D wx D uy D uz D 0; wz D vy; wy D vz:

For the four-dimensional examples it is convenient to denote f D �e1 C ue2 C
ve3 C we4 and we take Cartesian coordinates .t; x; y; z/ by default. It follows the

Jacobian for a real-differentiable function is simply f 0 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775.

Example 18. Cauchy Riemann equations for A D R˚jR˚j 2
R˚j 3

R are found

from Example 7. Set f 0 D

2
664

�t �x �y �z

�z �t �x �y

�y �z �t �x

�x �y �z �t

3
775 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775. We find Cauchy

Riemann equations:

�t D ux D vy D wz; �x D uy D vz D wt ;

and

�y D uz D vt D wx; �z D ut D vx D wy:
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Example 19. Cauchy Riemann equations for A D H 	 H are found from

Example 8. Set f 0 D

2
664

�t �x 0 0

�x �t 0 0

0 0 vy vz

0 0 vz vy

3
775 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775. The Cauchy Riemann

equations are:

�y D �z D uy D uz D vt D vx D wt D wx D 0;

and

�t D ux; �x D ut ; vy D wz; vz D wy :

Example 20. Cauchy Riemann equations for A D C 	 C are found from

Example 9. Set f 0 D

2
664

�t �x 0 0

��x �t 0 0

0 0 vy vz

0 0 �vz vy

3
775 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775. The Cauchy

Riemann equations are:

�y D �z D uy D uz D vt D vx D wt D wx D 0;

and

�t D ux; �x D �ut ; vy D wz; vz D �wy :

Example 21. Cauchy Riemann equations forH D R˚iR˚jR˚kR are found from

Example 10. Set f 0 D

2
664

�t �ut �vt �wt

ut �t �wt vt

vt wt �t �ut

wt �vt ut �t

3
775 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775. The Cauchy

Riemann equations are:

�t D ux D vy D wz; ut D ��x D wy D �vz;

and

vt D �wx D ��y D uz; wt D vx D �uy D ��z:

Example 22. Cauchy Riemann equations for the matrix multiplication algebra of
real 2 	 2 matrices are found from the left regular representations of A D R2
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given in Example 11. Set f 0 D

2
664

�t 0 ��y 0

0 �t 0 �y

vt 0 vy 0

0 vt 0 vy

3
775 D

2
664

�t �x �y �z

ut ux uy uz

vt vx vy vz

wt wx wy wz

3
775. The Cauchy

Riemann equations are:

ut D �x D uy D �z D wt D vx D wy D vz D 0;

and

�t D ux; �y D uz; vt D wx; vy D wz:

8.4 The A -Laplacian

Our generalization of Laplace’s equation for an associative unital algebra is intended
to satisfy the following two criteria:

1. each component of an A -differentiable function should solve the A -Laplace
equation,

2. the A -Laplace equation is a single real partial differential equation.

Let � W A ! MA to be the natural isomorphism described in Sect. 8.2.3. If
e1; e2; : : : ; en forms the standard basis for A D R

n, then let Ej D �.ej /, hence
E1; E2; : : : ; En forms a basis for M.A /. Hence define:

4A D det.E1@1 C E2@2 C 
 
 
 C En@n/:

Formally this amounts to taking the determinant of the left regular representation of
.@1; @2; : : : ; @n/.

Conjecture 1. Suppose A is an associative, unital, semisimple algebra over R of
dimension greater than 1. If f D .u1; u2; : : : ; un/ is A -differentiable on U � A ,
then each of the component functions uj solves 4A uj D 0 on U .

In each of the semisimple examples with 2 � dim.A / � 4 we have checked
by explicit computation that the solution set of the Cauchy Riemann equations is
likewise in the solution set of the A -Laplacian equation 4A u D 0. Example 23
explains why we must rule out A D R and the necessity of semisimplicity is made
manifest in Example 26.
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8.4.1 The A -Laplace Equations

Example 23. Consider A D R. In this case e1 D 1 and E1 D Œ1�, hence
4A D det.@x/. The R-Laplace equation is simply @xf D f 0.x/ D 0. The
only solutions in this one-dimensional case are constants. However,R-differentiable
functions include nonconstant examples. Consequently, the conjecture must begin
at n D 2.

Example 24. For C we have E1 D
�

1 0

0 1

�
and E2 D

�
0 �1

1 0

�
, thus

4C D det.E1@x C E2@y/ D det

�
@x �@y

@y @x

�
D @2

x C @2
y:

We recognize 4Cu D uxx C uyy D 0 as the standard Laplace equation of complex
analysis.

Example 25. For H we have E1 D
�

1 0

0 1

�
and E2 D

�
0 1

1 0

�
, thus

4H D det.E1@x C E2@y/ D det

�
@x @y

@y @x

�
D @2

x � @2
y:

Observe 4H u D uxx � uyy D 0 is the one-dimensional wave equation; it is the
fundamental hyperbolic partial differential equation.

Example 26. For N we have E1 D
�

1 0

0 1

�
and E2 D

�
0 0

1 0

�
, thus

4N D det.E1@x C E2@y/ D det

�
@x 0

@y @x

�
D @2

x:

Recall f D u C �v is N -differentiable if and only if f is real differentiable and
ux D vy and uy D 0. Notice that vx is free in this example. Let f .x; y/ D g.x/�

then u D 0 and v D g clearly satisfies ux D vy and uy D 0 however 4N g D @2
xg

which need not be zero. In this nonsemisimple case we see that A -differentiability
does not imply the A -Laplace equation.

We have observed similar difficulty in other nonsemisimple examples which we do
not present in this current report.

Example 27. Following Examples 5 and 16 if A D R ˚ jR ˚ j 2R, then
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4A D det

2
4 @x @z @y

@y @x @z

@z @y @x

3
5 D @3

x C @3
y C @3

z � 3@x@y@z:

Example 28. Following Examples 6 and 17 if A D R 	 H , then

4A D det

2
4 @x 0 0

0 @y @z

0 @y @z

3
5 D @x.@2

y � @2
z /:

Example 29. Following Examples 7 and 18 if A D R ˚ jR ˚ j 2R ˚ j 3R, then

4A D det

2
664

@t @z @y @x

@x @t @z @y

@y @x @t @z

@z @y @x @t

3
775 ;

hence

4A D @4
t �@4

x C@4
y �@4

z �2@2
t @

2
y C2@2

x@2
z �4@2

t @z@y C4@t @
2
y@z C4@t@y@2

z �4@x@2
y@z:

Example 30. Following Examples 8 and 19 if A D H 	 H , then

4A D det

2
664

@t @x 0 0

@x @t 0 0

0 0 @y @z

0 0 @z @y

3
775 D .@2

t � @2
x/.@2

y � @2
z /:

Example 31. Following Examples 9 and 20 if A D C 	 C, then

4A D det

2
664

@t �@x 0 0

@x @t 0 0

0 0 @y �@z

0 0 @z @y

3
775 D .@2

t C @2
x/.@2

y C @2
z /:

Example 32. Following Examples 10 and 21 if A D H, then

4A D det

2
664

@t �@x �@y �@z

@x @t �@z @y

@y @z @t �@x

@z �@y @x @t

3
775 :
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We calculate:

4A D @4
t C @4

x C @4
y C @4

z C 2@2
t @

2
x C 2@2

t @
2
y C 2@2

t @
2
z C 2@2

x@2
z C 2@2

x@2
y C 2@2

y@2
z :

Example 33. Following Examples 11 and 22 if A D R2, the 2 	 2 real matrix
algebra represented by R4, then

4A D det

2
664

@t 0 @x 0

0 @t 0 @x

@y 0 @z 0

0 @y 0 @z

3
775 D @2

t @
2
z � @2

x@2
y :

8.4.2 Wagner’s Laplace Equations vs. the A -Laplace Equation

Let us briefly summarize the results of Wagner in [14]. The Laplace equation of
complex variables is derived from the Cauchy Riemann equations ux D vy and
uy D �vx as follows:

uxx D .vy/x D .vx/y D .�uy/y ) uxx C uyy D 0:

In short, if f D u C iv is C-differentiable, then both u and v must satisfy Laplace’s
equation. Wagner generalizes this calculation to a Frobenius algebra over R. In
particular, he derives from the symmetry of the partial derivatives that the Hessian
matrix should be a paratrophic matrix (see the thesis by W. E. Deskins for definition
and properties of such matrices [18]). He then argues that the Laplace equations can
be read from the multiplication tables of Frobenius algebras. In Wagner’s approach
there is a set of n.n�1/

2
Laplace equations. When n D 2 we find precise agreement

with Wagner for the semisimple examples. One of the great advantages to Wagner’s
equations is that a solution to Wagner’s Laplace equations can be extended to an
A -differentiable function, although Wagner terms them analytic and we should
emphasize his construction is given for the commutative case alone. In contrast,
we do not attempt to develop conditions which allow us to extend a particular real-
valued solution of the A -Laplacian to a full A -differentiable function. That is an
interesting question, but we set it aside for future work.

For the interested reader, we exhibit this in a representative case to illustrate how
our equation relates to Wagner’s Laplace equations. The multiplication table for
A D R ˚ jR ˚ j 2

R with e1 D 1; e2 D j and e3 D j 2 with j 3 D 1 is

1 j j 2

1 1 j j 2

j j j 2 1

j 2 j 2 1 j
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Wagner essentially argues that forcing the same pattern on the Hessian matrix
Œ@ij u� yields the Laplace equations for the algebra. In this case Wagner’s Laplace
equations are:

.@xy � @zz/u D 0; .@xz � @yy/u D 0; .@yz � @xx/u D 0:

In contrast, our A -Laplacian from Example 27 can be factored and written as:

4A D .@x C @y C @z/.@xx C @yy C @zz � @xy � @yz � @zx/:

Observe that the quadratic operator is formed by summing Wagner’s Laplace
operators. This is typical of the examples we have calculated. If we factor the A -
Laplacian, then the quadratic terms will correspond to sums of Wagner’s Laplacians.

8.5 Conclusions and Future Work

The problem of generalizing complex variables has attracted the interest of mathe-
maticians for over a century. While we have rediscovered some of these results, we
make no claim to the originality of this work except in one regard. We believe the
A -Laplacian to be a new construction which we have yet to find in the vast literature
on this subject. Certainly Wagner’s construction of a set of Laplace equations is in
many ways superior to our work, but his approach is limited to Frobenius algebras.
In contrast, we have found the A -Laplacian is solved by A -differentiable functions
even in the noncommutative case.

We intend to seek a general proof of Conjecture 1 in our next work. We already
have some encouraging results from the higher dimensional real and complex matrix
algebras. We also should mention that the problem of coordinate change warrants
further attention; we have a preliminary proof of naturality of the A -Laplacian
in the commutative case. We find that if ˚ W A ! B is an isomorphism, then
4A D det.˚/24B. One goal of our next paper is to show the A -Laplacian
is natural with respect to algebra isomorphism for any semisimple algebra. The
generalized Laplace equation applies to 9 of the 11 examples given in this paper. We
do not know how to treat examples which are not semisimple. Certainly such cases
are of interest to the literature. In fact, all of supermathematics concerns calculus
over various generalizations of the dual numbers and this was the primary focus of
the paper by Vladimirov and Volovich [13], which initially sparked our interest on
generalized Cauchy Riemann equations. Finally, it would be interesting to obtain a
harmonic function theory based on the A -Laplacian much as is already known for
Wagner’s Laplace equations.
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Chapter 9
Fibonacci and Lucas Identities via Graphs

Joe DeMaio and John Jacobson

9.1 Introduction

Given a graph G D .V; E/, a set S � V is an independent set of vertices if no
two vertices in S are adjacent. In our illustrations, we indicate membership in an
independent set S by shading the vertices in S . Let the set of all independent sets
of a graph G be denoted by I .G/ and let i .G/ D jI .G/j. Note that ; 2 I .G/.
The path graph, shown in Fig. 9.1, consists of the vertex set V D fv1; v2; : : : ; vng
and the edge set E D ffv1; v2g ; fv2; v3g ; : : : ; fvn�1; vngg. The Fibonacci sequence is
defined recursively as Fn D Fn�1 C Fn�2 for positive integers n � 2 where F0 D 0

and F1 D 1 [6]. Table 9.1 shows the first few Fibonacci numbers.
In 1982, Prodinger and Tichy defined the Fibonacci number of a graph G, i.G/,

to be the number of independent sets (including the empty set) of the graph G [9].
They do so because the Fibonacci number of the path graph Pn is the Fibonacci
number FnC2. The first few values of i .Pn/ are illustrated in Fig. 9.2.

In order to prove that i .Pn/ D FnC2 for all n, it must be shown that the number
of independent sets on the path graph can be represented as a Fibonacci recurrence,
that is i .Pn/ D i .Pn�1/ C i .Pn�2/. First, partition I .Pn/ into two subsets: the
set of all independent sets of vertices where vertex n is not shaded and the set of
all independent sets of vertices where the vertex n is shaded. There are i .Pn�1/

sequences of vertices that end with an unshaded vertex because an unshaded vertex
can be added to any independent collection of vertices on the path graph of length
n � 1 and still yield an independent set of vertices. Likewise there are i .Pn�2/

sequences of vertices that end with a shaded vertex because two vertices, one
unshaded and one shaded, can be added to every path graph with n � 2 vertices.
Therefore i .Pn/ D i .Pn�1/ C i .Pn�2/ and i .Pn/ D FnC2.
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v2v1 v3 vn - 1vn - 2 vn

Fig. 9.1 The path graph, Pn

Table 9.1 Initial values of the Fibonacci sequence

n 0 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 2 3 5 8 13 21 34 55

Fig. 9.2 Independent sets on
P1; P2; P3; and P4

Fig. 9.3 Independent sets on
C3 and C4

Table 9.2 Initial values of the Lucas sequence

n 0 1 2 3 4 5 6 7 8 9 10

Ln 2 1 3 4 7 11 18 29 47 76 123

In [9], Prodinger and Tichy also determined the Fibonacci number of the cycle
graph, Cn. Similar to the path graph, the values of i .Cn/ illustrated in Fig. 9.3
correlate to a recursive integer sequence, albeit one less well known than the
Fibonacci sequence. The Lucas sequence is defined recursively as Ln D Ln�1 C
Ln�2 for positive integers n � 2 where L0 D 0 and L1 D 1 [6]. Table 9.2 shows
the first few Lucas numbers. Accordingly, Prodinger and Tichy showed that the
Fibonacci number of the cycle graph Cn is the Lucas number Ln.

Since the publication of Prodinger and Tichy’s 1982 paper, mathematicians have
calculated the Fibonacci number of various graphs such as trees [5], an M 	 N

lattice [3], and grids [2]. However, the relationship between independent sets and the
Fibonacci sequence has not been used to combinatorially prove Fibonacci and Lucas
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identities. In Proofs that Really Count, Benjamin and Quinn offer combinatorial
proofs for numerous Fibonacci and Lucas identities [1]. Nelson’s Proof Without
Words series [7, 8] provide purely visual arguments for several different types
mathematical identities, some of which include the Fibonacci sequence. Here we
join the concept of a visual proof using a graph with combinatorial methods to
discover new identities for Fibonacci and Lucas numbers.

In order to realize the Fibonacci sequence, Benjamin and Quinn count the number
of ways one can tile a 1 	 n board using square tiles with dimensions 1 	 1

and domino tiles with dimensions 1 	 2. We are able to prove many of the same
identities using similar strategies on the path graph. However, there is a fundamental
difference between tiling a board and constructing independent sets. Focusing on
that difference, we are able to discover new identities.

Consider any two tilings. While we can append one tiling to the other, creating
a larger one, we cannot break the tiling wherever we choose. Benjamin and Quinn
restrict the breaking sites to the end of a square or the end of a domino. One cannot
break the tiling in the middle of a domino. Now consider any path graph where an
independent set of vertices is shaded. We can delete any edge to create two smaller
path graphs each with an independent set of vertices. Although we can break a path
graph wherever we please, we cannot join every pair of path graphs such that the
resulting graph’s shaded vertices form an independent set. For the remainder of this
paper we will call two paths and their respective independent sets that can be joined
to form an independent set on a larger path graph a couple.

9.2 Combinatorial Proofs of Fibonacci Identities by Means
of the Path Graph

Theorem 1. For n � 3, F2n D 2Fn�1Fn C F 2
n .

Proof. We know that there are F2n independent sets on the path graph P2n�2. Now
we partition I .P2n�2/ into three disjoint sets. Let A be all independent sets on
P2n�2 that do not contain vertices n � 1 and n, let B be those that contain vertex n,
and let C be those that contain vertex n � 1 . There are F 2

n independent sets in A

because while we exclude n � 1 and n from our count, we include all independent
sets on the path including vertices 1 to n � 2 and the path including vertices n C 1

to 2n � 2 and i.Pn�2/ D Fn. For set B , we must count the independent sets on the
path from vertex 1 to n � 2 and the path from vertex n C 2 to 2n � 2. This gives
us FnFn�1 independent sets in B . Similarly, set C has FnFn�1 independent sets.
Therefore, because A [ B [ C D I .P2n�2/, we have F2n D 2Fn�1Fn C F 2

n .
�
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21 n - 2 n - 1 n n + 2n + 1 2n - 22n - 3

Pn -2 Pn -2

n + 3

Independent sets in A

21 n - 2 n - 1 n n + 2n + 1 2n - 22n - 3

Pn -2 Pn -3

n + 3

Independent sets in B

21

Pn -3 Pn -2

n - 2 n - 1 n n + 2n + 1 2n - 22n - 3n + 3n - 3

Independent sets in C

Theorem 2. For n � 4, F3nC2 D F 3
nC2 � 2F 2

n FnC2 C F 2
n Fn�2.

21 n-2 n-1 n n+2n+1 2n-12n-2n+33 2n 2n+22n+1 2n+3 3n-2 3n-1 3n

Pn PnPn

21 n-2 n-1 n n+2n+1 2n-12n-2n+33 2n 2n+22n+1 2n+3 3n-2 3n-1 3n

Pn-2 PnPn-2

21 n-2 n-1 n n+2n+1 2n-12n-2n+33 2n 2n+22n+1 2n+3 3n-2 3n-1 3n

Pn-2 Pn-2Pn
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21 n-2 n-1 n n+2n+1 2n-12n-2n+33 2n 2n+22n+1 2n+3 3n-2 3n-1 3n

Pn-4 Pn-2Pn-2

Proof. Consider the path graph P3n. On the one hand, we know that i .P3n/ D
F3nC2. On the other hand, if we place three paths of length n end to end, and count
the number of independent sets on each path, we get F 3

nC2 different sets of shaded
vertices in P3n.

However, since Pn and Pn do not always form a couple, there are sets in I.P3n/

that, by definition, do not belong and must be removed. All of the sets that contain
vertices n and n C 1 are not independent sets on P3n, and neither are the sets
containing vertices 2n and 2n C 1. So, we must remove 2F 2

n FnC2 sets.
Through this subtraction, we have removed the sets containing vertices n; n C

1; 2n; and 2n C 1 twice.
Therefore, by the inclusion–exclusion principle, we add F 2

n Fn�2 sets which gives
us the result

i .P3n/ D F 3
nC2 � 2F 2

n FnC2 C F 2
n Fn�2

D F3nC2:

�

Using the same proof technique, we are able to discover identities for F4nC2 and
F5nC2 for n � 4.

F3nC2 D F 3
nC2 � 2F 2

n FnC2 C F 2
n Fn�2 (9.1)

F4nC2 D F 4
nC2 � 3F 2

n F 2
nC2 C 2F 2

n Fn�2FnC2 C F 4
n � F 2

n F 2
n�2 (9.2)

F5nC2 D F 5
nC2 � 4F 2

n F 3
nC2 C 3F 2

n Fn�2F 2
nC2 C 3F 4

n FnC2� (9.3)

2F 2
n F 2

n�2FnC2 � 2F 4
n Fn�2 C F 2

n F 3
n�2

9.3 Combinatorial Proofs of Fibonacci and Lucas Identities
by means of the Cycle Graph

In this section we prove a new identity relating Fibonacci and Lucas numbers. Recall
that i.Cn/ D Ln. As in the previous section, we are able to view this problem in
terms of graphs and use the concept of a couple in our proofs.

Theorem 3. For n � 4, L3n D F 3
nC2 � 3F 2

n FnC2 C 3F 2
n Fn�2 � F 3

n�2.
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Pn

Pn
Pn

Pn - 2
Pn-2

Pn

Pn-2

Pn-4

Pn-2

Pn-4

Pn-4

Pn-4
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Proof. We know that there are L3n independent sets on C3n. On the other hand, if
we place three paths of length n end to end, and count the number of independent
sets on each path, we get F 3

nC2 different sets of shaded vertices in C3n.
Although we have accounted for all independent sets on each individual path,

this does not guarantee that each will be an independent set on C3n. There are three
instances where two paths do not form a couple.

So we subtract 3F 2
n FnC2 from F 2

nC2. Now we must add back the number sets
which we have removed twice.

Since this situation occurs three times, we add back 3F 2
n Fn�2 sets. Finally, by

the inclusion–exclusion principle we must subtract F 3
n�2 sets.

Therefore, L3n D F 3
nC2 � 3F 2

n FnC2 C 3F 2
n Fn�2 � F 3

n�2. �

Using this method, we are able to discover new identities for L4n and L5n for
n � 4.

L3n D F 3
nC2 � 3F 2

n FnC2 C 3F 2
n Fn�2 � F 3

n�2 (9.4)

L4n D F 4
nC2 � 4F 2

n F 2
nC2 C 4F 2

n Fn�2FnC2 C 2F 4
n � 4F 2

n F 2
n�2 C F 4

n�2 (9.5)

L5n D F 5
nC2 � 5F 2

n F 3
nC2 C 5Fn�2F

2
n F 2

nC2 C 5F 4
n FnC2 � 5F 2

n�2F
2
n FnC2

� 5Fn�2F
4
n C 5F 3

n�2F
2
n � F 5

n�2 (9.6)

9.4 Future Work

A minor shortcoming of using independent sets in graphs to represent the Fibonacci
and Lucas sequences is the loss of the first few values of n in these identities. We
can realize F2 by using the semi-controversial empty graph [4]. It is easy to state
that only the empty set of vertices can be selected from the graph with no vertices
and thus, i.P0/ D F2. Finding a combinatorial realization for why i.P�1/ D 1 and
i.P�2/ D 0 is less obvious. It is trivial to plug in specific values and show that
the identities hold for these small n. However, it would be far more satisfying if a
combinatorial interpretation for these non-existent graphs could be found.

The Fibonacci sequence and the Lucas sequence are famous examples of a more
general integer sequence called the Gibonacci sequence [6]. For integers G0 D a

and G1 D b, the Gibonacci sequence is defined recursively as Gn D Gn�1 C Gn�2

for positive integers n � 2. Because we are able to find graphs whose number of
independent sets exhibit Fibonacci and Lucas recurrences, a natural next step in this
work is to find graphs with a Gibonacci recurrence.

Generalizing the techniques explored in this paper in order to determine similar
formulae for FknC2 and Lkn represents an alternate and decidedly more challenging
next step. In the identities presented above, the coefficients of the Fibonacci numbers
are the number of different conflicts for path couples, and as k grows in both FknC2

and Lkn, enumerating the possible combinations of adjacent and nonadjacent paths
in a partitioned graph becomes very complex.
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Chapter 10
More Zeros of the Derivatives of the Riemann
Zeta Function on the Left Half Plane

Ricky Farr and Sebastian Pauli

10.1 Introduction

Let s 2 C. We denote the real part of s by 
 and the imaginary part of s by t . For

 > 1 the Riemann zeta function � can be written as

�.s/ D
1X

nD1

1

ns
: (10.1)

By analytic continuation, � may be extended to the whole complex plane, with the
exception of the simple pole s D 1. This analytic continuation is characterized by
the functional equation

�.1 � s/ D 2 .s/�.s/.2	/�s cos
	s

2
: (10.2)

It follows directly from the functional equation (10.2) that �.�2j / D 0 for all
j 2 N. These zeros are called the real or trivial zeros of �. Also, by the Prime
Number Theorem, all nontrivial zeros must lie in the critical strip 0 � 
 � 1.
By the Riemann hypothesis, the remaining (nontrivial) zeros of � are of the form
1
2

C i t .
In this paper we numerically investigate the distribution of zeros of the deriva-

tives �.k/ of � on the left half plane. The results of our computations, that
considerably expand the list of previously published zeros [11, 15], can be found
in Tables 10.1 and 10.2. For the rectangular region �10 < 
 < 1

2
and jt j < 10,
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Table 10.1 The number of zeros of �.k/.
 C i t / with k � 32 in �10 < 
 < 0, jt j < 10, the
number of complex conjugate pairs of non-real zeros, and the number of real zeros in this region

# of zeros of �.k/.
 C i t/ Zeros of �.k/.
 C i t/

�10 < 
 < 0 �10 < 
 < 0 0 < 
 < 1=2

k jt j < 10 0 < t < 10 t D 0 t D 0 jt j < 10

0 4 0 4 �2 �4 �6 �8
1 3 0 3 �2.7173 �4.9368 �7.0746
2 5 1 3 �3.5958 �6.0290 �8.2786
3 5 2 3 �4.7157 �7.2920 �9.6047
4 6 2 2 �6.1265 �8.7016
5 5 2 1 �7.7119 0:2876 ˙ 4:6944i

6 7 2 3 �4.3284 �6.6083 �9.3445
7 8 3 2 �5.6191 �8.4425
8 7 3 1 �7.5186 0:4183 ˙ 5:4753i

9 9 3 3 �4.7059 �6.5553 �9.3794
10 10 4 2 �5.7309 �8.5500
11 9 4 1 �7.7120 0:4106 ˙ 6:1502i

12 11 4 3 �5.1849 �6.8533 �9.6751
13 12 5 2 �6.1124 �8.9100
14 11 5 1 �8.1400 0:3447 ˙ 6:7636i

15 12 5 2 �5.6697 �7.3600
16 14 6 2 �6.6469 �9.4393
17 13 6 1 �8.7229 0:2494 ˙ 7:3344i

18 14 6 2 �6.1556 �8.0019
19 15 7 1 �7.3040
20 15 7 1 �9.4151 0:1378 ˙ 7:8732

21 16 7 2 �6.6561 �8.7394
22 17 8 1 �8.0675
23 16 8 0 0:0163 ˙ 8:3861i

24 18 8 2 �7.1929 �9.5491 0:4681 ˙ 8:7645i

25 19 9 1 �8.9089
26 20 9 2 �7.3618 �8.2504
27 19 9 1 �7.8131 0:3116 ˙ 9:244i

28 21 10 1 �9.8049
29 22 10 2 �7.7492 �9.1919
30 21 10 1 �8.6103 0:1516 ˙ 9:7083i

31 22 11 0
32 23 11 1 �8.2087

Furthermore, the real zeros in this region and the zeros in the strip 0 < 
 < 1
2
, jt j < 10 are given

to four decimal digits
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.
Table 10.2 All zeros of �.k/.
 C i t / with k � 29 in �10 < 
 < 0, 0 < jt j < 10

k # Zeros of �.k/.
 C i t / with �10 < 
 < 0 and 0 < jt j < 10

2 1 �0:3551 ˙ 3:5908i

3 1 �2:1101 ˙ 2:5842i

4 2 �0:8375 ˙ 3:8477i �3:2403 ˙ 1:6896i

5 2 �2:1841 ˙ 3:0795i �4:2739 ˙ 0:6624i

6 2 �1:2726 ˙ 4:0742i �3:1694 ˙ 2:2894i

7 3 �0:4133 ˙ 4:8453i �2:3934 ˙ 3:4063i �3:8750 ˙ 1:4918i

8 3 �1:6703 ˙ 4:2784i �3:2523 ˙ 2:7170i �4:5682 ˙ 0:8112i

9 3 �0:9672 ˙ 4:9985i �2:6410 ˙ 3:6749i �3:9459 ˙ 2:0452i

10 4 �0:2748 ˙ 5:6133i �2:0391 ˙ 4:4684i �3:4229 ˙ 3:0609i �4:5121 ˙ 1:3321i

11 4 �1:4413 ˙ 5:1493i �2:9062 ˙ 3:9132i �4:0769 ˙ 2:4384i �5:0310 ˙ 0:7641i

12 4 �0:8452 ˙ 5:7473i �2:3874 ˙ 4:6486i �3:6307 ˙ 3:3459i �4:6218 ˙ 1:8307i

13 5 �0:2500 ˙ 6:2811i �1:8653 ˙ 5:2971i �3:1788 ˙ 4:1283i �4:2445 ˙ 2:7740i ,
�5:1019 ˙ 1:1817i

14 5 �1:3402 ˙ 5:8783i �2:7202 ˙ 4:8199i �3:8543 ˙ 3:5969i �4:7812 ˙ 2:1996i ,
�5:5404 ˙ 0:6780i

15 5 �0:8124 ˙ 6:4056i �2:2551 ˙ 5:4415i �3:4521 ˙ 4:3265i �4:4411 ˙ 3:0614i ,
�5:2367 ˙ 1:6383i

16 6 �0:2827 ˙ 6:8886i �1:7845 ˙ 6:0069i �3:0400 ˙ 4:9834i �4:0887 ˙ 3:8241i ,
�4:9528 ˙ 2:5231i �5:6490 ˙ 1:0311i

17 6 �1:3092 ˙ 6:5262i �2:6197 ˙ 5:5821i �3:7242 ˙ 4:5121i �4:6486 ˙ 3:3161i ,
�5:4130 ˙ 1:9836i �6:0680 ˙ 0:5743i

18 6 �0:8299 ˙ 7:0068i �2:1924 ˙ 6:1331i �3:3491 ˙ 5:1402i �4:3279 ˙ 4:0324i ,
�5:1468 ˙ 2:8068i �5:8098 ˙ 1:4611i

19 7 �0:3475 ˙ 7:4543i �1:7592 ˙ 6:6440i �2:9648 ˙ 5:7192i �3:9939 ˙ 4:6871i ,
�4:8654 ˙ 3:5483i �5:5889 ˙ 2:2963i �6:1583 ˙ 0:8859i

20 7 �1:3211 ˙ 7:1206i �2:5729 ˙ 6:2569i �3:6489 ˙ 5:2913i �4:5694 ˙ 4:2268i ,
�5:3472 ˙ 3:0608i �5:9945 ˙ 1:7820i �6:6140 ˙ 0:4394i

21 7 �0:8787 ˙ 7:5677i �2:1744 ˙ 6:7594i �3:2944 ˙ 5:8530i �4:2605 ˙ 4:8536i ,
�5:0870 ˙ 3:7617i �5:7837 ˙ 2:5734i �6:3545 ˙ 1:2934i

22 8 �0:4328 ˙ 7:9887i �1:7703 ˙ 7:2313i �2:9319 ˙ 6:3785i �3:9406 ˙ 5:4371i ,
�4:8118 ˙ 4:4095i �5:5554 ˙ 3:2943i �6:1750 ˙ 2:0870i �6:6413 ˙ 0:7581i

23 8 �1:3613 ˙ 7:6765i �2:5625 ˙ 6:8727i �3:6113 ˙ 5:9836i �4:5240 ˙ 5:0128i ,
�5:3115 ˙ 3:9611i �5:9806 ˙ 2:8250i �6:5366 ˙ 1:5912i �7:1892 ˙ 0:1700i

24 8 �0:9481 ˙ 8:0980i �2:1871 ˙ 7:3395i �3:2737 ˙ 6:4980i �4:2254 ˙ 5:5784i ,
�5:0539 ˙ 4:5827i �5:7671 ˙ 3:5097i �6:3712 ˙ 2:3553i �6:8798 ˙ 1:1259i

25 9 �0:5313 ˙ 8:4984i �1:8064 ˙ 7:7820i �2:9291 ˙ 6:9843i �3:9174 ˙ 6:1112i ,
�4:7841 ˙ 5:1658i �5:5378 ˙ 4:1485i �6:1844 ˙ 3:0574i �6:7253 ˙ 1:8906i ,
�7:1206 ˙ 0:6504i

26 9 �0:1113 ˙ 8:8798i �1:4211 ˙ 8:2028i �2:5782 ˙ 7:4458i �3:6013 ˙ 6:6153i ,
�4:5038 ˙ 5:7155i �5:2952 ˙ 4:7478i �5:9817 ˙ 3:7117i �6:5664 ˙ 2:6042i ,
�7:0463 ˙ 1:4126i

27 9 �1:0318 ˙ 8:6041i �2:2218 ˙ 7:8850i �3:2780 ˙ 7:0941i �4:2144 ˙ 6:2361i ,
�5:0410 ˙ 5:3132i �5:7647 ˙ 4:3261i �6:3901 ˙ 3:2731i �6:9206 ˙ 2:1489i ,
�7:3814 ˙ 0:9448i

(continued)
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Table 10.2 (contnued)

28 10 �0:6389 ˙ 8:9878i �1:8606 ˙ 8:3044i �2:9484 ˙ 7:5503i �3:9169 ˙ 6:7308i ,
�4:7767 ˙ 5:8489i �5:5353 ˙ 4:9061i �6:1978 ˙ 3:9018i �6:7680 ˙ 2:8338i;

�7:2490 ˙ 1:7019i �7:6182 ˙ 0:5486i

29 10 �0:2428 ˙ 9:3554i �1:4951 ˙ 8:7056i �2:6132 ˙ 7:9860i �3:6122 ˙ 7:2024i ,
�4:5034 ˙ 6:3583i �5:2947 ˙ 5:4558i �5:9918 ˙ 4:4954i �6:5986 ˙ 3:4759i;

�7:1165 ˙ 2:3954i �7:5353 ˙ 1:2495i

The column # contains the number of conjugate pairs of zeros. All zeros listed are simple and are
rounded to four decimal digits. It is expected that both the real and imaginary parts of the zeros
are transcendental and linearly independent of each other

Fig. 10.1 The zeros of �.k/.
 C i t / for 52 < 
 < 70, 0 < t < 25, where k denotes a zero of �.k/ .
The conjectured chains of zeros are labeled by M and j (compare Theorem 3)

Table 10.1 contains the number of zeros of �.k/, its real zeros, and its zeros with
0 < 
 < 1

2
. Table 10.2 contains non-real zeros with 
 < 0 in that region. We find

that some of the conjectured chains of zeros of the derivatives on the right half plane
[2, 9] (see Fig. 10.1) appear to continue to the left half plane which is illustrated in
Fig. 10.3.

We first recall results about the distribution of the zeros of �.k/ on the right
half plane (Sect. 10.2) and the left half plane (Sect. 10.3). Section 10.4 contains a
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description of the methods we used to evaluate �.k/. It is followed by a discussion
of the methods that we used to find the zeros of �.k/ in Sect. 10.5.

10.2 Zeros on the Right Half Plane

Assuming the Riemann Hypothesis, the non-real zeros of � are all on the critical
line 
 D 1

2
, while the non-real zeros of �.k/ appear to be distributed mostly to the

right of the critical line with some outliers located to its left.

10.2.1 Zeros with 0 < � < 1
2

Speiser related the Riemann Hypothesis to the distribution of zeros of the first
derivative.

Theorem 1 (Speiser [10]). The Riemann Hypothesis is equivalent to � 0.s/ having
no zeros in 0 < 
 < 1

2
.

A simpler and more instructive proof of this result was given by Levinson and
Montgomery [8]. They also proved, assuming the Riemann Hypothesis, that �.k/.s/

has at most a finite number of non-real zeros with 
 < 1
2
, for fixed k � 2.

Theorem 2 (Yıldırım [15]). The Riemann Hypothesis implies that � 00 and � 000 have
no zeros in the strip 0 � 
 � 1

2
.

The Riemann Hypothesis also implies that �.k/ for k > 0 has only finitely many
zeros in 0 � 
 � 1

2
[8].

Our computations show that higher derivatives have zeros in this strip, see
Table 10.1. Because of the very well-defined and predictable patterns in the dis-
tribution of the zeros of �.k/ in Fig. 10.2, we expect that the zeros listed in the table
are the only zeros of �.k/ for k � 32.

10.2.2 Zeros with � > 1
2

The real parts of the zeros of �.k/ can be effectively bounded from above by absolute
constants. For � 0 and � 00 Skorokhdov [9] gives the bounds:

� 0.
 C i t/ ¤ 0 for 
 > 2:93938;

� 00.
 C i t/ ¤ 0 for 
 > 4:02853:
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For k � 3 such general upper bounds were given by Spira [11] and later improved
by Verma and Kaur [14]:

�.k/.
 C i t/ ¤ 0 for 
 > q2k C 2;

where q2 is given by the formula

qM D
log

�
log M

log.MC1/

	
log

�
M

MC1

� :

Spira [11] computed zeros of the first and second derivatives of �.s/ for 0 <

t < 100 and noticed that they occur in pairs. Skorokhodov [9] went further in his
computation and noticed that the zeros of derivatives of � seem to form chains, that
is for each zero z.k/ of �.k/ there seems to be a corresponding zero z.kC1/ of �.kC1/.
Indeed, for sufficiently large k the existence of these chains is a direct consequence
of the following theorem.

Theorem 3 (Binder et al. [2]). Let M � 2 be an integer and let u be a solution of
1 � 1

eu�1
� 1

eu

�
1 C 1

u

� � 0, that is, u � 1:1879 : : : . If k >
u.2MC3/

qM �qMC1
, then for each

j 2 Z the rectangular region consisting of all s D 
 C i t with

qM k � .M C 1/u < 
 < qM k C .M C 1/u (10.3)

and

2	j

log.M C 1/ � log.M /
< t <

2	.j C 1/

log.M C 1/ � log.M /
; (10.4)

contains exactly one zero of �.k/. This zero is simple.

So, given M � 2, j 2 Z and l >
u.2MC3/

qM �qMC1
for the zero of �.l/ in the region

determined by (10.3) and (10.4) for k D l there is a corresponding zero of �.lC1/

in the region determined by (10.3) and (10.4) for k D l C 1. Figure 10.1 illustrates
the phenomenon of the chains of zeros of derivatives of �. The zeros shown in the
chains labeled M D 2; j D 0 and M D 2; j D 1 are in the rectangular regions
from Theorem 3 and the zeros in the chain labeled M D 3; j D 1 are in the regions
for M D 3 and j D 1 starting at the 77th derivative. The other chains are labeled by
the parameters M and j of the regions into which higher derivatives in the chains
eventually fall farther to the right.
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10.3 Zeros on the Left Half Plane

It follows immediately from the functional equation (10.2) that �.s/ D 0 for s D
�2n where n 2 N. The zeros of the first derivative are the zeros postulated by the
theorem of Rolle.

Theorem 4 (Levinson and Montgomery [8]). For n � 2 there is exactly one zero
of � 0 in the interval .�2n; �2n C 2/ and there are no other zeros of � 0 with 
 � 0.

Unlike on the right half plane, on the left there is no general left bound for the
non-real zeros of �.k/. Spira showed:

Theorem 5 (Spira [12]). For k > 0 there is an ˛k so that �.k/ has only real zeros
for 
 < ˛k , and exactly one real zero in each open interval .�2n � 1; �2n C 1/ for
1 � 2n < ˛k .

The location of a non-real zero of the second derivative on the left half plane
shows up in [11]. For both � 00.s/ and � 000.s/ Yıldırım [15] proved the existence of
exactly one pair of conjugate nontrivial zeros with 
 < 0 and gave their location.

Theorem 6 (Levinson and Montgomery [8]). If �.k/ has only a finite number of
non-real zeros in 
 < 0, then �.kC1/ has the same property.

Hence, the absolute value of the non-real zeros of �.k/ on the left half plane can
be bounded. This can be done by iteratively generalizing Yıldırım’s methods for the
second and third derivatives to higher derivatives.

Table 10.2 contains all the zeros of �.k/.
 C i t/ with �10 < 
 < 0, 0 < jt j < 10

for 2 � k � 29. The patterns of the distribution of zeros in Fig. 10.2 suggest that
these are all the zeros for these derivatives on the left half plane.

10.4 Evaluating �.k/ on the Left Half Plane

Methods for evaluating � and �.k/ include Euler–Maclaurin summation (see, for
example, [4]) or convergence acceleration for alternating sums [3]. Implementations
for the evaluation of � can be found in various computer algebra systems. The
Python library mpmath [6] contains functions for evaluating derivatives of Hurwitz
zeta functions, and thus �.k/, on the right half plane using Euler–Maclaurin
summation.

We considered two different approaches for evaluating �.k/ in the left half plane.
Because of speed and ease of implementation we use Euler–Maclaurin summation
rather than the derivatives of the functional equation (see [1] for formulas for these).
Using Euler–Maclaurin summation we obtain for 
 D <.s/ > 1 that
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Fig. 10.2 The zeros of �.
 C i t / and its derivatives �.k/.
 C i t / for k � 61 in �10 < 
 < 1,
0 < t < 9, where 0 denotes a zero of � and k denotes a zero of �.k/ . All zeros are simple

.�1/k�.k/.s/ D
1X

nD2

logk.n/

ns

D
N �1X
nD2

logk.n/

ns
C
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logk.n/
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D
N �1X
nD2

logk.n/

ns
C
Z 1

N

logk.x/

xs
dx C 1
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logk.N /
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j D1

B2j

.2j /Š

d 2j �1
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ˇ̌̌
ˇ
1

xDN
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D
N �1X
nD2

logk.n/

ns
C
Z 1

N

logk.x/

xs
dx C 1

2

logk.N /

N s

�
vX

j D1

B2j

.2j /Š

d 2j �1

dx2j �1

logk.x/

xs

ˇ̌̌
ˇ
xDN

C R2v;

where N 2 N>2, v 2 N>2, and R2v is the error term. Repeated integration by parts
yields:

Z 1

N

logk.x/

xs
dx D logk.N /

.s � 1/N s�1

kX
rD0

kŠ

.k � r/Š

log�r .N /

.s � 1/r
:

Thus,

.�1/k�.k/.s/ D
N �1X
nD2

logk.n/

ns
C logk.N /

.s � 1/N s�1

kX
rD0

kŠ

.k � r/Š

log�r .N /

.s � 1/r
C 1

2

logk.N /

N s

�
vX

j D1

B2j

.2j /Š

d 2j �1

dx2j �1

logk.x/

xs

ˇ̌̌
ˇ
xDN

C R2v;

(10.5)

The error term R2v is given by

R2v D 1

.2v/Š

Z 1

N

OB2v.x/f .2v/.x/dx;

with f .x/ D logk.x/

xs as discussed in [4]. We use the non-central Stirling numbers
of the first kind (see [5]), to represent the derivatives of f . The non-central Stirling
numbers of the first kind S.r; i; s/ satisfy the recurrence

S.1; 0; s/ D �s; S.1; 1; s/ D 1

S.r C 1; 0; s/ D .�s � r/S.r; 0; s/

S.r C 1; i; s/ D .�s � r/S.r; i; s/ C S.r; i � 1; s/; 1 � i � r

S.r C 1; r C 1; s/ D S.r; r; s/:
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With these the derivatives of f can be written as

f .r/.x/ D x�s�r

rX
iD0

S.r; i; s/.k/i logk�i .x/;

where .k/i denotes the i -th falling factorial of k [5].
We now bound the error term, R2v. Observe that

jR2vj D
ˇ̌̌
ˇ 1

.2v/Š

Z 1

N

OB2v.x/f .2v/.x/dx

ˇ̌̌
ˇ (10.6)

� jB2vj
.2v/Š

Z 1

N

jf .2v/.x/jdx (10.7)

D jB2vj
.2v/Š

Z 1

N

ˇ̌̌
ˇ̌x�s�2v

2vX
iD0

S.2v; i; s/.k/i logk�i .x/

ˇ̌̌
ˇ̌ dx (10.8)

� jB2vj
.2v/Š

2vX
iD0

Z 1

N

ˇ̌̌
ˇ̌S.2v; i; s/.k/i

logk�i .x/

xsC2v

ˇ̌̌
ˇ̌ dx (10.9)

D jB2vj
.2v/Š

2vX
iD0

jS.2v; i; s/j.k/i

Z 1

N

logk�i .x/

x
C2v
dx (10.10)

� jB2vj
.2v/Š

2vX
iD0

jS.2v; i; s/j.k/i

 Z 1

N

logk.x/

x
C2v
dx

!
: (10.11)

The error term R2v converges for 
 C 2v > 1 and N 2 N>2, thus (10.5) can be
used to evaluate �.k/ for 
 > 1 � 2v. Since we are evaluating �.k/ on a bounded
region with j
 j � 10 the error can be bounded by (10.11) on the entire region. We
set v D 101, which yields 
 C 2v > 1 in the region and gives a good balance of the
values for v and N . To determine the value N should take, we evaluate the bound
given above for N D 200; 300; : : : until the error is as small as desired. For example,
if s D �10C10i , k D 100, v D 101, and N D 200, then jR2vj < 1:769892 
10�100.
If N D 1500, then jR2vj < 1:245704 
 10�253.

10.5 Finding Zeros

We found the zeros on the left half plane by following the chains of zeros of
derivatives of � from the right half plane (see Figs. 10.1 and 10.3). For given M � 2,
j 2 Z, and sufficiently large k the center

s D qM k C 2	.j C 0:5/

log.M C 1/ � log.M /
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Fig. 10.3 The zeros of �.k/.
 C i t / for �4 < 
 < 8 and 3 < t < 8. The zeros of �.k/ are at the
center of the numbers k. The first five chains of zeros that we followed from the right to the left
half plane are labeled M D 2, . . . , M D 6 (see Sect. 10.2)

of the rectangular region from Theorem 3 is a good approximation to the zero in this
region which we improved using Newton’s method.

Now assume that we know a zero z.k/
M of �.k/ and a zero z.kC1/

M of �.kC1/ in the
chain given by some M and j . We used

s D z.k/
M �

�
z.kC1/
M � z.k/

M

	
as a first approximation for the zero of �.k�1/ in that chain, which again was
improved with Newton’s method.

We assured that we had found all zeros of �.k/ with 1 � k � 61 in �10 < 
 < 1
2
,

jt j < 10 by counting the zeros using contour integration. The only pole of �.k/ is
at one and thus outside our region of interest. So for any simple closed contour C

in �10 < 
 < 1
2
, jt j < 10, by the argument principle, the number of zeros of �.k/

inside C counted as many times as their multiplicity is

n D 1

2	i

Z
C

�
�.kC1/

�.k/

�
.s/ ds:
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For 1 � k � 61 we counted the zeros of �.k/ by integrating along the border of the
rectangular region �10 < 
 < 1

2
, jt j < 10. We also integrated along the sides of

a square region with side length 10�6 centered around each approximation z of the
zeros to make sure that this region contained exactly one simple zero.

All computations and plotting were conducted with the computer algebra system
Sage [13]. We evaluated �.k/ with our implementation of the method described in
Sect. 10.4 which was verified, on the right half plane, with the Hurwitz zeta function
in mpmath [6] and our implementation of �.k/ based on convergence acceleration for
alternating series. For the integration we used the numerical integration function of
Sage which calls the GNU Scientific Library [7] using an adaptive Gauss–Kronrod
rule.
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Chapter 11
Application of Object Tracking in Video
Recordings to the Observation of Mice
in the Wild

Matina Kalcounis-Rueppell, Thomas Parrish, and Sebastian Pauli

11.1 Introduction

Methods for the automating the processing of digital video have been a topic of
research since the mid-1980s [1]. These techniques have been used extensively in
traffic surveillance and security. In the past decade, automated analysis of video has
become increasingly popular in the study of animal behavior, both in the laboratory
and in the wild. For example, the individual and social behaviors of fruit flies in a
planar arena in a laboratory setting have been quantified using data obtained with
computer vision methods [4].

As part of a larger study examining vocal communication among wild deer mice
(Peromyscus species) [6] infrared video was collected over 131 nights from dusk
until dawn. The video was taken from a camera suspended in the tree canopy above
the free-living mice on the forest floor. The video was recorded nonstop, regardless
of the level of mouse activity. Thus, the volume of video recordings obtained in
this study is a challenge to manually process. Computer vision techniques, however,
allow us to detect and record the trajectories of moving objects from the video data
without human intervention. In the initial phase of the project, mouse trajectories
were extracted from short clips of the video recordings with the goal of analyzing
the speed of mice [13] and data extracted from the video was validated by a
human observer [2]. As the result of this experience we are now able to process
the approximately 1,500 h of video and extract biologically meaningful data.
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In this paper we report on the methods we used to track the movement of mice in
video material and describe how we obtained biologically relevant information from
the tracking data, namely measures of mouse activity. The results of our analysis are
subject of a forthcoming publication by the authors.

11.1.1 Notation

We will use the following notation in our discussion of video and image data.
We represent an image as an m 	 n matrix F 2 C m�n, where C denotes a color
space. We denote the .x; y/ entry in F by Fx;y and refer to it as a picture element,
or pixel.

Common examples of color spaces are black and white ( C0 D f0; 1g ), grayscale
(Cg D f0; : : : ; 255g), and true color ( Ct D f.R; G; B/ j R; G; B 2 f0; : : : ; 255g/.
For ease of presentation we will limit most of our discussions to grayscale images
and video. It can be easily generalized to other color spaces.

A video V is a sequence of images,

V D .F1; F2; : : : ; Fn/; (11.1)

where n 2 N is the number of images in the video. Each image is called a frame,
and those frames are displayed at a constant frame rate, which is typically 24, 25, or
30 frames per second.

11.2 Foreground Isolation

One of the most fundamental applications of automated video processing is the
identification and tracking of moving objects. The most common tracking method is
referred to as blob tracking. This process involves isolating foreground from back-
ground information by means of background subtraction, identifying foreground
connected components, or collections of adjoined pixels, and tracking those over
time.

For our purposes, we consider each pixel of a video image to belong to either
the foreground or background. We define the background to be the set of static,
or predominantly unchanging pixels, and the foreground to be the set of all other
pixels.

The foreground isolation functions return a black and white image M called the
foreground mask. A pixel of value Mx;y D 0, or black, represents a background
pixel, and a pixel of value Mx;y D 1, or white, corresponds to a foreground pixel.
We call elements of the foreground objects, and their corresponding foreground
mask elements blobs.



11 Applications of Object Tracking in Video 107

11.2.1 Background Subtraction

If the pixels corresponding to the background are known, then the foreground can
be extracted by taking the absolute difference s.F; B/ of a frame F and a reference
background image B , where

s W C m�n 	 C m�n ! C m�n; s.F; B/ D G where Gx;y D j Fx;y � Bx;y j : (11.2)

Clearly if s.F; B/x;y D 0, then Fx;y belongs to the background. Because we want
to allow some fluctuation in the background pixels a threshold function is used to
decide whether a pixel belongs to the foreground or background:

t W Cg
m�n 	 Cg ! C m�n

0 ; t.F; c/ D G where Gx;y D



0 if Fx;y < c

1 else :
(11.3)

For each frame F , if F 0 D s.F; B/, then the foreground mask can be given by
t.F 0; c/; where c is typically greater than 200 for grayscale images.

There are various methods for determining the background image, which can be
static or updated with every frame, for example:

First Frame Method. If the first frame of the video only consists of background,
the first frame can be used as the background image. This yields the fastest
background subtraction method.

Average Frame Method. The average of all frames of the video is used as a
background image. This can work even if objects are present in the foreground of
all frames, as long as those objects move frequently. Because the entire video must
be processed prior to tracking, this method does not allow video processing in real
time.

Running Average of Frames Method. Using the running (weighted) average
of all previous frames as the background image yields better results, particularly
when there are frequent subtle changes in lighting. Typically, the background B is
initialized to the first frame F0, and after processing each subsequent frame F , B is
updated to w˛.F; B/, where

w˛ W C m�n 	 C m�n ! C m�n; .w˛.F; B//x;y D b˛Fx;y C .1 � ˛/Bx;yc (11.4)

for some ˛ 2 .0; 1/.

11.2.2 Dilation and Erosion

Often, a foreground pixel is similar in intensity or color to the corresponding
background pixel. In this case, the foreground pixel is likely to be improperly
classified as a background pixel. This can result in hole within a connected
component, or two distinct connected components that represent the same object.
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To prevent such errors, a series of morphological operations can be applied
namely dilation and erosion. Dilation increases the size of blobs, merging blobs that
represent the same object and removing holes. Erosion reduces the size of blobs and
smoothes the edges. These operations are often combined with foreground isolation
techniques.

In each operation, the value of a pixel Fx;y is set to either the lightest or darkest
pixel value in the neighborhood specified by a kernel. The kernel can be described
as a set of relative coordinates K � Z 	 Z. The neighborhood of Fx;y specified
by K consists of the pixels with coordinates in f.x C i; y C j / j .i; j / 2 Kg. The
dilation of an image F using the Kernel K is

dK W C m�n ! C m�n; dK.F / D G with Gx;y D maxfFxCi;yCj j .i; j / 2 Kg:
(11.5)

The erosion of F using the Kernel K is

cK W C m�n ! C m�n; cK.F / D G with Gx;y D minfFxCi;yCj j .i; j / 2 Kg:
(11.6)

It is common to choose a simple kernel, such as K D f.i; j / j i; j 2 f�1; 0; 1g g.
Typically, a series of dilation and erosion operations are applied to the foreground

mask in the form of open and close operations, where opening is the dilation of an
erosion, and closing is the erosion of a dilation. Both opening and closing will result
in blobs very close to their original size.

11.2.3 An Advanced Method

More often than not, however, videos of interest will not contain a stationary
background. In such cases, it is necessary to seek more intelligent methods of
distinguishing foreground pixels from background pixels. The method chosen
for our application, developed by Liyuan Li, Weimin Huang, Irene Y.H. Gu,
and Qi Tian, uses a Bayes decision rule to classify objects as foreground and
background [9]. It is designed to accommodate two types of changes in background
state: gradual changes, such as changes in natural lighting, and rapid changes, such
as a camera rotation or tree branch movement. Stationary background pixels are
classified by their color features, while moving background elements are classified
by their color co-occurrence features. The algorithm consists of four steps: detection
of state changes, classification of state changes, foreground object identification,
and background learning and maintenance. For each frame, the following steps are
executed:

1. Generate background model
2. Perform simple background subtraction to remove pixels of insignificant change
3. Classify each remaining pixel as stationary or moving
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4. If stationary, compare pixel value with learned color states and use a Bayes rule
to determine probability of being foreground

5. If a pixel is classified as moving, compare color co-occurrence, along with color
to the set of learned states, and use Bayes rule to determine probability of being
foreground

6. Assign pixel to foreground or background accordingly
7. Perform a pair of dilate–erode and erode–dilate operations to remove artifacts

and connect blobs
8. Update the set of learned color states and color co-occurrence states
9. Update the reference background image

11.3 Component Identification and Labeling

In order to identify specific elements of an image, it is important to identify the
connected components, which exist as sets of neighboring pixels. In this application,
two pixels are considered neighbors if the distance between them is less than or
equal to

p
2 pixels.

One way to identify objects is to use component contours as the primary
identifying feature of each object. An object’s contour is its set of edge pixels.

A simple method of identifying and labeling components in an image F 2 C m�n

involves generating an associated label image, L 2 N
m�n, with each pixel Lx;y

consisting of the label corresponding to the pixel Fx;y . An extremely efficient
method, proposed by Fu Chang, Chun-Jen Chen, and Chi-Jen Lu can be used for
this task [7].

In the algorithm they present, an image F is processed left to right, and top to
bottom. When an external contour pixel is encountered, the entire contour is traced
and, for each pixel Fx;y in the contour, we set Lx;y D l , where l 2 N is unique to
this contour. Once the contour has been traced, foreground pixels inside the contour
are also labeled l . If an internal contour point is reached, the internal contour is
again traced, and labeled l . When a new external contour pixel is found, it is labeled
l C1, and the tracing process repeats. Each set of pixels of the same label is referred
to as a blob.

11.4 Blob Tracking

In each frame, blobs are labeled by order of detection, making it difficult to ensure
a unique label preservation between frames. Because of this, a blob will often have
many labels over time, some of which may correspond to labels assigned to other
blobs. It is then necessary to check each successive frame and ensure that for any
given blob, its label in the current frame corresponds to its label in the previous
frame. There are a number of methods to accomplish this. One simple approach is
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to calculate a set of identifying features, such as size, location, location of centroid,
orientation, intensity or color for each blob. After labels are assigned in each frame,
the features of each blob are compared to those of every blob in the previous frame
that is within a set distance, and labels are re-assigned accordingly. The set of
features for each blob can then be output as track information, sorted by blob label.

11.4.1 Tracking Data

Because video frames are processed sequentially, blob data generated by the tracker
are returned in sequential order. After each frame, the tracker returns data for
each blob, consisting of the unique label of the blob (not to be confused with
the labels of the components in the frame), its position, its size, and the number
of frames the blob has been present. Additional information, such as bounding
boxes, histogram information (of use in color video), velocity and acceleration
vectors, can also be extracted. However, because it would require inference, rather
than direct observation, to generate velocity and acceleration data, introducing
uncertainty, these data were not produced. In addition, because the thermal videos
are in greyscale, color information was ignored.

11.5 Object Tracking in the Mouse Videos

We describe the video material with which we worked, how the tracking was done,
and discuss some challenges we encountered and some decisions we needed to make
to obtain as much usable data as possible.

The videos were recorded during research where audio, video, and telemetry data
were used to analyze the ultrasonic vocalizations of two species of free-living mice,
Peromyscus californicus and P. boylii. The fieldwork took place over 131 nights at
the Hastings Natural History Reservation in upper Carmel Valley, California, USA,
during the winters of 2008 and 2009. A detailed description of the methods, with
example data representing audio, video, and telemetry, can be found in [6].

11.5.1 The Mouse Videos

A thermal-imaging camera was suspended by a simple pulley system in the tree
canopy approximately 10 m above the ground, allowing continued recording of
active mice in the field of view, through the night. The camera used was a Flir Photon
320 with a resolution of 320 by 240 pixels at 30 frames per second in grayscale. The
video was recorded with a JVC Everio GZ-MG 555 hard disk camcorder connected
to the camera with a composite video cable at an upscaled resolution of 720 by 480
pixels. In the following all pixel measures refer to pixels in the recorded video.
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Fig. 11.1 The four images show a still from an infrared video, background image, the foreground
mask, and the foreground mask after dilating twice. The two blobs on the left are partially
concealed mice, the blob on the right is another mouse

11.5.2 Our Implementation

Previously available animal tracking software was primarily designed for the
analysis of animal behavior in a laboratory setting [5, 8], with animals moving
in front of a stable background. This specialization makes them less suitable for
processing videos of animals in natural environments, where lighting changes and
background movement occur frequently. Moreover, many relevant behaviors will be
seen in natural environments without a stable background.

For this reason, we wrote a tracking program based on the C++ libraries OpenCV
[12] and cvBlob [10], which are freely available under a BSD licence and the
LGPL, respectively. OpenCV provided implementations of the algorithms needed
for the foreground identification (where we used the advance method described in
Sect. 11.2) and the image clean-up steps.

Because of the small size of the mice (about 40 square pixels in the upscaled
resolution, 10 square pixels at camera resolution) we use two dilation and no erosion
steps in the image cleanup after foreground identification.

The foreground isolation and clean-up steps are illustrated in Fig. 11.1.
The library cvBlob offered the functionality needed for the blob tracking step,

including an implementation of the block labeling algorithm described in Sect. 11.3.
We found that the simple blob tracking methods implemented in cvBlob were
sufficient for our application.
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For OpenCV and cvBlob installation instructions, see the web sites given in
the references. For an introduction to OpenCV, see the OpenCV book [3]. The
functions for the post processing were written using the Python-based computer
algebra system Sage. The blob tracking program outputs tracking information in the
form of a raw text, which is imported into Sage and processed.

A shell script calling the video processing and post processing was written,
allowing several hundred videos to be processed in one batch.

11.5.3 Data Filtering

Although the program is able to disregard most noise, some noise may be catego-
rized as legitimate foreground information. However, these false tracks typically
have very short durations. For this reason, we have chosen to ignore tracks of
extremely short duration, which we classify as tracks less than ten frames long,
or one third of a second. It is also the case that a warm wind will occasionally heat
up a stationary background element, such as a rock or mouse trap, for a time longer
than ten frames. To account for these false tracks, we discard any track for which
there is no movement.

11.5.4 Blob Classification

Once the tracks are filtered, blobs are categorized based on size and speed. For
mice, we calculated an expected size based on known biological size ranges, which
we converted to a pixel area based on the dimensions of each focal area. Because
these dimensions varied across focal areas, we used a separate range for each area.
In addition, we found that bats and birds traveled significantly faster than mice. Any
object that traveled faster than three pixels per frame was considered to be a flying
vertebrate.

11.6 Analysis of Tracks

We used the tracking information in two ways. In the first application, which we
refer to as computer-aided observation, data were searched for information that
targets specific events of interest to human investigators, who then analyzed these
events.

In the second application, which we refer to as automated analysis, the computer
directly computes data, which can then be used for the (statistical) analysis of
behavior.
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11.6.1 Computer-Aided Observation

Computer-aided observation is useful for finding specific events which require
qualitative analysis. An example of such an application may be to have the
computer extract all times in a video when several objects exist in concurrence.
The investigator could then watch the video, in order to determine if the objects
(animals) influence each other’s behavior.

A script was written to report all times when objects of specific size ranges
appear in videos. These size ranges were used for two purposes. We used them
to find predators such as cougars (Puma concolor), bobcat (Lynx rufus), and foxes
(Urocyon cinereoargenteus), by searching for large blobs, which had an area greater
than 500 square pixels. The times when large blobs were present were used as a
queues for manual observation, so that these blobs could be classified and behaviors
analyzed.

We also returned all times when objects in the expected size range of mice
(80–120 square pixels after dilation, depending on focal area) existed for a period
of at least 5 s. From this list, we selected a random sample of videos and times and
observed the videos. In all cases, we found that the blobs in our expected size ranges
corresponded to mice.

11.6.2 Automated Analysis

Although computer-aided observation is a valuable tool, it is desirable for the
computer to do as much analysis as possible. While the analysis of complex events
and interactions is difficult, some data lend itself to easy analysis. Examples of such
data include analysis of size distributions, speed of travel, and location preference
(i.e., objects do have a tendency to be found in one region more often than another).
Our primary application of automated analysis was to analyze levels of mouse
activity.

11.6.3 Measuring Mouse Activity

Often mice exit and reenter the field of view, or become temporarily masked under
dense vegetation. Because of the uncertainty introduced by these events, a decision
was made to use only observed data, and to not interpolate missing data. In addition,
accurate identification of individuals is difficult due to a lack of identifying features
in thermal video. As such, measures of activity that do not require the identification
of individual mice were chosen. In this way we avoid introducing unnecessary error.
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Assume that a track is active from frame number m to frame number n. Let
.xt ; yt / be the position of a blob, at frame number t . Because of the high sampling
rate of the position of the blob at 30 times per second

d D
nX

tDm

p
.xt � xt�1/2 C .yt � yt�1/2 (11.7)

is a good approximation of the length of the track.
To measure the activity of mice on a given night, we use two values:

1. the total observed distance D travelled by all mice throughout the night; that is,
the sum of the lengths of all observed tracks and

2. the average speed S of all mice throughout the night; that is, S D D=T where T

is the sum of the lengths in time of all observed tracks.

These measures make it possible to investigate the change in mouse activity under
various biotic and abiotic environmental influences. This investigation is subject of
a forthcoming publication of the authors.

11.7 Conclusion

Automated tracking is remarkably useful. With a limited understanding of computer
vision techniques and moderate computer programming experience, it is possible to
construct an automated video processing program suitable for analyzing some types
of animal behavior. The results obtained from these types of programs, e.g. tracking
information, help us to answer numerous biological questions and save researchers a
great deal of time. Useful information can often be obtained from even poor quality
video.

Some caveats exist, however. For example, it is difficult to distinguish amongst
individuals in grayscale video. Also, it is difficult to extract accurate tracking data
from videos containing large amounts of background movement, which is often
a result of wind when a camera is setup with a hanging-pulley system. An easy
solution would be to anchor the camera in such a way so that swaying in windy
conditions would be prevented.

We believe that automated video processing provides a meaningful alternative
to traditional methods of studying animal behavior, especially that of a nocturnal,
secretive species. Past behavioral studies have resorted to methods such as trapping
[11], sand transects [14], or test arenas [15]. With proper setup, remotely recorded
video, along with automated video processing techniques, can provide information
not traditionally available. This information includes data such as speed, distance
traveled, frequency of travel, and number of animals in a given space at a given
time. This type of information in a natural setting provides crucial information to
better understand the evolution and maintenance of behaviors in natural contexts.
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The use of thermal imaging allows for the collection of these types of data on
secretive and nocturnal rodents. Moreover, automated video processing presents
a means to efficiently analyze the behaviors present in such videos, although it is
equally capable of analyzing behavior in traditional video.
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Chapter 12
The Card Collector Problem

Anda Gadidov and Michael Thomas

12.1 Introduction

Suppose there are m different cards to complete a certain collection, such as baseball
cards or McDonald’s Monopoly game pieces. Card of type i occurs independently
of the other ones with probability pi � 0;

Pm
iD1 pi D 1. The question is to find

the probability of getting a complete collection of cards and the expected number
of cards that have to be purchased in order to complete the collection. Assuming
equal probabilities the problem was first mentioned in 1709 by DeMoivre in his
collection of 26 problems related to games of chance titled De Mensura Sortis, deu,
de Probabilitate Eventuum in Ludis a Casu Fortuito Pendentibus. In 1938 Kendall
and Smith [3] mentioned the problem in relation to checking the randomness of
their sampling numbers, Feller [1] presented the question as a type of urn problem,
Flajolet et al. [2] used symbolic methods in combinatorial analysis to analyze several
related allocation problems. The coupon collector problem is often mentioned in
occupancy problems in which balls are thrown independently at a finite or infinite
series of boxes. In this context the problem found numerous applications in species
sampling problems in ecology, and also in database query optimization.

Let X be the number of cards that need to be purchased in order to complete
a collection. Using the inclusion–exclusion principle we derive the probability
distribution of X and we compute its expected value. In particular we obtain an
interesting identity for the equally likely case. Following ideas of Nakata [4] we
show that the minimum expected value is attained in the equally likely case.
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12.2 Results

We introduce the following notation: for a subset J � f1; 2; : : : ; mg denote by jJ j
the cardinality of J . Also, for i 2 f1; 2; : : : ; mg; Ji will be used to denote a subset
of f1; 2; : : : ; mgnfig. Let Xi denote the number of cards of type i and Ai;n the event
that card of type i was the last added to the collection when n cards were needed to
complete the collection. Define

XJ WD
X
i2J

Xi ; PJ WD
X
i2J

pi : (12.1)

Proposition 1. For n � m we have:

P.X D n/ D
m�2X
rD0

X
jJ jDm�1�r

.�1/r .1 � PJ /P n�1
J : (12.2)

Proof. For m D 2 denote by p and 1 � p the probability of getting the first and
second card, respectively. For n � 2 we have

P.X D n/ D pn�1.1 � p/ C .1 � p/n�1p: (12.3)

For m D 3 the collection can be completed in n � 3 cards by getting the first,
second or third card last. Therefore we have

P.X D n/ D
3X

iD1

P.Ai;n/: (12.4)

Let us look at

P.A1;n/ D p1P.X2 > 0; X3 > 0; X2 C X3 D n � 1/

D p1P.X2 C X3 D n � 1/ � p1P.X2 D 0; X3 D n � 1/

�p1P.X2 D n � 1; X3 D 0/

D p1

�
.p2 C p3/

n�1 � pn�1
2 � pn�1

3

�
: (12.5)

Using Eq. (12.5) for all Ai;n; i D 1; 2; 3, Eq. (12.4) becomes

P.X D n/ D p1

�
.p2 C p3/

n�1 � pn�1
2 � pn�1

3

�
Cp2

�
.p1 C p3/

n�1 � pn�1
1 � pn�1

3

�
Cp3

�
.p1 C p2/

n�1 � pn�1
1 � pn�1

2

�
:
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By regrouping the terms we can rewrite P.X D n/ in a format that will be useful
when we treat the general case:

P.X D n/ D
3X

iD1

�
pi .1 � pi/

n�1 � pn�1
i .1 � pi /

�
: (12.6)

For general m we proceed as in the case m D 3. For n � m we write

P.X D n/ D
mX

iD1

P.Ai;n/: (12.7)

For i D 1; : : : ; m, using the inclusion–exclusion formula as in the case m D 3 we
obtain:

P.Ai ; n/ D pi P.X D n � 1; Xj > 0; j ¤ i; Xi D 0/

D
m�2X
rD0

X
jJi jDm�1�r

.�1/rpi P.XJi D n � 1/

D
m�2X
rD0

X
jJi jDm�1�r

.�1/rpiP
n�1
Ji

:

By grouping all terms that contain the same P n�1
J for some J � f1; 2; : : : ; mg; jJ j D

m � 1 � r when summing over i D 1; 2; : : : ; m we obtain:

P.X D n/ D
mX

iD1

m�2X
rD0

X
jJi jDm�1�r

.�1/rpi P
n�1
Ji

D
m�2X
rD0

X
jJ jDm�1�r

.�1/r .1 � PJ /P n�1
J :

ut
Corollary 1. In particular, if cards are equally likely

P.X D n/ D
m�2X
rD0

 
m

m � 1 � r

!
1 C r

m

�
m � 1 � r

m

�n�1

: (12.8)

Proof. If cards are equally likely pi D 1=m for all i D 1; : : : ; m and since for each
r D 0; : : : ; m � 1 there are

�
m

m�1�r

�
subsets J � f1; : : : ; mg; jJ j D m � 1 � r , the

result follows from (12.2). ut
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The next Lemma will be used in computing the expected number of cards needed to
complete the collection.

Lemma 1. Let 0 < p < 1 and m � 2 integer. Then

1X
nDm

npn�1 D mpm�1 � .m � 1/pm

.1 � p/2
: (12.9)

Proof. Using convergence of geometric series for 0 < p < 1, we have

1X
nDm

pn D pm

1 � p
: (12.10)

Now, the series in (12.10) is uniformly convergent on 0 < p < 1, therefore we may
differentiate term by term to obtain:

1X
nDm

npn�1 D mpm�1 � .m � 1/pm

.1 � p/2
: (12.11)

ut
Proposition 2. Let X be the number of cards needed to complete a collection. Then

E.X/ D
m�1X
rD1

X
jJ jDr

.�1/r�1 m.1 � PJ /m�1 � .m � 1/.1 � PJ /m

PJ

: (12.12)

Proof. Using the probability distribution of X given in (12.2) together with
Lemma 1 we obtain:

E.X/ D
1X

nDm

nP.X D n/

D
1X

nDm

m�2X
rD0

X
jJ jDm�1�r

.�1/rn.1 � PJ /P n�1
J

D
m�2X
rD0

X
jJ jDm�1�r

.�1/r
mP m�1

Ji
� .m � 1/P m

J

.1 � PJ /

D
m�1X
rD1

X
jJ jDr

.�1/r�1 m.1 � PJ /m�1 � .m � 1/.1 � PJ /m

PJ

:

ut
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Corollary 2. For every integer m � 2 the following holds:

m�1X
rD1

 
m

r

!
.�1/r�1

m
�
1 � r

m

�m�1 � .m � 1/
�
1 � r

m

�m
r=m

D m
�
1 C 1

2
C 1

3
C 
 
 
 C 1

m

�
:

(12.13)

Proof. For the particular case of equally likely cards pi D 1=m; i D 1; : : : ; m and
since there are

�
m

r

�
subsets J W jJ j D r , the expected value in (12.12) becomes:

E.X/ D
m�1X
rD1

 
m

r

!
.�1/r�1

m
�
1 � r

m

�m�1 � .m � 1/
�
1 � r

m

�m
r=m

:

From [5], the expected number of cards needed to complete a collection under the
equally likely assignment is m

�
1C 1

2
C 1

3
C
 
 
C 1

m

�
, therefore the result follows. ut

Following Nakata’s approach in [4], we show that the equally likely case has the
smallest expected value among all possible probability distributions on the set of
m cards. Denote by pŒj � the j-th largest value of the vector .p1; : : : ; pm/, so pŒ1� �
pŒ2� � 
 
 
 � pŒm�.

Definition 1. For two probability vectors p D .p1; : : : ; pm/; q D .q1; : : : ; qm/ we
say that p is majorized by q, denoted p � q if

kX
j D1

pŒj � �
kX

j D1

qŒj �; 1 � k � m � 1: (12.14)

For example, p D .:32; :28; :40/ � q D .:35; :23; :42/:

Theorem 1. The equally likely probability assignment is majorized by any other
probability assignment:

p D .
1

m
; : : : ;

1

m
/ � q for any q (12.15)

Proof. Let q be an arbitrary probability distribution vector. If qŒ1� < 1=m, then
qŒj � � qŒ1� < 1=m, for all j D 1; : : : ; m and it follows that

Pm
j D1 qj < 1. Therefore

qŒ1� � 1=m.
Let now 1 < k < m be the smallest index for which

Pk
j D1 qŒj � < k

m
. SincePk�1

j D1 qŒj � � k�1
m

, it follows that qŒi � < 1=m for all i D k; : : : ; m. But then again
we obtain that

Pm
j D1 qŒj � < 1, contradiction! The conclusion follows. ut

Definition 2. A function f .p/ which is symmetric in p1; p2; : : : ; pm is Schur
convex if p � q ) f .p/ � f .q/.

Definition 3. For X; Y random variables we say that X is stochastically smaller
than Y , denoted X �S Y if for all a 2 R, P.X > a/ � P.Y > a/.
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Denote by Xp the number of cards that need to be purchased to complete the
collection when the probability distribution is given by the vector p. The next result
stated without proof can be found in [4].

Theorem 2 (Nakata). P.Xp > n/ is a Schur convex function of p.

Theorem 3. The expected value of the number of cards needed to complete the
collection is minimum when the cards are equally likely.

Proof. Let p0 denote the probability vector corresponding to the uniform distribu-
tion on f1; : : : ; mg. It is known that for a discrete random variable taking positive
values E.X/ D P1

nD0 P.X > n/. Then for any other probability vector q, using
Theorems 1 and 2 we have:

E.Xp0/ � E.Xq/; (12.16)

therefore the result follows. ut

12.3 Final Remarks

Using generating functions the authors in [2] derive an expression for the expected
time to obtain a partial collection of j cards, and in particular a complete collection
[Eqs. (14a) and (14b)]. Although we use the same meaning for the probability
PJ , our expression for the expected value to complete the collection, (12.12), is
different. As a consequence of our approach we obtain the nontrivial identity:

m�1X
qD0

.�1/m�1�q
X

jJ jDq

1

1�PJ

D
m�1X
rD1

X
jJ jDr

.�1/r�1 m.1�PJ /m�1�.m�1/.1�PJ /m

PJ

(12.17)
In particular, for the equally likely case we have the identity mentioned in
Corollary 2.
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Chapter 13
The Effect of Information on Payoff
in Kleptoparasitic Interactions

Mark Broom, Jan Rychtář, and David G. Sykes

13.1 Introduction

Kleptoparasitism, the stealing or attempted stealing of resources (usually food), is
a very common behavior practiced by a very diverse collection of species such as
insects [14], fish [12], birds [16–18], and mammals [15]. For a recent review paper
with complete classification and numerous examples, see [13].

The strategies associated with stealing interactions can vary; for instance,
sometimes resources are promptly forfeited while in other cases the individuals
defend the resources vigorously and even engage in fights.

The effect of variation in resource value on fighting behavior was investigated
in detail in [11], who used a simulation model to investigate a situation where a
resource owner possesses information about the (subjective) value of a resource
that an individual attempting to steal it may or may not have, using a sequential
assessment game. Their model predictions included that the resource owner’s
probability of victory would increase with increasing resource value, based partly
upon the extra knowledge that the owner had (but see [5]), and that costs and contest
duration will also increase with resource value.

However, in most models, see, for example, [2, 4, 6] and references therein, the
individuals value the resource equally even when the resources can differ in value
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such as in the situations investigated in [3, 5]. The variation in value can be caused
by external factors such as the size of the food item; however, it can be caused by
an internal state (such as hunger) of the individuals [11].

As soon as there is a difference between individuals in resource valuation, several
informational situations arise. Firstly, when individuals are aware of their own as
well as their opponent’s valuation. Secondly, when individuals are aware only of
their own valuation. Thirdly, when individuals are not aware even of their own
valuation.

A common way to model kleptoparasitic interactions is the so-called producer-
scrounger game developed in [1]. A number of variants of this model have
been developed to consider different circumstances and assumptions (see, for
example, [8–10, 19]). One advantage of this type of model is that analysis is
relatively straightforward, so that clear predictions can be made. Here, we consider
a scenario where one individual, a producer, possesses a valuable resource when
another individual, a scrounger, comes along and may attempt to steal it.

13.2 The Model

We model the situation of a scrounger discovering a producer with a resource as
a sequential game in extensive form as shown in Fig. 13.1. If the scrounger makes
such a stealing attempt, then the producer can either give up the resource without
any conflict or defend it. The conflict cost is c and the producer wins the conflict
(and can keep the resource) with probability a.

Scrounger
finds
Producer

Scrounger tries to steal

Scrounger does not steal

Producer does not defend

Producer defends

Producer wins

Producer loses

Payoff to
Producer

vp − c

−c

vp

0

−c

vs − c

vs

0

Payoff to
Scrounger

Fig. 13.1 Scheme and payoffs of the game
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Let us denote the value for the scrounger as vs , and the value for the producer as
vp. We assume that the distributions of vs and vp are the same. The game and the
payoffs from different scenarios are shown in Fig. 13.1.

13.3 Analysis

We will analyze the game using backward induction, see, for example, [7, p. 187].

13.3.1 Full Information Case

Here we assume that individuals know the resource values for themselves as well
as for their opponents. Assume that the scrounger attempts to steal. The producer
has to decide whether to defend or not. If the producer does not defend, the payoff
will be 0. If the producer defends, individuals will fight and the producer will lose
it with probability 1 � a. Hence, the producer’s expected payoff when defending is
avp � c. Consequently, the producer should defend only if 0 < avp � c which is
equivalent to

c

a
< vp: (13.1)

Note that the producer does not need to know the value of the resource for the
scrounger. All that is relevant to the producer is the fact that the scrounger attempted
to steal and then the producer can evaluate the payoffs to itself.

Now, we will investigate the options for the scrounger, assuming it knows vp .
If the scrounger does not attempt to steal, the payoff will be 0. If (13.1) does not
hold, then the producer will not defend against a stealing attempt and thus the
scrounger should attempt to steal to get a payoff vs > 0. If (13.1) holds, then the
producer will defend against the stealing attempt. Hence, if the scrounger attacks, it
will lose with probability a (and get a payoff �c) and win with probability 1 � a

(and get a payoff vs � c). The expected payoff is thus .1 � a/vs � c. Hence, the
scrounger should attack if

.1 � a/vs � c > 0 (13.2)

which is equivalent to

c

1 � a
< vs: (13.3)

There are thus three distinct behavioral patterns as presented in Table 13.1 and
Fig. 13.2.
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Table 13.1 Summary of the results

Behavioral outcome Condition for Condition for Condition for
Scrounger Producer full information partial information no information
steals defends vs vp vs vp EŒv�

Yes No any vp < c
a

vs > c	
1�a	

vp < c
a

EŒv� < c
a

No Yes vs < c
1�a

vp > c
a

vs < c	
1�a	

any EŒv� < c
1�a

EŒv� > c
a

Yes Yes vs > c
1�a

vp > c
a

vs > c	
1�a	

vp > c
a

EŒv� > c
1�a

EŒv� > c
a

vs

vp

c
a

c
1−a

Scrounger
does not
attempt to
steal

Scrounger attempts
to steal
Producer defends

Scrounger attempts to steal
Producer does not defend

vs

vp

c
a

c
1−a

Scrounger
does not
attempt to
steal

Scrounger attempts
to steal
Producer defends

Scrounger attempts
to steal
Producer does not
defend

cπ
1−aπ

a b

Fig. 13.2 Behavioral outcomes of the game for the same parameter values c and a but different
information cases. (a) Full information case, (b) Partial information case. We note that 	 actually
depends on c, and if c is large enough, 	 D 0 i.e., the white region can disappear

13.3.2 Partial Information Case

Now, assume that the scrounger knows the value vs and the distribution of vp (which
is assumed to be the same as distribution of vs; in particular, it does not depend on the
value of vs), but does not know the exact value of vp . Consequently, the scrounger
does not know for sure whether the producer will defend. However, it is still true that
the producer will defend if c

a
< vp . From the scrounger’s perspective, the producer

will thus defend with a probability 	 D Prob
�

c
a

< vp

�
. If the producer does not

defend, the payoff to the scrounger will be vs . If the producer defends, the payoff to
the scrounger will be .1 � a/vs � c. Hence, if the scrounger attempts to steal, his
payoff will be

.1 � 	/vs C 	
�
.1 � a/vs � c

� D vs.1 � a	/ � c	: (13.4)

If the scrounger does not attempt to steal, its payoff will be 0. Hence, the scrounger
should attempt to steal if
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vs >
c	

1 � a	
: (13.5)

There are thus three behavioral patterns as presented in Table 13.1 and also in
Fig. 13.2.

13.3.3 No Information Case

The analysis in the no information case is actually very similar to the full
information case. The only difference is that the individuals do not know the exact
value of the resource, but they do know the expected values, EŒvp� and EŒvs�. Since
we assume that the distributions of vp and vs are the same, we have EŒvp� D EŒvs�

and we will denote it just by EŒv�. There are thus three distinct behavioral patterns
as presented in Table 13.1.

13.4 Comparison Between Different Information Cases

The illustrative comparison is shown in Fig. 13.3 in the case where the values vs and
vp have uniform distribution between vmin; vmax and are independent.

13.4.1 Comparison Between the Full and Partial
Information Cases

Since the function f .x/ D cx
1�ax

is increasing in x and 0 � 	 � 1, we get that

c

1 � a
� c	

1 � a	
(13.6)

with equality only if 	 D 1.
For now, let us consider that 	 2 .0; 1/. It follows from (13.3), (13.5), and (13.6)

that when vs > c
1�a

, the scrounger steals regardless of vp and thus the scrounger’s
expected payoff (given any distribution of vp for the producer) is the same in the
full information and partial information cases.

On the other hand, if vs < c	
1�a	

(which is possible only if 	 > 0), then the
scrounger does not steal in the partial information case, leaving it with the payoff 0.
However, if the scrounger knew vp , it would steal if

vp <
c

a
(13.7)
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Fig. 13.3 The Scrounger’s payoffs for varying cost of the fight c, different distribution of v and
different values of a in three different information scenarios. (a) a D 0:4, v uniformly distributed
in Œ0; 4�, (b) a D 0:4, v uniformly distributed in Œ1; 4�, (c) a D 0:5, v uniformly distributed in
Œ0; 4�, (d) a D 0:5, v uniformly distributed in Œ1; 4�, (e) a D 0:6, v uniformly distributed in Œ0; 4�,
(f) a D 0:6, v uniformly distributed in Œ1; 4�

and in those cases the scrounger’s payoff would be vs . When 	 < 1, the distribution
of vp is such that (13.7) is satisfied with positive probability 1 � 	 , and thus the
expected payoff to the scrounger in the full information case is positive (i.e., larger
than the expected payoff in the partial information case, which is 0).
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It remains to investigate the values vs such that c	
1�a	

< vs < c
1�a

. For such vs ,
if vp is such that (13.7) holds, then the payoff to the scrounger is vs and the payoff
in the full information and partial information cases are the same. However, if vp is
such that (13.7) does not hold, then, by (13.3), the expected payoff to the stealing
scrounger is negative.

Hence, overall, the expected payoff for the scrounger (given the distribution of
vp) in the full information case is larger than in the partial information case. One can
also see that as a increases, the advantage of the full information case gets larger.

It remains to investigate the cases of 	 D 0 and 	 D 1. It turns out that in such
cases, the expected payoffs for the scrounger are the same. If 	 D 0, then c is always
larger than avp and so the Scrounger always steals and the producer never defends.
If 	 D 1, then c is always smaller than avp , i.e., the producer always defends and
the scrounger behaves the same way in both cases.

13.4.2 Comparison Between the No Information Case
and the other Cases

Let c0 D inf
˚
cI Prob

�
c
a

< vp

� D 0
�

and c1 D sup
˚
cI Prob

�
c
a

< vp

� D 1
�
. When

c > c0, then 	 D 0 and also c
a

> EŒv�. Hence, in any scenario, the scrounger
steals and the producer does not defend. Consequently, the expected payoff to the
scrounger is the same in all information cases.

When aEŒv� < c < c0, the no information case is better for the scrounger than
the full information case (which is better than the partial information case). Indeed,
in the no information case, the scrounger attempts to steal and the producer always
gives up, leaving the scrounger with the expected payoff vs which it cannot get for
any other scenario (since now 	 > 0 and hence there is a positive probability of
having vp > c

a
).

When .1 � a/EŒv� < c < aEŒv�, the scrounger does not attempt to steal, getting
a payoff of 0. This is worse for the scrounger than in the partial information case
(the scrounger attempts to steal there for some values, sometimes receiving a free
resource, and still gets a positive payoff even when the producer defends) which is
worse than in the full information case.

When c1 < c < min fa; .1 � a/g EŒv�, then in the no information case, the
scrounger always attempts to steal and the producer always defends. This is worse
for the scrounger than in the partial information case (which is worse than the full
information case) since there are items that are not worth fighting for.

When c < c1, then the expected payoffs in all information cases are the same,
since the Scrounger always steals and the Producer always defends.
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13.4.3 Summary

The amount of information available has no effect on the payoff to the scrounger
when the cost of the fight is relatively small (i.e., when c < c1 so that then it is
beneficial to fight for any item under any informational situation) or relatively large
(i.e., when c > c0 so that for the producer it is not beneficial to fight for any item
under any informational situation). For intermediate costs c 2 .c1; c0/, having full
information is better than having only partial information. Moreover, if c < aEŒv�,
then the no information case yields even lower payoffs; and when c > aEŒv�, then
the no information case yields the largest expected payoff.

It is clear that the variance of the resource values has a strong influence on
our results. If this variance is small, then c0 and c1 will be close together and the
intermediate region where behavior differs between the cases is small. Note that if
the variance is actually zero, then there is no useful information to be had and the
three cases are identical. For large variance, the intermediate region may account
for all plausible cases, and the models will yield significantly different results.

13.5 Discussion

In this paper we investigated the effect of information on the payoffs of a producer-
scrounger game. One would be tempted to argue that having more information
would yield larger payoffs and this was indeed the case for a scrounger having full
information versus one with only partial information in the model described by this
paper; and, for some parameter values, also the case of no information versus full or
partial information case.

However, having more information is not always better. The no information case,
where an individual does not know the real value of the resource, is for some
parameter values the best case for the scrounger. Yet, let us point out that although
this was called the no information case, the scrounger has in fact a very valuable
piece of information—the scrounger knows that the producer does not know the
real value either, and consequently knows whether it will fight a stealing attempt.

We note that the fact that knowing less is sometimes better has already been
observed before. In [5], the authors investigate a scenario in which the value
of the resource is the same for both the producer and the scrounger, but nevertheless
the resource value is variable and either both the producer and the scrounger know
the value, or only the producer knows it. When the scrounger knows the value of the
resource, its expected payoffs are lower than when he does not know it. Also, in
[7, p. 364], the authors discuss a Producer–Scrounger game that is similar to the
one described here, yet again, knowing seemingly less yields larger payoffs for the
scrounger.

We also note that in Fig. 13.3 we have assumed that the values of vs and vp

are independent. The relationship between the two is particularly important in the
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partial information case, where knowledge of vs may provide the scrounger with
information about vp , and so affect 	 . Independence of resource valuation is actually
one extreme of a spectrum, the other end of which is complete coincidence of the
two. The former is more plausible when the valuation is based on hunger; then at
least in the first approximation, the fact that one individual is hungry does not give
any new information about its opponent, so that the assumption of independence is
reasonable in this case. However, it is also true that if one individual is hungry, then
it may be largely because there is not much food around and the same will be true for
its opponent. Thus the correlation between the resource values may be important.In
this case the latter is more plausible, and this will also be the case if food items vary
in size.

Finally, the variance of the resource value will also have a significant effect on
our results. For low variance the models mainly coincide, but for high variance
their predictions can be very different. It is the variability of the resource value
which makes the possession or lack of information important, and the combination
of variability in the value of the resource and the availability of information which
makes this model an interesting one to study.
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Chapter 14
A Field Test of Optional Unrelated Question
Randomized Response Models: Estimates
of Risky Sexual Behaviors

Tracy Spears Gill, Anna Tuck, Sat Gupta, Mary Crowe,
and Jennifer Figueroa

14.1 Introduction

Subjects tend to provide a more socially desirable response when asked about
illegal or highly stigmatized behaviors [21]. This is known as social desirabil-
ity response bias and can make estimating the prevalence of these behaviors
problematic. One technique used to reduce this response bias is the randomized
response technique (RRT). This method, introduced by Warner [22], increases sub-
ject anonymity by asking the sensitive question in an indirect manner. With a greater
sense of anonymity, subjects are more likely to provide a truthful response [19].
RRT models have been used successfully to obtain accurate estimates of a variety
of behaviors susceptible to response bias in self-report surveys including AIDS [2],
lying and cheating [12], drug use by athletes [20], and veterinary diseases [4].
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The unrelated question RRT model, proposed by Greenberg et al. [8], is a
variation of Warner’s original model that has been shown to be a more efficient
alternative [7, 15]. In unrelated question RRT, a predetermined proportion of
subjects is asked an innocuous, unrelated question with known (or unknown)
mean. A randomization device is used anonymously by subjects to determine
which question (sensitive or innocuous) must be answered. Since the researcher
knows only the reported response, not which question was answered, the subjects
anonymity in regard to the sensitive behavior is preserved. As the researcher
determines proportion of subjects who receive the sensitive question, and knows
the true mean of the unrelated question, the mean of the sensitive behavior can be
estimated at the aggregate level.

Recently a variation of the RRT model, known as Optional RRT model, has
been proposed by Gupta et al. [9]. Optional models take into account the fact
that a question may be sensitive to one subject, but not sensitive to another.
Subjects finding the question not personally sensitive are instructed to ignore
the innocuous question, if obtained from the randomization device, and answer
the sensitive research question instead. Optional models allow estimation of two
parameters. In addition to population mean or prevalence, estimated by all RRT
methods, optional models also estimate the sensitivity level of the underlying
sensitive behavior. sensitivity level is defined as the proportion of subjects who find
the question sensitive, and hence want the extra anonymity of the randomization
device in answering. Knowledge of the sensitivity level is important because it
allows researchers to assign better-trained interviewers for more sensitive questions.
Sensitivity estimation also plays a critical role in Multi-Stage RRT models [10, 14].

Optional RRT models have shown promise in theoretical papers and computer
simulations, but their performance has not been evaluated through field surveys
involving real sensitive topics. This paper presents a field test of the optional
unrelated-question RRT models introduced in Gupta et al. [11], covering both
binary and quantitative response situations. The estimates of population mean and
prevalence obtained by this method are compared to results obtained by using direct
face-to-face interview method and anonymous check-box survey method. Estimates
of sensitivity level are only obtained by optional RRT methods, and so cannot
be compared directly to other survey methods. Our expectation is that estimates
obtained from optional RRT models will match well with those of check-box
survey method (assumed to represent the true status), since both provide subjects
anonymity, and that results based on face-to-face interview surveys will be low.
Additionally, optional RRT models will provide an estimate of sensitivity level.

14.2 Optional Unrelated Question RRT Models

Optional unrelated question RRT model formulas for mean estimator ( O�X ), preva-
lence estimator ( O	X ), and corresponding Sensitivity estimators ( OW1, OW	1) are pro-
vided in Gupta et al. [11] and are briefly summarized below. Figure 14.1 illustrates
the process of answering a question in an Optional unrelated question RRT survey.
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Subject Approached
by Researcher

Is the Question
Personally Sensitive?

Answer Sensitive
Question

Use Randomization
Device

Receive and
Answer Sensitive

Question

Receive and
Answer Unrelated

Question

Yes

No

Fig. 14.1 Flowchart depicting optional unrelated question RRT subject answering procedure

14.2.1 Quantitative Model

Let X be the true sensitive variable of interest with unknown mean �X and unknown
variance 
2

X , and Y be a non-sensitive variable with known mean �Y and known
variance 
2

Y . Let p represent probability of receiving the sensitive question from
the randomization device. Let W be the sensitivity level of the question. That is, a
proportion W of the respondents considers the question sensitive and will choose to
provide a scrambled response. Others will provide a direct response with probability
.1 � W /. This is done using color-coded cards unobserved by the respondent.

The reported response Z under this scenario is given by:

Z D
(

X; with probability .1 � W / C Wp

Y; with probability W.1 � p/
(14.1)

with

E.Z/ D .1 � W /E.X/ C W.pE.X/ C .1 � p/E.Y / (14.2)

and

Var.Z/ D Œ.1 � W / C Wp�E.X2/ C W.1 � p/E.Y 2/ � ŒE.Z/�2 (14.3)

Using a split sample approach, the estimate of population mean �X is given by

O�X D
NZ1 � � NZ2

1 � �
with (14.4)

Var. O�X / D Var. NZ1/ C �2 Var. NZ2/

.1 � �/2
(14.5)
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where NZi ; .i D 1; 2/ is the sample mean of reported responses in the i th sub-sample,
pi is the probability of receiving the sensitive question in the i th sub-sample, and
� D .1 � p1/=.1 � p2/.

An approximation of the sensitivity estimator . OW1/ is obtained by using a first
order Taylor’s approximation (with A D E. NZ1/ and B D E. NZ2/) and is given by

OW1 D A � B

�Y .p2 � p1/ C .1 � p2/A � .1 � p1/B
C

C .p2 � p1/.�Y � B/.. NZ1/ � A/

Œ�Y .p2 � p1/ C .1 � p2/A � .1 � p1/B�2
C

C .p2 � p1/.A � �Y /.. NZ2/ � B/

Œ�Y .p2 � p1/ C .1 � p2/A � .1 � p1/B�2
(14.6)

with

Var. OW1/ D
�

.p2 � p1/.�Y � B/

Œ�Y .p2 � p1/ C .1 � p2/A � .1 � p1/B�2

�2

2

1

n1

C

C
�

.p2 � p1/.�Y � B/

Œ�Y .p2 � p1/ C .1 � p2/A � .1 � p1/B�2

�2

2

2

n2

(14.7)

where


2
i D Œ1 � W C Wpi�E.X2/ C W.1 � pi /E.Y 2/ � ŒE.Zi /�

2; i D 1; 2 (14.8)

14.2.2 Binary Model

As established in Gupta et al. [11], the estimators of the prevalence of the sensitive
characteristic . O	X / and the corresponding sensitivity level . OW	/ are given by

O	X D
OPY1 � � OPY2

1 � �
(14.9)

with

Var. O	X / D Var. OPY1 / C �2 Var. OPY2 /

.1 � �/2
(14.10)

and

OW	 D
OPY1 � � OPY2

.p2 � p1/.	Y � O	X /
(14.11)
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The expression for OW	 in (14.11) is a ratio of two random variables. Its
approximation based on the first order Taylors approximation ( OW	1) and its variance
is given by

OW	1 D PY1 � PY2

	Y .p2 � p1/ C .1 � p2/PY1 � .1 � p1/PY2

C

C .p2 � p1/.	Y � PY2 /.
OPY1 � PY1 /

Œ	Y .p2 � p1/ C .1 � p2/PY1 � .1 � p1/PY2 �
2

C

C .p2 � p1/.PY1 � 	Y /. OPY2 � PY2 /

Œ	Y .p2 � p1/ C .1 � p2/PY1 � .1 � p1/PY2 �
2

(14.12)

with

Var. OW	1/ D
�

.p2 � p1/.	Y � PY2 /

�y.p2 � p1/ C .1 C p2/PY1 � .1 � p1/PY2

�2 
2
	1

n1

C

C
�

.p2 � p1/.	Y � PY2 /

�y.p2 � p1/ C .1 C p2/PY1 � .1 � p1/PY2

�2 
2
	2

n2

(14.13)

where


2
	i

D PYi .1 � PYi /

ni

; i D 1; 2 (14.14)

When response bias would result in underreporting of the sensitive behavior, it
is important that the mean of the unrelated question is greater than the mean of the
sensitive behavior to provide subject anonymity. Also, the unrelated question must
be selected such that its mean is not close to the mean of the sensitive behavior to
avoid a near zero term in the denominator of the estimator for sensitivity level.

14.2.3 Sample Split

The sample split is based on optimal split formulas given in Gupta et al. [11].
Although there are two different sensitive questions involved in our survey (quanti-
tative and binary), our optimal split is based on the quantitative model. The variance
of O�X is minimized by this optimal split.

14.3 Previous Study

Previously, in 2011–2012, a field study was attempted by the authors using the
binary version of the Optional Unrelated-Question RRT, Eqs. (14.9) and (14.11).
The sensitive question used in that study was “Have you used Ritalin, Adderall, or
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Table 14.1 Stimulant
medication misuse survey
results

Method O	X 95% CIa

Optional RRT 0.0255 (0.0066, 0.0443)
Check-box method 0.1063 (0.0503, 0.1413)
Face-to-face interview 0.0958 (0.0550, 0.1576)
aBased on Bonferroni correction

Fig. 14.2 Estimates of prevalence of stimulant medication misuse ( O	X ) by three methods, with
95 % CI based on Bonferroni correction

any other stimulant medication in the past 12 months in ways that are not prescribed
by a physician?” and the innocuous unrelated question was “Were you born in
the month of April?” This question was selected because the prevalence of an
April birthday (	Y D 0:0822) is similar to the prevalence of simulant medication
misuse reported in other studies [6, 18]. In that study, check-box survey and direct
face-to-face interview methods were used in addition to the Optional Unrelated-
Question RRT method. Survey results are provided in Table 14.1 and Fig. 14.2, with
confidence intervals that are based on Bonferroni correction.

Note that the survey results are counter-intuitive. Questioning subjects about
sensitive behavior in a face-to-face interview setting provides the least anonymity,
so this method was expected to produce the lowest estimate of prevalence. However,
the face-to-face interview results are almost in line with the check-box method
and the optional RRT results show much lower prevalence rate. Based on this
first attempt at implementing an Optional RRT model with real subjects, several
critical areas for improvement were discovered. The most important was that of
selection of the unrelated, innocuous question. The prevalence of April birthdays
(	Y D 0:0822) is close to the prevalence of stimulant medication misuse reported
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in previous studies and estimated in this study by the two other survey methods.
Additionally, surveys (described below) indicate that the population in this study
does not consider this a sensitive topic. A combination of these problems likely
resulted in a calculated value of OW	 D 1:2284. Additionally, this study did not
incorporate an optimal split between subsamples, which will increase the variance
of O	X . All of these issues were addressed in the present study, as described below.

14.4 Current Study

14.4.1 Participants

The study was conducted at the campus of University of North Carolina at Greens-
boro (UNCG), a public university in the southeastern United States. Enrollment
at UNCG is approximately 18,000 students [1], with 67% of undergraduates
being females [16]. Eight hundred and seventy-eight subjects were recruited from
undergraduate level class sections in mathematics and statistics with at least 50
enrolled students. Participation was voluntary and took place during regular class
time. No incentives were given for participation. Subjects had a median age of
19 and a mean age of 20.56 (875 reporting), 66.6% were female and 33.4% male
(841 reporting), 5.5% reported being married and 95.5% reported not being married
(871 reporting). Distribution among class levels was: 37.2% freshman, 30.5%
sophomore, 19.5% junior, 12.2% senior, and 0.5% other (876 reporting).

14.4.2 Question Selection

To assist in selection of topics sensitive to our participant population, a short survey
was given to 55 students. Twelve sample questions were provided in the survey.
Students were asked to rate how sensitive they found each question on a ten-point
Likert scale. Items rated most sensitive included topics related to sexual behavior.
Items rated less sensitive included topics related to alcohol and stimulant medication
misuse. In selecting questions for the field test, these ratings were considered in
addition to the availability of previous research on the topic so that some comparison
with existing studies can be made.

One binary and one quantitative question were selected for the study. The
question “Have you ever been told by a healthcare professional that you have a
sexually transmitted disease?” was selected as the binary question. Previous studies
report prevalence of STD among college students at 10–25 % [5,13]. The innocuous,
unrelated question paired with this binary question was “Were you born between
January 1st and October 31st?” which has a prevalence of approximately 83 %. The
question “How many sexual partners have you had in the last 12 months?” was used
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as the quantitative question. Previous studies report a mean of 1.8–2.2 [3, 17] in
similar populations. In this case, the innocuous unrelated question is “What is the
number listed on this card?” The numbers listed on the cards ranged from 0 to 9,
with a mean of 4.04.

14.4.3 Procedure

Enrolled classes were surveyed by one of the three methods: the RRT method
described above, direct face-to-face interviewing, or anonymous check-box survey.
Prior to participation, all students received information about the risks and benefits
of participation in the study, the questions to be asked in the study, as well as a
short lecture about RRT. Those willing to participate then completed a consent form
and a survey of demographic information (age, sex, marital status, year in school).
Participation was voluntary. In all the three methods, participants were informed
of the sensitive questions prior to completing the consent forms. The study was
overseen by UNCGs Institutional Review Board.

In class sections selected for the check-box survey method, the sensitive ques-
tions were included on the demographic information sheet. After completion of this
form, participants placed the survey in a collection box. In class sections selected
for the face-to-face interview method, participants approached an interviewer after
completing the demographic information sheet. The participant was then directly
asked each of the sensitive questions, and the response was recorded by the
researcher on the demographic sheet.

In sections selected for RRT, participants were instructed to consider whether
either of the questions was personally sensitive (if they would hesitate to answer
the question if asked directly). Upon approaching the interviewer, participants were
instructed to select a card from a deck corresponding to the binary question and one
from a deck corresponding to the quantitative question. If the participant earlier
determined that the question is personally sensitive, he/she was to answer the
question drawn from the deck. If the participant had earlier determined that the
question is not personally sensitive, that question should be answered, regardless of
which question (sensitive or innocuous) was drawn from the deck. Responses were
recorded by the researcher on the demographic sheet.

Participants in the RRT group were split into two subsamples according to the
optimal sample spilt formula given in Gupta et al. [11]. Rough estimates of number
of sexual partners and STD prevalence, needed for sample size determination, were
obtained from previous studies, and set at �X D 2 and 	X D 0:15. No previous
studies have estimated W1 or W	1 , but investigation of a range of possible values
for W1 and W	1 revealed only slight changes in the optimal split proportions (see
Tables 14.2 and 14.3). Four hundred and sixty-six participants were recruited into
the RRT sample, with 354 in sub-sample 1 and 112 in sub-sample 2, giving n1=n D
0:7597. This is close to the optimal splits in Tables 14.2 and 14.3 based on a total
sample of 500, regardless of the sensitivity level.
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Table 14.2 Optimal split
using �X D 2

W n1 n2 Optimal value of n1=n

0 400 100 0.8
0.25 388 112 0.7758
0.5 383 117 0.7668
0.75 383 117 0.7663
1 386 114 0.7718

Table 14.3 Optimal split
using 	X D 0:15

W n1 n2 Optimal value of n1=n

0 400 100 0.8
0.25 387 113 0.7742
0.5 385 115 0.7698
0.75 389 111 0.7778
1 399 101 0.7973

Table 14.4 Estimates of the mean number of sexual partners in the last 12
months

Method O�X Sample std. dev. 95% CIa n

Optional RRT 1.717 3.9912 .1:2744; 2:1596/ 466
Check-box method 1.680 2.5613 .1:2647; 2:0953/ 218
Face-to-face interview 1.130 1.1511 .0:9311; 1:3289/ 192
aBased on Bonferroni correction

Table 14.5 Estimates of the STD diagnosis prevalence

Method O	X Sample std. dev. 95% CIa n

Optional RRT 0.0367 0.1180 .0:0159; 0:0576/ 466
Check-box method 0.0900 0.2862 .0:0438; 0:1362/ 220
Face-to-face interview 0.0200 0.1400 .�0:0042; 0:0442/ 192
aBased on Bonferroni correction

Note that the total sample size allocated to RRT group is about double of what it
was for the other two groups. This was because two parameters are estimated in the
optional RRT case (mean and sensitivity level), compared to a single parameter in
the other cases (mean).

14.5 Results

Results for O�X and O	X by the three survey methods are provided in Table 14.4
and Fig. 14.3, and Table 14.5 and Fig. 14.4, respectively. Confidence intervals are
based on Bonferroni correction. Results for sensitivity level ( OW , OW	 ) by optional
unrelated-question RRT are listed in Table 14.6.
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Fig. 14.3 Estimates of number of sexual partners in the previous 12 months ( O�X ) by three
methods, with 95 % CI based on Bonferroni correction

Fig. 14.4 Estimates of STD diagnosis prevalence ( O	X ) by three methods, with 95 % CI based on
Bonferroni correction
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Table 14.6 Estimates sensitivity level

Question Sensitivity level Est. std. dev. 95% CI

Number of sexual partners OW D 0:6098 0.1290 .0:5981; 0:6215/

STD history OW	 D 0:7730 0.0196 .0:7712; 0:7748/

14.6 Discussion

The estimate of �X obtained by Optional Unrelated-Question RRT [ O�X D 1:717,
95 % CI (1.2744, 2.1596)] is very similar to the estimate given by check-box survey
method [ O�X D 1:680, 95 % CI (1.2647, 2.0953)]. The lowest point estimate of �X

is obtained by face-to-face interview ( O�X D 1:130), which is expected since this
method provides the least anonymity. However, the upper bound of the 95 % CI for
this group (0.9311, 1.3289) does overlap with those of the other two methods, but
only slightly. For the binary method, the estimate of 	X is highest when obtained by
check-box survey [ O	X D 0:0900, 95 % CI (0.0900, 0.1362)], and lowest in face-to-
face interviews [ O	X D 0:0200, 95 % CI (�0.0042, 0.0442)] with Optional Unrelated
RRT being in the middle, as expected [ O	X D 0:0367, 95 % CI (0.0159, 0.0576)], but
there is overlap in the 95 % confidence intervals of all the three methods. Perhaps a
larger sample would be needed to see better delineation between the three methods.
The results for number of sexual partners and STD prevalence obtained by optional
unrelated question RRT and check-box survey are in line with estimates obtained
by previous studies [3, 5, 13, 17].

As sensitivity level is estimated only by Optional RRT methods, and this is
the first field test of an Optional RRT model, there is no way to make a direct
comparison of these results. The sensitivity level of the question on number of
sexual partners ( OW D 0:6098) and STD history ( OW	 D 0:7730) is consistent
with the fact that these questions are generally sensitive and one would not feel
comfortable answering them directly. Also the results of this field test study are
consistent with the mathematical and computer simulation results presented in
Gupta et al. [11].
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Chapter 15
A Spatially Organized Population Model
to Study the Evolution of Cooperation in Species
with Discrete Life-History Stages

Caitlin Ross, Olav Rueppell, and Jan Rychtář

15.1 Introduction

The evolution of cooperation and altruism has intrigued scientists from more than a
century because it superficially seems to have individuals act against the paradigm
of Darwinian fitness maximization [5]. Nevertheless, cooperative and altruistic
behavior occurs in a number of different taxa [8]. In most species, cooperation and
altruism are linked to kin selection [10], the argument that individuals can gain
fitness by helping related individuals reproduce [11, 12]. Criticism of kin selection
as the only underlying concept of inclusive fitness theory has led to the insight that
spatial structures of natural populations are key to the evolution of cooperation and
altruism [16].

The evolution of cooperation and altruism has been addressed by a simple
game called the Prisoner’s Dilemma [19, 25]. The game is one of the most widely
studied games in biology [15] and it is used in different variations of increasing
complexity [1, 2, 7]. In its simplest case, the Prisoner’s Dilemma game involves
two individuals that interact once and can either cooperate with each other or try
to deceive the other individual. The evolutionary benefit from their interaction is
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determined according to a payoff matrix, where the cooperator receives less benefit
than the defector, yet the benefit for mutual cooperation is higher than the benefit
for mutual defection. Despite defectors outcompeting cooperators in this simplest
scenario, cooperative strategies can evolve in a number of variations of the Prisoners
Dilemma, including games played in a structured population [6, 17, 18].

Population structure is typically introduced as a square lattice with interaction
between neighboring nodes [22]. Under most circumstances, the structuring facil-
itates the evolution of cooperation because cooperators interact more often with
cooperators than defectors. An important issue has been the role of diversity among
players. Variation in competitive ability may or may not increase the probability
for cooperation [14], while cooperation is promoted by variation in social variables
[21], reproductive ability [23], and reproductive timing [27]. Equally relevant is the
incorporation of player aging because all biological species age at some rate, which
correlates with a number of variables, including social status and mortality rates [9].
Specifically, aging has been incorporated mostly as a maturation process: With the
age of players the payoff [26] or the strategy transfer ability [24] may increase,
which facilitates the evolution of cooperation in both cases. However, aging is
also accompanied by many detrimental changes, including a loss of function and
increasing mortality risk [20].

Evolutionarily most relevant across all species are age-dependent changes in
reproductive status. In all biological species, individuals have to grow and mature
until they reach reproductive age but the timing of the onset of reproduction is
highly variable. Biological species also differ in the duration of their reproductive
phase: While some species only reproduce once in their life, the reproductive phase
represents the largest part of the lifespan in other species. A few species, including
humans, have even evolved a post-reproductive lifespan that can have a considerable
duration after the last reproductive event. These fundamental differences in life
history structure correlate to some extent with the social organization of the species.
Typically, social species have a later onset of reproduction and the phenomenon
of a post-reproductive lifespan is only known from social species. As sociality
is dependent on cooperation and altruism, these observations pose the question
whether life history is a consequence of social organization or whether life history
structure could also influence the evolution of cooperation and altruism. While
several studies have addressed the first possibility [3, 4], the alternative has not yet
been addressed.

Therefore, we develop a model of a spatially organized population of individuals
in a square lattice that interact with their neighbors in either cooperative or non-
cooperative way. These individuals transition from a potentially pre-reproductive
to a reproductive and then potentially to a post-reproductive stage in a semi-
deterministic fashion and they also die with a certain probability. Death results in a
reproductive opportunity of all surrounding individuals and the individual with the
highest payoff from all combined local Prisoner’s Dilemma games will reproduce
an offspring of identical phenotype into the empty spot. Our model confirms
that cooperation can increase from a small cluster of cooperators in this spatially
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structured population, dependent on the relative cost of cooperation. In addition, we
find the likelihood that cooperation is fixed in the population also to be dependent
on the population structure and on the life histories.

15.2 Methods

To simulate the spatial structure of the population, we assume the individuals live
on a regular L 	 L square lattice with periodic boundaries. We used L D 128 in
our simulations as initial tests showed that such L is not only large enough to avoid
small populations effects but also small enough for the simulations to finish in a
reasonable time. We consider two types of neighborhoods where each individual
has (a) n D 4 neighbors (north, east, south, west), or (b) n D 8 neighbors (north,
northeast, east, southeast, south, southwest, west, northwest), sometimes called
Moore neighborhood [13].

Each node of the square lattice is either empty, or occupied by an individual (in
some stage of its life). The (average) durations (measured in reproductive seasons)
of those stages, denoted by dpre; drep; dpost , are parameters of the simulations.
By dlife D dpre C drep C dpost we denote the (average) life span. We refer to
every fixed combination of the durations as an age setup. We used two different age
setups: .0; 3; 0/ and .1; 1; 1/, representing individuals having only a reproductive
stage and individuals having all three stages with equal durations, respectively. The
aging of individuals is assumed to be biological (stochastic) and will be explained
in detail below.

For each fixed age setup, the population is initialized so that the frequencies of
individuals in appropriate life stages are close to the equilibrium state where the
number of individuals in any particular stage is proportional to the duration of the
stage. Specifically, every node of the L 	 L lattice is set empty with probability
.1 C dlife/

�1, or occupied by an individual in the stage x (pre-reproductive, repro-
ductive, or post-reproductive) with probability dx.1 C dlife/�1. To initialize, almost
all individuals are considered to be defectors; only a small number of individuals
living in a small 8 	 8 lattice are set as cooperators. This means that roughly
only 82=1282 � 0:004 fraction of individuals are cooperators. We have adopted
this cluster seeding because when we initially tested random assignments of the
strategies, the clusters have formed fast (it follows from the updating rules described
below that clusters form naturally as individuals do not move and offspring are
always placed next to the parent).

We then use Monte Carlo simulation to update the population in a series of
elementary steps. It will follow that when we do L2 such steps, every individual
on average ages by one reproductive season and the average life of an individual
is thus dlifeL

2 of such elementary updates. We will refer to so many updates as
a generation. For the purpose of this paper, we have run the simulations until one
strategy dominated and the other vanished; or until we have updated for a total of
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5;000 generations. We have chosen 5;000 generations after initial testing when we
observed that when both strategies coexist after 5;000 generations, they still very
likely coexist even after 30;000 generations.

Every elementary step starts by randomly selecting a node in the L 	 L square
lattice. If the node is occupied by an individual in stage x (pre-reproductive, repro-
ductive or post-reproductive), then the individual “stochastically ages.” It means that
the individual moves to the next life stage (or “dies” and the node becomes empty if
it is currently in the last stage of its life) with probability d �1

x . This assures that the
duration of a particular stage is on average dx updates of the node. Since every node
is updated on average once in L2 updates, dx updates of the particular node roughly
corresponds to aging by dx reproductive seasons. We note, however, that for the age
setup .0; 3; 0/, the exact length of any life stage is stochastic and not deterministic
and the aging is thus biological.

If the randomly selected node is not occupied, then one of the following things
will happen. If there is no individual in a reproductive stage in the neighborhood
of the focal (selected) node, then the focal node will remain empty. Otherwise, one
of the reproductive individuals in the neighborhood is selected to be a parent and it
then places an offspring into the focal node. The offspring will inherit the parent’s
strategy (i.e., it will be cooperator if and only if the parent is) and it starts at the first
life stage (pre-reproductive if dpre > 0, or reproductive if dpre D 0).

The parent selection is done at random and proportional to the fitness which
is calculated as follows. If the prospective parent has NC cooperators (and ND

defectors and NE empty spaces) in the neighborhood, then its fitness is given by

f D 1 C
(

NC ; if it is cooperator

bNC ; if it is defector.
(15.1)

where 1 corresponds to a background fitness. A positive background fitness has to
be included as otherwise individuals with no cooperative neighbor (i.e., typically the
defectors) would not reproduce. We have tested for several values of the background
fitness, but we did not spot any significant differences, so we settled for background
fitness of 1. The above formula (15.1) means that the fitness is calculated based on
the evolutionary prisoner’s dilemma game that the prospective parents play with all
of their neighbors. The payoff matrix of the game is

�Cooperate Defect

Cooperate 1 0

Defect b 0

�
(15.2)

and has already been studied and used in a similar context in [24]. The advantage
of such a simple matrix is that b is the only parameter; and for 1 < b � 2 all the
important aspects of prisoner’s dilemma game are preserved.

For every age setup, we have run 100 simulations described above. If one of
the strategies reached a fixation, we noted the time of that event (in generations).
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For n D 8, the age setup .0; 3; 0/ and b between 1.3 and 1.7, both cooperators
and defectors still existed after 5,000 generations, we noted the time as 5,000. The
coexistence actually persisted for quite a large number of generations and we thus
calculated the probability of persistence, which we calculated as the fraction of time
the cooperators made at least 5% population at the end of the generation 5,000.

15.3 Results

For n D 4, the fixation probability as well as the average time to fixate did not
depend significantly on b, see Figs. 15.1 and 15.2. In fact, for the age setup .0; 3; 0/,
the cooperators always fixated with probability 1 and typically in around 200–250
generations (the time increased from about 250 to 450 as b increased from 1.8 to 2).
For the age setup .1; 1; 1/, the fixation probability decreased slightly with b from
about 0.9 (for b D 1) to 0.8 (for b D 2) and the time to fixation was gradually
increasing from about 450 generations at b D 1 to 550 generations at b D 2.

For n D 8, the fixation was close to 1 for small values of b < 1:3 and the
cooperators fixate relatively fast (in less than 200 generations) . For the age setup
.1; 1; 1/, the fixation stays close to 1 even for b < 1:7. For the age setup .0; 3; 0/,
the cooperators never fixated when b > 1:3. However, they still sometimes persisted
in the population for b as high 1:7 and the persistence decreased gradually as b

increased from 1.3 to 1.7. The cooperators were eliminated for b > 1:7. For the
age setup .1; 1; 1/, the cooperators did not fixate for b > 1:7, but persisted in the
population with probability 1=4 even for b D 2.
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life history



152 C. Ross et al.

1 1.2 1.4 1.6 1.8 2
0

1000

2000

3000

4000

5000

b

T
im

e 
to

 f
ix

at
io

n

n=4, 111
n=4, 030
n=8, 111
n=8, 030

Fig. 15.2 The time to fixation of cooperators as it depends on b, the neighborhood size and the
life history

15.4 Conclusions and Discussion

Overall, our model confirms that cooperation can evolve in spatially structured pop-
ulations, even when cooperation has a substantial intrinsic disadvantage compared
to defection [22–24]. Our preliminary analysis of this model have shown that both
the neighborhood size and the life history affect the evolution of cooperation and
altruism.

A large neighborhood size decreases the probability of fixation of cooperators
in the population. Cooperation still fixates in the population with a high probability
(over 80 %) for small neighborhoods (n D 4) even for large b (when the defectors
have a big advantage), but does not fixate (or only with a very low probability) for
larger (n D 8) neighborhoods. The same phenomenon in similar settings has already
been observed in [13].

The results of our model that restricts the neighborhood size to four indicate
that the advantage of defectors (b) does not play a significant role and cooperators
fixate with a roughly constant probability regardless of b. This can be explained as
follows. A defector can only obtain a higher fitness than a cooperator when at least
one cooperator is in its neighborhood. However, there are only four neighboring
spots. One spot is empty, another is typically still occupied by the parent (that uses
same strategy as the focal individual) and thus a defector practically cannot have
more than two cooperators in its neighborhood and very often has none. The spatial
structure leads to clustering of the cooperators and thus a typical cooperator has two
or three cooperators in its neighborhood, outperforming the defectors regardless of
the value of b.
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In accordance with other models, we observed that the life-history affects
the evolution of cooperation [24, 26, 27]. However, the effect interacts with the
neighborhood size. In a population that allows interaction with only four neighbors,
the fixation probability of cooperators across all values of b is higher and the average
time to fixation lower when the reproductive phase is long (030 model) compared to
a life history with an even duration of pre-reproductive development, reproduction,
and post-reproductive aging phase (111 model). In the second population structure
that allows interactions with eight neighbors, the result is reversed across all values
of b. The reasons for these outcomes are not quite clear and more research will
have to be done. However, we note here that the stochasticity of the population
behavior is reduced by both a longer reproductive phase and a larger neighborhood
size, because both prevent local stochastic extinctions of the population due to a
lack of reproductive active neighbors when a reproductive opportunity arises.
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Chapter 16
Analysis of Datasets for Network Traffic
Classification

Sweta Keshapagu and Shan Suthaharan

16.1 Introduction

The classification of network traffic has become an important requirement for
network security solutions due to significant growth in Internet usage, with many
applications that led to a large variety of traffic flowing over computer networks.
Efficient classification algorithms can help manage network traffic and analyze
security risk to help Internet Service Providers (ISP) provide high quality of service
to their customers. The various types of traffic that can be found over the network
include web traffic (http), secure web traffic (https), email traffic (imap, POP3,
smtp, etc.), and file transfer traffic (ftp). Among these, http and https constitute the
majority of traffic flowing through the network, where the http traffic, in particular,
shows significant vulnerability. Hence these two traffic types must be captured at
the gateway (e.g. firewall) of a computer network and classified for further analysis.
This will also allow https traffic to pass through the firewall faster and improve
quality of service requirements.

Machine Learning techniques have been extensively used for classification
problems in network security applications due to their ability to learn statistical and
mathematical properties of network traffic. They are categorized into unsupervised
and supervised learning techniques [9]. The statistical similarity and the differences
of the traffic characteristics are used by unsupervised learning techniques to isolate
traffic classes. Hence it does not use training (i.e. labeled) datasets, but examines
the properties within the incoming dataset and classifies that dataset itself. Hence
unsupervised learning techniques are suitable when the training datasets are not
available. Supervised learning techniques use a training datasets and produce

S. Keshapagu (�) • S. Suthaharan
Department of Computer Science, The University of North Carolina
at Greensboro, Greensboro, NC 27412, USA
e-mail: s_keshap@uncg.edu; s_suthah@uncg.edu
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classifiers based on the statistical and mathematical properties learned. One of the
supervised learning techniques that have been extensively used in network security
research is the Support Vector Machine (SVM) [3]. Several SVM approaches have
been proposed in Machine Learning research focusing on different classification
applications [2, 6, 8, 13].

The classification accuracy of the SVM heavily depends on the feature variable
selection, feature extraction, and distance metric learning adopted in the classifi-
cation process. If irrelevant feature variables are selected and SVM is applied in
the feature space, defined by these feature variables, then the classification will
not give acceptable results. Similarly, if the extracted features do not accurately
characterize the traffic types, then the classification results become inappropriate.
Finally, if the distance metric does not measure the distance between the data points,
then the separation of traffic classes becomes difficult. Hence, feature variable
learning, feature extraction learning, and distance metric learning algorithms are
required and they will help the SVM achieve high classification accuracy. This paper
only deals with the feature extraction and distance metric learning.

We recently studied the LBNL [10] datasets using visualization tools (i.e.
simple mathematical graphs) and noticed some interesting properties of http and
https traffic. We intuitively—based on the networking knowledge—selected TCP
window-size and packet-length as the two variables and plotted them on a two-
dimensional space defined by these two variables. Interestingly, we noticed that
plotting the two traffic datasets formed rectangular shape patterns. This geometric
property motivated us to study the datasets further and explore feature extraction and
distance metric learning. The geometric properties of the rectangular patterns and
their class-separate properties are further investigated based on the features selected.

16.2 Background

The importance of traffic classification has been recently highlighted by Dainotti
et al. [4] in their recent paper. They discussed in detail the issues and challenges
that make traffic classification a difficult problem and suggested some strategies
that may help overcome classification of Internet traffic. Based on their studies they
provided six recommendations to enhance traffic classification systems, including
the development of classification techniques with strong experimental and empirical
studies for validation using diversified network traffic datasets. Since the LBNL
datasets provide a strong ground with diversified traffic data and classification
challenges, these datasets were selected for training and testing of the proposed
learning approaches. While the validations of classifications are important, the
techniques that are used to represent the traffic types are also equally important
to support strong experimental and empirical studies.

One of the techniques that may be useful for classification of network traffic
is the Machine Learning (ML) technique. ML techniques can be used to learn
the characteristics of various network traffic types using labeled (training) datasets
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and classify traffic using the knowledge learned. The traffic characteristics can
be represented by statistical properties and thus the statistical theory helps the
Machine Learning research. For example, Zhang et al. [17] studied the effectiveness
of nearest-neighbor technique for classification of network traffic and proposed
a nonparametric approach incorporating correlation properties of traffic types
to classify network traffic. Similarly, Zuev and Moore [20] studied the Bayes
estimators and used a supervised Nave Bayes estimator to classify network traffic.
However, the classification accuracy achieved by this method is not satisfactory,
considering the requirements for current applications such as network security and
network management. Another statistical approach has been proposed by Carela-
Espaol et al. [1] and in their approach samples of NetFlow data were used. They
adopted the C4.5 ML technique [14] and studied its performance using NetFlow data
and demonstrated performance improvements with packet sampling techniques.
They achieved a high accuracy with very low sampling rate. However, they stated
that, during the training phase, the high accuracy cannot be achieved when a low
sampling rate is used without adopting their packet sampling method.

The ML techniques generally depend on three representation learning tasks:
feature selection learning, feature extraction learning, and distance metric learning
[15]. Feature selection learning has been studied extensively in ML research and
used for traffic classification in recent years. For example, Zhao et al. [18] studied
the performance of ML techniques for classification of P2P network traffic and
highlighted that the current feature selection approaches are not suitable for online
traffic classification. Hence, they proposed a real-time feature selection approach
and calculated the features on the fly. In another paper, Zhang [16] introduced a
new metric called Weighted Symmetrical Uncertainty (WSU) and used this metric
and a wrapper method [12] to select relevant features. The WSU metric was defined
using a weighted entropy approach. Another feature selection approach is proposed
by Zhen and Qiong [19] and they used an information theory approach to determine
the bias of a feature towards a particular traffic class. Then, they proposed a feature
selection method called BFS which reduces the number of features selected in order
to simplify the problems associated with the multiple traffic class classification.

Another issue related to network traffic classification was reported by Suchul
Lee et al. [11] in their paper. They indicated that most of the traffic classification
techniques developed and presented in the public domain did not use the standard
Benchmark tool for testing, and therefore, development of benchmark tools for the
evaluation of classification techniques is required. They also presented a benchmark
tool that can provide an objective comparison between classifiers. The Support
Vector Machine can be considered as a benchmark tool for the traffic classification
in the network security literature because it has been studied extensively in the ML
research by developing several versions of SVM.

In this paper we used the Lagrangian SVM (LSVM) [13] as the benchmark
classification algorithm. It has been shown that the SVM can be trained to get
very high classification accuracy with an iterative training. However its suitability
to online traffic classification is questionable due to its complex mathematical
formulation and the need for good support vectors. One of the recent applications



158 S. Keshapagu and S. Suthaharan

of SVM to TCP traffic classification is presented by Este et al. [5] in their paper.
TCP classification is considered as one of the important requirements in the Internet
because of its use in many network protocols like http, https, and ftp. Hence,
research in TCP traffic classification using the popular ML techniques like SVM
is relevant to the current technology requirements. Among the many types of
TCP traffic, http and https are commonly used protocols. Hence, we address the
classification of these two traffic types.

16.3 Proposed Approach

In this section, we propose an approach to classify http and https data using
their geometric properties determined from the window size and packet length.
As stated earlier, selecting features is the first and foremost step in classification
problems. When a packet flows between two end points, it carries information such
as source IP address, destination IP address, packet-length, protocol, and window-
size. Among these, packet-length and window-size are readily available and is used
for TCP hand-shaking mechanism. Hence, the use of this existing information can
provide computational advantages, which is one of the reasons we selected these
features for representation learning. Another reason is that, based on our findings
from the analysis of LBNL datasets, http and https satisfy the rectangular geometric
shapes, when the variables window-size and packet-length are plotted against each
other. These geometric characteristics of the two traffic types are illustrated in
Fig. 16.1.

We can clearly see the overlapping rectangles for these two traffic types. With
this overlapping structure, the SVM-based classification algorithms will lead to
very high false positives for both traffic classes. As an example, the application
of LSVM to this dataset resulted in the classification shown in Fig. 16.2. Hence,
representation learning algorithms should be adopted as a preprocessing mechanism
before the application of SVM-based techniques. The rectangular patterns of the
http and https traffic classes help us develop a representation learning model (feature
extraction and distance metric) with tunable parameters and train the model for class
separation.

We modeled these two traffic patterns using the algorithm described below.
The model uses four parameters and they are the coordinate point (c1, c2) that
represents the center of the overlapping rectangular region, the distance d1 that
determines the left-and-right displacement of http traffic (for significant separation)
and the distance d2 that determines the up-and-down displacement of https traffic
(for significant displacement). These four parameters will be learned using labeled
datasets based on the following logic:
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Fig. 16.1 Relationships between the packet-length and window-size for http and https traffic

Fig. 16.2 Application of LSVM classification to the two traffic classes
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Fig. 16.3 Initial preprocessing—isolation of the rectangles (two traffic classes)

IF (there are more data points of a particular rectangular pattern than the data
points of the other rectangle on the left side of the center point c1) THEN shift
that rectangle left by d1 ELSE shift that rectangle right by d1 ENDIF.

IF (there are more data points of a particular rectangular pattern than the data
points of the other rectangle on the upper side of the center point c2) THEN
shift that rectangle up by d2 ELSE shift that rectangle down by d2 ENDIF.

The goal of this model is to extract the geometric features (c1, c2), d1, d2 of the
rectangles from the training dataset that will help separate the rectangles of the two
traffic classes, and then define a distance metric between the extracted parameters
d1, d2 to transfer that knowledge to the classification algorithm. An example of the
isolated rectangles of the http and https traffic is presented in Fig. 16.3. Then LSVM
is applied to this preprocessed dataset for classification.

The features extracted from this separation of classes are (�0.089, 0.602), 1.0,
1.0. We can visually see that the two classes are clearly separated with these
extracted features. However, when we applied LSVM on these isolated rectangles,
we get the classification shown in Fig. 16.4. The isolation of two classes causes
problems to LSVM due to the inconsistent spread of data points. This classification
resulted in high false positives for https traffic, but not for http traffic. Hence, to
achieve high accuracy in classification, it is important to learn the model using the
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Fig. 16.4 Applied LSVM on isolated rectangles (rescaled Y-axis for the purpose of highlighting
the SVM classifier)

labeled dataset with feature extraction and distance metric learning. The continuous
learning of feature extraction and distance metric at different learning phases with a
cross validation technique [7] is presented in the next section.

16.4 Experimental Results

In this section we demonstrate the proposed feature extraction and distance metric
learning models and show that the classification problem associated with SVM
approaches can be eliminated by learning the geometric parameters of the rectangu-
lar patterns. To demonstrate learning and the validation of the algorithm, we divided
the training dataset as 80% for learning and cross validation and 20% for testing.

16.4.1 Training Phase

In the training phase, we first learn the model parameters by preprocessing (i.e.,
the representation learning approach) the traffic data and updating the separation
of the rectangles iteratively. This is achieved by choosing appropriate values for
distance metric parameters d1 and d2 at different learning phases. This learning
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Table 16.1 Tenfold False Positives and the average for http traffic - Learning Phase I

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 62.76 73.64 73.09 70.24 74.67 71.71 71.82 71.16 72.93 69.11 71.11

Table 16.2 Tenfold False Positives and the average for https traffic - Learning Phase I

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 48.86 57.74 61.46 57.3 52.08 52.12 52.31 50.36 49.39 51.78 53.44

Table 16.3 Tenfold False Positives and the average for http traffic - Learning Phase II

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 26.55 44.40 47.13 43.17 43.81 49.39 52.55 43.71 42.94 44.54 43.82

Table 16.4 Tenfold False Positives and the average for https traffic - Learning Phase II

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 57.26 60.07 59.95 57.58 57.18 56.94 54.89 55.34 53.82 55.70 56.87

mechanism helps us achieve suitable values for the geometric parameters in order to
classify the traffic data efficiently. Within each learning phase, a cross validation
technique is also applied on the labeled dataset and these phases are explained
below.

Cross Validation. A tenfold cross validation is performed on the 80 % dataset.
We partition the dataset into ten disjoint sets of equal size, and each time one set
is excluded from the dataset and classification is performed on the remaining sets.
In each learning phase we calculate the false positives for both http and https traffic
for the tenfolds and take its average. This average is considered as the intermediate
false positive for that particular phase. Below we present the results for four phases
which reflect meaningful reduction in false positives. The results of all the learning
phases are collected, but only that of four learning phases are presented here to
clearly show the distinctions in false positive percentages (FPP).

Learning Phase I. In the first learning phase, the distance metric values are
selected as d1=0 and d2=0 and they are validated. Note that the values of (c1, c2) are
always closer to (�0.089, 0.602), hence its learning is not necessary. The learning is
done by calculating the FPP for both http and https traffic after applying the LSVM
and tenfold cross validation. Tables 16.1 and 16.2 show the FPP of all the tenfolds,
and then the averages are calculated, which are presented in the last column of the
tables. We can see that, when the distance metric parameters are set to zero, the
FPP for http and https is very high. We also observe that the FPP for https is higher
compared to that of http.

Learning Phase II. In this learning phase, the values of d1= 0.5 and d2=0.1
are assigned to the distance metric and its validation is learned by calculating the
FPP for both http and https after the application of LSVM as discussed earlier.
Tables 16.3 and 16.4 show the results of the FPP of all the tenfolds and, as mentioned
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Table 16.5 Tenfold False Positives and the average for http traffic - Learning Phase III

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 0 0 0 0 0 0 0 0 0 0 0

Table 16.6 Tenfold False Positives and the average for https traffic - Learning Phase III

Tenfolds 1 2 3 4 5 6 7 8 9 10 Average

FPP 0 0 0 0 0 0 29.28 27.06 27.09 26.82 11.22

in the first phase, their averages are also calculated and presented in the last column
of the tables. The results show significant decrease in the FPP values of the http
traffic. However, FPP of https traffic is slightly increased. This is because the
learning model is shifting only the rectangle of the http traffic to the left.

Learning Phase III. In this learning phase we assigned values for d1 and d2 as
1.01 and 0.1, respectively, and, as in the previous learning phases, the validation
is learned and the average of FPP for http and https is calculated. Tables 16.5
and 16.6 show the false positives results for both http and https. In this learning
phase the model was able to achieve no false positives for the http, however some
false positives are observed for the https traffic. Therefore, the parameters d1 and d2

will be learned through more learning phases with cross validation technique.
Learning Phase IV. Finally, in this learning phase, with the proposed repre-

sentation learning model we were able to achieve 0% false positives with LSVM
classification for both the http and https traffic. In this case the learned values are
d1= 1.04 and d2= 0.1 and they are validated by calculating the FPP after applying
the LSVM. Therefore, the validation is complete and it is learned that the robust
parameters for d1 and d2 are 1.04 and 0.1, respectively. Hence our final learned
feature set for this application is (�0.089, 0.602), 1.04, 0.1.

In the learning phases we used a tenfold cross validation which in reality uses
90% of the 80% dataset. Hence, in the final phase of learning, we applied the
learned parameters to the entire 80% dataset. The 80% dataset is shown in Fig. 16.5
and the corresponding isolated rectangles, using the learned parameters, are shown
in Fig. 16.6. The LSVM classification is shown in Fig. 16.7 and it shows no false
positives.

16.4.2 Testing Phase

In the training phase, we used the 80 % dataset and learned the robust values for the
geometric parameters. In the testing phase, we use the remaining 20 % of the dataset
to apply the techniques learned in the training phase. The results are shown below.
Figure 16.8 shows the initial plot with the geometrical properties of the two classes.

Figure 16.9 illustrates the preprocessed datasets, where the parameters d1 and
d2 are set to 1.04 and 0.1, respectively. Finally, Fig. 16.10 illustrates the result
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Fig. 16.5 Geometrical properties of http and https traffic of 80% dataset

Fig. 16.6 Isolated rectangles after preprocessing the 80% dataset
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Fig. 16.7 Classification of two traffic classes using LSVM on the 80 % dataset (rescaled Y-axis
for the purpose of highlighting the SVM classifier)

Fig. 16.8 Geometrical properties of http and https traffic of 20% dataset
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Fig. 16.9 Isolated rectangles after preprocessing the 20% dataset

Fig. 16.10 Classification of the two traffic classes using LSVM on the 20 % dataset (rescaled
Y-axis for the purpose of highlighting the SVM classifier)
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of applying LSVM on the preprocessed dataset. The classification was done with
high efficiency and no false positives were observed. This shows that the proposed
approach is able to classify http and https traffic successfully.

16.5 Conclusion and Future Work

The primary goal of the study was to use the information readily available in the
network traffic packets to classify TCP traffic and therefore reduce computational
cost. The results show that the proposed approach was able to classify http and
https traffic successfully based on information available in the TCP mechanism, i.e.
packet-length and window-size. However, the dataset used for training and testing
purposes may not be highly complicated and not large enough. Hence the learning
model needs to be validated using more difficult and larger datasets. The study
focused only on the classification of the http and https traffic and therefore it is
useful to expand this learning model to other TCP protocols. Another area of future
research is to use the other features available in the traffic flow and exploring the
classification problems.
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J. Rychtář et al. (eds.), Topics from the 8th Annual UNCG Regional Mathematics
and Statistics Conference, Springer Proceedings in Mathematics & Statistics 64,
DOI 10.1007/978-1-4614-9332-7, © Springer Science+Business Media New York 2013

169

http://www.tandfonline.com/loi/UJSP20


170 About the Editors

Dr. Ratnasingham Shivaji joined the University of North Carolina at Greensboro
(UNCG) as H. Barton Excellence Professor and Head of the Department of
Mathematics and Statistics in July 2011. Prior to joining UNCG, he served for 26
years at Mississippi State University (MSU), where he was honored as a W.L. Giles
Distinguished Professor. He received his Ph.D. in Mathematics from Heriot-Watt
University in Edinburgh, Scotland in 1981, and his B.S. (first class honors) from
the University of Sri Lanka in 1977. Shivaji’s area of specialization is partial
differential equations and, in particular, nonlinear elliptic boundary value problems.
His research work has applications in combustion theory, chemical reactor theory,
and population dynamics and has been funded by the National Science Foundation.
To date, Shivaji has authored or coauthored 117 research papers and served as thesis
advisor for ten Ph.D. graduates.


	Preface
	Contents
	1 CURM: Promoting Undergraduate Research in Mathematics
	1.1 Introduction
	1.2 Center for Undergraduate Research in Mathematics
	1.2.1 Mini-Grants
	1.2.2 Summer Training Workshop
	1.2.3 Spring Research Conference
	1.2.4 Research Reports

	1.3 The Effectiveness of the CURM Program
	1.3.1 Undergraduate Students
	1.3.2 Faculty and Institutions

	References

	2 NCSU-CUSP: A Program Making a Difference in Quantitative Sciences
	2.1 Introduction
	2.2 Program Activities and Findings
	2.3 Program Impact
	2.4 Conclusions and Discussions

	3 Quantitative Methods in Biomedical Applications: Creative Inquiry and Digital-Learning Environments to Engage and Mentor STEM Students in Mathematics (NSF Funded Research)
	3.1 Introduction
	3.2 Methods for Module Organization
	3.2.1 Program Structure
	3.2.2 Module 1 Curriculum
	3.2.2.1 Orthopedics: Fundamentals of Pre-Calculus in Orthopaedic Medicine

	3.2.3 Module 1 Course Schedule
	3.2.4 Module 1 Activity Example and Details
	3.2.4.1 Week 4 (1H Applied Learning Module: Orthopaedics, Angles and Basic Trigonometry)
	3.2.4.2 Week 4 Outcomes

	3.2.5 Student Projects

	3.3 Assessment
	3.3.1 Internal Evaluation
	3.3.2 Pre-survey
	3.3.3 Post-survey
	3.3.4 Follow-Up Surveys
	3.3.5 Student Performance and Retention in CES Majors
	3.3.6 Exit Interviews

	3.4 Discussion
	References

	4 Proving the ``Proof'': Interdisciplinary Undergraduate Research Positively Impacts Students
	4.1 Introduction
	4.2 MathBio Program at UNCG
	4.3 Impact of the MathBio program
	4.3.1 Impact on Student Participant Post-Baccalaureate Degree Plans
	4.3.2 Impact on Student Participant Learning
	4.3.3 Impact on Student Participant Professional Development
	4.3.4 Outreach

	4.4 Conclusions
	References

	5 Modeling Heat Explosion for a Viscoelastic Material
	5.1 Introduction
	5.1.1 Heat Conduction
	5.1.2 Heat Explosion
	5.1.3 Parameters

	5.2 Governing Equations
	5.2.1 Modeling Equations
	5.2.2 Heat Transfer

	5.3 Results and Discussion
	5.3.1 Results Based on β
	5.3.2 Effects of γ on Delta Critical Ratios
	5.3.3 Future Work: Mechanical Parameter of Loading

	5.4 Conclusions
	References

	6 Soliton Solutions of a Variation of the Nonlinear Schrödinger Equation
	6.1 Introduction
	6.2 Theory
	6.3 Methods
	6.3.1 Looking for Solitons in a Perturbed NLS
	6.3.2 Symmetries of the NLS Equation
	6.3.3 The Pseudo-Spectral Method

	6.4 Results
	6.4.1 Discussion
	6.4.2 Future Work

	Appendix
	Appendix
	References

	7 Galois Groups of 2-Adic Fields of Degree 12 with Automorphism Group of Order 6 and 12
	7.1 Introduction
	7.2 The Number of Extensions and Defining Polynomials
	7.3 Possible Galois Groups
	7.4 Computation of Galois Groups
	References

	8 Laplace Equations for Real Semisimple Associative Algebras of Dimension 2, 3 or 4.
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 Differential Calculus on Rn
	8.2.2 Associative Algebras on Rn
	8.2.3 Left Regular Representations

	8.3 Differential Calculus on an Associative Algebra
	8.4 The   A  -Laplacian
	8.4.1 The   A  -Laplace Equations
	8.4.2 Wagner's Laplace Equations vs. the   A  -Laplace Equation

	8.5 Conclusions and Future Work
	References

	9 Fibonacci and Lucas Identities via Graphs
	9.1 Introduction
	9.2 Combinatorial Proofs of Fibonacci Identities by Means of the Path Graph
	9.3 Combinatorial Proofs of Fibonacci and Lucas Identities by means of the Cycle Graph
	9.4 Future Work
	References

	10 More Zeros of the Derivatives of the Riemann Zeta Function on the Left Half Plane
	10.1 Introduction
	10.2 Zeros on the Right Half Plane
	10.2.1 Zeros with 0<σ<12
	10.2.2 Zeros with σ>12

	10.3 Zeros on the Left Half Plane
	10.4 Evaluating ζ(k) on the Left Half Plane
	10.5 Finding Zeros
	References

	11 Application of Object Tracking in Video Recordings to the Observation of Mice in the Wild
	11.1 Introduction
	11.1.1 Notation

	11.2 Foreground Isolation
	11.2.1 Background Subtraction
	11.2.2 Dilation and Erosion
	11.2.3 An Advanced Method

	11.3 Component Identification and Labeling
	11.4 Blob Tracking
	11.4.1 Tracking Data

	11.5 Object Tracking in the Mouse Videos
	11.5.1 The Mouse Videos
	11.5.2 Our Implementation
	11.5.3 Data Filtering
	11.5.4 Blob Classification

	11.6 Analysis of Tracks
	11.6.1 Computer-Aided Observation
	11.6.2 Automated Analysis
	11.6.3 Measuring Mouse Activity

	11.7 Conclusion
	References

	12 The Card Collector Problem
	12.1 Introduction
	12.2 Results
	12.3 Final Remarks
	References

	13 The Effect of Information on Payoff in KleptoparasiticInteractions
	13.1 Introduction
	13.2 The Model
	13.3 Analysis
	13.3.1 Full Information Case
	13.3.2 Partial Information Case
	13.3.3 No Information Case

	13.4 Comparison Between Different Information Cases
	13.4.1 Comparison Between the Full and Partial Information Cases
	13.4.2 Comparison Between the No Information Case and the other Cases
	13.4.3 Summary

	13.5 Discussion
	References

	14 A Field Test of Optional Unrelated Question Randomized Response Models: Estimates of Risky Sexual Behaviors
	14.1 Introduction
	14.2 Optional Unrelated Question RRT Models
	14.2.1 Quantitative Model
	14.2.2 Binary Model
	14.2.3 Sample Split

	14.3 Previous Study
	14.4 Current Study
	14.4.1 Participants
	14.4.2 Question Selection
	14.4.3 Procedure

	14.5 Results
	14.6 Discussion
	References

	15 A Spatially Organized Population Model to Study the Evolution of Cooperation in Species with Discrete Life-History Stages
	15.1 Introduction
	15.2 Methods
	15.3 Results
	15.4 Conclusions and Discussion
	References

	16 Analysis of Datasets for Network Traffic Classification
	16.1 Introduction
	16.2 Background
	16.3 Proposed Approach
	16.4 Experimental Results
	16.4.1 Training Phase
	16.4.2 Testing Phase

	16.5 Conclusion and Future Work
	References

	About the Editors

