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CHAPTER 4

Stochastic differential equations

Some pertinent topics in the present chapter consist of a discussion on mar-
tingale theory, and a few relevant results on stochastic differential equations in
spaces of finite dimension. In particular unique weak solutions to stochastic dif-
ferential equations give rise to strong Markov processes whose one-dimensional
distributions are governed by the corresponding second order parabolic type
differential equation. Essentially speaking this chapter is part of Chapter 1 in
[146]. (The author is thankful to WSPC for the permission to include this text
also in the present book.) In this chapter we discuss weak and strong solutions
to stochastic differential equations. We also discuss a version of the Girsanov
transformation.

1. Solutions to stochastic differential equations

Basically, the material in this section is taken from Ikeda and Watanabe [61].
In Subsection 1.1 we begin with a discussion on strong solutions to stochastic
differential equations, after that, in Subsection 1.2 we present a martingale
characterization of Brownian motion. We also pay some attention to (local)
exponential martingales: see Subsection 1.3. In Subsection 1.4 the notion of
weak solutions is explained. However, first we give a definition of Brownian
motion which starts at a random position.

4.1. DEFINITION. Let (2,3,P) be a probability space with filtration (J7),,.
A d-dimensional Brownian motion is a almost everywhere continuous adapted
process {B(t) = (Bi(t),...,Ba(t)) : t = 0} such that for 0 < t; <ty < -+ <
t, < oo and for C' any Borel subset of (]Rd)n the following equality holds:

P[(B (t;) — B(0),..., B (t,) — B(0)) € C]

= J - Jpo,d (th — th—1,Tn_1,Zn) - - Po.d (ta — t1, 21, T2) Po,a (t1,0,21)

c
This process is called a d-dimensional Brownian motion with initial distribution
pif for 0 < t; <ty < --- < t, < oo and every Borel subset of (Rd)nH the

following equality holds:
PI(B(0),B(t),..., B (t)) € C]

= J - fpo,d (tn — tn—1, Tp-1,Tn) - - - Do.a (ta — t1, 1, T2) Po.a (t1, To, T1)
c
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du (zo) dxy ... dz,. (4.2)

For the definition of po 4 (¢,z,y) see formula (4.26). By definition a filtration
(F1)i=0 18 an increasing family of o-fields, i.e. 0 < t; <ty < oo implies Fy, < F,.
The process of Brownian motion {B(t) : t > 0} is said to be adapted to the
filtration (J;),5, if for every ¢ > 0 the variable B(t) is J;-measurable. It is
assumed that the P-negligible sets belong to J.

1.1. Strong solutions to stochastic differential equations. In this sec-
tion we discuss strong or pathwise solutions to stochastic differential equations.
We also show that if the stochastic differential equation in (4.108) possesses
unique pathwise solutions, then it has unique weak solutions. We begin with a
formal definition.

4.2. DEFINITION. The equation in (4.108) is said to have unique pathwise so-
lutions, if for any Brownian motion {(B(¢) : t = 0), (2, F,P)} and any pair of
Re-valued adapted processes {X (t) : ¢t = 0} and {X'(t) : t > 0} for which

t t

a(s,X(s))dB(s)JrLb(s,X(s)) ds and  (4.3)

X(t)=a:+J0

t t

o(s,X'(s))dB(s) + J b(s,X'(s)) ds (4.4)

0

X’(t)=:z+f

0

it follows that X (t) = X'(¢t) P-almost surely for all ¢ > 0. If for any given
Brownian motion (B(t)),s, the process (X(t)),5, is such that for P-almost all
w € £ the equality

t t

o(s,X(s,w))dB(s,w) + Jo b(s, X(s,w)) ds

X(t,w) =x+f

0

is true, then ¢t — X (¢) is called a strong solution.

Strong solutions are also called pathwise solutions. In order to facilitate the
proof of Theorem 4.4 we insert the following lemma.

4.3. LEMMA. Let v be a positive real number. Then the following inequality
holds:

o0
Since /7 + /7 + 4 < 24/7 + 2, the inequality in (4.5) implies:
0

We will use the finiteness of the sum rather than the precise estimate.

n2

%([+W)6Xp<é<ﬁ+\/m>2—%>- (4.5)

’I’L

V7 + 2exp (% (v + 1)) < . (4.6)
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PROOF OF LEMMA 4.3. Let § > 0 be a positive number. Then we have by
the Cauchy-Schwarz inequality

© 2 © n n 2
ZVTW _ Z )
= /nl @+l
n = (5 + '}/ 6 + Y S+
Z‘ R Z‘ et (4.7)
The choice 6 = 3 ( v+ A/ (Y + 4)) yields the equalities

5+7=%(ﬁ+\/m)2—1, and MTWZE(WJFW)Q’

and so the result in (4.5) follows and completes the proof of Lemma 4.3. g

A version of the following result can be found in many books on stochastic
differential equations: see e.g. [61, 107, 113].
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4.4. THEOREM. Letojy (s,x) and b; (s,x), 1 < j, k < d be continuous functions
defined on [0,0) x R? such that for all t > 0 there exists a constant K (t) with
the property that

d d
D losw (s,2) = oy (5, 9) 1+ D 10y (5,2) = by (s,9)P < K(t) [e —y* (48)
k=1 j=1
forall0 < s <t, and all z, y € RY. Fiz x € R, and let (Q, F,P) be a probability
space with a filtration (Fy),,. Moreover, let {B(t) : t = 0} be a Brownian mo-
tion on the filtered probability space (0, F,,P). Then there exists an Re-valued
process {X (t) : t = 0} such that, for all 0 < T < o0, supy_p E []X(t)|2] < 0,
and such that

X(t)=:1:+f

0

t t

o (s,X(s)) dB(s) + L b(s,X(s)) ds, t=0. (4.9)

This process is pathwise unique in the sense of Definition 4.2.

The techniques in the proof below are very similar to a method to prove the
following version of Gronwall’s inequality: see e.g. [54]. Let f, g, h: [0,T] > R
be continuous functions such that f(¢) < g(t) + {3 h(s)f(s)ds, 0 < t < T. If
h = 0, then by induction with respect to k it follows that

<o+ 3 [ (& Z(p_)cﬁ,) o(s)is+ [ th(s) s

and hence

6 < 9t0)+ [ olo)esp (f ho) ip) as.

0 s
Let C ([0,T], L* (Q,F,P;R)) be the space of all continuous L* (2, F,P; RY)-
valued functions supplied with the norm:
|X] = sup (E[|X(0)])
0<t<T

lx

1/2

, Xel”(Q0F,PRY.

Define the operator ' : C ([0, 77, L? (Q,F,P;R?)) — C ([0, 7], L? (Q,F,P;R?))
by the formula

TX(t)::c+J

0

t t

o (s,X(s)) dB(s) + L b (s, X(s)) ds.

Then the argumentation in the proof below shows that 7" is a mapping from
C ([0,T], L* (2,5, P;R)) to C ([0,T7], L* (Q,F,P;R?)) indeed, and that T has
a unique fixed point X which is a pathwise solution to the equation in (4.9).

ProOOF. Existence. Fix 0 < T < o0. Put Xy(s) = z, 0 < s < ¢, and, for
n=10<t<T,

Xpy1(t) =z + J

0

t t

b(s, Xo(s)) ds + JO o (5, X, (5)) dB(s). (4.10)
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By (4.10) we see, forn > 1and 0 <t < T,

X1 (t) — Xa(t) = L (b (s, Xn(s)) = b (s, Xn-1(s))) ds

- J (0 (s, X0(8)) — 0 (s, X,_1(5))) dB(s). (4.11)

By assumption there exists functions s — K;(s) and s — K;;(s), 0 < s < T,
such that for

bi(s,y) —b; (s,2)| < K;(s)ly—z|, 0<s<T, z,ye R% and 4.12
J J J
|03 (s,y) — 035 (s,2)| < Kij(s) [y — x|, 0< s <T, z, yeRY, (4.13)

and such that So (s)?+ K;;(s)?)ds < o for 0 <1 < i,j <d. Let the
function K (s) = 0 be such that K(s)? = Z;l CKG(s)? + Zle maxi<j<q Kij(s)*.

Then S(:)FK (s)?ds < o0. Moreover, for n > 1 and 0 < t < T we infer, by using
(4.11). (4.12) and (4.13), by the deﬁmtlon of K(s), and by standard properties
of stochastic integrals relative to Brownian motion, the following inequality:

E[|X0s1(t) — Xu(t)*] < QL K(s)’E [|X0(s) — X1 (s)]] ds. (4.14)

In order to obtain (4.14) we also used an inequality of the form (|a| + |b])*
2 (|a|2 + |b|2), a, b € R The proofs of (4.15) and (4.18) require equalities of
the form

(5.7 do)

J
f JHK(Si)stl...dez 7 ,jEN,j>1
§<s1 << <t =1 J:

By employing induction the inequality in (4.14) yields, for 1 < j < n and for
0 <t <T, the inequality:

E [|Xns1(t) = Xa(t)]]

(xora) :
< sz o KB [Xug(s) - Xuy()P] ds. (415)
0 - .
Since Xo(s) = « the equality in (4.10) for n = 1 yields
X = [ bpa) do+ | o 0.0 aB(e)
0 0
and hence, for 0 < s < T,
s 2 d s
E[|X:1(s) — Xo(s)]"] <2 (J b(px)dp| + > | log (p,2) dp) . (4.16)
0 i,j=1 0

Let A(s,z) = 0 be such that

fp, dp

Z f o5 (p, )| dp. (4.17)

i,7=1

A(s,z)? = sup

0<7<s
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Then (4.17) together with (4.15) with j = n yields
-1

§E K(p)*dp ,
mew—&wﬂ<wﬁ< ) K(5VE [|%,(5) — Xo(s)] ds

TRV
< 2nt! L <S [((n — f)ﬂ) K(s)?A(s,r)*ds
' (Si K (p)zdp>n_1

K(s)*ds

< 2”+1A(t,x)QJ

0 (n—1)!
= 2"t A(t, m)QJ JH K (s;)* dsy ...ds,
0<s1<--<sp<t j=1

= 2" A(t, 7) <SO 2d8> .

ol (4.18)
From Lemma (4.3) and inequality (4.6) with v = 2 So )2 ds we infer:
c 1/2 ,
Z |Xn+1 Xn(t)| ] t fL’ J K 2 ds + 1QSO (s) d8+7.
- (4.19)

From (4.19) it easily follows that there exists an adapted R-valued process
(X(t))perer in L (Q, Fr,P; R?) such that

lim B [|X,(t) — X0 =o. (4.20)

From (4.19) it also follows that this convergence also holds P-almost surely.
The latter can be seen as follows. Fix np > 0. Then the probability of the event
{limsup,,_,, | X, (t) — X(t)| > n} can be estimated as follows:

P [limsup | X, (¢) — X (¢)| > 77] < inf P U {|Xn(t) — X(t)] > 77}]
Nn—00 meN
o0
< inf P U{&@—%W>ﬂ
| n1>no=m
o0
< inf P { Z [ X1 (t) — Xa(t)] > 77}]

meN n

< inf lIE [i | X1 (1) — Xn(t)|]

0

< Sfé%% M E[[ X (t) — Xa(H)]] = 0. (4.21)

The final equality is a consequence of Lemma 4.3 together with (4.19) and the

inequality B [|X,1(t) — X, (8)]] < (E[|Xnia(t) — Xo(0)])". Since n > 0 is
arbitrary in (4.21) we infer that lim,, o X, (t) = X (¢) (P-almost surely). This
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P-almost sure convergence (as n — o0) also implies that we may take pointwise
limits in (4.10) to obtain:

X(t) == +J b(s,X(s)) ds +f o (s,X(s)) dB(s). (4.22)
0 0

The equality in (4.22) shows the existence of pathwise or strong solutions to the
equation in (4.9).

t t

Uniqueness. Let (X1(t))y<,<p and (X2(t)),<,<p be two solutions to the stochas-
tic differential equation in (4.9). By using a stopping time argument we may
assume that supgc,<p | Xa(s) — Xi(s)| is P-almost surely bounded. Then

t

Xo(t) — Xq(t) = L (b (s, Xa(s)) —b(s,X1(s))) ds

+ L (0 (s,Xa(s)) — 0 (s, X1(s))) dB(s). (4.23)

As in the proof of (4.15) with j = n and (4.18) it then follows that

E[|1X5(8) - Xa(8)]] < 2" Lt i I(iipz f;)

§i K (0)%dp)”
< 2" sup E[|Xs(s) — X1(s)|’] ( > :

O<s<t n!

Since the right-hand side of (4.24) tends to 0 as n — o0 we see that X5 (t) = X;(¢)
P-almost surely. So uniqueness follows.

K(s)’E [| Xa(s) — X1(5)|2] ds

(4.24)

The proof of Theorem 4.4 is complete now. U

1.2. A martingale characterization of Brownian motion. The fol-
lowing result we owe to Lévy.

4.5. THEOREM. Let (2, F,P) be a probability space with filtration (or reference
system) (F4),sq. Suppose I is the a-algebra generated by Uy=F; augmented with
the P-zero sets, and suppose F; is continuous from the right: F, = gy Fs for all
t >0. Let {M(t) = (My(t),...,My(t)): t =0} be an R¥-valued local P-almost
surely continuous martingale with the property that the quadratic covariation
processes t — (M;, M;) (t) satisfy

Then {M(t) : t = 0} is d-dimensional Brownian motion with initial distribution

given by u(B) = P[M(0) € B], B € Bga, the Borel field of RY.

It follows that the finite-dimensional distributions of the process t — M(t) are
given by:

P[M(t)) € By,..., M (t,) € B,]

= J (J o J Po.d (tn — tn—1, Tn—1,%n) - - - DPo.a (t2 — t1, 21, 22) po.a (t1, 2, 1)
Bl n
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dx, - -dx1> du(x).

Here po 4 (t,z,y) is the classical Gaussian kernel:

poa(t,z,y) = ﬁ exp (—%) . (4.26)

4.6. REMARK. There is even a nicer result which says the following. Let X be
a continuous R%valued process with stationary independent increments. Then,
there exist unique b € R and & € R* such that X (t)—X (0) is a (b, ©)-Brownian
motion. This means that X (¢) is a Gaussian (or multivariate normal) vector
such that E [X (t)] = bt and

E[(Xj,(t) = bj,t) (X5, (t) = bjt)] = 155, 4,

For the one-dimensional case the reader is referred to Breiman [29]. For the
higher dimensional case, see, e.g., Lowther [89].

Find out more and apply

redefining / standards
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PROOF OF THEOREM 4.5. Let & € R? be arbitrary. First we show that it
suffices to establish the equality:

E[—z(fM —M(s)) ‘rf]_ezlf\( . t>5=0. (4.27)

For suppose that (4.27) is true for all £ € RY. Observe that (4.27) implies
E [e_i@’M(t)_M(S»] — e 3lEP(=9) Then, by standard approximation arguments,
it follows that the variable M (t) — M (s) is P-independent of F;. In other words
the process t — M (t) possesses independent increments. Since the Fourier
transform of the function y — pgq (t — s,0,y) is given by

J 6_Z'<E’y>pl),d (t - S, 07 y) dy = 6_%‘&2@_5)
R4
it also follows that the distribution of M (t) — M(s) is given by
PIM(®) - M(s) € B] = | palt=s,0.)d. (1.28)
B

Moreover, for 0 < t; < --- < t, we also have
P[M(0) € By, M (t1) — M(0) € By,..., M (t,) — M (t,—1) € By]
=P[M(0) € Bo]P[M (t;) — M(0) € By]---P[M (t,) — M (t,—1) € By]

= f f e f Po.a (t1,0,y1) - poa (tn — tno1,0,Yn) dpe (yo) dys - - - dyn,
BO Bl n

Here By, ..., B, are Borel subsets of R?. Hence, if B is a Borel subset of
R? x .- x R% then it follows that
[ ——

n+1times

M (t1) — M(0),..., M (t,) — M (t,_1)) € B]

J fpo a(t1,0,91) - poa (tn — tno1,0,9n) dpe (yo) dys - - - dyp. (4.29)

Next we Compute the joint distribution of (M (0), M (t1),..., M (t,)) by em-
ploying (4.29). Define the linear map £: R? x --- x R? - R? x ... x R? by

C(xo, 1, .., xy) = (To, X1 — T, Lo — X1, ., Ty — Tp1) -
Let B be a Borel subset of R? x --- x R By (4.29) we get
P[(M(0),...,M(t,)) € B]
:IP’[K(M(O),...,M( n)) €4 (B)]
0), M (ty) — M(0),..., M (t,) — M (t,_1)) € £ (B)]

J JpOd t170 ?/1 pOd( —tn_1,07yn) dlu (yo) dyl dyn

(Change of variables: (Yo, %1, -, Yn) = (o, T1,...,Zy))

= J . fpo,d (t1, mo, 1) - po.d (tn — tn1, Tn1, Tn) dp (o) dy - - - dy. (4.30)
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In order to complete the proof of Theorem 4.5 from equality (4.30) it follows
that it is sufficient to establish the equality in (4.27). Therefore, fix £ € R? and
t > s> 0. An application of It6’s lemma to the function x — e~“&% yields

e~ HEMB) _ —ilg,M(s))

:_szf —EM() g

(formula (4.25))

2 fgfkf UMD @ (M;, M) (7)

jkl

d t t
. 1 .
= —z’Zg]f e MO g (1) — 3 & J e HEM@) g, (4.31)
=1 s s
Hence, from (4.31) it follows that
—HEMW M) _ | (4.32)

_ _ZZQJ M) -ME) G (7 )__|5| J HEM()-M(s) g

Since the processes

t
tHJ —HEMO=ME) g0 (1), t= s, 1< § <d,

S

are local martingales, we infer by (possibly) using a stopping time argument
that

E [e~ (&M O-M@) ‘g]_l__,gj [e #&MT=MEN | 5] (4.33)

Next, let v(t), t > s, be given by

U(t):Jt]E[—’L(&M( MO | 9] dr

s

Then v(s) = 0, and (4.33) implies

1
V'(t) + 5 P v(t) = 1. (4.34)
From (4.34) we infer

d 1 1 1
= (3 n)) = (5 € u(t) + v’<t>) a7 = R (4.35)

The equality in (4.35) implies:

e%(t—s)l'ﬁIQv(t) — U(S) — ’5% ( %(t 8)|E‘2 1) ,

and thus we see

V'(t) + %’u(s)eé(ts)|£|2 = a9 (4.36)
Since v(s) = 0 (4.36) results in
]E[ (&M (1)—M(s)) | ff] ( ) — e*%(t*S)\flz_ (4.37>
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The equality in (4.37) is the same as the one in (4.27). By the above arguments
this completes the proof of Theorem 4.5. O

As a corollary to Theorem 4.5 we get the following result due to Lévy.

4.7. COROLLARY. Let {M(t) : t = 0} be a continuous local martingale in R such
that the process t — M (t)* —t is a local martingale as well. Then the process
{M(t) : t =0} is a Brownian motion with initial distribution given by p(B) =
P[M(0) € B], B € Bg.

PROOF. Since M(t)? —t is a local martingale, it follows that the quadratic
variation process t — (M, M) (t) satisfies (M, M) (t) = t, t = 0. So the result
in Corollary 4.7 follows from Theorem 4.5. U

The following result contains a d-dimensional version of Corollary 4.7.

4.8. THEOREM. Let {M(t) = (M;(t),..., My (t)) : t = 0} be a continuous local
martingale with covariation process given by

t
(M, My) (t) = f Q;r(s)ds, 1<y, k<d. (4.38)

0
Let the d' x d-matriz process {x(t): t = 0} be such that X( )@(t)x(t)* =1,
where I is the d x d identity matriz. Put B(t) = So (s). This integral

should be interpreted in Ito sense. Then the process t— B( ) is d-dimensional
Brownian motion. Put VU(t) = ®(t ) ( )*, and suppose that \I/(t)x(t) = 1, the

d' x d' identity matriz. Then M(t) So
4.9. REMARK. Since
X () (2)x(@)*x(t) = 1) = (x(B)@(E)x(8)* — I) x(t) = 0
we see that the second equality in W (t)x(t) = ®(t)x(¢)*x(¢) = [ is only possible

if we assume d = d’. Of course here we take the dimensions of the null and
range space of the matrix x(¢) into account.

Proor oF THEOREM 4.8. Fix 1 < i, 7 < d. We shall calculate the qua-
dratic covariation process

d

(B, B;) <;J $)); 1, AMi(s) Z;J 1 dM(s )> (t)
_ Z Z f (5)),, (s s

_ L (x(5)®(5)x()"),,; ds = to1. (4.39)

From Theorem 4.5 and (4.39) we see that the process ¢t — B(t) is a Brownian
motion. This proves the first part of Theorem 4.8. Next we calculate

f W(s) dB(s) :f W (s)x(s) dM(s) = L M (s) = M(t) — M(0),  (4.40)

0 0
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which completes the proof of Theorem 4.8. ]

1.3. Exponential local martingales. Let ¢t — N(t), 0 < ¢ ,
continuous (local) martingale with variation process ¢t — (N, N) (¢), 0 < t
T. In this subsection we discuss local martingales of the form t — e 4®
1+ Sé e ?dN(s), t = 0, where Z(t) = N(t) + 1 (N, N) (t). Such processes
are called exponential local martingales. The following proposition serves as a
preparation for Proposition 4.12. It also has some interest of its own.

4.10. PROPOSITION. Let (2, F,IP) be a probability space with a filtration Fo<i<r,
and let M = (M(t))ycyer and N = (N(t))oyer be two local martingales with
M(0) = N(0) = 0. Put Z(t) = N(t)+1 (N,N) (t), and assume that E [e~?")] =
1 for all 0 <t <T. Then the following assertions are true.

(a) The process t — e~ 2 0 <t <T, is a martingale;

(b) The process t — e~ 2 (M(t) + (N, M) (t)) is a local martingale;

(¢) The process t — M(t) + (N, M) (t) is a local martingale relative to the
filtration (Fy)y<yeq supplied with the measure Qn = Fp — [0, 1] defined
by QN(A) =E [G_Z(T)lA], Ae Fr.
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The measure Qu can be called a risk neutral measure. Observe that, by asser-
tion (a), Qn(A) = E [e7#14] whenever A belongs to F; with 0 <t < T Let
T, be the stopping time defined by

2

and set Z,(t) = Z (t A 7,). Then the processes t — e %) 0 <t < T, neN,
are martingales. It follows that E [e*Z”(t)] =1, forall 0 <t < 7T, and for all
n € N. By Fatou’s lemma we infer that

E [e_Z(t)] =E [lim e_Z"(t)] < liminf E [e_Z”(t)] < 1. (4.41)

n—o0 n—0o0

Tn=inf{8>0: |N(S/\T)|+1<N,N>(S/\T)>n},

In fact we have a stronger result. It says that an exponential local martingale
is a submartingale.

4.11. THEOREM. Let the process t — e ?® 0 <t < T, be a continuous lo-
cal martingale. In general, this process is a submartingale. Consequently, if
E[e W] =1 for all 0 <t < T, then the process t — e ", 0<t < T, is a
martingale.

PROOF. This result can be seen as follows. Let 0 < t; < to, and choose the
sequence of stopping times (7,), .y as above. Then, for A € &, ..,., we have

E [e*Z(h)lA] =E [lim e*Z(t"’”")lA]

n—0o0

< liminfE [e #2771 4] = E [e7 #2171, ] (4.42)

n—o0

From (4.42) it follows that:
E[e 1) | Ty 0r ] < o720, (4.43)
Since the event {7, > t;} belongs to F4, Ar,,, from (4.43) we infer
B[ | 5] = B[ 11,20 | Fpin ]
<e 2ty iy =e fMW1g . (4.44)

The first equality in (4.44) is a consequence of the fact that, if an event A
belongs to F,, then A n {7, > t;} belongs to F;, or,,. In the left-hand side and
the far right-hand side of (4.44) we let m — o0 to obtain

E [e’Z(tQ) | F,] < e~ Z) - P-almost surely. (4.45)
The inequality in (4.45) shows that the process t — e~4() is a submartingale.
If0<t; <ty <T,andif E[e7?")] = E[e 4], then (4.45) implies that

E [e_Z(t2) | Fi| = e~ 2t P-almost surely. (4.46)

This completes the proof of Theorem 4.11. 0
PROOF OF 4.10. (a) An application of Itd’s formula and employing the

equality (Z, Z) (t) = (N, N) (t) yields:
A0
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rt

1
:e*Z(O)—J 20 az(p +—Je W d(z,7) (p)
0 2 0
ot 1 I
=0~ | ePdN(p) -3 f ¢ ><p>+-f e W d(N,N) (p)
0 2 0 2 Jo
rt
— 20 _ J e~ 2 AN (p). (4.47)

0

From the equalities in (4.47) it follows that the process t + e ?® 0 <t < T,isa
local martingale. In view of the assumption that [e‘z (t)] =lforall0<t<T
it follows that the process in (a) is a genuine martingale: see Theorem 4.11.

(b) Again we apply Itd’s lemma, now to the function (z,y) — e *y. Then we
obtain:

e (M(t) + (N, M) (¢))

M
— — | %@ (M(p) + (N, M) (p)) dZ(p) + L e W (dM (p) + d (N, M) (p))

J 200q(Z, M + (N, M)) (p). (4.48)

(p) (M(p) + (N, M) (p)) d{Z,Z) (p)

[\Dlr—t

By applying the equalities (Z, Z) = (N, N) and (Z, M + (N, M)) = (N, M) to
the equality in (4.48) we obtain

—Z(t)

—~

e

M(t) + (N, M) (t))

e” 2 (M(p) + (N, M) (p)) dN(p)

S—

0

N | —

e “ (M(p) + (N, M) (p)) d (N,N) (p)

S

t

~Z0) (dM (p) + d (N, M) (p))

t

_l’_

S—
o

0
t

70 (M) + (N, M) (p) N, N) ) = | e 20a (N0 ()

5—

DN | —

0

- [ e 1)+ (00 () an o) + | 70 anr) (4.49)

0

Being the sum of two stochastic integrals with respect to (local) martingales
the equality in (4.49) implies that the process in (b) is a local martingale.

(c) By using a stopping time argument we may and do assume that the process
t — M(t) + (N, M) (t) is bounded and so it belongs to L' (Q,Fr, Qy). Let
0<t; <ty <T, and put

Y (t1) = Eqy [M (t2) + (N, M) (t2) | F, ] -
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Then the stochastic variable Y (¢;) is F;,-measurable and, for all bounded JF;, -
measurable variables G we have

E[e7 2™ (M (t2) + (N, M) (t2)) G] = E [e ?DY () G]. (4.50)
Since the process t — e ?®) 0 <t < T, is a P martingale, the equality in (4.50)
implies:

E[e 2" (M () + (N, M) (t2)) G] = E[e ™Y (t) G]. (4.51)
From assertion (b) together with our stopping time argument we see that the
process t > e~ %@ (M (t) + (N, M) (t)) is a P-martingale. From (4.51) we then
infer:

E[e ™) (M (t,) + (N, M) (t)) G] = E [e Z?™)Y (#;) G] (4.52)
for all bounded J; -measurable variables GG. So finally we get, P-almost surely,
e WY (1) = 2 (M (1) + (N, M) (1)),

and hence,
Y (t1) = M (t;) + (N, M) (t1), P-almost surely.
This shows assertion (c¢) and completes the proof of Proposition 4.10. ]

ﬁ business
> school 9 3%

OF MIM STUDENTS ARE
WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRAD

- STUDY IN THE CENTER OF MADRID'AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
THAT THE CAPHAEOESPAIN'OFEERS

+ PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
PROFESSIONAEGOAES

- STUDY A SEMESTER'ABROAD AND BECOME"A GLOBAL CITIZEN'WITH THE'BEYOND BORDERS
EXPERIENCE

Length: 10 MONTHS

Av. Experience: 1 YEAR
Language: ENGLISH['SPANISH:
Format: FULL-TIME

Intakes: SEPT | FEB

www.ie.edu/master-management |  mim.admissions@ie.edu (§ X ) Follow us on IE MIM Experience

257 Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/MIMEnglish

A combination of Proposition 4.10 and Lévy’s characterization of Brownian
motion in R? yields the following result.

4.12. PROPOSITION. Let the R¥-valued process s + c(s) be an adapted pro-
cess which predictable relative to Brownian motion (B(t)) Put N(t) =

S(t) c(s)dB(s), and

t=0°

t

2(t) = N(t) + 5 (N, N) (1) = f

0
Suppose that for all t > 0 the equality E [e‘Z(t)] = 1 holds. Then the process
(W(t)) =0, defined by W (t) = B(t) + Sé c(s)ds is Brownian motion relative to
the measure A — Qn(A), A€ Fr, as defined in Proposition 4.10.

¢(s) dB(s) + %L ()2 ds, ¢ 0.

PROOF. An application of Proposition 4.10 with M (t) = B;(t) shows that
the process

t

)
ol)ds = By(0) + < f (s) dB<s>,Bj> (t
— B,(t) + (N.B}) (1

is a local Qy-martingale. Moreover, (W;,, W;,) (t) = §;, j,t. From Theorem 4.5
we see that the process t — W(t) is a Qy-Brownian motion. This completes

the proof of Proposition 4.12. O

W;(t) = By(1) + f

It will be very convenient to introduce Hermite polynomials (hg(x)),.y, and to
establish some of their properties. In the context of stochastic calculus they
also play a central role. The Hermite polynomial hy(x) is defined by

hi(z) = (—1)Fes®” (%)k <e—%w2) . (4.53)

For ke N, x € R, a > 0, we write

Hy(z,a) = a**hy, (%) :
Then we have Hy(x,a) = 1, Hi(z,a) = x, Hy(x,a) = 2> —a, H3(z,a) = 2° —ax.
The Hermite polynomials satisfy the following recurrence relation:
hio(x) — xhgyr(z) + (K + 1)he(z) =0, k=0, (4.54)
and therefore
Hpio(x,a) — cHygpi(z,a) + (k + 1)aHg(z,a) =0, k> 0. (4.55)

The equality in (4.54) can be proved by induction and the definition of hy in
(4.53). From the definition of hyyi(z) it follows that hj.,(z) = zhii(x) —
hi+o(z), and so, by (4.54) we see

hiyr(z) = (k4 1)hg(z), k= 0. (4.56)
From (4.54) and (4.56) we infer
his2(2) — Thyr () + By (2) = 0, k >0,
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and hence
his1(z) — xhg(z) + by (z) =0, k= 0. (4.57)

By differentiating the equality in (4.57) and again using (4.56) we obtain the
following differential equation:

hi(x) — zh)(x) + khg(x) =0, k = 0. (4.58)
In the following proposition we collect some of their properties.

4.13. PROPOSITION. For 1, x € R and a > 0 the following identities are true:

rr—Lr2q % Tk
SRS T Hi(, ), (4.59)
k=0
1.2 = Tk = 7'
ra=3rt 2N T T 4.60
e ;) o ; o (4.60)
0 1 02 0
——Hy1(z,a) = (b + 1) Hy(z,0), and —=—Hy(v,a)+ 5~ H(v,a) = 0.
ox 2 0x? oa
(4.61)
PROOF. Let the sequence <%k(x)) be such that, for all x and 7 € C, the
keN
equality
1.2 = Tk~
erTaT = kZO () (4.62)
holds. Then

Tu() = <§T>k (e”—%*)
= (-1)* <a%>k (e73=7)

= hi(x). (4.63)

The equality in (4.63) implies the identity in (4.60). By a correct scaling (74/a

replaces 7, and % replaces ) the equality in (4.59) follows from (4.60) and
a

the definition of Hy(z,a). The equalities in (4.61) follow from (4.56) and from
(4.58) respectively. Altogether this completes the proof of Proposition 4.13. [

In the following proposition the process t — M (t), t € [0,T], is a martingale
on the probability space (2, F,P). Its quadratic variation process is denoted by
t— (M, M) (t), te[0,T].

4.14. PROPOSITION. The followmg identities hold:

Hy iy (M(1), < f Hy (M MM>( )
(k+1)

dM(s)

_ f 1AM (1) .. dM (sy1) . (4.64)
0<s1<...<spp1<t
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In addition, the following equalities hold as well:
oM (1) =57 (M, M)(1)

t
=1+ Tf eTME)=3T* M) g7 (5)
0
-1
=1+ Z ka
k=1 YO0

+7'£
1

JldM (s1)...dM (sg)

<s1 < <sp<t

JefM(s1) POLMY6) G0 (s1). .. dM (sq) (4.65)
O<sy<--<sp<t
V4

L (M (), (M, M) (1)

IIM

T_

k

T f JeTM@l)%T“MvMWl) dM (sy)...dM (s
0<s1<---<sp<t

k

T
4 k!

+ T€L J <€TM(81)*%7'2(M,M>(31) — ]_) dM (31) .dM (SZ) . (466)
<s < <s§p<t

+
~

H. (M (t), (M, M) (t))

I
I M“

Please notice that in the equalities in (4.64) through (4.66) the order of inte-
gration has to be respected: first we integrate with respect dM (s;), then with
respect to dM (s3) and so on.
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PRrROOF. These equalities follow from Ito’s formula and the equalities in
Proposition 4.13. Itd’s lemma is applied to the functions (z,a) — Hyyq(z,a),
and (z,a) — €™ 279 with # = M(s), and a = (M, M) (s). In particular
the equalities in (4.61) are relevant. This completes the proof of Proposition
4.14. O

In the following proposition we collect some equalities in case we consider an
1

exponential martingale ¢ — eM®=3MM)®) in case the process t — (M, M) (t)

is deterministic.

4.15. PROPOSITION. Lett — M(t), 0 <t < T, be a martingale on (0, F,P)
with the property that the variation process t — (M, M) (t), 0 < t < T, is
deterministic. The the following identities are true:

EUO JdM(sl)...dM(skl)-L tfdM(pl)...dM(ka)]
= E[Hy, (M(t), (M, M) (t)) He, (M (t), (M, M) (t))]

(M, M) ()™ e r and (4.67)

L. |

J JeM(ﬂ)—é(MvMﬂsl) dM (31) . dM (SZ)
0<si<---<syg<t

L . s /—1
:L6<M,M><s>(<M’M> (t)(g _UK;MH V" aqar, a) (s)
((M, M) ()’

/-1

_ MM () _ 2\

—¢ > i . (4.68)
j=0

PROOF. Let the predictable processes s — Fi(s) and s — F3(s) be such that
the quantities E [gg \Fy(s)|> d (M, M) (s)] and E [gg \Fy(s)|> d (M, M) ()] are
finite. Then we have _

E[F Fi(s) dM(s)-fQ Fy(s) dM(s)] :EUtQ Fi(s)Fo(s) d (M, M) (s) |,

ty t1 31 i
(4.69)
for 0 < t; < t < T. By repeatedly employing the equality in (4.69) and
using the fact that the process s — (M, M) (s) is deterministic we infer, for
1<k’1 <k2, and0<t<T,With€=k2—k1,

sl Jare e [ o).,

=EU [ anr e a e n e anan w]
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:E[ I [ O LMD" gy ) ang o] =0

(4.70)
If in (4.70) ky = ko, and so £ = 0, then we obtain

J JdM(sl)...dM(skl)
0<s1 < <sp, <t

The equalities in (4.70) and (4.71) show the equalities in (4.67). The proof of
the equalities requires an induction argument. For ¢ = 1 we have

| 2]

M, M) ()
SR @f gy

E

t
J M =301 ) G ()

0
rt
— [ Bemo-0a00] g0, 1y (s)
Jo
t
( E [€2M(s)—%<2M,2M)(s)] M) g (VMY (s)
Jo
rt
= | MM g (M, M) (s) = MM _ 1, (4.72)
Jo

The equalities in (4.72) imply those in (4.68) for ¢ = 1. The second equality
follows by partial integration and induction with respect to £. The first equality
in (4.68) can be obtained by an argument which is very similar to the proof of
the equality in (4.67) with k; = ko = £. The details are left to the reader.

This completes the proof of Proposition 4.15. U

4.16. COROLLARY. Let the hypotheses and notation be as in Proposition 4.14.
Then

lim TZJ JeTM(sl)‘éﬂM’M)(“) dM (s1)...dM (s)) =0,  (4.73)
0<s1<--<sp<t

£—00

P-almost surely. If the limit in (4.73) is in fact an L-limit, then the pro-

cess t — eTMO=3THMM)®) g g martingale. In particular, it then follows that

E [eTM(t)_%72<M’M>(t)] = 1; compare with the inequality in (4.41) and with The-
orem 4.11.

If the process t — (M, M) (t) is real-valued and deterministic, then the limit in
(4.73) is an L*-limit, and so also an L-limit.

PRrROOF. Equality (4.73) in Corollary 4.16 follows from the equality in (4.59)
in Proposition 4.13 with x = M(t) and a = (M, M) (t) together with the equal-
ities in (4.65) and (4.61). The assertion about the L'-convergence also follows
from these arguments. The only topic that requires some is the one about
the situation where the process t — (M, M) (t) is deterministic. In this case
the terms in the sum in (4.65) are orthogonal in L?(Q,F7,P), and this sum

TM(t)— 572 (M,M)(t)

converges in L2-sense to e These assertions follow from the
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identities (4.67) and (4.68) in Proposition 4.15. This completes the proof of
Corollary 4.16. O

The previous results, i.e. Proposition 4.14 and Corollary 4.16 are applicable if
the martingale M(¢) is of the form M(t) = Sé h(s) - dW(s), where t — W (t)
is standard Brownian motion. Then (M, M) (t) = Sé \h(s)|” ds. If s — h(s) is
deterministic, then in (4.73) we have L?-convergence. These martingales play a
role in the martingale representation theorem: see Theorem 4.21.

1.4. Weak solutions to stochastic differential equations. In the fol-
lowing theorem the symbols o;; and b;, 1 < 4, j < d, stand for real-valued
locally bounded Borel measurable functions defined on [0, o0) x R?. The matrix

(a;;(s,2))?._, is defined by

ij=1
d
a;i(s,7) = Y oiils, 2)oju(s, x) = (0(s, 7)o" (s, 7)), ;.
k=1
For s > 0, the operator L(s) is defined on C?* (R?) with values in the space of
locally bounded Borel measurable functions:

L)) = 5 2 s (5:0) DDy f () + Dby, )03 (@), f & % (RY).
o " (4.74)
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The following theorem shows the close relationship between weak solutions and
solutions to the martingale problem.

4.17. THEOREM. Let (2, F,P) be a probability space with a right-continuous
filtration (F}),5. Let {X(t) = (X1(t),...,Xq(t)) : t =0} be a d-dimensional
continuous adapted process. Then the following assertions are equivalent:

(i)  For every f € C? (Rd) the process

t

t— f(X(@) - f(X(0) - J L(s)f (X(s)) ds (4.75)

0

15 a local martingale.
(ii)  The processes

t
Ees Mi(t) = X,(0) _J b (s, X(s)) ds, >0, 1<j<d  (4.76)
0
are local martingales with covariation processes
t
t— <MZ,M]> (t) = f Qj 5 (S,X(S)) dS, t = 0, 1< i, j <d. (477)
0

(iii))  On an extended probability space (2 x Q' F;, ® F,, P x P') there exists
a Brownian motion {B(t) : t = 0} starting at 0 such that

t t

b(s,X(s)) ds+ f o(s,X(s)) dB(s), t=0. (4.78)

0

X(t) = X(0) + f

0
Here (Y, 3}, ") is an independent copy of (2, F;, ). Moreover, the equality in
(4.78) implies that the stochastic integral (w,w’) — Séa (s,X(s)) dB(s) (w,w")
is P x P'-independent of w'. If the matriz o (s,y) is invertible, then there is no
need for this extension.

Examples of (Feller) semigroups can be manufactured by taking a continuous
function ¢ : [0,00) x E — E with the property that ¢ (s + t,z) = ¢ (¢, ¢ (s, 2)),
for all s, ¢ > 0 and € E. Then the mappings f — P(t)f, with P(t)f(x) =
f (¢ (t,z)) defines a semigroup. It is a Feller semigroup if lim, A ¢ (¢, ) = A.
An explicit example of such a function, which does not provide a Feller-Dynkin

semigroup on Cj (R) is given by ¢(t,z) = S — (example due to V.
1+ $ta?

Kolokoltsov [72], and [71]). Put wu(t,z) = P(t)f(x) = f(e(t,z)). Then

@(t,x) = —x3a—u(t,x). In fact this (counter-)example shows that solutions

to the martingale problem do not necessarily give rise to Feller-Dynkin semi-
groups. These are semigroups which preserve not only the continuity, but also
the fact that functions which tend to zero at /A are mapped to functions with
the same property. However, for Feller semigroups we only require that con-
tinuous functions with values in [0, 1] are mapped to continuous functions with
the same properties. Therefore, it is not needed to include a hypothesis like
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(4.79) which reads as follows: for every (7,s,t,z) € [0,T]®> x E, 7 < s < t, the
following equality holds:

P, [X(t)e E] =P, [X(t) e E, X(s) € E]. (4.79)

Nadirashvili [99] constructs an elliptic operator in a bounded open domain
U < R? with a regular boundary such that the martingale problem is not
uniquely solvable. More precisely the result reads as follows. Consider an elliptic

d
0? .
operator L = Z a? == , where a;; = a; are measurable functions on R?
) ’ 6@69@
J.k=1
such that
d
-1 2 2 d
cTHEP < D] angile < cléff, EeRY
jk=1

for some ellipticity constant ¢ > 1. There exists a diffusion (X(¢),P,) corre-
sponding to the operator L which can be defined as a solution to the martin-
gale problem P[X(0) =z] = 1, f(X(¢)) — f(X(0)) — Séf (X(s)) ds is a P,-
martingale for all f € C? (Rd). Nadirashvili is interested in non-uniqueness in
the above martingale problem and in non-uniqueness of solutions to the Dirich-
let problem Lu = 0 in €, the unit ball in R?, u = ¢ on 0f, where Q < R?
is a bounded domain with smooth boundary and g € C?(d9). In particular,
so-called good solutions u to the Dirichlet problem are investigated. A good
solution is a function w which is the limit of a subsequence of solutions u,,

d
. *u .
n € N, to the equation L"u, = Z a’,——— = 0in Q, u, = g on 052, where
Pyt s 5Q:J8xk

the operators L™ are elliptic with smooth coefficients a7, and a common el-
lipticity constant ¢ such that af, — a;; almost everywhere in 2 as n — oo.
The main result is the following theorem: There exists an elliptic operator L
of the above form defined in the unit ball B; < R? d > 3, and there is a
function g € C? (0B;) such that the formulated Dirichlet problem has at least
two good solutions. An immediate consequence is non-uniqueness of solutions
to the corresponding martingale problem.

The following corollary easily follows from Theorem 4.17. It establishes a close
relationship between unique weak solutions to stochastic differential equations
and unique solutions to the martingale problem. For the precise notion of
“unique weak solutions” see Definition 4.19 below. This result should also be
compared with Proposition 3.43, where the connection with (strong) Markov
processes is explained.

4.18. COROLLARY. Let the notation and hypotheses be as in Theorem 4.17. Put
Q = C ([0,20),RY), and X(t)(w) = w(t), t >0, we Q. Fizxe E. Then the

following assertions are equivalent:

(i) There exists a unique probability measure P on F such that the process

t

£ (X(0) — £ (X(0)) — f L(s) (X(s)) ds

0
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is a P-martingale for all C*-functions f with compact support, and such
that P[X(0) = x| = 1.
(ii) The stochastic integral equation

X(t)=x+f

0
has unique weak solutions.

o(s,X(s)) dB(s) + L b(s,X(s))ds (4.80)

4.19. DEFINITION. The equation in (4.80) is said to have unique weak solutions
on the interval [0, T], also called unique distributional solutions, provided that
the finite-dimensional distributions of the process X (t), < ¢t < T, which satisfy
(4.80) do not depend on the particular Brownian motion B(t) which occurs in
(4.80). This is the case if and only if for any pair of Brownian motions

(BA): T=t>0),(0,%.P) and {(B(t): T=>t>0), (2, T P))

and any pair of adapted processes {X(t): T'>t >0} and {X'(t): T >t >0}

for which

t t

o (s, X (5)) dB(s) + fo b(s, X(s)) ds and

X(t)=x+f

0
t
X'(t) =z + f o(s,X'(s))dB'(s) + f b(s,X'(s)) ds

0 0

the finite-dimensional distributions of the process {X(t): T >t = 0} relative

to P coincide with the finite-dimensional distributions of {X'(¢): T >t > 0}
relative to P’

t
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PROOF OF THEOREM 4.17. (i) = (ii) With f; (z1,...,2q4) = z;, 1 < j <
d, assertion (i) implies that the process

M;(t) = X;(t) —J bj (s, X(s)) ds = f; (X(1)) —JO L(s)f; (X(s)) ds  (4.81)

0
is a local martingale. We will show that the processes

t
{Mi(t)Mj(t) —f 0 (5, X(s)) ds : t > o}, l<ij<d,
0
are local martingales as well. To this end fix 1 < i, 7 < d, and define the

function f;; : R* — R by fi; (z1,...,24) = z;z;. From (i) it follows that the
process

{Xi<t>Xj<t> [ o (5,060 015,009 ,09) 1y (5, X(6) X5 ds}
is a local martingale. For brevity we write

ij(s) = aij (s, X(s)), Bj(s) =b;(s,X(s)), Bils) = bi(s, X(s)),

S

f B dr. My(s) = Xi(s) - [ G

M;;(s) = Xi(s)X;(s) —L (Bi(r)X;(T) + B;(T) Xi(7) + i (7)) dr. (4.82)

Then the processes M; and M, are local martingales. Moreover, we have
<Ml(t) + f: Bi(s) ds) <Mj(t) + Lt Bj(s) ds) = X;(t)X;(t)
~ [ X0+ BEOX) + ) b+ 1s00
= [0 (X0) = M) + B5(5) C6) = M) + ) dr
f (Br)M(r) + By (M) dr+ My )
f Bi(r d¢+f B:(r) (Xi(r) — Mi(r)) dr

" aw<>d7+f<@<> (7) + B5(r)Mi(r)) dr + M (1)

0

fﬁz<7fﬁj dsd7+fﬁj Jﬁl )ds dr

+ [Cautmdr+ [ GO+ BEIE) dr+ My

- JJ@@)@(S)MH Jfﬁi(f)ﬁj@)dms

O<s<r<t O<r<s<t

+Laz-,j<f>df+j<@<> A7) + B,(r)Mi(r)) dr + M, (t)
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+ [ G 6) + 55 ds (489

Consequently, from (4.83) we see

M;(t)M;(t) — L a;;(s)ds

= My (t) - L (Bi(s) (M;(t) = M;(s)) + Bj(s) (Mi(t) — Mi(s))) ds. (4.84)

It is readily verified that the processes

fﬂ B:(s) (M;(t) — My(s)) ds and j B(s) (Mi(t) — Mi(s)) ds

are local martingales. It follows that the process

{Mi(t)Mj(t) - f i (s)ds: t > 0}

0
is a local martingale. So that the covariation process (M;, M;) is given by
t

(M;, M) (t) = §, ci(s) ds.

(ii) = (iii) This implication follows from an application of Theorem 4.8 with
@, ;(t) = a;; (t,X(t)), and x(t) = o (t, X (¢))~". If the matrix process o (¢, X (t))
is not invertible we proceed as follows. First we choose a Brownian motion
(B'(t)),;»( which is independent of (£2, F;,P) and which lives on the probability
space (', F},P’). The probability spaces (€2, F;,P) and (2, F},P’) are coupled
by employing a standard extension of the original probability space (€2, ¥y, P).

This extension is denoted by (Q, g‘}j’), where O = Q x o, f;"t =7, ® 7}, and
P=PxP. Finally, B (t,w,w") =B (t,w), t =0, (w,w) € Q2 x Q. We have a
martingale M (s), 0 < s < t, on (2, F;,P) with the properties of assertion (ii).
We introduce the matrix processes ¥.(s), ¢ > 0, Fr(s), and Ey(s) as follows
Fa(s) = 0% (5, X()) (0 (5, X () " (5, X(5)) + eI)"
Fa(s) = lim o™ (s, X(5)) (0 (5, X(5)) 0* (5, X()) + eI) " 0 (5, X(s)) , and
EN(S) =1—- ER(S).

The matrix Fr(s) can be considered as an orthogonal projection on the range
of the matrix o* (s, X (s)) o (s, X(s)), and En(s as an orthogonal projection on
its null space. More precisely,

Er(s)o* (s,X(s)) = 0" (s,X(s)), and o (s, X(s)) En(s) = 0.

In terms of these processes we define the following process:

B(s) — lim J Do) dM (7 JEN ) dB (). (4.85)

el0

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I| Stochastic differential equations

Next we will prove that the process s — B(s) is a Brownian motion, and that
M(s) = §; o (r,X(7)) dB(7). Put

B.(s) = L U (7) dM(7) + L ) En(7)dB'(7). (4.86)

Then we have:

d s
(Bejis Beg) (5) = ), L Ve i Jor (T)Ve, 1 ot (T) Oy (T, X(T)) Oy (7, X (7)) 7
k1,k2,0=1

r

+2, ] Ve juien (T EN o s (T) d (M, B (7)
0

M=

ey
I
—

+
e
e

rs
0 ¢5:j2,k1 (T)ENJl,Kl (T) d <Mk1> Bl;) (T)

S

j En 1 (T)EN 1 (T) dT
0

s
Il

1

(the processes M and B’ are P-independent)

— fs (7;5(7')0 (1, X(7)) o™ (7, X (7)) N:(T))jl,jz i

0

+ f: (En(T)EN(T));,5, AT (4.87)
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From (4.87) we infer by continuity and the definition of Eg(7) that
<Bj1> Bj2> (S) = lgfél <B€7j17 B~€7j2> (3)

S

_ f (En(r)EY(r)), , dr + f (En(m)E3(7)),,, d7

- | B BR ) + B ER (), 0

the processes Lr(7) an ~(7) are orthogonal projections such that Fr(7) +
h E d E h | i h that F

En(r) =1)

= 6]'17]‘28. (488)
From Lévy’s theorem 4.5 it follows that the process s — B(s), 0 < s < t, is a
Brownian motion. In order to finish the proof of the implication (ii) = (iii)
we still have to prove the equality M(s) = ;o (7, X (7)) dB(7). For brevity we
write o(7) = o (7, X(7)). Then by definition and standard calculations with
martingales we obtain:

M(s) — ra (1) dB.(1) = M(s) — f

S S

o(r)Pe(r) dM (r) — f o(r) Ex(r) dB'(7)

_ L (1= o(r)o* (7) (o(r)o™(v) + e1)™Y) dM(r)
=¢ f: (o(T)o* (1) +el) " dM(7). (4.89)

From (4.89) together with the fact that covariation process of the local martin-
gale M(s) is given by ) o(7)o*(7) dr, it follows that the covariation matrix of
the local martingale

M(s) — fs o (1) dB:(T)

0
is given by

g2 L ) (o(T)o* (1) + el) L o(r)o* () (o(T)o* (1) + eI) ™" dr. (4.90)

In addition, we have in spectral sense:

0<e(o(r)o*(r) + 5[)_1 o(r)o* (1) (o(T)o* () + 5[)_1 < -1, (4.91)

=1 M

and thus in L?-sense we have

M(s) — J o(7)dB(7) = L*-1lim (M(s) - J a(T)BE(T)) =0. (4.92)

0 elo 0

The equality in (4.92) completes the proof of the implication (ii) — (iii).

(iii) = (i) Let f: RY - R be a twice continuously differentiable function. By
[t0’s lemma we get
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2 j DD, f (X(s))d (X, X;) ()

131

d t
S [ i (51 X(5)) 0 (51 X(5) DD (X(5) s

+f VI (X(s))o (s, X(s))dB(s) — LL(s)F(X(s))ds
= Lt VI(X(s)o(s,X(s)) dB(s). (4.93)

The final expression in (4.93) is a local martingale. Hence (iii) implies (i).

This completes the proof of Theorem 4.8. OJ

4.20. REMARK. The implication (ii) = (i) in Theorem 4.17 can also be proved
directly by using Ito calculus. Suppose that the local martingales t — M;(t),
1 < j < d, are defined as in assertion (ii) with covariation processes as in (4.77).
Let f be a C?-function defined on R?. Then we have:

t

FOX0) - F (X 0) - j Ls)F (X(5)) ds

0

:Jovf(X<S) Z DDf (s)) d(Xi, Xj) (s)

1]10

f L(s)f (X(s)) ds
j V(X f V(X X(s)) ds

oL Z f DuD,f (X(s)) d (Ms, M) (5) — f L(s)f (X(s)) ds

Z]l

:J VF(X(s)) dM(s) +f V(X(s)) b(s, X(s)) ds

t

L1 2 f DD (X)) (5, X(6)) s = [ D61 (X(5) ds

_ J V(X (s)) dM(s). (4.94)

Assertion (i) is a consequence of equality (4.94).
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2. A martingale representation theorem

In this section we formulate and prove the martingale theorem based on an
n-dimensional Brownian motion. Proofs are, essentially speaking, taken from
[106]. Let (W(s))y<cys—o, be standard Brownian motion in R", and let J; be
the o-field generated by (W (s)),c,<, augmented with the P-null sets. For h €

L* ([0, T]; R™) we write X (t) 1= eoh(s)-dW(s)=5 §olh(s)*ds.
4.21. THEOREM. Let Wp be the subspace of (2, Fr,P) spanned by the expo-

nentials X, (T) := €S0 MW () =3 g h(s)*ds  p ¢ L e ([0, T];R™). Then Uy is
dense in the space L? (Q, Fr,P).

In Theorem 4.21 the space LE . ([0, T];R"™) consists of those R™-valued func-

simple

tions h € L* ([0, T]; R™) which can be written in the form

N N N
h(s) =D L, 1a(s) (Z Aj> = Y 1oe)(5)X, 0<s<T, NeN, (4.95)
k=1 j=k j=1

where, for any N e N, 0 =ty < t; < --- <ty =T is an arbitrary partition of
the interval [0,T], and where ();),_; 5 are arbitrary vectors in R". Observe

that, for such functions h, SOT h(s)-dW (s) = Z;VZI Aj - W (t;). Also notice that,
by Tt6’s lemma, X;,(T) = 1+ § Xy (s)h(s) - dW (s), h e L* ([0, T];R").

www.alcatel-lucent.com/careers

¥, N

—
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In the proof of Theorem 4.21 the following notation is employed. The symbol
Cg (R™N) stands for the vector space of those C*-functions ¢ defined on all
real n x N matrices A with the property that all functions of the form

A (L4 A Z)"™ D e(N), meN, 1<j<N, 1<k<n, aj;€N,

are bounded. Here D. ;f stands for the derivative of order «; relative to the
variable \;;. The symbol |A|pgg stands for the Hilbert-Schmidt norm of the
matrix A; that is

2
H/\”HS Z Z |>\] k’ Js k)l<]<N,1<k<n‘

j=1k=1

Functions of the form A — exp (—1 H/\”?{s) belong to the space Cif (R™N).
Observe that Cf° (R™*Y) constitutes a dense subspace of Cy (R™*V), i.e. the
space of complex-valued continuous functions which tend to 0 at oo equipped
with the supremum norm.

PrRoOOF OF THEOREM 4.21. This statement is true if there exists no g €
L?(Q, 37, P), which is perpendicular to all X(T') € Wz. We start by assum-
ing that there is a g € L*(Q,%7,P) such that g is orthogonal to all vari-
ables X (7T) € Wy. This orthogonality means that E[X,(T)g] = 0, for all
heL® . ([0,7];R"). Or, what is the same,

simple

([0,T]:R").  (4.96)

simple

J 18 1AW ()3 55 M2 ds 0P _ 0 for all h e L2
Q

The equalities in (4.96) are equivalent to

1

e~ 350 M) dSJ elo hls)-aW ()(w JgdP =0, forall he LX . ([0,T];R"),
Q

simple
which amounts to the same as

L oo h(s)-dW (s DgdP =0, forall he Lpie ([0, T R™), (4.97)

By taking h as in (4.95), we see that for all A = ()\1, o Ay) € (RN = RN
and for all (t1,.. ) [0, 71" with 0 =ty <t; < --- <ty = T, the following
equality holds: g ZJ 1MW) g gP = 0. Next, put G(\) = |, 2] 1A W) g qp.
The function A — G(\) is real analytic on R”XN : and thus has an analytic

extension to the complex space C™*V: G(z) := S eZie1 2 W) gdP for all z €
C™N. Here z; - W;(t) = Yp_, zuWi(t ), zj = (Z1gs---,2nk) € C". Since
G(A\) = 0 for A e RN it follows that G(z) = 0 for 2 € CneN, However, for
¢ e CF (R™Y), and with

~ i
go(yl,...,yN)zf f eI (zy, .. ay) doy ... day,

N times
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where (y1,...,yn) € RN we see that
Ele(W (t1),....W (tn)) gl :JQSO(W(h)v”'vW(tN))gdP

(inverse Fourier transform)

- L ((2;)nfn€i2?‘1w“ ey )dy) gdP

(Fubini’s theorem

)
1

- G | Gneway—o (4.98)

From the monotone class theorem, and the fact the space Cg (R™*Y) is dense
in Cy (R”XN ) for the uniform topology, it follows that the equality in (4.98), i.e.
the equality

Elp(W(t),...,W(tn))g] =0 (4.99)
can only be true for all p € Cf° (]R”XN), and for all (ty,...,tn) € )N,
0 <ty < - <ty =T, forall N € N, provided that E[Fg] for all

(0,

=0
bounded Fp-measurable random variables F'. Consequently, E [X,(T")g] = 0 for
all he L® . ([0,T];R") if and only if the random variable g € L? (Q, Fr,P) is

simple

identically 0. This completes the proof of Theorem 4.21. O

The following theorem is known as the Ito representation theorem.

4.22. THEOREM. If the random wvariable X (T) belongs to L? (0, Fr,P), then
there exists a unique predictable R™-valued process t — F(t), 0 < t < T, for

which S(?E [|F(s)|2] ds < oo and which is such that

X(T) = E[X(T)] + f F(s) - dW(s). (4.100)

In other words the space

T T
C+ {J F(s)-dW(s): s— F\(s) predictable and f
0 0

coincides with L? (Q, Fr, P).

E[|F(s)]] ds < oo}

PROOF OF THEOREM 4.22. Let X(T') be as in Theorem 4.22. Then there
exists double sequences ((aj k)N_’f1> in C and <(hj k)N_’“1> of elements in
"= keN "=/ keN

L pe ([0, T]; R™) such that, with F(t) = ].Vz’“l @ x Xn, , (t)h;jr(t) and with
Ny
- Z i Xn,, (T Z a; keSO (o)W (s)=3 g | s o) ds
A =

Download free eBooks at bookboon.com



Ny, T Ng
- 2 i+ J 2 kX, (O x(t) - dW (L)
j=1 0 j=1

T

=E [X.(T)] +J Fy.(t) - dW (t), (4.101)
we have
0= lim E[|X(T) = Xp(T)[*] = lim E[|Xo(T) = Xp(T)["]

T

= dim {[ELG0) - 4Dl + [ B[R0 - Ao af. @)

From (4.102) we infer that E [X(7")] = limg_ E [ X% (T')] and that there exists
a predictable process t — F(t) such that

T
lim | E[|F(t) - F(t)[°] = 0. (4.103)
k—o0 0
From (4.103) we obtain
T T
L*- lim Ey(t) - dW(t) = J F(t) - dW(t). (4.104)
—% Jo 0

A combination of (4.101), (4.102) and (4.104) yields the equality in (4.100). In

addition, we have X(:]FE [|F(s)|2] ds < oo, and so the existence part in Theo-
rem 4.22 has been established now. The uniqueness part follows from the Ito

isometry
2

U |Fa(s) — Fi(s)[? ds] ~E

if X(T) -E[X(T)] = So Fi(s) - dW (s) = S Fy(s) - dW (s). Altogether this
completes the proof of Theorem 4.22. O

f (Fals) — Fi(s)) - dW(s)

0

Next we formulate and prove the martingale representation theorem.

4.23. THEOREM. Let (M(t))yc;cq belong to M?(Q,Fp,P). Then there ewists
a unique predictable R"-valued process t — ((t) = ((i(t),...,Cu(t)), C(t) €
L* (Q, 5, P;R™), such that

f C(s) - dW (s ) + ZJ Ci(s) dW;(s (4.105)

Of course, if in Theorem 4.23 the process t — M(t), 0 < t < T, is a martingale
vector in R?, then we obtain a predictable matrix Z(t) € R"*? such that M (t) =
M(0) + § Z(s)*dW (s). (This is what one needs in the context of Backward
Stochastic Differential Equations or BSDEs for short.)

PROOF OF THEOREM 4.23. Let (M (t)),,<r be as in Theorem 4.23. The-
orem 4.22 yields the existence of a unique predictable R™-valued process t —
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C(t) = (G(D),..., (D)), C(t) € L2 (2, Fy, P; R™), such that

M(T) = f C(s)-dW (s (T)]+an L Ci(s) dW(s). (4.106)

Since the processes t — M(t) and t — Sé Gi(s)dW;(s), 1 <j<n, 0<t<T,
are martingales, from (4.106) we infer

M(t)=E[M(T)| ] =E []E [M(T)] + L ((s)-dW(s) | ?t]

J C(s) - dW (s [M(O)]+f:¢(s)-dvv(s) (4.107)

From (4.107) we get M(0) = E[M(0)], and so the representation in (4.105)
follows from (4.107). The proof of Theorem 4.23 is complete now. O
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3. Girsanov transformation

In this section we want to discuss the Cameron-Martin-Girsanov transformation
or just Girsanov transformation. Let (Q,F,P) be a probability space with a
filtration (33),.,. In addition, let the process {B(t) : ¢t = 0} be a d-dimensional
Brownian motion. Let b;, ¢;, 0; ; be Borel measurable locally bounded functions
on RY. Suppose that the stochastic differential equation

X(t)=x+f

0

¢
o (s,X(s))dB(s) + J b(s, X(s)) ds (4.108)
0

has unique weak solutions. For a precise definition of the notion of “unique
weak solutions” see Definition 4.19. For more information on transformations
of measures on Wiener space see e.g. Ustiinel and Zakai [139]. In particular
these observations mean that if in equation (4.109) below (for the process Y'())
the process B'(t) is a Brownian motion relative to a probability measure P,
then the P'-distribution of the process Y (t) coincides with the P-distribution of
the process X (t) which satisfies (4.108). Next we will elaborate on this item.
Suppose that the process t — Y'(t) satisfies the equation:

Y(t) = x+Jt

0

o(s,Y(s)) dB(s) + L (b(s,Y(s))+0(s,Y(s))c(s,Y(s))) ds

t
=+ J o(s,Y(s))dB'(s) + J b(s,Y(s))ds, (4.109)
0 0

where B'(t) = B(t) + Sé ¢(s,Y(s)) ds. The following proposition says that rela-
tive to a martingale transformation P’ of the measure P (Girsanov or Cameron-
Martin transformation) the process t — B’(t) is a P-Brownian motion. More
precisely, we introduce the local martingale M’(t) and the corresponding mar-
tingale measure ' by

M'(t) = exp (_ ftc(s,Y(s)) dB(s) — %Lt e (s, Y (s))]? ds> and  (4.110)

P'[A] =E [M’(t)lOA] . Aed,. (4.111)

We also need the process Z'(t) defined by

Z(t) = —L ¢ (s, (s)) dB(s) — %L e (s, Y () ds. (4.112)

In addition, we have a need for a vector function ¢;(¢,y) satisfying c(t,y) =
c1(t,y)o(t,y). We assume that such a vector function ¢;(t,y) exists.

4.24. PROPOSITION. Suppose that the process Y (t) satisfies the equation in
(4.109). Let the processes M'(t) and Z'(t) be defined by (4.110) and (4.112)
respectively. Then the following assertions are true:

(1) The process t — M'(t) is a local P-martingale. It is a martingale
provided E[M'(t)] =1 for allt = 0.

(2) Fiz t > 0. The variable M'(t) only depends on the process s — Y (s),
0<s<t.
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(3) Suppose that the process t — M'(t) is a P-martingale, and not just a
local P-martingale. Then P can be considered as a probability measure
on the o-field generated by Uu~oF;.

(4) Suppose that the process t — M'(t) is a P-martingale. Then the process
t — B'(t) is a Brownian motion relative to P'.

ProoF. 1 From Ito calculus we get

M'(t) — M'(0) = —L M'(s)c(s,Y(s))dB(s),

and hence assertion 1 follows, because stochastic integrals with respect to Brow-
nian motion are local martingales. Next we choose a sequence of stopping times
T, which increase to oo P-almost surely, and which are such that the processes
t — M'(t A 7,) are genuine martingales. Then we see E[M'(t A 7,,)] = 1 for
all n e Nand ¢t > 0. Fix t5 > ;. Since the processes t — M’ (t A 7,), n € N,
are P-martingales, we see that

E[M (to A7) | Fi] = M' (1 A7) P-almost surely. (4.113)
In (4.113) we let n — oo, and apply Scheffé’s theorem to conclude that
E[M () | Fi ] = M’ (t1) P-almost surely. (4.114)

The equality in (4.114) shows that the process t — M’(t) is a P-martingale
provided that E [M’(t)] = 1 for all ¢ > 0. This completes the proof of assertion
1. 2 This assertion follows from the following calculation:

Z'(t) = —f c(s,Y(s)) dB(s) — %L (s, Y (s)]” ds

0

_ *fo c(s,Y(s)) dB'(s) + %L e (s, Y (5))[”

(c(s,y) = ci(s,9)a(s,y))
_ _f ¢ (5, Y (5) o (5,Y(s)) dB'(s) + %L e (s, Y (s))]?

0
rt

oY) d (La (.Y (7)) dB’(T)) + 1f e (.Y ()
: (s, Y(s)) d (Y(s) - J:b(T Y (7 ) f (s, Y (s
(4. 115)

From (4.115), (4.110), and (4.112) it is plain that M’(t) only depends on the
path {Y(s): 0 < s < t}.

I
|
| S—

I
|
[ S

3 This assertion is a consequence of Kolmogorov’s extension theorem. The
measure is P’ is well defined on u;~¢F;. Here we use the martingale property.
By Kolmogorov’s extension theorem, it extends to the o-field generated by this
union.
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4 The equality B'(t) = B(t) + Séc(s,Y(s)) ds entails the following equality
for the quadratic covariation of the processes B; and B;-:

(B}, B}) (t) = (B, B;) (t) = td; ;. (4.116)
From Ito calculus we also infer

M'(0)BI(1)
:J M'(s)Bl(s) dZ'(s) JM’ )dB.(s)
J M/(s)B(s)d (2", Z j M/(5)d(Z', B) (s)
- JM’ Je (5, Y (s)) dB(s ——JM’ VB!(s) |e (5, Y (5))? ds
H f M/(8)Bl(s) e (s, Y (s)) ds + f M/(s) dBi(s)
JM’ Jei (5, Y () ds—JM’ Joi (5, Y (s)) ds
=~ [ MBI 5. () dBls) + [ 206) ) (4117)

Upon invoking Theorem 4.5 and employing (4.116) and (4.117) assertion 4 fol-
lows.

This concludes the proof of Proposition 4.24. O
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Let the process X (t) solve the equation in (4.108), and put
t 1 t
M(t) = exp (J c(s,X(s))dB(s) — §J e (s, X (s))]? ds) : (4.118)
0 0
and assume that the process M (t) is not merely a local martingale, but a genuine
P-martingale.
4.25. THEOREM. Fiz T > 0, and let the functions
b(S,’y), O-(Say)a C(Say)v and Cl(say)7 0<s< T7

be locally bounded Borel measurable vector or matriz functions such that c(s,y) =
ci(s,y)o(s,y), 0 < s < T, yeRL Suppose that the equation in (4.108) pos-
sesses unique weak solutions on the interval [0,T].

Uniqueness. If weak solutions to the stochastic differential equation in (4.109)
exist, then they are unique in the sense as explained next. In fact, let the couple
(Y(s),B(s)), 0 < s < t, be a solution to the equation in (4.109) with the property
that the local martingale M'(t) given by

M(#) = exp (— fc(s,Y(s)) dB(s) - %J: e (s, Y (5))? ds) o (119)

0

satisfies BE[M'(t)] = 1. Then the finite-dimensional distributions of the process
Y(s), 0 < s <t, are given by the Girsanov or Cameron-Martin transform:

Ef Y (), Y ()] = EIM@)f (X (1) 5., X (ta))], (4.120)

t>t, > >t =0, where f : R x --- x R? - R is an arbitrary bounded
Borel measurable function.

Existence. Conversely, let the process s — (X (s), B(s)) be a solution to the
equation in (4.108). Suppose that the local martingale s — M (s), defined by

S 1 S
M(s) = exp (f c(rX(M)BE) - 5 | le(r X () dT> L 0<s<t,
0 0
(4.121)
is a martingale, i.e. E[M(t)] = 1. Then there exists a couple (?(s),é(s)),

0 <s<t, where s — é(s), 0 < s < t, is a Brownian motion on a probability
space <§~2,§", ]TD) such that

Vis)=a+ f o (7.Y(7) aB(r) + f

0 0

and such that

E [exp (— f:c (g,ff(s)) dB(s) — %Lt ¢ <s,}7(s)) )2d5>] 1. (4.123)
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4.26. REMARK. The formula in (4.120) is known as the Girsanov transform
or Cameron-Martin transform of the measure P. It is a martingale measure.
Suppose that the process ¢t — M’(t), as defined in (4.110) is a P-martingale.
Then the proof of Theorem 4.25 shows that the process t — M(t), as defined
in (4.118) is a P-martingale. By assertion 1 in Proposition 4.24 the process
t — M'(t) is a P-martingale if and only E[M'(t)] = 1 forall T >t > 0, and a
similar statement holds for the process t — M (t). If the process t — M'(t) is a
martingale, then taking G = 1 in (4.135) shows that E[M(¢)] = 1, and hence
by 1 in Proposition 4.24 the process t — M(t) is a P-martingale. Conversely, if
the process t — M (t) is a P-martingale, then we reverse the implications in the
proof of Theorem 4.25 and take F' = 1 in (4.139) to conclude that E [M'(t)] = 1
for all = 0. But then the process t — M'(t) is a P-martingale.

Notice that the process t — M(t) is a P-martingale provided Novikov’s con-
1 t
dition is satisfied, i.e. if E lexp (§J e (s, X (s))] ds)] < o0. For a precise
0
formulation see Corollary 4.27 below. Define

E(M)(t) = MOz MM, (4.124)

1
4.27. COROLLARY. IfsupE [exp <§ (M, M) (t))] < o0, then

t=0

B [oxp (41(x) - 5 (r,00) ()| - 1.

and consequently the process t — E(M)(t) is a P-martingale relative to the
filtration (3Fy),5,, where Fy = o (M(s) : 0 < s < t), the o-field generated by the
variables M(s), 0 < s < t.

Novikov’s result is a consequence of results in [76]; see Chapter 1 of [146].
Observe that M (o) = limy_,,, M (t) exists P-almost surely.

4.28. REMARK. Let s — c¢(s) be a process which is adapted to Brownian
motion in R?, and let p > 0 be such that Novikov’s condition is satisfied:

E [eXp (%p2 S(t) le(s)]? ds)] < 00. From assertion 4 in Proposition 4.24 and The-

orem 4.25 we see that the following identity holds for all bounded Borel mea-
surable functions F' defined on (]Rd)n:

E[F (Y, (t1),...,Y, (ts))]
_E lexp (,)L o(s)dB(s) — %pQL \c(s)|2ds) F(B(),...,B(t))
1.125)

(
where 0 < t; < -+ < t, <t, and Y,(1) = B(r) + p{ c(s)ds, 0 < 7 < t. In
particular, if n = 1 we get

E [F (B(t) + th o(s) ds)]

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I| Stochastic differential equations

~&[ew (o[ 1B - 3 [ Kfas) FB@)|

Assume that the gradient DF of the function F exists and is bounded. The
equality in (4.126) can be differentiated with respect to p to obtain:

E l<DF <B(t) + pJ: o(s) ds) ,f: o(s) ds>]
~& e (s j (s)aB(s) - 35° [ et as)
« (Lt f\ )2 ds) (B ())]. (4.127)

The bracket in the left-hand side of (4.127) indicates the inner-product in R¢.
In (4.127) we put p = 0 and we obtain the first order version of the famous
integration by parts formula:

E KDF (B(1)). Jt () ds>] _E Ut o(s) dB(s) F (B(t))] EENREYS

0 0

We mention that the Cameron-Martin-Girsanov transformation is a cornerstone
for the integration by parts formula, which is a central issue in Malliavin cal-
culus. For details on this subject see e.g. Nualart [103, 102], Malliavin [92],
Sanz-Solé [118], Kusuoka and Stroock [78, 79, 80|, Stroock [127], and Norris
[100).
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For a proof of Theorem 4.25 we will need the Skorohod-Dudley-Wichura repre-
sentation theorem: see Theorem 11.7.2 of Dudley [41]. It will be applied with
S = C([0,¢],R?) and can be formulated as follows.

4.29. THEOREM. Let (S,d) be a complete separable metric space (i.e. a Polish
space), and let Py, k € N, and P be probability measures on the Borel field Bs of
S such that the weak limit w—limy_oo Py = P, i.e. limy_,o § FdPy = § FdP for
all bounded continuous functions of F' € Cy(S). Then there exist a probability

space (Q, 5’, ]I~D> and S-valued stochastic variables f/k, ke N, and SN/, defined on
Q with the following properties:

(1) Px[B] = ]P’[Yk e B] keN, and P[B] =IF)[1~/G B] B e Bs.
(2) The sequence Vi, ke N, converges to Y P-almost surely.

4.30. REMARK. An analysis of the existence part of the proof of Theorem 4.25
shows that the invertibility of the matrix o (s,y) is not needed. Let N(s),

0 < s < t, be a local martingale on a filtered probability space (Q,g"s,@»
where the o-field F, is generated by ()7(7') :0<7< s). Suppose that the

covariation process of N (s) is given by

(8 8) 0= [ (o (n 7)o" (7)) i, 124 i<

Here Y is a local martingale on <~ O, F,P > Then by assertion (iii) in Theorem
B(s)

Q

4.17 there exists a Brownian motion B(s), 0 < s < ¢, on this space such that

f: 1 (T,?(T)) d]v(T) = fo <7’,Y( )> o (T,?(T)) dé(T)

_ JSC(T,?(T)) dB(r). (4.129)

0

PROOF OF THEOREM 4.25. Uniqueness. Let the process Y (s), 0 < s < ¢,
be a solution to equation (4.109). So that

Y(s)=x+f

0

S S

o(r,Y(r)) dB(7) + L b(r,Y(7)+o(r,Y(7))c(r,Y(7))) dr

=+ JS o (r,Y(7))dB' (1) + J b(r,Y(r)) dr. (4.130)

0 0

Let F ((Y(s))g<se;) be a bounded stochastic variable which depends on the
path Y(s), 0 < s < t. As observed in 4 of Proposition 4.24 the process B'(t)
is a P’-Brownian motion, provided E [M’(¢)] = 1. Uniqueness of weak solutions
to equation (4.108) implies that the P’-distribution of the process s — Y(s),
0 < s < t, coincides with the P-distribution of the process s — X (s), 0 < s < t.
In other words we have

E'[F (Y (5))o<ser) ]
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lexp( L (5,Y(s)) dNY (s ——f e (s, Y (s)))? ds) ((Y(s))ggsg)]

E[F ((X(5)o<sr) ]+ (4.131)
where
NY(S)ZY(3>—EJ(T Y(P)e(nY (7)) dT—fb(T Y (7)) dr
- L o (r,Y(r)) dB(r) (4.132)
With
G ((Y(5))o<szt)
— o (= [ 1) V0 =L [V O)F ) F (D)
we have

F ((Y(S))0$s<t)

So, since
dNX(s) = dX(s) — o (s,X(s)) c(s,X(s)) ds — b (s, X(s)) ds
=0 (s,X(s)) (dB(s) — c(s,X(s)) ds) (4.133)
it follows that

F((X(5))o<s<t)

— exp (Ltcl (s, X (s)) ANX(s f e (s, X (5))[? ds) ((X(5))o<sze)

~eo (| tc(s,x<s>> 18(5) 3 [ 1o XEDP ) G (X D).
(4.134)

From (4.131) and (4.134) we infer:
E[G((Y(5))o<szt)] (4.135)

~ e ([ et X060 ds = 3 [ el X()P ) 6 ((4erc) |

By inserting G =1 in (4.135) we see that

E [exp (Ltc@,X(s)) ds — %Lt |c(s,X(s))|2ds)] —1

in case there is a unique solution to the equation in (4.122). This proves the
uniqueness part of Theorem 4.25.
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Existence. Therefore we will approximate the solution Y by a sequence Y,
k € N, which are solutions to equations of the form:
rs

Yi(s)=x+4 | o(r,Yi(r)) dB(7)

J

+ J[} (1,Y3(7)) + o (1, Y5(7)) cx (7, Yi(7))) dr
s s

=x+4 | o(r,Ye(r))dB.(T) +f b(r,Ye(r))dr. (4.136)

JO 0

»

Here
S

&@=m@+j%mnmmn

0
and the coefficients cx(s,y) = c14(s,y)o (s,y) are chosen in such a way that
they are bounded and that c(s,y) = limy ., c(s,y) for all s € [0,¢] and y € R<.
By Novikov’s theorem the corresponding local martingales M;, given by

M!(s) — exp (- J ex (7, V(7)) dB(r) — %fo ok (7, Yk(r))|2d7) keN,

0

are then automatically genuine martingales: see Corollary 4.27. From the
uniqueness of weak solutions to equations in X (¢) of the form (4.108) (and
thus to equations in Yy (s) of the form (4.136) we infer

B [F ((Yk(s))ossst)] =E [F (<X(5))o<s<t)] : (4.137)

In equality (4.137) the process Yj(s), 0 < s < t, solves the equation in (4.136).
The equality in (4.137) can be rewritten as

E M) F ((Yi(5))ocaer)] = B [F (X (9))pue) |- (4.138)
By (4.115) the equality in (4.138) can be rewritten as

B [e (= [ (534060 B5) —§ [ e (6D d5) F ((0id9)crc)

0

_E lexp <— J s (5.Y4(5)) d <Yk(s) - J b (r V(7)) dT>

0 0

% f ek (s, Yi(s))[? ds) F ((Yk<5>)0<s<t)]

=E[F ((X(5))geser)] - (4.139)

Let G ((Yi(s))g<s<y) be a (bounded) stochastic variable which depends on the
path Yk(s), 0 < s < t. From the equality in (4.139) we infer

(Yk 0<s<t)]

[G(
[e < e (5, X (s)) d(X(s)—fb(T,X(T)) dT)

0

_§f0 e (5, X ()] ds) G((X(s>>o<s<t)]

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I Stochastic differential equations
t 1 t
_E [exp (J e (5, X(5)) o (s, X (s)) dB(s) — §J ca (5, X () ds)
0

=E[M;(t)G ((X(S))ogsgt ]. (4.140)

Here the martingales My(s) are given by

Mi(s) — exp (J e (7, X (7)) dB(r) — %Jﬂ o (7, X (7)) d7> CheN,

0
This fact together with the pointwise convergence of My(s) to M(s), as k — oo,
and invoking the hypothesis that E[M(t)] = 1, shows that the right-hand side
of (4.140) converges to E [ M (£)G ((X(s))gcse;)]- In other words the distribu-
tion P¥* of Y} converges weakly to the measure PMX defined by PMX(A) =
E[M(t), X € A], where A is a Borel subset of the space C ([0,¢],R?). By the
Skorohod-Dudley-Wichura representation theorem (Theorem 4.29) there exist

a probability space (§~2, F , ]T”) and C ([O, t], ]Rd)—valued stochastic variables ffk,
k € N, and )7, defined on ) with the following properties:

(1) P%[B] = P [Yfk e B], keN, and PMX [B] = P [f/’ e B], for all
Be BC([O,t],Rd)'

(2) The sequence (?k> converges to Y P-almost surely.
keN

[ ]
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By taking the limit in (4.140) for £ — oo and using the theorem of Skorohod-
Dudley-Wichura we obtain

E [G ((f/(s))ogsg)] = E[M(1)G ((X(5))peset)] (4.141)

where G is a bounded continuous function on C' ([0,¢],R?). Then we consider
the process N(s), 0 < s < t, defined by

S S

N(s) = V(s) - L 0(7,17(7)) 0(7,17(7)> dr — L b(T,?(T)) dr.  (4.142)

If Y (s) were Y (s), then by (4.130) N(s) would be NY (s), given by the formula
n (4.132). Hence the process s — NY(s), s € [0,t], is a stochastic integral
relative to Brownian motion on the space (2, F;,P). We want to do same for

the process s — N(s), 0 < s < t, on the probability space ((Nl,g'“, IF’) Let
PM® be the probability measure on (2, F;) defined by PM®) [A] = E [M (t), A,
A € 3'} Then like in item (4) of Proposition 4.24 we see that the process s —

—§,o( ) dr is a PM®)-Brownian motion. In addition, from (4.141)

and (4.142) we mfer that the P-distribution of the process N (s), 0 <s<t,is
given by the PM®_distribution of the process

S

S'—>X($>—JSO'(T,X(T))C(T,X(T)) dT—f b(r,X (7)) dr

0 0

- [0 X0 @B ey (7))

0

_ J Co (7. X (7)) dBMO(7), (4.143)

where BM®)(s) is a PM®)_Brownian motion: see Proposition 4.24 item (4). It
also follows that the process in (4.143) has covariation process given by the
square matrix process

SHLSO'(T,X(T))O'* (1,X(1)) dr, 0<s<t

Consequently, the process s — N (s), 0 < s <t is a local }Nj—martingale with
covariation process given by

S — J m,Y(r))o* (T,?(T)) dr, 0<s<t (4.144)

In order to prove (4.144) we must show that the process

5+ le(s)ﬂsz(s) — Z f: Tjr k (7’, ?(T)) Tjn <T,§~/(T)> dr

is a local Iﬁ’—martingale. The latter can be achieved by appealing to the fact the
P-distribution of the process s — Y(s), 0 < s < t, coincides with the PM®.
distribution of the process s — X(s), 0 < s < t Then we choose a Brownian

motion B (s), possibly on an extension of the probability space (Q, g, ]P’), which
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we call again ((NZ, 7, Iﬁ) such that N(s) = o0 <7’, ?(7’)) dB(7). For details see

the proof of the implication (ii) = (iii) of Theorem 4.17. With such a Brownian
motion we obtain:

Vis)=a+ fa (ﬁf@)) dB(r

0

B
+ J: o <T, 37(T)> c (T, 37(T)> dr + L b <T, ?(7)) dr. (4.145)

~—

Since

E [exp (— Ltc <s,§~/(s)) dB(s) — %Lt ¢ (s,?(s)>rds>] —1  (4.146)

it follows that the process s — B(s) + §oc <7', ?(7’)) dr is a Brownian motion

relative to the measure

A B lexp (— Ltc(s,?(s)) dB(s) - %f: c(s,?(s))fds) | A}, AeF

The equalities in (4.145) and (4.146) complete the proof of Theorem 4.25. [

3.1. Equations with unique strong solutions possess unique weak
solutions. The following theorem shows that stochastic differential equations
with unique pathwise solutions also have unique weak solutions. Its proofs puts
the Lévy’s characterization of Brownian motion at work: see Theorem 4.5.

4.31. THEOREM. Let the vector and matriz functions b(s,z) and o(s,z) be as
in Theorem 4.25. Fiz x € RY. Suppose that the stochastic (integral) equation

X(t)=:c+f

0

t t

o(s,X(s))dB(s) + Jo b(s,X(s)) ds (4.147)

possesses unique pathwise solutions. Then this equation has unique weak solu-
tions.

In the proof we employ a certain coupling argument. In fact weak solutions to
the equations in (4.3) and (4.4) are recast as two pathwise solutions of the same
form as (4.147) on the same probability space.

PRroOOF. Let {(B(t): t = 0),(2,F,P)} and {(B'(t): t =0),(,F,P')} be
two independent Brownian motions. Without loss of generality it is assumed
that, for 0 <t < oo,

F =J<{B(s) :0<s <t}U{AeS’O: P[A] =O}>, and
! =a<{B’(s) 0<s<t)J{AeF: P[] 20}).

Moreover, F = o (Ut>0 fﬂ), and a a similar assumption is made for . Let
{X(t) : t = 0} be an adapted process which satisfies (4.3), and let {X'(¢) : t = 0}
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be an adapted process which satisfies (4.4). Suppose 0 <t <ty < - - < t, < 0,
and let O, ..., C, be Borel subsets of R%. We have to prove the equality:

P X' (t1)eCy,...., X (t,) € C,] =P[X (t1) € Cy,..., X (t,) € C,]. (4.148)
Let (0, F°,Py) be a probability space with a Brownian motion {By(t) : ¢t = 0}
such that F° = o ({By(t) : t = 0} | J{Ao € F*: Py[Ao] = 0}). Define the R?-
valued processes Y (t), Y'(t), and By(t) on © x ' x Qq as follows:

Y (t) (w,w wo) = X (t) (w), (w,w' wp) € Q x Q x Q;
Y'(t) (w,w,wp) = X'(t) (&), (w,w';wg) € Q x Q x Qp; (4.149)
Bo(t) (w,w,wy) = Bo(t) (wo) (w,w';wp) € Q x QA x Q.
In fact we use the notation )y instead of €2 to distinguish the third component
of the space €2 x ' x Qg from the first. The role of the first two components
are very similar; the third component is related to the driving Brownian motion
{Bo(t) : t =0}. The processes Y (t) and Y'(t) are going to be the pathwise
solutions on the same probability space (Q x Q' xQ,FRF ®30,@x): see
(4.159) and (4.160) below. On € the probability measure Py is determined by
prescribing its finite-dimensional distributions via the equality:
Po[(Bo(t1),...,Bo(tn) € D] =P[(B(t1),...,B(t,)) € D]
=P [(B (t1),...,B (t,)) € D]. (4.150)
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In (4.150) we have 0 < t; < --- < t, < o0, and D is a Borel subset of (Rd)n.

Let C' be another Borel subset of (Rd)n. On Q x Qy and €' x Qg the probability
measures Q, and Q/, are determined by, respectively, the equalities:

Qo [(X (t1)...., X (t) € C, (Bo(t1),..., By (L)) € D]
—P[(X (t),....X (t) € C, (B(t)),...,B(t.)) € D], and

Q. [(X'(t1),...,X (ta)) € C, (By(t1) ..., By (tn)) € D]
—P[(X'(t),....X (t,)) € C, (B'(t1),..., B (t.)) € D]. (4.151)

Notice that Py [Ag] = 0 implies Q, [Q x Ag] = Q[ x Ag] = 0. Consequently,
by the Radon-Nikodym’s theorem there are (measurable) functions

Qx: ?XQOH[O,l], andQ;: ?/XQOH[O,l]

such that, respectively,

Q. [A x Ag] = Qs (A wo) dPy (wy), A€T, Age F°, and
Ag

QL[A x Agl = | QL (A wpo) dPy(wy), A eTF, AyeT° (4.152)
Ag

Here Q. (2, wy) = Q. (', wy) = 1 for Po-almost all wy € Q. Moreover, the
functions

wo — Qu (A, wp), and wo— Q) (A, wo) (4.153)

are measurable relative to the Po-completion of F°. In addition, the set functions
A Qu(Awy), Ae F,and A — Q' (A wy), A € F are Py-almost surely
probability measures. Here we use the fact that, except for negligible sets, the
o-fields F and F’ are countably determined. Finally, we define the measure

Q. FRF RF —[0,1] via the equality
Q. [A x A" x Ag] = me (A, wo) @, (A", wo) 1a, (wo) dPg (wo)

= ]E(] [CL)(] = Qm (A,WO) Q; (A/,CL)O) 1A0 (WO)] . (4154)
Here A, A’, and Ay belong to F, F’, and F¥ respectively. First we prove that
the process {éo t):t= 0} is Brownian motion with respect to the measure @x

The corresponding expectation is written as E,. From the proof of Theorem
4.5 (i.e., Lévy’s characterization of Brownian motion) it follows that it suffices
to show that the following equality holds:

E, [exp (~i (& Bolt) — Bols))) | . @ 5.0 T
1
= exp <—§§|2 (t—s)) L >8>0, £eRY (4.155)
By definition ¥, = o (B(p) : 0 < p < s). Similar definitions are employed for
F. and for the o-field F2. In order to prove (4.155) we pick A € F,, A’ € F.,
and Ag € F°. Then by (4.154) we get

E, [exp (-@ <g, Bo(t) — §0(5>>) 1AxA’on]
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= L - exp <—z' <§,§0(t) - §0(5)>> dQ,
= Eg [wo — exp (—i (&, Bo(t) (wo) — Bo(s) (wo)))
X Qx (Aa WO) le (A/> wU) 14, (WO)] : (4'156)

The process (wo,t) — Bo(t) (wp) is a Brownian motion relative to Py, and the
events A, A’, and Ay belong to F,, F., and FV respectively, and hence the
variable By(t) — By(s) is Py-independent of the variable

wo = Qs (A, Wo) Q; (AI,WO) 14, (wo) .
Therefore (4.156) implies
E, [exp (—i <§, éo(t) — §0(8)>> 1A><A'><Ao]

~ | Q) @1 (A ) By () f exp (=i (€, Bo(t) — Bo(s))) dPo

= Qu[A x A x Ag] exp <—% €17 (t — s)) . (4.157)
The equality in (4.155) is a consequence of (4.157). Since, by definition (see
(4.150))

Po[(Bo (1), .+ By (ta) € C] = P[(B (1) ..., B(t))€C]  (4.158)

for 0 < t; < -+ <t, < o, C Borel subset of (Rd)n, and since the process
{B(t): t = 0} is a Brownian motion relative to P, the same is true for the
process {By(t) : t = 0} relative to Py. Next we compute the quantity:

| |

= [t o [ o tsxt6)) ano) - [ v x06 s

0

t

Y(t)—x—f (s,Y(s)) déo(s)—f b(s,Y(s))ds

O 0

dP =0. (4.159)
Similarly we have
= |

HX —:v— o (s, X'(s)) dB/(s)—fb(s,X(s))ds

0

t

Y'(¢) —x—J o (s,Y'(s)) dBo(s) —J b(s,Y'(s))ds

0 0

dP' = 0. (4.160)

From (4.159) and (4. 160) we infer that the following equalities hold Q,-almost
surely:

t t

o (s,Y(s)) dBo(s) + L b(s,Y(s)) ds and (4.161)

o (s,Y'(s)) dBo(s) + J b(s,Y'(s)) ds. (4.162)

0

Y(t)=a7+J

0

Y'(t) =z + Jt

0

Moreover, the process {Eo(t) St > O} is a Brownian motion relative to Q,.

From the pathwise uniqueness and the equalities (4.161) and (4.162) we see
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that, Q,-almost surely,

Y()=Y'(t), t=0. (4.163)
Let 0 <0<t <. <t, <oo, and let C be a Borel subset of (Rd)n. From
(4.163) it follows that

Qo [(V(t),....Y (t) €Cl = Q. [(Y'(t1),...,Y (t) €C].  (4.164)

Using (4.164) and the definition of the measure Q, shows that the following
identities are self-explanatory:

Qo [(Y (1), Y (t2)) € O] = Qu [(X (11),..., X (tn)) € C, Q]
—P[(X(t),.... X () eC, Q =P[(X(t),....X (t,)) e C].  (4.165)

The definition of the measure Q, is given in (4.154). Similarly we conclude
Qu [(Y'(t1),....Y (t) € C]l =P [(X' (t1),..., X" (tn)) € C]. (4.166)
From (4.165), (4.166), and (4.164) we obtain
P(X (t1),...,.X (t,) e Cl =P[(X' (t1),..., X' (t,)) € C]. (4.167)

The equality in (4.167) implies that the finite-dimensional distributions of the
solution in equation in (4.3) are the same as those of the solution of equation
(4.4). So that stochastic differential equations with unique pathwise solutions
also possess unique weak (or distributional) solutions.

This concludes the proof of Theorem 4.31. 0

4.32. EXAMPLE (Tanaka’s example). Let the process t — B(t), t = 0, be one-
dimensional Browmian motion on the probability Space (Q,F,P), and let the

continuous process t — X(t) be such that X(¢ So sgn (X(s)) dB(s). Here
sgn(y) = | | for y # 0, and sgn(y) = 0, when y = O. It can be proved that such

a process exists. If ¢t — X () solves this equation, then the process ¢t — —X ()
is a solution as well. So we see that the equation dX(t) = sgn (X (¢)) dB(t),
X (0) = 0, does not have pathwise unique solutions. On the other hand the
process t — X(t) is (local) martingale, and, since B(t) = So sgn (X (s)) dX(s),
we get

¢

= (B,B) (t) = fo [sgn (X (s))[” d (X, X) (s) = (X, X) (¢).
Hence, (X, X) (t) = t. Lévy’s martingale characterization of Brownian motion
(see Corollary 4.7 and Theorem 4.5) then implies that the process ¢t — X(t)
is a Brownian motion on (Q,F,P). So that the distribution of X (¢) is that
of Brownian motion. Consequently, the equation dX (t) = sgn (X(t)) dB(t) has
unique weak solutions. For more details on Tanaka’s example and its connection
with local time see, e.g., Oksendal [106].

Conclusion. In this chapter we treated several aspects of the theory of stochas-
tic differential equations: strong and weak solutions, Lévy’s characterization
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of Brownian motion, exponential martingales, Hermite polynomials with appli-
cations to exponential martingales, a version of the martingale representation
theorem, and the Girsanov or the Cameron-Martin-Girsanov transformation.

ant to do?

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

293

Click on the ad to read more
Download free eBooks at bookboon.com


http://s.bookboon.com/volvo

Download free eBooks at bookboon.com



CHAPTER 5

Some related results

In this section we will discuss, among other things, Fourier transforms of dis-
tributions of random variables, positive-definite functions, Bochner’s theorem,
Lévy’s continuity theorem, weak convergence of measures, ergodic theorems,
projective limits of distributions, Markov processes with one initial probability
measure, Doob-Meyer decomposition theorem based on Komlos’ theorem.

1. Fourier transforms
Since we will also need signed measures, we will discuss them first.

1.1. Signed measures. Let M = M (R”,C) be the vector space of all
complex Borel measures on R”, and let M™ be the convex cone of all positive
finite Borel measures op R”. Then we have M = M, =M, +i (M, — M, ). Thus,
every complex Borel measure pon R” can be written as 1 = pg —po+i (3 — pa),
where p11, pi2, pi3 and py are finite positive Borel measures. In fact the measures
i, 1 < j <4, can be chosen in the following manner:

p1(B) =sup{Re u(C): C < B, C Borel };
p2(B) = sup {—Re pu(C) : C < B, C Borel };
ps(B) = sup {Im p(C) : C < B, C Borel };
pa(B) = sup {—Im p(C): C < B, C Borel }.

For this choice of the measures pq, po, s and py, the measures p; and po and
also the measures 3 and py are mutually singular in the sense that for certain
Borel subsets B; and Bj the following equalities hold:

p1(B) =Re p(B n Bi), p2(B)=Rep(Bn Bj);
us(B) = Re u(B n Bs), pa(B)=Rep(Bn Bj).

This decomposition is known under the name Hahn decomposition. In addition,
we introduce the variation of a complex measure p. This measure is denoted as
|pe|. Tt is the bounded positive measure defined by

|| (A) = sup {2 lw(A;)|: A2 Ajand A; n Ay = & for k = j} . (5.1)

J
Here A is a Borel subset of R” and the same is true for the elements of the
partition A;, j € N. The norm |[|u|| of the complex Borel measure p is then

defined by the equality: |u| = |u| (R”). Supplied with this norm M is turned
into a Banach space. By the Riesz representation theorem the space M can
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be taken as the topological dual of the space Cy(R"), being the Banach space
consisting of those complex continuous functions f : R¥ — C with the prop-
erty that lim, .., f(z) = 0. Then Cy(R”) is a closed subspace of the space
Cy(R”), the space of all bounded continuous functions on R”, which is a Ba-
nach space relative to the supremum-norm |-, given by || f||, = sup,eg» | f ()],

f € Cb<RV)

5.1. DEFINITION. A complex Radon measure on a locally compact space E is
a complex Borel measure with the property that for every ¢ > 0 and every
Borel subset B there exists a compact subset K < B with the property that
[ (B\K)| < e.

5.2. THEOREM (Riesz). Let E be a locally compact Hausdorff space, which is o-
compact, and let A : Coy(E) — C be a continuous linear functional. Then there
exists a unique complex Radon measure p on the Borel field of E such that

) = §fdu, e Co(E). In addition, |A| = |u| = |u| (E). If A is positive
in the sense that f = 0 implies A(f) = 0, then the corresponding measure p is
positive as well and |A| = p(E).

PROOF. For a proof the reader is referred to the literature. In fact the fol-
lowing construction can be used. Let the measures ;, 1 < 7 < 4 be determined

by

111(0) = sup{Re A(f) : 0 < f < 1o, feCo(E)};
p2(0) = sup{—Re A(f) : 0 < f < 1o, feCo(B)};
p3(0) = sup{Im A(f) : 0 < f < 1o, feCo(E)};
pa(O) =sup{—Im A(f): 0< f < 1o, feCy(E)},

where O is any open subset of E. Then it can be shown that, for each 1 < j < 4,
the set function p; extends to a genuine positive Borel measure on F. This
extension is again called ;. Moreover,

AP) =ffdu1—jfdu2+z'(ffdug—ffdm), /e ColB).

For details the reader is referred to, e.g., [136]. This completes the proof of
Theorem 5.2. O

5.3. DEFINITION. Let i be a complex Borel measure on R”. Then the equality

Alz) = f exp (—i (z,)) du(y), <R,

defines the Fourier transform of the measure p.

5.4. PROPOSITION. Let i be a complex measure on R” with the property that its
Fourier transform is identically zero. Then the measure p = 0.

PROOF. Let v be an arbitrary other complex Borel measure on R” with the
property that |D(x)| < 1, z € R”. Then the following equality holds:

fﬁ(fr)dV(x) = f U(y)du(y).
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Hence,
it = sup {| [ st £ < o . < 1)
J
= sup { [ 2auto|: Pl < 1y e v}
J
= sup{ (ﬁ(:v)du(x) ()| <1,y e R”} =0.
J
This completes the proof of Proposition 5.4. ]
5.5. DEFINITION. Let ¢ : R — C be a complex valued function. This function
is called positive-definite if for every n-tuple of complex numbers Ay, ..., \, to-
gether with every choice of n vectors €M, ... £™ in R, the following inequality
holds:

2, Mg (€0 =€) >0,
jk=1
and this for all n € N.
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5.6. PROPOSITION. Let p be a complex Borel measure on RY with Fourier trans-
form [i. Then the following assertions are true:

(a) the following inequality holds: |fi(x)| < |p]-

(b) If w is positive, then the equalities p(R”) = 1(0) = |u| are valid.
(¢) If v is positive, then the function [i is positive-definite.

(d) The function i is uniformly continuous.

PROOF. The proof is left as an exercise to the reader. O

5.7. DEFINITION. Define for p and v measures in M, the convolution-product
i = v via the equalities:

M*WB)zfjﬁBu*%me@dww

=u®v(S'B)=p®v{(z,y) eR":x+ye B}.

Here B is a Borel subset of R” and S is the (sum) mapping S : (z,y) — = + y.
Let © € R”. Define thee Dirac-measure 6, by d,(B) = 1g(z), B Borel subset
of R”. Instead of dy it is more customarily to write 6. Let € M. Then g is
defined by ji(B) = u(—B), where B is a Borel subset of R”. Let f : R¥ — C be

a complex function, which is defined on all of R”. The function f is given by
f(x) = f(=x), e R".

5.8. DEFINITION. A complex Banach algebra (A, |-|) is a complex Banach space,
endowed with a product which is compatible with the norm. The latter means
that the product (a,b) — ab, a, b in A, which is a bilinear operation, is contin-
uous in both variables simultaneously. In fact it is assumed that ||ab| < |a ||b]
for all @ and b in A.

Examples of Banach algebras are the vector spaces Cy(R”) and Cy,(R"), equipped
with the supremum-norm and the pointwise multiplication. Let £(X) be the
vector space of all continuous linear operators on the Banach space X, supplied
with the operator norm and the composition as product. Then £(X) is a non-
commutative Banach algebra. The following theorem says that M, supplied
with the convolution product, constitutes a (complex) commutative Banach
algebra with identity 6. Recall that M stands for the space of all complex Borel
measures on R”.

5.9. THEOREM. The normed vector space (M, |-||) supplied with the convolution
product = is a commutative complexr Banach algebra with identity 0. If p and v
belong to M, then the following equalities hold:

W+U=(+D, ai=afi, g v=[p, ji=p

Here a s a complex number.
PROOF. The proof is left as an exercise for the reader. O

The Banach space L'(R”) can be considered as a closed subspace of M(R").
This can be done via the following inclusion-mapping: f +— us, f € L*(RY).
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Here juy is the complex measure B — {, f(x)dz, B € B = B(R"), where B is
the Borel field of R”. Let puf = pr1 — piy2 + @ (pf3 — p1r4) be the Hahn-Jordan
decomposition of the measure piy. Then the following equalities hold:

sl (B) = | 1f@dr: uga(B) = | e (Re (2),0) d
pura(B) = | max(-Re f(2),0)dsi pa(B) = [ max(tm (2),0)
pra(B) = J; max (—Im f(z),0)dz.

5.10. THEOREM. Let Cyo(R¥) be the space of all complex continuous functions
with compact support. Then Coo(RY) is a dense subspace of L' (R”) for the topol-
ogy of convergence in mean. This means that Coo(RY) is dense in L'(RY) relative
to the topology generated by the L*-norm: ||f|, = §|f(z)|dz, f e L*(RY).

PROOF. Let ¢ > 0 and let f > 0 belong to L'(R”). It suffices that there
exists a function g € Cyo(R¥) such that {|f(z) — g(z)|dz < e. Since

n2m
f=sup2 2" f] = sup27" Y Liyzjony
neN neN j=1

we only need to show that, for every pair of positive integers j and n, with
1 < j < n2", there exists a function u;, € Cyo(R") such that

€
J‘l{bﬂ”}(ﬂ?) — ()] dr < o (5.2)
Because assume that the functions w;,, 1 < j < n2", satisfy (5.2). Then we
write f, = 27"|min(n, f)2"| and choose n € N so large that

0< j (F(2) ~ fule)) do < e
Then we have

n2m

f ) =2 (o)
=1
’ n2m

< [15@) = fa@lde 4273 [ [1ygmsoroy ) = wjalo)] do

j=1
1 &l
< 56 + 2 4 55 = €. (53)

Let A be the v-dimensional Lebesgue measure. The inequality in (5.2) can be
proved by employing the following identities:

AB) =inf {\(U) : U =2 B,U open } =sup{\(K) : K < B, K compact }
(5.4)
together with Tietsche’s theorem, which, among other things, says that with a
given open subset U and given compact subset K, with K < U, there exists a
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function u € Cyo(R”) with the property that 1x < u < 1y. The equalities in
(5.4) follow via an argument about Dynkin systems.

This completes the proof of Theorem 5.10. OJ
5.11. PROPOSITION. Let f belong to L*(R”). Then
hn%f|f(:zc ) = f(2)]da = 0. (5.5)
y—)

PROOF. By theorem 5.10 it suffices to prove (5.5) for f € Cypo(R"). Such
a function f is uniformly continuous. Let K be the support of the function
f € Cyp(R"). Fix € > 0 and choose § > 0 in such a way that

MK+ B(0) sup  |f(z+y)— fl@)] <e

zeK,yeB(4)

Here the symbol B(d) stands for B(§) = 6B(1) = {x € R” : |z| < §}. Then we
have

[ 17+~ f@)]de < o
for |y| < 0. So the proof of Proposition 5.11 is complete now. O

5.12. THEOREM (Riemann-Lebesgue). Let f € L'(RY). Then lim f(z) = 0.
r—00

Of course here we write f(m) = {exp (=i (z,y)) f(y)dy.
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PROOF. By translation invariance of the Lebesgue-measure we get the equal-
ity:

fo) =3 fewiten) (s —f (v+ns) )0 G

From (5.6) the inequality:

< %”f(y) y (wa)‘ (5.7)

A combination of (5.7) and Proposition 5.11 yields the desired result, and com-
pletes the proof of Theorem 5.12. O

5.13. THEOREM (Stone-Weierstrass). Let E be a locally compact Hausdorff space
and let A be a subalgebra of Co(E), which separates points of E and which is

closed under complex conjugation. That is, if f belongs to A, then f also belongs
to A. Then A is dense in Cy(E).

PROOF. Let E be the one-point compactification (Alexandroff compacti-
fication) and Ay = A@C1l = {f + Al: fe A;\e C}. Here 1 is the constant
function with value 1 and functions f € A vanish in AA. The theorem of Stone-
Weierstrass, applied to the compact Hausdorff space E® results in the desired
result, and completes the proof of Theorem 5.13. 0

5.14. THEOREM. The set {]? feCy (R”)} is a subalgebra of Co(RY) that is

closed under taking complex conjugates. This algebra is dense in Cy(R") with
the supremum-norm.

PrOOF. The fact that the set A := {f fe Ll(R”)} is a subalgebra of

Co(R”) follows from the standard properties of the Fourier transform in combi-

nation with Theorem 5.12. Since f — f it also follows that this algebra is closed
under complex conjugation. In order to apply the Theorem of Stone-Weierstrass
we still have to show that A separates the points of R”. To this end take zy and
Yo # xg € R”. Then there exists a bounded open neighborhood V' in R” such
that exp (—i (zo,y)) —exp (—i (yo,y)) = 0 for y € V. Next consider the function

f oy (exp (i{zo,y)) —exp (i (yo,y))) v(y), where v is a function in Cp (R")
with v > 1y,. Then we see

Flao) = Floo) = [ lexp (=i ao.9)) = exp (=i o)) o)y > 0. (59
From (5.8) it immediately follows that A separates the points of R”. The asser-
tion in Theorem 5.14 now follows from Theorem 5.13. 0

In the following theorem we collect some properties of positive-definite functions.

5.15. THEOREM. Let ¢ : RY — C be a positive-definite function. Then ¢ pos-
sesses the following properties:

(a) p(—z) = p(z), € R,
(b) [p(x)] < ¢(0), e RY;
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(@) |e(z) — o(y)]* < 2¢(0) (p(0) — Re
(d) ¢(0)? |z + 1)p(0) — p(@)p(y)* <

PRrROOF. Fix x and y in R” and consider the matrices
p(0)  (x) ()
0 —x
(59 7)) @ (e o) el
p(z)  ¢(0) ———
py) elez—y) @0
(a) and (b) Since the first one of these two matrices is positive-hermitian it
follows that:
p(—x) = ¢a) en  [p(r)] < $(0).
(c) Since the second matrix is positive-hermitian, we obtain by the choice of the
constants ay, as and as:

)\ _
o =1 ay— () w(y)|7 0= —ay
o(r) — p(y)
the following inequality for all A € R:
©(0) (1 +2X%) + 2X [p(z) — ()] — 2X*Re @(z — y) = 0. (5.9)

The inequality in (c) is a consequence of (5.9).

(d) The determinant of a positive hermitian matrix is non-negative. So that, if
the 3 x 3 matrix

1 A pu
Al¢ (5.10)
po&l

is positive-hermitian, then we get the inequality
e Y T 2 2 2
L ATE + A& = A + [l + &7,

which is equivalent with

< 2

€= A" < (L= AP) (1= [uf). (5.11)
The inequality in (d) then follows from (5.11) by associating the second matrix
with the matrix in (5.10) and by employing (5.11).

The proof of Theorem 5.15 is complete now. O

5.16. PROPOSITION. Let g be a function in L*(R¥). Then the following equalities
hold:

E30) ]./’I’L
(i

spectral radius of (g) = Jlnolo lg =19, -

In the theory of Banach algebras the Beurling-Gelfand formula gives a relation-
ship between the spectral radius and the norm of an element. More precisely,
let (A, ]]) be a Banach algebra with unit e. A Banach algebra is a Banach
space with a multiplication (z,y) — zy which satisfies the usual axioms of
distributivity and scalar multiplication. The norm satisfies |zy| < ||z| - |yl
xz,y € A, |e| = 1. By definition, the spectrum o(z) of an element z € A is

given by o(x) = {Ae C: Xe —x ¢ G(A)}. Here G(A) is the group of invertible
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elements of A: z € G(A) if and only if there exists a (unique) element y € A
such that zy = yx = e. Then o(z) is a non-empty compact subset of C con-
tained in the disc of radius |z|: o(z) = {A e C: || < |z|}. In fact we have the
Beurling-Gelfand formula for the spectral radius:

M = inf |2V, ze A (5.12)
neN

sup |A| = limsup ||z
Xeo(z) n—00

Let A = L' (R")®C4, where § is the Dirac measure at zero, with a multiplication
given by the convolution product:

(f+ad)«(g+p0)=frg+ag+aB, fgel' (R, a, eC,
and with the norm given by ||f + ad| = | f],: + |a|, f € L' (R"), a € C. Here
f*g(x) =§f(y)g(x —y)dy. Then A is a commutative Banach algebra with
unit §. The spectral radius p(f) of f € L' (R¥) is given by the supremum norm
of its Fourier transform:
p(f) = limsup | f*"[}i" = inf |/} = sup

n—o0 reRY

~

f(x)

where f(x) = (e ™V f(y)dy. The interested reader can find more information
in Bonsall and Duncan [22], in Yosida [154], and in several other places like
Lax [81].

Y

PROOF OF PROPOSITION 5.16. For a proof we refer the reader to a book on
functional analysis with Banach algebras as a topic. Good references are Rudin
[117], Theorem 11.9 together with Example (e), and Folland [55], Theorem 1.30
combined with Theorem 4.2. O
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The following theorem is a very important representation theorem. It will be
used in Theorem 5.25 and in the continuity theorem of Lévy: Theorem 5.42.

5.17. THEOREM (Bochner). Let ¢ : RY — C be a function. The following
assertions are equivalent:

(i) The function ¢ is continuous and positive-definite;
(ii) There ezists a positive Borel measure p op RY such that ¢ = |i.

The Borel measure p in (i) is unique.

PROOF. (i) = (ii). Define the linear functional A : M — C by means of
the equality: A(v) = {¢(x)dv(z), v € M. Define the involution v +— ¥ via the
equality: 7(A) = v(—A). Because, by hypothesis, the function ¢ is positive-
definite we see that the functional A is positive in the sense that A(v =) = 0
for all v € M: see inequality (5.26) in Proposition 5.23 further on. By Cauchy-
Schwartz inequality we then obtain

AW)] = AW = 8)] < (A (v 9)* (A (63))
< (A (v =) p(0)1

1/2

(by inductionwith respect to n)

< (A (= 5)*2")>1/ " o)

1/2n+1 A Sotlo-i
< el (v «7) p(0)== 7 (5.13)

By letting n tend to oo in (5.13) we deduce

o1/
AW)| < liminf (v « )" 2(0)
— 4/spectral radius of v Dp(0). (5.14)

By applying (5.13) and (5.14) to a measure v of the form v(B) = {, f(z)dz,
where f belongs to L'(R”) we obtain

[0

In (5.15) we wrote f(z) = f(—x) and f = g(z = {f(y)g(z — y)dy, for f and g
belonging to L'(R”). Next we realize that Ll(]RV) equ1pped with the L'-norm
and the convolution product =, is a Banach-algebra and that the spectral radius
of an L'-function f is given by the supremum-norm the Fourier transform of f:
see Proposition 5.16. From (5.15) we infer

U@mvax<

< \/spectral radius of f = fgp( ). (5.15)

-7

0) < HfHoo £(0). (5.16)

oe]
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Next define Ag : {f fe Ll(R”)} — C via the equality AO = {o(z)

f e LY(RY). From (5.16) it follows that the functional A, has a unique exten-
sion as a continuous linear functional, which we call again Ay, on the uniform
closure of the subalgebra {f fe Ll(R")}. By the Stone Weierstrass theorem
(Theorem 5.14) this closure coincides with Cy(R”). The Riesz representation

theorem apphes to the effect that there exists a bounded Borel measure p such
that Ao(f) = § f(z ), f € LY(RY). From this it follows that

Jw()ﬂ)¢r—Ao - [ Fwant) = [3@rswa

Consequently, ¢ = fi. The function ¢ being positive-definite it follows that the
measure f is positive. This proves the implication (i) = (ii).

(ii) = (i). Let p be a finite positive Borel measure. Then its Fourier trans-
form jz is a uniformly continuous positive-definite function. The proof of these
assertions is left to the reader.

The proof of Theorem 5.17 is complete now. 0J
An alternative proof runs as follows: the idea is taken from Theorem 5.10 in
Lérinczi et al [88]. We need the following lemmas.

5.18. LEMMA. Let ¢ : RY — C be a (uniformly) continuous positive-definite

function, and fiz t > 0. Then the function & — e_%“ﬂch(f) is also (uniformly)
continuous and positive-definite.

PROOF. Let §;, 1 < j <n, belong to R”, and let A\;, 1 < j <n, be complex
numbers. Then

- — _lye e 2
D0 N2 g (6 — &)

jk=1
:___J S ARG (6 — &) e P gy = 0. (5.17)
(vt Y k=1
g,
The claim in Lemma 5.18 follows from (5.17). O

5.19. LEMMA. Let ¢ : R — C be a function which belongs to L' (R”), and let
Vi be a bounded open neighborhood of the origin in R”. Put V,, = nVy, n € N.
Let m (V) = {1y, (€)d§ = n*m (V1) be the Lebesgue measure of V,. Then,
umformly i x e RY,

i(§—n)x
f 6 (€) de — lnn Wedta @V (E ) e (5.18)

n—n m (V)
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ProoF. By employing standard properties, like translation invariance and
the homothety property of the Lebesgue measure, we deduce the following equal-
ities:

i(§—mn)x de d
i Sv. 5, ¢ V(€ —n) dEdn
| e -

m (Vy)
§u. Sy €570 (€) dE dn
- [ e de - e
S S €0 E) dEdn Sy, iy €50 (€) dEdn
- m (V) - m (V1) '
From (5.19) we infer
" §y, 5, @€y (g —n) dedn| Sy, Sen sy [ (O] dEdn
i§-x VR IV 1 1—nn
J, cviere A < m (17)

(5.19)

(5.20)
Hence, by using the Lebesgue’s dominated convergence theorem the equality in
(5.18) is readily established. Moreover, this limit is uniform in = € R¥. This
completes the proof of Lemma 5.19. U

5.20. LEMMA. Let ¢ : R” — C be a continuous positive-definite function which
belongs to L' (R”). Then, for all z € R” the inequality (g, e (&) d§ = 0 holds.
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PROOF. Since the function v is positive-definite and continuous the right-
hand side of (5.18) is non-negative. So the assertion in Lemma 5.20 follows from
Lemma 5.19. OJ

5.21. LEMMA. Let ¢ : R” — C be a continuous positive-definite function which
belongs to L' (R¥), and let ,u be a bounded complex-valued Borel measure on R
with Fourier transform [i(x SRU =Y du(y). The the following equality holds:

RCLUGE W || esm v dent) as (5.21)

If p: RY — C is an arbitrary continuous positive-definite function, and if p is
a bounded complex-valued Borel measure on RY, then
| c@dne ~tm o [ | e aganwan, G2
v tio 27T v v

and

< ¢(0) sup |p(z)]. (5.23)

zeRY

| et@dute

PrROOF. From Fubini’s theorem we get

o [ [ v a
B (zjry J . f LT dE | eV duly) da

- fj ((21)V f e TP(E) d§> ™ d dp(y)
- [ 3 @) = [ v o

where F denotes the Fourier transform with inverse $=!. The equalities in
(5.24) imply the equality in (5.21). In order to prove he equality in (5.22) we first
observe that by Lemma 5.18 the functions of the form £ — ¢;(§) 1= e*%t‘5|2<p(f),
t > 0, are positive-definite and continuous, because ¢ is so. Applying the
equality in (5.21) to the function ¢; shows

f @€ du(&) = lim e*%t‘g'io(ﬁ) dpa(€)

t10

“lmos || e i de ) de. (525)

tw 27T

The equality in (5.22) follows from (5.25). Finally, the inequality in (5.23)
follows from (5.22) and Lemma 5.20. So the proof of Lemma 5.21 is complete
NOW. O

SECOND PROOF OF THEOREM 5.17. Let M = M (R¥) be the collection of
bounded complex Borel measures on RI™, and consider the functional

Ap i | (&) du(§), ped

RU
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Then A, can be extended to the uniform closure of the collection {i : p € M}
such that |[A,(f)] < ¢(0) [/ f], for all f in this closure. This closure contains
all constant functions and all continuous functions on R” which tend to 0 at co.

By the Riesz representation theorem there exists a positive measure pi, on the
Borel field of R such that

| et@rdne) = | atwrduta) = || e du dngto)

= | et e = | Ao

for all o € M. It follows that ¢(§) = [i,(£). This completes the proof of the
theorem of Bochner: Theorem 5.17. OJ

5.22. LEMMA. Let ¢ : R” — C be a continuous function, and let u be a complex
Borel measure on R” with compact support. So |u| (RV\K) = 0 for some compact
subset K of R”. Then

lﬂf{UJ x — y)dp(z)du(y) — Z a;anp (v — k)
7,k=1

where the infimum is taken over all a; € C, ;€ Ko, 1 < j <n, neN, and

where K is the smallest compact set K with the property that |p| (RV\K) = 0.

PROOF. Fix € > 0, and choose a partition (U; : 1 < j <n) of K, with the

property that
€

|l (Ko)27

z, 2’ € Uj and y, y' € Uy, and write a; = p(U;). Then for z; € U;, 1 < j < n,
we have

lp(x —y) —p (@' —y)| <

Uf ol —y)du(z)daly) — Y, ajawp (x5 — a5)

J,k=1

j j (0@ — ) — ¢ (25 — 2x)) dpu(x)d7a(y)

) Z Jo, I, 1ot == o @ =l dlal @yt )

< WZ f f 1] (2)d [T (y) =

This proves Lemma 5.22. 0

5.23. PROPOSITION. (a) Let ¢ : R” — C be a continuous function. The follow-
ing assertions are equivalent.

(i) The function ¢ is positive-definite;
(ii) For every function f € Cpo(R") the inequality o(x)f * f(x)dz =
holds;
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(iii) Every Borel measure . with compact support satisfies the inequality:
fgp(x)d (1+ Ti) () > 0. (5.26)

(b) If ¢ is positive-definite and if p is a bounded complex Borel measure on R,
then inequality (5.26) in (iii) also holds.

PROOF. (a) (ili) = (ii). Choose p of the form u(B) = §, f(x)dz, with
f € COO (Ru) fixed.

(i) = (i). Let u be of the form p = > | a;0,;. Approximate the de Dirac
measures d,, by measures of the form B — {_ { f; v(z)dz in the sense that

i, [ e(o)d 23 (2) = [ (@) e 1) = g ()

N—0
7,k=1

Here the measure juy is defined by un(B) = 37, a; §, fjn(v)dz, B e B(R").
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(i) = (iii). Let u be a Borel measure of compact support. Then there ex-
ists a sequence of measures (uy : N € N),where every py is of the form puy =
Z;.V:l a; N0y, v and where

fwumuwnﬂm

A | p(z)d (= i) ()

= ]\lflnio E aj NG NP (Tjn — xpn) = 0.
—
k=1

That such a sequence of measures exists (uy : IV € N) follows from Lemma 5.22.

(b) Let (K, : m € N) be an increasing sequence of compact subsets of R” such
that R” = (J)'_, K,,, and such that K,, < interior (K1) for all m € N. Since,
in addition,

| @i @) = 1, [ ele)d (e + (Ge) ) @)
assertion (b) follows from the results in (a).

This completes the proof of Proposition 5.23. O

5.24. DEFINITION. The weak topology (or Bernoulli topology) on M is the lo-
cally convex topology o (M, C,(R")). Let ug € M. So that every o (M, Cy(R"))-
neighborhood of py contains a neighborhood of the form

< ej} . (5.27)

n

ﬂ{ueM:Ufjd(u—uo)

j=1
Here, the functions fi,..., f, are bounded and continuous, and the numbers
€1,...,€, are strictly positive. A net (u, : @ € A) M converges to the measure

p for the topology o (M, Cy(RY)) if lim, § fdp = § fdu for all f e C,(RY).

We write u = weak-lim,, p1,. The space M can also be supplied with the vague
topology. This is the locally convex topology o (M, Coo(R”)). For the vague
topology the functions fi,..., f, in (5.27) are required to belong to Coyo(R")
and the net (p1q : € A) converges to g € M provided lim, § fdu, = § fdu for
all f e Coo(R"). We write u = vague-limy, fi,.

Let M* := {peM: pu >0} and let

CP :=CP(R") = {p € Cp(R") : ¢ positive-definite} .
The following theorem expresses the fact that the set M™, endowed with the
weak topology and C'P, endowed with the compact-open topology T, are home-
omorphic. The compact-open topology is also called the topology of uniform

convergence on compact subsets of R”. So that a net (¢, : @ € A) converges to
@, if lim, sup,c i |pa(z) — @(z)| = 0 for every compact subset K of R”.

5.25. THEOREM. The Fourier transform p — ji, u € M™, is a homeomorphism
from
(M*, 0 (M*,Cy(R"))) onto (CP,T).
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PROOF. Let (o : @ € A) be a net in M* that weakly converges to p € M*
relative to the weak topology. We will prove that the net (ji, : @ € A) converges
uniformly on compact subsets to ji. Fix € > 0. Then choose § > 0 in such a
way that ¢ (3 + u(R")) < € and choose a function f € Cyo(R”) such that

0<f<1 and J(l—f)d,u<6.

Since weak- lim p, = p there exists oy € A such that

fo(RY) = Jldua < Jldu—i— 1=pR")+1 en J(l — f)dpe <6
for all @ > . Define the zero-neighborhood V' by
V={xeR":|1—exp(—i{zr,y))| <d: forall yesupp(f)}.

Then for those @ € A and those x; and x5 € R” which satisfy o > ay and
x1 — x5 € V the following inequalities hold:

o) = Aol < [ lexp (<4 (o1,8)) = exp (<3 (a2, )] il
f!l—exp i1 — 22, 9)| [ (y)dpaly)
11— exp (i o = )] (1= F0)dial)
5 [ Fdialv) + 2 f(l — () dialy)

<I(p@R")+1)+20 <e (5.28)
By (5.28) it follows that |fi(z1) — fi(x2)| < € for x; and x5 € R” for which
x1—x9 € V. Next choose a compact subset K in R”. Then there exist y1,...,yn

in R” such that K < (Jj_, (y; + V) and thee exist a; € A, 1 < j < n, such that
Iﬁa(yj) —ﬁ(yj)| <e for a= aj, j=1,....n

Then choose o/ € A in such a way that o’ > a; for j=1,...,n. Forz ey, +V
and o > o we get

|Ha(z) — fi(2)] < [Halz) = Ha(yy)] + [Haly;) — 1(y;)] + |12(y;) — B(2)]
and hence

N

€

sup [fia (@) — )] < 3e.

zeK
This proves that the Fourier transform is continuous for the indicated topologies.
Conversely, suppose that the net (fi, : a € A) converges uniformly on compact

subsets to 1. Then we will show the following two equalities:

()l 1) = )
b) lim { o(x)dua(z) = §o(z) ) for all functions ¢ € Cyo(RY).

From Theorem 5.26 below it then follows that weak-lim y, = p. The equality
in (a) follows from:

lim iy (R) = lim i (0) = i(0) = 1 (RY)
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Let € > 0 be arbitrary and let ¢ € Cyo(R”). Choose a function f € Cpo(R") with

the property that
€
— < _—
H"D J?Hoo 21 (RY) + 1
Then we infer

[ etrdate) - [ otorinta)
[ (@)= 7)) duato)| | [ o #|[ (e = @) dute)

<=7 (e )+ () + f Aa(@) — @) | £ ()| da

(o (R") + 1 (RY) 260 [ Vo) do

: b oo |l
2u(RY) +1 zesupp(f)

<

(5.29)
The inequality
lim sup

sup | [ le)d (10— 1) (@)

follows from (5.29). As a consequence we see that (b) is proved now. Together

with Theorem 5.26 which follows next this completes the proof of Theorem
5.25. 0
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5.26. THEOREM. A net (jio : v € A) in M* converges weakly to € M* if and
only if the net (uq : o € A) converges vaguely to p and if

lim 1, (R”) = 4 (RY). (5.30)

ProoF. The weak topology is stronger than the vague topology and from
weak convergence the equality in (5.30) also follows. Hence, the indicated con-
ditions are necessary. Conversely, let a net (p, : @ € A) converge vaguely M™*
to u and assume that (5.30) is satisfied. We will prove that p is the weak limit
of the net (i, : a € A). Therefore pick f € Cy(R”) and ¢ > 0 arbitrary but
fixed. Choose a compact subset K such that u (R*\K) < e. In addition, choose
a function h € Cy(R”) in such a way that 1x < h < 1. By these hypotheses
the following (in-)equalities hold:

lim fu — R)dpg — J(1  h)dp < p (RAK) < e
and also
limffhdﬂa = thd,u.
Hence, there exists an g € A such that (for o = ayp)

< €.

J= e < en L[fhd(ua—-u)

But then for a > oy we get

’ffdwa—uﬂ
fﬂm >wﬂfﬂ1—mw4+U?u—hm%

e(1+2]fl)

which shows that lim § fdu, = § fdpu.
This completes the proof of Theorem 5.26. 0

5.27. COROLLARY. The following assertions are true:

(a) The set C'P is a convex cone, which is closed for the topology of uniform
convergence on compact subsets.

(b) With ¢ the functions @ and Re ¢ also belong to CP.

(c) If p1 and @y belong to C'P, then the same is true for the product ¢ips.

(d) For every y € RY the function x — exp(—i(z,y)) belongs to C'P.
Convex combinations of such functions belong to C'P.

PROOF. The proof is left as an exercise for the reader. O
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5.28. DEFINITION. A function ¢ : R¥ — C is called negative-definite if for all
n € N and for all complex numbers ay, ..., a, and for all vectors z(, ... 2™
in R” the inequality
Z a;ay <w (z9) + 4 (2®) — o (21 — x(k))) >0 (5.31)
k=1
holds. The symbol C'N denotes the collection of all continuous negative-definite
functions on R”. If ¢ belongs to C'N, then the same is true for ¢ andRe . The
collection C'N is a convex cone. If ¢ belongs to C'N, then ¢(0) > 0 and
Y(z) = (—x) for all z € R”. A function 1 is negative-definite if and only if ¢
has the following properties:

(1) ©(0) = 0; _

(2) For every x € R” the equality ¢ (z) = 1)(—x) holds;

(3) For every n € N and for every n-tuple of complex numbers ay, . . ., a,, for
which }37 | a; = 0, and for all vectors M . 2™ in R” the following
inequality holds:

> agapy (29 - 2W) <o.

J,k=1

If the function v is negative-definite, then so is the function ¢ —(0). If ¢ is
positive-definite, then the function ¢(0) — ¢ is negative-definite.

The following theorem establishes an important connection between negative-
and positive-definite functions.

5.29. THEOREM (Schoenberg). A function ¢ belongs to CN if and only the
following two conditions are satisfied:

(i) ¥(0) = 0;
(ii) For every t > 0 the function exp (—ty) is continuous and positive-
definite.

Let ¢ be a negative-definite function. Then, by Bochner’s theorem together
with the theorem of Schoenberg, there exists for every ¢ > 0 a sub-probability
measure 1i; on the Borel field of R” such that fi; = exp (—t). We return to this
aspect when we discuss the notion convolution semigroup of measures.

PRrROOF. First suppose that ¢ belongs to CN. Let (M, ... 2™ belong to R”.
Write a;;, = ¢ (x(j)) +4) (x(k)) — (x(j) — x(k)). Then the matrix with entries a;
is positive hermitian. But then the matrix with entries exp (a; ) is also positive
hermitian. Let ay,...,a, belong to C and write a; = exp (—w (:c(j))) a;. Then
we see

n

exp (—10 (x(j) — m(k))) a;ay = Z exp(aj,k)a;a;C > 0. (5.32)
k=1 k=1
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From (5.32) it follows that the function exp (—) is then positive-definite. The
same procedure can be repeated for the function 1. Conversely, if (i) and
(ii) are satisfied, then, for every t > 0, the function ¢, := 1 — exp (—ty)) =
1 —exp (—t(0)) + exp (—t1p(0)) — exp (—te)) is negative-definite. But then the

function 1 is negative-definite as well, because 1) = ltilI[I)l 7'5 Since
1 —exp (—ty(x))

£ )
§o ds exp (s ()
for t > 0 but small enough, we see that the function 1 is continuous at x.

P(r) =

So the proof of Theorem 5.29 is now complete. OJ

5.30. DEFINITION. A family of Borel measures (u; : t > 0) with the following
properties:

(a) ut (R”) <1 fort > 0;
(b) ps * py = prsyy for all s and ¢ = 0;
(C) limtlo Sfd/l,t = Sfd,uo = f(O) = (50(f) for all f € COO (Ry),

is called a (vaguely continuous) convolution semigroup of measures on R".
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The following theorem says that a vaguely continuous convolution semigroups
is in fact everywhere weakly continuous.

5.31. THEOREM. There exists a one-to-one correspondence between vaguely con-
tinuous semigroups of measures and negative-definite functions.

(a) If (g :t = 0) is a vaguely continuous convolution semigroup of mea-
sures, then there exists a unique continuous negative-definite function
Y such that iy = exp (—t), for allt = 0.

(b) Conversely, if 1 is a negative-definite function, then there exists a
vaguely continuous convolution semigroup of measures (p; : t = 0) such
that j1; = exp (—t) for allt = 0. Of course, this semigroup is unique.

PROOF. (a) Define, for ¢ > 0, the function 1 via the equality

= 1t_ v (5.33)

J fisds
0

Since [isfiy = fis1¢ we see that 1) does not depend on the choice of ¢t. Put

g(t) = S(t) fisds. Then we see that g(0) = 0 and g(¢)y + ¢'(t) = 1, and hence
1 —exp(—ty

g(t) = 1-on(-ty)

Theorem of Schoenberg (Theorem 5.29) implies then that the function v is
negative-definite. The functions fis, s = 0, are continuous. So the same is true

for 1.

From the latter it follows that fi; = exp (—ti). The

(b) Since 1 is a negative-definite function, the functions exp (—tw) are positive-
definite by the theorem of Schoenberg. The theorem of Bochner (Theorem
5.17) yields the existence of sub-probability measures (y; : ¢t = 0) such that ji; =
exp (—t1)). Since

%lﬁt(g) = ltif(r)lexp(—t@/)(g)) =1=lio(¢)

Theorem 5.43 in the next section implies that limy o § fdp = f(0) for functions
f € COO (Ry)

The proof of Theorem 5.31 is now complete. O

5.32. REMARK. In the proof of Theorem 5.31 part (a) there is a problem if
1 t

the integral S(t) ltsds vanishes somewhere. However, notice that ltifgl ZJ [sds =
0

Lo pointwise. It follows that, certainly, for ¢ = ¢(£) > 0 small enough, the
expression Sé fs(§)ds = 0. This fact can be used to circumvent this problem.

5.33. REMARK. In the proof of Theorem 5.31 part (b) Theorem 5.43 of the
next section was employed. This can be averted as well. Therefore con-

sider f, with f e LY(RY). Then limtlogf(x)d,ut(a:) = limyo § f(2)fe(x)de =
§ f(z)dx = F(0) = Sfdug. By the theorem of Stone-Weierstrass from this we
obtain limy o § f(z)dp(x) = f(0) = § f(x)duo(x).
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5.34. PROPOSITION. Let (p; : t = 0) be a vaguely continuous semigroup of Borel
measures on R”. Suppose that all these measures are probability measures. Then
the following assertions hold:

(a) weak-1imy ¢, 4=0 it = e, for all to = 0;
(b) limy—y Sup,ege |§ f(x — v)dpe(y) — § f(z — y)dp, (y)| = 0 for all ty €
[0,0) and for all functzons fe CO(R”)

PROOF. (a) First we look at

pe (R”) = iy (R”) = exp (—t2)(0)) — exp (—to2(0)) .
It follows that
lim i, (R”) — ey (R”) = 0.

t—to

For the same reason we see that
Jim 72(€) = Jim exp (=t9(€)) = exp (=10t (§)) = /e (€).
By using theorem 5.43 in the next section we see that

weak- lim = .
t—»to,t>0'ut Hto

Of course, in this proof the function v denotes the negative-definite function
from Theorem 5.31.

(b) Let g € Cy (R¥) be of the form g = f with f e L*(R”). Then we see

fo— gy j y)dpu >\

:Uf (Ae(—2) — Fio(—2)) exp (—i {, 2)) f(2)d=
< f lexp (—tih(—2)) — exp (—towr(—2))| |£(2)] dz

< j lexp (— [t — tol (—2)) — 1] | £(2)] d. (5.34)

The assertion in (b) now follows from (5.34) together with the theorem of Stone-
Weierstrass, and completes the proof of Proposition 5.34. O

5.35. PROPOSITION. Let (y; : t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of R”. Define for every n-tuple tq, ..., t, with
0<t <+ <tp, the probability measure Py, ;. on the Borel field of (R¥)" via
de formula

77777

= ,Utl ®Mt2—t1 ® cee ®Mtn_tn_1 ((.Tl, e ,.Z'n) S (Ru)n : Vn (.Z'l, v ,ZL’n) S B)
_ J din (1) . Jdutn_tn_l(:pn)lB (Vo (21, 20), (5.35)
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where B is a Borel subset of (RY)" and where V,, : (RY)" — (R*)" is the linear
mapping given by: Vy, 1 (x1,x9,...,T,) — (1,21 + o, ..., 21 + -+ + x,). Then
the family

{(R)",B(R")" Pty 4,): (t1,...,tn) € [0,00)", neN}

forms a projective system of probability measures.

PROOF. Let B € B (R”)" and let B’ € B ((R”)"+1) be defined by

B ={(z1,...,2041) € (R 2 (21, 2 2kt -+ Zngl) € B}.

Let t; <+ <t <8 <tpy <--- <ty bean (n+ 1)-tuple of increasing times.
We have to prove the following equality:

Pt17~-~7tk737tk+l 7777 tn
Since the vector

Vi1 (Y192, Ynr1) = (Y0 + 42, 01+ Yo
belongs to B’ if and only if the vector

W0+ Y2 1T T Y YT Ykg2s Y1 Yng)
belongs to B, we get what follows:

]P)tl,‘..,tk,s,tk+1 ,,,,, tn (B/)
= ,U/tl ® e ® ,U/tkftkfl ® ,U/,Sftk ® ,U/thrlfs ® e
@ Hto—tur (W15 Yns1) T Vars (U1, -+, Ynr1) € B'Y

= J dpte, (1) - - - J ittt (Yk) Jd/ﬁs—tk (y) f ity —s(2) f Apityyr—ti 1 (Zi42) - - -
f Aty —tn 1 (Z0) L (Vi1 (1o - - Uk, U5 2, 22, - - -5 20))

= J dpe, (Y1) - - J ity (Yr) J dpts—, (y) f dpie,,,—s(2) J ditgy gty (Z42) - -
f dpee, 4, (za)1le (Vo (W1, -+ Yk U + 25 Zki2y -+ -5 20))

(apply Fubini’s theorem, integrate relative to ps_s, ®jtt,,,—s and use the equality
§9(y + 2)dpa(y)dpn(2) = § 9 (zh+1) dptuso(2541))

= J dpu, (y1) - - - J dpty—t,, (Yi) J dptyy—ty, (2111 J Apty oty (Zrr2)
e f dﬂtn_tn71 (Zn)

1B (VTL (yla vy Yk Rt 1y - - 7Zn))

= Jdutl(yl) . Jdutn—tnl(yn)lB Wi, i+ 4 Yn)
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Advanced stochastic processes: Part I| Some related results

This proves the required equality in case 1 < k < n — 2. The other cases, which
are t, o < s <t,_ 1,t,_1 <s <ty t, <sandt; > s, are left as an exercise for
the reader.

So the proof of Proposition 5.35 is complete now. (I

5.36. PROPOSITION. Let (y; : t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of R”. Define, for every n-tuple t, ..., t, the
probability measure Py, 4 , where t; < --- < 1,, as in Proposition 5.35. Then
there exists a unique probability measure P on the product field of (R”)[O’OO) such
that

.....

P((X(tl):,X(tn))EB):Ph ..... tn(B)a
for all Borel subsets B of (R¥)". Likewise there exists, for every x € R”, a

unique probability measure P, on the product field of (R”)[O’OO) such that
P, ((X(t1),...,X(t,) e B) =P ((x + X(t1),..., o+ X(t,)) € B)

= Jdutl(xl)®---®d,utn_tn_1(:r:n)13 (x4 21,...,c+x1+...+2,),

for all Borel subsets B of (R”)".

Here the state variable X (¢) : (RV)®) — R¥ is defined by X (t)(w) = w(t),
where w belongs to the product (R”)["*).
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PROOF OF PROPOSITION 5.36. Apply Kolmogorov’s extension theorem. [J

5.37. THEOREM. Let (u;:t = 0) be a vaguely continuous semigroup of prob-
ability measures on the Borel field of R¥. Define for every n-tuple ti,...,t,
the probability measure Py, ;. , where t; < --- < t,, as in Proposition 5.35
and let P, x € R”, be the unique probability measure on the product field of
Q = (R such that

P, ((X(t1),...,X(t,)) € B)

= Jd,utl(xl) . fd,utn_tnl(xn)lB (x+x1,...,c+21+...+x,). (5.36)

Let F¢ be the o-field on Q generated by X(u), 0 <
variable X (t) — X (s) is independent of Fg and X (t) —
P,-distribution as X (t — s) — x, which is p_s.

For t > s the
0ssesses the same

e
—~
V2)
S~—
=R ow

PROOF. Fix ¢t > s, let f : (R”)" — R be a Borel measurable function, and
suppose that 0 < s; <--- <s, =s. Let g : R” — R be another bounded Borel
measurable function. Then the following equalities hold true:

E(f(X(s1),.-.,X(s0) g (X(t) — X(5)))
= Jdusl (1) ... fd,usn_snl(xn) fdut_s(lt)f (1, + o+ 2y) g(2)

=E(f (X(s1),---, X(50)) E (g (X(t) = X(s)))-
Now let H be the vector space of F,-measurable bounded random variables Y
with the property that E (Yg(X(¢) — X(s))) = E(Y)E (¢(X(¢) — X(s))). Then
H satisfies the hypotheses of Lemma 5.100. Whence, H contains all bounded J-
measurable random variables. Since, in addition, the function ¢ is an arbitrary
bounded continuous function, it follows that the state variable X (t) — X (s) is
independent of F,. This completes the proof of Theorem 5.37. 0J

5.38. THEOREM. Let (2, F,P) be a probability space and let (X (t):t = 0) be a
family of state variables with state space RY. Assume that these state variables
are measurable relative to the o-fields F and B(RY). Suppose that

ImE[f(X(t))] = f(0) for all f € Coo (RY),

and also that for every t > s the variable X (t) — X (s) is independent of the o-
field o (X (u) : 0 <u<s) and that X (t) — X (s) possesses the same distribution
as X(t — s). Then the mapping B — p,(B) := P(X(t) € B) defines a vaguely
continuous semigroup of probability measures on R .

PRroOOF. It is clear that every measure y; is a probability measure is on
the Borel o-field of R”. Since { fdu; = E(f(X(¢))), for f € Cy (R), the
equality lim; ;o E(f(X(¢))) = f(0), entails that the family (u; : t > t) is vaguely
continuous at 0. The convolution property still has to be proved. It suffices to
prove that is(&) (&) = fis4¢(§) for all s and ¢ > 0, and for all £ € R”. To this
end consider

f exp (=i (€,2)) dua(2) f exp (—i (€, 9)) duun(y)
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= I (exp (=i (§, X(5)))) E (exp (=i (£, X(1))))
(the variable X (¢) has the same distribution as X (s +t) — X (s))
= E (exp (=i (&, X(5)))) E (exp (=i {§, X (s + 1) — X(5))))
(X(s +t) — X(s) does not depend on X(s))
(exp (=i (§, X(s) + X(s + ) — X(s))))
exp

E
E (exp (=i (&, X (s +1)))) = [is+(£)-

Since 0 = X(0) — X(0) it follows that pg has the distribution dy. This proves
Theorem 5.38. 0J

5.39. DEFINITION. Let (2, F,P) be a probability space and let the mapping
X (t,w) — X(t,w) = X(t)(w) satisfy the hypotheses mentioned in Theorem
5.38. (So that for ¢ > s the state variable X (t) — X (s) does not depend on the
o-field o (X (u):0<wu<s) and X(t) — X(s) possesses the same distribution
as X(t — s); moreover, the equality lim,oE (f(X(s))) = f(0) holds for all
f € Cp(R”)). Then the process X is called a Lévy-process, that begins at
X (0) =0.

Important Lévy-processes are the Poisson process with jumps 1 and the Brow-
nian motion. The one-dimensional distributions of a Poisson process X (with
jumps 1 and of intensity \) are given by

Ik
P(X(t)=k) = %exp(—)\t), ke N.
For details on Poisson processes see Subsection 5.4 in Chapter 1. The Brownian
motion B (with drift 0, intensity I and which starts in 0) possesses as one-
dimensional distributions:

P(B(t) e B) = \/(Q;T)”JB exp (—%) dy.

For more details on Brownian motion see the Section 4 in Chapter 1 and Sec-
tion 3 in Chapter 2. In addition, see Chapter 3. A Lévy-process with initial
distribution p is a family of F-B-measurable mappings X () : 2 — R” such that
X(0) has the distribution g, and such that the process t — X () — X(0) is a
Lévy-process that starts at 0. If the initial distribution p = d,, then it said that
the process X starts at x. If X = (X (¢):t > 0) is a Lévy-process that starts
at 0, then (z + X(¢) : t = 0) is a Lévy-process, which starts at z. The Poisson
process X, (with jumps 1 and intensity A) which starts at j € N possesses as
marginal or one-dimensional distributions:

(A"
k!

Thus the distributions of the processes (X;(t) :t = 0) and (j + X (t) : t = 0),
where X is the Poisson-process which starts at 0, are the same. The Brownian

P (X;(t) = k) = exp (= A1) (k — j), keN.
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motion B, (with drift 0, intensity I and which starts at x) possesses the following
one-dimensional distributions:

P (B,(t) € B) = \/(2;%70” L exp (—lx ;f' ) d

5.40. DEFINITION. Let E be a locally compact Hausdorff space and let
{P(t) : t = 0}
be a family of linear operators of Cy(E) to the space L*(E, E). Here € is the

Borel field of E. This family is called a Feller semigroup, or Feller-Dynkin
semigroup provided it possesses the following properties:

(i) semigroup-property: P(s+t) = P(s)P(t) and P(0) = I;

ii) positivity preserving: f =0, f € Co(E), implies P(t)f = 0;
(iii) contractive: 0 < f < 1, f € Co(F), implies 0 < P(t)f < 1;
(iv) continuity: limy o [P(t)f] (x) = f(x) for all f € Cy(E) and for all z € E;
(v) invariance: P(t)Co(E) < Co(FE) for all t = 0.

In the presence of (i), (v) and (iii) assertion (iv) is equivalent with

(iv') Timy gy o0 | P(£)f — P(to) £, = 0 for all f € Co(E).
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5.41. THEOREM. Let (Q,F,P) be a probability space, and (X(t):t = 0) be a
family of state variables with state space R”. Suppose that these state variables
are measurable relative to the o-fields F and B(RY). In addition, suppose that
limy o E (f(X (%)) = £(0) for all f e Coo(R”) and also that for every t > s the
variable X (t) — X (s) does not depend on the o-field o (X (u): 0 <u < s), an d
this for all t > s = 0. Moreover, by hypothesis, the variable X (t) — X (s) has
the same distribution as X (t — s). Define the operator P(t) from L* (R") to
itself by [P(t)f] () = E(f (x + X (t))), f € L* (R¥). The restriction of P(t) to
Co (R”) leaves the space Cy (RY) invariant, and the family {P(t) ‘CO(RV > 0}

%
is a Feller semigroup (also called a Feller-Dynkin semigroup).

PROOF. It is clear that every operator P(t) is contractive and positivity
preserving. It is also clear that limy o [P(¢)f] (x) = f(z) for all € R¥ and for
all f e Cp(R”). We still have to prove the invariance property. Let f = g,
where g belongs to L' (R”). Then we obtain

[P()f] (2) = E(f (z + X(1)) =E (3 ( + X(1)))
_ f exp (=i {€,2)) E (exp (—i (6, X(1))) g(€)de.  (5.37)

By the lemma of Riemann-Lebesgue (Theorem 5.12), the equalities in (5.37)
imply the equality
tim [P(01) (@) = 0.

The continuity of the function P(t)f is clear as well. As a consequence, P(t)
maps the space {g: g € L' (R”)} to Cy (R”). The theorem of Stone-Weierstrass
implies that the space {g:ge L' (R")} is dense in Cj(R”) for the uniform
topology. Because of the contractive character of the operator P(t) it then
follows that P(t) leaves the space Cj (R”) invariant. In order to finish we prove
the semigroup-property. Again we take the Fourier transform g of a function
g€ L' (R”) and we consider

[P(s +1)g] (x)
=E @z + X(s+1)))

[ eI (exp (—i (€, X (s + 1)) g(€)dE

_ [eteog (exp (=i (€, X (s + 1) — X(s))) exp (=i (£, X(s)))) g(&§)dE

(the variable X (s + t) — X(s) is independent of X (s))

— [eteom (exp (=i (&, X(s + 1) — X(s)))) E (exp (=i {§, X (s)))) 9(£)dE

J

(the variable X (s + t) — X (s) has the same distribution as X (t))

_ f e € (exp (—i (€, X (1)) E (exp (—i (€, X (5)))) g(€)de
—EweEW — §(z+ X(s)(w) + X)) (5.38)
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The semigroup-property then follows from (5.38) together with the Theorem of
Stone-Weierstrass which, among other things, implies that the space

{G:9e L' (R")}
is dense in Cj (R¥) for the uniform topology.
This completes the proof of Theorem 5.41. 0

2. Convergence of positive measures

We begin with the continuity theorem of Lévy.

5.42. THEOREM (Lévy). Let (u, : n € N) be a sequence of bounded positive Borel
measures on R”. Assume that there exists a function ¢ : RY — C, which is
continuous at 0, such that

lim 72, () = o(x)

n—0o0

for all x € R”. Then there exists a bounded positive Borel measure such that

weak- lim p, = p.
n—0o0

PRrROOF. The function ¢ is a point-wise limit of positive-definite functions
and so it is itself positive-definite as well. Since the function ¢ is continuous
at 0, inequality (c) in Theorem 5.15 implies the continuity of ¢. By Bochner’s
theorem (Theorem 5.17) there exists a positive bounded Borel measure p such
that

lim fin () = @(x) = pi(x) (5.39)

n—a0

for all x € R”. Next, let f be an arbitrary function in Cpyy (R”). Then we see

e | fdu‘ ~ timsup | [ 1(0) (7ala) ~ (o))
< limsup f @) |n(e) — Ax) de. (5.40)

In view of (5.39) we see that the integrand in (5.40) converges pointwise to 0.
Write ¢ = sup,,oy (74n(0) + 72(0)). Then ¢ is finite and |f(x)| |, (x) — @(x)]| is
dominated by the L'-function c|f(x)|. By the dominated convergence theorem
(Lebesgue) it follows from (5.40) that

deun - deu‘ — 0. (5.41)

lim sup
n—0oo

~

: : : . ]
Since the subspace { f:feCo (R”)} is uniformly dense in Cy (R”) (see The

orem 5.14), from (5.41) it follows that lim, . § odp, = §edp for all functions
¢ € Cyo (R¥). Theorem 5.26 then implies weak- lim,,_, o, p, = p. This proves the
continuity theorem of Lévy: Theorem 5.42. 0
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In the following theorem we compare several equivalent forms of weak conver-
gence. If a = (a1,...,a,) and b = (by,...,b,) belong to R” and if a; < b;,
1 < j < v, then we write a < b and also (a,b] = (a1,b1] x -+ x (ay, b,].

5.43. THEOREM. Let (o : a € A) be a directed system (a net) in Mt consisting
of sub-probability measures (so that pu, (R”) < 1, a € A) and let p € M* be
a sub-probability measure as well. Let (fy : ke N) be a sequence in Cy(R")
with a linear span which is dense in Cy (R”). The following assertions are then
equivalent:

(1) The net (jiq : o € A) converges weakly to y;

(2) For every bounded Borel measurable function f : R” — C which is
continuous in pi-almost all points the equality lim,, § fdue, = § fdu holds;

(3) The net (jiq : o € A) converges vaguely to p and lim p, (R”) = p (RY);

(4) For every closed subset F' of R” the inequality im sup,, i (F) < p(F)
holds and

lim 1 (R”) = 0 (R¥) ;

(5) For every open subset G of R” the inequality liminf, u.(G) = pu(QG)
holds and

lim i (R”) = 0 (R”) ;

(6) For every Borel subset B of R”, for which u (E\é) = 0, the equality

lim,, o (B) = p(B) holds;

(7) For every pair of points (a,b) € R” x R” such that a; < b;, 1 <
j < v, where a = (ai,...,a,), b = (by,...,b,), with the property
that p{x e R” : x; = a;} = p{reR": z; =b;} =0, 5 =1,...,v, the
equality lim, pio (a,b] = p(a,b] holds and lim, po (R¥) = p (RY).

(8) For every k € N the equalities lim, § frdpa = § frdp and lim, p1o, (R”) =
w (R”) hold;

(9) For every x € RY the equality lim,, fi,(z) = fi(x) holds.

(10) For every a € R” for which p{x e RV : z; =a;} =0, j =1,...,v, the
equality

lim g, [(=00,a1] % -+ x (=0, 4, )] = p[(=0,a1] > - x (=0, 4, ]]

holds and lim,, p, (R”) = pu (RY).

PRrROOF. The equivalence of the assertions (1) and (9) is a consequence of
Theorem 5.25. The equivalence of (1) and (3) is a consequence of Theorem 5.26.
The implication (1) = (8) is trivial. The implication (8) = (3) can be proved
as follows. From (8) it follows that lim, § pdu, = §{@du for all ¢ in the linear
span of (fi : ke N) u {1}. So that for f € Cy(R”) + C1 and ¢ in the span of
(fx: ke N) U {1} we see that
ff d (fta — u)’

lim sup
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< lim sup
«

- - m‘  limsup
<[f = el limsup (o (R”) + 1 (R"))

=2[f = ¢l 1 (R”) . (5.42)
Assertion (3) follows because the linear span of (fx : k € N) u {1} is uniformly
dense in C (R”)+C1. From the previous arguments it follows that the assertions
(1), (3), (8) and (9) are equivalent.

dema—uﬂ

(2) = (1). This implication is trivial.

(1) = (4). Let F be a closed subset of R”. Choose a sequence of functions
(uj : j € N)in Cp(R”) in such a way that 1p < u;41 < wu; <1, j €N, and such
that 1p(2) = lim;_,,, u;(x) for all z € R”. Then the equality

lim sup pio (F') < inf lim supfujd,ua = inffujd,u = u(F)
jeN a jeN

«

holds. This proves assertion (4) starting from (1).

(4) < (5). These implications are easy to verify.
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(5) = (6). Let B be a Borel subset of R” such that (E\%) = 0. Then, from
(5), what is equivalent to (4), it follows that

lim sup p(B) < limsup po (B) < pu(B) = p (é)
< liminf p, (103) < liminf p, (B). (5.43)

Hence, lim,, 1o (B) = u(B).

(6) = (1). Let 0 < f < 1 be a continuous function. Because

ffdu=fu{f>§}d§=£u{f>5}d£

we see that S(l) w{f =&}dé = 0. Thus for almost all £ the equality p{f =&} =0
follows. For a certain sequence (ay: ¢ € N) in A, we then obtain by (6) the
following (in-)equalities

1 1
ffdu—L{f>§}du=Lu{f>€}d€
1 1
— | g U > e = [ g tf > 6 de
0 0
1 & ~ 11 & ~ 1
< op D limpu {f > K27+ o< oo Y lim g, {f > k270 o+ o
k=1 k=1

(Fatou’s lemma)

on

. 1 1
< ZILHO}) J 2—n kzl 1{f>k2—"}dﬂag + 2—n
. 1 . 1
< lim | fdpe, + — = liminf | fdu, + —. (5.44)
£—00 n e’ on
From (5.44) it then follows that, always for 0 < f < 1,
r
ffdu < liminf | fdu,, (5.45)
« J
and also
.
J(l — f)dp < liminf [ (1 — f)du,. (5.46)
« J

Since, in addition, lim, p, (RY) = p(R”) we see by (5.45) and (5.46) that
lim, fdu, = § fdp for every function f € C, (R”) for which 0 < f < 1. Since
the linear span of such functions coincides with Cj, (R”) assertion (1) follows
from (6). (5) = (2). Let f be a real-valued bounded function which p-almost
everywhere continuous. Without loss of generality we assume that 0 < f < 1
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(otherwise replace f with af + b, with a and b appropriately chosen constants).
Then define the functions f~ and f“ respectively by
f(z) = inf sup f(y) en fY(xz)= sup inf f(y). (5.47)
Uel(z) yeU Uel(z) ¥eU
It follows that §(f” — f¥)du = 0 and also f¥ < f < f”. Hence, for an
appropriately chosen sequence (ay : £ € N),

y
| fdu=fodu o S ud = ke
k=1

//\

2n
— QLZ 1m1nf,uw{fu>k2 "}

1 N 1 < U -n
<—+h£n_1)g1f2—nl;ua[{f > k2 }

on
1 . 1 .
< ot lim 1anf°d,ua < ot lim mfffd,ua. (5.48)
From (5.48) it follows that
deu < liminfjfd,ua.
For the same reason the inequality §(1 — f)du < liminf, §(1 — f)du, holds.

Because, in addition, lim, p, (RY) = u(R”) we see that { fdu = lim, § fdu,.
This proves (2) starting from (5).

(6) = (7). This assertion is trivial.

(7) = (8). In this part of the proof we write (a,b] for the interval (ay,b;] x

- % (ay,b,], if a and b are points in R” for which a; < b; for 1 < j < v. From
(7) it follows that lim, pq (a b] = ,u(a b] for all points @ and b in R” with the
property that u{y e R : z; = a;} = p{y e R" : z; =b;} =0forall 1 <j<v
Next pick for f a function in Cpyy (R”) with values in R. Let g be an arbitrary
function of the form g = 377, f(2;)1(4, 5,], where a; and b; are points in R with
the following properties: p{y € R : yp, = a5} = p{y € RV : yp, = b x} = 0, for
1<k<v,andaj, <bj,forj=1,...,n, and 1 <k <v. In addition, suppose
that z; belongs to the “interval” (aj, bj]. The we get

lim sup J fdue < limsup J(f — g)dpe + lim supJgd,ua

<|f = gl (RY) + f gdu <2f — gl 1 (R") + J fdu.

Since f is uniformly continuous we are able to choose, for a given ¢ > 0, a
function ¢ of the form as above in such a way that |[f — g||, < e. This proves
the inequality limsup,, § fdp < § fdu. The same argument can be applied to
the function —f. It follows that lim, { fdu, = { fdu for functions f € Cpo (RY)
that are real valued. But then (8) follows.
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(10) = (7) Let a < b be as in (7). Then pu, (a,b] can be written in the form

Ho (av b] = Z (_1)#/\#& [n (—OO, CA,J']] ) (5'49>
Ac{l,...,v} j=1

where cp; = aj, j€ A, cpj; = b;, 7€ {1,...,v}\A. The implication (10) = (7)

then easily follows from (5.49). The equality in (5.49) can be found in Durrett

[46] Theorem 1.1.6 page 7.

(7) = (10) Let a be as in assertion (10). Put F' = [];_, (=0, ax]. Then the
subset F' is closed, and since assertion (7) is equivalent to (4) we know that
limsup, pa (F) < p(F'). Since assertion (7) is equivalent to (5) we know that

o

liminf, po (F) = liminf, p, <Z%> > (F) Since (]:;) = p(F) assertion
(10) follows.

The proof of these implications completes the proof Theorem 5.43. O
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5.44. REMARK. The implication (10) = (1) in Theorem 5.43 can also be proved
by employing the equality

@) dpa(a) = (<17 | Dy Duf () [H <—oo,xj]] dr (550)

_ (_1)uJV f: , J: D, - D],:f(:c) dx, ... dxy dpa(y),

where the function f is v times continuously differentiable, and where D; de-
notes differentiation with respect to the j-th coordinate, 1 < j < v. The
equality in (5.50) can be proved by successive integration. The second equality
is a consequence of Fubini’s theorem.

5.45. DEFINITION. A topological space E is called a Polish space if E possesses
the following properties:

(i) E is separable;
(ii) E is metrizable;
(iii) There exists a metric d on E that determines the topology and relative
to which F is complete.

Since E is metrizable property (i) is equivalent with the existence of a countable
basis for the topology.

5.46. LEMMA. Let E be a Polish space.

(a) A closed subset F' of E is, with the induced metric, again Polish.
(b) An open subset G of E is again Polish.

PROOF. (a) The proof of assertion (a) is not difficult. If (U;:jeN) is a
countable basis for the topology of E, then (U; n F': j € N) is a countable basis
for the topology on F. Moreover, F' is closed and hence it is complete with
respect to the induced metric.

(b). Let d be a metric on E, which turns F into a complete metric topological
space. Then the open subset GG is Polish for the metric dg defined by

1 _ 1
d(z,G°) d(y,G°)|
where = and y belong to G, where G¢ = F\G and where d (z, G) = i%f d(z, z).

2€G°

The separability of G is also clear. The proof of Lemma 5.46 is now complete.
O

de(z,y) = d(z,y) + (5.51)

5.47. THEOREM. A subset A of a Polish space E is again a Polish space if and
only if A is the countable intersection of open subsets of E.

PROOF. Let A = ﬂjeN G, where every G; is an open subset of . Let d be
a metric on £, which makes E into a Polish space. Define then the metrics d;
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on G, je N, as in (5.51) and define the metric d4 on A via

i 1 (x y

HY1+ d 1+dj(x,y)
Then, endowed with the relative topology, A is a Polish space with respect to
the d4. Conversely, let d < 1 be a metric on A which is compatible with the
topology that A inherits from E, and which turns A into a complete metric
space. Let A be the closure of A. Then there exists a decreasing sequence

of open subsets (G,), .y such that A = (1) G,; i.e. closed subsets of E are
Gs-subsets. For n € N, n # 0, we define the open subset A, of A as follows:

A, ={z € A: there exists an open neighborhood U(z) in E of x

1
for which d(y, z) < — for all z, y € U(x) n A} . (5.52)
n

Then the following assertions about the sets A,, will be proved:

(1) For all n € N we have A c A,
(2) The sets A, n € N, are open in A.
(3) The inclusion (), A, < A holds, and so by (1) A =), A,.

Since, by (2), the subsets A, n € N, are open in A there exist open subsets O,,
n e N, of E such that A, = O, n A, n € N. It follows that

A=A =(10wnA=(10u[ )G ={)0nnGn,

and hence, A is a countable intersection of open subsets of E. Next we prove
the assertions (1), (2) and (3).

(1) Pick x € A, and consider the ball

1
B jon) () = {w eA:d(w,x) < %}

There exists an open neighborhood U(xz) of z in E such that By, (z) =
AnU(x). If y, z belong to A n U(x) we have d(z,y) < d(z,z) +d(z,y) < 1/n.
It follows that x € A,,. This is true for all n € N.

(2) That the subset A, is open in A can be seen as follows. Pick x € A. There
exists an open neighborhood U(z) in E of « such that d(z,y) < 1/n for all
z,y € AnU(x). The set U(x) n A is an open neighborhood of x in A. Tt
suffices to show that U(z) n A < A,,. To this end choose 2’ € U(x) n A. Then
U(z) is an open neighborhood in E of 2’ as well, and since 2’ belongs to A it
follows from the definition of A,, that 2’ is a member of A,,.

(3) Let x belong to A, for all n € N. Then z belongs to A. We will prove that
x € A. Let D <1 be a metric on E which is compatible with its topology, and
which turns F into complete metric space. For the moment fix n € N. Since
x € A, there exists an open ball B,, in E relative to the metric D centered at x
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and with radius < 1/n such that
1
d(z,y) < — whenever y, z€ An B,. (5.53)
n

Since x € A there exists z, € A n B,,. In this way we obtain a sequence of balls
{B,, : n € N} relative to the metric D centered at x, which we take decreasing,
and which are such that the D-radius of B, is strictly less than 1/n. In addition,
we obtain a sequence of points {z,, : n € N} in A such that z,, € B, for all n € N.
Since the balls B,, are decreasing we have x,, € B,, for m > n. From this fact and
(5.53) it follows that d (2, ) < 1/n for m = n. Consequently, it follows that
the sequence {z, : n € N} is a d-Cauchy sequence in A. Since A is d-complete
there exists a point 2z’ € A such d(z,,2') < 1/n, n € N. Since D and d are
topologically compatible on A it also follows that lim, . D (z,,2") = 0. We
also have lim,, o, D (x,,x) = 0, and consequently = = 2’ € A.

This completes the proof of Theorem 5.47. U

For a proof of the following theorem the reader is referred to the literature. We
will give an outline of a proof. A Gs-set in a topological space is a countable
intersection of open subsets.

5.48. THEOREM. A Polish space E is homeomorphic with a Gs-subset of the
Hilbert-cube [0,1]N, endowed with the product topology.
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PROOF OF THEOREM 5.48. Let d : E x E — [0,1] be a metric op £
which is compatible with its topology, and which turns F into a Polish space,
and let (z,: £ € N) be a countable dense subset of E. Define the mapping
U: E—[0,1]" by U(z) = (d(x, T¢),ey)- Then, as can be checked, the mapping
U is a homeomorphism from E onto a subset of [0,1]Y. So far we have not
yet used the fact that E, equipped with the metric d is complete; we did use
the fact that E is a metrizable separable space. Since E is complete with
respect to d and ¥ is a homeomorphism, it follows that the image of F under
U, that is A = W (E), is complete subspace of the Hilbert cube [0, 1]N. Let
D: [0,1]N x [0,1]N — [0, 1] be the metric defined by

D ((fﬁ)zeN ) (W)zeN) = Z 27¢ ‘fﬁ - W‘ ) (fé)zel\m (W)eeN € [0> 1]N-
(=1

Then D is a metric on [0, 1]N which turns this space into a Polish space. It
follows that A is a subset of [0, 1]" which is homeomorphic to a Polish space,
and so it itself is Polish. Since it is a Polish subspace of the Polish space [0, 1]%,
A is a countable intersection of open subsets of [0, 1]N: see Theorem 5.47. This
completes the proof of Theorem 5.48. O

The space N of positive integers with the usual metric inherited from the real
numbers R is Polish. Then the countable product NN with metric

d({mi}, {ni}) = Z 201 + [my; — ny|

i=1
is Polish. The proofs of Propositions 5.49 and 5.50 are taken from Garrett [57].

(5.54)

5.49. PROPOSITION. Totally order NN lexicographically. Then every closed sub-
set C of NN has a least element.

The lexicographic ordering of N¥ can be recursively defined. An element a =
(ay,aq,...) precedes an element b = (by, by, ...) if a3 < by; however, if a; = by,
then as < by; however, if a1 = b; and as = by, then a3 < b3, and so on.

PROOF. Let ny be the least element in N such that there is © = (nq,...)
belonging to C. Let ny be the least element in N such that there is z =
(ny,n9,...) belonging to C, and so on. Choosing the n; inductively, let zy =
(n1,n2,n +3,...). This x satisfies zg < z in the lexicographic ordering for
every x € C', and xy belongs to the closure of C' in the metric topology introduced
in (5.54). This completes the proof of Proposition 5.49. O

5.50. PROPOSITION. Let E be a Polish space. Then there exists a continuous

surjective mapping Fy : NN — E. Moreover, there exists a measurable function
Go: E — NY such that Fyo Go(y) =y for ally e E.

PrOOF. The mapping F{ can be constructed as follows. For a given ¢ > 0
there is a countable covering of E by closed sets of diameter less than €. From
this one may contrive a map F' from finite sequences {ni,...,n;} in N to closed
sets F'(ny,...,ng) in E such that
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(1) F(2) = E; B
(2) F(na,...,ng) = Upey F (na, ... g £);
(3) The diameter of F (ny,...,n;) is less than 27%.

Then for = {n;} € N¥ the sequence Ey = F (ny,...,n;) is a nested sequence
of closed subsets of F with diameters less than 27%, respectively. Thus, the
subset (), E) consists of a single point Fy(y) of E. On the other hand, every
x € E lies inside some (), Ej. Continuity is easy to verify. The mapping G,
can be constructed as follows. The space NV, endowed with the lexicographical
ordering is totally ordered, and by Proposition 5.49 every closed subset contains
a least element for this order. For y € E the subset F; '(y) is closed in NV, and
therefore it contains a least element Gy(y). This assignment is a measurable
choice (because it can be performed in countably many steps). Then FyoGg(y) =
y for y € E. The proof of Proposition 5.50 is complete now. O

The proof of the following theorem is based on the fact that a Polish space is
homeomorphic with a Gs-subset of the Hilbert cube, which, being a countable
product of closed intervals, is a compact metrizable space.

5.51. THEOREM. Let u be a finite positive measure on the Borel field of a Polish
space. Then p is reqular in the sense that

w(B) =inf {u(O) : O open, B < O} = sup {u(K): K compact, K < B}.
(5.55)

PRrROOF. Let ¥ and A be as in the proof of Theorem 5.48. Then ¥ : E — A
is a homeomorphism. Let p > 0 be a finite measure on the Borel field of E.
Define the measure v on the Borel field of [0, 1]Y by

v(B)=pu [\I/_l (B n A)] = u[¥ e Bn A], B Borel subset of [0,1]Y. (5.56)

Then, since the Hilbert cube is compact and complete metrizable, and A is a
Gs-subset of the Hilbert cube, we see that the measure v is regular on the Borel
field of [0,1]". Tt also follows that the restriction of v to the Borel field of A
is regular. However, under the homeomorphism ¥ : E — A the Borel subsets
of E are in a one-to-one correspondence with those of A. It easily follows that

the measure pu is regular in the sense of (5.55), which completes the proof of
Theorem 5.51. 0

5.52. THEOREM. The following assertions hold for Banach spaces.

(a) Let E be a separable Banach space. Then its dual unit ball B', endowed
with the weak*-topology, is a Polish space.

(b) (Helly) The set ML, is compact-metrizable, and thus Polish for the
vague topology.

Let E’ be the topological dual space of E. The weak*-topology is denoted by
o:=0(EE).

PROOF. (a) Let (z, : n € N) be a sequence in the unit ball B of E of which
the linear span is dense in E. Define the mapping ® : (B’,0) — [0, 1]V via the
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map @’ — (< x,,2' >),_,. The mapping @ is continuous and, by the Theorem of
Banach-Alaoglu, the dual unit ball B’ is compact relative the topology o (E', E).
It follows that ®(B’) is a compact subset of [0, 1]Y. This image is Polish, and

because the inverse of ® is continuous, B’ itself is Polish as well.
Let r be a positive real number. Let the set MZ, be defined by
ML, ={peM:u(R") <7},
and let M be given by
M ={peM": p(R") =r}.
(b) Since MZ, is a vaguely closed subset of M = Cj (R”)*, by the Theorem of
Banach-Alaoglu it follows that MZ; is compact for the vague topology. The

fact that the set MZ, is Polish will be proved in Theorem 5.54. This completes
the proof of Theorem 5.52. O

5.53. DEFINITION. A subset A of M is a Prohorov subset, if it satisfies the
following two conditions:

() Sup,cq ] (B) is finite;
(b) For every € > 0 there exists a compact subset K of R” such that

|l (RN\K) < €

for all measures u € A.
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5.54. THEOREM. (a) The spaces MZ, and MY are Polish with respect to the
vague topology.

(b) The spaces MZ, and My are Polish with respect to the weak topology.

Proor. The countable collection

O {Zn:ozj(;zj co€Q a5 = O,zn]ozj = 1}
j=1

is dense in M{ for the vague as well as for the weak topology. The countable

collection
G{Zn:ajxj ;i €Qa> ,Oéiajgl}
j=1

is dense in MZ, for de vague as well as the weak topology. This can be seen
as follows. Let f be a bounded continuous function defined op R”. Fix ¢ > 0,
and choose a partition of R” in Borel subsets (A4; : j € N) in such a way that

If(z) — fly)] < ,u(IeR”) for all z, y € A;, and this for all j € N. In addition,

choose N € N so large that

(o S <«

Put a; = pu(A;) and choose x; € A;. Then we have

¥ 1 (RY)

Zj’vzl a; f ()
‘J Jan = Zj:l aj

<3, @ - s ) + ;&jf(xj){l— £§R>}|
+ Z fA f(z)dz

)+ 2171, { ”)—ZMAJ-)} <3¢

Appealing another time to the continuity of the function f, and using the fact
that the rational numbers are dense in R we obtain the separability of the
sets M and MZ, relative tot the vague as well as the weak topology. We
indicate metrics which turn these spaces into Polish spaces. Therefore we choose
a sequence of functions (fy, : k€ N) in {f € Cpo (R”) : 0 < f < 1} whose linear
span is uniformly dense in Cy (R”). We also choose a sequence (u, : ¢ € N) in
Coo (R¥) such that 1 > w1 = up = 0 and such that 1 = limy_,,, uy(z) for all
reRY.
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(a) Define the distance d, on MZ; via the formula

[ [ 1],

where p and v are members of MZ,. Supplied with this metric the space MZ,
is Polish for the vague topology. The spaces MZ,, 0 < r < 1, are also closed for
the vague topology. Since

d (1, v) — 22% (5.57)

M{:ﬂm

n=1

we see that M is a Polish space: see the Theorems 5.47 and 5.52.

(5.58)

<1 1/n

(b) Let fo = 1 and let the sequences (fx : k € N) and (u, : £ € N) be as above.
We define the metric d,, by the equality

fued,u—Ju@dV i Ufjdu ffjdl/

where p and v belong to MZ,. Supplied with this metric the space MZ, is Polish
for the weak topology. If we are also able to prove that the space MZ, is complete
relative to the metric d,,, then it follows that the spaces MZ,, r = 0, are Polish.
These spaces are also weakly closed. By the equality in (5.58) in Theorem 5.47
then implies that M{ is a Polish space as well. Now let (i, : m € N) be a d,,-
Cauchy sequence in MZE,. We will prove that this sequence is a Prohorov set in
MZ,. Choose € > 0 arbitrary. Then there exists M, € N such that for m and
m' = M, the inequality

dw(p, V) = sup (5.59)

LeN

sup fwdum — fugdum/ < ¢ (5.60)
teN 4
holds. So it follows that
i (RY) — s (RY)] < i, m, m' > M.. (5.61)
From (5.60) and (5.61) it follows that
sup J(l — ) Ay, — J(l — Up) Aty | < E, (5.62)
teN 2
for m and m’ = M,. Then from (5.62) it follows that
€
J(l — Up) Ay, < J(l — ug) dpip, + 3 (5.63)

From (5.63) it then follows that for ¢ > ¢, and m > M, the following inequality
holds:

Ju ) dp, < _ 3¢ (5.64)

] ™
DO | ™
i~
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From (5.64) it then follows that for all ¢ > L. and for all m € N the inequality

J (1= ) dpi < c. (5.65)

holds. Then choose the compact subset K. equal the support of the function
ur,. It follows that p,, (R"\K,) < € for all m € N. Let p be the vague limit of
the sequence (p, : m € N). This limit exists, because MZ, is compact for the
metric d,. Then pick a function u € Cyp (R”) in such a way that 1 > u > 1k, .
By the equality

| i = [ = [ (= o+ [ udin = [ fuda = [ (= u)a

we infer the inequality

i Jro
<ﬂw(fu—uﬁmm+fu—ucm) U?wmm JﬁM4

<UL G RF) 0 (R + | [ i~ [ fuai
< 1l (o (B + 500 i R ) | [ it~ [ i

< 2|/l

J Fudp,, — J fudu‘. (5.66)

Since pu = vague- lim,, pi,,, from (5.66) it also follows that u is the weak limit of
the sequence (p,, : m € N).

The proof Theorem 5.54 is now complete. U

Part of the proof of Theorem 5.54 comes back in the proof of Theorem 5.55.

5.55. THEOREM. A subset S of ML, is relatively weakly compact if and only if
S is a Prohorov subset.

PROOF. First, suppose that S is a Prohorov subset of MZ,. Let (1, : m € N)
be a sequence in S. We will prove that there exists a subsequence that con-
verges weakly. We may assume that, possibly by passing to a subsequence,
that this sequence converges vaguely. By employing the Prohorov property we
will show that, in fact, this sequence converges weakly. Let ¢ > 0 be arbitrary.
Then there exists a compact subset K such that pu,, (K¢) < € and also that
p (K€) < e. Then choose u € Cyy (R”) in such a way that 1 > u > 1x. Then we
have (see the final part of the proof of Theorem 5.54):

fﬁmm—ffw{
<mu0ﬁ—wwmﬂh—uw)yﬁmW/fmw
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< U1 G RAR) 0 RARY) + | [ S~ [ fud
< |1 fl <um (RIAK) + sup i, R”\K) Ufudum ffudu‘

< 2€|/fll,

fudpiy, — qudu‘ . (5.67)

Since p = vague- lim,, yi,,, from (5.67) it also follows that p is the weak limit of
the sequence (pi,, : m € N).

Conversely, suppose that the set S is weakly compact. We will prove that S
possesses the Prohorov property. Assume the contrary. Then there exists an
n > 0 and there exists an increasing sequence of compact subsets (K, : m € N)
with the following properties:

(a) Ky < Ky and R” = J7_| K
(b) For every m € N there exists a measure p,, € S such that u,, (K¢,) = n.

Then choose a sequence of functions (u,, € Cyo (R”)) such that 1g, < U1 <
lk,,.,- From (b) it follows then that, for m > ¢,

n< J(l g ) dp < fa ) dpn < f(1 )y, (5.68)

Since the subset S is relatively weakly compact, there exists a subsequence
(tm, : k € N) which converges weakly to a measure p. From (5.68) we then
see that n < §(1 —wu,)dp for all £ € N. From this we obtain a contradiction,
because the sequence (1 —u, : £ € N) decreases to 0.

This completes the proof of Theorem 5.55. U

5.56. COROLLARY. Let (fi,, : m € N) be a sequence of measures in M+ and let
p also belong to M*. Choose a sequence of functions (fy : k € N) in

{feCo@®):0<f<1}

with a linear span that is uniformly dense in Cy (RY) and choose another se-
quence (ug: L€ N) in Coy (R”) such that 1 = upry = up = 0 and such that
1 = limy_,, ug(x) for all x € R”. Define the metric d,, by the equality

o 1
ngdVQ — ngdyl + Z 2-]
j=1

where v and vy belong to M. Then the following assertions are equivalent:

dy(v1,v9) = sup
leN

9

‘dl/g — ijdyl

(i) The sequence (i, : m € N) converges weakly to y;
(ii) limy,—o du (fm, 1) = 0.

PROOF. The proof is left as an exercise for the reader. O

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I Some related results

3. A taste of ergodic theory

In this section we will formulate and prove the pointwise ergodic theorem of
Birkhoff. We also indicate its relation with the strong law of large numbers.
We will also show that the strong law of large numbers (SLLN) implies the
weak law of large numbers (WLLN). However, we begin with von Neumann’a
ergodic theorem in a Hilbert space. In what follows the symbol H stands for
a (complex) Hilbert space with inner-product (-,-) and norm |-|. An operator
U : H — H is called unitary if it satisfies U*U = UU* = I. An operator
P : H — H is called an orthogonal projection if P* = P = P2, Let L be closed
subspace of H. Then H can be written as

H=L®L"=PH+ (I -P)H,

where P : H — H is an orthogonal projection with range L. The following
theorem is the same as Theorem 7.1 in Romik [115].

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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5.57. THEOREM. Let H be a Hilbert space, and let U be a unitary operator on
H. Let P be the orthogonal projection operator onto the subspace N (U —I)
(the subspace of H consisting of U-invariant vectors). For any vector v e H the
equality

1 n—1
lim — Z Urv = Po.
RN

n—1

1
holds. (Equivalently, the sequence of operators {— Z Ur:ne N} converges
n
k=0
to P in the strong operator topology.)

PROOF. Define the subspace V. HbyV = N(U-I) ={ve H:Uv =v} =
N (U* —1I). Then
V=(RU-I)"={veH: (U=Tu,v)=0 forallue H},  (5.69)
where R(U — I) is the range of the operator U — I, i.e.
RU—-I)={Uu—u:ue H}.

Let L be any linear subspace of H. From Hilbert space techniques it is known
that (LL)L coincides with the closure of the linear subspace L. From these
observations it follows that the subspace N (U —I) + R (U — I) is dense in H,
and that the subspaces N (U — I) and R (U — I) are orthogonal. Moreover, we

have
1 n—1 . 1 n—1 .
=Y Uk < = Y UM < vl ve H. (5.70)
n n
k=0 k=0
Define the subspace L < H by
1 n—1
Lz{veH: lim—ZUkvav}, (5.71)
Sy rs

where P is the orthogonal projection onto the space V.= N(U—1). From (5.70)
it follows that L is a closed subspace of H. If v € V, i.e. if Uv = v, then v
belongs to L. If v = (U — I) u belongs to the range of U — I, then

1 n—1 1 n—1 1
=Y Urv== > U"U-TNu=—=U"-1)u, (5.72)
n n n
k=0 k=0
and so by (5.70) and (5.71) it follows that
1 n—1
. - k _ _
Jim — I;)U v=0=Pu, (5.73)

whenever v belongs to R(U — I). Again appealing to (5.70) shows that (5.73)
also holds for v belonging to the closure of R(U — I). Altogether it shows that
the subspace L coincides with H. This completes the proof of Theorem 5.57. [
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Let (2, F,P; T') be a measure preserving system. We associate with the measure
preserving mapping 7' : € —  an operator Ur on the Hilbert space L? (2, F, P)
defined by Ur(f) = foT, f € L? (92, F,P). The fact that T is measure preserving
implies that UjrUp = I:

(Urf,Urg) = E[UrfUrg] =E[foTgoT| =E[(fg) o T] =E[fg] = <JE¢9;4)
5.

From (5.74) it follows that U3Ur = I. In order that Ur is a unitary operator
it should also be surjective. Since the range of Ur is closed, this is the case
provided that the set of functions fo T, f € L?(Q,F,P), constitutes a dense
subspace of L? (Q,F,P). The latter is true if the mapping T has the property
that there exists a measurable mapping T: Q — Qsuch that T o T(w) = w for
P-almost all w. Then the operator U defined by [7]” = fo T, feLl*(QF P)
is the adjoint of Up. This can be seen as follows. Now we do not only have
UrUr = I, but we also have UTﬁf = ﬁfoTz fofoTz f, fel* Q3 P).

Hence, we see
U= (UxU) U = U <UT(7> — Uz

Note also that the subspace N(U — I) consists exactly of the invariant (square-
integrable) random variables, or equivalently those random variables which are
measurable with respect to the o-algebra J of invariant events. Recalling the
discussion of conditional expectations in Theorem 1.4, item (11), in Chapter 1,
we also see that the orthogonal projection operator P is exactly the conditional
expectation operator & [ ‘ 3] with respect to the o-algebra of invariant events
J. Thus, Theorem 5.57 applied to this setting gives the following result.

5.58. THEOREM (The L? ergodic theorem). Let (0, F,P;T) be a measure pre-
serving system. For any random variable X € L* (Q,F,P) the equality

n—1

1 k_
Jim ~ Z XoTF=E[X|J] (5.75)
holds in L* (Q, F,P). In particular, if the system is ergodic then

- lim — Z XoTF=E[X]. (5.76)

n—o N,

Since the operator S : L?(Q,F,P) — L*(Q,F,P), defined by Sf = foT,
f e L?(9,F,P), is not necessarily unitary, Theorem 5.58 requires a proof. It
only satisfies S*S = I. The proof below is based on the proof of Theorem 5.66
below.

PROOF. Theorem 5.58 is a consequence of Theorem 5.59 which includes the
L'-version of Theorem 5.58. More precisely, we have to prove that

2
lim E Z XoTF—E[X|7]| | =0. (5.77)

n—0o0
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Let X € L?(Q,F,P) be bounded. Then we can use Theorem 5.59 together
Lebesgue’s theorem of dominated convergence that the equality in (5.77) holds
for X. A general function X € L? (Q2,F,P) can be approximated by bounded
functions in L?-sense. Since {|f o T|> du = §|f|” du, and so the convergence in
(5.77) also holds for all L2-functions. The precise argument follows as in (5.122)
below with Sf = foT, f e L?(Q,F,P), and relative to the L?*-norm instead
of the L'-norm. So let f belong to L? (Q,F,P), and let M > 0 be an arbitrary
real number. Then we have:

1 n—1
— > S f—Puf
n k=0

L2

1 n—1
(g 2.5 - Pu) (fLari<an)

< + ( ZS - ) (fLyp=ary)
L2 2
9 1/2 "
Sk — Lif- dP 2 i
J'( Z ) Fygi<my) + (LWM} |f] )
(5.78)

As in the proof of Theorem 5.66 in (5.78) we first let n — oo, and then M — oo
to obtain the L?-convergence in Theorem 5.58. U
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The pointwise ergodic theorem of Birkhoff requires some more work. In what
follows (€2, F, ) is positive measure space, and 7" : 0 — € is a measure preserv-
ing mapping, i.e. u{T € A} = u{T71A} = p{A} for all Ae F with u{A} < co.
An equivalent formulation reads as follows. For all f € L' (2, F, ) the equality
§ foT du = fduholds. In other words the quadruple (Q,F,P; T) is a measure
preserving system, or dynamical system. The operator P, in (5.80) is a projec-
tion mapping from L' (Q, F, i) onto a space consisting of T-invariant functions.
Hence a function of the form g = P, f satisfies g o T' = g p-almost everywhere,
and so g is measurable with respect to the invariant o-field J. In addition, if A
is a bounded, T-invariant function in L' (Q, F, 11), then we have

| upyhau= [ By om) d = | s (5.79)

In other words the function P, f is the p-conditional expectation of the function
f on the o-field of invariant subsets. A measure preserving system (Q, F, u; T)
is called ergodic if a T-invariant function is constant p-almost every, and so the

o-field J is trivial, i.e. J consists, up to sets of p-measure zero, of the void set
and of .

5.59. THEOREM (The pointwise ergodic theorem in L'). Let (0,5, u;T) be a
measure preserving system. For any function f € L' (Q,F, u) the equality

1
lim —
n—o N,

n—1
D foT" =P.f (5.80)
k=0

holds p-almost everywhere. In particular, if the system is ergodic then the equal-
1ty

n—o N,

lim lnz foTk = de,u. (5.81)
k=0

holds p-almost everywhere. If p is a probability measure, then the limits in

(5.80) and (5.81) also hold in L'-sense, and P,f =E, [f | J].

PrOOF. The proof of Theorem 5.59 follows from Theorem 5.66 and its Corol-
lary 5.67 with 4 (Q) =1, and Sf = fo T, fe L' (O, F, p). O

Let (0,30, P) be a probability space, and let X; : Qy — R, j =0,1,..., be
a sequence of independent and identically distributed variables (i.i.d.). Let us
show that the SLLN is a consequence: see Theorem 2.54. Put S, = Z;é X

5.60. THEOREM (Strong law of large numbers). The equality
S

lim — = a, holds P-almost surely
n—o N

for some finite constant «, if and only if E[| Xx|] < o0, and then o = E[X4].

PROOF. Let 2 = RY, endowed with the product o-field F = ®72oB; where
B; is the Borel field on R. Define the probability measure ;1 on J by

WA =E[14 (X0, X1,.. )] = P[(Xo, X1,.. )€ A], AeT.
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Put Sf (xg,x1,...) = f(x1,29,...), f € LY(Q,F, n), (xo,21,...) € Q. Then
§Sfdu =S fdu, feL*(QF, ). The assertion in Theorem 5.60 follows from
Theorem 5.66 and its Corollary 5.67 by applying them to the function fy: Q —
R defined by fo (xo, z1,...) = xo, (€0, 21, ...) € Q. Then

n—1 n—1 n—1

(5% fo) (X0, X1, Xa, o) = D fo(Xiy Xpn,o ) = Do Xy, k=0,1,...,
k=0 k=0 k=0

and hence Theorem 5.60 is a consequence of Theorem 5.66 and its Corollary 5.67.
Theorem 5.60 also follows from Theorem 5.59 by applying it to the mapping
T:Q— Qgiven by T (z9, x1,...) = (21, 22,...), (xo,21,...) € L O

We will formulate some of the results in terms of positivity preserving operators
S+ LN T, p) — LN (Q,T, ).

5.61. LEMMA. Let S : L' (0,5, pu) — L' (Q, F, ) be a linear map, and let f =0
belong to L' (Q,F, u). Then the following assertions are equivalent:

(i) min (Sf,1) = S (min (f,1));
(il) max (Sf —1,0) = S (max (f — 1,0));
(iii) min (Sf,1) < S (min(f, 1)), and max (Sf —1,0) = S (max (f —1,0)).

Suppose that for every f =0, f e L' (Q,F, u) the operator S satisfies one, and
hence all of the conditions (i), (ii) and (iii). In addition, assume that

J]Sf duéffd,u, forall fe L' (Q,F, ), f=0. (5.82)

Then S is positivity preserving in the sense that f =0, f e L' (Q,F, u), implies
Sf = 0, and contractive in the sense that §|Sf| du < §|f| du for all f €
L' (,F, ). Then the equivalent conditions (i), (v), (vi). and (vii) given by

(iv) The equality S (fg) = (Sf) (Sg) holds for all f € L' (Q,F, i), and for
allge LY (Q,F, u) (L (Q, F, ),
(v) S(min (f,g)) = min (Sf, Sg) is true for all f, ge L' (Q,F, pn),
(vi) The equality S (max (f —1,0)) = max (Sf — 1,0) holds for every f €
L' (Q,F, ).
(vii) The Slg=1y = lisy=1} holds for every f e L* (Q,F, u).

are also true. Moreover, (vi) implies that if the assertions (i), (ii) and (iii)
are true for all positive functions f in L' (Q,F, u), then they are true for all
functions f in L' (Q,F, ). If the measure u is finite, then all assertions (i),

(ii), (iii) (for all f = 0, f € L' (Q,F,pn),) and (iv), (v), (vi) and (vii) are
equivalent. Finally, the operator S : L' (Q,F, nu) — L' (Q,F, u) is continuous,
more precisely,

[1ss1du=[sis1dus [1fldn sert @z, 68

5.62. REMARK. Assertion (iv) also holds for all f, g € L' (0, F, ) ( L* (Q, F, ).
The equality in (v) can be replaced with

S (max (f, g)) = max (Sf,Sg) forall f, ge L' (Q, T, u). (5.84)
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The latter is true because min(f, g) + max(f,g) = f +g.

PrROOF OF LEMMA 5.61. The equivalence of the assertions (i), (ii) and (iii)
follows from the following identities:

min (Sf,1) + S (max (f —1,0)) = Sf = min (Sf,1) + max (Sf —1,0).

Now assume that for all f > 0, the operator S satisfies (i), (ii) or (iii), and
assume that S is contractive in the sense of (5.82). Let f > 0 belong to
LY (Q,F, 1), and put f, = max(f —n~',0). Then the sequence (f — f,), de-
creases to 0, and hence, by (5.82), lim, .o, §|[Sf — Sf,| du = 0. Then there
exists a subsequence (f,, ), such that the sequence (Sf,, ), converges to Sf -
almost everywhere. Hence Sf > 0 p-almost everywhere. In fact it follows that
the sequence (Sf,), increases to Sf p-almost everywhere. Let f € L' (Q,F, u),
and write f = f, — f_ where f, = max(f,0), and f_ = max(—f,0). Then
|fl=f+—f_,and |Sf]| < Sf, + Sf_. From (5.82) it the follows that

J1srtaus [(s5.+ 88y du= [0+ 1) du= [ S171dun< [ 11] dn
(5.85)

Iy
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The inequalities in (5.85) prove the contraction property of the operator S. Next
we prove the assertions (iv), (v) and (vi) starting from (i), (ii) or (iii) for all f €
LY (9,5, 1), f = 0. Let the function f = 0 belong to L* (Q, F, ) ( L? (2, F, ).
Then we write

namn

Q0
f? = QJ max (f — o, 0) da = sup2~ "+ Zmax (f—3427,0),
0 n j=1
ad so
S(f?) = 2f Smax (f — «,0) do
0
n2"
= sup2 "t Z S (max (f —j27",0))
n i=1
(apply assertion (ii))
n2"
— sup 2"t Z max (Sf — g2 0)
; j
=2f max (Sf — ,0) da = (Sf)*. (5.86)
0

The equality in (5.86) shows that the assertion in (iv) is true provided that
f =g = 0. For general f = g we split f in its positive and negative part.
For general f and g belonging to L' (Q,F,u)(L? (2, F, u) we write 2fg =
(f + g)°>— f2— g% Altogether this shows assertion (iv). (iv) = (v) Let f belong
to L' (0, F, ) () L? (2, F, p). Then we write

=2

)y 2+ 27

and so by assertion (iv) we get

2 [~ f?
S|f|=;f0 S{t2+f2} it

(for explanation see below: equality (5.89))

2 (7 S(f)
‘WL s

((iv) implies S (f2) = (Sf)?)

2 (© (Sf)
_ —f ST s (5.87)
mJo 2+ (Sf)
The equality in (5.87) shows that (5.84) is true for ¢ = —f. For general

f,9e LY (Q,F, u)(L* (Q, F, ) we write 2max (f,g) = |f — g|+ f +g. Conse-
quently, assertion (v) follows for f, g € L' (Q, F, ) (L* (0, F, u). If f and g are
arbitrary functions in L' (Q, &, ), then we approximate them by f, := T f1<n)
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and by g, = glyg<ny respectively. This shows that assertion (v) is a conse-
quence of (iv), except that the proof of the second equality in (5.87) is not
provided yet. In order to prove this equality it suffices to prove that, for a > 0
and g = 0, g€ L' (Q,F, u) the equality

S{ J }: 59 (5.88)

a+g a+ Sg

holds. By assertion (iv) we have

sfetgfersn-sfimh s (i)

2
=S{ 9 }+S{ J }zSg. (5.89)
a+g a+g

The equality in (5.89) shows the validity of (5.88). Therefore the second equality
in (5.87) is proved now.

(i) plus (v) = (vi) We apply (5.84), which is equivalent to (v), with f €
L' (Q,F, p) arbitrary and g = 0 to obtain

S (max (f —1,0)) = S (max (max (f,0) — 1,0))
(employ assertion (ii))
= max (Smax (f,0) — 1,0)
(apply assertion (v))
— max (max (Sf, S0) — 1,0)
= max (max (Sf,0) — 1,0) = max (Sf — 1,0).
Hence, assertion (vi) follows from (ii) and (v).
(vi) = (v) Let fe L' (Q,F, n). By assertion (vi) we have
Smax (f,0) = lgfngmax(f —¢,0) = leif{)lmax(Sf —¢,0) =max (Sf,0).

(5.90)
Whence, Smax (f,0) = max (Sf,0). Since |f| = 2max (f,0) — f we easily infer
S|fl = |Sf]|, and assertion (v) follows: see the proof of the implication (iv) =

(v)-
(ii) plus (v) = (iv) Let f belong to L' (0, F, u) ([ L* (2, F, u). Then we write

7= 2fmax<rf\ ~0,0) da,

and so by assertion (ii) and (v) we get
S(f?) = QJ max (S| f| — a,0) da
OOO
= ZJ max (|Sf| — «,0) da
0

= [SfI* = (Sf)*,
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and hence (iv) follows. (vi) = (vii) Let f belong to L' (Q, F, i1). Then 1.y is
p-integrable as well. Then we have

Slips1y = %i_rgoS(min (mmax (f —1,0)))
= lim (min (mmax (Sf —1,0))) = ligs=1}- (5.91)

m—00

The equality of the ultimate terms in (5.91) proves the implication (vi) = (vii).

(vii) = (vi) Let f belong to L' (Q, F, u). Then the functions 1{;=4y, @ > 0, are
p-integrable as well. We have

0 0
S (max (f — 1, O)) = SJ 1{f—1>a} da = J Sl{f_1>a} da
OO0 0
= J Lisf-1>a) da = max (Sf —1,0). (5.92)
0

The equality of the ultimate terms in (5.92) proves the implication (vii) = (vi).

If the measure y is finite, then the constant functions belong to L' (Q,F, p).
Since S1 = 1, it is easy to see that assertion (iv) implies assertion (i), and hence
by what is proved above, we see that for a finite measure p all assertion (i)
through (vi) are equivalent. The equality and inequality in (5.83) follow from
assertion (v) and the inequality in (5.82). This completes the proof of Lemma
2.61. 0J
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5.63. PROPOSITION. Let g and h be functions in L* (0, F, ). Define, for —oo <
a <b< o, the subset C’{g’h} by

M —{g<a<b<h}. (5.93)
Then the following equality holds:
Slcé?b,h} = 1C‘§:S’;g,5’h}. (5.94)

PROOF. Since C’i;fl_’;g} = {g <a < b< h} we may assume that b > 0. If
a < 0, then lyycqepeny = L{—g>—ajlin=t}. From assertions (iv) and (vii) of
Lemma 5.61 it follows that
Sligca<v<ny = l{—sg>—a}l{sn>b} = 1{Sg<a<b<shy};
and consequently (5.94) follows for a < 0 < b. If a = 0, then we replace a with
a—¢candlet € | 0. If @ > 0, then we consider, for 0 < € < a,
Lig<a—c<b<h} = Linst) — Lig>a—c}Lin=0}- (5.95)

Another application of the assertions (iv) and (vii) of Lemma 5.61 then yields
by employing (5.95) the equality:

Slig<a—e<v<ny = Lisnspy — Lisgsa—e} L{sn=t} = l{sg<a—c<b<Sh}- (5.96)
In (5.96) we let ¢ | 0 to obtain the equality in (5.93) for 0 < a < b. This
completes the proof of Proposition 5.63. O
We also need the following proposition. It will be used with g,, = h,, of the form
n—1
Zskf where fe L' (Q, 7, ).
" i=o

5.64. PROPOSITION. Let {g,}, and {h,}, be sequences in L' (2, F, ) with the
property that for every ¢ > 0 the subsets {sup,, |g.| > ¢} and {sup,, |h,| > ¢} have

finite p-measure. Define, for —o0 < a < b < o0, the subset Cif}bn}nv{hn}n by

Cii"}"’{h”}" = {lim inf g, < a < b < limsup hn} : (5.97)

n—0a0 n—0o0
Then the following equality holds:

Slci?g}n,{hn}n = 1Ciig”}’{3h"}”‘ (5.98)

PrRoOOF. We write the function ].C{gn}n,(hn}n as follows:
a,b

(5.99)

1 Gl linin = supinfsupinf min max

N1 N{ Ny Ny Ni<ni<N{ N2<na<N; {g"1<a<b<h"2}’

where the suprema and infima are monotone limit operations in L' (Q, F, u).
An appeal to assertion (v) in Lemma 5.61, to (5.83), and to (5.84) the equality
in (5.99) implies

Slc{gn}n (hn}, = supinfsupinf min max S1 (5.100)

N1 N{ N, Nj N1i<ni<N{ Na<na<Nj {g"1<a<b<h"2}.
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The equality in (5.96) in combination with (5.100) then shows

ST tgntp . thn sup inf supinf min ma
Ci?b bnofbndny = Nll:) Ni N2l:) N N1<TL1SN N2<7L2)<(N/ {59n1<a<b<Shn2}
= 1Ciig"}"’{3h”}"' (5.101)
The equality in (5.101) completes the proof of Proposition 5.64. O

5.65. THEOREM (Maximal ergodic theorem). Let S : L' (Q,F, u) — L' (0, F, p)
be a linear map, which is positivity preserving and contractive. So that f €
LYQ,F, 1) and f = 0 implies Sf = 0 and |Sf|, < |f|,- Define for f €
LY (Q,F, ) the to S corresponding maximal function f by

= sup — Z Sk, (5.102)

neN T

Then the following assertions are valid:

(a) If f belongs to L' (2, F, 1), then f ~ fdp=0
f>0

(b) If, in addition, min (Sf,1) = S (min(f,1)), for all f € L' (Q,F,pn),
f =0, then for any a > 0 and any f € L' (Q,F, pn), the following
inequalities hold:

p{Sf>ay <plf >a}, and ap{f>a}<|fl;. (5.103)

Observe that the second inequality in (5.103) resembles the Doob’s maximal
inequality for sub-martingales: see Theorem 5.110 or Proposition 3.107.

PROOF. (a) Let f € L' (2,5, ), and define, for n a positive integer, the
function h,, by

k
— J
hn, o JDax  max (0,;)5’ f) . (5.104)

Then we have h,,1 = h, > 0, and for w € Q such that h,;1(w) > 0, we have
hn(w)+ f(w) =p41 (w). The latter inequality is a consequence of the inequality

k
_ J
f+Sh,=f+S (Ogr&az(_lmax (O,;)S f>>

k
J
> f+ 0;}2125715 (max <O, Z S’ f))

k
j+1
20523(71 (max (f—l—SO f+ ;S f))
k+1 koo
= Jnax | (max (f 2 S7f >> Jnax (2 ij> . (5.105)

7=0
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From (5.105) it readily follows that
f + Shn = hn+1 on {hn+1 > 0} . <5106)

Notice that in the arguments leading to h,.; = h,, and also to (5.105), we
employed the fact that ¢ > 0, g € L' (Q, F, i), implies Sg > 0. From (5.106) we

infer
J fdu=>
{hn+1>0}

J
o

J

J

(hn+1 - Shn) dﬂ
{hn+1>0}

o1 dpt — f Shy dy
{hn+1>0}

\%

Bt djt — fShn dp > fh dyi - fhn dy

r

(s — hn) dp > 0. (5.107)

From (5.107) we obtain

J - fdp= f fdu = lim fdu=0. (5.108)
{/>0} UnZo {hn+1>0}

"0 Jhn >0}

The inequality in (5.108) entails assertion (a).

[ ]
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(b) Let f = 0 belong to L' (Q,F,u), and fix a > 0. We first prove that
w{Sf >a} <pu{f > a}, i.e. the first inequality in (5.103). Let m be a positive
integer. By the extra hypothesis in (b), together with assertion (ii) in Lemma
5.61, we have

min (mmax (Sf —a,0),1) =S (min (mmax (f —a,0),1)). (5.109)
From (5.109) we deduce

fmin<mmax<5f—a,o),1) dp — JS(min(mmax(f—a,O),l)) dy
<Jmin(mmax(f—a,0),1) du. (5.110)
In (5.110) we let m tend to o to obtain:
WS > a} :nlli_r&fmin(mmax(Sf—a,O),l) du

< lim | min (mmax (f —a,0),1) du = pu{f > a}. (5.111)

m—0o0

This proves the first inequality in (5.103). In order to show the second inequality
in (5.103) we proceed as follows. Let f be a member of L' (Q, F, 1), and define,

always for a > 0 fixed, the subset D by D = {f> a}. Here fis as in (5.106).
In addition, define for n a positive integer, the subset D,, by

n

D, = U{Skf>a}mD.
k=0
Then we have
D} < S {8 > ay < Y pdf > ah = (n+ Dpdf > ap < L2
k=0 k=0

a

111y

ee}
and so p{D,} is finite. We also have D > D,,;; © D,,, and D = U D,,. Hence,
n=1

because for f e L' (Q,F, u) we have

~ ~

f—a< f—alp, <(f—alp,),

it follows that

a,u{Dn}zf aanduzf aandu<f - alp, du
{F>a} {F-a>0} {(/-alp,)>0}

(alp, — f) dp + J{(f—r\f -0} fdu (5.112)

J{(f—?ﬁ;n)w}

(apply assertion (a) to the first terem in (5.112))

<O+J - fdu<|fl,- (5.113)
{(f=alp,)>0
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In (5.113) we let n tend to co and infer ap {f> a} < ||f]l;- This is the second
inequality in (5.103), and completes the proof of Theorem 5.65. O

5.66. THEOREM (Theorem of Birkhoff). Let S : L' (Q,F,u) — L' (Q,F, ) be
a linear operator such that for every f =0, f € L' (0, F,u), the following two
conditions are satisfied:

(i) S(min(f,1)) = min(Sf,1);
(i) [Sfl, = SISfldu < §fdu=|f],

(It follows that all properties mentioned in Lemma 5.61 are available as well
as the Propositions 5.63 and 5.6/, and Theorem 5.65.) Then for every f €
LY (,F, ) the pointwise limit

. 1n—1 i
gxalogkzzgs f=P.f (5.114)

exists p-almost everywhere. In addition, P,f belongs to L' (Q,F,u), and the
operator P, 1s a projection operator, i.e. Pi = P,, with the following properties:

(a) SIP.f| du < S |f] du, and
(b) SP,f = P,Sf = P,f, where f belongs to L' (Q,F, ).

If the measure p is a probability measure, then the limit in (5.114) is also an L'-
limit, and P,f = E, [f ‘ f]], feL'(Q,%, ), where E, [f | f]] denotes the con-
ditional expectation on the o-field of invariant events: I = {A € F: Sly = 14}.

Before we prove this theorem we insert a corollary.

5.67. COROLLARY. Let the notation and hypotheses be as in Theorem 5.66.
Suppose that the operator S is ergodic in the sense that S1 =1, and Sf = f,
fe LY (Q,F,u), implies f = constant p-almost everywhere. If ju () = oo, then
P.f=0, fe L' (T, pn). If n(Q) =1, then P,f = fdu, fe L' (Q,F,pn).

PROOF. Let f e L' (Q,F,u). Then SP,f = P,f, and so by ergodicity P,f
is a constant p-almost everywhere. If 1 (€2) = oo, then this constant must be
zero, because P, f belongs to L' (Q,F, p). If () = 1, then, by the L'-version
of Theorem 5.66, we have

1 n—1
qufdﬂz lim—ZJSkfdp:ffdu, (5.115)
e
and the inequality in (5.115) completes the proof of Corollary 5.67. g

PROOF OF THEOREM 5.66. Define for f e L' (Q,F,u), and —0 < a < b <
oo the subset Cib by

n—1

1 1 n—1
Cib = {liminf— Z Sk f <a<b<limsup — Z Skf} . (5.116)
k=0 k=0

n—ow N n—soo N
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Then C/, belongs to F, and by Theorem 5.65 it follows that s [C’C{b] < . By

Proposition 5.64 we see that
Sle,b = 103,; = 10571). (5.117)

As in equality (5.102) in Theorem 5.65 we write § for the maximal function
corresponding to g € L' (Q, F, u). Then, with C' = cf

by WE see

—_—

((a—f)lc)zsup Zsk a—f 10}_81113 Z{G S e

- (a - ngfﬁ 2 Sk f ) 1o, (5.118)

k=0

and so from (5.118) and the definition of C' = C’ib we see that
Cc {((a—f) 1¢) >0}. (5.119)

The inclusion in (5.119) together with Theorem 5.65 yields

J(a - Nlcdp = L (a—f)lodu = f{((a_f)lc " (a— f)ledp = 0. (5.120)

As a consequence (5.120) implies §, f dp < ap (C). A similar reasoning shows
that C' < {((f’—\b—)/lc) > 0}, and therefore, like in (5.120),

JU—@lmm=J&fﬁdwwf—®kdu>Q

and hence by (C) < §, fdp. Since (5.120) entails §, f du < ap (C'), we obtain
b (C) < ap (C). Since b > a and p (C) we get u <C’ib> = (0. The subset Cj
defined by

n—0o0

— { liminf — k<l k
Co = {lgloganSf imsup — ZS }
can be written in the form
Co = U c’,,
—oo<a<b<, a,beQ

where the symbol Q denotes the set of rational numbers. So, by what is proved
above the set () can be covered by a countable collection of subsets of the form
C’ib, —0 < a < b < o, all of which have py-measure 0. Whence, p (Cy) = 0. So
the pointwise limit in (5.114) exists p-almost everywhere.

(a) Next we prove assertion (a), and therefore P, f belongs to L' (Q, F, ). By
Fatou’s lemma we have

. 1n71 i
ﬁ&ﬂw=fggﬁ;ff

. . ]_nfl
dp < fllggfﬁ];)‘skf’ du
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n—1
p— k p—
hrrlrilcgfnZJ‘S fl dp < hmlnf Zf|f|d,u f|f|d,u
(5.121)

The inequality in (5.121) shows property (a).

The fact that P? = P, follows from (b). First let f > 0 belong to L' (2, J, ).
Then

n—1

P,f= hmlnf— Z Skf = sup inf  min Z Sk,

) N'2N N<n<N' N,

and hence
1 nl ln_l
o k - 1 k+1
SPuf = liminf = Z;)S P Wy B kZ—OS !
15

which implies property (b) for non-negative functions in L* (Q, F, ). A general
function can be written as a difference of non-negative functions in L' (Q, F, u1).
This proves property (b).
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Next we assume that p () = 1. First we will show that the pointwise limit in
(5.114) is in fact also an L!-limit. For this purpose we fix f € L' (Q,F, u) and
a real number M > 0. Then we have

f%iskfpuf

<J( ZS - > (fLp1<ay) d“*J‘( Zsk ) (fLp1=01)

< Sk — )| d dp. .
J( Z > Flgn<an) u+2Lm>M} |f| du (5.122)

Since |g| < M, g € L* (Q,F, 1) implies |Sg| < M and |P,g| < M, the integrand
in the first term of the right-hand side of (5.122) is dominated by the constant
L'-function 2M. So from Lebesgue’s dominated convergence theorem, (5.114)
and (5.122) it follows that

1n—1
limsupj‘ﬁ Z Sk‘f_Puf
k=0

dp

dp

n—0o0

dp <2 J \f| dp. (5.123)
{If|=M}

Since M > 0 is arbitrary and f € L' (Q,F, ) the inequality in (5.123) implies

1 n—1
lim su — Skf—p
wsup [ |- DEREY

which is the same as saying that the limit in (5.114) also holds in L'-sense. The
equality P,f = E, [f | f]], fe L' (Q,F, ), follows from the following two facts:

dp = 0,

(a) the collection {A € JF: S14 =14} is a o-field, which is readily estab-
lished.
(b) Moreover, if f > 0 is such that Sf = f, and if & > 0, then Sl.q) =

Lisr=ay = Liy>a}-

This completes the proof of Theorem 5.66. U

4. Projective limits of probability distributions

This section is dedicated to a proof of Kolmogorov’s extension theorem. We
will also present Carathédory’s extension theorem. Let I be an arbitrary set
of indices. Denote by 3 (I) the class of all finite subsets of I, by H'(I) the
collection of all countable subsets of I, and by H” (I) = 27 the class of all
subsets of I. Consider a collection of measurable spaces (£2;,A;) indexed by
i€l For JeH" (I) we write Q; = [[,.;¢2, and for J = K < I we denote
by pff the canonical projection of Qg onto Q. If J = {j} ¢ K we write p}
instead of pg}, and if K = I we write p; instead of PJ. Hence p; denotes
the (one-dimensional-)projection of €; on its j-th coordinate €2;. Often these
coordinate functions {p;: j € I} serve as a canonical stochastic process. On
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each Q;, J € H" (I), we consider the o-field A; = ®;csA;, generated by the set
of projections {pj cjed }, i.e. the smallest o-field containing the sets

{7 (W) e A} ={{p]cA}:jed Ac A},

The collection A is called the product o-algebra on €2;. One easily sees that,
if J € H (I), then A is generated by the set of rectangles, i.e. by

[ A = {HA]-: AjeAj,jeJ}.

jedJ jedJ
If Jc K < L c I, then we clearly have
pj =Dy °pk- (5.124)

It is easily seen that the projection p%, where K, J € H" (I), J = K, from Qg
onto €2; is measurable for the o-fields Ax and A ;. The latter is also written
as: pf,{ is Ag-Aj-measurable. On 2; we consider two classes of subsets:

B={{pjecA=p; (A): JeH(I),AcA;}, and (5.125)
B ={{pseA=p; (A): JeH (I), Ac As}. (5.126)

The subsets belonging to B are called cylinders or cylinder sets. If Z € B,
respectively Z € B’, then there exists J € H (I), respectively J € H' (I), such
that

Z = Ax Q. (5.127)

The inclusions B < B’ < A; are obvious.

5.68. DEFINITION. Let B be a subset of the powerset of {2;. Then B is called a
Boolean algebra, if it is closed under finite union, and under taking complements.

5.69. LEMMA. The set B is a Boolean algebra, B’ is a o-field, and
o{B} =B =A;. (5.128)

PROOF. First we show that B is a Boolean algebra. Let Z = (p;) " (A) =
{pje A}, Je H(I), A€ Ay, be a cylinder. Then
Z¢:=QN\Z = Q\ (ps) " (4) = {ps e Q\A} = p;' (49,

which shows that Z¢ belongs to B whenever Z € B. Furthermore, let Z; =
pjil (Ai), Ji e H(I), A; € Ay, i = 1,...,n, be n cylinders. Then for J =
Jyu - u J, we have

Zy o0 Zy =prt (A) U o)t (Ay)
=" (0]) (A o upst (p2) 7 (A
= () A o () (A). (5.120)

Since the sets p}il (A;) belong to Ay for i = 1,...,n theset Z; u---Z, is a
cylinder.

-1

In the same manner one proves that B’ is a o-field.
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In order to get the equalities in (5.128) it remains to show that A; < o {B}.
Considering the definition of A; it is sufficient to prove that p;, ¢ € I, is mea-
surable for o {B} and A;. However, this follows from (5.125). So the proof of
Lemma 5.69 is complete now. ]

5.70. REMARK. The fact that B’ = A is important. It shows that each B € A;
only depends on at most a countable number of indices, in the sense that B can
be written as B = A x {7 ; where J is countable or finite and where A € A;.

The observation in this remark shows that the product o-field is relatively
“poor” when the index set I is uncountable. The following two examples will
clarify this.

5.71. EXAMPLE. Take I uncountable, let each €;, ¢ € I, be an arbitrary topo-
logical Hausdorff space with at least two points, and let A; be the Borel field
of ;. For every i € I we select w; € ;. Since the singleton {(w;),.,} is a closed
subset of €2; with respect to the product topology, it belongs to the Borel o-field
of ;. But it does not belong to A; because it cannot be written as the set B
in Remark 5.70.

ant to do”?
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5.72. EXAMPLE. Take I = [0,00) and suppose that ©; = €, where Q is a
topological Hausdorff space consisting of at least two points. Hence Q) =
QL0®) is the set of all mappings from [0, 0) to Q. Let B be the subset of Q)
consisting of all right-continuous (or all continuous) mappings from [0, o0) to €.
Assuming that B belongs to Ao x) = A®0®) wwhere A is the Borel o-field of
will lead to a contradiction. Because, if B belongs to A[ ), then by Remark
5.70 B is of the form B = A x Q[ o)y Where J < [0, 00) is countable, and where
A e Aj;. We may suppose that J contains all rational numbers. Pick f € B and
t € [0,00)\J. We define the function g : [0,0) — Q as follows: g(s) = f(s)
if s # t, and g(s) # f(t) if s =t. Then g € B, but it is not right-continuous,
which can be seen as follows. In J there exists a sequence (¢,,), which decreases
to t. Then

lim g (t,) = lim f(¢,) = f(t) # g(¢).

n—o0 n—o0

It follows that B ¢ Ao x)-

5.73. DEFINITION. Consider a family of measurable spaces (£2;,A4;), i € I. Sup-
pose that for every J € H (I) P; is a probability measure on (£2;,.A;) such
that

P [P € A] = Pic [ () (4)] = Py 4], (5.130)

whenever J, K e H(I), J < K, and A € A;. Then the family {P; : Je H (I)},
or the family {(Q2;,A;,P;): J e H ()}, is called a projective system of proba-
bility measures, or spaces. Such a system is also called a consistent system, or
a cylindrical measure.

The following theorem says that a cylinder measure is a genuine measure pro-
vided that the spaces (); are topological Hausdorff spaces which are Polish,
endowed with their Borel o-fields B;. From Theorem 5.51 it follows that all
probability measures p on a Polish space S are inner and outer regular in the
sense that

w(B) =sup{u(K): K c B, K compact} = inf {u(O) : O > B, O open}
(5.131)
whenever B belongs to the Borel o-field of S. The following theorem is a slight
reformulation of Theorem 3.1. We also make the following observations. A
second-countable locally-compact Hausdorff space is Polish. See Theorem 1.16,
and see the formula in (1.18) which gives the metric. As mentioned earlier this
construction can be found in Garrett [57].

A countable disjoint union of Polish spaces (E}, d;) is Polish, with metric

1, (for z, y in distinct spaces in the union),

p _ 5.132
(z,y) {dn(x, y) (for z, y in the nth space in the union). ( )

Here we assume that d;(z,y) < 1, z, y € E;. From this result it follows that a
o-compact metrizable Hausdorff space EF = Uj2, K;, K; < Kji1, K; compact,
is a Souslin space, i.e. a continuous image of a Polish space. This is so because
every subset K is compact metrizable, and therefore separable. Therefore the
complements K;1\K;, j € N, are Polish, and since E is the disjoint union of
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such spaces FE itself is Polish. It is known that probability measures on the class
of Borel subsets of Souslin spaces are regular. For details the reader is referred
to Bogachev [21]. Before we formulate and prove the Kolmogorov’s extension
theorem we will discuss the Carathéodory’s extension theorem. We need the
notion of semi-ring, ring, and (Boolean) algebra of subsets of a given set (2.

5.74. DEFINITION (Definitions). Let © be a given set. A semi-ring is a subset
S of P(€2), the power set of €2, which has the following properties:

(i) Jes;
(ii) For all A, B € 8, the intersection A n B belongs to 8 (8 is closed under
pairwise intersections);
(iii) For all A, B € 8, there exist disjoint sets K; € 8, with ¢ =1, 2, ..., n,
such that A\B = J;_, K; (relative complements can be written as
finite disjoint unions).

A ring R is a subset of the power set of {2 which has the following properties:

(i) FeR
(ii) For all A, B € R, the union A U B belongs to R (R is closed under
pairwise unions);
(iii) For all A, B € R, the relative complement A\B belongs to R (R is
closed under relative complements).

Thus any ring on 2 is also a semi-ring.

A Boolean algebra B is defined as a subset of the power set of €2 with the
following properties:

(i) JeB;
(ii) For all A€ B and B € B the union A U B belongs to B;
(iii) If A belongs to B, then its complement A¢ = Q\ A belongs to B.

Sometimes, the following constraint is added in the measure theory context: €2
is the disjoint union of a countable family of sets in S.

Without proof we mention some properties. Arbitrary (possibly uncountable)
intersections of rings on {2 are still rings on 2. If A is a non-empty subset of
P(€2), then we define the ring generated by A (noted R (A)) as the smallest
ring containing A. It is straightforward to see that the ring generated by A is
equivalent to the intersection of all rings containing A.

For a semi-ring 8, the set containing all finite disjoint union of sets of § is the
ring generated by S:

=1

JQ(S):{A: A=0Ai,Ai68}.

This means that R (8) is simply the set containing all finite unions of sets in 8.
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A content p defined on a semi-ring 8 can be extended on the ring generated by
8. Such an extension is unique. The extended content is necessarily given by:

pu(A) = Z u(A;) for A = U A;, with the A; € 8’s mutually disjoint.
i=1 i=1
In addition, it can be proved that p is a pre-measure if and only if the extended
content is also a pre-measure, and that any pre-measure on R (8) that extends
the pre-measure on § is necessarily of this form.

Some motivation is at place here. In measure theory, one is usually not inter-
ested in semi-rings and rings themselves, but rather in o-algebras (or o-fields)
generated by them. The idea is that it is possible to build a pre-measure on a
semi-ring 8 (for example Stieltjes measures), which can then be extended to a
pre-measure on R (8), which can finally be extended to a genuine measure on a
o-algebra through Carathéeodory’s extension theorem. As o-algebras generated
by semi-rings and rings are the same, the difference does not really matter (in
the measure theory context at least). Actually, the Carathéodory’s extension
theorem can be slightly generalized by replacing ring with semi-ring.
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5.75. DEFINITION. Let 8 be a semi-ring in P (). A pre-measure on 8 is a map
w8 — [0,00] such that

(i) 1 () =0.
(ii) If (A,), is a mutually disjoint sequence in 8, and if A := J, A, belongs

N
to 8, then p(A) = 3, fu(An) = lim > 741 (Ay).
—® n=1

We also need the concept of outer or exterior measure.

5.76. DEFINITION. An outer measure on P () isamap A : P () — [0, o] with
the following properties:

(i) A() =0.
(i) A < B implies A\(A) < A(B).
(iii) If (A,),, is a sequence in P (), then A (|, A,) < D A (An).

By taking all but finitely many A,, to be the empty set one sees that an outer
measure is sub-additive: A (Au B) < A(A) + \(B), A, Be P (). Let A be an
outer measure on P (£2). We define ¥ to be the set of all subsets A < Q such
that for any D < 2 we have

A(D) = A(An D)+ A(A°A D). (5.133)

Since an outer measure \ is sub-additive we may replace the equality in (5.133)
be an inequality of the form

AMD)=ZA(AnD)+X(A°n D). (5.134)

In other words, 3, consists of all subsets A < ) that split 2 in two in a good
way. Clearly, 2 € 3, and by the very form of the definition of ¥, we have a
subset A belongs to X, if and only if its complement A¢ belongs to ¥,. We now
present the following proposition, whose proof is a bit tedious. For details the
reader is referred to, e.g., [5] or [10]. The reader may also want to consult the
Probability Tutorials by Noel Vaillant: http://www.probability.net/. The
sets in Xy are called Carathéodory measurable relative to the outer measure .

5.77. PROPOSITION. Let A be an outer measure on §), and let Xy be as defined
above. Then Xy is a o-algebra on €2.

The Lebesgue-Stieltjes integral SZ f(z)dg(z) is defined when f : [a,b] — R
is Borel-measurable and bounded and ¢ : [a,b] — R is of bounded variation
in [a,b] and right-continuous, or when f is Borel-measurable and non-negative
and ¢ is non-decreasing, and right-continuous. Define w((s,t]) := g(t) — g(s)
and w({a}) := 0 (Alternatively, the construction works for ¢ left-continuous,
w([s,t)) := g(t) — g(s) and w({b}) := 0). By Carathéodory’s extension theorem
(Theorem 5.79), there is a unique Borel measure j, on [a, b] which agrees with
w on every interval I < [a,b]. The measure p, arises from the outer measure

fg(E) = inf {ZNQ(L’) D Ec U[z} 5

)
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where the infimum is taken over all coverings of E' by countably many semi-open
intervals I;. This measure is sometimes called the Lebesgue-Stieltjes, or Stielt-
jes measure associated with g. The Lebesgue-Stieltjes integral SZ f(z)dg(z) is
defined as the Lebesgue integral of f with respect to the measure p, in the usual
way. If g is non-increasing, then define SZ f(x)dg(z) == — SZ flx)d(—g)(z). If
the function g : [a,b] — R is right-continuous, and of bounded variation on
[a,b], then g may be written in the form g = g; — g2, where the functions g,
and go are monotone non-decreasing and right-continuous. So that g (s,t] =
g(t) — g(s), a < s <t <b, extends to a real-valued measure on the Borel field
of [a,b]. Of course, if g were right-continuous, complex-valued and of bounded
variation, then g can be split as follows g = Re g+ ilm g = g1 — g2 + 7 (93 — g4)
where the functions g;, 1 < j < 4, are right-continuous, and non-decreasing.
To the function g we can associate a complex-valued measure p, such that
Ly (s,t] = g(t) —g(s), a < s <t < b. For more details on Riemann-Stieltjes
integrals the reader is referred to [130]. The book by Tao [137] contains a
discussion on Stieltjes measures.

The definition of semi-ring may seem a bit convoluted, but the following simple
example shows why it is useful.

5.78. EXAMPLE. Think about the subset of P (R) defined by the set of all half-
open intervals (a, b] for @ and b reals. This is a semi-ring, but not a ring. Stieltjes
measures are defined on intervals; the countable additivity on the semi-ring is
not too difficult to prove because we only consider countable unions of intervals
which are intervals themselves. Proving it for arbitrary countably union of
intervals is proved using Carathéodory’s extension theorem.

Now we are ready to formulate the Carathéodory’s extension theorem.

5.79. THEOREM (Carathéodory’s extension theorem). Let R be a ring on
and p 2 R — [0,0] be a pre-measure on a R. Then there erists a measure
/

(2 o (R) — [0,00] such that y/ is an extension of yu. (That is, p' |,= ). Here
o (R) is the o-algebra generated by R.

If u is o-finite then the extension u' is unique (and also o-finite).

If R is a Boolean algebra, then Theorem 5.79 is also called the Hahn-Kolmogorov
extension theorem. A complete proof can also be found in [21] Theorem 1.5.6.
We will present just an outline. Another interesting book is Tao [137]; in partic-
ular see Theorems 1.7.3 (Carathéodory’s extension theorem) and 1.7.8 together
with Exercise 1.7.7 (Hahn-Kolmogorov’s extension theorem). An (older) paper,
which treats Carathéodory’s extension theorem thoroughly, is Maharam [90].

PROOF. The proof is based on the o-field corresponding to the outer (or

exterior) measure associated to pre-measure p. This exterior measure p* is

defined by

k=1

k=1
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(If A can not be covered by a countable union of sets in R, then we put p* (4) =
o0.) Then it is not too difficult to prove that p* is an outer measure. Like in
Proposition 5.77 let X, be the o-field consisting of those subsets A of Q for
which
pr (D) z p* (Ao D)+ p* (A°n D)

for all D < €. Then it follows that the o-field ¥+ contains the ring R. Put
W (B) = p*(B), B e X,x. Then p is a measure on ¥,+ which extends p, and
which unique provided that p is o-finite. For details see [21] Theorem 1.5.6.
This concludes an outline of the proof of Theorem 5.79. O

5.80. EXAMPLE. Let E be a o-compact topological Hausdorff space, and assume
that each compact subset K is metrizable, and hence separable. Define the
sequence of open subsets (O]-)j of E as follows: Oy = &, O1 = E\Ky, Oj41 =
(E\K1)n---n(E\Kj), j = 1. Then, for an appropriate metric (z,y) — d;(z,y),
z,ye K;n0;,0<dj(x,y) <1, the spaces K; n O; is complete metrizable and
separable, and so a Polish space. Moreover, by construction the spaces K; n O;,
j =0, 1, ..., are mutually disjoint, and so the F can be supplied with the metric
d(z,y) defined by d(z,y) = 1, if z, y belong to different spaces K; n O;, and
d(z,y) = dj(x,y), if x and y belong to K; n Oy, j =0, 1, .... Then this metric
turns £ written as a disjoint union of K; n O; into a Polish space. Its topology
is stronger than the original one, and hence F itself is continuous image of a
Polish space (via the identity map). It follows that E' is a Souslin space.
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Example 5.80 should be compared with the notion of disjoint unions of Polish
spaces are again Polish: see (5.132).

5.81. THEOREM (Kolmogorov’s extension theorem). Let
{(QJ,BJ,PJ) : Je j‘(([)}

be a projective system of probability spaces. Suppose that for every i € I, €); is
a Polish space (or Souslin space) endowed with its Borel o-field B;. Then there
exists a unique probability measure Py on (Qr, Br) such that

Pr[ps e Al = Pr[p;'(A)] =B, [A], Ae By, (5.136)
for every J e H (I).
PROOF. If Z = {p; € A} = p;* (A), Je H(I), Ae By, is a cylinder in Qy,
then we define P; [Z] by
P, [Z] = P, [A]. (5.137)
This definition is unambiguous. Indeed, let
Z ={pye A} =p;' (A) = pi (B) = {px € B}, with Ae B; and B e By,

with J, K € H (I). We have to show that P;[A] = Px[B]. Indeed, with
L=JuK, we get

_ -1
Z=p;' (j) (A) ={pjopreA}
-1 -1
={pye At =(p7) (A =(x) (B)={rk e B}
_ -1
= {pkopre B} =p;' (px)  (B). (5.138)
From (5.130) together with (5.138) we infer
—1

P;[A]l =Pp [(pﬁ) (A)] =P [(p%)

The equality in (5.139) shows that P; is well defined. We also have

Pr (] = Py [pit ()] = Py [Q] = 1.

Next we show that P; is finitely additive on B, the collection of cylinders. Let

Z = p;' (A), with J € H(I) and A € By, and Z' = py' (B), with K € H ()
and B € Bk be two disjoint cylinders. Put L = J u K. Then we have

=202 =p' (05)" ()t (k) (B)
=" (57 () 0 (R) () (5.140)
From (5.140) we infer (pﬁ)_1 (A) n (pﬁ)_l (B) = &. Consequently, we obtain

Pr[Z 0 Z] =P [pzl (%) (A) vt (pk) (B)]

-1

(B)] — Py [B]. (5.139)
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(apply the equality in (5.130))
=P, [A] + Py [B] =P, [A] + P; [B] . (5141)

The equality in (5.141) proves the finite additivity of the mapping P; on the
collection of cylinder sets B.

Finally we prove that the mapping P; is o-additive on B. For that purpose we
consider a decreasing sequence (Z,), of cylinder sets such that P;[Z,] = a > 0
for all n € N. We will show that ﬂn Zn, # . By contraposition it then
follows that (), Z, = & implies lim, ., P;[Z,] = 0. For each n we have
Zn = p;* (A,) with J, € H () and A, € B,,. Of course we may suppose that
Jiclc--cd,c---. Put J =, Jn. Then

Zo=p7 (07,) " (A0) = (07,) " (A) x Qe

(12 = (ﬂ (v7.)" (An)> x Qn (5.142)

we see that (), Z, # & if and only if [ (pjn)_1 (A,) # . This means that
our problem is reduced to the problem with I = J, i.e. to a countable problem.
For every m € N there exists a compact subset L, of €}; with

a

P, [$%,\Lj,. ] < S Tam

Then L := [],, Lj, is a compact subset of ;. Furthermore, for every n € N
we have

P, [(H Lj>C] — P, [U (p/")” ] B QL] Z' (5.143)

= j€Jn j€Jn

-1

Since

On the other hand for every n € N we choose a compact subset K, of A, (in
B,) such that

a

P; |ANK,| < .
Jn[ n\ n] 4><2n

For every n € N the set Y,, defined by
_1 -1
Vo= (o) (K) nen (pr) (Ka) Ky

is a closed subset €2, , and so Z/, := pjnl (Y,) is a closed cylinder in €, and
Z) < Z,. In addition, we have

Zh =p; (K) n-nprt (Kaoy) 0opy! (Ky)

the sequence (7)), is decreasing. We also have

P;[Z,\Z,] = P; [Zn\ ( M »3 <Kk>>]

<ZE n\ka Kk ZEI Zk\pJ (Kk)]

(5.144)
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By [py! (Ae)\p3! (Ke)] = Y Er [p5) (A\Ky)]

Il
M=

k=1 k=1
= a
= Y By [A\Kx] < T (5.145)
k=1
Since, by assumption, Py [Z,] = a, (5.145) implies
, , a 3a
P, Yol =P/ [Z,] =P [Z,] -P/[Z,\Z]] > a— 1= 1 (5.146)

Since, by (5.146) and (5.143) we have

P, [Ynﬂ 11 Lj] >1-P, [Y]-P,, [(ﬂ Lj> ] > %a —% = g (5.147)

j€Jn J€JIn

it follows that Y,, ([ ,.; Lj # &. Moreover, observe that

JE€In

ZhnL=(Yux Q) [) (];[ij> = (Ynﬂ I Lj> x T Li, (5.148)

jedn jeI\Jn

and consequently, Z, n L # J. Hence, the decreasing sequence (Z] n L),
consists of non-empty compact subsets of €2;. By compactness we get that
N, Z, n L # &. So we infer

(Vps (A) = (2 = ((Zn 1) # @ (5.149)

As a consequence of the previous arguments, we see that P; is a o-additive
on the Boolean algebra B which consists of cylinders in €2;. This measure P;
satisfies (5.136). By the classical Carathéodory theorem the mapping P; extends
in a unique fashion as a probability measure on the o-field o {B} = B;. Then,
technically speaking, the mapping P, defined on the Boolean algebra B, is a
pre-measure. This corresponding exterior measure P} is defined by

P* (A) =inf{§:,u(2k): Z,eB, Ac sz} (5.150)

k=1 k=1

Then it is not so difficult to prove that the set function defined by (5.150) is an
outer measure indeed. Define the associated o-field D by

D={AcQ:P;(D)=2P;(AnD)+P;(A°n D) : for all D < Qy}.
(5.151)
The fact that D is a o-field indeed follows from Proposition 5.77: see Theorem
5.79 as well. It is fairly easy to see that D contains the Boolean algebra B which
consists of the cylinder sets in §2;.

This completes the proof of Theorem 5.81. 0
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5. Uniform integrability

The next Theorem is often used as a replacement for the dominated convergence
theorem of Lebesgue.

5.82. THEOREM (Theorem of Scheffé). Let (2, F,u) be an arbitrary measure
space and let (f, : n € N) be a sequence of non-negative functions in L'(Q, F, ).
In addition, let the function f belong to L'(Q,F n). Suppose that f(x) =
limy, o fr(x) for p-almost all x € Q). The following assertions are equivalent:

(i) limpsoo § | fn — fldp = 0;
(ii) The sequence (f, : n € N) is uniformly integrable;

(iil) limy, o § frdp = § fdp.

Instead of uniformly integrable the term equi-integrable is often used. A family
(fo:a€eA)in L' (Q,F, u) is uniformly integrable, if for every € > 0 there exists
a function g = 0 in L' (2, F, 1) such that S{fazg} | fa] du < € for all a € A.

5.83. PROPOSITION. If 11 is a probability measure, then a family (fo : @ € A) in
LY (Q,F, 1) is uniformly integrable, if and only if for every e > 0 there exists a
constant M. > 0 such that S{|fa|>Ms} |fal dp < € for all a € A.
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Proor. The sufficiency is clear: choose for g. a constant function M,. Next
we show that, if the family (f, : o € A) is uniformly integrable, then necessarily
for every € > 0 there exists a constant M. such that

f fuldi<e, acA (5.152)
{|fal=M:}

Fix € > 0. By hypothesis we know that there exists a function g. € L' (2, F, u),

g: > 0, such that
J |fal dp <
{|fal>g:}

Then we choose M. so large that

J gedp < <. (5.154)
(oM.} 2

Then by (5.153) and (5.154) we have

f |fa| dlu':f |fa| du""f |fa| d,u
{lfal=M:} {Mc<|fal|<max(Me,g:)} {|fa|>max(Me,g:)}

<J gsd,quf |fa] di < cii_e (5.155)
{ge> M.} {1fal>g:) 2 2

. acA. (5.153)

YRS

The inequality in (5.155 completes the proof of Proposition 5.83. O

PROOF OF THEOREM 5.82. (i) = (ii). Put g = sup,,cy fn- The following
inequalities hold for m € N:
.

f fadp < Ifn—f\du+J fdu
(fnzmf) J{fnzms) {(fnzmf}

r

< \fn—f|du+f fdu
J {fn?mf}
.

< [lfufldus | fa (5.156)

J {g=mf}

Let € > 0, but arbitrary. By (i) there exists N(e) € N such that (|, — f| du <
¢/2 for n = N(e) + 1. The inequalities below then follow for m > M (e):

J fdu <e/2, and f fadp <€, 1<n<Nf(e. (5.157)
{g=mf} {fn=mf}

From (5.156) and (5.157) we see S{fnzM(E)f} fndp < e. But this means that the
sequence (f, : n € N) is uniformly integrable.

(ii) = (iii). Let ¢ > 0 be arbitrary and choose a function g. € L' (€, F, u) such
that

f fadp + J fdp <e. (5.158)
{frn=ge} {fn=ge}

From (5.158) we obtain

Ufndu—ffdu <| At | e | g
{fnége} {fn>ge} {fn>gs}
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<J o — fldp + €. (5.159)
{fngge}

By the theorem of dominated convergence, it follows from (5.159) that

lim sup Ufnd,u de,u‘
n—o0

Since € is arbitrary assertion (iii) follows. The same argumentation shows the
implication (ii) = (i).

(iii) = (i). The equality
[fo = [l = o= +2(f —min(f, fn))

is obvious. From (iii) together with the theorem of dominated convergence it
then follows that

tim {14, Sl
= lim [ (= £)dp+ 2 | fi (= win(F,£)) du =

n—0o0

The proof of Theorem 5.82 is now complete. U

5.84. COROLLARY. Let (pu, : m € N) be a sequence of probability measures on
the Borel o-field of R”. Let every measure p,, have a probability density g,
relative to the Lebesque measure A. Furthermore, let g = 0 be a probability
density. Suppose that for A\-almost all x € RY the equality lim,, o gm(x) = g(x)
is true. Let the measure y have density g. Then the sequence (fi,, : m € N)
converges weakly to .

ProOOF. From the theorem of Scheffé (Theorem 5.82) we see

lim J]gm(x) —g(z)|dx = 0.
m—00

Let f be a bounded continuous function. Then
<111 [ lom(a) — g(o)] d

\ [ san— | fdu] - | [ (¢ @anta) ~ s(@g
(5160)

The assertion in Corollary 5.84 follows from (5.160). O

5.85. THEOREM. Let (X, : m € N) be a sequence of stochastic variables, which
are defined a probability space (2, F,P).

(a) If the sequence (X,, : m € N) converges in probability to a stochastic
variable X, then the sequence of probability measures (Px,, :m e N)
converges weakly to the distribution Px;

(b) If the sequence (Px,, : m € N) converges vaguely to the Dirac-measure
da, then the sequence (X,, : m € N) converges in probability to a sto-
chastic variable X, which is P-almost surely equal to the constant a.
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PROOF. (a) Suppose that the sequence (X, : m € N) converges in proba-
bility to X. We pick f € Cyo (R”) and we will prove that lim,, . § fdPy,, =
§ fdPx. The latter is equivalent to lim,, . § f(X,,) dP = § f(X) dP. The func-
tion f is uniformly continuous. So, for € > 0 given, there exists § > 0 such
that

|zg — 1| <6 impliceert | f(x2) — f(z1)| < e. (5.161)
Put A, = {|X — X,,| = 0}. For w ¢ A,, the inequality
|f (Xin(w)) = f (X (w))| <€
holds. From this it follows that

] [ saes, — [ raex| < f 100 = F ()l dp+ [ 1700 = 1 0]

m

< P (A7) + 2| fll P{|Xm — X[ = 6}
<+ 2| f], P{Xn— X| =6} (5.162)

The assertion in (a) follows from (5.162) together with assertion (3) in Theorem
5.43.
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(b) Suppose that the sequence (Px, :m € N) vaguely converges to the Dirac-
measure 0,. Let I(€) be the interval I(€) = [a — €, a + €] and choose functions
f and g € Cyo (R”) such that f < 1y < g and such that f(a) = g(a) = 1. Then
the equalities follow:

f(a) = lim ianfd]PXm < liminfPy,, (1) < limsupPx,, (1)

m

< lim supfgd]P’Xm = g(a). (5.163)

m

From (5.163) it follows that
ImP (| X,, —a|l <e€) =1,

which amounts to the same as
IimP (|X,, —a| > €) = 0.

This proves assertion (b). So the proof of Theorem 5.85 is now complete. [

6. Stochastic processes

We begin with some definitions.

5.86. DEFINITION. Let (Q,F,P) be a probability space, and let (F,€) be a
locally compact Hausdorff space, that satisfies the second countability axiom,
with Borel o-field €. Often E will be chosen as R or as R”. A stochastic
process X with values in the state space F is a mapping X : [0,0) x Q — E.
For every w € Q) the mapping ¢t — X(t,w) defines a path of the process. A
path is sometimes also called a realization. If we fix n € N, then the mappings
4, E®--®E — [0,1], where (t1,...,t,) varies over [0,00)", and which
—_——

7777
nx

are defined by
,,,,, 0w (B) =P{(X(t1),...,X(ty))eB), Bel® ---®E, (5.164)

nx

are called the n-dimensional distributions of the process X. Here X (¢) is the
mapping X (t)(w) = X (t,w), w € .

Sometimes we write X; instead of X (¢). If n = 1, then the distributions in
(5.164) are also called the marginal distributions, or marginals. However, no-
tice that a process is much more than the corresponding collection of finite-
dimensional distributions. In particular the paths or realizations of a process
are very important. For example, the continuity properties of the paths are
relevant. Often we will suppose that the paths are continuous, or that they are
continuous from the right, and possess limits from the left {cadlag paths}, or
cadlag paths. So that the process X is cadlag provided that for all t > 0 the
equality limg); X (s) = X(¢) holds P-almost surely (this is continuity from the
right, or continue & droite in French) and if the limit limgy, X (s) exists in F
(this means that the left limits exist in £, limité a gauche in French).
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5.87. DEFINITION. A family sub-o-fields (&, : t = 0) of F is called a filtration (or,
sometimes, also called history), if ¢ < s implies F; < F5. Thus the probability
P is defined on all o-fields F;. With F,, or also F,,_ the o-field generated
by U;soJ: is meant. If for every ¢ > 0 the equality F, = Mooy Fs holds,
then the filtration (3% : ¢t > 0) is called continuous from the right, or right-
continuous. Let (F; : ¢t = 0) be a filtration, and put F = (),., Fs. Then the
family (F,, : t = 0) is a right-continuous filtration. This filtration is called the
right closure of the filtration (F; : ¢ > 0). A subset A of Q is called a P-null
set if there exists a subset Ag € F with the following properties: A < Ay and
P[Ap] = 0. Usually this is expressed by saying that A is a null set instead
of A is a P-null set. Often it is assumed that Fy contains all null sets, and
that the filtration (& : ¢ = 0) is right-continuous. Sometimes it i said that F
has the usual properties. The process X is called adapted to the filtration
(F; : t = 0) if for every ¢ = 0 the state variable X (t) is measurable with respect
to o-fields F; and €. Let H; = o (X (u): 0 <wu <t) be the o-field generated
by the state variables X (u), 0 < u < t. The filtration (H;:t > 0) is called
the internal history of the process X. If ¢ > 0 is given, then H; is called
the (information from the) past, o (X (t)) is called the (information from the)
present, and o (X (u) : u > t) the (information from the) future. The process X
is adapted if and only if H, < F; for every ¢t > 0.

5.88. DEFINITION. Let X and Y be two processes. The processes X and Y are
said to be non-P-distinguishable or P-indistinguishable provided there exists a
P-null subset N with the property that for every w ¢ N and for every t > 0
the equality X (¢,w) = Y (¢,w) holds. The process X is called a modification of
the process Y (or also Y is a modification of X) if for every ¢ > 0 there exists
a P-null set N; with the property that X (t,w) = Y (¢,w) for w ¢ N;. Thus the
null set is t-dependent. If the processes X and Y are not distinguishable, then
X is a modification of Y. In general, the converse statement is not true.

5.89. THEOREM. Suppose that the process X as well as the process Y possesses
right-continuous paths. If X 1is a modification of Y, then X and Y are not
distinguishable (also called stochastically equivalent).

PRrROOF. Let X be a modification of the process Y. For every ¢t = 0 there
then exists a null set IV; such that X (¢) = Y(¢) on the complement of N;. Put
N = U Ne- Then P(N) = 0 and for every ¢ € Q the equality X(t) = Y ()
holds on the complement of N. By right-continuity of the paths it then follows
that

X(t) = Sll(}géQX(s) = s}tl’IsIEIQY(S) =Y(t)
on the complement of N and completes the proof of Theorem 5.89. U

5.90. DEFINITION. Let (F;: ¢ > 0) be a filtration and let 7' : Q — [0, 0] be a
“stochastic time”. The function 7' is called a stopping time for the filtration
(Fy:t=0) if for every fixed time ¢ the event {T" <t} belongs to F;. Since
the event {T" < o0} = [,y {7 < n} belongs to Fy, the complementary event
{T" = oo} is also an element of Fo..

Download free eBooks at bookboon.com



Advanced stochastic processes: Part I| Some related results

5.91. THEOREM. Let (F;:t = 0) be a filtration. Let (Fyy : t = 0) be the so-called
right closure of the filtration (F; : t = 0). Then a stochastic time T : Q2 — [0, 0]
is a stopping time for the filtration (F,1 : t = 0) if and only if, for every t > 0,
the event {T < t} belongs to F;.

PRrOOF. “Sufficiency” Suppose that for every ¢ = 0 the event {T' < t} be-
1

longs to ;. Then the event {T' <t} = ﬂ {T <1+ —} belongs to the o-field
n

ﬂneN H:t""n*l =T
“Necessity” Assume that for every ¢t > 0 the event {T' < t} belongs to F..

neN

1
Then the event {T' <t} = U {T <1- —} belongs to |,y Fton-1+ < T
n
neN
This completes the proof of Theorem 5.91. O

5.92. COROLLARY. Let (F;:t = 0) be a right-continuous filtration. Then the
stochastic time T is a (F; : t = 0)-stopping time if and only if for every t = 0
the event {T' < t} belongs to F; and this is the case for every t > 0 if and only
if for every t > 0 the event {T <t} belongs to F;.
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5.93. THEOREM. Let (F;:t = 0) be a right-continuous filtration, let X be an
adapted cadlag process, let G be an open subset and let F' be a closed subset of
E. In addition, let (G, :n € N) be a sequence of open subsets of E such that
F =), G, and such that G, © Gpy1, n € N. Finally, let (F, :neN) be an
increasing sequence of closed subsets with the property that G = J,, F,,. Define
the times S, S,, T and T,, by means of the equalities:

S=inf{s=>0:X(s)e F or X(s—) € F};

Sp=1inf{s > 0: X(s) e F, or X(s—) € F,};

T,=inf{s>0:X(s)eG,} andT =inf{s>0:X(s)e G}. (5.165)
Then these times are stopping times and the following assertions hold: S, | T
and T, 1 S.

PRrOOF. Let ¢t > 0. Since the paths are continuous from the right se see
{T<ty= ) (xtneGr= ] X(eGled.
O<r<t 0<r<t,rQ

This proves that 7' is a stopping time. Since

(S<t)={X(t)e For X(t—)e F}u (ﬂ ) x(r)e Gn}> e,

neN r<t,reQ

it follows that S is a stopping time as well. Since G,, > G, it follows that
T,i1 =T,. Put Sy = supT,. The ultimate equalities in

So<tt=JN U &Xs)eGn

m=1n=10<s<t—m—1

0
- U X(s)eFof X(s—)eF}
m=10<s<t—m~!
= |J {(X(s)e Fof X(s—) e F} ={S <1}
0<s<t
prove the equalities {Sy <t} = {S <t} for all £ > 0 and hence, S = S;. The

fact that S,, | T is left to the reader as an exercise. This completes the proof
of Theorem 5.93. O

5.94. THEOREM. Let S and T be stopping times for the filtration (F, :t = 0).
Then min(S,T), max(S,T) and S+T are also stopping times for this filtration.
If (S, : n e N) is a sequence of stopping times, then sup,, S, is also a stopping
time, and if, moreover, the filtration (F; : t = 0) is right continuous, then inf, S,
1$ stopping time as well.

PROOF. The proof is left as an exercise for the reader. O

5.95. DEFINITION. Let T" be a stopping time for the filtration (F; : t = 0). The
o-field of events which precedes T is defined by

Fro={AeTp: An{T <t}e Ty}

t=0
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Indeed, the collection Fr is a o-field and if T' = t is a fixed time, then Fp = F;.
If S < T is also a stopping time, then Fg < Fp. If the filtration (F, : ¢t > 0)
is continuous from the right, then an event A belongs to Fr if and only if A
belongs to Fy, and if for every ¢t > 0 the event A n {T" < t} belongs to F;. If S
and T are stopping times, then Fns ) = Fg N Fp. If the filtration (F; : t = 0)
is right continuous and if (S,, : n € N) is a sequence of stopping times which
converges downward to S, then S is a stopping time and (), .y Fs, = Fs.

5.96. DEFINITION. A process X : [0,00) x 0 — F is called progressively mea-
surable for the filtration (F; : ¢t = 0) if for every ¢ > 0 the restriction of X to
[0,¢] x € is measurable for the o-fields B[0,¢] ® F; and .

5.97. THEOREM. If X is right-continuous adapted process, then X 1is progres-
swely measurable.

PROOF. Define the sequence of processes (X" : n € N) by means of the for-
mula:

X"(u,w) = {

X (Bltw), k2" <u<(k+1)27" 0<k<2"—1;

0, if u=0.
(5.166)
Let B € €. Then we have
{X" € B}
k k+1 k+1
Cexoenio U (B (82 es])
0<k<27—1

€ B[0,t] ® F;. (5.167)

So X™ is progressively measurable. Because the process X is P-almost surely
right-continuous it follows that lim, ., X" = X, and, consequently, X is pro-
gressively measurable. This completes the proof of Theorem 5.97. U

5.98. THEOREM. Suppose that X is progressively measurable for the filtration
(Fr:t=0). Let T be a stopping time. The the state variable X(T) : w —
X(T(w),w) measurable for the o-fields € and Fr.

PROOF. On the event {T' < t} the mapping w — X (T'(w),w) is the com-
position of the mapping w — (T(w),w), which goes from {T" < ¢} to [0,¢] x Q
and which is measurable for the o-fields F; and B[0,t] ® F;, and the mapping
(u,w) — X (u,w), which goes from [0,t] x ©Q to E and which is measurable for
the o-fields B[0,t] ® F; and €. (In the latter argument the progressive mea-
surability of X was used.) The composition of measurable mappings is again
measurable, and hence X (7") is measurable for de o-fields F7 and €.

This completes the proof of Theorem 5.98. O

5.99. COROLLARY. IfT is a stopping time and if X is progressively measurable,
then the process XT defined by X*(u) = X (min(T,u)) is adapted to the stopped
filtration (ffmin(T’u) U= O).
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PRrROOF. The proof is left as an exercise for the reader. O

The next lemma is often employed instead of the monotone class theorem.

5.100. LEMMA. Let F be a o-field on €2 and H a vector space consisting of
F-measurable real-valued bounded functions on ). Suppose that the following
hypotheses are fulfilled:

(1) H contains the constant functions;

(2) If f and g belong to H, then the product fg belongs to H;

(3) If f is the pointwise limit of a sequence of functions (f, : n € N) in H,
for which |f,| <1, then f belongs to H;

4) F=o(f:feH).

Then H contains all bounded F-measurable functions.

PROOF. Let D be the collection D = {Ae€ F:14 € H}. Then D is a Dynkin
system and by (2) D is closed for taking finite intersections. So D is a o-field.
Pick f € H and let a € R. We will prove that the set {f > a} belongs to D.
By taking an appropriate combination of f and the constant function 1 we may
assume that 0 < f < 1 and that 0 < a < 1. Let p be a polynomial. By (2) p(f)
belongs to H. Let ¢ : [0,1] — R be a continuous function. By the theorem
of Stone-Weierstrass there exists a sequence of polynomials (p, : n € N) such
that sup,cp1) l¢(z) — pa(z)| < n~'. Consequently, o(f) belongs to H. Since
the function 1p, o) is a (decreasing) pointwise limit of a sequence of continuous
functions, it follows that 1j,.)(f) = l{f=a} belongs to H. So the set {f > a}
belongs to D. From which it follows that D = F. But then we infer F
{Ae F:1,4 € H}. From this the assertion in Lemma 5.100 immediately follows.

O

5.101. DEFINITION. Let (F; : t = 0) be a filtration on the probability space
(Q7 ?7 P) )
and let X be an adapted process.

(i) The process X is called a martingale (relative to P and to the filtration
(F¢ : t = 0)) if for every ¢ > 0 the variable X (¢) belongs to L' (Q2, F, P)
and if for every pair 0 < s < ¢ the equality X(s) = E (X(¢) | F,) holds
P-almost surely.

(ii) The process X is called a sub-martingale (relative to P and to the
filtration (F; : ¢ > 0)) if for every ¢ > 0 the variable X (¢) belongs to
L' (Q,F,P) and if for every s < ¢ the inequality X (s) < E (X(t) | F)
holds P-almost surely.

(iii) The process X is called a super-martingale (relative to P and to the
filtration (& : ¢t = 0)) if for every ¢ > 0 the variable X (¢) belongs to
L' (Q,9,P) and if for every s < ¢ the inequality X (s) = E (X (¢) | F,)
holds P-almost surely.
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Instead of assuming X (¢) € L' (2, F,P) in (ii) it is sometimes assumed that the
variable X ()" = max(X(t),0) belongs to L' (Q,F,P). In (iii) it is sometimes
only assumed that X ()~ = max (—X(t),0) belongs to L' (Q,F,P). If T is a
(discrete) subset of [0,c0) and if (X (t),J}),5, is a martingale (sub-martingale,
super-martingale), then the process (X(t), J;),.p is so as well. Then we can use
“discrete results” and via a limiting procedure we then obtain results in the
“continuous case”.

5.102. DEFINITION. Let f : [0,00) — R be a function, let 7" < [0,00) and let
a < b be real numbers. Define the number of upcrossings Ur(f,a,b) of f |T
between a and b by

UT(f7 a, b)
=sup{m: there exist t; <ty < ... <tom, t; €T f(tox—1) <a, f(ta)=b}.
(5.168)
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5.103. LEMMA. Let D by the set of non-negative dyadic numbers and let f : D —
R be a function, which is bounded on D n [0,n] for all n € N. Assume that,
for all n € N and for all real numbers a < b, with a and b (dyadic) rational,
the number of upcrossings Upajon)(f,a,b) of f is finite. Then the following
assertions are true:

(a) For every t € R the following left and right limits exist:
lim f(s) and lim f(s); (5.169)

stt,seD slt,seD
(b) Define the function g by g(t) = ¢ltime(8)' Then g is right-continuous
slt,se
and for every t > 0 the left limit limgy, g(s) exists.

PROOF. (a) We will show that the limit limg; s~ f(s) exists. Since the func-
tion f is bounded it suffices to prove that liminfy; o f(s) = limsup,; .~ f(s).
Assume that this not the case. Then there exist dyadic rational numbers a and
b such that liminf,; . f(s) < a < b < limsup,, ., f(s). This means that
there exists sp > t, so € D, with f(sg) > b. There also exists s; < sg, $1 > t,
s1 € D, such that f(s;) < a. In general we obtain t < Sop_1 < Sop_2, Sox_1 € D,
for which f(sor_1) < @ and we obtain ¢t < so < Sog_1, Sor € D, with f(sox) > b.
For m € N we write tom = S0, tom—1 = S1, .- . to = Som_1, L1 = Som_1- Pick
n > sg. Then we have Upno1(f,a,b) = m. Since m € N is arbitrary it follows
that Upnjon(f,a,b) = c0. So we obtain a contradiction. The existence of the
left limit can be treated similarly.

(b) Put g(t) = limgss=tsep f(s). By (a) this function is well defined. Since,
for every n € N, the function f is bounded on the set D n [0,n] the function
g possesses this property as well. Let now (¢, : n € N) be a sequence that
decreases to t and for which ¢, > ¢ for all n € N. We will prove lim,, . g(t,) =
g(t). Then this shows that g is right-continuous at ¢. Assume liminf,,_,, g(¢,) <
g(t). This will lead to a contradiction. By passing to a subsequence, which we
call again (¢, : n € N), we may suppose that liminf, ., g(t,) = lim, . g(t,)
and that there are numbers ¢ and b € D such that for all n € N, ¢(¢,) <
a < b < g(t). Then pick sg > ty such that f(sp) < a: this possible, because
g(ty) < a. The pick sy > ty > s; > t in such a way that f(s;) > b: this is
possible, because g(t) > b. Then choose t,,, s; > t,, > t, with g(t,,) < a. Then
there exists s; > sy > t,,, such that f(ss) < a. This is so because g(t,,) < a.
This procedure can be continued. Like in (a) we arrive at Upnon)(f, a,b) = o0,
for a certain nN, n > t. This is a contradiction. But then it follows that
liminf, ., g(t,) = ¢(t). In the same fashion we see that limsup,,_,. g(t,) <
g(t). Consequently, g(t) = lim,,_,o g(t,). In order to prove the existence of the
left limit of the function g at ¢, we choose a sequence (¢, : n € N), that increases
to t, and which has the property that ¢, < ¢ for all n € N. Assuming that
liminf, ,, g(t,) < limsup,,_,,, g(t,), then, as above, we arrive at the conclusion
that, for certain dyadic numbers a < b, for which liminf, ., g(t,) < a < b <
limsup,, ,., g(t,), the number of upcrossings of the function f on the interval
D n [0,n] with n > ¢ is infinite.
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This completes the proof of Lemma 5.103. 0
5.104. THEOREM (Doob’s optional time theorem for sub-martingales). Let
(X(j):j€N)

be a sub-martingale relative to the filtration (F, :neN), and let T = S be

stopping times. Suppose that E[|X(T)|] < o and also E[|X(5)]] < oo. If,

additionally, lim E[X(m):T =m > S| =0, then X(S) is measurable for the
m—00

o-field Fs and the inequality E [ X (T) | Fs] = X(S) holds P-almost surely.
PROOF. Let A be an event in Fg. For every j, j = 1, and for every ¢ € N,
¢ > 0, the event An{T'=/(+j} n{S=4{} n A then belongs to the o- ﬁeld

Firj—1. To see this, observe that the event {T' > k} = Q\ {T' < k — 1} belongs
to Fi_1. Since

(X (min(7,m)) — X (min(S,m))) 14
m m—~{

= Z Z (C+7)=X(Ul+7—1) Lrsetjin{s=nas
=0 j=1

it follows that

E ((X(min(7,m)) — X (min(S,m))) 14)
= 2 2 X(0+7) = X(0+j—1) Ygseejynis—gna) -

Hence, E ((X (min(7,m)) — X (min(S,m))) 14) = 0. Since, in addition,

) =
E(X(T)— X(S) — X(min(T,m)) + X (min(S,m)))
=E(X(T)-X(S):S=2m)+E(X(T)—X(m):T=m=>S9),

the claim in Theorem 5.104 follows. ]

5.105. PROPOSITION. Let (X(n):ne€N) be a (sub-)martingale relative to the
discrete filtration (&, : n € N).

(a) Let H = (H(n) :neN,n > 1) be a positive bounded process with the
property that H, is measurable for the o-field F,,_,. Define the process
(Y(n) :neN) by

Y(0) = X(0), Y(n)=X(0)+ znj H(k) (X(k) — X(k—1)), n>1.

Then the process Y is a (sub-)martingale. By putting H(n) = ly<ry,
where T 1s a stopping time we see that process

X' .= (X(min(T,n)) : n € N)

is a (sub-)martingale.
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(b) Let S and T be a pair of bounded stopping times such that 0 < S < T.
Then

X(S)<E(X(T)|Fs), P-almost surely, (5.170)
and if X is a martingale, then there is an equality in (5.170).

Moreover, an adapted and integrable process X is a martingale if and only if
E(X(T)) = E(X(S)) for each pair of bounded stopping times S and T' for which
S<T.

PROOF. (a) The first assertion in (a) is easy to see. To understand the sec-
ond assertion we observe that 1¢7>,; = 1—1{7<,—1} is measurable for the o-field
Fn—1 and we notice that X (0)+>37_; Lirsp (X (k) — X(k — 1)) = X (min(T, n)).
This proves assertion (a) in Proposition 5.105.

(b) De inequality X (S) < E (X(T) | Fs), P-almost surely was already proved in
Theorem 5.104 and can be obtained from (a) by putting H(n) = 1ypsn) — Ligsn}-
If we use the equality E(X(S?)) = E(X(T?)) for de times S? = Sl1p + M1p.
and T2 = Tl + M1pe, where B belongs to Fg and where M > T > S, then
we get

E(X(T)1p + X(M)lg:) =E(X(S)1p + X(M)lg.).

But, then it follows that E (X(7T")15) = E (X(S5)1p) for all B € Fg and hence
X(S)=E(X(T)|Fs).

The proof of Proposition 5.105 is now complete.
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5.106. THEOREM (Doob-Meyer decomposition for discrete sub-martingales).
Let (X(j):jeN) be a sub-martingale. Then there exists a unique martin-

gale M = (M (k) : k € N) together with a unique predictable increasing process
A= (A(k) : ke N), with A(0) = 0, such that X (k) = M (k) + A(k), for k e N.

5.107. REMARK. This theorem is, in an appropriate form, also true for sub-
martingales X of de form X = (X(¢):¢ > 0) (continuous time). A process
A = (A(k) : k € N) is called predictable, if A(k) is measurable for F;_;, and
this for every k € N.

PROOF. Existence Define the process A by A(0) = 0 and
k
Alk) = 2B (X() = X( = 1) [ F51).
j=1

Define the process M by M(k) = X (k) — A(k). Then the process M is a
martingale and the process A is increasing (i.e. non-decreasing) and predictable.
Moreover, the equality X = M + A holds.

Uniqueness Let the process X be such that X = M + A where M is a martingale
and where A is predictable and increasing. In addition, suppose that A(0) = 0.
Then the equalities

j=1
k
= DE(M() = M(G=1) | Fjm1) + D E(AG) - AG - 1) | ;1)
Jj=1 J=1
k
= 2, (A(G) = A = 1)) = Ak),
j=1
hold for k > 1. So the proof of Theorem 5.106 is complete now. O

5.108. THEOREM. Let X = (X (k):1<k < N) be a sub-martingale. Then the
following inequality holds:
E [max(X(N) — a,0)]

]E(U{1 ..... N}(XaCL?b)) S b—a .

PROOF. For a proof we refer the reader to Proposition 3.71 of Chapter 3.
Notice that, with X the process max(X — a,0) is also a sub-martingale. O

5.109. THEOREM. Let X = (X (t) :t = 0) be a sub-martingale for the filtration

(Fy:t=0). Fora <b the inequality

E [max (X(N) — a,0)]
b—a

E (UDm[O,N] (X, a, b)) <

holds.
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Proor. Write D,, = ;% and define U, by U, = Up,po,n](X,a,b). The
sequence U, then increases to Upno,n1(X, @, b). So it follows that
E [max(X(N) — a,0)]
b—a '
This completes the proof of Theorem 5.109. OJ

The following theorem contains Doob’s maximal inequalities for submartingales.

5.110. THEOREM. Let X = (X(0),...,X(n)) be a sub-martingale. Then the
following mazimal inequalities of Doob hold:

P (Orgjangj > )\) < %]E(X(n)), (a)
P (ju 11 > 0) < SEGIX )] - 2X0); v

and if X is a martingale
1
P (g 11> 2) < 3 E(X@D). (0

PROOF. We begin with a proof of (c¢). Consider the mutually disjoint events
Ao = 1] > A}, and s {IX(0]> A, max | 1XG)] <A},

1 <k <n. Then | J;_, A = {maxo<j<n | X (j)| = A}. Therefore
Pl XG> = Bria,
J:

and so, using the martingale property
1
P(A) = E (1) < FE[1a, [X(K)[]

(martingale property)

1

= 2B [14, X ()] | 3] <

E[LE (X 00| | 5)] = E [La, X ()]
(5.171)

1
A
By summing over £ in (5.171)we get (c).

(a) The proof of (a) follows almost the same lines, except that in the definitions
of the events Ay the absolute value signs have to be omitted.

(b) For the proof of this assertion we employ the Doob-Meyer decomposition
theorem (Theorem 5.106). Write X = M + A with M a martingale, and A
(predictable) increasing process. We let M (0) = X (0). Then we see

P<max X()| = /\) <P(max M) > 3) +P(A(n) > 5)

0<j<n 0<j<n 2 2
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(by (c))

< §E|M(n)| n %E(An)

< §E (IM(n)| = M(n) + X (n))
< §E (21X (n)] + 2A(n) + X(n))
< §E<5 X (n)] - 2X(0)).

This proves assertion (b).
The proof of Theorem 5.110 is complete now. U

5.111. LEMMA. Let (A, : n € N) be a sequence of o-fields decreasing to the o-
field Ay. So that Ay € Ay, neN, and Ay, = (), ey An- Let (fn:neN)u

{fx} be a sequence of stochastic variables with the following properties:

(i) fn is Ap-measurable, n € N, and fo, is As-measurable;
(i) fn SE(fo | Am), for allm =n, and fo <E (f, | Ax), neN;
(i) lim, o E (f) = E(fx)-

Then the sequence (f, : n € N) is uniformly integrable.

PrRoOOF. For m =1, 2,...,00 we have
fm <E (f1 | Am) and max(f,,,0) <E (max(fm,()) ‘ flm) )

From this it follows that the sequence (max(f,,,0):1 < m < o) is dominated
by an integrable function (in fact by E (max(f,0))). So it follows that this se-
quence is uniformly integrable. The fact that the sequence (max(—f,,0) : n € N)
is also uniformly integrable, is much less trivial. To this end we consider

— AP (fo<-NZE(fo:fo<-XN=E(fo) —E(fu:fu=-N)
E(E(fo|Ax)) ~E(E(fi [An) : fo > —2)
E(fo) —E(f1: /o= —A)
E (fx) — E (max(f1,0)). (5.172)
From (5.172) it follows that

AP (f, < —A) < E (max(f1,0) + max(—fy,0)) < o0.

Then choose € > 0 and myg in such a way that E (f,,,) < E (fx) +€. Forn = mg
we then see E (f,,) < E(f,) +e. Hence, E(f,) = E(fn,) — ¢ Then choose
9 > 0 such that P(A) < § implies E (|fi| : A) < efor k =1,...,mg. After that
choose A so large that P (fy < A) < 0 for all k € N and for all A > \g. For
1 <k <mg we then get E (|fi| : fr < —X) <€, A= Ag. For k = my we see

E(fo:fo<-N)=E(f)-Efe: fr>\ (5.173)
>E(frng) —E(E (fino | Ar) 1 i = —A) =€ ZE (fino : fs <—A) —e

2R\
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By (5.173) we obtain
E(Ifel : fi <=X) = =E(fi: fr < =A)
< |E (fimo : i < —=A)| + € < 2

for a certain A > 0. Thus we see that the sequence (max(—f,,0) : n € N) is also
uniformly integrable. This yields the desired result in Lemma 5.111. OJ

5.112. THEOREM. Let, relative to the right-continuous filtration (F,:t > 0),
the process X be a sub-martingale. Suppose that Fy contains the zero-sets, and
that the function t — K (X (t)) is right-continuous. Then there exists a process
Y = (Y(t) : t = 0) which is cadlag is which cannot be distinguished from X. So
for every t = 0 the equality Y (t) = X (t) holds P-almost surely.

PROOF. There exists an event 2 in 2, with P(Q') = 1, such that on €’ the
following claims hold:
sup |X(t)] < oo, for all n e N;
teDn[0,n]
Ubnon)(X,a,b) < oo, or all n e N and for all @ < b, a and b rational.

Since P (€)') = 1 we see that Q' belongs to Fy and, hence €2 belongs to F; for
all t = 0. On Q' we define the process Y = (Y (t);t = 0) as follows: Y () =
limg s s>t sep X (s). Then Y (¢) is measurable for all o-fields F, with v > ¢. By the
right continuity of the filtration (% : ¢ = 0) we then see that Y () is measurable
for the o-field ;. Then take t = lim,,_, s,, where s,, | t, and where, for every
n € N, s, belongs to D. Then Y(t) = lim, o X(s,) in probability. Then
apply Lemma 5.111 to conclude that the sequence (X (s,,) : n € N) is uniformly
integrable, and hence Y (t) = L' —lim,, ., X (s,). We may apply Lemma 5.111.
for f, = X(sn), fo = Y(t), Ax = F: and A, = F,,. Then notice that
X(t) <E(X(sy) | F;), P-almost surely. By L'-convergence, from the latter we
see that X(t) < E (Y (¢) | ;) and thus X(t) < Y(t) P-almost surely. Since,
in addition, E (Y'(¢)) = lim, . E(X(s,)) = E(X(¢)), the equality Y (t) = X(¢)
follows P-almost surely.

This completes the proof of Theorem 5.112. [

5.113. THEOREM. Let X = (X(t) : t = 0) be a sub-martingale with property that
supE [ X (1)*] < o0. The following assertions hold true.

t=0

(a) The limit X (00) := limg o sep X () exists P-almost surely.

(b) If X is a cadlag process, then the limit X (o0) := lim,_,o, exists P-almost
surely.

(c) If, in addition, the process (X (t)* : t = 0) is uniformly integrable, then
the inequality X (t) < E (X (c0) | &) holds.

PROOF. (a) From the maximal inequality of Doob it follows that, for A > 0,
the following inequality holds:

AP ( sup | X(t)| > A) < 10E (X (n)* + X(0)7). (5.174)

teDn|[0,n]
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By letting n tend to oo in (5.174) we obtain
AP (sup | X (t)| > )\) < 10supE (X(n)* + X(0)7),
teD n
and hence, sup,.p | X (t)| < co P-almost surely. In the same manner we see
E(X(n) —a)*
b—a ’
From (5.175) we see that Upn[o,e)(X, a,b) < oo P-almost surely. As we proved

regularity starting from (5.175) and (5.174) (in fact from their consequences),
we now obtain that X (00) := limg . sep X () exists.

E (Upafo)(X, a,b)) < sup (5.175)

(b) If X is cadlag, then, like in the proof of the regularity, the limit X (o0) =
lim,_,, X (s) exists.
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(c) Since the process (X (t)* : ¢ = 0) is unlformly integrable, it also follows that
the process t — max(X(t), ) (X (t) — a)* + a is uniformly integrable as well.
So, for A € F; and for u > ¢, the (in-)equalities

f max(X(t),a)dP < lim | max(X(u),a)dP

u—00 A

- L lim max(X (1), a) dP — L max(X (o), a) dP

u—a0
hold true. Since
JX(OO)Jr dP = lim JX(U)Jr dP < «©
u—>00
we see that X (00)T belongs to L' (Q, F,P). But then we get

X(t)dP = lim maX(X(t), a)dP < lim | max(X(),a)dP

a——00 a——00 A

J X (0 (5.176)

From (5.176) the inequality X (t) < E (X (o0) | F;) follows. This proves item
(c). The proof of Theorem 5.113 is now complete. O]

5.114. THEOREM. Let X = (X(t) : t = 0) be a sub-martingale with the property
that the process (X (t)* : t = 0) is uniformly integrable. In addition, suppose that
X is cadlag.If S and T are a pair of stopping times such that 0 < .S < T < o0,
then the following inequality holds: X (S) <E (X(T) ‘ ffs).

PROOF. Put S, = 27"[2"T'| and, similarly, T,, = 27"[2"T"]. Then the stop-
ping times S,, and 7}, attain exclusively discrete values (in fact they take their
values in 27"N). It is true that S, | S (if n — o0) and the same is true for the
sequence (T, : n € N). Moreover, S, < T, for n = m. From Doob’s theorem
about discrete optional stopping times it follows that

X(S,) <E(X(Tw) | Fs,), X(Sn) <E(X(0)]|Fs,),
X(S,) <E(X(0)|TFs,) -

From this it follows that the processes (X (S,)* : ne N) and (X(7,,)* : ne N)
are uniformly integrable. For all n, m in N, n = m, the following inequality
holds for A € Fg:

f max (X (S,),a)dP < J max (X (T,),a) dP; (5.177)
A
(let n tend to o in (5.177) to obtain)

J max(X J max(X (T,.), a) dP; (5.178)

(in (5.178) let m tend to oo to obtain)

J max(X J max(X(T), a) dP; (5.179)
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(in (5.179) let a tend to —oo to obtain)

J X(S9)dP < J X(T (5.180)

and that lim,,_,., X(S,) (S) and that the same is true for the stopping time
T. By (5.180) we then see X(S) <E (X(T) | Fs). This completes the proof of
Theorem 5.114. O

5.115. COROLLARY. Let X = (X (s):0 < s <t) be a cadlag martingale and let
0< S <T <t be two stopping times. The following equalities are true:

X(S) = E(X(T) | F5) and E(X(T)) = E (X (0)) = E(X(0)).

PROOF. The proof is left as an exercise for the reader. Among other things
notice that the martingale (X (s) : 0 < s < t) is uniformly integrable. O

5.116. COROLLARY. Let X be a cadlag martingale in L' (2, F,P) which is uni-
formly integrable. Then the limit X (00) := limy_,o, X (t) exists P-almost surely,
and if S and T are stopping times such that 0 < S < T < o0, then the following
equalities hold:

X(S) = E (X(T) | Fs) and E(X(T)) = E (X (0)) = E(X(0)).

PrOOF. The proof of this corollary is left as an exercise for the reader.
Observe that for n € N fixed the martingale (X (min(n,t)) : ¢t > 0) is uniformly
integrable. U

In what follows the process X : [0,00) x  — R" is a process with values in R”,
where v may be 1.

5.117. DEFINITION. Let X be a stochastic process, which is adapted to the
filtration (F; : ¢ = 0). The process X is said to be a Lévy process if X possesses
the following properties:

(a) For all s <t the variable X (¢) — X (s) is independent of Fy;

(b) For all s < t the variable X (¢) — X (s) has the same distribution as
X(t—s);

(c) Forallt > 0 and for every sequence (t,, : n € N) in [0, 00) that converges
to t, the limit lim, ., X (¢,) = X exists in P-law (or in P-measure).
Sometimes this is denoted by P-lim,,_,., X (t,) = X ().

5.118. THEOREM. Let X be a stochastic process, which is adapted to the filtration
(F:t = 0), and which takes it values in R”. The following assertions are true:

(a) Let X be a Lévy-process. Define fort = 0 the probability measure j; as
being the distribution of X (t). So u(B) = P (X(t) € B), where B is a
Borel subset of R”. Then the family {y : t = 0} is a vaguely continuous
semagroup of probability measures.

(b) Conversely, let {u; : t = 0} be a vaguely continuous semigroup of prob-
ability measures on RY. Then there exists a Lévy-process

— (X(t):t >0}
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with cadlag paths such that p,(B) = P (X (t) € B) for all Borel subsets
B of R”.

PROOF. (a) Define for ¢ > 0 the characteristic function f; of X (t) as being
the Fourier transform of the P-distribution of X (). So that

f:(&) = E(exp (—i (&, X (1)), £eR”.

Since, for ¢, s € [0,0), X(s+t) = X(s+t) — X(s) + X(s), since, in addition,
X(s+t)— X(s) is independent of X (t), and because X (s +t) — X(s) possesses
the same distribution as X (¢) we infer

fsri(€) = E (exp (=i {§, X (s +1))))
= E (exp (=i (§, X (s +1) — X(s))) exp (=i (£, X(s))))
= E (exp (=i (€, X (s +1) — X(5)))) E (exp (=i (£, X(5))))
= E (exp (=i (§, X (1)) E (exp (=i (§, X (5))))
= [1(&)[:(6). (5.181)

Since X (0) and X (0) — X(0) = 0 have the same distribution we see fy(§) = 1.
Since P-lim,, ;o X (u) = X(0) we see, for example by Theorem 5.85 in combination
with the implication (1) = (9) of Theorem 5.43, that limgo f5(€) = fo(§) = 1.
From (5.181) it then follows that

lim £,(§) = fo(&) = M fu(€) (fi-s(&) = fo(€)) =0

for all s > 0. Because, by applying equality (5.181) repeatedly, we see f;(§) =
(fia—n(€))*". In addition we have lim,,o f(£) = 1. So it follows that for no value
of t € [0, 0) the function f;(§) vanishes for any £. Since, for t < s, fi(§)— fs(&) =
(fO(S) - fs—t(g)) ft(€)7 it also follows that hmth ft(g) = fs(€)> for s > 0. From
the previous considerations it follows that the function t — f(§), t € [0, 0),
is a continuous function, which satisfies the relation fs (&) = fs(€)fi(€) for
all s, t = 0 and this for all £ € R”. Furthermore, we define the family of
measures {y,; : t = 0} as being the P-distributions of the Lévy-process X. So
that u(B) = P(X(t) € B), B Borel subset of R”. From the previous arguments
it then follows that

fist(8) = fore(§) = [s(£) fi(§) = 1s(§)fue(8) (5.182)

and that limg o fis(§) = 1. So that the family {x, : ¢ = 0} is a vaguely continuous
semigroup of probability measures on R”. By Theorem 5.31 there then exists a
continuous negative-definite function ¢ such that f,(§) = i;(§) = exp (—t¥(&)).

(b) Define (2, F,P) as in Proposition 5.36. Likewise we define the state vari-
ables X (t) : © — RY as in Proposition 5.36. Let the filtration (F;:¢ > 0)
be determined by F; = o (X (u): 0 <wu <t). So the filtration (F;:¢>0) is
the internal history of the process X. Then X is a Lévy-process, which pos-
sesses the properties as described in (b). The fact that for ¢ > s the variable
X(t) — X (s) is independent of Fs was proved in Theorem 5.37. We must show
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that, for € > 0 fixed, lim,;o P (] X (s) — X(0)| > €¢) = 0. Therefore, notice first
that P (X (0) = 0) = po{0} = 1. Hence, with B(e) = {x € R” : |z| < €}, we have

B(1X(s) ~ X(0)] > &) = B(IX(5) — X(0)] > ¢, X(0) = 0)
— P(IX(s)| > €. X(0) = 0)
— P(X(s)| > o)
= 1 (R\B(O)} = 1 — i, {B(6)}. (5.183)

Since the convolution semigroup {x, : t = 0} is vaguely continuous it follows that
lifgl ps {B(e)} = 1. From (5.183) we then see that limg ;o P (| X (s) — X(0)] > ¢€) =

0. The only problem which is still left, is the fact that the process X is not
necessarily cadlag. In the following propositions and lemmas we will, among
other things, resolve this problem. From Theorem 5.121 it follows that the
process X is also a Lévy process for the filtration (G, : ¢ = 0), where §; = F, UN.
By Theorem 5.123 we then see that the process X possesses a cadlag version.

The proof of Theorem 5.118 is now complete. U
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5.119. PROPOSITION. Suppose 0 < s1 < -+ < 8,,, and chooset > 0. Let X be a
Lévy process for the filtration (F; : t = 0), where F, = 0 {X(u) : 0 <u < t}. Let
{p : t = 0} be the corresponding convolution semigroup and ¢ the corresponding
negative-definite function. So p,(B) =P (X (t) € B) for all Borel subsets B and
1:(&) = exp (=t(€)) for allt = 0. For &', ... €™ in RY the following equalities
hold:

E [exp (—zi (&, X(t+ sj)>> } 33]
el () 2]
o)) (S

Here we write ¥, = (),., Fs and so = 0.

NgE

5’“)) . (5.184)

Proor. We apply induction with respect to m. We begin with the condi-
tioning on J;. For m = 1 we have

E [exp (=i (€, X (t + 1)) | F1]

~ B [oxp (€, X (¢ 1)~ X(0)) | 5] exp (4 (€1, X(0)
(X (t+ s1) — X(t) does not depend on F)

=E[exp (—i (", X (t+s1) — X(t))) ] exp (—i (", X(1)))
(X (t + s1) — X(t) has the same distribution as X (s1))

= B [oxp (=i (€%, X (1)) | exp (=i (€1, X (1))

= fls, () exp (—i <5 X(0)))

= exp (—s1¢0 (§')) exp (=i (€, X (1))

=exp (— (s1— s0) ¥ (&")) exp (—i (', X (1)) - (5.185)
Notice that (5.185) is the same as the equality in (5.184) for m = 1. Suppose now
that we already know (5.184) for every t = 0, for every m-tuple s; < -+ < s,

and for every m-tuple £!,...,6™ in RY. We keep working with the original
filtration (F; : t = 0). For s;,41 > s, and for €™ € R” we then see

E [exp (—inil (€0, X (t+ Sj)>> | T
_E [exp (—zZ (€. X (t+s, >)

E [exp (—i (€™, X (t + 1)) | Frawn ] | 5
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(employ (5.185) for t + s, 41 instead of t)

=E [exp <—z Z <§3 (t+s; >>
exXp (—i <§m+1’ X (t+ Sm+1)>) exXp (_ (Sm+1 = Sm) ¥ (5m+1)) | fft]

(induction hypothesis)

= exp (—z’ <m2 fj,X(t)>> exp (—mZ: (sj —sj-1) <mZ 19 )) (5.186)

But (5.186) is the same as (5.184) with m replaced by m + 1. Next we look
at the situation for the filtration {F;; : ¢ = 0} which is closed from the right.

Without loss of generality we may assume that s; > 0. In case s; = 0 we have
indeed

E [exp (—Zi (&, X (t+ sj)>> ’ Fiy

j=1

=exp (=i (¢, X (1)) E [exp <—2§ (&, X (t+ sj)>> | 3"”] .

So assume that s; > 0 and choose n € N such that s; > n~!. Then we see, by
(5.184) for t +n~! instead of ¢,

[exp ( i X (t+ sj)>> | fﬂ+] (5.187)

=]E[ lexp< i t—l—sj)>> \?t+n_1] }94

1

(write s = n~' in what follows)

- E [exp (—i <§’1 X (t+ n—1)>>

In (5.187) we let n tend to co. Apparently it follows that

[exp< i t+sj>>) ER

oo (oG-

s
|
k}CIJ
L
<
=
TPs
S
=
N—
N——
A
+
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= exp (—i <i &, X(t)>> exp (— i (sj—8j_1) ¢ <i §k>> . (5.188)

From (5.188) it then follows that (5.184) holds for the filtration {F;; : ¢t = 0}
which is closed from the right.

This completes the proof of Proposition 5.119. 0

5.120. COROLLARY. Let the assumptions and hypotheses be as in Proposition
5.119. For every bounded complex-valued random variable Y, that is measurable
for the o-field o {X (u) : u = 0} the following equality holds P-almost surely de
equality:

E[Y 5] =E[Y]|T]. (5.189)

PROOF. Put Y = exp <—i e <§j,X(sj))>. By Proposition 5.119 we see
that for all such random variables Y the equality in (5.189) holds, provided
that s; > ¢, for 1 < j < m. By splitting and using the standard properties
of a conditional expectation we see that the restriction s; > ¢ is superfluous.
In other words the equality in (5.189) holds for all variables Y of the form
Y = exp (—i PV (ﬁj,X(sj))> where all s; belong to [0,00) and where all &’
are members of R”. Let Y be a bounded complex-valued random variable, which
belongs to the linear span of variables of the form exp (—i DIV (SH X(sj)>>.

Then consider the vector space H(Yj) defined by

H(Yo)

={Y :Q — C:Y is bounded and measurable for the o-field o {X (u) : v > 0}
and E (YYy | &) =E(YYo | Fir) }

By employing Lemma 5.100 or, even better, the monotone class theorem we see
that H(Yp) contains all complex-valued bounded random variables, which are
measurable for the o-field o {X (u) : u = 0}. Among others we may put Yy = 1,
and the claim in Corollary 5.120 follows. 0J

5.121. THEOREM. Let X = {X(t) : t = 0} be a Lévy-process. Let H={H;: t=0}
be the internal history of the process X. Let N be the null sets in Ho,. Then
the filtration G, with Gy = o {H,; v N}, is continuous from the right.

PROOF. Let A € G;y. By Corollary 5.120 we have 14 = E (14 | F;). Let
B € JF; be such that 1z = E (1A ‘ fft), P-almost surely. Then P(AAB) = 0.
Since A = BA (AAB), we see that A in fact belongs to G;. O

5.122. LEMMA. Let (z, : n € N) be a sequence of vectors in R with the property
that the sequence (exp (—i (€, z,,)) : n € N) converges for almost all§ € RV. Then
the sequence (x, : n € N) converges.

PROOF. Fix 1 < j < v, and let U’ be a vector valued stochastic variable
which is zero for the coordinates k = j and with the property that Uj is uni-
formly distributed on the interval [0, 1]. The following inequalities are true for
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0<do<l1:
2Re E (1 — exp (—z’ <Uj,xn — a:m>)) =K ’1 — exp (—i <Uj,a:n — xm>)‘2

= 4E <Sim2 % <Uj,mn — xm>> > 45°P {sin2 % <Uj, Ty — xm> = 52}

> 46°P g 2min 1<szic - >2 7T—2 > §2
= T 4 yn m 74 =

> 4P {[(U9, 2, — )| = 67}
4]
— 46% max <1 — —W,O) .
[Znj = Tm,j]
Since this inequality holds for every 0 < ¢ < 1, it follows that the j-th coordinate
(2, : n € N) of the sequence (z,, : n € N) converges. This holds for 1 < j <

v. Hence, the limit lim,,_,, x, exists. This makes the proof of Lemma 5.122
complete. U

Among other things, in Theorem 5.123 the proof of item (b) in 5.118 is com-
pleted.

5.123. THEOREM. Let (X(t),F;),>, be a Lévy-process. Suppose that the filtration
(Fi : t = 0) is right-continuous, and that Fo contains the null sets. Then there
exists a cadlag modification of X = (X(t) : t = 0).
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The result in Theorem 5.123 can be applied in case we take the internal history,
completed with null sets, as the filtration (F;)

t=0"

PrROOF OF THEOREM 5.123. We will make use of the following product
set:

E =% —{(a)q,
endowed with the product-o-field € = g, B(C). Put

:ateCforallte@+},

D = {(at)te(@+ : o : [0,00) — C cadlag with ¢(t) = oy for all ¢ € @+} :

Upon writing ¢ as the pointwise limit ¢(t) = lim,_,« ¢, (t), where

e}
on(t) = Z @ ((k+1)27") Lppan (k12 (1),
k=0

it can be proved that D belongs to the o-field €. Consider the mapping;:
O:R"xQ—>F

defined by

B(€,w) = exp (—i (€, X (1)) =: au. (5.190)

The mapping ® is measurable for the o-fields F, and €. As a consequence
A := ®71(D) belongs to the o-field B(R")®F 4. So for every pair (£,w) € RV xQ
there exists a cadlag function f : [0,00) — C with the property that the equality
f(t) = exp(—i (£, X(t))) holds for all ¢ € Q,. Now let the negative-definite
function corresponding to the process X be given by ¢. Then the process
t— exp (—i (£, X (1)) + ty(§)) is a martingale. This is so, because, for 0 < s < t,
we have the following equalities:

E (exp (=i (§, X (1)) + t¥(€)) | T2)

= E (exp (=i (§, X (t) — X(s)) + (t — $)1(&)) | Fs) exp (=i (€, X(s)) + s1(€))
(X (t) — X (s) does not depend on Fy)

= E (exp (=i (€, X (1) = X(s)) + (£ = 5)(€))) exp (=i (§, X (s)) + s¢(€))
(X (t) — X (s) heeft dezelfde distribution als X (¢t — s))

= E (exp (=i (§, X(t = 5)) + (t = 5)1(£))) exp (=i (§, X (s)) + 51(E))
(definition of 1)

= exp (=i (€, X(s)) + 59(E)) - (5.191)

From martingale theory it follows that there exists a cadlag version M¢ =
(M&(t) : t = 0) of the martingale ¢ — exp (—i (£, X (¢)) + t(€)). By this we
mean that for every (£,¢) € R” x [0,00) there exists an event N, with the
following properties: P (Ny¢) = 0 and for w ¢ Ny, the equality M(t)(w) =
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exp (—i (€, X (t,w)) + t1»(€)) holds. Hence, for every £ € R” there exists a P-null
set N¢ such that for every t € [0,0) n Q the equality

ME(t)(w) = exp (=i (&, X (t,w)) + t(€))
holds for all w ¢ N¢. In other words for all £ € R” the equality:

P{w: (§w)e A} = P{N} =1 (5.192)
holds. From (5.192) it then follows that
O:J dgf dP1 e :J dIP’f 1pe dE. (5.193)
re Jo Q v

The equality in (5.193) implies that for P ® A-almost all (w,&) the function
t — exp (—i (&, X(t,w))) belongs to D. By Lemma 5.122 we see that P-almost
surely the following limits exist for all £ > 0:

lim X (s) and lim X (s).
< &

Define the process Y by Y (t) = iltimQX (s). Then the process Y is cadlag:
slt, s€
see (the proof of) Lemma 5.103 (b). Furthermore, X (t) = iltimQX(s) (in P-
slt,se

distributional sense), and thus X(¢) = Y(¢) P-almost surely. The proof of
Theorem 5.123 is now complete. O

5.124. THEOREM (Dynkin-Hunt). Let (X(t),%;),., be a cadlag Lévy process
with a right-continuous filtration (F;: ¢t = 0). Let T : Q — [0,00) be a stopping
time which is not identically . So that P{T < oo} > 0. On the event {T < w0}
the process Y = {Y (t) : t = 0} is defined by Y(t) = X(t +T) — X(T).

(a) Under P the process Y has the same distribution as the process X under

P.
(b) The o-fields Fr and o {Y (s) : s = 0} are P-independent.

PROOF. (a) For n € N we write T,, = 27"[2"T|. Then (7,,: neN) is a
sequence of stopping times with the following properties:

(i) {T, < o} ={T < 0};
(i) T<Tosr <T, <T+2" neN.

Define the sequence of processes (Y : n € N) via the formula:
Y"(t) = X(t +T,) — X(T,) op de event {T,, < oo} ={T < w0}.
Let now f : (R”)™ — C be a bounded continuous function, let A be an event

in Fp < Jp,, and let s < --- < s, be an increasing sequence of fixed times.
Then the following equalities hold:

E[f(Y"™(s1),Y"™(s2) = Y"™(51), .-, Y™ (5m) — Y"(8m—1)) Lan(r<cc} |

- Z E [1Am{Tn:k2—n}f (X (31 + k;2*”) - X (kz—n) L

=0

X (Sm 4+ k27™) = X (81 + k27™)) ]

Bl
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(X(sj +k27") — X(sj-1 + k27") does not depend on Fy,_ 4 o-n)

- i P[An{T, =k2"}]
Ié[jf (X (s1+k27") =X (k27") .., X (S0 + 627™) — X (S + 627™))]

(X (sj+ k27™) — X(sj—1 + k27™) has the same distribution as X (s;) — X(s;-1))

Pl[An{T, =k27"}E[f (X (s1) = X (0),..., X ($m) — X ($m-1))]

PIA~A{T, <o} ]E[f (X (s1) = X (0),..., X (sm) = X (5;m-1))]
P[AN{T < 0}]E[f (X (51) = X (0),..., X () — X (5n_1))].  (5.194)

In (5.194) we let n tend to co. Since the process X is right-continuous it follows
that lim Y"(¢) = Y (¢) P-almost surely on the event {1 < o0}. By the continuity
n—ao0

of the function f the equality

E [f (Y(Sl)a Y(SQ) - Y<51)7 cee 7Y(Sm) - Y(Sm—l)) 1Am{T<oo}]

=P[An{T <o} |E[f (X (s1) = X(0),..., X (8m) — X (sm—1))] (5.195)
follows. By taking, in (5.195), the function f of the form f = fy o V,, where

Vi o (RV)™ — (R")™ is give by Vi, (21,...,Zm)) = (T1,..., 21+ -+ 2y,) We
see

E[fo(Y(s1)s- Y (5m)) Lanireo)]
=P[A~{T < 0} E[fo (X(51),..., X (sm))]- (5.196)

Here fy : (R¥)™ — C is an arbitrary bounded continuous function. By passing
to limits (5.196) follows for arbitrary bounded Borel measurable functions fj :
(R¥)™ — C. Via the monotone class theorem the assertion in (a) follows.

(b) By taking the function f of the form f = fyoV},, where V,, : (R*)" — (R*)™
is given by V,, (z1,...,%m)) = (x1,..., 21 + -+ - xy) in (5.195), we get

E[fo(Y(s1), -, Y (5m)) Langr=o)]
=P[A~{T < o}E[fo(X(s1),...,X(sm))], (5.197)

where fp : (R¥)™ — C is an arbitrary bounded continuous function. Then
choose A = Q and divide by P{T < o0}. We get

E[fo (Y(s1),- Y (sm)] = E[fo (X(51), -, X (5m))] (5.198)
Inserting the result in (5.198) into (5.197) entails
E[fo(Y(s1), ., Y (sm) 1a) = E[fo (Y(s1), ..., Y(sm)]P(A).  (5.199)

From (5.199) it follows that the o-field Fr is independent of the one generated
by {Y(s) : s = 0}: for this employ the monotone class theorem.

This completes the proof of Theorem 5.124. U
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7. Markov processes

Let (2, F,P) be a probability space and let X, Y and Z be stochastic variables
on €2 with values in a topological Hausdorff space E. We assume that E is
locally compact and that E is second countable, or, what is the same, that
E satisfies the second countability axiom. In other words E has a countable
basis for its topology. The space E is supplied with the Borel o-field € and
we suppose that the variables X, Y and Z are measurable for the o-fields F
and €. The symbol Px stands for the image measure on € of the probability P
under the mapping X. So Px(B) = P(X € B), B € £. The symbol ]P’Y‘X is a

probability kernel from Q2 to E with the property that

J P, (z,C)Px(dx) = P(Y € C, X € B)

5 Y|x
for all B and C in €. As function of the first variable the probability ker-
nel IP’Y . is Px-almost surely determined. Putting it differently, the func-

tion 2 — P X(x, (') is the Radon-Nikodym derivative of the measure B +—

P (Y € C, X € B) with respect to the measure B — Px(B) = P (X € B). In the
following proposition we collect some useful formulas for (conditional) proba-
bility kernels.
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5.125. PROPOSITION. Let (Q,F,P), E, X, Y and Z be as described above. Let
g: Ex E — C be a bounded measurable function and let B and C' belong to E.
Then the following equalities hold:

| [ st vipy) o dpP(an) = B(o(x. V) (5.200)
J P, (v, O)Bx(dr) = E(1c(Y). X € B); (5.201)
PY+X()(,Cw =E (1c(Y) | 0(X)); (5.202)

JPZ‘Y(y,C)]P’Y‘X(x,dy) = PZ‘X(J:, C), Px-almost surely,  (5.203)
provided that E (Z | o(Y)) =E(Z | 0(X,Y)).

PROOF. The equality in (5.201) follows in fact from the definition of PY‘X.
By choosing the function g of the form g(x,y) = 15(x)1lc(y) in (5.200) we see
that (5.200) coincides with (5.201). An arbitrary bounded measurable function
g can be approximated by linear combinations of functions of the form (z,y) —

1g(x)1c(y)i, with B and C'in €. Let g : E — E be a bounded measurable
function. Then the following equalities hold:

E (g<X>PY|X<X, c>) - | 9@, | (2, COPx (@) = E (g(X)10(¥)) . (5.201)

From (5.204) the equality in (5.202) follows. Let g : E — C be a bounded
measurable function. Then by, among others, (5.202) the following equalities
are true:

Jo | Z|Y< >Y} (2, dy)Px (d)

-£( Z‘Y C)9(X) ) = E (€ (16(2)] o(1)) (X))

=E(E( \U,Y»ﬁanE@ud@ﬂXﬂdXJ»)

=E(1e(2)9(X)) = [ 9(@)P (v, C)Px(dr). (5.205)
From (5.205) the equality in (5.203) follows, and completes the proof of Propo-
sition 5.125. g

5.126. THEOREM. Let (2, F,P) and (E, &) be as above. Let X = {X(t) : t = 0}
be a stochastic process with values in the state space E adapted to the filtration
(Fi:t = 0). So every state variable X (t) is a mapping from S to E, measurable
for the o-fields F; and €. In addition, suppose that the family of operators
{0, : t = 0} from Q to § satisfies the translation property X (s)od, = X (s+t) for
all s andt = 0. Then the following assertions are equivalent (for the implication
(11i) = (i) it is assumed that F; = 0 {X(u) : 0 < u < t}):

(i) For every C € € and every s and t = 0 the following equality holds:
El[le(X(s+1t) | F] =E[le(X(s+1)) | o (X(t))] P-almost surely; (5.206)
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(ii) For every bounded random variable Y : Q@ — C, that is measurable for
Fo and &, and for every t = 0 the following equality holds:

E[Yod, |F] =E[Y ot |0 (X(t))]P-almost surely; (5.207)

(iii) For every m € N and for all (m + 1)-tuple of bounded Borel measurable
functions fo, .oy fm : E— C the equality:

Ef fr(X(s1)) - fn (X (5m))] (5.208)

JJ Jfo o) f1 (1) -+ fin (Tm)

m+1 times

(Tm1,dTy) ... P (w0, dz1)Px(0)(dzo),

X (sm)| X (s 1) X(s1)| X (0)

holds for every s; < -+ < s, in [0,0).
If the process X is right-continuous, then (i) and (ii) are also equivalent
with the following assertions:

(iv) For every bounded Borel measurable function f: E — C and for every
stopping time T : Q — [0,00] the following equality holds P-almost
surely on the event {T < oo} :

E[f(X(s+T)) | Fr] =E[f(X(s + 1)) | o (T, X(T))];
(v) For every bounded random variable Y : Q — C, which is measurable
for F, and for every stopping time T : Q — [0, 0] the equality
E[Y oty |Fr] =E[Y o¥r |0 (T, X(T))] (5.209)
holds P-almost surely on the event {T < oo}.

If the process X is right-continuous and if as filtration the internal history is
chosen, then all assertions (i) through (v) are equivalent.

PROOF. (i) = (ii). Upon invoking the monotone class theorem it suffices to
prove (ii) for functions ¥ :  — C of the form Y =[], f; (X(s;)), where the
functions f;, 1 < j < m are bounded and measurable. For m =1 (i) is clearly
equivalent with (ii). Next we prove (ii) for Y = HmH fj (X(s;)) starting from
(ii), but with Y = ]_[J L fi (X (s5)), with 1 < k& < m. The equalities below then
show that (5.207) follows for Y = HmH [i (X(s5)):

E [’1”_[ fi (X(s; +1)) ’ Stt]
=E (nﬁ fi (X(sj +1)) |3rsm+t> ‘:Tt]

=E Hf] 5]+t (ferl (X(5m+1+t>) ‘f_fstrt) ‘gjt

| j=1
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(the equality in (5.207) for Y = fi11 (X(Sm+1)))
) Hfj (55 + ) E [ frns1 (X (Sme1 + 1) | 0 (X (50 +1))] | "ft]

(the equality in (5.207) for Y = [[7L, g; (X (s;)), where g; = f;, 1 <j<m—1,

and where g, (x) = fu(o)§ Fus 0Pl ()
—E Hfj (X (55 + ) E (frs1 (X (Smr1 + 1) | 0(X (50 + 1)) | a(X(t))]

=E ][ /i (X(s5 + )V E (fns1 (X (5ms1 + 1)) | Fose) | U(X(t))]

=E|E <H [i (X (s +8) fns1 (X(Sme1 + 1)) ‘ fTrsmw;) } U(X(t))]

Jj=1

- ﬁfa X(sj+ 1) frns1 (X(Sme1 + 1)) | U(X(t))] : (5.210)

| j=1

Then observe that (5.210) is the same as (5.207), but for Y = l_[mH fi (X (s;))-
This proves the implication (i) = (ii).

(ii) = (i). This implication follows by putting ¥ = 15(X(s)).
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(ii) = (iii). The equality in (5.208) is correct for m = 0 and for m = 1. This is
a consequence of Proposition 5.125. Again we will apply induction with respect
to m. We assume that (5.208) is correct for m and for the increasing m-tuple
§1 < 89 < -+-8,,. Then we see

E rﬁ f <X<sj>>] ~E [E (ﬁ i (X(51))| ?)]

=E|[ ] (XEDE (frer (X(5mi1)) [ o)
=E ][ £ (X)) E (s (X (5mi1) | a(X(sm>))]

(Proposition 5.125)
_E[Hfj 3] me+1 xm+1) X(sm +1)‘X(37n ( m)ad$m+1>]
7=0

= JJ . JfO(xO) ce fm+1(xm+1)PX(sm+1)‘X(sm) (l‘m, dmerl) te
—

m+2 times

(l’o,dﬂ?l)Px(g) (dx(]) . (5211)

X(s1)] X(0)

From the equality in (5.208) for m the equality in (5.200) follows for m + 1
instead of m.

(iii) = (i). Let C € € and let s and t > 0. Starting from (iii) we will prove that
the following equality holds P-almost surely:

E(lc(X(s+1)|F) =E (lc (X(s+1)) | o (X(1))). (5.212)
Choose 0 < t; < --- < t,, = t and choose bounded Borel measurable functions
fos .oy fn. The following equality is a consequence of (iii):
E (fo(Xo) .. fim (X(tm)) 1e(X(s + 1))
JJ fjf() 350 fm xm)lC(xm+1)
m+2 times
X(s4t ‘X ) (T, dTpi1) IP’ Xt |X(tm_1) (X1, dxy,) ...
tl)‘X (w0, dxy) Pxo (dﬂﬂo)

[ s

m+1 times
(@m, C) ]PX(tm) X (tm—

‘ 3 (X1, dxpy,) ...
(xo, dﬂ?l) IEDX(o) (d-fo)

PX(sH)]X(tm)

me)\X(m
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:1@[ﬁﬂxb)”.fm(X(%g)PX@+wxﬂ)@x@m%cn]. (5.213)

The monotone class theorem applies to the effect that (5.212) follows from
(5.213), provided that the internal history is chosen as filtration.

(iv) = (v). By the monotone class theorem it suffices to prove (ii) for functions
Y :Q — Cof the form Y = [ ]2, f; (X(s;)), where the functions f;, 1 <j <m
are bounded and measurable. For m = 1 it is clear that (iv) is equivalent
to (v). We prove (v) for YV = HmH fi (X(s;)) starting from (iv), but with
Y = ]_[k L fi (X(s5)), for 1 < k < m. The following equalities show that the
equality (5.209) then follows for Y = Hm+1 [ (X(s5)):

B rH (X(s + 7)) ?T]
=K <nh f] SJ + T)) ‘ gjsm-i-T) ‘ Fr

=K ﬁf] SJ + T [ferl (X(Sm+1 + T)) ’ ?strT] { SFT]

| j=1

(apply equality (5.209) for Y = f,11 (X (Sms1)))
_Ehlﬁ (s; +T)) MMMXQW4+ﬂHa@m+ﬂX@m+ﬂﬂ‘%l

(use equality (5.209) for Y = []'L, g; (X(s;)), where g; = fj, 1 < j <m —1,
and where gn(2) = fn(z) § frsa(5)P v, dy))

(sm+T,X(sm+1+T))‘(Sm+T7X(5m+T)) (
—E [H Fi (X (s; + T)E[frnsr (X(Sms1 +T)) | 0 (T, X (50 + T))] |

o(T, X(T))

é
:]3

£ (X (8 4 TNE [ frnsr (X (1 + T)) | Foar] | o, X(T))

LJ

=E|E [H f] S] + T fm+1 (X(Sm-i-l + T)) ‘ :Tsm-i-T] | O(TvX(T))

7j=1

=E ﬁfj X(s;+T)) frns1 (X(Sms1 + 7)) | a(T,X(T))] : (5.214)

| =

—_

Then realize that (5.214) is the same as (5.209) for Y = Hm+1 f; (X(s;)). This
proves the implication (iv) = (v). The implication (v) = (1V) is again trivial.
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(i) = (iv). By the fact E satisfies the second countability axiom, and by the
fact € is the Borel field it suffices to prove (iv) for functions f € Cy(F) instead
of 1¢ (verify this precisely). So we have to show the following equality:

E [f (X(S + T)) | ?T] 1{T<oo} =E [f (X<S + T)) } U(T7X(T))] 1{T<<>O}7 (5'215)

for f € Co(F) and for s = 0. By employing the right-continuity of paths, it
suffices to prove (5.215) for the stopping times 7T, := 27"[2"T'|, n € N, instead
of T'. The equality for T then follows from those of T,, by letting n tend to co.
For this notice that 0 < T —T,,.1 < T —T,, < 27". Choose the event A € I, .
Then the event A n {1, = k27"} belongs to Fyo-» and the following equalities
hold:

E[f(X(s+T,),An{T, =k27"}]

=E[E(f(X(s+T,) | Fron), A {T, = k27"}]

-k lff Yy PX stk2—n ‘X k2-m) (X(k27),dy), AnA{T, = k2_n}]
-k lw ~ f Py st xaaiy K T (@), d) 1{A°{T":k2"}}(w)]

(5.216)
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We also have
E[f(X(s+Tn), An{T, =k2"}]
=E[E (f (X(s+k27") | Faon), An{T, = k27"}]

(because of (i))
=E[E(f(X(s+k27) | o (X (k27))), An{T, = k27"}]

=FE lff<y)PX(S+k2_")|X(k2—”) ()((]{]27”)7 dy) , An {Tn — k.2n}j|

-E [w o EL e (AN um%w-n}}(w)} -
(5.217)

We see that (5.216) and (5.217) are the same. It follows that the assertion in
(iv) is proved for T,, instead of T'. By letting n tend to oo we then obtain (iv)
for T' (by employing the right-continuity of paths of the process).

So the proof of Theorem 5.126 is complete now. U

We continue with some definitions.

5.127. DEFINITION. Let (€2, F,P) be a probability space, and let E be a locally
compact Hausdorff space with a countable basis for its topology. In addition, let
(F; :t = 0) be a filtration on Q. Let X = {X(¢) : t = 0} be a process attaining
values in F. The state space F is equipped with the Borel filed and it is assumed
that X is an adapted process. Suppose that for every = € E the (sub-)probability
kernel P ()| x (t)(x,C’), C € &, is defined. Here the (sub-)probability kernel

Py x(x,C) possesses the following defining property:
JIP’ (x, O)'P(X edx) =P{Y e C, X € B},
s Y]

where B and C' are Borel subsets of £ and where X and Y are stochastic
variables with values in F. In addition, it is assumed that there are so-called
translation operators 9, : 2 — Q with the property that X (s)od; = X(s+1) for
all s, t = 0. Moreover, by hypothesis the process X is cadlag. We say that the
process X is a Markov process if for every C' € € and every t > 0 the equality

E[le(X(s+1)) | Ft] =E[le(X(s+1)) | o(X(¢))] (5.218)

is P-almost surely true for all s > 0. The process X is called a strong Markov
process if equality (5.218) also holds for stopping times. More precisely, if for
every s > 0, for every C' € € and for every stopping time T : Q — [0, 0] the
equality

E[1o(X(s+T)) | Fr] = E[le(X(s + T)) | o(T, X(T))]

holds P-almost surely on the event {T" < oo}. If the process X is cadlag is, then
a Markov process is automatically a strong Markov: see Theorem 5.126. We
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say that a Markov process X is time homogeneous if for all C' € € and for all s
and t > 0 the equality

(x,C) =P (x,C) (5.219)

IPX(s+t) |x() X(9)|x(0)

is true for all x € E. In what follows we always suppose that X is a cad-
lag, time homogeneous Markov process. Furthermore we define the operators
{P(t) : t = 0} via the formula

ff S)‘X 0 (x,dy). (5.220)

Here s > 0 and f belongs to Cy(FE). Since we have (see equality (5.203) in
Proposition 5.125)

JIP’X(SH)‘X“) (y, C)PX(t)‘X(O) (z,dy) = IP)X(SH)}X(O) (x,C), Px()-almost surely,

(5.221)
we get, for a time-homogeneous Markov process X the following equalities:

[HMWH@—[(WWW hwwm

(X is time homogeneous)

Jff X(s+t)]X X(s)|X(0)<x’ dy)

(employ equality (5.221))

Jff x| xo) = [P(s +1)f](2)

The cadlag property of X implies limgo [P(s) f] () = f(z) for all f € Cy(E) and
for all z € E. If P(s)f belongs to Cy(E) for every f € Cy(F) and for every s = 0,
then the family {P(¢) : ¢t = 0} apparently constitutes a Feller semigroup. Put
P(s,z,C) = PX(S)‘X(O)(x’C>7 s>0,xz€ E, Ceé&. Letthe expectation values
of E,(Y), z e E,Y =[[jL, f; (X (55)), 51 < 89 < ... < $p,, be determined by
the formula:

E«ﬁﬂ@@w

= J . J ﬁ fi(z;) P(s1,x,dxy) ... P (Sm — Sm—1, Tm—1,dTp,) . (5.222)
=1

Instead of (5.222) most of the time we write E,(Y) = E[Y | X(0) = z], for a
bounded stochastic variable Y. Since X is a time homogeneous Markov process
we see that the following equality also holds P -almost surely:

E. (Yo, |F) =Exu(Y), (5.223)
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for all ¢ = 0 and for all bounded random variables Y. The equality in (5.223)
is first proved for random variables Y of the form Y = [, f;(X(s;)), where
the functions f;, 1 < j < m, are bounded Borel functions. Equality (5.223) is
also true if P, and E, are replaced by P and E respectively.

5.128. REMARK. The expectation value E,(Y") is in fact the Radon-Nikodym
derivative of de measure B — E [Y, X (0) € B] with respect to the measure B —
P[X(0) € B]. If in this definition we take for Y the variable Y = 14 (X (s)),

then we obtain the probability kernel ]P’X(S)’X(O(:U,C). Hence, these quanti-

ties are defined as Radon-Nikodym derivatives. So, in general, the expression

IPX (s)|x 0 (x,C) is not defined for every x € E. However, we will assume that

these probability kernels exist for every x € E indeed, and that the correspond-
ing semigroup is a Feller. Many authors define a (time homogeneous) Markov
process X relative to a family of probability measures {P, : x € E} by means of
the following equality:

E, (Yot |F) =Exq (Y), (5.224)

P,-almost surely for all x € E, for all ¢ > 0 and for all bounded random variables
Y : 2 — C. In fact we also do this. In the time homogeneous case the equality
in (5.224) also holds for stopping times 7"

E, (Y oty | Fr) =Ex) (Y), (5.225)
P,-almost surely on the event {T' < w0}, provided that the process X is cadlag.
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The equality in (5.225) can be proved in the same manner as equality (5.209) in
Theorem 5.126. Therefore pick f € Cy(F) and a stopping time 7" : Q — [0, 0].
Consider the stopping times T,, := 27"[2"T'|, n € N, instead of T'. Then, for an
event A € Fr,, we have

E. [f (X (s + T0)) Langm,=k2—1]

=E, [f (X(s + k27™) Langr—pa-n)]

=E, [E, (f (X(s+k27™) | Fro-n) Lanimumro—ny]

=E, [Eo (f (X(s+k27)) | Fao=n) Laniz, k2]

=E, [EX(kT”) (f (X(s))) 1Am{Tn:k2w}]

= E; [Exr,) (f (X(5))) Langm=pany] - (5.226)

From (5.226) it follows that (5.225) for Y = f(X(s)) and for 7}, in the place of
T. By taking the limit in (5.226) for n — oo the equality in (5.225) follows for
Y = f(X(s)). Precisely as in the proof of the implication (iv) = (v) in Theorem
5.126 the equality in (5.225) then follows for arbitrary random variables Y : Q@ —
C, which are bounded and measurable for the o-field F.

8. The Doob-Meyer decomposition via Komlos theorem

Let (2, F,P) be a probability space, let {F; : t = 0} be a right continuous filtra-
tion in & and let {X(¢) : ¢t = 0} be a real-valued F;-submartingale. The Doob-
Meyer decomposition theorem states that there exists an F,-martingale {M(¢) :
t = 0} together with an increasing predictable adapted process {A(t) : t = 0},
which is right continuous P-almost surely, such that X (¢) = M(t) + A(t), t = 0,
provided that the process {X (¢) : t = 0} is of class (DL). The latter means that
for every ¢ > 0 the family {X(7) : 0 < 7 < ¢, 7 stopping time} is uniformly inte-
grable. Moreover this decomposition is unique in case we assume that A(0) = 0.
By Doob’s optional sampling theorem every martingale is automatically of class
(DL) (see e.g. Ikeda and Watanabe [61], p.35, Ethier and Kurtz [54], p.74). An
interesting discussion of the Doob-Meyer decomposition and (sub-)martingale
theory can be found in Kopp [74]. For a nice account of the Doob-Meyer de-
composition theorem the reader may also consult van Neerven [148].

We shall employ the following result of Komlos [73]. In fact it can be interpreted
as kind of a law of large numbers.

5.129. THEOREM (Komlos). Let {fy : k € N} be a sequence in L'(Q, F,P) such
that

sup {E (| fx|) : k € N} < 0.
Then there exists an infinite large subset Ay of N together with a function f in

LY (2, F,P) such that for every infinite subset A of Ag

lim ———

nooo [A A 10| 1 ] dem 1] = f, P-almost surely. (5.227)
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Examples show that this limit need not be an L!-limit. Set QO = N with the
discrete o-field and with P{k} = 27% k € N. Let {fi : k € N} be the sequence
defined by fi = 2%e;, k € N, where {e; : k € N} is the sequence of the unit
vectors. Then n~' 37| f; — 0 pointwise, but n=" { 3" | f;dP =1, neN.

Standard results on continuity properties of submartingales yield the existence
of a realization (version) which is continuous from the right and possesses left
limits P-almost surely. Henceforth we shall assume that the JF;-submartingale
{X(t) : t = 0} is continuous from the right and has left limits P-almost surely.
We shall prove that there exists a predictable increasing process {A(t) : t = 0}
together with an infinite Ay of N such that for every infinite subset A of Ay and
every t = 0 the variable A(t) is given as the limit:

(5.228)

Aj(t) = Zo<k<2jt {E (X (%) | "fkg_j) - X (2%) } : (5.229)

Moreover the process {X(t) — A(t) : t = 0} is an F-martingale. The limit in
(5.228) is a point-wise almost sure limit as well as an L!-limit.

where

Again let (Q, F,P) be a probability space, let {F; : t = 0} be a right-continuous
filtration in F and let {X (¢) : t = 0} be right continuous submartingale of class
(DL) which possesses almost sure left limits. We want to prove the following
version of the Doob-Meyer decomposition theorem.

5.130. THEOREM. There exists a unique predictable right continuous increasing
process {A(t) : t = 0} with A(0) = 0 such that the process {X(t) — A(t) : t = 0}

15 an Fy-martingale.

It is perhaps useful to insert the following proposition.

5.131. PROPOSITION. Processes of the form M (t) + A(t), with M a martingale
and with A an increasing process in L'(Q, F,P) are of class (DL).

PROOF OF PROPOSITION 5.131. Let {X(t) = M(t) + A(t) : t = 0} be the
decomposition of the submartingale {X(¢) : t = 0} in a martingale {M(t) : t >
0} and an increasing process {A(t) : t = 0} with A(0) = 0 and 0 < 7 < ¢ be any
F;-stopping time. Here ¢ is some fixed time. For N € N we have

E(X(T)|: [X(7)[ = N) <E(|M(7)| : |[X(7)] = N) + E(A(7) : [X(7)] = N)
<E(M(#)]: [X(7)] = N) + E(A(7) : [X(7)] = N)
<E(M(t)]+ A@t) : [X(7)[ = N)

E (\M(t)] +A() : sup [X(s)| > N) . (5.230)
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Advanced stochastic processes: Part I| Some related results

Since N x P {supyc,<; | X (s)| = N} < E(|X(¢)]), it follows that
ngm sup{E (|X(7)| : |X(7)| = N) : 0 < 7 <t,7 stopping time} = 0. (5.231)
—0

This shows Proposition 5.131 0

Similarly we have the following result.

5.132. PROPOSITION. Let {X(t) : t = 0} be an F;-submartingale. For any real

number N the process {max(X(t), N) : t = 0} is an Fy-submartingale which is
of class (DL).

Next we come to the heart of the matter. The symbol [z], € R, denotes the
integer k with k <z <k + 1.
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PrROOF OoF THEOREM 5.130. It will be convenient to introduce the follow-
ing processes:

Xﬂw=E<X(%ﬂ)\$>,t>QjeN; (5.232)

L= _ {E (X (k; 1) | Fro ) X (QEJ) } . (5.233)

The processes {A;(t) : ¢ > 0} are right continuous and have left limits. The
processes {A;(t) : t = 0} are predictable in the sense that, for j, N in N, the
functions (t,w) — A;(t,w) are measurable with respect to the o-field generated
by the collection {l(aﬂ xA:0<a<b, Ae 3",1}: see e.g. Durrett [44], p. 49.
Moreover it is readily verified that the process

{X;(t) — A;(t): t =0} (5.234)

is an F-martingale and that
lim E (A;(t) — A,(t—)) = 0. (5.235)

J—00

Equality (5.235) is true because
imE (X (s)) = E(X(2)). (5.236)

slt
Equality (5.236) can be proved in the following manner. Put
X"(t) =1ImE(X(t+h)|F)=infE(X(t+h)|F).
h10 h>0
Then X”(t) = X(t), P-almost surely. The following argument shows that
X"(t) = X(t), P-almost surely. Define for m € N the stopping time 7, by
=inf{s > 0: | X (s)| > m}.
Then, P-almost surely, 7,, T c0. Moreover, we have

E[X"(t) — X(t) : 7 > 1] (5.237)
zlfiL%lE[E(X(t—kh)|3'“t)—X(t):Tm>t]

~ U E[B (X1 + K) = X(1) 1rg) | 7]
=limE[X(t+h) X(t) : 7n > 1]
—hm{E X(t+h)—X(t): 7, >t+ h]

[

E[X(t+h) — X(t): t <7y <t+h]}
[
(

1’1%1{ X({t+h)—X(t): Tm >t+h]
E[E(X(t+1)|Fn) — X(@):t <1p <t+hl}
—hm{ X(t+h)—X(t): 7m >t+h]

h10 [
E[X(t+1)—X(#):t<7n<t+h]}=0,

Download free eBooks at bookboon.com



by dominated convergence (twice: on {7,, >t + h} we have | X (t + h) — X(¢)| <
2m, P-almost surely). Consequently

0<EX"(t)— X () = lim E(X"(t) — X(): 7 >1) =0, (5.238)
m—0o0
and hence X”(t) = X(t), P-almost surely. We also infer

BCX(1) = E(X"(0) = E (mECX( + )] 5) - X(0)) + BX(0)

=E (llgglE (X(t+h)—X(1)) | 3})) + E(X(t))
=UmE(E((X(t+h) - X(1)) [ F)) + E(X(1))
= I B (X(t + h) = X (1)) + E(X(1)) = ImE(X(t + h)). (5.239)

This proves (5.236). In addition we write

ft)=E(X(t) — X(0)) (5.240)
and we define the countable dense subset D of [0, %0) by
D={t=0:teQ}u{t=0:f(t+) > f(t—)}. (5.241)

(Notice that the functions f is increasing.)

Let Ag be any infinite subset of N and let {A,,(t) : t € D} be a process such
that for every infinite subset A of Ay and P-almost surely,

Ap, (t) = lim

n%mﬁlMZﬁAMn j(t), teD. (5.242)

By Komlos’ theorem (Theorem 5.129) and a diagonal procedure such a subset
Ay exists. We shall prove that for ¢ € D the limit in (5.241) also exists in L!-
sense. In view of a theorem of Scheffé (Corollary 2.12.5 in Bauer [10], p. 105,
it suffices to prove that

E(AAo(t» 7}1—{210 |A ﬁ 1 n ‘ deAm 1,n] j t)) (5243)
It is readily verified that
E (A1) = E (X (@ﬂ)) _E(X(0)), (5.244)
so that
. 1 B .
Jﬂﬁomzjw L EA(1) = f(t+), teD) (5.245)

On the other hand we have, by Fatou’s lemma,

E (Ay (1) < ngglfmzjemmﬁmj(@) _f(t4). (5.246)

In addition we have for A > 0

B (A 0) > B (1w e 3 40)
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n—00

Some related results

. 1 :
> Y . - _
E <hm sup A L ]| Zieaniin] A; (min (¢, 7) )) . (5.247)

where 7, is the stopping time defined by
1

™ = inf {8 >0:s¢€ D, ilég mzjeAm[l,n] Aj(S) = )\} .

Since

1 .
m ZjeAm[l,n] Aj (mm (t? TA) _) < A,

(5.248)

(5.249)

we infer from (5.247) and (5.235) that, for any A > 0,

1
E (Ap,(t)) = limsup

n—ao0

T L] Zenninn B (4 (min (7))

>E(X(t): 7\ >t) +E(X (min(ry, 1)) : 7o < t) — E(X(0)).

(5.250)

Since 7y 1 oo, P-almost surely, as A tends to infinity, we infer from (5.250)

together with the fact that the collection {X(7)
uniformly integrable,

E (A, (1) = E(X(t) — X(0))

. 7 < t, T stopping time} is

Ft). (5.251)
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(In fact in (5.250) we first take the sum, then we write Q = {7\, >t} u {7\ < t}.)
The right continuity of the submartingale {X (¢) : t = 0} together with (5.236)
implies the equality

f(t) = f(t+). (5.252)
Hence the equality in (5.243) now follows from (5.251), (5.252) and (5.246). So
the limit in (5.241) is also an L!-limit. Since the submartingale {X (¢) : ¢ > 0}
is continuous from the right we also deduce

limsup B(1,(1) ~ X(1)) = limsupE (X (%ﬂ)) _E(X(8))

= lim f(s) ~ /(£) = 0. (5.253)

Hence the L!-convergence in the equality

1
A LA 2 X

jeAN[1,n]
1
- M. (t .
A N [1,n]| Zje!\ﬂ[lm] () + |A N [1,n]| Z]GAm 1,n] A4(
yields
X(t) = Mp,(t) + Ap (), te D, (5.254)

where the process { A, (t) : t € D} is increasing and predictable. We shall extend
(5.254) to all t = 0 and we shall prove that the process {A,,(t) : t € D} has right
continuous extensions to all of [0,00). In order to achieve this fix ¢y ¢ D, ty > 0,
and let s, t be arbitrary numbers in D with 0 < s <ty <t < oo. Then

AAO( ) hﬂloglf ‘A m | de/\m 1,n] j

1
< lim inf Z -
= n—wo AN [1771 | jeAn[1,n] J

i 1
s hi”f;?p A L] 2aenno 590 < Ano(0). (5:255)
From (5.255) it follows that
1 1
i _ A; li f— A;
. (h?f;lp A A [ ] Zasesnion 000) — HmnE e Bt J(t(’))
S E(An (1) = Ano(s)) = E(X(t) = X(s)) = f(t) = f(s). (5.256)
So that
. 1 o 1
= (i ) Do 400~ B8 ) D H0))
< f(to+) = fto—) = f(to) — f(to) =0, (5.257)
since ty does not belong to D. Hence, for every t, > 0,

) 1
Anolto) = limsup e 2 enning Ai(h)

(5.258)

= lim inf

N—00 |Am 1 n|2j€/\ﬁ1n
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P-almost surely. In addition, as above we also have
E(An (1) = f(), t=0,) (5.259)

and hence
E (Any (1) — Ano(s)) = f(t) — f(s). (5.260)

So that the process {Ax,(t) : t = 0} is almost surely right continuous. Again we
have decomposition (5.254) for all ¢ > 0. From (5.236) and (5.258) it follows
that, P-almost surely,

i 1
Analto) = 1y ) Djennqa A0

and consequently the process {Ax,(t) : t = 0} is predictable. O

The uniqueness of the Doob-Meyer decomposition does not depend on the (DL)-
property. So the processes {My,(t) : t = 0} and {A,(¢) : t = 0} do not depend
on the particular choice of Ag. Henceforth we write

X(t) = M(t) + A(t),  t=0, (5.261)

where {M(t) : t = 0} is an F-martingale and where {A(t) : t = 0} is an increas-
ing right continuous process which is predictable. Proposition 5.131 shows that
the process { X () : t = 0} must possess the (DL)-property. Let Dy be the count-
able dense subset of [0, c0) given by

Do={teQ:t=0}u{t=0:f(t+)> f(t—)} (5.262)

and choose Ag € N, |[Ag| = o0, and the process {B(t) : t € Dy} in such a way
that for every infinite subset A of Ay,

) 1
B(t) = T}I—{Ic}o A [1,n]] ZjeAm[l,n] A4(t), te Do. (5.263)

Then, as in the case of {A;(t) : j € N} it follows that the convergence in (5.263)
is an L'-convergence as well. Again as above the convergence in (5.263) occurs
for all t = 0. Consequently the process {X(t) — B(t) : t = 0} is a martingale,
because the processes {X,(t) — A;(t) : t = 0}, j € N, are martingales. Here

-2 [x (21 13

These remarks prove the following corollary.

5.133. COROLLARY. Write a submartingale {X(t) : t = 0} in the form X(t) =
M(t) + A(t), t = 0, where the process {M(t) : t = 0} is a martingale and where
{A(t) : t = 0} is a right continuous increasing predictable process with A(0) = 0.
Then there exists an infinite subset Ay of N such that for every infinite subset
A of Ay and every t = 0:

A(t) = lim

1
n—w |A A [1,n]| Zjem[m] Aj(t). (5.264)
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Here

b0- S (<35 ) - (2)

and the convergence in (5.264) is a P-almost sure as well as an L!-convergence.
Of course the process {A(t) : t = 0} does not depend on the particular choice of
Ao for which all the limits in (5.264) exist.

Next the uniqueness part of the Doob-Meyer decomposition will follow from
Proposition 5.134.

5.134. PROPOSITION. Let Z = {Z(t) :t = 0} be a bounded martingale and let
A={A(t) :t =0} and {B(t) : t = 0} be adapted increasing processes such that
B — A is a martingale. Also suppose that E(A(t)) < oo, fort = 0. Then

E[Z(t+) (B(t+) — A(t+)) — Z(0) (B(0) — A(0))]
_E (L (Z(s+) — Z(s—)) d(B A)(s)) | (5.265)

5.135. REMARK. The integral Sé (Z(s+) — Z(s—))d(B — A)(s) should be inter-
preted as follows:

JJZ@H—H&%MB—MS)

— JOO (Z(s+) — Z(s—)) Lio,q(s)dB(s) — J (Z(s+) = Z(5—)) Lio,q(5)dA(s).

0 0

PROOF OF PROPOSITION 5.134. Let n € N. Since Z is a martingale we
have:

E[Z ([2"t]127) (B ([2"t]27") — A ([2"¢]27"))] — E[Z(0) (B(0) — A(0))]

]E{ o Z((+12™m)

j<[2nt]

{(B(G+127) = B(j27) — (A(G+1)27) - A (J'Q”))}] -

Since B — A is a martingale, it follows that:
E[Z ([2"¢]27") (B ([2"¢]27") — B(0) — A ([2"¢]27") + A(0))]
—E[Z(0) (B(0) — A(0))]

—E(X e (Z (4127 = Z(j27)
(B((G+1D27™) = B(127) = (A(G+1)27) = A(j27))).

Zi(s) = Z ([2"s]27") = Zj’;o Z((G+1)27) Lgan 2 (s), and

Zi(s) = Z (121 = 1)27) = 337 2 (7277) Lo o (9).
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Then we obtain

B (2 (120277) (B (12°0127") — A ([2'4]127"))) — E[Z(0) (B(0) — A(0))]
2 ([ (250 206) Loz () (B6) - A) ).

0
So, upon letting n tend to infinity, Proposition 5.134 follows. O

5.136. PROPOSITION. In addition to the hypotheses in Proposition 5.13/4, sup-
pose that the martingale B — A is predictable. Then B(t+) = A(t+) P-almost
surely. So that, if B — A is right-continuous, then B = A P-almost surely,

provided B(0) = A(0) = 0.

PROOF. First we prove that E <Sé (Z(s+)—Z(s—))d(B — A)(s)) = (. Here

we shall employ the predictability of the process B— A. It suffices to prove that,
for all s > 0,

E((Z(s+) — Z(s—)) (B(s+) — A(s+) — B(s—) + A(s—))) = 0.  (5.266)

Since the predictable field on %[0, o0) is generated by the collection {C x (a, b] :
C e F,, 0<a<b}itsuffices to prove (5.266) for all s > 0 if B — A is of the
form

B(s) — A(s) = 1¢ X Lgtemn)(s), C€TF,. (5.267)
So let C belong to I, and let B(s) —A(s) = 1¢ X Lig4e00)(5). Then, for s = a+e¢
(and C € &,), we have by the martingale property of Z,
E(Z((a+e)+)—-Z((a+¢e)-)1c)
“E(E(Z(((a+2)+) — Z((a+2)-) | F) 1c)
=E((Z(a) — Z(a)) 1) = 0. (5.268)
Notice that, for s = a + ¢,
E((Z(s+) = Z(s=)) (B(s+) — A(s+) — B(s) + A(s)))
=E((Z((a+e)+)-Z((a+e)-))1c).
From Proposition 5.134 it now follows that
E(Z(t+) (B(t+) — A(t+))) = E[Z(0) (B(0) — A(0))] = 0.
Next, fix £ > 0 and define the martingale Z(s) by

B B(t+) — A(t+)
2(s) =E (|B(t+) —Alt+)| +1 | ’fs) '

Then

|B(t+) — A(t+)[”
0=E(Z(t+) (B(t+) — A(t+))) =E (,B(H) TAGH)] + 1)

and hence B(t+) = A(t+), P-almost surely for all ¢ > 0. It also follows that
B(t—) = A(t—), P-almost surely for all ¢ > 0. If the process B — A is right
continuous almost surely, we infer B(t) = A(t), t = 0, P-almost surely. This
completes the proof of Proposition 5.136. O
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As a special case the following result contains the uniqueness part of the Doob-
Meyer decomposition theorem.

5.137. PROPOSITION. Let A and B be increasing adapted processes. Suppose
that B — A is a predictable right continuous martingale. Then B(t) = A(t) +
B(0) — A(0), P-almost surely.

PRroOOF. This result is an immediate consequence of Proposition 5.134 and
Proposition 5.136. U

5.138. COROLLARY. There is only one way to write a semi-martingale Y in the
formY = M + A, where M is a (local) martingale and where A is a predictable
right continuous process of finite variation locally with A(0) = 0.

5.139. REMARK. An increasing, predictable right continuous real-valued process
{A(t) : t = 0}, with E (A(t)) < oo for t > 0, is called a Meyer process.

It is perhaps worthwhile to isolate the following result in the existence part of
Doob-Meyer decomposition theorem: notation is that of the proof of Theorem

1
5.130. We also use Aj(t) = I Z A, (t), for a finite subset A of N.
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5.140. THEOREM. Let {X(t) : t = 0} be a right continuous submartingale of class
(DL). For every infinite subset Ag of N there exists an infinite subset A of Ag
such that for every further infinite subset A’ of A, the limit

Ap(t) == Alf1_r)noo Ananny(t),  exists P-almost surely,

and does not depend on the choice of N'. Moreover, since we are dealing with
(DL )-submartingales, limy_o E [|Ax(t) — Axapn(8)|] = 0. In addition, the
process {Ax(t) : t = 0} is predictable and right continuous.
PRrROOF. Write
Q ={ty: leN}={t=0:E(X(t+)) > E(X(t—))}U((@m [0,0)).
Define the measure p on @’ by

1 1
() Z;?1+E(X(te)—X(0))'

Let Ag be an infinite subset of N. Komlos’ theorem, applied to the sequence
{A,(te) : £ € N}, on the measure space {N x Q, P(N)®F, u ® P} applies to
the effect that there exists an infinite subset A of Ay such that for every further
infinite subset A" of A, Ax(t) = limy_o0 Anrap,n(te) exists for £ =1,2,... and
does not depend on the particular choice of A’. In addition,

]\IILI%OE (JAa(te) = Aprapn(te)]) = 0.
Next let t > 0 be arbitrary with E(X(¢t)) = E(X(t—)) = E(X(t+)) and let
A < Ay, A’ infinitely large. For ¢/ <t <t”" ', t” in ', we have

E (lim sup Axra[1,n] (t)) <E <lim sup AA/G[LN](t”))

N—oo N—oo

—E <lim inf Ay (t”)) <E(X(") — X(0)).
N—0
Similarly we have

E <1im inf Apnrapn (t)) > E (lim inf Apxrap,a (t,)>

N—oo N—o0

=k <1im sup AA,m[l,N](t’)) >E(X () — X(0)).

N—o0

Since E (X (t+)) = E (X (t—)), it follows that the limit
An(t) = im Ayop (1)
exists P-almost surely. Consequently, the limits

AA(t) = ]\IIILI})O AA’m[l,N](t)a t =0,

all exist P-almost surely and limy_,o E (|Ax(t) — Ay ap(t)|) = 0. Finally we
shall prove that the process {A,(t) : t = 0} is right continuous. Fix ¢ty = 0 and
let t > t3. Then

E (Ax(t) — Ax(ts)) = E(X(t) — X(to)) > 0.
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Since t — E(X(¢)) is right continuous we infer that lim,;, E (Ax(¢) — Ax(to)) =
0. It follows that, P-almost surely, limy;, Ax(t) = Ax(to).

This completes the proof of Theorem 5.140. U

5.141. COROLLARY. Let X = M + A be the Doob-Meyer decomposition of a
submartingale into a martingale and an increasing right continuous predictable
process A. Then, for an appropriate sequence (ny: ¢ € N) in N,

A(t) = lim 1 Z Z (E(A(G+1)27™) | Fjon) — A(527™)) Lja-m o0 (1)

This limit is an P-almost sure limit as well as a limit in L*(Q, F, P).

PROOF. A combination of the existence and uniqueness of the Doob-Meyer
decomposition yields the desired result. Notice that by Proposition 5.131 a
process of the form M+ A, where M is a martingale and where A is an increasing
adapted process in L'(Q, F,P) is of class (DL): see (5.230) and (5.231). So the
proof of Corollary 5.141 is complete now. U

Another corollary is the following one.

5.142. COROLLARY. Let {X(t):t = 0} be a right continuous submartingale of
class (DL) with left limits. Fizty > 0 and let {7y : £ € N} be sequence of stopping
times which increases to the fixed time ty. Suppose 1, < to, P-almost surely, for
all ¢ € N. Then E (| X (to—)|) < o and limy, E (| X (72) — X (tc—)|]) = 0. In
addition, hmhwE (‘X (to + h) - X (t0)|> = 0.

The following result also follows from our discussion.

5.143. COROLLARY. Let {X(t) : t = 0} be a submartingale. If the function t —
E (X(t)) is P-almost surely continuous, then the process {A(t) :t = 0} is P-
almost surely continuous as well.

5.144. REMARK. Several people have reformulated and extended Komlos’ result
as a principle of subsequences, e.g. see Chatterji [30]. Others have treated an
infinite dimensional version, e.g. see Balder [7]. In [96], Exercise 3, p. 103 the
authors give an example of a submartingale which is not of class (DL). In fact
Métivier and Pellaumail give the following example. Let © be the interval [0, 1]
with Lebesgue measure and let 0 =ty <t; < ... <t, <... <1 be a sequence
such that lim,,_,, t, = 1. Define the process X by

e}
X(t,w) == 2" i (Olgomyw), wel0,1], ¢t>0.

Then X is a submartingale, X is not of class (DL) and X is a martingale on
the interval [0,1). If ¢, 1 <t < t,, we write F; for the o-field generated by
{(j—1)27™, 52" : 1 < j < 2"} If t = 1, then F; is the Borel field of [0, 1].

5.145. DEFINITION. Let {Y(¢):t > 0} be a martingale in L?(Q2,F,P). Then
{[Y(t)]> : t = 0} is a submartingale of class (DL). So by Theorem 5.130 there
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exists a unique martingale { M (t) : t > 0} with M(0) = |Y'(0)|* and an increasing
predictable right-continuous process {(Y) (¢) : ¢ = 0} in L'(Q, F,P) such that

Y (t)]? = M(t) + (Y) (t), P-almost surely.

The process {(Y) (t) : t = 0} is called the (quadratic) variation or variance pro-
cess of {Y(t) : t = 0}.

5.146. EXAMPLE. Let {B(t) : t = 0} be v-dimensional Brownian motion. Then
the process {t — vt : t = 0} is the corresponding quadratic variation process.

5.147. EXAMPLE. let ¢t — S(t) Fi(s)dB(s) and t — Sé Fy(s)dB(s) be two local

martingales. Then the process t — S(t] Fi(s)Fy(s) ds is the corresponding covari-
ation process.

[ ]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

tion. We help make it more economical to create

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

'-r:-.%.i

o

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/know1ed"gg}

422 Click on the ad to read more
Download free eBooks at bookboon.com



http://www.skf.com/knowledge

Subjects for further research and presentations

The following topics may be of interest for a presentation and/or further re-
search:

(1) Certain pseudo-differential operators of order less than or equal to 2
can be put into correspondence with space-homogeneous or non-space-
homogeneous Markov processes. A detailed exposition can be found in
Jacob [62, 63, 64].

(2) Viscosity solutions to partial differential equations. The standard ref-
erence for this subject is Crandall, Ishii, and Lions [35]. This topic
can also be treated in the context of Backward Stochastic Differential
Equations (BSDEs): see, e.g., Pardoux [109].

(3) Elliptic differential operators of second order (and Markov processes);
see, e.g., Oksendael [106].

(4) Parabolic differential operators (of second order and Markov processes).
An interesting article in this context is Bossy and Champagnat [23].
The abstract of this paper reads: “We present the main concepts of the
theory of Markov processes: transition semigroups, Feller processes, in-
finitesimal generator, Kolmogorov’s backward and forward equations,
and Feller diffusion. We also give several classical examples includ-
ing stochastic differential equations (SDEs) and backward stochastic
differential equations (BSDEs) and describe the links between Markov
processes and parabolic partial differential equations (PDEs). In par-
ticular, we state the Feynman-Kac formula for linear PDEs and BSDEs,
and we give some examples of the correspondence between stochastic
control problems and Hamilton-Jacobi-Bellman (HJB) equations and
between optimal stopping problems and variational inequalities. Sev-
eral examples of financial applications are given to illustrate each of
these results, including European options, Asian options, and Ameri-
can put options.”

(5) Solutions to stochastic differential equations and the corresponding sec-
ond order differential equation (of parabolic type) satisfied by the one-
dimensional distributions.

(6) Backward stochastic differential equations and their viscosity solutions;
see, e.g. Pardoux [109], Van Casteren [147], Boufoussi and Van Cast-
eren [24, 25|, Boufoussi, Van Casteren and Mhardy [26].

(7) Heat equation on a Riemannian manifold. A relevant book in this
context is [59]. For connections with stochastic differential equations
on manifolds see, e.g., Elworthy [52, 53].

(8) Oscillatory integrals and related path integrals. There is a lot of lit-
erature on this subject. Nice papers on this topic are Albeverio and
Mazzucchi [1, 2]. Interesting books are, e.g., Mazzucchi [95], Johnson
and Lapidus [65], and Kleinert [69].

(9) Malliavin calculus, or stochastic calculus of variations, and applica-
tions to regularity properties of integral kernels. For details see e.g.
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(10)

(11)

(12)

(13)

(14)

(15)

Nualart [103, 104]. Other references which contain results on and ap-
plications of Malliavin calculus include: Cruzeiro and Malliavin [36],
Stroock [127, 128, 129, Cruzeiro and Zambrini [37], [38]. Of course
the original work by Malliavin should not be forgotten: [92]. The book
by Bismut [18] combines Malliavin calculus with the theory of large
deviations. For a discussion on Malliavin calculus in relation to Lévy
processes see, e.g., Osswald [108]. A rather elementary approach to
Malliavin calculus can be found in Friz [56]. For application to sto-
chastic differential equations see, e.g., Takeuchi [135]. For applications
of Malliavin calculus to operator semigroups see, e.g., Léandre [83, 84].
For Malliavin calculus without probability theory see [82].

Books and papers with literature on financial mathematics include:
Ledn, Solé, Utzet, and Vives [85], Nualart and Schoutens [105], Malli-
avin and Thalmaier [93], Karatsas and Shreve [66], Gulisashvili [60],
El Karoui and Mazliak [51], El Karoui, Pardoux and Quenez [49], Lim
[87]. Other references include Zhang and Zhou (editors) [155] and
Tsoi, Nualart and Yin [138].

Another interesting subject is “Ergodic theory” and, correspondingly,
invariant measures. We mention some references: Krengel [75], Karlin
and Taylor [67], Meyn and Tweedie [97], Eisner and Nagel [48], Van
Casteren [146], Seidler [119], Goldys [58], [115].

Central limit theorems and related results are also relevant. Again
we mention some references: Bhattaraya and Waymire [15], Nourdin
and Peccati [101], Barbour and Chen [8], Berckmoes, Lowen and Van
Casteren [11, 12, 13, 14], Tao [137], Stein [124, 125], Chen, Goldstein
and Shao [31], Barbour and Hall [9].

Investigate Markov processes with a Polish space as state space: see,
e.g., Sharpe [120], Swart and Winter [134], Van Casteren [146], Bovier
[27].

Discuss and make a careful study of the Skorohod space as described
in Remark 3.40. Try to include applications to convergence properties
of stochastic processes.

Discuss stochastic analysis in the infinite-dimensional context. A nice
and relevant survey paper is [150] written by van Neerven, Veraar and
Weis. A simplified version in Dutch is authored by van Neerven: see
[149].
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submartingale convergence theorem, 158
submartingale of class (DL), 421
super-martingale, 378
supermartingale, 17, 20

Tanaka’s example, 292

terminal reward, 40

terminal stopping time, 18, 24, 83

theorem
1t6 representation, 274
Kolmogorov’s extension, 278
martingale representation, 275
of Arzela-Ascoli, 72, 73
of Bochner, 90, 304, 308

of Doob-Meyer, 20
of Dynkin-Hunt, 397
of Fernique, 221
of Fubini, 199, 330
of Girsanov, 277, 280
of Helly, 334
of Komlos, 409
of Lévy, 253, 270, 290
of Prohorov, 72
of Radon-Nikodym, 290
of Riemann-Lebesgue, 300
of Schefté, 39, 278, 369
of Schoenberg, 314
of Stone-Weierstrass, 301, 305
Skorohod-Dudley-Wichura
representation, 283, 286
time, 11
time change, 19
stochastic, 19
time-dependent Markov process, 200, 203
time-homogeneous process, 11, 29
time-homogeneous transition probability,
25
time-homogenous Markov process, 407
topology of uniform convergence on
compact subsets, 310
tower property of conditional expectation,
5
transient non-symmetric random walk, 57
transient state, 47
transient symmetric random walk, 55
transition function, 119
transition matrix, 51
translation operator, 11, 25, 109, 117,
400, 406
translation variables, 125

uniformly distributed random variable,
394

uniformly integrable family, 5, 6, 20, 39,
369, 388

uniformly integrable martingale, 389

uniformly integrable sequence, 385

unique pathwise solutions to SDE, 244

uniqueness of the Doob-Meyer
decomposition, 417

unitary operator, 340, 342

upcrossing inequality, 156, 157, 383

upcrossing times, 156

upcrossings, 156

vague convergence, 371

vague topology, 310, 334

vaguely continuous convolution semigroup
of measures, 315
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vaguely continuous convolution semigroup
of probability measures, 389, 390

Vasicek model, 204, 210

volatility, 188

von Neumann’s ergodic theorem, 340

Wald’s equation, 36

weak convergence, 325

weak law of large numbers, 75, 340

weak solutions, 264

weak solutions to SDE’s, 244, 277, 280,
288

unique, 265, 292

weak solutions to stochastic differential
equations, 265

weak topology, 310

weak*-topology, 334

weakly compact set, 338, 339

Wiener process, 98
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