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Preface

This volume contains peer-reviewed selected contributions presented at the 9th
biannual meeting of the Classification and Data Analysis Group (CLADAG) of
the Italian Statistical Society that took place in Modena from September 18 to
September 20, 2013. The conference brought together not only theoretical and
applied statisticians working in Italy but also a number of specialists coming from
nine different countries and was attended by more than 180 participants, including
those who participated in a special session for young researchers. The conference
encompassed 122 presentations organised into two plenary talks, two semi-plenary
talks, 11 specialized sessions, 11 contributed sessions, eight coordinate sessions and
a poster session. The main emphasis on the selection of the plenary and semi-
plenary talks and on the call of papers was put on classification, data analysis
and multivariate statistics, to fit the mission of CLADAG. However, many chosen
contributions regarded related areas like machine learning, Markov models, struc-
tural equation models, statistical modelling in economics and finance, education
and social sciences and environment. We would like to express our gratitude to all
members of the Scientific Program and in particular to the Chair of the committee
Francesco Palumbo. We also thank the local organizing committee, the session
organizers, the invited speakers, the chairs and the discussants of all specialized
sessions. We thank the authors of the contributions in this volume and the referees
who spent time in carefully reviewing the papers and giving useful suggestions to
the authors for improving theirs papers. We are largely indebted to the referees and
to everyone who contributed their work to this volume. Finally, we thank Alice
Blank from Springer for the cooperation provided in the publication of this volume.

Modena, Italy Isabella Morlini
Modena, Italy Tommaso Minerva
Roma, Italy Maurizio Vichi

March 2015
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Using the dglars Package to Estimate a Sparse
Generalized Linear Model

Luigi Augugliaro and Angelo M. Mineo

Abstract dglars is a publicly available R package that implements the method
proposed in Augugliaro et al. (J. R. Statist. Soc. B 75(3), 471-498, 2013) developed
to study the sparse structure of a generalized linear model (GLM). This method,
called dgLLARS, is based on a differential geometrical extension of the least angle
regression method. The core of the dglars package consists of two algorithms
implemented in Fortran 90 to efficiently compute the solution curve.

Keywords dgLLARS e Generalized linear models * Sparse models ¢ Variable
selection

1 Introduction

Nowadays, high-dimensional data sets, in which the number of predictors is larger
than the sample size, are becoming more and more common. Modern statistical
methods developed to cope with this problem are usually based on the idea of
using a penalty function to estimate a sparse solution curve embedded in the
parameter space and then to find the point that represents the best compromise
between sparsity and fit of the model. Recent statistical literature has a great
number of contributions devoted to this problem; examples are the L;-penalty
method [8], the SCAD method [5] and the MC+ penalty function [11], among
others.

Differently from the methods cited above, Augugliaro et al. [3] propose a new
approach based on the differential geometrical representation of a generalized
linear model (GLM) which does not require an explicit penalty function. It has
been called differential geometric LARS (dgLARS) because it generalizes the
geometrical ideas underlying the least angle regression [4]. Using the differential
geometric characterization of the classical signed Rao score test statistic, dqgLARS
gains important theoretical properties that are not shared by other methods. From
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a computational point of view, the dgLARS method consists in computing the
curve implicitly defined by a system of non-linear equations. In [3] this problem
is satisfactorily solved by using a predictor—corrector (PC) algorithm, which
however has the drawback of becoming intractable when working with thousands
of predictors, since in the predictor step of this algorithm the number of arithmetic
operations increases as the cube of the number of predictors. To overcome this
problem, in [2], the authors propose a much more efficient cyclic coordinate
descend (ccd) algorithm, which connects the original dgLARS problem with an
iterative reweighted least squares algorithm. In this paper we present the dglars
package, version 1.0.5, which is available under general public licence (GPL-2)
from the Comprehensive R Archive Network (CRAN') at http://CRAN.R-project.
org/package=dglars.

2 Description of the dglars() and dglars.fit() Functions

The dglars package is an R [6] package containing a collection of tools related
to the dgLARS method. The main functions of this package are dglars () and
dglars.fit (). The first one

dglars (formula, family = c("binomial", "poisson"),
data, subset, contrast = NULL, control = list())

is a wrapper function implemented to handle the formula interface usually used in
R to create the N x p-dimensional design matrix X and the N-dimensional response
vector y. These objects, together with the arguments family and control, are
passed to the function dglars. fit ()

dglars.fit (X, y, family = c("binomial", "poisson"),
control = list())

which is the R function used to compute the dgLARS/dglLASSO solution curve.
Although in R the formula interface is the more familiar way to specify the
linear predictor in a GLM, in a high-dimensional setting, this management of the
involved model variables can be computationally inefficient. For this reason we
recommend using the function dglars.fit () directly for simulation studies and
real applications in the cases where p is very large.

As we shall see in more detail in the next section, the solution curve is related
to the tuning parameter y which is equal to the absolute value of the Rao score test
statistic evaluated along the solution curve (see also [3] for its geometric meaning).
From a computational point of view, the parameters used to set up the solution
curve are handled by the argument control which is a named list defined as
follows:

'URL: http://CRAN.R-project.org.
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control = list(algorithm = "pc", method = "dgLASSO",
np = NULL, g0 = NULL, eps = 1.0e-05, nv = NULL,
dg max = 0, nNR = 50, NReps 1.0e-06, ncrct = 50,

cf = 0.5, ncecd = 1.0e+05)

Using the control parameter algorithm it is possible to select the algorithm
used to fit the dgLARS solution curve, i.e., setting algorithm = "pc" (the
default setting) the PC algorithm is used, whereas the ccd algorithm is used
when algorithm = "ccd" is selected. The group of control parameters
method, np, g0 and eps, is composed of those elements that are shared
by the two algorithms. The argument method is used to choose between the
dgLLASSO solution curve (method = "dgLASSO") and the dgLLARS solution
curve (method = "dgLARS"), while np is used to define the maximum number
of points on the solution curve. Since the PC algorithm can compute the step size
by a local approximation [3], the number of effective points of the solution curve
can be significantly smaller than np. In contrast, the ccd algorithm fits the dgLARS
solution curve using a multiplicative grid of np values of the tuning parameter. The
g0 control parameter is used to define the smallest value of the tuning parameter.
By default this parameter is set to 1.0e — 04 when p > N and to 0.05 otherwise.
Finally, eps is used for the test of convergence of the two algorithms. When the PC
algorithm is used, eps is also used to identify a predictor that will be included in
the active set, namely when the absolute value of the corresponding Rao score test
statistic belongs to [y — eps;y + eps].

The group composed by nv, dg_max, nNR, NReps, ncrct and cf contains the
control parameters specific for the PC algorithm. nv is used to define the maximum
number of predictors included in the model, while dg max is used to fix the step
size. Setting dg_max = 0 (default) the PC algorithm uses the local approximation
to compute the y value to evaluate the inclusion or exclusion of a predictor from the
active set. The control parameters nNR and NReps are used to set the number of
steps and to define the convergence of the Newton—Raphson algorithm used in the
corrector step. When the Newton—Raphson algorithm does not converge or when
there exists a predictor such that the absolute value of the corresponding Rao score
test statistic is greater than y + eps, the step size is reduced by the contractor
factor cf, i.e., Ay = Ay-cf, and then the corrector step is repeated. The control
parameter ncrct sets the maximum number of attempts for the corrector step.
Finally, the parameter nccd is used to define the maximum number of steps of the
ccd algorithm.

3 An Example of a Logistic Regression Model

To gain more insight on how to use the main functions of the dglars package, in
this section we study the sparse structure of a logistic regression model applied to
a subset of the breast cancer gene deletion/amplification data set obtained by John
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Bartlett at the Royal Infirmary, Glasgow [10]. The aim of the study is to identify
which genes play a crucial role in the severity of the disease, defined as whether or
not the patient dies as a result of breast cancer. The data set contains 52 samples,
29 of which are labelled as deceased due to breast cancer. For each sample, 287
gene deletion/amplification measurements are available. Missing values are imputed
using the method proposed in [9].

The R code used for this data set is the following:

R> library("dglars")

R> data("breast", package = "dglars")

R> out _dglasso <- dglars(status ~., family = "binomial",
+ data = breast)

In this data set, when status is equal to 0 it means that the patient is not died
of breast cancer, otherwise if status = 1 that patientis died. dglars () returns
an S3 class object called dglars, which is a list containing a matrix named beta
used to store the estimated points of the solution curve, the vector dev of deviances,
the vector g containing the sequence of the used values of the tuning parameter and
the vector df containing the number of non-zero estimated coefficients including
the intercept. By default, dglars () computes the dgLASSO solution curve; the
dgLLARS solution curve can be computed using the control parameter method, i.e.,

R> out_dglars <- dglars(status ~., family = "binomial",
+ data = breast, control = list (method = "dgLARS"))

The method function print .dglars () can be used to print the basic informa-
tion contained in a dglars object, i.e., the call that produced the dglars object
with a five-column table showing the names of predictors included or excluded from
the active set, the sequence of y values used to compute the dgLARS solution curve
and the corresponding deviance and fraction of explained deviance, respectively.
The number of non-zero estimated coefficients is also reported. Next code shows a
part of the output obtained calling the dglars object out dglasso

R> out_dglasso

Call: dglars(formula = status ~., family = "binomial",
data = breast)

Sequence g Dev
3.51858 71.3935 0.00000 1
+SHGC4
2.75502 64.5074 0.09645 2
2.34736 60.3404 0.15482 2
2.17491 58.8377 0.17587 2
2.10563 58.2907 0.18353 2
2.07327 58.0462 0.18695 2
2.05755 57.9298 0.18858 2
2.04980 57.8730 0.18938 2
2.04595 57.8449 0.18977 2
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2.04211 57.8170 0.19016 2

+WI.2389
1.97513 57.1786 0.19911 3
1.97408 57.1688 0.19924 3

+COX2
1.48084 52.2190 0.26857 4
1.46357 52.0736 0.27061 4
0.08483 0.9333 0.98693 31

+PRKCZ

0.05066 0.3308 0.99537 32
0.05000 0.3221 0.99549 32

Algorithm pc ( method = dgLASSO ) with exit = 0

The output shows that at y!) = 3.51858, i.e., the starting value of the Rao score test
statistic, the predictor SHGC4 makes the smallest angle with the tangent residual
vector then it is included in the active set. The predictor WI.2389 is included
in the active set at y® = 2.04211, this means that for any y € [y®;yD)
only the intercept and the coefficient associated to SHGC4 are different from zero;
consequently the number of non-zero estimates is equal to 2. The third predictor
is included at y® = 1.97408, which means that for any y € [p®;y®@) the
number of non-zero estimates is equal to 3. This process goes on until the parameter
y is equal to the control argument g0 which is fixed to 0.05. The estimated
coefficient path can be extracted from the dglars object using the method function
coef.dglars (). More informations about the estimated sequence of models can
be obtained using the method function summary.dglars ()

summary (object, k = c("BIC", "AIC"),
complexity = c("df", "gdf"),
digits = max (3, getOption("digits") - 3), ...)

where object is a fitted dglars object. To choose the best solution point, the R
function summary .dglars () computes the measure of goodness-of-fit

residual deviance + k x complexity, @8
where k is a non-negative value used to weight the complexity of the fitted

model. Using the argument complexity the user can choose between two
different definitions of complexity of a fitted model, i.e., the well-known number of

estimated non-zero coefficients (complexity = "df")and the notion of gener-
alized degrees-of-freedom [3] (complexity = "gdf"). Setting k = "BIC"
and complexity = "df", which are the default values, for definition (1),

the function summary .dglars reports the bayesian information criterion (BIC)
[7]. The akaike information criterion (AIC) [1] can be easily computed setting
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k = "AIC" and complexity = "df".Theusercan also define own measures
of goodness-of-fit setting k as any non-negative value. The following R code shows
that the output printed by summary.dglars () is divided into two different
sections.

R> summary (out dglasso, k = "BIC", complexity = "df")

Call: dglars(formula = status ~ ., family = "binomial",
data = breast)

Sequence g Dev df BIC Rank
3.51858 71.3935 1 75.34 22
+SHGC4
2.75502 64.5074 2 72.41 19
2.34736 60.3404 2 68.24 12
2.17491 58.8377 2 66.74 7
2.10563 58.2907 2 66.19 6
2.07327 58.0462 2 65.95 5
2.05755 57.9298 2 65.83 4
2.04980 57.8730 2 65.78 3
2.04595 57.8449 2 65.75 2
2.04211 57.8170 2 65.72 1 <-
+WI.2389
1.97513 57.1786 3 69.03 14
1.97408 57.1688 3 69.02 13
+C0OX2
1.48084 52.2190 4 68.02 11
1.46357 52.0736 4 67.88 10
0.08483 0.9333 31 123.42 91
+PRKCZ

0.05066 0.3308 32 126.77 135
0.05000 0.3221 32 126.76 134

Best model identified by BIC criterion
(k = 3.951244 and complexity = df ):

v ~ SHGC4
Coefficients:

Int. SHGC4
0.2619 -3.2184
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BIC : 65.72

Algorithm pc ( method = dgLASSO ) with exit = 0

The first part of the output completes the information printed out by
print.default () showing the BIC. The ranking of the estimated models
obtained by this measure of goodness-of-fit is also shown and the corresponding
best model is identified by an arrow on the right. The second section shows the
formula of the identified best model and the corresponding estimated coefficients.
From the previous output we can see that the best model identified by the BIC
criterion is that one with only the predictor SHGC4.

The user can plot the output from the dglars () function using the method
function

plot.dglars(x, k = c("BIC", "AIC"),
complexity = c("df", "gdf"), g.gof = NULL, ...)

where x is a fitted dglars object while the arguments k and complexity are
equal to the arguments of the summary.dglars () function. With the following
R code:

R> out_dglasso <- dglars(status ~., family = "binomial",
+ data = breast, control = list(dg max = 0.1))

R> par (mfrow = c(1, 3))

R> plot (out_dglasso, k = "BIC", complexity = "df")

we first reduce the step size setting the control parameter dg max = 0.1 and then
we plot the output from the dglars.fit () function. As we have done for the
summary.dglars () function, we use the BIC criterion to select the best model.
As shown in Fig. 1, when we fit the dgLLARS solution curve using the PC algorithm,
the plot.dglars () function produces three different plots, namely the plots
showing the sequence of the BIC as a function of y and the plots showing the paths

Model Selection Coefficients Path Rao Score Path

Criterion 2 BIC °
o ; 2 ‘ 2
(] ' L K2l
— ! § 9 E
(4]
3 8 1 2 ° o
- : S 8
' % (%)

o ' e---¢ o
[ = 2 o g
I I T 2! &

0.0 10 20 3.0 o 00 10 20 3.0
Y Y Y

Fig. 1 Plot of the path of the BIC values computed for the estimated logistic regression model,
the coefficient path and the path of the Rao score test statistics
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of the coefficients and of the Rao score test statistics. The last plot is not available
when the dgLARS solution curve is fitted using the ccd algorithm. The values of the
tuning parameter corresponding to a change in the active set are identified by vertical
dashed gray lines, while the optimal value of the tuning parameter y, according to
the BIC, is identified by a black dashed line.

4 Conclusions

In this paper we have described the R package dglars. This package implements
the differential geometric extension of the method proposed in [3]. The core of the
package are two functions implementing a PC algorithm and a ccd algorithm to
compute the dgLARS solution curve. In order to implement these two algorithms
in an efficient way, the main code is written in Fortran 90. The use of the main
functions of the proposed package is shown by means of a logistic regression model.
The output of the functions is presented in a way that is easy to interpret for people
familiar with standard 1m () or glm () output.
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A Depth Function for Geostatistical Functional
Data

Antonio Balzanella and Romano Elvira

Abstract In this paper we introduce a depth measure for geostatistical functional
data. The aim is to provide a tool which allows to get a center-outward ordering of
functional data recorded by sensors placed on a geographic area. Although the topic
of ordering functional data has already been addressed in the literature, no proposal
analyzes the case in which there is a spatial dependence among the curves. With
this aim, we extend a well-known depth measure for functional data by introducing
a new component in the measurement, which accounts for the spatial covariance.
An application of the proposed method to a wide range of simulated cases shows its
effectiveness in discovering a useful ordering of the spatially located curves.

Keywords Depth functions  Functional data ordering * Geostatistical functional
data

1 Introduction

Recently, functional data analysis [4] was extended to the study of geostatistical
functional datasets [1]. In this context, each curve is a sample of a continuous spatial
functional process so that the dataset to analyze is made by units which include a
spatial component (usually in :?) and a functional component.

The interest in the analysis of geostatistical functional data is motivated by
the a priori assumption that spatially near observations tend to be more similar
than spatially far ones, so that there is a spatial dependence to be considered
in the analysis. This assumption finds its application in real-world scenarios
where sensors, located on spatial regions, monitor environmental variables such as
temperature, humidity, and precipitation.

In this context this paper introduces a new depth function whose aim is to provide
a center-outward ordering of curves taking into account the spatial dependence.
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Depth functions are a widely used tool for providing a center-outward ordering
in multivariate data. Their role is to define multivariate analogues of univariate rank
and order statistics via depth-induced “contours” [6].

The definition of the center-outward ordering is carried out by assigning a real
nonnegative and bounded value (depth) to each multivariate data point according
to the rule that the highest depth value is attributed to the most central data point
while the lowest depth is assigned to the least central one. Due to this criterion, the
depth functions are useful tools for identifying a median in the data cloud as well as
outliers, which correspond, respectively, to the data point having the highest depth
and to the data points having the lowest depth value. They are still useful tools for
computing quantile-based statistics such as skewness and kurtosis.

The concept of ordering has been introduced for univariate and multivariate
functional data by several authors. The definitions of depth are mainly based on
two different notions: the first is a generalization of the classical depth, defined on
integrals of univariate depths [2]; the second is a graphical approach, based on the
graphical representation of functions [3]. Following the second definition, based on
the graphic representation, the depth becomes the band depth definition.

The band depth provides a value of depth according to the graphical inclusion
of a curve in the sample of curves. The inclusion of the whole curve inside several
possible bands graphically obtained by the curves is evaluated. The induced order
statistics starts from the most central sample curve (the median) which has the
highest depth and moves outward according to decreasing depth values [2, 3].

This definition of band depth takes into account the whole graph of a curve.
However, it could happen that the graph of a curve is in a band for a proportion
of time. In order to overcome this problem, the modified band depth has been
introduced. In this case, the depth value associated to each curve is obtained by
evaluating the ratio between the portion of curve included in the band and the
temporal interval.

Our proposal is to introduce in the evaluation of the curve centrality the spatial
covariance among the curves. If the analyzed curves are generated by a spatially
stationary and isotropic process, our depth function tends to assign a higher depth
value to curves which are in the center of the spatial region and lower values to the
curves on the boundary. This result finds its main application in contexts where it is
necessary to find a center or the outliers taking into account the spatial location of
the sensor which records the curve.

The paper is organized as follows: Sect.2 provides a formal introduction to
geostatistical functional data; Sect. 3 introduces the details of the proposed method;
Sect. 4 evaluates the proposed method on a wide range of simulated datasets; Sect. 5
gives conclusions and perspectives.
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2  Geostatistical Functional Data

Geostatistical functional data may be defined as curves generated by the spatial
functional process {y, : s € D € R}, where s is a generic data location in a fixed
d-dimensional Euclidean space D C R? with positive volume. We assume to
observe a set of functions at n locations (ys, (1), ..., x5,(#), ..., x5, (1)) fort € T =
[a,b] S Rands; € D, fori = 1,...,n defining the set of functional observations.
Each function is assumed to belong to a Hilbert space. For each ¢, we assume that
the process is a second-order stationary functional random process, which formally
means that the expected value E (y,(-)) and the variance V(x,(-)) do not depend on
the spatial location, that is,

« E(xs(f) =m(t),VieT, seD
o V(xs(t)) =0?(t),YVteT, seD

In addition, we have that

« Cov(yy (1), x5,(1)) = C(h. 1), withh = ||s; — 5;||, V1 € T, ¥V 51,5, € D
o V(s (0) = x5,(10) = y(h.1) = g5 (1), withh = ||s; — s;|, V1 € T, V 51,5, € D

3 A Band Depth for Geostatistical Functional Data

Let (x5, (D). ..., x5;(®), ..., xs,(t)) with t € T = [a, b] € R be a set of geostatistical
functional observations.

We define the notion of depth and modified band depth for geostatistical
functional data by generalizing the band depth for functional data. The spatial
dependence among the curves is thus formalized by the spatial covariance function
which can be considered as a weight on geostatistical functional data.

For all s € D the graph of a function y;, is the subset of the plane G(x;,) =
(15, (0) 1 € T},

The band in )2 obtained by the curves ()(Sil yeens Xfik) is

B(Xsiys-ooAsy) = (ty) 1t €T min (1) Sy, = max (1) )

We define the fraction of bands as the proportion of bands inside several possible
bands that simultaneously are graphically included and spatially correlated with a
curve yj,.

It can be defined as:

Definition 1 (Fraction of Bands) Let J be the number of a set of geostatistical
functional data determining a band, where J > 2 is a fixed value and

B()(sl.l,..., )(xl.j) a band delimited by j geostatistical functional observations
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containing the whole graph of the geostatistical curve y,,. The fraction of bands is

SBi;(xs,-)z(j) Y Yt GG B (ks )} @)

15&‘,‘1 EY,J <n S‘,]

where:

. Z{ }C (hs,./_) is the spatial weight (spatial component)
ij /
e I{A} is the indicator function (functional component)

The spatial component Z{ }C (hs,./_) is the average of the spatial covariances
ij J
C(hs;)) = 1 —y(hy) computed on h;; = s; — s, distances forj = 2,....J. C(hy;) is
normalized respect to their maximum. '
The functional component is defined according to the band depth or modified
band depth for functional data , thus we can have:

« I{G(y,;) CB ( Hsipseees )(xl.j)} the indicator function for the band depth.
e AMA ( Hsipseeos Xs,-j)} a function of proportion.

Following Definition 1 the depth function for geostatistical functional data can
be defined as:

Definition 2 (Depth Function for Geostatistical Functional) LetJ be the number
of a set of geostatistical functional data determining a band, where J is a fixed

value with 0 < J < 2 and B (X‘wl R X‘v,-j) a band delimited by j geostatistical

functional observations containing the whole graph of the geostatistical curve yj,.
Let SB/(xs) be the fraction of bands containing the curve y. The depth for
geostatistical functional data is

J
SBuj(xs) = )_ SB] (3)
j=2

It can be seen as a spatially weighted banddepth for geostatistical functional
data since it considers as a weight the spatial component in the proportion of band
definition. The main characteristics of this function are:

* It provides a measure of the centrality of an observation with respect to a given
geostatistical functional dataset.

* The curves with minor depth are outliers.

* The median function s, is a curve with highest spatially weighted depth. It
corresponds to the curve simultaneously have highest spatial covariance and
which is maximally included in the band. Thus it is such to satisfy:

Mg, = ATMAX(y () 1o ().coon ) SBri (Xsi) S
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It is easy to demonstrate that some of the properties valid for the band depth for
functional data are still valid for band depth for geostatistical functional data. These
are:

* Proposition 1 (Monotonicity). SB is monotone with respect to the center of
symmetry under distributions with symmetric marginal.

* Proposition 2 (Maximality at center). The median curve ms, is the unique
function which maximizes the function 3.

* Proposition 3 (Vanishing at infinity). The band depth for geostatistical functional
data presents good continuity properties.

* Proposition 4. SB is upper-semicontinuous.

4 Evaluations on Simulated Datasets

In order to evaluate the capability of the proposed depth measure, we have
performed an extensive test on simulated data. The test is focused on comparing the
results of our proposal to the outputs provided by the modified band depth in [3].

With this aim, we have generated 18 datasets of spatially dependent curves
according to the setup in [5]. Each dataset is made by 196 curves located at
s1,...,S819¢ which correspond to sites on a grid of size 14 x 14 in the unit square.
Each curve is formed by 50 equally spaced time points in [0, 1].

Given a set of curves (xs (1),..., x5 (1),..., x5, (?) located at s; in R?, for
i =1,...,nand t € T, we assume that a generic curve y,(#) is generated by
the general model: y,,(f) = uy () + €,(t) t € T, with mean p,,(7) and €,(7) be a
Gaussian random field with zero mean and a spatial functional covariance expressed
by C (h,u) = cov { (1), xs;(12)}, for any couple of locations s;, 5; separated by a
spatial distance & = s; — s; and a temporal distance u = t; — 1,.

We have considered three covariance functions in the simulation process:

 Stationary purely spatial covariance function:
Covg(h) = (1 —v)exp (—c|h|) + vI{h = 0} (5)

where ¢ > 0 controls the spatial correlation intensity and v € (0, 1] is the nugget
effect.

* Separable spatiotemporal covariance function:

—1
COUSEP (hv M) = cov {Xs‘i([l)ﬂ Xs‘j(h)} = COUS (h) (1 +a |M|2a) (6)

where u = |t] — 1| is the time span, a > 0 is the scale parameter in time, which
here is fixed to @ = 1 for convenience, and & € [0, 1] controls the strength of the
functional variability.
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* Symmetric but non-separable spatiotemporal covariance function:

¢l
(1 + alul?®)"

Cov (h,u) =

- v
Tr o= § +1—vl{h=0} @)

where the parameter 0 < 8 < 1 controls the degree of non-separability.

Each spatiotemporal covariance function has been used for generating six
datasets, however for space reasons we report and discuss only the results for three
datasets (one for each covariance function).

The first dataset has been generated using the stationary purely spatial covariance
function with a covariance value ¢ = 0.9 and no nugget effect (v = 0). In Fig. 1,
we report the results of the two compared methods.

For each one of the two methods, we have the functional boxplot introduced in
[5], which, similarly to the classical boxplot, provides a graphical representation of
the median, interquartile range, maximum and minimum, as a result of the ordering
induced by the used depth function. We still have a double view of the depth value
assigned to each curve in the dataset corresponding to a spatial location on the
squared grid (the two plots represent a different graphical view of the same data).

By looking at the plots in Fig. 1, we can derive that the proposed method tends
to set higher values of depth at the center of the spatial region while curves located
at the boundary have lower values of depth. This means that on this squared spatial
grid, the depth values assume a dome shape. This effect of the spatial covariance
is higher when the value of the parameter c is higher. We can still observe that our

Depth function for spatially dependent functional data
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Fig. 1 Main results for the Dataset 1 using a stationary purely spatial covariance function
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Fig. 2 Main results for the Dataset 2 using a separable spatiotemporal covariance function

method tends to extend the range of the depth values; in fact, in Fig. 1, the ranges
are [0-57-005] and [0.42-004], respectively, for the spatially dependent depth for
functional data and for the depth for functional data. This is a consequence of the
convex shape of the covariance function.

In Fig. 2, we reports the results for the second dataset which has been generated
using the separable spatiotemporal covariance function with parameters ¢ = 1.5
and o = 0.4.

As before, the proposed depth function provides higher values of depth at the
center of the spatial region and lower values on the boundary; however, the effect
of the weighting scheme produces here a higher impact due to the value of spatial
dependence c. The range is wider, as in the previous case.

The third dataset, whose results are available in Fig. 3, uses a symmetric but non-
separable spatiotemporal covariance function with parameters ¢ = 0.4, § = 0.5,
and o = 0.4. It still confirms the effectiveness of the proposal in giving a higher
depth to spatially central curves; however, due to the curve shape and, so, to a
covariance function which is not convex along the whole domain, the range is not
wider as before.
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Fig. 3 Main results for the Dataset 3 using a symmetric but non-separable spatiotemporal
covariance function

5 Conclusions

In this paper, we have shown how to incorporate the spatial information in the
curves ordering and in the definition of a median curve. From the application on
simulated data we have highlighted that in the central region of the geographic
space the depth is higher than on the boundary. This is an interesting feature from
a geostatistical point of view. Future developments will be the introduction of
directional variograms in order to deal with the covariance structures which change
according to the spatial direction.
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Robust Clustering of EU Banking Data

Jessica Cariboni, Andrea Pagano, Domenico Perrotta, and Francesca Torti

Abstract In this paper we present an application of robust clustering to the
European union (EU) banking system. Banks may differ in several aspects, such as
size, business activities and geographical location. After the latest financial crisis, it
has become of paramount importance for European regulators to identify common
features and issues in the EU banking system and address them in all Member States
(or at least those of the Euro area) in a harmonized manner. A key issue is to identify
using publicly available information those banks more involved in risky activities, in
particular trading, which may need to be restructured to improve the stability of the
whole EU banking sector. In this paper we show how robust clustering can help in
achieving this purpose. In particular we look for a sound method able to clearly cut
the two-dimensional space of trading volumes and their shares over total assets into
two subsets, one containing safe banks and the other the risky ones. The dataset,
built using banks’ balance sheets, includes 245 banks from all EU27 countries, but
Estonia, plus a Norwegian bank. With appropriate parameters, the TCLUST routine
could provide better insight of the data and suggest proper thresholds for regulators.

1 Introduction

The latest financial crisis has driven, and it keeps driving, the scientific community
to develop tools able to address some of the issues which have a clear impact on
financial stability. In this paper we face the issue of classifying bank’s riskiness in
terms of trading activities given that modern banking business models heavily mix
trading and retail businesses (e.g. universal banking model). This relates to the fact
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that lately the European Commission, as well as individual countries such as United
States, United Kingdom, France, Germany, have been working on setting up specific
regulations to separate certain trading activities from retail ones (see [3]), in order
to enhance the stability of the whole banking sectors.

Separation should concern only the riskiest banks, which are heavily engaged in
the riskiest trading activities. This contribution focuses on two specific measures of
trading activities which can be derived from banks’ balance sheets, specifically the
amount of total trading activities (that we will refer to as TradAct) and their relative
share compared to the total assets (TA) portfolio: ShareTradAct = TradAct/TA.

In this context, we have been called to develop an approach to help policy
makers in setting suitable thresholds for dividing the (TradAct, ShareTradAct) two-
dimensional space into two separate zones, one including banks which could be
considered for possible structural separation and the second with the other banks.
In this paper, we propose an approach based on robust clustering methods (see [6—
8]) and a recently proposed use of the bayesian information criterion (BIC). The
monitoring of the BIC gives a solid ground to the choice of the right number of
clusters as well as the most suitable cluster shape. The approach is applied to a
dataset of banks’ balance sheet extracted from the commercial bank data provider
SNL Financial (http://www.snl.com/). The database covers 245 European Union
banks for the years 2006-2011, for which consolidated data have been considered.

Different definitions to estimate the amount of trading activities based on balance
sheet data have been proposed (see [4]). These definitions try to distinguish different
types of trading, e.g. proprietary trading versus market making. The proposed robust
clustering approach is applicable to all definitions.

2 Robust Approach for Clustering SNL Data

A clustering problem like ours is traditionally addressed in the model-based
clustering framework, i.e. with a finite mixture of distributions, where each mixture
component corresponds to a group in the data. A common reference model for the
mixture components is the multivariate Gaussian distribution, estimated using the
EM algorithm in the popular MCLUST [5]. Then, each observation is assigned to
the group to which it is most likely to belong. The determination of the right number
of groups is still today an outstanding unsolved problem, usually approached with
the BIC or AIC criteria.

For our data such models are insufficient, because they do not account for the
presence of outliers, which may occur as noise-like structures or as a small tight
group of observations in specific areas of the space. In both cases, the presence of
outliers can considerably bias the estimation of the centroids and shape (covariance
structure) of the groups and seriously affect the final clustering. For this reason,
we opted for a robust counterpart of the normal mixture modeling known in the
literature as Robust Trimmed Clustering or TCLUST [6, 7]. The robustness capacity
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of TCLUST comes from the trimming approach, i.e. the possibility to leave a
proportion o of observations, hopefully the most outlying ones, unassigned.

The TCLUST approach is defined through the search of k centers my, . .., my and
k shape matrices Uy, ..., Ui solving the double minimization problem:

arg m&n min Z Z(xi - mj)/Uj_l(xi —my) (1)
My, ... Mg j=1,. kxeY
Ui, ..., Uk

where Y C {x1,...,x,} : |Y| = [n(1 — )], i.e. Y ranges on the class of subsets of
size [n(1 — )] within the sample {xi, ..., x,} (being [-] the integer part operator).

The shape matrices U; are covariance matrices of the different groups, which can
handle elliptically contoured clusters and that are properly constrained to restrict the
relative variability among the groups and avoid spurious solutions. For example, to
control the relative group sizes and also the deviation from spherical structures, it is
sufficient to constrain the ratio between the maximum and minimum eigenvalues to
be smaller or equal than a fixed constant. On the other hand, a constraint on the ratio
between the maximum and minimum covariance determinants limits the relative
volumes of the ellipsoids.

An important parameter of any clustering approach is the number of groups %,
which is crucial in our problem. Note that in TCLUST there is also an implicit
extra group to consider, which is the group of the n - @ trimmed observations. In
other words, the choices of k and o in TCLUST are related and should be addressed
simultaneously. With our data we have tested different approaches.

1. The traditional approach used in TCLUST is the so-called classification trimmed
likelihood curves plot [8]. The plot monitors the classification trimmed likeli-
hoods for different applications of TCLUST with varying values of k and «. The
idea is to identify, by visual inspection of the plot, combinations of k and « that
determine an increase of the likelihoods. Unfortunately, in our case, the curves
obtained were difficult to interpret, even after restricting the search to a single
trimming level fixed at « = 0.04, chosen on the basis of prior information on the
problem.

2. The second approach that we tried is based on the Forward Search of [2].
Originally introduced for detecting masked outliers, the Forward Search is not
yet applicable as a fully automatic clustering tool. However, it can be used to
infer k by repeating searches from many different randomly chosen subsets.
The repeated process should reveal the presence of multiple populations as
separated peaks in plots monitoring the trajectory of the values of the minimum
Mahalanobis distance of observations from the data centroids [1]. With our
data, the Forward Search random start plot clearly highlights the presence of
nonhomogeneous data, but distinct peaks corresponding to different groups were
not clearly identifiable.

3. A third natural approach is based on the idea of monitoring the AIC or BIC
criteria for different k values. The same approach can be used to decide on  and



20 J. Cariboni et al.

the restriction factor. In the present work we have fixed « = 3.5 % and we have
monitored BIC values as a function of k and the restriction factor restrfact.

The AIC and BIC are, respectively, given by 2logL + 2m and 2logL +
mlog(n), where log L is the negative of the maximized log-likelihood, n is the
number of observations and m is the number of estimated parameters. If we
neglect the constraints on the covariance matrices, it can be easily seen that the
TCLUST parameters are m = k-p + k-p - (p + 1)/2, where p is the number
of variables. Recently, Gordaliza et al. [9] have derived the effective number of
parameters to be used for penalizing the likelihoods log L when restrictions on
the covariance matrices are adopted in the TCLUST model. In this work we used
successfully this newly introduced approach.

To run the method on our data we used a MATLAB implementation developed
in the framework of the FSDA project! [10]. The original implementation by the
TCLUST authors,? available in R, has been also applied with almost identical
results.

3 Interpretation and Use of the Clusters

In the following, we present results obtained using the tclust routine. In
particular, we use tclust to

1. Detect the existence of multiple groups in the data

2. Select the optimal number of clusters as well as the most suitable value for the
restriction factor via BIC monitoring

3. Identify precisely the clusters

Since the variables are defined on different scales (one is expressed in bil-
lion euros while the others are percentages) to improve the stability of the
statistical analysis we have standardized the data to have mean 0 and standard
deviation 1 (z-scores). By looking at the scatter plot of standardized variables
(TradAct, ShareTradAct) (Fig. 1), one can clearly see the existence of two well-
separated groups. From the scatter plots it is quite evident that the main problem
is identifying clusters in the left-bottom corner whose original values for the
ShareTradAct are very small. Clearly the data are far from the model assumptions
and it is natural to consider some data transformations, e.g. a log-transformation.
The appropriateness of this choice is confirmed by the Forward Search random start
plot in Fig.2. In fact, the plot shows that, independently from the starting subset
that initializes the search, the trajectories of the minimum Mahalanobis distance

I'The toolbox can be downloaded at these web addresses: http://www.riani.it and https:/fsda.jrc.ec.
europa.eu.

2http://cran.r-project.org/web/packages/tclust/index.html, CRAN R-package for TCLUST.
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Fig. 2 Forward Search random start plot on log-transformed data

are within the confidence bands derived for such statistic under null hypothesis.
However, the systematic tendency in the central part of the curve, between steps
80 and 120, indicates the presence of some structure in the data, such as two
overlapping groups.

The monitoring of the BIC criterion, in the form adapted to TCLUST by [9], to
the log-transformed data confirms this point. The right panel of Fig.3 shows the
monitoring of the BIC value (y-axis) for different number of groups (x-axis) and
various values of the TCLUST restriction factor. For a number of restriction factors
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Fig. 3 BIC scores for original data (left panel) and log-transformed data (right panel). The scores
have been monitored for different restriction factor (RF) values

we observe a step when the number of clusters is between 1 and 2. Then, the curves
all increase. This is indication of two groups in the log-transformed data.

On the original data (Fig. 3, left panel), the BIC monitoring suggests a number of
clusters between 5 and 7. In addition, the lower level curves corresponding to larger
restriction factors suggest that elongated elliptical structures are more appropriate
than those closer to the spherical k-means, which corresponds to the restriction
factor 1 at the top of the plot. This is not the case of the log-transformed data,
for which the BIC curves for the different restriction factors overlap considerably.

As expected at this point, TCLUST applied to the log-transformed data produces
two well-defined clusters and only few outliers, as shown in the left panel of
Fig.4. The tclust function as implemented in FSDA was run using a trimming
percentage of 3.5 % and a default restriction factor equal to 50.

From the right panel of Fig.4, one can see the seven clusters and the clear
outlying banks, found in the original data by tcluts. This clustering, from an
operational point of view, is a suitable categorization of the banks with respect to
the shares of trading activities.

The trimming level, set to 3.5 %, has the effect to separate the largest banks from
the rest of the population. This value was triggered by the problem, to address a
limited number of European banks that are so large compared to the others to be
subject to supervision independently by their activities, for the potential impact they
have on the whole system. The obvious alternative to the trimming parameter is to
remove a priori these outlying banks from the analysis. We prefer the trimming
parameter because it can flexibly address unforeseen changes in the banking sector
and, therefore, avoid its periodical manual revision.
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The choice of the restriction factor value is less crucial in our case. Considering
the clusters as ellipsoids, the parameter imposes an upper bound on the ratio between
the major and the minor diameters. By setting it to 50, we allow lot of flexibility
compared to the k-means spherical clusters (that can be obtained with a restriction
factor equal to 1), but, at the same time, we avoid to detect too elongated spurious
clusters.
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4 Conclusions

The aim of the work is to find an efficient and robust procedure to separate safe
banks form risky ones with respect to the volumes and the shares of their trading
activities. Because of the need to only use publicly available data, as in banks’
balance sheet, and because of the heavily mixed business model banks usually use,
it is not easy to set thresholds which can clearly divide the two-dimensional space,
defined by trading volumes and their shares over total assets. The heterogeneity of
the banking network makes the classical clustering algorithms, such as k-means,
unusable.

Instead, we have successfully applied TCLUST and other robust tools available
through the FSDA Matlab toolbox and the TCLUST R-package in CRAN. With
these tools we have been able to give a clear indication on where to draw the
separating line thresholds. More specifically, we have used a semi-automatic tuning
of the parameters in the tcluts routine via a BIC monitoring recently adapted
to TCLUST.? In this way we were able to properly determine the right number of
clusters and the appropriate value for the restriction factor which gives raise to a
clusters’ classification in line with regulators desiderata.

The BIC monitoring, which uses the classification likelihood based on param-
eters estimated using the mixture likelihood, is the key ingredient to choose the
number of the groups. The peculiarity of TCLUST is that the effective number
of estimated parameters depends on the restriction factor, which reduces the space
of the model parameter values. The implementation of the exact derivation of this
dependency, documented in [9] and experimented in this work, will be available in
the tclust . m function of the FSDA MATLAB toolbox (footnote 1).
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Sovereign Risk and Contagion Effects
in the Eurozone: A Bayesian Stochastic
Correlation Model

Roberto Casarin, Marco Tronzano, and Domenico Sartore

Abstract This research proposes a Bayesian multivariate stochastic volatility
(MSV) model to analyze the dynamics of sovereign risk in eurozone CDS markets
during the recent financial crisis. We follow an MCMC approach to parameters
and latent variable estimation and provide evidence of significant volatility shifts in
asset returns, strong simultaneous increases in cross-market correlations, as well as
sharp declines in correlations patterns. Overall, these findings are highly consistent
with various empirical characterizations of contagion put forward in the literature,
allowing us to conclude that the recent financial crisis generated severe contagion
effects in sovereign debt markets of eurozone countries.

Keywords Bayesian methods ¢ Contagion ¢ Credit default swap ¢ Multivariate
stochastic volatility

1 Introduction

Modelling and forecasting contagion between financial markets are crucial issues
for systemic risk analysis and the development of macro-prudential policies for
crisis prevention. The aim of this paper is to investigate the contagion effects in
the eurozone during the latest financial turmoil focusing on sovereign credit default
swap (CDS) spread.

The CDS is a financial instrument ensuring protection against credit risk. The
CDS spread represents the annual cost of this financial instrument, expressed in
basis points with respect to the nominal value of the underlying corporate or
sovereign bond. As widely recognized, CDS spreads accurately reflect market
evaluation about credit risk, thus de facto replacing analogous evaluations obtained
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through rating criteria. Applied research on CDS spreads plays therefore a major
role when evaluating the intensity of an international financial crisis, particularly
as regards the detection of contagion across markets in different countries. The 5-
year maturity for CDS spreads, employed in the present analysis, has been selected
because it closely reflects the typical maturity of a sovereign bond. However, since
CDS are negotiated in OTC markets, data on CDS spreads may also refer to
alternative temporal horizons.

In order to capture both shifts in volatility and correlation we follow [7] and
propose a Bayesian multivariate stochastic volatility (MSV) model (e.g., see [1,
6]) with Markov-switching stochastic volatility and correlation. The correlation and
volatility regimes should identify contagion across markets following the standard
definition of contagion present in the literature (see [5]).

The structure of the paper is as follows. Section 2 introduces the stochastic
correlation model. Section 3 describes briefly the Bayesian inference approach used.
Section 4 presents the results for eurozone sovereign risk. Section 5 concludes.

2 A Markov-Switching Stochastic Correlation Model

Lety, = (1r»...,Ym) € R™ be a vector-valued time series, representing the log-
differences in the CDS rate, h, = (hy, ..., k) € R™ the log-volatility process,
Y, € R"™ x R™ the time-varying covariance matrix, and s, € {0, 1} a two-state
Markov chain. We consider the following Markov-switching stochastic correlation
model (MSSC):

vi = 5%, €1~ Npu(0.1,,). (1)
hl‘ = bS, + BS,ht—l + n[s 77r ~ Nm(os En)s (2)

with e, L 5, Vs,¢, and Ny(p, X) the m-variate normal distribution, with mean
p and covariance matrix X, and b; and B;, i = 0, 1, parameters to be estimated.
The probability law governing s; is P(s, = j|s,-1 = i) = p; with (p; > 0 and
Zj:O,l pij = 1,i = 0,1. As regards the conditional covariance matrix X;, we
assume the decomposition (see [1, 2]):

Et = At‘Ql‘Ah (3)

with A, = diag{exp{hi,/2},...,exp{hn/2}} a diagonal matrix with the log-
volatilities on the main diagonal and £, = Qt_lQ,Qt_1 the stochastic correlation
matrix with O, = (diag{vecd ,})"/* and Q"' ~ W}, (v, Si—|) where

1 _gpn= - _
S =000 " 0=} Tuy(s1.0Dk.

k=0,1
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and Dk, k € {0, 1}, is a sequence of positive definite matrices, which captures the
long-term dependence structure between series in the different regimes and d is a
scalar parameter.

3 Bayesian Inference

Definey = (y},....y7),z = (h,q,s), withh = (h{,... . h}), s = (s,....5%),
and q = (vech(Qp)’, ..., vech(Qr)’)’. The complete-data likelihood function of the
MSSC model is

T

L(y.z|0) o [ ]

=1

—%y,’E,_ly, 1

1 R 1,
Et|l/2 Iznll/z

1
e_jrlz

v—m—1

27 Lu(v/2) S| 2e TGS g

‘p(()i)—sx)(l—sx—l)(l _poo)x,(l—s,fl)pf)rivrfl (1 —1701)(1_S’)S”‘ ,

where I5,(v/2) is the m-variate gamma function and § = (61,65, 6%)’, with 6
in three sub-vectors: 8; = (¢',vech(X,)), with ¢ = vec(P), where @ =
(¢1, ..., dn) has in the columns the vectors ¢; = (boj, b1, (Bojt, - - . Bojm), (Biji,
. sBlJm))/’j =1,....m; 02 = (v, d, VeCh(Do), VeCh(Dl))/; 03 = (poo,pll)/. We
specify the following prior distributions:

¢|27] ~ Nm(Zm-‘rZ) (0, 27] ® 1OIZm-‘,—Z) s EU_I ~ Wm (107 4Im) s

1 _
d~U-1r1), v~ m(\) —m)' " exp {—( — m)} Lin.+00) (V).
D7 ~ W,,(10,0.11,,), pii ~ Uy, i = 0, 1.

The posterior approximation is obtained by Gibbs sampling. Following [1],
the sampler iterates over different blocks of parameters and latent variables. The
iterationj, j = 1, ..., J, of the Gibbs sampler constitutes of the following steps.

sample 8 ~ £(0,10Y7",0Y7" y,zUV), by drawing iteratively from the
following Gaussian and Wishart distributions:

(@12).02,05,5,2) ~ Noiamsr) (1, 2, @ 177) 4)
(277_1|027037ysz) '\’Wm (/127’)_,‘2)5 (5)
with i, = @, 71 = (1042 + Z'2), T, = (1/41, + (H — Z®) (H — Zd))™",

and fi, = 10 + T — (2m + 2), where @ = (ZZ)"'Z’H and ¢ = vec(®) =
(In ® (Z2)7'7)).
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Sample 0% ~ £(0,10'”,0Y7" y,20~D), by sampling iteratively from the
following full conditional distributions. The full conditional of v is

f(V|7d,Do,Dl,01,03,y,Z)

T
o exp { In(v — m)>~! + % In(v) — Tln Fp(v/2) — %UT} Tt (1), (6)

_d_ _d _
where Uy = 3, [dIn|Q}| —In|Q;'| +u (Q,_ﬁQ,“Q,_ﬁQ,“) +In(1Q:))]
+mT In(2) 42 - 10. The full conditional of d is

T
_ _ v _
f(d|V7D07D15017 037ysz) 08 eXp{_d (E Zln|Q1—11|)
=1

1 T4 _ 4
—5tr (Z Qf_lgrlQ,Z_lQ:l)} Ii1.) (). @
t=1

The full conditional distributions of the long-run components D,-, i = 0,1 of the
correlation matrix are
f(D;'v,d, 8,,03,y,7) (8)

fiapi—m—1

- 1 _ - -
o« |Di|” 7 2 exp%—ztr[T_,,]_liDi_l]}g(Di_l), i=0,1,

with i1, = 10 + vy, T35 = 104, + v YL, 07207102y (s1), mi =

Z,T=1 Iy (s,). Sampling from the four full conditional distributions given above is
obtained by Metropolis-Hastings. The proposals are similar to those in [1].

Sample Og‘i) ~f (03|0(1‘i), O;j ), y,zU™D), by simulating iteratively from the full
conditional distributions

f(Piiwl, 0-, 03,y,z) X 8(50)17:-1,-”(1 _pii)nil—i’ 9)

i = 0,1, where g(s0) = pip1o ™/ (Poo + P10)s i = 31— Ly (s0)gy (sim1) i.i €
{0, 1}. In line with approach used in the previous step of the Gibbs sampler, we
apply a M.-H. sampler.

Sample h ~ f(h|0,y, q~D, sV=V). Due to the Markov property of the
process for {h,},, the full conditional distribution of h is

f(hy|6,y,h, h_,q,s)

1
o exp } = te[(hy = puy,) Vi Oy = )] (k). (10)
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where g(h;) = exp {—%tr [e;Et_let]}, 1 =0a,...,0), u, = Tht(En_l(bx,+
Byhy) + B, 7 (hyy — by, )— 31, and Vi = (274 B, Z'B,, )7L

St+1 St+1

We apply a M.-H. with proposal distribution hi*) ~ Nu(iyy, Tie). We proceed
in a similar way for the full conditional distribution of h7. Sampling q? ~
f(q|0?,y, h® s0=D) is obtained by single-move Gibbs sampler with full condi-
tionals

f(Qr_l|07y’h7 Ql-’rlv Qt—lvs)

vtl—m—1

1
o« |2 exp{—ztr [S,‘_HQ,‘I]} g(0). (11

t=1,...,T—1,with
- Cpy_vd = | S ~ e
g@ ™ =lo "7 1ol exp{—ztr(s, 'O+ QA ee AT 000

We apply a M.-H. algorithm with proposal distribution O;'* ~ W,,(ior, Tor),
o = v+ 1and 5" = 57 + QA;'eie] A Q. We proceed in a similar way for
the full conditional of Q7!

Sampling s ~ f(s| 8, y, h?, q'/)) is obtained by generating sequentially
from the full conditional distributions of s, t =1,..., T,

fs:10,y.h,q,5—1,541) o< f(hh—y, 5, 0)f(Q;|Qs—1,5:,0)
S(selsi—1, 0)f (se41ls:, 0). (12)

We apply a global Metropolis-Hastings step with the transition as proposal distribu-
tion.

4 Contagion Effects in the Eurozone

We consider the closing spread for the 5 years CDS on the sovereign debt of the
developed countries in the eurozone. The series are sampled at a daily frequency
for the period 08 August 2008 to 20 June 2012 and for the following countries:
United Kingdom (UK), Cyprus, France, Germany, Greece, Ireland, Italy, Portugal,
Spain (source for Greece is Datastream, for the other countries Bloomberg). Thus
the dataset has 916 observations and nine series.

We study the contagion between three areas. The first one is UK, the second one
is France and Germany (denoted with EU1), and the third one is Cyprus, Greece,
Ireland, Italy, Portugal, and Spain (denoted with EU2). In order to obtain aggregated
CDS indexes we consider an equally weighted average of the country CDS indexes.
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Unit-root test on the series leads us to conclude in favor the non-stationarity. Thus
we consider first differences of the series, which are stationary.

One of the most common empirical regularity usually associated with the
existence of contagion is represented by volatility spillovers, namely simultaneous
increases in the volatility of asset returns across markets (see [3] for a com-
prehensive discussion of alternative definitions of contagion in the literature). A
second well-known empirical characterization of contagion is proposed in [5],
where contagion is defined as a significant increase in cross-market correlation
between asset returns in the aftermath of an (exogenous) crisis event. More recently,
Corsetti et al. [3, 4] have criticized the approach taken in [5] observing that, for
given factor loadings, correlation between asset returns will rise only to the extent
that the variance of the common factor is relatively large with respect to that of
idiosyncratic asset noise. In this perspective, Corsetti et al. [4] argue that correlation
between asset returns will not necessarily rise, if contagion exists, but might also
significantly decrease.

We now interpret the empirical evidence obtained with our Bayesian MSSC
model on the CDS dataset. Focusing on the most common definition of contagion
(volatility spillovers) our results document various shifts from low to high volatility
regimes, evenly distributed along the sample (see stepwise lines in Fig. 1). Since
these volatility shifts are estimated through a MSV model, this evidence is clearly
consistent with the existence of various contagion episodes in CDS markets for
different eurozone areas.

Turning to the characterization of contagion proposed in [5] (significant increase
in cross-market correlations), this empirical regularity is highly supported by our
estimates. As shown in Fig. 1, we document frequent episodes of increases in cross-
market correlations for all pairs of the eurozone areas considered. Most interestingly,
focusing on Greek’s sovereign debt crisis, we find strong evidence of contagion in
the period from May 2010 to October 2011 (as witnessed by frequent and persistent
increases in cross-area correlations and the shifts to the high-volatility regime, see
gray vertical bars in Fig. 1). Actually, as regards this specific period, it is possible to
establish close connections between various contagion episodes and the following
important periods described in the ECB crisis timeline:

e From 23 April to 10 May 2010, the first financial support to Greece takes place.
More specifically, Greece seeks financial support from Euro area countries and
IMF (23 April) and S&P downgrades Greek rating to BB+ (27 April). The 2 May
the first loan package for Greece is agreed and ECB assesses Greek government’s
adjustment programme. ECB supports Greece’s effort for fiscal consolidation
independently of the external rating on the sovereign debt (3 May). Finally from
9 May to 10 May EU aims to boost financial stability and the ECB introduces
the security market programme and the 7 June the European Financial Stability
Facility is established.

e From 28 November to 7 December 2010, the EU-IMF package for Ireland is
agreed. More specifically the 28 November ECB assesses Ireland’s economic
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Fig. 1 Posterior means (solid lines, left axes) and 95 % credibility regions (light gray areas, left
axes) of the correlation £2;. Each figure includes s, (stepwise, right axes). Vertical bars represent
some important periods from the ECB crisis timeline described in the main text

and financial adjustment programme and the 7 December the package for Ireland
is agreed.

From 5 May to 21 July 2011, Portugal and Greece receive financial aids.
More specifically, the 5 May ECB welcomes Portugal’s economic and financial
adjustment programme and the 17 May EU Council approves aid to Portugal.
Statement by EC, ECB, and IMF on Greece the 3 June and on Ireland the 14 July.
The 21 July EU leaders announce in Brussels the second package of financial aid
to Greece.

October 2011 further measures are adopted to preserve financial stability. Among
others, 6 October ECB announces the details of the refinancing operations and
of the second covered bond purchase programme. Then, there is a statement by
EC, ECB, and IMF on the fifth review mission to Greece (11 October) and the
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Enhanced European Financial Stability Facility becomes fully operational (13
October). The 26 and 27 of October the EU leaders agree on additional measures
including new financial aids for Greece.

Finally, turning to [4] critical remarks (strong decreases in cross-market cor-
relations may as well point out the existence of contagion effects) our empirical
evidence is also in line with the above point. Actually, focusing on time-varying
correlation patterns in Fig. 1, many sharp declines are apparent along the sample
period, for all pairs of eurozone CDS markets considered. To sum up, the MSSC
model estimated in the present study provides very strong support for the existence
of contagion effects in the eurozone sovereign CDS markets.

5 Conclusion

This research develops a Bayesian MSV model to analyze the dynamics of sovereign
risk in eurozone CDS markets during the recent financial crisis. This model is
applied to daily CDS spreads from August 2008 to June 2012 for nine eurozone
countries. Empirical estimates document that the recent financial crisis generated
severe contagion effects in the eurozone countries.
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Female Labour Force Participation
and Selection Effect: Southern vs Eastern
European Countries

Rosalia Castellano, Gennaro Punzo, and Antonella Rocca

Abstract The aim of this paper is to explore the main determinants of women’s job
search propensity as well as the mechanism underlying the selection effect across
the four European countries (Italy, Greece, Hungary and Poland) with the lowest
female labour force participation. The potential bias due to the overlap in some
unobserved characteristics is addressed via a bivariate probit model. Significant
selection effects of opposite signs are found for the Greek and Polish labour markets.

Keywords Cross-country analysis ¢ Female labour propensity ¢ Heckman
correction

1 Introduction

Getting through any types of gender gap in labour market appears to be a crucial
matter in contributing to the social progress and economic growth of a country. In
this field, some important aspects are well captured by the increasing trend of female
labour force participation which has been characterizing most European countries
during the last few years. Many factors contributed to the raise in female activity
rates, from the increase in the women’s educational attainment, the change in their
social attitudes and labour market opportunities to the desire of keeping higher
standards of living and the need of economic independence in response to the rise
of the instability of couple relationship [4, 5].

Similarly, a great importance in explaining the increase in female activity rates is
also due to some specific economic traits of labour market functioning [12]. Indeed,
a high local unemployment and lower household incomes could produce the need
to increase the economic resources for their members’ sustenance, while a higher
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degree of labour market rigidity could make difficult for women to reconcile their
work with child and home care.

However, the different dynamics in labour market participation between the
genders, which inevitably reflect social, cultural and economic norms and incen-
tives, and the potential differences in behaviours between working and non-working
women require to deal with important methodological issues. Indeed, the idea of this
work was inspired by some empirical results coming from the analysis of sample
selection effects on female employees based on women’s wage equations tested
over 26 European countries through the Heckman procedure. Lambda coefficients,
consistently significant and negatively signed for each country (except for Norway),
suggest a negative correlation between the error terms of the selection probit and
the primary wage models. It means that unobserved factors, which make labour
participation more likely, tend to be associated with lower potential returns.

In this field, the aim of the paper is twofold. First, it points to explore the
mechanisms underlying the selection effect in women’s job search process across
the European countries with the lowest levels of female participation to labour
market, i.e., two Southern European countries, Italy and Greece, whose economic
dynamics are quite similar, vs two Eastern countries, Hungary and Poland, which
reflect differences in economic characteristics during the years of post-transition.
Second, after a close examination of national socio-economic background and
market labour frameworks, the paper aims at exploring the main determinants of
women’s job search propensity and interpreting cross-country differentials in the
behaviour of women who are actively looking for a job in the light of the main
peculiarities of the potential sample selection effect into occupation.

2 A Socio-Economic Framework

Over the last years, the female employment rate has been rising throughout
Europe, reaching on average 58.2 % in 2007, close to the Lisbon target (60 % in
2010), with an increase of 13.23 percentage points over the decade 1997-2007
(epp.eurostat.ec.europa.eu). However, although the female participation in labour
market has been increasing and the male—female gap has been decreasing (at
European level it has passed from 20 % in 1997 to 14.7 % in 2007), the female
employment rates are still consistently lower than their male counterpart everywhere
with large cross-national differentials. As they say, women are characterized by a
different job-seeking behaviour [10] and, in general, they appear to be less likely
than men to be employed or looking actively for a job. More precisely, the female
labour participation rates still vary from the lowest values of Southern—i.e., Italy
(50.7) and Greece (54.9)—and some Eastern countries—i.e., Hungary (55.1) and
Poland (56.5)—to the highest ones for the well-developed economies of North
Europe—i.e., Iceland (82.7), Sweden (76.8) and Denmark (76.4), against a EU-27
average of 63.2 per cent (epp.eurostat.ec.europa.eu).
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Cross-country differences in the patterns of female labour force and their changes
over time arise from a complex interaction among institutional, cultural and socio-
economic dynamics [9]. Indeed, the regulations of national labour markets in terms
of hiring and firing structure, working-time regulations, the tax and benefit systems,
the more or less restrictive policies for balancing work and family life—which
involve different activities related to paid work and unpaid caring as well as to
social life, personal development and civic participation, the cost and availability
of child and elder care services and human resource management practices of firms
[2]—may also strongly affect the women’s work choices and propensities.

However, although Italy, Greece, Hungary and Poland strongly differ in terms
of labour market flexibility, level of tertiarization of the economy, women’s
participation in higher education programs and social policies, these countries share
low rates of female labour participation. In particular, in Italy and Greece, where
the decline of marriages and the increase of births outside marriage undermined
the male breadwinner model, the transition from care force to workforce has still
weak social supports for childcare. Although a number of interesting family-friendly
schemes were introduced, measures to support women in balancing work and
family responsibilities and in combining work flexibility with a series of rights and
guarantees are not really effective. Indeed, in Greece, the labour flexibility is now
at low levels if compared to the EU-average and the need for new working time
arrangement is often perceived, while in Italy a greater attention has been paying
to reconciliation issues. Nevertheless, attempts to increase flexibility (i.e., part-
time, atypical works, job-sharing, innovative working time arrangements, telework,
supplementary services) have not still reached the desired effects in terms of female
labour force participation and quality of their work. Moreover, the higher levels
of income inequalities and public debts may distract governments from adequate
gender equality policies which are officially in force but not very actively pursued.
As a consequence, in the Greek labour market, the gender gap in employment rates
is the highest one (higher than 25 %) against values lower than 5 % in Finland and
Sweden.

Just like Greece, also Poland and Hungary show the lowest rates of female part-
time and high levels of poverty and unemployment. In these Eastern countries, the
female participation in the labour market and gender pay gaps—which appeared
on the surface like the Nordic countries during the socialist-type regime, whose
policies strongly encouraged women to work—worsened for the period of transition
and the work-life balance was not the main target for their governments. However,
since 2005, Hungarian and Polish Governments, in cooperation with some non-
governmental organizations, have been promoting the idea of the family-friendly
workplace in order to favour the reconciliation of work and family life and some
rules are now adopted on equal treatment and gender discrimination.
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3 Data and Methodology

As widely documented [1, 11, 14], in countries where the female participation in
labour market is still low, there could be problems of sample selection because
working women could be unrepresentative of the entire female population. Indeed,
beyond differences in male and female behaviours in labour market, women who
do not work may differ in some important unmeasured ways (i.e., individual status,
family-specific or socio-cultural background) from women who choose to belong to
labour market and this may even lead to biased estimates of structural parameters
relevant to the behaviour of working women. For example, in the classical wage
equations [13], where the logarithm of earnings is modelled on a set of human
capital variables (i.e., education and labour market experience), it is likely that
women’s earnings are biased because women who are working form a self-selected
(and not a random) sub-sample. The two-stage Heckman procedure [8] is a way
to correct for this selectivity: in the first step, the female labour propensities are
estimated on a set of women'’s characteristics through a probit model which provides
the correction term (A), equal to the inverse of Mill’s ratio, to include as additional
predictor in the regression estimated in the second step.

Our analysis draws upon the 2007 EU-SILC data (European Union-Survey on
Income and Living Conditions) and it is focused on all adult women aged 16-65.
As anticipated above, empirical results of women’s wage equations (Table 1),
estimated over 26 European countries through the Heckman procedure, showed
lambda coefficients significant and negatively signed for each country (except for
Norway):

Table 1 Lambda coefficients over 26 European countries on the Mincerian wage equation. Year
2007

Country A coefficient Country A coefficient
Austria —0.29807** Italy —0.16126™*
Belgium —0.54024** Latvia —0.96101**
Cyprus —0.39348** Lithuania —0.78201**
Czech Republic —0.66854** Luxembourg —0.30978**
Denmark —2.08190** the Netherlands —0.61911**
Estonia —1.20022** Norway 0.09560
Finland —1.05783** Poland —0.59788**
France —0.73739** Portugal —0.31405™*
Germany —0.22876** Slovakia —1.62603**
Greece —0.25662** Slovenia —0.53048**
Hungary —0.57680™* Spain —0.30628**
Iceland —0.76499** Sweden —1.35408**
Ireland —0.65874** the United Kingdom —0.08448*

**Significant at 1 %; *significant at 5 %
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This suggests a negative correlation between the error terms of selection probit
and primary wage models. It means that unobserved factors, which make female
labour force participation more likely, tend to be associated with lower potential
returns.

Exploring 2007 EU-SILC data, the women’s propensity to work (number of
women actively looking for a job on the number of unemployed women) was higher
than 70 % for Greek, Italian and Hungarian women, while just in Poland females’
propensity was lower than their male counterpart. However, current levels of female
participation in labour market strongly affect who is actively looking for a job; thus,
in order to control for the potential overlap in unobserved characteristics influencing
both the women’s propensity to work and their propensity to look actively for a job,
an ML (maximum likelihood) bivariate probit model is estimated [7].

The first probit model estimates the probability that a woman is not occupied:

¥ =X'B+vf (1)

with vf" ~ N(0, CIUZ) and where the latent variable y/™* drives the observed outcome
of not working y; through the following measurement equation:

F L ify*>0

yi = 2)

0, otherwise

Focusing on the subset of women who do not work, the probability of being
actively searching a job is given by

S =Xy + W§+ € A3)

with €/ ~ N(0, 02), including additional covariates (WF) concerning the equival-
ized household income and size, the individual health status and geographical area
of residence. More specifically, W/ is a set of identifying restrictions that could
be significant determinants of the endogeneous variable (to be actively searching
a job), but also orthogonal to the residuals of the main equation [7], which is
not significantly associated with the probability of being not occupied. SF* drives
the observed outcome of being actively searching a job through the following
measurement equation:

sp—{lisee0 @
0, otherwise

In this way, the potential for unobserved heterogeneity that could produce a
correlation between error terms of the two probit models is considered. Therefore,
not only the true effects of searching a job but also the effect on professional
condition of having these unobservable characteristics are captured [6]. If the error
terms v; and ¢;, jointly distributed as bivariate normal with zero means and unit
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variances, are significantly and positively correlated (p > 0), unobserved factors
increase both the probability of being a not-occupied female and looking for a job;
for significantly negative p, the reverse is true, while not significant p shows the
absence of selection effect and the equivalence of using the bivariate or two separate
probit models.

4 Main Empirical Evidence

By justifying the bivariate probit model in the effort to limit the risk of selection
bias, it allows to estimate the probability of the event to be actively searching for a
job upon the condition to be unemployed.

Using Stata software, several explanatory variables are tested according to
a stepwise procedure. A first set of covariates detects some socio-demographic
characteristics at individual (i.e., marital status, educational attainment, age, health
status) and household level (i.e., dependent children, household income and compo-
sition), while a second set includes location characteristics of each respondent (i.e.,
area of residence and urbanization degree) in order to explore the role of territorial
perspective in the women'’s job search propensity.

Significant selection effects of opposite signs are found for Greece and Poland
(Table 2), while in Italian and Hungarian labour markets the non-sample selection
could derive from a lack of link between the mechanisms of job search and the
status of unemployed. In this light, the significance of lambda coefficients for the
Heckman correction in the women’s wage equations could denote a sample selection
which exclusively involves women who do not participate at all to labour force. The
harsh Greek scenario and the difficulties to find a job drive both the propensity of
being not occupied and negatively the propensity of actively seeking employment.
In Poland, the unmeasured factors associated to a lower propensity to search a job
act in the opposite direction. While in all countries a higher female propensity to
work concerns families where more members are already occupied, just in Poland,
the women’s job search propensity appears to be not linked to financial household
problems or marital status; anyway, Polish high-educated women are less likely to
be looking for a job. Finally, although sub-national differences occur (women living
in the North—West or Centre of Italy and in the North of Hungary are more likely to
be actively searching), the presence of children discourages women to be active in
the labour market everywhere.

As the classical human capital theory suggests [3, 13, 15] and consistent with
other empirical studies [16, 17], our results emphasize the crucial role of education
and age in determining both the propensity to work and the propensity to search a
job. Indeed, a higher educational attainment significantly increases the job search
propensity everywhere; job search is expected to pay more educated females off
more than the less educated ones, while younger women are usually more active in
search. Certainly, the latter is a negative effect which leads older women to decrease
their search effort because of discouragement.
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Table 2 Bivariate probit estimates of not working and actively searching a job for females

Variables ‘ Italy ‘ Greece ‘ Hungary ‘ Poland
Actively searching for a job

Intercept | —1.2127%%F | —1.7942%%* | —1.4347%% | —13072%**
Age class (ref: 16-24 years)

—Younger [25-40 years] 0.3672%** 0.4762%** —0.3924* 0.4272%**
—Older [41-65 years] —0.4022*** | —0.0109*** |0.9193* —0.2661***
Marital status (1 if married) —0.3349™*** | —0.5128*** | —0.2277** 0.0395
Children (1 if with children) —0.3355*** | —0.6085*** | —0.2834** —0.4220™**
Urbanization degree (1 if densely) | —0.0576 —0.0773 0.0446 0.0786
Educational attainment (ref: low)

—Medium (ISCED97: 3:4) 0.2387*** 0.4134%** 0.2798*** 0.5373%**
—High (ISCED97: 5) 0.6332%*** 1.1202%** 0.6385*** —0.2661***
Ratio* 0.2999 1.8186*** 1.0821** 0.4861*
Health (1 if chronic) —0.0598 —0.0731 0.7179*** —0.3056™**
Equivalized household income —2.2E—5*** | =2.5E—5*** | —0.0002*** | —4.19E—5
Equivalized household size 0.1588*** 0.2206™*** 0.1319** 0.0952**
Geographical area (NUTS)®

—Area 1 0.2062* 0.2018 —0.2331** —0.0181
—Area 2 0.1085 0.0279 —0.1726** —0.2322°%**
—Area 3 0.1532* 0.0658 - —0.0186
—Area 4 —0.0891 - - —0.0837
—Area 5 - - - 0.0569

Not working

Intercept 3.5105*** 3.5638*** 3.8445%** 3.2892%***
Age (years) —0.0092*** | —0.0115*** | —0.0140*** | —0.0016
Marital status (1 if married) 0.0962** 0.0677 —0.2143*** | —0.3350™**
Children (1 if with children) 0.5082%*** 0.4875%** 0.4473%** 0.2833%**
Urbanization degree (1 if densely) | 0.1256™** 0.1002** 0.0352 0.0871***
Educational attainment (ref: low)

—Medium (ISCED97: 3;4) —04432%** | —0.4274*** | —0.5901*** | —0.8561***
—High (ISCED97: 5) —0.9438*** | —0.9553*** | —0.9686™*** | —1.4804***
Ratio™ —4.4691%** | —4.3516*** | —4.30451*** | —3.5013***
Wald 2 429.33 317.55 188.26 313.94
Correlation (p) —0.2390 0.6858** 0.1859 —0.3482**

***Significant at 1 %; **significant at 5 %; *significant at 10 %

#(number of wage earners—1)/(number of household members)

PNUTSI codes: Italy: 1 North-West, 2 North-East, 3 Centre, 4 South (ref.: Isles); Greece:
1 Voreia, 2 Kentriki, 3 Attiki (ref.: Nisia Aigaiou, Kriti); Hungary: 1 Central, 2 Transdanubia (ref.:
Greath Plain and North); Poland: 1 Centralny, 2 Poludniowy, 3 Wschodni, 4 Polnocno-Zachodni,
5 Poludniowo-Zachodni (ref.: Polnocny)
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5 Conclusions

The growth of female labour force participation is a feasible channel for increasing
per capita GDP and, in turn, for narrowing the gender gaps. This is of great
importance, mainly in recent years characterized by a reduced economic growth
even for the most developed European countries. The emphasis of EU institutions
on economic and social policies devised to support gender equality and innovative
forms of work organization and legislation produced a further increase in the female
labour force participation, driving national governments on the definition of various
measures for reconciling work and family life.

However, substantial cross-national differences in the levels of female partici-
pation in the labour market still persist. In this light, in Europe, the well-known
contraposition between the most developed Northern economies, on the one side,
and the Southern and Eastern countries, on the other one, whose economic growth
is obstructed by socio-economic problems, is too much simplistic and lacking of
significance in explaining these differentials.

In this paper, as regards countries with the lowest female participation rates, an
in-depth analysis of determinants of women’s job search activity has been carried
out taking into account the specific economic framework and the influence of
household composition. Indeed, institutions surely play a crucial role in stimulating
the women’s participation in the labour market through initiatives increasing
flexibility or different kinds of employment and labour tax policies, although the
decision to be active in the labour market is also strongly affected by the choices in
education and fertility.

The analysis has shown a significant selection effect only for Greece and Poland.
In particular, in Greece, the negative sign of selection effect could highlight a strong
influence of financial problems and high levels of unemployment in female propen-
sity of actively looking for a job; on the other side, Polish women seem to be driven
in their decisions in finding a job by opposite factors. In Italy and Hungary, higher
levels of unemployment, the weak diffusion of part-time and the persistence of the
male breadwinner model don’t let emerge any predominant aspect; indeed, in these
countries, even if some programs for reconciling motherhood with professional
career are in force, they are not actively pursued and the burden of childbearing
is still often left to the family.

Furthermore, having children seems to be a problem even now because it still
negatively affects the propensity to search a job, probably due to unsuccessful
mix of conciliation policies. Some other common factors across countries are also
identified, such as the direct relationship between educational level and propensity
to work. However, although women’s work propensity should be higher in countries
where effective social policies aimed primarily to reconciling motherhood with
professional life are in force, the macroeconomic scenario and the strictness of
labour market institutions may negatively affect their participation.
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Asymptotics in Survey Sampling for High
Entropy Sampling Designs

Pier Luigi Conti and Daniela Marella

Abstract The aim of the paper is to establish asymptotics in sampling finite pop-
ulations. Asymptotic results are first established for an analogous of the empirical
process based on the Héjek estimator of the population distribution function and
then extended to Hadamard-differentiable functions. As an application, asymptotic
normality of estimated quantiles is provided.

Keywords Empirical processes * Hajek estimator ¢ Quantiles ¢ Sampling design

1 Introductory Aspects

Asymptotic results in sampling finite populations are widely used in different
contexts. All results are concerned with the asymptotic normality of (usually linear)
statistics, under different conditions and sampling plans. Among several papers
devoted to this subject, in [15] asymptotic properties of L-statistics are obtained
under stratified two-stage sampling. In [8] asymptotic properties for the Horvitz—
Thompson estimator under rejective sampling are obtained; extensions to different
sampling designs are in [1, 19]. In [7] the estimation of the population distribution
function and quantiles is studied in case of a stratified cluster sampling. Clusters
are selected from each stratum without replacement and with equal inclusion
probabilities. Similar results are obtained in [15]. In [10] estimators based of
auxiliary variables are introduced and carefully studied. Estimators of the population
distribution function based on calibration are in [3, 11].

All the above mentioned papers (and several others, as well) focus on the problem
of estimating the population distribution function (p.f.d.) or quantiles at a single
point, or at a finite number of points. In this paper the main interest consists in
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estimating the whole p.d.f. or quantile function. This requires the construction of
an “infinite dimensional” asymptotic theory for sampling finite populations that
parallels, as far as possible, the classical theory of nonparametric statistics. For
the important class of “high entropy” sampling designs, similarities and differences
between finite populations results and classical nonparametrics will be discussed.
The paper is organized as follows. In Sect.2 the main technical aspects and the
basic assumptions on which the present paper relies are briefly introduced. In
Sect. 3 asymptotic results for the estimation of population distribution function are
first established and then extended to Hadamard-differentiable functions (4). As an
application, in Sect. 5 the problem of quantile function estimation is dealt with.

2 Notations and Assumptions

Let %y be a finite population of N units, labeled by integers 1, ..., N. Let ¥ be the
variable of interest and for each unit i, denote by y; the valueof Y (i = 1, ..., N).
Let furtheryy = (y1, ..., ,yn). For eachreal y, the population distribution function
(p.d.f., for short) is defined as

N

1
Fv0) = 5 D sy yER, (1
i=1
where
lify, <y .
I(yiSy) = {Oify- >y’ i=1....N.

Now, for each unit i in %y, define a Bernoulli random variable (r.v.) D;, such
that the unit i is included in the sample if and only if (iff) D; = 1, and let Dy
be the N-dimensional vector of components Dy, ..., Dy. A (unordered, without
replacement) sampling design P is the probability distribution of Dy. In particular,
7; = Ep[D;] is the inclusion probability of unit i. The suffix P denotes the sampling
design used to select population units. The sample size is ny = D; + -+ + Dy. A
sampling design is of fixed size n iff ny = n for each sample.

Letpy, ..., py be N real numbers, with p; 4 - - - 4+ py = n. The sampling design
is a Poisson design with parameters py, ..., py if the r.v.s D;s are independent with
Prp,(D; = 1) = p; for each unit i, the suffix Po denoting the Poisson design.

The rejective sampling or normalized conditional Poisson sampling [8, 17]
corresponds to the probability distribution of the random vector Dy, under Poisson
design, conditionally on n; = n.
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The Hellinger distance between a sampling design P and the rejective design Pg
is defined as

du(P. Pr) = ) (JPrP<DN)—¢PrPR(DN))2- )

Dy, ....Dy

The class of sampling designs we focus on do have a fundamental property: they
asymptotically behave as the rejective sampling. More precisely, such a property is
ensured by the assumptions listed below.

Al. (%y; N > 1) is a sequence of finite populations of increasing size N.

A2. For each N, yj, ..., yy are realizations of a superpopulation (Yi, ..., Yy)
composed by i.i.d. r.v.s ¥; with common d.f. F. In the sequel, we will denote by
PP the probability distribution of r.v.s ¥;s and by [E, V the corresponding operators
of mean and variance, respectively.

A3. For each population %y, sample units are selected according to a fixed size
sample design with inclusion probabilities ry, . . ., my and sample size n = m; +
-+ + my. Furthermore, ford > 0,0 < f < 1,

N
1
dy =Y m(l—m) > oo, ~dy—d. Nli)ngo%:f as N — oo.
i=1

A4. For each population (Zy; N > 1), let Pg be the rejective sampling design
with inclusion probabilities 7y, ..., my, and let P be the actual sampling design
(having the same inclusion probabilities). Then

dg(P, Pr) > 0 as N — oo.

AS. There exist two positive real numbers A, B such that

3 Estimation of the Population Distribution Function

The estimation of the p.d.f. (1) is an important problem in sampling finite popula-
tions. The simplest estimator is the Horvitz—Thompson estimator, given by

N
. 1 X Dilly<y
Fur(y) = N E —U'S})-

i=1

3)

T
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Since Fyr(400) # 1 with positive probability, the estimator (3) is not necessarily
a proper distribution function. For this reason, we consider here the Héjek estimator
of F, N

N1 ~
2=t wDilyi<y  Fur(y)
YL =D Frr(+00)

i=1 7

Fu(y) = 4

which is actually a proper distribution function. Note that if the sampling design
is simple random sampling (srs, for short), both the Horvitz—Thompson and Héjek
estimator reduce to the empirical distribution function F,, given by

A 1
Fp = n ZDiI(yfsy)- ®)

Our main goal is to study the asymptotic “global” behaviour of the random
function Fg(-). In order to accomplish this, we define the (sequence of) random
function(s)

Wi () = Vn(Fy(y) —Fy()). yeR; N> 1. (6)

The main result of the present section is Proposition 1. A proof is in [4].

Proposition 1 If the sampling design P satisfies assumptions AI-AS, with
P-probability 1, conditionally on yy the sequence (WH(-); N > 1) converges
weakly, in D[—o0, 400] equipped with the Skorokhod topology, to a Gaussian
process WH(-) = (WH(y); y € R) that can be represented as

Wi (y) = V(A - 1DBF@)), y € R, (7

where (B(t); 0 <t < 1) is a Brownian bridge.

In classical nonparametric statistics, the empirical process \/ﬁ(l:" () — F(y))
converges weakly to a Gaussian process of the form B(F(y)). This result is
apparently similar to Proposition 1, with two differences:

1. The centering factor F instead of Fy.

2. The absence of the finite population correction term f(A — 1), since in classical
nonparametric statistics the observations are (realizations of) i.i.d. r.v.s, and there
is essentially no sampling design.

The results can be particularized to the case of srs of size n. As previously said,
in this case the Hajek estimator reduces to the empirical distribution function (5)
and the limiting process can be written as

VI=fB(F(®)), yeR ®)

where the term /1 — f is the finite population correction.
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The asymptotic result of Proposition 1 is obtained conditionally to the population
values yy; the expression “with P-probability 1” means that the set of sequences
(yi; i > 1) for which Proposition 1 fails does have probability zero.

It is important to stress that the probability involved in Proposition 1 is only
the sample design probability. In other words, the only source of variability is the
sampling design. Proposition 1 refers to design-based inference, where the values
y;s are considered as fixed. In other words, the role played by the superpopulation
model of assumption A2 is of secondary importance.

4 Asymptotics for Hadamard Differentiable Functions

The goal of the present section is to extend the result of Proposition 1 to population
parameters more general than the p.d.f. Let Oy = ¢(Fy) be a general functional
of the p.d.f. F. Using the ideas of Sect.3, it is “natural” to refer the estimator
éH = qb(ﬁ u). In order to study its asymptotic behaviour, let us first re-scale the
estimator itself by considering the sequence

V(B — Oy) = Jn(p(Fu) — $(Fy)). ©9)

If the functional ¢(-) is “smooth enough”, it is fairly natural to expect that the
asymptotic behaviour of (9) can be obtained by Proposition 1. The smoothness
condition on ¢(-) that proves useful in this case is its Hadamard differentiability
(cf. [18]). A map ¢(-) : D[—o0, +00] — E, E being an appropriate normed space,
is Hadamard differentiable at the “point” G, with Hadamard derivative ¢(-), iff
there exists a continuous, linear map ¢’ : D[—o00, +00] — E such that

-0
E

hy) — ,
Hmowg G _ 4 )

ast | 0, h, — h, || ||z being the norm on the vector space E.
Using the well-known functional delta method (cf. [18]), the following result is
obtained.

Proposition 2 If ¢(-) is (continuously) Hadamard-differentiable at F, with
Hadamard derivative ¢.(-), then the asymptotic law of /n(¢(Fu) — ¢(Fy))
coincides with the asymptotic law of ¢>}(WH ), as N increases.

In particular, if ¢ is real-valued, since ¢ (-) is linear and W is a Gaussian
process, the law of ¢.(W) is normal with mean zero and variance

1

N
D;
of = E[gp(W?] ~ */Wﬁ > w0, (10)
i=1
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where t7(yi) = ¢y, +00)() — F()) is the influence function of 0. If 0.(-) is
continuous in F, then tr(y;) can be approximated by

Tp, 00) = 6 Uy, +o0) () — Fu(),

so that the following estimator of the (asymptotic) variance (10) is obtained:

N N
‘A/YG = _Nl Z Z ij (TFH fﬁﬁ(yj))z D];DJ (1

y

As an application of Proposition 2 the asymptotic normality of estimated
quantiles will be proved in the next section.

5 Quantile Estimation

In survey sampling the estimation of the population distribution function is an
important problem, for several reasons. Even more important is the estimation of the
population quantiles, because of the increasing demand of statistical data regarding
poverty and inequality. Poverty and inequality measures are generally functions of
(possibly cumulated) quantile estimates of the income or expenditure distribution.

The aim of this section is to study the problem of estimating the quantile function
Op. The knowledge of the p.d.f. is essentially equivalent to the knowledge of the
population quantile function (pqf, for short).

Foreach 0 < p < 1, the pth population quantile Qn(p), say, is the left-continuous
inverse of Fy computed at point p. In symbols:

On(p) = Fy'(p) = infly: Fx(y) >p}, 0<p<1. (12)

From (1) and (12) there is clearly a one-to-one map between Fy and Qy, so that the
estimation of Qy is strictly related to the estimation of Fy.

The estimation of the p.d.f. Fy(y) and the p.q.f. On(p) has been considered
in several papers. In [20] confidence intervals for quantiles based on inverting
confidence intervals for the p.d.f. are considered. In [12, 13], confidence intervals are
studied for different sampling designs of interest (e.g. simple random sampling and
stratified sampling). An interesting simulation study showing the (good) properties
of Woodruff’s confidence intervals is in [16]. In [9] the problem of estimating the
p.d.f. Fy and the population median Qy(1/2) for general sampling designs with
unequal first-order inclusion probabilities is dealt with.

The paper [7] is devoted to the estimation of the p.d.f. and quantiles in case of
a stratified cluster sampling, where clusters are selected from each stratum without
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replacement and with equal inclusion probabilities. Asymptotic results are obtained
under appropriate regularity conditions. Similar results are in [15].

Asymptotic properties of the sample quantiles under simple random sampling
without replacement (srs, for short) are studied in [2].

In order to estimate the population quantile function the basic idea consists in
inverting the Héjek estimator of the p.d.f. Fy. More specifically the pth quantile
On(p) is estimated by

Ou(p) = F'(p) = infly : Fu(y) > p} (13)

with0 <p < 1.

If the sampling design is the simple random sampling (srs, for short), the
estimator QH (p) reduces to the usual sample pth quantile. As previously stressed, for
the p.d.f. Fy, our aim is to study the large sample behaviour of the whole estimated
quantile function, that is the asymptotic behaviour of the estimator QH(p), as n,
N increase. In order to accomplish this, we will study the large sample behaviour
of the whole estimated quantile function Ou() = (QH(p), € <p<1-e¢)),for
positive €. This is of course equivalent to study the behaviour of the random process
TH() = (TH(p); € <p < 1—e), with

T8 (p) = Vn(Qu(p) — On(p)). (14)

The random function 7% (-) is essentially the “finite population version” of the
quantile process, which is of primary importance in nonparametric statistics (cf.
[5, 6]). Its asymptotic behaviour can be obtained as a simple consequence of
Proposition 2. In fact, if F is continuously differentiable with non-null derivative
v(y) = dF(y)/dy, it is then easy to see (cf. Lemma 21.4 in [18]) that the
quantile function is differentiable at F" and that its Hadamard derivative is the map
h+— —h/¥(Q(-)). As a consequence, the following result holds.

Proposition 3 Suppose that F is continuously differentiable with derivative Y (y) =
dF(y)/dy. Then, the sequence of random processes TII\? () = (Vn(Qulp) —
Ov(p)); € < p < 1 —€) converges weakly, in D]e, 1 — €] equipped with the
Skorokhod topology, to a Gaussian process T"(-) = (T?(p); e < p < 1 —¢)
that can be represented as

H — — B—(p) <p<]—
T"(p) = Vf(A l)w(Q(p)), e<p=<l—g (15)

where B(p) is a Brownian bridge.
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_ In particular, Proposition 3 shows that conditionally on yy the estimator On ) =
F3;'(p) is asymptotically normal with mean Qy(p) and variance n~'f(A — 1)p(1 —

p)/¥(Q(p))*. In symbols:

Prr (Vr(Qu(p) = On(p)) < 2| yv) >

(,/f(A—l vp((Q(p)) )asN,n—)oo, (16)

where @ is the standard normal d.f. and Prp(-|yy) denotes the probability w.r.t.
the sampling design, given the y;s values of the N population units. This result is
similar to the case of i.i.d. observations (cf. [14]), apart from the presence of the
term f(A — 1). Intuitively speaking, this term represents the effect of the sampling
design, i.e. a sort of “design effect” w.r.t. the standard case of i.i.d. observations.

6 Conclusions

In this paper the problem of estimating the d.f. Fy and functionals of Fy of a finite
population is dealt with. Attention is focused on point estimation and asymptotic
results are obtained for the class of high entropy designs. As application the
asymptotic normality of estimated quantiles has been proved.

Further developments could regard the analysis of how asymptotic results change
when the relationship between the variable of interest and the design variables is
explicitly taken into account.
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A Note on the Use of Recursive Partitioning
in Causal Inference

Claudio Conversano, Massimo Cannas, and Francesco Mola

Abstract A tree-based approach for identification of a balanced group of obser-
vations in causal inference studies is presented. The method uses an algorithm
based on a multidimensional balance measure criterion applied to the values of the
covariates to recursively split the data. Starting from an ad-hoc resampling scheme,
observations are finally partitioned in subsets characterized by different degrees
of homogeneity, and causal inference is carried out on the most homogeneous
subgroups.

Keywords Average treatment effect * Balancing recursive partitioning ¢ Regres-
sion trees * Resampling

1 Introduction

In experimental studies about the estimation of the effect of a treatment on a set of
individuals the randomization of treatment assignment implies that the treated and
control groups are balanced with respect to observed and unobserved covariates.
Thus, unbiased estimators of causal effects can be obtained via simple comparison
of the outcome variable across treated and control units. On the other hand, in
observational studies the treated and control groups may have different distributions,
so that the simple mean difference of the outcome between the two groups cannot be
attributed solely to the treatment . In these situations a simple comparison may give
a biased estimate. However, under suitable conditions [2, 4], unbiased estimates
of treatment effects can be obtained after balancing the distribution of covariates
across treated and control units. Matching methods are useful to identify similar
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observations and for this reason they have been suggested for achieving balance.
Matching requires that the covariate distributions of treated and control units share a
common support of values otherwise (i.e., in case of lack of overlap) the comparison
is not possible. The identification of the common support can be done together with
matching (e.g., imposing a minimum distance for two units to be matched together)
or before matching (e.g., by restricting the analysis to those units that are considered
to belong to the common support). In the latter case the common support must be
identified prior to matching, and various methods are available [3].

A hybrid approach to matching, and common support identification called
random recursive partitioning (RRP) has been introduced in [3]. RRP defines, at
each iteration, a random partition of the covariate space by growing regression trees
with fictitious outcome Z ~ U(0, 1). Each random partition yields a proximity
matrix whose elements can be used to weight the difference of the outcome variable
across treated and untreated units. By a suitable choice of a tuning parameter RRP
can also be used to select a subset of observations belonging to the common support.
Analyzing the data used in [1], RRP shows that both weighted estimators and
estimators based on a selected subset of treated and control units provide reasonable
results in comparison with traditional methods. In addition, it seems that the subsets
selected through RRP have better covariate balance than the unselected ones.

In this paper a different approach based on recursive partitioning is proposed. It
exploits a balancing property of tree-based methods by growing a sequence of trees
on resampled versions of the original data. The aim of tree growing is to balance
the set of covariates by means of a splitting criterion based on a multidimensional
balancing measure. The resampling scheme uses a certain number of samples, and
the tree obtained from each of these, to assign more sampling weight to the units
belonging to the most homogeneous terminal nodes. As in RRP, the final proximity
matrix can be used either to obtain causal estimates or to identify the common
support. Since the proposed approach is mainly aimed at balancing covariates by
using recursive partitioning, we name it balancing recursive partitioning (BaRPa).

The main features of BaRPa are described in Sect. 2, whereas Sects.3 and 4
report the results of a simulation study and some concluding remarks.

2 Balancing Recursive Partitioning

Given an outcome variable Y, a set of covariates X; (j = 1,...,p), and a treatment
variable T observed on N cases, BaRPa can be applied in all the situations in which
the assignment mechanism of the treatment variable 7 is such that the conditional
distribution of X;|T = 0 differs from the conditional distribution X;|T = 1 for
at least one j. In this framework, the basic idea supporting the implementation
of BaRPa is that the balance of X|T on the basis of the set of covariates X; and
the treatment variable 7' can be obtained in a recursive manner. Specifically, it is
possible to exploit the capability of one of the X;|T in improving the balance of the
whole set of covariates. BaRPa tries to obtain this balancing in a recursive way: data



A Note on the Use of Recursive Partitioning in Causal Inference 57

are partitioned by selecting a splitting covariate and its associated split point that
minimizes the global imbalance of the set of covariates in at least one of the two
resulting child nodes. As in [3], BaRPa allows us to estimate a proximity matrix
which measures how close is a treated unit with all the untreated ones: this matrix
is obtained by growing a tree on resampled subsets of the original data.

BaRPa can also be used to identify a subset of matched observations for which
balance in covariate distribution holds. To this aim, BaRPa is orientated towards
the search of a (possibly small) subset of observations whose covariate distribution
is, on average, more balanced than the original distribution observed on the whole
dataset. The balanced subset is detected in the first iteration (i.e., after growing the
first tree). Resampling subsets of observations helps to assess if this detection was
obtained by chance or if it really identifies a balanced subset.

2.1 Main Steps of BaRPa

1. Tree growing. A binary recursive partitioning of data is performed in order to
identify subregions of the covariate space in which the distributions of each X;|T =
0 and its corresponding X;|T = 1 are more balanced. Node splitting is based on
the idea that a node is split if either the right or the left child node is more balanced
than the parent node. BaRPa uses the average standardized absolute mean difference
(ASAM) to split a node: It searches the splitting covariate X} and its associated split
pointx; that minimize the average ASAM of all the covariates in the left child node,
as well as the splitting covariate X and its associated split point xj that minimize
the average ASAM of all the covariates in the right child node. The split point (x]
or xy) is the one providing the maximum decrease in imbalance (compared to the
value of the same measure calculated in the parent node).

The tree growing process proceeds until all current terminal nodes cannot be split
since they do not provide any improvement in the imbalance of any X;|7'. In addition,
the user can specify, as stopping criterion, a minimum number (ni,) of treated and
control units to split a node.

2. Subset selection and weights updating. Once that a tree has been grown, BaRPa
looks for the best-balanced nodes, 1i.e., the terminal nodes presenting the best
balancing of each X;|T = 0 with respect to X;|T = 1. To avoid nodes with very
few treated or untreated units, the final nodes must also have a ratio between the
number of treated and untreated units between two user-specified values « and S.
Denoting with N7 and N¢ the number of treated and control units in the original
data and with », and n, the treated and control units belonging to the best-balanced
nodes, BaRPa selects the subset n;,+n, and uses this subset to estimate the proximity
matrix.

3. Estimation of the proximity matrix /7 and of the average treatment effect.
The proximity matrix I7 is made up of Ny rows and N¢ columns and is estimated
after growing R binary trees on resampled versions of the original data. More
precisely, in iteration r, a binary tree is grown to find a partition of the sampled
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data. Then, using the subset of the best balanced nodes, a proximity measure P

ij
(i=1,....,Npr;j=1,...,Nc¢) is derived as follows: ]Tl-(ir) is set to 1 for treated and

control units belonging to the selected subset n, + n,, whereas it is set to O for the
(r)
S

remaining N — (n; + n.) units. The final proximity matrix is the average of the T

over the R samples:

1 r
H:[nU:EZn;)] ey

To estimate the average treatment effect, BaRPa uses the same estimators proposed
in [3]: A weighted ATT estimator, based on weights f;; = m;;/ Z/N=C1 i, 18

1 Nt Nc¢
ATTy = o YT =1 =) fH(IT = 0); )
i=1 =1

An ATT estimator based on normalized weights is also considered. Let n/"* =
maxje(1,...Nc) T indicate the maximum number of times a treated unit i has been
matched to a control unit. Then the weights can be normalized by defining ¢; =

7 ) SN main such a way that YN, ¢; = 1. The normalized ATT estimator is

NT NC
1
ATTy = Ny E YT =1); — E fi(YIT =0); | g (3)
i=1 =1

BaRPa also implements the selected ATT estimators, which are built solely on the
treated units that have been matched at least A*% times with some other control
units and so can be used to identify the common support. The value A* € (0, 1)
is the maximum value of A for which either more than np,;, treated units or more
than np;, control units can be selected. Alternatively, the selection threshold can be
specified as nmin + k-0 (7 is the number of units selected by the R trees and o7 is its
standard deviation; k is a constant) in order to select larger subsets. Thus, selected
estimators evaluate the treatment effect restricted to the portion of treated units that
can be reliably matched. These estimators are denoted by S.ATTy and S.ATTy. Of
course, if the goal is estimating the average treatment effect on the controls (ATC),
then ATCy, ATCy, S.ATCy, and S.ATCy can be defined in a similar way.

4. Subsets Sampling and Stopping rule. As previously stated, after growing the
first tree BaRPa selects a balanced subset n; + n, of cases. In order to define weights
for the estimation of the proximity matrix /1 as well as to overcome the well-
known instability problem characterizing recursive partitioning algorithms, BaRPa
investigates, by growing additional trees on resampled data, if the selection of the
first balanced subset is sensitive to small perturbation in the original data and if
the same subset can be further refined. The sampling scheme depends on which
average treatment effect is being estimated (ATT or ATC) and is motivated by the
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idea of finding the best (set of) counterpart(s) for each (treated or control) unit. In
this respect, when estimating ATT resampling works by retaining, in each run, Nr
units and by drawing Nc = Ny cases from the original data with weights wy,.
Whereas, when estimating ATC, N cases are retained in each run and Ny = N¢ are
drawn from the original data with weights wy,. Weights wy,. and wy, are updated,
in each run, on the basis of the selected subset n; 4+ n.. BaRPa stops the process of
identification of the sequence of trees as soon as the relative change in value of one
of the previously defined estimators is lower than a previously specified threshold.

3 Simulation Study

Design Factors The performance of BaRPa has been evaluated on simulated data.
The design factors consider a dataset composed of N = 1000 cases on which a
treatment effect is generated in order to obtain P(T = 1) &~ 0.4 as follows:

4
P(T =1) = (1 + exp(—(=0.22+ Y B; - X; + Bse)))™' )

i=1

In (4), X;, X, are numeric and derive from a mixture of two normal
random variables: X; ~ [0.5-N(0.1,0.25) + 0.5-N(0.8,0.375)]; X, ~
[0.5-N(0.3,0.25) + 0.5-N(0.7,0.375)]. X3 and X, are dichotomous and
derive from )~(3 and }24, the latter being defined as mixtures of two uni-
form random variables: X3 ~ [0.5-U(0,0.6) 4 0.5-N(0.4,1)] and X; ~
[0.5-U(0,0.6) + 0.5-N(0.6,1)]. In practice, X3 (X4) equals 1 if X3 > 0.5
(X4 > 0.5) and 0 otherwise. The error term is generated as: € ~ N(0.5,0.3).
The B coefficients equals 0.10 for By, B,, B3, and Bs, and O for By, so that the
treatment effect depends on X, X5, and X3 but not on Xj.

The outcome Y is generated as a linear combination of the four covariates and of
the treatment 7" and is such that the true treatment effect G is 0.60:

Y = —1.50 4 0.60X; — 0.72X, — 0.73X3 — 0.20X4 + 0.60T + € 4)

The simulated data described above are highly imbalanced: this imbalance can be
observed from the empirical distribution of Y, X;, and X,, as well as from their
conditional distributions shown in Fig. 1.

Results BaRPa has been applied on the simulated dataset in order to estimate G,
which represents the Average Treatment effect on the Treated (ATT) via covariate
balance adjustment. Thus, two natural and widely used performance metrics are the
relative bias of the ATT estimator and the average imbalance of covariates in the
selected subsets. We show the value of these metrics for several estimators obtained
from BaRPa. In particular, the simulation study is aimed at the evaluation of the
ability of the estimators defined in (2) and (3), as well as of the selected estimators
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Fig. 1 Top panel. Imbalance in the distribution of the outcome Y (left) and of the continuous
variables X, (center) and X, (right): red lines identify treated units, blue lines identify control ones.
Bottom panel. 1dentification of the common support of X; and X, (left): red points identify treated
units, blue points identify control ones Imbalance in the distribution of the categorical variables X3
(center) and Xy (right)

S.ATTy and S.ATTy. BaRPa was applied by setting: #min = +/Nr, @ = 0.5, 8 =
2 and by specifying a minimum relative change in the value of each considered
estimators of 0.0001 from one iteration to the next one to stop the procedure. A
previously performed pilot study has suggested that r,;, = +/N7 allows us to obtain
a reasonable minimum size of a node to be split, while the values specified for o
and B prevent from the situation in which a node with a few treated units and many
control ones (or viceversa) is selected. To give insight into the information content
of the output provided by BaRPa, the outcome of the first tree is summarized in
Table 1. The original data are split according to the splitting and stopping criteria
introduced in Sect.2.1 and the final tree includes eight terminal nodes. Of these,
only four are considered since they present a ratio between the number of treated
units and that of the corresponding control units which is between ¢« = 0.5 and
B = 2. As such, this tree selects 139 observations (58 treated units and 79 control
ones) to be included in the selected subset n. 4 n,. This initial selection is updated in
the following iterations by growing additional trees on selected samples of original
data identified according to the resampling scheme defined in step 2 of Sect. 2.1.
Moving to selected estimators S.ATTy and S.ATTy, their performance has been
evaluated by setting k = 0, 1,2, 3 for the “npi, + ko, rule specified in Sect. 2.1 in
order to consider eight different selected estimators. Table 2 shows the performance
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Table 1 Output of a tree grown by BaRPa on simulated data

N |n e ny tasam(A) | xf X3 X7 X* | Terminal node
1 784 392 392 1.99 0.12 |0.78 0.78 | X,

2 537 376 161 1.78 0.00 |0.00 |0.00 |X,

3 247 16 231 0.01

4 254 245 9 1.76

5 283 131 152 1.40 0.24 054 |0.54 |X;

10 170 106 64 1.20 0.24 0.33 033 |X;

11 113 25 88 0.03 0.28 046 |046 |X,

20 91 75 16 0.76 0.78 0.69 [0.69 |X,

21 79 31 48 0.05 *
22 39 18 21 0.12 0.67 |0.68 0.67 | X,

23 74 7 67 0.00 *
40 72 66 6 1.01 *
41 19 9 10 0.20 *
44 16 7 9 0.41 *
45 23 11 12 0.13 *

A indicates the node number. For each node: n is the number of observations; n. and n; are the
number of control and treated units; uasam(-#") is the average ASAM of all covariates for node
N members; x; (xz) is the split point that minimizes the average ASAM of all the covariates in
the left (right) child node; x;; is the selected split point; “*” in the last column refers to tree nodes
labelled as terminal. Rows with bold font indicated terminal nodes with a ratio between the number
of treated units and that of the corresponding control units between @ = 0.5 and g = 2

Table 2 Results provided by BaRPa on simulated data (relative bias and average ASAM)

ATT |G Irp(G)| | R | A*rule A T fe) | asam | A(asam) | HasaMo
ATTy —0.746 | 2.24 311

ATTy 0.45910.23 199

S.ATTy 0.61210.02 19 | npin = JITT 0.48 | 20(20) 0.08 —0.96 1.96
S.ATTy | 0.501/0.16 79 | /Ny +0, |02754(54) 041 | —0.79 1.97
S.ATTy | 0.427]0.29 48 | /Ny + 20, |0.11/86(86) |0.34 |—0.83 1.97
S.ATTy 0.41810.30 103 JITT+ 30, [0.03|137(122) | 0.66 —0.67 1.97
S.ATTy | 0.463(023 |816 | nmin = /N7 |0.53|2021) |0.46 | —0.77 1.96
S.ATTy 0.47910.20 202 «/ITT-‘FO} 0.28 | 54(54) 0.23 —0.88 1.96
S.ATTy 0.503/0.16 300 JITT+20, 0.10| 93(86) 0.38 —0.81 1.96
SATTy | 0.482/0.20 [182 | /N7 + 30, | 0.04|123(119)|0.62 | —0.69 1.96

The table reports, in each row, the results of the estimators defined in Sect. 2.1. G is the estimated
value for the true treatment effect G and |r,,(é)| is its relative bias; R denotes the number of
samples; A*rule is the criterion used to define the empirical threshold A* for S.ATTy and S.ATTy;
n,(n.) is the number of selected treated (control) units; tasam is the average ASAM obtained for
the four covariates on the selected subset 7;(71.) and A(uasam) denotes the relative change of
Jasam With respect to the same measure computed on the original data; ftasamy,, iS the average
Iasam obtained on 999 independent samples composed of 7, treated and 7. control units
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of BaRPa on the simulated data. All the estimators, except ATTy, present a
reasonable, and in same cases extremely low, relative bias. As for balancing, the
selected estimators consistently reduce the average ASAM of the original data
(column A(uasam)): in particular, S.ATTy with the np, rule for the selection
of A* provides the maximum reduction in imbalance by detecting a small subset
composed of 20 treated and 20 control units. For comparison purposes, the same
measure (asam) has been computed on 999 bootstrap replications of the original
data: reported values do not vary with respect to the same measure computed on the
original data, thus confirming that original data are really imbalanced and enforcing
the effectiveness of the results obtained for the different BaRPa’s estimators.!

4 Concluding Remarks

A tree-based balancing algorithm named BaRPa which is invariant under monotonic
transformation of data has been presented. BaRPa exploits a tree-based method
balancing property by growing different trees on resampled versions of the original
data based on a multidimensional balancing measure for node splitting. Next to tree
growing, a proximity matrix that counts the proportion of times different units fall
in the same terminal node of the tree is derived: it is the input for the derivation
of classic causal estimators (e.g., ATT) which use all the data or a selected subset
of matched observations. As such, BaRPa does not rely on a particular distance or
on a specific model to be estimated. Results on simulated data provide evidence
of the effectiveness of BaRPa in reducing imbalance in covariate distribution and
selected versions of BaRPa estimators yield less biased estimators than the non-
selected counterparts. The assessment of the properties of BaRPa’s estimators and
the definition of a stopping criteria that reduces computational complexity will both
be addressed in future work.
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Meta-Analysis of Poll Accuracy Measures:
A Multilevel Approach

Rosario D’Agata and Venera Tomaselli

Abstract Following a meta-analysis approach as a special case of multilevel
modelling, we identify potential sources of dissimilarities in accuracy measures of
pre-election polls, carried out during Parliamentary elections in Italy from 2001 to
2008. The predictive accuracy measure, computed to compare the pre-electoral poll
result to the actual result, is the dependent variable and the poll characteristics are
the explanatory variables and are introduced in a hierarchical model. In the model
each outcome is affected by a specific sampling error assumed to have a normal
distribution and a known variance. The multilevel model approach decomposes
variance components as well as meta-analysis random models. We propose a
multilevel approach, in order to make the estimation procedure easier and more
flexible than in a traditional meta-analysis approach.

Keywords Multilevel models * Pre-election polls

1 Meta-Analysis: A Case of Hierarchical Modelling

Envisaging to meta-analysis as a special case of multilevel modelling [2], we
identify the potential sources of differences, by the estimation of an effect size over
all the predictive accuracy measures of poll results. In this aim, we specify a random
effects hierarchical model for a meta-analysis study of the measures, where each
poll result is a level-1 unit and the poll is a level-2 unit [6], to check relationships
between explanatory variables and dependent variables [3].

In order to compute an average effect size we can employ fixed or random effects
models [1]. Specifying a fixed effects model, we assume that the true effect size is
always the same across all studies. Formally [6]:

dj=8j+€j (1)

R. D’Agata (<) » V. Tomaselli
University of Catania, Vitt. Emanuele II, 8 Catania, Italy
e-mail: rodagata@unict.it; tomavene @unict.it

© Springer International Publishing Switzerland 2015 63
1. Morlini et al. (eds.), Advances in Statistical Models for Data Analysis,

Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-17377-1_8


mailto:rodagata@unict.it
mailto:tomavene@unict.it

64 R. D’Agata and V. Tomaselli

where:

— dj is the outcome of study j (j = 1,...,J)
— §; is the population value of the outcome of the j-th study
— ¢;is the sampling error for this j-th study

As a consequence, the only error source is that produced by random sampling error
or error ¢; within studies, assumed to have normal distribution with known variance
o, [10].

Since we can suppose that the effect size across the studies will be similar but not
identical, we can estimate different effect sizes across all studies. In this case, we
specify a random effects model, in which the effect size, from each primary study,
is estimated as a mean of a distribution of different true effect sizes §; across the
studies, with an error term which is variance between studies. The observed effect
d; in (1) is sampled from a distribution of effects with true effect §; and variance 02
[7] In turn, §; is a function of the mean of all true effects (yy) plus between studles
error (u;). Formally.

5=vo+u )
We can therefore rewrite (1) as:

di=yo+u+e 3)

d; is the effect observed in the j-th study

Yo is the estimate for the mean outcome across all the studies
— u; is the between studies residual error term

— ¢;is the within studies error term.

This is an intercept only or empty model, equivalent to the random effects model for
meta-analysis [4], in which the variance of the residual errors ouzj not equal to 0 and
significant indicates that the outcomes across the studies are heterogeneous. In the
model the effect size estimates are affected by two error sources: random sampling
error or within studies error (¢;) and variance among the true effect sizes or between
studies error (u;).

In the multilevel approach to meta-analysis the dependent variable is the effect
size of j-study. As data of primary level-1 units we use only summary statistics—
i.e.: p-value, mean, correlation coefficient, odd-ratio, etc.—varying across studies
as level-2 units [6].

Following the multilevel approach, in a random effects model, we can separate
the variance of study outcomes into two components [5]:

— Within studies variance as sampling variance
— Between studies variance, due to the differences across the study results,
computed in our application as predictive accuracy measures.
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If the between variance is statistically significant, we can assess that the study
outcomes are heterogeneous. To explain such a heterogeneity we include in a
random effects model the study characteristics as explanatory predictors of the
differences found in predictive accuracy measures across the studies. Estimating
the effect size in the case of heterogeneous expected results by means of multilevel
modelling is simpler than by traditional meta-analysis methods, because a multilevel
approach is more flexible [6]. Furthermore, we can avoid the clustering of studies
due to heterogeneous effect sizes across the studies. So, we do not need to identify
any variable defining the membership of studies in a cluster.
Employing a multilevel approach (2) can be written as follows:

8 = vo+ nZyj + v2Zoj + -+ Vilig + uj )

where:

— §; is the effect size assumed as varying across the studies

— Yo is the mean of all true effects

— Z,j are covariates as explanatory variables (study features)

— i are the coefficients

— u; is the error term, representing the differences across the studies, assumed to

have normal distribution with known variance auzj .

By substituting Eq. (4) into Eq. (1), the model can be written as:
di = vo+ v1Zij + v2loj + - + iy + uj + e )

So, the effect size estimate §; depends on study features Zk,, on the error term u; and
on sampling error of each study ej. The variance of uj (o2 ) could be considered a
level-2 variance and indicates how much the outcomes vary across the studies.

In order to specify a multilevel model explaining the variance between studies,
firstly we estimate an empty model (3) to check the homogeneity of outcomes,
testing a null-hypothesis where the variance of the residual errors ouzj is equal to 0
[8]. In meta-analysis with small sample and small variances, the Wald z-test is
inaccurate for testing the variances [6]. Moreover, it is based on the assumption
of normality and the variances have a y2-distribution with df = j—k — 1, where j is
the number of studies and & is the number of covariates introduced into the model.
So, we have to compute the deviance difference )(z-test on the variances based on
the sum of the squared residuals divided by their sampling variances or standard
errors [6]. Formally:

A T2

x2=Z 4 (j) : (6)

If the null hypothesis is rejected, we have to estimate the proportion of variance due
to the study characteristics or variance between the level-2 units. So, as in traditional
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multilevel modelling, we can compute the p intra-class correlation coefficient (ICC),
as the ratio between the level-2 variance 03]_ and the total variance (ouzj + oé). In
formula:

(N

In multilevel meta-analysis we have only level-2 variables. We can therefore only
calculate the level-2 variance. A reduction of p indicates how the considerable extent
of the covariates (the features of the study) affects this variance [7].

2 The Accuracy Measure of Pre-Electoral Polls

Unlike other sample surveys, for pre-election polls, we can make comparisons
between poll results and actual voting results. For pre-election poll data, we suppose
that how poll respondents indicate they will vote and how they actually vote in a
subsequent election will correspond. If a poll result reflects the same distribution
of voting preferences as happens in the following election, we have an accurate
predictor. The more a predictor of an election outcome is able to provide unbiased
estimates of electoral preferences, the more accurate it is. In order to measure
how accurate a poll outcome is, we choose to use a A; poll accuracy measure
as a predictor of an election result. By transforming poll outcomes into accuracy
measures, we standardize all results thus making them comparable to one another.

A;; measure was used for the first time to assess the predictive ability of pre-
election polls in the U.S. Presidential elections of 1948, 1996, 2000 and also in the
2002 election for the Offices of Governor and Senator [9]. A;; measure! is computed
as the ratio obtained by dividing two odds:

Ay =M {[s5/ (1 =s5)]/[S;/ (1 = 8)]} ®)
where:

— sy is the proportion of respondents favoring the s-competitor (party, coalition or
candidate) in the i-th poll referring to the j-th population;

— 1 - is the proportion of respondents favoring all other competitors in the same
i-th poll, for the same j-th population;

— §; is the real proportion of votes polled by the same S-competitor in the same j-th
population;

'A; measure is not affected by the size of the undecided voter category. Furthermore, it is
standardized for the real election result. So, it is possible to study by means of a meta-analysis
approach the origin of bias of the polls across different elections for race and time.
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— 1 —§; the actual proportion of votes polled by all other competitors in the same
Jj-th population.

By dividing the poll odds by the election odds, we can obtain the value of odds ratio
and, thus, the value of the A; measure as the natural logarithm of the odds ratio
between the number of respondents who declare their intention to vote for the s;-
competitor and those who intend to vote for all the others (1 —s;;) in the i-th poll and
for the j-th population, and the real number of votes for each of the two groups (S;
and 1—S5;) in the following election. The transformation of odds ratio by calculating
its natural log is used to create a symmetric measure around O and to simplify the
computation of the variance [9], taking into account the sampling error of the poll
measure, assuming normal distribution and with a known variance.

Let s;; and 1 — s;; be random variables, where s;; is the proportion of respondents
preferring the s;;-competitor and 1 — s;; is the proportion of respondents who do not
prefer the s;;-competitor, in the i-th poll referring to the j-th population with sample
size n;;, with [s; + (1 — s;)] = 1. Let p(s;j) be the probability of preferring the
si-competitor and [1 — p(s;;)] be the probability of not preferring the s;;-competitor.
The covariance matrix (Cov) of the vector [s;, (1 — s;)] is:

” si | _ L[ plsy) [1—p(si)] —pGsi)[1 _P(Sij)]:|
cov [1 ] n [—p(sip [ —ps)] pls) [1 - plsy)] )

— 5jj

so that the relative covariance matrix (RelCov) is:

si | _ 1 [[1=pCsi)] /p(sy) —1
Rglcov[ —]Si/} oy [ —]1 plsy)/ [1 —P(Sz:i)]] (10

The variance of A;; measure (8) for each i-poll is computed as:
Var (Az) =1/ [nsy (1= 53] (11)

A;; measure may take on positive, negative or null values. A positive value indicates
an s;; bias. If the A;; measure value is negative, the poll is biased by an overestimated
share of (1 — s;;) compared to (1 — S;) election result. The A;; measure is equal to 0,
when the odds ratio is equal to 1. This last result occurs only if the poll result and
the real voting result are exactly the same.

To explain the variance of the measure, we can use A;; as y-dependent variable
and the poll features as predictors. We can assess whether there are significant
relationships between the ability of the poll to predict the election results and the
characteristics of the poll [9], including referred territorial area, customer, sampling
procedures, survey methods, time poll period, sample size, number of days from poll
to election, vote gap between the two competitors, polling agency, type of election,
etc.
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3 Meta-Analysis of Pre-electoral Poll Accuracy

In this study, we propose a meta-analysis of poll predictive accuracy measures
in order to analyse their variance in a dataset of 42 pre-election polls. These
polls have been carried out before the fortnight press blackout, previous the
National elections from 2001 to 2008, and published on the official website: www.
sondaggielettorali.it.

In order to assess the accuracy of each poll, we compute the accuracy measure by
employing the formula [8]. Figure 1 shows the distribution of accuracy measures in
the 42 polls. On average, we note that the Centre-Right electoral outcome (AccDx)
is basically underestimated (—0.0432), while the Centre-Left coalition performance
(AccSn) is overestimated (0.0754). Over the period of the elections considered, an
improvement occurs in the ability of polls to accurately forecast results. For the
election in 2008, accuracy measures computed both for Centre-Right coalition and
for Centre-Left coalition are very near to 0. This could be due to an improvement in
the quality of the methods used to conduct the pre-election polls such as sampling
techniques and survey methods.

In order to evaluate the relationship between poll characteristics and accuracy
measure, a meta-analysis is conducted using a multilevel approach. As the first step,
we specify an empty model with the aim of checking heterogeneity across the polls
as level-2 units. As the dependent variable, we choose the accuracy measure for
Centre-Left coalition computed as shown in (8). Formally the model is:

AccSnj = yo + u; + ¢; (12)

where:

— AccSn; is the accuracy measure for Centre-Left coalition in the j-th poll;

M7 Mean= -0.04323 7 Mem=007530
el Sld_ D:ﬂ'- =0,203855 Std. Dev. =0,231137
a2 N=42
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Fig. 1 Distribution of accuracy measures for the two coalitions


www.sondaggielettorali.it
www.sondaggielettorali.it

Meta-Analysis of Poll Accuracy Measures: A Multilevel Approach 69

Table 1 Empty model: y = Accuracy of Centre-Left coalition (AccSn;)

Boj S.E. VA p-value
Fixed effects
Intercept 0.078 0.035 2.229 <0.02
Random effects
o? 0.047 0.011 4.273 <0.001

uj
Deviance = —4.839
Deviance difference test : x> = 1089.7; df = 41; p-value < 0.001

o3 i

cons

Ly

rank

Fig. 2 Poll level residual plot (confidence intervals: 95 %) of empty model

— Yo is the estimate for the mean accuracy measure across all polls;
— u; is the residual term for the j-th poll;
— e¢;is the sampling error for the j-th poll computed by (11).

In the empty model® (Table 1), the value of the intercept (0.078) is significant
(p-value < 0.02) and confirms the overestimation of the Centre-Left result
previously observed (Fig. 1). The random component (031_) indicates how much the
accuracy measures vary across the polls. It is estimated as 0.047. In order to test
the homogeneity of accuracy measures across the polls, we compute the deviance
difference y>-test on the residuals to check for a null hypothesis where ouzj is equal

to 0. The test produces a y* equal to 1089.7 (p-value < 0.001). So, we have to reject
the null hypothesis, because the p-value indicates the presence of heterogeneity in
accuracy measures across the polls.

In the plot of poll level residuals (Fig.2), analysing the confidence intervals
computed for the 42 polls, we note a group of about 12 polls where the confidence
intervals for their residuals do not overlap 0. We can, therefore, observe 12 polls
that differ significantly from the mean accuracy measures at the 5 % confidence
level. Furthermore, the proportion of systematic variance, computed by means of
an ICC (7), is 0.90 and informs us that in 90 % of polls the difference in accuracy
measures is due to the features of the polls. The presence of heterogeneity and the
value of the ICC allow us to continue the analysis with the aim of explaining in a

2The models are estimated by employing RML algorithm implemented in MIWin software.
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Table 2 Complete model: y = Accuracy Centre-Left coalition (AccSn;)

Boi S.E. Z p-value
Fixed effects
Intercept 0.675 | 0.224 3.013 | <0.002
Customer: agency (Ref. Mass Media) —0.179 10.056 |—3.196 | <0.001
Customer: political organ (Ref. Mass Media) —0.280 |0.110 |—2.545 <0.006
Survey method: CATI e CAWI (Ref. CATI) 0.200 | 0.068 2.941 <0.002
Survey method: CAWI (Ref. CATI) 0.280 | 0.071 3.944 | <0.001
Survey method: CASI (Ref. CATI) 0.369 | 0.14 2.636 | <0.005
Sample size: In(n;/N;) 0.033 |0.013 2.538 | <0.006
Poll period (days) 0.055 | 0.021 2.619 | <0.005
Days from poll to election —0.019 |0.006 |—3.167 <0.001
Predicted gap 0.024 | 0.006 4.000 | <0.001
Year: 2001 (Ref. 2008) 0.185 | 0.054 3.425 | <0.001
Year: 2006 (Ref. 2008) 0.348 | 0.099 3.515 | <0.001

Electoral winner: Centre-Left (Ref. Centre-Right) |—0.217 0.055 |—3.945 <0.001
Random effects

cruz,, 0.007 |0.002 3.500 <0.001
Deviance = —68.327

Deviance difference test : > = 165.73; df = 29; p-value < 0.001

complete model the variance between polls in accuracy measures by means of the
features of polls.

Table 2 shows that all predictors appear to be significant. Analysing the values
of By, coefficients, when the customer is a political organ or agency, the value of
predictive accuracy measures tends to decrease compared to when the customer
is one of the mass media (—0.179). The data collected by CAWI, either alone
(0.280) or combined with CATI (0.200), appear to be linked to an increase in the
value of accuracy. This is also true for CASI (0.369). All of the survey methods
introduced in the model, compared to the CATI method, appear to have a positive
relation to accuracy. The greater the sample size (0.033) and the longer the survey
period (0.055), the more accurate the poll. The fewer days from poll to election
(—0.019) and the greater the predicted gap (0.024) between the two coalitions,
the more accurate the forecast is. Finally, if the winner is Centre-Left (—0.217),
the accuracy measure decreases more than in elections won by the Center- Right
coalition. Moreover, in the complete model the variance between the polls o2 is
reduced from 0.047, observed in the empty model, to 0.007. The value of the
deviance difference test is notably reduced from 1089.7 in empty model to 165.73,
and it remains statistically significant, too. In addition, the proportion of systematic
variance is reduced from 0.90 to 0.57. Comparing the poll residuals of the complete
model, plotted in Fig. 3, with the poll residuals of the empty model (Fig. 2), we note
that only one interval does not overlap 0.
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Fig. 3 Poll level residuals plot (confidence interval: 95 %) of complete model
4 Conclusions

The use of accuracy measures has made it possible to detect the predictive ability
of each poll with a single value using a multilevel approach to meta-analysis.
Specifying a random intercept model has allowed us to estimate the random
component of the variance between the polls and to test the significance of
heterogeneity among the results by means of the x> residuals test. Thus, we were
able to calculate the ICC in order to estimate the proportion of total variance, due
either to the variance between the polls or the predictive accuracy measures across
all the polls.

By means of a complete hierarchical model we obtained a reduction of the
random component of the variance between the polls. So, the heterogeneity in the
accuracy measures is explained by poll features as predictors in the estimated model.
Nevertheless, a proportion of unexplained variance remains, as we note, both in the
significance of the residuals test and the value of the ICC.

References

1. Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R.: Introduction to Meta-Analysis.
Wiley, Chichester (2011)

2. Bryk, A., Raudenbush, S.W.: Hierarchical Linear Models: Applications and Data Analysis
Methods. Sage, Newbury Park (1992)

3. Ellis, PD.: The essential guide to effect sizes: statistical power, meta-analysis, and the
interpretation of research results. Cambridge University Press, Cambridge (2010)

4. Hedges, L.V., Olkin, I., Statistiker, M., Olkin, 1., Olkin, L.: Statistical Methods for Meta-
Analysis. Academic, New York (1985)

5. Hox, J.: Multilevel Analysis: Techniques and Applications. Routledge, London (2010)

6. Hox, J., de Leeuw, E.: Multilevel models for meta-analysis. In: Reise, S.P., Duan, N.
(eds.) Multilevel Modeling: Methodological Advances, Issues, and Applications, pp. 90-111.
Lawrence Erlbaum Associates Publishers, Mahwah (2003)

7. Hunter, J.E., Schmidt, EL.: Methods of meta-analysis: correcting error and bias in research
findings. Sage, Thousand Oaks (2004)

8. Koetse, M.J., Florax, R.J., de Groot, H.L.: Consequences of effect size heterogeneity for meta-
analysis: a Monte Carlo study. Stat. Methods Appl. 19(2), 217-236 (2010)

9. Martin, E.A., Traugott, M.W., Kennedy, C.: A review and proposal for a new measure of poll
accuracy. Public Opin. Q. 69(3), 342-369 (2005)

10. Raudenbush, S.W., Bryk, A.: Hierarchical linear models: applications and data analysis
methods, vol. 1. Sage, Thousand Oaks (2002)



Families of Parsimonious Finite Mixtures
of Regression Models

Utkarsh J. Dang and Paul D. McNicholas

Abstract Finite mixtures of regression (FMR) models offer a flexible framework
for investigating heterogeneity in data with functional dependencies. These models
can be conveniently used for unsupervised learning on data with clear regression
relationships. We extend such models by imposing an eigen-decomposition on the
multivariate error covariance matrix. By constraining parts of this decomposition,
we obtain families of parsimonious mixtures of regressions and mixtures of regres-
sions with concomitant variables. These families of models account for correlations
between multiple responses. An expectation-maximization algorithm is presented
for parameter estimation and performance is illustrated on simulated and real data.

Keywords Concomitant variables * EM algorithm e Finite mixtures of regres-
sions * Mixture models * Multivariate response

1 Introduction

Model-based clustering has become increasingly popular during the last decade.
Parametric mixture models are used in model-based clustering; however, such
models generally do not exploit covariates. Incorporating a regression structure
can yield important insight when there is a regression relationship between some
variables. Methodologies that deal with such data include finite mixtures of
regression (FMR; [8, 15]) and finite mixtures of regressions with concomitant
variables (FMRC; [24]), supported by the popular £ 1exmix package [15]. Cluster-
weighted models [11] are an alternative to FMR models and have recently been
extended to deal with multivariate response [6]. However, these models are less
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parsimonious by nature because they explicitly model the distribution of the
covariates as well as the response given the covariates.

Multivariate correlated responses can be naturally integrated into FMR and
FMRC models. However, flexmix currently does not account for correlated
response variables for both FMR and FMRC. FMR models that deal with correlated
response variables have recently been proposed [10, 21]. Experimental results
using these models illustrated that ignoring this correlation can lead to estimated
regression coefficients with larger mean square errors and may result in a worse fit
to data [21]. However, these models do not decompose the covariance structure to
gain parsimony, nor do they extend the FMRC model.

Here, FMR and FMRC are extended to deal with multiple correlated responses.
Parsimonious versions of these models are developed by constraining the
component covariance matrices using an eigen-decomposition (in Sect.2.1).
An expectation-maximization algorithm is described in Sect.2.2. Performance
is illustrated on simulated and real data and compared to popular existing
methodologies like FMR and FMRC (Sect.3) with some concluding remarks
(Sect. 4).

2 Methodology

Let X; and Y; be random vectors defined on sample space 2, fori = 1,...,N,
where §2 , can be partitioned into G disjoint groups. Here, the response vector Y; has
values in R? and the explanatory vector X; has values in R”. Then, the probability
of the response given the covariates p(y;|x;) can be decomposed as

G

Pyl 0) = p(yilxi 2 )i, (1)

§=1

where p(y;|x;, £2,) is the conditional density of Y; given x; and $2,, and m;, are

the mixing weights, where m;, > 0 (g = 1,...,G) and 25?:1 i, = 1 for each i.
The parameter # denotes the set of all parameters. Y|X is assumed to be normally
distributed with mean p ., and covariance matrix X, for g = 1,...,G. For the

FMR model, 7;, = 7, forg = 1,...,Gandi = 1,...,N. In addition to (1),
the FMRC model assumes a concomitant variable multinomial logit model for the
component mixing weights, i.e.,

exp(er,x;)
S explox;)

with the first component as baseline. In other words, FMR only models the
distribution of the Y|X, while FMRC models both the distribution of Y|X and a
logistic model of the concomitant variables (which may include the covariates).

nig(xi’ ag) =

@
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This implies that for an FMRC model, the classification (dependent on the posterior
probability) of an observation into a particular component is dependent on the
covariates both through the mixing weights and Y|X. Note that for the purposes
of this paper, the concomitant variables (usually denoted by W;) are the same as the
explanatory variables X;.

2.1 Eigen Decomposition of X ),

There are d(d + 1)/2 free parameters in each component covariance matrix for a
d-variate Gaussian mixture (cf. (1)). That this number increases quadratically with d
is undesirable for all but very low dimensional data sets. To overcome this problem,
Y, can be eigen-decomposed [1] and constraints can be imposed to give a family
of mixture models [5], i.e., the gth component covariance matrix can be written as

XY, = /\ngAgD;, 3)

where A, is a constant, D, is the orthogonal matrix of eigenvectors of X', and A,
is a diagonal matrix with entries proportional to the eigenvalues of X', with the
constraint |A,| = 1. Geometrically, A, controls the volume, D, the orientation, and
A, the shape of the gth component (Table 1).

Constraining the component covariance in (1) leads to two families (¢éFMR and
eFMRC, respectively) of 14 models capable of modelling the correlation between
responses. This is the first time that FMR and FMRC models have been used with
eigen-decomposed covariance structures, i.e., the first parsimonious families of such
models.

2.2 Parameter Estimation

Parameter estimation is described here for the most unconstrained model (VVV)
from the eFMR and eFMRC families. Let (x1,y;),..., (xy,yy) be a sample of
N independent observations. The observed likelihood function under Gaussian
distributional assumptions is

N

N G
Lo@|X.¥) = [[p(yilxi.0) = [T | D talwili. x)me | - )

i=1 i=1 | g=1

Here, ¢, denotes the probability density function for a d-dimensional multivariate
Gaussian distribution, x, = (B, X;) refers to the parameters of the conditional
distribution p(y|x). Here, the covariates are supplemented by a vector of ones such
that B, is a (p 4 1) x d matrix of regression intercepts and coefficients. Hence, the



76 U.J. Dang and P.D. McNicholas

Table 1 Geometric interpretation of the eigen decomposition of a covariance matrix

Name | Covariance | Volume | Shape Orientation Parameters

EIl Al Equal Spherical |- 1

VI Aol Variable | Spherical |- G

EEI AA Equal Equal Axis-aligned | d

VEI AA Variable | Equal Axis-aligned |d+ G—1

EVI AA, Equal Variable | Axis-aligned |dG—G +1

VVI | 2A, Variable | Variable | Axis-aligned |dG

EEE | ADAD’ Equal Equal Equal dd+1)/2

VEE | A,DAD’ Variable | Equal Equal dd+1)/24+G—1

EVE |ADAD’ Equal Variable | Equal (G—1(d—1)+dd+1)/2
VVE | A,DA,D’ Variable | Variable | Equal (G—1)d+dd+1)/2

EEV )LDgAD; Equal Equal Variable Gdd+1)/2—(G—1)d
VEV |1 ngAD;, Variable | Equal Variable Gdd+1)/2—=(G—1)(d—1)
EVV )LDgAgD;, Equal Variable | Variable Gdd+1)/2—(G—-1)
VVV )LngAgD; Variable | Variable | Variable Gd(d+1)/2

(p+1, d)th element of B, denotes the regression coefficient of the pth predictor on
the dth response.

In (4), (x1,...,%N,¥;,...,yy) are considered incomplete in the context of the
EM algorithm. The complete-data are (x1, ..., Xy, ¥1,....¥ys 21, - - . ,Zn), Where z;,
is a component label indicator such that z;; = 1 if (x}, y;)’ comes from the gth
population and z;, = 0 otherwise. Therefore, the complete-data log-likelihood is

N G
ZOl.y) =D zig [log ga(yilxi, x,) +logmie] .
i=1 g=1
The E-step involves calculating the expected complete-data log-likelihood

0(6.6%) = EgwtZ® .y} = Y3 o [@1 (x,/8W) +log ]

i=1 g=1

where

01 (x,10%)

1 ’ 4 -1 /
=3 [—dlog 2m —log |E§,k)| — (yi —Bg(k)xi) E;,k) (yi —Bg(k)xi)i|
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and
k
:li(g)¢d (-)ilxi, B(k), Z(k))

k o\’
S g (vibei B 2 )

(k) = Eo(k) {Zlglxhy} (5)

The M-step on the (k+ 1)th iteration of the EM algorithm involves the maximization
of the conditional expectation of the complete-data log-likelihood with respect to 6.
The updates for Bg‘“) and ¥ L"H) are

’<k+1) k Nk !
Zl 1 l(g )ylxz (Zl 1 Tzfg )x X ) ’ (6)
sy X (nBen) (5Bn) o
8 Zﬁvzl ti(;) '

respectively.

Now, for the VVV FMRC model, the algorithm consists of updating ﬁ'ig, Tig,
l}g, and ¥ ¢ via (2), (5), (6), and (7), respectively. Parameter estimates for the
concomitant parameters in (2) are estimated using function multinom from the
nnet package [23] for R [18] with the dependent variables given by the a posteriori
probability estimates 7;g. On the other hand, for the VVV FMR model, the update
for mjy = mg, forg=1,...,Gandi=1,...,N,is

~ (k1) (k)
Tg Z Tig

and the updates for T, l}g, and ¥ ¢ are updated via (5), (6), and (7), respectively.
For the other eFMR and eFMRC models, the M-step updates vary only with respect
to the component covariance matrix X', and are similar to those in [5].

2.3 Model Selection and Initialization

For choosing a “best” fitted model among a family of models, a model selection
criterion like the BIC [20] is typically used [7]:

BIC = 21(8) —mlogN,

where l(é) is the maximized log-likelihood and m is the number of free parameters.
Even though mixture models generally do not satisfy the regularity conditions for
the asymptotic approximation used in the development of the BIC [14], it has
performed quite well in practice and has been used extensively (e.g., [9]).
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Note that the EM algorithm can be heavily dependent on starting values. Singu-
larities and convergence to local maxima are also well documented [22]. Initializing
the EM algorithm multiple times using k-means [12] or random initializations can
alleviate some of these issues. Specifically, our EM algorithms are each initialized
from five starting values, where the first four are random and the other uses k-means
clustering.

2.4 Convergence Criterion and Performance Assessment

An Aitken acceleration-based stopping criterion is used to determine the conver-
gence of our EM algorithms. This criterion is at least as strict as lack of progress
in likelihood in the neighbourhood of a maximum [17]. The Aitken acceleration at
iteration k is

k+1 k
@ _ Jkt1) _ )

@ I e

where [®is the log-likelihood value at iteration k. An asymptotic estimate of the
log-likelihood at iteration k + 1 is given by [2] as

JO1) )

(k+1) _ (k)
Iy ="+ a0
and the EM is algorithm is stopped when IXH_ D_pk < €, provided that this difference

is positive [17]; this is similar to the criterion used by [16].

The adjusted Rand index (ARI; [13]) is used to compare predicted and true
classifications when the true labels are known. The ARI calculates the agreement
between true and estimated classification by correcting the Rand index [19] to
account for chance. An ARI of one corresponds to perfect clustering, whereas the
expected value of the ARI under random classification is zero.

3 Results

Performance of the proposed models is illustrated on simulated and real data. To
facilitate comparison of the performance of the algorithms, the £ 1lexmix FMR and
FMRC models are initialized with the same set of values as the eFMR and eFMRC
models (Sect.2.3). We used the mixture package [3] for the M-step updates for
the 14 covariance structures.
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3.1 Simulated Data

Data were generated from a two-component model with 275 observations in total
(Simulation 1). A binomial model with 7; = 0.45 was used to determine the
component sizes. Here, the three-dimensional response (d = 3) was generated using
an EEE covariance structure. Three covariates were generated (p = 3). For the first
component, one came from a uniform distribution with support [0, 3] and the others
from a two-dimensional Gaussian distribution with mean p,; = (0, 1). Covariates
for the second group were generated from a uniform distribution with support
[—1, 5] and a two-dimensional Gaussian distribution with mean p, = (-3, 3). The
covariance matrices of the normally distributed covariates for the two groups were

1 0.8 1.204
and ,
0.81.2 04 1

respectively. The regression coefficient matrices used for the two groups were

~1.9 0.4 —12-3\ 25-05 1 -4\
Bi=| 0o —04 08 —2| andB,=|23-13 19 2 |.
-1 07 03 1 1 —27-23-13

respectively. Lastly, the error for the two groups was simulated using an EEE
covariance structure with mean 0 and

1.31 0.77 0.68
21 =2%2,=10.771.70 1.06
0.68 1.06 1.90

This corresponds to A} = A, = 1.25,

—0.45 0.72 0.53
D, =D, =|-0.62 0.18 —0.76 |,
—0.65 —-0.67 0.36

and A; = A, (diagonal matrices) with entries (2.7,0.7,1/(2.7 x 0.7)). An example
data set from Simulation 1 is shown in Fig. 1.

A total of 50 samples were generated in R and run for G = 1,...,4. The
parameter estimates for the selected model using the eFMR and eFMRC families
were quite close to the generating values (results not shown). Summary statistics
for the selected models are given in Table 2. Note that the range of the number
of parameters fitted for the FMR and FMRC models is quite wide, implying that
these models are overestimating the number of components. Specifically, the FMR
and FMRC models overestimate the number of components 40 and 35 times,
respectively. On the other hand, the selected eFMRC models always fitted the
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Fig. 1 Scatter plots depicting an example data set with three response variables and three
covariates from Simulation 1

right number of components. The selected eFMR models fitted the right number
of components 49 out of 50 times.

The above simulation was repeated with the same values for all generating
parameters except for Ag, i.e., the error matrices were simulated using an EVE
covariance structure (Simulation 2). Here, A; and A, were diagonal matrices with
entries (2.7,0.7,1/(2.7x0.7)) and (2.7,1.7,1/(2.7 x 1.7)), respectively. Summary
statistics for the selected models are given in Table 3. While the eFMR and eFMRC
families fit the right number of components all 50 times, the FMR and FMRC
models overestimate the number of components 36 and 35 times, respectively.

Lastly, simulation 1 was repeated with the same values for all generating
parameters except for A, and A,, i.e., using a VVE covariance structure (Simulation
3). Here, A| and A, were diagonal matrices with entries (2.7,0.7,1/(2.7 x 0.7))
and (2.7,1.7,1/(2.7 x 1.7)), respectively, and A; = 1.25 and A, = 2. Summary
statistics for the selected models are given in Table 4. While the eFMR and eFMRC



Families of Parsimonious Finite Mixtures of Regression Models 81

Table 2 Summary of different approaches using the 50 simulated data sets of Simulation 1

Statistic | FMR FMRC eFMR eFMRC
ARI 0.64 (0.43,1.00) | 0.70 (0.49, 1.00) | 0.96 (0.86, 1.00) | 1.00 (0.96, 1.00)
% —1481 —1300 —1425 —1253

(—1538, —1389) | (—1376, —1201) |(—1476, —1381) | (—1293, —1209)
BIC —3220 —2894 —3029 —2696

(—3332, —3130) | (—2995, 2779) (=3127, =2937) | (—2778, —2609)
dar 47 (31, 63) 53 (34, 72) 31 (31, 46) 34 (34, 35)

Values denote the medians (rounded to 2 decimals) with the ranges of the estimated statistics in
parentheses. Here, % refers to the maximized log-likelihood value

Table 3 Summary of different approaches using the 50 simulated data sets of Simulation 2

Statistic | FMR FMRC eFMR eFMRC
ARI 0.67 (0.45, 0.96) 0.74 (0.51, 1.00) 0.94 (0.86, 1.00) 1.00 (0.99, 1.00)
A —1519 —1342 —1425 —1244

(—1593, —1426) (—1413, 1264) (—1471, —1387) (—1290, —1203)
BIC —3283 —2956 —3036 —2690

(—3411, —3180) (—3054, —2833) (—3128, —2959) (—2783, —2690)
df 47 (31, 63) 53 (34,72) 33 (33, 34) 36 (36, 37)

Values denote the medians (rounded to 2 decimals) with the ranges of the estimated statistics in
parentheses. Here, % refers to the maximized log-likelihood value

Table 4 Summary of different approaches using the 50 simulated data sets of Simulation 3

Statistic | FMR FMRC eFMR eFMRC
ARI 0.67 (0.44, 0.99) 0.77 (0.50, 1.00) 0.94 (0.87, 1.00) 1.00 (0.99, 1.00)
2 —1625 —1452 —1528 —1350

(—1718, —1551) (—1552, 1369) (—1572, —1491) (—1392, 1310)
BIC —3499 =3171 —3248 —2912

(—3611, —3384) (—3296, —3041) (—3336, —3173) (—2992, —2827)
df 47 (31, 63) 53 (34,72) 34 (34, 34) 37 (36, 37)

Values denote the medians (rounded to 2 decimals) with the ranges of the estimated statistics in
parentheses. Here, % refers to the maximized log-likelihood value

families fit the right number of components all 50 times, the FMR and FMRC
models overestimate the number of components 36 and 32 times, respectively.
Note that for all simulations, the parameter estimates for the selected model using
the eFMR and eFMRC families were quite close to the generating values (results not
shown). In all simulations, the eFMR and eFMRC families clearly perform much
better than the FMR and FMRC models. Specifically, the models selected from
both the eFMR and eFMRC families yielded higher average ARI and log-likelihood
values. Furthermore, these models also yielded superior BIC values and estimated
fewer parameters on average. Moreover, in contrast to the FMR and FMRC models,
the models selected from the eFMR and eFMRC families also fit the right number
of components. The eFMR and eFMRC families perform better because in contrast
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to the £1exmix FMR and FMRC models, the proposed parsimonious models deal
with correlations between the response variables.

3.2 Crabs Data

The crabs data set contains five morphological measurements on 200 crabs, split
evenly between both sexes and two colours (blue and orange) of the species
Leptograpsus variegatus. These data were originally introduced in [4] and are
available as part of the MASS package [23] in R. The data are famous for having
highly correlated measurements on width of frontal region just anterior to frontal
tebercles (FL), width of posterior region (RW), carapace length (CL), carapace
width (CW), and body depth (BD). The variables CW, FL, and RW reflect width
measurements and were taken to be the response variables, with CL and BD as the
predictor variables. Based on the two binary variables, sex and colour, there are four
known groups in these data. Our algorithms were run for G = 1, ..., 9 (Table 5).

The selected eFMR model is a two-component VVI model with an ARI
of 0.40. Because the VVI model assumes independence between the response
variables, that is equivalent to the £1exmix FMR model and unsurprisingly, FMR
chooses a two-component model with an ARI of 0.40 (Table 6). Note that the
estimated classification from the selected two-component eFMR model leads to
good separation between sexes. If the class membership agreement is estimated
based on only the sexes of the crabs, an ARI of 0.81 is achieved. FMRC did well,
picking a four-component model (Table 6). However, the selected eFMRC model
(VEE) also has four components with a higher ARI (0.84), while also being more
parsimonious than the £1exmix FMRC model.

Table 5 Model performance Algorithm | Model | G |BIC ARI | Parameters
comparison for crabs data
FMR 2 | —1178.45 | 0.40 |25
FMRC 4 | —1104.96 | 0.81 |57
eFMR VVI 2 | —1178.38 | 0.40 |25
eFMRC VEE 4 | —1069.36 | 0.84 |54

Table 6 Cross-tabulations of true versus predicted group memberships for the crabs data

FMRC eFMRC FMR eFMR

1 2 3 4 1 2 3 4 1 2 1 2
BM |38 12 40 10 46 4 46 4
BF 48 2 49 1 4 |46 4 |46
oM 50 50 50 50
OF 2 48 2 48 2 |48 2 |48

“B”, “O”, “M”, “F” refer to blue, orange, male and female, respectively
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4 Discussion

Families of parsimonious multivariate response FMR and FMRC models that can
handle correlated response variables were proposed and illustrated. In a model-
based clustering context, we showed that both eFMR and eFMRC families perform
as well as or better than the f1exmix FMR and FMRC models. Computationally,
the algorithms were quite stable. However, to prevent fitting issues, the component
sizes were computed before each M-step and a preset minimum size of the
clusters was used (cf. [15]). For heavier tailed data, more robust distributions like
the multivariate student-¢ distribution may be employed. Because the number of
regression intercepts and coefficients estimated, i.e., Gd(p + 1), can also increase
quickly, more parsimonious models can be achieved using variable selection.
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Quantile Regression for Clustering
and Modeling Data

Cristina Davino and Domenico Vistocco

Abstract This paper aims to propose an innovative approach to identify a typology
in a quantile regression model. Quantile regression is a regression technique that
allows to focus on the effects that a set of explanatory variables has on the entire
conditional distribution of a dependent variable. The proposal concerns the use of
multivariate techniques to simultaneously cluster and model data and it is illustrated
using an empirical analysis. This analysis regards the impact of student features on
the university outcome, measured by the degree mark. The analysis is based on the
idea that the dependence structure could be different for units belonging to different
groups.

Keywords Cluster analysis ¢ Quantile regression * Unsupervised learning

1 Introduction

In many regression problems, the estimation of a single set of coefficients provides
a misrepresentation of the true dependence structure if units belong to different
groups. The solution to this issue becomes more difficult to achieve when group
membership is not a priori known. A simplistic solution would consist in clustering
units and later estimating different models for each group. This solution however
would not permit to identify the impact of the groups on the dependent variable and
it would require tools for comparing of the models estimated on different samples.

The aim of this paper is to propose an innovative approach for simultaneously
clustering and modeling data. It is based on the conjoint use of multivariate methods
and quantile regression to identify a typology in a dependence model.
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Quantile regression, as introduced by Koenker and Basset [14], is an extension
of the classical estimation of the conditional mean to the estimation of a set of
conditional quantiles. It offers a complete view of a response variable providing a
method for modeling the rates of changes at multiple points (conditional quantiles)
of its conditional distribution [2, 13].

The rest of the paper is an extension of the supervised approach proposed by
the authors Davino and Vistocco [3, 4]. The use of an unsupervised approach to
classify units in the dependence model characterizes this proposal, whereas the
former proposals exploit a priori defined groups.

In literature, a quite widespread approach to simultaneously identify a partition
of the data and the related model is represented by clusterwise linear regression.
The method is based on the hypothesis that there exist a finite number of unknown
classes and each class is characterized by a different linear regression model. The
literature concerning clusterwise linear regression is quite wide, from the starting
works of Spath [19, 20] to the maximum likelihood approach of DeSarbo and
Cron [5], until recent proposals [8, 11, 24]. Sharing the main goals of clusterwise
linear regression, the method proposed in this paper exploits quantile regression
and hierarchical clustering to model and partition data identifying a different depen-
dence structure for each detected group. To pursue such aims, the method assigns
a separate quantile model best representing each group. However, the different
models are estimated on the total sample, making easier the comparisons among the
group coefficients. The use of quantile regression allows us to study the dependence
exploring the whole conditional distribution of the dependent variable unlike the
clusterwise linear regression that focuses on the conditional mean. Furthermore,
it offers well-known advantages with respect to robustness issues. Moreover, our
approach attempts to overcome the main drawback of the original clusterwise linear
regression, the a priori setting of the number of groups, while hierarchical clustering
provides a data driven criterion to partition the sample. A proper comparison with
clusterwise linear regression would require a wide simulation study that takes into
account also the sensitivity of clusterwise linear regression solutions to the tuning
parameters (e.g., the initial partition and the number of required groups) and it will
be therefore subject of a specific paper.

The paper is organized as follows. Section 2 presents the dataset used to apply
the proposed approach: it concerns the evaluation of the effectiveness of the
university educational process. In Sect. 3 the methodology is described together with
results deriving from the empirical analysis: students are grouped according to the
relationship between the degree mark and their features. Some concluding remarks
and future work directions are reported in Sect. 4.
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2 A Dataset on Student University Outcome

The proposed approach is described in the following sections through an empirical
analysis aiming at evaluating if and how the student features (socio-demographic
and university experience attributes) affect the outcome of the university career,
measured through the degree mark. As stated above, the underlying idea is that this
effect can be very different for students belonging to different groups. Such groups
are detected according to the relationship between the degree mark and the student
features. The typology identification is embedded in a quantile regression model,
and it is thus able to exploit the whole conditioned distribution of the degree mark.

The analysis is carried out on a random sample of 685 students who graduated
from the University of Macerata [3], which is located in the Italian region of Marche.
The survey was completed in 2007 and includes students who graduated between
2002 and 2005. The degree mark is measured on a discrete scale ranging between
66 and 110, with the “cum laude” mark coded as 110. The explicative variables
included in the model pertain to the student profile. In particular, the following
regressors have been considered: gender, place of residence during university
education (Macerata and its province, Marche region, outside Marche), course
attendance (no attendance, regular), foreign experience (yes, no), working condition
(full-time student, working student), number of years to obtain a degree, diploma
mark.

The density plot of the response variable (Fig. 1) shows the presence of a strong
right skewness, further supporting the recourse to the dependence analysis outside
the classical regression framework.

0.10

density

0.05

0.00 -

80 90 100 110
degree mark

Fig. 1 Degree mark density
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3 The Proposed Approach: Methodology and Results

The proposed unsupervised learning procedure is based on the joint use of hierarchi-
cal clustering and quantile regression. The approach is structured in the following
four steps

. Estimation of the global dependence structure
. Identification of the best model for each unit

. Identification of a typology

. Estimation of the group dependence structure

AW N =

Following sections detail the meaning of each step showing them in action on the
student university outcome study.

3.1 Estimation of the Global Dependence Structure

In the first step, a quantile regression (QR) model is estimated on the whole sample:
0s(31X) = XB(6) (1

where 0 < 6 < 1 denotes the fth conditional quantile, Qy(.|.) is the corresponding
conditional quantile function, yy, is the dependent variable (degree mark in the
application) and X[, is the matrix of the explanatory variables (students features
in the application), n denoting the number of units and p the number of regressors.

Using a grid of k conditional quantiles, § = (64, ..., 6;), the model provides a
coefficient matrix (:)[,,Xk] with a generic element that can be interpreted as the rate of
change in the 6th quantile of the conditional distribution of the dependent variable
per unit change in the value of the jth regressor. The value of k is therefore the
number of estimated conditional quantiles. A fairly accurate approximation of the
whole quantile process [15] can be obtained using a dense grid of equally spaced
quantiles in the unit interval (0; 1) [2].

In Fig.2, QR coefficients, obtained using a selected grid of quantiles (6§ =
[0.1,0.25,0.5,0.75,0.9]), are graphically represented for the different features of
the student profile. The horizontal axis displays the different quantiles, while the
effect of each feature holding the others constant is represented on the vertical
axis. QR confidence bands (in grey) are obtained through the bootstrap method for
a = 0.1 [17]. The solid lines parallel to the horizontal axis correspond to OLS
coefficients, and the related confidence intervals are represented using dashed lines
fora = 0.1.

The graphical representation allows to visually catch the different effect of the
student characteristics on the degree mark. Gender and residence during university
education have a great influence on the lowest quantiles of the distribution: males
and residents outside the Marche region show negative coefficients. A foreign
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Fig. 2 OLS and QR coefficients and related confidence intervals

experience negatively influences the degree mark. This effect becomes null in the
higher part of the distribution pointing out that very good students are not influenced
by their university experiences abroad. Working students are less likely to get high
degree marks but the QR results show how their impact is almost negligible. All the
coefficients of the variable numbers of years to get a degree are negative, particularly
for the lowest quantiles. Finally, the diploma mark always has a positive effect, but
its value is very low for successful students.

3.2 Identification of the Best Model for Each Unit

In the second step, the coefficient matrix @A[pxk] and the regressor data matrix X
are used to estimate the conditional distribution matrix of the response variable:
Y = XO. The generic element of the Y[nxk] matrix is the estimate of the response
variable in correspondence of the ith units according to the fth quantile.
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The best model for each unit i is identified by the quantile able to better estimate

the response variable and it is denoted as the best quantile:
eibeSl : argmin9=l,...,k |y1 - 5}1(9)| (l = 17 ) n) (2)

The best quantile, éibes‘, is therefore obtained by minimizing the difference
between the observed and the estimated values.

From the Y matrix it is then possible to extract the best estimated vector, 37]5“‘,
identifying for each unit the estimated value corresponding to the assigned best
quantile. Such vector provides both an accurate approximation of the response
variable and embeds information on the dependence structure relating the response
variable with the regressors.

Figure 3 reproduces the histograms of the dependent variable (left panel) and
the estimated dependent variable using OLS (middle panel) or the proposed QR
approach (right panel). For some considerations on the added value provided by
considering &Bw instead of the classical OLS predicted values, the interest reader is
referred to Davino and Vistocco [4].

observed OoLS QR

110 1

100 1

estimated y

90 1 !

80 1
\

0 100 200 300 0 100 200 300 0 100 200 300
count

Fig. 3 Distribution of the dependent variable (/eft panel) and of the estimated dependent variable
using OLS (middle panel) or the proposed QR approach (right panel)
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3.3 Identification of a Typology

The third step of the proposed strategy aims to identify a typology on the basis of
the QR results obtained in the previous step.

Units are grouped according to the best quantile they have been assigned because
it can be considered as an indicator of a similar dependence structure. Working on

the @ et vector, it is possible to group units in clusters. The simplest criterion is
based on its categorization. Albeit automatic methods (e.g. [21] or [18] rules) are
available in literature, a certain degree of subjectivity remains. In the present paper
a multivariate approach is proposed performing a hierarchical clustering [6, 10] on
the estimated Y matrix in order to classify units sharing similar patterns for the
predicted values for all the considered quantiles.

Several criteria have been proposed in the literature to select the “best” partition
by optimizing some cluster validity indexes (see, e.g., [12, 16, 23]). The seminal
work of Milligan and Cooper [16] describes above 30 internal criterion measures
coming from a wide variety of fields. More recently, other proposals combine
the use of a cluster validity index with a searching strategy for exploring the
extended hierarchy housed in a dendrogram [9] or exploit permutation tests in order
to automatically detect a partition [1]. A competing method (GAP), proposed by
Tibshirani et al. [22], permits to estimate the number of clusters starting from the
output of any clustering algorithm. It is based on a Monte Carlo approach to derive
the reference distribution of a test statistic and it requires as input the different
partitions among which the optimal one has to be selected. Using the GAP statistics,
the best partition is obtained by cutting the dendrogram in four groups (Fig. 4, left-
hand side) with 318, 144, 154, and 64 observations, respectively.

Dendogram (4 groups)

oo

Fig. 4 Dendrogram and best partition (left-hand side) and distribution of the best quantiles in the
identified groups (right-hand side)
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In order to tailor a proper dependence structures as derived in the next step, a
reference quantile is then associated to each group. The choice of the reference
quantile is based on a synthesis measure of the distribution of the group best
quantiles. Figure 4 (right-hand side) reveals a certain degree of skewness in the

distribution of the best quantiles for each group. The ] pest median value of each
group can then be considered as a robust reference quantile: G1 = 0.800, G2 =
0.562, G3 = 0.315, G4 = 0.085. The obtained reference quantiles are clearly
distinct signaling an impact on different locations of the degree mark distribution
played by the features of students belonging to each group, as it will be shown in
the next section.

3.4 Estimation of the Group Dependence Structure

The four reference quantiles previously defined are used to estimate the group
dependence structure. In particular, a QR model is carried out on the whole sample
estimating the following four 6 values: 0.800 (G1), 0.562 (G2), 0.315 (G3), 0.085
(G4). Estimating a model on the whole sample allows us to easily compare the
group dependence structure through the evaluation of the statistical significance of
the differences among the coefficients. In the QR framework such a comparison is
based on the classical tools to test interquantile differences [7].

The QR results for the different groups are shown in Table 1 reporting the
covariates on the rows and the groups on the columns; significant coefficients at
a = 0.10 are shown in bold. Reading the table by columns details information on
the features mainly affecting each group, while a comparison of a specific coefficient
among the different groups is provided by a row-wise inspection of the table. The
reference quantiles play a crucial role in interpreting the results. For example, the
effect on the degree mark of living outside Marche is negative for all the groups,
but it is stronger for students belonging to group G4. On the other hand, as group 4

Table 1 Group effects estimates (in bold significant coefficients at « = 0.10)

Variable Gl G2 G3 G4
6 = 0.800 6 = 0.563 6 =0.315 0 = 0.085

Intercept 109.00 98.87 97.17 96.51
Gender (male) 0.00 —2.87 —3.55 —-3.23
Place of residence (outside Marche) —2.00 —2.62 —4.61 —5.89
Place of residence (Marche region) 0.00 0.12 1.11 1.27
Courses attendance (regular) 1.00 3.12 3.28 3.14
Foreign experience (yes) 0.00 —0.85 —2.00 —5.46
Working student 0.00 —0.75 0.00 0.26
Years to get a degree 0.00 —0.50 —1.28 —1.82

Diploma mark 0.00 0.12 0.17 0.16
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is characterized by a reference quantile equal to 0.085, the negative effect of living
outside Marche reduces the degree mark of 6.58 marks for student with a low degree
mark, i.e. for the 8.7 % of students with the lowest marks. Moving toward the center
of the conditional distribution, the effect is still negative but with a substantial
numerical decrease. A foreign experience negatively influences the degree mark.
This effect becomes null in group G1 pointing out that very good students are less
influenced by their university experiences abroad.

It is worth to mention the peculiarities of G1 describing the effect of the
covariates on the best performer students (§ = 0.800). Most of the regressors do
not play any effect on the 80th conditional percentile of the degree mark, which is a
sign that the highest performances are related to other student features not included
in the analysis.

To further highlight the potentialities of the proposed approach, it is useful to
compare the observed and the estimated response values. In particular, if the best
model for a given group is used to predict the response variable for the units
belonging to another group, results worsen as much as the groups differentiate
with respect to the best quantiles as shown in Fig.5. The figure is structured in

G1 G2
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Fig. 5 Observed response distribution compared with the estimated distributions using the
reference quantile of each group. Each panel depicts the degree mark of the students belonging
to the group represented in the grey label. The two matching boxplots (observed and estimated)
are colored in grey
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four panels, one for each group. For example, the left-top panel refers to students
belonging to group G1. From the third step of the proposed strategy (Sect. 3.3), the
reference quantile for such a group is equal to 0.800. The left-most boxplot depicts
the observed degree mark distribution in G1; the others show the estimated degree
mark distributions obtained exploiting the reference quantiles associated to each
group. It is evident how the estimated degree mark matches the observed degree
mark using the model based on the reference quantile equal to 0.800. The above
mentioned peculiarity of G1 (highest performance students) explains the flattened
shape of the two matching boxplots. From the analysis of the other panels, it is
evident how, in each panel, the observed matches with the estimated distribution
obtained using the reference quantile associated to the specific group. To facilitate
the reading, the two matching boxplots (observed and estimated) are colored in grey.

4 Concluding Remarks

The proposed approach provides a clustering of units according to the conditioned
distribution of the dependent variable estimated through QR. It can represent a
valuable tool to cluster units taking into account the dependence structure in the
data. The underlying idea leading our approach relies on the expected observation
that the dependence structure is affected by the features of the involved units.
Obtaining a partition starting from the QR conditional distributions allows to group
units where the effect played by the covariates on the dependent variable is similar.

The main strengths of the proposed approach are represented by the use of
the whole sample to estimate the group dependence structures and the association
of each group with a specific conditional quantile. The former point enables to
easily test the statistical significance of the differences among the group. The latter
provides a characterization of each group through the identification of a reference
quantile describing the impact on the specific location of the dependent variable
played by the features of the units belonging to the considered group. Finally, as the
approach is embedded in the regression framework, the interpretation of the results
can exploit the well-known rules of any linear model.

Avenues for further developments concern: (i) a proper comparison with the
clusterwise linear regression, with whom we share the goal to simultaneously
identify a partition of the data and the related model; (ii) a testing of the robustness
of the method with respect to the number of groups, the distribution of the variables
involved in the model and the model complexity through a simulation study.
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Nonmetric MDS Consensus Community
Detection

Carlo Drago and Antonio Balzanella

Abstract Community detection methods for the analysis of complex networks are
increasingly important in modern literature. At the same time it is still an open
problem. The approach proposed in this work is to adopt an ensemble procedure for
obtaining a consensus matrix from which to perform a nonmetric MDS approach
and then a clustering algorithm which allows to get a consensus partition of the
nodes. The simulation study offers some interesting insights on the procedure
because it shows that it is possible to understand the key nodes and the stable
communities by considering different algorithms. The proposed approach is still
applied to real data related to a network of patents.

Keywords Community detection * Complex networks ¢ Nonmetric multidimen-
sional scaling

1 Community Detection in Complex Networks

A network is a set of items defined vertices (or nodes) which can be connected
with edges [7]. In this context a complex network can be defined as a network
which is characterized by complex topological features. For example, modularity
or the possibility to be divided into parts characterized by high density connections
between vertices. Random graphs for example are not characterized by these
features which generally happen in real networks. Usually, the connections in
complex networks are not random but there are patterns which can be discovered
and analyzed. In order to discover the properties of networks we need to consider
their statistical features [2, 7]. Typical methods to analyze complex networks are:

C. Drago (<)

Universita degli Studi “Niccoldo Cusano” Telematica Roma, via Don Carlo Gnocchi 3,
00166 Rome, Italy

e-mail: carlo.drago@unicusano.it

A. Balzanella
Department of Political Science, Second University of Naples, Viale Ellittico 31, 81100 Caserta,
Italy

© Springer International Publishing Switzerland 2015 97
1. Morlini et al. (eds.), Advances in Statistical Models for Data Analysis,

Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-17377-1_11


mailto:carlo.drago@unicusano.it

98 C. Drago and A. Balzanella

the Freeman degree centrality; the betweenness centrality, which represents the
centrality for each vertex (node) in the network; the Closeness; the Density, which
measures the ratio between the sum of vertices and possible vertices in a network;
the Network centralization.

A complex network has a community structure if it can be divided into groups
of nodes which are particularly dense in terms of within connections and sparse
in terms of connections between the groups [4]. Detecting communities in a
network is particularly relevant for applicative reasons; in fact, networks can usually
be partitioned in community groups based on some attributes like location or
occupation. At the same time there are important cases in which the communities
can behave as independent departments in the network and to exhibit important
functions [4].

Several algorithms and methods have been proposed in the literature. Among
them, we recall the statistical methods based on the hierarchical clustering, the
divisive methods such as the GirvanNewman algorithm, the modularity-based
methods, the spectral algorithms, and finally the methods based on statistical
inference like the Blockmodeling [4]. The effectiveness of these methods depends
on the topological structure of the network so that each method seems to perform
better in some situation than in others [6]; moreover, different methods performed
on the same network can provide different partitions.

In explorative frameworks where no a priori information is available on the
communities in the network, the choice of the right method can be unfeasible. In
order to deal with this challenge, we propose an ensemble of community detection
algorithms to find a consensus partition which allows to capture the most of
information coming from the single community detection methods in the ensemble.

2 Community Detection Ensembles

We consider, as input, a network represented by an undirected graph G = (V,E)
where V = (vy,...,v;,...,0,) is the set of nodes of the network and E carries
nonnegative values representing the presence of a connection between a pair of
nodes. We consider the following set of methods in order to obtain a partition-
ing of the network into homogeneous communities: edge.betweenness, walktrap,
fastgreedy, spinglass, leading.eigenvector, multilevel, infomap, label.propagation,
optimal modularity [3]. Finally we consider also blockmodeling ex post as addi-
tional method.

We get, as output of each method, a partition P = (CY',...,C[', ..., C¥) where
m = 1,...,M is the index of the community detection method and Cj’ is the set of
nodes included in the k-th community for the method m-th.

Similarly to [1, 8], our ensemble method consists in building a consensus matrix
A = [a;;] (with i,j = 1,...,n) in which each cell g;; (with i # j) records the
number of times in which each couple of nodes is allocated to the same community
of a local partition while the diagonal entries a;; = M (with i = j) record the number
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of community detection methods. In this sense, a value of a;; equal to the number
M of methods in the ensemble indicates a full consensus in allocating the nodes
(vi, vj) to the same community; on the contrary, the value 0 of a;; indicates that no
method allocates (v;, v;) to the same community. Finally, intermediate values of a;;
reveal that there is not a strong consensus in allocating the corresponding nodes to
the same community as consequence of the differences among the methods in the
ensemble.

3 Nonmetric Multidimensional Scaling for Community
Detection

In this section, we consider the obtained consensus matrix A as a similarity
matrix. This is motivated by the following assumptions: (1) we get a high value
of a;j only if a lot of community detection methods in the ensemble consider
the two corresponding nodes (v;, v;) so similar to be very often allocated to the
same community; (2) if a;; records a low value, the two corresponding nodes are
considered very dissimilar by a lot of members of the ensemble; (3) intermediate
values account for nodes which are considered similar by some algorithm and
dissimilar by others. This involves an intermediate value of similarity.

The similarity matrix A can be transformed into a dissimilarity one D by D =
M1—A, where M is the number of community detection algorithms used for building
the consensus matrix and 1 is a (n, n) matrix of ones.

We propose to use the matrix D as input for a nonmetric multidimensional scaling
algorithm (MDS) in order to reach two aims: the first one is to show, graphically,
the proximity among nodes; the second is to get a consensus partition of nodes.

As it is well known, the main objective of nonmetric MDS consists in finding an
arrangement of the input data objects into a low-dimensional space so that the new
distances reflect as closely as possible the rank order of the data. It is worth noting
that a two-dimensional space is often enough for getting a good approximation of
the original distances and an easy-to-read graphical representation.

The motivation behind the choice of nonmetric MDS rather than the classic
metric MDS is that each community detection algorithm acts as a voter in selecting
which pairs of nodes should be allocated together in the same community and which
pairs are so different to be allocated to different communities. So, the values in D
reflect the ordering relations in nodes proximity.

Let n be the number of nodes in the network and let the dissimilarity between
the nodes v; and v; be given by d, ;. By means of nonmetric MDS, the nodes of the
network are gathered in an nxp matrix X, where p < n is the dimensionality of the
nodes in the new space. In nonmetric MDS, only the rank order of entries in the
proximity matrix D is considered rather than the magnitude of the proximity.

The research of a matrix X such that the distances between its rows match as
closely the order relations in D can be performed in several ways. A common
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approach consists in finding both a nonparametric monotonic relationship between
the dissimilarities in D and the Euclidean distances between the items in X and the
low-dimensional coordinates of each item in X. In order to obtain this relationship,
we optimize the Kruskals stress function[5]:

2 (di.j - C?iJ)z

(H
ZiJ diz.j

Stress =

where C/il'zj are the estimated Euclidean distances among the items in X.

By means of MDS we get a representation of the nodes which can be plotted
easier and which reflects the proximity relations resulting from the community
detection algorithms in the ensemble.

In order to reach our second aim, we still use the output of MDS to get a
consensus partition of the nodes. We use the well-known K-means on the low-
dimensional coordinates in X to provide a partition P in K clusters of the nodes
taking into account the Euclidean proximities estimated by the MDS.

To interpret these results we consider a simulation study based on different
synthetic networks.

4 Analysis Based on Simulated Networks

In these examples we consider different types of simulated networks and different
structures. In particular we consider different classes of networks: networks charac-
terized by the preferential attachment, networks characterized by being based on the
Preferential Attachment structure, Small World Networks, and finally the Barabasi
Game BA structure [3]. In order to compare the results among the different methods
and the consensus method we are proposing, we consider a network size of 40
nodes. For all the networks we obtain the results for each community detection
algorithm. At this point we are able to compare the different results. So we start to
consider the nonmetric MDS, then the K-Means. The number of the communities
extracted is obtained by the majority of the number of the communities obtained
by the community detection methods. In that sense we obtain the final consensus
community structure (Figs. 1, 2, 3, and 4). It is important to note that we compare
the consensus community structure with the original data by using the adjusted
Rand Index. The reason of using the adjusted Rand Index is the need to assess
the structure of the communities with the original communities extracted by the
different community detection algorithms. The final results are interesting: in fact
we obtain that it is very important to decide the right number of clusters in the K-
means procedure in order to find the appropriate number of communities. At the
same time it is important to consider that the method extracts not only communities
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Fig. 1 Consensus partition
for experiment 1

Fig. 2 Consensus partition . .
for experiment 2

but it is able to identify some similarities between the structure of the communities
as well. In Table 1 we show the adjusted rand index, computed on each evaluated
network, between the consensus partition and the partitions obtained by the methods
in the ensemble. We can see that the Adjusted Rand Index in the first case shows a
good level of agreement between the results of the ensemble community detection
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Fig. 3 Consensus partition .

for experiment 3
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Fig. 4 Consensus partition
for experiment 4
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Table 1 Corrected rand index computed on the ensemble partition and the partition obtained by
each community detection methods

Experiment 1 Experiment 2 | Experiment 3 | Experiment 4

Edge betweenness 0.614 1 0.289 0.894
Walktrap 0.678 1 0.253 0.894
Fastgreedy 0.726 1 0.289 0.894
Leading eigenvector 0.614 1 0.407 0.506
Multilevel community | 0.726 1 0.289 0.894
Infomap community 0.678 1 0.253 0.894
Label propagation 0.685 1 0.331 0.260

and the methods in the ensemble. In fact a level around 0.70 shows that there are a
number of common nodes well captured by all the different algorithms. However,
there can be some results which are due to single characteristics of the algorithms
which cannot find any consensus in the other algorithms. In every case the method
is able to find a solution which tends to minimize the risk of adopting the wrong
community detection method, by finding a solution which “mediates” between the
different solutions.

In the second case there is an Adjusted Rand Index of 1 for all the methods
in the ensemble. It is important to note that we have detected the corrected
number of communities (which are considered in the K-Means algorithm). The third
experiment shows the case of a low Adjusted Rand Index (around 0.30). In this case
we find a disagreement among the different methods which does not allow to find
a unique satisfying solution. At the same time we can observe, visually, that the
solution allows to find some similarities in the nonconnected groups of nodes. In
this case there are some stable structures in these nonconnected groups. Finally in
the experiment case we find a strong consensus between the different algorithms and
the obtained solution, with the exception of algorithms 4 and 7. The latest, provides
communities which are very different from those discovered by the other algorithms,
while the consensus partition holds the information according to a majority scheme.

The communities can be considered as the group of nodes allocated to the same
cluster by the K-Mean algorithm. In this sense the nodes which are part of the same
cluster are stable groups detected by the procedure. The nodes which are no part
of these stable groups can be detected by considering the graph and observing
the nodes which are amidst other group of nodes (stable). In these cases we can
detect situations in which different methods tend to have different outcomes for
these nodes. This is a relevant information in the analysis of the network.

Now we consider a real case based on real data.
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5 Application

The application is related to a joint patent application network obtained by a new
dataset of innovative firms operating in Italy. The source of data is the OECD
REGPAT database in which data are a subset of the original network. So at the
end of the procedure we obtain 216 nodes. Each node represents a single different
company and each vertex represents a common patenting project of two nodes.
So, from the original matrix, we consider seven community detection methods:
edge.betweenness, walktrap, fastgreedy, leading.eigenvector, multilevel, infomap,
and label.propagation. These methods detect the different communities which are
collected in the consensus matrix. Then we start the nonmetric MDS in order to find
the distribution of the nodes in the axis X-Y identified by the procedure. Finally we
use the clustering algorithm of K-Mean in order to find the stable communities. Due
to a priori information, the number of classes is 40. The final interpretation of the
results is that we can detect some communities which have the structure of a node
very central (representing firms very innovative) and the other nodes representing
companies which participate the common projects (Fig. 5).

In this case it is possible to see from the results we are able to understand the
community structure of relevant group of nodes. At the same time here we can
confirm that this tool is also useful to understand whether there are some differences
in the algorithms. In fact when we are not able to detect a unique solution whether
it is more likely to have similarities between not connected nodes. Also the result
can show some similarities on the network structure which is effectively captured
by a clustering algorithm and is not simply observed by a community detection
one. In fact in some cases the similar groups cannot be connected but they show
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Fig. 5 MDS results plotted on the first two axes and k-means results on the two-dimensional data
points from MDS



Nonmetric MDS Consensus Community Detection 105

relevant similarities. In this case we are able to find this pattern. At the same time it
is important to confirm the fact it is necessary to find the right number of K (obtained
by majority voting of the algorithms) in order to detect the more relevant partitions
using the a priori information given by the other methods.

6 Conclusions

In this work we have considered a new approach in order to perform community
detection. In particular this method is useful in order to detect the different
taxonomies of nodes in a network. So we can have nodes which are particularly
unstable (so they participate in different communities) and nodes which are
particularly stable. This information is explored more in depth by analyzing the
nonmetric MDS procedure which maps the different nodes in the space and provide
a more simple way to interpret the original network and allows to identify the
relevant patterns (Fig. 5).

Acknowledgements The authors wish to thank Ivan Cucco for proving the data related to the joint
patent application network.
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The Performance of the Gradient-Like Influence
Measure in Generalized Linear Mixed Models

Marco Enea and Antonella Plaia

Abstract A gradient-like statistic, recently introduced as an influence measure, has
been proven to work well in large sample, thanks to its asymptotic properties. In this
work, through small-scale simulation schemes, the performance of such a diagnostic
measure is further investigated in terms of concordance with the main influence
measures used for outlier identification. The simulation studies are performed by
using generalized linear mixed models (GLMMs).

Keywords Diagnostics * GLMM e Gradient statistic * Outliers

1 Introduction

Generalized linear mixed models (GLMMs) [10] are useful extensions of both
linear mixed models and generalized linear models in order to assess additional
components of variability due to latent random effects. For this reason these models
have received growing attention during the past decades. Unfortunately, the model
estimates may heavily depend on a small part of the dataset or even on a particular
observation or cluster. Therefore, the identification of potentially influential outliers
is an important step beyond estimation in GLMMs. In the literature, two major
approaches for detecting influential observations can be found. The first one is
the local influence approach, which develops diagnostic measures by using the
curvature of the influence graph of an appropriate function. The second one,
the deletion approach, develops a diagnostic measure by assessing a chosen
quantity change that is induced by the exclusion of individual data points from an
analysis. However, since the observed-data likelihood function in a GLMM involves
intractable integrals, the development, as well as the evaluation, of deletion diagnos-
tic measures involving the information matrix is rather difficult. On the grounds of
the measure suggested by Cook [4], Enea and Plaia [6] derive a diagnostic measure
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which does not require the information matrix, while maintaining the same large
sample behaviour. Their proposal can be considered the analogue, in the study of
influence, of the gradient statistic, recently introduced by Terrell [13] and further
studied by Lemonte [8].

In this work, through well-tested GLMM-based simulation studies using small
size samples, we assess the performance of this gradient-like measure in terms of
concordance with the most used influence measures: the likelihood displacement,
the (generalized) Cook’s distance and the (total) local influence. The paper is
structured as follows: first we define the GLMM for notation purposes in Sect. 2 and
then we recall the three diagnostic measures above-mentioned and the gradient-like
measure in Sect. 3, by providing some further computational details (w.r.t. [6]) for
its calculation. The simulation studies are reported and discussed in Sect. 4 whereas
Sect. 5 reports the conclusions. The appendix reports a simplified version of the R
code we used to calculate the above-mentioned measures.

2 The GLMM

Let y;; be the response of the jth observation, j = 1,...,n;, in the ith cluster, i =
1,...,N. The GLMM is defined by the following equation:

g(iy) = g(Elyylbi, xij,zj])) = ny = x;B + z;bi, (1

where g is a link function, x;; and z;; are covariate arrays, B is the vector of fixed-
effect parameters, b; is assumed to be N(0, G), with G unstructured. The marginal
likelihood is

nj

N N
L(g.G.) = [ [r0i.G.00 =] [
i=1 =17 j=

Jii(vijlbi, B, ¢)f (bi|G)db;, 2
1

where

f®ilG) = exp {~b,G™'b;/2} 3)

1
J2ny[Gl

yiit — ¥ ()

fiQijlbi, B, ¢) = exp ag(d)
ij

+ ¢, d) ¢ “4)
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with ¥ (), a;;() and ¢;;() known functions and ¢ dispersion parameter. Parameter esti-
mation of model (1) is usually performed via marginal log-likelihood maximization
and by integrating out the random effects b;.

3 Influence Diagnostics

Let ¢ = (B’,8’), with 8 representing the variance/covariance components. For
the GLMM, the three most used influence measures, computable for a single
observation, cluster or more generally for its subset M;, are:

the log-likelihood displacement [5]

LDy, = 2{1(318) = 1071 )} )
the Cook’s distance [3]
CDy, = (& = &) I=HI(E — Loy (©6)
and the Cook’s total influence measure [4]

Cu, =2 |A) H ' Ay,

. (N

where H is the Hessian matrix of the log-likelihood relative to parameter . Here
A;Wi = §;—Sim;), where s; = (sgﬁ .8%5)" is the subvector of the difference between the
contribution to the score function of cluster i and the score function for such cluster
without set M;. Of course, if interest is only in the influence of the ith clustgr, it will
be sufficient to consider Ay, = s;. Both H and Ay, are calculated at { = . Notice
that we use the “total”, as opposed to the “local”, influence measure in the sense
that (7) may be considered the deletion diagnostic subcase of [4], initially proposed
to construct ipﬂuence curves. .

Now, let &y, be the estimate of § when subset M; is deleted. Since &y, ~

f - H(;lli) Ay, and by considering that H, (A/}i) can be approximated by H~!, as done
by Zhu et al. [16], we have

E —Z'(M,-) “H_IA(M,')- ®)

By pre-multiplying both members of (8) by A;Ml_), it becomes

AQM,-)(E - E(M,-)) ~ A;M,-)H_IA(MI-)- )
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Note the similarity between the first member of (9) and the gradient statistic
A& — &) [13]. Such a statistic is asymptotically x> distributed, although it is
not a quadratic form and might assume negative values for small sample sizes. By
considering that % | Ay, = 0 and given that Ay, = Yk Am; = —Ay;, 9)
becomes A}, @ ) — ) ~ A} H™'Ay,. Finally we have

Cwy ~ Ciy, = 243, Gy — DI, (10)

which is a measure of influence, because of the distance E(M,-) - E, for which the
use of the information matrix is no more necessary. Notice that if the M;th subset
is influential, E(M,-) - f will be large and imply a low accuracy of (8). However, if
the aim of the approximation is just to detect influential data structure, as it is also
discussed in Sect. 4, such an accuracy could be no more necessary since the higher
& a1, — & the higher C§; [5, p. 182].

A general expression of s; for family (4) can be found in [11]. In particular, for
GLMMs having ¢ = 1, such as binomial or Poisson, it results that:

sig —Sigony = X; 0 = 1) — Xiary Wiany — M) (11)

whereas the vector s;5 — $;5(m;) of derivatives with respect to the elements of G is
calculated from the following matrix D:

1. . A Al
D = G HEbb]ly. £ — By EHG. (12)

In particular, the derivatives with respect to Gy, j # k, will be the sum of the
corresponding off-diagonal elements in D, whereas the derivatives with respect to
Gj; will correspond to the jjth elements in D. The quantity in the curly brackets
is the difference between the vectors of empirical Bayes (EB) estimates of the
second moment of b;, based on the complete sample and on the sample without
the observations in set M;, respectively. To calculate these two quantities consider
that E[bb']y;, 2] = VARIb;ly;, f] + Eb;ly;, 2]2 However calculating the EB means
and variances can be time consuming. It is simpler and preferable calculating the
EB modes and their variances [7, p. 234]. Actually, EB modes and their variances
belong to the standard output of software to fit GLMMs like, for example, glmer
in 1me4 R package [1].
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4 Simulation Studies

4.1 Simulation Scheme 1

By following well-tested simulation schemes [9, 14, 15], a small-scale simulation
study is performed from the following model: y;|b; ~ Poisson(u;), b; ~ N(0,0?),
log(py) = xyB + b, where j = 1,...,n, i = 1,...,10, with equal sample
size n in each cluster i. The single variable x; is chosen as j/n, while 8 =
1,2 = 0.1, 0.2, 1.0 and n = 30, 100, 200. Both 100 and 1000 replications are
considered for each combination of o and n. All the models are estimated by
adding an intercept. The aim is to investigate the performance of Cj, by assessing
its concordance with Cy, in terms of proportion of correct identification of: (a) the
cluster with the largest C;; (b) the two clusters with the largest and the second largest
C;. Table 1 shows the results of the simulation. Observe that the proportions of
correct identification are at least 83 % (a) and 64 % (b) using 100 replications and
86.1 % (a) and 62.4 % (b) using 1000 replications, which can be considered good
results.

4.2 Simulation Scheme 2

By using the same parameters of the previous simulation scheme, in the second
simulation study we generated 101 datasets, picked the one with median log-
likelihood value and repeated the procedure 100 times. This scheme is aimed
at assessing the pairwise concordance among LD;, CD;, C;/2 and C{/2, on 100
“typical” datasets [15]. Table 2 shows the pairwise concordance percentages of the
cluster with the largest influence and the two clusters with the largest and the second
largest influence.

Table 1 Proportion of correct identification of (a) the cluster with the largest C; and (b) the two
clusters with the largest and the second largest C;, using C7, for the simulation scheme 1

n = 30,02 n = 100, o2 n = 200, o2
o1 Jo2 [1o Jo1 Jo2 [1o |o1 Jo2 |10
Replications @ @ | @ @ @ B @) |
100 (@ |89.0 [83.0 |90.0 [87.0 /950 [90.0 |88.0 |91.0 |94.0
) 640 |67.0 |73.0 |66.0 |740 |71.0 |73.0 |750 |80.0
1000 (@ |87.7 [88.0 [86.1 [89.7 |92.4 [876 [892 |o22 [89.7

(b) 624 |689 689 |67.8 |73.9 |723 |64.9 |758 |759
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Table 2 Pairwise concordance percentages of (a) the cluster with the largest influence and (b) the
two clusters with the largest and the second largest influence, using LD;, CD;, C;/2 and C} /2 for
simulation scheme 2

C%/2,CD; | C?/2,C;/2 | C¢/2,LD; | CD;, Ci/2 | CD;, LD; | C;/2, LD; | All four

n_|a® (%) (%) (%) (%) (%) (%) (%)
30 10.1](a) |55 82 96 41 52 86 41
(b) | 21 53 87 10 22 53 10
100 0.1 | (a) | 68 94 98 64 67 94 64
(b) | 31 80 92 24 31 80 23
200 (0.1 |(a) |73 92 96 65 69 96 65
(b) | 59 65 92 37 56 69 37
30 102)(a) |78 86 96 65 74 90 65
(b) | 48 69 94 32 47 72 32
100 (0.2 | (a) | 80 94 95 74 75 95 72
(b) | 58 71 89 37 55 68 34
200 (0.2 | (a) 83 94 98 71 83 94 71
(b) | 65 76 93 50 65 75 49
30 |1 [(a |90 87 96 71 94 83 71
(b) | 67 66 93 39 69 61 39
1001 |(a) |92 87 98 79 92 87 79
(b) | 75 72 95 55 77 71 54
2001 |(a) 87 91 98 80 89 89 79
(b) | 75 78 98 59 77 76 58

Notice that C{/2 shows high concordance rates with LD; and C;/2. Overall,
for small o values there are small concordance rates among the four influence
measures. This means that for this parameter setting the use of only one influence
measure is not sufficient for outlier detection. From this view, the proposal of an
additional diagnostic tool such as the gradient-like measure is advantageous.

Figure 1 shows some results from the simulated “typical” datasets, obtained by
varying o2 and n, when all four measures are concordant. Observe that, even though
the measures appear to be concordant in detecting the most influential clusters,
for such clusters they can also provide values with different magnitude. Further,
for small-size samples, we suggest to use C{ rather than C{/2, in order to better
highlight the most influential cluster.
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Fig. 1 Some cluster-oriented diagnostics from the second simulation scheme, by varying n and
o2, for the case of concordance

5 Conclusions

In this work we have analysed the small-sample behaviour of the gradient-like
influence measure, proposed by Enea and Plaia [6], by using Poisson-normal
random intercept model. Such diagnostic measure resulted to be concordant, in
cluster-level outlier detection, not only with Cy,, from which it represents a direct
approximation but also with CDy, and above all with LD,,,. Although we have used
the gradient-like measure in the context of the GLMMs, it may be used, as well as
LDy, CDy;, and Cy,, to carry out an influence diagnostics on any model.

Appendix: The following R [12] code allows

The following code allows to perform cluster-level influence diagnostics from
an object returned by glmer for binomial or Poisson random intercept models.
Currently, the code works under Ime4 version 0.999999-2. At time of writing,
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package 1me4 was updated to version 1.0-5, but some bugs, concerning the
conditional variances of the random effects, are not fixed yet. Further, as it has
been explained by Enea and Plaia [6], the information matrix, which is necessary to
perform the diagnostics using C; and CD;, can be obtained from package glmmML
[2], which uses the same estimation method and provides the same estimates
of 1me4. A more complete code allowing diagnostics at the observation level,
for random intercept/slopes models and for specified parameter subsets, here not
reported due to space limits, can be requested to the authors.

influence.mer <- function(obj,H:NULL){
options (warn=-1)
parf <- objefixef
nparf <- length(parf)
oneresp <- 1is.null (ncol (objeframe([[1]]))
Y <- (if (oneresp) objeframe[[1]] else objeframe[[1]][,1])
m <- 1if (oneresp) rep(l,length(Y)) else rowSums (obj@frame[[1]]
nobs <- as.vector(table(obj@flist[,ncol (obje@flist)]))
iclus <- objeflist[,ncol (objeflist)]
clus <- levels(iclus)
nclus <- length(clus)
logLikl <- logLik (obj) [1]
delta <- VarCorr(obj) [[1]]
names (delta) <- "delta"
psi <- c(parf,delta)
bi <- ranef (obj,postVar=TRUE) [[1]]
Di <- c()
for (i in 1:nclus) Dilil<- (attributes(bi) $postVar(,,il+bi[i,]%2)/(2xdelta”™2)
E <- Y-fitted(obj) *m
logLik2 <-c()
offset <- if (length(obj@offset)>0) exp(objeoffset) else rep(l,length(Y)
sDelta <- matrix(,nclus,nparf)
Dpsi <- matrix(,nclus,length(psi))
for (j in 1:nclus) {
yes <- (iclus==clus[j])
sDeltal[j,] <- crossprod(objeX[yes,], Elyes])
newobj <- update (obj,data=obj@framel!yes,])
deltai <- VarCorr (newobj) [[1]]
Dpsil[j,] <- psi-c(fixef (newobj),deltai)
logLik2[j] <- logLik (update (obj,data=obj@frame, start=1ist (ST=newobj@ST,
fixef=fixef (newobj)) ,control=1list (maxFN=0,maxIter=0))) [1]
}
Delta <- cbind(sDelta,Di)
DD <- Delta*Dpsi
SGD <- 2xabs (DD)
GD <- 2xabs (rowSums (DD) )
colnames (sGD) <- colnames (Delta) <- colnames (Dpsi) <- names (psi)
Ci <- if (!is.null(H)) 2xdiag(abs(Delta%x*%solve (H)%$+%t (Delta))) else NULL
CDi <- if (!is.null(H)) diag(Dpsi%+%H%+%t (Dpsi)) else NULL
return(list ("GDi"=GD, "LDi"=2+abs (logLikl-logLik2),"Ci"=Ci, "CDi"=CD1i))
}
library (1lme4)
library (glmmML)
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library (mvtnorm)
simul.pois <- function(j,n,param){ #create an artificial data set
pa <- as.vector (rmvnorm(j,c(0,0),matrix(a,2,2)))
clus <- kronecker(l:j,rep(l,n))
x <- rep((l:n)/n ,3)
resp <- rpois(nxj,lambda=exp (param[1l]+param[2] *x+cbind (kronecker (diag(j),
rep(l,n)), kronecker (diag(j), (1:n/n))) %+x%pa ))
data.frame (clus, x, resp)
}
a <- ¢(1,0.5,0.5,1) #for variance/covariance components
dad <- simul.pois(j=10,n=30,param=c(1l,-1,a))
m0 <- glmer(resp ~ x + (l|c1us),data:dad, family=poisson, x=TRUE)
m0b <- glmmML(resp ~ X, cluster=clus,data=dad, family=poisson)
r0 <- influence.mer (obj=m0,H=solve (mOb$variance))
r0l <- r0
r01$Ci <- r01$ci/2
r013GDi <- r01$GDi/2 #GDi is the Gradient-like influence measure
r0l <- do.call("cbind",r01)
matplot (r0l,1lty=1:4,type="1",col=1:4,ylab="influence",xlab="cluster index")
legend ("topright",c("GDi/2", "LRi","Ci/2","CDi"),1lty=1:4,col=1:4)
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New Flexible Probability Distributions
for Ranking Data

Salvatore Fasola and Mariangela Sciandra

Abstract Recently, several models have been proposed for analysing the ranks
assigned by people to some object. These models summarize the liking feeling
towards the object, possibly with respect to a set of explanatory variables. Some
recent works have suggested the use of the Shifted Binomial and of the Inverse
Hypergeometric distribution for modelling the approval rate, while mixture models
have been considered for taking into account the uncertainty in the ranking process.
We propose two new probability distributions, the Discrete Beta and the Shifted-
Beta Binomial, which ensure much flexibility and allow the joint modelling of the
scale (approval rate) and the shape (uncertainty) parameters of the rank distribution.

Keywords Discrete Beta » Ranking data  Shifted-Beta Binomial

1 Introduction

Ranking data arise when »n individuals are asked to order a set of K objects, or item,
from the most to the least preferred. The response vector will be one of the possible
permutations of the first K integers, assuming that ties cannot occur. Ranking data
are generally arranged in an n x K matrix R = {r*}, where the generic entry r*
represents the rank assigned by the i-th individual to the k-th item.

Ranking data modelling has received a lot of attention in the literature, and many
models have been proposed over the years, such as order statistics models [7],
distance-based models [9], paired-comparison models (e.g. Bradley-Terry model)
and multistage models [2].

When the interest is to summarize the liking feeling towards a given item k, the
response variable becomes univariate and can be denoted with R¥. Given the discrete
nature of R, the class of generalized linear models has found large applicability
in the study of ranking data, in particular the application of proportional odds
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models [1]. The most recent proposals for modelling the approval rate of an item
rely on the Shifted Binomial [3] and the Inverse Hypergeometric [4] r.v., but often
these distributions are not sufficiently flexible to fit the empirical rank distributions.
At this aim, mixtures of Discrete Uniform and Shifted Binomial r.v. (MUB models)
have been proposed to deal with both the selection mechanism and uncertainty in
the ranking process [5]. However, the discrete distributions existing in literature are
not able to assume also “J” and “U” (say convex) shapes, as discussed by Punzo and
Zini [10].

The aim of this paper is to introduce two new probability distributions which are
more flexible in shape and preserve simplicity and interpretability of the relevant
parameters.

The paper is organized as follows: Sect. 2 presents the Discrete Beta and the
Shifted-Beta Binomial distributions, while Sect. 3 describes some inferential results
about model estimation. Section 4 reports two applications on two real data sets,
and finally Sect. 5 is devoted to discussion and future work.

2 Two New Flexible Distributions
2.1 The Discrete Beta Distribution

The first model we propose aims at exploiting the flexibility in shape of the Beta
distribution to improve fitting performances for ranking data. Since the support of
the Beta distribution is continuous, a suitable transformation is required to meet the
discrete nature of ranks.

Let X be a Beta r.v. with parameters o and 8 and fx(x;«, B) its p.d.f. Our
proposal consists in splitting the support of X into K intervals of the same width
and considering their respective (integrated) probabilities. At this end, a vector of
K — 1 equally spaced thresholds x; = j/K,j=1,2,...,K — 1 can be defined; if we
consider the discrete set of probabilities

Pj = Fx(yia, f) = Fx(j-i;e. ) j=12,....K,

where xp = 0, xx = 1 and Fx(x; «, B) is the distribution function of X, it can be
associated to ranks assuming

Prob(Rf = rj) = Py . (1

A latent variable interpretation can be given to the proposed model by assuming
the ranks to be induced by a continuous latent r.v. X. In fact, if X ~ B(a,b)
and R;‘ = j when x;; < X; < x;, the proposed model will follow. Usual
approaches fix parameters of the distribution of X (e.g. a standardized version)
and estimate thresholds, as in proportional odds models [1]. On the contrary, we
fix thresholds and estimate the parameters of fx(x). This allows to have only two
model parameters regardless of K, as in the MUB model [5]. Moreover, the choice
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Fig. 1 Discrete Beta ]
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of equally spaced thresholds makes the discrete distribution to reflect the flexible
shapes of the underlying Beta, especially when K is large, preserving its ease of
interpretation in terms of the value assumed by a and b. For example, given a Beta
rv. withae = 2 and 8 = 3 and K = 5, the associated thresholds are x; = 0.2,
x; = 0.4, x3 = 0.6 and x4 = 0.8, and the probability of observing, for example,
rank 4, corresponds to the probability that the Beta r.v. falls in the fourth interval,
e.g. between 0.6 and 0.8. Figure 1 illustrates such distribution.
The expected value of R¥ is

K—1
ER) =K - Fx(x:a.p) .

Jj=1

This quantity tends to 1 (maximum liking feeling) as « tends to O, because
fx(x;a, B) distributes the total probability mass in the close proximity of 0.
Similarly, the expected value tends to K (minimum liking feeling) as 8 tends to 0.
When o = B the distribution of X is symmetric, and, of course, E(RY) = (K +1)/2.
The variance also reflects the variance of the underlying Beta, and its expression is

K—1
VRY = K2 = Y (1 + 2)Fx (., B) — E(RY? .
j=1

In the two extreme scenarios (@ — 0 or § — 0), the variance tends to 0.

2.2 The Shifted-Beta Binomial Distribution

Let now Rf.‘ follow a Shifted Binomial [3] distribution

K—1 K ok
Prob(R} = rf) = ( o 1)1#; HURSE/A L )

1
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Fig. 2 Shifted-Beta N
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where Y is the disliking indicator. Our proposal consists in using a rather natural
generalization of (2), where y; is assumed to be the realization of a Beta r.v. ¥; ~
B(c, B). This assumption leads to a Shifted-Beta Binomial distribution:

3)

me%ﬂb:<K—ij+ﬁ—Lﬁ+K—ﬁ)

r{f -1 B(a, B)

When a = 1, it reduces to the Inverse Hypergeometric model discussed in D’Elia
[4]. As before, the model is ruled by the parameters of the underlying continuous
Beta distribution. Despite the two proposed distributions are substantially different
in their p.d.f., they are similar in shape when using the same parameter values. For
example, using the parameters of the previous example (¢ = 2, 8 = 3), the Shifted-
Beta Binomial distribution assumes the shape in Fig.2; note similarities with the
distribution in Fig. 1.

The expected value and the variance of Ré‘ are, respectively,

- _ o
E(RRY) = (K DE:?+1’
ky _ k _
Vmb:[ﬂ&)IHK ER)]a+p+K L
K—1 a+p+1

It is easy to note how the expected value tends to 1 as « tends to 0, while it tends
to K when § tends to O; it reduces to (K + 1)/2 when « = B. Once again the
variance tends to 0 in the extreme scenarios.

3 Some Inferential Results

Estimates of « and B for models (1) and (3) can be derived via numerical
maximization of the likelihood function:

n K
L(e, ;1) = l—[ l_[Prob(Rf.‘ = rl’f)l(fik=j) ' )

i=1j=1
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The expressions of the mean and the variance for the two proposed distributions
are quite complex and difficult to treat mathematically. Nevertheless, given the shape
similarities between the Beta and the induced distributions, we propose to model
the summary measures of the continuous version and use them as rough summary
measures for the discrete versions. In particular we define

o
EX)=EWY)=——

X) =EW) oy
as a disliking indicator, related to the scale of the distribution, and

EQN-EX)]  _ EWI-EW)] . _
— - l=—————-1=a+f
V(X) V(¥)
as an accuracy indicator, related to the shape. The accuracy substantially reflects
the degree of agreement between the judges in ranking the item.
An attractive reparameterization assumes

n= logit( ) , y =log(a + B). (5)

o
a+p
The use of this reparameterization makes the estimation process more stable,
unconstrained (both « and B are strictly positive) and allows the joint modelling of
the scale and the shape of the rank distribution. Another important feature concerns
the possibility to introduce covariates in the model, for example assuming that two
(possibly equal) vectors x; and z; have a linear effect on n and y:

nm=x0, yi=z'1. (6)

Parameter interpretation reminds usual logit or log-linear models; if x = z = x
we have

9:b4ﬂm+nmm+n}
a(x;)/B(x;) ’

which resembles a log-odds ratio and

/\ _ 10 I:ot(xi =+ 1) +,3(xi =+ 1):|
“O% T am + B

which resembles a log-rate ratio. Of course, alternative reparameterizations could
be allowed.
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4 Two Real Applications

4.1 APA President Election

The two proposed models are here applied to the ranks assigned by n = 5738
members of the American Psychological Association (APA) to the five candidates
during the election of the president in 1980. The complete data set is reported in
Diaconis [6]; we focus on preferences expressed towards the third candidate, due to
the particular shape assumed by the relevant observed rank distribution (Fig. 3).

The Discrete Beta model yields & = 0.64 and ,3 = 0.70 (AIC=18146.95), the
Shifted-Beta Binomial model gives & = 0.55 and ,3 = 0.61 (AIC=18143.55).
The disliking indicator estimate is about 0.48 for both the proposed models; this
indicates that the intermediate rank is approximately the expected value of the
distribution. The accuracy indicator is 1.34 for the Discrete Beta and 1.16 for the
Shifted-Beta Binomial model. If we consider 2 as reference value (when « and
are both lower than one, the distribution assumes a convex shape and, then, is highly
heterogeneous) the degree of agreement between the APA members appears to be
low.

Despite the goodness of fit is not fully satisfactory (Chi-squared test statistic is
highly significant), as Fig. 3 shows, the proposed models perform much better than
the MUB model (AIC=18261.22), since they are able to fit convex distributions.

4.2 Computer Game Platforms

In this example, a model with explanatory variables is considered. The Discrete Beta
model is applied to the ranks assigned by n = 91 students to six different platforms
for computer games (see Fok, Paap and van Dijk, 2012)[8]. The explanatory
variables are the age of the respondent, the number of hours spent on gaming per
week and a dummy own indicating whether the platform is currently owned. We
focus on preferences expressed towards PC, since the model fits quite well. Table 1

Fig. 3 Observed and fitted

0.30
|

distributions of the ranks —— Discrete Beta
assigned to the third - ;, - - Shifted—Beta Binomial
candidate for the election of Q T
the president of APA in 1980 S | . e
o
‘_. —
o
o
O_ -
o
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Table 1 Disliking indicator

X Estimate | s.e x> | p-value
(logit scale)
Intercept | 3.03 1.44 | 440 | 0.04
Age -0.11 0.07 | 2.62 | 0.11
Hours -0.09 0.03 | 8.89 | 0.00
Own -1.39 0.39 | 12.56 | 0.00
Table 2 Accuracy indicator Estimate | s.e 2 p-value
(log scale) Intercept | 0.82 1.84 | 020 | 0.65
Age -0.01 0.08 | 0.02 | 0.89
Hours 0.21 0.06 |13.98 | 0.00
Own -0.94 0.62 | 231 | 0.13

summarizes the output for 7 (the logit of the disliking indicator), Table 2 summarizes
the output for y (the log of the accuracy indicator); standard error estimates are
derived from a numerical (observed) information matrix.

For a typical student with mean age (20.23), playing for a mean number of hours
(3.88) without really owning a PC, the disliking indicator is about 0.63, greater than
the intermediate scenarios. For the same profile the accuracy rate is 4.24, therefore
there is quite a good agreement among that class of students in ranking PC (if, as
before, 2 is taken as reference value).

As far as the explanatory variables are concerned, age does not appear to have
a significant influence on the two indicators. As expected, students who actually
own a PC have a lower disliking feeling, as well as students spending much time on
gaming. In addition, the more the time spent playing PC, the higher would be the
agreement between students in ranking PC, since the variance of the distribution of
the ranks tends to reduce significantly for students who play more.

5 Conclusions

Two new flexible probability distributions for modelling the ranks assigned to an
item have been proposed. These models are easy to interpret in terms of disliking
feeling towards an item and accuracy rate for the corresponding distribution of
ranks. These distributions result to be particularly useful when the rank distribu-
tion assumes a convex shape and represent also a good alternative for concave,
monotonic and uniform distributions. The fitting process estimates the two summary
measures simultaneously, through the use of a link function which maps parameters
on an unbounded range of variation. Future work should focus on a more detailed
description of the behaviour of the two proposed distributions with respect to
parameter values; besides, a simulation study could be useful to evaluate, more
rigorously, the fitting performances with respect to the existing competitors.
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Robust Estimation of Regime Switching Models

Luigi Grossi and Fany Nan

Abstract It is well known that generalized-M (GM) estimators for linear models
are consistent and lead to a small loss of efficiency with respect to least squares
(LS) estimator. When they are extended to threshold models the consistency of GM
estimators is guaranteed only under certain objective functions. In this paper we
explore, in a simulation experiment, the loss of consistency of GM-SETAR estima-
tor under different objective functions, time-series length, parameter combinations
and type of contaminations. Finally the best robust estimator is applied to study the
dynamic of electricity prices where regime switching and high spikes are widely
observed features.

Keywords GM estimator * Nonlinear models ¢ Outliers

1 Introduction

Threshold auto regressive (TAR) models are quite popular in the nonlinear time-
series literature. This popularity is due to the fact that they are relatively simple
to specify, estimate, and interpret. The sampling properties of the estimators and
test statistics associated with TAR models have been studied by Hansen [7]. It
is very well known that time series can be contaminated by outliers which can
dramatically influence parameter estimates (see, for example, [4]). In the class of
nonlinear models, studies addressed to robustifying this kind of models are very
few, although the problem is very challenging, particularly when it is not clear
whether aberrant observations must be considered as outliers or as generated by
a real nonlinear process. van Dijk [15] derived an outlier robust estimation method
for the parameters in smooth threshold auto regressive (STAR) model, based on the
principle of generalized maximum likelihood type estimation. Battaglia and Orfei
[2] focused on outlier detection and estimation through a model-based approach
when the time series is generated by a general nonlinear process. A general model
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able to capture nonlinearity, structural changes, and outliers has been introduced
by Giordani et al. [6]. The authors suggest to employ the state-space framework
which allows to estimate the coefficients of several nonlinear time-series models
and simultaneously take into account the presence of outliers and structural breaks.
The method seems quite effective in modeling macro-economic time series.

Apart from the previous methods which deal with the presence of outliers in
very specific contexts, the issue of outliers in nonlinear time series models is
far from being clearly solved. Chan and Cheung [3] extended the generalized M
estimator method! to self-exciting threshold auto regressive (SETAR) models. Their
simulation results show that the GM estimation is preferable to the LS estimation
in the presence of additive outliers. As GM estimators have proved to be consistent
with a very small loss of efficiency, at least under normal assumptions, the extension
to threshold models, which are piecewise linear, looks quite straightforward. Despite
this observation, a cautionary note [5] has been written to point out some drawbacks
of GM estimator proposed by Chan and Cheung [3]. In particular, it is argued
and shown, by means of a simulation study, that the GM estimator can deliver
inconsistent estimates of the threshold even under regularity conditions. According
to this contribution, the inconsistency of the estimates could be particularly severe
when strongly descending weight functions are used.

Zhang et al. [16] demonstrate the consistency of GM estimators of autoregressive
parameters in each regime of SETAR models when the threshold is unknown.
The consistency of parameters is guaranteed when the objective function is a
convex nonnegative function. A possible function holding these properties is the
Huber p-function which is suggested to replace the polynomial function used in
Giordani’s [5] paper. However, the authors conclude that the problem of finding a
threshold robust estimator with desirable finite-sample properties is still an open
issue. Although a theoretical proof has been provided by the authors, there is not
a well-structured Monte Carlo study to assess the extent of the distortion of the
GM-SETAR estimator. From the analysis of the existing literature, there are at least
three open issues which must be addressed: 1) What is the bias of SETAR robust
estimators with respect to the LS estimator? 2) What is the best weight function
to define the optimal robust estimator? 3) What are the forecasting performances
of the different weight functions? Moreover, robust estimators of regime switching
processes are not implemented within the most popular software platforms among
statisticians, such as Matlab and R. In this paper we want to fill these gaps by
presenting an extensive Monte Carlo study comparing LS and GM estimator under
particular conditions. Both the simulation experiment and the analysis of real data
rely on a library written in R which is available to the authors upon request. Finally,
we propose an application of robust nonlinear estimators to the series of electricity
prices following the results of the simulation experiment. It is indeed well known
that, among the stylized facts which empirically characterize electricity prices, the

!For an overview about GM estimators see [1, Chap. 4] and [12, Chap. 8].
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presence of sudden spikes is one of the most regularly observed and less explored
features [9].

2 Robust SETAR Models

Given a time series y;, a two-regime SETAR(p,d) model, is specified as

Xrﬂl + &, if ya=<vy

, ey
xB,+e, if y—a>y

fort = 1,...,N, where y,—,; is the threshold variable with d > 1 and y is the

threshold value. The relation between y,—; and y states if y; is observed in regime

lor2, B j is the parameter vector for regime j = 1,2 and x; is the 7-th row of the

(N x p) matrix X comprising p lagged variables of y, (and eventually a constant).

Errors &; are assumed to follow an iid(0, o) distribution.

In general the value of the threshold y is unknown, so that the parameters to
estimate become = (B, B, y,0:). Parameters can be estimated by sequential
conditional least squares: for a fixed threshold y the model is linear, 8, and S8,
can be estimated by ordinary least squares (OLS) and 6, = Zf’:l r?/N, with r, =
Vi — xt[i. The least square estimate of y is obtained by minimizing the residual sum
of squares y = argmin,er Zivzl r? over a set I" of allowable threshold values so
that each regime contains at least a given fraction (ranging from 0.05 to 0.3) of all
observations.

In the case of robust two-regime SETAR model, for a fixed threshold y the GM
estimate of the autoregressive parameters can be obtained by applying the iterative

. A~ (n+1) () -1, ) A1)
weighted least squares: B; = (XiWWX; )  XW"y;, where g; is the GM
estimate for the parameter vector in regime j = 1, 2 after the n-th iteration from an

initial estimate ﬁ(-o), and W is a weight diagonal matrix, whose elements depend
on a weight function w(A(-n), 6;3) ) bounded between 0 and 1. The threshold y can
be estimated by minimizing the objective function p(r;) over the set I" of allowable
threshold values. Different weight functions have been proposed in the literature.

The first method is described in [3]. Weights are calculated as

S A Vi — My Vi — XtBj
wihd) = (M) v (Y ).
o G0y, Ce0e

where m,; is a robust estimate of the location parameter (sample median) in the
Jj-th regime. 6, and 6,; are robust estimates of the scale parameters o, and oy,
respectively, obtained by the median absolute deviation multiplied by 1.483. C, and
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C, are tuning constants fixed at 6.0 and 3.9, respectively. Although the choice of
the values of the tuning constants could be calibrated, in this simulation experiment
they are the same used in the study of Chan and Cheung [3]. This is to allow a fair
comparison with their results. In this case, v is the Tukey bisquare weight function,
defined as

2\2  :
V) = (1—u?) }f lul <1,
0 if Jul > 1.

The objective function to minimize for the search of the threshold depends on
Tukey bisquare weights. We use the same function described in [3].

For the second method, we follow [4]. The GM weights are presented
in Schweppe’s form w([i 5, 0:j) = Y(r)/r, with standardized residuals
re= (v = XiB;)/ (G jwe(x,)) and wi(x) = ¥ (d(x)*)/d(x,)*. d(x) = [x,—myj[ /6y,
is the Mahalanobis distance and « is a constant usually set equal to 2 to obtain
robustness of standard errors. The chosen weight function is the Polynomial
function as proposed in [11], given by

u it |ul <ecy,
V() = {sgn(g(ul) if ¢ <|u| < e,
0 if |u| > ¢,

where sgn(u) is the signum function, g(|u|) is a fifth-order polynomial such that
¥ (u) is twice continuously differentiable, and ¢ and c¢; are tuning constants, taken
to be the square roots of the 0.99 and 0.999 quantiles of the y?(1) distribution
(c; =2.576 and ¢, = 3.291). The threshold y is estimated by minimizing the
objective function Zf’zl w(ﬁ, Ge) (v — x,ﬁ )? over the set I" of allowable threshold
values.

The third method is based on the same methodologies of the second but with ¥
as the Huber weight function, given by

— if u<-—c,
Y(u) = qu if —c<u<ec,

c if u>c,

where c is a tuning constant taken equal to 1.345 to produce an estimator that has an
efficiency of 95 per cent compared to the OLS estimator if ¢, is normally distributed.
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3 Simulation Experiment

To compare the performance of the three methods, we reproduce the simulation
study of [3]. We generated time series from SETAR(1,d) models for fixed sample
sizes of N = 100, 500, with 1000 replications, respectively, and 052 = 1. Moreover,
18 parameter combinations for § = (B, B2, y.d) are considered. The series are
contaminated following three schemes. For the single-outlier case, an additive
outlier is located at r = N/2 with magnitude w given by 0, 3, 4, 5 times the
standard deviation of the process. For the three-outlier case, we fixed three outliers
att = N/4,N/2, and N * 3/4 with magnitude —w, w and —w, respectively. The
multiple-outlier case is applied only for series with N = 500: three outliers are
fixed every 100 observations with the same scheme of the three-outlier case. For
the first robust estimation method, following [3], the starting values ,30, ,3(2) of the
parameters are calculated by four iterations with Huber weights with OLS estimates
as initial points. For the second and third method the starting values are calculated
by least median squares.”

In Table 1 we have summarized some results of the big Monte Carlo experiment
which has been carried out to compare the performances of the robust GM estimator
to the LS estimator by applying the three methods described previously and
called “Tukey,” “Polyn,” and “Huber,” respectively. Each row corresponds to a
combination of parameters used to generate the trajectories of a SETAR process.
The values reported in the table represent the ratio between robust and LS RMSEs
(root mean square error): robust estimators are better than LS when the ratios are
less than 1. For lack of space, we reported only 6 combinations out of the original
18. Moreover, we were not able to show the same results for 100 observations
time series and for different contamination pattern (one single outlier and three-
outlier case; contamination magnitude @ = 4). According to what it has been
proved by Zhang et al. [16] the robust estimator of the threshold parameter is very
less efficient than the LS estimator in small samples. As a consequence, we found
(results available upon request) that all three robust methods performed generally
worse than the LS, at least for weak contamination patterns, that is in the single
outlier case with small magnitude. The results reported in Table 1 refer to the most
complex case, that is high sample size and multiple outliers. It is immediately
clear that, while the method suggested by Chan and Cheung [3] based on the
Tukey function does not show any significant improvement with respect to LS, the
other two methods look to be competitive to LS in the estimation of the threshold.
Moreover, the Polynomial and Huber functions are far better than the LS estimator
in estimating autoregressive coefficients with a slight prevalence of the Polynomial
method. These results confirm the theoretical results provided by Zhang et al. [16].

2Different starting values have been chosen deliberately to keep the first method as it was originally
suggested by Chan and Cheung [3].
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To give an overall idea of the results partially reported in Table 1, we have
computed the average values of the RMSEs ratios of the robust estimators with
respect to the LS estimator (Table 2) using all 18 simulated processes. The same
ratios have been obtained in order to compare performances of each weight function
to the others (Table 3). For instance, the first value in Table 2 (1.371) means that
the RMSE obtained on the 18 simulated processes using the Polynomial weight
function is on average 37.1 % higher than the RMSE of the LS estimator when the
threshold is estimated on non-contaminated trajectories in accordance to the higher
efficiency of LS. Thus, values greater than 1 mean that the analyzed estimator is
worse than the compared estimator. From Table 2 we can conclude that all robust
estimators are overperformed by the LS estimator when the parameters are estimated
on non-contaminated series (w = 0). However, the Polynomial function is the only

Table 1 Ratios of the RMSE of the robust estimates to the LS estimates

Bi B

S =

d =013 5 =03 5 w=0 3 5
Tukey (0,—0.5,—1) 1| 1.17 0.98 | 0.86 | 1.84 0.46 | 0.41 |3.02 0.81 |0.41
Tukey (0,—1,—0.5) 1| 1.18 0.77 10.72 | 3.06 0.42 10.26 | 1.83 0.72 10.47
Tukey (0,0.5,0.8) 1| 131 1.36 | 1.44 | 1.66 0.67 1 0.76 |3.35 0.87 10.48
Tukey (0,—0.5,0.8) 1| 292 2.28 | 1.86 | 3.87 1.79 | 1.15 |3.40 1.09 |0.62
Tukey (0,0.3,0.8) 2 | 4.68 1.58 | 1.23 | 2.59 1.33 10.86 |2.73 0.77 |0.44
Tukey (—0.1,0.3,—0.8) |2 |18.26 |10.29 |5.75 |3.77 2.16 | 1.48 |2.99 0.88 |0.73
Polyn (0,—0.5,—1) 1| 099 0.76 | 0.69 | 1.12 0.38 |1 0.17 | 1.12 0.36 |0.16
Polyn (0,—1,—0.5) 1| 096 0.62 |0.57 | 1.14 0.21 |0.10 | 1.11 0.64 10.28
Polyn (0,0.5,0.8) 1| 092 1.02 | 1.04 | 1.14 041 1022 |1.18 0.42 |0.19
Polyn (0,—0.5,0.8) 1| 1.28 1.06 10.93 | 1.38 0.78 10.49 | 1.07 0.45 10.21
Polyn (0,0.3,0.8) 2| 1.74 0.65 | 0.39 | 1.18 1.04 |0.60 | 1.10 0.43 |0.19
Polyn (—0.1,0.3,—0.8) |2 | 2.57 1.21 10.59 | 1.08 0.75 1 0.38 | 1.08 0.41 |0.15
Huber (0,—0.5,—1) 1| 098 0.72 | 0.66 | 1.07 0.49 10.21 | 1.01 0.37 10.17
Huber (0,—1,—0.5) 1| 092 0.63 | 0.58 | 1.09 0.29 10.14 | 1.03 0.62 |0.28
Huber (0,0.5,0.8) 1| 110 1.02 | 1.00 | 1.15 0.46 1023 |1.13 0.50 0.20
Huber (0,—0.5,0.8) 1| 131 1.15 | 1.11 | 1.28 0.78 |1 0.61 | 1.06 0.48 0.24
Huber (0,0.3,0.8) 2| 204 0.72 10.51 | 1.31 1.04 10.71 | 1.14 0.63 |0.26
Huber (—0.1,0.3,—0.8) |2 | 1.58 1.03 10.59 | 1.09 0.80 1 0.52 |1.11 0.49 10.22

1000 MC simulations of time series with sample size 500, multiple-outlier case. First column
reports the name of the weight function. The values of true parameters are in parentheses in the
following order: y, B1, B>
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Table 2 Means of the 18 RMSEs ratios of the GM estimate to the LS estimate

7 Bi B>

w=0 |3 5 w=0 |3 5 w=0 |3 5
Polyn 1.371 1.088 |0.885 |1.158 0.612 |0.330 |1.253 0.670 |0.392
Huber |1.278 1.073 | 1.007 |1.115 0.611 |0.366 |1.173 0.667 |0.444
Tukey |4.152 2939 |2.079 |3.085 1.109 |0.765 |3.121 1.485 | 1.057

1000 MC simulations of time series with sample size 500, multiple-outlier case. First column
reports the name of the weight function

Table 3 Means of the 18 RMSEs ratios of the GM estimation

7 B B>

w=0 |3 5 w=0 |3 5 w=0 |3 5
Polyn to Huber | 1.067 | 1.013 |0.887 |1.038 |0.966 |0.902 |1.060 |0.962 |0.874
Polyn to Tukey |0.519 |0.504 |0.491 |0.439 |0.586 |0.419 |0.437 |0.520 |0.399
Huber to Tukey |0.507 |0.501 |0.551 |0.424 |0.607 |0.466 |0.414 |0.554 |0.455

1000 MC simulations of time series with sample size 500, multiple-outlier case. First column
reports the name of the weight function

one to overperform the LS estimator in the estimation of the threshold parameter
when the magnitude of the contamination is high (w = 5). On the other hand,
Polynomial and Huber functions are always far better than LS in the estimation of
B on contaminated series. Tukey is better than LS only once. The comparison of the
robust weight functions is shown in Table 3. The clear preference of Polynomial and
Huber functions to the Tukey weights is strongly confirmed. Moreover, Polynomial
reveals to be always better than Huber function with the exception of few cases
related to the estimation of the threshold parameter where the two weight functions
look to perform equally well.

4 Application: Italian Electricity Price

Prices fixed on deregulated electricity markets usually show changes in regime [8].
Another very well known stylized fact of electricity prices is the presence of isolated
jumps as a consequence of sudden grid congestions which reflects immediately on
prices because of lack of flexibility of the supply and demand curves [10]. This
feature must be considered very carefully and robust techniques must be applied to
avoid that few jumps could dramatically affect parameter estimates. Although many
papers have applied quite sophisticated time-series models to prices and demand
time series of electricity and gas very few have considered the strong influence of
jumps on estimates and the need to move to robust estimators [13].

In this section, we apply LS and the three robust methods to estimate parameters
of SETAR models on Italian electricity price data (PUN, prezzo unico nazionale).
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Moreover, a comparison of prediction accuracy among the methods has been
conducted.

The time series of prices used in the present work covers the period from January
1st, 2009 to December 31th, 2012 (35,064 data points, for N = 1,461 days): year
2012 has been left for out-of-sample forecasting. The data have an hourly frequency,
therefore each day consists of 24 load periods with 00:00-01:00 am defined as
period 1. Spot price is denoted as Py;, where ¢ specifies the day and j the load period
t=12,...,N;j=1,2,...,24).

In this study, following a widespread practice in literature, each hourly time series
is modeled separately.

Differences in load periods can cause significant variations in price time series.
A first inspection, based on graphs, spectra, and ACFs (figures are not reported for
lack of space but they are available upon request) for different hours, shows that the
series have long-run behavior and annual dynamics, which change according to the
load period. A common characteristic of price time series is the weekly periodic
component (of period 7), suggested by the spectra that show three peaks at the
frequencies 1/7,2/7, and 3/7, and a very persistent autocorrelation function.

We assume that the dynamics of log prices can be represented by a nonstationary
level component Ly;, accounting for level changes and/or long-term behavior, and a
residual stationary component p;;, formally log P; = L;; + p;,. To estimate L; we
used the wavelet approach [14]. We considered the Daubechies least asymmetric
wavelet family, LA(8), and the coefficients were estimated via the maximal overlap
discrete wavelet transform (MODWT) method (for details, see [14]). Figure 1 shows
log P; for hours 5 and 18, respectively, with the estimated nonstationary level
component superimposed. The 2h have been selected to give examples of peak
(hour 18) and off-peak hours (hour 5).

After removing the long-term component, we estimated on the stationary time
series p; the SETAR(p,d) model, as reported in Eq.(1). According to ACFs,
a SETAR(7,1) model has been estimated over all the price series to highlight
differences in the estimation given by different dynamics characterizing each load
period.

We have to emphasize that the analyzed time series are very similar to the trajec-
tories simulated in the previous section: large sample size and high contamination
level. In this case Polynomial and Huber methods should perform better than both
LS and Tukey. As a confirmation of the simulation experiment, Polynomial and
Huber coefficients are very similar (tables not reported). Next step of the analysis
will be to compare the forecasting performances of the robust methods with the
forecasting performance of the LS estimator.

For comparing our robust/nonrobust SETAR models, we reproduced 366 one
day-ahead forecasts p,+; for each model estimated on a rolling window of 3
years. Comparisons are based on the predictions of the original spot prices, where
the prediction of the long-term component L,4; is obtained relying only on the
information available in . In particular, we set f,,+1 = I:,, that is, we used the
estimated value in ¢ as a forecast for r 4 1. Besides its simplicity, the motivation to
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Fig. 1 log P;; for hours 5, 18, respectively (from top to bottom), with the estimated nonstationary
level component superimposed

use this method comes from the fact that the long-term component, by definition,
should be basically the same for two contiguous days.

Forecasts have been compared in terms of MSE (mean square error) and MAE
(mean absolute error) and the Diebold and Mariano test. These measures are based
on the forecasting errors ¢; = Pj; — IA’,j t=12,....N;j = 1,2,...,24) for
each method. We used the one-tailed Diebold and Mariano test (DM), whose null
hypothesis is that the prediction accuracy of procedure (say) A is equal to or lower
than that of procedure B. The test has been performed both with MSE and MAE.
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Table 4 MSE and MAE of forecasts obtained from the four models on the four estimation periods
and on the whole year. LS = least squares, POL = polynomial, HUB = Huber, TUK = Tukey

Hour 5, SETAR(7,1)

MSE MAE
Period LS POL HUB |TUK |LS POL HUB | TUK
January—March 75.70 | 69.50 72.24 |71.05 6.52 |6.13 6.40 |6.29
(LS) (LS, HUB)
April-June 129.16 | 137.06 128.26 | 132.48 | 9.01 |8.77 8.75 | 8.56
July—September 54.29 |55.29 57.66 |61.00 |5.36 |5.32 5.44 551
(HUB, TUK) (TUK)

October—December | 47.44 | 46.31 47.34 149.98 |5.12 |5.00 5.08 |5.18

Year 76.51 |76.89 76.25 | 78.50 |6.50 |6.30 6.41 | 6.38
(LS, HUB)

Hour 18, SETAR(7,1)

MSE MAE

Period LS POL HUB |TUK |LS POL HUB | TUK

January—March 200.70 | 214.58 206.83 | 195.80 | 10.06 | 9.93 9.94 19.80

April-June 159.12 | 148.20 148.71 | 153.63 | 9.61 |9.49 941 |9.55

July—September 688.24 | 696.87 686.51|675.47 | 14.57 | 13.49 13.81 | 13.66
(LS, HUB) | (LS) | (LS)

October—December | 67.29 | 65.18 64.35 |65.26 [6.04 |5.71 5.72 |5.72
(LS) (LS)

Year 279.38 | 281.75 277.14 1 273.07 | 10.07 | 9.65 9.72 1 9.68
(LS) (LS)

The models whose forecasts are statistically worse than predictions of the model in the column
are in parenthesis (1-tailed Diebold and Mariano test at 5 % significance level, MSE and MAE
loss functions)

Table 4 shows MSE and MAE values on the whole year 2012 and on the four
quarters. In parenthesis we reported the models whose forecasts are statistically
worse than predictions of the model in the column considering the 1-tailed Diebold
and Mariano test at 5 % significance level and MSE and MAE loss functions.

As can be seen, good results obtained from the simulation experiment are
confirmed by the good forecasting performance of robust methods, with a slight
preference of Polynomial on Huber’s weights.

5 Conclusions

In this paper the statistical properties of different robust estimators for nonlinear
time-series models have been examined. We have carried out an extensive Monte
Carlo experiment to compare LS and GM estimators, with different weight func-
tions, for SETAR models. The main result is that the bias in the threshold parameter
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estimator which has been observed in previous works seems to decrease when Huber
and Polynomial weight functions are applied and when the sample size increases.
From the estimation of parameters on the series of electricity prices we have
observed that the application of robust estimators improves the prediction accuracy.
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Incremental Visualization of Categorical Data

Alfonso Iodice D’Enza and Angelos Markos

Abstract Multiple correspondence analysis (MCA) is a well-established dimen-
sion reduction method to explore the associations within a set of categorical
variables and it consists of a singular value decomposition (SVD) of a suitably
transformed matrix. The high computational and memory requirements of ordinary
SVD make its application impractical on massive or sequential data sets that
characterize several modern applications. The aim of the present contribution is
to allow for incremental updates of existing MCA solutions, which lead to an
approximate yet highly accurate solution; this makes it possible to track, via MCA,
the association structures in data flows. To this end, an incremental SVD approach
with desirable properties is embedded in the context of MCA.

Keywords Correspondence analysis ¢ Incremental methods ¢ Singular value
decomposition

1 Introduction

Multiple correspondence analysis (MCA) is a suitable dimension reduction method
for the visual exploration of the association structure characterizing a set of
categorical attributes [9]. Classic applications of MCA range from marketing
to psychology, to social and environmental sciences. In the last decade, new
frameworks of application emerged, which usually involve large/massive amounts
of categorical data. For instance, Multiple and Simple CA have been effectively
used for data preprocessing and feature space reduction [16, 21, 24], as well as
for visualizing meaningful associations in high-dimensional data [10, 20]. Other
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examples include the continuous monitoring of typical product purchase combina-
tions in market basket data, visualization of web-page visiting patterns via web-log
analysis, tracking patient symptoms and behaviors over time, and monitoring of
word associations that are present in data pulled on-the-fly from social networking
sites. In all these examples, there is a high rate of data accumulation coupled
with constant changes in data characteristics; the applicability of ordinary MCA
is limited and requires a different approach.

MCA can be accomplished via an eigenvalue decomposition (EVD) or a singular
value decomposition (SVD) of a suitably transformed data matrix. The application
of ordinary EVD or SVD to large and high-dimensional data is infeasible because
of the high computational and memory requirements: this aspect also limits the
applicability of MCA on large data sets. In addition EVD/SVD, and hence MCA,
are unsuitable for sequential data or data flows, i.e., when new data arrive, one needs
to rerun the method with the original data augmented by the new data and the whole
data structures being decomposed have to be kept in memory.

In the literature, there are several proposals aiming to overcome the EVD or
SVD-related limitations when the full data set is not available from the start, as in
data flows. Such approaches are based on incremental updates of existing EVD/SVD
solutions according to new data (see [1] for an overview). The solution obtained
from the starting data block has to be incrementally updated each time new data
comes in.

The aim of the present contribution is to extend the use of MCA as a visual
tracking tool of evolving association structures. To this end, we propose a block-
based MCA algorithm to deal with incremental updates of existing solutions, which
we refer to as “Live” MCA and leads to approximate, albeit accurate, solutions.

The paper is organized as follows: In Sect. 2 we briefly recall MCA as a
dimension reduction method for categorical data. Section 3 reviews the literature on
incremental eigen-decomposition methods. An incremental modification of MCA
for tracking association structures is proposed in Sect. 4. In Sect. 5, we provide
experimental results on synthetic data to investigate the convergence and accuracy
of Live MCA, as compared to ordinary MCA. In Sect. 6 we illustrate a real-world
application on data gathered from a social networking service. The paper concludes
in Sect. 7.

2 MCA as a Matrix Decomposition Technique

This section provides a brief introduction to MCA from a matrix decomposition
viewpoint. Let Z be a n x Q binary matrix, where n is the number of observations
and Q the total number of categories that characterize g categorical variables. The
general element is z; = 1 if the ith statistical unit is characterized by the jth category,
z;j = 0 otherwise; let P = n%Z be the correspondence matrix, where n X ¢ is
the grand total of Z. The core step of MCA is the matrix decomposition of the
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standardized residual matrix S, defined as follows:
S=D;'"2(P—rc")D; /2, ()

where r and ¢ are the row and column margins of P, respectively; D, and D, are
diagonal matrices with values in r and ¢. The MCA solution can be obtained via the
SVD of S = UXVT, where U is an n x Q orthonormal matrix with left singular
vectors on columns, X is a diagonal matrix containing the Q singular values, and V
is a O x Q matrix of right singular vectors. The jth singular value corresponds to the
standard deviation of data along the direction of jth singular vector,j = 1,..., Q.
The principal coordinates of the statistical units are F = D, Y ’UX, whereas G =
D, 1/ 2V'X are the attribute coordinates.

3 Enhanced Eigen Decompositions

The SVD and related EVD lie at the heart of several multivariate methods,
applicable to continuous, categorical, and compositional data. Both techniques have
been applied to a wide spectrum of fields, ranging from signal processing and
control theory to pattern recognition and time-series analysis. In cases where the
data size is too large to fit in memory, or if the full data set is not completely
available from the beginning, as in the case of data flows, the SVD/EVD application
is infeasible. Therefore, it may be advantageous to perform the computations as
the data become available. The so-called incremental methods aim to update (or
downdate) an existing SVD or EVD solution when new data is processed. These
methods can be applied to sequential data blocks without the need to store past data
in memory.

Incremental EVD/SVD approaches that operate on streaming data are plentiful in
the literature. A popular class of algorithms is based on sequential decomposition,
that is, they seek to find the best subspace estimate each time a new data block
arrives, but without performing the full EVD/SVD at each step [1]. Most of the early
work introduced algorithms for sequential EVD or SVD in the fields of computer
vision and signal processing [4-6, 11, 15, 17]. Although some of these methods are
quite efficient, they only allow for a single column update, do not take into account
the mean information or, equivalently, assume that the data is inherently zero mean,
and have some potential numerical instability.

More recently, Brand [2, 3] proposed an efficient and stable incremental SVD
algorithm with block update, which can also handle missing or uncertain values;
however, this method assumes the sample mean is fixed when updating the
eigenbasis. Hall et al. [12] presented an integrated approach for merging and
splitting subspaces, using stable incremental computations of both EVD and SVD.
This approach allows for multiple column (or block) update and downdate and takes
into account the mean information. Similar methods to that of [12] were proposed
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by Fidler et al. [7] and Ross et al. [22]. In the former method, the mean information
is preserved, but block update is not considered. The latter approach extended the
sequential Karhunen—Loeve algorithm proposed by Levy and Lindenbaum [15] to
an incremental SVD algorithm with mean and block update; it goes beyond other
approaches in that it has constant space and time complexity. A generic approach,
unifying some of the previous methods for approximating the dominant SVD, can
be found in [1].

In this paper, we utilize the incremental SVD procedure proposed by Ross
et al. [22], in order to provide an incremental MCA algorithm. The procedure allows
to keep track of the data mean, which is a desirable property in the context of
MCA, so as to simultaneously update the center of the low-dimensional space of
the solution. Also, the method has a computational advantage over other approaches
in that the decomposition can be computed in constant time regardless of data size.
This property makes it appealing for an incremental MCA implementation in the
case of data flows.

4 Block-Wise MCA

In order to describe an incremental or block-wise MCA scheme we first introduce
some necessary definitions. An eigenspace is a collection of the quantities needed to
define the result of a matrix eigen decomposition, as it involves eigenvalues (singular
values), eigenvectors (singular vectors), data mean, and size.

In particular, with respect to the SVD, for an n; x Q matrix X; and an n, x Q
matrix X,, we can specify two eigenspaces as

21 = (n1, 11, U, X1, V)) and  £2; = (n2, o, Uz, X5, V)).

The aim of incremental decomposition is to obtain an eigenspace §2; for the
concatenated matrix: |:Xl:| , using uniquely the information in £2;. The total number

of statistical units and the global data mean can be easily updated: n3 = n; + n, and

_ mpitnapn
g = TELEE

Setting the problem in an MCA framework, it is necessary to derive the matrix to
be decomposed and the data mean. This is because, in the case of MCA, variables
are transformed according to the margins of each data block. In particular, we first
express the standardized residual matrix of Eq. (1) in covariance matrix form:

Z 1
— D—l/2 _ln —ITDI/Z, )
oJn T nc ”

~———— ——

X1 I"-lr

S
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where X; = —L_7ZD;"? is the n; x Q row-wise centered matrix of the first data

0+/n

block and u; = «/LﬁDi/ ?1 is the data mean. For an incoming data block, we obtain
the corresponding n, x Q matrix X,. In order to take into account the varying mean,

the vector /% (12 — 1) is added to Xo.

In order to obtain the eigenspace §2; of the super matrix [§1:|, we adopt and
2
briefly describe the incremental SVD approach proposed by Ross et al. [22].
Lemma 1 Given the SVD of X; = U; X, V],

Xl _ U1 0 21 0 Vl

X, |0I||LHQ||Q/
where L = XZV-{, 0 is a result from the QR-decomposition of H = X; — LV}, and
I is the identity matrix.

Proof Let L = X,V be the projection of X, onto the orthogonal basis V; and
H = X, — LV, the orthogonal component of L. Apply a QR-decomposition to H
to obtain Q. Thus, H = X, —LV] & X, = H+ LV, & X, = HQ'Q + LV;.

Therefore,
o il[E ol6] = vt Tiarel =[x
0I||LQJ|Q| |LV,+HQQ| [Xz]°

Apply the SVD to the matrix |:ZLI H(()2T1| to obtain UmZmV;I;l.
U, 0

Finally, U; = |: 01

A%
}Um,zzzzm,vazvm[d.

In each update, the new row and column margins are given by Df) = n;l and
Df) = (nlDil) + nzDiz) ) n;l, respectively. Thus, Df) is set to be the average of
the “local” margins or the margins of the merged data blocks. Finally, row and

—1/2
column principal coordinates are given by F3 = (D?)) U3Xj3 and G3 =

~1/2
(DS) ) V3 X3, respectively.
Since the whole data matrix is unknown and the global margins are approximated
by the local margins, the Live approach leads to an approximate MCA solution. An

investigation of the convergence properties of the Live approach will be provided in
Sect. 5.1.
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5 Experimental Results

In this section, numerical experiments are presented to empirically study: (i) the
convergence rate of the “local”, ¢*, towards the “global”, ¢, margins and (ii) the
accuracy of Live MCA compared to ordinary MCA. The convergence of the margins
is assessed in terms of the mean absolute discrepancy of ¢* from c. The accuracy
of Live MCA is measured in terms of the similarity between the ordinary MCA and
Live MCA configurations in principal coordinates, computed on the same data set.
In particular, the similarity measure is the R index, which equals v/ 1 — m?, where
m? is the symmetric orthogonal Procrustes statistic [14]. The index ranges from
0 to 1 and can be interpreted as a correlation coefficient; it was calculated using
the function protest of the R package vegan [19]. MCA was applied using the ca
package [18] and figures were produced using the package ggplot2 [23].

5.1 Convergence

In order to study the convergence rate of Live MCA to ordinary MCA solutions,
a 1 million rows data set was generated that acts as a population, and four
categorical variables were considered. The probability of occurrence of the different
categories changes in four equally sized blocks of rows. The number of categories
per variable was randomly generated between 2 and 5. The global margins ¢
were considered as the reference quantities. The starting and the incoming data
blocks were randomly sampled with replacement from the “population” data set.
Different sizes for the starting sbs € [750, 1000, 1250, 1500], and for the updating
data blocks, ubs € [750, 1000, 1250, 1500], were considered. At each update, the
mean absolute discrepancy was computed between ¢* and c. Figure 1 shows the
convergence rate of the margins over 250 updates; the upper part of the figure
shows the convergence rates for varying starting data block size, with fixed updating
block size (ups = 250); the lower part of the figure shows the convergence rates for
varying updating block size and fixed starting data block size (sbs = 1000). Both
figures show that the discrepancy drops down considerably and converges towards
zero (below 0.001), after only few updates. In particular, the size of the starting data
does not have a relevant effect on the convergence rate, except for the very first
updates, when for smaller size the discrepancy is higher. The size of the incoming
blocks plays a more important role in the convergence rate: in fact, smaller sized
data blocks require more updates for the discrepancy to drop down.
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Fig. 1 Average absolute 0.004
convergence of the
block-based margins and the
global margins over 250
updates. The upper part of
the figure shows results for
varying starting block size
(sbs) and fixed updating
block size (ubs); in the lower
part, updating block size
varies while starting block
size is fixed

sbs 750 ; ubs 250

sbs 1000 ; ubs 250
sbs 1250 ; ubs 250
0.003 4 sbs 1500 ; ubs 250

0.002

0.001 4

0.000 4

250 blocks

0.004 4 sbs 1000 ; ubs 100

sbs 1000 ; ubs 250
sbs 1000 ; ubs 500
0.003 sbs 1000 ; ubs 750

0.002 -

00014’

0.000

250 blocks

5.2 Accuracy

The accuracy of Live MCA was investigated with a similar experimental setup
to that of the previous section. In particular, the same “population” data set is
considered to sample the data blocks from, and each experiment is defined by the
following parameters:

n = 100,000, number of total rows (units) analyzed (that is, the row sum of the
starting and updating blocks)

e (O = 240, number of total columns (attributes) for ¢ = 70 variables

e sbs € {100,200, ---, 1000}, size of the starting data block

e ubs € {60,120, ---, 600}, size of the updating data block

The aim of this experiment was to examine whether different values of sbs and
ubs affect the accuracy of Live MCA. In particular, different starting block sizes
were considered for fixed updating block size. The size of ubs was fixed to the
optimal size in terms of computational complexity [15]: ubs = (Q — q) /~/2 = 120.
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Fig. 2 Similarity between ordinary and Live MCA configurations for varying sizes of starting
blocks (left) and updating blocks (right), the number of updates depends on sbs and ubs. (a)
Protocol (left): cols = 240, sbs = 100 to 1000, ubs = 120. (b) Protocol (right): cols = 240, sbs
= 1000, ubs = 60 to 600

Similarly, for fixed sbs = 1000, different values of ubs were considered to check
whether the updating block size penalizes the accuracy of Live MCA.

Figure 2 illustrates the results. The R index, plotted on the vertical axis, shows
how similar the final configuration of Live MCA is to the ordinary MCA config-
uration. The degree of similarity is assessed for different number of dimensions
(d = 2,3,4), which are represented by different lines, and for different values of
sbs and ubs, respectively, on the left-and right-hand side of Fig. 2.

With respect to the left-hand side of Fig. 2, the accuracy is always high (R >
0.95), and it increases with the starting data size; in fact, from sbs = 750 and on,
R ~ 1 irrespective of dimensionality. The right-hand side of Fig. 2 shows that, in
terms of accuracy, the updating block size is almost irrelevant: even for the optimal
block size, which is indicated by a vertical line on the plot, the accuracy is R >~ 1.
All in all, the experiments demonstrated that, although Live MCA is approximate,
its accuracy can be very high, since in most cases the discrepancy from a full MCA
solution is negligible.

6 A Real-World Application: Monitoring Consumer
Attitudes in Twitter

The proposed approach is eventually applied to a real-world data set. The data refers
to a small corpus of messages or tweets mentioning seven major hotel brands. It
was gathered by continuously querying and archiving the Twitter Streaming API
service, which provides a proportion of the most recent publicly available tweets,
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along with information about the user. The data was collected using the twitteR
package in R [8]. A total of about 10,000 tweets were extracted within a time
period of 6 days, from June 23rd to June 28th 2013. Only tweets in the English
language were considered. Sentiment analysis was performed on each message to
assess the corresponding user’s sentiment towards a brand. Sentiment analysis is
an active area of research involving complicated algorithms and subtleties. For the
purposes of this toy example, we estimated a tweet’s sentiment by counting the
number of occurrences of “positive +,” “neutral +/—,” and “negative —” words. A
third variable, user visibility or popularity, as measured by the number of followers
each user had, was also included in the data set. The variable was categorized into
three groups, “low,” “medium,” and “high.”

The purpose of the present example is to show the evolving association structure
of sentiments towards the brands as new data blocks are processed, using Live
MCA. The first block for the incremental implementation consisted of 500 rows
(tweets), and five equally sized blocks were consequently added to update the
original solution.

In Figs. 3 and 4, we plot both solutions (Exact and Live MCA) on the same
map for the attributes and tweets, respectively. These figures refer to the final
configuration, however an animation is available at http://www.amarkos.gr/research/
dynMCA that shows the evolution in time for the attribute configuration. In order
to obtain a smooth animation, a morphing has been applied between one update
and another; 25 frames were generated between each configuration and the next.
The positions of the points tend to stabilize after the first two updates. With respect
to the tweet map, points from different blocks are shown in different colors. Both
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Fig. 4 Exact and Live MCA
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Live MCA configurations are characterized by a slightly larger scale of the points’
coordinates over the axes, due to the use of local margins. The relative position
of the points, however, stays the same, when compared to the ordinary solution.
Therefore, the similarity between the ordinary and Live configurations is very high
(R = 0.997 for both tweets and attributes).

7 Conclusions

An enhanced MCA implementation has been proposed that extends its applicability
to modern big data problems and categorical data flows. Such implementations
become then feasible, for instance, for continuous monitoring of word associations
that are present in data pulled on-the-fly from social networking sites or for
revealing and visualizing web-page visiting patterns via web-log analysis. Since
such an implementation leads to an approximation of the ordinary MCA solution,
we conducted a series of experiments to study the discrepancy between Live and
ordinary MCA, as well as the convergence of Live MCA. In general, we conclude
that (a) the larger the size of the starting data block, the more representative the
margins of the block will be of the final data matrix and (b) the size of the updating
data block does not significantly affect the accuracy of the solution. For further
theoretical and empirical evaluation of the procedure, see [13].

An interesting perspective would be to study the relationships between the
proposed incremental MCA scheme based on incremental SVD and others, e.g.,
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based on stochastic approximation. We defer consideration of these possibilities to
future work in order to keep the focus on our main contribution. Another idea is to
extend the applicability of the proposed implementations to the case when new data
is characterized by a partially overlapping set of attributes, that is, when the original
data space dimensionality differs between updates.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Baker, C., Gallivan, K., Van Dooren, P.: Low-rank incremental methods for computing
dominant singular subspaces. Linear Algebra Appl. 436(8), 28662888 (2012)

Brand, M.: Fast online svd revision for lightweight recommender systems. In: Proceedings of
SIAM International Conference on Data Mining, pp. 37-46 (2003)

Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear
Algebra Appl. 415(1), 20-30 (2006)

. Chahlaoui, Y., Gallivan K., Van Dooren, P.: An incremental method for computing dominant

singular spaces. In: Berry, M.W. (ed.) Proceedings of the Computational Information Retrieval
Conference, pp. 53-62. SIAM, Philadelphia (2001)

. Chandrasekaran, S., Manjunth, B.S., Wang, Y.F., Winkeler, J., Zhang, H.: An eigenspace update

algorithm for image analysis. Graph. Model. Image Process. 59(5), 321-332 (1997)

. DeGroat, R.D., Roberts, R.: Efficient, numerically stablized rank-one eigenstructure updating.

IEEE Trans. Acoust. Speech Sig. Process. 38(2), 301-316 (1990)

. Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace

methods for robust classification and regression by subsampling. IEEE Trans. Pattern Anal.
28(3), 337-350 (2006)

. Gentry, J.: twitteR: R based Twitter client. http://cran.r-project.org/web/packages/twitteR/

(2011)

. Greenacre, M.J.: Correspondence Analysis in Practice. Chapman and Hall/CRC, London

(2007)

Greenacre, M., Hastie, T.: Dynamic visualization of statistical learning in the context of high-
dimensional textual data. J. Web Semant. 8, 163-168 (2010)

Gu, M., Eisenstat, S.C.: A stable and efficient algorithm for the rank-one modification of the
symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 1266-1276 (1994)

Hall, P, Marshall, D., Martin, R.: Adding and subtracting eigenspaces with eigenvalue
decomposition and singular value decomposition. Image Vis. Comput. 20, 1009-1016 (2002)
Iodice D’Enza, A., Markos, A.: Low-dimensional tracking of association structures in categor-
ical data. Stat. Comput. (on-line, April, 2014)

Jackson, D.A.: PROTEST: A Procrustean randomization test of community environment
concordance. Ecoscience 2, 297-303 (1995)

Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction. IEEE Trans. Image
Process. 9(8), 1371-1374 (2000)

Lin, L., Shyu, M.L.: Weighted association rule mining for video semantic detection. Int. J.
Multimed. Data Eng. Manag. 1(1), 37-54 (2010)

Murakami, H., Kumar, B.V.: Efficient calculation of primary images from a set of images.
IEEE Trans. Pattern Anal. Mach. Intell. 4(5), 511-515 (1982)

Nenadi¢, O., Greenacre, M.J.: Correspondence analysis in R, with two- and three-dimensional
graphics: the ca package. J. Stat. Softw. 20, 1-13 (2007)

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G.L., Solymos, P., et al.: Vegan:
Community ecology package (2008)

Petrovié, S., Basic, B.D., Morin, A., Zupan, B.: Textual features for corpus visualization using
correspondence analysis. Intell. Data Anal. 13(5), 795-813 (2009)


http://cran.r-project.org/web/packages/twitteR/

148 A.l. D’Enza and A. Markos

21. Pham, N.K., Morin, A., Gros, P, Le, Q.T.: Intensive use of correspondence analysis for large
scale content-based image retrieval. Stud. Comp. Intell. 292, 57-76 (2010)

22. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int J.
Comput. Vis. 77, 125-141 (2008)

23. Wickam, H.: ggplot2: An implementation of the Grammar of Graphics. R package version
0.8.2 (2009)

24. Zhu, Q., Lin, L., Shyu, M.L., Chen, S.C.: Effective supervised discretization for classification
based on correlation maximization. In: Proceedings of the IEEE International Conference on
Information Reuse and Integration, pp. 390-395. IEEE, New York (2011)



A New Proposal for Tree Model Selection
and Visualization

Carmela Iorio, Massimo Aria, and Antonio D’Ambrosio

Abstract The most common approach to build a decision tree is based on a two-
step procedure: growing a full tree and then prune it back. The goal is to identify the
tree with the lowest error rate. Alternative pruning criteria have been proposed in
literature. Within the framework of recursive partitioning algorithms by tree-based
methods, this paper provides a contribution on both the visual representation of
the data partition in a geometrical space and the selection of the decision tree.
In our visual approach the identification of the best tree and of the weakest links
is immediately evaluable by the graphical analysis of the tree structure without
considering the pruning sequence. The results in terms of error rate are really similar
to the ones returned by the classification and regression trees (CART) procedure,
showing how this new way to select the best tree is a valid alternative to the well-
known cost-complexity pruning.

Keywords Classification and regression trees ¢ Model selection * Pruning e
Visual representations

1 Tree-Based Recursive Partitioning Methods and Tree
Model Selection: An Overview

Recursive partitioning tree procedures have been the subject of extensive research in
the past. Specially tree-based methods have been proposed for both prediction and
exploratory purposes. Hierarchical segmentation obtained by decision trees can be
seen as a stepwise procedure performed according to some optimization criteria,
which provides a progressive sequence of partitions of an initial set of objects,
described by some explanatory variables (either numerical or/and categorical) and a
response variable [10], via a top down criterion.
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Several methods have been proposed over the years. The oldest tree-based
method was automatic interaction detector (AID) proposed by Morgan and Sonquist
[16]. Goal of AID is to grow regression trees through binary splitting rules that
provide recursive reduction in unexplained sum of squares.

Messenger and Mandell [13] and Morgan and Messenger [15] extended AID
for categorical outcome according to the so-called theta criterion (THAID, THeta
AID). A descendant of AID and THAID is CHAID (CHi-square AID), introduced
by Kass [11]. CHAID uses Chi-square splitting criterion to classify a categorical
response variable.

Quinlan [17, 18] developed an iterative algorithm, known as ID3. The input
is a table of objects and each object induces a decision tree. Leaves of decision
tree indicate the class to which the objects belong. ID3 uses the entropy criteria
for splitting nodes. An extension of ID3 is C4.5. It utilizes a normalized entropy
measure, known as Gain Ratio, which expresses the proportion of information
induced by any split [3].

One of the most popular tree-based techniques is classification and regression
trees (CART) developed by Breiman et al. [6]. Induction of decision trees is
typically performed in two steps. In the first step, a training set (used to grow the
tree) is recursively divided into subgroups according to splitting criteria expressed in
terms of decrease in impurity. Often, the criterion used to split is the Gini diversity
index. The tree-growing step continues until some stopping rule is reached, such
as all samples for a node belong to the same class. In literature there are several
proposals for tree-growing step [4, 14, 21].

In the second step, called pruning, the tree is reduced to prevent “overfitting.”
Pruning generates a decision tree by simplifying the tree structure by removing
some of the branches of the fully expanded tree with the goal of improving the
classification accuracy.

A generic internal node of a tree can be seen as a starting point for a sub-tree
that will end with several leaves or terminal nodes. The data falling down in the
leaves are evaluated via misclassification rate or expected value according to the
nature of the response. As a consequence global badness of fit indices can be either
the misclassification ratio or the mean squared error [6]. Alternative pruning criteria
have been proposed in the literature [8].

The CART pruning procedure considers both the accuracy (evaluated by some
error measure not necessarily coincident with the one used for the growing step)
and the complexity (given by the number of terminal nodes) of the tree, introducing
the so-called cost-complexity measure [6]. The algorithm works either by using a
separate independent set of samples or by cross-validation. The goal is to produce
the best sequence of pruned subtrees of the fully expanded tree. A complexity
parameter needs to be defined. It represents both a penalty for any additional node
and the cost associated to the removal of any terminal node belonging to a given
branch. The optimal decision tree is based on the definition of a trade-off measure
between the accuracy (cost) and the size (complexity) of the tree. Quinlan suggested
two methods of pruning. The first one [18] is known as reduced error pruning and
it prunes the nodes according to a bottom-up approach. It generates a sequence of
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subtrees and uses the test set to evaluate the performance of the tree. Since the
misclassification rate on the training set is optimistically biased, Quinlan introduced
a continuity correction for the binomial distribution, which might provide a more
realistic error rate. This pruning method is known as pessimistic error pruning. The
second pruning method is implemented in C4.5 [19]. It is known as error based
pruning and produces a simplified tree structure. Cappelli et al. [7] proposed an
alternative pruning method based on a so-called impurity-complexity measure which
evaluates the accuracy of the classification directly through the impurity measure.
Siciliano et al. [22] proposed a model-based tree growing that implicitly prunes the
tree within the tree-growing step. This phase is based on the concept of retrospective
split as well as on the recursive estimation of GLM.

2 Decision Tree Visualization

Fayyad et al. [9] stated that without proper visualization techniques, data mining
models may not give the desired insight to help humans to understand the phenom-
ena.

Different visual representations of decision tree have been proposed. Hierarchical
and radial views are the two most popular graphs for decision tree [12]. Hierarchical
view is the most natural way to display a decision tree. A decision tree is defined as a
directed connected acyclic graph. A graph is a set of nodes. Scheduling information
is placed in the nodes. In the internal node, the information represents the splitting
rule; in the terminal node, it consists of prediction. Radial view is applied mainly in
displaying object structures, such as organizations.

Node-link diagrams are the most familiar tree structures. This representation is
poor in revealing the overall structure of a tree, such as its depth levels. In addition,
it does not demonstrate node sizes.

A tree map [20] is another way to display all the partitions using area based plot,
in which each terminal node is represented by a rectangle. The rectangular area of
tree map corresponds to the full dataset. This area is partitioned recursively with
an alternating horizontal and vertical partitioning directions until the terminal nodes
are reached. The size of each sub-rectangle is proportional to the number of cases
in the corresponding node. Tree map does not allow a relative comparison of groups
within nodes.

A tree ring maps the hierarchies into circles and it displays both tree topology and
node size. The most inner circle represents the root node. Tree maps and tree rings
are space-filling visualization methods, since they make full use of the available
space.

The icicle plot represents a tree node as a rectangle whose length is proportional
to the number of records associated with it. This visualization is more space-efficient
than node-link diagrams, since there are no links between nodes [5].

The basic idea of circle segment [2] visualization technique is to display the data
dimension as a segment of a circle. If the data consists » dimension, the circle is



152 C. Iorio et al.

partitioned into n segments, each segment represents one different attribute; each
pixel inside a segment is a single value of the attribute.

Values of each attribute are sorted independently and assigned to a different
color based upon its class. Another similar approach proposed by Ankerst et al.
[1] uses a stacked bar representation instead of circle segments. In other words,
bars representing an attribute are displayed horizontally and are displayed stacked
upon each other. This technique is easily expandable to support many attributes. The
circle segments method appears to start losing display granularity as the number of
segments increases. Circle segments and similar techniques provide great visibility
into multivariate classification techniques. They are a great aid in identifying
obvious relationships between data values and classes and for identifying potentially
weak relationships as well.

3 Visual Tree Model Selection

Our approach is based on the definition of a new way to represent the tree structure
by a node-link diagram. Indeed the length of a path is proportional to the decrease
of the error measure. The lower is the error in the descendant nodes, the longest is
the length of the path.

O}, indicates an oriented path starting from node j to node z. A path ®;, can
be seen as a sequence of intermediate oriented paths 6,,, with node m directly
connected with node n and m < n such as @;; = (Oi,....0m,...,0;), with
j<..<m<n<..<z

We define the depth of an oriented path V;, as

€j-pj—e€;-P; . Z Enr) * Ppy — €per+1) * Pper+n)

Viz = s (D

eroot r=2 el”{)()t

where:

— ¢, e;, pj and p; are, respectively, the error measures and the proportion of cases
in nodes j and z

— €,00: 18 the error measure of root node of the tree

— Hj; is the vector containing the ordered list of nodes belonging to the path &,

— K" is the generic node at the position (r) of the ordered set of node Hj., with
r=1,...,|H

The generic path starting from the root node to the node z can be indicated as ©.,
and its depth measure V...

V;; can be interpreted as a relative decrease of error measure from j to z which
explains the predictive strength of the sequence of splits from the parent node j to
the descendant node z.
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V has some properties that allow to measure tree quality at each level:

— By definition V.,,,; = V.; is equal to 0, since it is the depth of the path 6.;.
— V., is between 0 and 1, so the depth of a generic path is at most equal to 1.

As a consequence, it is possible to define a relative error measure of the node j as
@,
¢ " Pj

er()()f

The properties of V measure linked to this new way to represent a tree structure
suggest us to define an alternative model selection procedure based on “tree
graphical representation.” Each internal node is an equally likely candidate to be
the point which identifies a cut to the depth level of the structure. In this way, given
a node ¢ candidate a cutting point, for each path which span the ideal cutting line,
the nodes departing from it will become terminal. At each potential cutting line is
linked an error measure @7 defined as

or=> o 3)

teT

where T is the set of terminal nodes of a generic sub-tree. The distribution of errors
follows a typical descending trend over the training sample and a convex trend over
the test or CV sample.

4 An Application of Visual Tree

In the framework of CART methodology we want to show how it is possible to use
a visual model instead of the classic pruning procedure.

The main interpretative advantages of the visual tree are shown in an application
on a real dataset. We have developed the analysis of Credit dataset (Decisia SPAD
Repository). According to the numbering system developed by CISIA Software
Informer, let k be the generic fth node, it generates descendant nodes numbered
as 2k (on the left) and 2k + 1 (on the right). By convention, node number 1 indicates
the root node.

Figure 1 displays, in the upper row, the graphical representation of the CART
approach. Both the maximum expanded tree and the decision tree are provided,
respectively, on the left and the right sub-figures in the first row. Decision tree
was selected via test-set procedure, the size of test sample is about 30 % of the
entire dataset. As it can be noted, no information is contained in length of paths
and in levels of tree (Fig. 1, first row, left side). In the classical visualization there
is a lack of information about the goodness of split, the purity of nodes, and the
goodness of the tree (Fig. 1, first row, right side). The second row of Fig. 1 shows
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Fig. 1 Comparison of CART approach and visual tree model selection. (a) CART approach:
exploratory classification tree (on the /eft) and decision tree (on the right). (b) Visual tree model
selection: fully expanded tree and cutting sequence (on the left) and decision tree (on the right)

the visualization of the tree structure using our approach on the Credit dataset. The
sub-figures of second row provide, respectively, the maximum expanded tree and the
decision tree. The pruned tree was obtained by using the same test set used before.
In the second row of Fig. 1, first plot, the left axis measures the relative error ¢.;
and the right axis measures the misclassification error linked to each cutting point
calculated, respectively, on the training sample (right) and test sample (left). At first
sight, this plot points out the relative importance of splits and the best cut level to
obtain an optimal decision tree. By looking at the graph, as in a dendrogram of the
hierarchical cluster analysis, we can decide an automatic cutting of the tree as a
function of the error rate. As can be noted in this row, right plot, the tree structure
highlights that the relative error measure of terminal nodes 3,4, 11 is close to O,
while it is higher for node 10. Note that overall relative error measure of the tree
or, as defined in Eq. (3), is proportional to the misclassification error on the training
sample R(T).

The visual decision tree shows the contribution of the nodes with a higher relative
error measure to the tree badness of fit. The shorter is the length of a path, the higher
is the contribution to the global error measure. By visual tree model selection we can
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Table 1 Tree model comparison: visual pruning vs classical pruning (1000 bootstrap replica-
tions)

Visual Cart
Dataset Continue Categorical Response Error Size Error Size
Credit 2 11 Binary 0.2489 4.516 0.2467 4.676

see that at the first split there is a significant decrease of the error measure especially
for node 3 that become immediately a terminal node (Fig. 1, second row, right side).
The splits are the same for both trees obtained with the CART approach and the
visual tree model selection, but in visual decision tree the depth of a path explains
the predictive strength of a split to decrease the error measure.

This visual approach can be used to build trees both in supervised classification
and in nonparametric regression.

We carried out a comparison by bootstrap and empirical evidence suggests how
both procedures return similar outcomes. The results, reported in Table 1, show
that the misclassification rate and the tree size are very similar. Both measures are
referred to trees validated via test-set procedure. Moreover, in visual approach, the
identification of the best tree and the weakest links is immediately evaluable by the
graphical analysis of the tree structure without considering the pruning sequence.

5 Conclusion

The proposed visual tree model selection seems to be a valid alternative to the
cost-complexity strategy to select decision trees. We propose a new tree structure
visualization that allows to identify more discriminant splits, weakest links and help
the user to catch the optimal substructure as decision tree.
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Object-Oriented Bayesian Network to Deal
with Measurement Error in Household Surveys

Daniela Marella and Paola Vicard

Abstract In this paper we propose to use the object-oriented Bayesian networks
(OOBNSs) architecture to model measurement errors in the Italian survey on
household income and wealth (SHIW) 2008 when the variable of interest is
categorical. The network is used to stochastically impute microdata for households.
Imputation is performed both assuming a misreport probability constant over all
the population and learning a Bayesian network for estimating such a probability.
Finally, potentialities and possible extensions of this approach are discussed.

Keywords Categorical variable ¢ Misreport probability * Mixed measurement
model ¢ Structural learning * Underreporting

1 Introduction

Measurement error is the difference between the value of a feature provided by
the respondent and the corresponding true but unknown value. Together with
nonresponse, measurement error is one of the main nonsampling error sources. The
presence of measurement errors may severely affect the quality of survey results
leading to erroneous conclusions.

Object-oriented Bayesian networks (OOBNs) have been recently proposed as a
new tool to model and correct measurement errors. In particular, the measurement
error in a categorical variable is described by a mixed measurement model imple-
mented in an Bayesian network (BN); for details see [5]. The aim of the paper is
to apply this model to 2008 survey on household income and wealth (SHIW), a bi-
annual sample survey conducted by Banca d’Italia. Its main objective is to study the
economic behavior of Italian households. Interviews are considered valid if there are
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no missing items on the questions regarding income and wealth [6]. Therefore unit
nonresponse and measurement errors are two major issues. In particular, financial
assets in SHIW are affected by misreporting of financial amounts with a prevalence
of underreporting. In our application we aim at correcting bond amount declared
values. Bond amount, being a continuous variable, will be discretized in order to
apply the mixed measurement model in [5].

The measurement error model parameters have been estimated using a validation
sample. In particular, the probability of an error has been initially estimated by
assuming that it is constant over all the population. This assumption in unrealistic,
therefore a BN has then been used to model and predict the misreport probability
on the basis of auxiliary information in a validation sample. Once estimated this
probability, the overall measurement error model has been implemented and bonds
microdata have been imputed in SHIW 2008.

In [6] measurement errors are modeled using propensities to misreport estimated
on the validation sample. The propensities are then used to adjust for SHIW data.
More specifically, first bond amounts are estimated by a logistic model using a
vector of socioeconomic characteristics both at the household and at the head of
household level as covariates together with the declared value. Then misreporting
on the amount held is estimated through a separate model using a set of household
characteristics and the declared amount. Our approach differs in the use of BNs
allowing to: (a) exploit auxiliary variables directly and indirectly influencing the
misreport probability; (b) model the measurement error generating process and
predict microdata.

The paper is organized as follows. In Sect. 2 the mixed measurement error model
is briefly described and implemented in a OOBN. In Sect. 3 the network is used to
impute microdata in SHIW 2008 and the performance of the imputation is evaluated
both assuming a misreport probability constant over all the population and learning
a BN from the validation sample (Sect.3.1). Finally in Sect.4 potentialities and
possible extensions of our approach for dealing with measurement error in sample
surveys for continuous variables are discussed.

2 A OOBN Model for Measurement Error in SHIW 2008

In this paper we consider an ordered categorical variable X with K response
categories whose frequencies py, k = 1,...,K, are assumed known. When a
measurement error occurs the observed category is different from the true category.
Let g;—-; be the intercategory transition probability from the true category i to the
observed category j, where Z,K=1 gi—>j = 1. In order to estimate the K(K — 1)
probabilities g;—-;, we could carry out an interview—reinterview study. Alternatively,
the transition probabilities g;—-; can be expressed by means of models characterized
by a smaller number of parameters to be estimated. Here we use scalar models
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(see [9]) having the form ¢;—~; = As;,_-;, where A represents the error parameter
and the nonnegative quantities s;_;, j # i, specify the model.

A realistic and plausible representation of the measurement error generating
process is the mixed measurement model

sM = (1= h)s"™ + hs?™MT (1)

i—>j i—>j i—>j

given by a mixture of the proportional model 5", and the one-T step model s;"7.
h is the mixture parameter taking values between 0 and 1 according to the relative
importance of the one-T step model. The model s/ reflects the assumption that,
whenever a measurement error occurs, the observed value j is generated at random
from the population frequency distribution, i.e., regardless of the true value i. The
model sf‘f‘g implies that, if an error takes place, the observed category j can only
be a neighboring category or a category up to 7 steps away from the true category
i. The one-T step model is flexible since it also allows for modeling an asymmetric
error generating mechanism, which is common for financial variables.

By the mixed measurement model both accidental and deliberate errors can be
described. Therefore the model (1) is completely general and can be applied to
various contexts by suitably: (i) tuning the mixture parameter A; (ii) estimating the
parameters (i, ;) where u is the misreport probability and o is the probability that
the difference between the observed and the true category is ¢, for |{| = 1,...,T.
Notice that u is proportional to A

pw=2AB with ﬁ:(l—h)(l—zp,?)+h.

A sensitivity analysis to model parameters has been performed in [5].

In order to automate and efficiently perform error detection and correction, the
mixed measurement model (1) has been implemented in a OOBN. For an account
on OOBNSs, we refer to [2].

Figure 1 shows the main network (top-level) representing the overall measure-
ment error process. In what follows, instance and regular nodes are indicated in
teletype face, while bold face is used for network classes.

The observed category, i.e., that declared by the respondent, is represented by
the standard node oc. The false (wrong) category is represented by an instance
of network class fc. This means that the round-shaped rectangular node fc is a

Fig. 1 Top-level network for ™\ Error
the measurement error model fe LG parameter
for the respondent } ) J }

ErroD
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BN itself encoding the mixed measurement model (1). For details and graphical
model representation, see [5]. The true category, node tc, is represented by an
instance of network class tc associated with the probability distribution of the
variable of interest. The fact that the respondent may consciously or unconsciously
report the wrong category is represented by the random node Error? associated
with a Bernoulli distribution of parameter A, i.e., the error parameter. Specifically,
if the respondent declares the true category, coded as Exrror ?=0, then the observed
category coincides with the original one. If the respondent is wrong, coded as
Error?=I, then the observed category is different from the original one and it
is generated according to the mixed measurement model implemented in the false
category instance node fc.

3 Using the Network to Impute Microdata

Given the OOBN in Fig. 1, SHIW 2008 microdata have been imputed by a two-
step strategy. First the measurement model parameters (i, u, and o, |t = 1,...,T)
have been estimated using a validation sample; secondly the estimated measurement
model in Fig.1 has been used to impute microdata for units in SHIW 2008.
Specifically, for each respondent in SHIW 2008 sample, the evidence, i.e., the
corresponding observed value, is inserted and propagated throughout the network
in Fig. 1 to estimate the probability distribution of the true value given the observed
one. The individual true value is predicted by a random draw from such a
distribution.

As far as the first step is concerned, the validation sample has been obtained by
means of data collected by Banca d’Italia and a major Italian bank group on a sample
of customers of the latter. In particular, the survey was carried out (independently
from SHIW 2008) in 2003 on a sample of 1.681 households where at least one
member was a customer of the bank group. Survey data had then been matched with
the bank customers database containing the amount of the assets (stocks and bonds)
actually held by the individuals selected in the sample; see [6] for details.

In this analysis we focus on (government and private) bonds. Since model (1)
and its OOBN representation are developed for categorical variables, the true and
the observed amount of bonds in the validation sample have been discretized. The
discretization (in ten classes) has been performed using the Chi2 discretization
algorithm, see [4]. In the rest of this paper the discretized distributions are treated
as the original observed and true distributions.

The performance of the imputation procedure has been evaluated by means of
the following two indicators:

1. Kullback-Leibler distance between the true and the observed distribution and
between the true and the imputed distribution denoted by KL™ and KL,
respectively
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Table 1 Estimates of the measurement model parameters o, t = —7,...,3

o—7 oO—g o—j5 o—y o—3 o—) o—1 [63] [0 o3
0.07 0.07 0.08 0.15 0.12 0.13 0.16 0.11 0.06 0.05

2. The percentage of correct imputations ¥ = -3 c. I, (xf) % 100, where
S* is the subsample composed of units affected by measurement errors in the
validation sample and /,, is the indicator function assuming the values 1 if the
true value for unit i denoted by x; is equal to the corresponding imputed value x;
and 0 otherwise

As seen in Sect. 2, the measurement model parameters are h, u, and «;, |t] =
1,...,T. The value of the mixture parameter # = 0.9 has been determined through
a sensitivity analysis. The probabilities ¢, of a mismatch of length ¢ between the
observed and the true class have been estimated with the proportions of mismatches
of length ¢ in the validation sample. In our case, as expected, the comparison
between observed and true amount class results in the prevalence of underreporting.
Specifically, the maximal length of negative mismatches with a positive estimated
probability is larger than that of positive mismatches, being equal to —7 and 3,
respectively. The estimates of ¢, t = —7,..., 3, are reported in Table 1. Regarding
the misreport probability u, it has been first assumed constant over all the population
and estimated as the proportion of mismatches between the observed and the true
value of bond amount class in the validation sample. It resulted i = 0.54.

Having estimated the mixed measurement model parameters, the OOBN in Fig. 1
can be used to impute the bond amount class in SHIW 2008. For each unit in the
SHIW 2008 sample, the observed bond amount class is inserted in the node oc
in Fig. 1 and is propagated through the network. The updated distribution for the
node tc, that is the probability distribution of the true value given the observed
one, is obtained and a predicted value is drawn at random from it. Note that in this
analysis we assumed that the underreporting behavior observed in the validation
sample (collected in 2003) remained unchanged in 2008.

After having estimated the observed and the imputed distributions of bonds
from SHIW 2008, such distributions have been compared with the true distribution
estimated from the validation sample using the indicator 1. The distance between
the true and the imputed distribution KL™ = 0.13 is less than the distance between
the true and the observed distribution KL'® = 0.47. The bonds microdata have been
also imputed in the validation sample in order to compute the performance indicator
in2. As aresult, 11 % of data affected by measurement error in the validation sample
are correctly reconstructed using the proposed imputation method. Therefore this
procedure reveals a good performance when applied to categorical or previously
discretized variables.
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3.1 Learning the Error Parameter by a BN

The mixed measurement model in the above section is based on the hypothesis
that the propensity to report incorrect bond amount class is the same over all the
population. This is not a reasonable assumption since it is realistic to expect that high
amount of bond owners will tend to underreport, while people having no or little
amount of bond may overreport. Hence imputation results could be improved using
information in the validation sample in order to model the misreport probability.

The idea is to integrate the error probability model and the measurement error
model used for imputation. Note that these models refer to different samples: the
first one can be estimated from the validation sample; the second one is applied to
the sample to be corrected (the SHIW 2008 sample, in this case). Thanks to their
hierarchical structure and modularity property [2], OOBNs provide a natural tool to
deal with these models together, integrating them in a single system. Figure 2 shows
the OOBN representation of the measurement error process in a single variable.

The round-shaped rectangles represent instances of network classes and are
Bayesian networks themselves. In particular, the network class Measurement
Error Parameters contains the BN model for the attitude to report incorrect
information. From this the misreport probability, i.e. the error parameter © of the
measurement error model, is derived. In turn, as suggested by the arrow direction,
this output constitutes an input for the network class Measurement Error Model
whose expanded representation is the BN in Fig. 1.

As far as the estimation of the network Measurement Error Parameters is
concerned, the variables in the validation sample described in Table 2 have been
used. The network has been learnt using the NPC (Necessary Path Condition)
algorithm [8], implemented in the software Hugin, allowing us to also take into
account logical constraints such as the presence/absence of links or their directions.
Here we impose that if node Error? is connected with any of the other variables,
the direction has to be from these into Exrror?

The resulting network in Fig.3 shows that Error? is directly influenced by
the declared class of owned bond amount (Observed Bond Class), by the
age of the respondent (Age), and by the residence geographic area (Geo Area).
The evaluations given by the interviewer (Comprens, Facil, Verored) affect
the probability to misreport only indirectly. Notice that the variable Observed
Bond Class logically corresponds to the variable oc (observed category) in

Fig. 2 OOBN representation
of the measurement error

o S
< Error s

process in a single variable Parameters parameter_’
Measurement
parameter
Error Model
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Table 2 Variables for the measurement error parameters network

Variable States Description

Comprens {1-5,6-8,9-10} Interviewee’s level of
understanding®

Facil {1-5,6-8,9-10} Easy for the interviewee to
answer®

Verored {1-5,6-8,9-10} Reliability of the information on
income?®

Age {2-38, 38-50, 50-65, 65-89} | Age of the respondent

Geo Area {0,1} Living in the North-Center of
Italy no/yes (0/1)

Observed Bond Class | 10 classes Class of owned bond amount

Error? {0,1} Reporting a wrong value no/yes
o/

2Evaluation given by the interviewer

Fig. 3 BN structure for the PSR,
error parameter Bond Class

(Measurement Error
Parameters network class)

Verored

the measurement error model network in Fig. 1, although in this last network the
observed category is measured on the sample to be edited.

Having a model for the error generating process derived from the validation
sample, we can specify the different error probabilities for different configurations
of the respondents, obtaining a more refined and flexible tool to correct our data.
More specifically, for each respondent in SHIW 2008 the evidence given by
(Observed Bond Class, Age, Verored) is inserted and propagated through
the network in Fig.3 and the corresponding misreport probability is derived. This
probability is then fed into the measurement error model network in Fig. 1 together
with the observed value of oc in order to produce the predicted value. The KL
distance between the true and the imputed distribution decreases from 0.13 to
0.08 revealing that the imputation procedure accounting for auxiliary information
formalized by a BN improves the results.
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4 Conclusion and Discussion

In this paper we have seen that OOBNs can be fruitfully used to model measurement
error problems. By the application to SHIW 2008 data we have shown that using
auxiliary information to estimate the propensity to misreport helps improving the
results. Our model deals with errors in a single variable. Further research is still
needed to extend the analysis to the multivariate case and account for auxiliary
information also in the true value prediction phase. Other problems at this research
stage may limit the application of BNs to measurement error correction as well as
to official statistics. Among them we mainly refer to: (i) the use of hybrid BNs
where continuous and discrete variables are considered; (ii) the necessity to take
into account the complexity of sampling design when BNs are applied to sample
surveys.

Regarding the first point, it is well known that mixtures of Gaussian distributions
can approximate any probability distribution. Then it should be possible to solve
any hybrid BN by first approximating it by a mixture of Gaussian BNs and then
using the Lauritzen algorithm [3] to solve this mixture (see [7]).

As far as the second point is concerned, design complexity should be taken
into account in survey analysis by an appropriate use of sampling weights in
order to obtain unbiased estimates. Some results in a likelihood approach are in
[1]. Furthermore, when auxiliary variables are used to improve either parameter
estimates or imputation procedure, BNs should be learnt suitably accounting for the
sampling design features.
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Comparing Fuzzy and Multidimensional
Methods to Evaluate Well-Being in European
Regions

Maria Adele Milioli, Lara Berzieri, and Sergio Zani

Abstract We suggest a new criterion based on fuzzy sets theory in order to
evaluate well-being in European regions at NUTS 2 level. With reference to
the various domains of this vague and multidimensional concept, a subset of 16
variables available in Eurostat database is selected. After a fuzzy transformation,
the variables are aggregated into a fuzzy synthetic indicator, considering different
weighting criteria. For each region the fuzzy indicator value, in the range [0, 1],
may be interpreted as a membership degree to the subset of the areas with the
highest well-being. The results are compared with the ones obtained by principal
component analysis (PCA) and k-means cluster analysis applied to the same dataset.
Furthermore, the relationships of the fuzzy indicator with GDP per capita and
with human development index (HDI) are highlighted. The advantages and the
drawbacks of the suggested approach are discussed.

Keywords Cluster analysis ¢ Composite indicators * Fuzzy sets * Membership
function ¢ Principal components

1 Introduction

Is increasing GDP per capita a symptom of better life conditions? “Yet Gross
Domestic Product measures everything, in short, except that which makes life
worthwhile”. (Speech excerpt by Robert F. Kennedy, 1968.) The growing interest
in the “beyond GDP” ideas has resulted in the construction of several alternative
measures of economic development and social progress (e.g. [5]). Well-being and
quality of life are the most recurrent terms used to describe these concepts, but in
the literature non equivalent definitions and specifications are considered.
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“Human development, as an approach, is concerned with what I take to be the
basic development idea: namely, advancing the richness of human life, rather than
the richness of the economy in which human beings live, which is only a part of it”
(Amartya Sen).

Well-being may concern either a single person’s life situation (subjective well-
being, see, e.g. [9]) or the living conditions of people in a certain area. The two
main features of well-being are multidimensionality and vagueness: this latent
concept cannot be directly measured, but it can be captured by means of a set of
observable variables encompassing different domains. Composite indicators should
ideally measure multidimensional concepts which cannot be captured by a simple
variable [13]. Furthermore, it is possible to point out the gradual transition from poor
to rich living conditions, considering increasing levels of well-being. The measures
of well-being should be obtained using multidimensional analysis and fuzzy sets
approach, providing a mathematical framework in which this vague concept can be
studied.

Most of the researches on well-being are carried out at country level. The recent
“Better Life Index” allows to compare well-being across countries, based on 11
topics identifying the areas of material living conditions and quality of life [15].
By narrowing down the analysis at sub-national level, a wide variety of situations
emerge across and within the countries.

In this paper we propose the construction of fuzzy composite indicators in order
to evaluate well-being in the European regions of the 27 member States, as defined
in NUTS 2 (Nomenclature of Territorial Units for Statistics of second level).

Related recent studies on the measurement of the living conditions across
European regions are: [2, 4, 16, 19].

The theoretical socio-economic framework that we consider is described in:
[1, 8, 14, 20]. Well-being at territorial level may be determined by two main
domains: material living conditions (or “economic welfare”) that include income
and wealth, consumption, jobs and earnings, housing; quality of life, defined as the
set of non-monetary attributes of individuals and their opportunities and life chances
(health status, education and skills, environmental quality, personal security, etc.).
The framework also considers the sustainability over time of the socio-economic
conditions and of the natural systems.

Well-being composite indicators are highly sensitive to the variables that are
selected, to the methods and weights used in the aggregation: different choices may
entail quite different results [18].

Starting from the previous conceptual models and the above mentioned consid-
erations, in Sect. 2 we select a subset of variables available in Eurostat database at
NUTS 2 level.

In Sect.3 we describe the steps for the construction of a fuzzy composite
indicator, assumed as a synthetic measure of well-being level in the regions.

In Sect. 4 we present the values of this indicator in the map of European regions
and sketch the best and the worst areas. In Sect.5 the fuzzy sets approach is
compared with GDP per capita values and with the results of classical multidimen-
sional methods for dimension reduction and classification of the units: principal
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component analysis (PCA) and k-means cluster analysis, applied to the same
dataset.
In Sect. 6 we compare the values of the fuzzy indicator with the ones of human
development index (HDI) at NUTS 2 level and we show their non-linear relation.
Concluding remarks in Sect. 7 highlight the additional information of the sug-
gested approach with respect to the traditional ones.

2 The Selection of the Variables

The NUTS 2 classification subdivides the 27 European States into 271 regions.
Source of the data is Eurostat’s database. This classification corresponds in Italy
to the administrative regions, with the exception of Trentino-Alto Adige, divided
into the provinces of Trento and Bolzano.

First of all we have erased from the data set 5 units not belonging to
European Union: HR1, HR2, HR3—candidate regions in Croatia; IS 00 Iceland
(Efta Country); FI 1B Helsinki (new region). We have also deleted the following
six regions in other continents: Guyane, Réunion, Martinique, Guadalupe (FR);
Melilla, Ceuta (ES).

The selection of the variables has been done starting from the list of all available
indicators at NUTS 2 level for European regions (reference year 2010), which is a
strong limitation in the definition of the complex concept of well-being. Above all,
there is a lack of suitable variables for describing at regional level the aspects of the
sustainability, social connection, personal security and subjective well-being.

In order to avoid redundancy for the available domains, a variable selection
procedure has been carried out. In most cases, the inclusion of all the variables in
a statistical analysis is, at best, unnecessary and, at worst, a serious impediment to
the correct interpretation of the data. If two variables are highly correlated, then one
of them can often be deleted without the final result being greatly influenced. One
way of achieving a simple interpretation is to reduce the number of variables, i.e. to
select a subset of the variables to preserve as far as possible the original information.
On this topic see, e.g. [17].

Using the criteria of the correlation matrix and PCA, a subset of 16 standardized
variables has been selected, with respect to six domains: health and road accidents,
wealth and free time, labor market, education, demography, environment. In Table 1
the list of the variables and their relationship, positive or negative, with the global
well-being is presented. We point out that the set of the selected variables includes
the three aspects considered in the HDI: life expectancy, education and GDP per
capita (analysed in Sect. 6).



168 M.A. Milioli et al.

Table 1 Subset of well-being indicators used in the analysis

Well-being indicators Relationship with well-being
Health and road accidents

Life expectancy at birth +

Victims in road accidents (on 100,000 residents) -

Wealth and free time

GDP at current market prices (100 = mean value) +

Family disposable income (100 = mean value) +

% free time weekly hours +

Labour market

Employment rate +

Unemployment rate —

Long-term unemployment rate —

Differences between young and adult unemployment rate —

Education

% persons with tertiary education

+ |+

Life-long learning
Demography

Elderly rate

% under 10 years old

Fertility rate
Natural Change rate (mean 2006-2010)
Environment

+++

% land use for residential, commercial and industrial purpose —

3 The Suggested Fuzzy Indicator

Fuzzy sets theory (e.g. [24]) provides an approach to deal with vague concepts as
well-being or quality of life [3, 11]; poverty [7, 12], customer satisfaction [22, 23].
Using the fuzzy approach, the well-being of an area may be interpreted as a question
of degree, showing the gradual transition from poor to rich regions: the measure of
well-being can be expressed as membership degree to the subset A of the best areas.

Consider a set of n regions r; (i = 1, 2, ..., n) and p manifest variables X; (s = 1,
2, ..., p) reflecting the different aspects of well-being. Without loss of generality, let
us assume that each variable is positively related with well-being. If a quantitative
variable X; shows negative correlation, we substitute it with a simple decreasing
transformation, e.g. f (xs;;) =max(xy) — Xy

In order to define the membership function for each variable X; it is necessary:

1. To identify the extreme situation such that ps(x) = 0 (non-membership) and
Ha(x) = 1 (full membership)

2. To define a criterion for assigning membership function values to the intermedi-
ate categories of the variable
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For each standardized variable X (for simplicity of notation we omit index s), we
choose an inferior (lower) threshold / and a superior (upper) threshold u, with / and
u finite, and we define the m.f. 4 (x;) as follows:

0 x,-fl
palx) = (3= I<xi<u
1 X;i>u

We have chosen: lower threshold / = median of the variable; upper threshold
u = 90th percentile. With this choice the regions with a value of the variable under
the median do not belong to the subset A of the best regions, with reference to the
considered aspect, and the regions with the 10 % highest values totally belong to the
subset of the areas with the highest quality of life.

Among the steps of the construction of a composite index, weighting and
aggregation criteria are the most difficult ones as they directly affect the quality and
reliability of the results (e.g. [10, 18]). Let us consider the criteria for aggregating p
fuzzy variables into a fuzzy composite indicator. A general aggregation function is
the weighted generalized mean:

P
pali) = £)_[malea)]*wi3'e

s=1

where wy > 0 is the normalized weight that expresses the relative importance of
the variables Xj; (Zf=1 wg = 1). For fixed arguments and weights, the function
is monotonic increasing with «; if @ — —oo, then it becomes the intersection;
if @ — 400, then it is equal to the union. For « — 0 it becomes the weighted
geometric mean.

The weighting criteria may be:

* Equal weights, which imply a careful selection of the variables in order to assure
a balance of the different aspects of the latent phenomenon

* Factor loadings, obtained by PCA

* Subjective weights obtained by expert judgments, with reference to the impor-
tance of the different aspects

Obviously other thresholds, other functions (as the exponential or the cubic ones)
and other weights may be considered and in the next section we test the sensitivity
of the results obtained using different selection criteria.
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4 Fuzzy Well-Being Levels in European Regions

We have calculated the values of a first fuzzy composite indicator with equal weights
for the 16 variables and of a second fuzzy indicator with weights proportional to
the factor loadings of the first principal component (see successive Sect.5). The
correlation between unweighted and weighted indicators is very high (r = 0.992)
and therefore the classification of the regions obtained by the two criteria is very
similar; so we will describe only the unweighted indicator. For this index we have
considered also different upper thresholds: 80th and 79th percentile. The correlation
with the indicator using 90th percentile is very high: 0.990 and 0.975, respectively.
Therefore we present only the results with reference to the 90th percentile upper
threshold.

The values of this fuzzy indicator have an interesting interpretation: a value equal
to O corresponds to a region under the median for all the variables, a value equal to
1 identifies a region over the 90-th percentile for all the variables and a value in the
open range (0, 1) may be assumed as membership degree of the region to the subset
A of the best areas, i.e. as a fuzzy measure of well-being.

The top ten regions for well-being level are (fuzzy indicator value in brackets):

* Berkshire, Buckinghamshire and Oxfordshire, UK (0.86)

e Stockholm, SE (0.81)

¢ Noord-Holland, NL (0.80)

¢ Bedfordshire and Hertfordshire, UK (0.78)

e Zuid-Holland, NL (0.74)

¢ Flevoland, NL (0.72)

¢ Gloucestershire, Wiltshire and Bristol/Bath area, UK (0.70)
e Overijssel, NL (0.69)

* Hovedstaden, DK (0.69)

We highlight that no region presents a value equal to one of the fuzzy indicator, i.e.
no region shows values greater than the 90-th percentile for all the 16 variables.

The regions with the worst conditions, all with zero values of the fuzzy well-
being indicator, are:

¢ Yuzhen Tsentralen, BG
* Dytiki Makedonia, EL
* Nyugat-Dunéntdl, HU
¢ Dél-Dunantdl, HU

o Dél-Alfold, HU

¢ Sud-Muntenia, RO

The complete list of the values of the fuzzy indicator may be requested to the first
author.

In Fig.1 we present the map of the values of the fuzzy composite indicator
in European regions, according to a partition with five equal classes, based on
percentiles. The map is obtained using the program GvSig (http://www.gvsig.org),
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Fig. 1 Map of the European regions according to the values of the fuzzy composite indicator of
well-being

a cartographic information system for visualizing the results. The map of the
European regions shows the five classes of percentiles by different types of grids:
the darkest areas correspond to the best regions.

The lowest levels of well-being are located in the East European countries and in
a few regions in Portugal, Spain and southern Italy. The best areas are scattered in
different countries of central and northern Europe.

5 Comparison with GDP Per Capita and With Other
Multidimensional Indicators

It is interesting to compare the results of the fuzzy multidimensional approach with
the traditional indicator of development, i.e. GDP per capita and with the results
of other multidimensional methods, applied to the same set of 16 variables. The
metropolitan areas of Brussels, Inner and Outer London show too high values for a
few variables and may be considered as multidimensional outliers. They have been
omitted in the following comparisons and therefore only 257 units are considered.

The correlation between the fuzzy indicator and GDP per capita is moderate
(r = 0.712) and this restates that GDP is a poor and insufficient criterion for a global
evaluation of living conditions of territorial units.
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Another comparison method is the classification of the values of the fuzzy
indicator values and GDP per capita into a contingency table, considering for each
indicator the partition corresponding to five classes of percentiles (Table 2).

The regions in the same percentile class with the two criteria (main diagonal of
the matrix) are 42.8 %, and Kendall’s tau is 0.620. We highlight that the extreme
regions (the worst and the best) are rated in a similar manner on the basis of the
two criteria, whereas the regions in the middle of the range present more different
classifications.

We have applied PCA to the same set of 16 variables of well-being. The first
PC accounts for 37.5 % of the total variance and the second PC for 20.2 %. The
percentage explained by the two PC is equal to 57.7% and is superior to the
threshold 0.95'® = 0.44 (Cronbach’s alpha = 0.844). The first PC is highly related
to the variables measuring income and wealth, education, labour market and life
expectancy; the second PC describes demographic domain. The linear correlation
between the previous fuzzy indicator and the first PC is sufficiently high (r = 0.932)
and also the rankings of the regions obtained by the two criteria are similar, but not
equal (Spearman’s rho = 0.950). The contingency table with reference to the fuzzy
indicator values and the scores of the first PC, considering for each indicator the
partition corresponding to five classes of percentiles (Table 3), shows that most of
the regions (67.7 %) are in the same percentile class with the two criteria, i.e. the
two indicators show similar but not equal results (Kendall’s tau = 0.847).

Table 2 Contingency table of the values of the fuzzy indicator and GDP per capita

Percentile classes of GDP per capita

1 2 3 4 5 Total
Percentile Classes of the 1 35 14 1 1 0 51
Fuzzy indicator 2 15 17 11 7 2 32
3 1 13 14 15 8 51
4 0 7 16 16 13 52
5 0 1 9 13 28 51
Total 51 52 51 52 51 257

Table 3 Contingency table of the values of the fuzzy and the first PC indicators

Percentile classes of the first PC

1 2 3 4 5 Total
Percentile classes of the 1 39 12 0 0 0 51
fuzzy indicator 2 11 32 9 0 0 32
3 1 8 30 12 0 51
4 0 0 12 31 9 52
5 0 0 0 9 42 51

Total 51 52 51 52 51 257
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Table 4 Five clusters of regions by k-means method

Cluster Number of Fuzzy values First PC Second PC
index regions average scores average scores average
3 61 0.089 —1.240 0.178

1 29 0.143 —0.906 0.258

2 37 0.309 0.254 0.974

5 65 0.331 0.323 —1.286

4 65 0.491 1.100 0.437

Finally, we have applied k-means cluster analysis to the 16 standardized variables
selecting five groups (for comparison reasons with the previous partitions), ranked
according to the average of the values of the fuzzy indicator of the regions in each
cluster. The average of the scores of the first and second PC is also presented
(Table 4). The 65 regions in cluster n. 4 are the ones with the highest well-being
measured by fuzzy and PC indicators.

6 Comparison with HDI

The comparison of the suggested well-being indicators with the results of other
researches on this topic at sub-national level is not an easy task, as a consequence
of the differences in the choice of variables, methods and territorial units.

We compare our results with the values of HDI computed by Bubbico and
Dijkstra [6] for European regions at NUTS 2 level, with reference to 27 EU countries
for the year 2007.

HDI is the average of three normalized indices, one in each dimension of human
development:

» Life expectancy at birth
* Education
* GDP per capita (PPP US dollars)

The index presents values in the range [0, 100], where O is equal to the lowest level
of human development and 100 to the highest. The HDI is usually calculated in
order to compare the development of the nations all over the world (see, e.g. [21]).

Figure 2 shows the scatterplot with respect to HDI and the fuzzy composite
indicator for the same 257 European regions examined in Sect. 5. The relationship
between the two indices is moderate and non-linear: > = 0.597 for the linear
function and > = 0.720 for the quadratic function (the cubic function shows a
non-significant increase > = 0.722). There are also a few bivariate outliers, very
far from the curve. In the left side of the figure we can see: 201 = Acores (PT);
202 = Madeira (PT); 205 = Nord-Est of Romania; 208 = Bucuresti (RO) and 224
= Vychodné Slovensko (SK). Under the curve there is 15 = Brabant Wallon (BE)
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Fig. 2 Scatterplot of the 257 European region with reference to HDI and fuzzy indicator with
superimposed quadratic function. The numbers correspond to regions that are bivariate outliers

and over the function 147 = Bolzano (IT). For the seven above mentioned regions
the two criteria of well-being evaluation entail quite different results. Deleting these
7 outliers, we obtain a slight improvement in the goodness-of-fit for the quadratic
function: 72 = 0.750. The differences between the two indicators may be explained
by the sets of variables (3 against 16), the transformation and aggregation criteria,
the reference year (2007 and 2010).

7 Concluding Remarks

In this paper we have suggested a criterion based on fuzzy sets theory for the
construction of well-being indices at sub-national level. Our fuzzy composite
indicator is based on a set of variables describing the various domains of well-being
and it presents values in the closed range [0, 1]. The great advantage of this index is
its simple and interesting interpretation: a value equal to O corresponds to a region
under the median for all the variables, a value equal to 1 identifies a region over the
90-th percentile for all the variables and a value in the open range (0, 1) may be
assumed as membership degree of the region to the subset of the areas with highest
well-being.

The application of the fuzzy indicator to the European regions at NUTS 2 level,
considering a set of 16 variables, has pointed out new aspects and better explanations
of well-being. The comparison with the results of PCA, applied to the same set of
variables, has highlighted that the linear and rank correlation between the previous
fuzzy indicator and the first PC are sufficiently high (» = 0.932; Spearman
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rho = 0.950), i.e. the rankings of the regions obtained by the two criteria are similar,
but not equal. The correlation of these two composite indicators with GDP per
capita is moderate (r = 0.712 and r = 0.759, respectively) and this confirms
the inadequacy of such single variable for a complete description of well-being
concept. The relation of the fuzzy indicator with HDI is non-linear (r> = 0.720
for the quadratic function) and there are a few regions that may be considered as
bivariate outliers.

The shortcomings of the suggested approach are related to the following
subjective choices in the various steps of the construction of a fuzzy composite
indicator:

¢ Set (or subset) of variables

* Form of the membership function and lower and upper thresholds
*  Weights of the variables

* Aggregation criterion.

The sensitivity and robustness of the results with respect to a few different choices
in the previous steps have been examined in Sect. 4.
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Cluster Analysis of Three-Way Atmospheric
Data

Isabella Morlini and Stefano Orlandini

Abstract Classification of meteorological time series is important for the analysis
of the climate variability and climate change. The clustering of several years in
groups that are homogeneous with reference to the amount of precipitation and to
the atmospheric condition can aid in understanding the structure of precipitation
and may be important in developing hydrological models. In this paper we propose
a cluster analysis of multivariate time series based on a dissimilarity measure that
considers the functional form of the data. The unit to be classified are 148 years,
from 1861 to 2008, and the variables are the values of precipitation, the minimum
temperature, and the maximum temperature in different occasions (days or months)
in the province of Modena (Northern Italy).

Keywords Climate change ¢ Clustering ¢ Functional data analysis e Precipita-
tion

1 Introduction

When studying climate change in a spatial area, we may search for typical patterns,
common to some time periods, describing the underlying atmospheric process. The
analysis and the comparison of these different patterns may give an insight into
the long-period changes in meteorological variables, such as rain and temperature.
These typical patterns may be thought of as centroids of homogeneous clusters,
where the units to be classified are years over a long period of time and the variables
are measurements of rain and temperature in different occasions (for example, days
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Fig. 1 Daily values of rainfall in Modena in the years 1839 and 1841

or months). Classification of these there-way data (unit x variables x occasions)
should consider the functional form of the multivariate time series. Indeed, salient
features of atmospheric measurements, such as extreme values, maxima or minima,
may result shifted in the different series. The transformation of time, that is the
warping function from one series to another, must be estimated, before computing
the dissimilarity between pairs of series. This function permits a fruitful alignment
of the two sequences of measurements. As an example, Fig. 1 reports the daily
values (explains) of rainfall intensity in the years 1839 and 1841, in the province
of Modena (Northern Italy). The two sequences show a great similarity, considering
that both years have a peak around 30 mm in March, three days with more than
20mm in the period May—-June and, in particular, a very rare event such as a
daily value near 80 mm in October. The timing of this very rare event is shifted
of 13 days in the 2 years (it occurs the 16th of October in the year 1839 and
the 29th of October in the year 1841). Cross-sectional similarities, which compare
measurements gathered in the same day, produce pessimistic values for these two
series. A more comprehensive similarity should align similar events that occur in
nearby days. Even the simplest data analysis, such as computing a mean, can require
that features be first aligned by a time transformation, a process that is called time-
series registration.

Classical functional data analysis [2, 7, 8, 10] interpolates the sequences of values
by a smooth curve and assumes that also the time-warping function is a smooth
function, differentiable as the curves themselves. Suppose we have n observed
values x;;, i = 1,...,n, of variable j (j = 1,...,p)attime ¢t (t = 1,...,7). In
functional data analysis, the model usually assumed is

Xir = 8wy (1) + s (1)
where s;; is the smooth function underlying the time series i of variable j (i =

1,...,n), (j = 1,...,p), w;(¢) is the smooth time warping function, and &, is
the error term. The errors are assumed independent and identically distributed. The
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function wy; () is subject to the following constraints:

1. 11 <t <= w;(t1) < w(tz)

To keep the notation simple, in (1) it is assumed that, for each variable j and for
each time series i, both the number 7" and the timing of the sampled values x;; are
identical. However, many applications involve variation in locations and numbers of
sampling points across replications and formula (1) may be adjusted for these cases.
The smooth functions s; and w;; depend on the time series i and on the variable
J and each observation x;; is associated with the registered curve value s;;(w;;(7)).
The simplest curve alignment procedure is a landmark registration. A landmark is
a feature with a location that is clearly identifiable in all curves. The curves are
aligned by transforming the physical time so that the location of the landmarks is
the same for all curves. In case of a single landmark, if #, is the timing of this
landmark in variable j and #; is the timing of this landmark in curve i, then the
time-warping function wy(f) is specified by fitting a smooth function to the three
points (0, 0), (f,#;), and (T, T). This function is as differentiable as the curves s;;
themselves. According to this definition, w;;(#;) = to, and all the registered functions
defined as y;;(f) = s;;(w;;(¢)) will all automatically arrive at the landmark at the same
time, namely #y. Both the definition of multiple landmarks and their unequivocal
identification in individual curves are problematic, especially in long time series
of atmospheric data. For example, in Fig. 1, the timing of the rain peak in March
may be either the 5th or the 17th. In October, #yp may be either the 16th or the 29th.
Moreover, these peaks may be not so visible in other years. It is evident that both
the exact number and the daily locations of landmarks in rain and temperature time
series are not objectively identifiable. As an alternative to landmark registration,
in this paper we use the dynamic time warping algorithm (dtw). In its original
formulation, the dtw estimates a “warping path” for aligning one series to another
and minimizes a measure of “discrepancy” between the two series which is called
dynamic time warping cost (dtwc). However, if we modify one of the constraints
in the classical formulation, the algorithm estimates a path which is a discrete time
warping function and minimizes, a cost which is a dissimilarity measure between the
two registered series. The dtw algorithm doesn’t require the estimate of the smooth
curves interpolating the time series. However, we may estimate these curves and use
the smoothed valued s;(f) in order to have data less noisy than the sampled values
x;j. The main features of dtw are as follows:

— It is a nonparametric procedure which does not require prior assumptions
about the form of the warping functions (see, e.g., [9, 12] for the definition of
parametric warping functions) or about the number and the timings of salient
events (the landmarks).

— It relies on a minimization problem which can be solved efficiently by using
dynamic programming.
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— When applied to three-way data, the warping functions are estimated by con-
sidering the vector-valued time series X; = [x11;, ..., X1 ..., X1p] and not by
considering each univariate series x;; (j = 1,...,p) (t = 1,...,T) separately.
Therefore, rather than estimating a univariate warping function w; for each
variable j, the dtw estimates a p-variate warping function w;.

These last two items differentiate the dtw algorithm used in this paper and the
algorithm illustrated in [13, 14]. In Wang and Gasser the warping functions are
univariate smooth continuous functions.

The paper is organized as follows. In Sect. 2 we illustrate the dtw algorithm used
in paper. In Sect. 3 we focus on the application. We first describe the data and the
study area and then we show how atmospheric data can be clustered and analyzed
to achieve meaningful results.

2 The Warping Function and the Measure of Dissimilarity

The dtw algorithm was originally developed in engineering, for speech analysis and
speech recognition, in order to align two sequences of values. Many enhancements
of the method have been proposed in the data mining literature. Among other
works, we refer to [1, 3-5]. In its original formulation, given the p-dimensional

vector-valued series Xy, and X,,, where X;; = [Xi1/,...,X1jr, ..., X1p), § = 1,2 and
t = 1,...,T, the dtw first implies the construction of a T x T square lattice D,
in which the element d(r,c) (r,c = 1,...,T) is the distance d(x;,, Xp.) between

the values of series 1 at time r and the values of series 2 at time ¢. Any distance
may be used in the construction of the square lattice D. However, before computing
any Minkowski metric, the p variables should be standardized to take into account
the different units of measurements and/or the different variability [6]. Each element
d(r, ¢) corresponds to the alignment between points X;, and X;, in the p-dimensional
Euclidean space. The dtwc is defined as follows:

[ <k
. d
dtwe = min %, (2)

where T < K < (2T — 1), K is determined by the optimization process of the
algorithm and the dj are elements of D subject to the following constraints:

— Boundary condition: d; = d(1,1) = d(xq1,Xz1) and dxy = d(T,T) =
d(xi7,X27). This constraint requires that the first time and the last time in one
series are aligned with the first time and the last time, respectively, in the other
series. So, the first and the last time are not warped.

— Continuity constraint: given dy = d(Xy,, Xz.) then dy—; = d(X;,,X) Where
(r—r") < 1and (c—c’) < 1. This condition restricts two successive elements d,
to be adjacent (including diagonally) elements in D.
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Fig. 2 (a) An example of the distances included in the dtwc; (b) the warping path

— Monotonicity constrain: given d; = d(X,, Xa.) then dy—; = d(X},/,Xa/) Where
(r—7") > 1 and (¢—¢’) > 1. This condition forces the couple of points for which
the distance is taken into account in the dtwc to be monotonically spaced in time.

The dtw produces a relative shift between the two sampled curves. However, as
shown in Fig. 2a, the algorithm defines a warping path and from this path we cannot
draw two increasing warping functions to align X, to X, and to align X; to Xj, since
a single point on one time series may map onto a large subsection of the other
series (Fig.2b). In order to find two monotonic—not strictly increasing—warping
functions, one could eliminate the boundary condition dx¢ = d(X;r, Xo7) and restrict
the continuity constrain such that (r — #’) = 1 for aligning x; to x, and such that
(¢ — ") = 1 for aligning x; to x; (Fig. 3b). However, with this restriction, the dtwc
becomes asymmetric and cannot be a dissimilarity measure: given two sequences i
and ¢/, and, to keep the notation simple, dtwe(x;, xy) = dtwc(ii’), then dtwe(ii') #
dtwc(i'i). In order to define at the same time a dissimilarity measure and a warping
function, we use a modified parameterized path. This path is characterized by a
weaker continuity constraint, defined as follows:

Continuity constraint: given dy = d(Xy,,Xz.) then dy—; = d(X;,,Xp) Where
r—r)<2&(c—-d)y<2or(r—r)<2&(c—c) <2 (Fig. 3c).

With this continuity constraint, the classical boundary condition, and the mono-
tonicity constraint, the dtw algorithm estimates a wd;(¢) warping function, with the
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Fig. 3 Representation of the
dtw step. (a) The classical
dtw step; (b) step with a) I b) 7
restrictions on the continuity
constraint; (c) step with a
weaker continuity constraint

[ o]

following properties:

1. 11 < tn = wdi(t}) < wd;(t;) (the function is monotonic increasing but not
strictly increasing and it is not smooth)

2. Wd,'(O) =0

3. Wd,'(T) =T

and a dtwc dissimilarity measure, satisfying the following conditions:

1. dtwe(@i’) > 0,4, = 1,..., N (nonnegativity)

2. dtwc(ii) = 0,i = 1,..., N (this a condition weaker than the identity condition
required for distance measures)

3. dtwe(il') = dtwe(iD), i,/ = 1,..., N (symmetry)

As outlined in the Introduction, wd, is equal for every variablej (j = 1, ..., p), since
it is estimated considering the vector-valued series X; = [X11s, ..., Xijr, - ., Xipr)s
t = 1,...,T and not by considering each univariate series x;; (j = 1,...,p), (t =
1,...,T) separately. Another feature that characterizes the warping function wd;

and that may be useful in applications with meteorological data, is the possibility to
define the maximum number of time-lags between the physical time and the warped
time. Indeed, considering for example daily series, only similar events that occur
in nearby days are likely to be expression of the same feature (for example, a peak
or an extreme value, in a certain period) and should be aligned. Salient events that
occurs in days which are faraway, should be considered as two “different” features
in the two series and should not be aligned. The maximum number of days between
the timing of two events that are likely to be logically compared depends on the
application and on the aim of the data analysis. In general, if u is the maximum
number of lags for which we assume the same event may be timed differently in
the different series, the simplest strategy is to introduce the following “windowing
condition” in the dtw algorithm:

dy = d(X1y,Xp0) With [r—c¢| < u

We refer to [11] for the definition of more refined constraints on the warping path,
aimed at preventing unrealistic warping.

The dtwc dissimilarity matrix may be used for classifying time series with the
following hierarchical methods: the average linkage, the complete and the single
linkages. The centroid method is not appropriate, since the dendrogram obtained
with this method with a dissimilarity measure is a non-monotonic cluster tree.
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3 C(lassification of Meteorological Time Series

We perform a cluster analysis of atmospheric measurements gathered by a historical
weather station in the urban area of the province of Modena, in the Emilia Romagna
Region (Northern Italy). The station is the geophysical observatory of Modena.
Even though the weather station does not conform to the W.M.O. regulations
for the position of the instruments (which have been emitted many years after
the construction of the geophysical observatory) it does permit the collection
rainfall data, in the same location, from 1831. Information about the history of the
geophysical observatory may be found in the web page http://www.ossgeo.unimo.
it. Here we only report the main coordinates of the station:

Boreal latitude: 44°38’50.76"

East longitude from Greenwich: 10°55'45.50”

— Height of the barometric cockpit from the sea level: 64.2m
Height of the rain gauge from the ground: 41.9m

Height of the ground from the sea level: 34.6 m

The (cross-sectional) mean values and the maximum values of the total rainfall for
the day (in mm) of the period 1831-2008 are reported in Fig.4. The minimum
daily value is always equal to 0. In average, the total amount of rain in a day is
less than 4 mm and reaches the highest peaks in October and November and the
minimum values in August. The pattern of the maximum values is different: salient
peaks are present in quite all months. In some years, the total rain in a day has
reached values higher than 75 mm. The series reported in Fig.4 shows that the
variable has a high variability between years and between days. There are many
years presenting anomalous extreme values and it is clear that the cross-sectional
mean underestimates both the value of the peaks and the order of magnitude of the
phenomenon. We consider the available “three way” data set, with p = 3. The three
variables are:

— X;: minimum air temperature (in Celsius degree)
— X,: maximum air temperature (in Celsius degree)
— Xj: total rainfall (in mm)

Air temperature is known only from the year 1861. We then cluster 148 sequences:
the years 1861 to 2008. We perform a cluster analysis of the 148 years on the basis
of the minimum temperature, the maximum temperature, and the total rainfall for
the month. We will refer to these data, with T = 12, as monthly values of X;, X,
and Xj3. Figure 5 reports time series of the minimum, the maximum, and the (cross-
sectional) mean of the monthly values of X, X5, and X3. This figure shows that
Modena experiences a “mediterranean” climate with mild wet winters and hot, less
rainy, summers. While the temperature shows a clear seasonal pattern, and both the
maximum and the minimum values follow the same average pattern, the amount
of rainfall has a more irregular trend and the minimum and the maximum values
show different patterns. Before computing the dtw dissimilarity measure, data are
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Fig. 4 Time series of the maximum (top) and the average (bottom) daily values of rain

Fig. 5 Time series of the minimum, the maximum and the average monthly values of X;, X;, X3

standardized so thatineach t (r = 1,...,T with T = 12) each variable has 0 mean
and unit variance.
In the warping function, we set u = 2, allowing for a maximum shift of 2

months. Figure 6 reports dendrograms obtained with the single, the complete, and
the average linkages. The trees show that the single and the average linkages exhibit
less ability to provide separation than the complete linkage. The single linkage is
greatly affected by the “chain effect”. The average linkage is less influenced by
this effect but it still tends to aggregate single observations or very small groups
in each stage of the hierarchy and many single observations remain isolated till the
last stages. The complete linkage readily distinguishes clusters with more than one
or two observations. On the basis of the ratio between the within variance and the
total variance (which has a relatively high increase from partition in six clusters
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Fig. 6 Data set withn = 148, T = 12, and p = 3: full dendrogram (on the /eff) and dendrogram
with 30 leaf nodes (on the right) resulting by collapsing lower branches of the full dendrogram,
obtained with the single linkage (in the fop), the complete linkage (in the middle), and the average
linkage (in the bottom)

to partition in five clusters) we consider the classification in six groups. Analyzing
cluster means, we see that partitions with less than six groups aggregate years with a
very different behavior, while partitions with more than six groups lead to different
clusters with similar average behavior. Groups, in the six-clusters partition, are as
follows:

Cluster 1: {1861, 1917, 1941, 1942, 1947, 1953, 1980, 1985}

Cluster 2: {1863, 1866, 1883, 1889, 1892, 1898, 1900, 1902, 1904, 1905, 1910,
1912, 1914, 1915, 1919, 1920, 1923, 1924, 1925, 1926, 1927, 1928, 1930, 1933,
1934, 1936, 1937, 1939, 1943, 1944, 1951, 1954, 1955, 1956, 1964, 1965, 1969,
1970, 1971, 1972, 1973, 1974, 1977, 1978, 1982, 1984, 1986, 1991, 1996}

Cluster 3: {1868, 1929, 1938, 1963, 1993, 2002}

Cluster 4: {1865, 1867, 1869, 1870, 1872, 1876, 1879, 1882, 1885, 1887, 1890,
1896, 1897, 1911, 1913, 1916, 1921, 1931, 1948, 1952, 1957, 1958, 1961, 1967,
1976, 1979, 1981, 1987, 1988, 1990, 1992, 2006}
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Fig. 7 Data set with n = 148, T = 12, and p = 3: group means in the partition in six clusters.
Variable X is reported in the top, variable X, in the middle, and variable X3 in the bottom

Cluster 5: {1862, 1864, 1871, 1873, 1874, 1875, 1877, 1878, 1880, 1881, 1884,
1888, 1891, 1893, 1894, 1895, 1899, 1901, 1903, 1906, 1907, 1908, 1909, 1918,
1922, 1932, 1935, 1940, 1949, 1959, 1960, 1962, 1989}

Cluster 6: {1886, 1945, 1946, 1950, 1966, 1968, 1975, 1983, 1994, 1995, 1997,
1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008}

Cluster means are reported in Fig. 7. Clusters 1 and 3 represent two small groups
with anomalous years. Cluster 1 groups together former years (the most recent
one is 1985), which are characterized by low maximum temperatures in quite all
months, by a very dry summer season and dry months in the second part of autumn.
This kind of climate is completely absent in the two last decades. A similar pattern
characterizes group 5, in which are clustered several years from 1962 to 1989. In
this group, the minimum temperatures are very low, the summer season is dry but
the autumn months are extremely wet. Cluster 3 groups together 6 years (with the
recent 2002) with a large amount of rain in the summer season and relatively dry
spring months. The minimum and maximum temperatures in these years are in line
with the average values. Cluster 6 groups many of the most recent years and the
cluster means may be considered as representative of the actual climate situation.
This group is characterized by high maximum and minimum temperatures and by
a relatively large amount of rain in summer, in autumn, and in the beginning of the
winter season. The time series of the group means (as long as the composition of
the clusters) lead to the evidence that a climate change is present, at the beginning
of the twentieth century. Both the minima and the maxima temperatures are higher,
all over the years, and the seasonality in the rain is less evident, since the average
amount of rain shows less variability across months.
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Fig. 8 Data withn = 49, T = 12, and p = 3: dendrogram obtained with the complete linkage

In order to gain insights into the climate change, we perform a second analysis,
considering sequences of 3 years. Each series has 36 monthly values (T = 36)
and n = 49. The first series is the triennium 1861-1863, the last series is the
triennium 2005-2007. The label of each series is the second year (for example,
for the first series the label is 1862 and for the last series the label is 2006). We
consider triennium in order to allow a larger shift in the warping function and to
allow the shift for the month of January (for the second and the third year) and
for December (for the first and the second year). Indeed, considering series of 1
year, the warping in the winter months of January and December is not possible.
We set u = 3 (the same length of a season). Figure 8 reports the dendrogram
obtained with the complete linkage. Here again, the complete linkage seems less
affected by the “chain effect” than the single and the average linkages and the tree
shows the presence of well-separated clusters. We consider partitions in six and
three groups. The cluster means of partition in six groups are shown in Fig.9 and
the group memberships are:

Cluster 1: {1861, 1900, 1912, 1915, 1918, 1921, 1924, 1930, 1933, 1936, 1939,
1951, 1954, 1960, 1963, 1969, 1972, 1975, 1978 }

Cluster 2: {1864, 1888, 1891, 1897, 1903, 1942, 1945, 1957, 1966, 1984, 1987,
1990}

Cluster 3: {1879}

Cluster 4: {1867, 1870, 1885, 1948}

Cluster 5: {1873, 1876, 1894, 1906, 1909, 1927}

Cluster 6: {1882, 1981, 1993, 1996, 1999, 2002, 2005}

This partition reveals the presence of an outlier, the triennium 1878-1880 in
group 3, which is characterized by extreme (both very high and very low) values
in the temperatures and in the rain. This group is merged with group 4 in partition
in three clusters. Group 4 contains early years and is characterized by very low
temperatures in winter and large amounts of rain in spring and autumn. Groups 1, 2,
and 5, contain non-recent years and are merged together in partition in three clusters.
The time series of the average values of these groups are smoother than the other
series: the seasonality in the temperatures is more evident and the amount of rain
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Fig. 9 Data set withn = 49, T = 12, and p = 3: group means in the partition in six clusters.
Variable X; is reported in the fop, variable X, in the middle, and variable X3 in the bottom

across months presents less variability. Group 6 contains recent years. It remains
a single group in partition in six clusters and it is not merged with other groups
until the top level of the hierarchy. This feature gives evidence of the peculiarity of
the years contained in the group. The average values of the temperatures (both the
minima and the maxima) are higher than the values in the other groups. In particular,
the minima temperatures are much higher than in the other groups. The amount or
rain is greatly variable across months and shows anomalous peaks in the first year
of the triennium. In general, the amount of rain is higher around April and October
and the summer months are wetter than in other groups.

The climate change is more evident in this second analysis, since all recent
years (after 1991) are clustered together. The group containing these years remains
isolated until the last level of the dendrogram and the times series of the average
values show peculiar patterns.
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Asymmetric CLUster Analysis Based
on SKEW-Symmetry: ACLUSKEW

Akinori Okada and Satoru Yokoyama

Abstract A procedure of cluster analysis to deal with asymmetric similarities
is introduced, where the similarity from one object to the other object is not
necessarily equal to the similarity from the latter to the former. The procedure
analyzes one-mode two-way asymmetric similarities among objects to classify
objects into clusters. Each cluster consists of a dominant (central) object and the
other (noncentral) objects. The central object of a cluster represents the cluster
and dominates the other objects in the cluster. In the present procedure, differences
between two conjugate similarities (two times of skew-symmetries) are weighted by
multiplying with the sum of the two corresponding similarities. Thus the larger the
similarity between two objects is, the more prominently the difference is evaluated.
The present procedure is applied to car switching data among car categories, and
the result is compared with the result which was obtained by analyzing unweighted
differences between two conjugate similarities. The comparison shows the weight
is reasonable.

Keywords Asymmetry ¢ Cluster analysis * Nonhierarchical ¢ Similarity e
Skew-symmetry

1 Introduction

Similarity relationships among objects are not always symmetric i.e., the similarity
from an object to the other object is not always equal to the similarity from the
latter to the former. While asymmetry sometimes can be important to understand

A. Okada (<)

Graduate School of Management and Information Sciences, Tama University, 4-1-1 Hijirigaoka
Tama-shi, Tokyo 206-0022, Japan

e-mail: okada@rikkyo.ac.jp

S. Yokoyama

Department of Business Administration Faculty of Economics, Teikyo University, 359 Otsuka
Hachioji, Tokyo 192-0395, Japan

e-mail: satoru@main.teikyo-u.ac.jp

© Springer International Publishing Switzerland 2015 191
1. Morlini et al. (eds.), Advances in Statistical Models for Data Analysis,

Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-17377-1_20


mailto:okada@rikkyo.ac.jp
mailto:satoru@main.teikyo-u.ac.jp

192 A. Okada and S. Yokoyama

similarity relationships among objects, most of researchers have ignored asymmetry
in the analysis of asymmetric similarities. Some researchers have paid attention
on asymmetry and have introduced several procedures to analyze and represent
asymmetry in similarities.

Two sorts of procedures for analyzing asymmetric relationships have been devel-
oped. One is based on multidimensional scaling [2, Chap. 23] where asymmetric
relationships among objects are represented geometrically in a multidimensional
space. The other is based on cluster analysis where asymmetric relationships among
objects are represented by a cluster structure. Most of procedures based on cluster
analysis are agglomerative [4, 5, 11, 15] which have been extended from a seminal
work of [7]. They focus the attention on which of two conjugate similarities is larger
than the other or on which of the two skew-symmetries is positive, and which of
them is negative. Akahori [1] introduced an agglomerative procedure for analyzing
asymmetric similarities of time-series data. The procedure utilizes the same idea as
stated above.

Olszewski [12, 13] presented nonhierarchical cluster analysis procedures for
analyzing two-mode two-way data asymmetrically. Olszewski [12] introduced the
asymmetric distance to represent the asymmetry, and Olszewski [13] introduced
a coefficient to represent the asymmetry. Two procedures are based on the same
principle in the clustering which is based on the distance from an object to a
centroid of a cluster. Two conjugate similarities are not directly compared. Vicari
[17] developed a nonhierarchical clustering procedure for analyzing one-mode two-
way asymmetric similarities by using two different cluster structures (in the general
model) to represent symmetric and skew-symmetric components of similarities,
respectively. In the procedure, two conjugate similarities are not compared directly,
but are approximated by the cluster structure.

A procedure to analyze asymmetric similarity named Asymmetric CLUster
analysis based on SKEW-symmetry (ACLUSKEW) is introduced in the present
study. ACLUSKEW focuses the attention on the difference between two conjugate
similarities [17]. The similarity from a less dominant or salient object to a more
dominant or salient object is larger than that from the more dominant or salient
object to the less dominant or salient object [16]. An object is chosen as the
dominant objects (central object) of a cluster. The dominant object represents the
cluster to which it belongs. The dominant object of each cluster is chosen so that
the sum of weighted differences between two conjugate similarities in the cluster
(similarity from the non-dominant object to the dominant object) — (similarity from
the dominant object to the non-dominant object) is maximized. The difference is
weighted by multiplying with the sum of two corresponding similarities. While
each cluster is represented by a dominant object in ACLUSKEW, the notion is
comparable to that of [12, 13] where each cluster is represented by the centroid
of the cluster.
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2 The Procedure

ACLUSKEW can be regarded as an extension of k-means cluster analysis [8], and
it deals with object x object or one-mode two-way similarities. Each cluster has
its own dominant (central) object and the other nondominant (noncentral) objects
which are dominated by the dominant object of the cluster [12, 13].

Let s; be the similarity from objects i to k, where s; is not necessarily equal
to si;. Two differences between two conjugate similarities (sy — sg;) and (sg; — i)
represent two times of the skew-symmetries between objects i and k, respectively.
The difference (s;—sy;) is called the difference from objects i to k, and the difference
(sk — six) 1s called the difference from objects & to i hereafter. They have the same
absolute value and have opposite signs. When s; > sz, object kK dominates over
object i, and when sj; < s4;, object i dominates over object k [16]. In the former case
the difference from objects i to k is positive, and in the latter case the difference from
objects i to k is negative. In the brand switching, this means that when two brands
have asymmetries of the power of attracting consumers from the other brand each
other, the more attractive brand can lure consumers from the less attractive brand.

Suppose that (sy — s;) is equal to (s — s¢;), then objects k and £ equally
dominate over object i. When (sj + sy;) is larger than (s + s¢;), the dominance
of object k over object i can be more influential than the dominance of object £ can
[3, 14]. This means that the larger the similarity between a more dominant or salient
object and a less dominant or salient object is, the more significant the dominance
relationship between two objects becomes. In ACLUSKEW the differences or two
times of skew-symmetries between two conjugate similarities (s; — Sg;) or (g — i)
are evaluated not by the values themselves but after multiplying with the sum of
corresponding two similarities (sj + sx;);

(Sik — Ski) ¥ (Sik + Ski)-

Let N be the number of objects, and K be the number of clusters. The problem is
to find K dominant objects and to classify each of the other (¥ — K) nondominant
objects into one of K clusters. A nondominant object i is assigned to the cluster
represented by object k, which satisfies

maxi—1... ,K(Sik — Ski) X (Sik + Ski)‘

The term (s; — si;) shows the difference from objects i to k. (six — si) X (Six + Ski)
shows that the larger the (sj + sx;) is, the more the difference (sy — s;) is weighted.
This means that object k dominates over object i more than object £ does, when
object i is more similar to object k than to object £, even if (sj — si;) = (si¢ — S¢i)-



194 A. Okada and S. Yokoyama

The purpose of ACLUSKEW is to find K clusters which maximize the goodness of
fit (GOF):

K Nk
GOF = Z Z signum(siy — Sk [(Sik — Ski) (k. + ski)]z, €))]
k=1 iec{;éslierk

for a given number of clusters K, where N; is the number of objects in cluster %,
signum(sy, —sy;) = 1 when (s —sg;) > 0, signum(si, —si;) = 0 when (s —sg;) = 0,
and signum(sy, — sy;) = —1 when (s — sg;) < 0.

The method of finding K clusters is:

1. Determine the number of clusters K

2. Choose all combinations (yCg) of K objects from N objects as dominant objects

3. For each of yCg combinations, assign each of (N — K) objects to the cluster
where (s — Ski) X (si + Sk;) is largest

4. Find clusters which give the largest GOF among 5 Ck results of K clusters

. Repeat steps 1-4 using different values of K

6. Choose the solution (or determine the number of clusters) from the results
obtained at step 4, where each of the results gives the largest GOF among the
results of K clusters, based on the interpretation and GOFs of the results

9]

3 An Application

ACLUSKEW is applied to car switching data among 16 car categories [6]. The data
are represented by a 16 x 16 table. The (i, j) element of the table shows the number
of cars corresponding to car category i which was traded in to purchase cars in car
category j. The table was rescaled by multiplying with a rescaling constant to the
row and the column so that the sum of row plus column elements is equal over all
16 sums [9, 10]. Namely, row i and column i are multiplied with a scaling constant
¢; so that in the resulting (rescaled) table, sum of row i elements plus sum of column
i elements is equal to the mean of the sum of row elements plus sum of column
elements of the original (unscaled) table. The 16 car categories and the abbreviation
of each car category are shown in Table 1. Table 2 shows rescaled data.

The rescaled car switching data were analyzed by ACLUSKEW for the number
of clusters K=1 through 5. Obtained GOFs for K=1 through 5 are 276.6 x 10>,
399.0 x 10'°, 425.0 x 10'°, 441.3 x 10'°, and 449.9 x 10'3, respectively. Results for
the number of clusters K=2, 3, and 4 are represented in Table 3. The three-cluster
result (K = 3) was adopted as the solution. The reason for choosing the three cluster
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Table 1 Sixteen car categories

Car category Abbreviation Domestic/captive import/import

1 Subcompact domestic SUBD Domestic

2 Subcompact captive imports SUBC Captive import
3 Subcompact imports SUBI Import

4 Small specialty domestic SMAD Domestic

5 Small specialty captive imports SMAC Captive import
6 Small specialty imports SMAI Import

7 Low price compact COML Domestic

8 Medium price compact COMM Domestic

9 Import compact COMI Import

10 Midsize domestic MIDD Domestic

11 Midsize imports MIDI Import

12 Midsize specialty MIDS Domestic

13 Low price standard STDL Domestic

14 Medium price standard STDM Domestic

15 Luxury domestic LUXD Domestic

16 Luxury imports LUXI Import

result as the solution is twofold; one is the clarity of the interpretation and the other
is increment of GOF from K=2 to 3 and that from K=3 to 4. The dominant objects
SUBD in cluster 1, SUBI in cluster 2, and MIDS in cluster 3 seem to be the smallest
and the least expensive car categories in each cluster, suggesting that smaller or less
expensive car categories are growing in each cluster. Cluster 1 consists of domestic
car categories which seem smaller or less expensive than those in cluster 3. Cluster
2 consists mainly of import and captive import car categories, while one domestic
car category (LUXD) is in Cluster 2. Cluster 3 consists of mainly domestic car
categories, but has one import car category (SMAI). Three specialty car categories
(SMAD, SMALI, and MIDS) out of four are in cluster 3.

4 Discussion

A procedure of nonhierarchical cluster analysis of one-mode two-way asymmetric
similarities, named ACLUSKEW, was introduced and was applied to car switching
data successfully. The three-cluster solution was obtained. From Table 3, when
K =2, SUBI and MIDS are dominant objects of clusters 1 and 2, respectively.
Cluster 1 consists of a great variety of domestic, captive import, and import car
categories ranging from subcompact to luxury car categories. Four of five import
car categories and two captive imports (SUBC and SMAC) are included in cluster
1. Cluster 2 consists mainly of domestic car categories ranging from subcompact
to standard car categories. It includes three (MIDS, SMAD, and SMAI) of four
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Table 3 Clusters when the number of clusters is 2, 3, and 4

Cluster Dominant car category Dominated car category

Number of clusters=2

1 SUBI SUBC, SMAC, COML, COMI, MIDI, LUXD, LUXI
2 MIDS SUBD, SMAD, SMAI, COMM, MIDD, STDL, STDM
Number of clusters=3

1 SUBD SMAC, COML, COMM, STDL

2 SUBI SUBC, COMI, MIDI, LUXD, LUXI

3 MIDS SMAD, SMAI, MIDD, STDM

Number of clusters=4

1 SUBD COML, COMM, STDL

2 SUBI SUBC, COMI, MIDI, LUXI

3 MIDS SMAD, SMAI, MIDD

4 LUXD SMAC, STDM

specialty car categories, while it does not include SMAC. When K = 4, SUBD,
SUBI, MIDS, and LUXD are dominant objects of clusters 1 through 4, respectively.
Cluster 1 consists of less expensive domestic car categories. Cluster 2 consists of
all import car categories (but SMAI) and a captive import car category (SUBC).
Cluster 3 consists of the three of four specialty car categories (but SMAC) and
MIDD. Cluster 4 comprises of LUXD, SMAC, and STDM each of which belongs
to clusters 2, 1, and 3, respectively, of the results obtained when K = 3. It seems
that results of K = 2 and of K = 4 are more difficult to interpret the meaning of
clusters than to interpret that of the solution (K = 3). This validates the three-cluster
solution as well.

The solution seems to be compatible with earlier studies. Three dominant objects
have the smallest, second, and fourth smallest radii obtained in the asymmetric
multidimensional scaling analysis [10]. This suggests the three car categories are
dominant in the car switching, because in the model of [10], the smaller the radius
of an object is, the more dominant the object is. Comparing the present solution
with the result of [10], it seems that (a) cluster 1 corresponds with Dimension 1,
(b) cluster 2 corresponds with Dimension 2, and (c) cluster 3 corresponds with
Dimension 3 of the analysis. Three clusters are compatible with the (unconstrained)
configuration of [18] as well. SUBI and SUBD seem to be dominant categories in the
configuration, because they are located in the lower right part of the configuration
which the slide vector points.

In ACLUSKEW each cluster is represented by a dominant object, while in [12,
13] each cluster is represented by the centroid of the objects in the cluster. This is
the same idea of k-means cluster analysis. Olszewski [12, 13] maximizes the sum
of the squares of the distance between the centroid and the objects in the cluster,
suggesting objects in a same cluster are similar to each other. On the other hand,
ACLUSKEW maximizes GOF defined by Eq. (1). This means that ACLUSKEW
pays attention to the differences from nondominant objects to a dominant object
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Table 4 Three clusters of the solution obtained by analyzing unweighted data

Cluster Dominant car category Dominated car category

1 SUBD SMAC, COMM, STDL, STDM

2 SUBI SUBC, COML, COMI, MIDI, LUXD, LUXI
3 MIDS SMAD, SMAI, MIDD

and pays no attention to similarities among nondominant clusters. Thus the feature
of clusters derived by ACLUSKEW is different from that derived by Olszewski
[12, 13]. Other procedures for analyzing asymmetric similarities or dissimilarities,
referred to in Sect. 1, also give the clusters which consist of similar objects.

ACLUSKEW is characterized by that the difference of two conjugate similarities
or two times of the skew-symmetry is multiplied with the sum of two corresponding
similarities. The unweighted differences of conjugate similarities which are not
multiplied with the sum of two similarities were analyzed by using the same
algorithm of ACLUSKEW. The analysis resulted in GOFs 763.0, 862.2, and 918.6
for the number of clusters 2, 3, and 4, respectively. Obtained GOFs suggest to choose
three-cluster result as the solution, which is shown in Table 4.

Comparing the solution (K = 3) shown in Table 3 and that shown in Table 4,
we can see that both solutions have same dominant objects. But there are some
disparities between the two; STDM in cluster 3 of Table 3 is in cluster 1 of Table 4,
and COML in cluster 1 of Table 3 is in cluster 2 of Table 4. STDM seems more
expensive than the other car categories in cluster 1 of Table 4, and it is not reasonable
that STDM is in cluster 1 of Table 4. COML is neither an import nor a captive import
car category, and it is not natural that COML is in cluster 2 of Table 4. This suggests
that the three clusters of Table 3 are more reasonable than those of Table 4 are.
It seems that multiplying the differences (s — sx;) and (sy; — si) with the sum of
two corresponding similarities (sj =+ sy;) is rational in finding clusters of the car
switching data.

The GOF of Eq. (1) can be generalized as

K Ny
GOF, = Z Z signum(sy — si) (Sic — Ski)’ (sir + si)?. 2)

k=1 i€clusterk
ik

When p = g = 2, Eq. (2) is equivalent to Eq. (1). When p = 2 and g = 0, (si — Sk;)
and (sg; — si) are not multiplied with (s + sx;) or unweighted at all.
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Parsimonious Generalized Linear Gaussian
Cluster-Weighted Models

Antonio Punzo and Salvatore Ingrassia

Abstract Mixtures with random covariates are statistical models which can be
applied for clustering and for density estimation of a random vector composed
by a response variable and a set of covariates. In this class, the generalized linear
Gaussian cluster-weighted model (GLGCWM) assumes, in each mixture compo-
nent, an exponential family distribution for the response variable and a multivariate
Gaussian distribution for the vector of real-valued covariates. For parsimony sake,
a family of fourteen models is here introduced by applying some constraints on
the eigen-decomposed covariance matrices of the Gaussian distribution. The EM
algorithm is described to find maximum likelihood estimates of the parameters for
these models. This novel family of models is finally applied to a real data set where
a good classification performance is obtained, especially when compared with other
well-established mixture-based approaches.

Keywords Cluster-weighted models ¢ Eigen decomposition * Generalized linear
models * Model-based clustering * Parsimonious mixtures

1 Introduction

Let (Y, X’)/ be a random vector where Y is the response variable and X is the
p-variate vector of real-valued random covariates. Moreover, let p (v, x) be the joint
. ! . . . . .
density of (Y .6 ’) . A flexible framework for density estimation and for clustering of

n
data {(y;, x;)/} from (Y X ’)/ is represented by the family of mixture models with
i=1
random covariates. With respect to classical mixture models with fixed covariates,
they have the advantage to allow the covariates to affect the cluster structure (the
so-called assignment dependence property; see [10], for details).

An eminent member of the family of mixtures with random covariates is
the cluster-weighted model (CWM; [7]), also called saturated mixture regression
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model in [24]. The CWM principle consists in factorizing p (y,x), in each mixture
component, into the product between the conditional density of Y|X = x and
the marginal density of X by assuming a (parametric) functional relation for the
expectation of ¥ on x. Some recent literature about this model can be found in [11-
13, 15-18, 22, 23]. In particular, as a special case of their model, Ingrassia et al. [13]
propose the linear Gaussian CWM which adopts a generalized linear model for the
relationship of ¥ on x in each mixture component. This implies the possibility to
model, for example, a count response via a Poisson distribution and a dichotomous
response by a Bernoulli distribution.

However, when p increases, the number of parameters to be estimated in this
model increases too, especially due to the contribute of the covariance matrices
of the component Gaussian distributions. To make the approach parsimonious, in
line with [4], a family of fourteen models is introduced in Sect.2 by applying
some constraints on the eigen-decomposed component covariance matrices. The
EM algorithm is illustrated in Sect. 3 for maximum likelihood parameter estimation
for the members of the family. An application to real data is presented in Sect. 4
where a good classification performance is obtained, especially when compared
with well-established mixture-based approaches.

2 Parsimonious Generalized Linear Gaussian CWMs

The generalized linear Gaussian cluster-weighted model (GLGCWM,; [13]) is a
finite mixture model, with k components, of equation

PO, x W) = Zp %0, 8) ¢ (0 g, X5) 7, (1

where 7; is the weight of the jth component, with ; > 0 and Z;‘Zl m=1,

¢ (g, X)) = 2m) 7 |5y é&“«XP{—%(x—ﬂj)’f%“(x—lfv,-)}

is the density of a p-variate Gaussian random vector with mean g; and covariance
matrix X

0, — b (6,
p(ylx: 6. ) = exp { y]a(% +e (v E;)} : @)

for specific functions a (+), b (+), and ¢ (-), is an exponential family distribution with
parameter 6; (and, possibly, ;). In (1), ¥ contains all of the parameters of the
mixture. It is well known that the exponential family model in (2) is strictly related
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to the generalized linear models. Here, a monotone and differentiable link function
g (+) is introduced which relates the expected value u;, of the response Y| j, to the
covariates X through the relation

g () = nj = Bo + Bx.

Since the interest is now in the parameters (,BQi, B j)/ = ., the distribution of Y|x, j
will be denoted by p (y|x; B;. é'j)

Because there are p (p + 1) /2 free parameters for each X, it is usually
necessary to introduce parsimony into the general model (1) for real applications.
To this end, we consider the eigen decomposition

T, =MLAT,  j=1,...k 3)

where A; = |Zj\ 1/,;, Aj is the scaled (\Aj| = 1) diagonal matrix of the eigenvalues
of X'; sorted in decreasing order, and I is a p x p orthogonal matrix whose columns
are the normalized eigenvectors of X;, ordered according to their eigenvalues
(see [4]). Each component in the right side of (3) has also a different geometric
interpretation: A; determines the volume of the cluster, A; its shape, and I'; its
orientation. The constraints we pose on the three components of (3) generate the
family of fourteen parsimonious GLGCWMs models summarized in Table 1.

3 Maximum Likelihood Estimation: The EM Algorithm

The EM algorithm [5] can be used to find maximum likelihood (ML) estimates for
the parameters. Once k is assigned, it basically takes into account the complete-data
log-likelihood

n k n k
(@) =" zin[p (il B, 5)]+ YD zln[¢ (xipmy. Z))]

i=1 j=1 i=1 j=1

n k
+) > ziin(m), “)

i=1 j=1
where z; = 1 if (yi,xg)/ comes from component j and z; = 0 otherwise. For the
most general VVV-GLGCWM, E and M steps can be detailed as follows.

The E-step, on the (g + 1)th iteration, ¢ = O0,1,..., simply requires the
calculation of the current conditional expectation of Z; given the observed sample,
where Z; is the random variable corresponding to z;;. In particular, fori = 1,...,n
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andj = 1,...,k, it follows that

(yl|x“ﬂ(q) gj(q)) P (x,, ﬂ;q)’ Z](q))
p ()’hxi; ‘I’(q))

+1
,(,q )= =FEyw I:Zij ., 5

o) ] =

which is the posterior probability that the unlabeled observation ( iy X ) belongs to
the jth component, using the current fit v forw.

In the M-step, on the (g + 1)th iteration, ¢ = 0,1, ..., the values z;; in (4) are
simply replaced by their current expectations rl;qH) obtained in (5). This leads to

E[l. (W) = ZZT(”’“) In [p (vilxi; B, ¢)]

i=1 j=1

n k
n ZZTWH) In[o (xi ey Z5)] + ZZ ;q+1>1n( ;) - (6)

i=1 j=1 i=1 j=1

Because the three terms on the right have zero cross-derivatives, they can be
o k k k
maximized separately. Let us set w1 = {]Tj}j=l, B = {ﬁj}jzl, and § = {é‘j}j=1.
The maximum of Eq. (6) with respect to &, subject to the constraints on those
parameters, yields

(q+1) Z T(q+1)

Maximization of (6) with respect to B (and possibly to ) is equivalent to
independently maximize each of the k expressions

(YJ) Z T(q+l) ln yl |xi; B;, Q)] : ™

The maximization of (7) is equivalent to the maximization problem of the gener-

alized linear model (for the complete data), except that each observation (y,, ! )/

contributes to the log-likelihood for each component with a known weight t qu)

which is obtained in the preceding E-step. Maximization of (7), with respect to f;
(and, possibly, to {;), can be carried out numerically; details can be found in [25,
pp- 120-124].
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For model VVV, maximization of (6) with respect to B and X;,j=1,...,k,is
equivalent to independently maximize each of the k expressions

100 — Zf“ﬁ‘” In[¢ (xis ;. Z)].

In particular we obtain

n
@tn _ 1 g+,
J (q+1) ij !
i i=1
and
(g+1) _ (g+1) (q+l) (g+1)
E‘i q+1) Z ( Kj ) ( TH ) ’
where n("H) Y lrl(qﬂ).

The EM algorithm for the other parsimonious GLGCWMs changes only in the
way the terms of the decomposition of X; are obtained in the M-step. These updates
are analogous to those given in [4], and we defer the reader to this work for details.

To fit the proposed models, we adopt the flexCWM package [14] for the R
computing environment [20]. Among the possible initialization strategies (see,
e.g. [3]), a random (hard) initialization of z; = (z,- .. ,Zik)/’ i =1,...,n, was
considered. With regard to the stopping rule of the algorithm, the well-known Aitken
acceleration method [2] was used.

4 Real Data Analysis: The f.voles Data Set

The £ . voles data set, detailed in [6, Table 5.3.7] and available in the Flury pack-
age for R, consists of measurements of female voles from two species, Microtus cal-
ifornicus and Microtus ochrogaster. The data consist of 86 observations for which
we have a binary variable Species denoting the species (45 M. ochrogaster and 41
M. californicus), a variable Age measured in days, and further six variables related
to skull measurements. The names of the variables are the same as in the original
analysis of this data set by Airoldi, Hoffmann [1]: L, = condylo-incisive length,
Lo = length of incisive foramen, L; = alveolar length of upper molar tooth row,
B; = zygomatic width, B4 = interorbital width, and H; = skull height. All of the
variables related to the skull are measured in units of 0.1 mm.

The purpose of [1] was to study age variation in M. californicus and M. ochro-
gaster and to predict age on the basis of the skull measurements. For our purpose, we
assume that data are unlabelled with respect to Species. The interest is in evaluating
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Table 2 Clustering of the £ . voles data using three different approaches

(a) VEE-GLGCWM (b) MLGR (¢) MLGRC

Est. Est. Est.
True 1 |2 |True 1 |2 3|4 |5 |True I |2
M. ochrogaster |43 | 2 | M. ochrogaster |14 |5 |6 |15 | 5 | M. ochrogaster |15 |30
M. californicus |- |41 | M. californicus |10 |3 |8 | 9 |11 | M. californicus | 3 |38

The best model is selected by the BIC

clustering using the GLGCWMs as well as comparing the algorithm with some well-
established mixture-based techniques. Therefore, Age can be considered the natural
Y variable and the p = 6 skull measurements can be considered as the vector of
covariates X.

By considering a Gaussian distribution for Y in each mixture component, all
fourteen GLGCWMs were fitted, assuming no known group membership, for
k € {1,...,5}, for a total of 14 x 5 = 70 models. The model with the largest
BIC value (—3863.451) was VEE with £ = 2; the use of the BIC [21] for this
class of models was justified by some results, based on simulated data, reported
in [13, 16]. Table 2(a) displays the clustering results from this model (group
memberships are individuated by maximum a posteriori probabilities). Table 2
also shows clustering results for mixtures of linear Gaussian regressions (MLGRs)
and mixtures of linear Gaussian regressions with concomitants (MLGRCs), using
the covariates as concomitants. They are estimated via the stepFlexmix ()
function of the R-package flexmix [9] by using the range k € {1,...,5} and by
selecting the best number of mixture components with the BIC. The best results
were clearly obtained for the VEE-GLGCWM where the number of groups was
correctly selected and only two M. ochrogaster observations were misclassified
as M. californicus. On these data, the other two approaches did not show a good
clustering performance. The better results for the VEE-GLGCWM are motivated by
the fact that the distribution of the covariates is different in the two groups induced
by the dichotomous variable Species, considered here as the group variable; in
all these cases of assignment dependence (cf. Sect. 1), the CWM could represent a
reference approach of analysis.

5 Discussion

Recently, in the class of mixture models with random covariates, the GLGCWM
was presented. The model has the drawback to be potentially overparameterized
when the number of covariates and/or the number of mixture components increases.
To overcome this problem, we introduced a family of fourteen parsimonious
GLGCWDMs; some of these models substantially reduce the number of parameters
with respect to the unconstrained GLGCWM. An EM algorithm was adopted for
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maximum likelihood parameter estimation. We illustrated our approach on real
data where our method gave impressive superior clustering results when compared
to other more famous mixture approaches. Although we showed the usefulness
of our models for model-based clustering, note that they can also be applied
for classification and discriminant analysis. Finally, in the fashion of [8, 16, 19],
future work will investigate the use of likelihood-ratio tests to “select” the best
parsimonious model in the proposed family.
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New Perspectives for the MDC Index in Social
Research Fields

Emanuela Raffinetti and Pier Alda Ferrari

Abstract The great interest in quantitative social research has led to the devel-
opment of specific statistical techniques suitable in dealing with dependence
between variables also in the presence of ordinal data. A specific index, hereafter
called monotonic dependence coefficient (MDC), was provided as a monotonic
dependence measure. Due to its properties and specific features, MDC overcomes
the Pearson’s correlation coefficient, since it captures not only linear dependence
relationships but also any general monotonic one. The MDC adequacy is validated
by a simulation study assessing its performance with respect to the traditional
Pearson’s correlation coefficient. Finally, a real application of MDC to real data
is also illustrated.

Keywords Dependence relationship * Monte Carlo simulations ¢ Ordinal data

1 Background

The quantification of dependency is an interesting and relevant topic to researchers
dealing with the study of social issues, particularly because it is easy to misinterpret
the traditional correlation measures when variables are expressed according to
different measurement scales.

The purpose of this paper is presenting a specific monotonic dependence
measure and illustrating its main properties. This measure is based on two previous
proposals. In fact, it was firstly employed as an index of “equity in a taxation
process” (see, e.g., [2]) and subsequently used as a concordance measure for a
multiple linear regression model (see, e.g., [4]). A new version of such index was
studied and developed by Raffinetti and Ferrari [3], in order to provide both an
extension of its applicability to any real-valued variable and an interpretation in
terms of monotonic dependence relationship. For this reason, hereafter the index
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will be called monotonic dependence coefficient (MDC) and denoted with the
acronym MDC.

Some recalls to MDC characteristics are needed, such as for instance its
expression and its properties. Let Y and X be two variables (Y numerical, X
numerical/ordinal) and let us consider a simple linear regression model between
a response variable Y and a covariate X. Specifically, in the case X is ordinal the
simple linear regression model is performed by using it on the rank scale. Let us
denote with y(; the ordered (in nondecreasing sense) Y values and with y; the same
Y values reordered according to the ranks of the Y linear estimated values, obtaining
in such a way » pairs (y;),y;) (i = 1,...,n). A general MDC formula is given by

237 i = o) — n(n 4+ 1) (My — yo)

MDC = —=i=1 :
2> 1 i(ya —yo) —n(n+ 1)(My — yo)

=1,....n (1)

where yo = min(0,y™), with y~ representing the minimum response variable Y
value, if negative, and My is the ¥ mean value.

Since the proposed measure ranges between —1 and +1, reaching value zero
in case of independence, and it is suitable to assess monotonic dependence of Y
from X, it seems of interest investigating about its properties'. Here, this problem
was faced and discussed. Additional studies were carried out to detect similarities
and dissimilarities of MDC with respect to Pearson’s (r) correlation coefficient. For
such a purpose, a Monte Carlo simulation study was run and the related findings are
shown and commented in Sect. 2. In particular, MDC performs better than r, since
it captures linear dependence relationship as well as any monotonic dependence
one. Due to such a role, MDC has also the capability of catching the existing
dependence relationship of a variable from another one, preserving it also when
pieces of information are lost. This feature is highlighted in Sect. 3, where a real
application of our proposal is illustrated by comparing the MDC performance with
the one of r. Finally, Sect.4 aims at summarizing the main MDC features and
properties.

2 A Comparison of MDC and r Through Monte Carlo
Simulations

Given the similarities of MDC with r (especially when the involved variables
are expressed according to an interval or ratio scale), an attractive research issue
concerns the analysis of their performance in different situations of monotonic
dependence relationship. For this purpose, a Monte Carlo simulation study was
carried out and implemented in R. The idea focuses on generating samples from

Note that, if the least squares estimate of the regression coefficient 8 is smaller than 0, the sign of
the linear estimated values has to be changed to obtain a negative MDC value.
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two different families of bivariate distributions. Firstly, a sampling scheme from a
multivariate exponential power (MEP) distributions family was taken into account.
MEP distributions represent a generalization of Normal distributions involving a
specific “non-normality” parameter « which detects for symmetrical distribution the
departure from normality. Subsequently, a sampling scheme based on non-normal
distributions family was considered, with the aim of evaluating the effect of skewed
distributions on the two indices behavior. Results regarding both the scenarios are
discussed in Sects. 2.1 and 2.2.

2.1 Sampling From Bivariate MEP Distributions

The first study is provided by running a Monte Carlo simulation based on generating
samples from the family of bivariate MEP distributions, this family being one of the
possible generalizations of normal distributions in terms of ellipsoidal departures.
For more details about MEP distributions, see, e.g., [5]. However, what is basic to
point out is that MEP distributions depend on a specific parameter, denoted with «
and expressing the “non-normality” condition. For k < 2 and ¥ > 2, respectively,
leptokurtic and platikurtic distributions are obtained, while for k = 2 normal
distributions are derived. In such paper the sampling scheme is based on choosing
values k = {1, 2, 8} for, respectively, describing leptokurtic, normal, and platikurtic
bivariate distributions. Through the illustrated procedure, the sampling distribution
of MDC and r for variables generated from MEP distributions was obtained under
different experimental conditions. For each value of k, a variance—covariance
matrix was built according to the following pairwise correlation coefficients p =
{0.2,0.4,0.6,0.8}. Under each of such scenarios and referring to the R code
provided by Solaro [5], we drew samples of size 100, 500, and 1,000 and we iterated
these steps 10,000 times. For the sake of shortness, here we report only results
corresponding to the scenario characterized by a pairwise correlation coefficient

k=2, Correlation=0.6 — 10,000 iterations
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Fig. 1 Pairwise correlation p = 0.6 and x = 2
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k=1, Correlation=0.6 - 10,000 iterations
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k=8, Correlation=0.6 - 10,000 iterations
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Fig. 3 Pairwise correlation p = 0.6 and xk = 8

p equal to 0.6, stressing that similar findings can be reached also with respect to the
remained pairwise correlation levels. Simulation results are shown by boxplots in
Figs. 1, 2 and 3: above each boxplot the median value is specified.

In case of bivariate MEP distributions with k = 2, monotonic dependence
coincides with the linear one. Results shown in Fig.1 confirm this issue: in
fact MDC and r achieve the same median value (but also mean value). Similar
conclusions arise also in case of MEP distributions with k = 1 and x = 8.

2.2 Sampling From Bivariate Non-Normal Distributions

In this section, we consider a family of bivariate non-normal distributions. The first
contribution in generating non-normal variables is due to [1] who defines, in the
univariate case, a non-normal variable as a linear combination of the first three
powers of a standard normal variable. Vale and Maurelli [6] developed the same
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method for generating multivariate non-normal distributions with specified inter-
correlations and marginal means, variances, skewness, and kurtosis. According to
the procedure in [6], the two parameters that affect the normality condition are
skewness and kurtosis. This family of distributions is particularly interesting since
it allows us to vary the skewness and kurtosis parameters in order to assess their
impact on MDC and r behavior when the normality condition is violated. We
specify that in this case the simulation study was carried out by resorting to the
R code made available by Zopluoglu [7]. Since simulation results coming from the
sampling scheme built on bivariate MEP distributions highlighted that the kurtosis
parameter seems not to affect the MDC behavior with respect to that of r, now we let
vary only the skewness parameter, denoted with y, by fixing the kurtosis parameter,
pointed out as «, equal for both the variables. Such a value was chosen in order
to fulfill two goals. First, to consider an intermediate value for « lying between 2
and 8 (used for simulations based on MEP distributions) and secondly to define
a possible combination of the kurtosis and skewness parameters well performing
according to the provided R code. In our case, a running combination was thus
obtained by x = (5.5, 5.5) and y equal for both the variables and fixed toy = (1, 1)
and y = (2,2). Analogously to conditions defined for simulations based on MEP
distributions, we chose the same four levels of pairwise correlation coefficients
p = {0.2,0.4,0.6,0.8} and the same sample size (n = 100, 500, 1,000). Since
once again the findings are very similar for all the selected pairwise correlation
coefficients, we restrict the discussion only on p = 0.6.

With data being generated from a non-normal bivariate distribution, existing
dependence relationships do not coincide with the linear ones and thus we expect
that MDC provides greater values than r. Boxplots represented in Figs.4 and 5
satisfy such expectation: the median value (but also the mean value) of the sampling
distribution of MDC is always higher than that of Pearson’s correlation coefficient,
highlighting its capability in catching any monotonic dependence relationship.

Skewness=(1,1), Kurtosis=(5.5,5.5), Correlation=0.6 — 10,000 iterations

0.3 04 05 06 0.7 08

o
8 8 ’7
N H o Pearson Correlation
© = MDC

sample size: 100 sample size: 500 sample size: 1000

Fig. 4 Pairwise correlation p = 0.6, y = (1, 1), and k = (5.5,5.5)
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Skewness=(2,2), Kurtosis=(5.5,5.5), Correlation=0.6 — 10,000 iterations
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°
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sample size: 100 sample size: 500 sample size: 1000

Fig. 5 Pairwise correlation p = 0.6, y = (2,2), and k = (5.5,5.5)

3 Further Investigations in Application Contexts

In this section we introduce an application of our proposed measure in order to make
a comparison between its behavior and that associated to Pearson’s r correlation
coefficient. We remind that the aim of such example is not addressed to provide a
detailed analysis of all data involved and described in the considered dataset. Here,
we simply show how the MDC index can lead to more robust results with respect to
Pearson’s r correlation coefficient.

Some information about the used dataset are due. The employed dataset is
available as an SPSS Data file and it is called “Employee Data.sav.” The file
contains data extracted from a bank’s employee records in an investigation into
discrimination in 1987 and it is built on 473 statistical units.

As illustrated in [3], the MDC index can be usefully applied both in a quantitative
context, when studying the dependence relationship between two quantitative
variables, and in a context when the dependent variable is quantitative and the
independent one is ordinal or discrete. With regard to this issue, here the focus is
based on dependence of a variable Y, representing the beginning salary (in dollars),
on another variable X, representing the individual education years. This variable
takes values according to the frequency distribution represented in Table 1.

The purpose of this application is threefold. More precisely, we aim at comparing
the MDC performance with respect to that of r under three specific scenarios. Firstly,
we take into account both the variables Y and X as directly provided by the dataset
and representing the real situation of analysis. This in order to assess the existence
of a dependence relationship between the beginning salary (continuous variable)
and education years (discrete variable). Secondly, the comparison between MDC
and r is carried out as if the original data, concerning the explanatory variable X,
are classified into five groups whose frequency distribution is provided in Table 2.
More in detail, the education years variable is re-expressed according to the previous
groups and a rank scale such that employees included in group 1, 2, 3, 4, and 5
are characterized by an education level encoded, respectively, by 1, 2, 3, 4, and 5.
Finally, the study is focused on considering the average value of education years
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Table 1 Frequency distribution of variable X education year

X: education years 8 12 14 15 16 17 18 19 20 21
Absolute frequencies 53 190 6 116 58 11 9 27 2 1

Table 2 Frequency distribution of groups and average of education years within each group

Groups 1 2 3 4 5
Absolute frequencies 243 122 69 36 3
Education year ranges [8,14) [14,16) [16,18) [18,20) Over 20
Average of education years 11.128 14.951 16.159 18.750 20.333

Table 3 MDC and r values to evaluate dependence of beginning salary on education years

X-education years expressed as

Original data (a) Five ordered categories (b) Average at group (c)
MDC 0.787 0.781 0.781
r 0.633 0.746 0.688

within each group as available data. To be more thorough the education year ranges
within each group are also reported.

By serving in this way, the effect associated to transformation of the X variable
scale on the capability of both the indices in catching the dependence relationship
is evaluated.

Results regarding the two analyses are presented in Table 3.

With regard to original data (a), the value of MDC (0.787) is higher than r
(0.633) and such difference is well marked. This is because of the original discrete
dependent variable nature. As well known, Pearson’s r correlation coefficient is
sensitive to variable nature: typically, it shrinks with variables which are not
continuous. MDC is not affected by the variable nature since it is based only
on reordering the response variable values according to the corresponding linear
estimates.

In the second case (b), when data about the explanatory variable are encoded into
five ordered categories, if on one hand MDC reaches almost the same value (0.781),
on the other hand r raises considerably (0.746), highlighting its sensitivity to scale
transformation.

The third case (c) reports the results based on data available only in terms of
average years of education within each group. If on one hand r gets worse (0.688)
with respect to case (b), our proposed MDC remains unchanged in its value (0.781),
highlighting once again the unreliability of Pearson’s correlation coefficient.

The described real example confirms the MDC robustness in catching the
dependence relationships even when one of the variable is expressed according to



218 E. Raffinetti and P.A. Ferrari

different measurement scales. Such issue supports the MDC adequacy in depen-
dence relationship investigation with respect to Pearson’s correlation coefficient
which can lead, as previously shown, to misleading results.

4 Conclusions

In this contribution we analyze the properties of a dependence measure able to
catch any monotonic relationship between a real-valued response variable and a
numerical or ordinal independent variable (even tied). Our measure is also invariant
with respect to the quantification of categories for the ordinal variable. This finding
is a direct implication of the MDC construction, MDC being built by comparing the
original values of the dependent variable with the same values reordered according
to the ranks of their corresponding linear estimated values.

The behavior of MDC was also investigated through a Monte Carlo simulation
study in which the MDC performance was compared to that of Pearson’s (r) correla-
tion coefficient, by firstly sampling from bivariate MEP distributions characterized
by specific non-normality parameter « values which were let vary for defining
leptokurtic (k¢ < 2), normal (¢ = 2) and platikurtic (¢ > 2) distributions. Findings
coming from this study highlight that MDC and r achieve a similar performance for
this family. In order to stress the MDC role in catching any monotonic dependence
relationship, a second Monte Carlo simulation study was also carried out by
sampling from a non-normal bivariate distribution characterized by different values
of skewness. When distributions are non-normal, monotonic dependence and linear
dependence might be very different relationships and as a consequence Pearson’s
correlation coefficient could not well capture monotonic dependence relationship
far from the linear one. In such situations, MDC is shown to perform better than
Pearson’s correlation coefficient.

Finally, an application to real data was provided to confirm the capability of the
index to catch the dependence relationship between the variables, preserving it also
in case of the ordinal/discrete independent variable nature.
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Clustering Methods for Ordinal Data:
A Comparison Between Standard
and New Approaches

Monia Ranalli and Roberto Rocci

Abstract The literature on cluster analysis has a long and rich history in several
different fields. In this paper, we provide an overview of the more well-known clus-
tering methods frequently used to analyse ordinal data. We summarize and compare
their main features discussing some key issues. Finally, an example of application to
real data is illustrated comparing and discussing clustering performances of different
methods.

Keywords EM algorithm ¢ Finite mixture models ¢ k-means ¢ Ordinal data °
Pairwise likelihood

1 Introduction

The aim of cluster analysis is discovering the natural groups of a set of objects,
such that clusters differ considerably from each other. The literature on clustering
is rich and wide, even if it has mainly been developed for continuous data. Only in
the last decades, there has been an increasing interest in clustering categorical data;
however, the amount of work done is still relatively small. Categorical variables
are encountered in many fields, such as in behavioural, social and health sciences.
These variables, frequently of ordinal type, measure attitudes, abilities or opinions.
However, due to the lack of metric properties, modelling properly this kind of
variables could be challenging. For this reason, it is still common to analyse ordinal
data following a naive approach whereby their nature is ignored. Ranks are treated
as interval-scaled, and thus clustering techniques developed for continuous data are
applied. A way to circumvent the problem is to apply a two-step procedure, named
tandem analysis, where, first, the ordinal variables are reduced into continuous
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factors, then, objects are grouped on the basis of their factor scores. An alternative
to tandem analysis is to use a distance-based clustering technique, where distances
are computed taking into account the measurement scale of the data. The main
drawback of these approaches is that they do not model the data generation process,
and so standard statistical tools cannot be used. A model-based approach solves the
aforementioned problems but opens new issues, especially from a computational
point of view.

The aim of this paper is to review and compare the four approaches: naive, tan-
dem, distance-based and model-based, illustrating their weaknesses and strengths.
The plan of the paper is as follows. In Sect.2, we deal with the naive approach
reviewing the main optimization and model-based clustering techniques for con-
tinuous data. The tandem and distance-based approaches are described in Sect. 3,
while the model-based approach is illustrated in Sect. 4. In Sect. 5, some clustering
techniques, representative of the approaches presented, are applied to a real dataset
and a discussion regarding the clustering performance is provided. In the last
section, some concluding remarks are pointed out.

2 The Naive Approach: Clustering Techniques
for Continuous Data

The naive approach consists in using a clustering method developed for continuous
data to analyse ordinal data, treating the ranks as interval scaled. For the sake of
brevity and comparability, here, we recall only the partitioning techniques most
used in practice (see [1, 15] and references therein, for non-partitioning techniques).
Within this framework, we distinguish between optimization and model-based
clustering techniques. The most well-known optimization algorithm is the k-means
[18]. Letting X = {x, : n = 1,..., N} be the sample of P-dimensional observations,
it is based on the minimization of the loss

N G
/
Con (B LX) =Y g (%0 — ) (%n— ) » M
n=1 g=1
where Z = [z,,] is a binary membership matrix, with rows that sum to I,
such that z,, = 1 if observation n belongs to cluster g and O otherwise, and
¥ = {{,...., g} is the set of cluster centroids. In order to be performed, k-

means needs two pre-specified inputs: number of components G and a cluster
initialization. Different initializations can lead to different final partitions, since
k-means only converges to local minima, even if it has been shown that it could
converge to the global optimum if the clusters are well separated [20]. Some possible
extensions of the k-means are the following: fuzzy c-means [2], according to which
the observations are not assigned exclusively to one cluster (the so called soft
assignment), and k-medoids [15], where the mean is substituted for a data point.
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The model-based analogue of k-means is the finite mixture of Gaussians (FMG).
They are considered a powerful tool for clustering [7, 19] and effectively capturing
sample heterogeneity, since it is assumed that a population is a convex combination
of a finite number of densities, each of which may represent a cluster [11]. An FMG
assumes that x,, has a density function defined as

G
FOu¥) =D pet (s g Z) )

g=1

where the p,’s are the mixing weights, ¢ (x,:p,. X,) is the density of a P-
variate normal distribution with mean vector p ¢ and covariance matrix X ¢, while
¥ =P, PG M- Mg X1,..., X} is the set of model parameters. The
maximum likelihood estimates of model parameters are usually computed through
the Expectation-Maximization (EM, [3]). When the observations are i.i.d. this can
be seen as the maximization by a coordinate ascend algorithm of the fuzzy loss [10]

N G G
LW, 2:X) =) Y zug10g [pep (i iy Z)] = DD zuglog(zg). (3

n=1 g=1 n=1 g=1

where Z = [z,] is the fuzzy membership matrix with non-negative elements that
sum to 1 by row and express how much an observation belongs to a cluster. Cluster
g has an ellipsoidal shape described by X', and centred at u,. A hard classification
can be obtained by assigning the observations to the component with the maximum
a posteriori probability, i.e. with the maximum degree of membership z,,. It is
interesting to note that k-means loss can be seen as a particular case of (3). To
be precise, (3) becomes equivalent to (1) by setting z,, € {0, 1} (groups do not
overlap), p, = 1/G (groups have the same size) and ¥, = o1 (variables are of
the same variances and uncorrelated within the groups, i.e. locally independent).
It follows that k-means works better than FMG when the constraints are true and
worse when they are false. However, both have a common drawback when applied
to ordinal variables: they do not take properly into account the measurement scale
of the variables.

3 Tandem and Distance-Based Approaches

The aforementioned problem can be circumvented by reducing the ordinal variables
into continuous factors before applying the clustering algorithm. This produces a
two-step procedure named tandem analysis [1]. In the first step, principal component
analysis for qualitative data (PRINQUAL, [25]) or multiple correspondence analysis
(MCA, [9)) is performed to summarize the association between a set of variables by
a small number of dimensions; then, to discover the cluster structure, k-means on the
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reduced data is applied using the scores of PRINQUAL or MCA. The main problem
with the tandem approach is that there is no guarantee that the reduced data obtained
in step one is optimal for recovering the cluster structure in the second step [1]. This
may hide or even distort the true cluster structure underlying the data. As a solution
to the problem, data reduction and cluster analysis should be combined into the same
loss, such as in [13, 14, 22]. In this way, the latent factors are identified to highlight
the cluster structure rather than, in some cases, to obscure it. This procedure, named
simultaneous tandem analysis, is effective when there are “noisy” dimensions in the
data, i.e. latent or manifest variables that do not have information about the cluster
structure. In all other cases it is better to consider a distance-based technique. In
other words, it is an optimization method where the dissimilarities between objects
are computed by taking into account the ordinal nature of the data (e.g. see [24]).
This could also be obtained by running a simultaneous tandem where in the first step
the number of dimensions is not reduced. A drawback of these approaches is that
they are not model-based. As a consequence, they do not model the data generation
process and standard statistical tools cannot be used to make decisions about model
parameters.

4 Model-Based Approach

In the model-based approach, the most frequently used clustering technique for
categorical data is latent class analysis [8] and some constrained versions that have
been provided for ordinal data (see, e.g., [4]). These models are based on the local
independence assumption. They consider the cluster membership as a nominal latent
factor and assume that the manifest variables are independent given that factor.
Of course, this model is inadequate every time that there are dependencies among
the manifest variables within the clusters. A way to overcome this limitation is to
consider an FMG that allows dependencies within clusters to be modelled by means
of the covariance matrices. Following the Underlying Response Variable (URV)
approach used in latent variables models, the FMG model can be adapted to ordinal
data by assuming that the observed variables are a discretization of underlying non-
observable continuous variables distributed as an FMG. In what follows, we will
discuss three different proposals in this direction.

We start by describing the key figures for the proposal of [21]. This aims at
capturing the cluster structure underlying the data. Since the local independence
assumption is not required, in comparison with the latent class models, it is possible
to obtain a simpler and more realistic solution with a smaller number of groups.

Let x1,x2, ..., xp be ordinal variables and ¢; = 1,..., C; the associated categories
fori =1,2,...,P. Thereare R = ]_[f;l C; possible response patterns x, = (x; =
Cl,X2 = ¢3,...,xp = cp), withr = 1,..., R. The ordinal variables are generated by

thresholding y: a multivariate continuous random variable distributed as an FMG.
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The link between x and y is expressed by a threshold model defined as

Xi=c & )/C(ii)_1 <y < y(i) @

[

Lety ={pi,....pc. s - RG> Z1,-.., 2 g, y} be the set of model parameters.
The probability of response pattern X, is given by

(1 (P)
Vcl) Yep G

G
Pr(x;; ¢) = Zpé’ /m o PR X dy = Zpé’”’(ﬂg’ Ze.v).
g=1 i Yep—1 g=1
(5)

where 7, (p,, X'¢, ) is the probability of response pattern X, in cluster g. Thus, for
arandom i.i.d. sample of size N the log-likelihood is

c1—l1

R

G
LX) =Y nlog | Y pemr (e o) | - 6)

r=1 g=1

where n, is the observed sample frequency of response pattern x, and Zf: - =N.
A similar proposal has been done by Everitt [5, 6], who introduces a mixture model
for mixed data. The joint distribution of the variables is a homoscedastic FMG
where some variables are observed as ordinal. In particular, the ordinal variables are
seen as generated by thresholding some marginals of the joint FMG with different
thresholds in each component. The model proposed by Lubke and Neale [17] is
specified for ordinal variables that are generated by thresholding an heteroscedastic
mixture of Gaussians, whose covariance matrices are reparametrized as a factor
analysis model. In all models, estimation is carried out by full maximum likelihood.
It implies the numerical computation of multidimensional integrals, which is time
consuming and becomes infeasible when more than 4 or 5 variables are involved.
For this reason, in [21], the authors propose to estimate the model within the EM
framework maximizing the pairwise log-likelihood, i.e. the sum of all possible
log-likelihoods based on the bivariate marginals. The obtained estimators have
been proven to be consistent, asymptotically unbiased and normally distributed. In
general, they are less efficient than the full maximum likelihood estimators, but in
many cases the loss in efficiency is very small or almost null [16, 23]. In formulas,
the pairwise log-likelihood is of the form

P—1 P
pe¥:X) =Y > L (xix)

i=1 j=i+1

G G
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g=1

i=1 j=i+1c¢=1c¢=1
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where ng]c)j is the observed frequency of a response in categories ¢; and ¢; for
variables x; and x;, respectively, while Jrc(fg (g X¢, y) is the probability obtained
by integrating the corresponding bivariate marginal of the normal distribution
with parameters (;L ) g) between the corresponding threshold parameters. It is
clear that the pairwise approach is feasible as it requires only the evaluation of
integrals on bivariate normal distributions, regardless of the number of observed
or latent variables y. Nevertheless the estimation of all parameters is carried out
simultaneously. As regards the classification, in [20] it has been suggested to
use an iterative proportional fitting based on the pairwise posterior probabilities
obtained as output of the pairwise EM algorithm in order to approximate the
joint posterior probabilities. For identification reasons, a component is fixed as a
reference group; thus, its mean vector is set to 0 and its variances to 1. On one
hand, the model proposed in [21] can be seen as a particular case of Everitt’s
proposal [5]. In fact, here only categorical ordinal variables are considered and the
identifiability constraint is reformulated such that means and covariance matrices
can be computed. On the other hand, it is more flexible, since each component
has its own mean vector and covariance matrix and it is computationally more
efficient to be estimated, since a pairwise likelihood approach is suggested. Indeed
in Everitt, the means and the variances of the latent variables are fixed to zero and
one, respectively; the correlations are invariant and only the thresholds are free
to change over the components. In comparison with the proposal of [17, 21] it is
computationally feasible regardless of the number of variables involved. Moreover,
it is able to recover the true partition and the true parameters (even if the accuracy
depends on the sample size). For more details see [21].

5 A Comparison Between the Different Approaches

Fisher’s Iris data is a well-known dataset in multivariate analysis. These data consist
of 150 four-dimensional observations of three different species of Iris: Iris setosa,
Iris versicolour and Iris virginica. For each plant, four continuous measurements
have been observed: sepal length, sepal width, petal length and petal width. In
order to analyse these data as ordinal data, the variables have been categorized.
First of all, the variables have been normalized by the means and the standard
deviations of the first group (Iris setosa). Then, the threshold parameters have
been chosen equidistant and such that the cluster structure has not been completely
destroyed by the categorization. We have compared the partitions obtained treating
the ordinal variables as metric with those obtained treating the variables as they are,
i.e. ordinal. In the first case we have applied k-means and the FMG; in the second
case, we have performed tandem analysis (MCA followed by k-means) and the
latent Gaussian mixture model for ordinal data proposed in [21]. The performance
in recovering the true clustering structure has been evaluated through the adjusted
rand index (ARI, [12]). In the following table we present the ARIs corresponding
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Table 1 Adjusted rand indices—clustering performances for the fitted models

Ordinal variables as metric Ordinal variables as ordinal

k-means 0.6615 MCA & k-means (3 fact.) 0.5676
HomFMG(D) 0.6634 MCA & k-means (2 fact.) 0.7874
HomFMG(F) 0.5153 LMG (TV) 0.9222
HetFMG(F) 0.4128 LMG (RV) 0.8005

to different approaches and models: k-means; homoscedastic FMG with diagonal,
HomFMG(D), and full, HomFMG(F), covariance matrix; heteroscedastic FMG with
full, HetFMG(F), covariance matrices; MCA followed by k-means (with two or
three factors) and latent mixture of Gaussians, LMG, for ordinal data. In the latter
case we have considered different strategies to initialize the pairwise EM algorithm.
Here, we have reported the results corresponding to two different initializations:
starting from the true sample value of the parameters (TV) and starting for random
values (RV), considering 1000 different starting points. In all other cases, the
algorithms have been initialized randomly with 1000 different starting points. From
the results, we can conclude that there is a reasonable difference in clustering
performances comparing the two columns of Table 1. The poorest performance
is given by the heteroscedastic Gaussian mixture with an ARI equal to 0.4128.
As expected, the performances of k-means and HomFMG(D) are almost the same
(0.6615 and 0.6634, respectively). As regards HomFMG(F), the ARI is lower
(0.5153). Treating the ordinal variables as they are, the poorest performance is given
by the MCA with three factors followed by k-means (0.5676). On the other hand,
MCA with two factors followed by k-means yields a satisfactory ARI (0.7874). In
classification terms, the best partition is obtained under the LMG with ARI equal
to 0.9222, starting from the empirical true values. It results in an efficient way
to cluster ordinal data; even if we initialize the pairwise EM algorithm randomly,
the corresponding ARI is high enough (0.8005) to be the best clustering method.
However, an open issue is finding an efficient strategy to initialize the pairwise EM
algorithm especially when, as in this case, the sample size is small.

6 Concluding Remarks

In this paper, we briefly surveyed the more well-known clustering methods used to
analyse ordinal data. Due to the lack of metric properties, clustering categorical
data is more challenging and their graphical representation is more difficult in
comparison with continuous data. Here, we have outlined some approaches used
to cluster ordinal data, discussing their strengths and weaknesses: naive, tandem,
distance-based and model-based. Then the differences in clustering performance
have been illustrated through an application to real data. The theoretical comparison
and the ARI values obtained in the application have shown that the ordinal variables
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have to be analysed taking their nature into account properly. In particular, the use
of a model-based approach extending the URV methodology to cluster analysis
seems to be the most appropriate strategy to cluster ordinal data. However, it
suffers computational problems due to the numerical complexity implied by the
computation of multidimensional integrals. As indicated in [21], a possible solution
could be to estimate model parameters by maximizing the pairwise likelihood.
Although there still remains some work to do, for example to find good starting
points for the EM algorithm, the method seems to be promising.
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Novelty Detection with One-Class Support
Vector Machines

John Shawe-Taylor and Blaz Zli¢ar

Abstract In this paper we apply one-class support vector machine (OC-SVM)
to identify potential anomalies in financial time series. We view anomalies as
deviations from a prevalent distribution which is the main source behind the original
signal. We are interested in detecting changes in the distribution and the timing of
the occurrence of the anomalous behaviour in financial time series. The algorithm is
applied to synthetic and empirical data. We find that our approach detects changes
in anomalous behaviour in synthetic data sets and in several empirical data sets.
However, it requires further work to ensure a satisfactory level of consistency and
theoretical rigour.

Keywords Financial time series * Novelty detection ¢ One-class SVM

1 Introduction

We apply one-class support vector machine (OC-SVM) to synthetic and empirical
data and test its ability to detect anomalous behaviour in a time series. Anomalous
behaviour in this case is a combination of consecutive data points in a time series that
do not belong to a distribution identified by the algorithm. We first briefly introduce
the theory behind the OC-SVM. Then we present its application to novelty detection
in a time series by using lagged returns as inputs. Results, main conclusions and
recommendations for further research are outlined at the end.

J. Shawe-Taylor * B. Zlicar (5)
Department of CS, University College London, London, UK
e-mail: j.shawe-taylor@cs.ucl.ac.uk; b.zlicar@cs.ucl.ac.uk

© Springer International Publishing Switzerland 2015 231
1. Morlini et al. (eds.), Advances in Statistical Models for Data Analysis,

Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-17377-1_24


mailto:j.shawe-taylor@cs.ucl.ac.uk
mailto:b.zlicar@cs.ucl.ac.uk

232 J. Shawe-Taylor and B. Zliar

2 Background: Novelty Detection and One-Class SVM

We begin by quoting a result from [1] that bounds the likelihood that data generated
according to the same distribution used to train OC-SVM will generate a false alarm.

Theorem 1 Fix y > 0 and § € (0,1). Let (c,r) be the centre and radius of a
hypersphere in a feature space determined by a kernel k(x,x') = {(¢p(x), p(x'))
from a training sample S = {X, ..., X¢} drawn randomly according to a probability
distribution 9. Let g (X) be the function defined by

0, if le— ¢ <r;
§@ =1 (le=$I> =) /r.if 7 < le = $®IF <~ +;
L, otherwise.

Then with probability at least 1 — § over samples of size £ we have

‘ 2
Eg [g(x)] = %;g(xl) LSNP In(2/8)

Yy 20

where R is the radius of a ball in feature space centred at the origin containing the
support of the distribution.

Hence, the support of the distribution outside the sphere of radius r*> + y centred
at ¢ is bounded by the same quantity, since g(x) = 1 for such inputs and is less than
1 elsewhere. Note moreover that the function g(x) can be evaluated in kernel form
if the optimisation is solved using its dual.

The theorem provides the theoretical basis for the application of the OC-SVM
and it is perhaps worth dwelling for a moment on some implications for time-series
analysis.

* Firstly, the assumption made by the theorem about the distribution & generating
the training and test data has strong and weak elements:

— It is strong in the sense that there are no assumptions made about the
form of the input distribution 2. It therefore applies equally to long-tailed
distributions as it does to multivariate Gaussians. We will perform some
experiments with real-world data in which any assumptions about the form
of the generating distribution would be difficult to justify.

— It is weak in the sense that it assumes the training data are generated
independently and identically (i.i.d.), something that will not to be strictly true
for time series. This assumption becomes more reasonable when the training
data are drawn from separate parts of the time series.
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* The theorem is one sided in that it bounds the probability that data that arose from
the training distribution are mistaken for novel outliers. It does not, however, say
anything about the likelihood that novel data are not detected.

In connection with the final point, Vert and Vert [3] provide an interesting analysis
showing that if we generate negative data from an artificial background measure p
and train as a 2-class SVM, in the limit of large data the SVM will identify the level
sets of the pdf of the training distribution relative to p. This suggests that it finds the
minimal density with respect to p consistent with capturing a given fraction of the
input distribution. Hence, in this case, we can make assertions about the efficiency
with which outliers are detected.

3 Problem: Novelty Detection in Financial Time Series

In order to apply OC-SVM to a single time series we follow the approach proposed
by Ma and Perkins [2]. We extend this approach by adding an exponential decay
parameter so that the more recent lags carry more weight than the older lags,
since we are interested in detecting anomalies in the very short window before
the occurrence of the extreme volatility, the underlying hypothesis being that the
behaviour of the market changes before the occurrence of the spike in the time
series.

3.1 Data Preprocessing

A data matrix is constructed in such a way so that the first column represents the
original time series and every next column is a lag of the previous column. More
specifically, for a time series variable x composed of observations x(f) where t =
1,...,T (T being the number of time points, observations) we perform a vector-
to-matrix transformation so that the dimensionality of the original column vector
x changes from 7x! to (7-d-1) x d forming a data matrix X. Here d represents our
choice of the dimensionality expansion, i.e. the number of all columns in the newly
formed matrix X in effect reflecting the number of lags we chose to include in the
analysis. Alternatively, we can think of this in terms of extending the dimensionality
of a data point x(#) to a row vector x(t) so that

x(t) = [x(t)...x(t—d +2) x(t—d+1)] @)
Then the newly formed data matrix in terms of row vectors becomes

X = [x(d),....,x(D)]T )
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with dimensions (7-d-1) x d (as suggested by Ma and Perkins [2]). We then take
a step further and add a decay parameter c so that the weight of each next column
falls exponentially with each lag. If we denote a row vectord = [1,...,d] then we
define ¢! to be the row vector

c=¢ :[cl,...,cd] 3)

where c is an arbitrarily chosen decay parameter 0 < ¢ < 1. The new data matrix
taking into account the exponential time decay is then

X.=X0OD “)

where D is a matrix of decay factors D = 1T % ¢ and multiplication between X and
D is element by element multiplication. Alternatively, if we denote the number of
columns in X as j = 1,...,d, then we can simply define the matrix D as having
entries D;; = /. X, is then centred row-wise in a standard manner using a centering
matrix C

1
C:@—E@ (5)

so that the final centred data matrix with a time decay is:

X =X.C (©)

c

3.2 Novelty Detection Algorithm

In this section we present a step-by-step pseudo-algorithm of OC-SVM based
novelty detection in time-series analysis.

Input: a time series x(¢) of length 7. Output: points in time identified as novelties.

(1) Vector-matrix transformation: Calculate X{ using a range of different lags
d = [2 : 20] to obtain 19 matrices of different dimensions XE = [X5...X5/].
The value of the decay parameter is set arbitrarily at c = 0.97.

(2) Data sets: Each X7, is split in a train set (X-train) of length %T and the remaining
third of observations comprise a test set (X-fest). Further split X-train in half,
that is into a sub-X-train and a val-X-train set.

(3) Train OC-SVM: Apply OC-SVM to sub-X-train so as to obtain ¢; for each
X¢ in the array of matrices XE = [X5 ... X5,] individually and for all values of
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y = 2/ (where i = [—10 : 10])! and v = 2/ where (j = [-15 : —1]). Then find
pseudo-optimal d,, y, and sensitivity parameter v, by locating the OC-SVM
that achieved the highest accuracy on val-X-train.?

(4) Test optimal OC-SVM(d,,),,V,): Use pseudo-optimal values determined in (3)
to train OC-SVM(d,,y,,V,) on X-train. Test the model on X-test and obtain the
novelty signal for the test set.

4 Experiments

Firstly, we describe the construction of synthetic time series and present the
empirical data sets (three stock market indices). Next, we comment on the results
and outline the challenges.

4.1 Data

~

Both synthetic and empirical data sets are of about the same length (T =
5800). Synthetic time series are comprised of an original signal in the train-
ing set while in the test sets we add anomalies (i.e. time intervals where the
original time series is corrupted by an anomalous signal) on the intervals T =
[5000:5050, 5300:5350, 5600:5650]. We train the OC-SVM algorithm on a data set
comprised solely of original (non-anomalous) time series and then test the optimal
specification of the model on a test set that includes pre-defined intervals with
anomalies. Synthetic time series are constructed as follows:

(0) = xq(f) for t € [5000, 5050] A [5300, 5350] A [5600, 5650] o
x,(f) for t ¢ [5000, 5050] A [5300, 5350] A [5600, 5650]

Here x,(¢) denotes the original time series and x,(¢) denotes the anomalous time
series. Synthetic data sets are then the following three time series types:

1. Synthetic 1 time series is a sinusoid with a small standardised random noise in
the training set, but with increased standard deviation of the error process on

'We use radial basis kernel (RBF) so that k(x,y) = exp(—y||x — y|[?).

2We use a term pseudo-optimal since we simply choose a specification that is able to contain all
training data and consequently label sub-X-train data sample as novelty-free. Clearly, this is not
necessarily the optimal solution nor is it the only solution and presents one of the main challenges
related to novelty detection with OC-SVM.
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specific intervals within the test set. The synthetic 1 signal follows
407
x (1) = Sin(T) + €(1) (®)
where

€(t) =0 z(1) ©)

and z(f) ~ N(0, 1) with sigma term in the error process equal to o, = 0.1 for the
original signal x, and a slightly higher sigma term o, = 0.2 for the anomalous
signal x,.

2. Synthetic 2 time series is constructed as a random process taking into account the
empirical (sample) mean and standard deviation of an empirical time series (in
our case the S&P500 stock market index). The original time series is constructed
by adding an error term sampled from a standardised normal distribution and the
anomalous signal is obtained by adding an error noise sampled from a student-t
distribution. We write the original time series as

x(f) = pu +€(t) (10)
where

€,(1) = ospsoo (1) (11)

and z(r) ~ N(0,1).
The anomalous signal follows the same process only with its noise term
sampled from student-t distribution with six degrees of freedom

€q(t) = ospsoo (1) (12)

and z(7) ~ 6.

3. Synthetic 3 time series is obtained by subtracting the mean from the synthetic
2 signal and then taking the absolute value of the obtained time series. Such
absolute returns are often used as a proxy for a volatility process in financial
research. In other words, the synthetic 3 signal is equal to absolute error term in
Eq.(10).

x3(1) = |e()] = |ospsoo 2(1)] (13)
with z(#) ~ N(0, 1) for the original time series and z(¢) ~ #; for the anomalous
time series.

Empirical data sets are time series of three stock market indices: S&P500,
DAX30 and NIKKEI225. We work with adjusted daily closing prices obtained
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from Yahoo.Finance for a period of approximately 13 years, where we perform the
following two transformations of the original series:

1. Log returns are calculated by obtaining the difference between natural loga-
rithms of a price at time ¢ and price at time ¢ — 1:

r() = In(-2) (14)
Di—1
Then we subtract the mean of the return time series:
Fam() = r(t) — (15)

2. Absolute returns are obtained by simply taking the absolute value of the log
returns. Absolute returns are a frequently used proxy for a volatility measure in
financial research

rabs (1) = |r(1)] (16)

4.2 Results

In this section we describe the results for OC-SVM algorithm applied to synthetic
and empirical data sets without and with the exponential decay parameter in the
preprocessing phase. The two algorithms are denoted with OC-SVM-ND (no decay)
and OC-SVM-ED (exponential decay), respectively. Optimal model specification is
indicated by adding optimal parameter values in brackets so that OC-SVM(d,,y,,V,)
denotes the specification of OC-SVM with optimal index values for the dimension
(indicating number of lags), y in RBF kernel and v parameter in OC-SVM.? Please
note that this is a naive pseudo-optimisation simply assuming that the best OC-
SVM is the one that is able to put a bound around the data in a training set. We use
LIBSVM support vector machine toolbox. Finally, figures are moved to Appendix to
prevent cluttering.

3Where the numbers refer to the index not the value itself. For example, OC-SVM-ND (1,2,3)
would denote the optimal specification of OC-SVM without the decay parameter, where the
optimal lag dimension is the first dimension in the dimension array d = [2 : 20], i.e. d, = 2,
the optimal v refers to the second position in the j array j = [—15 : —1], i.e. v, = 274, and the
optimal y refers to the third position in the i array i = [—10 : 10], i.e. y, = 275.
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4.2.1 Synthetic Data

Synthetic time series are constructed so that we can investigate the performance
and the ability of OC-SVM to detect novelties that were artificially inserted in the
testing part of the various types of data sets. Ideally, no novelties would be detected
in the valuation part of the training set. In the test set the best performance is the
one detecting novelties in the previously determined anomalous intervals.

Figure 1 displays the results for valuation part of the training set on the left side
(with synthetic 1 at the top and OC-SVM-ND novelty signal at the bottom) and the
test set on the right side. It shows that the model has the ability to learn the original
signal in the training set since it correctly detects no novelties (novelty signal is
equal to 1 at all times). When the same model is applied to the test set we see that
it correctly identifies areas where anomalous data have been added to the original
signal (grey areas). However, it also falsely returns novelty signal where no novelties
have been added to the original synthetic signal, indicating that this particular OC-
SVM specification is perhaps still too sensitive to outliers. Figure 2 shows results
of the OC-SVM-ED (with exponential decay) applied to the same synthetic I time
series. This model is also successful in identifying the anomalous areas in the test
set with slightly lower number of false positives. The results for other two synthetic
signals are displayed in Figs. 3, 4, 5, and 6. Both algorithms, without and with decay
parameter, are able to detect the anomalous areas with a small number of false
positives. Only Fig. 3 stands out as it displays a poor performance of OC-SVM-ND
in the test set of a synthetic 2 time series.

4.2.2 Empirical Data

Our empirical experiments focus on whether or not the algorithm detects anomalies
slightly before volatility spikes. Figures 7 and 8 display results of OC-SVM applied
to absolute returns of the empirical time series without and with decay, respectively.
Figure 9 shows the valuation part of a training sample on the left and test sample on
the right side for the S&P500 stock market index. Top row displays the time series
of S&P500, middle row the return time series and bottom row the novelty signal
for OC-SVM-ND. In this case our algorithm detects two intervals as anomalous
(around time points 600 and 1300). Figure 9 displays identical figure twice with the
only difference being that the two charts in fifth and sixth row on the right side are
magnified around the novelty point so as to show the case of early novelty detection
(around point 600). However, the volatility spike around time point 1300 is not
detected in advance. The same results in both of these volatility cases are obtained
when OC-SVM is applied using the exponential decay parameter (Fig. 10). Also, the
results are very similar when both types of algorithms (with and without the decay
parameter) are applied to S&P500 absolute returns time series. In case of the DAX30
index none of the two algorithms detect sudden increase in volatility in advance
when applied to time series of returns (Figs. 11 and 12). When applied to absolute
returns (Figs. 13 and 14) both algorithms (OC-SVM-ND and OC-SVM-ED) detect
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the second volatility spike in advance (around the time point 550) but their first
detections (around the time point 350) temporally coincide with the volatility spike.
In case of the NIKKEI225 index both OC-SVM-ND and OC-SVM-ED detect the
biggest volatility increase in advance (around the time point 600) when applied
to returns and absolute returns. However, both specifications also fail to detect in
advance the second spike around the time point 1200, again when applied to either
returns or absolute returns (Figs. 15, 16, 17 and 18).

5 Conclusions and Further Research

In this paper we investigate the application of the OC-SVM to novelty detection in
financial time series. We add an exponential decay parameter when preprocessing
the data to account for the reduced dependency related to older data points. We
test the OC-SVM on synthetic data sets and find that our algorithm manages to
consistently identify anomalous areas inserted artificially in our test sets. Building
on these results we then apply the algorithm to empirical data, namely financial
time series of three stock market indices: S&P500, DAX30 and NIKKEI225. The
idea is that the projection of the market data into the feature space effectively
allows for an inspection of market patterns we would normally not detect in the
input space. This means that in cases when anomalous behaviour in the markets
(reflected in the change of the distribution of the time series) has preceded the
spike, our algorithm might be able to detect these anomalies. However, when the
spike in volatility is the result of an unexpected exogenous event, OC-SVM will
not be able to alert the user in advance since the time series is not reflecting
the impending risk.* Our experiments to some extent support this reasoning as
the results show instances where OC-SVM, with and without a decay parameter,
detects novelties occurring before volatility spikes, but such results are by no
means conclusive. The unsupervised nature of OC-SVM allows for the detection of
previously unseen observation, however it simultaneously prevents us from targeting
a type of process (event). This makes it useful for novelty detection in synthetic data
sets (where novelty points are known in advance) while making it problematic for
the application to empirical data sets.’ Optimisation of the hyperparameter v in OC-
SVM is a challenge in itself and when applied to financial time-series analysis this
problem becomes even more difficult. Future research could perhaps investigate a
possible connection between v and the level of randomness of the underlying time
series. Also, it would be interesting to investigate the usefulness of one-class SVM
for novelty detection in multivariate data.

“4Note that for the synthetic data this does not arise since the volatility takes immediate effect.

SEspecially when applied to extremely noisy data such as financial time series.
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Fig. 1 Synthetic 1: OC-SVM-ND (19,7,1)
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Fig. 7 S&P500 absolute returns: OC-SVM-ND (17,10,4)
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Fig. 9 S&P500 returns: OC-SVM-ND (6,8,5); bottom figure is identical to the fop one with
magnified bottom charts (Test: Daily return and Test: OC-SVM-ND) to demonstrate the early
novelty detection by the algorithm
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Fig. 10 S&P500 returns: OC-SVM-ED (7,7,7)
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Fig. 14 DAX absolute returns: OC-SVM-ED (7,8,6)
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Fig. 17 NIKKEI225 absolute returns: OC-SVM-ND (16,9,1)
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Fig. 18 NIKKEI225 absolute returns: OC-SVM-ED (16,9,1)
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Using Discrete-Time Multistate Models
to Analyze Students’ University Pathways

Isabella Sulis, Francesca Giambona, and Nicola Tedesco

Abstract The methodologies adopted in the last decades to analyze students’
university careers using cohort studies focus mainly on the risk to observe one
of the possible competing states, specifically dropout or graduation, after several
years of follow-up. In this perspective all the other event types that may prevent
the occurrence of the target event are treated as censored observations. A broader
analysis of students’ university careers from undergraduate to postgraduate status
reveals that several competing and noncompeting events may occur, some of which
have been denoted as absorbing while others as intermediate. In this study we
propose to use multistate models to analyze the complexity of students’ careers
and to assess how the risk to experience different states varies along the time for
students’ with different profiles. An application is provided to show the usefulness
of this approach.

Keywords Cohort studies  Multistate models ¢ Risk factors * Students’ careers

1 Introduction

The higher education system in Italy has been widely criticized for its ineffective-
ness since it is characterized by lower university graduation rates comparing to the
European countries. The efficiency of the formative processes, mainly measured
in terms of regularity of students’careers, is one of the dimensions on the basis of
which the central government assesses the quality of the institutions and allocates
the financial support to them. For this reason the last governmental reforms had
as priorities the increasing of the retention rate, the reduction in time to degree
and the lowering of the average age of graduates. The building up of a system of
efficiency/effectiveness indicators has been a good starting point to assess strengths
and weaknesses of the institutions and to make comparative assessments across
them [1, 3, 9]. At the same time, the information provided by the joint use of ad
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hoc surveys and administrative archives has allowed policy makers to shed some
light on the main determinants of students’ risk of accumulating inefficiencies or
failures along the university studies [1, 13].

The researches carried out in the last two decades mainly focus on two main
directions: (i) the refinement of suitable methodological approaches to identify
risk factors of non-regularity in university students’ careers; (ii) the following
up of students’ careers using cohort studies [11, 12]. Furthermore, most authors
investigated the relationship between the probability of having a successful or
unsuccessful career (e.g., graduation vs dropout) and students’ socioeconomic
educational and cultural characteristics, without considering the complexity of the
overall university pathway[8, 10, 13]. A broader analysis of students’ university
careers from undergraduate to postgraduate status reveals that after the enrolment
(initial state) several sequences of events can occur, some of which have been
denoted as absorbing while others as intermediate. The absorbing states are those
from which it is not possible to make transitions, whereas the intermediate states
are those that students can reach after having experienced some previous states and
from which they can transit to others [5, 7]. Furthermore, when the occurrence of
a state may prevent the occurrence of others they need to be treated in a modelling
approach as competing states. Multistate models [2, 5-7] combine peculiarities of
competing risk models but allow also to deal with intermediate and recurrent events.

The main aim of this paper is to explore the usefulness of multistate models
as methodological approach for analyzing the complexity of university students’
careers from undergraduate to postgraduate. Specifically, the main potential of
multistate models is that they allow us to: (i) consider the sequence of events
experienced by students during their careers (first level graduation, second level
graduation, dropout at different levels, postgraduate studies, etc.); (ii) analyze
the role played by students’ socio-anagraphic characteristics in shaping students’
academic careers; (iii) assess how the risk to experience different states varies along
the time [2, 11].

2 Methodological Approach to Analyze Students’ Careers

Standard survival analysis methodologies have been widely adopted in the analysis
of students’ careers [8, 13]. However, classical approaches drastically simplify the
complex structure of university students’ careers bounding the analysis to a single
level of the university studies (first level/second level/postgraduate) and mainly
focusing on the risk to observe one or more of the possible competing states
(dropout/graduation) during the follow-up and treating all the other event types,
which may prevent the occurrence of the target events, as censored observations
[8, 10, 11]. Multistate models are systems of multivariate survival equations
which allow us to assess the risk of experiencing several types of competing and
noncompeting events and to move through a series of concatenate states following
certain paths of possible transitions [2, 5-7]. In this sense, they are considered an
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extension of the class of the competing risk models which from an initial state
allow just the transition to several mutually exclusive absorbing states. Multistate
models generalize the potential of competing risk models allowing the presence of
intermediate events. To summarize we can say that multistate models depart from
classical event-history since they allow researchers to jointly deal with (i) several
absorbing (end-points) events, (ii) several intermediate events, and (iii) several types
of censored events [7].

By denoting with T the time of reaching state j from state i, the hazard rate of the
transition i — j is defined by

Prob(¢ < T <t+ AT >t
Ayt = lim POPUST <1+ AT 2 0) 1)
A

40 At

The risk of transition across the states of students’ careers can be described
by a set of hazard ratios (HRs), which vary as function of students or degree
programmes, covariates (Z) [2, 6, 7]. In this first explorative analysis we adopted
a Cox’s proportional-hazards model [4]:

A(t1Z) = dijo(1) exp(B;Z) 2

where A;;0(f) is the baseline hazard of transition at time ¢ from i — j for students
with baseline covariates pattern and Az is the hazard of transition in the same
states for individuals with a certain pattern of covariates Z. B is the vector of
regression coefficients that describe the effect of the Z covariates on the risk of
transition. The cumulative transition hazard is A;(f|Z) = fot Ajj(u|z)du, where
A(t) defines a squared matrix of possible transitions. Consequently each transition
probability P;(s, 1) = P(t = j|s = i) (which expresses the probability of transition
from i to j) in the interval (s, ) is provided by the Aalen-Johansen estimator [5]. The
model has been estimated using the mstate package implemented by de Wreede
et al.[5] in R and the Breslow method has been specified to handle ties [7, 11]. The
model allows us to specify different covariate effects for the different transitions and
different baseline transition hazards for each transition. The likelihood ratio test is
used for model selection [5, 7].

3 An Application of Multistate Models to the Italian context

3.1 Definition of States

Longitudinal cohort data on students’ careers have been provided from the adminis-
trative archive of an Italian University. For the sake of this application we consider
the 4336 students who enrolled for the first time in the 2006/2007 academic year
(a.y.) in the first level degree programmes. The last information on students’ status
recorded in the dataset refers to March 2013. All the students start the university
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career at the same time and they are exposed in 7 years to the same adverse (different
kinds of dropouts) and positive (different level of graduations and enrollment
to postgraduate studies) events. Any transition made by the students after their
enrollment to the first level degree programme is recorded in the dataset.

After 7 academic years from the enrolment (S;) the possible states in which
students can be observed are: dropout during the first level degree (S,); formal
dropout during the first level degree (S3); graduated in the first level degree (S4);
enrolled at the second level degree (Ss); graduated in the second level degree
(S6); formal dropout during the second level degree (S7); enrolled at one of the
postgraduate programmes (Sg). We define implicit dropouts as those students who
have not being paid their academic fees by more than two academic years (last year
of observation in the archive 2010-2011 a.y.) whereas formal dropouts are those
who leave the university study with an administrative act. Thus, implicit dropouts
can be observed just in the first level degree programmes because we observe
the cohort of students for just 7 years. The possible paths of students’ careers
are depicted in Fig. 1. Different shapes are used to identify different conditions
(enrolment=circle, dropout=square, graduation=rhombus, triangle=censor) and the
arrows link states from which students can transit.

After 7 years of follow-up the students could have experienced one or more states
(absorbing or intermediate) before to enter in the last state recorded in the archive.

We have restricted the analysis to the main states’ observable in students’ careers
by eliminating from their pathways all events which rarely occur (e.g., enrollment
to a single exam after S4 or S5, enrollment to the first level master degree after
the first level graduation, formal dropout more than one time during the first level
degree programme if at the end the student did not get a degree) and as postgraduate
programmes we considered just second level masters and Ph.D. studies.
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Fig. 1 Path diagram of students’ careers
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In the first level degree we consider two kinds of dropouts, S, and S;. It is
important to differentiate between these two kinds of dropouts since S, is treated
in the modelling approach as an absorbing state, whereas S3 as a transition state
(students can reenrol and continue their studies in another degree programme).

3.2 Definition of Time and Censored Units

The dataset contains the information on the exact time (month/day/year) on which
students enter in any of the states experienced during their careers. However, for
making the analysis in line with the main scheduled events in the a.y. (e.g., terms,
graduation and exam sections) the time has been divided in to trimesters. This makes
the total exposure time of the cohort equal to 26 trimesters (interval of time) in which
observed events have been classified.

Furthermore the conversion of the time from a.y. to trimesters allows us also to
take into account that students may experience more competing or noncompeting
events in the same a.y. such as (i) graduation in the first level degree and enrollment
to the second level degree, (ii) graduation in the second level degree and enrolment
to a postgraduate programme, (iii) enrollment at the first level or second level degree
and dropout. In the case of implicit dropout, the expected time at which the event
occurred has been imputed equal to the 30 of October of the year after the last
one in which student paid the academic fees (first trimester of each a.y.). Different
right-censored units are in theory observable in the analysis of students’careers: (i)
students who did not experience any transition in at least one of the listed states
and are still enrolled at the first-level degree programme (first-type censored units);
(i1) students who after the graduation at the first level did not transit to any of the
states linked to S4 (second-type censored units); (iii) students who are still enrolled
to the second level degree programmes (third-type censored units); (iv) students
who formal dropout and who can still continue their studies (Fourth-Type censored
units).

3.3 Multistate Models

In order to simplify the possible pathways a multistate model without recurrent
events was adopted, allowing students to move just in one direction.

In this way a restriction has been advanced on the possible events that units can
experience. However, this hypothesis can be easily relaxed in further analysis.

A model with eight transitions was set up: 7,) enrollment — dropout (S; — S»);
T13) enrollment — formal dropout (S; — S3); T14) enrollment — first level graduate
(S1 = S4); T34) formal dropout — first level graduate (S35 — Si); Ty5) graduate
— enrollment at the second level (S5 — Ss); T56) enrollment at second level —
graduate at second level (S4 — Sg); T57) enrollment at second level — dropout
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during the second level (S5 — S7); Tes) graduate at the second level — postgraduate
courses (S¢ — Sg) (see Fig. 1).

The specified pathways allow students enrolled at the first level degree to formal
dropout and reenroll. We allowed the transition from S3 to Ss in order to follow
those students who reenroll to a degree programme and got a degree after dropping
out, whereas we are not interested (in this phase) in following those who did not
get any degree after dropping out (e.g., those who drop repeatedly and did not get
any academic title). The transition matrix defined in the model is showed in Table 1,
transitions towards positive states are highlighted in bold.

The risk of transition across the states S;—Sg is thus described by a set of eight
hazards which inform on how the hazard to experience any transition varies along
the time. The information about students available in the archive has been used
to fit a discrete-time Cox’s proportional-hazards model and to single-out profiles
of students more at risk to experience specific pathways. Specifically, the following
covariates have been included in order to analyze the risk of transition from a state to
another: (i) students details—sex (SEX), age (AGE), residence (RES); (ii) students’
educational background—type of secondary school attended (LICEO, 1=Liceo,
0=Others); delay in school graduation expressed as difference from the age of 19
(DELSCH), delay in enrollment at the university expressed in terms of difference
in years between the year in which students enroll to the university and the year
in which they ended the secondary school (DELEN); final mark in the secondary
schools (MARKSCH); if student changes faculty or degree programme at least once
(CHANGEDP). The effects of covariates on each transition have been tested using
the likelihood ratio test for comparing nested models. The following predictors
were considered in the final model: SEX, LICEO, MARKSCH, DELSCH, DELEN,
CHANGP.

The results of this first explorative model (see Table 2) show that males have a
hazard higher than females to implicit dropout (experience transition 77,), whereas
females have a hazard higher to graduate after dropping out (to experience T34).
Students who come from a LICEO have lower hazards to dropout (experience
T1» and Tj3) and higher hazards to graduate at first and second degree level. As
the final mark in the secondary school increases, the hazards to dropout during
the first or second level degree (72,713, T57) decrease and the hazards to get a
first or second degree (T4, T56) increase. As expected, students who did not have
a regular academic pathway (because changed at least one time their first level
degree programme) have a lower hazard to take the first level degree (774) and a
higher hazard to dropout during the second level. For any year of delay in getting
the secondary school degree (DELSCH) the hazards to graduate decrease and the
hazards to dropout increase. Finally, the delay in the enrollment at the university
has a significant effect on the hazard to dropout and to graduate, but the effect on
the first is higher.
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4 Conclusion

This work makes just a first attempt to show the usefulness of multistate models
in assessing the effect of students’ features on the probability to experience
positive and negative states. Moving from the estimated transition probabilities
is possible to compare the probability to experience the different pathways for
students with different profiles. In this first explorative analysis we considered
just few information regarding the educational background of students to show the
informative power of the methodology. The research is still in progress and requires
more administrative information to improve the definition of the possible states that
the students can experience. This first exercise would just be an attempt to show
as the approach can be used as a screening tool to evaluate faculties or degree
Programmes’ inefficiencies adjusting for students’ educational and socioeconomic
background. We are also aware that transitions after the first level graduation are
affected by two kinds of censored units: the loss of follow-up imputable to students
who migrate in other universities at the end of the first level degree (about 20 % of
the students who enrolled to the second level) and the administrative censoring (the
end of the study) [7]. The analysis in progress aims also to adjust the bias in the
transition by extending the exposure time.
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