
• • 
• 

• Luciano Boi 

e Corrado Sinigaglia 
Editors • 

. , • • Imperial College Press 



NEW TRENDS IN IEDMDRY 
nUR RIlE II lHllllURII. liD UFI SCIIiCIS 



Imperial College Press
ICP

Claudio Bartocci
Università di Genova, Italy

Luciano Boi
École des Hautes Études en Sciences Sociales, France

Corrado Sinigaglia
Università degli Studi di Milan, Italy

 
 Editors

P749.tp.indd   2 12/7/10   2:23 PM



This page is intentionally left blank 



British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Published by

Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE

Distributed by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office:  27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is
not required from the publisher.

ISBN-13 978-1-84816-642-4
ISBN-10 1-84816-642-7

Typeset by Stallion Press
Email: enquiries@stallionpress.com

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2011 by Imperial College Press

NEW TRENDS IN GEOMETRY
Their Role in the Natural and Life Sciences

YeeSern - New Trends in Geometry.pmd 4/27/2011, 3:22 PM1



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-fm

CONTENTS

Preface by Claudio Bartocci, Luciano Boi and Corrado Sinigaglia vii

Part I: Geometry, Theoretical Physics and Cosmology 1

Chapter 1: Claudio Bartocci and Ugo Bruzzo, The Emergence
of Algebraic Geometry in Contemporary Physics 3

Chapter 2: Mauro Carfora, Quantum Gravity and Quantum Geometry 17

Chapter 3: Ugo Moschella, The de Sitter and Anti-de Sitter Universes 35

Chapter 4: Jean-Pierre Luminet, Geometry and Topology in Relativistic
Cosmology 81

Part II: The Problem of Space in Neurosciences 105

Chapter 5: Leonardo Fogassi, Space Coding in the Cerebral Cortex 107

Chapter 6: Anna Berti and Alessia Folegatti, Action and Space
Representation 127

Chapter 7: Claudio Brozzoli and Alessandro Farnè, The Space
Representations in the Brain 137

Chapter 8: Corrado Sinigaglia and Chiara Brozzo, The Enactive
Constitution of Space 157

Part III: Geometrical Methods in the Biological Sciences 171

Chapter 9: Francis Bailly and Giuseppe Longo, Causes and Symmetries
in Natural Sciences: The Continuum and the Discrete in
Mathematical Modelling 173

Chapter 10: Riccardo Broglia, Topological Invariants of Geometrical
Surfaces and the Protein Folding Problem 211

v



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-fm

vi Contents

Chapter 11: Jean-François Sadoc, The Geometry of Dense Packing and
Biological Structures 221

Chapter 12: Luciano Boi, When Topology and Biology Meet ‘For Life’:
The Interactions Between Topological Forms and
Biological Functions 243

About the Contributors 307

Index 313



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-fm

Preface

C. Bartocci, L. Boi, C. Sinigaglia (Eds.)

1. Scope and Aims of the Book

There are two major motivations for proposing this book. The first is the conviction
that the integration of mathematics and physics, molecular and cell biology, and
neurosciences will constitute the new frontier and challenge for twenty-first century
science. The second relates to the fact that the exciting and appealing science in the
twenty-first century is likely to evolve among, not within, traditional disciplines.
Therefore, the book and More geometrico project focus on the interactions between
mathematics, physics, biology and neurosciences, and are aimed at exploring new
geometrical and topological modelling in a variety of physical, biological and
neuroscience fields.

The authors concentrate on some new, extremely valuable interfaces of math-
ematical methods and modelling with the physical and life sciences. Its major aim
is to further our understanding of the multilevel and scale-change phenomena in
these disciplines. One of the main goals of the various contributions is to study the
central role of a multilevel and scale-change approach in different fields such as
neuroscience, systems biology, and quantum physics and geometry.

We think it is more and more important to inject ideas and methods from mod-
ern differential geometry and algebraic topology into neuroscience and molecular
and cellular biology and to inspire new directions in these mathematical fields
from discussions on the major problems in macroscopic physics and the biological
sciences.

The contributions are aimed at giving a precise idea of some far-reaching con-
nections between mathematics, physics, biology and cognition. Its essential scope
is to develop rigorous interdisciplinary and integrative research. One important
goal is to show that several methods and techniques, especially from algebraic
topology and differential geometry, are profoundly involved at different scales and
various levels of organisations in the physical and biological processes. Various
contributions emphasise the urgent need for developing new mathematical meth-
ods, models and techniques suited to work out a mathematical dynamical theory
of the emergence of natural and living patterns and behaviours. For example, in

vii
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our view, one particularly interesting task would consist of explaining to what
extent the mathematical structure and spatial-temporal events that constitute the
natural frame of living organisms may influence their bio-chemical, physiological
and cognitive organisation. In this perspective, the most important and complex
work to be carried out is to construct both qualitative and quantitative mathematical
and physical models capable of describing and explaining the effective dynam-
ics, properties and invariants of phenomena at different levels of organisation and
action. This is, we think, one of the most important conceptual and philosophical
challenges of today’s interdisciplinary research.

2. Three FundamentalThemes

2.1. Mathematical modelling in the neurosciences

One important question raised in the book is the following: what differentiates the
topological and metric structures of the ‘physical’ space, which is embodied into
(or internalised by) the neurophysiological space in the brain, from the properties
of the perceptive and cognitive space obtained very likely by deforming the first
according to certain general (mathematical and/or physical) laws? The answer to
this crucial questions is at the core of the present research in the neurosciences, the
major issues of which are: (i) The mechanisms by which our complex sensorial
systems such as the visual, the sensorimotor and the vestibular systems drive our
perception of the surrounding space and the movements required in order to reach
it. (ii) The perception of movement and its neurophysiological basis, and the role
of action in the perception of the third dimension and in the cognitive grasping of
the properties and qualities of objects localised in our (near and far) space. (iii)
The mathematical and physical grounds of human cognition and, reciprocally, the
biological and cognitive roots of our mathematical skills.

2.2. Geometrical and topological methods in the life sciences

A fundamental goal of the contributions in this field is to show that there are effective
models and techniques from mathematical sciences, which can be used to describe
many fundamental properties and behaviours observed in biological systems. More
precisely, an important part of the present research is aimed at demonstrating that
the complex topology and dynamics of DNA-proteins complexes are closely linked
to the multilevel epigenetic regulation and to the cell’s spatial and functional organ-
isation. It has been emphasised that the geometrical structure and topological form
of nuclear components (DNA, nucleosome, chromatin, chromosome etc.) play an
important role in the cell differentiation and organism growth. For example, at the
molecular and supramolecular level, enzyme topoisomerases, which convert DNA
from one topological form to another, appear to have a profound role in the central
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genetic events of replication, transcription, recombination and repair. Second, cer-
tain topological mechanisms are involved in the fundamental biological process
of the compaction of chromatin into the chromosome during the interphase and
the metaphase. Third, new mathematical methods and models have been suggested
relating to the cells’ differentiation and their complex spatial organisation during
the different phases of the development of the embryos. It appears an essential
task to provide mathematical models and techniques which are more global and
dynamic, in order to be able to rethink successfully the causal connection between
form and function in the biological sciences.

2.3. Open theoretical problems and mathematical
perspectives in relativistic and quantum physics

We think it is important to address the issue of the role of algebro-geometric and
topological methods in the developments of quantum physics, especially in gauge
theory as well as string theory, and tried to show how these methods can provide
a deeper understanding of physical phenomena at different scales. We consider
that the unification of gravitation and quantum physics requires some fundamental
breakthroughs in our understanding of the relationship between space-time and
quantum processes. In particular, the superstring theories lead to guessing that the
usual structure of space-time at the Planck scale must be dropped from physical
thought. A very interesting hypothesis, which is discussed in some chapters of this
book (in Part I), is that the global geometrical properties of the manifold model of
space-time (either Lorentzian or Riemannian) play a major role in quantum field
theories and that, consequently, several physical quantum effects arise from the
non-local metrical and topological structures of these manifolds. Modern Kaluza–
Klein theories, superstring theory and, in a different way, quantum gravity and
non-commutative geometry, showed that space-time symmetries and physical sym-
metries might be unified through the introduction of new structures (dimensions,
invariants, supersymmetries) of space with a different topology. That essentially
means that ‘hidden’ symmetries of fundamental physics can be related to the phe-
nomenon of topological change of certain classes of non-smooth manifolds.

3. Brief Conclusions

We hope this book will contribute to showing the increasingly fundamental role
played by geometrical and topological ideas and methods in several relevant fields
of research relating to a number of important recent developments in the natural
and life sciences. In fact, it is more and more emerging that some geometrical
and topological concepts could help to describe and explain a variety of amazing
structures and behaviours characterising physical reality, living systems and human
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cognition. Indeed, many processes and organisational principles in these fields
seem to be closely related to the invariant action of certain fundamental geometrical
and topological objects and structures.

Let us conclude by stressing once again the very purpose of this book, which
is to explore and understand some far-reaching interfaces where geometry, topol-
ogy, physics, dynamics, biology and neurosciences seem to interact profoundly, in
a great and significant overlap of knowledge among mathematicians, physicists,
biologists, neurophysiologists and philosophers of science. Last but not least, one
unifying theme characterises this book: Geometry may best be interpreted as a
way of thinking rather than a mere formal language or a collection of specific
subject areas. There is, perhaps, no branch of mathematics that cannot be consid-
ered a part of geometry, and there is, most likely, no field in the natural and life
sciences unrelated to the enlightening influence of geometry, when approached in
the right, open spirit. Resting upon some geometric-minded theories and methods,
the authors propose various insights and prospects for future research. We expect
they will contribute to drawing a more comprehensive and meaningful landscape
of natural and living phenomena.

The Editors
Paris, Milan and Genoa

February 2010
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CHAPTER 1

The Emergence of Algebraic Geometry
in Contemporary Physics

Claudio Bartocci

Dipartimento di Matematica, Università di Genova,
Via Dodecaneso 35, 16146 Genova, Italy

bartocci@dima.unige.it

Ugo Bruzzo

Scuola Internazionale Superiore di Studi Avanzati,
Via Beirut 2-4, 34014 Trieste, Italy, and

Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy
bruzzo@sissa.it

1. Introduction

Starting with Einstein’s general relativity, differential geometry has started playing
a major role in physics. General relativity describes the gravitational fields as a
metric property of the spacetime manifold. More precisely, spacetime (i.e., the
manifold the points of which are events; we may intuitively say that an event is
‘something that happens in a given point in space at a certain time’) is supposed
to be endowed with a Lorentzian metric. This means that spacetime has pointwise
the same structure as the Minkowski space of special relativity but in general is
not flat, as on the contrary Minkowski space is. Indeed, out of the metric tensor
one can construct another tensor field, the curvature field, which measures how
far the geometry of spacetime is from that of a flat space. The celebrated Einstein
equations prescribe how the matter in our universe determines the curvature of
spacetime, and in turn the curvature determines how matter (particles, light rays,
extended bodies…) moves.

In this sense, general relativity reaches a complete geometrisation of the grav-
itational field. A similar goal is achieved by gauge theories in relation to the other

3
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fundamental physical interactions (electromagnetic and nuclear forces). The for-
mulation of gauge theories started in the 1950s, and nowadays they play a central
role in the modelisation of fundamental physical interactions — it is not too far-
fetched to say that they are the paradigm of contemporary high energy physics.
The basic mathematical structure of gauge theories is, again, differential geometry.

However, since the mid 1970s, the development of gauge theories disclosed
new perspectives. Researchers started realising that a number of physical features
could be captured only by considering global, not just local, properties of the
involved geometrical entities. For instance, the charge of an instanton is naturally
interpreted as a cohomology class, more precisely a characteristic class of the bun-
dle associated with the instanton; quantum anomalies are cohomology classes of a
certain cohomology theory associated with a quantum field theory; in string theory,
a deeply geometrised theory, many physical quantities are actually cohomology
classes. And not only cohomology is relevant, other global properties of manifolds,
such as K-theory, may be brought into play.

A precursor of this trend may be found in the work of Felix Klein. This is very
well described in the words of H. Poincaré in his La valeur de la science:

Voyez au contraire M. Klein: il étudie une des questions les plus abstraites de la
théorie des fonctions; il s’agit de savoir si sur une surface de Riemann donnée,
il existe toujours une fonction admettant des singularitées données. Que fait le
célèbre géomètre allemand? Il remplace sa surface de Riemann par une surface
metallique dont la conductibilité varie suivant certaines lois. Il met deux de ses
points en communication avec les deux pôles d’une pile. Il faudra bien, dit-il, que
le courant passe, et la façon dont ce courant sera distribué sur la surface définira
une fonction dont les singularités seront précisement celles qui sont prevues par
l’énoncé. [13, p. 28]

On the other hand, look at Professor Klein: he is studying one of the most abstract
questions of the theory of functions; to determine whether on a given Riemann
surface there always exists a function admitting the given singularities. What
does the celebrated German geometer do? He replaces his Riemann surface by a
metallic surface whose electric conductivity varies according to certain laws. He
connects two of its points with the two poles of a battery. The current, say he,
must pass, and the distribution of the current on the surface will define a function
whose singularities will be precisely those called for by the enunciation. [4]

Other, more recent, occurrences that come to mind are:

• the twistor programme of the Penrose school in geometry and mathematical
physics (from the late 1960s onward);
• the exploitation of techniques from complex geometry in general relativity;
• the interpretation of physical observables in a large class of quantum field the-

ories as geometric invariants.

A distinguished feature of the interplay between geometry and physics in
the last, say, 20 years, is that the usual pattern of interaction between the two
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disciplines (mathematics provides the language to formulate the models of phys-
ical problems — and the techniques needed to solve the resulting equations) has
evolved into a much more intricate web of connections. What is especially new in
this fact is that physics has been shown to be able to serve as a powerful source of
inspiration of new mathematical ideas and techniques. In this paper we shall try to
give an introduction to this beautiful circle of ideas.

This paper is articulated in three sections: we first try to give a very rough
idea of what algebraic geometry is, then we discuss gauge theory, and in a final
section we talk about strings, in particular discussing how a physical theory like
string theory is able to produce highly nontrivial mathematical results such as the
enumeration of curves in algebraic varieties.

2. Algebraic Geometry in a Nutshell

It is not easy to say in a concise way what algebraic geometry is. Perhaps the
sentence that best captures its essence is the following: algebraic geometry is
the geometric study of the solutions of systems of algebraic equations. Typical
questions in algebraic geometry are the enumerative problems. The simplest one
is of course this one: How many lines go through two given points in the plane?
Of course the answer is one, if the points are distinct; an infinite number if the
two points coincide (if we want to be precise, we may say that here ‘plane’ means
‘complex projective plane’).

We may generalise this problem by considering curves of higher degree, where
we say that an (algebraic) curve has degree d if it is described by an equation of
the type P(x, y, z) = 0, where P is a homogeneous polynomial of degree d (and
x, y and z are to be thought of as homogeneous coordinates in the plane). Thus,
the previous problem was dealing with the case d = 1. A curve of degree d = 2 is
called a conic. It is an elementary fact that five points determine a conic; this may
be traced to the fact that a conic has equation

ax2 + by2 + cz2 + dxy + exz+ fyz = 0 (1)

This equation contains six coefficients, but an overall factor is irrelevant, so
that in order to choose a conic we need to fix five coefficients. However we
may run into problems if the five points are collinear. For instance, consider the
five points

P1 = (−1,−1, 1), P2 = (0, 0, 1), P3 = (1, 1, 1),

P4 = (2, 2, 1), P5 = (3, 3, 1)

The conic going through these points has equation x2− y2 = 0, i.e., it is the union
of two lines intersecting at the point (0, 0, 1), as one can understand by writing the
equation as (x+y)(x−y) = 0. One can easily check that whenever the five points



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch01

6 C. Bartocci and U. Bruzzo

are not collinear, the resulting conic is ‘nondegenerate’, i.e., it is not the union of
two lines. Thus we should avoid points in ‘degenerate’ position, and consider only
points in generic position, i.e., not collinear.

Let us go to d = 3, i.e., to cubics. Nine points in the plane determine a cubic,
but two cubics intersect at nine points! This is the so-called Euler–Cramer paradox:
how come that nine points determine a cubic, but if we take two cubics, both
of them go through the same array of nine points? Things get even worse for
d > 3: in this range, two curves have more points in common than the number
of their coefficients; two curves of degree d meet indeed at d2 points, but have
1
2 (d

2 + 3d − 2) independent coefficients.
Again, it is a question of genericity: nine points in generic position determine a

unique cubic; nine points at which two cubics intersect are not in generic position.
Now a problem arises: how to detect points in generic position? This can be

reduced to a question in linear algebra (Cramer’s theorem about linear systems).
This generalises to the classical enumerative problem in algebraic geometry: for a
given array of points in generic position in a variety, compute how many curves of
a given degree go through them.

We have thus learned some features of algebraic geometry:

• it makes a sharp distinction between generic and nongeneric situations;
• algebraic geometry is able to make numerical predictions;
• algebraic geometry usually deals with finite problems.

It should be emphasised that algebraic geometry turns out to be a powerful
tool also in dealing with problems in differential geometry. How can this be possi-
ble? The answer lies in two key results, Kodaira’s embedding theorem and Serre’s
G.A.G.A. principle.According to Kodaira’s theorem (1954), any compact Rieman-
nian manifold having holonomy group U(n) (equivalently, any compact Kähler
manifold), provided that a certain cohomological condition is satisfied, can be
given the structure of projective algebraic variety (i.e., an algebraic subvariety of
a complex projective space). On the other hand, Serre’s celebrated principle [15]
says that any global analytic object on an algebraic variety is algebraic.

3. GaugeTheories

The notion of gauge invariance is already contained, at least in nuce, in Maxwell’s
formulation of electromagnetic theory. Actually, in his Treatise on Electricity and
Magnetism (1873), Maxwell noted that the vector potential A (i.e., the vector field
whose curl, ∇ × A, is the magnetic field B) can be transformed according to the
equation A = A0 + ∇χ and that ‘the quantity χ disappears from the equations
[…] and it is not related to any physical phenomenon.’ However, he did not state
the associated equation prescribing the transformation of the scalar potential,� =
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�0 − 1
c
∂χ
∂t

. The interdependence of the scalar and the vector potential had already
been remarked upon, in certain particular cases, by Gustav Kirchhoff and Hermann
von Helmholtz, and by the Danish physicist Ludvig Valentin Lorenz, who was the
first (1867) to impose the condition∇A+ 1

c
∂�
∂t
= 0 to ensure that the potentials are

solutions of the wave equation.1 So, what it is usually called the ‘Lorentz condition’
ought to be more appropriately termed the ‘Lorenz condition’. Hendrik Antoon
Lorentz has to be credited with the statement (1904) that ‘every admissible pair A
and �’ is related via the transformations

A = A0 + ∇χ, � = �0 − 1

c

∂χ

∂t
(2)

where the scalar function χ is a solution for the inhomogeneous wave equation

∇2χ− 1

c2

∂2χ

∂t2
= ∇ · A0 + 1

c
�0

But the conceptual origin of modern gauge theories is to be found in Hermann
Weyl’s pioneering work. Weyl tried to unify gravitation and electromagnetism by
postulating that the metric tensor gµν of Einstein’s general relativity was defined
up to a change of scale of the kind gµν → eλgµν for some function λ of the space-
time coordinates. His idea — thoroughly discussed in the first edition (1918) of his
book Raum, Zeit, Materie [18] — was that ‘the electromagnetic conservation law
[was] connected with the new scale-invariance, expressed through a fifth arbitrary
function’ (namely, the function λ) [19]. Though this early implementation of the
‘principle of scale invariance (eichinvarianz)’ did not work, it proved to be a rather
fruitful insight.

In 1926, within the framework of the recently developed quantum mechanics,
Vladimir Aleksandrovič Fock discovered that the system of a relativistic particle
of charge e interacting with an electromagnetic field is invariant under the transfor-
mations (2) together with the transformationψ = ψ0 exp( ieχ

�c
) of the wave function

ψ. The same result was obtained by Fritz London in 1927, and by Weyl, who fully
established the ‘principle of gauge invariance’ in his 1928 book Gruppentheorie
und Quantumechanik [20] and, a year later, in the two papers Gravitation and the
electron and Elektron und Gravitation. According to Weyl,

This principle of gauge invariance is quite analogous to that previously set up
by the author, on speculative ground, in order to arrive at a unified theory of
gravitation and electricity. But I now believe that this gauge invariance does not tie
together electricity and gravitation, but rather electricity and matter in the manner
described above. [20, Engl. transl., p. 100, 101]

1See [8] for a rather detailed historical account of the early development of the notion of gauge
invariance.
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Though quantum electrodynamics (QED) is now regarded as a key example
of gauge theory, the principle of gauge invariance played almost no role in its
development, as observed by David Gross, since at the time ‘it was largely regarded
as a complication and a technical difficulty’ [7, p. 956]. On the contrary, gauge
symmetry was of crucial importance as a guiding principle in the 1954 historic
paper by Chen-Ning Yang and Robert L. Mills, Conservation of isotopic spin and
isospin gauge invariance. Yang and Mills succeeded in generalising the abelian,
U(1)-gauge theory of electrodynamics to a non-abelian, SU(2)-gauge theory2; in
1956 their ideas were generalised by Ryoyu Utiyama [16] to include any arbitrary
finite-dimensional Lie group. Within this framework, during the 1960s, thanks to
the efforts of a number of researchers (among which Sheldon Lee Glashow, Peter
W. Higgs, Sidney Coleman, Jeffrey Goldstone, John C. Ward) emerged a new
theory of unification of weak and electromagnetic interactions: this programme was
completed in 1967 by Steven Weinberg and Abdus Salam [17, 14], who formulated
a rigorous SU(2)×U(1)-gauge theory with massless gauge bosons, combined with
a Higgs mechanism for generating W and Z masses by means of a spontaneous
symmetry breaking.3 In the decade 1964–1974 a non-abelian gauge theory of
strong interactions was devised, the quantum chromodynamics (QCD), as it was
christened by one of its creators, the American physicist Murray Gell-Mann. In this
case, the group of gauge invariance is SU(3), which expresses the fact that each
quark of a given flavour (u, d, b, t, s, c) has three different colours (red, yellow,
blue).

Before discussing how algebraic geometry comes into play, we shall briefly
sketch the main mathematical features of classical (i.e., nonquantum) Yang–Mills
theories. The basic tool is the theory of fibre bundles, origins of which can be
traced back to Weyl’s and Élie Cartan’s work and which was virtually completed
in the early 1950s. LetG be a Lie group. AG-principal fibre bundle P → M over
a manifold M can be locally identified with the Cartesian U × G, where U is a
sufficiently small open subset of M; on the intersection U ∩ V , the two cylinders
U×G and V×G are glued by means of a transition function ϕUV : U∩V → G. A
connection D is a differential operator (with geometrical meaning) on the tangent
space of P defining a notion of horizontality for tangent vectors. The curvature FD
of the connectionD, which is a differential 2-form taking values in the Lie algebra
of G, describes an obstruction to integrability of the distribution of horizontal
subspaces. For example, ifM is an oriented Riemannian manifold of dimension n,
we can takeG = SO(n) (the special orthogonal group) and consider the principal

2One should mention that Oskar Klein was the first, in 1938, to propose a non-abelian, SU(2)× U(1)
gauge theory in the attempt to unify gravity and nuclear forces on a six-dimensional space-time (actually,
the topological product of the Minkowski space and the two-dimensional sphere).
3See [11, Chap. 21] for a concise account of the development of quantum field theory in the period
1960–1983; for a far more detailed account see [10].
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fibre bundle of orthonormal frames over M; in this case, there is a distinguished
connection, namely the Levi-Civita connection, whose curvature encodes many
important geometric features of M.

In a gauge theory, M is thought of as the underlying spacetime, while the
Lie group G describes the kinematical symmetries of the theory. The group G of
gauge transformations is the infinite-dimensional group of automorphisms of the
G-fibre bundle P → M; connections correspond to gauge potentials, and there is
a natural action of G on the space A of all connections on P . The curvature FD
can be interpreted as the field strength, and the Lagrangian density of the theory is
expressed by Tr(FD ∧ ∗FD), where Tr denotes an invariant quadratic form on the
Lie algebra of G and ∗ denotes the Hodge duality operator. The essential fact is
that the Lagrangian density is invariant under gauge transformations, so that one
can introduce the Yang–Mills functional

S(D) = 1

4

∫
M

Tr(FD ∧ ∗FD) (3)

which is defined on the space A/G of gauge equivalence classes of connections. For
instance, in electromagnetismM is the Minkowski spacetime, the groupG isU(1),
a connection corresponds to a 4-potential (A, φ), the associated curvature repre-
sents the electromagnetic field, and the Lagrangian density the usual Maxwell’s
source-free Lagrangian.

TheYang–Mills equations are the Euler–Lagrange equations for the functional
(3). In the case of electromagnetism, these are just Maxwell’s equations in absence
of charges and currents, i.e. dFD = 0 = d ∗FD. When the group is not abelian,
we have to replace Cartan’s exterior differential d by the covariant differential dD
defined by the connection, so that Yang–Mills equations read

dDFD = 0 (4)

dD ∗FD = 0 (5)

The former is automatically satisfied, since it is nothing but the Bianchi identity for
the curvatureFD. The latter corresponds to a system of nonlinear partial differential
equations (in contrast with Maxwell’s equations, which are linear); hence, it is hard
to solve and, in general, only a few exact solutions are known.

On a Riemannian four-manifold,4 the Hodge operator ∗ satisfies the relation
∗2 = 1, so that any differential 2-formω can be decomposed as the sumω = ω++
ω−, whereω+ is self-dual andω− is anti-self-dual (i.e.∗ω± = ±ω±).A connection
whose curvature is self-dual or anti-self-dual is said to be an instanton. Quite

4Note that in gauge theory, as intended by mathematicians, the metric on the base manifold is not
Lorentzian, but definite-positive. This assumption can be given a physical justification by invoking the
so-called ‘Wick rotation’.
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clearly, instantons are solutions to theYang–Mills equations; furthermore, it can be
proved that they correspond to the absolute minima of theYang–Mills functional. In
1977, MichaelAtiyah and Roger Penrose’s Ph.D. student Richard Ward established
a one-to-one correspondence between instantons over the four-sphere and certain
holomorphic vector bundles on the complex projective space CP

3 [3]. Thanks to
this result, it became possible to apply the machinery of algebraic geometry to
gauge theory. Actually, by using tools introduced by Wolf Barth and Geoffrey
Horrock to study holomorphic vector bundles on projective spaces, the problem of
classifying instantons over the four-sphere was solved, independently, by Atiyah
and Nigel Hitchin in Oxford and by Vladimir G. Drinfel’d and Yuri I. Manin in
Moscow: the four mathematicians agreed to publish their construction — by then
known as ADHM construction — in a joint paper [1].

More or less in the same period, Michael Atiyah, Nigel Hitchin and Isadore
Singer, in their pioneering paper [2], were able to compute the dimension of the
moduli space parametrizing the instantons over a compact four-dimensional Rie-
mannian manifold; the key ingredient for the computation was the index theorem
proved by Atiyah and Singer in the early 1960s.

A substantial breakthrough was obtained by Simon Donaldson in the early
1980s. Inspired byAtiyah and Bott’s paper TheYang–Mills equations over Riemann
surfaces, Donaldson started studying the space parametrizing gauge equivalence
classes of instantons over a four-dimensional manifold. This space — called the
moduli space of instantons — may be regarded as a deep invariant of the manifold
M. In particular, using this moduli space one can associate with the manifold
M a set of invariants, called Donaldson invariants [6]. Using these techniques
from gauge theory, Donaldson and others were able to provide a classification of
four-manifolds — in some sense the analogue of what for three-manifolds is the
Poincaré conjecture.

One has here an important link with algebraic geometry. If the four-manifoldX
happens to be a two-dimensional complex manifold, i.e., a complex surface, then
one has the so-called Hitchin-Kobayashi correspondence. This relates instantons
with holomorphic bundles, i.e., bundles structure of which is somehow compatible
with the complex structure of the base manifold. If in addition X is algebraic,
then one can use the powerful techniques of algebraic geometry to compute the
Donaldson invariants. A good reference about this aspect is [9].

4. StringTheory

Quantum electrodyamics and quantum chromodynamics are the two main con-
stituents of what is called the ‘standard model’ of particle physics. This model
unifies the strong and weak nuclear interactions and electromagnetism, and is able
to obtain astoundingly good theoretical predictions. (For an introduction to the
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standard model we refer the reader to [5]). However, this model is not free of incon-
sistencies and drawbacks. The main problem is perhaps the fact that it provides no
explanation of the way things are, for instance, why there are three families of ele-
mentary particles. It gives no theoretical prediction of the many constants present
in the theory (for example, why the ratio between the masses of the muon and of
the electron is 203.7). And, most worrying of all, the standard model conflicts with
general relativity.

String theory, which at present is the best, or perhaps the unique, candi-
date to serve the role of a unified model of all interactions, originated — rather
serendipitously — as an alternative model of strong interactions. In the middle
1960s, the physicist Gabriele Veneziano, working at the Centre Européen pour
la Recherche Nucléaire (CERN) in Geneva, had the idea of describing the strong
nuclear interaction in terms of a vibrating extended one-dimensional string, instead
of a particle. Despite its originality, and the simplifications that it carried along,
Veneziano’s attempt — together with additional contributions byYoichiro Nambu,
Leonard Susskind and others — very soon met seemingly unsurmountable diffi-
culties. However, in the middle 1970s, John Schwarz and Joël Scherk built upon
Veneziano’s intuition to construct a quantum theory of gravity. The basic property
of a string — be it open, or closed as a ring — is to vibrate in infinite different ways;
the different modes of vibration of the string give rise, according to the relation
between mass and energy of special relativity, to a number of particles of different
masses. More complicated mechanisms give also rise to particles that mediate the
fundamental (gauge) forces. In particular, if the string is closed, and its length is of
the order of Planck’s scale (10−33 cm), its vibration spectrum includes a particle
of zero mass and spin two, which may be interpreted as a graviton — the quantum
of gravitational interaction.

The basic mathematics of string theory has been mainly developed in the 1980s
by John Schwarz, Michael Green and Edward Witten. Closed strings evolve in
a high-dimensional spacetime, describing two-dimensional surfaces5 that mathe-
maticians call Riemann surfaces.

This fits into a general feature of theoretical physics in the last thirty years.
Indeed, starting basically in the 1970s, it was understood that many physical observ-
ables may be given a geometric interpretation. As examples, we may cite mag-
netic charges, instanton charges, quantum anomalies …. A very interesting idea
in this connection is that quantum expectation values of quantum field theories
may be regarded as fine invariants of the geometry of the spaces over which the
quantum field theory is formulated. Thus, the celebrated Donaldson invariants are
expectation values of a supersymmetric Yang–Mills theory, the Gromov–Witten
invariants can be analogously understood in terms of quantum strings, etc.

5One of the two dimensions is a parameter along the string, the other is time.
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The interesting feature here is that algebraic geometry often provides a way for
computing such invariants.

Let us briefly discuss this situation in the case of string theory. As we hinted a
few lines earlier, classically a string is a loop travelling through space, describing,
while time evolves, the string worldsheet, a two-dimensional surface in spacetime
(Figure 1). This theory may be quantised; the quantum-mechanical string is a very
rich theory and aims at providing a unified theory of all fundamental interactions.
In particular, strings may undergo quantum processes, e.g., a string can split into
two (see Figure 2). According to Feynman’s approach to quantum mechanics,
in order to compute the probability of transition from a given quantum state to
another, it is necessary to average over all possible intermediate states, suitably
weighted.

Figure 1 A string worldsheet.

Figure 2 A string splits into two strings.
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Figure 3 A one-particle state evolves into another one-particle state via string interactions.

Now, the worldsheet of a string may be regarded as a (punctured) Riemann
surface, where the punctures correspond to ingoing or outgoing particles. As a
consequence, the calculation of the probability amplitude requires an integration
over the moduli space of all possible (punctured) Riemann surfaces. Thus, for
instance, a Riemann surface of genus two with two punctures (Figure 3) describes a
contribution to the physical process where a one-particle state evolves into another
one-particle state through a sequence of intermediate string states with different
numbers of strings.

It is a very important feature of string theory that the consistency of its quantum
theory corresponds to precise geometric features of the spaces involved. The basic
question here is that to avoid inconsistencies (that technically correspond to quan-
tum anomalies) one needs to assume that spacetime is not four-dimensional, but
rather ten-dimensional. To gain contact with ‘real’ physics, one assumes that the
ten-dimensional space has a product structure, its factors being a four-dimensional
manifold, corresponding to the universe that we observe macroscopically (for
instance, we might assume that it is the Minkowski manifold of special relativity),
and a six-dimensional manifold whose dimension is so small, to make it unobserv-
able at the usual energy scales (one can indeed prove that the dimension of this
space is in inverse proportion to the energy required to see it). This space is called a
‘compactification space’, and it turns out to be equipped with a very rich geometry
structure (technically, it is a Calabi–Yau manifold).

Now, some string theory models have shown to possess new remarkable prop-
erties and these have correspondents in new geometric structures of the compactifi-
cation spaces. The latter helped to shed light on old, basic questions in geometry. A
highly nontrivial instance of this situation is mirror symmetry. It may happen that
two different string models, compactified on different Calabi–Yau manifoldsX and
Y , are physically equivalent. When this takes place, we say thatX and Y are mirror
symmetric. (Note that this is a physical definition of an equivalence between two
mathematical objects!). From the mathematical viewpoint, the relation betweenX
and Y may be explained in terms of a notion called quantum cohomology. The latter
is in turn related to problems in enumerative geometry, in particular, enumeration
of curves in Calabi–Yau manifolds. This is the reason why quantum string-theoretic
computations have counterparts in enumerative geometry.
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Thus, mirror symmetry allows one to compute the number of curves of genus
g and degree n on a Calabi–Yau manifold (to understand the notion of genus, one
should note a complex curve may be regarded as real surface, and the genus is
then the number of ‘holes’ or ‘handles’ in the surface). The startling nature of these
predictions can be appreciated by browsing the following table.

Numbers of curves of genus g on a quintic hypersurface as predicted by mirror
symmetry

Degree g = 0 g = 1

n = 1 2875 0
n = 2 609250 0
n = 3 317206375 609250
n = 4 242467530000 3721431625
n = 5 229305888887625 12129909700200
n = 6 248249742118022000 31147299732677250
n = 7 295091050570845659250 71578406022880761750
n = 8 375632160937476603550000 154990541752957846986500
n = 9 503840510416985243645106250 324064464310279585656399500

...
...

...

large n a0n
−3(log n)−2e2πnα a1n

−1e2πnα

It is interesting to note that these numbers have been first computed by physicists
using string theory, and only afterwards the results were confirmed by computations
done by mathematicians using entirely different and purely mathematical tools —
and with a lot of effort!
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1. Introduction

The deep connections between physics and geometry have a long historical record
and have been the cause of important paradigmatic shifts in both disciplines. This
cross-fertilisation, no matter how highly specialised and audacious it may appear
nowadays, has its origins in ancient times when the desire to make more and more
accurate land and astronomical measurement strongly influenced the development
of geometry, and when Hellenistic astronomers realised that Euclidean geometry
brought order into the vagaries of celestial phenomena. These two situations can be
considered as typical along the whole history of physics and mathematics: (i) New
mathematics is developed in connection with the quest of understanding impor-
tant physical questions; (ii) New physics is developed from known mathematics.
Examples abound, to wit: Newton mechanics and the theory of gravitation required
the development of calculus; Maxwell’s electrodynamics and analytical mechan-
ics paralleled the development of the theory of partial differential equations and
complex analysis; Einstein’s relativity found its natural language in terms of the
differential geometry developed by K. F. Gauss, B. Riemann, and T. Levi-Civita;
The Standard Model of elementary particle physics, Yang–Mills theory, builds
upon the theory of connections over fibre bundles and pays back high dividends
to mathematics by bringing techniques of non-linear field theory in geometry and

17
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Figure 1 Classical mechanics, here epitomized by Galileo’s Principle of Relativity,
required the development of calculus.

differential topology; quantum mechanics cannot be separated from the theory of
Hilbert spaces and functional analysis and its methods have provided a continuous
source of inspiration for modern analysis and geometry.

In recent years methods from quantum field theory have provided, for reasons
which are not yet fully understood, effective means for solving problems in geom-
etry and topology that were previously considered quite intractable. In particular,
the use of Feynman’s sum over histories formalism (i.e., functional integration)
in gravitational physics has allowed the development of strategies for successfully
addressing basic questions in the theory of moduli space of Riemann surfaces, in
algebraic geometry, in knots theory, and in the topology of three-manifolds. This
fact is quite surprising since geometrical functional integration does not have a
mathematically proven existence. Methods of this sort provide fanciful expressions
built up out of a non-existent invariant measure on infinite-dimensional sets of
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Figure 2 In our journey to a deeper understanding of the nature of gravity we are witnessing
indications of the existence of a new territory: quantum geometry.

spacetime geometries and out of an action which is unbounded when evaluated
on the geometrical configurations the measure would generically select. From an
algorithmic point of view they can be considered, at best, as a book-keeping device
(i.e., a generating functional) for the quantum fluctuations of geometrical structure
around a given (classical) spacetime geometry. Leaving these technicalities aside,
one has to admit that to whatever degree of significance one is willing to accept the
status of functional integration, we have to grant it a basic role in solving geomet-
rical problems. This latter remark indicates that quantum geometry may exists as a
mathematical category and that its development and proper understanding cannot
be disentangled from the analysis of one of the basic problem of modern theoretical
physics, the quantization of gravity.

2. Glimpses of Quantum Gravity

A basic tenet of quantum theory is that forces between particles are due to exchanges
of quanta, whereas the cornerstone of the modern theory of gravitation, general
relativity, is that the gravitational field is not a force but rather a manifestation
of the non-trivial dynamics of spacetime geometry. In such a deceptively simple
observation we have a glimpse of the root of the difficulties in making sense of a
quantum theory of gravity.

One can argue that in order to understand the nature of quantum geometry and
of its relation to quantum gravity we should try to establish a direct connection
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Figure 3 According to quantum mechanics all natural forces are due to an exchange of
quanta. However, according to general relativity, gravitation, no matter of how intense, is
only the apparent manifestation of the deformation of spacetime geometry.

between geometry and quantum mechanics. To some extent, this can be done by
quantizing the motion of test particles on Riemannian manifolds, an analysis which
exploits the fact that the geometry of a Riemannian manifold M can be probed by
the field of its geodesics. The underlying strategy is to reconstruct the (classical)
geometry of M and its (quantum) deformations out of the quantum dynamics of
its geodesic flow. Such an approach can be considered as the starting point of A.
Connes’ non-commutative geometry program.

Actually, non-commutative geometry is just an aspect of the many tight require-
ments that quantum mechanics and relativity put on the spacetime arena. From
a mathematical point of view, most of these requirements naturally come about
in dealing with one of the leading candidates for a full-fledged quantum theory
of gravity: string theory. The rationale of this remark is twofold: (i) String the-
ory requires the quantization of extended objects (open and closed strings, and
branes); (ii) The quantization of extended objects put strong constraints on the
possible spacetime geometries where these objects can be geometrically realised.
These constraints are generated by the quantum dynamics and by the underlying
symmetries of the extended objects themselves. Roughly speaking, strings give
rise to their own ambient (quantum) spacetime. The theory, in this sense, is by its
very nature a generator of natural candidates for quantum geometries. Without any
doubts we have here a framework which is rather detached from general relativity,
which, notwithstanding its name, is a rather rigid theory. The spacetime geome-
try of general relativity is necessarily four-dimensional, of Lorentzian signature
and it is dominated by the invariance under the action of the diffeomorphisms
group: the group of all smooth, invertible point transformations. An invariance,
this latter, rooted into Einstein’s equivalence principle and which makes spacetime
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Figure 4 The geometry of a Riemannian manifold can be probed by the geodesic motion
of test particles (left). The quantization of this motion (right) can provide a first indication
of the nature of quantum geometry: the strategy is to recover the classical geometry of
the underlying manifolds and the possible deformations of such a geometry out of the
quantization of the geodesic field.

points (events) the basic objects of the theory. It is possible to develop a quantum
theory of gravity which is well-adapted to these rigid kinematical structures of gen-
eral relativity: Loop quantum gravity. Its quantum dynamics stresses more or less
directly the basic role of the diffeomorphisms group (hence of points). However,
its impact on the development of quantum geometry is rather limited being strictly
confined to geometrical aspects which concern the constraints that an underlying
four-dimensional diffeomorphisms invariant theory imposes on quantum fluctua-
tions of the spacetime geometry. Even if, from the point of view of basic physics,
this is certainly a positive characteristic of loop quantum gravity, it puts strong
and limitative constraints when addressing quantum geometry issues. Thus, in the
remaining part of my discussion I will try to focus on some of the more flexible
aspects of the correspondence between string theory and quantum geometry.

3. Strings and Geometry

Let us start by recalling some of the basic characteristics of the motion of a
point particle in a given spacetime geometry. Such a motion is described by
a parameterized curve which maps the oriented real line in a four-dimensional
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Figure 5 The geometry of motion.

spacetime. In this picture, the real line plays the role of describing all possible
parameterisations of the history of a particle, i.e., the basic shape of the motion
of a point particle. Whereas the curve in spacetime represents the actual physical
motion of the particle under the action of the external forces.

Note that there is just one possible basic shape of motion for a particle, the real
line. Indeed, the real line which parameterizes the motion of a point particle cannot
split or join: if this happens then it would imply that we were dealing with two or
more point particles and, in order to recover their dynamics, we have to provide
further information. In particular, we need to know the nature of the interaction
forces acting among such particles when they split or join, (i.e., besides a basic
shape of motion, we have to know the nature of the interaction vertices).

There is an equivalent description of the motion of point particles: We can
consider the spacetime coordinatesX, Y , Z, and T describing the actual motion in
spacetime as (Poincaré-valued) fields living on the manifold which parameterizes
the motion, i.e., on the real line. This is a perfectly sensible way of studying the
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Figure 6 A kinematical set up which is not possible for point particles.

dynamics (in particular in absence of external forces), perhaps not very familiar
in elementary mechanics but well-known in relativity. String theory is, in a rather
precise sense, a natural extension of such a description.

The basic idea of string theory is to replace point-like objects by string-like
objects: one-dimensional (closed or open) strings which (classically!) we can think
of as evolving in a given spacetime M. From a mathematical point of view this is
strictly related to the theory of minimal (or maximal) surfaces in M, (harmonic
map theory).

Also for strings it is worth recalling some basic features of the characters of
their classical motion in a given spacetime geometry. In the simplest situation,
the motion of a string is described by a parameterized surface which maps an
oriented cylinder in a four-dimensional spacetime. The cylinder plays here the role
of describing all possible parameterizations of the history of a free closed string,
i.e., the basic shape of the motion of a closed string is itself an abstract surface.
Here, I am emphasizing the adjective abstract since the cylinder is not in relation
with any larger dimensional space in which is to be immersed. The immersion
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Figure 7 An equivalent field-theoretic description of the motion of a particle.

comes only when describing the surface in spacetime and represents the actual
physical motion of the string. This is a subtle but important point with far reaching
consequences in the quantum theory.

As in the case of point dynamics, we have an equivalent field theoretic descrip-
tion of the motion of a string that allows us to interpret the embedding coordinates,
describing the string as a two-dimensional surface in spacetime, as (Poincaré) fields
on an abstract two-dimensional surface.

Note that now nothing prevents the parameters space of the theory from being
topologically non-trivial. Geometrically, this follows from the fact that the param-
eters space is two-dimensional and what really matters in its characterization is the
existence of a local product structure (roughly allowing a time and a space param-
eterization) and its global shape. In more technical words, what is needed is a con-
formal structure on the abstract surface describing the parameters space. Moreover,
from the physical point of view we do not need to provide any longer information
on the nature of the interaction vertex between strings which apparently occurs
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Figure 8 Minimal surfaces.

when the topology of the surface changes. This is so because in the enveloping
spacetime there is no actual interaction vertex: Lorentz invariance delocalizes it.

What is the basic strategy in quantizing strings in such a rich kinematical set
up? Well, nobody really knows how to write down a full-fledged quantum string
theory, if nothing else because we are so used to the notion of point that it is
very difficult to figure out how the quantum dynamics of extended objects like
strings should deform a space(time) generated by points. However, strings can
be studied on the perturbative level.According to the quantum democracy principle
(associated with Feynman’s sum over histories) we have to sum over all possible
immersions of the surface in the spacetime M, with a bias related to an action
associated with the immersion. As we have recalled before, this is equivalent to
study the quantum theory of matter fields on the abstract surface providing all
equivalent parameterizations of the immersion. Such a quantum field theory is an
example of what is technically known as a quantum conformal field theory. The
adjective conformal emphasizes the fact that such quantum theories should depend
only on the conformal structure of the surface on which the matter fields live.

Roughly speaking, such models of conformal field theories should describe the
classical solutions of string theory and their perturbative deformations, more or less
as the quantization of the geodesic flow on a Riemannian manifold may allow to
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Figure 9 The kinematics of (closed) string motion.

recover the classical geometry of the manifold and some of its relevant deformation
(e.g., non-commutative geometry). This aspect of string theory is related to the
behaviour of the theory on large scales, where quantum gravity effects basically
have a perturbative nature around a classical background spacetime geometry. We
get a non-trivial quantum dynamics already at this step. A renormalization of the
spacetime geometry is indeed required since the quantum fluctuations of the matter
fields introduce infinite counter-terms modifying the original spacetime metric.

It is quite amazing that in such a perturbative framework one gets Einstein
equations of classical general relativity as a condition for a sensible physics.

These remarks raise the question of how we probe the effective spacetime
geometry in string theory. In this connection, the basic observation is that the
fluctuations of the spacetime fields tend to introduce a fundamental length scale
for each spacetime dimension. The net effect is that we never see small radii in
effective spacetime geometry. This is a basic feature of string theory.

The next step in quantizing (perturbatively) string theory is to sum the matter
conformal field theory over all possible shapes of the surface describing the string
parameterizations. As we have stressed, in string theory what really matters is the
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Figure 10 The motion of a string as a field theory on the cylinder surface providing string
parameters space.

conformal structure of the abstract surface over which the fields live. There can
be a value of distinct conformal structures for each given surface topology, (think,
for instance, of the difference between thin and fat two-dimensional tori, without
referring to their actual size). The actual size of the surface can be described by a
field which tells us how to locally rescale the shape of the surface until it reaches
the size we like. Classically this field is irrelevant, as the choice of a particular
time rate in describing the motion of a point particle is irrelevant. Such irrelevance
should hold also at the quantum level. However, from the quantum point of view,
this field couples with surface curvature and introduces another length scale into
the game!

These two length scales induced by quantum fluctuations generate competing
effects on the dynamics of strings and in general destroy the basic conformal sym-
metry of the theory. However they compensate in particular spacetime dimensions!
The existence of such critical dimensions, some of which are compact, is a rather
impressive property but it has been overemphasized: it is not the subtler property
of string theory.
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Figure 11 Non-trivial topology in string parameter space.

Figure 12 Summing over different embedding fields is equivalent to a quantum conformal
field theory on the abstract surface defining the parameters space of the string. The matter
fields associated with the embedding variables are here depicted as fluctuating colour
patches.
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Figure 13 Quantum fluctuations in the matter fields modify spacetime geometry already
at the perturbative level.

Figure 14 Einstein equations are obtained as a necessary condition for having a sensible
(first-order) perturbation theory of the quantum fluctuations of the matter fields living on a
string.
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Figure 15 How we probe spacetime geometry in string theory: for large scales strings
behave like point particles (left). When probing small scales they tend to wrap around (right).
The two pictures turns out to be dual to each other since strings are extended objects and
(quantum) momentum states can be exchanged with (quantum) winding states. This duality
is not possible for point particles.

Perhaps the most important aspect of string geometry is that distinct spacetimes
can be dual descriptions of the same Physics. This comes about when evaluat-
ing how the quantum field fluctuations located at different points of the string are
correlated to each other. These quantities (correlation functions) provide global
information (often of topological origin) on the nature of the ambient spacetime
(defined by the quantum dynamics of the fields living on the surface) and define
the physical system the string theory describes. It often happens that two distinct
physical systems have the same correlation functions. In other words, strings mov-
ing on a given spacetime may behave as strings moving on a different spacetime.
This is one of the most amazing property of string theory, indicating the existence
of distinct manifolds having a common quantum geometry ancestor. An exam-
ple is afforded by mirror symmetry, which relates topologically distinct pairs of
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Figure 16 Conformal geometry provides the geometrical information coded into the local
shape of the surface, i.e., how to tell when two infinitesimal triangles on the surface are
similar to each other. Whereas for a point particle there is just one basic shape (a line
associated with proper time evolution), for a surface we have many non-equivalent shapes.
The actual size of a surface can be recovered if we provide the further information contained
in a field, living on the surface, which tells us how to locally rescale the size of infinitesimal
triangles while maintaining invariant their local shape.

Calabi–Yau manifolds. From the geometrical point of view such mirror conjuga-
tion uncovers unexpected common structures among distinct manifolds and gives
rise to mathematical identities with applications in enumerative geometry. It must
be stressed that these dualities in string theory are very difficult to prove, even
at the level of physical rigour. In a rather definite sense, string theory often only
offers a natural guessing ground for quantum geometry. However, the deep nature
of the geometrical and topological relations it allows us to uncover pays back and
mitigates the hard work needed for their rigorous proof. One has to admit that to
whatever degree of significance one is willing to accept the status of string theory
in physics, one has to grant it a basic role at least in experimental mathematics!
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Figure 17 Competition among shape quantization and matter field quantization.

There is no room here even for a sketchy indication of how duality symmetries
work, nonetheless, I hope to have stimulated your interest in a new fascinating
chapter of the relation between physics and geometry. The unification scheme
which emerges from this chapter indicates that string theory has already led to a
profound paradigm shift in geometry and that most likely it will provide the natural
language for quantum geometry.

Recommended Reading List

A very good and readable elementary introduction to string theory is:
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Rovelli, C. 2004, Quantum Gravity, Cambridge Monographs on Mathematical Physics,

Cambridge University Press, Cambridge.
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Vafa, C. Unifying Themes in Topological Field Theories, hep-th/0005180, Talk pre-
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Frohlich, J., Gawedzki, K. Conformal Field Theory and Geometry of Strings,
hep-th/9310187.
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1. Introduction

The year 1998 has witnessed two major revolutions in physics that have a crucial
feature in common: both of them are based on a nonvanishing cosmological
constant.

The first revolution comes from some important progress in the astronomical
observations [1, 2] which have led to the surprising conclusion that the recent
universe is dominated by an almost spatially homogeneous exotic form of energy
density to which there corresponds a negative pressure. Such negative pressure
acts repulsively at large scales, opposing itself to the gravitational attraction. This
effect may explain the accelerated expansion of the universe and may account for
an important part of the missing mass. It has become customary to characterise
such energy density by the term ‘dark’.

The simplest and best known candidate for the dark energy is the cosmological
constant. It was Einstein himself who introduced a constant term in the equations for
the gravitational field as a mechanism to obtain static cosmological solutions [3].
However, this possibility was immediately set aside because the static solution
so obtained was unstable and, even more, because the observations performed
shortly after by Edwin Hubble pointed towards a non static expanding universe. If
there is no quasi-static world then away with the cosmological constant (postcard
from Einstein to Hermann Weyl — 1923) and the cosmological constant was to be
downgraded to a mere mathematical curiosity for half a century.

In the late 1970s some serious problems with the standard cosmological model
led to the idea that a field with negative pressure, producing effects similar to a

35
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cosmological constant, could be at the origin of an exponential expansion of the
universe in the first instants of its life [4,5]. Such an expansion, known as inflation,
is at present an essential characteristic of the majority of the Big Bang cosmological
models in use. However, the energy density which is required to feed inflation is
enormously larger than the dark energy which is observed in recent cosmic epochs
(z < 1) and it is unclear whether there is a relation between the two phenomena.

At any rate, even when the inflationary paradigm became an integral part of the
standard cosmological model, the idea of the physical irrelevance of the cosmo-
logical constant in the interpretation of the recent history of the cosmos persisted.

This consolidated belief was shattered and quickly abandoned in 1998, follow-
ing the discovery that the expansion of the universe in the present epoch is acceler-
ated [1, 2]. This discovery was at first based on measurements of the distance-red
shift relation of distant type 1a supernovae, but it has been subsequently confirmed
and strengthened by independent observations.

As of today, the�CDM (Lambda Cold Dark Matter) model, which is obtained
by adding a cosmological constant to the standard model, is the one which is in
better agreement with the cosmological observations, the latter being progressively
more precise. For example, the SLS (Supernova Legacy Survey) results show that
dark energy behaves as a cosmological constant within a few per cent error.

In the above context the de Sitter geometry, which is the homogeneous and
isotropic solution of the vacuum Einstein equations with cosmological term,
appears to take the role of reference geometry of the universe. In other words, it
is the de Sitter geometry, and not the Minkowski one, which would be the geome-
try of empty spacetime (namely of spacetime deprived of its matter and radiation
content). In addition, if the description provided by the �CDM model is correct,
the remaining energy components must in the future progressively thin out and
eventually vanish, thus letting the cosmological constant term alone survive, as it
appears evidently from Friedmann’s equation:

H2

H2
0

= �M0
a3

0

a(t)3
+�R0

a4
0

a(t)4
+��0 +�K0

a2
0

a(t)2
. (1)

Therefore, the de Sitter geometry is the one to which the geometry of the universe
approaches asymptotically. These considerations show the actuality and the impor-
tance that the de Sitter geometry acquires in present-day cosmology, in addition to
the traditional role which it plays in the context of inflationary models; the de Sitter
geometry takes a role in contemporary cosmology that is in a way more relevant
than the one played by the flat Minkowski geometry.

The second revolution has taken place in string theory: this is the AdS/CFT cor-
respondence (Anti-de Sitter/Conformal Field Theory) [6]. The original conjecture
is about a correspondence between string theory on AdS5 × S5 and a Yang–Mills
theory on the conformal boundary of AdS5. However, a general simple idea of
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holographic type is the common feature at the basis of the vast literature referring
to the original Maldacena’s paper: the idea is that the spacetime we live in is a
‘brane’ or a boundary of a higher dimensional manifold whose curvature is essen-
tially provided by a negative cosmological constant, i.e., an anti-de Sitter universe
or a portion of it. This idea has far-reaching consequences and has a broad domain
of application ranging from calculations of nontrivial amplitudes in quantum field
theory (aiming to QCD) to the birth of new ideas for cosmology and quantum
gravity. The renewed situation sets out great challenges but also opportunities for
new physical and mathematical ideas.

From the geometrical viewpoint, among the cousins of Minkowski spacetime
i.e., the class of Lorentzian manifolds, the de Sitter and anti-de Sitter spacetimes
are its closest relatives. Indeed, like the Minkowski spacetime, they are maximally
symmetric, i.e., they admit kinematical symmetry groups having a maximal number
of generators.1 Maximal symmetry also implies that the curvature is constant (zero
in the Minkowski case). Owing to their symmetry, it is possible to give a description
of the de Sitter universes without using the formalism of general relativity at all.
However, it is worth saying right away that, even if they share important features
with Minkowski spacetime, their physical interpretation is quite different and the
technical problems to be solved in order to merge de Sitter spacetimes with quantum
physics are considerably harder.

Many of the traditional concepts and ideas of quantum field theory have to be
reconsidered. In particular, in the traditional formulation of quantum field theory it
is of crucial importance the commutativity of spacetime translations which does not
hold any more in presence of a cosmological constant. The mathematical problems
arising from this simple fact are of considerable difficulty and a true solution seems
not to be accessible to heuristic methods. Due to its topical character, the literature
on the de Sitter and anti-de Sitter universes is very broad but the results obtained so
far do not reach much beyond the construction of free theories. Difficulties persist as
regards both the acquisition of general and structural results as well as in operational
and computational possibilities: computations which in the Minkowskian case
would be simple and occasionally even trivial become quickly prohibitive or even
impossible. This, in spite of the fact that one is dealing with maximally symmetric
manifolds. The technical and structural reason for this discrepancy lies exactly
in those characteristic aspects of Minkowski spacetime which do not persist in
the presence of curvature and which, therefore, render ineffective the similarity
existing between the de Sitter and anti-de Sitter models and flat spacetime. Of
particular importance is foremost the absence of a commutative translation group

1In the four-dimensional case a Riemannian manifold has an isometry group with at most ten generators.
In the Minkowski case the isometry group is the Poincaré group and the ten independent transformations
have a familiar physical interpretation: one time translation, three spatial translations, three rotations
and three boosts.
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and of the consequent Fourier representation of spacetime, the latter being the
linear energy-momentum space which, mathematically speaking, is a copy of the
same Minkowski spacetime.

In the following we will give an easy introduction to the geometry of the de
Sitter manifolds. We will discuss then some aspects of quantum field theory in the
above context.

2. AVisual Description of the de Sitter Manifolds

2.1. Curved spaces of constant curvature

One easy way to replace the usual flat geometry of the Euclidean physical space
R

3 with some curved geometry consists in moving to a fictitious four-dimensional
flat world and considering there the geometry of convenient three-dimensional
hypersurfaces. The simplest curved model of space is the surface of a hypersphere
embedded in a four-dimensional Euclidean flat space R

4:

S
3 = {x ∈ R

4, x2
1 + x2

2 + x2
3 + x2

4 = a2}. (2)

S
3 is homogeneous, isotropic and has positive curvature with value 6/a2. The

six-dimensional invariance group of S
3 is simply the rotation group SO(4) of the

four-dimensional ambient space; it can be interpreted as the group of motions of
the spherical space in the same way as the Euclidean group E(3) (translations and
rotations) is the group of motions of R

3. The main difference is that there are no
commutative ‘translations’ on S

3.
All the non-Euclidean geometrical properties of the hypersphere come by

restriction to it of the Euclidean geometry of the fictitious ambient space. In partic-
ular all geodesics, that are the analog in the curved geometry of what are straight
lines in the flat case, can be obtained by intersecting the hypersphere with two-
planes passing through the geometrical centre of the sphere (see Figure 1). One
recognises immediately that in this geometry ‘straight lines’ are maximal circles.

The second possibility is more elaborated and produces a space with negative
curvature. One moves again to a fictitious four-dimensional world, but now this is a
four-dimensional Minkowski spacetime M

4 (loosely speaking, a timelike direction
has been added to the Euclidean R

3, while in the previous case a spatial direction
was added). Here, a model of space with negative constant curvature is the upper
sheet of the two-sheeted hyperboloid H

3:

H
3 = {x ∈M

4, x2
0 − x2

1 − x2
2 − x2

3 = a2}. (3)

As shown in Figure 2 the lightcone emerging from any point of H
3 does not meet

the surface anywhere else. This means that, in the ambient spacetime, the surface
is spacelike and, as such, it is a good model for a space. As before the geometry
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Figure 1 A spherical model of space (positive curvature). Geodesics are great circles and
are obtained by intersecting the sphere with two-planes passing through the centre of the
sphere in the ambient space.

Figure 2 A hyperbolic model of space (negative curvature). H3 (the red surface) is spacelike
in the ambient Minkowski spacetime. Geodesics are branches of hyperbolae.
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of H
3 is constructed by restriction of the Lorentzian geometry of the ambient

Minkowski spacetime M
4. In particular, the six-dimensional isometry group of H

3

is the Lorentz group SO(1, 3) of the ambient spacetime. Geodesics are branches
of hyperbolae, obtained as before by intersecting H

3 with two-planes containing
the centre.

2.2. The de Sitter universe

By analogy we now introduce a five-dimensional Minkowski spacetime M
5 by

adding a spacelike direction to M
4 (just as we did in the spherical case). In M

5 we
consider the hypersurface with equation

dS4 = {x ∈M
5, x2

0 − x2
1 − x2

2 − x2
3 − x2

4 = −R2}. (4)

This is the de Sitter spacetime [7] (see Figure 3). It has constant negative curvature
−12/R2 (the sign depends on conventions) and reproduces (after a renormalisation)
Minkowski spacetime in the limit of zero curvature (i.e., when the radius R tends
to infinity).

The causal structure of dS4 is induced by restriction of the Lorentzian geometry
of the ambient Minkowski spacetime M

5 exactly as the geometry of the sphere
was determined by the Euclidean geometry of the ambient R

4. In particular, the

Figure 3 The de Sitter manifold represented as an hyperboloid embedded in a Minkowski
spacetime with one dimension more. The future and past cones of the ambient spacetime
induce the causal ordering of the de Sitter manifold. The regions shadowed by the five-
dimensional cone issued from the event O are indeed the past �−O and the future �+O of O.
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de Sitter line element is obtained concretely by restricting the five-dimensional
invariant interval to the manifold dS4:

ds2 = [(dx0)
2 − (dx1)

2 − (dx2)
2 − (dx3)

2 − (dx4)
2]|dS4 (5)

This line element is the most symmetrical solution of the field equations written
down by Einstein in 1917, where he introduced the famous cosmological constant
� [3]. The radius R corresponding to a given value of � is

R =
√

3

�
.

A pivotal role is played by the five-dimensional lightcone of the ambient
spacetime:

C = {ξ ∈M
5, ξ2

0 − ξ2
1 − ξ2

2 − ξ2
3 − ξ2

4 = 0}. (6)

The cone C induces the causal ordering of the events on the de Sitter manifold;
it also plays the role of de Sitter momentum space. The de Sitter spacetime has a
boundary at timelike infinity (while timelike infinity of the Minkowski manifold
is a point). The cone C also provides a description of this boundary, which may be
used instead of a Penrose diagram.

The de Sitter kinematical group coincides with the Lorentz group of the ambient
spacetime SO(1, 4). As for the sphere, there are no commutative translations on
the de Sitter manifold. This fact is a source of considerable technical difficulties
in the study of de Sitter quantum field theory. A study of the complex de Sitter
manifold with applications to quantum field theory has been described in [8, 9].

The relationship between the de Sitter universe and the geometry of the sphere
is deeper than a mere analogy. Indeed, for imaginary times

x0 → ix0

the (Euclidean) de Sitter manifold is a sphere and the Euclidean de Sitter group is
the rotation group SO(5).

2.3. Anti-de Sitter

Let us now introduce a flat five-dimensional space E
(2,3) by adding a timelike

direction to M
4 (as we did in the hyperbolic case). E(2,3) has two timelike directions

and three spacelike directions and therefore it is not a spacetime in the ordinary
sense (a Lorentzian manifold with one temporal and three spatial dimensions).
However, the hypersurface with equation

AdS4 = {x ∈ E
(2,3), x2

0 − x2
1 − x2

2 − x2
3 + x2

4 = R2}, (7)
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Figure 4 A visualisation of the anti-de Sitter universe. The asymptotic cone plays a crucial
role exactly as in the de Sitter case. The regions of AdS4 that are in the shadow of the five-
dimensional cone emerging from an event O are the regions that are not causally connected
to the event O. The asymptotic cone in the ambient space can be regarded as a representation
of the boundary at spacelike infinity of the AdS manifold and carries a natural action of the
conformal group that is the group-theoretical foundation for the AdS-CFT correspondence.

is a spacetime: this is the anti-de Sitter universe (see Figure 4). It has constant pos-
itive curvature and reproduces (after a renormalisation) the Minkowski spacetime
in the limit when the curvature tends to zero.

The causal structure of AdS4 is induced by restriction of the geometry of the
ambient space E

(2,3) (the analogy is now with the geometry of H
3 that is determined

by the causal structure of the ambient spacetime M
4). As before the null cone of

the ambient space

C = {ξ ∈M
5, ξ2

0 − ξ2
1 − ξ2

2 − ξ2
3 + ξ2

4 = 0} (8)

induces the causal ordering on the anti-de Sitter manifold. Anti-de Sitter timelike
geodesics are ellipses and are obtained by intersecting the hyperboloid with two-
planes passing through the centre of the ambient space. The geodesics passing
through a certain event all meet at the antipodal point. Owing to the existence
of closed timelike curves the causal ordering is only local. One may construct a
globally causal manifold by considering the covering of the anti-de Sitter manifold
(recall that the covering of a circle is a line). However even the covering of the
anti-de Sitter remembers the ‘periodicity in time’ of the original manifold: the
focusing of geodesics remains true also in the covering space and the geodesics
issued from an event meet again infinitely many times in the covering.
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The anti-de Sitter line element is constructed by restricting the five-dimensional
invariant ‘interval’ of the ambient space to the manifold AdS4:

ds2 = [(dx0)
2 − (dx1)

2 − (dx2)
2 − (dx3)

2 + (dx4)
2]|AdS4 . (9)

This line element is the maximally symmetrical solution of the cosmological
Einstein equations when the cosmological constant� is negative. The anti-de Sitter
kinematical group coincides with the isometry group SO(2, 3)of the ambient space.

The relationship between the anti-de Sitter universe and the geometry of H
3 is

deeper than a mere analogy. Indeed, for imaginary time

x4 → ix4,

the (Euclidean) anti-de Sitter manifold is a copy of H
4 and the Euclidean de Sitter

group is SO(1, 4). A study of the complex anti-de Sitter manifold with applications
to quantum field theory has been described in [10].

AdS is not a globally hyperbolic spacetime. In non-globally hyperbolic mani-
folds knowledge of equations of motion and of initial data is not enough to deter-
mine the time evolution of physical quantities. In the anti-de Sitter case, the lack
of global hyperbolicity is due to the existence of a boundary at spacelike infinity:
information can flow in from infinity. This fact is a source of difficulties in quan-
tising fields on the anti-de Sitter manifolds. However this is also an opportunity
since this boundary at infinity offers the very possibility for formulating the famous
AdS/CFT correspondence [6].

To present an intuitive idea of this topic let us introduce coordinates on a
five-dimensional anti-de Sitter manifold AdS5 (embedded in a six-dimensional
space E

(2,4)) obtained by intersecting AdS5 with hyperplanes {X4 + X5 = ev}
(see Figure 5). Each slice �v of AdS5 is a copy of Minkowski spacetime M

4.
Points in each slice �v can be thus parametrised by Minkowskian coordinates
x0, x1, x2, x3 (rescaled by ev on �v). This explains why the anti-de Sitter coordi-
nates (v, x0, x1, x2, x3) are also called Poincaré coordinates.

The coordinate system covers only one-half of the anti-de Sitter manifold; the
anti-de Sitter metric takes the following form:

ds2 = [(dX0)
2 − (dX1)

2 − (dX2)
2 − (dX3)

2 − (dX4)
2 + (dX5)

2]∣∣
AdS5

= e2v(dx2
0 − dx2

1 − dx2
2 − dx2

3)− dv2. (10)

The slices �v are often called branes. The Minkowskian geometry of the brane is
induced by the ambient anti-de Sitter metric: for instance space-like separation in
any slice�v can be understood equivalently in the Minkowskian sense of the slice
itself or in the sense of the ambient anti-de Sitter universe.

When we consider the limit v → ∞ we arrive at the anti-de Sitter boundary
at spacelike infinity, which therefore may (essentially) be thought of as a four-
dimensional Minkowski spacetime. The AdS-CFT correspondence establishes an
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Figure 5 Construction of the AdS-Poincaré coordinates. The limit v→ ∞ describes the
boundary of the AdS manifold.

equivalence between a theory on the five-dimensional AdS5 and a relativistic theory
on the boundary M

4 (this is an instance of another popular idea in contemporary
theoretical physics: the holographic principle). The theory on the boundary is con-
jectured to have a larger symmetry group, namely the conformal group [6, 11, 12].

3. De Sitter

The shortest path to understanding the de Sitter geometry in d dimension consists
in adding a spacelike dimension to a d-dimensional Minkowski spacetime and
considering the hypersurface with equation

dSd = {x ∈M
d+1, x2 = x · x = x2

0 − x2
1 − · · · − x2

d+1 = −R2} (11)

(we use lower indices for the inertial coordinates xi of the ambient spacetime
just for visual comfort of the formulae). This manifold represents the de Sitter
spacetime [7] (see Figure 1). The causal structure of dSd is induced by restriction
of the Lorentzian geometry of the ambient Minkowski spacetime M

d+1 exactly as
the geometry of the spherical surface is determined by restriction of the Euclidean
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geometry of the ambient space R
d+1. In particular, the de Sitter line element is

obtained concretely by restricting the invariant interval to the manifold dSd+1:

ds2 = (dx2
0 − dx2

1 − · · · − dx2
d+1)|dSd (12)

The radius R corresponding to a given value of � is

R =
√
(d − 1)(d − 2)

2�
.

There is a causal ordering relation on dSd induced by that of M
d+1 (see Figure 1); let

V+ = {x ∈M
d+1 : x0 >

√
x1

2 + · · · + xd2} (13)

be the future cone of the origin in the ambient space; then, for

x, x′ ∈ dSd, x > x′ ↔ x− x′ ∈ V+. (14)

The future and past regions of a given event x in dSd are given by �±x = {x′ ∈
dSd : x′ > x (x > x′)}. A pivotal role in the following construction is played by
the lightcone of the ambient spacetime, that in a certain sense plays the role of de
Sitter momentum space (see Figure 9):

C = {ξ ∈M
d+1, ξ2 = ξ2

0 − ξ2
1 − · · · − ξ2

4 = 0}. (15)

The de Sitter kinematical group coincides with the Lorentz group of the ambient
spacetime SO0(1,d). There are no commutative translations on the de Sitter mani-
fold and this fact is the source of considerable technical difficulties in the study of
de Sitter quantum field theory. The relationship between the de Sitter universe and
the geometry of the sphere is deeper than a mere analogy. Indeed, for imaginary
times x0 → ix0 the (Euclidean) de Sitter manifold (see Eq. 4) is a sphere and the
Euclidean de Sitter group is the corresponding rotation group SO0(1,d).

3.1. Coordinate systems

The de Sitter geometry finds its most important physical applications in cosmology.
In Friedmann’s cosmology one usually ‘breaks’ the general relativistic covariance
and singles out a special coordinate system: there is a natural choice of ‘cosmic time’
that makes the universe appear spatially homogeneous and isotropic at large scales.
This property is mathematically encoded in the Friedmann–Robertson–Walker line
element:

ds2 = dt2 − a(t)2dl2. (16)

The spatial distance dl2 describes the geometry of a homogeneous and isotropic
space manifold: either a sphere S

d−1, or a hyperplane R
d−1 or a Lobatchevski space
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H
d−1. In this respect the de Sitter geometry is rather special: due to the maximal

symmetry and the topology of the de Sitter manifold, there are suitable choices of
cosmic time that make the de Sitter manifold appear like either a spherical, or a flat
or a hyperbolic FRW model. Let us choose for instance the following coordinate
system:

x(t, ω) =



x0 = R sinh

( t
R

)

xi = R cosh
( t
R

)
ωi i = 1, . . . , d

(17)

with
∑
ω2
i = 1, so that Equation (4) is easily satisfied. The coordinate x0 depends

only on the cosmic time (see Figure 6); hypersurfaces of constant time are spheres
and the coordinate system covers the whole universe. With this choice the de Sitter
line element describes a spherical FRW model:

ds2 = (dx2
0 − dx2

1 − · · · dx2
d+1

)∣∣
dSd
= dt2 − R2 cosh2

( t
R

)
dω2. (18)

Another possible choice of time is, say, the combination x0+xd (see Figure 7).
Homogeneous and isotropic surfaces of constant time �t (or ‘horospheres’) are

Figure 6 Construction of the coordinate system representing the de Sitter geometry as
closed FRW model. Hyperurfaces of equal cosmic time are intersection of the de Sitter
manifold with hyperplanes x0 = const.
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Figure 7 Construction of the coordinate system representing the de Sitter geometry as
a flat FRW model. Hypersurfaces of equal cosmic time are intersections of the de Sitter
manifold with hyperplanes x0+xd = const. Only one half of the manifold is covered since
it has to be x0 + xd > 0. Of course this restriction does not hold any more if the time t is
considered as a complex coordinate.

paraboloids obtained by intersecting dSd with the hyperplanes x0+xd = Re
t
R (the

latter relation also introduces the relevant cosmic time):

x(t, x) =




x0 = R sinh
t

R
+ 1

2R
x2 exp

t

R

xi = xi exp
t

R
, i = 1, . . . , d − 1,

xd = R cosh
t

R
− 1

2R
x2 exp

t

R
.

(19)

This parametrisation is also called the ‘horocyclic parametrisation’. Real values of
the coordinates only describe the part� of the de Sitter manifold which intersects
the half-space {x0 + xd > 0}; that region can be thought as the future of an
event infinitely far in the past. Any slice �t is conformal to a Euclidean plane;
indeed the de Sitter universe in these coordinates appears as a flat FRW model with
exponentially growing scale factor:

ds2 = dt2 − exp
2t

R
dx2. (20)
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This form of the de Sitter line element was originally introduced by Lemaître in
1925 (see e.g., [13]). It is interesting to note that the first coordinate system used
by de Sitter himself was a static coordinate system with closed spatial sections; de
Sitter was following Einstein’s cosmological idea of a static closed universe, the
idea that led to the introduction of the cosmological term in Einstein’s equations. A
static coordinate system (i.e., a coordinate system where nothing depends explicitly
on time) is not the most natural to describe an expanding universe, but it has
other interesting properties, mainly in relation to black hole physics: horizons,
temperature and entropy.

Static closed coordinates are represented in Figure 8. The Lemaître form of
the de Sitter line element is the most useful in cosmological applications. Recent
observations point towards the existence of a nonzero cosmological constant and
a flat space. For an empty universe (i.e., a universe filled with a pure cosmological
constant) this would correspond precisely to the above description of the de Sitter
universe.

Finally a third cosmic time coordinate may be introduced the relation xd =
R cosh t

R
. With this choice the de Sitter universe appears as an open FRW

Figure 8 A chart representing static closed coordinates. This is the coordinate system
originally used by W. de Sitter in 1917. Vertical timelike curves are obtained by intersecting
the hyperboloid with parallel two-planes. Only the central hyperbola is a geodesic because
it is the only one lying on a plane that contains the origin of the ambient spacetime. The
other timelike curves are accelerated trajectories. They have been coloured in red because
there is a redshift for light sources moving along these world lines; this effect was called
the de Sitter effect and was thought to have some bearing on the redshift results obtained
by Slipher.
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cosmological model:

ds2 = dt2 − R2 sinh2 t

R
dl2, (21)

where dl2 is the line element of a Lobatchevski space of unit radius. This choice had
some popularity in the mid-nineties when open inflationary models were introduced
to account for the missing mass [14–16]. The subsequent observations pointing
towards the existence of a nonzero cosmological constant greatly reduced the inter-
est in these models, but they can still play some role when the future high precision
cosmological observations will tell us more about the actual value of the curvature
of the space. Indeed, even a very small negative spatial curvature (but not exactly
zero) can still make a noticeable difference in our understanding of the cosmos.

3.2. Boundary at infinity. Geodesics

The de Sitter manifold has a boundary at timelike infinity. One standard way to
study that boundary is to make use of a Penrose’s compactification. This can be
obtained by the following change of the time coordinate in Eq. (17):

sinh
t

R
= tan u, cosh

t

R
= 1

cos u
, −π

2
< u <

π

2
. (22)

With the help of these coordinates the de Sitter metric is written

ds2 = R2

cos2 u
(du2 − d�2) (23)

and the de Sitter universe is conformal to a portion of the Einstein static universe.
Events on the past boundary I− are given the coordinates (u = −π/2, ωi) while
on the future boundary I+ are given by the coordinates (u = π/2, ωi) (see [17] for
further details). Another maybe less usual visualisation can be obtained by taking
the large t asymptotics in Eq. (17):

{
x0 � ±R e|t|,
xi � R e|t| ωi.

(24)

It follows that the light-coneC of the ambient spacetime M
d+1 can also be regarded

as a projective representation of the boundary of the de Sitter manifold at timelike
infinity. The invariance group of the coneC is also copy of SO0(1,d). One proposal
is to interpret that group as the Euclidean conformal group. Although it may appear
unnatural at this point, we choose to work only with the forward cone C+ =
{ξ ∈ C, ξ0 > 0} to represent both the future and past infinities (as opposed to the
choice of the two-sheeted cone C = C+ ∪ C−). We can then identify events at
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Figure 9 Represented are the de Sitter universe and the lightcone of the (d+1)-dimensional
ambient spacetime. The timelike geodesics are the hyperbolae obtained by intersecting
the hyperboloid by any Lorentzian two-plane passing through the origin of the ambient
spacetime.Any two-plane associated with a timelike geodesic can be identified by specifying
two null vectors ξ and η in the future lightcone C+; ξ and η can be used also to parametrise
the geodesic itself. In flat spacetime, geodesics are labelled by their four-momentum. By
analogy, the lightconeC+ can be interpreted as the space of directions of momentum vectors
in the de Sitter universe. In particular, de Sitter plane waves are constructed using vectors
belonging to the future lightcone C+.

future infinity in the Penrose diagram with equivalence classes of vectors on C+
as follows (λ > 0):

(u = π/2, ωi)←→ ξ = (λ, λωi), (25)

while events at past infinity are described by the map:

(u = −π/2, ωi)←→ η = (λ,−λωi). (26)

Particular representatives of the equivalence classes are ξ̂ = (1,ω) and η̂ =
(1,−ω).

The above description of infinity allows for a particularly simple description
of the de Sitter timelike geodesics, which is useful for the interpretation of the
role of the lightcone of the ambient spacetime. Indeed, a generic timelike geodesic
can be obtained as the intersection of the de Sitter hyperboloid with a certain
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Lorentzian two-plane containing the origin of the ambient space. Let (ξ, η) be an
ordered pair of forward null vectors generating such a two-plane. We associate to
(ξ, η) the geodesic obtained by the intersection of such two plane with the de Sitter
hyperboloid and contained in the wedge generated by ξ and −η. Such a geodesic
can be parametrised as follows:

x(τ) = R√
2ξ · η

(
e
τ
R ξ − e− τ

R η
)
, (27)

where τ is the proper time. If we consider an event on I− with coordinates
(−π/2,ω) and an event on I+ with coordinates (π/2,ω′) the unique geodesics
joining them can be parametrised as follows:

x(τ) = R√
2+ 2ω · ω′

(
e
τ
R ξ̂ − e− τ

R η̂
)
. (28)

Thus a timelike geodesic is uniquely determined by specifying one event on each
boundary. If we specify only one vector ξwe obtain the family of geodesics focusing
at the corresponding event (either in the future or in the past).

The conserved quantities associated with the geodesical motion are the com-
ponents of the two-form2

K = K(ξ,η) = mc
ξ ∧ η
ξ · η . (29)

A theory of classical scattering on the de Sitter manifold can be built by using the
above conserved quantities [18].

4. De Sitter Quantum FieldTheory

4.1. Plane waves

Let us consider the de Sitter Klein–Gordon equation

�φ +m2φ = 0, (30)

where � is the Laplace–Beltrami operator relative to the de Sitter metric. It is
possible to solve Eq. (30) by separating the variables in any of the coordinate
systems that we have presented in the previous section. Let us choose to work for
instance in the flat space coordinate system (19). By posing φ = χ(t) exp ik · x the

2ξ and η denote here the covariant one-forms associated to the null vectors; we use the same symbol
for a vector and its dual.
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Klein–Gordon equation is solved if χ satisfies the following equation:

∂2
t χ+

d − 1

R
∂tχ+

(
e−

2t
R k2 +m2

)
χ = 0. (31)

By introducing the conformal time s = −Re− t
R and the rescaled function f(s) =

s
1−d

2 χ, the previous equation is transformed into the Bessel equation:

s2∂2
s f + s∂sf + (s2k2 + ν2)f = 0, (32)

where

ν2 = m2R2 −
(
d − 1

2

)2

. (33)

There are therefore two regimes, corresponding either to real values of ν or to
purely imaginary values such that

|ν| <
(
d − 1

2

)
. (34)

Thus, by separating variables in horocyclic coordinates one obtains the general
solution of the de Sitter Klein–Gordon equation in the following way:

φ(t, x) = s 1−d
2 Bν(ks) exp ik · x, (35)

whereBν is a solution of the Bessel equation. From here one can proceed and try to
quantise the Klein–Gordon according to the recipes of canonical quantisation [19];
what particular choice of Bessel function is physically meaningful is another story.
Things are not so obvious because of the lack of a global energy operator; one has
to advocate some other principle like the adiabatic prescription (see e.g., [19])
or something else. Of course the de Sitter manifold is maximally symmetric and
many other possible choices are in principle equally good.

There exists also an alternative approach: it is possible to introduce global
waves in a manifestly coordinate-independent way by insisting on the embedding
of the de Sitter hyperboloid in the Minkowski ambient space [8, 9, 22]. Let us
introduce the waves

ψ(x, ξ) = |x · ξ|λ, (36)

where λ is a complex number and ξ = (ξ0, . . . ξd) ∈ C+ a future directed null
vector of the ambient space (in clear: ξ · ξ = 0 and ξ0 > 0). It is not difficult to
see that

�|x · ξ|λ = 1

R2 λ(λ+ d − 1)|x · ξ|λ (37)
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provided x · ξ �= 0. The parameter ν that we have introduced previously is related
to the exponent λ as follows:

iν = λ+ d − 1

2
, (38)

physical values of the parameter λ thus correspond to unrestricted real or purely
imaginary ν with |ν| ≤ d−1

2R so that

m2R2 = λ(1− d − λ) =
(
d − 1

2

)2

+ ν2 > 0. (39)

Here comes in the physical interpretation of ‘momentum space’ that we have given
to the future lightcone C+ establishing the waves (36) as the strict de Sitter ana-
logues of the exponential plane waves of the flat Minkowski spacetime. Indeed, as
the exponentials exp i

�
p · x that are labelled by the momentum vector, the waves

are labelled by the ‘momentum direction’ ξ and by the ‘modulus’ ν.
There is however an unexpected difficulty: the plane waves are singular on

(d−1)-dimensional light-like submanifolds of dSd that are the intersection of dSd
with the hyperplane tangent to the cone along ξ. To deal with that singularity let us
introduce the complexification of the de Sitter spacetime, that can be represented
as the complex hyperboloid

dS(c)d = {z = x+ iy ∈ C
d+1 : z0

2 − z1
2 − · · · − zd2 = −R2}. (40)

This implies of course that an event of the complex de Sitter manifold is such that
x2−y2 = −R2 and x ·y = 0. The physically relevant global waves can be defined
as analytic functions for z in the tubular domains T + or T − of dS(c)d :

T + = (Rd+1 + iV+) ∩ dS(c)d = {z = x+ iy ∈ C
d+1 : y2 > 0, y0 > 0},

T − = (Rd+1 + iV+) ∩ dS(c)d = {z = x+ iy ∈ C
d+1 : y2 > 0, y0 > 0},

(41)

where R
d+1 ± iV+ are the forward and backward tubes in the ambient complex

Minkowski space C
d+1 (with x ∈ R

d+1 and respectively±y ∈ V+). In Minkowski
space, the physical meaning of such domains is linked to the positivity of the
spectrum of the energy-momentum vector operator in Minkowski QFT’s in R

d+1.
Here is the definition of de Sitter plane waves. For z ∈ T + or z ∈ T − we define

ψiν(z, ξ) = (z · ξ)− d−1
2 +iν, (42)

where ν and ξ satisfy the above conditions. The phase is chosen to be zero when
the argument is real and positive.
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4.2. Two-point functions of the Klein–Gordon quantum field

We now briefly outline the main features of dS Klein–Gordon QFT which we will
use later in the study of particle decay (see [8] for further details). As usual for
free fields, the theory is completely encoded in the two-point function W(x, x′).
Generally speaking W(x, x′) should be a distribution on dSd × dSd satisfying the
following conditions:

1. Locality: W(x, x′) = W(x′, x) for every space-like separated pair (x, x′).
2. de Sitter invariance: W(gx, gx′) = W(x, x′), ∀g ∈ SO0(1, d).
3. Positive-definiteness: ∀f ∈ D(dSd)∫

dSd×dSd
W(x, x′)f̄ (x)f(x′)dσ(x)dσ(x′) ≥ 0. (43)

where dσ is the invariant measure on the de Sitter manifold. For the Klein–Gordon
field it should also be that

(�x +m2)Wm(x, x
′) = 0, (�x′ +m2)Wm(x, x

′) = 0. (44)

Although there are infinitely many inequivalent theories satisfying all these require-
ments, there is one preferred theory (for each value of the mass m) which is
often referred to as the ‘Euclidean’ or Bunch–Davies vacuum [20, 21]. What is
perhaps not yet so well known is that the corresponding preferred theory can be
directly constructed in a manifestly de Sitter invariant way [8, 22] by exploiting
the previously introduced basis of analytical de Sitter plane waves; it is possible
to give a spectral analysis of the corresponding two-point functions very simi-
lar to the usual Fourier representation of the two-point function of the Poincaré
invariant two-point function of a Klein–Gordon field satisfying the Wightman
axioms [23].

The construction goes as follows: by analogy with the flat case [23] we introduce
a two-point function defined in the complex domain z ∈ T −, z′ ∈ T + [8] which
is a superposition of plane waves:

Wν(z, z
′) = cd,ν

∫
γ

ψiν(z, ξ)ψ−iν(z′, ξ)dµγ(ξ). (45)

We used the parameter ν as a label according with Eq. (33); the constant cd,ν has
to be determined by imposing the local Hadamard condition or, equivalently, the
canonical commutation relations (CCR’s).

Wν manifestly solves the (complex) de Sitter Klein–Gordon equation in both
variables, and is analytic in the domain T −×T + (normal analyticity property). The
integration at the RHS can be performed along any basis submanifold γ of the cone
C+ w.r.t. a corresponding measure dµγ that is induced by the invariant measure
on the cone. Particular instances are the spherical basis γ0 = {ξ ∈ C+ : ξ0 = 1},
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where the measure dµγ is the rotation invariant measure on the sphere, or the
hyperbolic basis γd = {ξ ∈ C+ : |ξd | = 1}, where the measure dµγ is the Lorentz
invariant measure on a two-sheeted unit mass shell.

With these premises, the fundamental result is that, by Stoke’s theorem, the
integral at the RHS of Eq. (45) is independent on the chosen integration submani-
fold. This immediately implies that Wν(z, z

′) is a de Sitter invariant bi-solution
of the Klein–Gordon equation and therefore is actually a function of the de Sitter
invariant variable

ζ = z · z′
R2 . (46)

Now we can explicitly compute the integral defining Wν(z, z
′):

Wν(z, z
′) =

�
(
d−1

2 + iν
)
�
(
d−1

2 − iν
)

2(2π)
d
2Rd−2

(ζ2 − 1)−
d−2

4 P
− d−2

2

− 1
2+iν

(ζ), (47)

where P is an associated Legendre function of the first kind [24]. The choice
of normalisation assures that the canonical commutation relations hold. Eq. (47)
shows that Wν(z, z

′) can be analytically continued in the “cut-domain”

dS(c)d × dS(c)d \ {(z, z′) ∈ X(c)d ×X(c)d : (z− z′)2 ≥ 0} (48)

where it satisfies the complex covariance condition: Wν(gz, gz
′) = Wν(z, z

′) for
all g belonging to the complex de Sitter group.

The correlation function Wν(x, x
′) = 〈�,φ(x)φ(x′)�〉 between two real

events x and x′ is then the boundary value of the analytic function Wν(z, z
′) from

the domain T − × T +. The knowledge of Wν(x, x
′) permits to use the standard

methods of the Wightman’s reconstruction theorem [23] (or either the GNS con-
struction) which give the Fock space of the theory, the quantum field operators and
the associated representation of the de Sitter group. In our case it turns out that the
restriction of such representation to the one-particle subspace of the Fock space
are unitary and irreducible. For ν real these are the representations of the principal
series; for imaginary ν such that 0 < |ν| < d−1

2 these are the representation of the
complementary series.

4.3. Generalised free fields

Actually, these analyticity properties are not restricted to Klein–Gordon fields,
but they can be shown to hold for any de Sitter invariant two-point Wightman
functionW satisfying the normal analyticity spectral condition [8]. The correlation
function W(x, x′) = 〈�,φ(x)φ(x′)�〉 beetwen two real events x and x′ is then
the boundary value of the analytic function W(z, z′) from the domain T − × T +.
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The ‘permuted Wightman function’W(x′, x) = 〈�,φ(x′)φ(x)�〉 is the boundary
value of W(z, z′) from the domain T + × T −. From here one can construct the
commutator

C(x, x′) = W(x, x′)−W(x′, x) (49)

and the Green functions. In particular the retarded propagator R(x, x′) plays an
important role:

R(x, x′) = iθ(x, x′)C(x, x′), (50)

where θ is the characteristic function of the ‘future cone’�+(x′) of the event x′:

θ(x, x′) =
{

1 if x ≥ x′,
0 otherwise.

(51)

It is worthwhile to stress that the thermal properties of de Sitter free fields (in
the sense of the Gibbons–Hawking temperature [21]) can be proven easily in this
analytic framework and the maximal analyticity property of the two-point function
is indeed equivalent to those thermal properties [8]. The same thermal properties
have been shown to hold [9] also in the interacting case if the n-point functions
enjoy suitable analyticity properties.

5. Lifetime of a de Sitter Particle

In this section we outline an application [27–29] of the previous formalism to the
study of instable particles on the de Sitter manifold. First of all we point out two
important properties.

5.1. Two properties that are crucial

In our application to particle decays:

1. The projector identity
This is a statement concerning the convolution on the de Sitter manifold of a
pair of two-point functions belonging to the principal series∫

dSd
Wν(x, u)Wν′(u, y)dσ(y) = 2π| coth(πν)|δ(ν2 − ν′2)Wν(x, y). (52)

2. The Källén–Lehmann type representation
Consider the product of n different two-point functions of the principal series.
There exist an integral representation for the product as superposition of kernels
of the principal series as follows:

n∏
j=1

Wνj (x, y) =
∫

da2ρ(a2; ν1, . . . , νn)Wa(x, y). (53)
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Similar properties hold also in the Minkowski case. The proof of these state-
ments is however elementary in the Minkowski case while nontrivial for de Sitter
theories. An explicit calculation of the weights ρ is easy in the Minkowski case for
n = 2, while difficult or impossible in other cases.

5.2. The model

Let φ0, φ1, . . . , φN be N + 1 independent free neutral scalar fields, with mass
parameters ν0, ν1, . . . , νN respectively, operating in a Fock space H, and

(�, φj(x)φk(y)�) = δjkWνj (x, y). (54)

Vectors of the form

∫
f(x01, . . . , x0q0 , . . . , xN1, . . . , xNqN ) :

N∏
j=0

qj∏
k=1

φj(xjk) dσ (xjk) : �, (55)

where f is a smooth and fast decreasing test function, generate the closed subspace
Hq0,...,qN of q0 particles of type 0, . . . qN particles of type N. We now switch on
an interaction term

γ

∫
g(x)L(x) dσ(x), L(x) =: φ0(x)φ1(x)

q1 . . . φN(x)
qN :, (56)

where g is a smooth real rapidly decreasing function which, in the end, must be
made to tend to the constant 1. Self-interactions L(x) =: φ(x)n : are a special case
of this coupling. At first order the transition amplitude between two orthogonal
normalised states ψ0 and ψ1 in H is given by

(ψ0, iT1(γg)ψ1), T1(γg) =
∫
γg(x)L(x) dσ(x). (57)

Letψ0 be a one-particle state of the form
∫
f(x)φ0(x)�dx; the smooth test function

f contains the physical details about the quantum state of the unstable particle
whose disintegration we aim to study. Let H0,q be the space of all states containing
q1 particles of type 1, . . . , qN particles of type N, and P0,q be the projector onto
this space, with q = (q1, . . . , qn). If ψ0 has norm 1, Wick’s theorem gives the
probability of its transition to any possible q-particle state of H0,q:

�(10; q1, . . . , qN) = (ψ0, T1(γg)P0,qT1(γg)
∗ψ0)

= γ2
∫
f(x)f(y) g(u) g(v)Wν0(x, u)


 N∏
j=1

qj!Wνj (u, v)
qj




×Wν0(v, y) dσ(x) dσ(y) dσ(u) dσ(v). (58)
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We now replace one of the switching-on factors, say g(v), by 1 in the above expres-
sion. By using Eqs. (53) and (52) we find the following general formula for the
transition probability:

�(10; q1, . . . , qN) = γ22π| coth(πν)|δ(ν2 − ν′2) ∫ g(x)|F(x)|2 dx∫
f(x)Wν0(x, y) f(y) dx dy

×

 N∏
j=1

qj!

 ρ(ν2

0; ν1, . . . , ν1, . . . , νN, . . . , νN).

(59)

Here

F(x) =
∫
Wν0(x, y) f(y) dy; (60)

is the smooth classical solution of the KG equation corresponding to the wave-
packet f ; the denominator is the squared norm of ψ0 which is no longer assumed
to be one. This formula has an interesting simple structure: the first factor does not
depend on the number or nature of the decay particles but only on the wavefunc-
tion of the incoming unstable particle. The infrared problem is contained in this
factor and has to be overcome when letting the remaining g(x) tend to 1 (adiabatic
limit). The second factor is the relevant Källén–Lehmann weight times the right
combinatorial factor.

5.3. Decay 1κ → 2ν

Let us now focus on the decay of a particle of mass ν0 = κ into two identical
particles of mass ν1 = ν. The first task is to compute the Källén–Lehmann weight
ρ(κ2; ν, ν) ≡ ρν(κ). This is a hard question to be solved. To do that we use the
following (suitably normalised) generalised Mehler–Fock transform of the squared
two-point function:

ρν(κ) =
(
�
(
d−1

2 + iν
)
�
(
d−1

2 − iν
))2

sinh πκ

2(2π)1+ d2Rd−2

×
∫ ∞

1
P
− d−2

2

− 1
2+iκ

(x)

[
P
− d−2

2

− 1
2+iν

(x)

]2

(x2 − 1)−
d−2

4 dx. (61)

This integral is well defined for masses such that |Imν| < d−1
4 ; this includes

the principal series and a portion of the complementary series. Inversion [25]
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gives precisely

W2
ν (x, y) =

∫ ∞
0

dκ2ρν(κ)Wκ(x, y) =
∫ ∞
−∞

κdκρν(κ)Wκ.(x, y). (62)

The integral (61) can be directly computed for odd d. For even spacetime
dimensions computing (61) is far from obvious. We have devised a method based
on Mellin transform techniques [26] that allows the computation for any dimension
d (real or complex). Here is the result:

ρν(κ) = R2−dsinh πκ

(4π)
d+2

2
√
π�
(
d−1

2

) �
(
d−1

4 + iκ
2

)
�
(
d−1

4 − iκ
2

)

�
(
d+1

4 + iκ
2

)
�
(
d+1

4 − iκ
2

)

×
∏
ε,ε′=±

�

(
d − 1

4
+ iεν + iε

′κ
2

)
. (63)

The striking result is that, contrary to what happens in the Minkowski spacetime,
the weight ρ never vanishes. This means that for masses of the principal series
decay processes into heavier particles are always possible. In particular, in that
range of masses one is not allowed to draw conclusions about the stability of a
certain particle just from its being the lightest in a hierarchy. This result has nothing
to do with the standard thermal interpretation of the de Sitter ‘vacuum’. A similar
computation in flat thermal field theory does not exhibit this phenomenon in two-
particle decays. The standard Minkowskian result is recovered in the limit of zero
curvature that is achieved by setting κ = m0R and ν = m1R:

lim
R→∞ ρ(κ

2; ν, ν)dκ2 = ρ(m2
0;m1,m1) dm

2
0, (64)

where

ρ(m2
0;m1,m1) = 1

2dπm0�
(
d−1

2

)
(
m2

0 − 4m2
1

4π

)d−3
2

θ(m2
0 − 4m2

1). (65)

Note the appearing in the limit of the Heaviside function θ that forbids the decay
of a particle if the decay products are globally heavier.

All these effects are of course extremely small with the current value of the
cosmological constant. What about particle physics at inflation? At that epoch
mR ∼ m × 10−15GeV−1 � 3

4 for every particle of reasonable mass. Our results
should therefore be extended to the remaining portion of the complementary
series |Im ν| > d−1

4 where all scalar particles lie at the inflation era (but there
is no complementary series in the Fermionic case). By analytic continuation of
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Eq. (63) in ν,

W2
ν (x, y) =

∫ ∞
−∞

κ dκ ρν(κ)Wκ(x, y)+
N−1∑
n=0

An(ν)Wi(µ+2iν+2n)

where µ = (d − 1)/2 and

An(ν) = 8π(−1)n

n!2dπ 1+d
2 Rd−2�(µ)

�(µ+ 2iν + n)�(−2iν − n)
�(µ+ 2iν + 2n)�(−µ− 2iν − 2n)

× �(µ+ n)�(−iν − n)�(µ+ iν + n)
�(−iν − n+ 1

2 )�(µ+ iν + n+ 1
2 )
.

The number of discrete terms is the largestN satisfyingN < 1+|Imν|−µ/2, or
0 if this is negative. A particle of the complementary series with parameter κ = iβ
can only decay into two particles with parameter ν = i

2 (|β| +µ+ 2n), where n is
any integer such that 0 ≤ 2n < µ− |β|, and the decay is instantaneous. A particle
with massm� mc can only decay into two particles of massm1 ∼ m/

√
2. Even if

the geometry of the universe at inflation was not exactly de Sitterian, this example
indicates that quantum field theoretical arguments concerning particle physics at
inflation might need revision.

We now turn to the adiabatic limit and its meaning in the de Sitter context, in
the case when all particles are in the principal series. A first complication is the
existence of several choices of cosmic time, having different physical implications
and the result might depend on one’s preferred choice. We have seen that in the
closed model the cosmic time t is related to the ambient space coordinates by the
relation x0 = R sinh(t/R); g(x) can be chosen as the indicator function of some
cosmic time interval T , say g(x) = gT (x) = θ(T/2− |t|).

In the flat model the situation is a bit more tricky. We saw that cosmic time is
defined by the relation x0 + xd = R exp(t/R) and flat coordinates cover only half
of the de Sitter manifold, all the events such that x0 + xd > 0. If we introduce the
characteristic function hT (x) = θ(ReT/2R − x0 − xd)θ(x0 + xd − Re−T/2R) then
we have to add the contribution coming from the other half, i.e., g(x) = gT (x) =
hT (x)+ hT (−x). With these premises we have found [27, 28] that in both models
the first factor in (59) diverges like T ; thus it has to be divided by T to extract a
finite result which is the same in both models:

lim
T→∞

γ2C(κ)
∫
g(x)|F(x)|2dx

T
∫
f(x)Wκ(x, y)f(y) dx dy

= γ2π coth(πκ)2

|κ| . (66)

Here the second (unforeseen) result comes in: in contrast to the Minkowskian
case the limiting probability per unit of time does not depend on the wavepacket!
This result seems to contradict what we see everyday in laboratory experiments, the
well known effect of special relativity of time dilation. Furthermore, in contrast with
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the violation of particle stability that is exponentially small in the de Sitter radius,
this phenomenon does not depend on how small the cosmological constant is. How
can we solve this paradox and reconcile the result with everyday experience? The
point is that the idea of probability per unit time (Fermi’s golden rule) has no
scale-invariant meaning in de Sitter: if we use the limiting probability to evaluate
amplitudes of processes that take place in a short time we get a grossly wrong result.
This is in strong disagreement with what happens in the Minkowski case where
the limiting probability is attained almost immediately (i.e., already for finite T ).
Therefore to describe what we are really doing in a laboratory we should not take the
limit T →∞ and rather use the probability per unit of time relative to a laboratory-
consistent scale of time. In that case we will recover all the standard wisdom even
in the presence of a cosmological constant. But, if an unstable particle lives a
very long time (>> R) and we can accumulate observations, then a nonvanishing
cosmological constant would radically modify the Minkowski result and de Sitter
invariant result will emerge. This result should not be shocking: after all erasing
any inhomogeneity is precisely what the quasi de Sitter phase is supposed to do
at the epoch of inflation; in the same way, from the viewpoint of an accelerating
universe, all the long-lived particles look as if they were at rest and so their lifetime
would not depend on their peculiar motion.

6. Anti-de Sitter

The study of quantum fields on the AdS spacetime has begun with the pioneering
approach of [30] whose main concern was to specify boundary conditions such
that the difficulties arising by the lack of global hyperbolicity of the underlyingAdS
manifold could be circumvented and the resulting QFT be well defined. Another,
earlier, approach was also given on the basis of group-theoretical methods [31]
following ideas that can be traced back to Dirac [32].

Both of these approaches have influenced very much the recent research on the
AdS/CFT subject. However, their applicability is more or less limited to free AdS
QFTs (even if they can produce useful ingredients for perturbative calculations)
and one may feel necessary setting the AdS/CFT debate on a more general basis
[11, 12] in which both AdS quantum fields and boundary CFTs would be treated
from the viewpoint of the structural properties of theirn-point correlation functions.

6.1. Notations and geometry

We consider the vector space R
d+2 equipped with the following pseudo-scalar

product:

X ·X′ = X0X′0 −X1X′1 − · · · −XdX′d +Xd+1X′d+1. (67)
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The (d + 1)-dimensional AdS universe can then be identified with the quadric

AdSd+1 = {X ∈ R
d+2, X2 = R2}, (68)

where X2 = X ·X, endowed with the induced metric

ds2AdS = (dX02 − dX12 − · · · + dXd+12
)|AdSd+1 . (69)

The AdS relativity group isG = SO0(2, d), that is the component connected to the
identity of the pseudo-orthogonal group O(2, d). Two events X, X′ of AdSd+1 are
space-like separated if (X−X′)2 < 0, i.e., if X ·X′ > R2.

We will also consider the complexification of AdSd+1:

AdS(c)d+1 = {Z = X+ iY ∈ C
d+2, Z2 = R2}. (70)

In other terms, Z = X + iY belongs to AdS(c)d+1 if and only if X2 − Y2 = R2 and
X · Y = 0. In the following we will put for notational simplicity R = 1.

Two parametrisations for the AdS manifold have a special status:

The ‘covering parametrization’ X = X[r, τ, e]: it is obtained by intersecting

AdSd+1 with the cylinders with equation {X02+Xd+12 = r2+ 1}, and is given by



X0 = √r2 + 1 sin τ

Xi = rei i = 1, . . . , d

Xd+1 = √r2 + 1 cos τ

(71)

with e2 ≡ e12 + · · · + ed
2 = 1 and r ≥ 0. For each fixed value of r, the corres-

ponding ‘slice’

Cr = AdSd+1 ∩ {X02 +Xd+12 = r2 + 1} (72)

of AdSd+1 is a manifold S1 × Sd−1. The complexified space AdS(c)d+1 is obtained
by giving arbitrary complex values to r, τ and to the coordinates e = (ei) on the
unit (d − 1)−sphere.

The parametrisation (71) allows one to introduce relevant coverings of AdSd+1

and AdS(c)d+1 by unfolding the 2π−periodic coordinate τ (resp. Reτ), interpreted as

a time-parameter: these coverings are denoted respectively by ÂdSd+1 and ÂdS
(c)

d+1.
A privileged ‘fundamental sheet’ is defined on these coverings by imposing the
condition −π < τ < π (resp. −π < Reτ < π). This procedure also associates
with each manifold Cr its covering Ĉr which is a cylinder Rτ×Sd−1e. We will use
the symbols X, Z, . . ., also to denote points of the coverings.
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Similarly one introduces a covering Ĝ of the group G by taking in G the
universal covering of the rotation subgroup in the (0, d+ 1)-plane. By transitivity,
AdSd+1 and ÂdSd+1 are respectively generated by the action of G and Ĝ on the
base point B = (0, . . . , 0, 1).

The physical reason which motivates the introduction of the covering ÂdSd+1,
that is the requirement of nonexistence of closed time-loops, also leads us to specify
the notion of space-like separation in ÂdSd+1 as follows: let X,X′ ∈ ÂdSd+1 and
let g an element of Ĝ such that X′ = gB; define Xg = g−1X.

X and X′ are space-like separated if Xg is in the fundamental sheet of ÂdSd+1
and (X− X′)2 ≡ (g−1X− g−1X′)2 < 0. This implies that Xg = Xg[r, τ, e] with
−π < τ < π and

√
r2 + 1 cos τ > 1.

It is also interesting to note that on each manifoldCr the condition of space-like
separation between two points X = X[r, τ, e] and X′ = X′[r, τ′, e′] reads (in view
of (71):

(X−X′)2 = 2(r2 + 1)(1− cos(τ − τ′))− r2(e− e′)2 < 0, (73)

and that the corresponding covering manifold Ĉr therefore admits a global causal
ordering which is specified as follows:

(τ, e) > (τ′, e′) iff τ − τ′ > 2Arcsin

(
(e− e′)2

4

r2

r2 + 1

)1
2

. (74)

The ‘Poincaré parametrization’ X = X(v, x): it only covers the part � of the
AdS manifold which belongs to the half-space {Xd + Xd+1 > 0} of the ambient
space and is obtained by intersecting AdSd+1 with the hyperplanes {Xd +Xd+1 =
ev = 1

u
}3, each slice �v (or ‘horosphere’) being an hyperbolic paraboloid:




Xµ = evxµ = 1

u
xµ µ = 0, 1, . . . , d − 1

Xd = sinh v+ 1

2
evx2 = 1− u2

2u
+ 1

2u
x2

Xd+1 = cosh v− 1

2
evx2 = 1+ u2

2u
− 1

2u
x2

(75)

with x2 = x02 − x12 − · · · − xd−12
. In each slice �v, x0, . . . , xd−1 can be seen as

coordinates of an event of a d-dimensional Minkowski spacetime M
d with metric

3The coordinate u = e−v is frequently called z in the recent literature. We are forced to change this
notation because we reserve the letter z to complex quantities. By also allowing negative values for u
the coordinate system (75) covers almost all the real manifold AdSd+1.
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ds2
M = dx02 − dx12 − · · · − dxd−12

(here and in the following where it appears,
an index M stands for Minkowski). This explains why the horocyclic coordinates
(v, x) of the parametrisation (75) are also called Poincaré coordinates. The scalar
product (1) and the AdS metric can then be rewritten as follows:

X ·X′ = cosh(v− v′)− 1

2
ev+v′(x− x′)2, (76)

ds2AdS = e2vds2M − dv2 = 1

u2 (ds
2
M − du2). (77)

Equation (76) implies that

(X(v, x)−X(v, x′))2 = e2v(x− x′)2. (78)

This in turn implies that space-like separation in any slice �v can be understood
equivalently in the Minkowskian sense of the slice itself or in the sense of the
ambient AdS universe.

Equation (77) exhibits the region� of AdSd+1 as a warped product with warp-
ing function ω(v) = ev and fibers conformal to M

d .
Finally, the representation of � by the parametrisation (71) is specified by

considering � as embedded in the fundamental sheet of ÂdSd+1; it is therefore
described by the following conditions on the coordinates r, τ, e:

−π < τ < π; red +
√
r2 + 1 cos τ > 0. (79)

The ‘Euclidean’submanifoldEd+1 of ÂdS
(c)

d+1 is the set of all pointsZ = X+iY
in ÂdS

(c)

d+1 such thatX = (0, X1, . . . , Xd+1), Y = (Y0, 0, . . . , 0) andXd+1 > 0. It
is therefore represented by the upper sheet (characterised by the conditionXd+1 >

0) of the two-sheeted hyperboloid with equationXd+12−Y02−X12−· · ·−Xd2 = 1.
Ed+1 is equally well represented in both parametrisations (71) and (75) as follows:

Z = Z[r, τ = iσ, e]; (r, σ, e) ∈ R× R× Sd−1 (80)

or

Z = Z(v, (iy0, x1, . . . , xd−1)); v ∈ R, (y0, x1, . . . , xd−1) ∈ R
d. (81)

In view of (80), Ed+1 is contained in the fundamental sheet of ÂdS
(c)

d+1.

For each v, the complexification �(c)v of the horosphere �v is parametrised
by formulae (6) in which x is replaced by the complex Minkowskian vector z =
x + iy = (z0, . . . , zd); the Euclidean submanifold of this complex Minkowskian
manifold is obtained as the intersection �(c)v ∩ Ed+1.
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6.2. Quantum field theory

Let us consider now a general QFT on ÂdSd+1; for simplicity we limit the present
discussion to one scalar field �(X); we present a simplified version of the theory
exposed in [10].A theory is completely determined by the set of all n-point vacuum
expectation values (or ‘Wightman functions’) of the field�, given as distributions
on the corresponding product manifolds (ÂdSd+1)

n:

Wn(X1, . . . Xn) = 〈�,�(X1) · · ·�(Xn)�〉. (82)

These distributions are supposed to be tempered when represented in the variables
of the covering parametrisation Xj = Xj[rj, τj, ej] and to satisfy a set of gen-
eral requirements, namely AdS invariance, positive-definiteness, hermiticity, local
commutativity, analyticity corresponding to an appropriate spectral condition and
‘dimensional boundary conditions’ at infinity.

The requirement of AdS invariance (corresponding to the scalar character of
the field) can be written as follows:

Wn(gX1, . . . gXn) =Wn(X1, . . . Xn) for any g ∈ Ĝ. (83)

The usual positivity and hermiticity properties [23] are valid for scalar QFTs on
any spacetime and we do not spell them out.

(a) Local commutativity.�(X) commutes (as an operator-valued distribution) with
�(X′) forX,X′ space-like separated in the sense of the covering space ÂdSd+1, as
defined above. As in the Minkowskian case, this postulate is equivalent to the coin-
cidence of permuted Wightman functions at space-like separation of consecutive
arguments Xj,Xj+1 [23].

(b) Analyticity corresponding to energy spectrum condition. Since the parameter
of the covering group of the rotations in the (0, d+1)-plane is interpreted as a gen-
uine time-translation for the observers in all the corresponding Killing trajectories,
and since the complexifications of these trajectories do not exhibit any geometrical

periodicity in ÂdS
(c)

d+1, we consider QFTs for which the corresponding infinitesi-
mal generator J0,d+1 is represented by a self-adjoint operator whose spectrum is
bounded from below. By using a standard Laplace transform argument in the corre-
sponding time-variables τ1, . . . , τn, one is led to formulate this spectral condition
by the following analyticity property of the Wightman functions:

Each tempered distribution Wn(X1[r1, τ1, e1], . . . , Xn[rn, τn, en]) is the boundary
value of a holomorphic function Wn(Z1, . . . , Zn) which is defined in a complex

neighbourhood of the set {Z = (Z1, . . . , Zn);Zj = Xj + iYj ∈ ÂdS
(c)

d+1; Zj =
Zj[rj, τj, ej]; Imτ1 < Imτ2 < · · · < Imτn}.

As a by-product, the Schwinger function Sn, that is the restriction of each Wn

to the Euclidean submanifold {(Z1, . . . , Zn) ∈ (Ed+1)
n; σ1 < σ2 < · · · < σn}, is

well-defined. See [10] for a more general setting.



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch03

66 U. Moschella

(c) Dimensional boundary conditions at infinity. By making use of the coordinates
(71) the following limits should exist in the sense of distributions:

lim
(r1,...,rn)→+∞

(r1 · · · rn)�Wn(X1[r1, τ1, e1], . . . , Xn[rn, τn, en])

=W∞n ([τ1, e1], . . . , [τn, en]). (84)

It is not true in general that a distribution Wn(X1, . . . Xn) can be restricted to
the submanifold

∏n
j=1 Ĉrj of (ÂdSd+1)

n (Cr was defined in Eq. (72)). The above
spectral condition b) implies that this can be done in the present framework.

Moreover, it is then natural to assume that the limit in Eq. (84) can be extrap-
olated to the holomorphic functions Wn in their tube domains Tn so that the
corresponding limits W∞n are themselves holomorphic in Tn and admit the corre-
sponding distributions W∞n as their boundary values on the reals. By restricting all
these holomorphic functions to the Euclidean manifolds τj = iσj, j = 1, . . . , n,
one then obtains a similar condition for the Schwinger functions Sn and the corre-
sponding limits S∞n .

As a special application of the previous framework, it is meaningful to consider
the restrictions of the distributions Wn to the submanifolds Ĉ×nr of ÂdS

×n
d+1 (i.e.,

to the case when all variables rj are equal to r). One then notices that the positivity
conditions satisfied by assumption by the distributions Wn on ÂdSd+1 can be
extended to test-functions of the variables τj and ej localized in these submanifolds
r1 = · · · = rn = r. The standard reconstruction procedure allows to say that
in each slice Ĉr the given field on ÂdSd+1 yields by restriction a well-defined
quantum field �r(τ, e). This field is obviously invariant under the product of the
translation group with time-parameter τ by the orthogonal group SO(d) of space
transformations acting on the sphere Sd−1 of the variables e. Moreover, it follows
from the locality postulate a) together with Eqs. (73) and (74) that the field�r also
satisfies local commutativity in the sense of the spacetime manifold Ĉr. Finally,
in view of b), the n-point functions of �r are (for each r) boundary values of
holomorphic functions of the complex variables τ1, . . . , τn in the tube Tn, which
shows that these theories satisfy a spectral condition with respect to the generator
of time-translations.

7. Correspondence with Conformal FieldTheories
on Ĉ2,d à la Lüscher–Mack

We shall now introduce the asymptotic cone C2,d (resp. C(c)2,d) of AdSd+1 (resp.

AdS(c)d+1) and wish to identify the limit (in the sense of Eq. (84)) of a QFT on ÂdSd+1

satisfying the previous properties with a QFT on the corresponding covering Ĉ2,d
of C2,d . To do this, we first notice that by adapting the covering parametrisation (71)
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of ÂdSd+1 to the case of its asymptotic cone, C2,d = {η = (η0, . . . , η(d+1)); η02−
η12 − · · · − ηd2 + ηd+12 = 0}, one readily obtains the following parametrisation:



η0 = r sin τ
ηi = rei i = 1, . . . , d
ηd+1 = r cos τ

(85)

with e12 + · · · + ed
2 = 1 and r ≥ 0, or in brief: η = η[r, τ, e].

The parametrisation (85) allows one to introduce the coverings Ĉ2,d and Ĉ(c)2,d

of C2,d and C(c)2,d by again unfolding the 2π−periodic coordinate τ (resp. Re τ).
A privileged ‘fundamental sheet’ is defined on these coverings by imposing the
condition −π < τ < π (resp. −π < Re τ < π).

We also note that the standard condition of space-like separation on C2,d is
similar to the condition chosen on the AdS spacetime, namely

(η− η′)2 = r2

[
4

(
sin

(
τ − τ′

2

))2

− (e− e′)2
]

= −2r2(cos(τ − τ′)− e · e′) < 0, (86)

and yields the corresponding global causal ordering on Ĉ2,d

(τ, e) > (τ′, e′) iff τ − τ′ > 2Arcsin

(
(e− e′)2

4

)1
2

. (87)

Note that in the space of variables (τ, τ′, e, e′), the region described by Eq. (87)
is exactly the limit of the region given by Eq. (74) when r tends to infinity.

By taking the intersection of C2,d with the family of hyperplanes with equation
ηd + ηd+1 = ev, one obtains the analogue of the horocyclic parametrisation (75),
namely:




ηµ = evxµ µ = 0, 1, . . . , d − 1

ηd = 1

2
ev(1+ x2) x2 = x02 − x12 − · · · − xd−12

ηd+1 = 1

2
ev(1− x2),

(88)

which implies the following identity (similar to (76)) between quadratic forms:

(η− η′)2 = ev+v′(x− x′)2. (89)

By taking Eq. (85) into account, one then sees that these formulae correspond
(in dimension d) to the embedding of Minkowski space into the covering of the cone
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C2,d , namely one has (in view of the identification ηd+ηd+1 = ev = r(ed+cos τ)):

x0 = sin τ

cos τ + ed
, xi = ei

cos τ + ed
, (90)

with

cos τ + ed > 0, −π < τ < π. (91)

Let us now consider a general QFT on ÂdSd+1 whose Wightman functions Wn

satisfy AdS invariance together with the properties (a), (b) and (c) described in the
previous section. In view of (c), we can associate with the latter the following set
of n-point distributions W̃n(η1, . . . , ηn) on Ĉ2,d :

W̃n(η1, . . . , ηn) = (r1 · · · rn)−�W∞n ([τ1, e1], . . . , [τn, en]). (92)

At first, one can check that the set of distributions W̃n satisfy the required positivity
conditions for defining a QFT on Ĉ2,d . This is because, in view of postulate (c)
(applied with all rj equal to the same r), the distributions W∞n appear as the limits
of the n-point functions of the QFT’s on the spacetimes Ĉr when r tends to infinity.
The positivity conditions satisfied by the latter are then preserved in the limit, in
terms of test-functions of the variables τj and ej , and then extended in a trivial
way into the radial variables rj as positivity conditions for the distributions on the
cone Ĉ2,d (by using the appropriate test-functions homogeneous in the variables
rj [33]).

It follows from the reconstruction procedure [23] that the set of distributions
W̃n define a quantum field Õ(η) on Ĉ2,d . Õ(η) enjoys the following properties:

Local commutativity: Since the region (87) is the limit of (74) for r tending to
infinity, it results from the boundary condition (c) and from the local commutativity
of all fields �r in the corresponding spacetimes Ĉr that the field Õ(η) satisfies
local commutativity on Ĉ2,d .

Spectral condition: In view of our postulate (c) extended to the complex domain
Tn in the variables τ, we see that the n-point distributions W̃n(η1, . . . , ηn) are
boundary values of holomorphic functions in the same analyticity domains of
(Ĉ(c)2,d)

n as those of the Lüscher–Mack field theories [33].

It is possible to show [11] that the Ĝ-invariance (83) of the AdS n-point func-
tions, together with the properties (a), (b), (c), imply the conformal invariance of the
field Õ(η); more precisely, the Wightman functions W̃n of this field are invariant
under the action on Ĉ2,d of the group Ĝ, now interpreted as in [33] as the ‘quantum
mechanical conformal group’, namely that one has:

W̃n(gη1, . . . , gηn) = W̃n(η1, . . . , ηn) (93)

for all g in Ĝ.
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We can then summarise the results of [11] this section by the following state-
ment: The procedure we have described (expressed by Eqs. (84) and (92)) displays
a general AdS/CFT correspondence for QFTs:

�(X)→ Õ(η) (94)

between a scalar (AdS invariant) quantum field �(X) on the covering ÂdSd+1 of
AdSd+1 whose Wightman functions satisfy the properties (a), (b), (c), and a con-
formally invariant local field Õ(η) on the covering Ĉ2,d of the cone C2,d , enjoying
the Lüscher–Mack spectral condition; the degree of homogeneity (dimension) �
of Õ(η) is equal to the asymptotic dimension of the AdS field �(X).

Of course, from this general point of view, the correspondence may a priori
be many-to-one. Finally, according to the formalism described in [33], the corre-
spondence (94) can be completed by saying that there exists a unique conformal
(Minkowskian) local field O(x) of dimension� whose n-point functions WM

n are
expressed in terms of those of Õ(η) by the following formulae:

WM
n (x1, . . . , xn) = e(v1+···+vn)�W̃n(η1, . . . , ηn)

= �1≤j≤n(ηdj + ηd+1
j )�W̃n(η1, . . . , ηn). (95)

In the latter, the Minkowskian variables xj are expressed in terms of the cone
variables ηj by inverting (88), which yields:

x
µ
j =

η
µ
j

ηdj + ηd+1
j

. (96)

8. Two-Point Functions

8.1. The analytic structure of two-point functions
on the AdS spacetime

It turns out that in all field theories on ÂdSd+1 satisfying the general requirements
described in subsection 2.2, the two-point function enjoys maximal analyticity
properties in all the coordinates, as it is the case for the Minkowski [23] and
de Sitter cases [8]. A full proof of these results will be found in [10]. We shall only
give here a descriptive account of them, needed for further applications. Since, in
particular, AdS covariance and the ‘energy spectrum condition’ are responsible for
this maximal analytic structure; we shall consider this general class of two-point
functions as ‘preferred’.

There are two distinguished complex domains of AdS(c)d+1, invariant under real
AdS transformations, which are of crucial importance for a full understanding of
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the structures associated with two-point functions. They are given by:

T+ = {Z = X+ iY ∈ AdS(c)d+1; Y2 > 0, ε(Z) = +1
}
,

T− = {Z = X+ iY ∈ AdS(c)d+1; Y2 > 0, ε(Z) = −1
}
, (97)

where

ε(Z) = sign(Y0Xd+1 −X0Yd+1). (98)

T+ and T− are the AdS version of the usual forward and backward tubes T+M
and T−M of complex Minkowski spacetime, obtained in correspondence with the
energy-momentum spectrum condition [23]; let us recall their definition (in arbi-
trary spacetime dimension p):

T+M = {z = x+ iy ∈M
p(c); y2 > 0, y0 > 0},

T−M = {z = x+ iy ∈M
p(c); y2 > 0, y0 < 0}. (99)

In the same way as these Minkowskian tubes are generated by the action of real
Lorentz transformations on the ‘flat’ (one complex time-variable) domains {z =
x + iy; y = (y0, �0); y0 > 0(resp. y0 < 0)}, the domains (97) of AdS(c)d+1 are
generated by the action of the group G on the flat domains obtained by letting τ
vary in the half-planes Imτ > 0 or Imτ < 0 and keeping r and e real in the covering
parametrisation (71) of the AdS quadric. In fact, by using the complex extension of
this parametrisation and putting r = sinh(ψ+ iφ), τ = Reτ+ iσ one can represent
the domains (97) by the following semi-tubes (invariant under translations in the
variable Re τ):

± sinh σ >

[
(sin φ)2 + ((coshψ)2 − (cosφ)2)(Im e)2

(coshψ)2 − (sin φ)2

] 1
2

(100)

This representation (which clearly contains the previously mentioned flat domains)
can be thought of, either as representing the domains (97) of AdS(c) if τ is identified

to τ+ 2π, or coverings of the latter embedded in ÂdS
(c)

d+1, which we denote by T̂+
and T̂−, if one does not make this identification.

One typical property of Wightman’s QFT [23] is that any two-point distribution
WM(x, x

′) satisfying the spectral condition is the boundary value of a function
WM(z, z

′) holomorphic for z ∈ T−M and z′ ∈ T+M . An analogous property also holds
for n-point functions.

It is a consequence of AdS invariance together with the spectrum assump-
tion (b) [10] that, also in the AdS spacetime, general two-point functions can be
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characterised by the following global analyticity property which plays the role of
a G-invariant spectral condition:

(b(inv))Normal analyticity condition for two-point functions: the two-point function
W(X,X′) is the boundary value of a function W(Z,Z′) which is holomorphic in

the domain T̂− × T̂+ of ÂdS
(c)

d+1 × ÂdS
(c)

d+1.

A further use of AdS invariance implies that W(Z,Z′) is actually a function
w(ζ) of a single complex variable ζ; this variable ζ can be identified with Z · Z′
when Z and Z′ are both in the fundamental sheet of ÂdS

(c)

d+1; AdS invariance and
the normal analyticity condition together imply the following:

Maximal analyticity property:w(ζ) is analytic in the covering �̂ of the cut-plane
� = {C \ [−1, 1]}.

For special theories which are periodic in the time coordinate τ, w(ζ) is in
fact analytic in� itself. One can now introduce all the usual Green functions. The
‘permuted Wightman function’ W(X′, X) = 〈�,�(X′)�(X)�〉 is the boundary
value ofW(Z,Z′) from the domain {(Z,Z′) : Z ∈ T̂+, Z′ ∈ T̂−}. The commutator
function is then C(X,X′) = W(X,X′) − W(X′, X). The retarded propagator
R(X,X′) is introduced by splitting the support of the commutator C(X,X′) as
follows

R(X,X′) = iθ(τ − τ′)C(X,X′). (101)

The other Green functions are then defined in terms of R by the usual formulae: the
advanced propagator is given by A = R− iC while the chronological propagator
is given by F = −iA+W .

Note finally that, as a function of the single variable ζ = X · X′, the jump
iδw(ζ) of iw(ζ) across its cut (−∞,+1] coincides with the retarded propagator
R(X,X′) (or the advanced one); in the periodic (i.e., ‘true AdS’) case, the support
of δw reduces to the compact interval [−1,+1].

8.2. The simplest example revisited: Klein–Gordon fields in the
AdS/CFT correspondence

The Wightman functions of fields satisfying the Klein–Gordon equation AdSd+1

�AdS�+m2� = 0. (102)

display the simplest example of the previous analytic structure:

Wν(Z,Z
′) = wν(ζ) = e−iπ d−1

2

(2π)
d+1

2

(ζ2 − 1)−
d−1

4 Q
d−1

2

ν− 1
2
(ζ). (103)
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HereQ is a second-kind Legendre’s function; the parameter ν is linked to the field’s
mass by the relation

ν2 = d2

4
+m2. (104)

and the normalisation of Wν is chosen by imposing the short-distance Hadamard
behaviour.

Since Wν(Z,Z
′) and W−ν(Z,Z′) are solutions of the same Klein–Gordon

equation (and share the same analyticity properties), the question arises if these
Wightman function both define acceptable QFTs on AdSd+1. The answer [34] is
that only theories with ν ≥ −1 are acceptable and there are therefore two regimes:
for ν > 1 there is only one field theory corresponding to a given mass while for
|ν| < 1 there are two theories. The case ν = 1 is a limit case. Eq. (103) shows clearly
that the only difference between the theories parametrised by opposite values of ν
is in their large distance behaviour:

w−ν(ζ) = wν(ζ)+ sin πν

(2π)
d+1

2

�

(
d

2
− ν
)
�

(
d

2
+ ν
)
(ζ2 − 1)−

d−1
4 P
− d−1

2

− 1
2−ν

(ζ).

(105)

Now we notice that in this relation (where all terms are solutions of the same
Klein–Gordon equation) the last term is regular on the cut ζ ∈ [−1, 1]. This
entails (reintroducing the AdS radius R) that, in the two theories, the c-number
commutator [�(X),�(X′)] takes the same value for all (time-like separated) vec-
tors (X,X′) such that |X · X′| < R2. Therefore we can say that the two theories
represent the same algebra of local observables at short distances (with respect
to the radius R). But since the last term in the latter relation grows the faster
the larger is |ν| we see that the two theories drastically differ by their long range
behaviours.

The existence of the two regimes above has given rise to two distinct treatments
of the AdS/CFT correspondence in the two cases and symmetry breaking had been
advocated to explain the difference.

In the present context, by applying the correspondence as given in Eq. (94),
the two regimes can be treated in one stroke. Indeed the large ζ behaviour of the
Legendre’s function Q (valid for any complex ν):

Q
d−1

2

ν− 1
2
(ζ) � eiπ d−1

2 2−ν−
1
2

�
(
ν + d

2

)

�(ν + 1)
π

1
2 ζ−

1
2−ν. (106)

It follows that the two-point function (103) and thereby all the n-point functions of
the corresponding Klein–Gordon field satisfy the dimensional boundary conditions
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at infinity with dimension � = d
2 + ν. Indeed, let τ and τ′ be complex and such

that Imτ < Imτ′. It follows that

W∞ν ([τ, e], [τ′, e′]) = lim
r,r′→∞

(rr′)
d
2+νWν(Z[τ, r, e], Z′[τ′, r′, e′])

= 2−ν−1

(2π)
d
2

�
(
ν + d

2

)

�(ν + 1)

1

[cos(τ − τ′)− e · e′] d2+ν
. (107)

This equation expresses nothing more than the behaviour of the previous Legendre’s
function at infinity. Not only all the ν’s are treated this way in one stroke but, also,
one can study the boundary limit for theories corresponding to ν < −1, even if the
corresponding QFT may have no direct physical interpretation.

The two-point function of the conformal field Õ(η) on the cone Ĉ2,d corre-
sponding to (107) is then constructed by following the prescription of Eq. (92),
which yields

W̃ν(η, η
′) = (rr′)−

d
2−νW∞ν ([τ, e], [τ′, e′])

= 1

2π
d
2

�
(
ν + d

2

)

�(ν + 1)

1

[−(η− η′)2] d2+ν
. (108)

Correspondingly, we can deduce from (108) the expression of the two-point func-
tion of the associated Minkowskian field on M

d , given by formula (95); by taking
Eq. (89) into account, we obtain:

WM
ν (z, z

′) = e(v+v′)
(
d
2+ν
)
W̃ν(η(v, z), η

′(v′, z′))

= 1

2π
d
2

�
(
ν + d

2

)

�(ν + 1)

1

[−(z− z′)2] d2+ν
. (109)

In the latter, the Poincaré coordinates z and z′ must be taken with the usual iε-
prescription (Im z0 < Im z′0), which can be checked to be implied by the spectral
condition (b) of section 2 through the previous limiting procedure.

Let us now describe how the previous limiting procedure looks in the Poincaré
coordinates (75). These coordinates offer the possibility of studying directly the
boundary behaviour of the AdS Wightman functions in a larger domain of the com-
plex AdS spacetime. This fact is based on the following simple observation: con-
sider the parametrisation (75) for two points with complex parameters specified by

Z = Z(v, z), v ∈ R, z ∈ T−M
Z′ = Z′(v′, z′), v′ ∈ R, z′ ∈ T+M. (110)
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It is easy to check that this choice of parameters implies that Z ∈ T− and Z′ ∈
T+. It follows that, given an AdS invariant two-point function satisfying locality
and the normal analyticity condition b(inv), the following restriction automatically
generates a local and (Poincaré) covariant two-point function on the slice�v, which
satisfies the spectral condition [23] (in short: the two-point function of a general
Wightman QFT):

WM{v}(z, z′) = W(Z(v, z), Z′(v, z′)). (111)

On the basis of the dimensional boundary condition (84), and of the fact (obtained

by comparing (71) and (75)) that e
v

r
=
√

1+ 1
r2

cos τ + ed tends to the finite limit

cos τ+ ed when r tends to infinity, one sees that the following limit exists and that
it yields (in view of (92) and (95)):

lim
v→+∞ e

2v�WM{v}(z, z′) = WM(z, z′). (112)

The limiting two-point function WM(z, z′) then automatically exhibits locality,
Poincaré invariance and the spectral condition. The invariance under special con-
formal transformations and scaling property would necessitate a special check,
but they result from the general statement of conformal invariance of the limiting
field Õ(η).

When applied to the Wightman functions of Klein–Gordon fields (i.e., with
� = d

2 + ν), the latter presentation of the limiting procedure gives immediately
the result obtained in Eq. (109) but in a larger complex domain:

lim
v→∞ e

2v
(
d
2+ν
)
Wν(Z(v, z), Z

′(v, z′)) = 1

2π
d
2

�
(
ν + d

2

)

�(ν + 1)

1

[−(z− z′)2] d2+ν
.

(113)

In a completely similar way one can compute the bulk-to-boundary correla-
tion function by considering a two-slice restriction Wν(Z(v, z), Z

′(v′, z′)) of Wν.
The bulk-to-boundary correlation function is obtained by sending v′ → ∞ while
keeping v fixed, by the following limit:

lim
v′→∞

e
v′
(
d
2+ν
)
Wν(Z(v, z), Z

′(v′, z′))

= 1

2π
d
2

�
(
ν + d

2

)

�(ν + 1)

1

(e−v − ev(z− z′)2) d2+ν

= 1

2π
d
2

�
(
ν + d

2

)

�(ν + 1)

(
u

u2 − (z− z′)2
) d

2+ν
. (114)
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The above results suggest the following alternative approach to the AdS/CFT
correspondence. Starting from a given set of AdS invariant n-point functions
satisfying general requirements it is (at least formally) possible to obtain a set of
Poincaré invariant n-point functions in one-dimension less by taking the following
restrictions [10]:

WM
n{v}(x1, . . . , xn) =Wn(X1(v, x1), . . . Xn(v, xn)). (115)

On the basis of the requirement of asymptotic dimensionality (c) the boundary will
be obtained by taking the following limits:

WM
n (x1, . . . , xn) = lim

v→∞ e
nv�WM

n{v}(x1, . . . , xn). (116)

One can also consider a many-leaf restriction as follows:

Wn{vm+1,...,vn}(X1, . . . , Xm, xm+1, . . . , xn)

=Wn(X1, . . . Xm,Xm+1(vm+1, xm+1), . . . , Xn(vn, xn)), (117)

and get various bulk-to boundary correlation functions by taking the limit as before:

Wn(X1, . . . , Xm, xm+1, . . . , xn)

= lim
vm+1,...,vn→∞

e(vm+1+···+vn)�Wn{vm+1,...,vn}(X1, . . . , Xm, xm+1, . . . , xn).

(118)

Restricting ourselves here to the limiting procedure described by Eq. (116), we
then see that the general AdS/CFT correspondence for QFTs described in Section 3
can alternatively be presented purely in terms of a limit of Minkowskian fields,
denoted as follows:

�(X)→ {ϕv(x)} → O(x), (119)

where each field ϕv(x) is the scalar Minkowskian field whose n-point correlation
functions are those given by (115).

There is a substantial difference between two-point and n-point functions. In
fact, in view of their maximal analyticity property the two-point functions admit
restrictions to the slices�v which are themselves boundary values of holomorphic
functions in relevant Minkowskian complex domains of the corresponding com-
plexified slices�(c)v : in this case there is therefore no problem of restriction of the
distribution W2 to �v ×�v.

As regards the n-point correlation functions, the existence of the restric-
tions (115) as distributions on (�v)

n is not an obvious consequence of the
requirements (a), (b), (c) of Section 2. Only the existence of the corresponding
restrictions at Euclidean points of (�(c)v )n (namely the Schwinger functions of
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these Minkowskian theories) are direct consequences of the spectral condition (b)
we have assumed: this is because changing τ into iσ in (71) or changing x0 into iy0

in (75), all other parameters being kept real, yield two equivalent representations

of the Euclidean points of ÂdS
(c)

d+1.
As a matter of fact, in order to be able to define the restrictions (115) as dis-

tributions enjoying the full structure of Minkowskian n-point functions, namely
as distribution boundary values of holomorphic functions in relevant domains of
(�

(c)
v )

n, one is led to use instead of (b) an alternative spectral condition in which the
positivity of the spectrum refers to the representation of a d-dimensional Abelian
subgroup ofG playing the role of the Minkowskian translation group with respect
to the slices �v.

Let us briefly sketch the construction. Using the horocyclic parametrisation
of Eq. (75), we can lift the action of the Poincaré group as follows. Consider the
standard action of the Poincaré group on the Minkowski spacetime coordinates:
x′µ = �µν xν+ aµ, µ = 0, 1, . . . , d− 1. By plugging this relation into Eq. (75) we
promptly obtain the following relation:



X′µ = �µν Xν + (Xd +Xd+1)aµ

X′d =
(

1+ a
2

2

)
Xd + aµ�µν Xν +Xd+1 a

2

2

X′d+1 =
(

1− a
2

2

)
Xd+1 − aµ�µν Xν −Xd a

2

2

, (120)

where Greek indices are raised and lowered with the standard Minkowski metric.
In matrix form we get

g(�, a) =




� a a

�aT
(

1+ a
2

2

)
a2

2

−�aT −a
2

2

(
1− a

2

2

)



. (121)

Among such transformations there is the Abelian subgroup of Poincaré translations
g(I, a). The corresponding generators

Pµ ≡ (Xd +Xd+1)
∂

∂Xµ
+Xµ

(
∂

∂Xd
− ∂

∂Xd+1

)
(122)

of these transformations form an Abelian algebra. The AdS spectral condition (b)
of Section 2 should then be supplemented by the following one:

(b′) Spectral condition: the infinitesimal generators Pµ are represented by
(commuting) self-adjoint operators whose joint spectrum is contained in the
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forward light-cone V+ = {pµpµ ≥ 0, p0 ≥ 0} of a d-dimensional Minkowski
momentum space.

By using a Laplace transform argument [23] in the corresponding vector variables
x1, . . . , xn one can see that this spectral condition implies the following analyticity
property of the Wightman functions:

Analyticity corresponding to the spectrum of Poincaré translations: each AdS dis-
tribution Wn(X1(v1, x1), . . . , Xn(vn, xn)) is the boundary value of a holomorphic
function Wn(Z1(v1, z1), . . . , Zn(vn, zn)) which is defined in the tube

Tn = {Z = (Z1, . . . , Zn) ∈ AdS(c)d+1; Zj = Zj(vj, zj); v1, . . . , vn ∈ R,

Im(zj+1 − zj) ∈ V+, j = 1, . . . , n− 1}. (123)

Property (b′) implies in particular that it is meaningful to consider the restricted
distributions WM

n{v} given in Eq. (115). The Poincaré invariance of WM
n{v} follows

immediately by Eq. (120). Furthermore, the positive-definiteness of this family
of distributions is induced as before by the analogous property satisfied by the
distributions Wn on ÂdSd+1.

Under these conditions the reconstruction procedure is now justified and the
given field on ÂdSd+1 yields by restriction a well-defined quantum field ϕv(x).

Moreover, it follows from the locality postulate (a) together with Eq. (78) that
the field ϕv also satisfies standard local commutativity in �v. Finally, in view of
(b′), the n-point functions of ϕv are (for each v) boundary values of holomorphic
functions in the tube domains TMn of Wightman’s QFT. This shows that these the-
ories satisfy a standard energy-momentum spectrum condition (with respect to the
generators of spacetime translations). The conformal covariance of the boundary
field O(x) results from the general analysis of the previous section.
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Overview

General relativity does not allow one to specify the topology of space, leaving
the possibility that space is multiply rather than simply connected. We review
the main mathematical properties of multiply connected spaces, and the different
tools to classify them and to analyse their properties. Following their mathematical
classification, we describe the different possible multiconnected spaces which may
be used to construct Fridemann–Lemaître universe models. Observational tests
concern the distribution of images of discrete cosmic objects or more global effects,
mainly those concerning the cosmic microwave background. According to the
2003–2006 WMAP data releases, various deviations from the flat infinite universe
model predictions hint at a possible non-trivial topology for the shape of space. In
particular, a finite universe with the topology of the Poincaré dodecahedral spherical
space fits remarkably well with the data and is a good candidate for explaining
both the local curvature of space and the large angle anomalies in the temperature
power spectrum. Such a model of a small universe, whose volume would represent
only about 80% the volume of the observable universe, offers an observational
signature in the form of a predictable topological lens effect on the one hand, and
raises new issues about the physics of the early universe on the other hand.

1. The Four Scales of Geometry

The forms which nature takes are limited by certain constraints. The first constraint
is imposed by the three-dimensional character of space (I am referring here to the
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usual three dimensions of length, width and depth, while being aware that recent
theories invoke the existence of extra spatial dimensions which are only detectable
on very small distance scales). Space is not a passive background, rather it has a
structure which influences the shape of all existing objects. Every material form
pays tribute to the rules dictated by the architecture of space.

The true architecture of space, and the constraints which it imposes, are still
unknown. We can however reach a better understanding of the Universe by delv-
ing into the large range of abstract spaces arising in geometry, and by studying
their local as well as their global structure. It is true that a mental image of non-
Euclidean space eludes most of laymen, but geometry provides us with a consistent
mathematical description.

Which mathematical space is capable of representing real physical space? The
problem is much more complicated than it would appear. The microscopic and
macroscopic worlds are profoundly different from the space of our immediate
surroundings. The question of a geometric representation of space arises on four
different levels, or, as the physicists say, four scales. These are microscopic, local,
macroscopic and global.

On a local scale, that is to say for distances of between 10−18 metre (the
distance now accessible to experimentation in particle accelerators) and 1011

metres (approximately the Earth–sun distance), the geometry of space is very well
described by that of ordinary, three-dimensional Euclidean space E3. ‘Very well’
means that this mathematical structure serves as a natural framework for those
physical theories, like classical mechanics and special relativity, which account
satisfactorily for the quasi totality of natural phenomena.

On a macroscopic scale, that is to say for distances beween 1011 and 1025

metres, the geometry of space is better described as non-Euclidean, or, more accu-
rately, as a continuous Riemannian manifold (a three-dimensional generalisation
of a surface with variable curvature). Such a space is curved to a greater or lesser
extent by massive bodies (in the vicinity of exceptionally massive or dense bodies,
like black holes, the effects of curvature can be felt over distances of a few metres
only.) The physical framework is Einstein’s General Theory of Relativity, in which
the spacetime structure is more satisfactorily explained in terms of a supple, elastic
fabric, gravitational phenomena being the manifestation of the non-zero curvature
of the manifold.

On infinitesimally small distance scales, that is for distances less than 10−18

metre, we are into the realm of unexplored microscopic space. Neither power-
ful electron microscopes nor high energy particle accelerators can probe its most
detailed structure. Here, geometric models only exist in the form of speculative
theories. This microscopic space could reveal special geometric properties. What
is it really made of? Do ‘grains’ of space, analogous to the grains of energy in
quantum physics, actually exist? Imaginative theorists, like Paul Dirac and John
Wheeler, took this idea further by treating space like a collection of grains or soap
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bubbles. In their view, space is not simply a passive coordinate system. As a magi-
cal substance, whose curvature, granularity and excitations determine the masses,
charges and fields of particles, it plays an active role in creating the material world.
For example, space may be perturbed by fluctuations which permanently modify its
shape, and make it extremely complicated — unstable, discontinuous and chaotic.
It might even possess extra hidden dimensions.

These highly speculative topics, whose study is now well underway, will be
among the stakes in tomorrow’s physics. I shall not be looking into them here, as we
are mainly concerned with the widest perspective on the universal fabric of space.
There, no lesser surprises await us. It is not yet known whether space is infinite,
with zero or negative curvature; or whether it is finite, with a positive curvature, like
a multidimensional sphere. Strangest of all would be a ‘wraparound’ space, that
is one folded back on itself. Such a space could be finite while being flat or neg-
atively curved. Treating these global aspects of space requires a new discipline, a
mixture of advanced mathematics and subtle cosmological observations: Cosmic
Topology.

2. Curvature vs.Topology

The origins of topology go back to a riddle posed by the idle rich Prussians of the
city of Königsberg, constructed around the branches of the Pregel river. The riddle
consisted of deciding if, from any point in the city, it was possible to take a stroll in
a closed loop while crossing once, and once only, each of the seven bridges which
span the branches of the Pregel. The riddle was solved by the famous mathematician
Leonhard Euler, who, in 1736, gave the necessary conditions which would allow
such a route and, since the configuration of the bridges did not satisfy these rules,
he proved that it was impossible to cross all seven bridges in a single trip.

Most important, Euler pointed out that, for the first time in the history of
mathematics, one was dealing with a geometrical problem which had nothing to
do with the metrics. The only important factors were the relative positions of the
bridges. Indeed, if we trace the map of the city on a rubber sheet, and if we stretch
or squeeze it in any direction without puncturing, cutting or tearing it, the nature
of the problem is absolutely unchanged.

The solution given by Euler perfectly illustrates the two complementary aspects
of geometry as the science of space: the ‘metric’part deals with the properties of dis-
tance, while the ‘topological’part studies the global properties, without introducing
any measurements. The topological properties are those which remain insensitive
to deformations, provided that these are continuous: with the condition of not cut-
ting, piercing or gluing space, one can stretch it, crush it, or knead it in any way,
and one will not change its topology, for example the fact that it is finite or infinite,
the fact that it has holes or not, the number of holes if it has them, etc. It is easy to
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see that although continuous deformations may move the holes in a surface, they
can neither create nor destroy them. Thus for a topologist, there is no difference
between a rugby ball and a soccer ball. Worse, a ring and a coffee cup are one and
the same object, characterised by a hole through which one can pass one’s finger.
On the other hand, a mug and a bowl are radically different on the level of topology,
since a bowl does not have a handle.

Topology holds quite a few surprises. Let us take the Euclidean plane: it is
an infinite two-dimensional page, that one visualises most often within a three-
dimensional space, although it has no need for this embedding to be perfectly
well defined in an intrinsic way. The local geometry of the plane is determined
by its metric, that is to say by the way in which lengths are measured. Here,
it is sufficient to apply the Pythagorean theorem for a system of two rectilinear
coordinates covering the plane: ds2 = dx2 + dy2. This is a local measurement
which says nothing about the finite or infinite character of space. Now let us change
the topology. To do so, we take the plane and cut a strip of infinite length in one
direction and finite width in the other. We then glue the two sides of the strip: we
obtain a cylinder, a tube of infinite length. In this operation, the metric has not
changed: the Pythagorean theorem still holds for the surface of the cylinder. The
‘intrinsic’ curvature of the cylinder is therefore zero. This may appear surprising,
since one has the impression that there is a non-zero curvature ‘somewhere’, whose
radius would be the radius of the cylinder. However, this ‘somewhere’ calls into
play a space exterior to the cylinder: the one in which we visualise it. In this sense,
the cylinder has a so-called ‘extrinsic’curvature. Nevertheless, a flat creature, some
sort of geometric paramecium living on the surface, would have access neither
to this exterior space of higher dimension, nor to the extrinsic curvature of the
cylinder. Tied to its two-dimensional space, it could make all of the necessary
verifications (for instance measuring the sum of the angles in a triangle or the ratio
of the circumference of a circle to its radius), and it would detect no difference
with respect to the Euclidean metric of the infinite plane. The cylinder is said to be
locally Euclidean.

Nevertheless, the cylinder differs from the plane in many respects. Certainly,
its area is infinite, just like the plane, but it possesses a finite circumference in
the direction perpendicular to its symmetry axis. In other words, the cylinder is
anisotropic: not all directions are equivalent; following the length of a straight
line parallel to the axis, one moves off toward infinity, while if one moves in the
perpendicular direction, one returns to the departure point. In the operation of
constructing a cylinder from a section of the plane, some of the global properties
have changed; the cylinder thus has a different topology than that of the plane,
while having the same metric. Its most remarkable characteristic is the existence of
an infinite number of ‘straight lines’ which join two arbitrary distinct points on the
cylinder: those which make 0, 1, 2 . . . turns around the cylinder. Viewed in three
dimensions, these straight lines are helices with constant spacing.
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Let us continue with our cutting and gluing game. Take a tube of stretchable
rubber, of finite length, and glue its two ends edge-to-edge. This is strictly equiv-
alent to starting with a rectangle and gluing its opposite edges two by two. We
obtain a torus, a surface having the shape of a ring or an inner tube. Here, a new
difficulty arises. A real inner tube, just like the cylindrical tube, can be materialised
in normal three-dimensional space; it therefore has an extrinsic curvature. How-
ever, in contrast to the tube, the inner tube also has a non-zero intrinsic curvature,
which varies in different regions: sometimes positive, sometimes negative. How-
ever the toric surface obtained by identifying the opposite sides of a rectangle has
an intrinsic curvature which is everywhere zero. This flat torus, a surface whose
global properties are identical to those of a ring but whose curvature is everywhere
zero, cannot be viewed within our usual three-dimensional space (it can only be
embedded into E4). Yet one can describe all of its properties without exception;
its area is finite in the sense that it is impossible to move infinitely far away from
one’s departure point, and it is not isotropic, since two of its directions, named
the principal directions, are privileged. Let us imagine a creature living on a flat
torus, moving straight ahead along a principal direction; she communicates via
light rays with her departure point, in such a way that she can calculate the distance
travelled; at a certain moment, this distance attains a maximum, and then begins
to decrease; after having made a complete circuit, the creature has returned to her
point of departure. She would conclude from this that she lives in a space of finite
extent. Nevertheless, by having measured the sum of the angles in a triangle in
these surroundings, she has still found 180 degrees, because of which she would
also deduce that she lives in a Euclidean plane. The metric (local geometry) of the
flat torus is still given by the Pythagorean theorem, just like that of the plane and
the cylinder.

Through simple cutting and re-gluing of parts of the plane, we have thus defined
two surfaces with different topologies than the plane: the cylinder and the flat torus,
which however belong to the same family, the locally Euclidean surfaces. The
gluing method becomes extremely fruitful when the surfaces are more complicated.
Let us take two tori and glue them to form a ‘double torus’. As far as its topological
properties are concerned, this new surface with two holes can be represented as an
eight-sided polygon (an octagon), which can be understood intuitively by the fact
that each torus was represented by a quadrilateral. But this surface is not capable of
paving the Euclidean plane, for an obvious reason: if one tries to add a flat octagon
to each of its edges, the eight octagons will overlap each other. One must therefore
curve in the sides and narrow the angles, in other words pass to a hyperbolic space:
only there does one succeed in fitting eight octagons around the central octagon, and
starting from each of the new octagons one can construct eight others, ad infinitum.
By this process one paves an infinite space: the Lobachevsky hyperbolic plane.

More generally, a two-dimensional n-torus Tn is a torus with n holes. Tn can
be constructed as the connected sum of n simple tori. The n-torus is therefore



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch04

86 J.-P. Luminet

topologically equivalent to a connected sum of n squares whose opposite edges
have been identified. This sum is itself topologically equivalent to a 4n-gon where
all the vertices are identical with each other and the sides are suitably identified
by pairs. Such an operation is not straightforward when n ≥ 2. All the vertices of
the polygon correspond to the same point of the surface. Since the polygon has
at least eight edges, it is necessary to make the internal angles thinner in order to
fit them suitably around a single vertex. This can only be achieved if the polygon
is represented in the hyperbolic plane H2 instead of the Euclidean plane E2: this
increases the area and decreases the angles. The more angles to fit together, the
thinner they have to be and the greater the surface. The n-torus (n ≥ 2) is therefore
a compact surface of negative curvature. This type of surface is most commonly
seen at bakeries, in the form of pretzels. We call them ‘hyperbolic pretzels’. They
all have the same local geometry, of hyperbolic type; however, they do not have
the same topology, which depends on the number of holes.

When one deals with more than two dimensions, the gluing method remains the
simplest way to visualise spaces. By analogy with the two-dimensional case, the
three-dimensional simple torus T3 (also referred to as the hypertorus) is obtained
by identifying the opposite faces of a parallelepiped. The resulting volume is finite.
Let us imagine a light source at our position, immersed in such a structure. Light
emitted backwards crosses the face of the parallelepiped behind us and reappears
on the opposite face in front of us; therefore, looking forward we can see our back.
Similarly, we see in our right our left profile, or upwards the bottom of our feet.
In fact, for light emitted isotropically, and for an arbitrarily large time to wait, we
could observe ghost images of any object viewed arbitrarily close to any angle. The
resulting visual effect would be comparable (although not identical) to what could
be seen from inside a parallelepiped of which the internal faces are covered with
mirrors. Thus one would have the visual impression of infinite space, although the
real space is closed.

3. Basics ofTopology

3.1. Simple vs. multiple connectedness

Let us now formalise a little bit more the topological notions introduced above. The
strategy for characterizing the shape of a space M is to produce invariants which
capture the key features of the topology and uniquely specify each equivalence
class. The topological invariants can take many forms. They can be just numbers,
such as the dimension of the manifold, the degree of connectedness or the Poincaré–
Euler characteristic. They can also be whole mathematical structures, such as the
homotopy groups. The latter are defined in an elegant way from the tightening
of laces. A lace is a closed curve traced on a surface. On the infinite plane, we
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can draw an arbitrary lace, however large, from an arbitrary point; this lace can
always be retightened and reduced to a point without encountering any obstacles.
The topologists call such a space simply connected. Formally, a lace at x in M is
any path which starts at x and ends at x. Two laces g and g′ are homotopic if g can
be continuously deformed into g′. The manifold M is simply-connected if every
lace is homotopic to a point. Obviously, the Euclidean spaces E1, E2, . . . En, and
the spheres S2, S3, . . . Sn are simply-connected.

On the other hand, the circle S1, the cylinder S1×E1 and the torus S1×S1 do not
have this property. Of course, there are laces which can be completely retightened,
as in the plane; but some of them cannot: a circle which wraps around the cylinder
or which is traced around the torus, for example, cannot be continuously shrunk to
a point. For such spaces, the topology is said to be multiply connected.

The study of homotopic laces in a manifold M is a way of detecting holes or
handles. Moreover the equivalence classes of homotopic laces can be endowed
with a group structure, essentially because laces can be added by joining them
end to end. The group of laces is called the first homotopy group at x or, in the
terminology originally introduced by Poincaré, the fundamental group π1(M, x).
The fundamental group is independent of the base point: it is a topological invariant
of the manifold.

For surfaces, multi-connectedness means that the fundamental group is non
trivial: there is at least one lace that cannot be shrunk to a point. But in higher dimen-
sions the problem is more complex because laces, being only one-dimensional
structures, are not sufficient to capture all the topological features of the manifolds.
The purpose of algebraic topology, extensively developed during the twentieth
century, is to generalise the concept of homotopic laces and to define higher homo-
topy groups. However the fundamental group (the first homotopy group) remains
essential.

3.2. Fundamental domain and holonomy group

In the nineteenth century, mathematicians discovered that it is possible to represent
any surface whatsoever with a polygon whose sides one identifies, two by two.
The torus is topologically equivalent to a rectangle with opposite edges identified.
The rectangle is called a fundamental domain (hereafter FD) of the torus. From a
topological point of view (namely without reference to size), the FD can be chosen
in different ways: a square, a rectangle, a parallelogram, even a hexagon (since the
plane can be tiled by hexagons, the flat torus can be also represented by a hexagon
with suitable identification of edges).

The FD distinctly characterises a certain aspect of the topology. But this is
not enough; we must also specify the geometric transformations which identify
the points. Indeed, starting from a square, one could identify the points diamet-
rically opposite with respect to the centre of symmetry of the square, and the
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surface obtained will no longer be a flat torus; it will no longer even be Euclidean,
but spherical, a surface called the projective plane. The mathematical transforma-
tions used to identify points form a group of symmetries, called the holonomy
group.

This group is discrete, i.e., there is a non zero shortest distance between any
two homologous points, and the generators of the group (except the identity)
have no fixed point. This last property is very restrictive (it excludes for instance
the rotations) and allows the classification of all possible holonomy groups. Due
to the fact that the holonomy group is discrete, the FD is always convex and has a
finite number of faces. In two dimensions, it is a surface whose boundary is con-
stituted by lines, thus a polygon. In three dimensions, it is a volume bounded by
faces, thus a polyhedron.

3.3. Universal covering

Starting from the fundamental domain and acting with the transformations of
the holonomy group on each point, one creates a number of replicas of the FD;
we produce a sort of tiling of a larger space, called the universal covering space
(hereafter UC) M∗. By construction, M∗ is locally indistinguishable from M. But
its topological properties can be quite different. The UC is necessarily simply
connected: any lace can be shrunk to a point. Thus, when M is simply-connected, it
is identical to its universal covering space M∗. But when M is multiply connected,
each point of M generates replicas of points in M∗. The universal covering space
can be thought of as an unwrapping of the original manifold. For instance, the UC
of the flat torus is the Euclidean plane E2, which indeed reflects the fact that the
flat torus is a locally Euclidean surface.

3.4. Spaceforms

To summarise: the shape of a homogeneous space is entirely specified if one is given
a fundamental domain; a particular group of symmetries, the holonomies, which
identify the edges of the domain two by two; and a universal covering space that
is paved by fundamental domains. Classifying the possible shapes thus reduces, in
part, to classifying symmetries.

Let us apply this recipe in order to list all homogeneous surfaces: two-
dimensional spaces with no boundaries and no sharp points. As far as the curvature
is concerned, homogenous surfaces are of three types: spherical surfaces, with pos-
itive curvature (like the surface of a rugby ball); Euclidean surfaces, with zero cur-
vature (whose planar geometry is taught in high school); and hyperbolic surfaces,
of negative curvature (like certain parts of a saddle or of a trumpet’s horn). Within
each of these basic types, mathematicians have classified all possible topologies —
also referred to as spaceforms.
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There are only two forms for spherical surfaces, both of them finite: the sphere,
which can be given a wide variety of different metrical aspects depending on
what sort of continuous stretching it is subjected to, and the projective plane.
The sphere is simply connected, the projective plane is not. The latter surface is
not easily visualised; the simplest way to do so is to pass through the interme-
diary of its fundamental domain, a disk, whose diametrically opposite points are
identified.

Euclidean surfaces can come in five possible shapes: the plane, of course, which
is the simply connected prototype, but also the cylinder, the Möbius band (which is
an infinitely wide Möbius strip), the flat torus, and the Klein bottle, all of which are
multiply connected. The first three are infinite, the other two finite. These surfaces,
although conceptually simple, are not all easy to visualise; thus, although the Klein
bottle has no curvature, it is closed in on itself and has neither inside nor outside;
it is said to be ‘non-orientable’.

Finally, the hyperbolic surfaces, with negative curvature, have an infinite num-
ber of topologies. Only one of them, equivalent to the Lobachevsky plane, is simply
connected.All others are multiply connected, characterised by the number of holes.
We have seen, for example, that the surface of a generalised pretzel is hyperbolic.

One conclusion that we can quickly draw from this classification is that, in
the infinite set of homogeneous surfaces, they are all hyperbolic, up to only seven
exceptions.

4. Three-Dimensional Manifolds of Constant Curvature

The passage from two dimensions to three dimensions in no way reduces to a sim-
ple generalisation, but leads to the appearance of radically new properties. Every
regular surface can be homogenised so as to be described by a metric of con-
stant curvature; this means that there are only three prototypical simply connected
surfaces (which serve as universal coverings), to which all other surfaces are nec-
essarily related. Things are not the same for three-dimensional spaces: there are
eight possible universal covering spaces (see Thurston, 1997, for a synthesis). Only
three of these are homogeneous and isotropic, the remaining five are homogeneous
but not isotropic, meaning that at a given point the measurement of the curvature
depends on direction.

Three-dimensional cylinders are some relatively simple examples of these. In
the same way that the usual cylinder can be considered as the ‘product’ S1 × E1

of a circle S1 and a straight line E1 (in the sense that if one slides a circle
along a straight line perpendicular to its center one creates a cylinder), the ‘three-
dimensional spherical cylinder’ can be pictured as the product S2 × E1 of a
sphere S2 and a straight line E1. However, while the cylindrical surface could
be described with the metric of the Euclidean plane E2, the cylindrical-spherical
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space is fundamentally distinct from the Euclidean space E3. The curvatures mea-
sured are different depending on the orientations of the referential planes used to
cut it. Similarly, the ‘cylindrical-hyperbolic’ space H2 ×E1, obtained by stacking
Lobachevsky planes, is fundamentally distinct from E3.

Cosmology, however, focuses mainly on locally homogeneous and isotropic
spaces, namely those admitting one of the three geometries of constant curvature.
Any compact 3-manifold M with constant curvature k can thus be expressed as the
quotient M = M∗/�, where the universal covering space M∗ is either:

the Euclidean space E3 if k = 0
the 3-sphere S3 if k > 0
the hyperbolic 3-space H3 if k < 0

and � is a subgroup of isometries of M∗ acting freely and discontinuously.

4.1. Euclidean space forms

Simply-connected Euclidean space, E3, with uniformly zero curvature, is infinite
in every direction. Its full isometry group is G = ISO(3) = E3 × SO(3), and
the generators of the possible holonomy groups � (i.e., discrete subgroups without
fixed point) include the identity, the translations, the glide reflections and the screw
motions (combinations of a rotation and a translation parallel to the axis of rotation)
occurring in various combinations. The multiply connected Euclidean spaces are
characterised by their fundamental polyhedra and their holonomy groups. The
fundamental polyhedra are either a finite or infinite parallelepiped, or a prism with
a hexagonal base, corresponding to the two ways of tiling Euclidean space. The
various different combinations generate 17 distinct multiply connected Euclidean
spaces (for an exhaustive study, see Riazuelo et al., 2004a).

Seven of these spaces are open (of infinite volume). Two of these, called slab
spaces, are made of a slab that extends infinitely in two directions, but has finite
thickness. The two ends are identified by a translation or after a rotation of 180◦.
The five others, called chimney spaces, are made of a rectangular chimney of
infinite height, whose front and back (and left and right) surfaces are identified by
a translation and appropriate rotations.

Ten other Euclidean spaces are closed (of finite volume). The first six spaces are
orientable hypertori. The simplest hypertorus T3 is constructed by identifying the
opposite faces of a parallelepiped by translations. The other hypertori are obtained
after gluing with a quarter turn, a half-turn, a one-sixth turn and a one-third turn,
while the Hantzsche–Wendt space has a more complicated structure. It is these six
compact, orientable Euclidean spaces that present a particular interest for cosmol-
ogy, since they could perfectly model the spatial part of the so-called ‘flat’universe
models.
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Eventually, four closed Euclidean spaces are non-orientable generalisations of
the Klein bottle: Klein space, Klein space with a horizontal flip, Klein space with
a vertical flip and Klein space with a half-turn.

4.2. Spherical space forms

The simply-connected spherical space S3, with positive curvature, is the hyper-
sphere. Einstein attempted to give an intuitive image of such a finite yet limitless
three-dimensional space, that a little bit of exercise suffices to render familiar to
our thinking. A way to visualise the hypersphere consists in imagining the points
of the hypersphere as those of a family of two-dimensional spheres which grow
in radius from 0 to a maximal value R, then shrink from R back to 0 (in the same
way that a sphere can be cut into planar slices which are circles of varying radius).
Another possibility is to view the hypersphere as composed of two spherical balls
embedded in Euclidean space, glued along their boundaries in such a way that each
point on the boundary of one ball is the same as the corresponding point on the
other ball.

The full isometry group of S3 is SO(4). The holonomies that preserve the metric
of the hypersphere, i.e., the admissible subgroups G of SO(4) without fixed point,
acting freely and discontinuosly on S3, belong to three categories:

1. the cyclic groups of order p, Zp(p ≥ 2), made up of rotations by an angle 2π/p

around a given axis, where p is an arbitrary integer;
2. the dihedral groups of order 2m, Dm(m > 2), which are the symmetry groups

of a regular plane polygons of m sides;
3. the binary polyhedral groups, which preserve the shapes of the regular

polyhedra.

The group T ∗ preserves the tetrahedron (4 vertices, 6 edges, 4 faces), of
order 24; the group O∗ preserves the octahedron (6 vertices, 12 edges, 8 faces), of
order 48; the group I∗ preserves the icosahedron (12 vertices, 30 edges, 20 faces),
of order 120. There are only three distinct polyhedral groups for the five polyhedra,
because the cube and the octahedron on the one hand, the icosahedron and the
dodecahedron on the other hand are duals, so that their symmetry groups are the
same.

If one identifies the points of the hypersphere by holonomies belonging to one
of these groups, the resulting space is spherical and multiply connected. For an
exhaustive classification, see Gausmann et al. (2001). There is a countable infinity
of these, because of the integers p and m which parametrise the cyclic and dihedral
groups.

The spaces with cyclic group are called lens spaces, denoted thus because their
fundamental polyhedra have the shapes of lenses. For instance, the projective (also
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called elliptic) space P3 = S3/Z2 is obtained by identifying diametrically opposite
points on S3. It was used by de Sitter (1917) and Lemaître (1931) as the space
structure of their cosmological models, while Einstein (1917) selected the symply
connected hypersphere.

The spaces with dihedral group are called prism spaces, because of the shape
of their fundamental polyhedra. Finally, the spaces with polyhedral groups are
called polyhedral spaces. Among them, the Poincaré Dodecahedral Space S3/I∗
is obtained by identifying the opposite pentagonal faces of a regular spherical
dodecahedron after rotating by 1/10th turn in the clockwise direction around the axis
orthogonal to the face. This configuration involves 120 successive operations and
gives some idea of the extreme complication of such multiply connected topologies.
Its volume is 120 times smaller than that of the hypersphere with the same radius
of curvature, and it is of particular interest for cosmology, giving rise to fascinating
topological mirages (see below).

Since the universal covering S3 is compact, all the multiply connected spherical
spaces are also compact. As the volume of S3 is 2π2R3, the volume of M = S3/� is
simply vol(M) = 2π2R3/|�|where |�| is the order of the group �. For topologically
complicated spherical 3-manifolds, |�| becomes large and vol(M) is small. There
is no lower bound since � can have an arbitrarily large number of elements (for
lens and prism spaces, the larger p and m are, the smaller the volume of the
corresponding spaces). Hence 0 < vol(M) ≤ 2π2R3. In contrast, the diameter,
i.e., the maximum distance between two points in the space, is bounded below by
∼0.326R, corresponding to the dodecahedral space.

4.3. Hyperbolic space forms

Locally hyperbolic manifolds are less well understood than the other homoge-
neous spaces. However, according to the pioneering work of Thurston, almost
all 3-manifolds can be endowed with a hyperbolic structure. The universal cov-
ering space, H3, is the three-dimensional analog of the Lobachevsky plane H2,
and extends to infinity in every direction. Its group of isometries is isomorphic to
PSL(2,C), namely the group of fractional linear transformations acting on the com-
plex plane. Finite subgroups are discussed in Beardon (1983). The mathematicians
have not succeeded in classifying all of them, but they know an infinite number
of examples. Some of these spaces are closed (with finite volume), and others are
open (with infinite volume).

In hyperbolic geometry there is an essential difference between the two-
dimensional case and higher dimensions. A surface of genus g ≥ 2 supports
uncountably many non equivalent hyperbolic metrics. But the so-called rigidity
theorem proves that a connected oriented n-dimensional manifold supports at most
one hyperbolic metric as soon as n ≥ 3. In simple terms, this means that if one fixes
a hyperbolic topology, there is only a single metric compatible with this topology.
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From this, it follows that the volume of space (in units of the curvature radius R)

is fixed by its topology. It is thus possible to classify the closed hyperbolic spaces
by increasing volumes, which could have seemed, at a first glance, contradictory
with the very purpose of topology.

However the volumes cannot be made arbitrarily small by gluing operations.
The absolute lower bound is Vmin = 0.16668, but no space has been constructed
having precisely this volume. Until now, the smallest known hyperbolic space (that
is to say one whose fundamental polyhedron and holonomy group were able to
be completely calculated) is Weeks space, with a volume equal to 0.94272. Its FD
is a polyhedron with 26 vertices and 18 faces, of which 12 are pentagons and 6
are quadrilaterals. Its outer structure, the Klein coordinates of the vertices and the
18 matrix representations of the generators of the holonomy group are given in
Lehoucq et al. (1999).

In cosmology, the Weeks manifold leaves room for many topological lens
effects, since the volume of the observable universe is about 200 times larger than
the volume of Weeks space for �0 = 0.3. Indeed, any compact hyperbolic space
have geodesics shorter than the curvature radius, leaving room to fit a great many
copies of a fundamental polyhedron within the horizon radius, even for manifolds
of volume∼10. The publicly available program SnapPea, available on the internet
(Weeks) classifies all known spaces by increasing volumes, and gives their proper-
ties: the structure of the fundamental polyhedron, the nature of the transformations
in the holonomy group, the characteristic topological lengths, etc. Several millions
of compact hyperbolic spaces with volume less than ten could be calculated.

5. Topology and Cosmology

General relativity has successfully passed a number of experimental tests, but, like
any physical theory, it is incomplete. One of the limits on its validity is well known:
it does not take into account the microscopic properties of matter, described by
quantum physics. Einstein was well aware of this, since, after putting the finishing
touches on his gravitational theory in 1916, he passed the rest of his days attempting
to unify gravity with the other physical interactions, in vain. Present day attempts
at unification, whether ‘superstrings’, ‘M-theory’ or ‘quantum loop gravity’, tend
to run into the same difficulties (see e.g., Smolin, 2002). What is less known is that
general relativity is also incomplete on the large scale: is space finite or infinite,
oriented or not? What is its global shape? Gravitation does not by itself decide the
overall form taken by space. The preceding examples have indeed shown that the
curvature of space does not necessarily allow one to come to any conclusions about
its finite or infinite character.

These basic cosmological questions come from the global topology of the
Universe, about which general relativity is silent. Einstein’s theory in fact only
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allows one to deal with the local geometric properties of the Universe. Its partial
differential equations have as a solution a metric tensor gab, or, equivalently, the
infinitesimal element of distance ds2 separating two events in space-time. This
leads the study of the Universe, of its content, and of its physical properties to
problems of differential geometry on a pseudo-Riemannian manifold.

It is presently believed that our Universe is correctly described at large scale
by a Friedmann–Lemaître (hereafter FL) model. The FL models are homogeneous
and isotropic solutions of Einstein’s equations, of which the spatial sections have
constant curvature; they include the de Sitter solution, as well as those incorporating
a cosmological constant, or a non standard equation of state. The FL models fall
into three general classes, according to the sign of their spatial curvature k = −1, 0,

or+1. The spacetime manifold is described by the metric ds2 = c2dt2−R2(t)dσ2,
where dσ2 = dχ2 + S2

k (χ)(dθ2 + sin2θ dφ2) is the metric of a three-dimensional
homogeneous manifold, flat [k = 0] or with curvature [k± 1]. The function Sk(χ)

is defined as sinh(χ) if k = −1, χ if k = 0, sin(χ) if k = 1; R(t) is the scale factor,
chosen equal to the spatial curvature radius for non flat models.

The spatial topology is usually assumed to be the same as that of the corre-
sponding simply connected, universal covering space: the hypersphere, Euclidean
space or the three-dimensional hyperboloid, the first being finite and the other
two infinite. However, there is no particular reason for space to have a simply
connected topology. In any case, general relativity says nothing on this subject;
it is only the strict application of the cosmological principle, added to the theory,
which encourages a generalisation of locally observed properties to the totality
of the Universe. Likewise, an ant in the middle of the desert would be convinced
that the entire world is made of grains of sand. However, to the metric element
given above there are several, if not an infinite number, of possible topologies, and
thus of possible models for the physical Universe. For example, the hypertorus
and familiar Euclidean space are locally identical, and relativistic cosmological
models describe them with the same FL equations, even though the former is finite
and the latter infinite; likewise, the equations for a Universe of negative curvature
make no distinction between a finite or an infinite space. In fact, only the bound-
ary conditions on the spatial coordinates are changed. Thus the multi-connected
cosmological models share exactly the same kinematics and dynamics as the cor-
responding simply connected ones (for instance, the time evolution of the scale
factor R(t) is identical).

At this stage, it is wise to recall that cosmological models do not reduce to three
dimensions, but are four-dimensional space-times. Thus, to the problem of the
topology of space is added that of the topology of time. What can be said about
the space-time topology? An infinite spectrum of possibilities offer themselves
as models. Nevertheless, some brief consideration of the physical properties of
the Universe allows us to rapidly isolate a good number of inadmissible topolo-
gies. Here is why. Models of the big bang are homogeneous, meaning that their
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spatial part has a curvature which is everywhere uniform, and expanding. These two
properties allow one to unambiguously distinguish slices of simultaneous space
and the axis of cosmic time. We can therefore describe space-time as the mathe-
matical product of a three-dimensional Riemannian space and the time axis. This
foliation considerably simplifies things. Time is represented by a one-dimensional
space whose points represent instants: a single number suffices to determine a
particular time. Time possesses an ordered structure: on a line, one point is neces-
sarily situated either before or after another point. The topology of time is in the
end rather poor; in contrast to that of multidimensional space, it only offers two
cases: the line E1 and the circle S1. These two forms in fact correspond to two
great philosophical conceptions, linear time and cyclic time. The latter has long
prevailed in myths, such as that of the eternal return, but today it has been aban-
doned by physics because it violates the principle of causality, according to which
cause must precede effect. As a consequence, any identification of points along
the time axis is forbidden. In the framework of cosmological models of expansion
followed by contraction, one could, certainly, think to identify the big bang and the
big crunch, that is to say the beginning of time with its end; but this operation is
unlawful, for these points are singularities which are not even part of the Universe.

The question of cosmic topology therefore reduces principally to that of the
spatial component of the Universe. For each type of possible curvature, as we have
seen, there are various FL models with multiply connected topologies. In relativistic
cosmology, the curvature of physical space depends on the way the total energy
density of the Universe may counterbalance the kinetic energy of the expanding
space. The normalised density parameter �0, defined as the ratio of the actual
density to the critical value that an Euclidean space would require, characterises the
present-day contents (matter, radiation and all forms of energy) of the Universe. If
�0 is greater than 1, then space curvature is positive and geometry is spherical; if �0
is smaller than 1 the curvature is negative and geometry is hyperbolic; eventually
�0 is strictly equal to 1 and space is Euclidean.

The next question about the shape of the Universe is to know whether space is
finite or infinite — equivalent to know whether space contains a finite or an infinite
amount of matter–energy, since the usual assumption of homogeneity implies a
uniform distribution of matter and energy through space. From a purely geometrical
point of view, all positively curved spaces are finite whatever their topology, but
the converse is not true: flat or negatively curved spaces can have finite or infinite
volumes, depending on their degree of connectedness (Ellis, 1971; Lachièze-Rey
& Luminet, 1995).

From an astronomical point of view, it is necessary to distinguish between the
‘observable universe’, which is the interior of a sphere centered on the observer
and whose radius is that of the cosmological horizon (roughly the radius of the last
scattering surface), and the physical space. There are only three logical possibli-
ties. First, the physical space is infinite — like for instance the simply-connected
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Euclidean space. In this case, the observable universe is an infinitesimal patch
of the full universe and, although it has long been the preferred model of many
cosmologists, this is not a testable hypothesis. Second, physical space is finite (e.g.
an hypersphere or a closed multiconnected space), but greater than the observable
space. In that case, one easily figures out that if physical space is much greater that
the observable one, no signature of its finitude will show in the observable data. But
if space is not too large, or if space is not globally homogeneous (as is permitted
in many space models with multiconnected topology) and if the observer occupies
a special position, some imprints of the space finitude could be observable. Third,
physical space is smaller than the observable universe. Such an apparently odd
possibility is due to the fact that space can be multiconnected and have a small
volume. There is a lot of possibilites, whatever the curvature of space. Small uni-
verse models may generate multiple images of light sources, in such a way that the
hypothesis can be tested by astronomical observations. The smaller the fundamen-
tal domain, the easier it is to observe the multiple topological imaging. Lehoucq
et al. (1998) have calculated, for a given catalog of observable cosmic sources
(discrete or diffuse) with a given depth in redshift, the approximate number of
topological images in locally hyperbolic and locally spherical spaces as a function
of the cosmological paramaters �m and ��. How do the present observational data
constrain the possible multi-connectedness of the universe and, more generally,
what kinds of tests are conceivable? The following sections deal with these matters
(see Luminet, 2001, for a non-technical book about all the aspects of topology and
its applications to cosmology).

6. The Drumhead Universe

The topology and the curvature of space can be studied by using specific astronom-
ical observations. For instance, from Einstein’s field equations, the space curvature
can be deduced from the experimental values of the total energy density and of the
expansion rate. If the Universe was finite and small enough, we should be able to
see ‘all around’ it, because the photons might have crossed it once or more times.
In such a case, any observer might identify multiple images of a same light source,
although distributed in different directions of the sky and at various redshifts, or to
detect specific statistical properties in the apparent distribution of faraway sources
such as galaxy clusters. To do this, methods of ‘cosmic crystallography’ have been
devised (Lehoucq et al., 1996; Uzan et al., 1999), and extensively studied by the
Brazilian school of cosmic topology (see e.g. Gomero et al., 2002). The main limi-
tation of cosmic crystallography is that the presently available catalogs of observed
sources at high redshift are not complete enough to perform convincing tests.

Fortunately, the topology of a small Universe may also be detected through its
effects on such a Rosetta stone of cosmology as is the cosmic microwave back-
ground (hereafter CMB) fossil radiation (Levin, 2002). If you sprinkle fine sand
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uniformly over a drumhead and then make it vibrate, the grains of sand will collect
in characteristic spots and figures, called Chladni patterns. These patterns reveal
much information about the size and the shape of the drum and the elasticity of
its membrane. In particular, the distribution of spots depends not only on the way
the drum vibrated initially but also on the global shape of the drum, because the
waves will be reflected differently according to whether the edge of the drumhead
is a circle, an ellipse, a square, or some other shape. In cosmology, the early Uni-
verse was crossed by real acoustic waves generated soon after the big bang. Such
vibrations left their imprints 380 000 years later as tiny density fluctuations in the
primordial plasma. Hot and cold spots in the present-day 2.7 K CMB radiation
reveal those density fluctuations. Thus the CMB temperature fluctuations look like
Chladni patterns resulting from a complicated three-dimensional drumhead that
vibrated for 380 000 years. They yield a wealth of information about the physi-
cal conditions that prevailed in the early Universe, as well as present geometrical
properties like space curvature and topology. More precisely, density fluctuations
may be expressed as combinations of the vibrational modes of space, just as the
vibration of a drumhead may be expressed as a combination of the drumhead’s
harmonics. The shape of space can be heard in a unique way. Lehoucq et al. (2002)
calculated the harmonics (the so-called ‘eigenmodes of the Laplace operator’) for
most of the spherical topologies, and Riazuelo et al. (2004a) did the same for all
18 Euclidean spaces. Then, starting from a set of initial conditions fixing how
the universe originally vibrated (the so-called Harrison–Zeldovich spectrum), it is
possible to evolve the harmonics forward in time to simulate realistic CMB maps
for a number of flat and spherical topologies (Uzan et al., 2004).

The ‘concordance model’ of cosmology describes the Universe as a flat infi-
nite space in eternal expansion, accelerated under the effect of a repulsive dark
energy. The data collected by the NASA satellite WMAP (Spergel et al., 2003)
have produced a high resolution map of the CMB which showed the seeds of
galaxies and galaxy clusters and allowed to check the validity of the dynamic part
of the expansion model. However, combined with other astronomical data (Tonry
et al., 2003), they suggest a value of the density parameter �0 = 1.02 ± 0.02 at
the 1σ level. The result is marginally compatible with strictly flat space sections.
Improved measurements could indeed lower the value of �0 closer to the critical
value 1, or even below to the hyperbolic case. Presently however, taken at their face
value, WMAP data favour a positively curved space, necessarily of finite volume
since all spherical spaceforms possess this property.

Now what about space topology? There is an intriguing feature in WMAP data,
already present in previous COBE mearurements (Hinshaw et al., 1996), although
at a level of precision that was not significant enough to draw firm conclusions. The
power spectrum depicts the minute temperature differences on the last scattering
surface, depending on the angle of view. It exhibits a set of peaks when anisotropy is
measured on small and mean scales (i.e., concerning regions of the sky of relatively
modest size). These peaks are remarkably consistent with the infinite flat space



April 6, 2011 9:15 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch04

98 J.-P. Luminet

hypothesis. At large angular scales, the concordance model predicts that the power
spectrum should follow the so-called ‘Sachs–Wolfe plateau’. However, WMAP
measurements fall well below the plateau for the quadrupole and the octopole
moments (i.e., for CMB spots typically separated by more than 60◦). Since the
flat infinite space model cannot explain this feature, it is necessary to look for an
alternative.

CMB temperature anisotropies essentially result from density fluctuations of
the primordial Universe: a photon coming from a denser region will loose a frac-
tion of its energy to compete against gravity, and will reach us cooler. On the
contrary, photons emitted from less dense regions will be received hotter. The
density fluctuations result from the superposition of acoustic waves which propa-
gated in the primordial plasma. Riazuelo et al. (2004a) have developed complex
theoretical models to reproduce the amplitude of such fluctuations, which can be
considered as vibrations of the Universe itself. In particular, they simulated high
resolution CMB maps for various space topologies (Riazuelo et al., 2004b) and
were able to compare their results with real WMAP data. Depending on the under-
lying topology, the distribution of the fluctuations differs. For instance, in an infinite
flat space, all wavelengths are allowed, and fluctuations must be present at all
scales.

The CMB temperature fluctuations can be decomposed into a sum of spherical
harmonics, much like the sound produced by a music instrument may be decom-
posed into ordinary harmonics. The ‘fundamental’ fixes the height of the note (as
for instance a 440 hertz acoustic frequency fixes the A of the pitch), whereas the
relative amplitudes of each harmonics determine the tone quality (such as the A

played by a piano differs from the A played by a harpsichord). Concerning the
relic radiation, the relative amplitudes of each spherical harmonics determine the
power spectrum, which is a signature of the space geometry and of the physical
conditions which prevailed at the time of CMB emission.

The first observable harmonics is the quadrupole (whose wavenumer is l = 2).
WMAP has observed a value of the quadrupole seven times weaker than expected
in a flat infinite Universe. The probability that such a discrepancy occurs by chance
has been estimated to 0.2% only. The octopole (whose wavenumber is l = 3) is also
weaker (72% of the expected value). For larger wavenumbers up to l = 900 (which
correspond to temperature fluctuations at small angular scales), observations are
remarkably consistent with the standard cosmological model.

The unusually low quadrupole value means that long wavelengths are missing.
Some cosmologists have proposed to explain the anomaly by still unknown physical
laws of the early universe (Tsujikawa et al., 2003). A more natural explanation may
be because space is not big enough to sustain long wavelengths. Such a situation
may be compared to a vibrating string fixed at its two extremities, for which the
maximum wavelength of an oscillation is twice the string length. On the contrary,
in an infinite flat space, all the wavelengths are allowed, and fluctuations must be
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present at all scales. Thus this geometrical explanation relies on a model of finite
space whose size smaller than the observable universe constrains the observable
wavelengths below a maximum value.

Such a property has been known for a long time, and was used to constrain the
topology from COBE observations (Sokolov, 1993). Preliminary oversimplified
analyses (de Oliveira-Costa & Smoot, 1995) suggested that any multi-connected
topology in which space was finite in at least one space direction had the effect of
lowering the power spectrum at large wavelengths. Weeks et al. (2004) reexamined
the question and showed that indeed, some finite multiconnected topologies do
lower the large-scale fluctuations whereas others may elevate them. In fact, the
long wavelengths modes tend to be relatively lowered only in a special family of
closed multiconnected spaces called ‘well-proportioned’. Generally, among spaces
whose characteristic lengths are comparable with the radius of the last scattering
surface Rlss (a necessary condition for the topology to have an observable influence
on the power spectrum), spaces with all dimensions of similar magnitude lower
the quadrupole more heavily than the rest of the power spectrum. As soon as one
of the characteristic lengths becomes significantly smaller or greater than the other
two, the quadrupole is boosted in a way not compatible with WMAP data. In the
case of flat tori, a cubic torus lowers the quadrupole whereas an oblate or a prolate
torus increase the quadrupole; for spherical spaces, polyhedric spaces suppress
the quadrupole whereas high order lens spaces (strongly anisotropic) boost the
quadrupole. Thus, well-proportioned spaces match the WMAP data much better
than the infinite flat space model.

7. The Dodecahedral Universe

Among the family of well-proportioned spaces, the best fit to the observed power
spectrum is the Poincaré Dodecahedral Space, hereafter PDS (Luminet et al.,
2003). Recall that this space is positively curved, and is a multiconnected variant
of the simply-connected hypersphere S3, with a volume 120 times smaller for the
same curvature radius. The associated power spectrum, namely the repartition of
fluctuations as a function of their wavelengths corresponding to PDS, strongly
depends on the value of the mass-energy density parameter. Luminet et al. (2003)
computed the CMB multipoles for l = 2, 3, 4 and fitted the overall normalisation
factor to match the WMAP data at l = 4, and then examined their prediction for the
quadrupole and the octopole as a function of �0. There is a small interval of values
within which the spectral fit is excellent, and in agreement with the value of the total
density parameter deduced from WMAP data (1.02±0.02). The best fit is obtained
for �0 = 1.016. Since then, the properties of PDS have been investigated in more
details by various authors. Lachièze-Rey (2004) found an analytical expression
of the eigenmodes of PDS, whereas Aurich et al. (2005) and Gundermann (2005)
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computed numerically the power spectrum up to the l = 15 mode and improved the
fit with WMAP data. The result is quite remarkable because the Poincaré space has
no degree of freedom. By contrast, a three-dimensional torus, constructed by gluing
together the opposite faces of a cube and which constitutes a possible topology for
a finite Euclidean space, may be deformed into any parallelepiped: therefore its
geometrical construction depends on 6 degrees of freedom.

The values of the matter density �m, of the dark energy density �� and of
the expansion rate H0 fix the radius of the last scattering surface Rlss as well as
the curvature radius of space Rc, thus dictate the possibility to detect the topology
or not. For �m = 0.28, �0 = 1.016 and H0 = 62 km/s/Mpc, Rlss = 53 Gpc
and Rc = 2.63Rlss. It is to be noticed that the curvature radius Rc is the same
for the simply-connected universal covering space S3 and for the multiconnected
PDS. Incidently, the numbers above show that, contrary to a current opinion, a
cosmological model with �0 ∼ 1.02 is far from being ‘flat’ (i.e., with Rc =
∞)! For the same curvature radius than the simply-connected hypersphere S3,
the smallest dimension of the fundamental dodecahedron is only 43 Gpc, and its
volume about 80% the volume of the observable universe (namely the volume
of the last scattering surface). This implies that some points of the last scattering
surface will have several copies. Such a lens effect is purely attributable to topology
and can be precisely calculated in the framework of the PDS model. It provides a
definite signature of PDS topology, whereas the shape of the power spectrum gives
only a hint for a small, well-proportioned universe model.

To be confirmed, the PDS model (sometimes popularised as the ‘soccerball
universe model’) must satisfy two experimental tests:

(1) New data from the future European satellite ‘Planck Surveyor’ (scheduled
2007) could be able to determine the value of the energy density parameter with
a precision of 1%. A value lower than 1.009 would discard the Poincaré space
as a model for cosmic space, in the sense that the size of the corresponding
dodecahedron would become greater than the observable universe and would
not leave any observable imprint on the CMB, whereas a value greater than
1.01 would strengthen its cosmological pertinence.

(2) If space has a non trivial topology, there must be particular correlations in the
CMB, namely pairs of ‘matched circles’ along which temperature fluctuations
should be the same (Cornish et al., 1998). The PDS model predicts 6 pairs
of antipodal circles with an angular radius comprised between 5◦ and 55◦
(sensitively depending on the cosmological parameters).

Such circles have been searched in WMAP data by several teams, using various
statistical indicators and massive computer calculations. First, Cornish et al. (2004)
claimed to have found no matched circles on angular sizes greater than 25◦, and
thus rejected the PDS hypothesis. Next, Roukema et al. (2004) performed the same
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analysis for smaller circles, and found six pairs of matched circles distributed in
a dodecahedral pattern, each circle on an angular size about 11◦. This implies
�0 = 1.010± 0.001 for �m = 0.28± 0.02, values which are perfectly consistent
with the PDS model. Finally, Aurich et al. (2006a) performed a very careful search
for matched circles and found that the putative topological signal in the WMAP
data was considerably degraded by various effects, so that the dodecahedral space
model could be neither confirmed nor rejected. This shows in passing how delicate
the statistical analysis of observational data is, since different analyses of the same
data can lead to radically opposed conclusions!

The controversy still went up a tone when Key et al. (2006) claimed that their
negative analysis was not disputable, and that accordingly, not only the dodec-
ahedral hypothesis was excluded, but also any multiply-connected topology on
a scale smaller than the horizon radius. Since such an argument of authority, a
fair portion of the academic community believes the WMAP data has ruled out
multiply-connected models. However, at least the second part of the claim is wrong.
The reason is that they searched only for antipodal or nearly-antipodal matched
circles. But Riazuelo et al. (2004b) have shown that for generic multiply-connected
topologies (including the well-proportioned ones, which are good candidates for
explaining the WMAP power spectrum), the matched circles are generally not
antipodal; moreover, the positions of the matched circles in the sky depend on
the observer’s position in the fundamental polyhedron. The corresponding larger
number of degrees of freedom for the circles search in the WMAP data generates
a dramatic increase of the computer time, up to values which are out-of-reach of
the present facilities. It follows that the debate about the pertinence of PDS as the
best fit to reproduce CMB observations is fully open.

The new release of WMAP data (Spergel et al., 2006), integrating two addi-
tional years of observation with reduced uncertainty, strengthened the evidence
for an abnormally low quadrupole and other features which do not match with the
infinite flat space model (this explains the unexpected delay in the delivery of this
second release, originally announced for February 2004). Besides the quadrupole
suppression, an anomalous alignment between the quadrupole and the octopole was
put in evidence along a so-called ‘axis of evil’ (Land and Magueijo, 2005). Thus
the question arose to know whether, since non-trivial spatial topology can explain
the weakness of the low-l modes, might it also explain the quadrupole-octupole
alignment? Until then no multiply-connected space model, either flat (Cresswell
et al., 2006) or spherical (Aurich et al., 2006b; Weeks and Gundermann, 2006)
was proved to exhibit the alignment observed in the CMB sky. This is not a strong
argument against such models, since the ‘axis of evil’ is generally interpreted as
due to local effects and foreground contaminations (Prunet et al., 2005).

As a provisional conclusion, since some power spectrum anomalies are one of
the possible signatures of a finite and multiply-connected universe, there is still a
continued interest in the Poincaré dodecahedral space and related finite universe
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models. And even if the particular dodecahedral space is eventually ruled out by
future experiments, all of the other models of well-proportioned spaces will not
be eliminated as such. In addition, numerical simulations show that, even if the
size of a multiply-connected space is larger than that of the observable universe,
we could all the same discover an imprint in the fossil radiation, even while no
pair of circles, much less ghost galaxy images, would remain. The topology of
the universe could therefore provide information on what happens outside of the
cosmological horizon! But this is a search for the next decade…

Maybe the most fundamental issue remains to link the present-day topology
of space to a quantum origin, since classical general relativity does not allow for
topological changes during the course of cosmic evolution. Theories of quantum
gravity could allow to address the problem of a quantum origin of space topology.
For instance, in the approach of quantum cosmology, some simplified solutions
of Wheeler–de Witt equations show that the sum over all topologies involved in
the calculation of the wavefunction of the universe is dominated by spaces with
small volumes and multiconnected topologies (Carlip, 1993; e Costa and Fagundes,
2001). In the approach of brane worlds (see Brax 2003 for a review), the extra-
dimensions are often assumed to form a compact Calabi–Yau manifold; in such a
case, it would be strange that only the ordinary dimensions of our 3-brane would
not be compact like the extra ones. These are only heuristic indications on the way
unified theories of gravity and quantum mechanics could ‘favour’ multiconnected
spaces. Whatsoever the fact that some particular multiconnected space models,
such as PDS, may be refuted by future astronomical data, the question of cosmic
topology will stay as a major question about the ultimate structure of our universe.
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1. Introduction

The concept of space is largely present in our daily life, both in real and metaphoric
terms. There is general agreement that, introspectively, space is perceived as uni-
tary. In fact, although we often use words referring to different spatial coordinates,
such as up-down, left-right, near-far, we don’t easily conceive space, in mental
terms, as subdivided in different sectors. At the same time, we move in space, by
using our body parts or man-made vehicles. However, this does not give us imme-
diately an insight on the crucial importance of our movements for the formation of
our internal representation of space. The idea underlying this chapter is that space
is not coded in the brain in a unitary way and that the cortical motor system very
likely constitutes the basis for building our cerebral representation of space.

The issue of which coordinate system space is coded in is a crucial one. When
speaking about space in physical terms, we need to define the reference axes
in respect to which we identify a spatial location. Geometrically, each spatial
location is defined by means of three coordinates (x, y, z) in respect to the origin.
If instead we define space in biological terms, it can be characterised by the various
sensory modalities involved by the application to the body of a spatially organised
stimulus. If for example a stimulus is touching our body, we can define the body
sector where it is applied as a ‘personal’ space, linked to the somatosensory
modality. If, instead, the stimulus is presented outside the body, we can define an

107
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‘extrapersonal’ space, that is linked to the visual or acoustic sensation. However,
space can be defined also in motor terms, on the basis of the direction and the
amplitude of the movements that are needed in order to reach a specific location.

The difference between the various definitions of space corresponds also to
a difference in the coordinate system in which the external stimuli are centred.
The locations of stimuli in the visual space, certainly the most deeply studied in
humans and monkeys, are referred, at the beginning of cortical visual processing,
to a coordinate system centred on the retina (retinocentric or oculocentric frame of
reference). We must recognise, however, that if a visual stimulus does not move,
when we shift the eyes, the location of that stimulus changes in retinal coordinates
in respect to when the eyes had not moved yet. In other words, if a visual stimulus is
presented at 20◦ right and 10◦ up from the centre of the retina (the fovea centralis),
when the eyes move 10◦ to the left the stimulus will fall in a retinal position that
is now 30◦ right and 10◦ up in respect to the fovea. The stimulus, of course, is
the same, but its retinal location has changed. Note, however, that its position in
respect to the head remains the same, independent of the eye movement, provided
that the head did not move together with the eyes. This observation enables us to
define a new coordinate system, in which visual stimuli are coded in respect to
the median axis of the head. If, however, the head also moved with the eyes, the
visual stimulus will now have different coordinates with respect to the head axis
but its position remains the same when referred to another axis, that is, the median
axis of the body. Following this logic, if the body also moved, now the visual
stimulus will assume different coordinates with respect to the retina, the head axis
and the body axis. However, its position referring to the other visual stimuli in
the world remains the same. Summing up, a same visual stimulus can be defined
in different frames of reference, namely retinocentric, head-centred, body-centred
and allocentric. The existence of these different frames of reference raises many
questions:

(a) How is it possible to pass from one coordinate system to another?
(b) In how many reference systems sensory stimuli are coded in the brain?
(c) Can visual stimuli be coded in the brain in a reference frame independent of

eye or head movements?

The question (a) is particularly important for planning movements in space.
If, for example, I want to reach for an object located at a certain distance from
my body, its spatial position is initially registered in retinal coordinates, but the
arm movement must be performed quite independently of the eye position and
also of the arm position with respect to the object. An object located in the upper
right visual field can be reached with the right hand both when the hand is on
the right of the body or when it is on the left, crossing, in this latter case, the
body axis. The possibility of correctly performing a reaching movement implies a
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coordinate transformation process and also a computation of the relative position
of the different effectors (body, arm).

Several models have been proposed in order to explain how all these compu-
tations can occur. The description of these models, however, is beyond the scope
of this article. I will try to provide some answers to questions (b) and (c), that are
directly concerned with the way in which the brain codes space.

The general issue of space coding has been directly addressed, from a neu-
rophysiological point of view, more than twenty years ago. Basing on the results
of these experiments, I think it is possible to claim that now we have a good
knowledge of how space is coded in the cerebral cortex. The three most important
achievements are the following:

(a) space is coded in the brain not as a unique representation, but as subdivided
in different sectors, each corresponding to a dedicated anatomo-functional
circuit, involved in the sensorimotor transformation for actions performed with
a specific effector;

(b) space is coded, at the single neuron level, in a frame of reference suitable for
the function of the brain cortical area to which the neuron belongs;

(c) space perception is strictly linked to a motor concept of space.

In the next sections I will describe the empirical data supporting these concepts.

2. TheTraditional Concept. Space is Coded
in Oculocentric Coordinates

A visual stimulus is, in the first stages of its cortical processing, coded in a retinocen-
tric coordinate frame, that is its position in space is strictly linked to eye position.
Let us briefly examine the organisation of the visual system. The visual informa-
tion coming from the retina is conveyed to the cortex by two main pathways: the
magnocellular pathway, mainly involved in the analysis of motion and brightness
contrast and the parvocellular pathway, involved in the analysis of shape and colour.
Both pathways are involved in the analysis of depth and three-dimensional fea-
tures. In both pathways visual information is elaborated in subsequent hierarchical
steps. The highest level of elaboration occurs, in the magnocellular pathway, in the
inferior parietal cortex, while in the parvocellular pathway occurs in the inferotem-
poral cortex. Based on anatomo-functional and clinical data, in 1982 Ungerleider
and Mishkin proposed an influential functional subdivision of visual processing.
According to their view, after the primary and secondary visual cortex (V1 and
V2) the visual system subdivide in a ‘ventral stream’ ending in the inferotemporal
cortex, dedicated to object perception, and a ‘dorsal stream’, dedicated to space
perception. The ventral stream has been called the ‘what’ system and the dorsal
stream, the ‘where’ system. In support of this theory, patients with damage to the
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ventral stream are unable to recognise and discriminate objects, but are still able
to indicate their spatial location, while patients with damage to the dorsal stream
present the opposite dissociation. The same deficit was shown, although at a lower
degree, also in monkeys.

Keeping with this view, the question arises on which properties of the parietal
lobe could explain space perception and in particular in which frame of reference
space was coded by parietal neurons. As said before, visual stimuli in the cortex
are initially coded in a retinocentric frame of reference. Is stimulus spatial position
coded in a different frame of reference in the parietal lobe? This latter possibility
could be reasonable, because the parietal lobe was classically thought of as an
association cortex, where polymodal integration would allow the formation of an
abstract representation of space.

The first neurophysiological data on this topic were those recorded byAndersen
and its group (Andersen, Essick and Siegel, 1985; Andersen et al., 1990; Barash
et al., 1991) who investigated the properties of areas 7a and LIP (lateral intra-
parietal area) located in the convexity and the lateral bank of the posterior half
of the intraparietal sulcus (IPS), respectively. Neurons of both areas show visual
responses to spots of stimuli presented in several positions of the visual space and
also discharge when a monkey makes a saccadic eye movement toward the visual
stimulus or its remembered location (motor response). Very often the visual and
motor responses are related to the same space sector. If, for example, a LIP neuron
responds to a stimulus presented in the right upper part of the visual field, the
neuron activates also when the monkey makes a saccade towards right-up. First
of all, these properties make these neurons candidates for a role in sensorimotor
transformations. Second, a remarkable feature of these neurons is that their visual
and motor discharge are modulated by the orbital eye position. That is, if the neuron
of the previous example has a visual and motor response toward right-up, when the
monkey fixates in different spatial locations the intensity of the response is modu-
lated by the eye position, provided that the visual stimulus is always presented in
the neuron’s receptive field (RF).1 The authors concluded that 7a and LIP neurons
combine the information, in retinal coordinates, of the stimulus position with that
of the eye position in the orbit. Thus, the encoding of stimulus spatial location
results from the interaction between these two factors. In other words, the frame of
reference used by these neurons is still retinocentric but, in addition, they can also
have information on where the eye is positioned with respect to the head axis. Thus,
a space coding independent of eye position is not realised in these areas at the level
of single neurons, but, the authors propose, could occur at a population level. That
is, the combination of the responses of many neurons in areas LIP and 7a could

1The term ‘receptive field’ is used to indicate the sector of visual space that triggers the neuron response,
when a stimulus (for instance a light spot) is introduced in it.
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give information on the absolute position of the stimulus in space, at least with
respect to the head axis. On the other hand, every neuron of these areas has suf-
ficient information to operate a transformation of the stimulus position (in retinal
coordinates) in a motor vector starting from the fixation point and directed exactly
to that visual location.

In subsequent experiments, in which the monkey could move the head in the
horizontal plane, Brotchie et al. (1995) also demonstrated that head position in
space could modulate the spatial visual response of LIP neurons.

A different result was obtained by the group of Galletti (Galletti et al., 1993),
who recorded from area V6A, a high order visual area located in the anterior lip
of the parieto-occipital sulcus. They found that V6A neurons responded strongly
to visual stimuli, and demonstrated that many of these neurons presented the same
gaze modulation effect previously shown in areas 7a and LIP. In addition, how-
ever, they found a limited number of neurons that responded to a visual stimulus
introduced in a fixed spatial position, independent of monkey gaze. Although this
finding is exactly the demonstration of the existence of a frame of reference inde-
pendent of the retina, the small amount of neurons with this property does not allow
robust theories to build on the transformation of coordinates frame at this cortical
level.

More recent studies (Andersen et al., 1998) performed in a different parietal
area (parietal reaching region, PRR) containing neurons related to both arm and eye
movements, demonstrated that also arm movements can be coded in oculocentric
coordinates.

The characteristics of all these studied parietal regions is that their neurons are
always strongly linked to eye movements. That is, probably the visual responses
found in these areas are used to guide several types of eye movements. Very likely
also in PRR the coding of arm movements is strictly dependent on eye movement
coding. Thus the question becomes what is the code of visual responses in other
areas, the neurons of which are related to effectors different from the eyes, such as
the arm, the head or the body? The investigation of the properties of motor areas
provides an answer to these questions.

3. Coding of Peripersonal Space in the Parieto-Frontal
Circuits for Reaching

Before describing the properties of areas encoding spatial position in a non-
oculocentric frame of reference, I must point out three concepts:

(a) the motor cortex is not made of just three subdivisions, as classically thought,
but is composed of at least seven distinct cytoarchitectonic areas (see Rizzolatti,
1998; Rizzolatti and Luppino, 2001);
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(b) each of these areas is involved in at least one main parieto-frontal circuit;
(c) cortical motor neurons appears to code, as their principal role, the goal of

motor acts;
(d) neuroanatomical and neurophysiological data suggest that even the parietal

cortex can be considered part of the motor system (Mountcastle et al., 1975;
Hyvarinen 1982; Rizzolatti, Fogassi and Gallese, 1997; Rizzolatti, Luppino
and Matelli, 1998; Fogassi and Luppino, 2005).

The receptive field of a neuron is that portion of space that, when stimulated,
elicits the neuron discharge. A small change in the stimulus location can determine
a drastic decrease of the neuron discharge.

Area F4 is an area located in the caudal part of ventral premotor cortex. It can
be distinguished, by means of histological and histochemical methods, from the
primary motor cortex (F1) and the rostrally located area F5, involved in coding
goal-directed hand and mouth motor acts.

One of the electrophysiological methods used for determining which are the
movements controlled by a specific area is electrical microstimulation. This tech-
nique allows, using very low current intensities, to elicit the activity of a small
neuronal population localised within a certain diameter around the stimulating
microelectrode. This method gives very good information on the somatotopic
representation of a particular cortical sector.

Electrical microstimulation of area F4 elicits trunk, neck, arm and facial move-
ments. In accord with these findings, recordings from this area during movement
execution show that its motor neurons are active during reaching, orienting and
facial movements (Gentilucci et al., 1988; Fogassi et al., 1996a).

The most interesting properties of this area probably consist in its neuronal
responses to sensory stimuli. There are two main categories of sensory neurons. The
first is constituted by somatosensory neurons, e.g., neurons activated by the tactile
stimulation of the face, the arm and the trunk. The second is formed by bimodal,
somatosensory and visual neurons, that discharge not only during the application
of somatosensory stimuli, but also to the introduction of three-dimensional visual
stimuli in a space sector close to the neuron somatosensory RF. Very often the
best response of bimodal neurons is obtained approaching an object to their tactile
RF. Their visual RF is peculiar, because it is limited not only in width, but also in
depth. Generally, the visual response begins when the stimulus becomes closer to
the monkey (no more than 40 cm) and ends when it is near to the tactile RF. This
limitation in depth of the visual RF (three-dimensional visual RFs) is very differ-
ent from what happens in the visual areas, in which the neuron response does not
depend from the distance at which the stimulus is presented. Because of this delim-
itation of the visual space in which the stimulus is effective in evoking the neuronal
response of bimodal neurons, these visual RFs have been called ‘peripersonal’.
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In most bimodal neurons the visual RF is in register with the tactile RF. For
example, a neuron the tactile RF of which is on the right hemi-face will respond
also to an object approaching the right hemi-face, while a neuron with a tactile
RF on the shoulder will be activated by a similar object, but approached to the
shoulder.

Coming back to the issue of the frames of reference, it has been demonstrated
with specific experiments that the visual responses of F4 bimodal neurons are not
retinocentric. This important point has been demonstrated by training monkeys to
fixate in different spatial positions, while an object was approached to the tactile
RF of each neuron. The results showed that the visual response was always present,
independently of eye position (see also Gentilucci et al., 1983; Fogassi et al., 1992;
Graziano, Yap and Gross, 1994; Fogassi et al., 1996b; Graziano, Hu and Gross,
1997a).

Thus in the premotor cortex there occurs a transformation of coordinates, from
retinocentric to some type of eye-independent frame of reference. Where is the
centre of coordinates of this reference system? It is not very easy to respond to this
question, because in single neuron recording experiments the monkey’s head is
generally fixed. However, Graziano and coworkers (1994) showed that, by moving
the head or the arm of the monkey, the visual RF of F4 bimodal neurons followed
the tactile RF. In this study the monkey was trained to fixate in different spatial
position, while a stimulus was moved toward the body part where was the tactile RF
of the neuron under investigation. First of all, it was demonstrated that the shift in
eye position did not influence the body part-related visual response. Furthermore,
when the hand or the head were moved, the visual response could be evoked only
when the stimulus was moved towards the head or the arm (depending on the tactile
RF of the neuron), and not when it was moved toward the sector of space previously
occupied by the arm or the head. That is, the visual stimulus was encoded in a
body-part (somatocentred) frame of reference, and not with respect to the body or
the head midline.

This concept was further corroborated by two subsequent studies of the
Graziano’s group. In one of them (Graziano, Reiss and Gross, 1999), it was demon-
strated that a category of F4 neurons responded not only to a peripersonal visual
stimulus but also to the introduction of an acoustic stimulus in the space near the
tactile RF. The acoustic response did not depend on the stimulus intensity, but its
presence in the peripersonal space. In most of these trimodal neurons the tactile,
visual and acoustic responses were spatially congruent.

In the other study (Graziano, Hu and Gross, 1997b) it was shown that bimodal
neurons responding to objects introduced near the tactile RF continued to dis-
charge in the dark, when the monkey could not see the object, but was aware of
its presence in the peripersonal space. If the object was then removed, as far as the
monkey could see that the stimulus was not there any more, the neuron ceased its
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discharge. This latter finding strongly indicates that coding of space in F4 occurs
at the representation level (see below).

Area F4 is reciprocally connected with area VIP (Luppino et al., 1999), located
in the fundus of the intraparietal sulcus. This area, thanks to its connections with
visual motion areas, such as the middle temporal area (MT) and the middle supe-
rior temporal area (MST), belonging to the dorsal visual stream (Maunsell and
Van Essen, 1983), and with parietal areas endowed with somatosensory properties,
contains neurons responding either to visual or to bimodal, visual and somatosen-
sory, stimuli. The most effective visual stimuli are moving stimuli, some of which
are also approaching to or going away from the monkey (Colby, Duhamel and
Goldberg, 1993; Colby, 1998; Duhamel, Colby and Goldberg, 1998). Bimodal neu-
rons have properties very similar to those of F4 bimodal neurons but, differently
from the latter, only a small percentage of them respond to an object introduced in
the peripersonal space. The most striking difference between VIP and F4 bimodal
neurons consists in the fact that most a visual RFs of VIP neurons are coded in
retiocentric coordinates. Interestingly enough, however, the smaller percentage
responding to peripersonal visual stimuli coded this stimuli in somatocentred coor-
dinates. Thus, with a visual object approaching the monkey, VIP neurons receive
visual information from dorsal stream visual areas and perhaps start a visuomo-
tor transformation for head and arm movements directed to, or going far from,
these visual stimuli. The visuomotor transformation for reaching and head orien-
tation is, however, mostly accomplished in area F4. The presence of neurons with
peripersonal responses in area VIP could be due to the motor information coming
from area F4. Whatever the explanation, the presence of somatocentred neurons in
VIP may explain its possible involvement in movement control. In fact, electrical
microstimulation of VIP (Thier and Andersen, 1998) elicits head, face and arm
movement, although at high intensity current thresholds.

Summing up, the properties of the F4-VIP circuit indicate its involvement in
two main, intrinsically linked, functions: (a) visuomotor transformation for axial
and proximal actions in space; (b) coding space representation. While the first
function follows quite naturally from the cortical location of the two areas and their
input-output organisation, the second is not immediately intuitive, if one interprets
space coding in a classical sense, that is in strictly perceptual terms. An insight
on how these areas code space comes from the peculiar organisation of the three-
dimensional visual RFs of their bimodal neurons. In order to build such RFs, it
is necessary to combine the tactile RFs of these neurons and the motor properties
present in area F4 and, possibly, in area VIP. In principle, the formation of body
part-anchored visual RFs could be explained by associative learning, that is by
the repetitive association between a visual object approaching a body part and the
tactile sensation that it evokes when it arrives in contact with the skin. However, this
would not explain why the extent of the three-dimensional visual RFs never exceeds
40 cm and also why, inside this limit, the preferred depth varies so much among
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different neurons. These two properties, instead, better account for an interpretation
of these RFs in relation to the motor properties, in particular with those of area
F4. That is, these RFs are related to the various types of motor acts normally
performed inside this space, such as mouth grasping, eye blinking (pericutaneous
RFs), arm reaching, bringing to the body or trunk orienting (distant peripersonal
RFs). Thus, the visual and auditory inputs are instrumental for providing spatial
sensory information for the different types of motor acts controlled by area F4.
However, one could think that the appropriate sensory information is analysed
and that the product of this analysis is then passed to motor neurons that ‘decide’
the most suitable movement. If this is so, the discharge of bimodal F4 neurons is
purely sensory. However, the present view does not restrict the role of premotor
areas to a sensorimotor integration, but maintains that their major role is that of
coding the goal of motor acts. For example, motor neurons of area F5 (the ventral
premotor area located rostrally to F4) code hand and mouth motor acts, such as
grasping, biting, tearing, manipulating, etc. This encoding is not simply used for the
execution of these acts, but represents a ‘motor knowledge’ that can be addressed
by external sensory input, creating new neuronal categories. For instance, object
observation activates F5 ‘canonical’ neurons, a specific category of visuomotor
neurons discharging when the monkey grasps an object and when it observes an
object congruent with the type of grip that the neuron motorically code (Murata
et al., 1997; Raos et al., 2006). Most interestingly, canonical neurons respond also
to pure object observation, even in the absence of a grasping movement toward it.
This ‘visual’ response has been interpreted as ‘the idea of movement’ or, in other
words, the object ‘motor representation’ (Rizzolatti and Fadiga, 1998).

Analogously, an object introduced in the peripersonal space evokes a motor
representation of the space in which the object is located, be it seen or heard. As
summarised above, area F4 is endowed with neurons that discharge when the mon-
key executes orienting and reaching motor acts (Gentilucci et al., 1988; Fogassi
et al., 1996a; Graziano, Yap and Gross, 1994; Fogassi et al., 1996b; Graziano,
Hu and Gross, 1997a). Thus, although the peripersonal ‘visual’ responses of F4
bimodal neurons are present independently of any impending movement of the
monkey, they can be interpreted as a pragmatic representation of the space in
which the object evoking this visual response is introduced. For example, a visual
response to an object approaching the monkey’s face will retrieve the represen-
tation of an avoidance or approaching motor act of the trunk, depending on the
nature of the stimulus. Similarly, a visual response to an object approaching the
monkey’s arm could retrieve the representation of a reaching motor act. These
representations, depending on the context, can be implemented in an overt motor
act or remain in the status of potential motor acts, enabling space perception (see
next section). Thus, the motor representations of F4 neurons can accomplish two
tasks. First, they can play a major role in the sensorimotor transformation for
facial, axial and proximal actions. Second, they can code space directly, in motor
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terms, using the same coordinate system of the effector acting in that portion of
peripersonal space.

The ‘motor representation’ interpretation of the visual response of bimodal
neurons is corroborated by a further experiment carried out on F4 bimodal neurons
(Fogassi et al., 1996b). In this experiment, after the tactile and visual response
of each neuron had been characterised, the visual stimulus (a three-dimensional
object) was moved at four different velocities toward the neuron tactile RF. The
results showed that the three-dimensional visual RF increased in depth as far as the
stimulus velocity increased and shrank as far as the stimulus velocity decreased.
In other words, at higher stimulus velocities, the neuron began to respond farther
in space and earlier in time. These results are perfectly in line with the notion of
the encoding of a potential motor act, because an individual must begin earlier a
spatially organised action when the velocity of an approaching target increases,
otherwise he could miss the target.

A similar finding has been shown also in humans by Chieffi et al. (1992). They
asked participants to reach for and grasp a sphere approaching them at different
velocities. When the object approached at higher velocities, participants started
the forelimb movement earlier in time and farther than at lower velocities. These
results, obtained during an overt action execution, appear to be the direct correlate
of the potential motor act coded by F4 bimodal neurons.

The strict link between action and space coding is also demonstrated by a clever
experiment carried out in a monkey parietal area by Iriki and coworkers (Iriki,
Tanaka and Iwamura, 1996). They studied sensory neurons of medial parietal area
PEip, endowed with properties similar to those of F4 bimodal neurons. They have
tactile RFs on the face or the forelimb and peripersonal visual RFs. In this area
there are apparently no motor neurons.

After an initial characterisation of the bimodal features of these neurons, the
researchers trained the monkey, from which these neurons had been recorded, to
take food out of arm reach by means of a rake. Once the monkey learned the task,
they continued to record from PEip neurons and found that the extent of their
peripersonal visual RFs were larger than before training, encompassing also the
space occupied by the rake, as if this tool had become a prolongation of the arm.
After a period in which the monkey did not perform the task anymore, the RFs
came back to its original extent. Thus, it is clear that action can plastically model
space. Interestingly enough, this mechanism is present also in humans (see below).

4. Further Cortical Areas Involved in Space Coding

Neurons with peripersonal visual responses are not limited to the VIP-F4 circuit,
but are present in other cortical and even subcortical regions. Concentrating only
on cortical areas, two of them are dorsal premotor area F2 and superior parietal area
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MIP (Matelli et al., 1998; Marconi et al., 2001), that are reciprocally connected to
form another parieto-frontal circuit coding reaching movements. Area F2, located
in the caudal two-thirds of dorsal premotor cortex, contains a sensorimotor rep-
resentation of the whole body, except the face (Fogassi et al., 1999; Raos et al.,
2003). Its sensory input is mostly somatosensory, however in its ventro-rostral part
(F2vr) there also visually-driven neurons (Fogassi et al., 1999). Among them there
are also bimodal, tactile and visual, neurons, that have large tactile RFs on the
forelimb and upper trunk and, as in F4, three-dimensional visual RFs, limited to
the peripersonal space and in register with the somatosensory RFs. In contrast to
F4, the RFs of F2 neurons are more related to the forelimb, while face-related
neurons, that are prominent in F4, are virtually absent in F2. Area MIP is located in
the dorsal bank of the intraparietal sulcus. In MIP there are motor neurons related
to reaching movements, purely somatosensory neurons, purely visual neurons and
neurons with bimodal properties responding to passive touch on the contralateral
forelimb and to the presentation of a visual stimulus (see Colby, 1998). Their
activity is very high when the monkey executes a reaching movement toward a
visual target. It is interesting to note that deep in the sulcus, below these bimodal
neurons, there are purely visual neurons whose response increases when the tar-
get is moved within reaching distance. Finally, there are motor neurons discharg-
ing during reaching movements (Colby and Duhamel, 1991; see also Johnson
et al., 1996).

What is the relation between forelimb movements and visual stimulation in the
MIP-F2vr circuit? Since most of visual RFs in MIP are large and encompass the
periphery of the visual field (Colby and Duhamel, 1991; Galletti et al., 1999), it is
likely that coding of space in this circuit could subserve a monitoring function of
the reaching movement toward a static or a moving target.

Another cortical sector that probably plays a role in space coding is the ros-
tral part of the inferior parietal lobule (rIPL), namely areas PF and PFG, strongly
connected with ventral premotor cortex, including area F4 (Matelli et al., 1986;
Cavada and Goldman-Rakic, 1989; Rizzolatti and Luppino, 2001; Rozzi et al.,
2006). In this sector there are neurons with somatosensory, visual and motor prop-
erties (Leinonen et al., 1979; Hyvarinen, 1981, 1982). Several authors described
also many bimodal neurons with tactile RFs on the face, the arm and the upper trunk
(Hyvarinen, 1981; Leinonen and Nyman, 1979; Leinonen et al., 1979; Graziano
and Gross, 1995; Ferrari et al., 2003) and large visual RFs often very close to the
tactile RFs. These bimodal neurons are located in a sector of IPL where mouth
and hand motor acts are represented. Thus, it seems quite logical to hypothe-
sise that the activity of bimodal neurons, as already proposed for F4, represents
potential motor acts to be executed in the peripersonal space near a specific
body part.

Summing up, there are many cortical circuits that can contribute to space cod-
ing, in particular of peripersonal space. Although in all these circuits space coding
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appears to be strictly related to motor programming and execution, in some circuits
the prevailing aspect appears to be the motor representation of the goal of specific
motor acts, independently of whether these will be actually executed or not, while
in others the on-line control of movement in space seems the most important
feature.

5. Lesions Data Confirm the Presence of Different
Types of Space Coding

As described in a previous section, a classical theory (Ungerleider and Mishkin,
1982) suggests that the dorsal visual stream, whose higher level of elaboration is
located in the parietal cortex, is involved in space perception (the ‘what’ system).
Although this theory has been challenged by another one (Goodale et al., 1992),
maintaining that the visual information conveyed by the dorsal stream is mainly
exploited for action, one cannot deny that one of the most described deficit sub-
sequent to a lesion of the parietal lobe consists in spatial neglect (see Bisiach and
Vallar, 2000). More precisely, patients with this syndrome are not visually blind
but do not report visual, acoustic or tactile stimuli presented in the left hemispace.
The lesion responsible for this deficit, although it can involve either subcortical
or cortical structures, in most cases is located in the right inferior parietal lobule.
Note that a lesion of a similar sector in the left hemisphere produces, generally,
another syndrome, called apraxia. This difference appears to be due to a division of
labor, a specialisation, of the two hemispheres. The neglect syndrome is very likely
due to an impairment in the elaboration of sensory stimuli that normally allow
the individual to become aware of cutaneous and external space. Several theories
have been elaborated in order to explain the nature of the neglect syndrome. Some
maintain that it consists in a perceptual impairment, others that it is a deficit of
mental representation, others — very influential — that it consists in a selective
loss of attention for the left hemispace.

Independently of which theory is correct (probably they are not necessarily
incompatible one with the other, but each of them just focuses on one aspect of
the deficit), the site of the lesion is in a cortical region that, in monkeys, con-
tains neurons with spatial properties that is richly connected with ventral premotor
cortex.

Is there evidence of a neglect syndrome in monkeys? Unilateral lesion of ventral
premotor cortex produce spatially-related motor and sensory deficits (Rizzolatti,
Matelli and Pavesi, 1983; Schieber, 2000; Fogassi et al., 2001). Motor deficits
consist in a reluctance to use the arm contralateral to the lesion (in the monkey
the deficit is independent of the hemisphere), for example in response to sensory
stimuli, in a slowness and inaccuracy in reaching movements and in an impair-
ment in biting food presented in the contralateral hemifield, near the monkey’s
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mouth. Sensory deficits consist in a neglect of visual and tactile stimuli introduced
in the hemispace contralateral to the lesion, near the monkey face or arm. This
impairment is very clear, because when the stimuli are introduced in the hemispace
ipsilateral to the lesion, the monkey reacts immediately. Very interestingly, threat-
ening stimuli which, when introduced in the peripersonal space, normally evoke a
blinking reaction, elicit this reaction only when introduced in the ipsilateral hemi-
field. However, when the same stimuli are presented far from the animal (outside
the peripersonal space) the blinking reaction is evoked from both the contralateral
and the ipsilateral space, showing a clear dissociation between a near and a far
space. In addition, eye movements are immediately elicited by stimuli presented
far from the monkey, but not when the same stimuli are presented near the monkey
in the contralateral visual field.

The opposite dissociation is obtained with a lesion of frontal eye fields (FEF),
a cortical area located in front of ventral premotor cortex (Rizzolatti, Matelli and
Pavesi, 1983). Monkeys with lesion of FEF do not move the eyes or orient toward
stimuli presented in the far space, contralaterally to the lesion side, while they per-
form normal eye movements toward stimuli presented in the contralateral periper-
sonal space. Thus, the differential effects provoked by lesion of ventral premotor
cortex or FEF confirm the presence of different areas for space processing, namely
for processing of peripersonal and extrapersonal space.

Ventral premotor cortex and FEF are anatomically connected with the rostral
half of the inferior parietal cortex and with area LIP, respectively. While there are
studies reporting some spatial or saccade-related impairment after LIP inactivation
(Li, Mazzoni and Andersen, 1999; Wardak, Olivier and Duhamel, 2004), there are
no data on VIP inactivation.

I previously described the involvement of IPL in coding peripersonal visual
stimuli. In agreement with these data, the lesion of IPL may induce motor deficits
such as misreaching and hand clumsiness (Ettlinger and Kalsbeck, 1962; Faugier-
Grimaud, Frenois and Stein, 1978; Rizzolatti, Gentilucci and Matelli, 1986; Gallese
et al., 1994; see also Hyvarinen, 1982) and a kind of neglect or extinction (Denny-
Brown and Chambers, 1958; Deuel, 1987). However, the spatial deficits, when
present, seem less strong than those observed after ventral premotor lesion.

Although monkey lesion experiments do not allow us to reach a conclusion
on the differential contribution of frontal and parietal areas to space processing,
it is clear that different sectors of space are processed through different anatom-
ical circuits. This differential processing has also been recently demonstrated in
humans. In neglect patients, in most cases the tests have been performed with the
patient in his bed. Thus, the typical signs of the syndrome mainly concerned the
peripersonal space. However, more recent studies demonstrated a double dissoci-
ation effect. For example, there are patients that typically bisect a horizontal line
shifting its middle point more to the left when the line is in their peripersonal
space, but indicate precisely the middle point when the same test is performed
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on a far line, reachable only with a projector light-pen (Halligan and Marshall,
1991; see also Berti and Frassinetti, 2000). Other patients show the opposite dis-
sociation (Cowey, Small and Ellis, 1994; Shelton, Bowers and Heilman, 1990;
Cowey, Small and Ellis, 1999). These data speak in favour of a non-unitary
space representation, that is of a space coding depending on the type of body
part acting in space in a specific behavioural situation. Thus, coding of extrap-
ersonal space is directly related to coding of eye movements, while coding of
peripersonal space is linked to the arm, face, and leg movements. Normally, the
working space of the various body parts does not change. However, in situa-
tions in which stimulus velocity changes, as in the experiment described above
(Fogassi et al., 1996b), the working space changes, and probably also its cortical
representation.

In human patients it has been demonstrated that spatial representation can
directly depend on actions performed in space. Berti and Frassinetti (2000) used
the bisection test in a patient showing neglect only for the near space. The patient
bisected correctly with a projector light-pen a line presented in the far space, while
he shifted the bisection to the right when asked to do it in the peripersonal space
with a pencil. When, however, the patient was asked to bisect a line in the far
space with a stick held in his hand, he pointed to the right of the middle point, thus
showing that the neglected space expanded in depth. As in the above reported study
of Iriki et al. (1996) in monkeys, tool use extends peripersonal space, probably
because it is incorporated in the body schema.

Further data confirming the importance of the motor system in shaping periper-
sonal space are provided by patients showing extinction. This deficit shares some
feature with neglect. Differently from neglect patients, those with extinction nor-
mally report the presence of single stimuli presented in the left hemispace, con-
tralateral to the lesion. However, when two stimuli are presented, one to the left and
the other to the right of the patient, he/she reports always the stimulus presented
ipsilaterally to the lesion. It has been shown that in subjects with tactile extinction,
this deficit can be reduced by a visual stimulus presented in the peripersonal, but
not in the far, contralateral hemispace. When, however, these patients are trained
to use a rake in order to retrieve a distant object, subsequently a visual stimulus
presented in the contralateral hemifield, far from the hand but near the tip of the
rake, is able to improve the tactile extinction. This effect is not present if the rake
is passively held in the patient’s hand (see Maravita and Iriki 2004; Farnè, Iriki and
Ladavas, 2005).

The neurological data presented above do not easily allow to trace the homology
between areas of both species. Recently however, Bremmer et al. (2001) in an fMRI
experiment, found an activation of ventral premotor cortex and two parietal regions,
one in the intraparietal sulcus and one in the inferior parietal gyrus, applying tactile
stimuli to the upper face and visual and acoustic stimuli near the same face sector.
The activated parietal and frontal regions could correspond to areasVIP and PFG of
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Figure 1 Lateral view of a left hemisphere of a monkey cerebral cortex showing the
parcellation of the motor and the posterior parietal cortices. The areas located within the
intraparietal sulcus are shown in an unfolded view of the sulcus in the right lower part of
the figure. For the nomenclature and definition of posterior parietal and motor areas see
Rizzolatti, Luppino and Matelli (1998) and, for a recent redefinition of inferior parietal areas,
Gregoriou et al. (2006). Abbreviations: AI, inferior arcuate sulcus; AS, superior arcuate
sulcus; C, central sulcus; L, lateral fissure; P, principal sulcus.

the monkey, respectively. These findings are consistent with monkey data indicating
that peripersonal space is processed by a dedicated neuroanatomical circuit, and
support the neuropsychological observation of a double dissociation for near and
far space in patients with neglect.
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6. Conclusions

In this article I provided evidence that space representation at the brain level is
not unitary, but is subdivided among different parieto-premotor circuits, whose
activation is strictly related to actions performed in different space sectors. The
concept emerging from the organisation of this circuit is that space coding is pri-
marily motor. Although in the adults actions in space are very often triggered by
sensory stimuli, so that the first active regions in the cerebral cortex are sensory
areas, in infants things can work in a different way. Babies of a few days of age
orient their head and trunk in space, move their mouth toward the mother’s nipple,
perform reaching movements. All these movements allow them to create a space
motor representation in their brain, before the visual system, in particular detailed
vision, is still completely developed. This ‘motor vocabulary’ for space will only
later be validated by a better elaborated visual input, thanks to the link between
premotor and parietal cortex. This view is supported by the above described data
demonstrating a crucial role of the adult motor system in plastically changed space
representation.

Although neglect patients appear to have a space deficit in different sensory
modalities and space sectors, it is still possible to demonstrate a dissociation of
the symptoms between far and near space. It would be interesting, in the future,
to see which is the neural mechanism allowing the construction in our brain of a
representation of space as a whole.
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1. Introduction

One of the more central issues in cognitive neuroscience is how the brain constructs
a map of the external world and how this map interacts with the representation
of our body, in order to be able to deal with objects placed in the surrounding
space. In common language space is defined as ‘the boundless, continuous expanse
extending in all directions, within which all material things are contained’(Webster,
1974). This definition well describes the introspective idea that individuals have
of space: something real, fixed and unitary, a kind of ‘container’ in which objects
are located.

Is this conventional view correct? Is there indeed a space centre or a space
circuit specifically devoted to space perception in the brain? There is now clear
evidence that this is not the case.

As already widely reported by Brozzoli and Farnè and by Fogassi in their
chapters there are several pieces of evidence both in animal and human stud-
ies that space is not homogeneously represented in the brain. Already in 1975
Mountcastle and his co-workers showed that in the monkey inferior parietal lobule
there is a ‘neural mechanism generating commands for selective attention to the
immediate behavioural surround’ for visual grasping of objects. The idea of the
existence of dedicated neural systems for near and far space coding was expanded
by Rizzolatti and colleagues (1981a and b, 1983) who proposed, on the basis of
electrophysiological findings, a subdivision of the external space into two large
sectors: the peripersonal or near space (coded by neurons in area F4 and VIP) and
extrapersonal or far space (coded in area 8 or FEF and LIP). The peripersonal space
is the space for arm and hand action, located around the body and continuing the
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personal space. The same neurons that code peripersonal space also code the body
surface adjacent to it. On the contrary far space is the region in which oculomotor
exploration occurs. It is also the space that can be reached by walking or running
or by using tools.

Interestingly, damages of front-parietal circuits, related to near space represen-
tation, cause a selective behavioural deficit in near space. In this case monkeys do
not respond to stimuli presented around the body, but react in an absolutely nor-
mal way to stimuli presented far from the body. On the contrary a monkey with a
lesion that selectively affects the circuits related to far space representation can be
unaware of the stimuli presented in the contralesional far space, while responding
normally to stimuli in near space.

2. Evidence for Discrete Representations of Space
in Humans

Indirect evidence of the existence of discrete representations for far and near space
in humans has been provided by several neuropsychological studies on brain-
damaged patients affected by unilateral neglect (for a similar conclusion in extinc-
tion patients see Brozzoli and Farnè, this volume).

Neglect patients do not respond to the presence of contralesional stimuli and do
not even explore the contralesional side of space (predominantly the left side, being
the lesion located in the right hemisphere), therefore presenting with a behaviour
very similar to those described in monkeys with damage to the brain network
involved in space representation. In some occasions it is possible to show that the
ignored stimuli are, nonetheless, processed up to a high level of analysis (Berti
and Rizzolatti, 1992). Neglect has been, therefore, interpreted as an impairment
to a complex neural network subserving conscious awareness of space (Berti and
Rizzolatti, 2002). Although Bisiach and coworkers (1986) found that right-brain-
damaged patients may show neglect for near space (in that case patients did not
cancel out the left stimuli drawn on an A4 sheet of paper) but not for personal space
and vice versa.

Until rather recently a tacit assumption in neglect studies was that unaware-
ness affects the entire contralesional space. The possibility that unawareness
of stimuli could be limited either to the space surrounding the body or to the
non-reachable space was not taken into account in clinical evaluation and neglect
patients, even now, are usually examined with materials presented only in the
space surrounding the body. However, following the seminal studies in animals
showing neglect limited to restricted space sectors (Rizzolatti et al., 1983), the
possibility of a dissociation between near and far space neglect was addressed
also in humans. The first evidence coming from clinical studies were contradic-
tory, showing, as already mentioned, dissociations between near space neglect
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and personal neglect (in which what is neglected is the left side of the body)
(Bisiach et al., 1986) but not between near and far space neglect (Pizzamiglio
et al., 1989).

A clear-cut dissociation between coding of different sectors of extrapersonal
space was reported by Halligan and Marshall (1991). They described a patient,
who, besides showing neglect in conventional tasks, had also a marked neglect
when asked to bisect lines in near space using either an ordinary pen or a projection
light pen. However, when the patient was asked to bisect lines presented in the far
space by means of a projection light pen, neglect ameliorated and even disappeared.
This finding demonstrated that space neglect can be restricted to a specific sector of
the external world. A similar dissociation has been described in several following
studies (for example Berti and Frassinetti, 2000).

Other studies provided the dissociation opposite to that described by Halligan
and Marshall: Cowey, Small and Ellis (1994) investigated bisection of horizon-
tal lines at various viewing distances; in five patients the error was greater for
lines further away than for lines of identical angular size within reaching distance.
Vuilleumier et al. (1998) described a patient with a right temporal haematoma
showing marked left visual neglect for far but not near space in a variety of tasks,
and even in a reading task.

The evidence that unilateral neglect of far and near visual space may exist
independently supports the hypothesis of a segregation of space representations in
humans.

If it is possible to show behavioural dissociations between near and far space
neglect then it is reasonable to predict different anatomical localisations for space
representations. An attempt to localise in normal human volunteers cortical areas
active in tasks performed in near and far space was carried out by Weiss et al.
(2000). Using positron emission tomography (PET), they instructed normal sub-
jects to bisect lines or point to dots in near and far space. The results showed that
actions performed in near and far space respectively activated different brain areas.
Near space actions determined activation of left dorsal occipital cortex, left intra-
parietal cortex, and left thalamus, whereas far space actions determined activation
of the ventral occipital cortex bilaterally and the right medial temporal cortex.
Bjoertomt, Cowey and Walsh (2002) used a TMS (Transcranial Magnetic Stim-
ulation) experiment on normal subjects, inhibiting different part of the posterior
cortex. They showed that the inhibitory stimulation of the right posterior parietal
lobe induces a pseudoneglect (that is a slight leftward bias) in near space, while
the stimulation of the ventral part of right occipital lobe induces a neglect for far
space, therefore suggesting a dorsal (parietal)/ventral (occipital) dichotomy for the
anatomical localisation of space coding.

Of greater relevance for the problem of the localisation of the peripersonal
space in humans is another fMRI study in which the authors attempted to
localise multimodal — tactile, auditory and visual — cortical areas in humans



April 19, 2011 18:40 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch06

130 A. Berti and A. Folegatti

(Bremmer et al., 2001). Tactile stimuli, moving visual stimuli located near the sub-
ject, and auditory stimuli producing the illusion of sound movement were presented.
Several cortical areas, related to different stimulus modalities, were found to be
activated by the stimuli. However, a multimodal convergence was found only in the
depth of the intraparietal sulcus (IPS), in the ventral premotor cortex and in the SII
complex. Considering the type of stimuli used (which included the tactile ones),
the activated multimodal areas should include the areas coding peripersonal space.
The obtained data fit this prediction. On the basis of their location (and properties)
the area in the depth of IPS appears to be the homologue of area VIP of the mon-
keys, while that located in the ventral premotor cortex should be the homologue of
area F4. The last area that was activated in this study was SII complex. On the basis
of the available evidence in monkeys, it is difficult to draw any firm conclusion on
which role (if any) this multimodal area has in coding peripersonal space.

Once established that lesions can selectively affect near and far space, one may
go deeper into the issue and ask whether peripersonal and far space coding are
sharply separated or there is a continuum between them. This issue was addressed
by Cowey et al. (1999), using a line bisection test. Lines of different lengths were
presented at six different distances from the body (25 cm, 50 cm, 100 cm, 200 cm,
300 cm, 400 cm) to patients affected by neglect.The authors assumed that the border
between near and far space should be located at 100 cm. The results showed that
in 5 out of 13 patients tested, there was an effect of line presentation distance, the
neglect being more severe in far than in near space. The performance impairment
was achieved gradually, with no significant difference between individual steps.
The only distance that significantly differed from all the others was that at 400 cm.
The authors concluded that there is no evidence of a clear border between near
and far space. More recently Longo and Lourenco (2006) found a gradual shift in
attentional bias on a line bisection task moving from near toward far space and
then they went further into the attempt to verify the classical behavioural definition
of near space as the space within arm reach. Their results interestingly suggest
that there is a systematic relation between the extent of near space and arm length
so that arm length may constitute an intrinsic metric for the representation of
near space.

3. Re-mapping of Space byTool Use

In everyday life animals and humans act upon objects. In order to interact with the
environment they need to detect, locate, orient to, and reach for the objects they
are interested in. All these operations can be distinguished according to the sector
of space in which they occur and to the action needed for accomplishing the task.

If the object of interest is located in the immediate surroundings of the body
(peripersonal space), manual reaching and grasping can be achieved without loco-
motion. On the contrary, if the object of interest is placed outside a direct manual
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reaching (extrapersonal space) locomotion is needed for subsequent action to the
object. Alternatively, the subject can use a tool to reach and grasp for far objects. In
any case, we need to encode the position of the objects with respect to the position
of the body and body parts, and to activate the adequate spatial map in order to act
upon them in a proper way.

If the brain constructs different maps according to far and near space the ques-
tion is whether ‘far’ and ‘near’ are simply derived from the absolute distance of
the object from the agent’s body or whether the coding of spatial positions is a
more dynamic operation that can be influenced by different actions induced by the
use of tools that modify the spatial relation between the body and the object. In
a seminal paper, Iriki, Tanaka and Iwamura (1996) found in the monkey parietal
lobe bimodal neurons that coded the schema of the hand, similar to those studied
by Rizzolatti et al. (Fogassi et al., 1996; Gentilucci et al., 1988) and by Graziano
et al. (1994). These neurons fired when a tactile stimulus was delivered to the
monkey’s hand and when visual objects were presented near the hand tactile recep-
tive field. The most striking characteristic of these neurons was that their visual
receptive field was modified, during a reaching movement performed with a rake,
to include the entire length of the rake and to cover the expanded accessible space.
In other words, in that experiment, the body schema was altered using the tool
(Head and Holmes, 1911): the tool was assimilated to the hand, becoming part of
the hand representation (Aglioti et al., 1996; Paillard, 1993). Berti and Frassinetti
(2000) showed that also in humans a sector of space previously mapped as far
on the basis of the reaching distance can be re-mapped as near when the cerebral
representation of body space is extended to include objects or tools used by the
subject. They studied Patient P.P., who, after a right hemisphere stroke, showed a
dissociation between near and far space in the manifestation of neglect. Indeed, in
a line bisection task, neglect was apparent in near space, but not in far space when
bisection in the far space was performed with a projection light-pen. However,
when in far space bisection was performed with a stick, by which the patient could
reach the line, neglect appeared and was as severe as neglect in the near space.
Like in Iriki et al.’s monkey, the use of a stick influenced the patient’s computation
of space. Indeed, the data can be explained as follows: when the patient used the
stick to reach for the object of interest in far space, the tool was coded as part
of the patient’s hand, as in monkeys, causing an expansion of the representation
of the body schema. This affected the spatial relation between far space and the
body. The structure of peripersonal space was then altered and peripersonal space
was expanded to include the far space reachable by the tool. The reaching of ‘far’
space with a tool determined a switch between spatial representations, so that the
representation of near space was now activated. Because near space representation
was affected by the brain damaged, the re-mapping of far space as near affected
patient performance in line bisection and neglect reappeared.

The capacity of using tools is, evolutionarily, one of the most important
achievements for monkeys and man. By holding a stick, we can reach for objects
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that are beyond the limit of our arm without using locomotion. Consequently, the
relation between our body and the external objects is modified so that a far object
can become near when we can reach for it, no matter what means we use, the hand
or a tool.

Recently we described the opposite dissociation i.e., re-mapping of near space
into far space when a sensory discontinuity between the patient’s limb and the
target object was introduced by using a laser pointer for bisecting lines (Neppi
et al., 2007). In other words, the use of a tool that prevents the contact with the
target object may cause a contraction of peripersonal space and the recoding of a
‘near’ object as ‘far’.

At this point another question we can ask is what kind of sensory input influ-
ences the re-mapping. Is it the fact that the subject sees the continuity/discontinuity
between the body/tool and the object, or is it the fact that subject feels the conti-
nuity/discontinuity between the body/tool and the object that affects re-coding of
space? In other words which source of information, visual or tactile-proprioceptive,
about the ‘body-tool’ complex is critical for determining the enlargement or the
contraction of peripersonal space? In a recent experiment (Neppi et al., 2007) we
manipulated sensory feedbacks and tool use in far and near space. We found that in
order to re-map far space into near space the presence of tactile proprioceptive feed-
back is crucial (i.e., it is crucial to feel the contact between the body/tool complex
and the object), whereas in order to re-map near space into far space the absence of
visual feedback is crucial (i.e., the visual discontinuity between the body/tool com-
plex and the object). We also found that in some patients re-mapping occurs before
any sensory feedback is available and it is based on the kind of action induced by
a specific tool. In these cases the use of a laser pen for accomplishing the task,
inducing a pointing action, always elicited far space activation, whereas the use of
a stick, inducing a reaching action, elicited near space activation, independently of
the sensory feedbacks.

Therefore our results suggest that sensory feedbacks are not necessary for re-
mapping space representations. At least in some cases, simply programming an
action, depending on the intrinsic functional characteristics of the tool, activates
the space that is congruent with the kind of action induced by the tool: pointing
actions, which we usually employ to interact with far objects, activate far space,
while reaching actions, that we use when a direct interaction with closer objects is
possible, trigger near space representation.

4. Space Representation During Walking

Having shown that the activation of space representation can be modulated by
actions that change the subject’s effective spatial relationship to a target object,
another question we asked is whether a similar re-mapping occurs also when far
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space is reached not by using a tool but by locomotion (Berti et al., 2002). Neglect
patients and brain-damaged patients without neglect were asked to perform two
bisection tasks: one was a line bisection task to be accomplished using a projection
light-pen, the other was a bisection of a doorway by walking through it. The two
tasks were performed at (or starting at) three different distances from the target
(3, 1.5, and 0.5 m). We found three neglect patients who showed more severe
neglect in far than in near space. Based on this observation, we predicted that if
the representation of space is updated during walking, our neglect patients should
activate an impaired representation at the beginning of each walking path and
a less impaired, or unimpaired, representation toward the end of it, in the two
longer distance conditions. Therefore, their walking trajectories should deviate at
the beginning of each path, especially with the most distant starting point, but
as they approached the doorway, with the activation of better preserved space
representations, the walking trajectories should be corrected. As a consequence,
the passage through the doorway (i.e., the actual displacement error) should be
similar from all three starting point conditions. On the contrary, if space is not
updated, then the first representation that is activated, at the beginning of each
path, will be the one responsible for the final bisection performance. Therefore, if
spatial neglect is more severe in far than in near space, we should expect to find
worse performance with the starting point in far space (activation of far space)
than with the starting point in near space. This is actually what we found. Neglect
was more severe when the starting point was at 3 m with respect to the other two
starting points. These results are in accordance with the hypothesis that space is
not re-mapped during walking.

Our conclusions were that during locomotion, at least for short, linear, and
unperturbed trajectories, space representation may not be re-mapped. In our
patients the spatial position of the target object was coded at the beginning of the
movement, and the error in the bisection computation was produced within the first
representation that was activated.

The evidence of the present study was collected in brain-damaged subjects.
Therefore, the absence of space re-mapping in the locomotion task might be due
to a specific deficit in shifting from one representation to another caused by the
lesion.Although we cannot infer from this negative finding (absence of re-mapping)
that normal participants also do not remap space during locomotion, we would
suggest a similar pattern for normals. We find it very reasonable that for relatively
short distances and for unperturbed pathways, our brain constructs a single, stable
representation of the spatial position of an object for the execution of a particular
task during movement, instead of continuously changing the representation as
the participant passes across different sectors of space. It is, however, likely that
updating during walking may become necessary for distances greater than those we
used, or when a rapid change in some characteristic of the target or a perturbation
in the walking trajectory is introduced during the participant’s walking.
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5. Conclusions

Although our phenomenal experience of space is characterised by a feeling of
unity, the neuropsychological and neurophysiological studies just reviewed have
demonstrated that the neural systems dedicated to space representation and spa-
tial cognition are implemented in a distributed network where discrete brain areas
are devoted to the coding of the different spatial attributes of the stimulus (Berti
and Rizzolatti, 2002). This network is greatly modulated by the programming of
purposeful actions with different effectors (for instance, an arm reaching move-
ment or a saccade) towards specific object locations. All these circuits compute
space, but the computational constraints for programming actions with different
effectors are different. Thus, space is computed repetitively for different motor
purposes.

The link between space representation and motor system can be interpreted in
two ways. The first view is that space is primarily ‘sensorial’, and the link with
the motor system is secondary. According to this view the multiplicity of space
representations would indicate only that the motor system requirements influence
the space representation, but do not determine it. The opposite view is that space
is primarily ‘motor’ (see Rizzolatti et al., 1997). The existence of a space around
the body, anchored to the body parts, and coded in circuits that control body parts
movements appears to be a strong argument in favour of a motor nature of space.
This is also suggested by the fact that space representation, during development,
is constructed through action. There is much evidence showing that movements
in space precede sensory information about space. Ecographic studies show that
already before birth babies have an extremely rich goal-directed motor activity that
indicates the presence of a motor representation of directions well before birth (see
Butterworth and Harris, 1994). At birth, the child’s movements become more and
more goal-directed but obviously related to the space around the body. Because
the vision is limited in depth to 20 cm, the children can acquire a representation
of peripersonal space, associating the motor knowledge, developed before birth,
with the appearance of both his/her hand and some new external objects, in dif-
ferent near positions, without the necessity to disentangle between near and far
stimuli. When the conditions of the visual apparatus evolve, the infant starts to
receive information from far space. Correlating visual stimuli coming from far with
eye/head movements and later with body movements, the child starts to construct
far space representation. The phenomenal experience that the children have, while
constructing different space representations, is difficult to infer, as is the one of
patients with dissociation between near and far space impairments. In any case,
whatever is the subjective feeling we may have during the building up of space
representations and in pathological conditions, the introspective idea that individ-
uals have of space is that of something fixed and unitary, a ‘boundless, continuous
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expanse extending in all directions, within which all material things are contained’
(Webster, 1974).
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Overview

This chapter reviews several highly convergent behavioural findings that provide
strong evidence in favour of the existence in humans of different representations
of space. In particular, we review here a series of neuropsychological studies on
patients and behavioural studies on healthy subjects that show how different sectors
of space can be differentiated from each other on the basis of the way in which they
reflect the processing of multisensory information coming from the space around
us. These findings are consistent with the functional properties of multisensory
neuronal structures coding (near and far) peripersonal space in animals. This high
level of convergence ultimately favours the idea that multisensory space coding is
achieved through similar multisensory interaction in both humans and non-human
primates. Recent findings about the plasticity of this space processing are also
presented, suggesting a dynamic role of the space representation for the planning
and execution of action.

1. Introduction

When we speak about space, we speak about a special object of experience that
could be better described as a way to perceive the objects around us. ‘Spatial per-
ception’ refers to the analysis of the spatial relations between different events out
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of the observer’s body or between these events and the observer’s body or between
different events on the body itself. The motor behaviour and the sensory input
provide the necessary information to build the spatial representations. Since all
different sensory information arrives separately to the brain, at a certain level of the
spatial processing all inputs must be functionally linked and share common refer-
ence systems. Visual input are firstly coded in retinal coordinates, somatosensory
input in somatotopic coordinates and the motor feedback is given by the reciprocal
position of joints. However, all events seem to occur in the same given portion of
the external ‘real’ space. We still need to locate the objects accurately in space.
That is to say, objects must occupy only one position, irrespective of how many
sensory channels are in use to perceive them. The idea of an object without a posi-
tion in the space, or occupying two different portions of space simultaneously, is
inconceivable (Làdavas, Berti & Farnè, 2000). The integration between different
inputs coming from visual, auditory and tactile receptors allows for a multisen-
sory representation of the space that can be used to plan, perform and correct the
ongoing motor behaviour.

Thus, even if we perceive the space as something continuously defined and
unitary represented, as the geometrical definition of Descartes’ space we are used
to, this derives from the ‘perceptual space’, that is a biologically determined
space composed by multiple representations, functionally built on the basis of the
behaviour we can perform in the environment (Craighero et al., 1999; Farnè et al.,
2005).

From a phenomenological point of view, the motor behaviour suggests three dif-
ferent portions of space: the personal, the reaching and the extrapersonal space. The
personal space is occupied by the body itself. Its representation is built from pro-
prioceptive and tactile information mainly, that in each moment update the central
nervous system about the position of the different body parts in the space and their
relative orientation. The visual input about the body might also contribute to the
representation of the personal space. The extrapersonal space representation is
principally based on visual and auditory inputs that convey information from the
far space. Finally, within the extrapersonal space but proximal to the body there is a
region of space, called the reaching space, which is functionally defined according
to the distance at which an object can be reached by the subject’s hand without
moving his/her trunk. This phenomenological distinction is corroborated by neuro-
physiological studies on animals and neuropsychological human studies that will
be described in what follows. Moreover, from a physiological point of view, a more
subtle distinction can be made within the extrapersonal space and consists of a spa-
tial area immediately surrounding the body parts that has been called peripersonal
space. The peri-personal space is further characterised by the high degree of multi-
sensory integration between visual and tactile information, not present for farther
regions of space, and can thus be added to the classical triadic space taxonomy.
Indeed, neurophysiological findings in animal studies allow such a strict definition
of peripersonal space, which limits it to an area of a few centimetres around the
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body, thus differentiating it from the reaching space. Neuropsychological studies
on brain damaged patients provided converging evidence of such a discontinuity
in the spatial representation in humans, further showing the strong modularity of
space representation.

In the human and non-human primates’central nervous system, several cerebral
areas receive convergent multisensory afferent inputs necessary to build up such
a representation of the space. Below, we briefly review the main multisensory
structures involved in the spatial representation that have been discovered firstly
in non-human primates.

2. The Multisensory Bases of the Space Representation

The superior colliculus is one of the cerebral areas involved in the spatial repre-
sentation on the bases of the multisensory information present in the environment.
Neurophysiological studies in the cat and monkey have revealed the existence of
multisensory neurons in this region and in particular, the superior colliculus shows
a single neuron convergence of multisensory signals: in fact, in this area single
cells discharge in response to a visual or an auditory or a tactile stimulus (Stein and
Meredith, 1993). Three different sensory maps are present in the colliculus, one
for each modality. It is thus able to provide the correct coordination of the head
and eyes movements towards the events present in the environment, integrating the
visual, auditory and somatosensory inputs. Besides the superior colliculus, which
seems to be particularly involved in the multisensory coding of relatively far space
(Làdavas & Farnè, 2004), one of the most relevant structures of the brain involved
in the spatial perception is the parietal lobe. In such an area, multisensory integra-
tion arises and, owing to its functional properties, contributes to the definition of
the region of space near to the body, the peripersonal space. This region is defined
by the relation of a stimulus in the near space, coded in the visual modality and the
somatosensory receptors on the body. Among the first evidence of an interaction
between visual and tactile events in the body proximity, it is worth mentioning
the neurophysiological work of Hyvarinen and Poranen (1974), who recorded the
single neuron activity in the monkeys’ parietal lobe, in particular in the area 7.
They found different classes of neurons whose activity varied as a function of the
presented stimulus. Interestingly, they described a class of neurons which were
preferentially activated by a tactile stimulus presented on a particular body part
(i.e., where the tactile receptive field of that neuron was located), but also by a
visual stimulus, if presented near the same body part, in correspondence with the
tactile receptive field of the neuron. This characteristic of the parietal neurons in
area 7 is the neurophysiological basis of the visuo-tactile integration, which thus
occurs at single-neuron level.

The first systematic study of visual-tactile neurons, however, has been con-
ducted by Rizzolatti and colleagues (Rizzolatti et al., 1981a,b) in an anterior
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region of the monkey brain, namely the premotor cortex (area F4). Most of the
neurons the authors recorded, responded to stimuli in one or two sensory modal-
ities. Accordingly to the particular modality activating the neurons, they were
classified as somatosensory, visual or bimodal (visual and somatosensory) neu-
rons. Visual neurons were located rostral to the arcuate sulcus (area 8, or FEF),
whereas the somatosensory and the bimodal neurons were found predominantly
caudal to this sulcus (area F4). The parts of the body most represented were the
hands and the mouth. The neurons located rostral to the arcuate sulcus, predom-
inantly visual neurons, were indeed activated by stimuli presented far from the
animal. The neurons found caudally to the arcuate sulcus were maximally or even
exclusively activated by stimuli presented in the space immediately around the
animal. These neurons were bimodal, responding also to somatosensory stimuli.
According to the location of their visual responding regions the bimodal neurons
were subdivided into pericutaneous (54%) and distant peripersonal neurons (46%).
The former responded best to stimuli presented a few centimetres from the skin,
the latter to stimuli within the animal’s reaching distance. The visual responding
regions were spatially related to the tactile fields. Therefore, an important property
of these neurons, as other cells in different multisensory areas (see below) is that
the extent of their visual receptive fields is limited in depth to a few centimetres
(in most cases from ∼5 to ∼50 cm) out of the tactile ones. For example, a neuron
might have a tactile receptive field on the palmar surface of the monkey hand and
a visual receptive field ‘coming out’ of the tactile one by ∼30 cm. In this case,
when an object is visually presented in front of the animal hand laying palm-up
in front of him on a table, the neuron will respond (by increasing the frequency
of action potentials) if the object is located above the hand, within the distance
of about 30 cm. If the same object is presented at further distance above the hand
(e.g., 50 cm), or close to the hand (e.g., 20 cm) but on the side of its palmar sur-
face (e.g., on the left or right instead of above it), the neuron will respond with a
much lower frequency, or not at all. This means that, in order to be an appropriate
stimulus for such a class of neuronal cells, not only the visual object has to be in
the vicinity of the body part where the tactile receptive field is located, but also in
the correct position with respect to it. In other words, it is not sufficient for a visual
stimulus to be in the ‘reaching space’ to make visual-tactile neurons to code for it
(see Figure 1). This fine selectivity is the neurophysiological basis of the distinc-
tion between two spatial representations: the near peripersonal space and the far
peripersonal space.

Moreover, when the hand and the arm are moved through the visual space of
the monkey, the visual receptive fields follow the body part, as they are anchored to
the tactile receptive field of a specific body part. When the arm or the hand are out
of the visual space of the monkey, the bimodal neurons activity is largely reduced,
suggesting that the vision of the body part is more important than proprioception
to code the peripersonal space associated to a hidden body part (Graziano and
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Figure 1 In agreement with the neurophysiological findings reported in the text, and illus-
trated in the upper row, the phenomenon of multisensory visual-tactile extinction in humans
is spatially selective; extinction of a touch delivered to the contralesional hand is significantly
more severe when the ipsilesional visual stimulus is presented close to (about 5 cm), than far
from (about 35 cm) the patient’s ipsilesional hand. This spatial selectivity suggests the exis-
tence, in the human brain, of integrated visual-tactile systems coding for near-peripersonal
space, functionally analogous to the one described in monkeys.

In the upper row is shown the firing rate (histograms) of a monkeys’bimodal neuron. This
visuo-tactile neuron is activated by a simple tactile stimulation on a specific body part (e.g.,
the hand), as well as visual stimulation (the yellow dot in the picture) when it is delivered in
the space close around the same body part. The same bimodal neuron is not more activated
if the same visual stimulation is presented far from the body part that is out of the visual
receptive field (pink area in the picture).

In the lower row, the picture shows the phenomenon of cross-modal extinction in humans.
These patients classically omit the contralesional touch in case of double simultaneous stim-
ulation (left panel). A similar phenomenon is shown when an ipsilesional visual stimulus
is presented simultaneously to the tactile one in the contralesional side: the visual stimula-
tion extinguishes the tactile one (central panel). However, if the same visual stimulation is
delivered far from the body-part, that is out of the functionally defined peripersonal space,
patients’ tactile detection improves in the contralesional side. These findings suggest that a
common mechanism may be shared by monkeys and humans in the building of a represen-
tation of the peripersonal space on the basis of the visuo-tactile integration (modified from
Maravita & Iriki, 2004 & Farnè et al., 2005).
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Gross 1993; 1995). More recently, other researches have confirmed and developed
these findings, showing that the integration of visual and tactile information is the
basis to build peripersonal space representations that are not only related to the
hand, but also to other body parts, such as the face. Indeed, also for the face it
is possible to distinguish a region of peripersonal space from the farther one. In
particular, some neurons in the ventral intraparietal area (VIP) have visuo-tactile
receptive fields mostly localized on the animal’s face and head. With the same
mechanism as for other body parts, the multisensory VIP neurons may thus build
a multisensory representation of the head-centred peripersonal space (Duhamel
et al., 1997; Avillac et al., 2005).

One of the most influential researches about bimodal neurons’ characteristics
investigated the dynamic properties of their visual receptive fields. Iriki and col-
leagues (Iriki et al., 1996) studied the bimodal neurons of the post-central parietal
gyrus, somewhat extending into the intraparietal sulcus, that code for the periper-
sonal space of the hand-arm in monkeys. These authors found that the extent of
the visual receptive field of the bimodal neurons is not fixed but can be expanded.
Indeed, Iriki and colleagues’ monkeys were trained to use a rake to reach for some
food pellets placed out of the animal’s hand-reaching space. In consequence of the
tool-training, the visual receptive fields of the bimodal neurons coding for the hand
peripersonal space mapped after the use of the rake were expanded in the direc-
tion of the tool-tip, such that the tool appeared to be included within the enlarged
visual receptive field. Moreover, a few minutes after the training with the tool
was paused, the visual receptive field area changed again, apparently shrinking
back to the original size. These modifications were not observed if the rake was
only passively held, bur not used, by the animal. These findings suggest that the
expansion of the visual receptive field of such visuo-tactile neurons that followed
tool use was not merely due to the modification induced by the fact of holding a
rake: that is, the visual and static proprioceptive information of the animal hold-
ing the rake was not enough to induce any significant change of the size of the
visual receptive field. For such a change to occur, it seems necessary that the tool
is actively employed to perform an action. In other words, the dynamic aspect
depends on the execution of a specific motor action (Rizzolatti et al., 1998). In
a similar vein, Fogassi and colleagues (Fogassi et al., 1996) have also found that
the visual receptive fields of visuo-tactile neurons in area F4 expand when the
visual stimulus velocity increases while approaching the cutaneous receptive field,
a property that could be relevant for the preparation of action towards nearby stim-
uli. The approaching or escaping nature of the action could be partly determined
by the characteristics of the visual stimulus (see Farnè et al., 2003). Recently, the
idea that multisensory-motor interfaces might code defensive movements received
some preliminary support. Electrical stimulation of precentral multisensory areas
seems to evoke complex avoidance or defensive reactions, such as withdrawal of
the hand, turning of the head or lifting the hand as if to defend the side of the head



April 19, 2011 18:40 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch07

The Space Representations in the Brain 143

(Graziano et al., 2001). It would thus be adaptive that responses possibly evoked by
multisensory neurons are fast and mainly outside the control of top-down mecha-
nisms. However, the tool-use studies that have been recently made available in the
animal and human literature suggest that these multisensory-motor interfaces might
also code for the execution of purposeful movements, aimed at voluntarily act on
objects.

To resume, the bimodal neurons code for two different sensory modality: the
tactile and the visual modality (see, for the auditory modality, Farnè & Làdavas,
2002). The main functional characteristics by which these neurons are able to
integrate these two modalities are summarised below.

• The tactile and visual receptive fields roughly overlap in space.
• The visual receptive field is limited in depth to a few centimetres.
• Typically, the visual receptive field of the bimodal neurons, functionally defined

as the region of space where a visual stimulus activates this particular neuron, is
anchored to the tactile receptive field. Therefore, if the latter moves in the space,
the visual one follows it.
• A bimodal neuron is activated by a visual stimulus if it is presented close to the

correspondent tactile receptive field. Roughly, three classes of neurons can be
differentiated as a function of the maximum distance at which a visual stimulus
activates the neuron: (a) less than 5 cm; (b) less than 35/45 cm; (c) more than
1 metre. The most part of the bimodal neurons is included in the two first classes.
• The neuronal response evoked by visual stimulation is a function of the dis-

tance of the visual stimulus from the tactile receptive field. That is, besides the
selectivity described above, the neuronal activation, in terms of spike frequency,
increases in most cells as the distance of the visual stimulus from the body
decreases.
• Somatotopic representation in multisensory areas. Multisensory areas of differ-

ent regions, taken together, form a complete, although not ordered somatotopic
representation of the body (area VIP has a detailed representation of the mon-
keys head/face/torso, area F4 mostly of the hand/arm/torso). Since tactile and
visual receptive fields largely overlap, a multisensory map of the space around
the body is provided. The most represented body parts are the face and the
hand/arm.
• The spatial coordinates system is body parts centred. The visuo-tactile region

position is independent of the orbital eye position. Thus, these neurons do
not code the peripersonal space in retinal coordinates, but mainly in soma-
totopic, body parts centred coordinates, although several level of transition
among the reference systems can be found in some areas of this circuit
(e.g., area VIP).

These characteristics allow the bimodal neurons to build representations of the near
peripersonal space.
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3. Several Representations of the Space in the Human Brain

Most parts of information about the cerebral areas involved in the representations of
the space in humans come from the neuropsychological studies on brain damaged
patients. Neuropsychology represents a natural interface among diverse disciplines
such as neuroanatomy, neurophysiology, cognitive psychology and computational
modelling. The main source of information for neuropsychologists consists of the
pathological behavioural phenomena that become manifest following damage to
the central nervous system. By describing, examining, quantifying and classifying
altered cognitive abilities in humans after brain damage, the neuropsychological
approach may contribute substantially to our understanding of the normal organi-
sation of brain functions (Shallice, 1991).

As we discussed before, one of the most important cerebral structure involved in
the construction of the spatial representations is the right parietal cortex. Evidence
of the parietal cortex involvement in spatial representations in humans comes from
the different syndromes which can follow a parietal lesion. One of the most complex
spatial deficits is known as the Balint–Holmes’ syndrome, consisting in four main
symptoms: gaze apraxia (inability to generate voluntary saccades), optic ataxia
(inability to reach and grasp an object in peripheral vision), neglect (Balint, 1909)
and a deficit in perceiving distances (Holmes, 1919). Holmes in particular, reported
that patients failed to describe spatial characteristics of the objects they could still
recognize, showing a deficit in localization of the objects and in the judgement of
their distance from the body. Post mortem analysis of these patients, revealed a
bilateral lesion involving the posterior parietal cortex.

Another syndrome following parietal cortex damage is the Gerstmann’s syn-
drome (Gertsmann, 1930). Characteristic components of this deficit, among others,
are the finger agnosia (inability to recognize and name the different fingers) and
left-right confusion. Gertsmann’s syndrome patients thus show a deficit in the
recognition of body parts itself, suggesting that the parietal lobe is not only implied
in peripersonal and extrapersonal space representation but also in the “personal”
space.

The phenomenon that more than others provided information about the mod-
ularity of the spatial representations in humans in different sensory modalities is
spatial neglect (simply neglect hereinafter) (Brozzoli et al., 2006). Neglect is a
complex syndrome associated to a lesion of the right inferior parietal lobule, at the
parieto-temporo-occipital carrefour. Patients affected by neglect show characteris-
tic deficits. In the acute phase they show a deviation of gaze and the head towards
the ipsilesional side; they are often hemiplegic in the contralesional side of the body
and they seem not perceive neither explore the contralesional side of the personal
and extrapersonal space; a reduction of activity toward the contralesional hemis-
pace is also reported. The presentation of a visual stimulus or a person speaking
on the patient’s left side is not attended to and does not produce any orientation
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behaviour. Thus, in everyday life these patients do not care about the left side of
their body, shaving only the right side of their face, for example. In addition to
this lack of attention to the contralesional side, they show defective performance
also for stimuli presented in the right side (Snow & Mattingley, 2006) as well as
non-spatially lateralised deficits (Husain & Rorden, 2003). Clinically the presence
of the deficit is assessed by the use of tests as the cancellation, the line bisection or
drawing from memory or on copy. In the first mentioned, the patient is provided
with a sheet of paper where several target or distractor stimuli are printed. The mid-
dle of the sheet is aligned with the central meridian of the patient’s body and he/she
is asked to individuate and mark with a pen as many target stimuli as he/she can,
avoiding distractors. Typically, neglect patients can mark only the stimuli placed
on the right (ipsilesional) side of the sheet, omitting the contralesional ones. This
kind of behaviour is present also in other tasks involving visuo-spatial perception.
When asked to copy an object by drawing it, neglect patients usually report only
the ipsilesional elements. In a line bisection task, patients are asked to report the
middle of a line. The misperception of the left side of space biases the middle point
rightwards. Thus, these patients behave as they could not perceive or attend to the
left side of their body and the space out of their body.

This description of the syndrome already shows how the representation of the
space in the brain is not continuous, since the left and the right representation
of the space can be differentially damaged by the parietal lesion. The most inter-
esting dissociation in terms of space representations shown by neglect patients
is the disruption of either the peripersonal or the extrapersonal space represen-
tation. Several studies (Halligan & Marshall, 1991; Cowey et al., 1994; Berti &
Frassinetti, 2000) provided the evidence of this double dissociation. Halligan &
Marshall, showed in a group of four patients the presence of neglect in the near
but not in the far space, whereas Cowey and colleagues showed in a group of
five patients the opposite dissociation in a line bisection task. In an elegant study,
Berti and Frassinetti (2000) reported the case of a patient who presented with a
severe neglect when asked to perform a line bisection task in the near space, as in
the described classical procedure. However, when asked to perform the same task
marking the same stimuli but placed 1 metre far from her, by the use of a laser
pointer, she did not present neglect symptoms. The different behaviour this patient
showed in the two spaces corroborates the evidence of the dissociation between
the representations of a near and a far space. While no definite answer has yet been
given to the anatomical counterpart of these behavioural dissociations in humans,
the work by Rizzolatti and colleagues (1981; 1983) described above provided a
neurobiological support to the distinction between peripersonal and extrapersonal
space in monkeys. While neurons in area F4 responded to somatosensory and visual
stimuli, provided that they were presented within monkeys’ peripersonal space,
those in area FEF responded when the same visual stimuli were located farther
away, in the extrapersonal space. Accordingly, unilateral ablation of area F4, or
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FEF provoked contralesional visual neglect for objects located, respectively, in the
monkey’s peripersonal, or extrapersonal space.

These findings are good evidence in favour of the presence in the brain of sep-
arated but interconnected representations for different sectors of space in humans
as those described in non-humans primates. An interesting question is whether a
similar mechanism underlies the construction of these representations across the
two species. In this respect, the study of a neuropsychological condition called
‘extinction’ provided considerable insight into the behavioural characteristics of
multimodal spatial representation in humans. Extinction (Loeb, 1885; Oppenheim,
1885) is a pathological sign following brain damage whereby patients may fail to
perceive contralesional stimuli only under conditions of double (contra- and ipsi-
lesional) simultaneous stimulation (Bender, 1952), thus revealing the competitive
nature of this phenomenon (di Pellegrino & De Renzi, 1995; Driver, 1998; Duncan,
1980; Ward et al., 1994).

A number of studies have shown that extinction can emerge when concurrent
stimuli are presented in different sensory modalities, i.e., different sensory inputs
delivered to the ipsi- and contra-lesional side of the patient’s body. Tactile extinc-
tion, for example, can be modulated by visual and auditory events simultaneously
presented in the space region near the tactile stimulation, increasing or reducing
tactile perception, depending upon the spatial arrangement of the stimuli. In a
series of studies, we tested whether the presentation of a visual stimulus in the right
ipsilesional field could extinguish the tactile stimulus presented on the contrale-
sional hand, which was otherwise well detected by patients when presented alone.
The prediction of these studies was that if a multisensory (visuo-tactile) system
processing tactile and visual stimuli near the body is in charge of coding left and
right spatial representations, then delivering visual stimuli close to a body part
(�7 cm, i.e., in the near-peripersonal space) would be more effective in produc-
ing cross-modal visual-tactile extinction than presenting the same visual stimuli at
larger distances (�35 cm, i.e., in the far-peripersonal space).

The results of these studies confirmed the presence of stronger cross-modal
visual-tactile extinction when visual stimuli were displayed in the near- as com-
pared to the far-peripersonal space. These findings were taken as providing a
strong neuropsychological support to the idea that the human brain represents
near-peripersonal space through an integrated multisensory visuo-tactile system.
Owing to this system’s activity, the somatosensory representation of the ipsile-
sional hand may be activated by the nearby presentation of a visual stimulus,
thus competing with the contralesional hand representation activated by a tac-
tile stimulus. Since the competition is biased in favour of the ipsilesional side in
extinction patients, the ipsilesional visual stimulus appears to extinguish the con-
tralesional stimulus presented in a different modality. This would be due to the fact
that the processing of the somatosensory stimulation of the contralesional hand is
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disadvantaged in terms of competitive weights, bearing a comparatively weaker
representation.

To assess which reference frame is used to code multisensory near-peripersonal
space, a patient with left tactile extinction who was asked to cross the hands,
so that the left hand was in the right hemispace and the right hand in the left
hemispace (di Pellegrino et al., 1997). In such a crossed-hand situation, a visual
stimulus presented near the right hand (located in the left space) still extinguished
tactile stimuli applied to the left hand (now located in the right hemispace). Thus,
visual-tactile extinction was not modulated by the position of the hands in space,
as far as the spatial correspondence between sensory modality and the stimulated
hand was kept constant (i.e., visual stimulus-right hand/tactile stimulus-left hand).
This finding, by showing that the visual peripersonal space remains anchored to
the hand even when it is moved in another hemi-space, strongly suggests that the
near-peripersonal space is at least partially coded in a hand-centred coordinate
system. The pattern of results observed in the case of visual-tactile stimulation of
the hand is consistent with the functional properties of the multisensory system
that has been described in monkeys, further suggesting that human and non-human
primates might share, at some level, similar cerebral mechanisms for near space
representation.

The multisensory representation of space is anchored neither to a mere ‘bodily
point’, nor to the body as a whole but to specific body-parts, in this case the hand.
This raises the question of whether humans represent near-peripersonal space not
only in relation to hands, but also to other body parts. In this respect, as described
above, the neurophysiological findings revealed a somatotopic distribution of mul-
tisensory neurons’ receptive fields, which are known to be mostly located on the
animal hand/arm, trunk, and face. The latter neurons seem to be particularly rele-
vant for the coding of near-peripersonal space, since a specific multimodal area of
the parietal lobe (VIP) is mainly devoted to representing space near the face (Colby
et al., 1993; Duhamel et al., 1991; 1998). On this basis, we reasoned that a mul-
tisensory mechanism, similar to that operating in the case of the hand, might also
be involved in representing near-peripersonal space in relation to the human face.
Therefore, we followed the same rationale to investigate whether the presentation
of ipsilesional visual stimuli might modulate left tactile extinction also at the level
of the face (Làdavas et al., 1998). Similarly, we expected that cross-modal extinc-
tion would be stronger by presenting visual stimuli near, as compared to far from,
the patients’ face. This hypothesis has been assessed in a group of patients with
right brain damage presenting left tactile extinction and was clearly supported. As
for the hand, visual stimuli presented to the ipsilesional side produced a decrease in
the detection of contralesional tactile stimuli, particularly when visual stimuli were
presented near the ipsilesional cheek. In this near-peripersonal condition, patients
reported only few touches of the left cheek, while these stimuli were otherwise
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well perceived when delivered alone. The extinction phenomenon was much less
severe when visual stimuli were delivered far from the face; in the far peripersonal
condition, patients were able to report the majority of contralesional touches, thus
confirming the existence of a representation of multisensory peripersonal space
also relative to the humans face/head.

All together, these studies suggest that multisensory representations of space
are coded within the near-peripersonal space of the face and the hand, and these
representations might differ from those controlling visual information in the far-
peripersonal space (Farnè & Làdavas, 2002; Làdavas, 2002).

4. Multiple Representations of Peripersonal Space

Does the modular organisation of space, which seems to operate as a general
principle governing spatial perception, also apply to the representation of the
near-peripersonal space? By referring to the Graziano and Gross’ metaphor of
near-peripersonal space as a ‘gelatinous medium’ surrounding the body, we asked
whether this would be a unitary and homogeneous sector of space encompassing
the whole body, or an ensemble of modules separately representing the space imme-
diately adjacent to a given body part. We recently tested this unitary vs. modular
representation hypothesis (Farnè et al., 2005).As the two hypotheses make opposite
predictions, we contrasted them directly by investigating cross-modal visual-tactile
extinction in a group of right brain damaged patients. We reasoned that, if the
unitary hypothesis were true, then tactile stimuli delivered on the contralesional
hand would be comparably extinguished by ipsilesional visual stimuli irrespective
of the stimulated body part (either the hand or the face), provided that the visual
stimulus were presented near the body. Alternatively, if near-peripersonal space is
represented in a modular way, then tactile stimuli delivered on the contralesional
hand would be more severely extinguished when ipsilesional visual stimuli are
presented near the homologous body part (i.e., the right hand), than near the non
homologous body part (i.e., the right side of the face). The two hypotheses also
differed with respect to the near-far modulation of cross-modal extinction since
its presence in the case of stimulation of non homologous sectors would support
the unitary hypothesis, whereas its absence would favour the modular organization
hypothesis. The results showed a visual-tactile extinction stronger for homologous
than for non homologous combinations and showed that the effect was selectively
present when visual stimuli were presented near the ipsilesional side of the patients’
body. In sharp contrast, when visual stimuli were presented far from the ipsile-
sional side of the patients’ body, the amount of visual-tactile extinction obtained in
homologous and non homologous combinations was comparable. By extending to
this peculiar sector of space the principle of the modular space organisation, these
findings support the view that different multisensory representations are coded
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within the near-peripersonal space of the hand and the face. Further support to this
view has been recently provided by neuroimaging findings showing a human pari-
etal face area representing head-centred visual and tactile maps (Sereno & Huang,
2006).

5. Multisensory Representation of Peripersonal Space
for Action

The neurophysiological and neuropsychological findings reviewed above converge
in showing that peripersonal space is structured in far and near peripersonal space
sectors, the latter being specifically coded in a multisensory, body part-centred and
modular manner. So far, these considerations allow for a fine-grained description of
the structure of space and of its anchoring to the body. This provides the adequate
basis to ask further questions about the determinants of such a spatial structure.
Specifically, we will ask the following questions: Is the extension of the periper-
sonal space fixed in space or can it be modified? If it can be modified, what are
the conditions of such a modulation? Is a simple change of our visual body-image
sufficient to dynamically re-map far space as near, or is some kind of sensori-motor
activity necessary to produce this re-mapping? In what follows, we review empir-
ical investigations of the specific manner in which space can be structured by the
perceiver’s own action.

We described recent neurophysiological animal studies which have examined
whether the near-peripersonal space of monkeys’ hands, and especially its spatial
extension and location, might be modified through different kinds of sensorimotor
experience. The question at stake is whether a passive change of the corporeal
configuration is sufficient, or whether some goal-directed activity is needed. So
far, this question has been investigated by considering the effect of tool use on
the extension of the peripersonal space (Iriki et al., 1996; 2001; Obayashi et al.,
2000). Tools enable human beings and other animals to manipulate objects that
would otherwise not be reachable by hands. Acting on distant objects by means of
a physical tool requires sensory information that is mainly provided by vision and
touch. The expansion of the peri-hand area whereby vision and touch are integrated
would render the possibility of reaching and manipulating far objects as if they
were closer to the hand.

In particular, a re-coding of relatively far visual stimuli as nearer ones has been
observed in monkey single-cells studies, after extensive training in using a rake to
retrieve distant food, thus extending the hand’s reachable space by connecting the
animal’s hand with objects located outside its reaching distance. A few minutes of
tool-use induced an expansion of visual RF of visual-tactile neurons recorded in
the parietal cortex. This rapid expansion along the tool axis seemed to incorporate
the tool into the peri-hand space representation. The extended visual RF contracted
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back to the pre-tool-use dimension after a short rest, even if the monkey was still
passively holding the rake (Iriki et al., 1996). No modification of the visual RF
was ever found if the monkey was just passively holding the tool. Therefore, the
tool-use related expansion of the visual RF was strictly dependent upon the active
use of the rake to reach distant objects.

A similar effect of re-coding of visual stimuli located in far-peripersonal space,
as if they were closer to the participants’body, has been documented behaviourally
in right brain-damaged patients with tactile extinction (Farnè & Làdavas, 2000).
In this study, the amount of cross-modal visual-tactile extinction was assessed
by presenting visual stimuli far from the patients’ ipsilesional hand, at the distal
edge of a 38 cm-long rake passively held in their hand. The patients’ performance
was evaluated before tool-use, immediately after a five minutes period of tool-use,
and after a further five to ten minutes resting period. To control for any possible
effect due to directional motor activity, cross-modal extinction was also assessed
immediately after a five minutes period of hand pointing movements. We found
that far visual stimuli induced more contralesional tactile extinction immediately
after tool-use (retrieving distant objects with the rake), than before tool-use, when
they just hold the rake passively. This evidence of an expansion of the peri-hand
space lasted a few minutes after tool use. After the resting period, the severity of
cross-modal extinction was back to pre-tool-use levels, suggesting that the spa-
tial extension of the hand’s near-peripersonal space contracted back towards the
patients’ hand. Finally, no change in cross-modal extinction was found immedi-
ately after the execution of control pointing movements toward the same distant
objects. Closely related evidence comes from the study of Berti and Frassinetti
already recalled above, whereby neglect symptoms were limited to the near space
and did not extend to the far space when the patient was asked to bisect far lines
(1 metre away) with a laser-pen. Very interestingly, the authors asked the patient
to perform the same task but this time by the use of a wooden stick, that was in
spatial continuity with the hand of the patient. Surprisingly, when using this tool
to reach the lines placed in the far space, the patient showed a rightward bisection
bias, as severe as in the near space. Therefore, the near and far space are separately
represented but the codification of what is near and what is far is not absolutely but
functionally defined on the basis of how the body needs to interact with the objects
in the space, that is the behaviour that has to be performed in the environment.
In the Berti and Frassinetti’s study, the use of a tool in rigid continuity with the
hand in order to reach objects placed in the far space induced a re-mapping of this
region as a near space region, with the consequence that the disruption of the left
side representation was then evident in the far (but behaviourally near) space. This
is an elegant demonstration of the incongruity between the geometrically defined
and the behaviourally represented space.

More recently, Longo and Lourenco (2006) studied whether the transition
between near and far space is gradual or to the contrary they are abruptly sep-
arated, using the same tool paradigm as in the Berti and Frassinetti’s study, in
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a group of healthy subjects. In fact, also normal subjects present a slight bias
in a bisection task, showing a leftward bias in the near and a slight rightward
bias in the far space. When employing the stick to reach and mark the pre-
sented lines, subjects always showed the same amount of leftward bias, indepen-
dently of how far the lines were presented. Also, when using the laser pointer,
participants showed a gradual shift of the bias from the left to the right, sug-
gesting that the brain gradually code the transition from the near to the far
space.

Specifically considering the role played by passive or active experience in
reshaping peripersonal space, the results of a recent study (Farnè et al., 2005a)
were clear in showing that a relatively prolonged, but passive experience with a
tool is not sufficient to induce such a dynamic re-mapping of far space as near
space. Indeed, passive exposure to the proprioceptive and visual experience of
wielding a rake did not alter the severity of visual-tactile extinction, which was
found to be comparable to that obtained when the tool was actually absent. This
favours the idea that plastic modifications of the structure of peripersonal space are
not the product of passive changes in proprioceptive/kinesthesic, or visual inputs
per se. An artificial extension of our reachable space by a hand-held tool would
not necessarily imply a phenomenon of tool incorporation, unless the tool is used
in some active way. Indeed, when cross-modal extinction was assessed equally
far in space, but immediately after the active use of a long tool, we observed a
significant increase of cross-modal extinction. These findings considerably extend
our knowledge about dynamic tool incorporation in humans, by making clear that
the plastic modifications are tightly linked to the active, purposeful use of a tool
as physical extension of the body, which allows interactions with otherwise non-
reachable objects.

These findings underline that the representation of space is neither static nor
passive. Rather, the structure of space is specifically build up transiently in a body-
related way thanks to processes of sensorimotor integration. The data just reviewed
suggest that tool-use can change space representation both in normal subjects
and in brain damaged patients. In particular, a passive change of the corporeal
configuration (hand+tool) is not sufficient: some goal-directed activity is needed.
These results raise a further question concerning the critical determinant of the
extent to which peri-hand space increases. Does this depend upon the physical,
absolute length of the tool, or the operative length of the tool that can be effectively
used to act on objects?

In this respect, the differential amount of cross-modal extinction obtained with
different tools was not determined by the absolute length of the tool, but by its
operative length (Farnè et al., 2005a). These results favour the notion that peri-hand
space elongation is directly related to the functionally effective length of the tool,
i.e., by the distance at which the operative part of the tool is located with respect to
the hand. Importantly, this coheres with the aforementioned functional reshaping
of spatial representation.
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This functional perspective raises a last question concerning the actual shape
of the expansion of the peri-hand space after tool use: does it consist in an elonga-
tion of the multisensory integrative area along the axis of the tool or in a shift of
these proprieties to the tip of the tool? In other terms, does the functional expan-
sion of the peri-hand space after tool use consist in an actual elongation of the
visual-tactile integrative area along the tool axis, encompassing the whole tool axis
(Farnè & Làdavas, 2000; Farnè et al., 2005a,b), or in a selective incorporation of
the specifically functional part, i.e., the tool-tip, due to the shift or the creation of
a new integrative area at the distal edge of the used tool (Holmes et al., 2004)?
This issue has been addressed by assessing cross-modal visual-tactile extinction
in a right-brain damaged patient while she was wielding a 60 cm long rake, before
and immediately after its use to retrieve distant objects (Farnè et al., 2007). At
variance with previous patients studies, visual-tactile extinction was assessed near
the ipsilesional hand (holding the rake handle), near the distal edge of the rake, as
well as in a middle position between the hand and the distal end of the rake. Follow-
ing the tool-use training, visual-tactile extinction increased both at the distal edge
as well as midway between the hand and the tool-tip, no change being observed
near the hand. This result, which has been recently confirmed and extended on
a group-study base (Bonifazi et al., 2007) suggests that after tool use the visuo-
tactile peri-hand space is expanded to incorporate the whole tool rather than being
displaced to a restricted area around the tip of the tool. In summary, neurophysio-
logical and neuropsychological findings converge in showing that the strength of
multisensory coding of peri-hand space can be modified along the axis of a tool to
include its length, the re-mapping being achieved through a functional re-sizing of
the peri-hand area where visual-tactile integration occurs.

This finding is coherent with the general property of near-peripersonal space
recalled above: it is coded in a body part-centred manner. Here we see that its
functional elongation does not amount to detaching near-peripersonal space from
its bodily anchoring. Rather, the reported data suggest that the functional mod-
ulation of spatial representation involved a modification of the functional body
itself: the latter remains anchored to the effector (the hand), but is elongated to
include all relevant functional parts (all along the tool up to its functional part).
These considerations link the coding of peripersonal space to the body schema
(Head & Holmes, 1911). In this respect, Iriki’s and colleagues’ seminal paper (Iriki
et al., 1996) suggested that the tool was ‘embodied’, thus inducing a modification
of the body schema. The body schema concept (Head & Holmes, 1911) refers to
the representation of the body in the space, closely related to the action behaviour,
and is usually differentiated from the body-image, a more conscious representa-
tion of the body, related to the conscious experience of visual, tactile and motor
information of corporal origin (Head & Holmes, 1912; Paillard, 1991; Sirigu et al.,
1991). The two points of view are not mutually exclusive since, in principle, both
modifications might arise as a consequence of the use of a tool. The central point
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is to understand if the two concept of peripersonal space and body schema are
really separable concepts. Although, it is logically conceivable a modification of
one of them leaving unchanged the other, no evidence is present in literature about
this issue. May the body schema and the peripersonal space be conceived of as the
two faces of the same concept? The former, classically action-related, would be
referred to the structure of the body in order to perform an action and the modifica-
tion of this structure when the body is performing an action. The latter could also
be action-oriented and referred to the multisensory space around the body, whose
input could be used to perform the action.

6. Conclusion

We are used to thinking of the space around us as a whole continuum, as the
geometrical Descartes’ definition of space, where the objects are available for our
actions. However, the space is represented in the brain in a different way: several
spatial representations are built up for different regions of the real space. As we
reviewed in the first part of this chapter, these different representations can be
differentiated from each other on the basis of the sensory input they are built on.
Thus, three main regions of space in respect to the body can be differentiated: a
personal space, that is the body itself, principally based upon the somatosensory
input (proprioceptive and tactile modality; but also important is the vision of the
body, which contributes to the definition of this region of space); a peripersonal
space region, that is the area around the body where tactile and visual information
are massively integrated; finally, the extrapersonal region of space, whose represen-
tation is principally based on the “tele-sensory” modalities (vision and audition).
The most important issue we described in this chapter is the evidence of the action
dependent modifications of the multisensory integration. In fact, is the intention to
perform a particular action, the criterion the brain adopts to code different areas as
near to or far from the body. The representations of the space in the brain are thus
dynamical, since they can be updated as a function of the action we are demanded
to perform and the tool that we may use to reach the goal of the action.
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1. Introduction

Over the last few years, an increasing intertwining between philosophical and
neuroscientific research has occurred, often promoting a proper paradigm shift in
the study of the basic aspects of cognition. This is particularly true for the study of
the cortical motor system, which has shown to be involved in a growing number
of cognitive functions that used to be typically attributed to high-order processes.

The constitution of peripersonal space is one of the most relevant and intrigu-
ing ways in which the motor system displays its cognitive function. Through the
exploration of this issue, our paper aims to demonstrate the urgency of a paradigm
shift towards an enactive approach to cognition.

This paper will be structured into three main sections. In the first one, a review
will be given of the empirical evidence supporting the notion of peripersonal space
as distinct from personal and extrapersonal space. The defining traits of periper-
sonal space will be shown to consist in its being multisensory (i.e., based on the inte-
gration of visual, tactile and proprioceptive information), body-centred (encoded
not in retinal, but in somatic coordinates) and motor in nature. The second section
will focus on the role that bodily movements play in constituting space. This idea
is not new in philosophy, as we will prove by looking at Husserl and Poincaré.
Although they provide one of the most sophisticated analyses of space constitution,
we will argue that this is yet not sufficient to grasp the motor nature of peripersonal
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space as near, reachable space. The bottom line will be that we should acknowledge
the primacy of action with respect to movement in shaping space, given that the
former but not the latter succeeds in accounting for the near versus far dichotomy.
The third section will show that only by adopting an enactive approach to cognition
one can fully understand the motor constitution of peripersonal space. Its dynamic
plasticity, that is, its varying range will be argued to depend on the actual reach of
motor goals and actions.

2. Peripersonal Space as Body-centred and Multisensory
Space

Peripersonal space is usually defined as the space that encompasses objects within
reach. It differs from personal (or cutaneous) space as well as from extrapersonal
(or far) space, that is, the space traditionally described as that outside the body
and including objects which are beyond our immediate reach and that one can get
close to enough only by locomotion.

There is a large consensus that the neural circuit involved in encoding periper-
sonal space is mainly formed by two areas: area F4, which lies in the caudal-dorsal
portion of the ventral premotor cortex, and the ventral intraparietal area (VIP).
Electrical microstimulation showed that neck, mouth and arm movements are rep-
resented in the area F4 (Gentilucci et al., 1988; Fogassi et al., 1996a). Moreover,
recordings of single neurons indicated that the majority of F4 neurons become
active both during the execution of motor acts (such as reaching, orienting and
facial movements) and in response to sensory stimuli (Rizzolatti et al., 1981a, b);
consequently these neurons have been subdivided into two groups: ‘somatosen-
sory’ neurons and ‘somatosensory and visual’ neurons, known also as bimodal
neurons (Fogassi et al., 1992; 1996a, b; Graziano et al., 1994).

Most of the F4 somatosensory neurons are activated by superficial tactile stim-
uli: a caress or the sensation of something brushing against the skin is all that is
needed to trigger them. The somatosensory receptive fields of these neurons are
located on the face, neck, arms and hands; these fields are fairly extensive, covering
areas that extend over a number of square centimetres. The somatosensory charac-
teristics of the bimodal neurons are similar to those of the pure somatosensory neu-
rons, but they are triggered also by visual stimuli, particularly by three-dimensional
objects. Most of them are susceptible to moving objects (especially objects that are
moving towards the body), although some neurons respond strongly to stationary
objects (Fogassi et al., 1996a; Graziano et al., 1997).

Besides these properties, the particularly interesting functional aspect of most
F4 bimodal neurons is that they respond to visual stimuli only when these appear in
the proximity of their tactile receptive fields — more precisely, within that specific
portion of space which represents their visual receptive field and appears to be an
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extension of their somatosensory receptive field. The shape and size of these visual
receptive fields differ, with a depth ranging from just a few centimeters to 40–50 cm.
For this reason, the same neuron that discharges when the experimenters brush the
monkey’s forearm also becomes active when they move their hand close to the
animal’s forearm, entering its visual receptive field. If you find this hard to believe,
bring your hand close to your cheek: you will feel it before your fingers actually
touch the skin. It is almost as if the personal (i.e., cutaneous) space of your cheek
reaches out to embrace the visual space that surrounds it.Visual and somatic stimuli
are here more than just ‘equivalent’. As Alain Berthoz stated: ‘[Spatial-visual]
[P]roximity is a form of anticipated contact with the area of the body that will be
touched’ (Berthoz 1997: 78). Our body uses this form of ‘anticipated contact’ to
define its surrounding space, locating its effectors (arm, mouth, neck, etc.) and the
objects that are in their visual proximity, regardless of whether they are at rest or
in motion.

What is crucial for our purposes is that the visual responses of most F4 bimodal
neurons are independent of the direction of gaze (Gentilucci et al., 1983; Fogassi
et al., 1996a, b). This has been established by a series of elegant single neuron
recordings testing the visual properties of F4 bimodal neurons in four different
conditions. In the first one the monkey was fixating a point directly in front of it,
while at the same time a visual stimulus entered the visual receptive field of the
recorded neuron. The neuron discharge timing and modalities clearly show that
activation started when the stimulus was at a distance of approximately 40 cm from
the animal. In the second condition, the monkey’s gaze was still directed at a point
in front of it, but the stimulus moved to the opposite side of the fixation point,
outside the visual receptive field of the recorded neuron. In this case the latter did
not become active. In the third condition, the monkey was fixating a point at, say,
30 degrees to the left with respect to that of the first two conditions. The visual
stimulus was approaching the animal through a physical path that was identical
to that of the first condition. Although the trajectory followed by the stimulus
was totally different in terms of retinal coordinates with respect to that followed
in the first condition, the neuron’s visual response was practically the same as
that recorded in the first condition. In the last condition, the monkey continued to
fixate the same point as in the third condition, but the stimulus was moved to the
opposite side of the fixation point, as in the second condition. If the receptive field
were retinocentrically coded, the response of the neuron should be similar to that
of the first condition, but in fact the results showed that the neuron did not become
active (just like in the second condition).

Overall, these experiments show that the visual responses of F4 bimodal neu-
rons do not depend on the position of the stimulus on the retina. If this were the
case, when the monkey moved its gaze, the visual receptive field should have
shifted accordingly, but these experiments demonstrate that this was not the case.
In addition to the fact that the coordinates of the F4 visual receptive fields are not
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retinocentric, more recent experiments have shown that these receptive fields do
not relate to a single reference frame located in a specific part of the body such as
the head or the shoulders. On the contrary, there is a manifold of visual reference
frames each centred on the corresponding somatosensory field, and this makes
it possible to locate the visual stimuli in the space surrounding the bodily parts
to which they are linked (for more details see Rizzolatti & Sinigaglia, 2008; and
Fogassi in this volume).

In order to realize the relevance of the latter point, imagine for a while that
you are fixating a point on the keyboard of your computer. If you raise your eyes
to the computer screen in front of you, the visual receptive fields anchored to the
somatosensory receptive fields around your mouth and forearm remain in the same
position as before. Now, if you turn to look at the cup of coffee on your right to pick
it up, these visual receptive fields move. This does not depend on the direction of
your gaze, but on the position of your head and forearm. For the sake of simplicity
we have referred to just two of the many receptive fields present in your body and to
only one form of movement (rotation of the trunk and the head). But you do possess
many visual and somatosensory receptive fields, some of which cover the area
where the cup is located. But what happens when you move your hand towards the
cup? Irrespective of the direction of your gaze, the position of the cup with respect
to your hand, forearm, etc. is specified by the appropriate visual and somatosensory
receptive fields. Their stimulation anticipates the actual contact with your skin, so
that your hand does not have to physically touch the cup to ‘know’ where it is.
It is sufficient for your hand to be close enough to trigger these neurons through
their visual receptive fields. As these fields are a three-dimensional extension of the
respective somatosensory fields, the visual individuation of that cup should initiate
the specific movements of your arm that propel your hand towards it just as if it
were a tactile stimulus, without any need to convert the visual coordinates into any
other form (which would be extremely complex and onerous).

3. The Role of Bodily Movements in Constituting Space

The idea that bodily movements play a key role in the constitution of space is
certainly not a novelty, particularly not for philosophers investigating the origin
of space representation more geometrico. We are referring, for example, to Jules-
Henri Poincaré and Edmund Husserl, but of course we could have quoted many
other thinkers such as Hermann von Helmholtz and Federigo Enriques. Along the
lines of what a great mathematician such as René Thom maintained, we believe
that Poincaré and Husserl have understood better than anyone the motor roots of
space representation (see Thom, 1990).

Indeed, in the Foundations of Geometry (1898) as well as in Science and
Hypothesis (1902), Poincaré states that ‘a motionless being could not have acquired



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch08

The Enactive Constitution of Space 161

[the concept of space], because not being able to correct by his movement the
effects of the change of position of external objects, he would have had no reason to
distinguish them from [qualitative] changes of states’(1902, 1952: 58). By pointing
out the critical distinction between the change of our impressions due to an object’s
displacement and the change of our impressions due to its qualitative change of
state, Poincaré lays the foundations of our ability to represent space in terms of
our sense of movement: ‘It may therefore happen that we pass from the aggregate
of impressions A to the aggregate B in two different ways. First, involuntarily and
without experiencing muscular sensations — which happens when it is the object
that is displaced; secondly, voluntarily, and with muscular sensations — which
happens when the object is motionless, but when we displace ourselves in such a
way that the object has relative motion with respect to us. If this be so, the transla-
tion of the aggregate A to the aggregate B is only a change of position. It follows
that sight and touch could not have given us the idea of space without the help of
the “muscular sense”’ (1902, 1952: 58).

As far as Husserl is concerned, not only the Thing and Space Lectures (1907),
but also the manuscripts devoted to a ‘systematic analysis of space constitution’
(1916) are worth mentioning. In these texts, Husserl tries to demonstrate that
not only is movement at the basis of the constitution of various sensory spaces
(visual and tactile), but also that this motor constitution is by no means unitary,
but presupposes a number of frames of reference (e.g., the oculomotor system,
the system of head movement around the basic axis, the complete cephalomo-
tor system, and so on) and geometrically different spaces (e.g., respectively a
delimited plane space, cylindrical field of vision; Riemannian space, and so on)
(Husserl 1997; on this subject let me refer to Giorello & Sinigaglia, 2007; and
Sinigaglia, 2000). Indeed, Husserl brings our attention to the fact that the move-
ments of the eyes, of the head, and of the upper body constitute different kinestethic
systems, each of which is a ‘system of power [System der Vermöglichkeit]’: its
‘basic directions of modification’are determined by the null-position of the system,
which accordingly has the form of a ‘coordinate system of orientation’ (Husserl
1997: 282).

Although Poincaré’s and Husserl’s considerations are worthwhile insofar as
they highlight some key features of the constitution of space, still they do not enable
us to grasp the most original aspect about the nature of peripersonal space as it
emerges from the recent neurophysiological research. In order to obtain a better
appreciation of this point, it is indeed sufficient to compare what we know about the
VIP-F4 neurons underpinning the constitution of peripersonal space with what we
know about the frontal eye field (FEF) and the lateral intraparietal (LIP) neurons,
which in turn are motor in nature and play a role in encoding visual space. As is
well known, the FEF-LIP neurons control the rapid eye movements (saccadic),
whose function is to bring the fovea onto targets located at the periphery of the
visual field. Like the VIP-F4 neurons, they respond to visual stimuli and discharge
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in relation to particular types of movement. However, no further similarities exist.
In fact, the LIP-FEF neurons

(i) respond to a visual stimulus independently of the distance at which it is
located;

(ii) their visual receptive fields are retinocentrically encoded (i.e., each field has
its specific position on the retina relative to the fovea);

(iii) their motor properties concern eye movements only (seeAndersen et al., 1997;
Colby & Goldberg, 1999).

On the other hand, the VIP-F4 neurons

(i) are mostly bimodal and respond more strongly to three-dimensional objects
than to simple luminous stimuli;

(ii) their receptive fields are coded in somatic coordinates and anchored to various
parts of the body;

(iii) last but not least, the visual stimuli must appear close to the bodily parts to
which their visual and somatosensory receptive fields are anchored.

Although being both motor in nature and as such playing a role in the constitu-
tion of space, VIP-F4 and LIP-FEF encode different kinds of space, peripersonal
and extrapersonal space respectively, typically also called near and far space. The
distinction between these two kinds of space has been corroborated by a series of
studies on deficits following lesions of FEF and F4 in the monkey. Unilateral lesion
of F4 impaired reaching movements and, what’s more, produced neglect for visual
and tactile stimuli appearing in the contralateral near space (Rizzolatti et al., 1983;
Schieber, 2000; Fogassi et al., 2001). Lesion of FEF prevented the monkey from
moving its eyes toward the visual stimuli presented in the contralateral far space,
whereas it did not present any deficts in the contralateral near space (Rizzolatti
et al., 1983; Li et al., 1999; Wardak et al., 2004).

A similar distinction between near and far space has been observed in human
patients affected by spatial neglect. In a reported case, the patients’ neglect was
more severe in their peripersonal space than in their extrapersonal space (Halligan
& Marshall, 1991; see also Berti, Frassinetti, 2000; Berti, Rizzolatti, 2002). The
opposite form of neglect was also recorded, in which the impairment of the patients’
extrapersonal space was much more severe than that of their peripersonal space
(Cowey et al., 1994; see also Cowey et al., 1999;Vuillemieur et al., 1998; Frassinetti
et al., 2001). This has been proved to hold also for patients with visuo-tactile
extinction. These patients typically suffer from a right hemisphere brain damage.
They can detect a single touch on their left or right hand in isolation, but if two
(tactile or visual/tactile) stimuli are presented simultaneously, one to their right
hand and the other to their left one, only the right stimulus can reliably be detected.
It has been shown that as soon as a visual stimulus was presented close to the right
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hand of some patients, they no longer perceived the tactile stimulus delivered to
their left hand. Most interestingly, when the visual stimulus was shown outside the
patients’peripersonal space, the visual extinction effect on their sense of touch was
very weak, or absent altogether (di Pellegrino et al., 1997; see also Brozzoli and
Farnè in this volume).

4. Near and Far: How Action Shapes Space

Just the comparison between the functional properties of the areas VIP-F4 and
LIP/FEF, as well as the hints previously given to some lesion studies in humans,
clearly show that the very distinction between near and far cannot be interpreted
in purely metric terms. Therefore, taking into account bodily movements is not
per se sufficient for clarifying the nature of peripersonal space and to shed light on
the distinctive trait of such space, that is what makes it a different space from both
personal and extrapersonal ones. Because of this, it’s no coincidence that the near
versus far distinction isn’t at all crucial either in Husserl’s analysis or in Poincaré’s
(or rather, as for the latter, not at the time of Science and Hypothesis, 1902), as
well as it’s not relevant for nearly everyone who investigated the origin of space
representation more geometrico. As a matter of fact, in spite of being motor in
nature, peripersonal space is marked by a dynamic plasticity which specifies it as
such and distinguishes it from any other form of space, as we will see below. Such
dynamic plasticity cannot be accounted for in terms of mere bodily movements,
and this forces us to realize the primacy of action, that is, the primacy of the motor
goal-relatedness which identifies each basic action as such, characterizing it as
something more than a sequence of bodily movements.

On the other hand, how else could one explain the multiplicity of reference
systems anchored to the different bodily parts? And how could one explain the fact
that F4 bimodal neurons receptive fields differ by extension and reach? The above
reviewed data clearly indicate that both the multisensoriality and also the body-
centredness of peripersonal space have to do with the possibility to act. And it
is precisely the relation to the motor goal-relatedness of a motor act, as well as
the range of such motor goal-relatedness, which enables one to grasp not only the
nearness of the points belonging to the peripersonal space, but also and above all
its dynamic plasticity, that is, the fact that the extension of one’s near space is not
fixed but can change. The parameters upon which this varying extension depends
will be shown to crucially depend on the variable reach of motor acts. Therefore, in
order to fully understand the costitution of peripersonal space, we need to take into
account motor acts as opposed to mere bodily movements, that is, we have to adopt
an enactive (instead of motor) perspective with respect to the genesis of space.

This point may be fully appreciated by first considering that an increase in the
speed at which the stimulus approaches has been shown to expand the receptive



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch08

164 C. Sinigaglia and C. Brozzo

fields of F4 bimodal neurons in depth (Fogassi et al., 1996a). This means that
rapidly approaching stimuli are signalled while they are still at a greater distance
from the body, in comparison with stimuli approaching more slowly. The advantage
is quite obvious: the earlier the neuron discharges, the earlier the motor act it codes
is evoked. This enables an efficient mapping of what is really near, thus permitting
to either take advantage of an opportunity or to avoid a threat. Similar results can
be found in humans. Chieffi et al. (1992) asked subjects to reach for and grasp a
sphere approaching them, and across different trials the speed of the object was
varied. When speed was higher, participants moved their forelimb earlier in time
and farther than at lower speed.

Further evidence supporting the dynamic plasticity of peripersonal space is
given by a series of studies on how tool use can extend the multisensory coding of
peripersonal space into extrapersonal space. In a seminal experiment, Iriki et al.
(1996; see also Ishibashi et al., 2000) showed that the visual receptive fields of a
monkey’s parietal neurons, which code hand movements in a similar fashion to F4
neurons, can be modified by actions involving tool use. They trained monkeys to
retrieve pieces of food with a small rake, and observed that, when the instrument was
used repeatedly, the receptive fields anchored to the hand expanded to encompass
the space around both the hand and the rake. If the animal stopped using the rake,
but continued to hold it, the animal’s receptive fields shrunk back to their normal
extension.

Analogous results have been found in healthy and brain-damaged humans. It has
been shown that reaching a visual stimulus with one’s hand or with a tool produced
similar interference effects: in the latter case, these effects depended on the tool but
not on the hand posture, and they increased with extensive tool-use (Maravita et al.,
2002). Moreover, several line-bisection studies on patients with selective neglect
for the hemispace close to (or far from) their body indicated that tool use might
reduce or increase the neglect according to the status of the line to be bisected
(reachable or out-of-reach) in relation to tool use. Such dynamical re-mapping
was modulated both by the planned motor act and by tactile and visual feedback
received during the execution of that act (Berti & Frassinetti, 2000; Pegna et al.,
2001;Ackroyd et al., 2002; Neppi-Mòdona et al., 2007; see also Folegatti and Berti
in this volume). Finally, studies on patients with visuo-tactile extinction selectively
confined to the space close to one hand showed that the severity of the extinction
can be modified by tool use, which extends the reach of hand actions (Farnè &
Làdavas, 2000; Maravita et al., 2001). This extension has been demonstrated to be
tightly related to the functionally effective length of the tool (Farnè et al., 2005;
see also Brozzoli and Farnè in this volume).

Taken together, these findings show that one’s multisensory peripersonal space
can be extended differentially by using tools, and this appears to be a further
corroboration of the enactive character of near space, that is, near space is not only
motor but also goal-centred in nature.
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Note that this concept was touched on by Ernst Mach, who, in his Knowledge
and Error, wrote that ‘the points of physiological space’ are nothing other than
‘the goals of various movements’ (Mach 1905, 1967: 260). However, Poincaré
was the first one who fully acknowledged the multisensory and enactive nature of
peripersonal space. This can be found in an essay (collected in Science and Method,
1908) where, for the first time, he investigated the origin of space representation
by means of an analysis which was still more geometrico, but also insipired to the
specific biological interactions between an organism and its environment rather
than to the detection of physical properties of moving objects, as it was in Science
and Hypothesis.

According to Poincaré’s view as it emerges in Science and Method, the relations
between our body and objects surrounding us are to be construed in terms of motor
acts, by which we can reach such objects:

For instance, at a moment α the presence of an object A is revealed to me by the
sense of sight; at another moment β the presence of another object B is revealed
by another sense, that, for instance, of hearing or of touch. I judge that this
objectB occupies the same place as the objectA. What does this mean? […] The
impressions that have come to us from these objects have followed absolutely
different paths [… and] have nothing in common from the qualitative point
of view. The representations we can form of these two objects are absolutely
heterogeneous and irreducible one to the other. Only I know that, in order to reach
the object A, I have only to extend my right arm in a certain way; even though
I refrain from doing it, I represent to myself the muscular and other analogous
sensations which accompany that extension, and that representation is associated
with that of the object A. Now I know equally that I can reach the object B by
extending my right arm in the same way, an extension accompanied by the same
train of muscular sensations. And I mean nothing else but this when I say that
these two objects occupy the same position. […] And this is very important,
since it is in this way that I could defend myself against the dangers with which
the object A or the object B might threaten me. With each of the blows that may
strike us, nature has associated one or several parries which enable us to protect
ourselves against them. The same parry may answer to several blows. […] All
these parries have nothing in common with one another, except that they enable
us to avoid the same blow, and it is that, and nothing but that, we mean when we
say that they are movements ending in the same point of the space. Similarly,
these objects, of which we say that they occupy the same point in space, have
nothing in common, except that the same parry can enable us to defend ourselves
against them (Poincaré 1908, 1952: 101–102).

Insofar as it is the space resulting from the mutual ‘co-ordination’ of ‘the multi-
plicity of [possible] parries’ (Poincaré 1908, 1952: 104), peripersonal space binds
together different sensory modalities, thus localizing visual or tactile stimuli in
terms of our potential motor acts. Therefore space cannot be represented per se
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somewhere in the brain; its constitution depends on the activity of neural circuits
whose primary function is to organize motor acts which, albeit through differ-
ent effectors (hands, mouth, eyes, etc.), ensure interaction with the surroundings,
detecting possible threats and opportunities.

Given that this constitution is not just a conquest by the individual, but by the
species, its ‘traces’ can be seen in the newborn and even in the foetus. It has been
shown that foetuses engage in various goal-directed motor activities in the womb:
for example, in the sixth month of gestation they’re able to put their thumb in their
mouth to suck it (Butterworth & Harris, 1994). More recently, Zoia et al. (2007)
measured the kinematics of hand movements of 22-weeks-old foetuses. The results
showed that the spatial and temporal characteristics of foetal movements were by
no means uncoordinated: on the contrary, they displayed kinematic patterns that
depend on the goal of different motor acts. After birth, the child’s movements are
increasingly goal-directed and clearly referred to the space around his/her body.
The optical condition is congruent with the motor situation. As the crystalline lens
is not completely operational at that age, the focal distance is more or less fixed
and the baby can only see clearly objects that are within a distance of 20 cm. In this
way, he/she acquires a representation of his/her peripersonal space without having
to distinguish whether a visual stimulus is ‘near’ or ‘far’.

Taken together, these findings allow one to speculate that during prenatal devel-
opment specific connections may develop between the motor (and somatosensory)
centres controlling goal-directed behaviour and brain regions that will become
recipient of visual inputs after birth. Such connectivity could provide functional
templates (e.g., specific spatio-temporal patterns of neural firing) to areas of the
brain that, once activated, would be ready to specifically encode visual stimuli in
terms of potential motor acts (e.g., reaching, avoiding). In other words, neonates
and infants, by means of specific connectivity developed during the late phase of
gestation between motor and “to-become-visual” regions of the brain, would be
ready to map the surrounding space as reachable space, and would be endowed
with the neural resources enabling their interactions with objects around them,
characterizing post-natal life since its very beginning (see Gallese et al., 2009).

5. Concluding Remarks

At this point, we should have gained a better understanding of how the motor system
displays its cognitive function through the constitution of peripersonal space. As
has been argued at great length, the primacy of action with respect to movement
provides the key for an account of the near versus far dichotomy. The role of
bodily movements won’t suffice for us to understand the nature of near space, but
is nonetheless worth mentioning, as it already reveals some important features of
space constitution. For instance, we’ve seen that Husserl’s reflection highlights the
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existence of various sensory spaces (visual and tactile), as well as the fact that the
motor constitution of space presupposes a number of frames of reference.

Still, there is a lot more to the distinctive character of peripersonal space than
what its motor nature can reveal. As a matter of fact, we’ve shown that peripersonal
space is marked by its dynamic plasticity, that is, its varying range. Since the
latter has been argued to depend on the actual reach of motor goals and actions,
the nature of peripersonal space can only be fully appreciated and understood by
adopting an enactive approach to cognition — enactive in that it is rooted in the
goal-centredness of action.

In the light of this concept, the results of many experiments reviewed above will
be much clearer. The identification with specific motor goals disambiguates similar
movements insofar as they are part of different motor acts. This should be evident
by reflecting on the fact that, in the previously mentioned experiments, similar
movements were more or less effective in expanding peripersonal space depending
on whether they constituted actions or not, and, if they did, on how far those actions
could actually reach. In Iriki and coworkers’ (1996) experiment, the monkey’s
peripersonal space was only increased if the rake was used for reaching something,
and not when it was passively held. Furthermore, in Farnè and coworkers’ (2005)
experiment, it was the functionally effective length of the tool that mattered to the
extension of the patient’s peripersonal space, that is, the latter coincided with the
actual reach of the patient’s action.

We can therefore appreciate to what extent the constitution of space in terms of
peripersonal and extrapersonal space requires the adoption of an enactive perspec-
tive. The way of constructing space that lies at the basis of the distinction between
peripersonal and extrapersonal space indeed provides a mapping of space in terms
of motor action.
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1. Introduction

How do we make sense of physical phenomena? The answer is far from being
univocal, particularly because the whole history of physics has set, at the centre of
the intelligibility of phenomena, changing notions of cause, from Aristotle’s rich
classification, to which we will return, to Galileo’s (too strong?) simplification and
their modern understanding in terms of ‘structural relationships’or the replacement
of these notions by structural relationships. It is then an issue of the stability of the
structures in question, of their invariants and symmetries (Weyl, 1927 and 1952;
van Fraassen, 1994); to the point of the attempt to completely dispel the notion of
cause, following a great and still open debate, in favour, for instance, of probability
correlations [in quantum physics, see, for example, (Anandan, 2002)].

The situation is even more complex in biology, where the ‘reduction’ to
one or another of the current physico-mathematical theories is far from being

1Francis Bailly passed away on February 5, 2009.
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accomplished [see (Bailly, Longo, 2006)]. From our point of view, the difficul-
ties in doing this reside as much within the specificities of the causal regimes of
physical theories — which, moreover, differ amongst themselves — as in the rich-
ness specific to the dynamics of living phenomena. Our approach, as presented
in (Bailly, Longo, 2006), has attempted to highlight certain aspects, such as the
intertwining and coupling of levels of organisation, which are strongly related to
the phenomena of autopoiesis, of ago-antagonistic effects, of the hybrid causalities
often mentioned in the theoretical reflections in biology [see (Varela, 1989; Rosen,
1991; Stewart, 2002; Bernard-Weil, 2002; Bailly, Longo, 2003)].

We will now return to some aspects of the construction of scientific objectivity,
as explication of a theoretical web of relationships. And we will mostly speak of
causal relationships, since causal links are fundamental structures of intelligibility.
Our approach will again be centred upon symmetries and invariances, because
they enable causes to manifest themselves, namely by the constraints they impose.
In a strong sense, they thus present themselves as conditions of possibility for
the construction of mathematical or physical objectivity.

Now, if mathematics is constitutive of physical objectivity and if it makes phe-
nomena intelligible, its own ‘internal structure’, that of the continuum, for example,
as opposed to the discrete, contributes to physical and biological determination
and structures their causal links. To put it in other words, mathematical structures
are, on the one hand, the result of a historical formation of meaning, where history
should be understood as the constitutive process from our phylogenetic history to
the construction of intersubjectivity and of knowledge within our human commu-
nities. But, on the other hand, mathematics is also constitutive of the meaning of the
physical world, since we make reality intelligible via mathematics. Particularly, it
organises regularities and correlates phenomena which, otherwise, would make no
sense to us. The thesis outlined in (Longo, 2007) and which we further develop here,
is that the mathematics of continua and discrete mathematics, the latter charac-
teristic of computer modelling, propose different intelligibilities both for physical
and living phenomena, particularly for that which concerns causal determinations
and relationships as well as their associated symmetries/asymmetries.

In a final section, we will attempt to address the field of biology by questioning
ourselves about the operational relevance and status of the concepts thus under
consideration. But in this text, we will first propose to illustrate, in the case of
physics, the situation which we have just summarily described. This will enable us
to ‘enframe’ physical causality and to compare it to computational models and to
biology.

2. Causal Structures and Symmetries, in Physics

The representation usually associated to physical causality is oriented (asymmet-
ric): an originary cause generates a consecutive effect. Physical theory is supposed
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to be able to express and measure this relationship. Thus, in the classic expression
F = ma, we consider the force F to ‘cause’the acceleration a of the body of massm
and it would seem downright incongruous, despite the presence of the equality sign,
to consider that acceleration, conversely, may be at the origin of a force relating to
mass. Yet, since the advent of the theory of General Relativity, this representation
found itself to be questioned in favour of a much more balanced interactive repre-
sentation (a ‘reticulated’representation, one may say): thus, the energy-momentum
tensor doubtlessly ‘causes’ the deformation of space, but, reciprocally, the cur-
vature of a space may be considered as field source. Finally, it is the whole of
the manifesting network of interactions which is to be analysed from the angle of
geometry or from that, more physical, of the distribution of energy-momentum.
It is that an essential conceptual step has been made: to the expression of an isolated
physical ‘law’ (expressing the causality at hand) has been substituted a general
principle of relativity (a principle of symmetry) and the latter re-establishes an
effective equivalence (interactive determinations) where there appeared to be an
order (from cause to effect).

Here is an organising role of mathematical determination, a ‘set of rules’ and
a reading which is abstract, but rich in physical meaning. Causes become inter-
actions and these interactions themselves constitute the fabric of the universe;
deform this fabric and the interactions appear to be modified, intervene upon the
interactions themselves and it is the fabric which will be modified.

We will first of all distinguish between determinations and causes as such.
For instance, we will see the symmetries proposed within a theoretical frame-
work as related to the determinations which enable causes to find expression and
to act; in this they are more general than the causes and are logically situated
as ‘prior’ despite having been established, historically, ‘afterwards’ (the analy-
sis of the force of gravitation, as cause of an acceleration, preceded Newton’s
equation).

Let’s then specify that which we mean by ‘determination’ in physics, enabling
us to return to the causal relationships which we will examine extensively. For us, all
these notions are the result of a construction of knowledge: by proposing a theory,
we organise reality mathematically (formally) and thus constitute (determine) a
phenomenal level as well as the objectivity and the very ‘object’of physics. We will
therefore address first of all the ‘objective and formal determinations’, particular
to a theory.

More specifically, once given the theoretical framework, we may consider
that:

D.1 The objective determinations are given by the invariants relative to the
symmetries of the theory at hand.

D.2 The formal determinations correspond to the set of rules and equations
relative to the system at hand.
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To return to our example, when we represent the dynamic by means of Newton’s
equation, we have a formal determination based upon a representation of causal
relationships, which we will call ‘efficient’ (the force ‘causes’ acceleration). How-
ever, when having recourse to Hamilton’s equations we still have a formal deter-
mination, but one which refers to a different organisation of principles (based
on energy conservation, typically). It is still different with the optimality of the
Lagrangian action, which refers to the minimality of an action associated to a tra-
jectory. In this case, we have, for classical dynamics, three different mathematical
characterisations of the events; and it is only with the advent of the notion of ‘gauge
invariant’(that is, of ‘relativity principles’) that these distinct formal determinations
have been unified under an overreaching objective determination, related to the
corresponding symmetries and invariants (manifested by transformation groups,
such as the Galileo, Lorentz–Poincaré or Lie groups). A single objective deter-
mination then, for instance, the movement of a mobile with a certain mass, may
account for (result from!) distinct formal determinations, based upon the concepts
of force, of energy conservation and of geodesics, respectively. In the first case,
the invariant is a property (mass), in the second, it is a state (energy), in the third
it is question of the criticality of a geodesic (action, energy multiplied by time).
If the final results of the mobile’s dynamic may thus be the same, on the other hand
the equations leading to them may take quite different forms unifying only under
the even larger constraint of objective determinations (relating, in our example, to
a mass in movement).

It is in fact the physical objects themselves which are the consequence of —
given by — these determinations. More specifically, the physical objects are theo-
retically characterised by that which we designate, rather commonly, as properties
and accessible states:

O.1 Properties (mass, charge, spin, other field sources…),
O.2 Accessible states, potential or actual (position, moments, quantum numbers,

field intensity…),

being understood that their specific values essentially depend on empirical mea-
surement. To highlight as simply as possible the difference we make between
property and state, by means of their invariance characteristics, we may say that
properties (which characterise an object) do not change when the states of the
object change; conversely, if the properties change, it is the object itself which is
modified.

These objective determinations thus constitute in a way the referential frame-
work, at a given moment in time, to which are related experience, observation
and theory, enabling to interpret and to correlate the ones to the others. In them-
selves, and as we have just indicated, they thus do not completely characterise
the objects they construct, but constrain — among other things by extricating
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invariants — properties and behaviours. Thus, for instance, they impose the fact
that there is a mass (sensitive to the gravitational field), but without nevertheless
fixing the magnitude of this mass or, as we shall see, the manifestation of fields
such as the electro-magnetic field. We are therefore facing properties which we
may qualify as ‘categorical’ and qualitative, but without necessarily specifying the
associated quantities which quantitively characterise the object in direct relation-
ship to the measurement. This is also the case for that which we call accessible
states: their structure is qualitatively characterised, but the fact that the system
quantitively attains such or such of these theoretically determined possible states
depends on empirical factors.

Why distinguish here between properties and accessible states? It would enable
us to understand as cause, in the traditional sense (which after Aristotle we will
call ‘efficient cause’), all which affects (can modify) states; while we may consider
that in the traditional approach, the invariants of efficient causal reduction are
constituted by the set of properties. However, these very properties participate to
a causality, which we shall relate to ‘material’ causality.

So let’s attempt to refine the analysis, not only by distinguishing between
different types of ‘causes’ but also by trying to affect the distinct elements of
objectivity. Let’s agree that, relatively to the effect of an object upon another:

C.1 The material cause is associated to the set of properties;
C.2 The efficient cause is correlated to the variation of one or more states.

We can recognise here a revitalisation of Aristotle’s classification, so dear to René
Thom. In fact, if we want to maintain a parallel with Aristotelian categorisation,
let’s observe that we have called formal determination that which the modern
interpretation of the philosopher would designate as “formal cause” (that is, that
which corresponds to the set of theoretical constraints which define and measure
the effects of other causes — laws, rules, theories,…).2 In our approach, it is the
determinations, formal and objective, which produce the specification of objects, by
means of the notions of properties and states (of which the structures and variations
participate to the material and efficient causes, respectively). With regard to the
causes, we will preserve the Aristotelian terminology, although material causes
may be classified as ‘material structures’. Indeed, a change in properties changes an

2In the debate with I. Prigogine concerning determinism, R. Thom highlights the role of structural
stability, even within the framework of highly unstable dynamics (the forms are maintained, all the
while being deformed). It is the equations of the dynamic which determine their possible evolutions
(as formal causes — determinations, for us). On the other hand, Prigogine highlights the play between
locally stable structures and global systems where small, amplified fluctuations induce the choice of
one of these evolutions. While preserving his new view on Aristotle’s finesse, but in a different way
than R. Thom, we do not attribute to these different notions of causality an ontological hierarchy of the
platonic type, where the formal determinations (causes) ontologically precede the other causes.
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object, as we mentioned earlier, but, at the same time, it induces — it causes! — a
change of states. For example, a change in mass or charge, in an equation, modifies
the values of the acceleration or of the electrical field.

2.1. Symmetries as starting point for intelligibility

From the point of view we have just developed, may we consider that constraints
of symmetry stem from causal constraints? According to our distinction and as we
have just specified, symmetries emerge from the determinations (under the form of
systems of equations, typically) where the causes manifest. Their greater generality
thus also imposes itself through the relation to laws corresponding to the formal
determinations (which, for example, take such or such expression according to the
selected gauges). To put it lapidarily, using the example we will discuss below
(Intermezzo): the phase’s global gauge invariance determines the charge (a prop-
erty) as a conserved quantity of the theory and its local invariance determines
the existence of the electro-magnetic field (a state) under the form of Maxwell
equations. The interactions, described by these equations, may, but only after-
wards, be considered as giving us the causes (material or efficient) of the observed
effects.

In fact, and since Galileo, that which we usually characterise as ‘causes’ seems
to correspond mainly to efficient causes, whereas, as we have just seen, the “deter-
minations” seem to rather present themselves as a source common to causes which
would derive from them (including material and formal). This results in that we
may consider, “transcendentally speaking”, the determinations, the symmetries,
namely, to present themselves as conditions of possibility for the causes to manifest.

Now it appears to us that the natural sciences, with the exception of the
biosciences, may be part of the conceptual framework we have just drawn out,
including that which corresponds to extremalisation rules (the geodesics of the
Lagrangian), which appear, but wrongly so in our opinion, to confer a tinge of
finality to the processes which they model. It is only with living phenomena that the
taking into account of a sort of ‘final causality’ [to put it once more in Aristotelian
terms, see (Rosen R., 1991; Stewart J., 2002)], that we have characterised else-
where as a ‘contingent finality’ (see also 3.1 below) and as locus of “meaning” for
any living phenomenon, really becomes relevant. It is this which we will attempt
to examine later, in Sec. 3.

2.2. Time and causality in physics

We have thus attempted to specify, very generally, the notions of objective deter-
mination, of object and physical cause, from the notion of symmetry and, more
specifically, from the notion of invariance with regard to the given symmetries.

Let’s also observe that, since about a century, in physics, the laws of con-
servation, as formal determinations, are understood in terms of spatio-temporal
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symmetries; for instance, the conservation of the angular momentum is correlative
to the symmetry of rotation (it is Noether’s theory which is at the origin of this
great theoretical and conceptual turning-point, see the Intermezzo below).

But at this stage and before continuing, it would seem appropriate to introduce
a distinction in the view of clearing some possible confusion with regard to the
representation of causality and to the reasoning that one may entertain about it.
We propose, so as to distinguish,3 namely in the case of efficient causality, between
objective causality and epistemic causality.

Objective causality is associated, in our opinion, to a rather essential con-
straint, which is constitutive of physical phenomena, and which is the irreversible
characteristic of the unfolding of time (that which we call the ‘arrow of time’).
But even in the case where temporality does not explicitly appear, it continues to
underlie any change, any process as such — including that of measurement —
and constitutes in this respect a foundation to any conceptualisation, observation
or experience, from the moment that such a process is considered. That is to say,
this time from the angle of causal analysis, that time is constitutive of physical
objectivity.

In contrast, epistemic causality is to be considered as independent of an arrow
of time. For instance, the analysis of a phase transition in function of the value of
a parameter (such as temperature) does not refer to any specific temporality. It is
in a way the atemporal and abstract variation of the parameter that “causes” the
transition, be it in one direction (for instance, from liquid to solid) or the other (from
solid to liquid). At this level, the invoked structure of causality (effect of the change
of temperature on the state of the system) remains independent of the time factor,
even though, at another level, it is indeed over time that the effective variation
of this parameter occurs — in one direction or the other. This is also the case in
the very simple example which is the law of perfect gases (pV = RT , where
p represents pressure, V the volume, T the temperature and R Joule’s constant).
This law is independent of time and one may conceive of various “causes” at the
origin of a variation in volume, for instance, leading, under constant temperature,
to a variation in the pressure associated to the occurrence of a chemical reaction.
The concomitant (and symmetrical, given the equational relationship) variations in
volume and pressure may be considered as the causes — of the epistemic type —
of one another (in fact, these variations may be said to be ‘correlated’), in contrast
to an objective causality — temporalised, this time — which would find its source
in the temporal unfolding of this chemical reaction at the origin of the considered
variation in volume [our distinction may possibly help to understand the discussion
in (Viennot, 2003, appendix)].

3As we have already done on the occasion of the approach and the deepening of the concept of
‘complexity’ (Bailly, Longo, 2003).
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May such a distinction between the objective and the epistemic, which seems to
clearly correspond to a reality in the case of an efficient causality (associated, let’s
remember, to modifications in the states of a system, as we have just illustrated)
still be applicable to material causality?

It does appear that for material causality, one may find examples demonstrat-
ing that such is the case, inasmuch as the properties in question have different
expressions depending whether they are related to their own specific system or
to an external reference. This is the case in relativity, for example, where the
mass (or life-span) of particles depend on their speed with regard to the labo-
ratory reference: in the internal system, the rest mass remains a characteristic
property of the particle’s very identity (m0), whereas within a referential ani-
mated by a speed v with regard to the system as such, the mass takes on an
epistemic character, of which the measurement is m = m0/(1− v2/c2)1/2, where
c represents the speed of light (for light itself, this also that which enables to
consider that the photon’s mass is null, while its energy is non-null and while
Einstein’s relation establishes a direct relationship between mass and energy).
Likewise, the “efficient mass” which we calculate following the process of
renormalisation (which, in order to eliminate infinites from the calculi of pertur-
bation, integrates with the mass some classes of interaction) takes an epistemic
character with regard to the mass itself which preserves its own objective char-
acter. In this sense, we may consider that the properties which are located at the
source of material causality retain an objective character in their internal sys-
tem all the while acquiring an epistemic character if we relate them to different
referentials.

Because we take the arrow of time into consideration while characterizing effi-
cient objective causality, we distinguish ourselves from certain trends in relativistic
and quantum physics that exclude such an arrow, in order to preserve any rela-
tionship by symmetry. In these approaches, the causal relationships are replaced
by other concepts, for instance, in quantum mechanics, by probability correlations
[see (Anandan, 2002), among others]. The reason for this differentiation, beyond
the elements of analysis we have just exposed, appears to be crucial in an episte-
mological respect: we will indeed often refer to dynamic systems (thermodynamic
and of the critical type) and will also address certain aspects of biology. Now, there
is no analysis of these systems, even less of living phenomena, which can be per-
formed without taking into account the existence of an arrow of time. Particularly,
there would be no phylogenesis, no ontogenesis, no death… in short; there would
be no life without time, oriented and irreversible. The processes of life impose an
arrow of time, be it only for the thermodynamic effects to which they participate;
but it even appears unavoidable to go further, because these processes require a
new way of looking at complex forms of temporality, of clocks of life with causal
retroactions due to intentional aims, to expectancies and previsions, characteristic
of perception and action.
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To conclude, our mathematical point of view is that objective determinations
are given by symmetries and an efficient cause breaks some of the latter, be it, from
an objective viewpoint, only that symmetry which is associated to the arrow of
time. Reciprocally, irreversible phenomena (bifurcations, phase changes…), which
are therefore oriented in time, may be read as symmetry breakings correlated to
(new) causal relationships. Symmetries and their breakings therefore remain the
starting point for any theoretical intelligibility.

More specifically, we will attempt to understand some causal relationships
as symmetry breakings, in a very general and abstract sense. This will, among
other things, enable to lay the basis of a coherent foundational framework for
the analysis of the different causal regimes proposed by continuous mathematics
in comparison to those of discrete arithmetics. This will therefore consist of a
mathematical view upon the constitutive role of mathematics in the construction
of scientific objectivity; through this approach, we aim to grasp the importance of
our digital machines in this construction, since these machines are the practical
realisation of the arithmetisation of knowledge.

The final reflection regarding biology will bring us back to natural phenomena,
in all their causal specificity. Of course, computerised modelling, in biology as in
physics, remains a fundamental issue. It is precisely for this reason that it must be
based upon a fine analysis of the different structures of relationships, particularly
causal relationships, proposed within the various theoretical frameworks (physical,
biological, of discrete mathematics).

2.3. Symmetry breakings and fabrics of interaction

It is thus by the means of mathematics that we organise causal links; mathematics
makes intelligible and unifies, particularly via symmetries, certain phenomenal
regularities, at least those of classical physics, both dynamical and relativistic
systems. But mathematics also makes explicit the symmetries in relation to which
probability correlations are quantum invariants.

In the dynamic and relativistic cases, the geodesic principles governing the
evolution of systems apply to abstract spaces, ‘manifolds’ endowed with a metric
where symmetry transformations4 leave equations of movement invariant5 (typ-
ically, the trajectories defined by Euler–Lagrange equations). It is in this sense
that these theories base themselves on invariants with regard to spatio-temporal
symmetries: if we understand the ‘laws’ of a theory to be ‘the expression of a
geodesic principle within a suitable space’, it is these abstract geodesics which are
not modified by transformations of symmetries.

4Objective determinations, in our language.
5Formal determinations, for us.



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch09

182 F. Bailly and G. Longo

Let’s return to the most classical of physical laws: the equation F = ma is
symmetrical, as an equation. As we observed above, it is its asymmetrical reading
which we associate to a causal relationship: the force F causes the acceleration a
(the equation is read, so to speak, form left to right). We thus break, conceptually,
a formal symmetry, equality, in order to better understand, following Newton, a
trajectory (and its cause). More specifically, the equation formally determines a
trajectory of which F appears as the efficient cause (it modifies a state, all the
while leaving invariant the Newtonian mass, a property). In this sense it becomes
legitimate to consider that the equation contributes to the constitution of an objec-
tivity (the trajectory of the mobile), whereas its oriented reading (and the efficient
causality it thus expresses) constitutes an interpretation and refers to an epistemic
regime of causality.

We therefore propose to consider that each time a physical phenomenon is
presented by an (a system of) equation(s), a breaking in the formal symmetry (that
of equality, by an oriented reading) makes explicit an epistemic regime of causality.
Particularly, the symmetry breaking in question may be correlated to an efficient
cause which intervenes within the formal framework determined by the equation.

Of course, this breaking is not necessarily unique (that by which, namely, it
manifests its epistemic character). For example, as we have just evoked in the
preceding paragraph, one can read causally and from an epistemic standpoint
pV = RT from left to right and vice versa. By reference to relativistic systems,
we have already read the equation F = ma (or more exactly, its relativistic equiv-
alent), inversely, while highlighting the fact that, reciprocally, the curvature of a
space may be considered as a field source. This interpretive reversal, which reor-
ganises phenomena radically, is legitimate; indeed, in our spatial manifolds, the
transformations (of gauges), which enable to pass from one referential to another,
are supposed to leave invariant the equations of movement, and by doing so they
preserve the symmetries, but without necessarily preserving the asymmetrical read-
ings of the formal determinations (among which the epistemic causal reading we
have just discussed).

We thus propose to consider formal interactions, organised by the asymmetrical
structures of equations, but also (efficient) causes, which can be associated to
possible asymmetries in the reading of these very equations. Let’s observe, once
more, that certain coefficients, such as the massm in F = ma, are correlated to that
which we have categorised as material causes (whereas acceleration is correlated
to states”. And, when an “external” cause (efficient or material) is added to a given
determination (equations of evolution), the geodesics of the relevant space are
deformed and symmetries associated to this space may be broken, following the
variation of states and properties.

Now, this mathematical intelligibility, conceptual fabric of symmetries and
asymmetries which correlates the regularities of the world, is constitutive of physi-
cal phenomena as well as of scientific objectivity. As we shall see, they profoundly
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change if the world’s proposed reading grid is rooted in continuous or in discrete
mathematics. And they must subsequently be enriched, if one hopes to better
conceptualise certain phenomena pertaining to life.

Intermezzo. Remarks andTechnical Commentaries

Inter.1. More on symmetries and symmetry breakings
in contemporary physics

Let’s consider the previously analysed three great types of physical theories which
are the relativistic, the quantum and the critical types (dynamic and thermodynamic
systems).

Relativistic theories are essentially tributary of external symmetries (sets oper-
ating over space-time). Classical mechanics already presents these relativistic traits,
with its constraints of invariance under the Galileo group (within the Euclidean
space), but it is especially with classical electro-magnetism and Special Relativity
that symmetries begin to play a determining role under the Lorentz–Poincaré group
(group of the rotations and translations within a Minkowski space). Regarding
General Relativity and cosmology, it is the group of the set of diffeomorphisms of
space-time which plays the determining role. The corresponding symmetry break-
ings principally manifest themselves through phenomena of dissipation, or of the
arrow of time.

Quantum type theories for their part mobilise essentially internal symmetries
operating on the fibres of the corresponding fibrates: it is the gauge sets which
generate the gauge invariances and which present themselves as Lie groups
(continuous groups). In quantum field theory, the most important symmetry break-
ings (Goldstone, Higgs fields) are considered as sources of the masses of quantons.

Critical type theories constitute theories par excellence of symmetry changes
(namely by breakings): it is phase transitions, spontaneous symmetry breakings
(or, conversely, of the apparition of new symmetries), of which the effects are
processed this time by means of the renormalisation semi-group process in order
to characterise the critical exponents and to established rules of universality which
constitute, in a certain way, over the classes of equivalency which they bring forth,
the basis of new relativities and symmetries (very different symmetries may present
critical exponents, and thus behaviours, which are identical, depending only on
parameters as general as the magnitudes of the prolongation spaces or that of the
order parameters).

We will also mention the fact that the unification processes, in the relativistic
theories as well as in the quantum theories, or even between themselves, involve
the expansion of the concerned symmetry groups (often at the same time as the
spaces within which they operate).
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Inter.2. From Noether’s theorem and physical laws
of conservation

One of the principal foundations of the role of symmetries for physics can be found
in Noether’s theorem, according to which any transformation in symmetry, oper-
ating upon a Lagrangian and conserving the equations of movements, associates
conserved quantities. By a more precise analysis, one may observe that this the-
orem narrowly couples such laws of conservation — physical invariants, that is,
objective determinations — to indeterminations of reference systems (space-time,
fibres) by the fact of the principles of relativity and of the symmetries supposed
to operate there (for instance, the impossibility to define a temporal or positional
origin, an origin of phases, etc.).

One of the simplest and most spectacular cases we may evoke in this regard
is that of quantum electrodynamics, for which the gauge group is the phase group
U(1). In this case, it is required that the form of the density of the Lagrangian remain
invariant under the multiplication of the state vector by a phase term (exp(iL)). The
global gauge invariance (L independent of the position), conduces, by the appli-
cation of Noether’s theorem, to the conservation of a quantity which we identify
to the charge and which corresponds, according to the classification which we
propose, to a ‘property’, that is, to a material characteristic. Moreover, the local
gauge invariance (L dependent of the position) requires, in order to re-establish the
broken Lagrangian covariance, to introduce a gauge potential, where there results
a gauge field which is no other than the electro-magnetic field itself, expressed by
the Maxwell equations (the gauge potential corresponding to its vector potential),
which corresponds itself to the source of an efficient causality. Thus, it is indeed the
indetermination of any phase origin (an aspect of the referential universe) which
very strongly determines the conservation of the charge (an aspect of the deter-
mination of the physical object) and, most of all, for local invariance, determines
the electro-magnetic field itself, nevertheless generally interpreted as ‘cause’ of
electro-magnetic phenomena. Here, one may also notice (but we will not proceed
further in the analysis, at this stage) that it is the global gauge invariance which
finds itself to be coupled with a property (the charge), whereas the local invari-
ance is coupled with a phenomenon intervening upon the states (with an effect of
efficient causality): the field. So there are two forms of invariance, with regard to
spatio-temporal symmetries, which we understand as objective determinations of
a property and of a state, respectively.

In fact, in theoretical work as in the quest for unification, it is indeed these
properties of symmetry — these forms of indetermination of the referential
universes — which play an essential heuristic role in the determination of physical
phenomenality. As if we were passing from the prevalence of the representation
by efficient causality to that of a representation by formal determination with its
symmetries and equational invariants. It is appropriate to recall here the remark,
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already quoted, by C. Chevalley in his preface to B. van Fraassen’s book, where it
is question of ‘substituting to the concept of law, that of symmetry’. This is empha-
sised by van Fraassen himself, when he writes on symmetries ‘… I consider this
concept to be the principle means of access to the world we construct through
theories’.

We will also note, besides of the continuous symmetries that we have mainly
evoked, the important role played by discrete symmetries, as in the CPT theorem,
according to which the result of the three transformations T (reversal of time), C
(charge conjugation: passage from matter to anti-matter), P (parity, mirror sym-
metry in space) is conserved in all the interactions, whereas we know that P is
broken by chirality in the weak interaction, and that CP is broken in certain cases of
disintegration (which led Sakharov to see in this a reason for the weak prevalence
of matter over anti-matter and therefore the existence of our universe). We may
understand here the particularity of the approaches, in quantum physics, which do
without the arrow of time [(Anandan, 2002), for instance]. The breakings of the
CP symmetry are not taken into consideration, enabling to have no asymmetry in
the T transformations, and therefore to not have an oriented time factor.

With regard to spontaneous symmetry breakings, we have also evoked phase
transitions and, from the quantum viewpoint, the Goldstone fields (for the global
level) and the Higgs fields (for the local level), supposed to confer to particles
their masses. But it is necessary to emphasise that from a cosmological standpoint,
the decoupling of the fundamental interactions between themselves (gravitational,
weak, strong and electromagnetic), also constitute such breakings: they then cor-
respond to differentiations which have enabled our material universe to evolve into
its current form. Without mentioning the fact that the Big Bang itself may be con-
sidered as a very first symmetry breaking (due to quantum fluctuations) of a highly
energetic void.

But it is doubtlessly with regard to living phenomena that these symmetry
breakings play an eminently sensitive role. Thus, Pasteur, let’s recall, who had
lengthily worked on the chirality of tartrates, did not hesitate to assert: ‘Life as it
presents itself to us is a function of the asymmetry of the universe and a consequence
of this fact’. More recently, dynamic models involving sequences of bifurcations
have also been proposed to represent processes of organisation of which living
phenomena could be the locus [(Nicolis, 1986; Nicolis, Prigogine, 1989)].

3. From the Continuum to the Discrete

Differential and integral equations, as limits, but also variations and continuous
deformations, are present everywhere, in the physico-mathematical analyses that
we have evoked. From Leibniz and Newton to Riemann, the phenomenal con-
tinuum, with its infinity and its limits in action, is at the centre of mathematical
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construction, from infinitesimal calculus to differential geometry: it constitutes
the space of meaning for the equations (formal determinations) of which we have
spoken, the structure underlying any spatial manifold (Riemannian). However, a
discretisation, or a representation that is finite, approximated, but ‘effective’, should
be possible. It is the dream, implicit in Laplace’s conjecture, which will find its
continuation in the foundational philosophy of arithmetising formalisms. If, as
Laplace had hoped for the solar system, to a small perturbation always responds
a consequence of the same order of magnitude (except in critical situations, cases
which are ‘isolated’— topologically — such as a mountain peak, of which Laplace
was well aware), then today it would be possible to organise the world by means
of well delimited little cubes (corresponding to the approximation of digital round-
ing; to the pixels on our machines’ screen) and to proceed to the arithmetic calculi
upon these discrete values (the encoding of pixels by integers, sequences of 0s
and 1s), which would then provide a ‘complete’ theory (any statement concerning
the future and the past would be decidable, modulo the concerned approximation).
Indeed, arithmetical rounding, which associates a single number to all the values
contained within a ‘little cube’, does not perturb the simulation of a linear or Lapla-
cian system, because the approximation which is inherent to it is preserved (modulo
a linear growth) over the course of the calculi, just as over the course of physical
evolution. Let’s explain ourselves, because a whole philosophy of mathematical
foundations and, in fact, of nature, stems from this approach, with its own view on
causality and determination.

3.1. Computer science and the philosophy of arithmetics

Digital computers are in the course of changing our world, by means of the very
powerful tools for knowledge they provide us with and by the image of the world
they reflect. They participate to the construction of all scientific knowledge via
simulation and the elaboration of data. But they are not neutral: their theory, as
formal machines, dates back to the 1930s, when effective computability, a the-
ory of functions upon integers of integral value, imposed itself as the paradigm
for logico-formal deduction. Induction and recursion, arithmetic principles, are at
its centre. Our arithmetic machines and their techniques for the digital encoding
of language (Gödelization) thus derive from a strong vision of mathematics, of
knowledge in fact, rooted upon arithmetics; the latter has been proposed as locus
of certitude, and of the absolute (the integer number, ‘an absolute concept’, for
Frege), as locus of the possible encoding of any form of knowledge (‘of all which
is thinkable’, Frege), of geometry in particular (Hilbert, 1899), as an organising
theory of time and space. And certitude would be attained without preoccupation
for the revolution caused by the geometrisation of Physics within non-Euclidean
continua, with their variable curvatures, those of Riemann geometry (a ‘delirium’,
with regard to intuitive meaning — Frege dixit, 1884); without this incertitude of
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determinism deprived of predictability, characteristic of the geometry of dynamic
systems since Poincaré. So a philosophy of arithmetics imposed itself upon foun-
dational reflection, all the while departing from the new physics, which will mark
the twentieth century. And it proposes that we read the world modulo, an arithmetic
encoding, the same one enabling us to construct, from the world, the basis for
modern digital data.

For this reason, the analysis of the constitution of intelligibility and of meaning,
as intrication of mathematics with the world, is not traditionally part of foundational
analysis in mathematics. The mathematical logic of Frege and Hilbert, with the pro-
foundness of its achievements and the force of its philosophy, has led us to believe
that any foundational analysis could be reconducted to the analysis of an adequate
logico-formal system, a logical system (Frege), or a finite collection of sequences
of meaningless signs (Hilbertian school), of which the meta-mathematical inves-
tigation would then become an arithmetic game (following the digital encoding of
any finitary formal system), perfectly removed from the world. And, since Hilbert,
as we have seen, the formal coherence of these calculi of signs claims to provide
the sole justification of these systems, even those of the geometry of physical space
and of theories of continua, as they be reduced to arithmetic.

This has definitely separated mathematical foundations from the foundations
of other sciences, including physics, despite the roles of construction and recipro-
cal specification between these two disciplines, having a common constitution of
meaning. With regard to biology, the foundational interaction has been lesser, for
the time being, following the lesser mathematisation of this discipline. However,
the ideology of the construction of the computational model as main explicative
objective has already marked the interface between mathematics and biology, all
the while forgetting the strong commitment to structuring the world, implicit in
its computational arithmetisation; and few discussions have attempted to correlate
the foundations of the arithmetising theories to those of the theories of life [see
(Longo, Tendero, 2005)]. This epistemological separation makes difficult the inter-
disciplinarity and applications from one discipline to another, because foundational
dialogue is a condition of possibility for a thought-out interdisciplinarity, a start-
ing point for a parallel constitution of concepts and practices and for a common
formation of meaning.

3.2. Laplace, digital rounding and iteration

So let’s return to the ‘bifurcation’ having taken place in history: on one side,
the arithmetisation of the foundations of mathematics (from Frege and Hilbert,
although in different frameworks), and on the other, the geometrisation of physics
(Riemann and Poincaré, in particular). The two branches have been quite produc-
tive: one the one hand we have the theory of effective computability and, therefore,
our extraordinary arithmetic machines and, on the other hand, two fundamental
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aspects of modern physics. The first branch of the bifurcation, however, in its
foundational autonomy, has continued to base itself upon Newtonian absolutes
(Frege) and upon the Laplacian determination (Hilbert), the one which involves
the predictability (and which has its counterpart, in meta-mathematics, in the ‘non
ignorabimus’, Hilbert’s decidability: once a mathematical statement is well for-
malised, one must be able to demonstrate either it or its negation — to falsify it).

It is actually quite clear that Laplace’s hypothesis explicitly and first of all aims
for predictability (‘any deterministic system is predictable’; that is, in a formally
determined system, any statement — concerning the future/past — is decidable).
However, it bases itself precisely upon this ‘conservational’ interpretation of per-
turbation evoked earlier: Laplace is very well aware that physical measurement
always constitutes an interval (it is necessarily approximated), but he believes that
the solutions for the world’s systems of equations, approximated if necessary by
means of series (of Fourier), will be ‘stable’with regard to small perturbations, par-
ticularly those of which the amplitude remains below possible measurement. The
perturbation which by ‘almost insensible variations’could even induce quite impor-
tant secular changes — in his words, should not impede the stability of the solar
system. It is this which guarantees predictability: in a system which is deterministic
(therefore, in principle, formally determined by means of equations), predictability
is ensured by the resolvability of the system and/or the preservation of the approx-
imations under certain conditions (given the values of the initial conditions, with
a given approximation, it will be possible to describe the system’s evolution by
an approximation of the same order of magnitude). There is the conceptual (and
historical) continuity, which we have already addressed, between Laplace’s conjec-
ture and the myth of the arithmetisation of the world: approximation and rounding
(discretisation) do not modify the evolutions under consideration, physical and
simulated.

Yet it is nowhere like this. Even within a system which is (relatively simple
and) explicitly determined by equations (the symmetric structure of formal deter-
minations: the nine equations of three bodies within their gravitational fields, for
example), unpredictability arises, Poincaré has explained. What happens? Even
within such a simple system, almost everywhere small perturbations may give rise
to huge consequences; in fact, ‘small dividers’ (which tend towards 0) within the
coefficients of approximating series (of Lindstedt–Fourier), amplify the slightest of
variations in the initial values. Ninety years later, this phenomenon will be defined
as ‘sensitivity to the initial conditions’ (or at the border, or ‘at the limits’). Particu-
larly, even perturbations of which the amplitude is below the threshold of possible
physical measurement may, after a certain amount of time, produce measurable
changes.

So, in our interpretation, a perturbation, a ‘small force’ which perturbs a tra-
jectory even below that which is measurable, breaks an aspect of the symmetry
described by the equation of the system’s evolution; it is the cause (efficient or
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material) of a variation in the initial conditions, which may produce observable
consequences, even very important ones. Sometimes, it may even be question of
a fluctuation, such as a local or momentary breaking of the symmetry internal to
the system, without the influence of ‘external’ causes: in the Intermezzo, we have
evoked the Big Bang in cosmology, as a very first symmetry breaking (due to quan-
tum fluctuations) of a highly energetic void. Once again, it is a broken symmetry
that is the material or efficient cause of a specific observable evolution, that of our
universe.6

Now, the intelligibility of these phenomena, present at the centre of modern
physics, is conceptually lost if we organise the world by means of the exact values
that arithmetical discretisation imposes. Or, rather, and here lies our thesis, we
obtain a different intelligibility. Particularly, the perturbation or fluctuation, which
have their origin in efficient or material causes, and which manifest below the
proposed discrete approximation, elude arithmetic intelligibility, or are neglected
in favour of a forced stability of phenomena. And arithmetic calculus shows us the
passing from one state to another by little iterated jumps of trajectories that are
imperturbable, because perfectly iterable. Better, it shows us trajectories which
are affected by their own intrinsic perturbation, at each increment of calculus,
and always identically iterated and iterable: the rounding-off. A new cause, our
computational invention, which, projected into the world, becomes a relevant cause
(efficient or material) with regard to the properties and states of a system. Because
digital rounding modifies the simulated geodesics and may even change, in certain
cases and in its own way, the conservation phenomena (of energy, of moment…)
by breaking the associated symmetries. We will return to this point.

In what sense then, do we obtain, when we superimpose upon the world an
arithmetic grid, a ‘forced stability’, as well as evolutions and perturbations which
are very specific and ‘iterable’ at will? We will understand this thanks to the digital
computer, because, when this arithmetic machine is used as model of the world,
it organises the world according to its own causal regime, its own symmetries
and symmetry breakings. In fact, the digital simulation of a physical process is
constitutive of a new objectivity, to be analyzed closely because very important,
due to the mathematical tools which are at its centre: the arithmetic calculi and
discrete topology of its digital databases and of its working memory space, exact
and absolute.

6According to the Curie principle, ‘the symmetries of the causes can be found in the symmetries of
the effects’. In the approach followed here and as we have observed, one would say that in these cases,
at the level of the observable, this is not the case: to an apparently symmetrical initial situation may
follow an observable evolution which does not reproduce the same symmetries, following a breaking
of symmetry, initial or at the edges, of which the amplitude, initially, is below the threshold of possible
measurement (therefore non-observable). In these cases, therefore, certain symmetries are not conserved
when passing from (observable) causes to (observable) consequences.
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It is clear that our analysis does not aim to oppose what would be an ‘ontology’
of continua to what would be an ontology of discrete mathematics (we are not
defending the idea according to which the world itself would be continuous as
such!). We are rather attempting to highlight the difference of the views proposed
by discrete mathematics in relation to those proposed by continuous mathematics,
in our efforts to make the world intelligible. It is the constructed objectivity of
mathematics which changes and not, we repeat, any ontology.

Moreover, the relative incompleteness of computational simulation, which we
emphasise here, goes hand in hand with the mathematical incompleteness of arith-
metic formalisms which, it too, is relative (to the practice of mathematical proof,
in this case). But incompleteness does in no way mean ‘uselessness’: on the con-
trary, we emphasise the need for a fine conceptual analysis of algorithmic meth-
ods, precisely for the essential and strong role they play today in any scientific
construction.

3.3. Iteration and prediction

Computers iterate; that is their strength. From primitive recursion, at the centre
of the mathematics of computability, to the software application, the program, the
sub-program, re-run a thousand times, a billion times, once every nanosecond, all
reiterate with absolute exactitude. For this reason, there is no randomness as such
in a digital world: (pseudo-)randomness generators are small programs, perfectly
iterable, which generate periodic sequences endowed with very long periods (they
are functions iterated upon finite domains).

In the algorithmic theory of information, we call random any sequence of
integers for which we do not know a generating program shorter than the sequence
itself. That is, that we do not see any sufficient regularities within the sequence
to be able to deduce a rule by which to generate it. This definition identifies with
randomness the informational characteristics of a series of throws of dice or of
roulette, in fact, their incompressibility. This identification, applied to algorithms,
(to pseudo-)random generators for instance, leads to a confusion between an epis-
temic notion of randomness, specific to physics, and ‘randomness by incompe-
tence’, (the programmer has not told us how the program is designed, usually a
one-line program). And iteration reveals the trick: if we re-launch a programmed
(pseudo-)randomness generator, using the same initial values, we will obtain the
same sequence, exactly. On the other hand, dynamical systems give us the good
(epistemic) notion of randomness: a process is random if, when we iterate it with
‘the same’ initial conditions, it does not follow, generally, the same evolution (dice,
roulette… planetary systems having at least three bodies, if we wait long enough).
All the difference lies in the topological signification of this notion of ‘same’ (same
discrete values and same initial conditions): a digital database is discrete and exact;
whereas physical measurement is necessarily an interval.
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In short, in the mathematical universe of effective computability, there is no
randomness as such, at best there is incomprehensible information (which may
provide a good ‘imitation’, see below, of randomness). And one may say synthet-
ically with regard to our approach: the time of calculation processes is subject to
a ‘symmetry’ in terms of iterability (identical repeatability), which does not have
an absolutely rigorous meaning in the physical world and even less so in that of
living phenomena. This iterability is essential to computer science: it is at the cen-
tre of software portability, therefore, of the very idea one may have concerning
software; that one may transfer it onto any adequate machine and run it and re-run
it identically as often as one wants. And it works, in fact.

Of course, computers are in the world. If we come out of the discrete arithmetics
internal to the machine, we may plug them upon physical randomness (epistemic —
dynamic systems — or intrinsic — quantum physics, see Appendix). We may, for
instance, use temporal shifts within a network (a distributed and concurrent system,
see (Aceto et al., 2003)] upon which humans also intervene, randomly; or using
little boxes, sold in Geneva, which produce 0s and 1s following quantum ‘spin-
ups/spin-downs’. But normally, if you run the simulation of the most complex of
chaotic systems, a Lorentz attractor, a quadruple pendulum… and iterate with the
same initial digital data, you will obtain the same phase portrait, the same trajec-
tory. The same initial data, there is the problem. As we have emphasised earlier,
this physical notion is conceived modulo possible measurement, which is always
approximated, and the dynamic may be such that a variation, including below the
threshold of measurement — the material or efficient cause -, (almost) always gen-
erates a different evolution. On the other hand, in a discrete state machine, ‘the
same initial data’ signifies ‘exactly the same integers’. This is what leads Turing to
say that his logico-arithmetic machine is a Laplacian machine [see (Turing, 1950;
Longo, 2007)]. Like Laplace’s God, the digital computer, its operating system, has
a complete mastery over the rules (implemented in its programs) and a perfect
knowledge of (access to) its discrete universe, point by point. As for Laplace’s
God, “prediction is possible” (Turing, 1950).

And so thus is the philosophy of nature implicit to any approach which con-
founds digital simulation with mathematical modelling, or which superimposes
and identifies algorithms to the world. Discrete simulation is rather an imitation,
if we recall the distinction, implicit in Turing, between model and imitation [see
(Longo, 2007)]. Very briefly: a physico-mathematical model tries to propose, by
means of mathematics, the constitutive formal determinations of the considered
phenomenon; a functional imitation only produces a similar behaviour, based,
generally, upon a different causal structure. In the case of continuous vs. digital
modelling, the comparison between different causal regimes is at the centre of this
distinction.

Turing has the huge merit of having invented the machines and of having,
in 1950, when he abandoned the myth of the great digital brain, highlighted the
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difference between computational imitation, the game which should demonstrate
his machine to be indistinguishable from a woman [modulo the sole intermediary
of a written interface, (Turing, 1950)], and modelling. In fact, in his 1952 article on
morphogenesis, he presents a model of chemical actions-reactions which generates
forms and which bases itself upon a system of differential equations: tiny varia-
tions generate the variety of forms in certain natural phenomena (Turing calls this
sensitivity “exponential drift”, a quite relevant and original name! The notion of
“sensitivity to the initial conditions” dates back to the 1970s). This mathematical
model, which he explicitly says could be false, nevertheless attempts to make the
world intelligible; the 1950 imitation tends for its part to trick the observer (and
will thus be considered at the origin of Classical Artificial Intelligence).

3.4. Rules and the algorithm

Computerised simulation transforms all physical evolutions into an elaboration of
digital information. Particularly, the simulation of a geodesic in a discrete universe
should make a digital computation correspond to a trajectory, and make the conser-
vation of information correspond to laws of conservation (energy, movement…).
Any state or property, in short, any physical quantity, as determination of objects
(in the sense of D.1), are in fact encoded by digital information; the quantity of
movement is encoded using 0s/1s, just as is the intensity of a field or mass, and
their evolution is a calculus approximated by these 0s/1s. Is this encoding ‘con-
servational’ (does is preserve that which is important)? If a physical trajectory is
a geodesic, which geodesic do we associate to the calculus in its digital universe,
which symmetry breaking do we associate to the rounding?

Let’s begin by recalling the generality of the geodesic principles in physics at
the centre of this science since Copernicus, Kepler, and Galileo. As we observed
already, any fundamental law of physics is the expression of a geodesic principle
applied within the appropriate space. The work of the physicist, who organises
and, by that, makes the phenomena intelligible, consists in a good measure to the
search for this space (conceptual, or mathematical) and for its relevant metric.

This approach leads us to understand the slide of meaning around the concept
of law, which intends to justify the identification of mathematical modelling with
computational imitation. The notion of ‘law’ has a social origin: law is normative
to human behaviour. The transferral of the concept as it is to physics corresponds to
an ordinary metaphysics: an a priori (divine, if possible) which would dictate the
world’s laws of evolution. Matter would then conform itself to this pre-existing and
normative ontology (as mathematical laws of a platonic universe, for instance). On
the other hand, the comprehension of the notion of law as explicitation of the regu-
larities and criticalities of a landscape, with its mountain passes, valleys and peaks,
its geodesics, inverts this and highlights the transcendental constitution at the centre
of any construction of knowledge. Mathematics, the tool of formal determination,
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then elaborates itself upon the phenomenal veil at the interface between us and
reality, the reality which, of course, causes friction and canalises the cognitive act,
but which is also organised by this same act. Laws are not ‘already there’, but are a
co-constituted in the intrication between ourselves and the world: the discernabil-
ity of geodesics, as formal determinations within the framework of a network of
interactions, is its main result. And their mathematical processing coincides with
the beginning of modern science. The normativity of physical law then becomes
only cognitive (in order to construct knowledge), and not an ontology. The differ-
ent forms of formal determination (laws) propose to us different causal regimes,
ulterior tools for intelligibility.

The identification between algorithm and law causes us to make a backwards
step: the algorithm is normative for the machine, for its calculi, exactly as God’s law
governs any trajectory. The machine would not know where to go; it would be static,
without its primary motor, the program. Once again, the myth of the computer-
Universe (the genome, evolution, the brain … all governed by algorithms) consists
in a metaphysics and a notion of determination which precedes the science of the
twentieth century and for good historical reasons: the re-centreing of the founda-
tions of mathematics upon a philosophy of the arithmetic absolute, at the fringes
of the time’s great scientific turning points, as we have mentioned a few times.

This way of understanding law should highlight the very first difficulty for the
computational simulation of a physical trajectory by means of a calculus. Physical
law and algorithm therefore do not coincide: they do not have the same epistemo-
logical status. Law is also not an algorithm for another reason we have already
evoked: the formal determination, as mathematical explanation of laws, does not
imply the predictability of physical evolution. On the other hand, any algorithm,
implemented within a discrete state machine, generates a predictable calculus, at
least thanks to the ‘symmetry’ by repetition within time which we have mentioned
earlier (identical iteration always being possible for a sequential computer).

However, we absolutely need digital simulation, a tool which is indispensable
today to any sort of construction of scientific knowledge: by highlighting the dif-
ferences, outside of any computational myth (the world would be like a computer),
we aim to better identify that which is do-able, and afterwards to do better, in
terms of simulation-imitation. Let’s attempt then to understand the evolution of a
calculus in physical terms.

In the case of an isolated computer — a sequential machine — we remain
within a Newtonian framework: the absoluteness of the clock and of the access
to a database are its essential characteristics. The situation is more complex with
modern networks: the distribution of machines in physical space and the ensuing
relational time changes the situation. Certain aspects of the absoluteness of Turing
machines are thrown into question [we discuss this in detail in (Longo, 2007) and,
more technically, in (Aceto et al., 2003)]. However, the exactitude of the discrete
database subsists, as well as the issue of rounding, of course.
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In both cases, of sequentiality and concurrence, we may nevertheless
understand calculus as a geodesic within the space (pre)determined by the program
(more specifically: by the programming environment, or all aspects of software —
operating system, compilers and interpreters, programs…). Shortly, while accept-
ing the divine a priori of the programmer who establishes, beforehand, the rules
of the game, the notion of ‘following a geodesic’ would be defined by following
the rule correctly. The hardware or software bug would then be the fluctuation or
perturbation that causes the evolution to derail. However, this type of bug is not
integrated to the theory; it is not inherent to it, contrarily to the theory of dynamic
systems which integrates the notion of sensitivity to the conditions at the edges as
well as measurement by interval. Moreover, hardware bugs and logical errors are
very rare (therefore statistically very different to the variation due to approximation
within a dynamic); they are to be avoided and, in principle, are avoidable (or they
may belong to another phenomenal level, which is far from being integrated within
the mathematics of effective calculus: quantum physics).

We are left with the issue of rounding, which is inherent to calculus. The use
of rounding, today, can be very dynamic and mobile: one can aim to a desired
approximation and the end of a calculus and increase beforehand the available
decimals, up to hundreds, to end within the targeted interval, if possible. The mod-
ern approach to analysis by intervals provides a powerful theoretical framework
for these processes (Edalat, 1997). Of course, the speed of the calculi is inversely
proportional to the improvement of the approximation. An excess of the latter may
prevent us from following any dynamic long enough.

This being said, this bound, the rounding, constitutive of the arithmetisation
of the world (a quite necessary arithmetisation if one wants digital machines to
perform calculi and therefore to participate in science today), modifies the causal
regime and the symmetries correlated to it, as we hinted and keep demonstrating.

Firstly, let’s remove a possible confusion: the interval inherent to classical phys-
ical measurement and quantum incertitude have nothing to do with digital approx-
imation. First, measurement as interval is a physical principle, a classical one; it is
not a ‘practical’ issue: thermal fluctuation, at least, is always present above abso-
lute zero, by principle. And, as we have already and often observed, the fluctuation
or perturbation below the observable amplitude participate in the evolution of a
dynamic system, which is somewhat unstable, because it can break the symmetries
of the evolution, and thus be one of the causes of a specific trajectory. In computer
science, a bug which manifests below the rounding is without effect. Afterwards,
the analogy sometimes made — naively — between digital discretisation and that
of elements of ‘length’ (time and space) induced by the Plank constant, h, is not
relevant. The non-separability, the non-locality, the essential indetermination of
which we speak in quantum physics are almost the opposite of the certitude of the
little boxes, well localised and stable, well separated by predicates (the memory
addresses), within which is distributed the digital universe.
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So we now face the principal issue: rounding entails a loss of information, at
each step of the calculus. It can be associated to the irreversible growth of a form of
entropy, defined as neg-information. So if one encodes all determinations, formal
and objective, of a physical object and process, all properties and states, in the form
of digital information, the elaboration of the latter, the digital calculus, will follow
a geodesic which is, normally, perturbed at each step by a loss of information. This
perturbation does not correspond to any phenomenon intrinsic to the process we
intend to simulate: the loss of information is not, generally, the encoding of the
change in objective determination. It is a new type of symmetry breaking. Will this
influence the proximity of the virtual reality to the physical phenomenon? Will it
influence the quality of the imitation?

As we have already observed, arithmetic approximation does not affect the
simulation of a linear or Laplacian process: just as the approximation of the mea-
surement, the rounding, does not remove the computational geodesic (the following
of the rule) from the physical geodesic. The initial loss of information is preserved,
it remains of the same order of magnitude or it increases in a controlled way
(technically: the extremes of the approximation intervals are preserved). This is
not the case for non-linear cases. Let’s consider, for illustrative purposes, one of
the simplest dynamics, one that is well-known and one-dimensional: the discrete
logistic equation,

xn+1 = kxn(1− xn).
For 2 ≤ k ≤ 4, this equation formally defines a sequence {xi} of real numbers,
between 0 and 1 (a “time discrete” trajectory within a continuous space). Particu-
larly, for k = 4, it generates chaotic trajectories (sensitive to the initial conditions,
dense in [0,1], with an infinity of periodic points…). Can we approximate any
sequence of real numbers thus generated by a digital computer? Out of the question,
at least in what concerns an initial value of xo taken from a set of measure 1 (that is,
for almost any real value in [0,1]). Even if we choose a xo that can be represented
exactly by a computer, at the first rounding in the course of the calculus, the digital
sequence and the continuous sequence will begin to diverge. By improving the
approximation/rounding of 10−14 to 10−15, for instance, after approximately 40
iterations, the distance between the 2 sequences will start to oscillate between 0
and 1 (the greatest possible distance). Likewise if, with a rounding of 10−15, we
begin using values that differ from 10−14 (of course, if we want to, nothing would
prevent us from restarting the digital machine upon the exact same values and from
calculating, with the same rounding, exactly the same discrete trajectory…). The
technical problem can be summed up by the observation that the dynamic is a
‘shuffling’ one: the boundaries of the interval are not preserved.

We therefore may not, in general, approximate, with the machine, a continuous
trajectory; however, we may do the opposite. In fact, all that can be proved, in
dynamic (metric) contexts we will not specify here, is the following “pursuit”
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lemma [see the Shadowing Lemma (Pilyugin, 1999): notice the order of the logical
quantification]:

For any x0 and δ there is a ε such as that for any trajectory f , ε-approximated
(or with a rounding-off not greater than ε, at each step), there exists a continuous
one, g, such as g approaches f by a difference of δ, at each step.

Even when considering the lucky case where we have δ = ε (this is possible
in certain cases), it comes to say that, globally, your digital sequences are not
so ‘wild’: they can be approximated by a continuous sequence, or … there are
so many continuous trajectories that, if we take a discrete one, one can easily
find a continuous one which is close to it. Thus, the image of an attractor on
the screen provides qualitatively correct information: the digital trajectories are
approximated by trajectories of continuous dynamics (determined by equations).
But the reverse is not true: that is, it is not true in general, for a trajectory given by
analytical means, that the computer may always approximate it. Different versions
of the pursuit lemma apply to sufficiently regular chaotic systems. However, many
dynamic systems do not even satisfy weak forms of this lemma [see (Sauer, 2002)].
This signifies the existence of initial values and intervals such that, within these
intervals, any rounding and any other initial value cause any continuous sequence
to diverge from the given discrete sequence.

What happens, in the terms of our approach, which is geometric, in nature?
To understand this in detail, it would be necessary to refer to the technical analysis
which the authors are also developing. In this work of reflection, which neverthe-
less guides the mathematical and computational analysis, let’s try to see it in a
very informal manner. The first difficulty resides in the necessity to place oneself
within the appropriate space, in order to better understand. In short, it is necessary
to analyse the evolution of a system, such as for instance the discrete logistic func-
tion, within a space where the notion of neighbourhood, between real numbers,
corresponds to digital approximation. A space which provides for such a metric
is called a ‘Cantor space’. In this space, which we will not define here, two real
points are close if and only if they have close binary or decimal representations
(for instance, 0.199999…. to infinity and 0.2 are very far from one another in the
Cantor space, whereas they are identical with regard to the usual real line, this pos-
ing numerous problems from the computational standpoint, when we try to operate
upon their approximations).

We then see that at each of the digital calculus’iterations, the rounding induces a
loss of information corresponding to the deterioration of the approximation around
the point of the trajectory. If we measure the phenomenon in terms of isotropy of
space (the points within this widening neighbourhood are ‘indistinguishable’, in
a manner of speaking), this ‘grey’ zone, of isotropy, grows, thus augmenting the
symmetries of space. A notion of entropy as negative information also enables one
to grasp this change in symmetries as loss of information. Now, all that we have in
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the machine is encoded information. Independently of what it encodes, the physical
object’s formally determined properties or states, all is in the form of digital infor-
mation. So the objective determination, which is given by the preservation of the
theoretical symmetries, radically changes: we are facing a change in symmetry that
does not model a component of the evolution of the natural phenomenon, because
it depends only upon the discrete structure of the simulation universe and upon the
imitation of the formal physical determination by algorithms (or, when we make a
philosophy of it, of the epistemological identification of law with algorithm).

So there is, in terms of symmetry, the explanation of the causal regime of
which we were speaking. The discretisation, in fact the organisation of the world
by means of discrete mathematics proposes a causal regime (in this case, an evolu-
tion of symmetries) which is different than that which is proposed by continuous
mathematics. It is not an issue of finitary translations of a same physical world, but
of scientific construction, because this world is itself co-constituted by our formal
and objective determinations. When they change, its organisation and its intelligi-
bility also change. Once more, this does not imply that the world is continuous ‘in
itself’: we are only observing that, since Newton, Leibniz, Riemann, Poincaré —
we have organised and made intelligible some physical phenomena by means of
historical notions of continuity and of limit. If we want to do without them, causal
organisation and intelligibility will be altered.

Another issue would also merit investigation, but we will leave it for another
study. Singularities in modern physics play an essential role. We know for instance
of shock situations, in non-linear systems, where the digital calculus does not come
even remotely close to the critical situation. We have the continuous description;
the mathematics are clear, explicative, organising for the physical phenomenon, we
understand qualitatively, but the numerical calculi chaotically revolve around the
singularity, without coming close to it. In fact, the current notions of limit and of
singular point, which are absolutely necessary to the analysis of the phase changes,
the shocks, in order to even speak of renormalisation processes in physics, are
not always coherently approximable. The loss of symmetries and the change of
correlated causal regime constitute our way of understanding this problem, which
is specific to the digitalisation of phenomena, without referring to Laplacian myths
and computational metaphysics. Computer science, a science which is now mature,
deserves, from an epistemological and mathematical standpoint, more attention
and a view from within which that is able to assume the force and the limits of its
own methods.

4. Causalities in Biology

While focusing now on biology, we will not address the discussions concern-
ing the biological levels of organisation, the intertwined hierarchies, the crossed
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causalities, the ago-antagonistic effects, the variabilities within phenomena, the
autopoetic processes, which we find in biology. Of course, all these properties
will remain part of the backdrop of the approach which we propose here, but the
approach will be more conceptual or, better, ‘schematic’ (in the geometric sense of
simple schemata or diagrams) than thoroughly theoretical or descriptive: it will seek
rather to contemplate a framework of representation enabling us to extricate heuris-
tic categories of thought rather than to account for the effective phenomenality of
life. Indeed, the ‘relationships’ which we highlight, by means of very abstract little
patterns, do not necessarily correspond to ‘material relationships’ or to physical
configurations; they are only organising structures of thought, which should aid the
comprehension of phenomena, by proposing a conceptual framework. Moreover, is
F = ma — at a much more elaborate and mathematised level indeed — not a corre-
lation which organises a phenomenon by making it intelligible? Let’s also recall that
this equation as been preceded by the general concept of inertia, or even, way before
Galileo, by cosmological speculations and concepts as eminently philosophical, as
profound (see, for instance, the remarks of Giordano Bruno in ‘L’infinito universo e
mondi’, 1584). The physical intelligibility specific to this equation can be the object
of highly differing conceptual ‘readings’: it may no longer be primitive, but derived
(from the Hamiltonian, from the Lagrangian, as we have mentioned in the first
part), where it may be correlated to distinct symmetry breakings, as we have also
seen.

So, as we insist on emphasising from the onset, our approach remains very
speculative here: it is for us the beginning of an attempt at a conceptual categori-
sation and schematisation which seeks to open new avenues without being sure of
their directions and which will require, in order to be continued, more discussion
with biologists and the sanction of a certain fecundity in the quest for a greater
understanding of living phenomena. Of course, we will remain within the frame-
work which we have determined for ourselves, that is in the geometric terms of
symmetries as an analysis of physical causality; yet, we will also take into account
here aspects which are specific to biology, related to forms of telenomies or of
anticipation and which we have already summed up with the concept of ‘contingent
finality’ (see the next section).

4.1. Basic representation

Let’s consider the dynamic functioning of a centrifugal governor (or Watt governor:
two weights are lifted in rotation by pressure, making a valve open so as to lower
the pressure). This functioning is completely determined by the data, obtained
afterwards, concerning the initial conditions and the physical laws. In this sense,
its ‘behaviour’, though being well regulated and leading to a dynamic equilibrium,
is determined in a univocal and oriented way (geodesics within a well and pre-
established phase space).
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In the case of living phenomena, the behaviour (and functioning) of an organism
does not appear to be determined in the same way. What appears to be determined
like this in a more or less rigid way (within a given domain, that is compatible
with the organism’s survival), is what we could call the aim of the functionings and
behaviours, the functions to be fulfilled in order to ensure homeostasis (-rhresy);
but what is not determined in such a manner, are on the one hand the possible
ways to achieve this and on the other hand the adaptations and modulations which
would ensure the achievement of the functions and behaviours. Specifically, to put
it in the language of Physics, there are not only phase changes but also, changes in
phase spaces, that is, observables and relevant variables.

We know that the mathematical and equational formalisation of this situation
(as took place for Physics and as we hope, in time, could be the case for life sciences
inasmuch as the adequate mathematics would be elaborated) is confronted with
profound difficulties, sometimes even difficulties of principle, which the numerous
and successive attempts at modelling have encountered. Also, before any reiterated
attempt in this regard, it appears to be necessary to try to illustrate and to represent —
in this case by means of schematics, the first abstract conceptual stage — that
which appears to characterise these modes of functioning and that which we could
call the ‘finalities’ which interpret them, in the sense in which Monod could speak
of a telenomy of life. These finalities, of course, are neither necessary nor absolute;
they rather contribute to our view of living phenomena and, most of all, they are
contingent, as they are specific to living matter and relative to its contexts. In short,
they could not be present (no life, no specific specie or individual); they are relevant
to various levels of organisation and to their correlations, or to their intertwining
and looping, particularly in the form of integration and regulation [see (Bailly,
Longo, 2003)].

To make intelligible the notion of contingent finality, we will try to organise
into networks the interactions between the ‘material structures’ and ‘functions’ of
living matter. It is at this level in fact that telenomy manifests: for instance, when
an organic structure appears to be finalised in relation to a certain function.

We therefore propose a conceptual framework, to organise knowledge by means
of our recourse — temporarily at least — to a description of this sort (for a better,
understanding, the reader may easily draw the simple intended diagrams):

(1) We have a target set, constituted of several domains — the target domains,
which may or may not overlap — corresponding to the functions to be ensured
for the maintenance and the perdurance of the organism and its species.

(2) We have a source set constituted of all the organic possibilities likely to be
mobilised to this end (biochemical reactions, transport agents, etc), also rep-
resented by this set’s domains (source domains).

(3) We have a set of arrows, originating in the source domains to reach to the
target domains (these arrows correspond to the orientations and functioning
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modes aiming to ensure the functions) and which presents the following
particularities:

(i) Any target domain is reached by at least one arrow; usually, several source
domains are at the origin of the arrows reaching a same target domain.
An example of this situation is the conjunction of ‘oxygen metabolisms’
and of ‘glucose metabolisms’ to ensure the maintenance of muscular tis-
sue such as the heart; in this case both source domains are respectively
defined by the chemical reactions related to the specific energetic sources
(availability of glucose) and by the cellular assimilation processes of the
intake of oxygen obtained through breathing (availability of oxygen), the
arrows corresponding for their part to the various transport and transfor-
mation systems which enable the effective transferrals from sources to
targets.

(ii) The arrows pointing to a same target domain are endowed with different
widths depending on the prevalence of the usual modes of functioning
(in the preceding example, we would have, in the normal case, an arrow
width for the ‘oxygen metabolism’ that is much greater than that of the
‘glucose metabolism’. In the case where a dominant mode of functioning
would fail (pathology), the corresponding arrow could narrow down to
the benefit of another whose initial width was smaller (and this, without
necessarily reaching the width of the first one: functional weakening all
the while attempting to preserve the function): this mechanism would
correspond to a property of plasticity.

(iii) The arrows stemming from a same source domain and extending towards
several target domains exist, but may be relatively rare in adult homeo-
static (-rhersic) functioning. They refer mainly to potentialities, preceding
ulterior actualisations or differentiations (cf. stem cells, for instance), or to
other possibilities of plasticity (cerebral, for instance). On the other hand,
in the case of the representation of a genesis (embryogenesis, namely),
these arrows are dominant and play an essential role in the representa-
tion of the organic differentiations from totipotent eggs or from pluripo-
tent stem cells. There is therefore a dynamic for the ‘topology’ and the
width of the arrows over the course of development to reach the adult
situation.

It could be interesting and enlightening to note here that the joining of the
characteristics (i) and (iii), for the arrows, corresponds rather well to the con-
cept of degeneracy such as it has been introduced by (Edelman, Tononi, 2000)
with regard to cerebral functioning (that non-isomorphic structures may partici-
pate to a same functionality and that a given structure may participate to several
of these functionalities), concept which returns to and generalises that of redun-
dancy, but while differing somewhat from it (computer redundancy, for example,
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is achieved by iteration of identical components). In this perspective, we could
qualify the described situation by the characteristics in (i) of ‘systemic’degeneracy
(a same system participating to distinct functions) and the characteristics in (iii) of
‘formal’ degeneracy (non-isomorphic systems participating to a single and same
function).

Let’s also point out right away that the concepts of ‘source domain’ and ‘target
domain’ do not necessarily refer to ‘absolute’ categorisations, but are relative to a
given functionality (or to a set of functionalities): a target domain for a function-
ality can very well operate as a source domain for another7 on the same level of
organisation or between levels, thus the many possible intertwinings.

Notice on the other hand that, in this approach, the environmental, feed-back
or adaptation effects can be represented by variations in the widths of the arrows
(‘metric’ aspect), or that the fundamental changes would rather correspond to
changes in the structuring of the set of arrows (‘topological’ aspect). Moreover,
pathology is likely to occur (in order of ‘seriousness’):

• either with a variation in the width of the arrows,
• either with the disappearance of certain arrows (without nevertheless a target

domain being no longer concerned at all)
• or with the disappearance of the source domains (in this case, grafts and pros-

theses can play an “artificial” regulatory role).

We may consider that the disappearance of the target domains corresponds at
best to a mutation, and in the worst of cases, to death.

To give a few ‘systematic’examples of the functioning thus represented, we can
propose the following triplets (by starting by the source domains, then arrows —
in fact corresponding to functions — and finishing by target domains):

• Vascular system/circulation (transport)/local essentials (nutrients, oxygen,
etc.);
• Respiratory system/breathing/oxygenation;
• Nervous system/information, command/adaptation, initiative;
• Genes/expression/proteins, regulation;
• Mitochondria/biochemical reactions/energy produced;
• Digestive system/digestion and transport/metabolism;
• Immune system/reconnaissance/tissue identity, struggle against aggressions.

7For instance, the putting into effect of ionic equilibrium processes may constitute a source domain
for the functioning of the target domain represented by a cell, itself constituting a source domain for
the good functioning of the tissues to which it participates, good functioning representing one of its
target domains. It would go likewise for cerebral functioning, for example, as target domain for an
oxygenation and as source domain for a control or behaviour.
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4.2. On contingent finality

Based upon these considerations, we can propose to call contingent finality the
abstract structure formed,

(1) by the triplet {source domain, arrows, target domains}
(2) endowed with the ‘measurement’ constituted by the set of real numbers E, of

the widths of the n arrows: E = {e1, e2, . . ., en}
(3) ensuring a structural stability for these characterisations. We mean, by such

structural stability, the conservation of the target domains in the sense that
there will always be at least one arrow for which the width is non null and
which points to these targets, regardless of the source domains.

Let’s go back to the preceding example and let’s attempt to compare a normal
state to a pathological state. In the normal state, the ‘oxygen metabolism’ arrow
has a width of eO1 and the ‘glucose metabolism’ arrow has a width of eG1, with
eO1 >> eG1 and eO1 + eG1 = e1. The establishment of the pathological state is
translated by a narrowing of the ‘oxygen’ arrow and the widening of the ‘glucose’
arrow; finally, we have eO2 < eO1, eG2 > eG1, eO2 + eG2 = e2 < e1.

The fact that the arrows do not cancel each other out and that the target domain
remains translates a partial plasticity, whereas the decrease of the total width, on
the one hand, and the internal rebalancing of the widths, on the other, demonstrates
the pathological character. The influence of these two factors (total width and
respective widths) could indicate that total plasticity (in the sense where we would
finally have e2 = e1) does not however restore a completely ‘normal’ situation.

From a much more general point of view, we will notice that — as we have
already highlighted through the approach by levels of organisation, previously
considered — the same structure of ‘contingent finalisation’thus defined, replicates
itself at various levels of organisation of biolons (cell, organism, species), even
if the characterisations (triplets and measurements) may differ in their specific
content, according to the level. This structural likeness is doubtlessly the result
of a certain form of equivalence of the objective complexities associated to these
levels, as we have already noted, (Bailly, Longo, 2003).8

8Let’s recall that, according to our analysis in (Bailly, Longo, 2006) (where we had distinguished
between objective complexity and epistemic complexity in Biology, also providing examples), the
elements of living matter which are biolons present an objective complexity which may be considered
as being infinite, with respect to any physical measure (crossing of the essential level of organization
which enables to pass from inertia to life). From this point of view, and still with regard to physical
complexity, the objective complexity of biological objects is comparable regardless of what these biolon-
type objects are (the living cell presents an objective complexity almost identical to that of an organism
such as a mammal). What is modified along life’s scale of complexity is epistemic complexity, related
to the enriching structure of phenotypes, to the increasing, along evolution, levels of organization, their
intertwining, the proliferations of structures and functions, the conditions of description, etc.
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4.3. ‘Causal’ dynamics: development, maturity, aging, death

If we accept the schema we have just proposed, it proves likely to represent,
thanks to the topological and ‘metric’ plasticity it is able to demonstrate, the great
dynamic processes of which life can be the locus: the beginning of development
is characterised by the prevalence of arrows which stem from a source domain to
point towards several target domains which they even contribute to constituting
(differentiation of tissues and of anatomical and physical systems). As the process
unfolds and at the same time as the number and structure of the target domains
stabilises, these arrows narrow down (some may even disappear) at the same time
as the arrows originating in several source domains ending in a same target domain
(functional aims) start to prevail. The set stabilises once again following develop-
ment, the period of maturity.

Once the stability of the maturation achieved, the topology maintains itself ‘on
the whole’ and aging manifests itself mainly in a ‘metric’ fashion (by the variation
of the measurement of the narrowing of arrows). It is even possible that in borderline
cases one may witness disappearances of arrows by cancellation of their widths,
amounting, beyond metrics, to tapping onto the topological structure of the schema.
And finally, to represent the death of an organism, we may agree, as suggested
above, that it manifests itself by the disappearance of one or more target domains
(corresponding to vital functions), in that there are no more arrows pointing towards
them.

We will note that if most of an individual’s target domains are oriented towards
the individual’s perdurance, at least one of them, corresponding to the reproductive
function — is likely to produce a new source domain (child cell, fertilised egg) as
origin of the reiteration of the process for a new individual. It is the set formed by
the abstract joining of this particular target domain to the newly produced source
domains which may constitute — at a different level — the source domain at the
origin of the genesis of individuals of the level thus considered (organism for cells,
species for individuals).

From the standpoint of an attempt at a more precise ‘phenomenal’ identification
of the characteristics we have just introduced abstractly, we may consider that in
the initial ‘transitory regime’ (time of genesis) the source domains are principally
constituted by biolons [embryonic cells, individual organisms, species, as defined
in (Bailly et al., 1993) and further analysed in (Bailly, Longo, 2006)], the target
domains being mainly constituted by orgons (cell’s organites, organs and tissues to
be set). The arrows correspond for their part to the phenomena of differentiation,
of migration and of structuration, whereas, conversely, in the ‘stationary regime’
(adult organism), the source domains are mainly constituted by the constitutive
orgons. Note also that the target domains would be constituted by the variety of vital
functions ensuring the organism’s maintenance and autonomy whilst the arrows
corresponding this time to the biochemical and physical processes ensuring these
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functions (integration and regulation). Such an approach suggests to propose a sort
of ‘temporalized’ schema of biological functioning.

Could we refine the analysis by taking more precisely into account the nature of
the fluxes which link source and target domains to one another? Namely by putting
the distinction between energy and information to work? In a first approach, it
appears legitimate to consider that the fluxes in the source/target direction mainly
have an energetic character (transport of matter or energy), responding to fluxes
which are mainly of information (gradients, divergences from the dynamic equilib-
rium) going in the target/source direction. The arrows are then supposed to integrate
and represent both types of fluxes, their width alterable in the event of a failing of
either the correlated ‘informative’ or of the ‘energetic’ character (we could, in a
first approximation, take as a parameter the product of these two types of fluxes,
for instance9). Let’s try to take an example at one of the most elementary levels,
that of the cell: in this case, a particular source domain can be associated to the
functioning of ionic channels enabling the ions to cross the cellular membrane and
a corresponding source domain would be the stationarity (dynamic equilibrium)
of the cell’s internal ionic state (homeostasis — homeorhesis) which enables it to
function in the best conditions. The arrows would then correspond to the taking
into account of both ‘fluxes’: on the one hand, the ‘information’ flux which would
be generated by a difference in the internal ionic concentration with regard to the
stationary state (gradient, difference in osmotic pressure, electric field, …) and
which would lead for instance to the opening of certain channels, and on the other
hand the concomitant flux of matter (these same ions) coming from the outside in
view of re-establishing homeostasis and entering through these channels.

Notice that, from a standpoint analogical to this stage, the taking into account of
these two aspects (matter/energy and information) highly resembles the thermody-
namic situation where the definition of free energy (of which the variations govern
the system’s evolution) entails the intervention on the one hand of an enthalpy
(or internal energy) and on the other hand of an entropy, these two magnitudes
being associated by means of temperature.

4.4. Invariants of causal reduction in Biology

As in the case of Physics, we may question ourselves regarding the invariants of
causal reduction (if they exist) specific to life and their relationships with what could

9If E is the matter-energy flux extending from the source domain to the target domain in order to
‘respond’ to the information flux (‘request’) going from target to source domain ‘within’ a given arrow,
we could take as one of the parameters of functioning — which participates to the width of this arrow —
the productE×F . Thus, the failing of a flux in one or the other direction would translate as a diminution
of this product, corresponding to a decrease of the width of the arrow and thus expressing an alteration
of the functional process summarised by this arrow.
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constitute, in the field of Biology, the determinations associated to the symmetries
which we have encountered for Physics.

It seems clear that these biological invariants indeed exist and that they are
constituted of sets of pure, numerical invariants (and not dimensional invariants as
in Physics). It also appears that the determinations which enframe, modulate and
actualise them are now rules of ‘scaling’ in function, let’s say, of the size or mass of
the organisms (sorts of dilatation or scale symmetries), see also (Schmidt–Nielsen,
1984).

Thus, for instance, the average life-spans of the set of organisms do appear
to scale as power 1/4 of their masses and their metabolism as power 3/4 of these
masses (Peters, 1983). Likewise, on a level that is somewhat different but which
is in relationship with these properties, we would recall here that mammals are
characterised by an invariant average number of heartbeats or breathings (of the
order of 109 heartbeats or of 2.5×108 breathings over the course of an average life),
these numbers conducting to frequencies (or periods) — dimensional magnitudes,
this time — which are submitted to these rules of scaling in function of the average
mass of the individuals of the considered species (for instance with a power −1/4
of this mass for the frequencies).

But such characteristics of invariance do not manifest solely at the high level
of the biological functions of evolved organisms; they can also be found at much
more elementary levels such as those of cellular metabolic networks10 (Ricard,
2003; Jeong et al., 2000), of which the diameter11 remains invariant along the phy-
logenetic tree and of which the connectivity distribution, over at least 43 organisms
belonging to the three categories of life forms,12 presents the same characteristic
power (2.2 approximately). As emphasised by J. Ricard, such an invariance of the
network’s diameter implies that the degree of connection of nodes increases with
the number of these nodes, that is, with the number of stages likely to connect
them. Here again, one will notice that it is a case of numeric and not dimensional
invariants.

4.5. A few comments and comparisons with physics

We see that viewed from this angle, the causality which seems to manifest in living
phenomena presents similar traits as well as different traits with regard to those
which we have noted in the case of Physics when only addressing inertia. Material

10We know that a network is a graph formed by nodes which are connected according to certain rules.
In the case of metabolic networks, these may be constituted by metabolites or by enzymatic reactions
and the connection links representing the mutual biochemical interactions.
11The diameter of a metabolic network is defined by the average of the shortest paths (in terms of
steps), leading from one of the network’s nodes to another.
12That is, archaebacteria, bacteria, eukaryotes.
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and efficient causality are manifestly present there — this having doubtlessly
favoured the idea of a possible physicalistic reduction — although in a much
less rigorous and structured way than for Physics (namely in connection with the
plasticity and adaptability capacities). The formal determinations are relatively
weakly represented there, despite the advances made in terms of various local mod-
ellings (we have mentioned the metabolic networks, but at a different level, we
could evoke population dynamics, for instance, or the transport properties close
to fluid dynamics). Likewise, the essential objective determinations do not really
appear to have been extricted, despite the observation of variegated properties of
symmetry — or of symmetry breakings — (over the course of development or in
certain anatomies, for instance) and the identification of certain digital invariants.
On the other hand, the dimension of ‘final causality’ (to use old categorisations)
or of ‘contingent finality’ appears to play here a role which is rather important and
unknown to Physics. As if the fact of finding itself in an extended critical state
(therefore potentially highly unstable, although necessary to an elaborate organi-
sation) could be compensated for the structural (momentary) stabilisation of living
matter only with the introduction of these factors of telenomy/anticipation which
appear to characterise it.

5. Synthesis and Conclusion

We have attempted to briefly characterise the different aspects of physical causality
such as they may appear and be analysed through contemporary theories. We have
emphasised the fact that symmetries and invariances constitute determinations
which are even deeper than those which manifest causal laws in that they present
themselves, in a way, as the conditions of possibility for the latter and as frames of
reference to which they must conform.

We have also sketched out an analysis of the causality internal to the systems of
effective computability, of which the symmetries and invariances obey a specific
regime, rooted in the discrete arithmetic structure of databases and algorithms. The
intelligibility structure proposed by these methods differ by that which is inherent,
on one side, to the geometry and mathematics of the phenomenal continuum, par-
ticularly by the difference between the (modern) notion of physical law, to which
we refer, and, on the other side, to the notion of algorithm. The consequences to
these two aspects can be measured in terms of different causal regimes, follow-
ing differences (breakings) in symmetry. Iteration, as a particular symmetry in
time, is also mentioned as one of the characteristics of digital simulation, in fact
as one of the strong points of computational imitation (and a starting point for
effective recursion, as a mathematical theory). It is also at the centre of the par-
ticular status of predictability, even in the case of the computer implementation of
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highly unstable non-linear systems, because the possibility of identically iterating
a process (or of accelerating a simulation) is a form of prediction. Iterability, that is,
digital calculi, also enables us to grasp the difference between the randomness of
the theory of algorithmic information and the randomness of physical processes of
the critical and quantum type. In the case of algorithms, randomness coincides with
incompressibility. On the other hand, in the first of the physical cases (deterministic,
dynamic, and thermodynamic systems), it is of an epistemic nature and it implies
the non-iterablity of processes; in the second (quantum physics) it is intrinsic to the
theory [it is part of the objective determination, (Bailly, Longo, 2006)]. These two
last cases are incompatible with the individual iterability of an individual process
(which is typical of algorithmics); although it may have a statistical iterability, as
in quantum mechanics.

We have then attempted to widen the causal problematic to encompass life
by taking into account its specific character through what appears as a sort of
finalisation of its functioning which we have attempted to conceptually system-
atise. This led us to refer to specific concepts, such as that of ‘contingent final-
ity’, and to propose new representations (topologico-metrical) in order to attempt
to account for it in a more or less operational fashion. Finally, we have evoked
the possibility of extricating that which — through numerical constants and scal-
ing properties — could be considered as invariants of causal reduction specific
to life.

If the considerations relative to physics and to calculus base themselves upon
well elaborated and mathematised theories, enabling us to refer to a corpus we can
say to be almost completely objectivised and thus lending itself particularly well
to a thorough conceptual and epistemological analysises moreover situating itself
within the framework of a well established tradition it seems that for biology the
situation is much more fragile in this regard. Also, with regard to life, the anal-
yses we propose are of a much more speculative nature and require with greater
necessity the theoretical and conceptual sanctions concerning experimental prac-
tices in this field. All the more so because the causal representations, in the case of
life, if we seek to detail them, must take into account multiple interactions, which
present themselves simultaneously all the while remaining of a highly different
nature, whereas in physics, for example, the interactions may in many cases be
sufficiently decoupled from one another for us to be able to approach and study
them separately; even if it implies, in a second stage, the seeking of conditions
and procedures for their unification. In other words and in particular, in biology,
the causal representations must take account of massive retroactions, which pre-
vent them most often from partitioning systems into weakly coupled sub-systems
in order to facilitate analysis, as is done in physics, as well as to consider holis-
tic telenomies, according to which the local organisation is dependent upon the
global structure and reorganises itself according to the necessities of optimisation
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or of perdurance of this structure according to criteria which are still not well
known.13

Nevertheless, it appears that one of the points common to these disciplinary
fields — and this is what we have wanted to highlight and to emphasise in this
text — resides in the fact that the causal analysis, all the while remaining useful and
efficient — must now be relativised and henceforth give way, for the purpose of a
better comprehension of the theoretical and conceptual structures of these fields,
to a more general approach relying much more upon the properties of invariance,
of symmetries (and their breakings) and of conservation. These properties underly
the manifestations which we tend to spontaneously (at least since the Renaissance)
interpret in terms of objective causal actions. We will maybe see there the trace of
a process of conceptual rehabilitation of the ‘geometrical’ (taken in a broad sense)
in relation to the ‘arithmetical’,14 which is not without echoes in the most profound
preoccupations of this volume.

References

[1] Aceto, L., Longo, G. and Victor, B. eds, 2003, The difference between Sequential
and Concurrent Computations. Special issue, Mathematical Structures in Computer
Science, Cambridge University Press, 4–5.

[2] Anandan, J. 2002, Causality, Symmetries and Quantum Mechanics. Foundations of
Physics Letters, 15(5), 415–438.

[3] Bailly, F. 1991, L’anneau des disciplines. Revue Internationale de Systémique, 5(3).
[4] Bailly, F. 2005, Invariances, symétries et brisures de symmetries. In L. Boi, ed. New

Interactions of Mathematics with Natural Sciences, World Scientific. [also in (Bailly,
Longo, 2006)].

[5] Bailly, F., Gaill, F. and Mosseri, R. 1993, Orgons and Biolons. In Theoretical Biology:
Phenomenological Analysis and Quantum Analogies, Acta Biotheoretica, 41(3).

[6] Bailly, F., Longo, G. 2003, Objective and Epistemic Complexity in Biology. In N.C.
Singh, ed. Invited lecture, Proceedings of the International Conference on Theoretical
Neurobiology, NBCR, New Delhi, pp. 62–79.

[7] Bailly, F., Longo, G. 2004, Space, time and cognition. In A. Peruzzi, ed. From The
Standpoint of Mathematics and Natural Science. Invited paper, Mind and Causality,

13We know, for example, that the genetic constraints themselves manifest ‘normally’ only in adequate
extragenomic or environmental frameworks. Moreover, some phenomena, such as local ‘death’ —
apoptosis — apparently in contrast to evolutionary survival paradigms, prove to be necessary to the
global viability, as an integral part of ‘normal’life and even more of the adaptation faculties of organisms
in the event of the modification of the exterior environment.
14In reference to the debates of the beginning of the twentieth century concerning the foundations of
mathematics, but all the while emphasising the fact that the geometrisation of physics, for its part, has
never ceased to develop, probably explaining why it is in this discipline that symmetries and invariances
have acquired a determining explicative and operational status rather early on.



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch09

Causes and Symmetries in Natural Sciences 209

Benjamins, Amsterdam, pp. 149–199. [French version in Revue de Synthèse. Paris,
2004, also in (Bailly, Longo, 2006)].

[8] Bailly, F., Longo, G. 2004, Incomplétude et incertitude en Mathématiques et en
Physique. In Parrini, P. & Scarantino, L.M., eds. Invited Paper, Il pensiero filosofico
di Giulio Preti, Guerrini ed associati, Milano, pp. 305–340. [Also in (Bailly, Longo,
2006)].

[9] Bailly, F., Longo, G. 2006, Mathématiques et sciences de la nature. La singularité
physique du vivant. Hermann, Paris.

[10] Bernard-Weil, E. 2002,Ago-antagonistic Systems. In Mugur-Schächter, M. &Van der
Merwe,A., eds. Quantum Mechanics, Mathematics, Cognition andAction: Proposals
for a Formalized Epistemology. Kluwer, Dordrecht.

[11] Edalat, A. 1997, Domains for Computation in Mathematics, Physics and Exact Real
Arithmetic. Bulletin for Symbolic Logic, 3(4), 401–452.

[12] Edelman, G., Tonni, G. 2000, A Universe of Consciousness: How Matter Becomes
Imagination. Basic Books, New York.

[13] Jeong, H., Tombor, B., Albert, R. et al., 2000, The large-scale organization of
metabolic networks. Nature, 407, 651.

[14] Longo, G. 2002, The Constructed Objectivity of Mathematics and the Cognitive
Subject. In Mugur-Schächter, M. & Van der Merwe, A., eds. Quantum Mechan-
ics, Mathematics, Cognition and Action: Proposals for a Formalized Epistemology.
Kluwer, Dordrecht, pp. 433–463.

[15] Longo, G. 2005, The reasonable effectiveness of Mathematics and its Cognitive
roots. In Boi, L. ed., New Interactions of Mathematics with Natural Sciences. World
Scientific.

[16] Longo, G. 2007, Laplace, Turing and the “imitation game” impossible geometry:
randomness, determinism and programs in Turing’s test. In Epstein, R., Roberts, G.
& Beber, G., eds. The Turing Test Sourcebook: Philosophical and Methodological
Issues in the Quest for the Thinking Computer. Kluwer, Dordrecht.

[17] Nicolis, G. 1986, Dissipative systems. Rep. Prog. Phys. 49(8), 873.
[18] Nicolis, G., Prigogine, I. 1989, A la rencontre du complexe. Presses Universitaires

de France, Paris.
[19] Peters, R. H. 1984, The Ecological Implication of Body Size. Cambridge University

Press, Cambridge.
[20] Pilyugin, S., Yu. 1999, Shadowing in dynamical systems. Springer, Berlin.
[21] Ricard, J. 2003, Emergence, organisation et causalité dans les systèmes biologiques.

In Viennot, L. & Debru, C., eds. Enquête sur le concept de causalité. Presses Univer-
sitaires de France, Paris.

[22] Rosen, R. 1991, Life Itself. Columbia University Press, New York.
[23] Sakharov, A. 1984, Œuvres scientifiques. Anthropos (Economica), Paris.
[24] Sauer, T. 2003, Shadowing breakdown and large errors in dynamical simulations of

physical systems. Preprint, George Mason University.
[25] Schmidt-Nielsen, K. 1984, Scaling: Why is Animal Size so Important? Cambridge

University Press, Cambridge.
[26] Stewart, J. 2002, La modélisation en biologie. In P. Nouvel, ed. Enquête sur le concept

de modèle. Presses Universitaires de France, Paris.



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch09

210 F. Bailly and G. Longo

[27] Turing, A. 1950, Computing Machines and Intelligence. Mind, 59(236), 433–460.
[28] van Fraassen, B. C. 1994, Lois et symétrie. J. Vrin, Paris.
[29] Varela, F. 1989, Autonomie et connaissance. Seuil, Paris.
[30] Viennot, L. 2003, Raisonnement commun en physique: relations fonctionnelles,

chronologie et causalité. In Viennot, L. & Debru, C., eds. Enquête sur le concept de
causalité. Presses Universitaires de France, Paris.

[31] Weyl, H. 1927, Philosophie der Mathematik und Naturwissenschaft. (Translated into
2d edn. Philosophy of Mathematics and Natural Sciences by Princeton University
Press, 1949.

[32] Weyl, H. 1952, Symmetry. Princeton University Press.



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch10

CHAPTER 10

Topological Invariants of Geometrical Surfaces
and the Protein Folding Problem

R. A. Broglia

Department of Physics, University of Milano,
via Celoria 16, 20133 Milan, Italy

INFN, Milan Section, Milan, Italy

The Niels Bohr Institute, University of Copenhagen,
Blegdamsveg 17, DK-2100 Copenhagen, Denmark

ricardo.broglia@unimi.it

1. Introduction

Empty space, as well as a plasma of electrons, positrons, neutrinos, photons
and nucleons thought to be the stuff of the universe right after the Big Bang, is
isotropic and invariant under rotations. The spontaneous breaking of these symme-
tries observed e.g., in crystals, and in proteins (aperiodic crystals), is at the basis of
emergent properties — that is properties not contained in the particles forming the
system nor in the forces acting among them — like rigidity, electron conduction,
enzymatic activity, etc. Because in any three-dimensional polyhedra that the sum
of the number of faces (F ) and vertices (V ), minus the number of sides (edges
(E)) equals two is a property of space itself (topological invariant of geometri-
cal surfaces), crystals and proteins adopt the (relatively few) three-dimensional
structures they do. In other words, the only “allowed” violations of empty space
symmetries are those respecting the topological invariants of whichF+V−E = 2
is an example. This fact plays an important role in the study of nature and is at the
basis of the ex-novo design of new nanometric materials and folds (proteins with
specific properties). Even if they do not exist in nature, materials — biological
or not — of which building blocks (atoms, molecules, etc.) respect, in their
spatial arrangements, the pertinent topological invariants can, in principle, be
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designed and eventually produced, helping fight diseases or making our habitat less
hostile.

2. Protein Folding Problem

Proteins are linear sequences made out of twenty different types of amino acids (pri-
mary, one-dimensional (1D) conformation) which fold in a well defined, unique,
biologically active three-dimensional (3D), native, conformation in very short times
(as a rule times ranging from nanoseconds to seconds). How the primary confor-
mation codes for the native conformation is the protein folding problem. If one
would solve it one would be able, among other things, to inhibit the folding, and
thus the biological activity of proteins which play a central role in the vital cycle
of viruses and bacteria, and thus help fight diseases.

For real proteins one does not know how to solve the protein folding problem
[1]. On the other hand, for a simplified model of proteins, the answer is quite
simple [2].

The Lattice model is a simplified model of proteins which has proven quite
useful, being simple to use in numerical simulations and, at the same time, contain-
ing many of the properties of real proteins. In it, twenty different types of amino
acids are represented by beads of equal size, forced to move on the vertices of a
square lattice and to interact through a 20×20 contact matrix, obtained from the
analysis of the frequency of appearance of the different (native) contacts in real
proteins [3].

3. Inverse Folding Problem

Because both the amino acids and the interaction are schematic one needs to
design sequences which behave like proteins, that is, sequences which are good
folders.

This is done by minimizing the energy with respect to amino acid sequence for
a given native conformation [4]. A concrete example is shown in Figure 1, where
the sequence S36 displayed in (b) and known as S36 in the literature is found to fold
on short call (≈1µs) on the native conformation shown in (a). It has been found
that all good folders have in common few amino acids (≈8%–10%) which are
highly conserved, and which we call ‘hot’amino acids. This condition is tantamount
to saying that these sequences have an energy lying below the minimum energy
of the compact conformation which random amino acid sequences can acquire.
Consequently, in their folding process, good folders do not find a myriad of possible
conformations but only the native one.
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Figure 1 (a) The conformation of the 36-mer chosen as the native state in the design proce-
dure. Each amino-acid residue is represented as a bead occupying a lattice site. The design
tends to place the most strongly interacting amino acids in the interior of the protein where
they can form most contacts. The strongest interactions are between groups D,E and K
(cf. (b)), the last one being buried deep in the protein (amino acid in site 27). Amino acids
occupying ‘hot’ sites (sites 6, 27, 30) have been represented by red beads, those occupying
‘warm’ sites (sites 3, 5, 11, 14, 16 and 28) by yellow and those occupying cold sites by light
brown beads. The local elementary structures (LES) formed by the amino acid sequences
S1

4 ≡ (3, 4, 5, 6), S2
4 ≡ (27, 28, 29, 30) and S3

4 ≡ (11, 12, 13, 14) and stabilized by the
contacts 3–6, 27–30 and 11–14 (drawn by continuous lines) are explicitely shown by shad-
owed areas. The contacts between the LES are shown by dashed lines. (b) Designed amino
acid sequence S36 associated with a native energyEn = −16.5. (c) Designed sequence S′36
associated with a native energy En = −17.13 (see Figure 2).

4. Molecular Dynamic Simulations

In Figure 2 snapshots are shown of a typical trajectory associated with the numer-
ical simulation of the evolution of the folding of S36. A hierarchical picture of
the folding process emerges in which, starting from an elongated conformation
(see Figure 2(a)), the basic steps are:

(a) Formation of local elementary structures (LES), stabilized by strongly inter-
acting, highly conserved ‘hot’ amino acids, very early in the folding process
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Figure 2 Snapshots of the folding of the sequence S′36 (see Figure 1(c)), whose energy
in the native conformation is En = −17.13 carried out at T = 0.28. Starting from a
random conformation (a), the system forms after ≈102 MC steps (1 MCs ≈ 10−13 s) local
elementary structures (LES) (b), involving three sets of four amino acids (3–6, 11–14,
17–30), whose stability is provided by the bonding indicated by dotted lines. When the
LES come together to form the folding nucleus (FN) (indicated by dotted and dashed lines)
after 7 · 105 MC steps (c), the system folds to the native conformation after only 103 MC
steps (d). The amino acids participating in the bonding of the LES (dotted lines) are among
some of the most strongly interacting amino acids, which occupy, in the native conformation
(d), ‘hot’ and ‘warm’ sites indicated by red and yellow beads, respectively. The monomers
number 1 and 36 of the sequence S′36 are indicated for each conformation (see Figure 1(c)).

(see Figure 2(b)). From now on the folding process and the associated molec-
ular recognition is associated with LES.

(b) Diffusion of the LES in configuration space until they dock in the native confor-
mation, giving rise to the (post-critical) folding nucleus (FN) (see Figure 2(c)),
that is, the minimum set of native contacts which brings the system over the
highest barrier of the (free) energy associated with the folding process.

(c) Shortly after, the remaining amino acids folds into place, the protein having
reached the native conformation.

From the above results a protocol has been developed which allows reading
the three-dimensional structure of a protein from the one-dimensional structure.
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In fact, given the amino acid sequence and the contact matrix used to design the
protein, one can first individuate the hot amino acids of the protein through multiple
mutations. Knowing these sites one can design possible candidates of LES and thus
of FN. In trying to compact the remaining amino acids one would find that there is
a single, eventually a couple of FN leading to a low-energy compact conformation.
This is the native conformation (for more details see Ref. [2]).

The extension of these results to real proteins is under way, starting with the
development of methods for the identification of the LES and thus of the FN.

5. Topological Invariant Number and the Folding Process

If one closes a volume in terms of a number of plane faces (F ) limited by a closed
perimeter made out of straight lines which, intersecting at vertices define the edges
of the surface, one would always find that the sum of the number of faces (F )
plus the number of vertices (V ) minus the number of edges (E) is equal to two1

(F+V−E = 2). This is true for a cube as well as for a parallelepid (F = 6,V = 8,
E = 12 in both cases), for a pyramid made out of triangles (F = 4, V = 4,E = 6)
or of four triangles and a squared base (F = 5, V = 5, E = 8). In fact, it is true
for all polyhedra (from the Greek poly — many hedron or hedra — geometrical
figure having a (specified) number of faces).

Relations of the type F + V − E = 2 are known as numerical topological
(Greek topos — space, logos — word, reason) invariants of geometrical surfaces,
being properties of (empty) space itself. This is the reason why crystals have their
atoms disposed the way they are, e.g., carbon atoms in graphite are disposed in
sheets made out of hexagons, with the atoms at the edges and pairs of exchanged
electrons at the edges, while diamond has its atoms arranged in a face-centred cubic
lattice.2 But also in the case of the hollow molecule C60 fullerene (made out of
hexagonal and pentagonal faces), the third allotropic form of carbon, and the only
finite one. Also why the smallest member of the fullerene family is C20 containing
exactly twelve pentagonal faces, the minimum needed to close a spherical space
with pentagonal and hexagonal faces, still respecting F + V − E = 2.

This seems to be also the reason why the (folding) nuclei of proteins in their
native, biologically active state, have the structure they have, a fact which is

1The relation F+V −E = 2 was first found by Descartes in 1619, and ‘rediscovered’by Euler in 1731.
The number 2 in the above relation is known as the Descartes–Euler number (DE)n (see A.D. Aczel,
Descartes’ Secret Notebook, Broadway Books, New York (2005)).
2Quantum mechanics also ‘respects’the topological invariants when it spontaneously violates rotational
and translational invariance, thus leading to e.g., rigidity (example of emergent property) by correlating
covalently four atoms at a time (sp3) in diamond, and three (sp2) in graphite.
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reflected in the denomination of soft matter or aperiodic crystals for such sys-
tems (within this context cf. also [5, 6]). Topological invariants are also asso-
ciated with open structures made out of edges and vertices like, for example, a
chain of N beads [7]. In these systems, F = 0, V = N, E = N − 1, and
thus F + V − E = 1.

Typical single-domain, monoglobular proteins are made out ofN ≈ 100 amino
acids (beads) held together by E = N − 1 peptidic bonds. As discussed in the
previous section, the folding process is controlled by highly hydrophobic, local
elementary structures (LES) formed early in the folding process under the effects
of the (weak) hydrophobic force. In real proteins each LES is built out of V ≈ 10
amino acids (see e.g., [8]) held together by nine peptide bonds (E = 9), with
F = 0 in keeping with the fact that they are open structures. In their elongated
conformation they thus carry an invariant topological number 1. This (local) num-
ber is conserved when, very early in the folding process, the stability of the LES
becomes very high (≈95%–100%). Thinking in terms of S36, each LES becomes
a plaquette with V = E(= 4) and F = 1 (see Figures 2 and 3). The overall topo-
logical invariant number becoming (D.E)n = 0, in keeping with the fact that the
polypeptides chains in between LES carry (D.E)n = −1 and that the end chains
carry (D.E)n = 0. When the LES dock in the native conformation, they lead to a
highly stable folding nucleus (FN), carrying a topological invariant number equal

(a)

(b)

(c)

Figure 3
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Table 1 The number of amino acids (aa) N, average number of aa of each
LES nLES

aa /3, number of aa composing each LES N/10 of the proteins listed
in the first column are displayed in columns one to three respectively. The first
three lines refer to lattice model proteins, while the last four to real proteins.

N nLES
aa /3 N/10 nLES

aa /3−N/10

s36
a 36 4 3.6 0.4

s36 (n.l.)a 36 3.7 3.6 0.1
s48

a 48 7 4.8 2.2
HIV–1–PR (monomer)b 99 9 9.9 −0.9
SH3

c 60 7.3 6.0 1.3
CI2

c 64 7.7 6.4 1.3
Gc 56 6 5.6 0.4
average value 0.7
standard deviation 0.9

aSee Ref. [2] and [13]
bSee Ref. [8]
cSee Ref. [14]

to 2, the overall (D.E)n being 0. In the last, rather fast steps, all the remaining
amino acids will fall into place. For a very stable system (like lysozime) or, at
low temperature, the native conformation of proteins is stable and it becomes a
(aperiodic) solid, which carries the topological invariant number 2 corresponding
to the primitive cell (cube).

Summing up, the folding process is a hierarchical process: D→LES→FN→N,
where D and N indicate the denaturated and the native conformations respectively.
Arguably, the most complicated and less known of all these conformations is the
denaturated state [9]. It is known that this state is rich in some native contacts. It
is likely that LES (see Figure 3(a)) is a better representation of the denaturated
state.

Consequently, at a temperature much lower than the folding temperature (at
which the (D, LES) and N states are equally populated), the (first order) transition
associated with the folding of a protein can be decomposed in a sum of partial
transitions: a) LES→FN (implying a variation of the (D.E)n from 1 to 0), b) FN→N
(0→2).

The properties of empty space are given a concrete meaning through the physics
associated with the contact interactions acting among the amino acids. In fact, as
shown in Table 1, with the help of orders of magnitude associated with the weak
and the strong hydrophobic interactions, the relation F + V − E = 2 provides
important insight into the structure of LES and thus of molecular recognition, let
alone about the protein folding problem.
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6. Protein Folding Inhibitor and Non-Conventional
Drug Design

Because molecular recognition in the protein folding phenomenon is controlled by
LES, a nonconventional3 folding inhibitor suggests itself: short peptides (p–LES)
displaying a sequence identical to a LES [10]. This peptide conveniently structured
and carrying an invariant number equal to 1 (1 + 4 − 4 = 1, plaquette) would,
by attaching to its complementary LES belonging to the protein, stabilize it in an
unfolded conformation. Because this state is different from the one in which the
protein is stabilized by the substrate, one is talking about competitive inhibition.
Very promising results for this type of inhibitors have been found in a number
of situations, in particular in the case of the HIV–1–PR (see Refs. [8, 11] and
Refs. therein).

In the case in which disulfide bonds are present, e.g., in the case of lysozime,
it is an open question whether one should include these bonds in the p–LES or
not. In the first situation one would be talking about a closed LES, in the second
an open LES as the stability of p–LES is, as a rule, less than the corresponding
LES inside the (native state) protein. Because both p–LES carry a (D.E)n = 1, one
would need experimental input to answer this question in detail.

7. Conclusion

Topological invariants and dynamical properties associated with the folding of the
lattice model designed 36-mer (see Figures 1 and 2). In what follows we refer to
Figure 3:

(a) First step in the folding process: formation of LES after only≈102 MCs (1 MCs
≈10−13 s, thus 102 MCs≈ 10−11 s). Shown with red, yellow and green colours
the hot, warm and cold amino acids of S36 [12]. The interaction stabilizing each
of the three LES are shown as dotted lines. In a real protein, this interaction
is to a large extent due to the weak hydrophobic interaction (proportional to
the volume of the non-polar molecules). The steps D→LES→FN→N, where
D and N stand for denaturated and native conformations, summarize the hier-
achical folding of proteins. Each of the three LES are evidenced in terms of
sky blue, rosy brown and dark sea green areas. Also shown are the neutral
chain segments (of summed length≈2nLES

aa = 8) which each of the LES move

3Conventional inhibitors act on the active site of the folded protein either by capping it or, attaching on
the surface of the protein distorting the active site structure so that the protein displays a much reduced
ability to bind to the substrate.
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around in the diffusive search of their complementary LES to form the (post-
critical) folding nucleus (FN). Molecular recognition at this level is carried out
by LES.

(b) FN resulting from the docking of the LES (native conformation). Being the
FN an energy minimizing compact conformation, and thus a viable physical
conformation, it has to coincide with one of the topological invariant figures
of space, and thus carry an exact topological invariant number (i.e., the boxed
expression, the Descartes–Euler relation uses an equal (=) symbol). In other
words, the fact that the FN has the structure of a polyhedron reflects only a
property of space. Within this context, once the LES has been stabilized, it
can be viewed as a plaquette with F = 1, V = 4, E = 4. Note that once the
FN is stabilized, it can be viewed in terms of the primitive Wigner–cell (like
a crystal) which, in this case carries F = 6, V = 8, E = 12, the topological
invariant number being still 2 as for the case of the parallelepid displayed.

(c) The properties of empty space are given a concrete meaning through the
detailed properties of the (contact) interactions. The one used in the design
of S36 (Miyazawa–Jernigan, [3]) was obtained from the frequency of amino
acid (native) contacts of real proteins. Identifying the vertices of the polyhedra
(elongated cube) with the number of amino acids nLES

aa belonging to the FN
and thus to the LES and making use of the fact that there are three LES, nLES

aa /3
is the average number of amino acids building a LES. Because E − F can be
identified with the number of peptide bonds found in the FN (see (b)), and of the
fact that 2nLES

aa is the number of amino acids forming the (neutral) chains that
each LES moves around in their search for the complementary LES to form
the FN (see (a)), the quantity 3.4(E−F)/(3×3.4) ≈ 3.4(E−F)/10 ≈ N/10
gives an estimate of the order of magnitude of the number of amino acids
entering in each LES, the total number of residues of the protein being N.
Within the present context, the boxed relation uses an approximately equal
symbol (≈), referring to real proteins and depending on the actual interac-
tion among amino acids. Paramount among the interactions is the hydrophobic
interaction. One can distinguish between two components of this interaction:
the weak (proportional to the volume) and the strong (proportional to the sur-
face) components. In other words, the volume term dominates for systems with
dimensions �10 Å, the second term for systems larger than 10 Å. This means
that weak hydrophobicity can compact, early in the folding process, groups
of the order of 10 mainly hydrophobic amino acids leading to LES. Because
N/10 is the number of amino acids entering in each LES, it means that single-
domain globular proteins must contain of the order of N = 100 amino acids.
This in fact is the case, not only for single-domain proteins but also for each
of the domains of a multi-domain protein.

A résumé of the relation nLES
aa /3 − N/10 = 2/3 ≈ 0.7 associated with

different proteins which have been extensively studied both through (model)
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molecular dynamic calculations, as well as through protein engineering, is
given in Table 1.

Topological invariants and lattice model of proteins together with the empirical
knowledge that folding domains of globular proteins contain about 102 allows to
estimate the number of amino acids building each of the few (≈3) local elemen-
tary structures which provide molecular recognition and thus direct the folding of
proteins. This number (≈10 aa) is consistent with the fact that the first steps of the
folding process is controlled by the weak hydrophobic interaction, while that of the
diffusion of LES (molecular recognition) to build the FN is a result of the strong
hydrophobic interaction (both interactions crossing at volumes of ≈1 nm (10 Å)
of radius (and thus containing ≈10 aa). It is remarkable that Descartes relation
F + V − E = 2 could say so much about the building blocks of life itself.
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Overview

Dense structures appear in different scientific context: crystals, amorphous metals,
foams and biological organizations. The scale characterising these structures go
from atomic scales for amorphous metals to macroscopic scales for foams. The
biology gives examples at molecular scales up to macroscopic scales. In sphere
packing, the best compactness is obtained when sphere centres are on the vertices
of regular tetrahedra. There is no solution in Euclidean space, but in curved space,
the {3, 3, 5}-polytope is a template for dense structures. Then larger structures are
derived from this polytope, using disclinations. That needs a study of symmetries in
this polytope. An efficient tool for symmetry analysis is the Hopf fibration, which
reveals helicoidal symmetries. Helices and dense packing of spherical objects are
two closely related problems. For instance, the Boerdijk–Coxeter helix, which is
obtained as a linear packing of regular tetrahedra, is a very efficient solution to some
close-packing problems. The shapes of biological helices result from various kinds
of interaction forces, including steric repulsion. Thus, the search for a maximum
density can lead to structures related to the Boerdijk–Coxeter helix. Examples are
presented for the α-helix structure in proteins and for other examples of helical
packings at different scales in biology.
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1. Introduction

The fact that a physical system should obey a principle of minimum energy is
always constrained by external conditions (temperature, pressure, geometrical
confinement, . . .). One such condition, which is so evident that it is often forgotten,
is the type of space underlying the system. The space is characterised by several
quantities of a topological and metrical nature, which we are going to describe
now. The importance of such knowledge comes from the fact that, in some cases,
the local atomic configuration which minimises a local form of the energy, may not
be compatible with the underlying space (it is not ‘space-filling’). This is called
‘geometric frustration’, when the local order cannot be propagated freely through-
out the space. The simplest example is the case where the local rule consists in
packing spheres as densely as possible.

In two dimensions, a local packing of discs, the flat analogs of spheres, is
densely organised if centres of discs are located on vertices of equilateral triangles
which can tile the plane along the six-fold symmetric hexagonal lattice; this is an un-
frustrated case. In three dimensions, the local densest packing of spheres is achieved
by placing their centres at a regular tetrahedron vertices. The geometric frustration
reveals immediately in that the three-dimensional Euclidean space cannot be filled
completely by regular tetrahedra.

Dense structures appear in different scientific context: crystals, amorphous met-
als, foams and biological organisations. The scale characterising these structures
go from atomic scales for amorphous metals to macroscopic scales for foams. The
biology gives examples at molecular scales up to macroscopic scales. In sphere
packing, the best compactness is obtained when sphere centres are on the vertices
of regular tetrahedra. There is no solution in Euclidean space, but in curved space,
the {3, 3, 5}-polytope [1–3], which is a very dense packing of tetrahedra, is now
intensively used in order to understand local order and the propagation of local
order [4, 5].

Nevertheless the {3, 3, 5}-polytope is a finite structure containing only 120
vertices, and defined in a curved three-dimensional space, the sphere S3. More
suitable structures are needed in order to model Euclidean structures in the three-
dimensional space. A decurving procedure, using disclinations, allows to build
larger polytopes, with a greater number of vertices, and so, locally less curved.

There are some interesting polytopes and structures in S3 derived from the
{3, 3, 5}-polytope. They could be described in terms of packing of helices in order
to model molecular structures. This can be applied to structures whose local order
can mimic the local order of folded proteins, which could be considered as dense
packing of amino-acids [6].
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2. Geometry of the {3, 3, 5}-Polytope in S3

2.1. The {3, 3, 5}-polytope

It is a tiling of S3 by 600 regular tetrahedra, with 120 vertices and 720 edges. Let
us recall the meaning of the Schläffli notation in the case of the {3, 3, 5} polytope:
it denotes a regular structure such that five {3, 3} tetrahedra share a common edge.
The first neighbour configuration around a vertex is an icosahedron coded in the
two last indices {3, 5}, ‘the star’ or ‘the vertex figure’. Each vertex has twelve
neighbours that form an icosahedral shell. Together they form a cluster of twenty
tetrahedra all sharing the central vertex. If the edge length is taken as unity, the
{3, 3, 5} regular polytope is inscribed on a hyper-sphere of radius equal to the
golden ratio, τ = (1+√5)/2.

2.2. The Hopf fibration of S3

The symmetry of S3 can be nicely described using its Hopf fibration by great circles.
After a description of the Hopf fibration in continuous space S3, we consider the
discrete case applied to the {3, 3, 5}-polytope.

The spherical space S3 can be characterised by the equation: x2
1 + x2

2 +
x2

3 + x2
4 = r2 with four Cartesian coordinates xi. It is simpler to consider it as

a three-dimensional space, depending on three independent angles ω, θ and φ,
such that

x1 = r cos θ cos φ

x2 = r sin θ cos φ

x3 = r cos ω sin φ

x4 = r sin ω sin φ.

(1)

This is known as the toric coordinates of S3 with θ ∈ [0, 2π], ω ∈ [0, 2π] and
φ ∈ [0, π/2].

A fixed value of φ gives the equation of a surface since only two parameters
(ω, θ) can vary. This surface is a torus (in the particular case φ = π/4, it is the
so called ‘spherical torus’). Now, if we further impose a linear relation between
ω and θ, it remains only one independent parameter, defining a curve on the torus
in S3, and thus the relation θ = ω+ω0, ω0 being a constant value, leads to a set of
great circles (radius r) in S3, each circle characterised by ω0. These circles never
intersect and in some sense are parallel circles: they are called Clifford parallels.
One way to imagine their configuration is to consider a flat rectangle on which
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Figure 1 How a rectangle is refold in a torus and how a diagonal gives a great circle.

a family of straight lines parallel to a diagonal are drawn. Then the rectangle is
folded into a torus by identification of opposite sides (Figure 1). Folding a rectangle
into a torus can be done in S3 without distortion, as the surface of a torus has an
Euclidean metric, but with some elastic (metric) deformations, such a folding can
be represented in the usual R3 space by a usual torus. After this refolding, lines
parallel to the diagonal form close circles running on the torus surface. Notice that
there is a chirality depending on the choice of the diagonal, and that each circle is
wounded one around any other. Now consider a family of torii each defined by a
constant φ = φ0. And then consider on all the torii, a family of these great circles.
We have built is S3 a set of great circles never intersecting, every one circle being
at constant distance from any other. This define a Hopf fibration of S3 (Figure 2).
Recall that a fibration is a decomposition of a space into identical sub-spaces (here
the circles) so that a point in S3 is characterised, by the fibre on which it lies and
by its position on the fibre.

In the present example, a fibre is characterised by the two constant parameters
φ0 (the torus) and ω0 (the line on the torus) and then a point is positioned on the
fibre by the parameter ω. As there are two angular parameters to define a fibre,
they could be taken as angular coordinates of a surface, on which a point (φ0, ω0)

represents a whole fibre. This surface is called the base of the fibration. In fact,
in this example, this base is a sphere S2, y2

1 + y2
2 + y2

3 = r2/4 with spherical
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Figure 2 A representation of a Hopf fibration obtained by a stereographic projection of S3.
In S3, fibres are circles all of the same diameter. On this figure, by projection effect, fibres
(black lines) have different diameters.

coordinates such that

y1 = r

2
cos(2φ0)

y2 = r

2
cos ω0 sin(2φ0) (2)

y3 = r

2
sin ω0 sin(2φ0)

with ω0 ∈ [0, 2π] and 2φ0 ∈ [0, π]. Nevertheless, the base is not embedded in S3
and is only a tool to represent fibres. Indeed, if it was embedded, it would then have
two points intersected by a fibre: if a circle cuts a sphere, it cuts it in two points (in
three-dimensional flat or curved space). This would contradict the fact that only
one point on the base should characterise a given fibre. The important result of this
representation of a Hopf fibration is that two points at a given distance on the base
represent two parallel circles at the same distance, all distances being defined by
the length of geodesic arc in spherical space. Accordingly, the distance between
two fibres is given with the metric of an ordinary sphere of radius r/2 with spherical
coordinates 2φ0 and ω0. With this choice for the radius of the base, the distance
between two fibres in S3 is also the distance between their two representative points
on the base. A torus, which is the set of fibres with the same φ0, corresponds to a
circle on the base [7].

It is also possible to see the Hopf fibration as a mapping. Let us write the points
on a unit radius S3 as pair of complex numbers (u, v) such that |u|2+|v|2 = 1. The
Hopf map may then be defined as the composition of the map h1 from S3 to R2
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(with∞ included) followed by an inverse stereographic projection from R2 to S2:

h1 : S3 → R3

(u, v)→ Q = u/v u, v ∈ C

h2 : R2 → S2

Q→ M (x1, x2, x3) xi ∈ R

(3)

Hopf fibrations are directly related to screw symmetry operations in S3: fibres
are the trajectories of points under the action of two rotations with axes along
two fibres defined by two opposite point on the base. These two axes are in two
planes completely orthogonal in the four dimensions space in which the spherical
three-dimensional space is embedded.

3. The Geometry of Helices

3.1. The Boerdijk–Coxeter chain of tetrahedra

Helices and dense packing of spherical objects are two closely related problems. A
very interesting geometrical figure is obtained by stacking regular tetrahedra along
one direction. It is called the Boerdijk [8]–Coxeter [9] chain (B-C chain). Select
one face of a tetrahedron, on which the next tetrahedron is glued, and proceed on
gluing new tetrahedra, with the conditions that no more than three tetrahedra share
an edge, and that edges with only one tetrahedron are more or less aligned. A chain
of tetrahedra is obtained, on which external edges form three helices (Figure 3).
Surprisingly, this chain is not periodic, owing to an incommensurability between
the distances separating centres of neighboring tetrahedra, and the pitch of the three
helices [10, 11].

There are different kinds of tetrahedral edges corresponding to the number of
tetrahedra sharing a giving edge: Those which appear most parallel to the axis
of the B-C chain belong to only one tetrahedron. They will be called hereafter
type-{3}. Edges sharing two tetrahedra are called type-{2} and edges sharing three
tetrahedra, type-{1}. The number corresponds to the direction of the edge in the
phyllotactic representation of the helix (see below). We distinguish several families
of helices made of these three types of edges. There are three type-{3} helices, but
only one type-{1} helix and two type-{2} helices.

It is useful to describe the B-C chain (or any helical structure resulting from
close packed units) as a two-dimensional graph on a cylinder. All edges of the
graph are geodesic lines on the cylinder. When the cylinder is unfolded on a flat
surface, this surface is tiled with triangles. concretely, the B-C chain can be built
by taking an actual sheet of paper on which a triangular tilling (with equilateral
triangles) is drawn, cutting a strip three triangles-wide, folding the type-{2} edges
inwards, types-{3} and -{1} outwards, and gluing.
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Figure 3 Boerdijk–Coxeter chain obtained from a necklace of tetrahedra. (a) A dense
packing of spheres centred on the tetrahedron vertices. (b) The B-C helix (a) can be obtained
by folding the edges of the triangular tilling (c), and gluing together the larger sides of the
rectangle. A torus is obtained (in curved space) by identification of the smaller sides. The
Coxeter helix corresponds to the black edges in (c).

3.2. Discretising the fibration for the {3, 3, 5} polytope

Consider now the {3, 3, 5} polytope. Since each screw symmetry gathers vertices
on Hopf circles, different discretised fibrations can be drawn on this polytope. The
ten-fold screw axis defines a fibration related to the B-C chain: there are twelve
fibres (containing ten points each), whose Hopf map gives the twelve vertices of
an icosahedron on the base S2. The fibres are polygons with ten vertices: edges of
these decagons are edges of the tetrahedral cells. The fibres are made of type-{3}
edges.

3.2.1. Mapping the Boerdijk–Coxeter chain from S3 to the plane

The B-C chain is related to the problem of packing spheres or tiling by regular
tetrahedra, resolved by the {3, 3, 5} polytope in curved space. Because it is impos-
sible to tile Euclidean space with regular tetrahedra, space has to acquire a positive
curvature. In curved space, the helices define by edges on the B-C chain wind on
a torus instead of a cylinder, and they form close curves. The torus can be cut
and flattened into a rectangle (or a parallelogram), with identification of opposite
sides (see Figure 4). Now, folding a rectangle (or a parallelogram) into a torus in
curved spherical space S3, can be done without any metric distortions. Thus, for
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Figure 4 A flat strip leading to the Boerdijk–Coxeter chain in S3 by identification of the
two long sides of the (pseudo) rectangle.

the B-C chain, the flattened torus is tiled by triangles which are nearly equilateral
(some care is needed because only type-{3} edges are geodesics of the torus and
of S3, the other edges are slightly distorted in the flattened torus). The flattened
torus is a multiple cell of the hexagonal lattice, describing the triangular tilling,

with basic vectors
−→
b1 = 3−→a1 + 2−→a2 ,

−→
b2 = −3−→a1 + 8−→a2 and

−→
b1 · −→b2 = −2,

where −→a1 and −→a2 are the unit vectors of the primitive cell (see Figure 4). With
this choice, the flat representation of the cylinder is a parallelogram close to a
rectangle.

3.3. The Coxeter helix

The three different types of helices observed on the B-C chain, can be easily

identified on the flat strip (
−→
b1 ,
−→
b2 ). There are three type-{3} winding along −→a2 .

With opposite sides of the strip identified, they form closed loops making one turn
around the two axes of the torus, with ten edges and vertices each. In spherical
space, they are geodesics, great circles of S3, fibres of the Hopf fibration of S3.
Two type-{2} helices wind along −−→a1 ; they also form close loops, making four
turns around one axis and one turn around the other, with 15 vertices.
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Finally, one type-{1} helix, the Coxeter helix, winds along −→a1 +−→a2 . It has 30
edges and vertices, and makes 11 turns around one axis and one around the other.
The Coxeter helix has therefore 30/11 = 2.727272 . . . edges per turn. The helices
have opposite chiralities: If type-{1} and -{3} are right-handed helices, say, type-{2}
helices are left-handed.

The Coxeter helix is labelled (3, 2, 1) in phyllotactic notation. This is a nota-
tion describing triangular lattices on cylinders [12, 13]. It describes, for instance,
all the possible structures of composite flowers (phyllotaxis). Each vertex is
labelled by a natural integer n, in order of increasing altitude on the vertical
cylinder, or of increasing age in a flower. The phyllotactic notation (k, l, m),
with k > l > m, implies that the vertices labelled n ± k, n ± l, n ± m are
neighbours to vertex n. Consequently, in a triangular tilling, k = l + m, since
n + k and (n + l) + m label the same neighbour to vertex n. The three types of
helix on the cylinder are labelled accordingly: The k helices of type-{k} include
vertices . . . n− k, n, n+ k, n+ 2k, . . . , and are the steepest ones. The m helices
of type-{m} are the flattest ones. If there is one single helix going through all the
vertices, it is of type-{1}, and m = 1. It is labelled (k, k−1, 1). The simplest exam-
ple is the B-C helix (3, 2, 1). Other helices of biological interest are the α-helix
(4, 3, 1), the π-helix (5, 4, 1) and Pauling’s γ-helix (or 5.1 helix) (6, 5, 1).

3.3.1. Metric properties of the Coxeter helix on an Euclidean cylinder

We can build helices in Euclidean space starting from the flat map of the helix on a

torus. We make a long strip by assembling several patching units (
−→
b1 ,
−→
b2 ) joined

by their smaller sides, and fold it into a cylinder.
It is easy in curved space (or on a torus) to count how many turns an helix

makes around its axis, as it is a pure topological number. This is not so simple on

a cylinder, as we do not know the exact angle between
−→
b1 and

−→
b2 after folding.

So, we must use coordinates in Euclidean space. The coordinates of the nth
vertex An of an helix are given by:

xn = cos nθ yn = sin nθ zn = nc. (4)

The distances between vertex n and vertices n + 1, n + 2 and n + 3 are first
neighbours distances. Then

AmA
2
m+n = A0An

2 = 2− 2 cos nθ + n2c2. (5)

Since the edges A0An all have the same length, for n = 1, 2, 3, we find, eliminating
c, an equation for x = cos θ : 3x3 − 4x2 − x + 2 = 0, which factorises as
(x− 1)2(3x+ 2) = 0. Discarding the trivial root x = 1, we deduce that the angle
θ is given by

cos θ = −2/3, θ = 131.810◦. (6)
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We can also obtain the translation part of the helical motion, or pitch, c = √10/27,
or c/A0A1 = 1/

√
10 = 0.3162 in unit of edge length.

The number of edges per turn is given by ξ = 2π/θ. It is ξ = 2.7312, close to
the number 30/11 on the torus.

3.4. The α-helix: a disclinated Coxeter helix

The α-helix is one of the important secondary structures found in proteins. The
number of elementary steps of the backbone is given to be close to 3.6 units per
turns. This is about one larger than ξ = 2.7312 for the B-C helix, so that we must
increase its diameter.

Disclinations are the natural defects associated with rotational or helicoidal
symmetry. In the case of helices, disclinations are characterised by an axis, which
is the axis of the cylinder on which is drawn the helix, an angle δθ of rotation,
and a vector of translation

−→
δs parallel to the axis. Such a wedge disclination com-

bined with a translation is sometimes called a dispiration [14, 15]. The effect of
a disclination on a cylinder is explained on the Figure 5a: the perimeter of the
cylinder of radius r is changed from 2πr to (2π + δθ)r, and one of the lips of the

Figure 5 The strip for an α-helix, by identification of the longer sides. (a) The resulting
cylinder is obtained by disclinating the cylinder supporting the B-C helix, along it axis. This
adds one additional row of triangles (shaded). (b) In spherical space S3, in order to keep the
fibration the torus has to be transform by two disclinations along it two axes. A diagonal of
the strip remains a fibre, which is not the case in (a).



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch11

The Geometry of Dense Packing and Biological Structures 231

cut cylinder is translated by
−→
δs before regluing. If there is a discrete geometrical

structure supported by the cylinder surface, as a discrete helix, the displacement
which is the combination of the rotation δθ and the translation

−→
δs must be an ele-

ment of the symmetry group of the structure. If the helix is represented on a strip,
the strip is sheared and its width is increased (for positive δθ). This is the case
whether the helix is drawn on a cylinder or, in curved space S3, on a torus. chang-
ing the parallelogram patch of the triangular tilling: its width is increased by one
triangular unit and it is sheared in order to ensure identification of the longer sides.

The new parallelogram is defined by vectors
−→
bα

1 and
−→
bα

2 :
−→
bα

1 = 4−→a1 + 3−→a2 and−→
bα

2 = −3−→a1 + 8−→a2 (unchanged). The type-{1} helix running along edges parallel
to −→a1 +−→a2 consists of 41 edges; it turns 11 times around one axis of the torus and
once around the other, leading to a number of edges per turns ξ = 41/11. This helix
is (4, 3, 1) in phyllotactic notation. There is an other choice, related to the torus in
S3, describe on the Figure 5b. In this case there are 55 sites, and the type-{1} helix
turns 15 times around one axis of the torus and once around the other, leading to a
number of edges per turns ξ = 55/15.

In order to obtain the number of edges per turn ξ in Euclidean space, we use the
coordinates defined in equation (1) for the B-C helix and set equal the distances
between neighbours A0A1 = A0A3 = A0A4. Note that the helix is no longer
a chain of face-on-face tetrahedra, and that all other distances between vertices,
notably A0A2, are larger than A0A1. Eliminating c, we obtain a quadratic equation
for x = cos θ, (x − 1)2(16x2 + 17x + 2) = 0. The trivial roots x = 1 can be
discarded. The root x = −17−√161 gives a distance between non-neighbouring
vertices A0A2 smaller than A0A1 and is incompatible with steric repulsions. The
only geometrically relevant root is thus,

cos θ = (−17+√161)/32, θ = 97.74◦. (7)

The number of edges per turn, given by ξ = 2π/θ, is ξ = 3.6831, close to the
rational numbers 41/11 = 3.727272 . . . or 55/15 = 3.6666 . . . , obtained on the
torus. These numbers are close to the value 3.6 observed in the α-helices, which is
a two dimensional structure of proteins stabilised by hydrogen bonds, a celebrated
result of L. Pauling in 1951, who “let the models fold naturally into any screw they
were comfortable with” [16].

The translation parallel to the helix axis, per step, is c = 0.3637 or c/A0A1 =
0.2347 in units of edge length.

3.5. Other helices in proteins

Other helices that the classical α-helix are sometimes observed in proteins. All
helices which cover a rolled triangular lattice are labelled (k, k−1, 1) in phyllotactic
notation.
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• The B-C helix, (3, 2, 1) in phyllotactic notation, has hydrogen bonds represented
by edges between sites i and i + 2 sites. Topologically, it is identical to the
so-called 310-helix [17, 18]. This helix is not commonly observed in proteins
as a secondary structural element. But α-helices sometimes begin or end with
one single turn of a 310-helix (one hydrogen bond). There are also indications
that long (3, 2, 1) helices are observed in biopolymers [19]. Hydrogen bonds
in a 310-helix link the N atom of the backbone of amino acid i to the C atom of
amino acid (i+ 2).
• The next possibility is the α-helix (4, 3, 1). There are hydrogen bonds repre-

sented by triangle edges between sites i and i+ 3, thus connecting peptide units
i and i+ 4.
• The (5, 4, 1) helix, obtained by folding a strip with one additional row of triangles

compared to the α-helix is called the π-helix.
• The (6, 5, 1) helix corresponds to the Pauling 5.1-helix (or γ-helix).

Increasing k further would yield helices on very flat cylinders; the steric repulsion
between side groups becomes too important and there are no proteins with k > 6.

Several polypeptide synthetic helices have phyllotactic structures, as was
noticed by Frey–Wyssling [20].

4. Proteins as Close Packing

Proteins, could be described as a dense packing of entities representing the amino
acid (AA). Therefore there is a simplified approach to proteins, in which amino
acids are rigid entities. Even if a protein is a very complex object, it must follow
the usual constraints. First of all it has to respect geometrical and topological rules,
which govern its structure [21]. These rules are simple, but they are in competition
for the influence at the level of different components of the protein and this gener-
ates the complexity of the protein world. The topology restricts strongly the local
geometrical properties of complex objects like proteins. A protein structure which
is a dense frustrated structure, is related to the dense {3, 3, 5} polytope and to
structures derived from this polytope by introduction of defects.

In place of the {3, 3, 5} polytope, whose vertices represent centre of close
packed objects, it is possible to use it dual, the {5, 3, 3} polytope. It is a packing of
dodecahedra which represent the volume of the close packed objects.

4.1. Laguerre and Voronoi cells in proteins

The structure of folded proteins can be analysed by means of a quite common
tool used in condensed matter physics, namely the Voronoi tessellation [22]. Given
a set of points, Voronoi tessellation proceeds by determining for each point the
polyhedron, called Voronoi cell, containing the portion of space closer to that point
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than to all others. Done on the {3, 3, 5} polytope this procedure gives exactly the
dual, with dodecahedral Voronoi cells. The cell characteristics provide essential
information on the local geometrical properties of the considered packing. That
said, Voronoi decomposition does not give sizes that correspond well to the real
size of the packed objects. The Voronoi decomposition increases the size of small
AA (eg. Gly) and reduces the size of large AA (eg. Phe). There is, however, a
modified Voronoi method, known as Laguerre decomposition [23] that takes into
account the size of the packed objects.

In order to build the cell associated with a given AA, it is necessary to have a
precise knowledge of its neighbourhood. This is easy for AAs which are located
well inside a dense region of the bulk of the protein. In that case it is enough to
know the positions of its neighbouring AA centres. But for an AA located close
to the external surface or in a cavity, this becomes more difficult as, in principle,
a detailed knowledge of the nature and location of the surrounding molecules is
needed. This difficulty can be resolved by surrounding the protein with a model
of solvent, or ‘environment’, whose characteristics are similar to generic proteins
considered as random dense packing of equal sized spheres of average AA volume.

4.2. The protein ‘3chy’ as an example of Laguerre tessellation

A complete Laguerre tessellation of the signal transduction protein Che Y from
Escherichia Coli (PDB [24] code 3chy; 128 amino acids; 1 chain) is shown on
Figure 6 [25]. The atomic coordinates from crystallographic X-Ray structure have
been used to get the geometrical centres of every amino acid. The environment of
random packing of spheres is simulated by a box of about 8000 spheres which com-
pletely bathes the protein. Spheres that overlap with the amino acids are removed,
as well as spheres too far from the protein. Finally, the total number of amino acids
and spheres is about 2000.

4.3. Cell statistics

Two quantities of interest give an idea of the overall geometry of the packings of
AAs in proteins, the mean number of faces per cell 〈f 〉, which is the mean coordi-
nation number between AAs, and the mean number of edges per faces 〈e〉, which
is related to the local symmetry around bonds between neighbouring AAs. Using
the Laguerre method and averaging over a set of 35 proteins we find 〈e〉 = 5.15
and 〈f 〉 = 14.17.

In the {3, 3, 5} polytope these quantities are exactly 〈e〉 = 5 and 〈f 〉 = 12,
but in this case, the space is curved. There is a way to estimate these quantities
for a random packing of spheres in the flat space. We suppose the sphere centres
on vertices of tetrahedra (a simplicial decomposition). Voronoi froth vertices are
therefore tetravalent. Each such vertex belong to four Voronoi polyhedra and has
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Figure 6 Laguerre tessellation of the signal transduction protein Che Y from Escherichia
Coli (PDB code: 3chy). The protein main chain is shown.

three neighbours on each polyhedron. Any ring is common to two Voronoi poly-
hedra associated with two neighbouring sites. The ring size is equal to the number
of tetrahedra sharing the two sites (sharing the edge joining the two sites in the
original simplicial set).

If the tetrahedra were all regular, there would be room for about 5.1 tetrahedra
around a common edge. Imagine now an ‘impossible’ structure, inside which each
edge is shared by exactly 〈p〉 = 2π/cos−1(1/3) � 5.104299 tetrahedra. Such a
structure has been proposed by Coxeter [26] under the name ‘statistical honey-
comb’, noted {3, 3, 〈p〉}. It corresponds to an ideal case where frustration is as
diluted as possible in space, while in disclinated structures it is concentrated along
the defect lines (but in that case we get ‘possible’ structures). Using this value of
〈p〉 in order to get the approximate number of faces of the Voronoi polyhedron
gives 〈f 〉 � 13.39.

Departure from this value are explained (see [4] for references) by polydisper-
sity of sphere packings. Large fluctuations in cell sizes decrease the coordination
number 〈f 〉. By contrast, cell shape anisotropy, increases 〈f 〉. Since disorder cause
both cell fluctuations and disorder, small values of 〈f 〉 are usually observed only
in crystalline structures. The value for proteins indicates that the Laguerre cells for
AAs in proteins are not too anisotropic and adjusted to some extend. Anyhow these
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values are still close to those of compact structures often encountered in condensed
matter physics.

In the spirit of finding ab initio methods to obtain the protein structure knowing
the sequence of its AAs, it is very useful to perform cell statistics separately for
each amino-acid to try to recognise them from the geometry of their cells. On
Figure 7a one provides the histograms h(e) and h(f), fraction of faces with e edges
and fraction of cells with f faces, for the twenty amino-acids (here Cyss and Cysh
are not distinguished). There are particular faces which define the surface of the
protein, i.e., those at the interface between an AA and a sphere of the environment.
Figure 7b gives the histograms hS(e) for the number of edges of surface faces,
and hS(f) for the number of surface faces per surface cells. The full histograms
(regardless the AA) are given at the bottom of the figure.

On these figures it appears clearly that large AAs have a larger number of faces
than small AAs. Furthermore, for surface cells, hydrophilic AAs, have a larger
number of surface faces (5.75 for Glu) than hydrophobic AAs (3.13 for Leu).

The surface faces are in contact with the environment. Their statistics are espe-
cially interesting. The mean number of edges of surface faces is almost exactly
〈es〉 = 5.00. Any finite cell packing, extracted from a disordered infinite packing
should have the same statistic for its internal faces and for its surface faces, thus
〈es〉 = 〈e〉 � 5.15. This is not the case here, indicating again some topological
order in the AA packing.

There is another point appearing on these histograms which remains unex-
plained, but which could be fruitful in fold prediction, as it seems related to some
of the AAs only. The width of the h(f) distribution is very different from one AA to
another; it is neither correlated to its size, nor to its hydrophobicity, as can be seen
by comparing Glu and Lys or Arg and His, for instance. This probably indicates
that some AAs have a local neighbourhood more uniform than others.

4.4. Proteins versus random close packed structure

At first sight, if one considers only global statistics for the number of edges per
faces or for the number of faces per cells, a protein seems very similar to random
close packing. If less constrained than hard sphere packing, it can be viewed as
some kind of froth with cells of different sizes. Nevertheless there are interesting
details which indicate that a protein has a backbone.

Analysing Voronoi cells [22, 27] in proteins, it has been observed that faces
shared by two successive AA along the chain have, on average, a larger number
of edges. Laguerre cells exhibit the same effect, with a number of edges for these
faces 〈echain〉 � 6.5. For any face, the average number of edges per face is close
to 〈e〉 = 5.1 for isotropic cells of equal sizes. This implies that interfaces other
than those separating two successive AA along the chain, are smaller than average:
they have approximately five edges per face. So we can view a protein as a chain
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Figure 7 (a) Histograms h(e), in grey, and h(f), in black (fraction of faces with e edges and
fraction of cells with f faces) for each amino-acid. The numbers indicated on the right are the
numbers of cells involved in the statistics. The amino-acids are classified from hydrophilic
(top) to hydrophobic (bottom). The full histograms (regardless the amino-acid) are given
at the bottom of the figure. (b) Histograms hS(e) for faces corresponding to the surface of
the protein, in grey, and hS(f), in black, of the number of surface faces for the cells at the
surface of the protein. Same as in the Figure 7 save for the numbers on the right which are
now the numbers of faces involved in the statistics.
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of closely packed cells, slightly compressed along the chain, thus making a kind
of tube tiled by faces with an average number of edges close to five.

5. Disclination Lines in Proteins

5.1. More on disclinations

A disclination, which is a defect involving a rotation operation, can be generated
by a so-called ‘Volterra’ process, by cutting the structure along a (geodesic) line
and adding (or removing) a sector of material between the two lips of the cut. It is
a linear defect in three dimensions. The two lips of the sector should be equivalent
under a rotation belonging to the structure symmetry group in order to get a pure
topological defect confined near the apex of the cut. Wedge disclinations can be
viewed as loci of curvature concentration in a three-dimensional space. If the discli-
nation is obtained by a Volterra process in which matter has been removed (added),
it is a positive (negative) disclination. Therefore, introducing negative disclinations
can be used in order to flat a positively curved space like the {3, 3, 5} or the {5, 3, 3}
polytopes. It is this structure which define the ideal structure. Disorder is neces-
sarily associated to a mixing of positive and negative disclinations. In a Voronoi or
Laguerre tesselation disclinations are easy to identify: they go through faces which
are not pentagons. For instance, if we suppose a tesselation where cell faces have
only four, five or six edges, positive disclinations go through four-sided faces and
negative disclinations go through six-sided faces. They have to respect equilibrium
rules when they intersect on cell centres: they behave like lines under tension with a
tension associated to the number of edges, compare to five, of the faces they thread.

5.2. Network of disclinations in proteins

Consider a protein reduced to the centre (sites) of it amino-acids and then define
it Voronoi or Laguerre tesselation. As given on the histograms presented Figure 7,
there are faces with three, four, five, six and more edges. Nevertheless with a
relaxation procedure displacing slightly sites it is possible to have only (with few
exception) four, five and six sided faces. This define a network of positive and
negative disclinations. We have observed that the faces on the surface of the protein
have an average of five edges. By moving the environment, it is possible to get all
faces of the surfaces with five sides. This is interesting as with this condition the
disclination network is entirely in the protein.

The chain of amino acids form a zigzag of edges connecting successive sites.
Following statistical results, in this model we consider that faces shared by succes-
sive sites are six-sided faces. Then the bond threading such a face can be considered
as a negative disclination. This bonds make an angle at each site along the chain,
so necessarily, there are positive disclinations which balance the angle of negative
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disclinations. Consider three successive sites i, i+ 1, i+ 2 and suppose that i and
i+ 2 are in contact. The common face to the cells i and i+ 1 or to the cells i+ 1
and i+ 2 are hexagons. These two large faces belong to the cell i+ 1. Statistically
the other faces of this cell are small faces. This is true for all the cells, so the face
between i and i + 2 is statistically a small face. This is observed on the Figure 8,

Figure 8 (a) One negative disclination threading a cell with 14 faces (two 6-gons and twelve
5-gons. On this example, a disclination is the defect which change a regular dodecahedron
into this 14-face polyhedron. (b) A node of disclinations in the centre of a 14-face cell with
eleven 5-gons, three 6-gons and one 4-gon. Negative disclinations (in black) are balanced
at each nodes (cell centre) by a positive disclination (in grey with border) like forces of
strength +1 and −1.

Figure 9 The mean number of edges for faces between two cells i and i+ n. It appears, at
least for n smaller than 8, that this number oscillates around the global mean value 〈e〉 � 5.1.
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showing oscillation of the number of edges per face depending on the parity of
n for contact between i and i+ n.

6. Conclusions

Bio-polymers are, at a first level of organisation, one-dimensional sequences like
any polymer chains; but, at a second level, various interactions impose organised
structures in space. The different types of structures in proteins: primary, secondary
or tertiary are related to close-packed structures in one, two or three dimensions.The
α-helix, considered here as a two-dimensional close-packing, a triangular lattice
rolled on a cylinder, is an essential step in protein folding. This is, incidentally,
one of the reasons for the success of the hydrophobic cluster analysis (H.C.A.),
which predicts the folding pattern of several proteins [28]. Viewing the α-helix as a
two-dimensional structure makes clear the geometrical and topological constraints
required. For instance, the number of residues observed per turn is imposed by the
choice of a geometry of the triangular packing on the cylinder. Chiralities are also
well described from this point of view.

In three dimensions, a description using tetrahedral packing is the good way
to take care of the tendency of proteins to form dense random close packing struc-
ture. A packing of regular tetrahedra is undistorted and defect-free only in curved
space: This is the {3, 3, 5} polytope, and its the B-C chain. The B-C chain can
be put into Euclidean space, and extended, if necessary. With small distortions
of the tetrahedra, it can also coexist, tightly packed, with other B-C chains. This
finely tuned local geometry with minimal distortion is extendable to longer helices
without increasing the distortion.

While the exact geometry of biological helices may appear complicated, their
topology is determined simply and directly by steric considerations.
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Overview

This study is aimed at showing that differential geometry and topological knots
theory can be used notably to modelling three-dimensional structures of DNA and
protein-DNA complexes. Our goal is twofold: firstly, we want to show that cer-
tain topological deformations associated to the supramolecular structures during
the cell cycle take part in the dynamics of chromatin, the organisation of chromo-
some and therefore the cell’s metabolism; secondly, we try to illustrate the way
in which these deformations might modulate the action of many different regula-
tory systems, ensuring in particular the transition of this action from a local-target
mechanisms to global functional processes. We shall argue that these interactions
between topological changes and dynamic processes constitute a deep and largely
unexplored meeting point for mathematics and biology. Further, we suggest that
certain geometric properties and topological patterns work like dynamic principles,
which are involved in the organisation and growth of living systems. Moreover,
these properties and patterns display intricate biological plasticity and complexity
on every scale from very large (i.e., the organism) to very small (i.e., the molecule),
and also contribute to the multilayer ordering of biological regulation and activity.

243
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1. Remarks on the Unlinking of DNA Molecule
and the Chromosome Segregation in vivo

Our understanding of fundamental epigenetic phenomena make it necessary to
acknowledge that the true carrier of genetic information is the chromosome rather
than just DNA. Indeed, the chromatin structure appears to harbour metastable key
features determining the interpretation of genetic information. This organisation
layer need to be understood and integrated with the organisation layer of the genome
sequence to model genetic networks properly. In this manner, we will advance
our global understanding of the way the information contained in the genome is
interpreted by the cell. This article addresses the question of DNA structure and
chromatin dynamics. It is mainly aimed at describing some aspects of the way
in which, first, the two strands of DNA must be continuously unlinked during
replication, and second, the chromatin is topologically condensed within the cells
of organisms with nuclei.

Three families of huge ATP-powered enzymes — helicases, type II topoiso-
merases, and condensins — contribute to the orderly unlinking of DNA and to
the chromosome segregation in vivo. In this process, two steps seem to be very
fundamental.

(1) For replication to occur, the DNA must be decondensed. Helicases unwind
DNA creating (+) supercoils and precatenanes which are rapidly removed by
topoisomerases. Type-2 topoisomerases actively remove all DNA entangle-
ments.

(2) Then, the organised recompaction by condensins and supercoiling are essential
for chromosome partitioning. The chromosome must, indeed, be folded into
topological domains. Besides, chromosome needs to be topologically remod-
elled in order that the genetic events and cellular process may be performed.
Finally, chromatin structure and chromosome conformation are dynamic and
complex and exert profound control over gene expression and other funda-
mental cellular activities.

The fundamental determinants of many biological phenomena are now known
to be geometrically organised and topologically constrained. And the biologi-
cally most important molecules or macromolecules (proteins, RNA and DNA)
are comprised of linear chains of building blocks, which yet assemble themselves
according to some mathematical rules that are highly non-linear and extremely
systems-dynamically complex. So, even if each protein or RNA and DNA molecule
commonly folds into a specific structure that depends sensitively on its sequence;
however, when we take into account large ensembles of these macromolecules and
their associated systems, then we observe that they depend rather on the action of
some large-range correlation structures. From a systematic statistical-mechanics
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point of view analysis of DNA sequences, these large-range correlations can be
interpreted in terms of the signature of the hierarchical, structural and dynami-
cal organisation of chromatin in relation with DNA replication, gene expression
and cell division. At any rate, DNA in living systems is topologically constrained,
so its structure also depends on how it is constrained (as we shall show thor-
oughly).

Think, for example, of the local but extremely important problem of the fate of
cells, of the partitioning of chromosome and the unlinking of DNA during replica-
tion. The two strands of DNA must be continuously and accurately unlinked during
replication. The topoisomerases that accomplish this might instead be expected
to entangle and knot chromosomes because of the enormous DNA concentration
in vivo. In fact many factors have been identified that solve this problem and con-
tribute to the orderly unlinking of DNA.

A major contributor to chromosome partitioning is the condensation of daughter
DNA upon itself soon after replication. It has been shown that DNA condensation
is due primarily to supercoiling that is introduced by topoisomerases and main-
tained by SMC (structural maintenance of chromosome) of proteins, often called
condensins. However, it is yet scarcely known how these proteins cause the orderly
long-range folding of DNA. Another factor promoting chromosome partitioning is
that the type-2 topoisomerases of all organisms do not just speed up the approach to
topological equilibrium, but actually change the equilibrium position. They actively
remove all DNA entanglements. This requires that all topoisomerases sense the
global conformation of DNA even though they interact with DNA only locally (see
Rocca [92] and Cozzarelli [39]).

According to a hypothesis proposed by Holmes and coworkers [60] and by
Strick et al. [99], topoisomerases might achieve this operation because they are
like Maxwell’s demon and by positioning themselves at sharp bends in DNA carry
out net disentanglement of DNA. All the enzymes that play critical roles in DNA
unlinking and chromosome segregation — helicases, topoisomerases and con-
densins — are motor proteins. They use the energy of ATP hydrolysis to move
large pieces of DNA over long distances. Helicases seems to convert the energy of
ATP hydrolysis into unwinding DNA.

1.1. Topological operations and biological functions

There are many mathematically challenging problems related to molecular and
macromolecular sequences and structures. We mention two of these problems.

(1) The shapes of proteins may be described using differential geometry and topol-
ogy. More precisely, recent studies show that the topology of the transition
state (the rate-limiting event in the folding reaction is the formation of a confor-
mation in a set known as the transition-state ensemble) is determined by a set
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of interactions involving a small number of key residues and, in addition, that
the topology of the transition state is closer to that of the native than to that of
any other fold in the protein universe. In other words, we have to link the fold-
ing process to the topological organisation in the transition states for protein
folding (see Chapters 10 and 11 in this book).

(2) The topological constraints on DNA commonly involve the regulation of its
linking number by the transient cutting by enzymes. The activities of DNA,
including gene expression and replication, depend sensitively, even not only,
on the linking number imposed, which is a topological invariant. This topo-
logical invariant can be decomposed into the sum of two geometric invariants,
whose analysis involves integral geometry. We will return to this point in detail
shortly.

The general idea lying behind these puzzles is that the double-helix structure of
DNA is a geometrical entity, more precisely a topological configuration. It turns out
that this topological configuration is itself a manifestation of linking and knotting.
DNA within the cell is a very long molecule with a remarkably complex topology.
Topological properties of DNA are defined as those that can be changed only by
breakage and reunion of the backbone. Moreover, it should be underlined that the
complex topology of DNA is essential for the life of organisms. In particular, it is
needed for the process known as DNA replication, whereby a replica of the DNA
is made and one copy is passed on to each daughter cell. The most direct evidence
for the vital role played by DNA topology is provided by the results of attempts
to change the topology of DNA inside cells. The topology of DNA in vivo is set
by a remarkable group of enzymes called topoisomerases. In short, these enzymes
essentially promote the passage of DNA segments through each other until a stable
state is achieved. This stability is thus made possible thanks to a conformational
flexibility of the double-helix, and the continuous remodelling of nuclear structures
is as well required for cell activity to be performed.

There are three important topological properties of DNA: (i) The linking num-
ber between two strands of the double helix, (ii) The interlocking of separate DNA
rings into what are called catenanes, (iii) and knotting. Physical and phenomeno-
logical (observed) properties are: (i)As the number of crossing in a knot or catenane
increases, the number of possible isomers grows exponentially. (ii) The linking
number of DNA in all organisms is less than the energetically most stable value in
unconstrained (relaxed) DNA. This puts the DNA under stress, which causes it to
buckle and coil in a regular way called negative (–) supercoiling. The (–) indicates
that the linking number is less than in the relaxed state. (iii) The name supercoiling
arises because it is the coiling of a molecule, which is itself formed by the coil-
ing of two strands about each other. Although supercoiling is, strictly speaking, a
geometric property, it is a consequence of a topological one, the linking number
difference between supercoiled and relaxed DNA.
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1.2. Some useful topological notions

At this point, it is useful to give, first, some basic definition of these topological
concepts, next, a more in-depth discussion of the notion of linking number, which
is central to our scope here. We start by giving the analytical formula for the linking
number of a pair of knotted curves. (Note that this formula goes back to Gauss —
who gave it in 1833! — in his work on electromagnetism theory, which led him to
compute inductance in a system of two linked circular wires). The linking number
of a pair of knots is a combinatorial topological invariant (it is an integer number).
Moreover, one can now show that this number is invariant under Reidemeister
moves.

Recall briefly what these moves are (for further mathematical details, see Boi
[23]). They apply to pairs of equivalent links. First, we need the mathematical
definitions of a link and of equivalence of links.

Definition 1.1. A link L of m components is a subset of S3, or of R3, that consists
of m disjoint, piecewise linear, simple closed curves. A link of one component is
a knot.

Definition 1.2. Links L1 and L2 in S3 are equivalent if there is an orientation-
preserving piecewise linear homeomorphism h : S3 → S3 such that h(L1) = (L2).

Any two diagrams of equivalent links L1 and L2 are related by a sequence of
Reidemeister moves and an orientation-preserving homeomorphism of the plane.
(A link diagram of L is the image of L in R2 together with ‘over and under’
information at the crossings. Of course, a crossing is a point of intersection of
the projections of two line segments of L; the ‘over and under’ information refers
to the relative heights above R2 of the two inverse images of a crossing.) The
Reidemeister moves are of three types; each replaces a simple configuration of arcs
and crossings in a disc by another configuration. A move of type I inserts or deletes
a ‘kink’ in the diagram; moves of type III preserve the number of crossings. Any
homeomorphism of the plane must preserve, obviously, all crossing information.
In other words, and following a theorem by Reidemeister (1927), all changes of
link or knot diagrams can be obtained by performing, repeatedly, if necessary, three
basic motions applied just to small portions of the diagrams near crossings, along
with simple deformations in the plane, called plane isotopies, which do not change
any of the crossings of diagrams. Rephrased in more general mathematical terms,
this means there exist ht : S3 → S3 for t ∈ [0, 1] so that h0 = 1 and h1 = h and
(x, t)→ (ht, x, t) is a piecewise linear homeomorphism of S3×[0, 1] to itself. Thus
certainly the whole of S3 can be continuously deformed, using the homeomorphism
ht at time t, to move L1 to L2. We may conclude, from the above description, that
a link or a knot invariant may be thought of a quantity that remains unchanged
when we apply any one of the previous Reidemeister moves to a regular diagram.
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Moreover, it turns out that if one link diagram for an oriented link is changed into
another diagram for an oriented link by any Reidemeister move, the linking number
does not change. This is true in the special cases of moves type I and type II.
A very important conclusion we can draw is that the absolute values of the linking
numbers of two equivalent oriented links will be equal. Such a difference can
account for either exactly the same sets of left-handed and right-handed crossings
where components meet or an exchange of those types of crossings. So linking
numbers are either equal or negatives of each other. Therefore, linking number is
an invariant of unoriented links of two components. We can sum up the previous
statements by using the following theorem:

Theorem 1.3. If two equivalent (unoriented) links of two components are each
oriented in any way, then the absolute values of their linking numbers will be equal.

The linking coefficient can be generalised for the case of p- and q-dimensional
manifolds in Rp+q+1. The expression for the parameterised curves γ1(t) and γ2(t)

with radius-vectors r1(t), r2(t) is given by the following formula

Lk(γ1, γ2) = 1/4π

∫
γ1

∫
γ2

(r1 − r2, dr1, dr2)/|r1 − r2|3. (1)

The linking coefficient allows us to distinguish some two-component links.

Example 1.4. Let us consider the trivial two-component link and enumerate its
components in an arbitrary way. Obviously, their linking coefficient is zero. For
the Hopf link, the linking coefficient equals ±1 depending on the orientation of
the components. Hence, the Hopf link is not trivial.

Example 1.5. For any two components of the Borromean rings, the linking coef-
ficient equals zero; each component of this link is a trivial knot. However, the
Borromean rings are not isotopic to the trivial three-component link.

2. Topological and Dynamical Aspects of DNA Structure
and the Spatial Organisation of the Chromosome

The stable structures of a DNA molecule are those conformations that minimise a
conformational energy subject to the constancy of the topological conditions. This
phenomenon gives rise to a range of variational problems. Experiments show that
the stable structures of proteins minimise energy (see Chapter 10 in this book).
Thus, in order to predict protein structures from sequences one must solve an
optimisation problem. This is actually very difficult to do, because there may be
many thousands of degrees of freedom within a single molecule, so its configuration
space is high dimensional.
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Despite its immense length, the linear sequence map of the human genome is an
incomplete description of our genetic information. This is because information on
genome function and gene regulation is also encoded in the way that DNA sequence
is folded up with proteins within chromosomes and within the nucleus. This infor-
mation cannot be portrayed in the DNA sequence alone. In the nucleus, individual
chromosomes occupy discrete territories. So examining the spatial organisation
of human chromosomes and genes in the nucleus appear to be very important.
It seems that this organisation is changed, for example, during development and in
certain diseases. Consequently, the way the human chromosome is topologically
organised might influence how abnormal chromosomes are formed (for a more
detailed account of this topic, see Boi [19]).

Using whole chromosome painting probes and fluorescence in situ hybridisa-
tion (FISH), a territorial organisation of interphase chromosomes has been demon-
strated. Chromosome territories have irregular shapes and occupy discrete nuclear
positions with little overlap. In general, gene-rich chromosome is located more
in the nuclear interior while gene-poor chromosome territories are located at the
nuclear periphery. In agreement with this, non-transcribed sequences were pre-
dominantly found at the nuclear periphery while active genes and gene-rich regions
tended to localise on chromosome surfaces exposed to the nuclear interior or on
loops extending from the territories.

These experimental findings support the concept of a functional nuclear space,
the interchromosomal domain compartment (ICD). According to the ICD model,
the interface between chromosome territories is more easily accessible to large
nuclear complexes than regions within the territory. More recently, it has been
proposed that chromosome territories are further organised into 1 Mb domains,
extending the more accessible space to open intra-chromosomal regions surrounded
by denser chromatin domains. Using high-resolution light microscopy, an apparent
bead-like structure of chromatin can be visualised in which∼1 Mb domains of chro-
matin are more densely packed into an approximately spherical sub-compartment
structure with dimensions of 300–4000 nm (see T. Cremer and C. Cremer [40]).

These domains are thought to be formed by a specific folding of the 30 nm
chromatin fibre, to which the chain of nucleosomes associates under physiologi-
cal salt concentrations. The different models that have been proposed are shown
in the Figure 1. The radial-loop models propose small loops of roughly 100 kb
arranged in rosettes, while the random-walk/giant loop model proposes large loops
of chromatin back-folded to an underlying structure. In the chromonema model, the
compaction of the 30 nm fibre is achieved by its folding into 60 to 80 nm fibres that
undergo additional folding to 100 to 130 nm chromonema fibres. These dense
highly compacted chromatin regions (localised at the nuclear periphery around
the nucleolus and at the centromeres) are often referred to as heterochromatin as
opposed to the less dense euchromatin. Heterochromatin has been described as
containing increased DNA methylation at cytosines, specific histone modification
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Figure 1 Models of the folding at the 30 nm fibre chromatin.

patterns like methylation of lysine 9 on histone H3 and histone hypoacetylation,
binding of heterochromatin protein 1 (HP1), interaction with non-coding RNA and
activities of the RNAi-mediated silencing machinery. The relation of dense hete-
rochromatic state with a biologically inactive chromatin conformation has led to
the concept that the biological activity of chromatin is regulated via its accessibility
to proteins factors and co-factors.

2.1. Geometry of the double-helix and conformational
modifications of chromatin

The information content of a DNA molecule is embodied in its sequence of paired
nucleotide bases and is independent of how the molecule is twisted, tangled or
knotted. In other words: twisting, coiling and knotting operations are able to
enhance (increase) or to decrease (reduce) the structural and physiological func-
tions of the genome and the cell nucleus. In the past decade, it has become clear
that the topological form of a DNA molecule, the structural modifications of the
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chromatin and the spatial architecture of the chromosome exert an important influ-
ence on the way in which DNA acts within the cell. Moreover, these three levels
of organisation of the most fundamental nuclear components seem to be deeply
related. Also, their functions are controlled by the action of different complexes
of regulatory factors and co-factors, which may affect locally and globally the
metabolism and physiology of cells. Among these different families of proteins’
regulatory complexes, the remodellers of chromatin structure play a fundamental
role in replication and repair of DNA sequences and in the transcriptional activities
of the entire genome.

Let us first consider the basic level of DNA structure and coiling. Enzymes
topoisomerases, which convert DNA from one topological form to another,
appear to have a profound role in the central genetic events of DNA replica-
tion, transcription and recombination. It is a long-standing problem in biology to
understand the mechanisms responsible for the knotting and unknotting of DNA
molecules. Large amounts of DNA are wound up and packed into the average cell.
DNA molecule is an incredibly long polymer whereas the cell’s nucleus has a very
thin spatial volume. This obviously means that the embedding of the DNA into
chromatin within the cell core is exceedingly complicated; therefore, many com-
plex structural modifications, topological deformations and regulatory networks
interactions must work together in order to perform the proper packing of DNA
into several folding-levels of chromatin, ad well as to ensure the stability of the
genome.

Next, it may be useful to describe the important connection between knot theory
and molecular biology and, in more general terms, between topological trans-
formations and biological processes. For many years, molecular biologists have
known that the spatial conformation of DNA knots is a phenomenon involved in
living matter. Indeed, macroscopic and microscopic knots and links are ubiquitous
objects carrying a tremendous amount of precious information on the emergence
of new forms in nature and the functions of organisms. Furthermore, knotting
and unknotting are ‘universal’ scale-invariant principles underlying these phenom-
ena. In particular, some topological contortions of the double-helix molecule, as
well as some spatial distortions (bending, twisting…) carried out by those pro-
teins that bind to a large variety of DNA sites, are essential to many biological
processes.

It is worth of noticing that differential geometry and knot theory can be used
to describe and explain the three-dimensional structure of DNA and protein-
DNA complexes. Biologists devise experiments on circular DNA, which eluci-
date three-dimensional molecular conformation (helical twist, supercoiling, etc.)
and the action of various important life-sustaining enzymes (topoisomerases
and recombinases). These experiments are often performed on circular DNA
molecules, in which changes in the geometric (curvature, whiriting, twisting and
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supercoiling) or topological (knotting and linking) state of DNA can be directly
observed.

The link between the structure of the DNA double-helix and some differential
geometrical concepts appear very highlighting in the ‘White’s formula’ (J. White
[109]) relating the linking, twisting and writing properties of a space curve. In
order to make clear the meaning of this fruitful relationship between geometry
and biology, let’s start with a rigorous formulation of the ‘Jordan Curve Theorem’,
which constitutes a mathematical prerequisite of White’s formula (for further math-
ematical details, see Massey [78]). It is well-known that a simple, closed, contin-
uous (or if you like smooth, or piecewise smooth, or even piecewise linear) curve
separates the plane R2 into two parts with the property that it is impossible to
get from one part to the other by means of a continuous path avoiding the given
curve. The same conclusion (as for a simple, closed, continuous curve) holds for
any ‘complete’ curve in R2, i.e. a simple, continuous, unboundedly extended, non-
closed curve both of those ends go off to infinity, without nontrivial limit points
in the finite plane. This principle generalises in the obvious way to n-dimensional
space: a closed hypersurface in Rn separates it into two parts.

There is however another less obvious generalisation of this principle, hav-
ing its most familiar manifestation in three-dimensional space R3. Consider two
continuous (or smooth) simple closed curves (loops) in R3 which do not intersect:

γ1(t) = (x11(t), x21(t), x31(t)), γ1(t + 2π) = γ1(t)

γ2(τ) = (x12(t), x22(t), x33(t)), γ2(t + 2π) = γ2(t). (2)

Consider a ‘singular disc’Di bounded by the curve γi, i.e. a continuous map of the
unit disc into R3: xα

i (r, α), i = 1, 2, α = 1, 2, 3, where 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π,
sending the boundary of the unit disc onto γi:

xα
i (r, φ)|r=1 = xα

i (φ), α = 1, 2, 3 (3)

where φ = t for i = 1, and φ = τ for i = 2. So we have the following

Definition 2.1. Two curves γ1 and γ2 in R3 are said to be nontrivially linked if the
curve γ2 meets every singular disc D1 with boundary γ1 (or, equivalently, if the
curve γ1 meets every singular disc D2 with boundary γ2).

Some examples are shown in Figure 2. In n-dimensional space Rn certain pairs
of closed surfaces may be linked, namely sub-manifolds of dimensions p and q

where p+ q = n− 1. In particular a closed curve in R2 may be linked with a pair
of points (a “zero-dimensional surface”) — this is just the original principle that a
simple closed curve separates the plane.

Gauss introduced an invariant of a link consisting of two simple closed curves
γ1, γ2 in R3, namely the signed number of turns of one of the curves around the
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(a) Unlinked curves (b) Linking coefficient 1 (c) Linking coefficient 4 

Figure 2

other, the linking coefficient or linking number {γ1, γ2} of the link. His formula for
this is

N = {γ1, γ2}
= 1/4π

∫
γ1

∫
γ2

([dγ1(t), dγ2(t)], γ1 − γ2)/|γ1(t)− γ2(t)|3, (4)

where [ , ] denotes the vector (or cross) product of vectors in R3 and ( , ) the
Euclidean scalar product. Thus this integral always has an integer value N. If we
take one of the curves to be the z-axis in R3 and the other to lie in the (x, y)-plane,
then the previous formula (4) gives the net number of turns of the plane curve
around the z-axis. It is interesting to note that the linking coefficient N may be zero
even though the curves are nontrivially linked (Figure 3). Thus its having non-zero
value represents only a sufficient condition for nontrivial linkage of the loops.

Let’s now explain the White’s formula (we follow closely L.H. Kauffman
[61]). Let C be a space curve with a unit normal framing v, v⊥ and unit tangent t

Figure 3 The linking coefficient = 0, yet the curves are non-trivially linked.
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Figure 4

(v and v⊥ are perpendicular to each other and to t, forming a differentiable varying
frame, 〈v, v⊥, t〉, at each point of C.) Let Cv be the curve traced out by the tip of
εv for 0 < ε � 1. Let Lk = Lk(C, Cv) be the ‘linking number’ of C with this
displacement Cv. Define the total twist, Tw, of the framed curve C by the formula

Tw = 1/2π

∫
v⊥ · dv. (5)

Given (x, y) ∈ C × C, let e(x, y) = (y − x)/|y − x| for x 	= y and note that
e(x, y) → t/|t| (for t the unit tangent vector to C at x) as x approaches y. This
makes e well-defined on all of C × C. Thus we have e: C × C → S2. Let d

∑
denote the area element on S2 and define the (spatial) writhe of the curve C by the
formula

Wr = 1/4π

∫
C×C

e∗d� = 1/4π

∫
z∈S2

Cr(z)dz. (6)

Here Cr(z) = ∑
p∈e−1(z) J(p) where J(p) = ±1 according to the sign of the

Jacobian of e. It is easy to see, from this description, that the writhe coincides with
the flat writhe (sum of crossing signs) for a curve that is (like a knot diagram)
nearly embedded in a single plane.

With these definitions, White’s theorem reads

Lk = Tw+Wr.

This equation is fully valid for differentiable curves in three-dimensional space.
Note that the writhe only depends upon the curve itself. It is independent of the
framing. By combining two quantities (twist and writhe) that depend upon metric



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch12

When Topology and Biology Meet ‘For Life’ 255

Figure 5

Figure 6

considerations, we obtain the linking number — a topological invariant of the pair
(C, Cv).

The planar version of White’s theorem is worth discussing. Here we have C

and Cv forming a pair of parallel curves as in the Figure 5. The twisting occurs
between two curves, and is calculated as the sum of ±(1/2) for each crossing of
one curve with the other, in the form as pictured in Figure 6.

The linking number is a mathematical quantity existing in two, three and also
higher dimensions, topologically invariant by deformations, which tells us a great
deal about the structural properties and qualitative behaviours of DNA during the
cell cycle. First, it is closely related to the number of time that the two sugar-
phosphate chains of DNA wrap around, or are ‘linked with’, one another. Here
take DNA in its stress-free, relaxed state as the reference point for counting Lk,
where hence Lk = 0. Now consider the simple model of a circular DNA with the
values: Tw = +3, Wr = 0, Lk = +3. Thus, Lk = +3 tells us that the DNA
has three more double-helical turns than it would have in a relaxed, open-circular
form. In general, Lk measures the total excess or deficit of double-helix turns in the
molecule. Note, in particular, that Lk can only be an integer, because the DNA can
only join to itself by some integral number of turns. Before we pursue (in section 4)
the analysis of the importance of the linking number and its relationship with the
supercoiling process, we shall make few remarks about the properties of enzymes
topoisomerases.
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3. TheTopological Role ofTopoisomerases

Enzymes topoisomerases, which change the linking number of the DNA strands,
appear to have a profound role in the central genetic events of DNA replication, tran-
scription and recombination. It is a long-standing problem in biology to understand
the mechanisms responsible for the knotting and unknotting of DNA molecules.
Large amounts of DNA are wound up and packed into the average cell. In fact, there
is enough DNA in a two-metre human body to stretch from the earth to the sun and
back fifty times! This of course means that the embedding of the DNA in the cell is
exceedingly complicated. The DNA in the cell knots and unknots, ties and unties
itself according to a definite scheme. Knots and links appear during replication and
recombination. Certain topoisomerases, which behave like topological entities in
living organisms, are responsible for the knotting and unknotting. They are able
to cut a strand of DNA at a particular point, grasp another strand, pass it through
the opening and then close the opening. In other words, these enzymes replace
over-crossing by under-crossing.

Consequently, the tying of knots in rings of DNA is one of the capabilities of
these enzymes. The genetic material of many organisms has the form of a ring made
up either of one strand of DNA or of two strands twisted in a double helix. The ring
can assume a number of topological configurations. The conversion of the DNA ring
from one configuration to another is catalyzed by the topoisomerases. Consider,
for example, a single-strand DNA rings from a virus known as bacteriophage,
which infects bacteria (Figure 7a). What one observes of the rings, after they
were exposed a topoisomerase from the bacterium Escherichia coli, is then that,
by cutting the DNA strand, passing a segment of the ring through the break and
rejoining the cut ends, the enzyme has tied a knot in each ring (Figure 7b). In
fact, the process of breaking, passage and resealing is essential to the action of
all topoisomerases. Some of the enzymes, designated type I, cut a single strand of
DNA; others, designated type II, cut both strands of a double helix.

4. The Relationship between the Linking Number
and Supercoiling of DNA Molecule

Supercoiling of a double-strand DNA ring deforms the ring into a more twisted
and compact shape. The shape of a DNA ring is strongly affected by the number of
times one strand goes around the other; the quantity is called the linking number
Lk (see the previous section). This is a topological quantity, hence, it cannot be
altered while the strands are intact regardless of how the ring is pulled or twisted.
If the strands are cut, however, and then rotated about each other in the direction
opposite to that of the twist of the helix, the helix unwinds. When the cut ends
are rejoined, the number of rotations that have been made decreases the linking
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Figure 7 (a) Top and (b) bottom. The knotting of DNA rings after they were exposed a
topoisomerase bacterium Escherichia Coli.

number. The strands of DNA in a linear molecule revolve once every 10.5 base
pairs because that configuration puts the least strain on the double helix. A ring
in which the ratio of base pairs to linking number is 10.5 is said to be relaxed.
Increasing or decreasing the ratio strains the double helix, which responds by
supercoiling. Reducing the linking number causes negative supercoiling; raising
the linking number leads to positive supercoiling. The upper electron micrograph
shows a relaxed DNA ring from a bacterial virus called PM2 (Figure 8, top). The
micrograph bellow shows a negatively supercoiled DNA ring from a bacterial virus
called PM2 (Figure 8, bottom).

We already said that, essentially, a molecule of DNA may be thought of as
two linear strands intertwined in the form of a double helix with a linear axis. A
molecule of DNA may also take the form of a ring, and so it can become tangled
or knotted. Further, a piece of DNA can break temporarily. While in this broken
state the structure of the DNA may undergo a physical change, and the DNA will
finally recombine. In fact a single enzyme, a topoisomerase of type I, can facilitate
this whole process, from the original splicing to the recombination. The process
of recombination involves some interesting topological changes in the substrate.
It is worth noting that knowledge of the topology of the substrate and product(s)
can be used to compute the Jones polynomials of other products (see Murasugi
[81] and Kauffman [61]). For instance, a cut in a double-strand DNA, due to a
topoisomerase, allows a double-strand DNA to pass through it and recombine.
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Figure 8

Figure 9 The writhing process of the DNA molecule.

Finding such a topoisomerase is relatively straightforward, since these enzymes
occur in organisms small and large, from bacteria to the body of the reader of
this article. The effect of a certain topoisomerase (called a recombinase) is usually
called a site-specific recombination. Before the action of the recombinase, the DNA
molecule is called a substrate; after the recombination it is called a product. The
process of going from the DNA molecule to a state in which two parts of the DNA
molecule have been drawn together, is said to be the writhing process.

The double-helix structure of DNA is a geometrical entity, or more precisely, a
topological configuration. This topological configuration is itself a manifestation
of linking or knotting. Further, it has been shown that when a topoisomerase causes
DNA to change its form, the process is very similar to what happens locally in
the skein diagrams. Therefore, for the geometrical entity — knotted or linked —
the linking number is an important concept, while the action of the topoisomerase
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Lk(C1, C2) =1
Wr(B) = 0, Tw(B) = 1

Lk(C1, C2) = – 1
Wr(B) = –1, Tw(B) = 0

(a) (b)

Figure 10 (a) and (b). Supercoiling process in the DNA molecule.

is related to the new skein invariants. In fact, the linking number Lk between
C1 and C2 (where C1 and C2 are the two backbone curves that form the boundaries
of the ribbon B and that represent the closed DNA strands) is an invariant, and
its changes have a very important effect on the structure of the DNA molecule.
For example, it is known that if we reduce the linking number of a double-strand
DNA molecule, the DNA molecule will twist and coil, that is, it will supercoil. In
other words, the linking number difference is a measure of supercoiling process
(Figure 10).

Interestingly enough, in the case of a link formed from C1 and C2, the linking
number defined on the DNA molecule in biology, and the linking number com-
puted from the mathematical knot theory turns out to be the same. Moreover, the
untying mechanisms used in cells bear an uncanny resemblance to the simplest
mathematical method for generating the new polynomial invariants. The number
of twists of the ribbon B along the axis C is called the twisting number, and is
denoted by Tw(B). The writhe, Wr(B), can be defined as the average value of
the sum of the signs of the crossing points, averaged over all projections. These
numbers, Wr(B) and Tw(B) are invariants. They are not, however, invariants of
the knot (or link) obtained from the DNA molecule, but differential geometrical
invariants of the ribbon B as a surface in space. The three invariants mentioned
above are related by the following basic formula:

Lk(C1, C2) = Tw(B)+Wr(B).

The application of this expression to DNA molecules is an explanation of its
propensity to supercoil. The remarkable fact about this result is that two geo-
metric quantities that may change under deformations of the curves add up to a
topological quantity, which is invariant under such deformations. Moreover, the
linking number has a very important topological property: it is unchanged under
any continuous deformation of the pair of curves, no matter how the double-strand
ring is pulled or twisted, so long as the two strands remain unbroken. Topological
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properties of DNA are defined as those that can be changed only by the break-
ing and rejoining of the backbone. There are three important topological prop-
erties of DNA: (1) the linking number between the strands of the double helix,
(2) the interlocking of separate DNA rings into what are called catenanes, (3) and
knotting.

Note that as the number of crossings in a knot or catenane increases, the num-
ber of possible isomers grows exponentially. The linking number of DNA in all
organisms is less than the energetically most stable value in unconstrained (relaxed)
DNA. This puts the DNA under mechanical stress that causes it to buckle and coil
in a regular way called negative supercoiling. The name supercoiling derives from
the fact that it is the coiling of a molecule that is itself formed by the coiling of two
strands around each other. Although, strictly speaking, supercoiling is a geometric
property, it is a consequence of a topological one, the linking number difference
between supercoiled and relaxed DNA.

4.1. Topological complexity of DNA and its
biological meaning

Let’s start this section by emphasising an important point, namely, that the complex
topology of DNA is essential for the life of all organisms. In particular, it is needed
for the process known as DNA replication, whereby a replica of the DNA is made
and one copy is passed on to each daughter cell. The most direct evidence for the
vital role played by DNA topology is provided by the results of attempts to change
the topology of DNA inside cells. Two related questions arise immediately from the
recognition that DNA topology is essential for life: How did the complex topology
of DNA evolve, and why is it so important for cells? DNA is the only molecule in
cells that has a complex topology.

The evolution of proteins has taken a different course. Proteins also naturally
subdivide into domains and thus local knots or links could readily occur, but they
do rarely, although different types of pseudo-knots have been recently observed in
proteins patterns. Besides, no knots, catenanes, or supercoiling have been found so
far in RNA, polysaccharides, or lipids. Type I topoisomerases of the DNA molecule,
which cut one strand at a time, can carry out several topological operations. By
cutting one strand of a supercoiled DNA ring the type I enzyme can put the ring into
the relaxed state. It can tie a single-strand ring into a knot. The knot is tied when
the simple-strand ring crosses over itself. If the two loops formed in this way are
pulled together, the enzyme can cut one loop and pass the other loop through the
opening. When the break is sealed, the ring is sealed in a knot. The type I enzyme
can also interlock two single-strand ring. If the rings have complementary base
sequences, a double-helix results. Although the operations seem quite different,
each requires that a strand be broken, a segment of DNA be passed through the
break and the break be resealed.
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With the evolution of type I topoisomerases, compaction by nucleosomes could
occur and the size of DNA could grow to about 105 kb. However, as DNA grew
in length, the problems of accidental knotting within domains and catenation of
separate domains and segregation of the products of DNA replication became
acute. These problems were solved by the evolution of the type II topoisomerases,
which promote the passage of duplex DNA through transient double strand breaks.
A type II topoisomerase could have evolved from a type I topoisomerase by the
development of an interaction between two copies of a type I enzyme. Further
increases in DNA size required only the evolution of successively higher orders
of DNA compaction. So we are faced, once again, with a genuine topological
problem, which we shall address in the next sections.

4.2. The structural flexibility of biomolecules. DNA compaction
by successive order of coiling

It must be stressed that, essentially thanks to its topological properties, DNA is a
very malleable, deformable molecule, being able to recombine through a series of
stages. Very likely this property of flexibility or deformability is one of the most
important properties the DNA molecule, which also might distinguish the living
matter from the inanimate one. Moreover, this flexibility influences in a funda-
mental way the biological functions of the double-helix. In fact, the molecule can
freely move about, although under certain chemical and geometrical constraints,
in the space of the cell’s nucleus and transform itself into several shapes without
losing a certain structural stability and energetic optimal state. This movement is
twofold: the three-dimensional two-strands helical structure of DNA molecule can
extend and compact.

(i) The extended (unfolded) conformation of DNA, which put it under tension
as if the molecule was subjected to shear (cut off) one dynamic force, seems to be
especially required for DNA replication. By this process, each of the two strands
of DNA is used as a template for the formation of a complementary DNA strand.
The original strands therefore may remain intact through many cell generations.

(ii) DNA compaction inside cells occurs by successive orders of coiling. One
can show that a DNA double helix is compacted in about four successive steps.
Only the first step of nucleosome formation is quite well understood. In this step,
DNA coils twice in a left-handed helical fashion around a set of proteins called
histones. The nucleosomes are then coiled successively to give the final forms,
called a chromosome. In the phases of this process (the recombination), the knot
type of DNA molecule is actually changed. The whole process, from the original
splicing to the recombination, is the result of the effect of a single enzyme/catalyst
called a topoisomerase. To be more precise, all these nuclear processes that occur
during an entire cell cycle need to be properly and continuously orchestrate by
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a family of topoisomerases each of one have a specific task although severely
interconnected.

5. More about Topoisomerases and their Mathematical
Abilities and Biological Functions

The term topoisomerase is relatively easy to explain. Chemically, two molecules
with same chemical composition but different structures are called isomers. It fol-
lows that two DNA molecules with the same sequence of base pairs but different
linking numbers are also isomers. Due to the difference in linking numbers, “topo-
logically” they are inequivalent. In other words, topoisomerases are those enzymes
that cause the linking number to change.

Topoisomerases are essential to allowing DNA replication. Once replication
is completed, the newly synthesised molecule must be disentangled from its par-
ent. The replication of circular DNA molecules gives rise to two linked circular
molecules, but the replication of whole chromosomes leaves the cell with highly
entangled chromatids. If the cell does not disentangle the freshly replicated pairs
of sister chromatids, they will fragment under the pull of the mitotic spindle.
Disentanglement is achieved thanks to topoisomerases. Thus, one can say that
topoisomerases are the cell’s tools for managing the topologies of their genomes.
This means in particular that the relation between the topological form and the bio-
logical function of DNA molecule must be at the core of the nuclear organisation
of cell.

The process of mutation due to topoisomerases can be described in simple
terms as follow: First a strand of the DNA is cut at one place, then a segment of
DNA passes through this cut, and finally the DNA reconnects itself. So surgery
cutting and self-recognition are always two consecutive closed related operations.
There exist two examples of the action of a topoisomerase on a DNA molecule
(see Wang [106] and Rocca [92] for a detailed account):

(1) The simple strand has a single cut due to a topoisomerase and the DNA
passes through it and recombines; this is called a type I topoisomerases. However,
topoisomerase I is also capable of tying complex knot; in fact, the enzyme produces
every knot theoretically possible. Thus, the requirement for excess enzyme to
form complex knots suggests a role for topoisomerase I in contorting the DNA in
addition to promoting strand passage. For example, it has been shown that E. coli
topoisomerase I can catenate circles in nicked, duplex DNA. Furthermore, it is able
to tie a knot by inverting either a (+)- or a (−)-node during strand passage. In other
words, the DNA must fold to provide an inversion node, at which topoisomerase I
passes one DNA segment through a transiently introduced break in the other DNA
strand and thereby inverts the topological sign of the node. The inversion node
divides the ring into two domains, and there must be at least two nodes between



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch12

When Topology and Biology Meet ‘For Life’ 263

these two domains. Intradomainal nodes alone never lead to knots, although they
can contribute. Even a complicated knot can be tied by just one strand passage.

(2) A cut in a double-strand DNA, due again to a topoisomerase, allows a
double-strand DNA to pass through it and recombine, this is as expected called
a type II topoisomerases. In other words, type II topoisomerases are essential
enzymes that pass one DNA through another and thereby remove DNA entangle-
ments. They make a transient double-stranded break in a gate segment (G segment)
that allows passage by another segment (T segment) of the same or another DNA
molecule. Thus, these enzymes have the potential to convert real DNA molecules
into phantom chains that freely pass through themselves to generate an equilibrium
distribution of knots, catenanes, and supercoils. In fact, they reduce the fraction of
knotted and catenated circular DNA below thermodynamic equilibrium values. To
do that, enzymes use the energy of ATP hydrolysis. Active topology simplification
by topoisomerases II has an important biological consequence. It helps explain
how topoisomerases can remove all DNA entanglements under the crowded cel-
lular conditions that favour the opposite outcome. Recently, a new model was
designed to explain this surprising finding, in which eukaryotic and prokaryotic
topoisomerases bend DNA sharply upon binding. In this model, bending is a local,
geometrical manipulation that varies the curvature of the molecule’s strand site,
which is responsible for the change of the global, topological configuration of cir-
cular DNA. The challenge, however, is to ask oneself whether there may be some
kind of global process which could be responsible for the topological compaction
of chromatin in the chromosome. In the next section, we give some hints on this
problem.

6. Tangles, Knotting, and DNA Recombination: the Close
Link betweenTopological ‘Information’ Acting on
Supramolecular Forms and Biological Processes

Thus, as we just saw, a molecule of DNA may also take the form of a ring, and
so it can become tangled or knotted. Further, a piece of DNA can break temporar-
ily. While in this broken state the structure of the DNA may undergo a physical
change, and the DNA will finally recombine. A single enzyme can facilitate this
whole process, from the original splicing to the recombination. The process of
recombination involves some interesting topological changes in the substrate. It is
worth noting that knowledge of the topology of the substrate and product(s) can
be used to compute the Jones polynomials of other products. For instance, a cut
in a double-strand DNA, due to a topoisomerase, allows a double-strand DNA to
pass through it and recombine. Finding such a topoisomerase is relatively straight-
forward, since these enzymes occur in organisms small and large, from bacteria to
complex organisms. The effect of a certain topoisomerase (called recombinase) is
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Figure 11 A possible site-specific recombination.

usually called a site-specific recombination, which is a process whereby an enzyme
attaches to two specific sites on two strands of DNA, called recombination sites,
each of which corresponds to a particular sequence of base pairs that the enzyme
recognise. After lining the sites up, the enzyme cuts the two strands open and
recombine the four ends in some manner. In Figure 11, we show one of the simplest
actions.

Let us give some more technical details. A site-specific recombination is a local
operation (see Sumners [100]). The effect of the recombinase on a DNA molecule
is either to move a piece of this DNA molecule to another position within itself
or to import a foreign piece of DNA molecule into it. The result is that the gene
transmutes itself. The exact process of a site-specific recombination is fairly easy to
understand. Firstly, two points of the same or different DNA molecules are drawn
together, either by a recombinase or by a random (thermal) motion, or even possibly
both. The recombinase then sets to work, causing the DNA molecule to be cut open
at two points on the parts that have been drawn together. The loose ends are then
recombined by the recombinase in a different combination than the original DNA
molecule. Before the action of the recombinase, the DNA molecule is called a
substrate; after the recombination it is called a product. The product can be a knot,
an unknot, or a two-component link. The process of going from the DNA molecule
to a state in which two parts of the DNA molecule have been drawn together, is
said to be the writhing process. When at this stage the recombinase combines with
the substrate, the resultant combined complex is called a synaptic complex (see
Figure 13). Within the synaptic complex, we can assign local orientation to the
respective, relatively small part of the DNA molecule (or molecules) on which the
recombinase acts within a circle.

A few words about some notation we have just used are in order. First let
us define mathematically what the object tangle is.1 On the sphere S2 — the

1The British mathematician John H. Conway introduced the concept of a tangle at the beginning of the
1970s, in its attempt to give a complete table of knots [1970]. Using this variation on a knot, a new class
of knots could be defined: algebraic knots. By studying this class of knots, various local problems were
able to be solved, which led to a further jump in the level of understanding of knot theory. However,
since there are knots that are not algebraic, the complete classification of knots could not be realised.
Nevertheless, the introduction of this new research approach has had a significant impact on knot theory,
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Figure 12 (a) Direct repeats and (b) inverted repeats. Suppose we have a single circular
DNA molecule that contains a copy of each of the two recombination sites necessary for
the reaction. Then, when the enzyme acts on this molecule, the result can be analysed to
determine the effect of the enzyme. We can choose an orientation for the site. When a pair
of sites is utilised in an enzyme action, we pick the orientations of the two sites so that they
will match when the enzyme pulls the two sites together. When both sites appear on the
same circular DNA molecule, these orientations can either point in the same direction as
we traverse the molecule, in which case we say that the two have direct repeats, or their
orientation can point in opposite directions as we traverse the molecule, this case being
known as inverted repeats.

surface (boundary) of the three-ball B3 — place 2n points. A (n, n)-tangle T is
formed by attaching, within B3, to these points n curves, none of which would
intersect each other, as illustrated in the Figure 14. (Note that the curves should
be polygonal.) Suppose that we fix four points on the sphere S2 — say, north-east,
north-west, south-east, south-west — to which we attach their coordinates that lie
in the yz-plane. By attaching the end points of two polygonal curves in B3 to these
four points, we can form a tangle. So, if we project this tangle onto the yz-plane, as
in the case of a knot, we have what may be called a regular diagram of the tangle
(Figure 14(f)). The knot (or link) obtained by connecting the points north-west
and north-east, south-west and south-east by simple curves outside B3 is called the
numerator and is denoted by N(T). Similarly, we may connect the points north-
west and south-west, north-east and south-east by simple curves outside B3, and

particularly on the investigation of 2-bridge knots (or links), which are a special kind of algebraic knot
obtained from trivial tangles.
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Figure 13 (Adapted from Adams [2000, 1] and Sumners [1992, 100]. Recombination with
inverted repeats. Steps of the synaptic complex: (a) the substrate; (b) the pre-recombination
synaptic complex; here S denotes s the substrate tangle, which is unchanged by the enzyme,
and T stand for the site tangle, where the enzyme acts; (c) the post-recombination synaptic
process, thereby the enzyme replaces the site tangle T with the recombination tangle R;
(d) the product of the recombination, which can be either a knot or a link; according to the
above notation, its formula is N(T +R), where T and R are enzymes determined constants
independent of the variable geometry of the substrate S.

the subsequent knot (or link) is called the denominator and is denoted by D(T).
(For further details on tangle theory, we refer the reader to Sumners [100] and
Murasugi [81]).

Let N(Q) denote the knot or link obtained by connecting the top two strands
of a rationale tangle Q to each other and the bottom two strands of Q to each
other. Let Q+V denotes the rationale tangle obtained by adding the two tangles Q

and V together. In this notation, the facts that the substrate comes from the tangles
S and T and the product from the tangles T and R can be written in two equations
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Figure 14

Figure 15 (a) N(Q). (b) Q+ V . (c) N(Q+ V).

in the three unknowns, S, T , and R:

N(S + T) = substrate

N(T + R) = product.

Since we have more variables than we have equations, we can never hope to deter-
mine all three of S, T , and R from knowing the knotting of the substrate and the
product. If we happen to know one of the three, however, we should be able to
determine the other two.

The rational tangles are characterised topologically by values in the extended
rational numbers Q∗ = Q ∪ {1/0 = ∞}. An element in Q∗ has the form β/α

where α ∈ N ∪ {0}, (N is the natural numbers), and β ∈ Z with gcd(α, β) = 1.
Rational tangles themselves are obtained by iterating operations similar to the
recombination process itself. The inverse of a tangle is obtained by turning it 180◦
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around the left-top to right-bottom diagonal axis. Rational numbers correspond
to tangles via the continued fraction expansion. Since two rational tangles are
topologically equivalent if and only if they receive the same fraction in Q∗, it is
likely to calculate possibilities for site-specific recombination in this category. Here
we have an arena in which molecular enzymes-driven manipulations, knot theoretic
operations and the biologically relevant topological information carried out by a
knot or link act in a cooperative manner. This brings us directly to the central
question of this study: what is the nature of the topological information carried out
by a knot or link? For biology this information manifests itself in the dynamics of
a recombinant process, or in the organisation of the constituents of a cell, as we
shall explain in the next section dedicated to the problem of chromatin folding and
supercoiling.

According to the above description, the following mathematical propositions
(or results) follows:

Proposition 6.1. Almost all the products obtained by the site-specific recombina-
tion of trivial knots substrates are rational knots (or links), i.e., two-bridges knots
(or links).

Proposition 6.2. The part of the synaptic complex acted on by an enzyme (recom-
binase), mathematically within the three-ball, is a (2,2)-tangle.

Therefore, the product is just the replacement of one (2,2)-tangle by another
(2,2)-tangle. Thus, for example, a (2,2)-tangle within the circle T may be replaced
by a tangle R to form a product. Mathematically, it is perfectly reasonable to
consider S to be a (2,2)-tangle in T . The numerator of the sum of S and R is then
the product. So the following “equation” holds: N(S + R) = P (the product).
Further, we may divide the substrate into the external tangle S and the internal
tangle E, since the substrate is the numerator of the sum of S and E. Again, we
have a quasi-equation holding: N(S + E) = S (the substrate).

There is an important mathematical assumption one can make, which is yet
supported by biological observation. Namely, that tangles T and R do not depend
on the tangle S. They depend only on the enzyme that is acting, and not on the
knottedness of the molecule it acts on. One example of a topoisomerase is the
enzyme Tn3 resolvase (see Benjamin et al. [14]). This enzyme acts on a partic-
ular duplex cyclic DNA molecule with direct repeats. Once its has matched up
the two sites, it replaces the T tangle with a single R tangle and releases the
molecule. Once in a while, however, it will repeat the tangle replacement a sec-
ond time before releasing the molecule. Even more rarely, it can repeat the tangle
replacement a number of times, yielding even more complicated molecules. In a
series of experiments, biochemists established what products resulted when the
enzyme acted, and determined the following equations, where we use the notation
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for rational knots:

N(T + S) = N(1) (the unknot)

N(T + R) = N(2) (the Hopf link)

N(T + R+ R) = N(211) (the figure-eight knot)

N(T + R+ R+ R) = N(11111) (the Whitehead link).

From this set of equations, Sumners [1992] proved that S = (−3, 0) and R = (1).
Moreover, he proved that it should then be the case that N(S+R+R+R+R) =
N(12111) (the 62 knot). This last knot has been observed as a product in many
recombination processes.

7. Condensation of the Double-Helix Molecule into the
Chromatin, and the Role of Supercoiling

One of the most striking phenomena that reveal the profound interdependence
between topological problems and biological processes is that of the compaction
of chromatin into the chromosome within the cell nucleus. Its explanation is one of
most challenging task of biology today. Here we are faced with a genuine problem
of differential topology. What kind of deformations does the double-strands linear
DNA molecule undergo in order that it condenses into an extremely compact form,
corresponding to the metaphase of the chromosome? Though the answer to this
question is far from being clear or complete, however, some aspects have been
elucidated very recently.

(1) The key distinguishing characteristic of the eukaryotic genome is its tight
packaging into chromatin, a hierarchically organised complex of DNA and
histone and non-histone proteins. How genome operates in the chromatin con-
text is a central question in the molecular genetics of eukaryotes. The chro-
matin packaging consists of different levels of organisation. Every level of
chromatin organisation, from nucleosome to higher-order structure up to its
intranuclear localisation, can contribute to the regulation of gene expression,
as well as affect other functions of the genome, such as replication and repair.
Concerning gene expression, chromatin is important not only because of the
accessibility problem it poses for the transcription apparatus, but also due to
the phenomenon of chromatin memory, that is, the apparent ability of alter-
native chromatin states to be maintained through many cell divisions. This
phenomenon is believed to be involved in the mechanism of epigenetic inher-
itance, an important concept of developmental biology.

(2) Supercoiling is one of the three fundamental aspects of DNA compaction;
the other two are conformational flexibility and intrinsic DNA curvature. For
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example, the problem of DNA compaction in E. coli can be putted in the
following words: the DNA must be compacted more than a thousand-fold in
the cell, yet it still needs to be available to be transcribed. (Recall that the
length of a typical bacterial operon — usually about three genes — is about
as long as the entire bacterial cell, if it is stretched out in its B-DNA double-
helical conformation!). In order this compaction to be achieved, some kind of
anisotropic flexibility or ‘bendability’ of DNA, which is very much sequence-
specific, and is different from the structural ‘rigidity’ of DNA, is required.
Whereas persistence length of DNA is relatively non-specific, and just has to
do with its overall ‘rigidity’(on average, DNA has a persistence length of about
44 nm, which is quite a bit longer than proteins — one way to thinking about
this is that proteins tend to fold up into little spheres, or ‘blobs’, and DNA is a
bit more rigid), anisotropic flexibility is a measure of a particular sequence to
be deformed by a protein (or some other external forces). Some sequences are
both isotropically flexible and ‘bendable’ — for example, the TATA motifs.
Perhaps one of the best examples of this is the binding site for the Integration
Host Factor (IHF): there are certain base pairs that are highly distorted upon
binding of this protein. It is quite impressive that this protein induces a bend
of 180 degrees into a DNA helix. In other words, the curvature, say k, at each
sequence of the two strands of DNA helix must be very sharp in order the
DNA double helix may assume its extremely compact form. So the relationship
between (geometric) curvature and conformational (or topological) flexibility
appear to be crucial in the understanding of the biological activity of cells.

(3) Indeed, when one consider that the DNA must be compacted more than a
thousand fold in the cell, it is probably not surprising that almost any protein
that binds to DNA will bend it. Moreover, since the total curvatureK of an entire
DNA double-helix segment depends on the torsional stress which applies to
DNA strands, and, accordingly, these strands form a twisted curve, i.e., a curve
of double curvature in the three-dimensional space of the cell nucleus, DNA
double-helix must coil many times in a very ordered way to form chromatin
structure; otherwise, if the chromosome of a human cell were in the form of
a random coil, they would not fit within the nucleus. The DNA double helix
coils first by overwinding or underwinding of the duplex. The supercoiled form
of a circular DNA molecule is much more compact than the other possible
conformations, i.e., nicked and linear. In its supercoiled form, DNA molecule
minimises to the highest the space volume it occupies in the nucleus. Supercoils
condense DNA and promote the disentanglement of topological domains.

(4) Today we know that DNA is topologically polymorphic (see Lesliet et al.
[69]). The overwound or underwound double-helix can assume exotic forms
known as plectonemes, like the braided structures of a tangled telephone
cord, or solenoids, similar to the winding of a magnetic coil. (i) Plectonemi-
cally supercoiled DNA is unrestrained and frequently branched, while toroidal
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supercoils is restrained by proteins and it is more compact. (ii) DNA can
be either positive or negatively supercoiled. In particular, eukaryotic DNA is
negatively supercoiled in and around genes, and it is transiently negatively
supercoiled behind RNA polymerase during transcription. (iii) Negative super-
coiling favours DNA-histone association and the formation of nucleosomes,
the first step in packaging DNA. Because the solenoidal DNA wrapping around
a nucleosome core creates about two negative supercoils, it is understand-
able that the DNA that fulfills this topological prerequisite will more easily
form nucleosome. (iv) These tertiary structures have an important effect on
the molecule’s secondary structure and eventually its functions. For example,
supercoiling induces destabilisation of certain DNA sequences and allows the
extrusion of cruciform or even the transcriptional activation of eukaryotic pro-
moters. Another essential process, DNA transcription, can both generate and
be regulated by supercoiling.

(5) During replication, the chromosomes need to be partitioned and the two strands
of DNA must be continuously unlinked during replication. The topoisomerases
that accomplish this might instead be expected to entangle and knot chro-
mosomes because of the huge DNA concentration in vivo. There are actually
several factors that solve this problem and contribute to the orderly unlinking
of DNA. A major contributor to chromosome partitioning is the condensa-
tion of daughter DNA upon itself soon after replication. DNA condensation
is due primarily to supercoiling. Another factor promoting chromosome par-
titioning is that the type II topoisomerases of all organisms do not just speed
up the approach to topological equilibrium, but actually change the equilib-
rium position. They actively remove all DNA entanglements. This requires
that topoisomerases sense the global conformation of DNA even though they
interact with DNA only locally. In fact, topoisomerases achieve this because,
by positioning themselves at sharp bends in DNA, they carry out net disentan-
glement of DNA (they act, in a way, like Maxwell’s demon). An equal partner
to the topoisomerases in chromosome segregation is the helicases. They seem
to convert the energy of ATP hydrolysis into unwinding DNA. All the enzymes
that play critical roles in DNA unlinking and chromosome segregation, topoi-
somerases, helicases, and condensins, are motor proteins. They use the energy
of ATP hydrolysis to move large pieces of DNA over long distances.

(6) The previous discussion can be summed up by saying that supercoiling has
three essential roles. (i) First, (–) supercoiling promotes the unwinding of DNA
and thereby the myriad processes that depends on helix opening. (ii) The sec-
ond essential role of supercoiling is in DNA replication. For replication to be
completed, the linking number of the DNA, Lk, must be reduced from its vast
(+) value to exactly zero. In bacteria, DNA gyrase introduces (–) supercoils and
thereby removes parental Lk. (iii) The third essential role of supercoiling is con-
formational. DNA manifests the difference between the relaxed and naturally



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch12

272 L. Boi

occurring values of Lk by winding up into supercoils. These supercoils con-
dense DNA and promote the disentanglement of topological domains. This can
be accomplished equally well by (–) or (+) supercoiling. Let us still underline
two important facts. First, the promotion of decatenation by supercoiling has
also been directly demonstrated in vivo. Second, the volume occupied by a
supercoiled molecule is much more smaller than that of a relaxed DNA. This
difference in volume is due mostly to the formation of superhelical branches.
Indeed, supercoiled DNA branches and bends itself into a ball. The decrease in
chromosomal volume by supercoiling reduce the probability that the septum
will pass through the chromosome during cell division.

8. Topological Models for Chromosome Compaction; the
Mathematical Concepts of ‘Linking Number’,‘Twist’,
‘Writhe’, and their Biological Meaning

It seems clear that supercoiling play a fundamental role in the condensation of
the double helix and that this condensation is responsible for DNA unlinking and
chromosome partitioning. Supercoiling results from topological strain and the con-
tortion of DNA by proteins, notably the nucleosomal histone octet and the struc-
tural maintenance of chromosomes (SMC) proteins. There are three ways, actually
experimentally observed in vivo, in which condensation of chromosome by super-
coiling occurs, and to each of them corresponds a topological model for explaining
the compaction of chromosomes in the cell’s nucleus.

(i) (–) Supercoiling by gyrase compacts the chromosomes such that random
passages by topoisomerase IV disentangle them. In particular, topoisomerase
IV is responsible for decatenation of DNA.

(ii) With the second type of condensation via supercoiling, that is by core his-
tones. DNA is compacted in independent successive stages such that the total
compaction is the product of compaction in each stage. The first stage of this
compaction is via solenoidal wrapping of DNA in the nucleosome. Although
the compaction achieved is modest, the nucleosome provides a fundamental
structure for genome organisation and function. The structure of a nucleo-
some reveals a scaffolding that forces the DNA to adopt ordered solenoidal
supercoils.

(iii) The third type of compaction cum supercoiling, that by condensin, is needed
for the formation of mitotic chromosomes from the open interphase forms.

Recently, it has been experimentally demonstrated that condensin was required
for both the assembly and maintenance of these chromosomes. It is very worth of
note that a mere local interpretation of these results isn’t a satisfactory explanation,
because a local overwinding of DNA would have no effect on condensation; nor
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could a tight wrapping around condensin greatly compact DNA, because there
is no more than one condensin molecule per 10 kb of DNA. Fortunately, there is
a third possible explanation for the (+) supercoiling that is compatible with its
physiological role. Condensin is so large, reaching out perhaps 1,000 Å, that it
could torque the DNA between its reach. Thus, condensin could introduce (+)
supercoiling by effecting global ‘writhe’ (as schematised in Figure 16). Strong
evidence for this was provided by the finding that incubation of condensin and a
type-2 topoisomerase with plasmid DNA forms chiral DNA knots. These knots
were almost exclusively (+), as expected if condensin introduces a regular (+)

writhe.
Let us explain more in detail, first mathematically then biologically, the central

concepts of writhe and twist. Our aim is to show that their properties are closely
linked. We need to start by recalling that the linking number is a mathematically
quantity associated with two closed oriented curves. To define it, the simplest

Figure 16 Comparison of four types of DNA compaction by supercoiling. (A) Free (−)
supercoils twist DNA into a right-handed plectonemic superhelix. (B) Wrapping around the
histone octamer compacts DNA by forming left-handed solenoidal supercoils. (C) SMC
proteins, such as Xenopus 135 condensin (schematised as red ball and stalk structures),
effect global DNA writhe by forming large (+) solenoidal supercoils. (D) Stereo image of a
25-kilobase (kb) (–) supercoiled DNA generated by a Metropolis Monte Carlo simulation.
A and C represent approximately 2 kb of DNA (700 nm) at 200,000-fold magnification,
whereas B is only 1.5 kb of DNA (500 nm) but at 4-fold greater magnification. D is at
100,000-fold magnification.
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(A) (−) (B) (+)

Figure 17 Sign convention for the crossing of two curves in a modified projection. The
arrows indicate the orientation of the two crossing curves. To determine the sign of the
crossing, the arrow on top is rotated by an angle less than 180◦ onto the arrow on the bottom.
If the rotation required is clockwise as in A, the crossing is given a (–) sign. If the rotation
required is counterclockwise as in B, the crossing is given a (+) sign.

manner is to use the so-called modified projection method. We designate the two
curves C and A. These two curves when viewed from a distant point will appear to
be projected into a plane perpendicular to the line of sight, except that the relative
overlay of crossing segments is clearly observable. Such a view gives a modified
projection of the pair of curves. In any such projection, there may be a number of
crossings. To each such crossing is attached a number ±1, depending on the sign
convention in Figure 17. Adding all the signed numbers of a given projection and
dividing by two gives the linking number, Lk(C, A) of C with A. Examples are
shown in Figure 18.

The rigorous definition of the linking number applies to an oriented link. Recall
first the following

Definition 8.1. A link L of m components is a subset of S3, or of R3, that consists
of m disjoint, piecewise linear, simple closed curves. A link of one component is
a knot.

Definition 8.2. Suppose L is a two-component oriented link with components L1
and L2. The linking number Lk(L1, L2) of L1 and L2 is half the sum of the signs,
in a diagram for L, of the crossings at which one strand is from L1 and the other
is from L2.

Note at once that this is well defined, for any two diagrams for L are related by
a sequence of Reidemeister moves, and it is easy to see that the above definition is
not changed by such a move. The linking number is thus an invariant of oriented
two-component links. To be equivalent, two such links must certainly have the
same kinking number. The definition given of linking number is symmetric:

Lk(L1, L2) = Lk(L2, L1).
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Figure 18 Examples of pairs of curves with various linking numbers, using the convention
described in Figure 17.

This definition of linking number is convenient for many purposes, but should
not obscure the fact that linking numbers embody some elementary homology
theory. Suppose that K is a knot in S3. Then K has a regular neighbourhood
N that is a solid torus. (Technically, the regular neighbourhood is the simplicial
neighbourhood of K in the second derived subdivision of a triangulation of S3 in
which K is a subcomplex.) The exterior X of K is the closure of S3−N. Thus X is
a connected three-manifold, with boundary ∂X that is a torus. This X has the same
homotopy type as S3 −K, X ∩N = ∂X = ∂N and X ∪N = S3. For the present,
we don’t need to go more in-depth into this subject (we refer the interested reader
to Rolfsen [95], Lickorish [70] and Boi [24].)

Let us rather underline that the linking number has many important properties,
two of which are especially important for DNA. First, it is unchanged under any
continuous deformation of the pair of curves so long as no break is made in either
curve. Second, it is independent of the view for which one computes it. For DNA
the linking number is defined to be the linking number of the two backbone curves.
However, since either backbone curves may be deformed into the axis curve A

without passing through the other, the linking number of a DNA may equally be
defined as the linking number of a backbone curve and the axis, Lk(C, A).

The definition of writhe is similar to that of linking. However, it is a property
of a single curve, in this case the axis A. In any modified projection of A there may
be a number of crossings. To each such crossing is attached a signed number ±1
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Figure 19 Illustration of the dependence of projected writhing number on projection. The
axis of the same non-planar closed DNA is shown in two different projections obtained by
rotating the molecule about the dashed line. The points Q and R on the axis help illustrate
the rotation. The segment QR crosses in front in part A but is in the upper rear in part B.
The projected writhing number is part A is −1 and 0 in part B.

as in the case of linking number. Unlike linking number, the projected writhing
number may depend on the projection. This is illustrated in Figure 19 in which a
figure-eight in one projection becomes an oval curve in another. In one case the
projected writhe is −1, in the other 0. The writhing number or writhe, Wr, of the
curve A is defined to be the average over all possible projections of the projected
writhing number. In other words, such an average value is determined by utilising
integrals. We take the integral of the signed crossover numbers, integrating over all
vantage points (that is, the points perpendicular to the axis of S3, or those points
where our eye is in the plane) on the unit sphere, and then divide by the integral of
one, integrating over the unit sphere.

Average value =
∫

signed crossover number dA/

∫
dA

=
∫

signed crossover number dA/

∫
4π

since is just the surface area of the unit sphere.
If the axis A lies in a plane except for a few places at which it crosses itself,

the writhing number Wr is the total of the signed numbers attached to the self-
crossings. Figure 20 illustrates the approximate writhe of some tightly coiled DNA
axes. An important fact about the writhing number is that during a self-passage of

Figure 20



April 6, 2011 9:16 9in x 6in New Trends in Geometry and its Role in the Natural and Life Sciences b1082-ch12

When Topology and Biology Meet ‘For Life’ 277

the curve A it must change by two. We also point out that the writhing number of
a curve A is independent of the orientation chosen along the curve.

Summarising and considering a ribbon modelling cyclic duplex DNA, we shall
say that the writhe of the ribbon, denoted Wr(R), measures how much the axis of
the ribbon is contorted in space.

We next define the twist of a DNA. For closed DNA the twist will usually refer
to the twist of one of the backbone curves C about the axis curve A. This will be
denoted Tw(C, A) or simply Tw. We already defined twist in section 2 by using
vector analysis. Let us slightly reformulate the mathematical property of twisting
by showing the following picture.

Any local cross-section of a DNA perpendicular to the axis A contains a unique
point a of the axis and a unique point c of the backbone curve C (see Figure 21).
We denote by vac a unit vector along the line joining a to c. As the DNA is traversed
since the curve C winds helically about A, the vector vac turns about A. Tw is a
measure of this turning. As the point a moves along A, the vector vac changes.
The infinitesimal change in vac, denoted dvac, will have a component tangent to
the axis and a component perpendicular to the axis. Tw is the measure of the total
perpendicular component of the change of vac as the point a traverses the entire
length of the DNA. This is given by the line integral

Tw = 1/2π

∫
A

dvac · T × vac,

Figure 21 Cross-section of a DNA. The plane perpendicular to the DNA axis A intersects
the axis in the point a and the backbone curve C in the point c. The unit vector along the
line joining a to c is denoted vac. Note that as the intersection plane moves along the DNA,
this vector turns about the axis.
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where T is the unit tangent vector along the curve A. When A is a straight line
or planar, dvac is always perpendicular to A, so that is this case Tw is simply the
number of times that vac winds about the axis. Examples are shown in Figure 19.
It can be easily demonstrated that Tw is positive if the winding is right-handed and
negative if left-handed. Furthermore, if the DNA is closed then the initial and final
positions of vac are the same. Thus if the DNA is closed (and in the circular or
ribbon model) and its axis planar, Tw must necessarily be an integer. However, if
the axis is supercoiled this is not usually the case. A portion of a supercoiled DNA
is shown in Figure 22. Here the axis A itself is a helix, so that the helically winding
C becomes a superhelix. For such an example, Tw is the number of times that C

winds about A plus a term λ sin γ which depends on the geometry of the helix A.
The term λ is the number of times that A winds about its owns straight line axis
and γ is its pitch angle.

Figure 22 Examples of pairs of curves C and A with different values of twist. The first
six are simple examples in which the axis A is a straight line and the twist is the number
of times that C winds about A, being positive for right-handed twist and negative for left-
handed twist. The last example is one in which the axis A is a helix winding around a linear
axis, and the curve C is a superhelix winding about A. In this case the twist of C about A

is the number of time that C winds about A (in this case approximately 3.5) plus λ sin γ ,
where λ is the number of times that A winds about the linear axis and γ is the pitch angle
of the helix A. Here λ is approximately 1.5 and γ is approximately 40◦. Thus, Tw equals
approximately 4.46.
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Let us consider again the concept of writhe, which can simply be thought of in
terms of the number of times the rubber rod crosses over itself. The crucial point
about Wr is that it is a measure of the shape of the DNA as a three-dimensional
curve through space. As already noted, one can count the number of crossovers
of the DNA in a single view in order to estimate Wr. All we need to do to get Wr
accurately is to count the number of crossovers that can been seen in many different
randomly chosen views of the structure, and then take the average of all of these to
get the actual value of Wr. This is not a hard concept to grasp, if we think of taking
a large number of snapshots of the DNA as it tumbles randomly through space, due
to the thermal motion. In practice, however, this may not be such a straightforward
procedure, for in some views there can be many crossovers, some of which will
cancel each other out.

Now the diagrams in Figure 23 are drawn for positive Lk, i.e. for overwound
DNA. You may recall that DNA in living cells is normally not overwound, but
rather is underwound, and so its value of Lk is negative. Therefore, one can provide
a corresponding set of pictures for negatively supercoiled, underwound DNA. For
example, the twist is now left-handed and counterclockwise. As a result, all the
values of the Tw, Wr, and Lk numbers will be conversed, namely negative. This
means that the DNA crosses over itself in two different fashions: a right-handed and
a left-handed. In fact, the handedness of the crossovers in any interwound supercoil
enables you to say definitely whether the DNA is underwound or overwound,
simply by looking at a picture.

Figure 23 Five closely related circular DNA molecules: (a) and (b) show open circles,
while (c), (d) and (e) show interwound supercoils. The DNA in its stress-free, relaxed form
is drawn as a rubber rod of square cross-section, with one face black.
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As already mentioned, there are two general classes of supercoil, known as
interwound and toroidal. The circular DNA (that is, with the ends of the molecule
fixed) consists of a series of open spirals that wind around an imaginary ring, or
toroid; this kind of supercoiling is known as ‘toroidal’. But the circular can also
wind above and bellow itself several times, and this kind of supercoiling is called
‘interwound’. In practice, real DNA supercoils may contain portions of both the
toroidal and interwound geometries. Thus, where certain parts of the DNA are
highly curved, on account of either the base sequence or due to wrapping around
a protein, one may find toroidal structures, since the DNA in a toroidal supercoil
is highly curved throughout. Alternatively, if such curved portions of the DNA are
not very long, they may locate themselves at the two strongly curved end-loops of
an interwound supercoil, as shown at the top and bottom in Figure 24. Sometimes
the interwound and toroidal geometries may occur together, as in the looped-linear
DNA which is shown schematically in Figure 25. On a small scale, within any loop,
the coiling is toroidal on account of the wrapping of DNA around protein spools;
but on a large scale, over the full length of any loop, the structure is interwound.You
often see this kind of arrangement in telephone cords, if people habitually rotate the
handset. In general, supercoiled DNA has the shapes seen in Figure 24 because it
either has more turns of twist, or fewer turns of twist, than the underlying, relaxed,
right-handed double helix from which it is made. DNA with more than the natural

Figure 24 Two general varieties of DNA supercoil. In (a), the DNA coils into a series of
spirals about an imaginary toroid or ring (shown here by open lines); and so this kind of
wrapping is known as ‘toroidal’. In (b), the DNA crosses over and under itself repeatedly;
and so this kind of wrapping is known as ‘interwound’.
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Figure 25 The division of a long, linear DNA molecule into loops generates end-restraint
at the base of every loop, if the two ends are attached to some support of ‘scaffold’. This
kind of looped-linear arrangement is thought to be typical of the chromosomal DNA found
in higher organisms.

number of turns is known as overwound, while DNA with fewer than the natural
number of turns is known as underwound.

We have now described two different kinds of supercoiling for DNA — toroidal
and interwound. But what are the relative stabilities of these two forms? In other
words, when will a DNA molecule be interwound, and when will it be toroidal? The
interwound shape is usually very stable, and most underwound or overwound DNA
molecules will naturally adopt an interwound shape, in the absence of other forces.
But the proteins that associate with DNA in living cells can sometimes change
the situation dramatically, and favour the toroidal over the interwound form by
wrapping the DNA around themselves (see next section for further details on this
topic). Note, however, that the preferred interwound structure of DNA molecules
in cells is somewhat similar to the idealised shape in Figure 23(e) (but with a
linking number Lk of the opposite sense, which means that these DNA molecules
are underwound, with Lk negative), since Wr = 0.9 Lk, and Tw = 0.1 Lk. In other
words, the DNA which has been underwound finds it more favourable energetically
to cross over itself repeatedly, than to alter its twist.

For example, consider the cork which has been inserted between the two turns
of ribbon shown in Figure 26(c). This cork represents a typical protein ‘spool’
around which the DNA can wrap, and around which it does wrap in a left-handed
sense in the chromosomes of most higher organisms on Earth. If the DNA or ribbon
in Figure 26(c) were to be cut free from the two blocks at either end, it would
stay wrapped around the ‘sticky’ protein spool; whereas if it were cut free in the
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Figure 26 A highly twisted ribbon will collapse spontaneously into part of a toroidal
supercoil. In (a), the two ends of the ribbon are held apart by their attachment to blocks, so
that Tw = −2. In (b), the blocks move together so that the ribbon can collapse to Wr = −2.
In (c), a cork or protein spool stabilises the shape of the ribbon shown in (b).

absence of a spool, as in Figure 26(b), it would immediately spring back into a
straight configuration. When we isolate DNA in the laboratory in pure form from
any kind of cell or cells, at some point in the procedure we must strip off the
proteins around which the DNA was originally wrapped, without breaking either
of its two double-helical strands. In other words, we must remove the cork from
the arrangement shown in Figure 26(c), without cutting the DNA free from either
of its two end-blocks. Naturally the ‘naked’ DNA will first spring out to the highly
twisted form shown in Figure 26(a), and then it can collapse into an interwound
supercoil as shown in Figure 23(e), because it has lost the curvature which stabilised
the toroidal form. Therefore, we can expect to see highly interwound supercoils
in the preparations of pure DNA which we make from living cells, after removal
of various proteins. Incidentally, this is why DNA supercoils in Nature are usually
underwound rather than overwound: the DNA always coils around proteins in the
cell nucleus in the form of a left-handed toroidal spiral, giving negative Lk. In the
next section, we will be especially concerned with some important topological and
biological properties of supercoiling.

To conclude the present description, let us point out that most of the missing
turns in any negatively supercoiled DNA molecule are stored in the form of writhe
Wr, whether by crossovers in an interwound supercoil, or by flat spirals in a toroidal
supercoil. How, then, can supercoiling produce a reduction of twist Tw by one
or two turns, as is needed for a polymerase protein to unwind DNA in various
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locations? Clearly, the DNA must be able to vibrate or fluctuate in solution, as a
kind of Brownian movement, from shapes with high writhe to shapes with high
twist. For example, an interwound supercoil might vibrate from the shape shown
in Figure 23(e) to any of the shapes shown in Figure 23(d), (c), or (b), in order to
generate twist. Similarly, a toroidal supercoil might vibrate from the shape shown
in Figure 26(b) to that shown in Figure 26(a). Unfortunately, we have few direct
experimental data today, which might indicate how DNA molecule fluctuates in
solution over a large scale. We know, through probing for single-stranded regions
using enzymes and chemicals, that negatively supercoiled DNA vibrates much
more efficiently than relaxed DNA to yield negativeTw; and we know also that many
genes require negative supercoiling in order to be transcribed by RNA polymerase;
but we do not know how DNA changes its shape over a large scale, to produce
vibrations that lead to the generation of twist. Perhaps these involve changes in the
local shape of the DNA from a right-handed supercoil to a plane curve, or from a
plane curve to a left-handed supercoil. But all we have today are a great many lines
of indirect evidence to suggest what might be going on. Furthermore, our indirect
data are limited to observations about bacterial genes, because the genes in higher
organisms are so poorly understood that one cannot draw any firm conclusions
about how they work.

9. A Mathematical Model for Explaining the Folding
of Chromatin Fibre During Interphase

In the nucleus of eukaryotic cells, the three-dimensional organisation of the genome
takes the form of a nucleoprotein complex called chromatin. This organisation not
only compacts the DNA but also plays a critical role in regulating interactions with
the DNA during its metabolism. This packaging of our genome, the basic building
block of which is the nucleosome, provides a whole repertoire of information in
addition to that furnished by the genetic code. This mitotically stable information
is not inherited genetically and is termed epigenetic. One of the challenges in
chromatin research is to understand how epigenetic states are established, inherited,
controlled and modified so as to guarantee that their integrity is maintained while
preserving the possibility of flexibility. In other words, the aim is to understand the
temporal and spatial dynamics of chromatin organisation, during the cell cycle, in
response to different stimuli and in different cell type.

Beyond the level of the nucleosome, the chromatin is compacted into higher
structures which delimit specialised nuclear domains such as regions of heterochro-
matin and euchromatin. Heterochromatin is defined as the regions of chromatin
that do not change their condensation state during the cell cycle and represents the
majority of the genome of higher eukaryotes. Heterochromatin principally com-
prises repeated non-coding DNA sequences, its characteristics generally contrast
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with those of euchromatin. One essential characteristic of the heterochromatin
regions, which has been highly conserved during evolution, is the presence of
hypoacetylated histones (H3 and H4). Apart from its repression of transcription,
heterochromatin function remains unknown.

Of paramount importance to the understanding of gene expression and biolog-
ical regulation, is the mechanism which drives and controls the packaging of DNA
and its organisation within the chromatin structure. The lowest level of organisation
is the nucleosome, in which two superhelical turns of DNA (a total of 165 base
pairs) are wound around the outside of a histone octamer. Nucleosomes are con-
nected to one another by short stretches of linker DNA. During chromatin assembly
on nascent DNA, acetylated histones H3 and H4 are sequestered by the DNA first,
histones H2A and H2B follow, and, finally, H1 binds, stabilising chromatin fold-
ing within the irregular 30 nm fibre. At the next level of organisation the string of
nucleosomes is folded into a fibre about 30 nm in diameter, and these fibres are then
further folded into higher-order structures. More precisely, during the progressive
assembly of chromatin, DNA is compacted, nucleosome formation leads to a sev-
enfold compaction of DNA, and the subsequent formation of the 30 nm fibre con-
tributes a further sevenfold compaction. These four successive steps of compactions
represent the major topological constraints of DNA in eukaryotic nucleus.At levels
of structure beyond the nucleosome the fundamental mechanisms of folding are
still unknown. We know that the 11 nm nucleosome units (the first level of packing
of DNA) coil into a 30 nm solenoid structure which is stabilised by H1 histone. The
solenoid forms loops that attach to a scaffold of non-histone protein, which leads
to the chromatin supercoiling during condensation within metaphase chromatids.
This intermediary and possibly crucial level of compaction of complexes DNA-
proteins into the final form, a mitotic chromosome, is very scarcely understood.

Among the different hypothetical models that have been proposed over the
last years for the folding of the chromatin fibre during interphase, the so-called
radial-loop model seems to us the most suitable for explaining the formation of
the 30 nm solenoid structure. Let us suggest, specifically, a theoretical model by
applying methods and techniques from algebraic geometry and specifically from
the classification theory of compact connected two-manifolds, which has been
one of the most important and far-reaching mathematical results of the twentieth
century. We start with the following theorem.

Theorem 9.1. Let M be a closed, simply-connected orientable manifold. M can be
expressed as a union

M = D ∪D′ ∪
n⋃

i=1

Si

of polyhedral two-cells with disjoint interiors, such that (1) for each i, each of the
sets Si∩D and Si∩D′ is the union of two disjoint arcs and (2) D∩D′ is the union
of 2n disjoint arcs.
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Figure 27 Chromatin supercoiling during condensation: each metaphase chromatid is
700 nm wide. The first level of packing of DNA results in an 11 nm diameter fibre. The 11 nm
nucleosome units coil into a 30 nm solenoid structure, which is stabilised by H1 histone.
The solenoid forms loops that attach to a scaffold of non-histone protein.
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Figure 28

Figure 29

The sets Si will be called strips, and M ′ will be called a two-cell with strips.
Evidently, such an M ′ can always be imbedded in R3, and thus can be described by
a figure such as Figure 28. Under the conditions of Theorem 1 boundary ∂M ′ must
be a one-sphere, but aside from this, the strips Si may be attached to ∂M ′ at any
set of disjoint arcs. If Si ∪D is an annulus, then Si will be called annular (relative
to D, of course) and if Si ∪ D is a Möbius band, then Si will be called twisted.
Thus, in Figure 28, S3 and S6 are twisted, and the rest of the strips are not. Note
that in investigating the topology of M ′, we do not care whether the sets Si∪D are
knotted. Note also that indicating “multiples twists” would contribute nothing to
the generality of the figure. For example, in Figure 29(a) on the left a double twist
gives an annulus, and in Figure 29(b) a triple twist gives a Möbius band.

We shall now simplify this representation of M in various ways.

(1) Suppose that Si is a twisted strip, so that Si ∪ D is a Möbius band. Let J =
∂(Si ∪D), so that J is a polygon. As in Figure 30, let P , Q, R, and T be points
of J , not lying in any set Sj; let PT be the arc in J , between P and T , that
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intersects ∂Si; supposing that P , Q, R and T appear in the stated order on J ;
and supposing that the arcs PQ ⊂ PT and RT ⊂ PT intersect no set Sj . We
assert that there is a piecelinear homeomorphism (PLH):

h : M ⇔ M, J ⇔ J, D ∪ Si ⇔ D ∪ Si

P → P, T → T, QT ⇔ RT ,

such that h|(J − PT) is the identity. Consider the two-cell D, h(D′), Si, and
h(Sj)(j 	= i). These have all the properties stated above for D, D′, Si, and
Sj(j 	= i). The operation which replaces the old system of two-cells by the
new will be called operation α. We now renumber the two-cells Si in such a
way that S1, S2, . . . , Sk are annular, and Sk+1, Sk+2, . . . , Sn are twisted.

Lemma 9.2. In the conclusion of Theorem 9.1, we can choose the 2-cells in such
a way that (a) the intersections Si ∩ D(i > k) lie in disjoint arcs in ∂D and
(b)

⋃
i>k(Si ∩D) lies in an arc in ∂D which intersects no annular strip Sj .

(2) If we have no annular strips, then we proceed to step (3) below. If we have an
annular strip Si, then there must be another annular strip Sj which is “linked
with Si on ∂D,” as indicated in Figure 30. (If not, ∂M ′ = ∂D′ would not be
connected.) The set D ∪ Si ∪ Sj is then a handle.

Recall that by a handle we mean a space obtained by deleting from a torus the
interior of a two-cell. Figure 31(a) shows what a handle looks like. A two-sphere
with n holes is a space obtained by deleting from a two-sphere the interiors of
n disjoint two-cells. If a handle is attached to the boundary of each of the holes,
the resulting space is a two-sphere with n handles, as shown in Figure 31(b). A
projective plane is a space defined in such a way that each pair of antipodal points
of the circle are supposed to be identified. A sphere with n cross-caps is a space

Figure 30
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Figure 31

Figure 32

obtained by starting with a sphere with n holes and then attaching a Möbius band
to the boundary of each of the holes.

By operation β, closely analogous to α, we slide the strip Sr(r ≤ k, r 	= i, j)

along the arc PT, so as to get a situation in which (Si ∪Sj)∩D lies in an arc in ∂D

which intersects no set Sr(r 	= i, j). We do this for each such handle. The figure
now looks like Figure 32.

(3) Let m = n− k be the number of the twisted strips Si, and suppose that m > 2.
Consider the first three of the twisted strips (starting in some direction from
the annular strips) as shown in Figure 33. By two operations of the type α, we
slide PQ along ∂(D ∪ Ss) so as to move it onto P ′Q′ ⊂ Int AB ⊂ ∂D; and
we slide RT along ∂(D ∪ Ss) onto R′T ′ ⊂ Int AB. The figure now looks like
Figure 34. It is easy to check that the new strips S′r,∪S′t is a handle.
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Figure 33

Figure 34

By another application of β, we move Ss ∩D to the right of (S′r ∪ S′s) ∩D in
Figure 34. Thus we have introduced a new handle into the figure, and reduced the
number of twisted strips by two. Therefore we may assume, in Theorem 9.1, that
the number m of twisted strips is ≤ 2. M is orientable if and only if m = 0 at the
final stage. To each linked pair of annular strips, and to each twisted strip, we add
a two-cell lying in D, as indicated by the dotted arcs in Figure 35. This gives a set
{Hi} of handles (h ≥ 0) and a set {Bj} of m Möbius bands (0 ≤ m ≤ 2).

Consider the set N = Cl
[
M−(⋃Hi∪⋃Bj

)]
. N is the union of two two-cells

D1 and D2, with D1 ⊂ D and ∂D2, it follows that N is a sphere with holes. Thus
we have proved the following

Theorem 9.3. Let M be a compact connected two-manifold. Then M is a two-sphere
with h handles and m cross-caps (h ≥ 0, 0 ≤ m ≤ 2).
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Figure 35

Figure 36

We now define a new open cell decomposition of M, as follows. As indicated
in Figure 36, we choose a point v of Int D, and we define a collection {Ji, J

′
j} of

polyhedral 1-spheres (one Jj for each annular strip, and one J ′j for each twisted
strip) such that each of them “runs from v through the corresponding strip, and
then returns to v,” and such that each two of the sets in {Ji, J

′
j} intersect at v and

nowhere else. This gives an open cell-decomposition C′ of M, with one vertex v,
2h edges Ji − {v}, m edges J ′j − {v}, and one 2-face C2 = M − [⋃ Jj ∪⋃ J ′j

)]
.

Thus we have:

Theorem 9.4. Let M be a 2-sphere with h handles and m cross-caps (h ≥ 0,

0 ≤ m ≤ 2). Then

χ(M) = 2− (2h+m).

Proof. V − E + F = 1− (2h+m)+ 1.
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10. Biological Justifications for the above model

One way to show the relevance of the topological model we sketched above is to
investigate the spatial organisation and functional compartmentalisation of chro-
mosomes, and the nucleus itself, within the quest to understand how the expression
of complex genomes is regulated. Inside the higher eukaryotic chromosome, DNA
is folded through DNA-protein interactions into multiple levels of organisation. At
the highest level, these yield a compaction ratio of more than 20 000: 1 in terms
of the ratio of linear B-form DNA to the length of the fully compacted metaphase
chromosome. While the extent of compaction within mitotic chromosomes is well
known, less appreciated is the fact that compaction remains extremely high within
interphase nuclei. The bulk of genomic DNA in interphase is likely to be packaged
within large-scale structures well above the level of the 30 nm chromatin fibre (for
further details see Widom [116]).

For technical reasons, most research into chromosome structure has focused on
the structure of maximally condensed, metaphase chromosomes. An experimental
approach based largely on unfolding chromosome structure through extraction of
chromosomal proteins has led to a radial loop model of chromosome structure.
In this model, structural proteins, which are resistant to high salt and detergent
extraction, anchor the bases of 30 nm chromatin fibre loops (∼20–200 kb long) to a
chromosome “scaffold”, which itself may be helically coiled. Specific SAR/MAR
DNA sequences (scaffold attachment regions or matrix attachment regions) are
hypothesised to form the bases of these loops, attached to specific proteins which
are predicted to make up the chromosome scaffold. Specific sequences are found
remaining at the axial core in extracted human metaphase chromosomes, but it is not
clear whether the same SAR/MAR sequences are attached to an underlying scaffold
in both mitotic and interphase chromosomes. Experiments using fluorescence in
situ hybridisation (FISH) on cell nuclei has led to a giant-loop, random walk model
for interphase chromosomes, based on statistical analysis of the mean separation
between two chromosomes sites, as a function of genomic distance.

Ideally, any model of large-scale chromatin folding would unify mitotic and
interphase chromosome structure and predict the structural transitions accompany-
ing cell-cycle-driven chromosome condensation/decondensation. The radial-loop,
helical-coil model of mitotic chromosome structure (Figure 37a) has been extended
to interphase chromosomes. However, this has required postulating a particular
loop geometry that might, under special circumstances, give rise to a fibre with
an elliptical 60–90 nm cross-section (Manuelidis [76]). An alternative model pro-
poses a successive, helical coiling of 10 nm chromatin fibre into 30–50 nm tubes,
and of these into 200 nm diameter tubes, which coil into c. 600 nm metaphase
chromatids (Sedat and Manuelidis [96]). Finally, a folded chromonema model is
based on in vivo light microscopy combined with TEM ultrastructural analysis of
folding intermediates during the transition into an out of mitosis. In this model,
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Figure 37 (a) Radial-loop model for mitotic chromosome structure. A looping of the
30 nm fibre gives rise to a 300 nm structure in which 50–100 kb looped DNA attaches
at the base of the loop to a chromosomal scaffold. This structure coils helically to form
the metaphase chromosome. (b) Chromosome model of interphase chromatin structure.
Progressive levels of coiling of the 30 nm fibre into 60–80 nm and 100–130 nm fibres are
depicted. Chromonema fibres kink and coil to form regions of more dispersed or compact
chromatin. Extended chromonema fibres predominate in G1 while more compact structures
become abundant during cell-cycle progression. Chromonema folding culminates with the
formation of the G2 chromatid, which coils to form the compact metaphase chromosome.

10 and 30 nm chromatin fibre fold to form a c. 100 nm diameter chromonema
fibre, which then folds into a 200–300 nm diameter prophase chromatid, which
itself coils to form the metaphase chromosome (Figure 37b) (Belmont and Bruce
[9]). It is still unclear how these structural models of mitotic and interphase
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chromosome structure integrate with the underlying biochemistry responsible for
chromosome condensation. The two chief protein components of the mitotic chro-
mosome scaffold, topoisomerase IIα and SCII, have more clearly identified DNA
topological activities than structural roles. SCII is a component of the mitotic
condensing complex, which recently has been demonstrated to have the ability
to introduce positive supercoils into DNA in the presence of topoisomerase II in
a stoichiometric manner. SCII also shows a non-ATP-dependent enhancement of
re-annealing of complementarity DNA strands (see Section 1 for more details on
this topic).

More specifically, the geometrical model we suggested in the previous sec-
tion might fit well with the three-dimensional packing process of chromatin, first,
into a 300 nm extended scaffold-associated form, followed by a 700 nm condensed
scaffold-associated form. In fact, the condensation of metaphase chromosome
results from several orders of folding and coiling of 30 nm chromatin fibres. For
example, electron micrographs of histone-depleted metaphase chromosome from
HeLa cells reveal long loops of DNA anchored to a chromosome scaffold composed
of non-histone proteins. This scaffold has the shape of the metaphase chromosome
and persists even when the DNA is digested by nucleases. As depicted schemati-
cally in Figure 38, megabase long loops of the 30 nm chromatin fibre are thought to
associate with the flexible chromosome scaffold, yielding an extended form char-
acteristic of chromosome during interphase. Coiling of the scaffold into a helix and
further packing of this helical structure produces the highly condensed structure
characteristic of metaphase chromosome.

Furthermore, in situ hybridisation experiments with several different
fluorescent-labeled probes to DNA interphase cells support the loop model shown
in Figure 37. In these experiments, some probe sequences separated by millions
of base pairs in linear DNA appeared reproducibly very close to each other in
interphase nuclei from different cells (Figure 39). These closely spaced probe
sites are postulated to lie close to specific sequences in the DNA, called scaffold-
associated regions (SARs) or matrix-attachment regions (MARs), that are bound to
the chromosome scaffold. SARs have been mapped by digesting histone-depleted
chromosome with restriction enzymes and then recovering the fragments that are
bound to scaffold proteins. In general, SARs are found between transcription units.
In other words, genes are located primarily within chromatin loops, which are
attached at their bases to a chromosome scaffold. Experiments with transgenic mice
indicate that some cases SARs are required for transcription of neighbouring genes.
In Drosophila, some SARs can insulate transcription units from each other, so that
proteins regulating transcription of one gene do not influence the transcription of a
neighbouring gene separated by a SAR. Individual interphase chromosomes, which
are less condensed than metaphase chromosomes, cannot be resolved by standard
microscopy or electron microscopy. Nonetheless, the chromatin of interphase cells
is associated with extended scaffold and is further organised into specific domains.
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Figure 38 Model for the seven-orders packing of chromatin and the chromosome scaffold
in metaphase chromosome. In interphase chromosomes, long stretches of 30 nm chromatin
loop out from extended scaffolds. In metaphase chromosomes, the scaffold is folded into
a helix and further packed into a highly compacted structure, whose precise geometry has
not been determined. [Adapted from Lodish et al. (2000, p. 326).]
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Figure 39 Experimental demonstration of chromatin loops in interphase chromosomes.
In situ hybridisation of interphase cells was carried out with several different fluorescent-
labeled probes specific for sequences separated by known distances in linear, cloned DNA.
Lettered circles represent probes. Measurement of the distances between different hybridised
probes, which could be distinguished by their colour, showed that some sequences (e.g., A,
B, and C), separated from each other by millions of base pairs, appear located near each
other within nuclei. For some sets of sequences, the measured distances in nuclei between
one probe (e.g., C) and sequences successively farther away initially appear to increase
(e.g., D, E, and F) and then appear to decrease (e.g., G and H). The measured distances
between probes are consistent with loops ranging in size from one to four million base pairs.
[Adapted from Lodish et al. (2000, p. 327).]

11. Open Mathematical Questions, Biological Implications,
and Some Suggestions for the Future Research

In this article we stressed the participation of topoisomerases in nearly all cellular
processes involving DNA. Because the enzymes affect the topology and organi-
sation of intracellular DNA, the primary effects of inactivating a topoisomerase
are also likely to generate far-reaching ripples. The regulation of the cellular lev-
els of the enzymes themselves and the association of the enzymes with other
cellular proteins are closely tied to the cellular functions of the enzymes. One
major cellular function of the topoisomerases is to prevent excessive supercoil-
ing of intracellular DNA. However, supercoiling is sometimes utilised in vivo to
drive a particular region of intracellular DNA into a conformation suitable for
a particular process. Initiation of DNA replication, for example, often requires
that the DNA be in a negatively supercoiled state. Indeed, replication is the best-
known process that generates supercoils in intracellular DNA. The involvement of
various topoisomerases in the removal of positive supercoils generated by repli-
cation is generally in accordance with their known in vitro specifities. Namely,
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eukaryotic DNA topoisomerases I and II, and bacterial DNA topoisomerase IV,
can efficiently remove supercoils of either sort; bacterial DNA topoisomerases I
and III, and eukaryotic DNA topoisomerases III, can remove negative supercoils,
but not positive supercoils, unless a single-stranded region is present in the DNA.
Bacterial gyrase is unique in its ability to convert positive to negative supercoils;
depending on how fast the positive supercoils are generated and how fast they are
converted to negative supercoils, gyrase can either prevent accumulation of posi-
tive supercoils in an intracellular DNA segment or keep the segment in a negatively
supercoiled state.

The DNA topoisomerases presumably co-evolved with the formation of very
long and/or ring-shaped DNA molecule. To solve a variety of problems that are
rooted in the double-helix structure of DNA, nature has created not one but three
distinct enzymes. In eukaryotes, members of all three subfamilies of DNA topoi-
somerases have been found in the same cells; in bacteria, four members from two
subfamilies participate in nearly all-cellular transactions of DNA. The past decade
saw much progress in the study of the DNA topoisomerases, but many questions
remain. The key to answering to them may lie in the elucidation of interactions
between the DNA topoisomerases and other cellular proteins. Complexes between
these enzymes and transcription factors and chromosomal proteins illustrate new
avenues yet to be fully explored. Furthermore, whereas the information available on
topoisomerases-DNA interactions is substantial, that on interactions in the context
of chromatin is still scarce; whether eukaryotic DNA topoisomerase II has a struc-
tural role in the organisation of interphase and/or metaphase chromosomes, for
example, is yet to be settled.

By the 1970s, it became clear that — although the informational content of the
genetic code was embodied in a linear array of bases — it was the three-dimensional
structure and the topological condensation in the chromatin-like assembly of the
DNA double helix in the chromosomes that ultimately would govern its physio-
logical functions in the cells. This is very likely the crucial point. As an illustration
of this point, in perhaps the most striking biological example of ‘forms dictates
function’, the two complementary parental strands of DNA must separate during
semi-conservative replication in order to act as the templates for each of the two
newly synthesised daughter strands. This discovery leads to the realisation that
the structure of DNA, while elegant, burdened the cell with previously unimag-
ined topological problems. Although these topological problems were originally
recognised only for circular molecules, because of the long length of chromosomal
DNA, we now know that they apply to linear genomes as well.

The key for finding the solution of these problems seems to lies in the following
issues: (1) In the conformational, organisational and biological roles of the topoi-
somerases that, because of their extreme structural and functional complexity, still
remains in part to be elucidated. (2) In the DNA supercoiling process, because it
links the biological activity of DNA to its tertiary structure and not just its sequence.
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All essential cellular processes seem to be related to the way in which supercoiling
is realised. (3) In the three-dimensional organisation of the chromatin, which is
a nucleoprotein complex and the stuff chromosomes are made of. This organisa-
tion not only compacts the DNA but also plays a fundamental role in regulating
interactions with the DNA during its metabolism.

12. Conclusion

A number of theoretical and experimental new findings suggest that the secrets of
life and what allows the biological growth of all organisms maybe lies in topology,
namely in the fact that forms possess the capacity to convert dynamically structures
and functions one into another. In fact, the topological compaction of our genome,
the basic building block of which is the nucleosome (a protein-DNA structure),
provides a whole repertoire of information in addition to that furnished by the
genetic code. This mitotically stable information is not inherited genetically and
is termed epigenetic. Epigenetic phenomena are propagated alternative states of
gene expressions, and alternative states of protein folding, and they are closely
linked with histone and chromatin modifications. Still more than genetics events,
one could say that the comprehension of epigenetic processes essentially requires
a better understanding of the role played by topological transformations.

One of the challenges in chromatin research is to understand how levels of chro-
mosome organisation beyond the 30 nm chromatin filaments condense to form the
cell metaphase chromosome. We need very likely a topological model that accounts
for the several ordered transformations that are required for the dimensions of
metaphase chromosomes, which are 10,000-fold shorter and 400- to 500-fold
thicker than the double stranded DNA helices contained within them. Loop-like
arrangement of chromatin and its stacking into a cylinder of 800 to 1000 nm in its
thickness, which is in good agreement with the diameter of the metaphase chro-
mosome, and twisting the cylinder into a superhelix would further compact it, is a
model that account well for the corkscrew appearance of metaphase chromosome.

Happily cells achieve this tight packing of DNA while still maintaining the
chromosome in a form that allows regulatory proteins to gain access to the DNA to
turn on (or off) specific genes or to duplicate the chromosomal DNA. This means
that all epigenetic states and processes have to be established, inherited, controlled
and modified in such a way as to permit that their integrity is maintained while
preserving the possibility of deformability. Thus, the topological plasticity of the
many-levels structure of chromosomes, the chromatin dynamics and the gene’s
regulatory modifications are intimately interconnected processes and determinant
factors of cellular and development organisation.

Condensation of genetic material appears to be a very fundamental mechanism
of life. Now, since condensation realise as a kind of topological embedding of one
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space, the restrained linear DNA helicoidal-like surface, into another space, the
three-dimensional chromosome structure in the cell’s nucleus, it seems reasonable
to think that topological embeddings and transformations are dynamic processes
that are essential for the maintain and the integrity of life. One demonstration of that
is the fact that the exotic supercoiled forms that double helix can assume are tertiary
structures which have an important effect on the molecule’s secondary structure and
its function. DNA and chromosome organisation must fulfill precise topological
prerequisite in order to achieve certain functional processes. In particular, DNA
transcription and replication can both be enhanced and regulated by topological
supercoiling. It now appear clear, for example, that for replication to be completed,
the linking number of the DNA, Lk, must be reduced from its vast (+) value
to exactly zero. In bacteria, DNA gyrase introduces (–) supercoils and thereby
removes parental Lk. Moreover, in certain cases, the severity of the phenotype can
be controlled by changing the level of supercoiling in the cell.

We have thus three interrelated theoretical and experimental facts, which
we would like to stress: (1) DNA condensation is a driving force for double
helix unlinking and chromosome portioning, by folding, in topological domains.
(2) Condensation is achieved by supercoiling, which is a topological state of
macromolecules enhanced by three kinds of deformations (embeddings): twisting,
writhing and knotting. If the DNA is modeled as a ribbon in three-space whose
axis is not flat in the plane, we can define the twist of the ribbon abstractly as
the integral of the incremental twist of the ribbon about the axis, integrated as we
traverse the axis once; so it simply measures how much the ribbon twists about the
axis from the frame of reference of the axis: it need not be an integer. The writhe
measures how much the axis of the ribbon is contorted in space. Because (–) super-
coiling in bacteria arises from a topological misalignment and not a protein corset,
it has the flexibility to do work. (3) Supercoiling results from topological strain
and the contortion of DNA by proteins, notably the nucleosomal histone octet and
the structural maintenance of chromosomes (SMC) proteins.

To conclude, we would like to say few words on the general philosophy which
underpins this work. We tried to explore new mathematical modelling in a variety of
biological problems, paying a particular attention to the possibilities of a geometri-
cal and topological description of biological systems such as that of chromatin and
chromosome. We showed that its study involves the simultaneous integration of
different geometrical concepts and biological components and their relationships
with one another. A multilevel and integrative approach has to essentially take into
account the fact that simply knowing the parts list of genes and proteins does not
tell us much about how life’s many biological processes work. The cellular organ-
isation is a complex dynamic system with hundreds of thousands of bio-molecules
interacting with one another to execute life’s many functions. Developments in the
mathematical and physical sciences will be very important for addressing com-
plex questions in biology. In the view of these facts, one may foresee that a great
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deal of the future research on the interface between mathematics and life sciences
will relate to the following two fundamental issues: How did the topology of the
double-helix and DNA-proteins complexes evolve and why it is so biologically
important for the integrity of cells and organisms? These questions arise imme-
diately from the crucial recognition that the topology and dynamics of DNA and
macromolecular proteins complexes are essential for the maintenance and integrity
of life.
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