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To Anna and Sarah

When something doesn’t feel right, it probably isn’t.





�

contents

Preface 	 ix

1	 Introduction: It Seemed like the Right Thing to Do  
at the Time	 1

2	T he Type A Diet: Sampling Strategies to Eliminate  
Confounding and Reduce Your Waistline	 9

3	C onservatives, Liberals, and Other Political Pawns:  
How to Gain Power and Influence with Sample  
Size Calculations	 31

4	 Bunco, Bricks, and Marked Cards: Chi‐Squared  
Tests and How to Beat a Cheater	 47

5	 Why it Pays to be a Stable Master: Sumo Wrestlers  
and Other Robust Statistics	 69

6	 Five‐Hour Marriages: Continuous Distributions, Tests for 
Normality, and Juicy Hollywood Scandals	 91

7	 Believe It or Don’t: Using Outlier Detection to Find the  
Weirdest of the Weird	 109



viii� contents

8	T he Battle of the Movie Monsters, Round Two:  
Ramping up Hypothesis Tests with Nonparametric Statistics	 123

9	 Models, Murphy’s Law, and Public Humiliation:  
Regression Rules to Live By	 139

Appendix A �C ritical Values for the Standard Normal  
Distribution� 163

Appendix B C ritical Values for the T-Distribution� 165

Appendix C C ritical Values for the Chi-Squared Distribution� 167

Appendix D C ritical Values for Grubbs’ Test� 169

Appendix E �C ritical Values for Wilcoxson Signed  
Rank Test: Small Sample Sizes� 171

Glossary� 173
Index� 185



�

preface

I’ve had my share of mistakes: spilled coffee, insensitive remarks, and red 
socks thrown into a load of white laundry. These are daily occurrences in my 
life. But it isn’t these little, private mishaps that haunt me. It’s the big ones, 
the data analysis disasters, the public humiliations resulting from my own 
carelessness, mistakes that only reveal themselves when I’m standing in 
front of a room full of important people, declaring the brilliance of my 
statistical conclusions to the world.

Fortunately, these humiliations appear much more often in my dreams 
than they do in real life. When they do happen, however, they hit me when 
I least expect them, when I’m rushed, or when I’m overconfident in my 
results. All of them are accidental. I certainly never mean to misinform, but 
when you analyze as much data as I do, small mistakes are bound to happen 
every now and then.

This book highlights some of the well‐known shortcomings of basic 
statistics, shortcomings that can, if ignored, lead to false conclusions. It 
provides tips and tricks to help you spot problem areas in your data analysis 
and covers techniques to help you overcome them. If, somewhere within 
the chapters of this book, you find information that prevents you from 
experiencing your own statistical humiliation, then exposing my own embar-
rassment will have been worth it.

Kristin H. Jarman
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1
Introduction: It Seemed  
Like the Right Thing  
To Do at the Time

As a seasoned statistical scientist, I like to think I’m invincible when it 
comes to drawing reliable conclusions from data. I’m not, of course. Nobody 
is. Even the world’s best data analysts make mistakes now and then. This is 
what makes us human.

Just recently, for example, I was humbled by the simplest of all statistical 
techniques: the confidence interval. I was working with a government panel, 
helping them to establish criteria for certifying devices that detect certain 
toxic substances. (Smoke detectors, for example, are certified so you know 
they’re reliable; in other words, they’re likely to sound an alarm when there’s 
smoke, and keep quiet when there isn’t). The committee members wanted to 
know how many samples to test in order to reach a certain confidence 
level on the probability of detection, the probability that, given the toxin is 
present, the device will actually sound an alarm.

No problem, I thought.
Back in my office, I grabbed a basic statistics book, pulled out the 

formula for a confidence interval of a proportion (or probability), and went 
to work. I began calculating the confidence bounds on the probability of 
detection for different testing scenarios, preparing recommendations as 
I went along. It wasn’t until sometime later I realized all my calculations 
were wrong.
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Well, not wrong, the formulas and numbers were correct. But they didn’t 
really fit my problem. When I started the calculations, I’d neglected one 
small but important detail. The detection probability for the devices being 
tested is typically very high, say 0.95 or higher. The basic confidence interval 
for a proportion p uses a normal approximation, which only applies when 
Np > 5 and N(1–p) > 5. Since I was limited to relatively small sample sizes 
of N = 80 or less, at best I had N(1–p) = 80 × 0.05 = 4. Not large enough for 
the standard confidence interval to apply.

This happens more than I care to admit, that I embark on a data analysis 
using the world’s most common statistical techniques, only to realize that 
my data don’t work with the tools I’m using. Maybe the data don’t fit the 
nice, bell‐shaped distribution required by most popular methods. Maybe 
there are extreme values that could skew my results. But whatever the 
problem, I know that if I don’t address it or at least acknowledge the impact 
it might have on my results, I will be sorry in the end.

This book takes you beyond the basic statistical techniques, showing you 
how to uncover and deal with those less‐than‐perfect datasets that occur in 
the real world. In the following chapters, you’ll be introduced to methods for 
finding outliers, determining if a sample conforms to a normal distribution, 
and testing hypotheses when your data aren’t normal. You’ll learn popular 
strategies for designing experimental studies and performing regression with 
multiple variables and polynomial functions. And you’ll find many tips and 
tricks for dealing with difficult data.

When Good Statistics Go Bad: Common  
Mistakes and the Impact they have

There are many ways good statistics can go wrong and many more ways they 
can impact a data analyst’s life. But in my experience, the vast majority of 
these mishaps are caused by just a few relatively common mistakes:

•• Answering the wrong question

•• Gathering the wrong data

•• Using the wrong statistical technique

•• Misinterpreting the results

Anyone who deals with a lot of data commits at least one of these 
errors from time to time. In my most recent incident, where I was slapped 
down by a simple confidence interval, I was clearly applying the wrong tech-
nique. Thankfully, this error only cost me a little time and it was easily fixed. 
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In Chapter 9, I’ll share another one of my statistical humiliations, a situation 
where I misinterpreted the results of an analysis, a mistake that could’ve 
ruined my reputation and cost my employer millions of dollars.

This book introduces many statistical techniques designed to keep you 
from making these four common errors. Chapters 2 and 3 focus on designing 
studies based on your research goals. Chapters 5–9 introduce statistical 
techniques that can help you select the right analysis for a particular problem. 
In all of the chapters, the emphasis lies not on the mathematics of statistics 
but on how and when to use different techniques so you can avoid making 
costly mistakes.

Statistics 101: Concepts You should Know before 
Reading this Book

The techniques taught in most introductory statistics classes are built on a 
relatively small number of concepts, things like the sample mean and the normal 
distribution. But not‐so‐basic techniques are built on them, too. Before you dive 
too deeply into the world of data analysis, it’s important to have a working 
knowledge of a handful of concepts. Here are the ones you’ll need to get the 
most out of this book. For a detailed introduction to these topics, see a basic 
statistics textbook such as the companion to this book, The Art of Data Analysis: 
How to Answer Almost Any Question Using Basic Statistics by yours truly.

Probability Theory

Statistics and data analysis rely heavily on mathematical probability. 
Mathematical probability is concerned with describing randomness, and all of 
the functions and complex formulas you see in a statistics book were derived 
from this branch of mathematics. To understand the techniques presented in 
this book, you should be familiar with the following topics from probability.

Random Variables and Probability Distributions  A random variable 
represents the outcome of a random experiment. Typically denoted by a 
capital letter such as X or Y, a random variable is similar to a variable x or y 
from algebra. Where the variable x or y represents some as yet unsolved 
value in an algebraic equation, the variable X or Y represents some as‐yet‐
undetermined outcome of a random experiment. For example, on a coin toss, 
with possible outcomes heads and tails, you could define a random variable 
X = 0 for tails and X = 1 for heads. This value of X is undetermined until the 
experiment is complete.
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A probability distribution is a mathematical formula for assigning prob-
abilities to the outcomes of a random experiment. Many different probability 
distributions have been developed over the years, and these can be used to 
assign probabilities in almost any random experiment you can imagine. 
Whether or not you’ll win the lottery, how many times your new car will 
break down in the first year, the amount of radioactivity you’ll absorb while 
scooping out your cat’s litter box, all of these events have a probability 
distribution associated with them.

Expected Values and Parameters of a Distribution  A random variable is 
uncertain. You don’t know exactly what value it will take until the experiment 
is over. You can, however, make predictions. The expected value is just that: 
a prediction as to what value a random variable will take on. The two most 
common expected values are the mean and variance. The mean predicts the 
value of the random variable, and the variance predicts the likely deviation 
from the mean. The parameters of a distribution are values that specify the 
exact behavior of a random variable. Every probability distribution has at 
least one parameter associated with it. The most common parameters are also 
expected values: in particular, the mean and variance.

Statistics

Statistics is the application of probability to real data. Where probability is 
concerned with describing the mathematical properties of random vari-
ables, statistics is concerned with estimating or predicting mathematical 
properties from a set of observations. Here are the basic concepts used in 
this book.

Population vs. Sample  In any study, the goal is to learn something about a 
population, the collection of all people, places, or things you are interested 
in. It’s usually too costly or too time‐consuming to collect data from the 
entire population, so you typically must rely on a sample, a carefully selected 
subset of the population.

Parameter vs. Estimate  A parameter is a value that characterizes a proba-
bility distribution, or a population. An estimate is a value calculated from a 
dataset that estimates the corresponding population parameter. For example, 
think of the population mean and sample mean, or average. The population 
mean is a parameter, the true (often unknown) center of the population. The 
sample mean is an estimate, an educated guess as to what the population 
mean might be.
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Discrete vs. Continuous Data  Any data collection exercise produces one or 
more outcomes, and these outcomes—called observations, measurements, or 
data—can be either discrete or continuous. Discrete observations are whole 
numbers, counts, or categories, in other words, anything that can be easily 
listed. For example, the outcome of one roll of a six‐sided die is discrete. 
Continuous observations, on the other hand, cannot be listed. Real numbers 
are continuous. If you choose any two real numbers, no matter which two you 
choose, there’s always some number in between them. Different statistical 
techniques are often applied to discrete and continuous data.

Descriptive Statistics  Descriptive statistics are estimates for the center 
location, shape, texture, and other properties of a population. Descriptive 
statistics are the foundation of data analysis. They’re used to describe a 
sample, construct margins of error, compare two datasets, find relationships 
between variables, and just about anything else you might want to do with 
your data. The two most common descriptive statistics are the sample mean 
(average) and standard deviation.

The average, or sample mean, describes center location of a sample. 
Calculated as the sum of all your data values divided by the number of data 
values in the dataset, the average is the arithmetic center of a set of observa-
tions. The standard deviation measures the spread of a set of observations. 
The standard deviation is the average deviation, or variation, of all the 
values around the center location.

Sample Statistics and Sample Distributions  A sample statistic is calculated 
from a dataset. It’s a value with certain statistical properties that can be used 
to construct confidence intervals and perform hypothesis tests. A z‐statistic 
is an example of a sample statistic. A sample distribution is a probability 
distribution for a sample statistic. Critical thresholds and p‐values used 
in confidence intervals and hypothesis tests are calculated from sample 
distributions. Examples of such distributions include the z‐distribution and 
the t‐distribution.

Confidence Intervals  A confidence interval, or margin of error, is a mea-
sure of confidence in a descriptive statistic, most commonly the sample mean. 
Confidence intervals are typically reported as a mean value plus or minus 
some margin of error, say 8 ± 2 or as a corresponding range, such as (6, 10).

Hypothesis Tests  A hypothesis test uses data to compare competing claims 
about a population in order to determine which claim is most likely. There are 
typically two hypotheses being compared: H

0
 and H

A
. H

0
 is called the null 
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hypothesis. It’s the fall‐back position. It’s what you’re automatically 
assuming to be true. H

A
 is the alternative hypothesis. This is the claim you 

accept as true only if you have enough evidence in the data to reject H
0
.

Hypothesis tests are performed by comparing a test statistic to a critical 
threshold. The test statistic is a sample statistic, a value calculated from the 
data. This value carries evidence for or against H

0
. The critical threshold is 

a value calculated from a sample distribution and the significance level, or 
probability of falsely rejecting H

0
. You compare the test statistic to this 

threshold in order to decide whether to accept that H
0
 is true, or reject H

0
 in 

favor of H
A
.

Alternatively, you can use the test statistic to calculate a p‐value, a 
probability for the evidence under the null hypothesis, and compare it to the 
significance level of the test. If the p‐value is smaller than the significance 
level, then H

0
 is rejected.

In general, hypothesis tests are either one‐sided or two‐sided. A one‐sided 
hypothesis test looks for deviations from the null hypothesis in one 
direction only, for example, when testing if the mean of a population is zero 
or greater than zero. A two‐sided hypothesis test looks for deviations in 
both directions, as in testing whether the mean of a population is zero or 
not equal to zero. One‐sided and two‐sided hypothesis tests often have 
the same test statistic, but to achieve the same significance level, they typi-
cally end up using use different critical thresholds.

Linear Regression  Linear regression is a common modeling technique 
for predicting the value of a dependent variable Y from a set of independent 
X variables. In linear regression, a line is used to describe the relationship 
between the Xs and Y. Simple linear regression is linear regression with a 
single X and Y variable.

Tips, Tricks, and Techniques: A Roadmap 
of what Follows

Each chapter in this book begins by asking a specific question and 
reviewing the basic statistics approach to answering it. Common problems 
that can derail the basic approach are presented, followed by a discussion 
of methods for overcoming them. Along the way, tips and tricks are intro-
duced, taking you beyond the techniques themselves into the real‐world 
application of them. In most cases, the chapter wraps up with a case study 
that pulls the different concepts together and answers the question posed at 
the beginning.
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Where basic statistics and a little algebra can be used to explain a tech-
nique, the mathematical details are included. However, in several cases, the 
mathematics goes beyond the basics, requiring more advanced tools such as 
calculus and linear algebra. In those cases, rather than presenting the 
mathematical details of a method, I focus instead on the big picture, what the 
technique does and how to use it. With this strategy, I hope to avoid getting 
bogged down with the math, and keeping emphasis on the application of the 
methods to real world situations.

A final note regarding data analysis software. There are many statistical 
software packages out there, and every data analyst has his or her personal 
favorite. Most hard core data analysts eventually migrate to powerful tools 
such as R, Matlab, or SAS. Most of these have an interface, much like a 
programming language, that allows you to tailor your data analyses in almost 
any way you’d like. But there are less sophisticated tools that are more user 
friendly and have a wide variety of useful techniques built into them. These 
tools are good for beginners and those who fear programming, and if you 
don’t already have a favorite data analysis software, I urge you to search the 
Internet for one. For this book, I downloaded a popular Excel add‐in. Every  
analysis you’ll find in this book was done entirely in Excel, or with the help 
of this inexpensive add‐in.
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2
The Type A Diet: Sampling 
Strategies to Eliminate 
Confounding and Reduce  
Your Waistline

Be warned. I am not a medical doctor, nurse, dietician, or nutrition scientist. 
I’ve eaten my share of cupcakes and red meat. I’ve been on fad diets and 
dropped ten pounds only to gain them right back again. In other words, I 
have no real authority when it comes to any food choices, much less healthy 
ones. So, if you choose to follow a diet plan like the one laid out in this 
chapter, you do it at your own risk. And if this warning isn’t enough and you 
still want to try it, do yourself a favor and talk to a medical professional first.

Over forty million Americans go on a diet every year. That’s over forty 
million people looking for a way to lose weight and get healthy. And even 
though we all know the formula for a lean, toned body—to eat right and 
exercise—many of us are looking for a magic solution. Something easy to 
follow. Something that will keep us from binging on donuts. Something that 
will work fast.

In wishing for a quick and easy diet solution, I’m as guilty as anyone. I 
have a shelf stuffed full of diet books I’ve collected over the years. Every one 
of these books is written by an expert, somebody with a college degree who 
claims to have helped thousands of patients. Every one of these books claims 
to have the answer to long life, sexy abs, and good health. And every one of 
them cites numerous scientific publications to back up their claims. There’s 
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only one problem. None of the books agree on much of anything. The 
caveman diet book claims foods like rice and potatoes cause obesity and 
insists we should eat meat, meat, and more meat. The happy vegetarian diet 
book insists meat makes us overweight and unhealthy, so we should stick to 
rice and potatoes. The combine‐it‐right diet book claims we can eat meat 
and rice and potatoes, so long as we don’t eat them together.

How can so many experts come to such different conclusions about the 
foods we eat? Are they all just scam artists, slick salespeople looking to 
separate us from our money? And what about their so‐called scientific studies? 
Are those faked in order to convince us to buy books and merchandise?

There are scam artists out there, to be sure. But even excluding the fraud-
sters, there would still be a pile of conflicting studies about health and diet. 
Why? Because humans are complex creatures, and studying humans is a 
complex job. Virtually any difficulty that can ruin an experimental plan 
pops up in human studies. Practical and ethical limitations. Uncontrollable 
variables. Confounding factors. This makes it very difficult to run an exper-
imental study on a small number of people that can be generalized to the 
entire population.

Fortunately, there are tips, tricks, and techniques that can help minimize 
these difficulties. In this chapter, different types of experimental studies are 
introduced. Common mistakes are presented, along with strategies for 
planning an experiment—human or otherwise—that will produce the most 
reliable results. These strategies will be used to design a series of experi-
ments that eliminate confounding and might even reduce your waistline.

THE BASICS OF PLANNING A STUDY

Suppose I’ve come up with a brand new fad diet: the Type A diet. Designed 
specifically for the classic Type A personality—competitive, driven, busy—
this diet is just as efficient as the demographic it serves. No pesky food 
choices. No counting calories or carbs. Whenever you get hungry, you simply 
munch on one of my delicious diet bars. What could be more streamlined 
and simple?

In order for this weight loss plan to be successful, my diet bars need to be 
tasty and nutritious, and they need to promote weight loss. As a Type A per-
sonality myself, I’m not satisfied with tolerable flavor or a reasonably good 
nutrition profile. I want something that will pummel all those other energy 
and nutrition bars into the shredded cardboard they taste like. In order to beat 
the competition, I need to uncover their strengths and weaknesses. I need to 
do some research.
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I’ll conduct this research and design my weight loss plan through a series 
of studies. A study is a data collection exercise designed to answer some 
question about a group of people, places, or items. How accurately does this 
medical device measure blood oxygen levels? Do customers prefer a bigger 
smartphone with an easy‐to‐read screen, or a more compact device that’ll fit 
into small pockets? Does eating thirteen grapefruit a day cause the average 
dieter to lose weight? All of these questions can be answered by gathering 
data and using statistical methods to make sense of it.

In any study, the goal is to learn something about a population, the 
collection of all people, places, or things you are interested in. It’s usually 
impractical to collect data from the entire population, so you typically 
must rely on a sample, a carefully selected subset of the population. For 
example, using the entire population of humans to test whether thirteen 
grapefruit a day induces weight loss would be impossible. You’d have to 
rely on a group of test subjects to represent all humans and draw your 
conclusions from that group.

Every study contains both dependent and independent variables. A 
dependent variable is the outcome, the phenomenon you’re studying. In 
the thirteen‐grapefruit‐a‐day weight loss study, for example, the dependent 
variable might be the weight of test subjects taken before and after follow-
ing the diet. Independent variables are factors you manipulate or observe 
in hopes of impacting the dependent variable. The number and variety of 
grapefruit eaten might be the independent variables in the grapefruit study. 
You might manipulate these things in order to determine, for example, 
whether a daily dose of eleven red grapefruit or fifteen yellow grapefruit 
promotes the most weight loss.

When planning a study, you identify the population, choose a sample, 
pick a dependent variable to measure, and decide how to manipulate or mea-
sure the independent variables. Sounds fairly simple, right? Unfortunately, 
there are many ways an experimental plan can go wrong. The next section 
lists some of the more common ones.

MY STATISTICAL ANALYSIS IS BRILLIANT. WHY ARE MY 
CONCLUSIONS SO WRONG?

There’s an old saying that applies to anyone who’s ever used a real‐world 
dataset: garbage in, garbage out. In other words, proper data analysis is an 
important part of any good study, but there are no statistical techniques that 
can make up for bad data. If the observations you’re feeding your statistical 
routines don’t accurately represent the population or the outcome you want 
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to measure, then the only thing statistics can do is give you false confidence 
in potentially inaccurate conclusions. Here are some easy‐to‐make mistakes 
when it comes to planning a study.

Answering the Wrong Question

Suppose a friend of mine suggests meal replacement shakes would be better 
than nutrition bars for my Type A diet. True to my perfectionist nature, 
I can’t rest until I’ve either convinced myself this is true, or proven my friend 
wrong. I plan a study using volunteers. Half the volunteers are allowed to 
drink only meal replacement shakes from a popular diet plan. The other half 
are only allowed to eat nutrition bars. They stick to my diet for five days and 
come back for an evaluation at the end of it. I weigh the volunteers and ask 
questions about whether or not they were satisfied with the diet food they 
were given.

As I look over the data, a few observations jump out at me: (i) the 
bar‐eating dieters reported being satisfied with the food more often than the 
shake drinkers, (ii) on average, the shake drinking group lost six pounds 
while their bar‐eating counterparts lost only three, and (iii) several of the 
shake drinkers mentioned how drinking a shake too close to bed kept them 
up at night. I’ve invested a lot of time and effort planning this study and 
I want to get the most of it, but now I wonder: what does it mean for one diet 
plan to be better than another? Does an extra three‐pound weight difference 
in the first week matter the most? Or is it better to be satisfied with the 
food? Will a shake that causes insomnia turn my diet plan into a flop, or will 
a typical conquer‐the‐world, Type A person appreciate the extra waking 
hours in the day? Unfortunately, after all my time and effort, I still have 
more questions than answers.

In any study, it’s important to spend some time thinking about the out-
come you’d like to measure and determining how it relates to the question 
you’re trying to answer. Before I start the bar versus shake study, for example, 
I should think about what it means for a diet to be good. Is it only weight loss 
that matters? What about satisfaction with the food? Or maybe it refers to 
more intangible outcomes, things like energy level and overall happiness? 
I should also think through the different possible outcomes and what I can 
conclude in each case. For example, what could I conclude if one group lost 
more weight, but the other was more satisfied with the food? What if it was 
a virtual tie? Are there additional outcomes, like a dieter’s energy level, that 
could strengthen my conclusions? By thinking through these possible sce-
narios beforehand, I’m more likely to identify all the important variables in 
my study, making me much better protected against ambiguous results.
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Putting Too Much Confidence in Convenience Data

If you deal with data on a daily basis, you’ve probably run across convenience 
data. Convenience data refers to a dataset that’s easy to get, and it often 
comes from another study. For example, suppose I find a dataset from a 
long‐term health study in which the diet and health of volunteers was 
tracked for several years. Some of these volunteers were on specialized 
diets, including a doctor prescribed regimen similar to my Type A diet. This 
long‐term study was not designed to determine if a bar diet or shake diet is 
better, but because this information was tracked, I could compare the health 
data of the dieters to the nondieters.

In general, there’s nothing wrong with convenience data. If you have it, 
why not use it. But there are limits to using data collected for one purpose (or 
no specific purpose at all) to answer a question it was never meant to answer. 
The person who planned the study was planning it for his or her purposes, 
not yours. This can cause two of the biggest garbage in, garbage out culprits: 
weakened hypotheses and confounding factors.

First, the study was not designed to answer your research questions, 
so  it probably can’t, at least not directly. You’ll most likely need to 
weaken the original hypotheses in order to make your study fit the data-
set instead of the other way around. For example, the data from the long‐
term health study might be thorough, and there may be a lot of it, but if 
the researchers  didn’t  divide the dieters’ group into a shake‐drinking 
group and a bar‐eating group, it can’t be used to test my original hypo-
thesis, that bars are better than shakes. In this case, I’d be forced to settle 
for a weakened hypothesis, maybe that the dieters’ tend to lose more 
weight than the nondieters. Unfortunately, this doesn’t really answer 
my question.

Second, convenience data has a high risk of producing confounding 
factors. A confounding factor is any variable that can confuse the out-
come of a study. For example, suppose I decide weight and satisfaction 
with the food are the outcomes I’d like to measure when comparing the 
shakes to the bars. Drinking shakes or eating diet bars may well affect a 
person’s weight, but so do exercise, diet, stress and anxiety, family history, 
and many other factors. Depending on how these factors were considered 
in the long‐term health study, I may be at risk of making false conclusions. 
If, for example, the dieters in the long‐term study were part of a group who 
made several lifestyle changes, including increased exercise, I have no way 
of concluding that it was the diet that caused weight loss and not the 
exercise. In other words, the exercise regimen confuses, or confounds, the 
results of the study.
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Confusing Association and Causation

There are two basic types of studies: experimental and observational. 
Experimental studies are highly manipulated. The independent variables 
are carefully controlled, the dependent variables are carefully measured, and 
confounding factors are carefully accounted for. By controlling an experiment 
so tightly, researchers can establish cause and effect, prove hypotheses, and 
make strong scientific conclusions. Unfortunately, this type of study is not 
terribly common outside research and engineering laboratories.

Most studies you run across in the mainstream are observational studies. 
In an observational study, you have little or no control over variables that 
might affect the outcome. Online surveys are a good example of observa-
tional studies. The people collecting the data aren’t trying to manipulate 
your opinions. They have no control over independent variables like who 
agrees to take the survey. All they can do is ask for your opinion and record 
the response.

Observational studies, even those that are perfectly planned, rarely lead to 
strong cause‐and‐effect conclusions. For example, think about an observa-
tional health study, where the eating habits of volunteers are recorded over 
five years. If, at the end of the study, the people who ate fish at least twice a 
week are healthier than those who didn’t, then the researchers can claim an 
association between eating lots of fish and good health. That doesn’t mean if 
you eat lots of fish, you will become healthier. It only means that, on average, 
the people who ate more fish tended to be healthier than their non‐fish‐eating 
counterparts.

Confounding factors are often one reason cause‐and‐effect conclusions 
can’t be drawn from an observational study. Especially for human studies, 
where the biology is complex and the behavior even more complex, you can 
list every variable you can imagine and control the conditions as much as 
possible, but there are still uncontrollable factors that might impact the 
outcome of the study. For example, to establish a link between education and 
poverty, you can follow young people throughout their lifetimes, tracking 
education, employment status, and income. You can also record their race, 
the type of neighborhood they grew up in, the quality of their schools, and 
other factors that might play a role in a person’s future success. But there’s 
no way to track every variable that might impact educational or economic 
success, factors like a great teacher, natural talent, or an unexpected oppor-
tunity. So, there’s no way to claim education causes a person to earn a higher 
income. At most, you can only say the two things are related.

Responsible researchers are very careful to limit the conclusions of their 
observational studies to associations. Unfortunately, it’s all too easy to jump 
from association to causation, and this mistake has caused everything from 
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strange food fads to flawed government policy over the years. Recently, 
two bestselling books highlighting the scandals caused by such confusion 
have been published. For more information and some good fun, I refer 
you  to Freakonomics: A Rogue Economist Explores the Hidden Side of 
Everything, and Superfreakonomics: Global Cooling, Patriotic Prostitutes, 
and Why Suicide Bombers Should Buy Life Insurance, both Levitt and 
Dubner (2009, 2011).

REPLICATION, RANDOMIZATION, AND BLOCKING:  
THE BUILDING BLOCKS A GOOD STUDY

A well‐designed study is built on three things: replication, randomization, 
and blocking. Replication refers to measuring multiple outcomes, not just 
one. For example, in a study comparing the health benefits of grape juice 
versus wine, multiple people would be assigned to a wine drinkers group and 
multiple people would be assigned to a grape juice drinkers group. The 
same measurements, replicates, would be taken on each person in both groups. 
Replication is the best way to be sure the outcomes you’re observing are typ-
ical of the entire population, and not just a single, possibly unusual, individual.

Say ten of your friends are part of this wine versus grape juice study, all of 
them twenty‐something wine aficionados, and you place them all in the wine 
group because you think they’ll be happier there. Because they’re already 
drinking wine regularly, these people are not be likely to show any change in 
health because they’re simply continuing to do what they already do. Because 
they’re all young and probably healthy, you’re unlikely to observe any health 
problems in these people, even if drinking wine is unhealthy to the population 
at large. In other words, your intentions may be good, but by handpicking test 
subjects for the wine and grape juice groups, you just might be influencing 
the outcome of your study. Randomization keeps this from happening. 
Randomization is the process of assigning objects or people to groups at 
random, without any preconceived notions. For the wine versus grape juice 
study, for example, if you had fifty test subjects, you might write “wine” on 
twenty‐five slips of paper and “grape juice” on twenty‐five slips of paper, and 
then have the volunteers draw those pieces of paper from a hat, one at a time, 
in order to get their group assignments.

Blocking is the process of grouping your test subjects into subsets of 
homogeneous individuals. This strategy helps eliminate the effects of con-
founding factors so that you can focus on the impact of your independent 
variables. For example, suppose wine actually reduces cholesterol levels. In 
the wine versus grape juice study, you could assign test subjects to each 
group purely at random, without regard to age or gender. However, an 
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improvement in cholesterol levels might not be as noticeable on healthy 
twenty‐something people as it would be on overweight forty‐something peo-
ple, simply because the older and less healthy people have higher cholesterol 
levels to begin with. If you lumped all of your volunteers into two groups 
without regard to age and overall health and analyzed the results, the very 
small change in cholesterol levels of the twenty‐somethings could cancel out 
a much larger change among the forty‐somethings. And this could prevent 
you from concluding that wine improves cholesterol levels. In other words, 
age could be considered a confounding factor that confuses the outcome of 
this study. To eliminate the impact of this confounding factor, you could 
block for age by grouping the volunteers into decades, say 20–30, 30–40, 
40–50, and 50+. For each age group, or block, you could then assign volun-
teers to the grape juice and wine groups at random. And then, when ana-
lyzing the results, you could compare the health outcomes within an age 
group, meaning comparing the twenty‐something grape juice group to the 
twenty‐something wine group, comparing the thirty‐something grape juice 
group to the thirty‐something wine group, and so on. This would take away 
confusion about the health benefits of wine caused by the test subject’s ages. 
It would also give you a more detailed understanding of whether or not age 
plays a role in the outcome.

Replication, randomization, and blocking are the foundation of any well‐
planned data collection exercise. However, it’s not always practical or 
necessary to incorporate each one into every study. When it comes to my 
Type A diet, for example, I have a big idea and a lot of motivation, but I also 
have no idea how to create a successful diet plan. Even if I limit myself to 
nutrition bars, I have more questions than answers. What basic recipe will 
give me the best flavor and texture? What vitamins do I need to add to make 
them nutritionally complete? What flavors should I incorporate to make 
them appeal to the typical Type A dieter? To answer all these questions, 
I could run a series of massive studies, complete with randomization, repli-
cation, and blocking: one to formulate a basic recipe from all possible com-
binations of ingredients, one to optimize the nutritional value of the bar, and 
one to decide on a small number of flavor varieties to put on the market. But 
with so many questions and a very limited budget, I can’t possibly do this. 
So, I must rely on less‐than‐perfect data for some of my research.

I may have more enthusiasm than knowledge when it comes to devel-
oping a weight loss plan, but I also have a lot of experience in conducting 
research. I know there are three basic types of research: exploratory, descrip-
tive, and experimental. I know that when you set out to answer a series of 
questions, you start small and flexible with exploratory research and work 
your way toward more formal, structured methods like those in experimental 
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research. And I know there are different strategies for incorporating replica-
tion, randomization, and blocking into the different types of research. This 
will help me minimize time and cost while at the same time developing a diet 
program that will be a success.

Here’s what I know.

EXPLORATORY RESEARCH: GETTING YOUR  
STUDIES INTO FOCUS

Pretty much all research starts on a computer or, if you’ve yet to merge onto 
the information superhighway, in a library. There’s a lot of information out 
there, so no matter what you’re researching, chances are somebody else has 
already thought about, looked into, and published something related to it 
before. Learning about what people have done before you can really help 
you focus your attention on the things that are important in your own studies, 
and it’s an important part of your initial research.

Exploratory research, the process of learning as much as possible about 
your subject matter, is a crucial step in the research process. In addition to 
background reading, exploratory research includes data collection and 
ad hoc statistical analysis. The purpose at this stage isn’t to answer a single, 
targeted question. Rather, it’s to figure out what questions are relevant and 
identify what variables will be important when you eventually try to answer 
them definitively. For example, I know I want to create a line of tasty and 
healthy nutrition bars for my Type A diet. But that’s all I know. I need the 
kind of direction and focus that exploratory research can give.

Exploratory research tends to be flexible and open‐ended. You can find 
out what has and has not worked in the past. You can use it to formulate a 
specific hypothesis or question. You can identify dependent variables, 
uncover independent variables, and learn about potential confounding 
factors. You get to gather and analyze data in any way that makes sense, and 
you can even switch focus midstream. This makes exploratory research the 
hands down favorite of all the scientists I work with, but it also keeps you 
from taking what you’ve learned and making precise and reliable conclu-
sions about the population you’re studying.

Take my Type A diet bars. There are a lot of nutrition bars already on the 
market. Many companies have tried, and many have failed, to make a bar 
that people want to eat. To get an idea of what’s available, I go to a handful 
of supermarkets and health food stores, buy every nutrition bar I can find, 
and take an inventory of their ingredients. The US government has established 
recommended daily amounts of all the important vitamins and minerals, and 
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based on what I see, most health bars are loaded with about the same nutri-
tional lineup. So it’s not nutritional value that differentiates one from the 
next. It’s got to be taste.

Already I’m able to focus my research. No need to run a study optimizing 
the nutritional value of my diet bars. That’s pretty much already been done 
by the government and the food industry. I’ll simply partner with a vitamin 
company that can supply me with a nutritionally complete powder to add to 
the bars and move on. This way, I can concentrate my research time and 
dollars on coming up with a recipe that appeals to the Type A personality.

I’m not one to let food go to waste. Especially when exploratory research 
is on the line. So, I gather a few friends and we taste every nutrition bar I 
bought. We write down our observations, carefully recording what we liked 
and what we didn’t like about each one. Then we compare notes and come 
to some sort of consensus.

This food‐tasting exercise is a data collection effort, and so you can call it 
a study. But it’s extremely informal and woefully lacking in proper design. 
Because I’ve invited friends to join me, there is some replication, but 
there’s no randomization and no blocking to prevent bias in the outcome. 
But at this stage, I don’t really care. I’m not trying to statistically charac-
terize the flavor and texture of the entire population of nutrition bars, I’m 
simply trying to get an idea of the best the market has to offer.

Once I’ve recovered from the gut bomb caused by tasting all those bars, 
I’m ready to go over my notes. There are a couple of themes that keep emerg-
ing. First, many of the bars taste like vitamins and have a gummy, artificial 
texture. Second, none of us thought we could stay on a diet consisting only 
of the nutrition bars we tested. These two observations cause me to make a 
declaration. No artificial, flavorless pressed food‐like bricks for my weight 
loss plan. If they’re anything like me, the health‐conscious Type A person-
ality wants a natural diet bar that looks and tastes like real food.

This helps me focus my research further. I decide to forgo the recipe‐in‐a‐
laboratory approach to formulating my basic nutrition bar. Instead I refer to 
the ultimate source for delicious, real, old‐fashioned food: my grandmother’s 
recipe box. There’s a top secret oatmeal bar recipe in there made from whole 
oats and sweetened with honey, and from what I remember, it’s delicious. 
I take this recipe and make it more nutritious by adding the vitamin powder. 
The result tastes just like Granny used to make, and it’s a good start. But it’s 
also a little unsophisticated for today’s tastes. To make this bar appeal to the 
modern Type A and to add some variety, I need to spice it up with some new 
ingredients.

The Internet can be extremely useful when doing exploratory research, 
and it’s a great place to gather convenience data. Websites like Amazon.com 
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allow you search for a specific item and then sort the results from most 
popular to least popular. They also post customer reviews and rankings. At 
the time of this writing, Amazon has over a thousand products fitting 
the search term “nutrition bars.” In order to see what people are currently 
buying, I sort the results by customer ranking and peruse the first twenty 
pages or so. Figure 2.1 shows a bar chart of the most popular featured ingre-
dients in the top 100 ranked bars. Keep in mind that most of the nutrition 
bars had more than one ingredient, chocolate peanut butter, for example, or 
cranberry macadamia nut, and so most of the bars are represented more than 
once in this bar chart. In other words, this isn’t a frequency distribution (see 
Chapter 4 for more on this), it’s simply a ranking of ingredients from most 
popular to least popular.

Here are some of my observations:

•• Chocolate is king. Chocolate brownie, dark chocolate, chocolate chip, 
chocolate mint, chocolate raspberry, chocolate almond, and other cocoa‐
containing flavors dominate the market.

•• Of all the tree nuts, almonds appears to be the most popular.

•• Peanut butter (which is technically not a nut but a legume) is also 
very popular.

•• Cranberry seems to be the most popular fruit addition.

Remember, this is just exploratory research. I only went to one website, and 
I relied on Amazon’s formula for customer rankings to single out the most 
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Figure 2.1  Popularity of ingredients in Amazon top 100 ranked nutrition bars.
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popular bars on the market. Also, my results only reflect the opinion of the 
most vocal customers, those who felt strongly enough to write a review. 
I have no idea how many of them are Type A personalities (though I suspect 
a good number of them). In any case, my data could hardly be considered 
a  proper random sample representing the typical nutrition bar customer. 
Despite its flaws, this convenience dataset gives me a general picture of the 
market, and it’s a great place to start.

I don’t want my diet bars to be just another drop in an ocean of chocolate 
peanut butter, honey oat, and cranberry almond. So I decide to stay away 
from the ingredients in Figure 2.1. Except for chocolate, that is. In my mind, 
you can never have too much chocolate. As for the other ingredients, if I 
want my bars to stand out, dieter they need something different. Something 
highly nutritious and tasty. Something that will appeal to the supermen and 
superwomen of today.

How about superfoods?
Superfoods, foods that deliver a lot of nutritional bang for the buck, are 

said to boost your energy and your health. Fish, green vegetables, nuts, 
berries, and seeds are examples of superfoods. These are the perfect ingredi-
ents to launch my nutrition bars to the top of the heap. Unfortunately, I’m not 
enough of a chef to turn foods like salmon and broccoli into a tasty and 
appealing granola bar. So certain items immediately drop off my list. 
Blueberries, oats, and nuts are already a mainstay of the nutrition bar market. 
These will make good basic ingredients, but won’t make my product stand 
out from the rest of the pack. Instead I turn to the many underutilized super-
foods, things like chili peppers, chia seeds, and acai berries. If I incorporate 
them with some of the more mainstream ingredients, for example, yogurt, 
and nuts, and chocolate, I have a list of possible ingredients to combine into 
what I’m now calling the ultimate Type A superfoods bar.

DESCRIPTIVE AND EXPLANATORY RESEARCH:  
ANSWERING THE TARGETED QUESTIONS

The exploratory research I did was well worth the time it took. I was able to 
eliminate a couple studies from my list and focus my attention on an out-
come: flavor. My initial taste testing gave me a good idea what not to do. 
And the convenience data I gathered helped me narrow down my independent 
variables. It’s time to finish off my recipes and see what potential customers 
think. I can do this with the help of descriptive and explanatory research.

Unlike exploratory research, explanatory research is structured and tar-
geted to a specific goal. Explanatory research typically involves controlled 
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experiments, those studies that allow you to manipulate independent 
variables and draw cause‐and‐effect conclusions from them. A controlled 
experiment where I manipulate the ingredients in my nutrition bars and 
observe the impact on flavor would be considered explanatory research. 
Descriptive research sits in the middle, somewhere between exploratory 
and explanatory research. The purpose of descriptive research is merely 
to  describe, not to establish cause and effect, and it typically involves 
observational studies. A market survey like the one summarized in Figure 2.1 
could be considered descriptive research. I ran an observational study on 
the featured flavors in popular nutrition bars. I didn’t try to establish why 
chocolate is the king of all nutrition bar ingredients, I only observed it.

Figure 2.2 lists the three different types of research and the studies that 
go along with them. These studies are described in detail throughout the 
remainder of this section.

Controlled Experiments: The Art of Manipulation

There’s something very satisfying about running what’s called a controlled 
experiment. In a controlled experiment, you get to manipulate the 
independent variables and then observe the outcome. For example, suppose 
I wanted to minimize the amount of sugar in my nutrition bars without 
sacrificing taste. I might make several versions of the nutrition bar, each with 
different amounts of sugar, and have a panel of taste testers give me feedback 
on the result. In this experiment, the amount of sugar is what we call a 
controllable variable. It’s an independent variable that’s systematically 
manipulated to allow me to observe its impact on the outcome. It’s direct. It’s 
conclusive. It’s satisfying.

Some experimental studies are as straightforward as the sugar study I just 
mentioned. But in the real world, most are not. Often you’ll have many 
independent variables, some of them controllable and others uncontrollable. 

Exploratory Descriptive Explanatory

Types of 
studies

Ad hoc, anything that 
makes sense

Observational Controlled 
experiments
(factorial, controlled 
trials, repeated 
measures)

Strength of 
conclusions

Weak, not generalizable
to an entire population

Usually limited to 
associations

Associations and/or
cause and effect

Figure 2.2  The three types of research.
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An uncontrollable variable is just what the name implies, an independent 
variable that cannot be systematically manipulated. The heat of a particular 
batch of chili peppers, whether or not a randomly chosen taste tester prefers 
subtle to strong flavors, these are uncontrollable variables. And these can 
make controlled experiments a real challenge to plan and run. Fortunately, 
there’s a branch of statistics, design of experiments (DOEs), that lays out 
strategies for setting up different types of controlled experiments. Every 
study is unique, with different dependent and independent variables and dif-
ferent potential confounding factors, but most experiments fall into one of a 
small number of categories. Three of the most common are mentioned here.

Factorial Studies  I have my basic nutrition bar recipe, and I have a list of 
ingredients I’d like to throw in. How should I combine these ingredients to 
give me the tastiest possible flavor combinations? In planning a study to 
answer this question, I’ll use a factorial design. Factorial designs are often 
used for experiments with a single dependent variable and lots of independent 
variables, each with a small number of possible values, or levels. By giving 
you a way to manipulate the independent variables in a systematic and 
scientific manner, factorial designs can simplify the process of planning an 
experiment with many independent variables.

For example, say I’ve settled on dark chocolate, jalapenos, chia seeds, 
acai berries, and almonds as potential add‐on ingredients to my nutrition bar. 
I could combine these ingredients in different ways, and I’d like to run a 
study to determine which combinations give me the best flavor. In this study, 
there’s a single dependent variable, taste. There are five independent vari-
ables: dark chocolate, jalapeno peppers, chia seeds, acai berries, and 
almonds. Each independent variable, or ingredient, can be added in any 
amount, from none all the way up to tastebud overload. To start with, I’ll 
restrict the levels, or amounts, of each ingredient to two: zero for none added, 
one for a nominal amount added.

Five possible ingredients. Two possible amounts for each. If you start list-
ing all the combinations, it won’t take long to realize there are many. To 
calculate exactly how many, you take the number of levels (amounts added) 
and raise it to the power of the number of independent variables (ingredi-
ents). With five ingredients and two amounts for each, there are a total of 
25 = 32 possible combinations. That may be enough to scare away a typical 
laid back, Type B personality, but not an overachiever like me. I’ll test them 
all using a full factorial design. This design is listed in Figure 2.3.

The great thing about a full factorial design is that it allows you to not only 
test the impact of each independent variable but also to look for what are 
called interactions, the impact of combinations of independent variables. For 
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example, chia seeds alone may give my nutrition bars a birdseed like quality. 
But adding acai berries may counterbalance the seeds, giving my bars a pleas-
ant, sweet and crunchy combination. In other words, the chia seeds and acai 
berries may interact to give me a much better outcome than either of the two 
ingredients alone.

On the down side, when you have many independent variables or more 
than two levels, full factorial designs can rapidly become unwieldy. With 
five ingredients and two possible amounts, there are thirty-two possible 
combinations to test. If I add just one more level, or amount, I now have five 
independent variables and three levels for a total of 35 = 243 combinations. If 
I now add just one more ingredient to the list, the number of combinations 
becomes 36 = 729, before even thinking about replication. That’s enough to 
scare even the most A‐like of the Type A researchers out there.

It’s important to get a complete dataset out of a study, but it’s also impor-
tant to recognize when such a dataset is impractical. Over the years, different 
strategies have been developed for reducing full factorial designs down to a 
more reasonable size. Limiting the number of levels to two, for example. 
This strategy works well for screening experiments, experiments that help 

No add-ins Chocolate, almond Chocolate, 
jalapeno, almond

Chocolate,
jalapeno, chia,
almond

Chocolate Jalapeno, chia Chocolate, chia,
acai

Chocolate, 
jalapeno, acai,
almond

Jalapeno Jalapeno, acai Chocolate, chia, 
almond

Chocolate, chia, 
acai, almond

Chia Jalapeno, almond Chocolate, acai, 
almond

Jalapeno, chia,
acai, almond

Acai Chia, acai Jalapeno, chia, 
acai

Chocolate, 
jalapeno, chi, acai, 
almond

Almond Chia, almond Jalapeno, chia, 
almond

Chocolate, 
jalapeno

Acai, almond Jalapeno, acai, 
almond

Chocolate, chia Chocolate, 
jalapeno, chia

Chia, acai, almond

Chocolate, acai Chocolate, 
jalapeno, acai

Chocolate, 
jalapeno, chia, acai

Figure 2.3  Full factorial design for type A superfoods bar study.
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you narrow down the list of combinations to those having the most impact. 
Screening experiments are typically followed by another study focusing on 
a much smaller list of independent variable combinations. For my Type A 
superfoods study, for example, the two‐level full factorial design could be 
considered a screening experiment that allows me to identify the tastiest 
add‐in combinations. Most likely, I’d run a follow‐on study in which I play 
with the amounts in the winning combinations in order to get the best flavor.

In addition to screening experiments, there are variations of the full facto-
rial design that can greatly reduce the number of combinations to be tested. 
One of the most common variations is the fractional factorial design. A 
fractional factorial design takes a carefully chosen subset of combinations 
from the full factorial design and tests those. This type of experiment can 
greatly reduce the number of combinations to be tested, but the convenience 
comes at a price. With a fractional factorial design, you generally lose the 
ability to study something called higher order interactions. Higher order 
interactions refer to the impact of many—usually more than two—independent 
variables. For example, the full factorial design for my superfoods bar 
includes a bar made of every possible combination of the five ingredients, so 
I could directly observe every possible flavor combination. In a fractional 
factorial design, I’d lose some of the more complex flavor combinations, 
jalapeno, chia, and acai, for example, but because my experiment would now 
much smaller and cheaper to run, it’s probably worth it.

The basic idea behind fractional factorial designs is this. Suppose I can’t 
test all 25 = 32 flavor combinations in my original full factorial design. Let’s 
say I can only afford to test half of them. A fractional factorial design care-
fully selects sixteen combinations so that (i) all main effects (the impact of 
the individual variables) can be measured, (ii) all two‐way interactions (the 
impact of two‐variable combinations) can be measured, and (iii) the design 
is balanced (the number of tests having each level of each variable is the 
same). Designing fractional factorial experiments is a detailed process, and 
well beyond the scope of this book. Fortunately, there are many resources 
out there on the subject, and there are tables that do most of the work for you. 
If you find yourself in need of such a design, I refer you to The Design and 
Analysis of Experiments by Montgomery (2012).

Once I have the flavor combinations to try, planning the rest of the super-
foods bar taste test is fairly straightforward. I need some replication, so I’m 
not fooled by a single, possibly eccentric taste tester. I form a panel of five 
people, each a professional taste tester with a discriminating palette. Each 
person will try every bar and rate it. But how? The order in which each 
person tastes the bars matters. For example, if the chocolate jalapeno bar 
always comes before the much milder acai almond bar, the heat of jalapeno 
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peppers might spoil the taste of the bar that follows it. There are two ways I 
could handle this: randomization and blocking. Randomization would 
include randomizing the order in which each taste tester tastes the bars, mak-
ing sure no two bars follow one another for more than one individual. That 
way, if strong flavors spoil the flavor of a bar for one taste tester, I have four 
more opinions to counteract it. Blocking might involve dividing the bars into 
blocks, where each block has similar flavor profiles ordered from mildest to 
strongest, and having the taste testers try the bars one randomly chosen block 
at a time. In this way, the taste testers get a break, and I can be confident the 
bars are ordered so that the impact will be minimized. Because I only have 
five taste testers and I need objective opinions from each and every one, I 
decide to go with blocking.

There’s one final but important consideration in designing this experiment, 
and it’s familiar to every data analyst who’s ever had to analyze a poorly 
designed survey. I could give the taste testers blank paper and have them 
write down their impressions of each bar as they go. But if I give five differ-
ent taste testers the freedom to respond in any way they’d like, I’ll probably 
get five very different responses. For example, the responses to the jalapeno 
chocolate bar could quite possibly look like the following:

The chili pepper is too strong.

Jalapeno and chocolate are a great combination.

Needs more chocolate.

I’d prefer milk chocolate to dark chocolate.

Loved it!

Don’t get me wrong. These comments are constructive and can be a real 
help when tweaking the amounts of each ingredient. But there’s no way to 
combine these responses in a way that can be statistically (and numerically) 
analyzed.

When humans are used to measure outcome, it’s important to focus 
their feedback, and it’s helpful to have them give their responses in a way 
that’s objective and easy to analyze. A scale of one to five, called a five‐
point Likert scale, is a very common and effective way to do this. To 
use  this Likert scale, I ask a set of questions and provide five multiple 
choice responses for each. My questions look something like those 
shown  in  Figure  2.4. This gives me a more objective way to evaluate 
the responses, and helps me get feedback on specific areas of concern. For 
more information about designing a good survey, I refer you to Designing 
and  Conducting Survey Research: A Comprehensive Guide by Rea and 
Parker (2005).
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Controlled Trials  Controlled trials appear in laboratory animal studies, 
drug studies, and weight loss studies, just to name a few examples. In a 
controlled trial, you’d like to test the impact of some independent variable, 
called a treatment, on your outcome. You do this by dividing your test 
subjects or items into two groups. One group is subjected to the treatment, 
and the other isn’t. Or, if you’re interested in different levels of treatment, 
like different doses of a drug, you select as many groups as treatment 
levels and assign a different treatment level to each one. At the end of the 
experiment, you compare the groups to one another and make conclusions 
about the impact of the treatment.

Say I’ve completed the superfoods nutrition bar study and settled on 
three flavors: chocolate acai, chocolate jalapeno, and chia almond. The bars are 
ready. Now it’s time to see if my diet works. In this case, I might run a controlled 
trial where I select some number, say 100, volunteers, and split them into two 
groups. One group follows my diet and the other follows a popular competitor’s 
diet. At the end of some period of time, say two weeks, I compare the control 
group, those individuals who followed the other guy’s diet, to the treatment 
group, those people who followed my diet. If the treatment group has lost more 
weight than the control group, I can declare success.

Controlled trials are fairly easy to understand, but they’re not always easy 
to design. There are often confounding factors to be taken into account, 
especially when you’re experimenting on humans. When comparing my diet 
to the competition, for example, I need to recognize that age, activity level, 
pre‐existing health conditions, and gender all play a role in a person’s ability 
to lose weight. And if I choose my control and treatment groups poorly, say, 
by placing all the twenty‐something fitness nuts in the treatment group, the 
results will most likely favor my diet, not because it’s better, but because of 
how I chose my sample.

Replication, randomization, and blocking are particularly important for 
controlled trials. Proper replication gives you something called statistical 
power (see Chapter  3), which increases the likelihood you’ll be able to 

Strongly 
disagree Disagree Neutral Agree

Strongly
agree

1. The texture is pleasant 1 2 3 4 5

2. The flavors work well
    together

1 2 3 4 5

3. The flavors are well
     balanced

1 2 3 4 5

Figure 2.4  Type A superfoods bar survey questions.
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measure real differences between the treatment and control groups. Assigning 
test subjects to groups at random reduces the risk you’ll bias your results by, 
for example, placing all the young weekend warriors in the same group. 
Blocking removes confounding and reduces variation within each group, 
helping you to see differences more clearly. For my weight loss study, I 
might divide test subjects into blocks based on three fitness and activity 
levels: none, moderate, and high. Within each block, I’d then assign them to 
control and treatment groups at random. This would give me more homoge-
neous groups with potentially smaller variation in the outcome, and it would 
allow me to study the impact of exercise on my diet program.

Repeated Measures (Before and After Studies)  Suppose I’d like to know 
the overall effectiveness of my Type A diet, without regard to my competi-
tors. In this case, I could gather some volunteers, weigh them, and instruct 
them to follow my diet for two weeks. At the end of the study, I could weigh 
the volunteers again to see how much each one lost. This type of before‐and‐
after study is called a repeated measures study because the test subjects are 
measured several times over the course of the trials. Repeated measures 
studies are different from controlled trials because you are not comparing 
one group of test subjects (the treatment group) to another (the control 
group). Instead, you’re comparing each test subject to himself or herself, 
looking for changes caused by the treatment.

Repeated measures studies can be very enlightening. By comparing 
before‐and‐after data on a group of test subjects, you can minimize confounding 
factors. In other words, you can directly observe the impact of a treatment 
without other variables confusing the outcome. But problems can still arise. 
Humans are the ultimate uncontrollable variable, and uncontrollable variables 
can wreak havoc on any study. So it’s important to observe and record anything 
that might impact the outcome. In a weight loss study, for example, things like 
major life changes, illness, exercise, and other factors could impact a person’s 
ability to follow the diet and lose weight, and so it’s important to record them all.

Observational Studies: Scientifically Approved Voyeurism

By manipulating independent variables in a controlled experiment, 
researchers can establish cause and effect, prove hypotheses, and make 
strong scientific conclusions. Unfortunately, many studies you run across are 
observational studies. In an observational study, you have little or no control 
over independent variables that might affect the outcome. Market research 
surveys are observational studies. Researchers have very little control over 
who agrees to participate in the survey, and they try not to manipulate your 
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opinions (at least, not if they want an honest assessment). All they can do is 
offer free stuff to entice you to take the survey, ask nonleading questions, and 
observe the result.

The most important consideration in setting up an observational study is 
choosing your sample. Sampling is the science of choosing a subset, or 
sample, for a study. Manufacturing engineers use sampling techniques to 
pick which parts coming off an assembly line should be tested for defects. 
Medical researchers use it to study the prevalence of diseases and the effec-
tiveness of drugs. Market researchers use it to gather customer likes and 
dislikes. Survey sampling is a broad area of statistics, and there are entire 
classes devoted to the subject. I get a single section to talk about it, so I’ll 
only review a few of the most common sampling techniques. For more 
information, I refer you to Sampling by Thompson (2012).

Simple Random Sampling  Simple random sampling is the most straight-
forward way to capture a sample for your study. With this sampling scheme, 
you choose the size of your sample and then select your test subjects (or 
parts or items) completely at random. Every member of the population has 
an equal probability of being selected. This sampling scheme doesn’t guar-
antee the outcome of your study will be perfectly accurate. But by choosing 
samples at random, you minimize the chances of bias due to more subjective 
approaches. For example, suppose I want to repeat the market analysis I did 
in my exploratory research, where I ranked nutrition bar ingredients by 
popularity, only this time I want to perform a comprehensive analysis of 
the entire market, not only those bars most highly ranked by Amazon.com 
customers. In this case, I would list all bars offered by all my competitors 
and pick a random subset of those for taste testing and follow‐on analysis. 
This process of random sampling would help me understand the entire 
market, not just the preferences of Amazon customers.

Systematic Sampling  Sometimes, simple random sampling just doesn’t make 
sense. For example, suppose I take my diet bars to the streets in order to get 
feedback on their taste. I could take a map of the entire metropolitan area, choose 
houses at random, and elicit feedback from those houses. Driving around the 
city, knocking on doors, and trying to entice people to try my Type A diet bars 
would be expensive and time‐consuming. Having so many doors slammed in my 
face would be painful and humiliating. Definitely not worth the effort.

Systematic sampling is an alternative to simple random sampling when 
it makes sense to collect data in a more orderly fashion. For example, rather 
than driving all over the city and begging people to try my nutrition bar, 
I might pick a four block radius and select every other house. By doing this, 
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I spend less time driving and more time getting feedback from potential 
customers. Systematic sampling has its limitations, however. If, for my 
door‐to‐door study, I happen to choose a strongly ethnic neighborhood, one 
whose cuisine tends toward spicy foods, the feedback on my mildly sweet 
nutrition bars could be more negative than it would be had I chosen a differ-
ent neighborhood.

Quota Sampling  Suppose I have reason to believe men and women will 
respond differently to the Type A diet. In this case, it makes sense to treat 
them separately in my study. Rather than taking a purely random sample of 
test subjects, I’d set quotas, a specified number of men and women, and 
gather volunteers until I had enough of each. This is called quota sampling. 
Quota sampling is often used when you want to make sure some subgroup is 
adequately represented in your study, especially when that subgroup com-
prises a very small percentage of the entire population. Quota sampling 
allows you to get enough samples in each group so you can make statistical 
comparisons between them. If you use this technique, however, it’s important 
to remember you are no longer dealing with a sample that represents the 
natural composition of your population, and so care must be taken when 
generalizing results from such a study.

SO MANY STRATEGIES, SO LITTLE TIME

I’ve only scratched the surface of the many different strategies for planning 
and designing studies. There are entire courses devoted to topics covered by 
just a few paragraphs in this chapter, courses with names like Research 
Methods, Design of Experiments, and Sample Statistics. And there are many 
different ways to combine the techniques presented here when planning a 
study. No matter what techniques you choose or what type of study you’re 
planning, there are three things all your well‐designed studies should have: 
(i) a measurable set of dependent variables that address your specific 
question, (ii) a strategy, such as randomization and blocking, for eliminating 
confounding factors, and (iii) an understanding of the strength of the conclu-
sions you can draw from your study, whether it’s association or causation.
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3
Conservatives, Liberals, 
and Other Political Pawns: 
How to Gain Power and 
Influence with Sample 
Size Calculations

The 2012 US presidential election was full of drama. Conservatives beat up 
on incumbent Democrat Barack Obama, claiming a weak economy and 
shaky foreign policy were solid reasons to boot the president out of office. 
Liberals hammered the Republican challenger Mitt Romney, accusing him 
of being too rich and cold‐hearted to understand the concerns of the average 
American. The polls were up and down, often favoring the president but also 
showing steadily increasing support for the challenger as the election drew 
near. This political drama culminated on election night, when conservative 
commentator Karl Rove, reporting for FOX News, refused to believe swing 
state Ohio had actually gone for the president. The incredulous Rove stood 
up and walked to a back room behind the set to consult with the data 
crunchers. He only relented when they insisted they were “99.9% confident” 
of their predictions.

Karl Rove wasn’t the only person who was confused. The political polls 
were confused, too. In the days leading up to the election, two of the nine 
major polling agencies had Romney winning, three had Obama winning, and 
four had the candidates in a dead heat. In the end, however, Obama won by 
almost 4% points, winning 51.1% of the vote to Romney’s 47.2%. Not a 
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huge margin, but in this era of divided politics, it was a decided victory for 
the president.

Unlike the political pundits and commentators on cable news, most of us 
will never be in a position to embarrass ourselves on national television. For 
my part in that, I’m thankful. But that doesn’t mean we can be careless about 
our data‐based conclusions. The reason we collect and analyze data is 
because we can use it to make predictions, plan a course of action, spend 
money, and otherwise commit valuable time and resources. Data may be 
cheap, but the cost of inaccurate conclusions can be very expensive.

A well‐planned study gives you the best chance at reaching accurate con-
clusions, so you can avoid your own Karl Rove moment. But there are no 
guarantees in life. All of the top nine polling organizations use carefully 
designed sampling strategies to capture an accurate snapshot of American 
voters. And yet, in the days leading up to the 2012 election, the only point 
they agreed upon was that nobody really knew what the outcome would be. 
Why? Because of uncertainty. Any time you use a sample to represent an 
entire population, there’s a certain probability you’ll end up fooling yourself. 
And while you can’t eliminate this probability of making an error, com-
monly used statistical techniques can help you measure it.

These same statistical techniques can also be used to make sample‐size 
calculations. Meant to be used as part of the study planning process, sample‐
size calculations help you specify the number of samples, or replicates, 
needed to achieve an acceptable error probability. These calculations rely on 
something called statistical power. In this chapter, sample‐size calculations 
will be used to show how statistical power can be turned into political power.

STEP 1. KEEP YOUR FINGER ON THE PULSE  
OF THE POPULACE

Let’s say I’m the senior advisor and political consultant for Steve McMann, 
son of a major Midwestern car dealership mogul. Steve has just broken with 
family tradition, deciding to trade a lifetime of comfort selling reasonably 
priced imports for a life of public service. In other words, politics.

Most politicians get their start by winning local elections, but my motto is 
go big or go home, and I convince Steve to run for the US Senate. The name 
McMann gives my guy a decided advantage in the race. After all, he’s the 
heir to the McMann dealership dynasty, and his face has already appeared on 
commercials across the state. His opponent is some obscure city councilman 
from the fifteenth district, a rural part of the state that many voters have 
trouble pinpointing on a map. Just how much of an advantage does Steve 
have? A poll can tell us. We pick a large round sample size, say N = 100, and 
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send a group of interns out to ask the voters of our fair state what they think 
of Steve. Here are the results.

Of the 100 people polled, most of the likely voters recognized the name 
Steve McMann, and 53% said they were inclined to vote for him. Any more 
than 50% is enough of the vote needed to win the election, and so 53% is 
good. But what if these numbers are off by a little bit? An error of just 3% 
and we could be looking at a major disappointment. To find the margin of 
error (MOE) on this estimate, I’ll use one of the most common tools from 
basic statistics: the confidence interval.

Recall a confidence interval is a range of values inside which you can feel 
confident your estimate falls. Sometimes confidence intervals are reported 
as a range. Sometimes they’re reported as the estimate plus or minus some 
MOE. For example, with an MOE of 3%, the number of people who favor 
Steve in the election might be reported as (50%, 56%) or as 53â•›±â•›3%.

There are two approaches to constructing a confidence interval for a 
proportion such as this one. One applies to small populations, and the other 
applies to large populations. When the underlying population is small, a 
business of 200 people, for example, the sample size will probably represent 
a significant fraction of the total population. In this case, special techniques 
based on a concept called sampling without replacement should be used to 
construct the confidence interval. When the underlying population is large, 
the Unites States or a large Midwestern state, for example, the population is 
so much larger than any sample you plan on drawing, you can assume it to 
be infinite. A good rule of thumb is this. When the sample size is more than 
a tenth of the total population size, use sampling without replacement tech-
niques to estimate your uncertainty (see Barnett, 2002). Otherwise, use a 
method like the normal approximation described here.

For large sample sizes (Nâ•›>â•›25) drawn from a very large population, and 
for an estimated proportion, call it p̂ , where 5ˆNp  and ˆ(1 ) 5N p , the 
confidence interval for p̂  can be calculated with the following equation:
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where z1 2/  is the 1−α/2 critical value for the standard normal distribution 
(see Appendix A). In my case, ˆ 0.53p , and Nâ•›=â•›100, so both ˆNp  and 

ˆ(1 )N p  are greater than five. Appendix A gives a value z0 975 1 96. .  for a 
95% confidence interval, so the estimated voter approval rating is
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This means Steve’s approval rating lies somewhere inside the range 
43–63%. In other words, after all the work of writing the poll, carefully 
selecting the best polling locations, sending out the interns, and crunching the 
numbers, I still have no idea if my guy is ahead of the crucial 50% mark 
in the upcoming election.

STEP 2. AVOID AMBIGUOUS RESULTS AND OTHER  
POLITICAL POTHOLES

Most data analysts who’ve been out in the real world very long have run into 
this situation. A carefully designed study, faithfully executed with a nice 
random sample, and nothing but ambiguous results to show for it. When this 
happens, sample size might be the problem. The amount of uncertainty you 
have depends on the sample size, specifically, the bigger the sample, the 
smaller the uncertainty. To avoid falling into a pothole of statistical ambi-
guity, you need to have enough samples so that the uncertainty will be small 
enough to yield practically meaningful conclusions. Sample‐size calcula-
tions help you determine a sufficient sample size before embarking on a 
time‐consuming and expensive study.

Most researchers who come to me asking about sample sizes expect me to 
produce a number off the top of my head without much knowledge of what 
they’re planning to do. Unfortunately, these people are always disappointed. 
Calculating sample sizes isn’t as easy as punching a few numbers into your 
computer. Sure, there are statistical techniques designed to calculate samples 
sizes, there are even free online calculators for this purpose. But before you 
use them, you need a solid understanding of the goals and limitations of the 
study you’re planning. Here are the important steps in the sample‐size calcu-
lation process.

Identify the Data Analysis Technique You Will Be Performing

It may seem strange to think about analyzing the data before it’s been col-
lected, but this is the time to do it. You’re collecting data not just for the 
sake of collecting data, but to analyze it in a way that answers your question. 
So it makes sense to think about the techniques you’ll use before you start 
your study. Will you be running a hypothesis test? Constructing a 
confidence interval? Performing regression? Answering these questions 
can help you focus your study. And as you’ll see in the next section, it’s 
also a necessary step in identifying the right tools to use to calculate 
samples sizes.
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Know the Difference Between Practical Significance and Statistical 
Significance

Most people with a basic statistics course under their belt are at least some-
what familiar with the concept of statistical significance. When performing 
a hypothesis test, for example, if the p‐value is below the critical error prob-
ability you specify, say 0.05, then the results are statistically significant. In 
other words, the data are inconsistent with the null hypothesis to the extent 
that statistically, you’d reject H

0
 in favor of the alternative.

Fewer data analysts are familiar with the concept of practical significance. 
Practical significance is the result that matters to your particular problem. 
For example, for a NASA engineer looking to get his astronauts safely to 
Mars, an MOE of three units might be way too big to guarantee the spaceship 
holds together throughout the journey. To a politician looking for a ballpark 
figure on approval ratings, a margin of 3% points may be plenty.

Here’s another way to think of practical significance. Suppose you’re running 
a hypothesis test for the mean of a population. Your hypotheses might be:

	

H

H
0 0

0

: .

: .
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A

This test determines whether the mean of your population is greater than 
zero or not. But because of the specifics of your particular problem, you may 
not care if the mean is small, say μ = 0.5. A mean value this small may have 
no practical significance to you. It may only matter if the mean is, for 
example, μ = 1 or greater. In this case, the practically significant mean isn’t 
what’s laid out in the hypothesis test, it’s something determined in the con-
text of your study.

Statistical significance and practical significance can be two very different 
things. Suppose the true mean of the population is a practically insignificant 
value of μ = 0.5. Depending on the outcome of your study and the number of 
samples you collect, it’s entirely possible your data analysis will come back 
with a rejection of the null hypothesis. In this case, the results are statistically 
significant but not practically significant. On the other hand, suppose the true 
mean of your population is μ = 1.5. This is a practically significant value. But if 
you have a lot of variation in your data and a small sample size, the hypothesis 
test may very well come back with a p‐value that’s not statistically significant.

Note Your Practical Limitations

In my experience, practical limitations are typically just as important to 
sample‐size calculations as statistical considerations. Studies take time and 
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cost money, and it’s not always possible to collect as many samples as you 
(or your sample size calculator) would like. Therefore, before planning a 
study, it makes sense to have a clear idea of how many samples is too many, 
practically speaking. This can help guide the experimental design from the 
beginning, keeping you from wasting your time planning an extensive study 
that could never be run.

STEP 3. LET SAMPLE‐SIZE CALCULATIONS BE YOUR 
RIGHT‐HAND MAN

With Steve McMann’s senatorial campaign in motion, it’s time to boost our 
efforts. This means an image consultant, campaign ads, speeches, and 
unplanned stops at strategic locations around the state to show the voters he’s 
one of the people. It also means better polling. We need to know where Steve 
stands with the voters, and if we want to track his poll numbers with any 
degree of accuracy, we need a larger sample size. Just how much larger can 
be determined using sample‐size calculations.

Population Means and Probabilities: Sample‐Size Calculations  
for a Confidence Interval

Whatever statistical technique you plan on using, the approach to calcu-
lating the sample size is the same: (i) take a guess at some necessary estimates, 
and (ii) plug those estimates into the appropriate formula and solve for the 
sample size N. With regards to confidence intervals, the estimates might 
include the sample mean and variance or a proportion, a confidence level, 
and an acceptable MOE. The appropriate formula is the formula for the 
confidence interval you plan to use. With enough statistical sophistication, 
you can use this approach for a confidence interval around any estimate—
median, standard deviation, range, and so on. However, since confidence 
intervals for a mean and a proportion are by far the most common, I’ll 
restrict my attention to those. The details on how to construct these two 
types of confidence intervals can be found in most basic statistics textbooks. 
In this chapter, I’ll simply show how they can be used to determine the 
sample size for a study.

Suppose I’m ready to launch a second poll of likely voters across the 
state, this time with a much larger sample size. Do the voters favor Steve 
McMann over the no‐name city councilman from the fifteenth district? As 
before, my main objective in this study is a confidence interval on the 
percentage of likely voters that favor Steve over his opponent. The first study 
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was woefully under‐sampled, but I can still use those results to help me 
determine N. Specifically, suppose the estimate in that study was reasonable 
and Steve’s approval rating is about 53%. I’d like to know if this value is 
significantly larger than 50%, in other words, if it has an MOE of 3% or less. 
This is my practical significance.

The confidence interval for a single proportion is
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ˆ ˆ
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Solving this equation for N gives me
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With a favorability rating of 53% in the polls, ˆ .p 0 53 . To achieve an MOE 
of 3%, MOE = 0.03. And for a standard two‐sided 95% confidence interval, 
z z/ . .2 0 025 1 96. This gives me everything I need to calculate N,

	
N 0 53 0 47

1 96
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My first poll had only a hundred likely voters in it, but this calculation sug-
gests I need more than ten times that number to achieve the practically mean-
ingful MOE of 3%.

This sample size formula works for any study designed to estimate a 
proportion. However, in some cases, you might have no idea what to plug in 
for p̂ . After all, estimating this value is the whole point of the study. Rather 
than taking a wild guess, you can use a shortcut. In particular, the first term 
in the sample size formula—the quantity ˆ ˆp p1 —directly impacts the 
sample size calculation. The larger the quantity ˆ ˆp p1 , the larger the 
number of samples required to achieve a given MOE. If you plot ˆ ˆp p1  as 
a function of the value p̂ , you obtain Figure 3.1. This value starts at zero when 
p̂ 0 , gradually rises to its maximum point at ˆ .p 0 5 , and then gradually 
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falls back to zero at p̂ 1. Rather than taking a wild guess at a likely value of 
p̂ , you can take a conservative approach and plug in the maximum possible 

value of ˆ ˆp p1 , which is 0.25. This shortcut gives you the maximum 
number of samples required to achieve your specified MOE, in other words, a 
sample size that guarantees you’ll get a confidence interval to your liking. 
Here’s the approximation to use when taking this conservative approach:

	

N

z
1

4
2

2

MOE
.

Plugging an MOE of 0.03 and z / .2 1 96 into this equation gives N = 1065. 
Not surprisingly, this is very close to the value of N = 1064 calculated from 
the proportion ˆ .p 0 53.

This same approach can be used to calculate the sample size for any type 
of confidence interval. For example, the formula for a confidence interval 
around the sample mean, with unknown variance, is

	
x t

s

NN
2

1,

Where x  and s are the sample mean and sample standard deviation, t N1 2 1/ ,  
is the 1 − (α/2) critical value for the Student t‐distribution with N − 1 degrees 
of freedom (see Appendix B), and N is the sample size. The MOE for this 
confidence interval is
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Figure 3.1  How the confidence interval for a proportion depends on p̂.



STEP 3. LET SAMPLE‐SIZE CALCULATIONS BE YOUR RIGHT‐HAND MAN� 39

Solving for the sample size N gives

	

N t
s

N
2

1

2

, MOE

Note here, the critical value t N/ ,2 1 changes with the sample size N, and this 
complicates the formula. However, for larger studies, when the sample size 
is N > 20, the t‐value doesn’t change much. For example, as shown in 
Appendix B, the α = 0.05 critical t‐value hardly changes between N = 20 and 
N = 100 observations. So, for purposes of calculating sample sizes, an 
approximate t‐value, such as t N0 025 20 2 0. , . , can often be used.

By making this approximation, taking a guess at the sample standard 
deviation s, and putting in the desired MOE, an approximate sample size can 
be determined. For example, suppose your initial investigation showed 
that the standard deviation of your sample is about 3.0. For an MOE a 
third of that value, or 1.0, and a 95% confidence interval, you’d plug s = 3.0, 
MOE = 1.0, and t N/ , .2 1 2 0 into this equation to get 36N  samples 
needed.

Power and Sample‐Size Calculations for Hypothesis Tests

When your data analysis plan calls for a hypothesis test, the idea behind 
determining sample size is similar to that for a confidence interval: decide 
what test you’ll be using, take a guess at any estimates you need for the test, 
determine a practical significance level you can live with, and calculate the 
sample size. The idea is similar. But the process is different.

Recall that every hypothesis test has two parts: a test statistic and a 
decision criterion. The test statistic is a value calculated from the data. This 
value carries evidence for or against H

0
, in other words, it’s what you use to 

judge whether or not the null hypothesis is true. The decision criterion is a 
threshold. You compare the test statistic to this threshold in order to decide 
whether you should accept that H

0
 is true, or reject H

0
 in favor of H

A
. For a 

more complete review of basic hypothesis testing, I refer you to a good basic 
statistics text.

When running a hypothesis test, there are two types of errors you can 
make. First, you can reject the null hypothesis when it’s actually true. This is 
called the type I error. Second, you can accept the null hypothesis when it’s 
actually false. This is called the type II error. For any hypothesis test, 
there’s a chance you’ll make a type I or type II error. The probability of mak-
ing a type I error is a value you specify when setting up the test. It’s the sig-
nificance level, the alpha value, α = 0.05, for example. The type II error 
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probability, usually referred to by the parameter β, is not something you 
specify when you set up a typical test. It simply comes along for the ride.

Sample‐size calculations use a variation of the type II error probability 
known as the power of the test. The power of a hypothesis test is the proba-
bility you’ll correctly reject the null hypothesis, in other words, the proba-
bility you’ll reject H

0
 when it isn’t true. It’s one minus the type II error 

probability, or 1−β. Sample size has a big impact on the power of a test, and 
if you gather enough samples, you can amass as much power as you like.

Delving into the world of statistical power is a little like delving into the 
world of political power: messy. For example, think of a simple test for the 
mean of a population,

	

H vs

HA

0 0

0

: .

: .

Notice the alternative hypothesis. If it were straightforward like H
A
: μ = 5, for 

example, I could, with enough statistical knowledge, assume my population 
had a mean of five, plug this mean value into the appropriate probability 
distribution, and calculate the probability my test statistic will fall below the 
critical level, leading me to incorrectly accept H

0
. But I don’t know how plug 

μ ≠ 0 into any probability distribution and get back a meaningful value. In 
other words, for one‐sided and two‐sided hypothesis tests, where the 
alternative hypothesis is H

A
: μ < 0, μ > 0, or μ ≠ 0, the power isn’t easy to find. 

So rather than trying to calculate such a convoluted probability, statisti-
cians generally focus on a specific effect size, a practically meaningful 
difference between the H

0
 mean and the actual mean. In other words, the 

effect size is the smallest, practically significant difference.
Take a t‐test for example, where H

0
: μ = μ

0
 and H

A
: μ > μ

0
. The test statistic 

for this two‐sided test is a t‐statistic,

	
T N

x

s
0 .

Here, x  is the sample mean, s is the sample standard deviation, and N is the 
sample size. This test statistic depends on the sample size and the ratio 

x s0 / . This ratio is a scaled difference, in other words, the difference 
between the sample mean and the H

0
 mean relative to the standard deviation. 

The effect size is based on this type of scaled difference, where

	
Effect size E

s
0 .
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For example, if the practically significant mean μ = 3, the H
0
 mean μ

0
 = 1, and 

s = 1, the effect size is (3 − 1)/2 = 2. This reflects a twofold difference in 
means, relative to the variation inherent in the population.

To calculate a sample size for a mean test, you specify a significance 
level α, a practically significant effect size E, and the power you’d like the 
test to have at that effect size. These three parameters give you everything 
you need to perform a sample‐size calculation. Specifically, with a one‐
sided t‐test having significance level α, you’d reject the null hypothesis if 
the test statistic T is larger than the corresponding critical value for the t‐dis-
tribution with N − 1 degrees of freedom. Mathematically, this can be written 
as follows:

	
T N

x

s
t N

0
1 1, .

To achieve a specified power P (P = 0.8 is a common choice), you’d select N 
so that for effect size E, the probability of rejecting H

0
 is P. Here’s this prob-

ability in the form of an equation:

	
P N E t PN1 1,

The idea is simple. Take this equation, plug in the desired significance 
level, effect size, and power, and find the sample size N that makes this 
equation hold true. Unfortunately, putting this idea into practice isn’t as 
easy as performing a little algebra. Solving the above equation for N is 
complicated due to what’s called the noncentral t‐distribution, and so 
there are no simple formulas to calculate the sample size this way. There 
are, however, tables, functions in many data analysis packages, and free 
online sample‐size calculators, and these tools can do the equation solv-
ing for you.

This same process can be used to calculate the sample size for virtually 
any hypothesis test. You specify the test statistic, plugging in a practically 
significant result and a statistical significance level, and state the criteria for 
rejecting the null hypothesis. Then you set the probability of that result to the 
desired power of the test and solve for the sample size. As with the t‐test, 
however, the idea is much simpler than the implementation. For most 
common tests, solving these complicated probability equations can be diffi-
cult, and so finding a good data analysis software package that’ll do these 
calculations for you is well worth the time and effort.

Steve’s senatorial race is going beautifully. His new campaign platform—
One People, One State—has almost become a state motto, and with his 
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boyish good looks and easy smile he could sell matches to a woman trapped 
in a burning building. His poll numbers reflect this. The last poll of N = 1064 
likely voters had him up 54% with an MOE of 2.9%. This could end up 
being one of the biggest victories in the state’s history.

Just as the campaign enters its last crucial weeks before the November 
election, tragedy strikes. A compromising photo pops up on the Internet. 
Who posted the photo, we don’t know, but the image is clear. It’s a younger 
Steve, half‐naked, driving a lawn tractor, waving an empty bottle of whiskey, 
and sporting a very questionable tattoo on his chest. Within minutes of being 
posted, this picture goes viral.

We begin damage control, searching for an explanation that can make this 
whole scandal go away. The public image consultants begin weaving together 
a story. A college mishap. No, a fraternity prank. Even better, a hazing ritual 
in which Steve was forced to participate if he wanted to belong to the cher-
ished fraternity of his father and grandfather. It’s perfect. It makes Steve 
more sympathetic and gives him a new cause: to stop bullying.

While the spin doctors work their magic, we decide to run a new poll, this 
one to determine just how much damage the photo caused. We plan to send 
our army of interns out to the voters to ask two questions: (i) if the person is 
aware of the tragic photo and (ii) if the person is considering voting for Steve 
in the upcoming election. This will give us two groups of voters to compare: 
those voters who haven’t heard of the scandal and those voters who have. By 
using quota sampling, where we have the interns keep polling people until 
there’s a specified number of likely voters in each of the two groups, we can 
make sure we get enough numbers in each sample to determine whether this 
unfortunate event impacts the peoples’ opinion of our candidate.

If p
1
 is the proportion of voters who favor Steve and do not know about 

the scandal, and if p
2
 is the proportion of voters who favor Steve and do 

know about the scandal, then the following hypotheses can be tested:

	

H

HA

0 1 2

1 2

:

:

p p

p p

This is a one‐sided hypothesis test for a proportion using two samples, 
and it can be run using a two sample z‐test. If I use quota sampling and force 
the sample size of each group to be the same, or N = N

1
 = N

2
, then the test 

statistic is a z‐statistic,

	

Z
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where r̂  is the average of p̂1  and p̂1 , or ˆ ˆ /p p1 2 2 . The null hypothesis 
is rejected if Z z a1  where z1  is the 1 − α critical value for the standard 
normal distribution. This test statistic is the foundation of the sample size 
calculations for the new poll.

Many reputable statistical consulting firms and software companies 
have free online sample‐size calculators. There’s a documented, validated 
sample‐size calculator at http://powerandsamplesize.com/ that can be 
used for a two sample proportion test. If I assume 5% points is a practi-
cally significant hit to Steve’s image, this drops his 54% favorability rat-
ing down to 49%, or ˆ .p1 0 54  and ˆ .p2 0 49. Using these proportions, a 
significance level of α = 0.05, a power of P = 0.8, and the one‐sided test 
for H

0
: p

1
 = p

2
 versus H

A
: p

1
 > p

2
, the calculated sample size is N = 1231. 

In other words, I need to poll 1232 likely voters in each group if I 
want to be 80% sure I can detect a 5% point decrease in my candidate’s 
favorability rating.

STEP 4. KEEP YOUR FRIENDS CLOSE AND YOUR 
ENEMIES CLOSER

After a little investigation, we determine the photo was posted by one of our 
interns, an attractive young woman who was once very loyal to Steve but, 
after an unfortunate misunderstanding in his office late one night, became 
angry and unhappy with the direction the campaign was going. She also 
didn’t appreciate the amount of legwork involved in collecting so much poll 
data. Who knew a large sample size could become your own worst enemy?

You probably went away from your first statistics course thinking a large 
sample size is a good thing. After all, confidence intervals, hypothesis tests, 
regression, all these techniques are impacted by sample size, and as far as 
reducing uncertainty is concerned, a large N is your best friend. However, the 
2012 presidential polls are a good example of how a bigger N doesn’t neces-
sarily translate into better predictions. In the days leading up to the election, 
the Gallup organization, one of the leading survey organizations in the country, 
polled 2700 voters and had Republican challenger Romney leading the race 
50–49% with an MOE of 2%. The lesser known IBD/TTP organization, polled 
712 voters and had the incumbent Obama leading the race 50–49%, with an 
MOE of 3.7%. Both polls had the candidates in a statistical dead heat. Gallup 
polled more people and had a smaller MOE, but in the end the IBD/TTP poll 
was closer to the final outcome of 51–47% in favor of Obama.

There are two reasons why a larger sample size doesn’t always help you. 
First, a nice large N can lull you into a false sense of confidence in your 

http://powerandsamplesize.com/
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results. But be warned. It’s not enough to collect a lot of data, you also need 
to collect the right data. It’s crucial to employ proper sampling strategies like 
those introduced in the Chapter 2, or you could find yourself with a very 
small MOE than means nothing because your sample doesn’t reflect the 
population from which it was drawn. Second, large sample sizes produce very 
small uncertainties when it comes to confidence intervals and hypothesis 
tests. It’s possible to make N so large, your statistical procedure rejects 
results as statistically significant when the actual difference is so small, it’s 
practically insignificant.

A well‐designed study applies proper sampling techniques in order to get 
a sample that adequately represents your population. It also incorporates just 
the right number of samples, determined from a combination of practical 
considerations and statistical sample‐size calculations. In this way, you can 
amass statistical power, and for a modern campaign, where polls and image 
are everything, statistical power is political power.

Bibliography

Barnett VIC. Sample Survey Principles and Methods. 3rd ed. London: Arnold; 2002.

Boerma L. Hurricane Sandy: Election 2012’s October Surprise? Available at http://
www.cbsnews.com/news/hurricane‐sandy‐election‐2012s‐october‐surprise/. 
Accessed October 28, 2012.

CNN News Poll Methodology and Results. Available at http://political- 
ticker.blogs.cnn.com/2013/09/09/obama‐hits‐new‐low‐on‐foreign‐policy‐in‐cnn‐ 
polling/?hpt=po_c1. Accessed September 17, 2013.

FOX News. http://www.foxnews.com/politics/interactive/2013/09/09/fox‐news‐ 
poll‐voters‐say‐us‐less‐respected‐since‐obama‐took‐office/. Accessed September 
17, 2013.

Frenz R. Types of Likert Scales. Available at http://www.ehow.com/list_6855863_
types‐likert‐scales.html. Accessed May 14, 2012.

Good PI, Hardin JW. Common Errors in Statistics (and How to Avoid Them). 
Hoboken: John Wiley & Sons, Inc; 2006.

Hall S. How to Determine the Sample Size of an Experiment. Available at http://
www.ehow.com/how_6110532_determine‐sample‐size‐experiment.html. 
Accessed May 30, 2014.

HyLown Consulting, LLC. Power and Sample Size Calculators. Available at http://
powerandsamplesize.com/. Accessed August 20, 2014.

NIST/SEMATECH. Sample Sizes Required. e‐Handbook of Statistical Methods. 
Available at http://www.itl.nist.gov/div898/handbook/prc/section2/prc242.htm. 
Accessed July 15, 2014.

http://www.cbsnews.com/news/hurricane<2010>sandy<2010>election<2010>2012s<2010>october<2010>surprise/
http://www.cbsnews.com/news/hurricane<2010>sandy<2010>election<2010>2012s<2010>october<2010>surprise/
http://political-ticker.blogs.cnn.com/2013/09/09/obama<2010>hits<2010>new<2010>low<2010>on<2010>foreign<2010>policy<2010>in<2010>cnn<2010>polling/?hpt=po_c1
http://political-ticker.blogs.cnn.com/2013/09/09/obama<2010>hits<2010>new<2010>low<2010>on<2010>foreign<2010>policy<2010>in<2010>cnn<2010>polling/?hpt=po_c1
http://political-ticker.blogs.cnn.com/2013/09/09/obama<2010>hits<2010>new<2010>low<2010>on<2010>foreign<2010>policy<2010>in<2010>cnn<2010>polling/?hpt=po_c1
http://www.foxnews.com/politics/interactive/2013/09/09/fox<2010>news<2010>poll<2010>voters<2010>say<2010>us<2010>less<2010>respected<2010>since<2010>obama<2010>took<2010>office/
http://www.foxnews.com/politics/interactive/2013/09/09/fox<2010>news<2010>poll<2010>voters<2010>say<2010>us<2010>less<2010>respected<2010>since<2010>obama<2010>took<2010>office/
http://www.ehow.com/list_6855863_types<2010>likert<2010>scales.html
http://www.ehow.com/list_6855863_types<2010>likert<2010>scales.html
http://www.ehow.com/how_6110532_determine<2010>sample<2010>size<2010>experiment.html
http://www.ehow.com/how_6110532_determine<2010>sample<2010>size<2010>experiment.html
http://powerandsamplesize.com/
http://powerandsamplesize.com/
http://www.itl.nist.gov/div898/handbook/prc/section2/prc242.htm


STEP 4. KEEP YOUR FRIENDS CLOSE AND YOUR ENEMIES CLOSER� 45

Rasmussen S. Comparing approval ratings from different polling firms. Rasmussen 
Reports. March 17, 2009. Available at http://www.rasmussenreports.com/public_
content/political_commentary/commentary_by_scott_rasmussen/comparing_
approval_ratings_from_different_polling_firms. Accessed September 17, 2013.

RealClear Politics. General Election: Romney vs. Obama. Available at http://www.
realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_
obama‐1171.html. Accessed May 30, 2014.

RealClear Politics. President Obama Job Approval, Real Clear Politics. Available at 
http://www.realclearpolitics.com/epolls/other/president_obama_job_approval‐1044.
html. Accessed September 17, 2013.

Schaeffer RL, Mendenhall III W, Lyman Ott R. Elementary Survey Sampling. 5th ed. 
Belmont: Duxbury Press; 1996.

Whitley E, Ball J. Statistics review 4: sample size calculations. Crit Care 2002;6 
(4):335–341.

http://www.rasmussenreports.com/public_content/political_commentary/commentary_by_scott_rasmussen/comparing_approval_ratings_from_different_polling_firms
http://www.rasmussenreports.com/public_content/political_commentary/commentary_by_scott_rasmussen/comparing_approval_ratings_from_different_polling_firms
http://www.rasmussenreports.com/public_content/political_commentary/commentary_by_scott_rasmussen/comparing_approval_ratings_from_different_polling_firms
http://www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama<2010>1171.html
http://www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama<2010>1171.html
http://www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama<2010>1171.html
http://www.realclearpolitics.com/epolls/other/president_obama_job_approval<2010>1044.html
http://www.realclearpolitics.com/epolls/other/president_obama_job_approval<2010>1044.html




Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know,  
First Edition. Kristin H. Jarman. 
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

4
Bunco, Bricks, and Marked 
Cards: Chi‐Squared Tests 
and How to Beat a Cheater

Imagine you’re in Las Vegas, in a dark room somewhere along the alleyways 
off the strip. A slick man in a leisure suit smiles at you from across a dimly 
lit table. You’re playing a dice game called Sixes Bet. Ordinarily, you’d stay 
away from this game. After all, the odds of winning money at Sixes Bet are 
grim. But Mr. Slick has turned the tables, and based on your calculations, the 
probability you’ll win each game is more than a half. The best odds you’ll 
find anywhere in Sin City.

But if your odds are so good, why is your stack of betting chips getting 
so small?

Most basic statistical techniques work on continuous data, numeric 
observations that can take on any real value in some range. But not all obser-
vations are continuous, or even, for that matter, numeric. Sometimes 
you’ve got discrete data—whole numbers, integers, categories, or grouped 
observations. Analyzing such data takes something different than a sample 
mean, standard deviation, and t‐test.

There are a relatively small number of basic techniques for analyzing dis-
crete data, but these techniques are versatile and can answer many different 
types of questions. Like whether this greasy man sitting across from you, 
grinning with satisfaction, is really playing fair or not. This chapter presents 
common methods for discrete data analysis and shows how the chi‐squared 
test can help you beat a cheater.
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WHAT HAPPENS IN VEGAS … HOW STATISTICIANS 
REMAIN DISCRETE

The field of statistics is built on the concept of probability. A probability is 
a number between zero and one that expresses how likely some future event is 
to occur. A probability of zero means the event is simply not going to happen. 
A probability of one means it’s a sure thing. When it’s somewhere between 
zero and one, you have an event whose outcome is uncertain. For example, 
the probability there’s gambling happening in Las Vegas at this very moment 
is one. The probability every casino has suddenly and unexpectedly run out 
of booze is zero. The probability you’ll get food poisoning next time you 
visit one of the all‐you‐can‐eat buffets is somewhere between zero and one.

Most people are comfortable with probabilities, as long as they stay 
outside the realm of mathematics. For example, if you’ve ever answered a 
question with the words, “probably,” “not likely,” or “never going to happen” 
you’ve used the concept of probability to measure the likelihood of some 
event. However, to the data analyst, probability is a much more precise, 
mathematical term that’s used everywhere statistics is used. If you’re reading 
this book, you’re probably familiar with the concept of probability. Maybe 
you’ve had a basic statistics course. Maybe you’ve tossed coins in class to 
understand how mathematics can be used to describe uncertain outcomes. 
Maybe you’ve spent time in Vegas, gambling, watching the laws of proba-
bility boost, or more likely, drain your bank account. If any of these are you 
(and I promise, I’m not telling), feel free to skip to the next section. On the 
other hand, if you’re in need of a brief refresher, this section will provide you 
with the basics you need to get through the rest of the chapter.

To construct a formal, mathematical probability, you need three things: 
(i) a random experiment, a future trial, game, situation, or circumstance 
whose outcome is not yet known, (ii) an event, or outcome you’d like to see, 
and (iii) some way to assign a value to the likelihood of that event. For 
example, the roll of a six‐sided fair die is a random experiment. The number 
“5” might be an event, or outcome you’d like to see. There are six sides to 
the die, all equally likely to appear, and so the probability of rolling a five is 
one out of six possible outcomes. More formally, if R represents the roll of 
your die, then P{R = 5} = 1/6.

Any random experiment produces outcomes, and these outcomes, which 
are also called observations or measurements, can be either continuous or 
discrete. Continuous outcomes are the focus of the remaining chapters in this 
book. Discrete observations are the focus of this one.

Discrete observations are whole numbers, counts, or categories, in other 
words, anything that can be listed. For example, if you roll a six‐sided die, 
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you’ll get a 1, 2, 3, 4, 5, or 6. If you roll two dice and add the faces together, 
you’ll get a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. If you roll 400 dice and add the 
faces together, you’ll get a whole number between 400 and 2400. It may not be 
fun, but it’s possible to list each and every outcome in all of these  experiments.

Simple discrete probabilities, like the probability a coin toss will land on 
heads, can be calculated without any sophisticated math. There are two sides 
to a coin, one of which is heads. The probability of a coin landing on heads 
is one out of two possible outcomes, or 1/2. Unfortunately, life is rarely this 
simple. Data analysts are usually interested in more complicated outcomes, 
for example, the probability of a coin landing on heads five times in a row. 
Or the probability eight out of the next ten coin tosses will land on heads. 
Trying to reason your way through probabilities such as these quickly 
becomes unmanageable. That’s why we have random variables and proba-
bility distributions.

A random variable represents the outcome of a random experiment. 
Typically denoted by a capital letter such as X or Y, a random variable takes 
on the value some as‐yet‐undetermined outcome of a random experiment. 
For example, on a coin toss, with possible outcomes heads and tails, you 
could define a random variable X = 0 for tails and X = 1 for heads. This value 
of X is undetermined until the experiment is complete.

A probability distribution is a mathematical formula for assigning proba-
bilities to the values of a random variable. Many different probability 
distributions have been developed over the years, and these can be used to 
assign probabilities in virtually any random experiment. Discrete probability 
distributions describe random experiments whose possible outcomes are dis-
crete. To qualify as a discrete probability distribution, a function must have a 
probability associated with every possible outcome. Each probability must be 
a value between zero and one. And if you add the probabilities of all possible 
outcomes together, the answer should be one. There are many common 
discrete probability distributions. The simplest is known as the Bernoulli 
distribution. If you have a random experiment with two possible outcomes, the 
Bernoulli distribution assigns probabilities to both. Here’s the formula:

	

P X x
p x

p x

when

when

0

1 1

Think of a coin toss. The outcome of that coin toss could be represented 
by a random variable X with X = 0 for tails and X = 1 for heads. If the coin is 
fair, the probability of tails is P{X = 0} = 1/2 and the probability of heads is 
P{X = 1} = 1/2. If the coin is unevenly weighted so that it tends to land on 
heads, then you might have P{X = 0} = 1/3 and P{X = 1} = 2/3. Both of these 
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are instances of the Bernoulli distribution—one with success probability 
p = 1/2 and the other with success probability p = 2/3.

The Bernoulli distribution is the simplest example of a discrete probability 
distribution. There are many more that can be used to describe more compli-
cated random experiments. Figure 4.1 lists some of the most common ones.

CONTINGENCY TABLES, CHI‐SQUARED TESTS, AND OTHER 
WINNING STRATEGIES FOR DISCRETE DATA ANALYSIS

Many types of studies produce discrete data. For example, surveys com-
monly ask for personal information such as gender, race, and education level. 
Internet search engine companies and online retailers use past search history – 
strings of words – to tailor searches, recommend products, and target popup 
ads to an individual. Market research companies track sales trends by looking 
at who bought what product and why. Demographic data, text, and personal 
preference, all of these fall into the category of discrete data.

Distribution
name

Parameters What it measures The mean and 
variance

Bernoulli Success probability p Any random experiment
with two outcomes

µ = p
σ2= p(1–p)

Binomial Number of trials N
Success probability p

The number of successes
in N independent trials,  
or the sum of N
independent Bernoulli
random variables

µ = Np
σ 2 = Np(1–p)

Geometric Success probability p The number of 
independent trials 
needed until the �rst 
success

µ =1/p
σ2= (1–p)/p2

Negative 
binomial

Success probability p
Number of failures r

In independent trials,
the number of
successes that occur
before the rth failure
occurs

µ = pr/(1–p)
σ2= pr/(1–p)2

Poisson Success rate λ per
unit time
Success rate λ per
unit distance or area

The number of 
successes per unit time 
(or distance/area)

µ = λ
σ2 = λ

Figure 4.1  Common discrete probability distributions.
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There are two types of discrete data: qualitative and quantitative. Discrete 
qualitative data consists of observations that cannot be ordered in any 
mathematically meaningful way. A typical Las Vegas slot machine produces 
discrete qualitative data. There are three wheels on the machine, and each 
wheel has pictures of different items: cherries, lemons, gold bars, and so on. 
When you place your bet and pull the lever (or push the button), the three 
wheels spin for a while, and each eventually stops on one of these items. 
Every item is distinct, but there’s no way to compare them mathematically. 
A cherry isn’t more or less than a lemon. It’s just different.

Discrete quantitative data is discrete data that has a meaningful mathematical 
order to it. For example, the game of craps involves betting on the sum of a roll 
of two dice. The outcome is a number between two and twelve. A roll of twelve 
is more than a roll of eleven, which is more than a roll of ten, and so on. In other 
words, these outcomes can be mathematically, or quantitatively, compared.

In many ways, discrete quantitative data is a lot like continuous data. 
Because it’s numeric, you can calculate a meaningful sample mean and 
standard deviation. And thanks to important results like the central limit 
theorem and the normal approximation to the binomial distribution, you can 
apply popular techniques such as t‐tests and analysis of variance. Discrete 
qualitative data can be a bit trickier to analyze – it’s not numeric and so there 
aren’t as many statistical techniques available. This section describes some 
methods for analyzing all discrete data, but you’ll find them particularly 
useful for qualitative data.

Turning Lemons into Gold Bars: How to Convert Qualitative Data 
into Quantitative Random Variables

Suppose you want to calculate the probability your next play of a $1 slot 
machine will hit the jackpot. You need to land on three gold bars to hit this 
jackpot. A typical modern Vegas slot machine might have 256 items on each 
wheel. The probability that any given wheel will land on a gold bar is one 
chance out of 256, or 1/256. Using a probability rule called the multiplica-
tion rule, the probability all three wheels will land on a gold bar is 1/256 × 1/
256 × 1/256 = 0.00000006.

You don’t need to be an expert in probability theory to realize this outcome 
is extremely unlikely. If you’re counting on these winnings to buy a plane ticket 
home, you might as well just keep your dollar and apply for a job washing 
dishes instead. On the other hand, you don’t need three gold bars to win money. 
There are other outcomes that pay out as well. For example, if you get at least 
two of a higher ranking item, the cherries maybe, you don’t win the jackpot, but 
you do win some money. And if you allow yourself to play a number of games, 
you increase your chances of winning at least once over the long run.
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You can turn lemons into gold bars and increase your chance of success 
by focusing on a more realistic slot machine strategy. There are many ways 
to do this. For example, if you restrict yourself to thirty games, what’s the 
probability you’ll win more games than you’ll lose? What’s the probability 
you’ll walk away with a little extra cash? How many free drinks will the 
average cocktail waitress bring you before all your money is gone? And does 
the savings on all those free drinks make up for any losses at the slots?

With questions like these, it’s often possible to construct a random vari-
able that transforms qualitative data into a quantitative random variable. This 
technique, based on the Bernoulli distribution, is usually taught in basic 
probability courses, but its usefulness can be easy to overlook. Recall, a 
Bernoulli random variable is one that takes one of two possible values, zero 
for failure and one for success. By cleverly defining what it means for an 
outcome to be a success, you can define a Bernoulli random variable that can 
be used to calculate any number of more complicated probabilities. For 
example, suppose you’ve gone through all the possible wheel combinations 
and scoured the Internet, and you’ve calculated the probability of winning at 
least $1 (your bet plus some money) on the slot machines to be 0.3. If you 
define a random variable X to be zero if you lose your dollar a single game 
and one if you break even or win, then the probability distribution becomes

	

P X x
x

x

0 7 0

0 3 1

. ,

. ,

when or you lose

when or you win.

The outcome of successive games can be described by probability 
distributions for independent trials. Independent trials are repeated 
random experiments where the outcome of the any one trial is not impacted 
by the outcome of any previous trials. Playing thirty games of slots is an 
example of thirty independent trials. The probability you win on the ninth 
roll is 0.3, completely unaffected by how many games you played or won 
before it.

There are many basic probability distributions that apply to independent 
trials, and the most common of these are listed in Figure 4.1. For example, 
the binomial probability distribution describes the number of successes in 
a given number of independent trials. Mathematically, if you have N 
independent trials, each with probability of success P{X = 1} = p, and if Y 
represents the number of successes, in other words, the sum of N Bernoulli 
random variables, then

	

P Y i
N

i
p pi N i( )1
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for any i = 0, 1, 2, …, N. This is the binomial distribution. For example, if Y 
is the number of games you’ve won out of thirty total, then Y follows the 
binomial probability distribution with N = 30 and p = 0.3.

You can use the binomial distribution to calculate the average number of 
games you expect to win out of thirty total. You can calculate the probability 
you’ll win at least half of the games. You can even use an approximation 
called the normal approximation to the binomial distribution and apply 
common techniques for continuous data. For further details on how to work 
with the binomial distribution, I refer you to a basic statistics text such as 
The Art of Data Analysis: How to Answer Almost Any Question Using Basic 
Statistics.

Plots and Tables: The Poor Man’s Statistical Analysis

Like the tourist who went to Vegas with his pockets full of cash and his 
head full of ideas, a data analyst can’t always make his quantitative data 
dreams come true. Sometimes, you’re stuck with qualitative data. One of 
the best ways to analyze this type of data is through plots and contingency 
tables.

It’s always important to get a good look at your data. The right graph can 
help you spot trends and outliers. It can highlight problems such as data 
entry errors. In some cases, the right graph can even eliminate the need for 
further statistical analysis. The most popular type of graph for discrete 
qualitative data is the frequency distribution, plotted as a simple bar chart. A 
frequency distribution is a tally of the number of times each different cate-
gory or value appears in a discrete dataset. The frequency values can be 
expressed as whole numbers, relative frequencies (fractions of the total 
number), or percentages (the relative frequencies multiplied by 100). For 
example, suppose I work for the Nevada Bureau of Tourism, and we’ve just 
come up with a new ad campaign to entice more visitors to come to Vegas. 
Before we launch this campaign, I’d like to test what its impact might be. 
Using a five‐point Likert scale (see Chapter 2), I put together a survey. One 
of the questions on the survey is as follows:

How likely are you to visit Las Vegas in the next twelve months?

1.  Highly unlikely

2.  Unlikely

3.  Neutral

4.  Likely

5.  Highly likely
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I gather a group of 200 frequent travelers and ask them this question. Here 
are the results (Figure 4.2).

With one glance, it’s easy to see that the bars are skewed in the negative 
direction. In fact, the most popular response, the mode, is “unlikely.” Over 
30% of respondents said they’d be unlikely to visit Vegas in the next year. 
Added together, the “unlikely” and “highly unlikely” categories make up 
more than 50% of all the responses.

In order to measure the impact of our new ad campaign, I then take these 
same volunteers and expose them to all our materials—commercials, bro-
chures, Internet pop‐ups, the whole bit. Afterward, I once again ask them 
how likely they’d be to visit Vegas in the next year. This type of before‐and‐
after approach, called a repeated measures study, gives me a direct way to 
observe the effect these ads have on the traveling public.

A bar chart can be used compare the before‐ and after‐data. Figure 4.3 
plots such a bar chart, where the “before” frequencies for each response are 
plotted as darker bars on the left, while “after” frequencies are plotted in a 
lighter shade on the right. The results show a definite shift in the positive 
direction. The mode, or most common response, is now “Neutral.” Where 
fewer than 20% of respondents reported being likely or highly likely to visit 
Vegas before seeing the ad campaign, now 30% reported the same. This 10% 
shift in the positive direction could mean millions in tourist dollars flowing 
in every year.
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Figure 4.2  How likely are you to visit Vegas in the next twelve months?
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Contingency Tables: How to Break Down a Frequency Distribution 
and Expose Your Variables

Suppose the Vegas ad campaign features show girls, scantily‐dressed women 
dancing on stage with props that I’ll leave to your imagination. With visuals 
like these, I’d expect the average man to respond positively to the ad 
campaign. But this type of blatant marketing might backfire if women don’t 
like what they see. In this case, it’s useful to look at my data by gender and 
ask the question, “How are men and women influenced by the ad campaign?”

A contingency table is a tool for breaking down a frequency distribution 
by variables. In a contingency table, the frequencies are listed by variable 
and by outcome: variable by rows and outcome by columns. For example, a 
contingency table for the Vegas ad campaign data would have gender listed 
by row, and likelihood of visiting the city by column. The number of survey 
respondents fitting each variable/outcome combination would then be listed 
in the appropriate cell of the table. Figure 4.4 shows a contingency table 
containing the test group’s responses before watching the ads.

This table sums up the results nicely. It shows the number of men and 
women who responded to the survey question in every possible way. The far 
right column adds up the number of responses in each category for men and 
women, giving a total number of men (100) and women (100) who partici-
pated in the study. The bottom row sums up the total number of responses in 
each category, giving the “before” frequency distribution plotted in Figure 4.3.
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Figure 4.3  Before and after frequencies for Las Vegas survey.
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Does my racy ad campaign affect men differently from women when it 
comes to their view of Las Vegas? Figure 4.5  helps answer this question. 
This figure displays a contingency table of men’s and women’s responses 
after being exposed. To the ads, that is.

According to the tables in Figures 4.4 and 4.5, women don’t appear to be 
negatively impacted by the ad campaign. The number of women in the highly 
unlikely and unlikely categories drops a little after watching the ads, while 
the number in the neutral category increases. The likely and highly likely 
categories remain essentially unchanged. Men, on the other hand, appear to 
be more strongly impacted. In their case, the likely and highly likely cate-
gories more than double, while the negative responses drop noticeably.

Figures 4.4 and 4.5 are what we call 2 × 5 contingency tables. They each 
have one variable with two possible values and one outcome with five pos-
sible values. The simplest and most common type of contingency table is a 
2 × 2 contingency table, having one variable with two possible values and 
one outcome with two possible values. Both types of contingency tables are 

Gender

How likely are you to visit in the next twelve months?

Highly 
nlikely

Unlikely Neutral Likely
Highly
likely

Total

Men 26 31 26 10 7 100

Women 27 32 22 10 9 100

Total 53 63 48 20 16 200

Figure 4.4  Two‐way contingency table for Vegas ad campaign before watching ads.

Gender

How likely are you to visit in the next twelve months?

Highly 
nlikely

Unlikely Neutral Likely
Highly
likely

Total

Men 15 20 27 21 17 100

Women 23 30 26 12 9 100

Total 38 50 53 33 26 200

Figure 4.5  Two‐way contingency table for Vegas ad campaign after watching ads.
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two‐way contingency tables, meaning they look at one variable and one 
outcome. Both the variable and the outcome can have as many possible 
values as you like, but as long as you’re looking at only a single variable/
outcome combination, it’s still a two‐way contingency table.

A three‐way contingency table looks a lot like a two‐way contingency 
table, except the frequencies are broken down by two variables instead of 
just one. For example, suppose I’d like to break down my survey responses 
not only by gender but also by age. In this case, I’d add one layer to the table 
representing age ranges, for example, 20–29, 30–39, 40–49, 50–59, and 
60+. This additional layer generates a contingency table like the one shown 
in Figure 4.6.

In this table, the number of responses for each gender/age combination 
are given. The column on the right adds up the total number of men and 
women in each age range, giving a frequency distribution of the respondents 
by gender and age. The row across the bottom adds up the total number of 
responses in each category, once again giving the frequency distribution 
shown in Figure 4.3.

Because a three‐way contingency table breaks down the frequencies by 
two variables instead of just one, the counts in each cell are smaller than they 
were in the two‐way contingency table. This will always happen when you 
increase the number of layers, or number of variable/outcome combinations, 

Gender Age

How likely are you to visit in the next twelve months?

Highly 
nlikely

Unlikely Neutral Likely
Highly 
likely

Total

Men 20–29 3 4 6 4 3 20

30–39 5 7 8 5 5 30

40–49 4 5 9 7 6 31

50+ 3 4 4 5 3 19

Women 20–29 4 4 3 4 4 19

30–39 9 10 11 3 2 35

40–49 8 10 9 2 1 30

50+ 2 6 3 3 2 16

Total 38 50 53 33 26 200

Figure 4.6  Three‐way contingency table for Vegas ad campaign after watching ads.
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represented in a contingency table. It isn’t a problem when you have a large 
dataset with high frequencies in each cell, but when the counts start to fall 
below ten, certain statistical techniques for discrete data start to break down. 
This topic will be discussed more in the following section.

Higher order contingency tables with many layers do exist, but these can 
be difficult to tabulate and impossible to interpret, so when higher order 
contingency tables are needed, I usually revert to a graph such as the side‐
by‐side frequency distributions plotted in Figure 4.3.

The Chi‐Squared Test: An All‐You‐Can‐Eat Buffet for Discrete 
Data Analysis

Bar charts and contingency tables are a great way to get a good look at your 
data, and when the outcome of a study is simple and clear cut, it may be all 
you need. But a more sophisticated statistical analysis can help you make 
conclusions when the data aren’t so obvious. For example, Figures 4.4 and 
4.5 show the Las Vegas responses before and after participants were exposed 
to my new marketing materials. There appears to be a difference between 
how men and women responded to the ads, but is it a significant difference? 
In other words, are the differences more than you’d expect purely by chance?

In my experience, there are three questions people commonly ask when 
analyzing studies involving discrete data, and this is one of them. Here’s a 
list of all the three:

1.  Is there any difference between categories, or is the frequency distribu-
tion evenly distributed across outcomes?

2.  For before‐ and after‐studies, did the treatment change the frequencies?

3.  Does the value of one variable impact the frequencies for another? In 
other words, are any two variables correlated with one another?

All of these three questions can be answered using a hypothesis test. For 
example, suppose I want to know if frequent travelers have strong precon-
ceived ideas about visiting Las Vegas. Without knowing any different, I 
might expect the responses to the survey question, “How likely are you to 
visit Las Vegas in the next twelve months?” to be pretty much evenly distrib-
uted between the five possible answers on the survey. In other words, the 
frequencies across all possible responses for this question would be about 
the same. Mathematically, suppose O

i
 represents the number of responses 

falling into category i, where the categories are highly unlikely, unlikely, 
neutral, likely, and highly likely. If there’s no preference for one category 
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over another, this number O
i
 would be approximately the same for all i. And 

if N = 200 is the total number of respondents in the survey and M = 5 is the 
number of categories, I’d expect it to be N/M = 200/5 = 40 responses per cat-
egory. Of course, real‐world data are never perfect, so there will be differ-
ences between the O

i
. The question is, are they statistically significant?

To answer this question, I’ll set up the following two hypotheses:

	

H for every response category vs

H for at least onA

0 : / .

: /

O N M i

O N M
i

i ee response category i.

Recall H
0
 is the null hypothesis. It’s the fall‐back position, what you’re auto-

matically assuming to be true. H
A
 is the alternative hypothesis. This is the claim 

you accept as true only if you have enough evidence in the data to reject H
0
. The 

test for these two hypotheses can be performed using a chi‐squared test. When 
it comes to hypothesis testing, the chi‐squared test is an all‐you‐can‐eat buffet 
for data analysts. There’s something to appeal to everyone, whether you’ve got 
discrete or continuous data. In fact, it’s the only method I know that, with little 
to no modification, can test for several completely different hypotheses. The 
rest of this section illustrates just how versatile this one little test is.

Goodness‐of‐Fit Tests  The test for hypotheses

	

H for every response category vs

H for at least onA

0 : / .

: /

O N M i

O N M
i

i ee response category i

is a test for the underlying probability distribution of a population. The 
observed frequency in each category is compared to the frequency you’d 
expect if the underlying probability distribution were a discrete uniform 
distribution, where the probability of an observation falling into each cate-
gory is the same across categories. Any hypothesis test for the underlying 
probability distribution of a population is called a goodness of fit.

The most common goodness‐of‐fit test compares a sample of discrete 
observations to the discrete uniform distribution, but it doesn’t need to be 
this way. You can construct a goodness‐of‐fit test for any probability distri-
bution you can imagine. For example, even if people have no preconceived 
notions about visiting Las Vegas, I wouldn’t necessarily expect the survey 
responses to be uniformly spread out between all of the categories. I might 
expect most of them to fall into the neutral category, with fewer responses on 
the positive and negative side. In this case, I could construct a different 
underlying probability distribution, one whose highest probability is the 
neutral category, and run my goodness‐of‐fit test against this distribution.
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The standard goodness‐of‐fit test works on counts, or frequencies, not 
probabilities. Here are the hypotheses:

	

H for every category vs

H O for at least one categoryA

0 : .

:

O E i

E i
i i

i i ..

The value O
i
 is the observed number of counts in category i. The value E

i
 

is the number you’d expect if your population followed the probability dis-
tribution you’re testing against. This expected frequency is calculated by 
multiplying the probability of each category by the total number of samples. 
For example, in testing the Vegas survey against a discrete uniform distri-
bution, there are five possible responses. Under the null hypothesis, the 
probability of a response falling into any category is 1/5. The total number in 
my sample is 200. So, the expected frequency is 200 × 1/5 = 40 responses 
per category.

In general, for a population with M outcome categories, the test statistic 
for the goodness‐of‐fit test is

	

X
O E

E

O E

E

O E

E
M M

M

2 1 1

2

1

2 2

2

2

2



There are two important requirements for the expected frequencies. First, 
these probabilities can come from a known probability distribution or they 
can be values you specify—anything that makes sense—but they must form 
a proper probability distribution. In other words, there must be a nonzero 
probability for every category, and they must add to one. Second, the 
expected frequencies in each cell should be at least five. In other words, you 
should have a large enough sample so that E

i
 ≥ 5 for every i.

If, by some odd circumstance, the observed frequencies in each category 
exactly match the expected frequencies, the test statistic X2 will be zero. The 
more the observed frequencies deviate from the expected frequencies, the 
larger X2 will be. If this test statistic is large enough, larger than you’d expect 
by random chance alone, then you can declare statistical significance and 
conclude your population does not conform to the specified probability dis-
tribution. In other words, you compare the test statistic X2 to a decision 
threshold. This threshold, 1 1

2
,M , is the 1−α critical value for the chi‐

squared distribution with M−1 degrees of freedom, where M is the number 
of categories, not the number of samples. If the test statistic is greater than 
this threshold, you reject H

0
.

Most data analysis packages have a chi‐squared test built into them, and 
these procedures can perform all the calculations for you. However, it’s use-
ful to work through an example at least once. To that end, the observed 



CONTINGENCY TABLES, CHI‐SQUARED TESTS� 61

frequencies for the Las Vegas survey responses are shown in Figure 4.7. Under 
a discrete uniform distribution, the expected frequencies are E

i
 = 40 per cat-

egory. To determine if the “Before” frequencies are consistent with a discrete 
uniform distribution, the test statistic is

X 2

2 2 2 2 2
43 40

40

63 40

40

52 40

40

25 40

40

17 40

40
443 5.

Critical values for the chi‐squared distribution are provided in Appendix C. 
For the Las Vegas survey question, M = 5. For α = 0.05, the critical value, or 
decision threshold, is 0 95 4

2 9 5. , . . Since the test statistic, X2 = 43.5, is larger 
than this decision threshold, I reject the null hypothesis that the survey 
responses are uniformly distributed across the different categories. In other 
words, I  conclude at least one of the categories has significantly more or 
fewer responses than I’d expect if they were all equally likely.

Recall, with a “≠” in the alternative hypothesis, this test is a two‐sided 
hypothesis test. Deviations from the null hypothesis in one direction or 
another are equally significant. There is a one‐sided version of the 
goodness‐of‐fit test, where the alternative hypothesis specifies either 
greater than or less than. However, it’s messy, and I’ve found I can usually 
do without it. If you need a one‐sided goodness‐of‐fit test, I refer you to 
Nonparametric Statistical Methods by Hollander and Wolfe for all the 
details.

The Chi‐Squared Test for Contingency Tables  The idea behind a goodness‐
of‐fit test is simple. Compare observed frequencies to expected frequencies 
and determine if the difference between them is statistically significant. This 
idea can be applied to various situations. Contingency tables, for example, 
can be analyzed using a chi‐squared test. The procedure is straightforward, 

How likely are you to visit 
Vegas within twelve months?

“Before”
frequency

“After”
frequency

Highly unlikely 43 38

Unlikely 63 50

Neutral 52 53

Likely 25 33

Highly likely 17 26

Figure 4.7  Frequency distribution for Vegas tourism survey.
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as long as you understand how to calculate the expected frequencies you 
need for the test.

Think of a two‐way contingency table, with one variable and one out-
come. The chi‐squared test for this type of table is

	

H for variable and category vs

H for at least oA

0 : .

:

O E i j

O E

ij ij

ij ij nne variable category combinationi j/ .

The chi‐squared test statistic is the same as before, namely a sum of squared 
differences between the observed and expected frequencies. But now you 
have two indices, i and j, instead of one. This makes the test statistic slightly 
more complicated. If your variable has L possible values and your categories 
have M possible values, the test statistic for this test is

	

X
O E

E

O E

E

O E

E

O E

E

M M

M

2 11 11

2

11

12 12

2

12

1 1

2

1
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2
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221
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2
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The observed frequencies O
ij
 are just the counts in each cell of the 

contingency table: simple. The expected frequencies E
ij
 are the values you’d 

expect if your data conform to a distribution determined by probabilities p
ij
: 

not quite so simple. Calculating this requires either (i) a formula or (ii) careful 
thought. I’ll give you the formula below.

A two‐way contingency table includes one variable and one type of out-
come. Both the variable and the outcome can have as many possible values as 
you like. The expected frequency for variable i and outcome j, call it E

ij
, is 

the number of observations having variable value i, N
i
, multiplied by the 

probability of outcome j under the null hypothesis, p
j
, or

	
E N pij i j .

For example, the expected number of men who respond highly unlikely in the 
survey is the total number of men, N

1
, times the probability of highly unlikely, 

p
1
. Under the null hypothesis, this probability follows a uniform distribution 

where p_i=1/5 for all categories, and so this value is E
11

 = 100 × 1/5 = 20. 
Similarly, the expected frequency of women who respond neutral is the 
number of women, N

2
 times the probability of neutral, or E

23
 = 100 × 1/5 = 20.
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For the Vegas survey example, the number of men and women is exactly 
the same. And if I use a discrete uniform distribution for the null hypothesis, 
the probability of a response in each category is exactly the same. So, the 
expected frequencies in this example are all the same, twenty responses 
per gender and response category.

The decision threshold for the goodness‐of‐fit test in a two‐way 
contingency table is the critical value for the chi‐squared distribution with 
(L−1) × (M−1) degrees of freedom. Referring to Appendix C, with L = 2 and 
M = 5, the 0.05 chi‐squared critical value with 4 degrees of freedom is 

0.95,4
2 9 5. .
With these expected frequencies and a decision threshold, testing the 

contingency tables in Figures 4.4 and 4.5 for goodness of fit against a 
discrete uniform distribution is straightforward. For example, the test 
for the before‐frequencies gives a chi‐square value of

	
X 2

2 2 226 20

20

31 20

20

9 20

20
44

( ) ( ) ( )
.

Since this test statistic exceeds the decision threshold value 9.5, I’d reject 
the null hypothesis that the responses are uniformly distributed across all 
categories.

Testing for Independence  The frequencies in Figure  4.4 are about the 
same for men and women, suggesting that both sexes are similarly predisposed 
to plan a trip to Las Vegas. But there are differences. Are these differences statis-
tically significant? In other words, are the outcome frequencies somehow 
related to the gender of the respondent? The chi‐squared test, powerful little 
technique that it is, can be used to answer this question, too.

Statistical dependence refers to a relationship between two variables—
whether categorical, discrete, or continuous. Technically, two random vari-
ables are dependent if the value of one impacts the probability of the 
outcome of the other. For example, suppose men are more inclined to want 
to visit Las Vegas than women. If you chose a man and a woman at random 
and asked both of them if they wanted to visit Vegas, the man would be more 
likely to say “yes” than the woman. This wouldn’t be true for all men and 
women. Rather, the probability the man would say “yes” would be higher 
than probability for the woman. In this case, gender and the desire to visit 
Vegas are dependent variables.

When two variables a not dependent on one another, they are independent. 
Specifically, A and B are independent if

	 P A a B b P A a P B band .
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This means the value of one does not impact the probability of the value of 
the other, no matter what those values are. For example, suppose A repre-
sents gender and B represents a desire to visit Las Vegas. If gender and 
preference for visiting Vegas are statistically independent, then

	
P A man B highly P A man P B highly likelyand likely .

The same relationship is true for A = woman and B = highly likely, A = man 
and B = neutral, A = women and B = unlikely, and any other gender/outcome 
combination in the study.

The chi‐squared test for independence can be used to determine if a 
variable and an outcome are independent, and it relies on this mathematical 
definition of independence. Specifically, if r

i
 is the probability of observing 

variable value i and p
j
 is the probability of observing outcome category j, 

then the probability of observing both variable value i and outcome category 
j is p

ij
 = r

i
 × p

j
. Under this scenario, the expected frequency in cell i,j of the 

corresponding contingency table is given by the relationship:

	
E N r pij i j

Figure 4.8 shows how the contingency table can be used to calculate the expected 
frequencies for the Las Vegas survey data originally presented in Figure 4.4.

Gender

How likely are you to visit in the next twelve months?

Highly 
nlikely

Unlikely Neutral Likely Highly 
likely

Total

Men 26 31 26 100

Women 27 32 22 10 9 100

Total 53 63 48 20 16 200 (N)

r1= # Men/N = 0.5

p3 = # Neutral/N = 0.54

Expected frequency: E13 = N × r1× p3 = 100 × 0.5 × 0.54 = 27
Observed frequency: O13 = 26

10 7

Figure 4.8  Calculating chi-squared frequencies for the Las Vegas ad campaign data.
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The rest of the process is exactly the same as the original test for goodness 
of fit. Set up the hypotheses:

	

H for every variable value and outcome vs

H foA

0 : .

:

O E i j

O E

ij ij

ij ij rr at least one combinationi j/

Calculate the test statistic

	
X

O E

E

O E

E

O E

E
LM LM

LM

2 11 11

2

11

12 12

2

12

2



Under the null hypothesis, X2 follows the chi‐squared distribution with 
(L−1) × (M−1) degrees of freedom. The 1−α = 0.95 critical value for this 
distribution is given by 9.5, so if X2 exceeds this value, then the null hypo-
thesis is rejected and I conclude the variable and outcomes are dependent.

For the data in Figure 4.8, X 2 8 61. . This is less than the critical value 
of 9.48, so I’d accept the null hypothesis that gender and response are 
independent. In other words, I’d conclude that men and women have the 
same preconceived notions about visiting Vegas.

HOW TO BEAT A CHEATER

Sixes Bet is a simple dice game. You place your bet. The dealer rolls a single 
die four times. If he rolls no sixes, you win. Otherwise, you lose.

The probability you win a game of Sixes Bet is straightforward to calcu-
late if you remember how to use the binomial distribution. Four rolls of the 
die, meaning four trials. The probability of a success—that’s a failure to 
you—on each roll is the probability the dealer rolls a six, or 1/6. The proba-
bility you’ll win a single game of Sixes Bet is the probability of zero sixes 
out of four rolls. This comes to

	
P no sixesout of four rolls 0 48. .

Sixes Bet is well known in Las Vegas. The probability of winning isn’t 
bad, but when you do win, the payout is poor, and many unsuspecting gam-
blers have found themselves out of money quickly. You know this. Mr. Slick 
knows this. Mr. Slick knows you know this. So, like any good Vegas‐style 
businessman, Mr. Slick has a hook. He’s turned the tables on this game. He 
lets you play the dealer.
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Since you’re the one trying to roll at least one six, the probability you’ll 
win each game is now

	
P at least one six out of four rolls 0 52. .

That’s better odds than you’ll find anywhere in Las Vegas.
As long as you’re playing with a fair die, that is.

A fair die is a perfectly symmetrical and balanced cube, meaning the 
edge angles and weight distribution along every side are exactly the same. 
It’s this perfect balance that creates equal probabilities for each of the six 
faces. Loaded dice are made by upsetting this balance. A quick Internet 
search reveals a number of ways to make a loaded die, for example, by 
shaving one face of an ordinary die ever so slightly, or by inserting a tiny 
nail in one face of the die to tip the odds in favor of a certain roll. The odds 
of you winning this version of Sixes Bet are good, and yet, you’re losing 
money hand over fist. Could Mr. Slick be using a loaded die?

To answer this question, I recreated the scenario in the form of a 
double‐blind study. I bought a set of four dice off the Internet. Two of 
the dice are fair. Two of them are loaded for the game of craps, meaning 
they have a slightly higher than normal probability of rolling a two or 
five. All four dice look exactly the same. I found a test subject and had 
her pick one of the dice at random. Then I asked her to play forty games 
of Sixes Bet according to Mr. Slick’s rules. Neither my test subject nor 
I knew if the die she chose was loaded or not. In other words, both of us 
were blind to the true nature of die being tested. Here are the results of 
the experiment.

In all, my test subject won ten of the forty games. This is suspicious. With 
a fair die, the probability of winning each game is just over a half, so I’d 
expect her to have won about half of the games. Suspicious as this result may 
be, however, it isn’t conclusive. Losing streaks do happen, after all, and I 
need a stronger argument if I’m going to beat this cheater.

To better understand what was happening with this die, I took these forty 
games and broke them out into the individual rolls, all 160 of them. Figure 4.9 
plots the frequency distribution for these rolls. The frequencies are given 
above the bars so that a numerical comparison can be made.

This figure only adds to my suspicion. With a fair die, all of the numbers 
should have about the same frequency. However, there were only eleven 
sixes out of the 160 rolls. That’s an empirical probability of 0.07, less than 
half what it should be for a fair die. On the other hand, the number two was 
rolled thirty-nine times. That’s an empirical probability of 0.25, quite a bit 
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more than the expected value of 0.17. Are these differences statistically 
significant? A chi‐squared goodness‐of‐fit test will tell me.

Under the null hypothesis of a fair die, the expected frequency for each 
cell, or number, is E

i
 = 60 × 1/6 = 26.67, plenty big enough to satisfy the sampling 

requirements of the test. The chi‐squared statistic for this test, as calculated 
from these E

i
 and the observed frequencies listed in Figure 4.9 is

	

X 2

2 2 2
34 26 67

26 67

39 26 67

26 67

22 26 67
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The 1 − α = 0.95 critical value for the chi‐squared distribution with M−1 = 5 
degrees of freedom is 0 95 5

2 11 1. , . . Since the test statistic exceeds this criti-
cal value, I must conclude my test subject was playing with a loaded die. 
And Mr. Slick is, in fact, a cheater.

The chi‐squared test is a versatile technique that can be used to answer 
many common questions about discrete data. But this test isn’t only for 
dice games and surveys. There are other variations of this test, variations 
that can be used to test continuous data. These will be presented in follow-
ing chapters.
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Figure 4.9  Frequency distribution of rolls for Mr. Slick’s die.
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5
WHY IT PAYS TO BE A STABLE 
MASTER: SUMO WRESTLERS AND 
OTHER ROBUST STATISTICS

Sumo wrestling is the national sport of Japan. Two large men, dressed in 
loincloths, with long hair tied neatly into sumo knots, charge at one another 
like raging bulls. The first one to knock his opponent down or push him 
outside the tiny wrestling ring wins the match. These wrestlers are robust by 
any definition: disciplined, dedicated, and of a seriously hearty constitution. 
They live in heya, or stables, compounds separated from the rest of society 
and managed by a stable master. They train almost constantly. Their lives are 
highly structured, with everything from their sleeping schedule to their 
clothing dictated by tradition. And they eat a diet carefully designed to help 
them gain as much weight as possible. The good ones earn a nice living, have 
a loyal fan base, and live a life of relative comfort. The bad ones earn almost 
nothing while they spend their lives serving the better wrestlers.

Like baseball, football, basketball, and well, most other sports, Sumo 
wrestling has had its share of scandals. In 2007, a young sumo wrestler 
died in a bullying incident involving a several wrestlers, a stable master, 
and a beating with a large beer bottle. Two years later, a prominent sumo 
wrestler and his stable master were caught betting illegally on, of all sports, 
baseball. In 2011, a number of wrestlers and stable masters were caught 
rigging matches for money. This last scandal caused so much concern, 
the  Japanese Sumo Organization cancelled the national tournament in 
November of that year.
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Suppose I’m a Japanese Sumo stable master involved in the recent 
scandals. Four of my top wrestlers have been accused of match rigging. The 
others are disgruntled. My entire stable has been suspended for three years, 
until I can prove I’ve cleaned up my act. Three years is a long time to go 
without any winnings, and if I don’t do something, I’ll never be able to afford 
the rather hefty costs of feeding and housing my men until the suspension 
expires. In other words, my days as a stable master are over.

Or are they?
Japan isn’t the only country that loves to watch a contest between men 

who’ve trained beyond their physical limits. Across the Pacific Ocean is a 
country full of people that spend their weekends attending, watching, betting, 
and cheering on such competitions. What if I take my show on the road? To 
the land of opportunity. To America.

Americans are no strangers to sports scandals, so my reputation for 
match rigging shouldn’t bother them. And the United States is the great 
spectator nation. If these people are willing to pay money to attend a medi-
eval‐themed restaurant and eat turkey legs while watching a fake jousting 
match, then surely they’ll be willing to pay to eat teriyaki chicken on a 
stick while watching two half‐naked 600 pound men slamming into each 
other. The opportunity is ripe. I just need to pick a handful of my heartiest 
wrestlers and arrange exhibition matches in all the major American cities. 
And to make sure this tour is a success, I’ll rely on good marketing, great 
wrestling, and some carefully chosen robust statistics.

DESCRIPTIVE STATISTICS: A REVIEW  
FOR THE JONOKUCHI

Japanese Sumo wrestlers are ranked according to a highly structured pyramid 
system. The Yokozuna lie at the top of the pyramid. These men are the most 
experienced, most successful wrestlers. The Jonokuchi lie at the bottom of the 
pyramid. Jonokuchi wrestlers are typically new to the sport. They haven’t got 
many professional matches under their belt, and they’re spending a lot of time 
developing basic skills. This section is for the statistical jonokuchi out there, 
those of you who are new to data analysis or in need of a tutorial on basic 
descriptive statistics. If this isn’t you, feel free to skip to the next section.

Chapter 4 presented techniques for analyzing qualitative data, those obser-
vations that fall into descriptive categories or take on a few distinct numerical 
values. Methods for analyzing qualitative data tend to focus on frequencies—
probabilities, percentages, and proportions for outcomes of interest. This 
allows a data analyst to turn categorical observations, such as hair color, into 
numerical data, such as the proportion of a sample having blond hair, so that 
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statistical methods can be used to analyze it. This chapter and those that 
follow are devoted to quantitative data, numerical observations that have a 
meaningful ordering to them. Because quantitative data are numerically 
meaningful, the full force of mathematics can be put to work on it.

There are various techniques for analyzing quantitative data, and most of 
them rely on descriptive statistics. A descriptive statistic is a value calcu-
lated from a sample that estimates some property of the population under 
study. For quantitative data, the most common descriptive statistics are the 
sample mean, or average, and the sample standard deviation. The sample 
mean measures the center location of a sample. The sample standard 
deviation measures the variation around the sample mean. Together, these 
two descriptive statistics are used as a foundation for confidence intervals, 
hypothesis tests, regression analysis, and just about any other statistical 
technique you can name.

Three Things You Should Know About the Sample Mean

The sample mean is the average. It’s calculated as the sum of all the obser-
vations, divided by the total number of observations. For example, the 
dataset 6, 7, and 8 has a sample mean (6 + 7 + 8)/3 = 7. This value describes 
the arithmetic center of a dataset, or if you imagine your data as a cloud 
of numbers on a number line, the middle of this cloud. The sample mean 
is one of the most common, and the most powerful, ways to measure the 
center of a population, but it isn’t perfect. No statistic is. Here are a few 
things you should know about this popular statistic.

The Sample Mean Is a Good Estimate of the Population Mean  In a typical 
population, not all members are identical to one another. In other words, 
there’s variation. To deal with this variation, statisticians have invented the 
probability distribution, a mathematical function that describes the behavior 
of a population. This function can be used for many things, for example, to 
calculate the critical value for a hypothesis test, or to predict the proportion 
of the population that will fall in some range of values. There are many 
common probability distributions, for example, the normal distribution and 
the Student t‐distribution, and most of them are characterized by their mean 
and variance. However, in the real world, the data analyst almost never 
knows the population mean and variance ahead of time. These two param-
eters must be estimated. The sample mean is one way to estimate the 
population mean.

Just how good is it? If you were to grab a random sample from a population 
and calculate the sample mean, you’d get some (hopefully accurate) estimate 
of the population mean. If you were to do this again, you’d get another 
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(hopefully accurate) estimate of the population mean. You could do this 
over  and over again, each time getting a slightly different estimate. This 
collection of estimates would have some underlying probability distribution 
associated with them, complete with a mean and a variance. To determine if 
the sample mean is a good estimate, statisticians look at two important 
statistical properties of this estimate: bias and consistency.

Bias measures the difference between the expected value of an estimate 
and the corresponding parameter for the population. If the difference is zero, 
meaning the expected value of the estimate is the same as the population 
parameter, then we say it’s an unbiased estimate. The sample mean is an 
unbiased estimate of the population mean. In other words, if you grab a 
random sample and take the average, you can expect this average value to be 
the population mean, plus or minus some error caused by using a subset of 
the population to estimate the true value.

Just how big is the error in the sample mean? The accuracy of this estimate 
is typically measured using the standard error. In general, the standard error is 
the variance of an estimate. This value tells you how much you can expect your 
estimate to deviate from the true, underlying population value. If you have a 
sample size of N, and if σ is the variance of the original observations in the 
sample, then the standard error of the sample mean is / N . What does this 
mean for a typical data analysis? Among other things, it means that you can 
make the sample mean as accurate as you’d like, simply by adding more 
samples to your dataset. If you have nine samples, each with a standard deviation 
of one, the variance of the sample mean is 1/3. If you increase the sample size 
to one hundred samples, the variance of the sample mean drops to 1/10.

An estimate is consistent if, as the sample size grows, the estimate grows 
progressively closer to the true value. Because the variance in the sample 
mean decreases every time N is increased, the sample mean is a consistent 
estimate of the population mean.

Two Very Different Datasets Can Have the Same Sample Mean  The 
sample mean is a very useful statistic, but any time you compress many 
observations down into a single estimate, information gets lost. Two datasets 
may look completely different and yet have the same sample mean. Two 
datasets may look very similar and have different sample means. This is 
illustrated in Figure 5.1. The first dataset consists of discrete values between 
four and sixteen, with a sample mean of ten. The second dataset also has a 
sample mean of ten, but these values are continuous numbers, more tightly 
clustered around the center value. The third dataset looks similar to the sec-
ond, with a similar range of continuous values clustered around the center 
value, but in this case, the sample mean is 11.6.
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What does this mean when it comes to data analysis? In a nutshell, the 
sample mean is a good measure of the center location of a population, but by 
itself, it only tells part of the story. Other descriptive statistics are also impor-
tant when characterizing a dataset.

Extreme Values and Skewed Data Can Impact the Sample Mean  The 
United States is a big place. As I start planning what I’ve dubbed the Japanese 
Sumo Invasion Tour, I discover that America has many stadiums and arenas 
for rent, and they range in seating capacity from a few hundred to tens of 
thousands. Booking the right venue is important, too big and I’ll end up pay-
ing for unsold seats, too small and I’ll end up turning away paying customers 
with a sold out show. How many sumo fans can I expect to attend these 
events? To find out, I turn to USA Sumo, an organization that arranges ama-
teur sumo tournaments around the country. This organization posts useful 
tidbits of information on its website, including the weight and record of 
competitors in the tournament as well as attendance levels at events over the 
past decade. Figure 5.2 shows a plot of 2013 USA Sumo attendance data 
(y‐axis) for all cities (x‐axis), listed in alphabetical order.

When we picture the sample mean of a dataset, we generally picture a 
value in the middle of the data, where the majority of observations lie, with 
about half the observations falling below the mean and half falling above it. 
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Figure 5.1  Three different samples, two different sample means.
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The sample mean of the attendance data is x 900. The vast majority, 75%, 
of the values fall below this mean. Why is the sample mean of the attendance 
data so high?

Two reasons: outliers and skewed data.
Outliers are extreme data values, observations that sit by themselves, far 

away from the center of the data cloud. There are three obvious outliers in 
Figure 5.2, the three events with more than 1500 attendees. Outliers tend to 
shift the sample mean toward the extreme values. In this case, all three of the 
outliers are large values, and so they increase the sample mean.

Skewed data can be best illustrated using a histogram. A histogram is a 
frequency distribution of continuous data. It’s just like a frequency distribu-
tion for discrete data, except for one thing. Because the data are continuous, 
the observations are first dropped into equally spaced bins spanning the range 
of values so that a bar chart of frequencies can be constructed. Figure 5.3 
illustrates a typical histogram. The observations are symmetrically clustered 
around an obvious center point, and most of the observations lie close to this 
value. Away from center, the number of observations decreases smoothly to 
zero. A histogram with this shape is called a bell‐shaped histogram. Many 
types of data naturally conform to this shape, and when they do, the sample 
mean falls right in the middle of the distribution where the top of the bell lies.
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Figure 5.2  USA sumo games attendance by city.
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Figure 5.4 shows the histogram of the 2013 USA Sumo attendance data. 
These data do not follow a bell‐shaped distribution. There are fewer obser-
vations below the highest frequency bin than above it. In other words, it 
looks like a bell‐shaped distribution that’s been stretched to the right. In 
statistics, we say these data are right‐skewed. Skewed data will tend to shift 
the sample mean in the direction of the stretch, in this case to the right. The 
result is a larger sample mean than you’d expect for the standard bell‐shaped 
distribution.

Three Things You Should Know about the Standard Deviation

The standard deviation is the average deviation, or variation, of all the 
values around the center location. If your measurement values are x

1
, x

2
, 

x
3
, … x

N
, and your sample mean is x , the formula for the standard 

deviation is

s
x x x x x x x x
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 .

Thinking of a dataset as a cloud of numbers along a number line, the standard 
deviation reflects the width of this cloud. The bigger the cloud, the bigger the 
standard deviation.
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Figure 5.3  The bell‐shaped distribution.
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The Standard Deviation Is a Good Estimate of the Population Standard 
Deviation  The sample standard deviation can be evaluated just like the 
sample mean, in terms of its bias and consistency. The standard deviation is 
both unbiased and consistent. In other words, if you grab a random sample 
from your population and calculate the standard deviation, you can expect it 
to be pretty close to the population standard deviation, plus or minus some 
uncertainty caused by using a subset of the population to estimate it. And as 
you increase your sample size, you can expect the sample standard deviation 
to get closer and closer to the population standard deviation.

Extreme Values Can Impact the Standard Deviation  By itself, the sample 
mean provides some information about a dataset. Adding the standard deviation 
adds more. However, the standard deviation is even more sensitive to skewed 
data and outliers than the sample mean. For example, the sample standard 
deviation of the 2013 USA Sumo attendance data is s = 528. Removing just 
three values, the three obvious outliers, from this dataset reduces the standard 
deviation to s = 203. In other words, by removing just three extreme values out 
of a total of fifty, the standard deviation is cut to less than half its original value.

The Three‐Sigma Rule Can Help You Understand Your Data  If a dataset 
has a nicely rounded, bell‐shaped distribution like the one in Figure 5.3, over 
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99% of the observations will fall within three standard deviations of the 
sample mean. This rule can help you gain a little insight into your dataset. 
For example, the sample mean of the 2013 US Sumo attendance data is 
x 900, and the standard deviation is s = 527. According to the three‐sigma 
rule of thumb, if these data are roughly bell‐shaped, then over 99% of the 
observations should fall within three standard deviations of the sample mean. 
This means none of the fifty observations are expected to fall outside the 
range ( , )x s x s3 3 , or (−681, 2481).

The lower limit, a negative attendance value, is physically impossible. The 
smallest attendance occurred in Boise, Idaho, with 372 people, almost 900 
more than this limit. When a three‐sigma rule limit, particularly the lower 
limit, is far below the lowest meaningful value, this can be an indication of 
skewed data.

There is a single observation above the upper three‐sigma rule limit of 2481, 
Los Angeles, with an attendance value of 3875. That’s a difference of almost 
two standard deviations. When observations outside the three‐sigma range are 
far from the upper or lower limits like this, they’re obvious outliers that could 
very well be impacting the sample mean and standard deviation. More 
information on this and other outlier detection methods is provided in Chapter 7.

THE JAPANESE SUMO INVASION: WHY IT  
PAYS TO BE ROBUST

Figure 5.5 shows the 2013 USA Sumo attendance data, this time with the 
four most attended cities labeled. From the plot, it’s easy to see at least 
three of these four shows were outliers. While the average attendance at the 
grand sumo tour events was 900, the Los Angeles event saw a whopping 
3875 spectators. Honolulu and San Francisco were second and third with 
2134 and 1791 attendees, respectively. New York was fourth with 1491 
attendees.

These four observations clearly influence both the sample mean and 
standard deviation. The sample mean with these four values included is 900, 
but when they’re left out of the calculations, it drops to 776. The standard 
deviation with these four values is 527, and when they’re excluded, it drops to 
170. But what, if anything, should be done about these extreme observations? 
Are they truly different from the rest of the population, needing different 
treatment? Or are they perfectly legitimate values that just happen to be big? 
If I simply remove them from the dataset, then the sample mean and standard 
deviation will certainly drop, but will they more accurately represent the 
underlying population?
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These are questions every data analyst must answer when confronted with 
outliers, and these are the questions I face as I think about booking venues for 
my Japanese Sumo Invasion Tour. There are formal strategies for identifying 
and eliminating outliers, and I could use the methods from Chapter 7 to do 
this. But time is money and I don’t have much of either. So rather than wading 
through the data, trying to determine which values to keep and which to throw 
out, I’m going to estimate the sample mean and standard deviation using a 
different approach, one that automatically takes care of the outliers for me.

There are two types of estimates that can help me with this problem. Robust 
estimates work well when your data do not follow a bell‐shaped distribution. 
Resistant estimates aren’t influenced by outliers. Robust and resistant 
statistics are like two sumo wrestlers from the same stable. They both have 
similar characteristics, and even though the stable master knows they’re com-
pletely different, a casual observer may have trouble telling them apart. Robust 
and resistant estimates are evaluated differently—one in terms of robustness to 
non‐normal distributions and the other in terms of resistance to outliers—but 
the end result is typically the same. When an estimate is robust, it’s usually 
resistant, and when it’s resistant, it’s usually robust. Therefore, you don’t need 
to be a stable master, highly trained in the subtleties of robust and resistant 
statistics, to be able to use them.

0

500

1000

1500

2000

2500

3000

3500

4000
N

um
be

r 
of

 a
tte

nd
ee

s

CityAtlanta,
GA

Wichita,
KS

Los Angeles

Honolulu

San
Francisco

New York

Figure 5.5  USA sumo games attendance with outliers.
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Summarizing a Sample with Percentiles

Percentiles are descriptive statistics taught in most introductory courses. 
Considered to be both robust and resistant, a percentile is the value below 
which some specified percent of the data fall. It’s convenient to think of 
a percentile in terms of a sorted list of data values. Specifically, if you 
sorted your observations from smallest to largest, the 20th percentile 
would be the observation 20% of the way down this list. For a sample with 
N observations, this would be the 0.20 × Nth value, rounded up to the next 
whole number as needed. For example, for the ten sample sorted data 1, 3, 
3, 4, 5, 5, 5, 6, 6, 9, the 20th percentile is the 0.2 × 10 = 2nd value down the 
list, which is 3. The 75th percentile is 0.75 × 10 = 7.5, rounded up to the 
eighth value, which is 6.

A percentile can be anything, 10th, 30th, or 75th, but some percentiles are 
more meaningful than others. The 50th percentile, the observation halfway 
down the sorted list of values, is the median. The median is a robust alternative 
to the sample mean for describing the center location of a dataset. Together, 
the 25th, 50th, and 75th percentiles are called the quartiles of a dataset. The 
75th percentile and 25th percentile, also called the third and first quartiles, 
can be used to measure variation. Specifically, the interquartile range(IQR) 
is the 75% percentile minus the 25% percentile. For the following dataset—1, 
3, 3, 4, 5, 5, 5, 6, 6, 9—the median is five and the interquartile range is 6−3 = 3.

The quartiles together with two more descriptive statistics, the minimum and 
maximum, make up what’s called a five‐number summary. A five‐number 
summary is a quick and powerful way to gain a little insight into a dataset. For 
example, Figure 5.6 shows a five‐number summary of the 2013 USA Sumo 
attendance data. The attendance numbers span from 372 to 3875. That’s a total 
range of 3875−372 = 3503. The interquartile range, 953−689 = 264, is just a 
small fraction of this overall range. The 75th percentile is below 1000, less than 
a third of the maximum value.

This quick numerical comparison can be helpful, but I always find a graph 
to be more informative. A boxplot is the graphical representation of a five 
number summary. Figure  5.7 shows a boxplot of the sumo attendance data 
summarized in Figure 5.6. There’s a box with a line through it. The line through 
the center of the box represents the median—the 50th percentile. The top and 
bottom edges of the box represent the 25th and 75th percentiles, respectively. 
The height of the box is the IQR. Whiskers stretch above and below the box to 
the extreme values, in other words, the minimum and maximum.

In general, a nice symmetric, bell‐shaped dataset will have a box with a 
line traveling right through the center of it. Each of the whiskers will be a 
little longer than the box is tall. Figure 5.7 looks nothing like what you’d 
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expect from normally distributed data. The median line travels roughly 
through center of the box, and the lower whisker appears to be just a bit 
longer that the height of the box. But the upper whisker dominates this plot. 
It’s much longer than it should be for normally distributed data. This sug-
gests at least one outlier.

Robust Center Location

For approximately normal data with no outliers, the sample mean is the 
Yokozuna, the grand champion, the best of the best, when it comes to esti-
mating the center location of a dataset. It’s unbiased, it’s consistent, and results 
like the central limit theorem make it easy to work with in a typical basic 

Minimum 372

25th percentile (1st quartile) 689

50th percentile (median, 2nd quartile) 783

75th percentile (3rd quartile) 953

Maximum 3875

Figure 5.6  Five number summary of the USA sumo attendance data.
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statistical analysis. However, when it comes to robust and resistant estimates 
for center location, no clear winner exists. Over the years, several techniques 
have been developed, and each technique has its strengths and weaknesses.

There are several criteria for evaluating robust or resistant statistics. One 
I find particularly useful is the breakdown point. The breakdown point is a 
method for evaluating resistance to outliers. It’s the proportion of extreme 
values a statistic can handle before it starts to become impacted by these 
values. Conceptually, you can find the breakdown point of an estimate by 
taking observations one by one and pushing them to the extreme, making 
them as big (or small) as you like. The largest proportion of observations you 
can change without changing the estimate is the breakdown point.

For example, take the dataset 1, 3, 3, 4, 5, 5, 5, 6, 6, 9. The sample mean is 
4.7. If I take the most extreme value, 9, and change it to some really big number, 
say 1000, this change increases the sample mean to 103.8. Since turning only a 
single value into an outlier alters the sample mean, no changes can be made 
without changing the estimate. The breakdown point of the sample mean is 
zero. It may be the heavyweight champion of all center location estimates, but 
it’s easily toppled by outliers.

Median  The median is a robust and resistant alternative to the sample 
mean. If your data cloud has a typical bell‐shaped frequency distribution, 
the median will fall right in the center, close to the sample mean. If your 
data cloud is not typical or has extreme values, then the median can be quite 
different than the sample mean. For example, the 2013 USA Sumo 
attendance data have a sample mean of 900, and a median of 783. That’s a 
difference of over 100 attendees. For my USA Sumo Invasion Tour, that 
translates into more than one hundred tickets per show, and more than 
100 customers buying merchandise.

Where the sample mean has the lowest possible breakdown point, the 
median has the highest. Consider the dataset 1, 3, 3, 4, 5, 5, 5, 6, 6, 9. The 
median of these data is 5. Increasing the most extreme value, 9, to 1000, 
doesn’t change the median. It’s still 5. Increasing the next highest value, 6, 
to 1000, doesn’t change the median. It remains 5. In fact, you can keep 
doing this until up to half of the values have been pushed to the extreme, 
and the median remains the same. In other words, the breakdown point of 
the median is 50%.

Aside from its resistance to outliers, the median has another advantage. 
Where confidence intervals for robust and resistant estimates can be difficult 
to find, calculating a confidence interval for the median involves little more 
than the binomial distribution. Here’s the process. If you recall, the median 
of a population is the midpoint, the 50th percentile. If you pick a single 
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observation from the population at random, the probability it will be greater 
than the median is one‐half. If you sample N observations, the number n that 
are greater than the median is a binomial random variable, in other words, it 
follows a binomial distribution with N trials and success probability p = 1/2. 
The probability n is within some range, n

L
 to n

U
, is P{ n

L
 < n < n

U
}. And for 

this probability to be 1−α, in other words, for a 1−α confidence interval, you 
can choose an upper limit n

U
 for which P{n > n

U
} = 1−α/2 and a lower limit 

n
L
 for which the probability P{n < n

L
} = α/2.

The values n
L
 and n

U
 are not the confidence limits on the median of a 

sample, rather, they’re the lower and upper confidence limits on the number of 
observations in a sample size of N that exceed the median. To convert these 
values into the confidence limits for the median of a sample, you sort your 
observations from smallest to largest. The n

L
th smallest value is the lower limit 

on this confidence interval and the n
U
th smallest value is the upper limit.

A confidence interval for the median USA Sumo attendance can be 
calculated in this way. There are N = 50 events and the median attendance is 
783. For a 95% confidence interval, the α/2 = 0.025 critical value for the 
binomial distribution with N = 50 and p = 0.5 is n

lower
 = 18. The 1−α/2 = 0.975 

critical value for this same distribution is n
upper

 = 32. Therefore, the lower 
bound is the 18th smallest value, which happens to be 725, and the upper 
bound is the 32nd smallest value, which is 814. So the 95% confidence 
interval for the median attendance is (725, 814).

Trimmed Mean  If the median has such a great breakdown point, why 
would anybody ever need another robust or resistant measure of center loca-
tion? It turns out, the breakdown point isn’t the only useful way to evaluate 
a robust or resistant statistic. Relative efficiency is also important. The 
relative efficiency measures the variance of a statistic relative to the sample 
mean, specifically,

	
Efficiency of

Varianceof thesamplemean

Varianceof
E

E

The variance of the sample mean, the standard error, is / N . Because the 
sample mean uses all N observations in its calculation, the variance of this 
estimate is as low as possible. Robust and resistance estimates tend to ignore 
some observations, and this gives them a larger variance, or uncertainty, than the 
sample mean. In other words, this gives them an efficiency of less than one. For 
example, because the median value is calculated from one or two observations, 
it’s variance is larger than the standard error. In fact, for large, well‐behaved 
samples, the median only achieves a maximum efficiency of 0.64, or 64%.
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When it comes to estimating central location, the trimmed mean is more 
efficient than the median. The trimmed mean is calculated by trimming, 
removing a specified number of high and low values, and calculating the 
average of the remaining values. For example, the 20% trimmed mean is 
calculated by removing 20% of the values—the largest 10% and the smallest 
10%—and then calculating the average from what’s left. To calculate the 
20% trimmed mean of a dataset with ten values, you’d remove the smallest 
value and the largest value and calculate the average of the remaining values. 
For example, with sorted data 1, 3, 3, 4, 5, 5, 5, 6, 6, 9, you’d remove the 1 
and the 9, and calculate the average (3 + 3 + 4 + 5 + 5 + 5 + 6 + 6)/8 = 4.6.

The trimmed mean offers a higher resistance to outliers than the sample 
mean, and better efficiency than the median. The X% trimmed mean has a 
breakdown point of X/100, meaning up to X% of the observations can be 
outliers without impacting the estimate. For example, in the previous list of 
data values, you could decrease the lowest value as much as you want 
and increase the largest value as much as you want and still get a 20% 
trimmed mean of 4.6. And because it uses 100−X% of the observations, the 
trimmed mean has an efficiency of 1−X/100. For a 20% trimmed mean, this 
gives an efficiency of 0.8, or 80%.

How do the sample mean, median, and trimmed mean compare when 
confronted with the Sumo attendance data? Figure 5.8 shows the results. The 
sample mean is higher than the median, due to the presence of a few very 
large values. The trimmed mean lies somewhere between the sample mean 
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and median. When the trimmed percent is low, the trimmed mean uses more 
of the observations and looks more like the mean. As this percent increases, 
the trimmed mean uses fewer and fewer observations and starts to look more 
like the median.

Robust and Resistant Variation

Like the sample mean, the sample standard deviation uses all of the observations 
in a sample. And so, like the sample mean, this statistic has a breakdown point 
of zero. In other words, the standard deviation is just as, if not more, sensitive to 
outliers than the sample mean. There are two commonly used robust and resis-
tant alternatives to the standard deviation, both of them based on percentiles.

The Interquartile Rangeâ•… The IQR has already been introduced as a way to 
measure variation. Also called the middle fifty, this statistic measures the 
range of the middle 50% of observations in a sample. The IQR has a 
breakdown point of 25% meaning it can withstand up to 25% of the data 
being outliers. For a symmetric, bell‐shaped dataset, the IQR should be just 
a little larger than the standard deviation, about 1.35 times larger. For the 
USA Sumo attendance data, however, this value is only about half the stan-
dard deviation, with IQRâ•›=â•›264 and 527s . This illustrates just how much a 
few outliers can affect the standard deviation.

The Median Absolute Deviationâ•… The median absolute deviation relies 
heavily on the median to measure variation. If m is the median of your data, 
the median absolute deviation (MAD) is

	
MAD median( , , , )x m x m x mN1 2 

In other words, it’s the median of the absolute differences between every 
data value and the median of the data values. For example, the dataset 1, 3, 
3, 4, 5, 5, 5, 6, 6, 9 has a median of 4.5. The MAD is the median of the 
values: |1−4.5|â•›=â•›3.5, |3−4.5|â•›=â•›1.5, |3−4.5|â•›=â•›1.5, |4−4.5|â•›=â•›0.5, |5−4.5|â•›=â•›0.5, 
|5−4.5|â•›=â•›0.5, |5−4.5|â•›=â•›0.5, |6−4.5|â•›=â•›1.5, |6−4.5|â•›=â•›1.5, and |9−4.5|â•›=â•›3.5. And 
this median turns out to be 1.5.

Because it relies on the median, which has a breakdown point of 50%, the 
median absolute deviation also has a breakdown point of 50%. This value 
tends to be smaller than the standard deviation. For a normal distribution, the 
MAD is about 67% of the standard deviation. Not so for the USA Sumo 
attendance data. For this dataset, the standard deviation is five times the 
MAD value of 109, giving further evidence of outliers in the data.
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Robust Confidence Intervals

A good estimate should have a margin of error associated with it, in other 
words, a confidence interval. Estimating the confidence interval of a sample 
mean is straightforward. There are simple formulas for this and most data 
analysis software packages make them readily available. Confidence inter-
vals for resistant or robust statistics aren’t always so straightforward. The 
formulas for these types of intervals typically require advanced statistics and 
some rather hefty approximations, and they’re often only applicable under 
very special circumstances.

Rather than relying on complicated and specialized formulas to calculate 
the confidence interval of a robust or resistant estimate, many data analysts 
turn to a widely used technique: bootstrapping. Bootstrapping is a data‐
based method for calculating the variance, bias, or a confidence interval of 
an estimate. Bootstrapping doesn’t require complicated formulas or approx-
imations. You only need a way to randomly select observations from your 
dataset using a technique known as resampling.

Resampling is just like sampling, except now you’re treating your dataset 
as the entire population. In resampling, you take your original sample of N 
observations and randomly choose N observations, replacing each one after 
you pick it. In this way, you’ll get a new sample of the same size as the 
original sample where some observations might have been chosen twice or 
three times, and others none at all. From this new (re‐)sample, you can 
calculate whatever estimate you’d like, say the median or the trimmed mean. 
If you do this—resample and estimate—many times, you get a large number 
of estimates, and you can use these estimates to calculate variance, bias, or 
confidence intervals.

The process of resample bootstrapping goes like this:

1.  Generate a new sample from your original dataset by resampling N 
observations.

2.  Calculate your estimate of choice using this resampled data.

3.  Repeat steps 1–2 many times (500+, the more the better), saving the 
value of the estimate each time.

4.  Use the estimates from the resampled data to calculate your chosen 
measure of accuracy (bias, variance, confidence intervals).

For example, suppose I wanted to use resample bootstrapping to calculate 
a 95% confidence interval for the median of the attendance data. I’d take 
this original dataset of N = 50 values and resample to get a new set of 
N = 50 values. I’d calculate the median of this resampled data and save it. 
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I’d repeat this process many more times until I had, say, 500 median 
estimates from as many different resampled datasets. I’d then find the 
95% confidence interval by calculating the 2.5 and 97.5% percentiles 
from these median values. These percentiles would be the lower and upper 
limits on my confidence interval. Figure  5.9 shows the results of this 
bootstrapping process.

WHEN ROBUST DOES IT BETTER

With all these different ways to estimate center location and variation, you 
might be wondering when you should stick to the sample mean and when 
you should look to the median. When you should use the IQR and when you 
should go with the MAD. Unfortunately, the answer to this question is just 
as much opinion as it is statistics. There are some statisticians who rarely, if 
ever, use robust or resistant statistics, preferring instead the classic sample 
mean and variance. Others argue that with good robust and resistant statistics 
like the trimmed mean and MAD, there’s no reason ever to go back to the 
traditional mean and standard deviation. Here are some things to consider as 
you form your own opinion on this matter.

During the initial exploration of a dataset, especially when this dataset is 
large, it’s often useful to calculate both resistant statistics and traditional 
statistics. Comparing them can help you understand your data better. It can 
point to outliers and skewed distributions, suggest excessive variation, or 
confirm that you have a well‐behaved, bell‐shaped dataset.
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There are many, many statistical techniques that rely on the traditional 
sample mean and standard deviation, and these are the ones most commonly 
found in a typical data analysis software. In other words, the traditional 
statistics are the easiest to use. So, many data analysts prefer to inspect the 
data for outliers and remove errors or faulty observations (see Chapter 7). 
This not only helps you verify the observations are legitimate but also allows 
you to use the tried and true statistics and the tried and true methods that go 
along with them.

In some cases, you just can’t inspect each and every data value for outliers. 
Examples of situations where it’s difficult or impossible to do this include 
real‐time monitoring of stock market data, quality control situations where 
new observations are constantly arriving, or big data applications where you 
have so many observations, your computer chokes whenever you  try to 
load it all into memory. In cases like these, it makes sense to turn to resistant 
or robust measures of center location and variation in order to prevent 
unusual data from ruining an otherwise perfectly good statistical analysis.

HARVESTING THE AMERICAN DREAM

As a Japanese stable master, I don’t know much about Americans. But I do 
know that they love big things. SUVs. Super‐sized combo meals. My stable 
of sumo wrestlers should fit nicely into this bigger‐is‐better model. The 
question is, are they big enough?

In recent years, sumo wrestling has been slowly migrating out of Japan, 
making its way into other countries. America has its own version of sumo 
wrestling. Like the country itself, American sumo wrestling is a melting 
pot of people from around the world. It allows amateurs—both men and 
women—to come together and compete, just for the joy of competing. No 
decades of tightly regimented training. No rigid hierarchy. No living in a 
stable, cut off from the rest of society. Just wrestlers coming together to 
fight and have fun. While this American‐style sumo throws away many 
long held traditions, it can help me. Specifically, by looking at the com-
petitors in these events, I can get a good idea of what Americans expect 
out of a sumo wrestler.

American sumo has weight‐classes: lightweight, middleweight, 
heavyweight, and open. I’m not interested in the smaller men, those weekend 
warriors who wrestle for nothing more than a good thrill. I’m only concerned 
about the serious contenders, the biggest and strongest men. The heavy-
weights. Figure 5.10 shows a boxplot of the heavyweights, along with some 
pertinent statistics.
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A man has to weigh at least 253 lbs to wrestle in the heavyweight class, 
so I’d expect the distribution of these data to be right‐skewed: with obser-
vations starting abruptly at 253 lbs, tapering off to the right as the weight 
increases. The boxplot shows this. For the N = 125 wrestlers in this study, 
the weight ranges from the lower limit of 253 to a whopping 530 lbs. The 
median line runs not quite through the center of the box, but just below it. 
The lower whisker is about the length of the box height, a little shorter 
than you’d expect for a normal distribution. The upper whisker is much 
longer.

What do the descriptive statistics show? First, the mean, median, and 
trimmed mean are within eleven pounds of one another, a small difference 
when it comes to 300 pound wrestlers. The standard deviation is s 54. If 
the data are approximately normal, then the IQR should be about 1.35 times 
this value, or 74 lbs, and the MAD should be about 0.67 times this value, or 
36 lbs. In reality, the IQR is sixty-four and the MAD is twenty-four. The dis-
tribution of these data is definitely non‐normal.

The standard 95% confidence interval for the mean USA Sumo weight 
is (332, 352), however, because these data are non‐normal, this estimate 
may not be the best choice. How does a robust estimate—the 20% trimmed 
mean, for example—compare to it? To find out, I’ve used bootstrapping to 
construct a confidence interval for this estimate. Specifically, I resampled 
the heavyweight data so that I had 500 samples, each containing N = 125 
values. Figure 5.11 shows the bootstrap estimate of the 95% confidence 
interval for the 20% trimmed mean. This bootstrap confidence interval is 
(329, 348), just a few pounds shy of the traditional confidence interval 
based on the normal distribution.
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So, what do Americans expect out of a sumo wrestler? According to my 
analysis, a typical heavyweight is somewhere between 329 and 348 lbs. 
The largest heavyweight is much heavier than this, though, tipping the 
scales at 530 lbs. My stable of wrestlers average 395 lbs, definitely heavier 
than the average US amateur, but if I really want to cash in on the American 
dream, I need to bring my biggest and strongest wrestlers, those that make 
a 500 pounder look like a weakling. Those that can demonstrate there’s 
nothing like authentic Japanese sumo wrestling to impress a crowd of 
thrill‐hungry spectators.
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6
Five‐Hour Marriages: 
Continuous Distributions, 
Tests for Normality, and 
Juicy Hollywood Scandals

Hollywood, California, a magical place where the rich and beautiful live. 
A place where success is measured in starring movie roles, and incomes are 
measured in millions. A place filled with decadence and dreams and bikinis 
and botox.

No wonder ordinary people are fascinated with Hollywood, especially 
those scandals that leak from every pore of the city’s perfectly tanned com-
plexion. One of the most popular scandals seems to be the hook‐up/break‐up 
story, where we watch as two celebrities get romantic, get married, and get 
divorced. These marriages never seem to last long. Singer Britney Spears’ 
marriage to Jason Alexander lasted just two days. Celebrity Kim Kardashian’s 
marriage to Kris Humphries lasted just seventy‐two days. Actress Drew 
Barrymore has had two short‐lived marriages, one lasting five months and 
the other lasting just thirty days. The success of a normal marriage is typi-
cally measured in years, but stories like these make us wonder if the success 
of a Hollywood marriage should be measured in weeks or even days.

Is it really true that celebrities just can’t stay committed? Or is our national 
hook‐up/break‐up obsession causing us to think this way?

Hypothesis tests are one of the most powerful techniques in the data 
analyst’s arsenal. The most commonly used hypothesis tests rely on the 
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assumption of normality, in other words, that the data follow a normal distri-
bution. Thanks to some very important statistical theorems, this assumption 
works in many situations. However, if you have small sample sizes or if you 
want to answer a question that goes beyond a simple test for the mean or 
proportion of a population, blindly assuming normality can lead to inaccu-
rate p‐values and false conclusions.

Tests for normality and continuous goodness‐of‐fit tests are tools no data 
analyst should be without. These hypothesis tests help us determine whether 
or not a sample is consistent with the normal (or some other) distribution. 
They help us make the proper assumptions about our data so we can apply 
the most appropriate techniques and reach accurate conclusions. In this 
chapter, tests for normality will be used to answer the question: Are 
Hollywood marriages normal?

THE NORMAL DISTRIBUTION: THE MOST ORDINARY  
OF ALL PROBABILITY DISTRIBUTIONS

As a discipline, mathematics tends to be black and white. Two plus two 
always equals four. The area of a rectangle is always its length times its width. 
Pi is always 3.14. But the world is a messy place. There are exceptions to 
every rule, and we almost never know what’s going to happen in advance. 
Variation and uncertainty plague every aspect of our lives, including our data. 
To deal with all this uncertainty, statisticians have invented the probability 
distribution.

The discrete probability distribution was reviewed in Chapter  4. It’s a 
mathematical function describing how discrete data tend to behave. A contin-
uous probability distribution does the same thing for continuous data, 
observations, or measurements that can take on any value in some range. A 
continuous probability distribution relies on a continuous random variable. 
As introduced in Chapter 4, a continuous random variable is a variable, 
usually denoted by X or Y, that represents some as‐yet‐undetermined out-
come of a random experiment. The continuous probability distribution mea-
sures the probability a random variable will take on certain values. This is 
usually done using the cumulative distribution function (cdf), or P{X ≤ x}.

There are many continuous probability distribution out there, and each 
one has certain circumstances where it’s the perfect choice. Without a doubt, 
the most common continuous probability distribution is the normal distribu-
tion. The normal distribution describes a random variable that can take on 
any real value, and its probability distribution function has a nice‐symmetric, 
bell‐shape. There are two parameters associated with the normal 
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distribution: the mean and the variance. The mean determines the center 
location of the distribution, the point where the probability function is larg-
est. The variance determines its width, whether it’s tall and narrow or short 
and wide. Figure 6.1 plots the normal probability distribution function for 
different parameter values.

There’s a good reason the normal distribution is so popular. Many types of 
data cluster symmetrically around some center value, and so many types of data 
naturally conform to the normal distribution. But that’s only part of the reason 
this distribution is so widely used. If your data don’t look at all normal, certain 
statistical techniques based on the normal distribution can still be used, thanks 
to a powerful result known as the central limit theorem. Confidence intervals 
for the mean, t‐tests, F‐tests, and analysis of variance are just some of the tech-
niques that you can use, even if you don’t have normal data. You only need a 
large enough sample. For more information on this topic, I refer you to any 
good basic statistics text. For my contribution, see Chapter 5 of The Art of Data 
Analysis: How to Answer Almost Any Question Using Basic Statistics.
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Figure 6.1  (a) The standard normal distribution (mean 0 and variance 1), (b) The 
normal distribution (mean 0 and variance 4), (c) The normal distribution (mean 3 and 
variance 1), and (d) The normal distribution (mean 3 and variance 4).
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As useful as the normal distribution is, sometimes a data analyst needs 
something more. If you have a small sample, for example, the central limit 
theorem no longer applies. When you want to predict future observations or 
estimate small probabilities, small deviations from the normal distribution 
can lead to big errors in the result. This is why every data analyst needs a test 
for normality in his toolkit.

NORMALITY TESTS EVERY DATA ANALYST SHOULD KNOW

Suppose I work as a scandal tracker for a major tabloid newspaper. My duties 
include dispatching reporters to all the Hollywood hot spots in search of 
juicy gossip. Movie stars are crafty and fickle, what’s popular one week 
might be over and done the next. So, I want to analyze the locations of all the 
celebrity sightings I can find over the past few months. This includes stories 
in the tabloids as well as sightings posted on celebrity‐watching websites 
such as smarp.com.

Most of the locations are old news to me. However, there’s one spot, a 
parking lot in Santa Monica, CA, where a surprising number of celebrity 
sightings have occurred, at least a hundred in the past month. This parking 
lot is in front of a tidy, nondescript building that looks like it could be a 
doctor’s office. There’s no lettering on the outside of the building that might 
suggest what it is, and the location is unlisted. No phone number or business 
name available.

The celebrity sightings seem to come in waves, and there appear to be 
more sightings in the morning than any other time. To examine the distribu-
tion of these sighting times, I generate a histogram. I divide the day into 
one‐hour bins, place every sighting into its appropriate time bin and plot 
the  resulting frequencies. Figure  6.2 shows this histogram, with time of 
day plotted as number of hours since the earliest sighting, 8 a.m. Summary 
statistics and a normal probability distribution function with the same mean 
and variance have been added for reference.

The celebrity sighting dataset is a good example of right‐skewed data. 
The sample mean is just under three hours after 8 a.m., at 10:45 a.m., but the 
mode, the maximum number of sightings occurs before that time, around 
10 a.m. To the left of this maximum point, the frequencies drop off sharply 
(simply because there are no sightings before 8 a.m.). To the right of this 
maximum point, the frequencies look like a bell curve whose tail has been 
stretched. Many types of measurements tend to produce right‐skewed data, 
among them are distance to some reference point, counts of people or items, 
and yes, the time until an event such as a celebrity sighting occurs.

http://smarp.com
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The data shown in Figure 6.2 could be used to construct a confidence 
interval for the mean. And with so many sightings (N = 100), a standard 
interval based on normal data would be a perfectly legitimate choice. But the 
mean only measures the arithmetic center of a dataset, and I’m not really 
interested in the mean. If I send my best reporter to the parking lot to sniff 
around for a scandal, I’d like my chances of spotting a celebrity to be as high 
as possible. In other words, I’d like to send my reporter out when the proba-
bility of spotting a celebrity is at its highest. And according to the histogram, 
the mode, the bin with the highest frequency occurs not at the mean time of 
10:45 a.m., but some time before that.

Since I’m not interested in a simple confidence interval or mean test, the 
distribution of my data matter. Figure 6.2 shows the data deviate from the 
perfectly normal bell shape. But how far off are they? Is this deviation statis-
tically significant, or can I still apply tests based on the normal distribution? 
Here are some tools for answering these questions.

Q–Q Plots: A Picture Is Worth a Thousand Words

Just like the right photograph can reveal a celebrity scandal in ways words 
never could, the right graph can reveal hidden relationships, highlight 
outliers, and even help you determine if your data are normal. One of the 
best graphical tools for assessing normality is something called a Q–Q 
plot. This tool can be used to compare data to any discrete or continuous 
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probability distribution. However, it’s most often seen with the normal 
distribution.

The Q–Q plot is based on the concept of quantiles. Quantiles can be 
thought of as percentiles calculated at regularly spaced intervals. For a contin-
uous random variable, the quantiles are calculated from the cdf or P{X ≤ x} 
for specific values of x. Recall when x is at the lower end of the range of 
possible values, then P{X ≤ x} = 0. When x is at the upper end possible values, 
P{X ≤ x} = 1. Between those two points, the cdf gradually increases as x 
increases. If you divide the range 0–1 into some number of equally spaced 
intervals and calculate the x‐values corresponding to the probabilities cre-
ated by those intervals, you’ve got quantiles. For example, if you divide the 
probability range into three intervals you end up with two probabilities, 1/3 
and 2/3. The x‐values associated with these probabilities, where P{X ≤ x} = 1/3 
and P{X ≤ x} = 2/3, are what we call 3 quantiles for this distribution. These 
are illustrated in Figure 6.3.

The number of intervals you choose is generally referred to by a number 
in front of the word quantile. Each successive interval is generally referred 
to by a number before that. In the example given earlier, with the interval 
divided into thirds, the quantiles are referred to as 3 quantiles. The first 
value, for which P{X ≤ x} = 1/3, would be the first 3 quantile. The second, for 
which P{X ≤ x} = 2/3, would be the second 3 quantile.

Quantiles can also be estimated from a set of data. To find quantiles of a data 
set, you sort the observations from smallest to largest, and work your way down 
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this sorted list, flagging data values at regular intervals. For example, to find the 
3 quantiles, you flag the values 1/3 and 2/3 of the way down your list. If an 
interval, such as 1/3, falls between two x‐values, you simply round up to the 
next largest value. Figure 6.4 shows various quantiles for a small dataset.

If your data follow a normal distribution, then the quantiles should match 
the corresponding quantiles of the normal distribution. This is what a Q–Q plot 
shows. Specifically, a Q–Q plot is a plot of the data quantiles against the 
corresponding quantiles for a normal distribution. If the points fall close to the 
line x = y, your data are approximately normal. If your data significantly deviate 
from the line, then they aren’t normal. Figure 6.5 illustrates a Q–Q plot.

Most statistical analysis software packages have a function for generating 
Q–Q plots. You only need to supply the data. If you don’t have access to such 
software, it’s easy enough to generate Q–Q plots in spreadsheet programs 
like Excel. Here are the instructions on how to construct a Q–Q plot in a 
typical spreadsheet program.

1.  Sort the data values from smallest to largest. Place the sorted values in 
Column A.

2.  Rank each data value by placing the number “1” in the first row, adja-
cent to the smallest value, the number “2” in the second row adjacent 

Sorted 
data 

values 2-quantiles 3-quantiles 5-quantiles 10-quantiles

1.1 1.1

1.2 1.2 1.2

1.3 1.3

1.4 1.4 1.4 1.4

1.6 1.6 1.6

1.7 1.7 1.7

1.7 1.7 1.7

1.8 1.8 1.8

1.9 1.9

2.0

Figure 6.4  Quantiles for a dataset with N = 10.
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to the second smallest value, and so on up to a rank of N. Place the 
ranks in Column B.

3.  Calculate cumulative probabilities for each data value as follows. In 
Column C, take the rank of each data value, subtract 0.5, and divide by N, 
for example, C1 = (B1−0.5)/N.

4.  Calculate z‐values for the normal distribution. In Column D, calculate the 
inverse normal function for the cumulative probabilities in Column C. 
For example, D1 = norminv(C1).

5.  Calculate z‐scores for the data. In cell F1, calculate the average of the data 
values in Column A. In cell F2, calculate the standard deviation of the data 
values in Column A. Back to Column E, calculate the z‐scores of the 
original data by subtracting the sample mean and dividing by the standard 
deviation. For example, E1 = (A1−F1)/F2, E2 = (A2−F1)/F1, and so on.

6.  Generate a scatterplot of column D versus column E. This is a Q–Q plot.

There are a variety of common patterns that appear in Q–Q plots, and 
these patterns suggest certain behaviors in data. For example, a Q–Q plot 
that resembles a tilted “U” suggests right‐skewed data. A Q–Q plot that has 
an ‘S’ shape suggests light‐tailed data, data with tails that are narrower than 
the corresponding bell curve. Figure 6.6 illustrates some common Q–Q plot 
patterns and shows what those patterns suggest about a dataset.
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Figure 6.5  A Q–Q plot.
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Figure 6.7 shows the Q–Q plot of the celebrity sightings data. Most of the 
values fall close to the line, but there is a noticeable “U” pattern in the values. 
This suggests the data are slightly right‐skewed. This comes as no surprise 
since the histogram in Figure 6.2 suggested the same thing.

Hypothesis Tests for Normality

The celebrity sighting data are slightly skewed. Are they so skewed I need to 
abandon the assumption of normality?
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As useful as it is, the Q–Q plot is only qualitative. Whether you determine 
your data to be normal or not is up to you and your subjective eye. Two dif-
ferent data analysts looking at the same plot might come to completely dif-
ferent conclusions. For this reason, there are a variety of hypothesis tests for 
normality that remove this subjectivity from the process.

Tests for normality compare two competing claims:

	

H Data conform to a normal distribution vs

H Data do not conform tA

0 : .

: oo a normal distribution.

These two hypotheses are hardly mathematically precise. What does it 
mean for a dataset to conform to the normal distribution? Different statis-
ticians have had different ideas how to answer this question over the years, 
and this had led to the development of a number of different tests for 
normality.

Moment‐Based Tests for Normality  All probability distributions have 
unique characteristics, and the normal distribution is no different. This dis-
tribution is symmetric, the left and right halves of the pdf are mirror images 
of one another. It’s also mound‐shaped, downward sloping on either side of 
the midpoint with just the right amount of bulge to it. Any dataset that con-
forms to the normal distribution should have these characteristics, and 
looking at these characteristics is one way to test for normality.
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Figure 6.7  Q–Q plot of Santa Monica celebrity sightings.
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The degree of symmetry and the amount of bulge in a probability distri-
bution can be measured using moments. Moments are expected values 
describing the properties of a probability distribution. The mean and variance 
are examples of moments. The mean, μ = E[X], describes the arithmetic center 
of a distribution and the variance, σ2 = E[(X − μ)2], describes the variation 
around the mean. There are other moments that describe other properties of a 
distribution, and two of these are particularly important when it comes to tests 
for normality. Skewness measures symmetry. Mathematically, skewness is 
the third central moment: Sk = E[(X − μ)3]. If, like the normal distribution, a 
distribution is perfectly symmetric, then Sk = 0. Kurtosis measures the 
amount of bulge a distribution has. Mathematically, the kurtosis is the fourth 
central moment, or K = E[(X − μ)4]. The kurtosis of the normal distribution 
with variance σ2 is K = 3σ4.

The D’Agostino Pearson test uses skewness and kurtosis to test for 
normality. Specifically, if a dataset conforms to the normal distribution, then 
the sample skewness and kurtosis, calculated from the data values, should 
approximately equal the skewness and kurtosis of a normal distribution with 
the same mean and variance. This logic leads to the following hypotheses:

	

H Sk and vs

H Sk orA

0
4

4

0 3

0 3

: .

:

K

K

The mathematical details of this test are beyond the scope of this book. 
However, like any hypothesis test, the D’Agostino Pearson test uses a test 
statistic, this one calculated from the sample skewness and kurtosis, to cal-
culate a p‐value, and compares that p‐value to a critical threshold based on a 
significance level you specify.

The D’Agostino Pearson test for normality appears frequently in data 
analysis software packages. You provide a data vector and a significance 
level and the software does the rest. This test is one of the original tests 
for normality, but it isn’t the most commonly used. Newer tests have been 
developed that are more powerful, meaning they’re able to detect more subtle 
deviations from normality with the same significance level. I don’t use the 
D’Agostino Pearson test in this book, but I’ve included this summary because 
when you’re faced with data analysis software that offers a half dozen dif-
ferent tests for normality, it’s nice to have some idea of the differences 
between them.

Goodness‐of‐Fit Tests for Normality  Recall the Q-Q plot. The Q–Q plot is 
a plot of the quantiles of a dataset against the quantiles of a corresponding 
normal distribution. If the data conform to a normal distribution, then the 
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points in a Q–Q plot should fall on a nice straight line. Most modern tests for 
normality use some variation of quantiles to determine if the differences between 
a sample and the normal distribution are statistically significant. Because they 
compare empirical and theoretical probability distributions across a range of 
values, these tests fall under the general category of goodness‐of‐fit tests.

The mathematical derivation of the typical modern test for normality 
requires some statistical sophistication, and so details are omitted here. The 
motivated reader can find more information in books such as in Sheskin, 
Handbook of Parametric and Nonparametric Statistical Procedures. 
Fortunately, most data analysis packages offer at least one test for normality, 
so it’s not absolutely necessary to know the details of the tests to use them. 
However, knowing the similarities and differences between the most popular 
tests can help you interpret your results, especially if you find different tests 
coming to different conclusions about your data.

Three of the most common tests for normality are the Kolmogorov–
Smirnov test, the Anderson–Darling test, and the Shapiro–Wilk test. The 
first two of these tests can be used to compare a sample to any distribution, 
not just the normal distribution. This can be done in many data analysis 
packages by specifying which distribution you’d like to test against. In this 
chapter, I’ll restrict my attention to testing for normality.

The Kolmogorov–Smirnov test is a nonparametric test. Nonparametric 
methods make no assumptions about the underlying probability distribution 
of a sample. This means they can be applied to all kinds of data without wor-
rying about normality. It also means this test can be used to test not only for 
normality but also for any other probability distribution you’d like. To do 
this, the Kolmogorov–Smirnov test compares the empirical cdf, calculated 
from the sample quantiles, to the theoretical cdf of the desired probability 
distribution, and then finds the largest deviation between them. If this largest 
difference is bigger than what you’d expect purely by chance, the null hypo-
thesis of normality is rejected.

The Anderson–Darling test and the Shapiro–Wilk test are based on order 
statistics, observations that have been sorted, or ordered, from smallest to 
largest. The kth‐order statistic is the kth smallest observation. In other words, 
if you sort a sample from smallest to largest, the kth value in this sorted list is 
the kth‐order statistic. Where the original observations are typically written as 
X

1
, X

2
, …, X

N
, the order statistics are written with a parentheses around the 

subscript, X
(1)

, X
(2)

, …, X
(N)

 to indicate they’ve been reordered.
Like quantiles, the order statistics for a sample can be compared to those 

for a normal distribution to test for normality. Both the Anderson–Darling and 
the Shapiro–Wilk test use a test statistic calculated from the sorted values 
along with known properties of order statistics for the normal distribution. 
But it’s not the same test statistic. The Anderson–Darling test statistic can be 
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used to test whether a sample conforms to a variety of probability distributions, 
whereas the Shapiro–Wilk test statistic is specifically tailored to the normal 
distribution.

The Shapiro–Wilk test is one of the most powerful tests for normality, 
followed by the Anderson–Darling test and the Kolmogorov–Smirnov test. 
Figure 6.8 summarizes this and other key properties of the various tests for 
normality.

All tests for normality have their strengths and weaknesses. When deter-
mining if a sample conforms to the normal distribution, it’s usually a good 
idea to generate a Q–Q plot and run at least one of the tests and compare the 
two. For example, when applied to the celebrity sightings data, the Anderson–
Darling test for normality produces a p‐value of 0.008. This is well below the 
typical significance level of α = 0.05, and supports my suspicions from the 
Q–Q plot in Figure 6.7 that the data are right‐skewed. Therefore, I’d con-
clude these data are most definitely not normal.

DATA TRANSFORMATIONS AND OTHER STRATEGIES 
FOR COPING WITH NON‐NORMAL DATA

When you find yourself with a sample that isn’t normal, there are three 
things you can do. First, you can ignore the non‐normality and proceed with 
a statistical analysis based on the normal distribution. This strategy works 
when you have a large sample (N ≥ 25) and when you’re constructing 
confidence intervals or testing the mean or a proportion of your population.

Test Test statistic Properties

D’Agostino–
Pearson

Based on moments •  One of the �rst tests for normality. 
•  Not as powerful as more modern tests 
    for normality

Kolmogorov–
Smirnov

The maximum
difference between
the sample and
normal quantiles

•  Commonly used
•  Nonparametric 
•  Can be used to test against any 
    probability distribution

Anderson–
Darling

Based on order 
statistics

•  One of the more powerful tests for 
    normality 
•  Can be used to test against the normal, 
    uniform, exponential, lognormal, 
   Weibull, and extreme value 
   distributions

Shapiro–Wilk Based on order 
statistics

•  One of the most powerful tests for 
    normality 
•  Speci�c to the normal distribution

Figure 6.8  Tests for normality and their properties.
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The second strategy for dealing with non‐normal data is to find a statistical 
technique based on a probability distribution that better suits your data. There 
are techniques based on virtually any probability distribution you can imagine, 
and a quick Internet search will usually uncover them. If you don’t want to go 
to the trouble of identifying a probability distribution to fit your data, you can 
always use nonparametric techniques. Nonparametric techniques make no 
assumptions about the probability distribution of your data, and they’re usually 
robust when it comes to oddities like outliers and funky looking histograms. 
A variety of common nonparametric techniques are introduced later in this 
book and I refer you to Chapter 8 for more information on this topic.

Finally, in some cases, a data transformation can be used to make your data 
more normal. A data transformation is just a function you apply to all your 
data values. Data transformations are incredibly useful. They’re simple, and 
they allow you to use the multitude of techniques designed for the normal 
distribution. The most common type of non‐normal data are right‐skewed data. 
Certain types of observations—distances, areas, counts of people or items, 
dollar values, and measurements ranging over many orders of magnitude—
tend to have this property. The log transformation works especially well with 
right‐skewed data. To perform the log transformation, you take the logarithm 
of every data value and use those transformed observations in your analysis.

This approach works well for testing hypotheses with skewed data. 
Perform the test on the transformed observations and you’re done. For esti-
mates and confidence intervals, some data analysts construct the interval on 
the transformed data and then apply the reverse transformation to get those 
estimates back into the original units. However, doing this tends to produce 
biased estimates and shifted confidence intervals. I don’t recommend this 
approach. But if you must use a log transformation to construct a confidence 
interval, it’s a good idea to compare the result with the corresponding interval 
generated another way, for example, using the bootstrapping procedure 
introduced in the last chapter or, when you have a large sample size, the tra-
ditional confidence interval based on the normal approximation. The case 
study that follows provides an example of how transformed data can be used 
in a typical data analysis.

THERE’S NORMAL, AND THEN THERE’S HOLLYWOOD 
NORMAL

Hollywood celebrity marriages are anything but normal. Forget that the celeb-
rities are paid to project an image that rarely reflects reality. Forget that many 
of them can’t go to the store without a mob of paparazzi trailing behind them. 
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Forget that they’re multimillionaires who’ll never need to worry about paying 
their gas bill. Just the fact that there’s a world of voyeurs out there who thrive 
on every juicy detail of their lives makes them so different from the average 
couple, it’s almost impossible for the rest of us to imagine what it’s like.

Conventional wisdom tells us Hollywood relationships never last beyond 
the honeymoon stage. But is this true? Are celebrity marriages really shorter 
than the average marriage? Are they really measured in days, not years?

The last place I wanted to go for answers was the supermarket tabloids. 
These newspapers specialize in scandal, so they’d hardly be inclined to 
report any long‐lasting happy Hollywood marriages out there. Instead, 
I relied on two more impartial websites to collect my sample. The first web-
site, called rottentomatoes.com, contains movie reviews and celebrity 
information. Every year, this website publishes the Rotten Tomato Awards, a 
list of the top ten movies of the year, as voted on by their large and growing 
list of Internet critics. To generate a sample of celebrities to scrutinize, I 
grabbed the names of the headliners from the Golden Tomato top ten lists for 
all years between 2009 and 2013. With this list of celebrities in hand, I 
visited another website, called imdb.com, which also specializes in all things 
Hollywood. This website contains detailed biographies of most major movie 
stars, including marriages and divorces. In the end, I had the birthdays, 
marriages, and divorces of over ninety celebrities, ranging from film moguls 
like Brad Pitt to fresher faces like Emma Watson.

The ages of the film stars in my sample ranged from under 20 to 80. I elim-
inated all celebrities under thirty, keeping only those individuals who’ve had 
a little time to build a marriage track record. Figure  6.9 summarizes my 
findings.

I guess our scandal‐obsessed culture has biased my perceptions because 
I must admit I was surprised when I saw the results. A large number of the 
celebrities, over 60%, have never been divorced. Many are happily married. 
Others have simply never married at all. There are a number of celebrities 

Percent of celebrities who’ve never
been divorced:

62%

Longest marriage: Thirty-three years (Leonard Nemoy)

Shortest marriage: Seven months (Woody Harrelson)

% of over-50 celebrities who’ve been 
married longer than 15 years:

24%

% of over-40 celebrities who’ve been 
married longer than 10 years:

30%

Figure 6.9  Celebrity divorce facts.

http://imdb.com
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who’ve had marriages lasting longer than ten years, including, among others, 
Julia Louise Dreyfus of Seinfeld fame, Leonard Nemoy from Star Trek, and 
Robert Downey, Jr., also known as Iron Man.

According to the United States Census Bureau, a typical American 
marriage lasts between fourteen and twenty years (twenty years for first 
marriages and fourteen years for second marriages). A confidence interval 
for the mean length of the celebrity marriages in my sample should tell me 
whether Hollywood marriages are normal or not. However, my observations 
are counts—number of days married—and they also vary by several orders of 
magnitude, ranging from 205 days to 12,002 days. Both of these things point 
to right‐skewed data. So, before calculating any confidence intervals, I 
decided to check for normality. Figure 6.10 shows a Q–Q probability plot of 
the celebrity marriage data, with the results of three tests for normality over-
layed on the graph. This Q–Q plot shows a characteristic tilted “U” pattern. 
These data are right‐skewed. What is more, all three tests are in agreement. 
Celebrity marriages are not normally distributed.

A log transformation often helps data like these, so I took the logarithm of 
every observation and generated a new Q–Q plot, shown in Figure 6.11. The 
“U”‐shape is gone, replaced by a different pattern. Apparently this pattern is 
not strong enough to be significant, however, because two of the normality 
tests, Anderson‐Darling and Shapiro Wilk, call for accepting the null hypo-
thesis. Since these two powerful and popular tests are in agreement, I took 
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Figure 6.10  Q–Q plot of celebrity marriages.
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their recommendation and declared these log‐transformed data to be suffi-
ciently normal.

The estimated mean length of a marriage can be calculated from the log‐
transformed data by calculating the average and reversing the transforma-
tion. The average of the log‐transformed data is 3.29. Raising this value to a 
power of 10 gives 103.29 = 1944 days or 5.32 years.

To construct a confidence interval for mean length of marriage from these 
log‐transformed data, I calculated the upper and lower confidence bounds 
for the transformed data and then reversed the transformation. Specifically, 
the confidence interval for the log‐transformed data is (3.15, 3.43). Taking 
these logged confidence bounds and reversing the transformation gives a 
confidence interval of (103.15, 103.43), or (1404, 2693) days, or (3.8, 7.4) years.

How does this confidence interval compare to the traditional confidence 
interval calculated from the original data? Figure 6.12 compares the two. 
The original average is more than double the value derived from the log‐
transformed data. The confidence intervals overlap, but only just barely.

Which interval should I believe? Because I have more than twenty-five 
observations in my sample, the traditional confidence interval is probably 
pretty good. And because estimates based on log transformations tend to 
be shifted away from the true value, the disparity makes me suspicious of 
the  confidence interval calculated from the transformed data. A bootstrap 
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confidence interval (see Chapter  5) might add some insight and help me 
decide. As shown in Figure 6.12, a standard resample bootstrap confidence 
interval using 500 resamples and the original data produced a confidence 
interval of (5.6, 10.0) years. This agrees closely with the original confidence 
interval and not the interval based on the log‐transformed data. Because of 
this, I’ll go with the original estimate of 7.8 ± 2.4 years. And because this 
interval is so far below the U.S. Census Bureau’s estimates of fourteen and 
twenty years, I can safely accept the stereotypes pushed by the supermarket 
tabloids. In other words, Hollywood marriages are definitely not normal.
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7
Believe It or Don’t: Using 
Outlier Detection to Find 
the Weirdest of the Weird

Did you hear about the man who stole a GPS, but ended up having to call 
911 when he got lost? How about the murder of nine college students that 
was recently blamed on the Yeti (the Russian Bigfoot)? Or the California 
school kids who made a fifty‐foot long peanut butter and jelly sandwich in 
less than three minutes?

On any given day, you can search the Internet and find stories like 
these—true reports that are stranger than fiction. Many news outlets carry 
weird news stories, and a surprising number of these stories seem to come 
from the state of Florida. In fact, a recent Google search on “weird news 
Florida” revealed over 47,000,000 hits. That’s a lot of strange. And from 
sewer‐surfing alligators to whale‐wrangling nudists, the sunshine state 
has it all.

Outliers are the Florida of the data analysis world. These strange observa-
tions sit at the extremes, far away from the rest of your data. And like the 
story about a twelve‐foot python caught wrapping itself around an unsus-
pecting woman’s toilet, outliers can leave you slightly disturbed, wondering 
what might’ve happened had they not been found. In this chapter, News of 
the Weird stories will be studied, and outlier detection will be used to find 
the weirdest of the weird.
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THE WORLD OF THE WEIRD

If you’ve read the last few chapters, you’ve already run across outliers. You 
know they’re extreme values that sit far away from the center of a dataset. 
You’ve seen how they can ruin the results of a statistical analysis. And you’ve 
learned there are techniques for minimizing the impact these weird values 
have. In this chapter, you’ll learn some techniques for finding and elimi-
nating extreme values before they have a chance to influence your analysis. 
If you’re comfortable with the concept of outliers and you’ve seen how much 
damage they can do, then go ahead and skip to the next section. If you’d like 
to see one more illustration, then this section is for you.

It only takes one or two extreme values to shift a sample mean, inflate a 
standard deviation, and bias a slope estimate. Consider the two datasets in 
Figure 7.1.

These data are simulated, made up, and just about as perfect as data get. 
Almost. There are twenty observations in Group 1, and all of them are nor-
mally distributed observations with mean 5.5 and variance 1. There are also 
twenty observations in Group 2. Eighteen of them are normally distributed 
with mean 6 and variance 1. The remaining two, the extreme values at 1.8 
and 2.1, are outliers. Figure 7.2 shows what these two outliers can do to 
some basic statistics.
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Figure 7.1  Normal data with two outliers.
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The sample mean and standard deviation of Group 1 are close to the 
respective values of 5.5 and 1.0 that we know to be true. The sample mean 
and standard deviation for Group 2 are not close to the true values. Where 
the sample mean should be about 6, it’s 5.68. Where the standard deviation 
should be close to 1, it’s 1.6. Removing the two obvious outliers dramati-
cally improves the sample statistics, increasing the sample mean to 6.1 and 
decreasing the sample standard deviation to 1.01.

The impact of these outliers on a t‐test is even more dramatic. Because the stan-
dard deviation is inflated when the outliers are included, the p‐value is a statisti-
cally insignificant value of 0.49, and we’d be forced to accept the null hypothesis 
that the means are the same, even though they’re different. When the two outliers 
are excluded, however, the p‐value drops below the 0.05 significance level, leading 
to the correct conclusion that the means of the two groups are different.

OUTLIER AND ANOMALY DETECTION: KNOWING 
AN ODDITY WHEN YOU SEE ONE

In this age of easy data collection, outlier detection is an important part of 
any thorough data analysis. Outliers can be mistakes, such as transposition 
or copy‐and‐paste errors. They can be faulty measurements. Or they can be 
perfectly legitimate, but strange data values. It’s important to hunt down and 
correct any errors so you know your analysis is accurate. It’s also important 
to take note of legitimate weird values because where there’s one, more 
could easily follow.

Correcting mistakes and understanding your data are only two reasons why 
outlier detection is important. In some cases, you might be more interested in 
the unusual values than the typical values. When this is the focus of an anal-
ysis, finding and flagging unusual values, it’s called anomaly detection. 

Summary statistics:

Group #1
Group #2 (with 

outliers)
Group #2 (without 

outliers)

Sample mean 5.52 5.54 6.10
0.95 1.95 1.01

T-test results: 
p-value with outliers p-value with outliers 

0.49 0.04

Standard deviation

Figure 7.2  The impact of outliers on common statistical techniques.
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Anomaly detection is used in many modern applications. For example, credit 
card companies often track spending patterns of their customers to monitor for 
fraud, and they use sophisticated anomaly detection methods to do it. Each 
customer has his or her unique spending pattern. When spending becomes 
extreme or unusual, the anomaly detection programs raise a red flag, and the 
company suspends the card until it can get confirmation that the purchases are 
legitimate. Anomaly detection pops up in other fields, too. Computer scientists 
use it to monitor Internet traffic for scams, spam, and viruses. Manufacturing 
engineers use it to look for defects in products coming off a production line. 
Financial analysts use it to look for blips in the stock market that might foretell 
good (or bad) things to come.

There’s a difference between outlier detection methods and anomaly 
detection methods, sort of. Both types of methods look for unusual observa-
tions that don’t fit with the rest, but most outlier detection methods assume 
outliers are rare, only a few per dataset, and that they are most likely erro-
neous. Anomaly detection methods, on the other hand, tend to allow for a 
larger number of unusual observations, and they also allow that these anom-
alies are perfectly valid, albeit unusual values. Regardless of whether you 
come from the outlier detection camp or the anomaly detection camp, the 
most common, most basic techniques for finding them are the same.

The simplest techniques for finding outliers are graphical. A good plot 
can reveal all kinds of information about your data, including extreme and 
unusual values. The simple scatter plot like the one in Figure 7.1 can instantly 
reveal odd, extreme values. A bar chart or histogram (Chapter 5) and a Q–Q 
plot (Chapter 6) can also reveal outliers. But these techniques don’t always 
work in every situation. Sometimes, you need more than a good graph.

z‐scores, Not Just for t‐Tests Anymore

Suppose you’re monitoring parts coming off an assembly line, or watching 
Internet traffic pass through your website. You want to look for outliers, but 
there’s no time to stop and generate box plots every time you get a new 
observation. In cases like these, you need an outlier detection technique that 
can run on its own. The simplest such technique relies on one of the most 
basic of all statistics: the z‐score.

You may recall the z‐statistic. If you have a random variable X drawn 
from a normal distribution with mean μ and variance σ2, the value

	
z

X
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is a standard normal random variable, meaning a random variable with a normal 
distribution having mean μ = 0 and variance σ2 = 1. A z‐score is a sample‐based 
version of the z‐statistic. For any observation x

i
 from a dataset having sample 

mean x  and sample standard deviation s, the corresponding z‐score is

	
z

x x

si
i .

The z‐scores have one incredibly useful property. If your sample is drawn 
from a normal distribution, then the z‐scores have a standard normal distri-
bution. In other words, it doesn’t matter what the original sample mean and 
variance are. As long as you have a reasonably bell‐shaped dataset, you 
can standardize, or transform, the observations to a distribution having 
many nice properties. When it comes to outlier detection, one of the nicest of 
these properties is illustrated in Figure 7.3, specifically, about 99% of the z‐
scores in a well‐behaved dataset should fall within the range ±2.5.This prop-
erty makes it easy to hunt for outliers. You simply look for z‐scores that are 
outside the interval −2.5 to 2.5. For example, Figure 7.4 plots the z‐scores of 
the simulated data from Figure 7.1. Lines at −2.5 and 2.5 have been added 
for reference. The Group 1 z‐scores all lie within the −2.5 to +2.5 range. No 
outliers there. Two of the Group 2 z‐scores fall outside this range. These are 
the weird ones.

–4 –3 –2 –1 0

P{-2.5 ≤ zi ≤ 2.5} >0.99

1 2 3 4

z-value

Figure 7.3  Interpreting z‐scores.
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z‐scores are widely used in outlier detection, particularly in quality 
control of laboratory or manufacturing processes. When combined with the 
appropriate graph, this approach can be an effective way to flag strange or 
defective items. However, there are two problems with this method. First, 
z‐scores are calculated using the sample mean and standard deviation, two 
statistics that can be dramatically impacted by extreme values. If you have 
a small sample or more than just a few outliers, your sample mean might be 
skewed and your standard deviation might be badly inflated. A skewed 
sample mean can cause skewed z‐scores, which can push perfectly good 
observations outside the acceptable −2.5 to 2.5 range. A badly inflated stan-
dard deviation can cause badly shrunken z‐scores, which can pull outliers 
into the acceptable −2.5 to 2.5 range. In other words, the z‐score approach 
to identifying outliers works well, as long as your data are roughly bell‐
shaped and only a small percentage of the observations are outliers.

The Interquartile Range Test for Robust Outlier Detection

Are there outlier detection techniques that aren’t impacted by outliers? Yes, 
and they’re based on robust statistics (see Chapter 5). Robust statistics are 
specifically designed to be insensitive to oddities in the data. The median is 
a robust statistic. Up to half of the values in a sample can be extreme, and the 
median won’t be impacted in any way.
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Figure 7.4  z‐Scores of grouped data.
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Recall from Chapter 5, the interquartile range (IQR), or middle fifty, is 
the distance between the 75th percentile and the 25th percentile in a dataset. 
In other words, it’s the range inside which the middle 50% of observations 
lie. The IQR measures the variation around the center location, and for bell‐
shaped data, this statistic is about two‐thirds of a standard deviation. The 
breakdown point of the IQR is 25%, making it significantly more resistant to 
outliers than the more traditional standard deviation.

The simplest robust outlier detection method relies on the first and third 
quartiles and the IQR. If Q

1
 is the first quartile, the 25th percentile, and if Q

3
 

is the third quartile, the 75th percentile, you simply look for values that are 
outside the following range:

	 ( . , . ).Q Q1 31 5 1 5IQR IQR

Figure 7.5 shows the grouped data from Figure 7.1 with lines indicating this 
range. Where the z‐scores method shows the two known outliers as being 
close to the threshold for typical observations, this test has both of them far 
outside the acceptable range for normal observations.

Rules‐of‐thumb‐based outlier detection schemes like these are effective 
and simple to implement. However, there are more sophisticated methods, 
most of which are based on formal hypothesis tests. These aren’t as simple 
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Figure 7.5  Robust outlier detection.
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as rule‐of‐thumb methods because when testing extreme values, you can’t 
rely on the Central Limit Theorem to give you a nice, normal distribution to 
work with. As a result, many formal outlier detection methods require spe-
cialized probability distributions to calculate critical values, and you won’t 
find most of them in a typical statistics book. They do have their benefits, 
though, so I’ve included one such technique here.

Grubbs’ Test: An Exact Test for Finding Outliers

The z‐score and IQR outlier detection methods are based on well‐known 
rules of thumb, and so these are approximate tests. Grubbs’ test is a formal 
hypothesis test, complete with a test statistic, a critical threshold, and error 
probabilities. The hypotheses for Grubbs’ test are as follows:

	

H There are no outliers in the dataset vs

H At least one outlier isA

0 : .

: ppresent.

Grubbs’ test assumes the data follow a normal distribution, at least under 
typical, nonoutlier circumstances, and so not surprisingly, the test statistic is 
based on z‐scores. It’s very different from the z‐score method for detecting 
outliers, though. Where the z‐score test simply flags individual data values 
whose z‐scores fall outside the range of −2.5 to 2.5, Grubbs’ test uses 
something called an extreme value distribution. An extreme value distribu-
tion is a probability distribution specifically designed to describe the largest 
(or smallest) value in a set of data. Extreme value distributions are important 
because even when the original observations are nicely normal, the proba-
bility distribution of the extreme values is most decidedly non‐normal. By 
relying on a precise probability distribution rather than z‐scores and a rule of 
thumb, Grubbs’ test provides the confidence that only a formal hypothesis 
test can give.

Grubbs’ test statistic is easily calculated from the z‐scores. Specifically, if 
z

1
, z

2
, and so on are the z‐scores, Grubbs’ test statistic is

	
G z z zNmax , , | | .1 2

In words, G is the absolute value of the most extreme z‐score. For example, 
of the Group 2 z‐scores plotted in Figure 7.4, the most extreme value is −2.60. 
Grubbs’ test statistic would then be G = |−2.6| = 2.6.

Unfortunately, working with extreme value distributions can be messy. The 
decision criterion for Grubbs’ test is a complicated formula involving critical 
values for the t‐distribution. Specifically, you reject the null hypothesis if
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where t N N( ),/2 2 is the α/2N critical value for the t‐distribution with N − 2 
degrees of freedom. Critical values for Grubbs’ test are tabulated in 
Appendix D. To use this table, simply choose a significance level, say 
0.05, and look up the critical value corresponding to the appropriate 
sample size. For the Group 2 data, N = 20. Therefore, the critical value for 
Grubbs’ test with α = 0.05 and N = 20 is G

crit
 = 2.83. Since G = 2.6 is less 

than this critical value, you’d accept the null hypothesis that there are no 
outliers. In other words, Grubbs’ test does not find the two known oddities 
in this dataset.

Previously, we saw that because it’s robust, the IQR test tends to be a little 
more sensitive than the z‐score method, meaning it tends to find outliers a 
little easier. Grubbs’ test suffers from the same problem the z‐score method 
has, namely, when the standard deviation is inflated due to extreme values, 
the z‐scores will tend to be smaller than they should be. This can reduce the 
power, the probability of finding outliers, of Grubbs’ test. On the other hand, 
because you specify a significance level, Grubbs’ test guarantees a certain 
Type I error probability. So you can be sure the probability of flagging false 
outliers is low. Neither of the other two tests provides this level of confidence 
in the results.

Grubbs’ test doesn’t flag individual outliers. And because the test statistic 
is based only on the most extreme z‐score, this test is only good for detecting 
one outlier. In other words, if the null hypothesis is rejected and you conclude 
you have an outlier, you only know the most extreme value is an outlier. You 
don’t know anything about the second or third most extreme values.

It’s somewhat common practice to modify Grubbs’ test to identify 
multiple outliers as follows. Perform the test on the entire dataset. If the 
null hypothesis is rejected, then remove the most extreme value and 
repeat the test with the remaining measurements. Do this until the null 
hypothesis is accepted. This approach may seem reasonable, but if you 
choose to do this, be aware that applying a test, any test, to a dataset over 
and over again increases the error probabilities you specify for the test. 
A generalized version of Grubbs’ test is available, where you can test 
for up to r outliers at once. This test, called the generalized extreme 
residual test, adjusts the significance level to account for the increase 
in error caused by repeatedly applying Grubbs’ test. A description of 
this test can be found at http://itl.nist.gov/div898/handbook/eda/section3/ 
eda35h3.htm.

http://itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
http://itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
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SO, YOU’VE FOUND AN ODDITY. WHAT NOW?

Suppose you look for outliers by looking for z‐scores that fall outside the 
range of −2.5 to 2.5. According to the standard normal distribution, the prob-
ability any given z‐score falls outside this range is 0.01 or less. In other words, 
the probability a perfectly normal observation will be flagged as an outlier is 
about 0.01, or 1%. This means you can expect about one out of a hundred 
perfectly good observations to be labelled outliers. This is manageable when 
you only have a hundred or so observations, but many modern data analyses 
involve thousands or millions of observations. With a thousand data values, 
you could expect ten falsely flagged measurements. With ten thousand data 
values, you could expect 100 false outliers. In other words, for large volumes 
of data, even though the error rate is small, the number of potential outliers 
you end up tracking down can grow to be quite large.

I’m not just picking on z‐scores. This phenomenon isn’t restricted to 
rule‐of‐thumb‐based outlier detection methods. This is a problem for any 
tests that is repeated over and over in a single data analysis. Each time 
you repeat the test, there’s a small probability you’ll declare false signif-
icance. If you only do that a few times, it’s not a big concern. However, 
if you repeat it many hundreds or thousands of times, the number of 
falsely flagged significances grows rapidly. This problem is common in 
big data applications such as computer security, where millions of net-
work transmissions need to monitored, and in airport security technol-
ogies, where huge volumes of passengers are being checked for forbidden 
items. And this phenomenon is so notorious in bioinformatics, where 
data analysts routinely screen tens of thousands of genes in a single anal-
ysis, the researchers in this field have given it a name: false discovery.

Several techniques have been developed for minimizing the false discovery 
rate. In particular, if you’re running an outlier detection procedure, it would be 
nice to know that the entire process, not each individual test, has a probability 
α of finding one or more false outliers. A Bonferroni adjustment is one 
way to guarantee this. A Bonferroni adjustment is made by dividing the signif-
icance level α into the total number of tests you plan on running. For outlier 
detection, this means setting the significance level of each comparison to α/N. 
Unfortunately, a decrease in α gives rise to a corresponding decrease in the sen-
sitivity, or power of the test. So, when you have more than just a few tests to run, 
the Bonferroni adjustment reduces the number of false significances found, but 
it also reduces the probability that true outliers will be detected.

Other, more sophisticated methods for reducing the false discovery rate 
are available, but in the end, not much can be done about this problem. If you 
have a big dataset and many tests to run, it’s a limitation you learn to live 
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with. Because of issues like this, you can’t simply throw out an outlier just 
because you find one. Outlier (or anomaly) detection is only the first part of 
the analysis. If you find an erroneous value, you need to investigate it. Is 
there a simple explanation such as cut‐and‐paste error? If it’s a scientific 
instrument, did you forget to calibrate it or did experimental conditions make 
it a suspect value? If you’re doing anomaly detection, monitoring a stream of 
data, is correlation to blame for a few extreme values? Are your measure-
ments drifting due to uncontrollable changes in the environment?

With all outliers, it’s important to examine each one and try to understand 
the cause of it. If you find an error or mistake, and if it can’t be fixed, then 
it’s usually OK to remove the value from the dataset and forget about it. If 
you can find no explanation as to why the value is so unusual, then it might 
just be a perfectly legitimate value. And where there’s one, there’s likely to 
be more. So when you have a legitimate extreme value such as this, it might 
be best to leave it in the analysis.

THE WEIRDEST OF THE WEIRD

Wyoming is full of gun‐toting cowboys. California is the land of face lifts 
and road rage. New Hampshire is filled with peace‐loving ice cream fanatics. 
And Florida? Well, Florida is just weird.

Or is it?
There’s no better place to go for an answer to this question than Chuck 

Shepard’s popular website, News of the Weird. Mr. Shepard, the Czar of strange 
news, has been researching and writing about the unusual since the 1970s. And 
his website is a gold mine of reports involving strange human behavior. My 
plan? To gather a random sample of news reports from the News of the Weird 
website, identify the location in which each of these stories occurred, tally them 
up by state, and use outlier detection to find the weirdest of the weird.

There are thousands of stories on the News of the Weird website. With fifty 
states (no US territories or District of Columbia used here), I wanted to make 
sure I got at least a handful of reports from most of them. So, I randomly chose 200 
issues between 2011 and 2014, and began tallying up the weird news by state.

There really is such a thing as too much information. Reading this many 
news stories about deviant human behavior was an education, and not one 
I’m sure I wanted. But I stuck with it. Leaving out those reports that didn’t 
specify a location and those that occurred outside the fifty US states, I ended 
up with 735 stories, or observations in my sample.

Figure 7.6(a) plots the total number of weird news stories by state for all states 
listed in alphabetical order. The hands‐down winner in the weird news department 
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was Florida with ninety stories, followed by New York with seventy-three stories, 
California with seventy stories, and Texas with fifty-four stories. Hawaii and 
Wyoming had no stories. Every other state was somewhere in between.

Florida, New York, California, and Texas had by far the most stories, but 
they’re also the four most populous states as well. More people, more oppor-
tunities for weirdness. To minimize the impact of population on my analysis, 
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Figure 7.6  (a) Total Number of Weird News Stories by State (2011–2014), (b) Number 
of Weird News Stories per 1,000,000 Residents by State (2011–2014).
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I normalized the weird news data by the number of residents in each state. 
Figure 7.6(b) plots the number of weird new stories per 1,000,0000 resi-
dents, as reported by the US Census Bureau. After taking population size 
into account, New York, California, and Texas disappear into the cloud of 
data. Florida still remains high, but  it’s significantly lower than three much 
less populous states: North Dakota, New Hampshire, and Montana.

Figure 7.7 displays a boxplot of the number of weird news stories per 
1,000,000 population. According to the boxplot, the median rate of weird 
news is about two per 1,000,000 people. The IQR spreads from about 1.5 to 
3 per million. The minimum is zero, and the maximum is seven. The long 
whisker stretching from the 75th percentile to the maximum suggests either 
a heavily skewed distribution or outliers.

Figure 7.8 displays the results of the z‐scores, IQR, and Grubbs’ test outlier 
detection methods applied to the weird news rate per 1,000,000 residents. As 
before, Grubbs’ test isn’t sensitive enough to identify outliers in this dataset. 
However, both the z‐scores and the IQR method flagged North Dakota, New 
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Figure 7.7  Boxplot of weird news stories.

Figure 7.8  Is Florida the weirdest of the weird?

Technique Results Weird states

z-Scores Three outliers found ND, MT, NH

IQR Three outliers found ND, MT, NH

Grubb’s test Accept H0 None
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Hampshire, and Montana as weird states. Not because they had a lot of 
reports, but because these states have such low populations, just a few weird 
news stories can launch them into the extremes. Of the four most heavily 
populated states, Florida was closest to being flagged an outlier by both rule‐
of‐thumb methods. This state had 4.6 weird news stories per 1,000,000 peo-
ple. The  upper threshold for the IQR method is 5.2, well above this value. 
Additionally, a 4.6 per one million weird news rate translates to a z‐score of 
1.6, well below the 2.5 cutoff value for outliers using this criterion.

Florida does have a lot of weird news, more than any other state. However, 
according to the outlier detection methods presented in this chapter, the 
difference isn’t even close to being statistically significant. The residents of 
the sunshine state may well be the weirdest of the weird, but they need to 
work a lot harder if they want to prove it.
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The Battle of the Movie 
Monsters, Round Two: 
Ramping Up Hypothesis  
Tests with Nonparametric 
Statistics

In the 1962 classic science fiction movie, King Kong vs. Godzilla, two of the 
world’s most famous movie monsters fight an epic battle. The prize? 
Bragging rights and the opportunity to terrorize the poor citizens of the small 
island of Japan. The battle lasts only a few minutes, but the giant ape and the 
fire‐breathing lizard do plenty of damage in that time, toppling buildings and 
causing earthquakes and mudslides. In the end, locked in one final death 
grip, the two creatures roll off a cliff and into the sea. Kong is spotted 
swimming toward his home on Skull Island. Godzilla isn’t seen again.

Was Kong running away from the nuclear lizard? Or did Godzilla sink to 
the bottom of the ocean in defeat? Who won the battle, anyway?

The producers leave room for debate over these questions, and it’s a 
debate that rages on. Over fifty years after the movie’s release, arguments 
over the outcome of the epic battle can be found in blogs and forums 
across the Internet. Godzilla fans insist the ape’s strength was no match 
for the lizard’s atomic breath and impenetrable scales. Kong fans insist 
the ape outwitted the lizard, leaving him to die at the bottom of the 
ocean. All of the fans are certain of their position. And yet, nothing has 
ever been proven.
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In The Art of Data Analysis: How to Answer Almost Any Question Using 
Basic Statistics, Godzilla and King Kong engage in a very different kind of 
battle, this one to determine which classic monster is more popular. Using 
top ten movie monster lists collected from the Internet, the two creatures’ 
rankings are compared using a t‐test and a test for a proportion. Unfortunately, 
like the original classic movie, these standard hypothesis tests fail to come 
up with a clear winner.

And so the debate continues.
In this chapter, the movie monsters enter round two of the popularity 

battle. The weapon of choice in this second round: nonparametric hypothesis 
tests. Where standard hypothesis tests assume the data are approximately 
normally distributed, nonparametric methods make no assumptions about 
the underlying distribution of the data. Can Wilcoxon signed rank and other 
nonparametric methods declare a winner in the battle of the movie 
monsters?

THE PARAMETRIC HYPOTHESIS TEST: A CONVENTIONAL 
WEAPON FOR CONVENTIONAL BATTLES

The t‐test, the F‐test, and analysis of variance (ANOVA) assume your data 
follow the normal distribution. Common tests for a proportion assume either 
(i) your data follow a binomial distribution, or (ii) you have enough samples 
to use the normal approximation to the binomial distribution. Hypothesis 
tests like these, ones that assume the data have a specific underlying proba-
bility distribution, are called parametric tests.

Most conventional techniques, those you learn in a first statistics course, 
are parametric tests, and there’s a good reason for this. Parametric tests usu-
ally work well. Many types of data naturally conform to the normal distribu-
tion, and there are a handful of normal approximations that can be applied to 
those that don’t. As a result, tests based on the normal distribution usually 
produce reliable and accurate results. Usually, but not always. Suppose, for 
example, you had a sample whose frequency distribution looked like the one 
in Figure  8.1. This is an extreme example of a bimodal distribution. A 
bimodal distribution is a frequency distribution with two centers, where 
observations are clustered around each of these centers. In this case, the two 
centers are roughly located at −1 and 5.

A bimodal frequency distribution like this often shows up when you 
have  observations representing two different phenomena. For example, 
suppose you were collecting data from customers shopping at a particular 
online book store. The search history of these customers would indicate 
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what type of books they like to read, whether fiction, nutrition, self‐help, or 
something else. If you were to count the number of self‐help books 
browsed by each customer, the resulting data would probably have a bimodal 
distribution, with one sharp spike at zero representing those customers who 
aren’t interested in self‐help books, and another cluster of positive values 
representing those customers who are.

For bimodal data like those in Figure 8.1, the typical descriptive statistics 
can be misleading. If you were to look only at the sample mean, for example, 
without plotting the values, you might assume the data are roughly bell‐
shaped and centered around three. Not so. What’s more, blindly applying the 
t‐test to these data, where
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produces a p‐value of 0.20, well above a typical 0.05 critical threshold for 
rejecting the null hypothesis. In other words, a t‐test applied to these data 
would lead to accepting the null hypothesis that the population mean is zero. 
However, neither of the two clusters contributing to this dataset are centered 
on zero.

Strongly non‐normal data such as these can be difficult to work with. The 
normal assumption doesn’t apply, and there’s no obvious probability distri-
bution you can assume. Fortunately, there’s a class of hypothesis tests that 
can be used in any situation, without regard to underlying probability 
distributions. These are called nonparametric tests.
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Figure 8.1  A bimodal frequency distribution.
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NONPARAMETRIC TESTS: WHEN YOU NEED TO EXERCISE 
THE NUCLEAR OPTION

In King Kong vs. Godzilla, the two monsters didn’t end up fighting by 
chance. Godzilla, the long‐time arch enemy of the good people of Japan, 
had just returned for another romp through the already ravaged country. 
Guns and tanks couldn’t kill the giant lizard. Fire didn’t work, either. In a 
last ditch effort, the Japanese government decided to fly King Kong in from 
his tiny Skull Island home in the hopes the two monsters would destroy one 
another.

When your data don’t follow any distribution you know, you still have 
one last option. There’s a class of statistical techniques called nonparametric 
methods. Also called distribution‐free methods, nonparametric methods 
don’t assume your data follow a normal distribution. In fact, they don’t make 
any assumptions at all about the shape of your data. Like parametric tests, 
nonparametric tests are hypothesis tests. In other words, two hypotheses are 
constructed, a test statistic is calculated, a decision threshold is determined. 
If the test statistic is below the threshold, you accept the null hypothesis. If 
it’s above the threshold, you reject it in favor of the alternative. But where 
parametric tests use specific probability distributions to do this, nonparametric 
tests rely on properties that apply to all data.

Nonparametric methods are the nuclear option when it comes to hypothesis 
tests. You can use them on virtually any type of data, without regard to out-
liers, the shape of the frequency distribution, or even whether the data are 
discrete or continuous. As long as you can order your observations from 
highest to lowest, you can apply nonparametric statistics to it. Plus, there’s a 
nonparametric alternative for just about any parametric test you can name—
the t‐test, the F‐test, ANOVA, and so on.

Most nonparametric statistical tests convert the original numeric observa-
tions to signs or rankings. Signs (+ or −) are labels given to each observation 
based on whether or not they’re greater (+) or less (−) than some reference 
value. For example, if you were a teacher and you wanted to test whether or 
not the median grade on your final exam was a C, you could go through the 
letter grades of each student and assign them a sign, (+) for all the As and Bs, 
and (−) for all the Ds and Fs. (How the Cs are handled varies from test to test.) 
You could then use these signs in one of many nonparametric tests for the 
median to determine if your students’ grades were centered on a grade of C 
or not. Rankings order the measurements from one to the sample size of your 
dataset, with one being the largest (or smallest) value and N being the small-
est (or largest). For example, rather than looking at letter grades in a final 
exam, you might look at the raw score. You could rank these scores from one 
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to N, with one being the highest score. You could then use these ranks in one 
of several tests for the median to see if the median score was, say 75, or not.

Because most nonparametric tests rely on signs or ranks and not the 
original measurement values, they tend to be more robust than their parametric 
counterparts. For example, an outlier will receive the same sign whether it’s 
one standard deviation above the median or six. In this way, an extreme value 
doesn’t impact the outcome of a nonparametric test nearly as much as tradi-
tional tests that might use, for example, the sample mean. Also, because non-
parametric tests are designed to apply to numeric and non‐numeric data, most 
of them use the median rather than the sample mean to measure center loca-
tion. After all, if you don’t have numbers, you can’t calculate an average. As 
long as you can order them, however, you can calculate the median.

There are many nonparametric methods available, more than I can cover 
in this book. In this chapter, I’ll focus on three popular tests that illustrate 
how signs and ranks are used in the construction of nonparametric tests: the 
sign test, the Wilcoxon signed rank test, and the Kruskal–Wallis test for 
equality of the median.

The Sign Test

The sign test is a nonparametric hypothesis test for the median m of a 
population. Signs refer to the value of an observation relative to some refer-
ence value. If an observation is greater than the reference value, the sign is 
positive (+). If the observation is less than the reference value, the sign is 
negative (−). For example, say you have a set of observations and you’d like 
to know if the median of the underlying population is θ (the Greek letter 
theta). You could compare every observation in the sample to the value θ by 
assigning a sign to each observation, “+” for the greater‐than‐θ observations 
and “−” for the less‐than‐θ observations.

Now suppose you want to test whether the median of a population is θ or 
not. You could set up the following hypotheses:
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where m is the median. Because the alternative hypothesis has m ≠ θ, this is a 
two‐sided hypothesis test. It doesn’t need to be, however. You could set up a 
one‐sided test by setting H

A
 to m > θ  or m < θ. For the sign test, the test sta-

tistic is the same. Only the critical values are different.
Recall that the median of a population is the 50th percentile, the halfway 

point in your sorted list of values. In other words, half of all the values in 
your population lie below the median and the other half lie above it. So if the 
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null hypothesis is true and the median of the population really is θ, then 
roughly half of the observations should lie below the θ and the other half 
should lie above it. The sign test compares the fraction of observations below 
θ and above θ to determine if these fractions are sufficiently different from 
50% to reject the null hypothesis that the median is θ. Here’s how it works.

Take any observation at random. If the null hypothesis is true and the 
median of the underlying population truly is θ, the probability that observa-
tion will be greater than θ is 0.5. The total number of observations greater 
than θ in the entire sample follows the binomial distribution, that well‐known 
probability distribution describing the number of successes in N independent 
trials. In other words, if you have N independent observations in your sample, 
each having a probability p = 0.5 of being greater than the median, then the 
number of “+” signs, or greater‐than‐θ observations, follows the binomial 
distribution with number of trials N and success probability p = 0.5.

From this point, implementing the sign test is as easy as calculating prob-
abilities for a binomial distribution, which you can do with most basic data 
analysis software packages. Specifically, n̂ , the number of greater‐than‐θ 
observations is the test statistic. For the two‐sided test, there are two critical 
values: the α/2 and 1−α/2 critical value for the binomial distribution with N 
trials and success probability p = 0.5. If n̂  falls within these critical values, 
then H

0
 is accepted. Otherwise, H

0
 is rejected in favor of H

A
.

There’s one wrinkle in performing the sign test. In some cases, you may 
have observations that are exactly θ. These aren’t positive or negative signs. 
The binomial test only allows for two possible outcomes (positive or nega-
tive). So, what should be done about these zero differences?

This is where the art of data analysis comes to play. Different statisticians 
have recommended different things. If you have a large sample with only 
one or two observations falling exactly on θ, then there isn’t much harm in 
simply ignoring them and only using the positive and negative differences in 
your analysis (just remember to reduce your sample size accordingly). If you 
have a relatively small sample or many zero differences, then it pays to think 
about what these zero differences mean. A zero difference means an obser-
vation is exactly θ. This is strong evidence in support of H

0
. The more of 

these zero differences you have, the stronger the evidence in favor of H
0
. 

Some people have recommended flipping a coin and assigning and positive 
or negative difference value based on the outcome. However, because zero 
differences support H

0
, I prefer to give them a value that more strongly sup-

ports H
0
. This means allocating the zero difference observations in a way 

that closes the gap between the “+” and “−” groups. For example, suppose 
you have twenty observations, 6 positive signs, 12 negative signs, and 2 zero 
differences. The zero differences would be assigned to the “+” group, 
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because that would make the number of “+” signs and “−” signs more similar. 
If you had 8 negative signs, 9 positive signs, and 3 zero differences, two of the 
zero differences would go into the “−” group and one would go into the “+” 
group, giving ten “+” signs and ten “−” signs.

Say I’m a B movie producer, looking to make her first blockbuster hit. As a 
devoted monster movie fan, I decide to bring back one of my favorite classic 
monsters. But a good monster movie costs millions to produce, and I need to 
make money on this venture. Should I go with a giant creature who destroys 
cities without prejudice, something like Godzilla or King Kong, or should I go 
with a different type of monster, something more inhumanly human, something 
like zombies or Frankenstein? Which type of movie is more popular?

My studio has produced many monster movies over the years, so I go to 
box office profits and losses to answer this question. Figure  8.2 shows a 
boxplot of relative profits of the studio’s monster movies broken out by type 
of monster. A negative profit means the movie lost money, whereas a positive 
profit means the movie made money. The profits range from −90%, for the 
stinker Gorgon Goes Shopping to 425% for the sleeper hit Z‐Wars. Both cat-
egories of movies had big losses and big profits. Neither of these distributions 
looks symmetric and normal.

The median profit for the Godzilla‐like movies is 108%. I can test whether 
or not a typical movie like this makes money by comparing the median profit 
to zero, the break even point. A one‐sided sign test can do this for me. I add 
up the number of Godzilla‐like movies with positive profits and get seven 
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Figure 8.2  Net profit by movie monster-type.
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out of ten movies, or n̂ 7 . The 1−α = 0.95 critical value for the binomial 
distribution with p = 0.5 and N = 10 is n

crit
 = 8. Since n̂ ncrit , I’m forced to 

keep the null hypothesis that the median profit for Godzilla‐like movies is 
zero. In other words, historically, there’s no proof that this type of movie has 
been a money maker for my studio.

Repeating the process for the Frankenstein‐like movies gives the follow-
ing results. Ten out of sixteen of these types of movies have been money‐
makers, giving n̂ 10. The 1 − α = 0.95 critical value for the binomial 
distribution with p = 0.5 and N = 16 is n

crit
 = 11. Since n̂ ncrit , I cannot reject 

the null hypothesis that the median is zero. In other words, the median profit 
for Frankenstein‐like movies is not significantly higher than zero either.

The Sign Test for Paired Data

The beauty of nonparametric statistical methods is that they are versatile. 
The sign test, for example, can be extended to paired data with almost no 
modification. Suppose you’d like to test the hypothesis that the median of 
two variables is the same. In other words,
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For numeric data, this test can be run simply by subtracting one variable 
from the other and plugging these differences into the original sign test for 
median θ = 0. For an example of how this is done, see the case study at the 
end of this chapter.

Wilcoxon Signed Rank Test

The sign test is straightforward and uses no more sophisticated tools than 
those from the most basic statistics course. However, it’s not the most pow-
erful nonparametric median test out there. There are several alternatives, 
most of which can detect smaller deviations from the null hypothesis. These 
tests require more sophistication than the binomial distribution provides. 
The Wilcoxon signed rank test is just such a test.

The Wilcoxon signed rank test is a hypothesis test for the median of a 
population. Like the sign test, this test relies on signs. It’s not as simple to 
run as the sign test, but there’s a reason it’s one of the most popular nonpara-
metric tests available: it’s powerful. Almost as powerful as the t‐test when 
your data are normal, much more when they aren’t. In other words, the 
Wilcoxon signed rank test works well under a variety of conditions, and so 
you can place a lot of confidence it its results.
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The Wilcoxon signed rank test compares the following hypotheses:

	

H vs

HA

0 : .

: .

m

m

where θ is the population median you’d like to test. Like the signs test, this 
test relies on the following argument. If θ truly is the median, in other 
words, if H

0
 is true, then you can expect about half of your measurements 

values to fall below the median, and half of them to lie above it. So if you 
subtract θ from every observation to get differences d

i
, then you’d expect 

about half of these differences to be less than zero and half to be greater 
than zero.

The Wilcoxon signed rank test uses the differences d
i
 by first sorting them 

by their absolute magnitude. In other words, the absolute values of the d
i
 are 

calculated and sorted from smallest to largest. The smallest absolute 
difference gets assigned a rank of one, the second smallest gets a rank of two, 
and so on. These ranks are then signed, meaning the original sign (+ or −) of 
the differences gets attached to its corresponding rank.

The test statistic for the Wilcoxon signed rank test is calculated directly 
from the signed ranks. The positive ranks are added and the negative ranks 
are added to get two values, R+ and R− . If the null hypothesis is true and 
your population median is θ, then R+ and R− should be about the same. 
Why? Think about the process of constructing the signed ranks. As you 
travel down the list of ranked absolute differences, about half should have 
a positive sign and half should have a negative sign, and these signs should 
be distributed evenly throughout the list. So, not only should the number 
of positive and negative signed ranks be about the same, the sum of 
positive and negative signed ranks should also be about the same. Of 
course, since you’re working with a sample and not the entire population, 
R+ and R− won’t be identical. The question is, are they different enough 
to declare statistical significance and reject the null hypothesis?

As with all hypothesis tests, statistical significance is determined by 
comparing a test statistic to a critical value. The test statistic is the smaller 
of the two sums, R+ and R− . Call this value R. For small sample sizes, say 
N < 10, the exact probability distribution of the test statistic should be 
used to calculate the critical threshold. A reference table for this critical 
threshold is provided in Appendix E. For N ≥ 10, a normal approximation 
can be used to calculate the critical value. Specifically, take the test sta-
tistic R and transform it to
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Under the null hypothesis, the statistic Z
R
 is approximately standard normal. 

Therefore, you can compare it to the appropriate α critical value for the stan-
dard normal distribution. In either case, if the test statistic R is smaller than 
the critical value, then you reject the null hypothesis that the median is θ. 
Otherwise, you stick with the null hypothesis.

Many basic data analysis packages have the Wilcoxon signed rank test 
and these will do all the calculations for you. If yours doesn’t, you can still 
use this test, just as long as you’re willing to go through several data manip-
ulations to find R. This process is illustrated in Figure 8.3 for median θ = 0 
(or H

0
: m = 0) Godzilla‐like movie profits. The sums are R+ = 44 and R− = 11. 

Since R− is the smaller of the two values, the test statistic is R = 11. With 
N ≥ 10, a normal approximation can be applied to get a test statistic of

	

ZR

11 10 11 4

10 11 12 24
2 2

( ( ) / )
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.

The 0.05 critical value for the standard normal distribution is Z
crit

 = −1.64. 
Since the test statistic is less than the critical value, Z

R
 < Z

crit
, then we 

reject the null hypothesis and conclude that the median net profit for 
Godzilla‐like movies is not zero.

Data
value
Oi

Difference
di = Oi–θ

Absolute 
difference
|di|

Sorted 
absolute 
difference

Signed 
ranks R+ R–

1

3

6

7

8

–90 –90 90

193 193 193

8.4 8.4 8.4

181 181 181

–16 –16 16

378 378 378

–82 –82 82

287 287 287

36 36 36

189 189 189

8.4 +1

16 –2 2

36 +3

82 –4 4

90 –5 5

181 +6

189 +7

193 +8

287 +9 9

278 +10 10

Total 44 11

SO
R

T

Figure 8.3  Calculating the Wilcoxon signed rank test statistic.
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When it comes to one‐sided tests for the median, interpreting the Wilcoxon 
signed rank test results requires a little thought. R+ is the sum of signed 
ranks greater than zero, and R− is the sum of signed ranks less than zero. The 
test uses the smaller of these two values, without regard for which alternative 
hypothesis is being used. If R+ > R−, then there’s support for the hypothesis 
that the median is greater than θ. If R− > R+, there’s support for the hypo-
thesis that the median is less than θ. When the one‐sided test rejects the null 
hypothesis, it doesn’t tell you which of the alternatives is supported, only 
that one of them is. It’s up to you to check R+ and R− and determine whether 
it’s the alternative you’re testing for. For example, in the test for the Godzilla‐
like movie profits, R+ is the larger of the two rank sums. This lends evidence 
to the alternative that the median is greater than zero. As a result, you 
wouldn’t reject the null hypothesis in favor of H

A
: m < 0. You would, how-

ever, reject it in favor of the other alternative hypothesis, H
A
: m > 0.

Like the sign test, the Wilcoxon signed rank test can be run on paired data 
just as easily as it can be run on simple data. Specifically, to test for equality 
of median, simply subtract the pairs to get differences and run the Wilcoxon 
signed rank test on the differences for θ = 0.

Kruskal–Wallis

The sign test and the Wilcoxon signed rank test work smoothly for datasets 
containing a single variable or paired data. When you have more than two 
groups of data to compare, you need a nonparametric alternative to anal-
ysis of variance (ANOVA). In this case, the Kruskal–Wallis procedure is a 
great choice. The Kruskal–Wallis is a test for equality of medians bet-
ween groups. Like the Wilcoxon signed rank test, this test uses ranks rather 
than the original observations. All observations, regardless of group, are 
ranked from smallest to largest. If the null hypothesis is true and the median 
of all groups is the same, then the sum of the ranks in every group should 
be about the same. The Kruskal–Wallis test calculates a test statistic based 
on the sums of ranks within each group and compares it to the critical value 
from the corresponding probability distribution. For large sample sizes, 
this probability distribution is the chi‐squared distribution. For small 
sample sizes, a reference table based on the exact distribution should be 
used. Because the test statistic and the critical value are cumbersome to 
calculate by hand, for most applications, it’s best to find a software 
package that offers the Kruskal–Wallis procedure and let it do the heavy 
lifting for you. As of this writing, Microsoft Excel does not offer a 
procedure for performing the Kruskal–Wallis test. Instructions on how to 
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do this manually can be downloaded from Kruskal–Wallis Test in Excel 
(http://blog.excelmasterseries.com/2014/05/kruskal‐wallis‐test‐alternative‐
for.html).

WHEN TO USE THE NUCLEAR OPTION

Because they don’t make any limiting assumptions about your data, 
nonparametric methods can be used any time on virtually any dataset. This 
doesn’t mean they should be used all the time, however. If your data conform 
to a known distribution, the appropriate parametric tests will have more 
power. In other words, it will be able to detect smaller deviations from the 
null hypothesis than the corresponding nonparametric test. This falls under 
the category of “if you have information, use it.” If you know your data are 
approximately bell‐shaped, then apply statistical methods that use this 
knowledge. Save the nonparametric tests for those difficult datasets you 
cannot easily characterize.

The following are some general guidelines about when to choose non-
parametric tests over their parametric counterparts:

1.  When your data clearly do not conform to a normal distribution and 
either, (i) you need to test for something besides the population mean 
or proportion, or (ii) you don’t have enough samples to rely on the 
Central Limit Theorem.

2.  When your data conform to a complicated distribution but you don’t 
want complicated hypothesis tests tailored to this difficult, specialized 
distribution.

3.  When your data are rankings, orderings, or non‐numeric observations.

4.  When you have potential outliers that might skew the results of 
traditional tests.

GODZILLA VERSUS KING KONG, ROUND TWO

The Internet is a great place to find opinions. And the top ten list seems to be 
one of the most popular forms of opinion out there. A recent search for “top 
ten movie monster list” produced millions of hits. Some of the hits were lists 
focused on slasher movies, ranking notorious killers like Freddy Krueger and 
Jason among the top contenders. Other lists tended toward modern monsters 
such as Predator and Cloverfield. King Kong and Godzilla are classic movie 
monsters, and so classic movie monster lists were the focus of my study.

http://blog.excelmasterseries.com/2014/05/kruskal<2010>wallis<2010>test<2010>alternative<2010>for.html
http://blog.excelmasterseries.com/2014/05/kruskal<2010>wallis<2010>test<2010>alternative<2010>for.html
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For complete details of my data collection process, see Chapter 7 of The 
Art of Data Analysis: How to Answer Almost Any Question Using Basic 
Statistics. To summarize, I grabbed a random sample of fifty‐six top ten clas-
sic movie monster lists. On each list, the movie fan ranked his or her favorite 
monsters from one to ten, with one being the best. Both Godzilla and King 
Kong appeared on most of the lists, but not all of them. When one of the mon-
sters didn’t appear on a list, I used a common strategy for dealing with what 
are called censored observations by giving the monster a ranking of 11.

Figure 8.4 shows the histogram of Godzilla and King Kong rankings 
from my Internet sample. Comparing these histograms visually, it appears 
that Godzilla tends to have higher rankings (lower numbers). For example, 
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Figure  8.4  (a) Frequency distribution of Godzilla rankings (b) frequency 
distribution of King Kong rankings.
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the mode, or most common Godzilla ranking is 1. The mode of King 
Kong rankings, excluding the censored values, is 2. Only eight of the lists 
left Godzilla out of the top ten, while thirteen left King Kong out of the 
top ten. All of this tends to point to Godzilla as being more popular. 
Unfortunately, the difference in rankings wasn’t big enough to declare 
statistical significance using the common parametric tests. In other words, 
Round one ended in a tie.

Certain nonparametric tests, particularly the Wilcoxon ranked sum test, 
have more power than the traditional tests when it comes to rankings and 
other oddball data. What will these tests show?

These data are paired. On every list, there’s a ranking for Godzilla and a 
corresponding ranking for Kong, and the two values can be compared 
directly. In making the comparison, I subtracted the Kong rankings from the 
Godzilla rankings and performed the sign test and the Wilcoxon signed 
rank test for
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Results of the tests are shown in Figure 8.5. Unfortunately, Round two 
doesn’t show anything different than round one did. Both tests recommend 
accepting the null hypothesis. In other words, the difference in rankings bet-
ween the two monsters can be explained by random chance alone.

Disappointing? Yes. Surprising? Not really. With N = 56 observations, this 
is a large sample. The Central Limit Theorem promises that with a large N, 
even though the movie monster rankings aren’t normal, the average difference 
as well as proportions calculated from the rankings are nearly so. In other 
words, the normal approximation is appropriate for these data, and so the 
t‐test is more powerful than the nonparametric tests applied in this chapter. 
Since the t‐test wasn’t powerful enough to show a difference, then neither 
are the sign test and the Wilcoxon signed rank test.

And so, the battle of the movie monsters rages on.

Sign test Wilcoxson signed rank sum test

Test statistic: –1.07

Critical Values: –1.96 and1.96

Conclusion: Accept H0

Test statistic: –1.56

Critical values: –1.96 

Conclusion: Accept H0

Figure  8.5  Godzilla vs. King Kong results for the two‐sided sign test and 
Wilcoxon signed rank sum test.
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9
Models, Murphy’s Law, and 
Public Humiliation: 
Regression Rules to Live By

I’m often reminded that I’m human. Sometimes, this reminder comes to me in 
the form of small mishaps—coffee spilled on a white carpet, an insensitive 
remark made to a friend, spinach stuck between my teeth—things I can correct 
with little embarrassment to myself. All too often, however, this reminder isn’t 
nearly so gentle. Sometimes it hits me like a brick to the forehead. Like when 
I’m standing in front of a room full of important people, declaring the brilliance 
of my statistical conclusions to anyone who will listen.

My first data analysis humiliation occurred when I was only a few weeks 
into my career as a research statistician. I was working for a biomedical 
research company, call it MajorMedicCorp. This company developed new 
devices for monitoring a patient’s blood chemistry. This company wanted to 
measure certain blood toxins noninvasively, meaning without drawing any 
blood. We knew we could measure how much life‐giving oxygen was in the 
blood, simply by shining light through a patient’s finger and measuring what 
came out. My task was to use similar light measurements to predict the 
amount of this toxic substance.

I was fresh out of school with a Ph.D. and lots of fancy statistical tech-
niques at my fingertips, and this was a linear regression problem. Linear 
regression is undergraduate stuff. By all accounts, this task should’ve been 
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a breeze for me. Yet somehow, I still managed to turn this simple data anal-
ysis into a public humiliation. How could I possibly do this? Read on and 
find out.

MURPHY’S LAW AND SIMPLE LINEAR REGRESSION: 
A REVIEW OF TWO CLASSICS

Anything that can go wrong, will go wrong.
This is Murphy’s law, and it’s just as true today as it was sixty years ago 

when engineer Edward Murphy was credited with the famous saying. And 
when it comes to running a large medical research company, Murphy’s law 
can be a source of embarrassment, cost time and money, and even cause 
major projects to be shut down. Suppose MajorMedicCorp has been experi-
encing an increase in the number of Murphy’s law related mishaps. Workplace 
accidents, computer crashes, lost shipments, all of these things seem to be on 
the rise. Mishaps cost money and so naturally, management wants to mini-
mize them. They want to know the impact Murphy’s law is having on the 
bottom line and they decide to use me, the statistician, to figure out exactly 
what that impact is.

The CEO drops by my office and tells me he wants me to calculate the 
cost of Murphy’s law. He gives me access to reams of employee data kept by 
Human Resources (HR), and I start digging. The amount of data HR keeps 
on the employees of MajorMedicCorp is a little scary, but also very useful. 
For example, HR keeps a record of lost work hours due to major workplace 
mishaps—accidents, injuries, computer failures, major miscommunica-
tions—and it also keeps tables of how much money each employee costs the 
company on a per work hour basis. Average cost per work hour times the 
number of lost hours gives the total cost related to Murphy’s law. Simple 
enough.

But as I dig a little deeper, I notice the company has been growing in 
recent years. Eight years ago, there were 327 employees at this location. 
Now there are 521. More workers means more workplace mishaps, so 
I’d expect the total number of hours lost to such mishaps to be higher 
now than five years ago, simply because more people are working for 
the company. In other words, the number of hours lost to Murphy’s law 
depends on the number of employees working for the company at any 
given time.

As a well‐trained data analyst, I know the first step in the modeling 
process is visualizing, or plotting the data. When it comes to looking at 
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dependencies between variables, nothing beats a scatterplot. A scatterplot is 
an x–y plot, in this case, number of work hours lost to Murphy’s law on the 
y‐axis and the number of employees working for the company on the x‐axis. 
Figure 9.1 shows a simulated version of this scatterplot, with the x‐axis plot-
ting a six‐month average of the number of employees, and the y‐axis plotting 
the total number of lost work hours over that same six‐month period. These 
data fall along a nice, straight line. Simple linear regression ought to fit these 
data nicely.

Whenever you use a mathematical equation to predict the value of an 
unknown random quantity, you’re using a model. Regression is one of 
the most widely used modeling techniques. A regression equation is a 
mathematical function that predicts the value of a continuous dependent 
variable, Y, as a function of one or more independent variables, X

1
, X

2
, 

and so on. Mathematically, a regression model can be represented like 
this:

	 Y f X X XN( ).1 2, , ,

The simplest type of regression is simple linear regression, which uses a 
line with a single X variable, or

	 Y mX b.

0

5

10

15

20

25

30

35

40

300 350 400 450 500 550

N
um

be
r 

of
 w

or
k 

ho
ur

s 
lo

st
 (

si
x 

m
on

th
 to

ta
l)

Number of employees (six month average)

Figure 9.1  Work hours lost due to Murphy’s law.
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The values m and b are called regression coefficients. Regression coefficients 
are the unknown parameters in a regression equation, the values that relate 
X to Y. The purpose of regression is to estimate these regression coefficients. 
In a perfect world, if you picked the right regression equation for a dataset, 
it would be simple to calculate regression coefficients that took the X‐values 
and predicted the Y‐values with zero error. Of course, the world is far from 
perfect and every dataset has random variation in it. That’s why we have least 
squares regression.

Least squares regression calculates regression coefficients. It does this 
by finding estimates for m and b, call them m̂ and b̂, that minimize the 
deviation between the observed Y‐values and those predicted from the 
regression line. Figure 9.2 illustrates this deviation.

Mathematically, if x
1
, x

2
, …, x

N
 are the X‐values in a sample, and y

1
, y

2
, …, 

y
N
 are the corresponding observed Y‐values, then the error for the ith obser-

vation is the difference between the observed value y
i
, and the estimated 

Y‐value, ˆ ˆmx bi , or e y mx bi i i
ˆ ˆ . Least squares regression finds 

regression coefficients m̂ and b̂ that minimize the total squared error, or

	 Total squared error e e eN1
2

2
2 2
 .

The process of calculating the regression coefficients requires both 
calculus and linear algebra, so I won’t go into the mathematical details of 
how this is done. Fortunately, you don’t need these details to use linear 
regression. Most basic data analysis packages have a routine that will do it 
for you. The estimated regression coefficients for the Murphy’s law data in 
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Figure 9.2  Simple linear regression on work hours lost to Murphy’s law.
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Figure  9.1, according to Microsoft Excel, are ˆ .m 0 16 and ˆ .b 47 0. 
Plugging these values into the simple linear regression equation gives an 
estimated Y‐value, ŷ, of ˆ . .y x0 16 47 0.

Basic Regression Diagnostics

There are several statistics available for determining how well a regres-
sion line fits the data. Probably the most widely used diagnostic statistic 
is the R2 value. The R2 value measures the correlation between the 
observed y‐values and the corresponding estimated y‐values. The R2 is a 
value between zero and one. An R2 value near zero means the correlation 
is low and you have a poorly fit model. An R2 value near one indicates a 
high correlation and a good fit to the data. Many data analysis programs 
report both the R2 value and what’s called an adjusted R2 value. The 
adjusted R2 value is generally a more reliable indicator of model accu-
racy, because this statistic takes into account the degrees of freedom, a 
reduction in the effective sample size caused by estimating multiple 
parameters from the same dataset.

The adjusted R2 value is always smaller than the original R2. For simple 
models, it’s usually only slightly smaller, but for large, complex models, the 
difference can be noticeable. The original R2 value for the regression model 
in Figure 9.1 is R2 = 0.93. And because this is a small model with only two 
regression coefficients, the adjusted R2 value is just slight less than this value 
at adjusted R2 = 0.92.

While the R2 value is a useful diagnostic tool, it’s not without its prob-
lems. This statistic is notoriously impacted not only by how closely the 
y‐values fall along the regression line but also on outliers as well as the range 
of x‐values included in the data. A single outlier, especially at one end of 
the x‐values, can shift a regression line, reducing overall accuracy while at the 
same time inflating the R2 value. A small range of x‐values can decrease R2, 
even if the model is a good one. This is why any regression analysis should 
incorporate more than one diagnostic. A residuals analysis, an assessment 
of the residual error, is particularly useful, and like the R2 value, it can be 
used for any regression model, simple linear or otherwise.

Residuals analysis usually starts with a residuals plot. The residuals plot 
is a plot of the regression error, the e

i
 values, in other words, the observed 

minus estimated y‐values. When you have a well‐fit model, the residuals plot 
should look like a bunch of points randomly bouncing around the line y = 0. 
Significant deviations from this pattern indicate problems. For example, 
outliers stand out as extreme values. A trend or systematic pattern in the 
residuals suggests the model needs more dependent variables. Typical 
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patterns to look for are provided in many basic statistics texts, and I refer you 
Chapter 9 of The Art of Data Analysis: How to Answer Almost Any Question 
Using Basic Statistics for more information on this topic.

Figure 9.3 shows a residuals plot of the simple linear regression model for 
hours lost to Murphy’s law. No outliers or obvious patterns can be seen in 
these residuals, suggesting the model is adequate.

Most packaged regression procedures will output at least one of two stan-
dard diagnostic tests, these tests being an analysis of variance and a t‐test for 
significance of the regression coefficients. The analysis of variance is a test 
for overall lack of fit. This test compares two types of variation: (i) the 
regression sum of squares to (ii) the residual sum of squares. The regres-
sion sum of squares is the total variation captured by the regression equation, 
in other words, the amount of change in Y‐values captured by the regression 
equation. The residual sum of squares is what’s left over, the random error 
not explained by the model. If the variation captured by the regression 
equation is significantly larger than the residual error, then the model is 
declared statistically significant and appropriate for the data. Otherwise, it’s 
declared to be ill fitting. Analysis of variance for the Murphy’s law model in 
Figure  9.2 produces a p‐value less than 0.01, suggesting the regression 
equation explains a significant portion of the overall variation in the data.

The t‐test for significance of regression coefficients is just what the name 
implies: a t‐test. The hypotheses for this t‐test look at the regression coeffi-
cients m and b. Specifically, for the slope parameter
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Figure  9.3  Residuals plot for simple linear model of work hours lost due to 
Murphy’s Law.
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The details of this test are slightly more complicated that a basic t‐test for 
the mean of a population, but the end result is the same. A test statistic and 
p‐value are produced. If the p‐value is below the specified significance level, 
say 0.05, then the regression coefficient is declared to be significantly differ-
ent from zero. The p‐values for the intercept b and slope m of the work hours 
lost to Murphy’s law are both <0.001, suggesting both terms are statistically 
significant and important to the model.

Simple linear regression is the first step on the path to understanding more 
sophisticated techniques. Fortunately, with a basic understanding of the least 
squares process and a working knowledge of common regression diagnos-
tics, extending your repertoire to allow for nonlinear X–Y relationships and 
more than one X variable is straightforward. The next section describes 
common regression models that can be fit using basic least squares and a 
typical data analysis software.

BEYOND SIMPLE LINEAR REGRESSION: COMMON 
MODELS FOR COMMON SITUATIONS

The simple linear regression model for time lost due to Murphy’s law appears 
to work pretty well. The regression line travels right through the center of the 
data, and the variation about the line is small. The slope of this line, 0.16, tells 
me that a typical employee loses an average of 0.16 hours, about ten minutes, 
of productivity to some mishap every six months. But average workplace 
mishaps are only part of the Murphy’s law equation. A researcher who sits at 
a computer all day is much less likely to have an accident than, say, someone 
in the shipping department who hauls boxes for a living. So, this ten‐minute 
figure, while a decent average number, probably won’t apply to an office 
worker or to someone in the shipping department. A more accurate regression 
model might be constructed by breaking down the total number of employees 
into job categories based on the type of work they do—physical labor for the 
folks who build, move, clean, and ship things, office/clerical for the people 
who sit at computers most of the day, and laboratory for those employees who 
spend most of their time in a research lab. To break down the problem in this 
way, I need to go beyond simple linear regression.

Multiple Linear Regression

Suppose I’m interested in constructing a regression model for hours lost to 
Murphy’s law as a function of the number of employees in each category 
physical labor (X

1
), office/clerical (X

2
), and laboratory (X

3
). Regression like 
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this, with multiple x‐variables and a single y‐variable, is called multiple 
regression.

The simplest type of multiple regression, multiple linear regression, 
uses a line to predict Y as a function of all the X‐variables. The form of the 
equation looks like this:

	 Y m m X m X m X0 1 1 2 2 3 3 

Just like simple linear regression, the goal of multiple linear regression is to 
find regression coefficients m

0
, m

1
, m

2
, … that make the predicted y, or ŷ, as 

accurate as possible. And just like simple linear regression, the most popular 
technique for calculating these coefficients is least squares, which minimizes 
the total squared error, or deviation between the actual and estimated 
y‐values.

To better understand Murphy’s law at work, I break down the six‐month 
average number of employees into job categories. The number of all three 
categories of workers has been steadily growing in recent years, with some 
up and down fluctuations. This is illustrated in Figure 9.4.

Many basic data analysis software packages offer multiple regression. 
You simply provide the X and Y values and the function will do the rest. 
Plugging the Murphy’s law data into my Excel multiple regression add‐in 
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gives regression coefficients m
0
 = −41.7, m

1
 = 0.27, m

2
 = 0.11, and m

3
 = 0.05. 

Since there are three X variables, it’s impossible to generate a single Y vs. 
X scatterplot that illustrates the relationship between all of the independent 
and dependent variables. As a result, data analysts often use a scatterplot of 
estimated versus observed Y to evaluate their model. Figure 9.5a shows this 
for the work hours lost data.

A plot like this, along with the residuals plot in Figure 9.5b, is a great 
diagnostic tool for multiple linear regression. Ideally, the scatterplot will 
show points hugging the Y = X line. Systematic deviations from this line 
suggest problems with the regression model. No such deviations are evident 
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in Figure 9.5, suggesting the multiple linear regression model adequately 
takes care of the dependencies between the X‐ and Y variables.

How does the multiple linear regression model compare to the simple 
linear regression model constructed in the previous section? The adjusted R2 
value for this model is 0.92. The adjusted R2 model for the simple linear 
regression model is 0.92. The mean squared error of this model is 2.95. The 
mean squared error of the simple linear regression model is also 2.95. The 
residual plots for both models show no obvious patterns or model defi-
ciencies. In other words, both models perform about the same. In this case, 
the only benefit in using multiple linear regression is the information I can 
get from the regression coefficients. The simple linear model only provides 
an average work hours lost per employee, any type of employee. The multiple 
linear model breaks this down for the three different categories of workers.

Polynomial Regression

Suppose the Murphy’s law data looked like the data in Figure 9.6. Using a 
simple line to predict Y doesn’t give very accurate results. The model under-
estimates the work hours lost in some places, and overestimates the work 
hours lost in others. In this case, the nonlinear relationship between the 
X and Y values requires something more sophisticated than simple or mul-
tiple linear regression.
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Polynomial regression is a popular technique for taking nonlinearity into 
account. This technique is an extension of multiple regression where non-
linear terms are added to the regression equation. For example, for a single 
X variable, the equation adds a term for X2, X3, and so on as needed:

	 Y m m X m X m X0 1 2
2

3
3


For multiple x‐variables, polynomial regression adds squared terms (X X1
2

2
2, , 

etc.), cubic terms (X X1
3

1
3, , etc.), and mixed terms (X

1
X

2
, X

1
X

3
, etc.) as needed:

	 Y m m X m X m X m X m X X0 1 1 2 2 11 1
2

22 2
2

12 1 2  

Even though nonlinear terms have been added to the model, this is still 
considered linear regression because the regression coefficients are all 
linear. This is a good thing because it makes the regression process much 
easier. To perform polynomial regression, you simply create new variables in 
your data analysis software that correspond to the added terms (X X X1

2
1 2, , 

and so on) and then perform multiple linear regression.
Take the work hours lost data from Figure 9.6, for example. Suppose I’d 

like to construct a regression equation that takes the following form:

	 Y m m X m X0 1 2
2.

In Excel, I’d add a new column containing X2 and then perform multiple 
regression by including both X and X2 terms. The results are shown in Figure 9.7. 
Clearly, this equation fits the Murphy’s law data much better than the original 
simple linear regression model shown in Figure 9.6.

Polynomial regression is an incredibly versatile technique you can use to 
account for all kinds of nonlinearity in your data, especially if you already 
have some idea which terms should be included in the model. If you have no 
idea what the model should look like, this technique can still be very useful, 
however, deciding on which terms to include can be a challenge. Why? It’s a 
mathematical truth that if you have N (x, y) pairs, you can construct a N − 1th‐order 
polynomial that goes through every single one of the points. This law has 
serious ramifications when it comes to model building in statistics. In 
particular, given a sample of X and Y observations, you can construct a 
regression line that fits every one of the Y values perfectly if you only include 
enough polynomial terms in your model. This may sound like a good thing, 
but it isn’t. A sample of data contains uncertainty and measurement error, so 
a regression model that estimates every single Y value perfectly is describing 
not only the dependent relationship between the X‐ and Y‐values but also the 
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random measurement error. Such a model will have very high accuracy when 
it comes to the original sample, but very poor accuracy when it comes 
predictions. In other words, it models a sample of observations, but not the 
entire population that you’re really interested in. This process of construct-
ing a model with too many terms in it is called overfitting.

When it comes to polynomial regression, putting too many terms in the 
model, particularly mixed and high‐order term such as X

1
X

2
, or X3, can 

quickly lead to overfitting. Fortunately, there are strategies for minimizing 
the risk of overfitting. Validation techniques, discussed later in this chapter, 
divide a sample into subsets, so you can construct a model with some of the 
observations and estimate the accuracy of the model with the others. Model 
selection techniques are methods for selecting only the most statistically 
significant terms, and only including enough of them to adequately describe 
the X–Y dependencies in your data. One of the most popular model selection 
techniques is called stepwise regression.

Stepwise Regression

When it comes to constructing models, there’s a prevailing philosophy 
among statisticians: simpler is better. This preference for simplicity, or 
parsimony, serves a couple of useful purposes. First, when it comes to 
explaining the results of an analysis, simpler models are much easier to 

y = 0.0149x2 – 9.5419x + 1550.8
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Figure 9.7  Polynomial regression and work hours lost due to Murphy’s Law.



understand and interpret than complex ones. Second, simpler models are 
harder to overfit to a dataset, particularly one with a limited number of sam-
ples. Stepwise regression is a technique for selecting terms in a multiple or 
polynomial regression model in such a way that only the most significant 
terms are included.

Recall that analysis of variance and the t‐test are commonly used to deter-
mine whether or not a regression equation adequately describes the X‐ and 
Y‐dependencies in a dataset. Specifically, the analysis of variance is a test for 
the overall significance of a particular model, while the t‐test determines 
whether or not individual regression coefficients are significant. Stepwise 
regression starts with a basic model and then successively adds or removes 
terms based on the test statistics for these two tests. There are three types of 
stepwise regression:

1.  Forward selection. Begin with the simplest possible model, containing 
only a constant term, and successively add terms until some stopping 
criterion is met.

2.  Backward selection. Begin with the full model, the one containing all 
possible terms, and successively remove terms until some stopping 
criterion is met.

3.  Combined forward/backward selection. Begin with the simplest 
possible model, and successively add and remove terms until some 
stopping criterion is met.

The three different approaches can easily produce three different regression 
models, so if your data analysis software package offers different stepwise 
regression options, it’s worth running several of them so you can compare 
the differences.

Unfortunately, stepwise regression isn’t always a cure for overfitting. All 
it can do is help you eliminate some of the unimportant variables or terms in 
your model. So, if you choose to use this method, it’s important to apply one 
of the validation techniques described in the next section.

Multivariate Regression

For most everyday regression problems, the goal is to create a model for a 
single Y variable from one or more X variables. When you have more than 
one Y variable, you can usually construct a separate model for each Y vari-
able based on the X variables. However, when you have Y variables that are 
correlated with one another, like they would be if, for example, they 
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represent relative concentrations of chemicals in a mixture, it often makes 
sense to construct a single model for all of the Y variables at once. 
Multivariate regression is a technique for constructing a model that will 
simultaneously estimate multiple Y variables from multiple X variables. 
Multivariate regression is an advanced, less commonly used technique so I’ll 
leave this topic to a more advanced textbook.

Nonlinear Regression

All of the methods presented here, even polynomial regression, fall 
under the umbrella of linear regression. This is because the models are 
linear in their coefficients. In other words, the regression coefficients are 
linear, for example, m

1
 and not m1

2, e m1, sin(m
1
) or some other compli-

cated function of the original coefficient. When you have coefficients 
that lie inside nonlinear functions, you have a nonlinear regression 
problem.

Nonlinear regression models can’t typically be solved using a simple 
one‐step least squares procedure. They usually require iterative, more 
sophisticated techniques borrowed from a field of mathematics known as 
optimization. Many data analysis packages have nonlinear regression pro-
cedures in them. A detailed treatment of the topic is beyond this book, so 
I  refer you to Nonlinear Regression, Seber and Wild (1989) for more 
information.

MISTAKES AND OTHER EMBARRASSMENTS  
TO AVOID

Lots of care should be put into constructing a statistical model, no matter 
how simple. All models have assumptions and limitations built into them, 
and in my experience, the moment you neglect the assumptions, forget about 
the limitations, or ignore a nagging suspicion about the applicability of a 
chosen statistical technique, that’s when Murphy’s law rears its ugly head. 
I’ve already mentioned two of the biggest potholes you can fall into when 
constructing a regression model. Underfitting leaves important terms out and 
doesn’t capture all of the systematic X–Y dependencies in a dataset. 
Overfitting includes too many terms in the model, resulting in an overly opti-
mistic estimate of the residual error. Unfortunately, these aren’t the only 
problems to look out for. Linear regression makes several assumptions about 
a dataset, and not all of them always hold true. Two of the most important 
assumptions are as follows:
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1.  The Y values have random error as expressed in the E term of 
Y = mX + b + E. This error is assumed to be normally distributed with 
constant mean and variance.

2.  There is no uncertainty in the X values. They are known with perfect 
accuracy.

The first assumption, that the measurement error of every Y value has the 
same variance, doesn’t always hold true. Nonconstant variance often hap-
pens when the Y values are counts, areas, distances, or waiting times. With 
such measurements, the variance of the E term often increases as the 
measurement value increases. While the formal, and formidable, name for 
this phenomenon is heteroscedasticity, I’ll just call it nonconstant variance 
here. Nonconstant variance can dramatically impact the quality of a regres-
sion model. In particular, the extreme Y values, those with the largest vari-
ance, can act like outliers, even though they’re perfectly legitimate data 
points. They can exert their influence on a model by shifting regression coef-
ficients away from their true values, resulting in a poor overall fit to the data.

A residuals plot will typically reveal nonconstant variance in the form of 
cone‐shaped residuals, tightly clustered at one end of the regression line and 
spread wide at the other. To fix this problem, data analysts often perform a 
data transformation on the Y values. A variance stabilizing transformation 
is a function that changes the Y values in a way that makes the variance 
constant. For example, when the residuals look like a cone, narrow at one 
end and wide at the other, a log transformation is often used, where each Y 
value is transformed with the equation

	 Z Yi ilog ( )10

A regression model for Z as a function of the X values is then constructed, 
and the estimated Y values are calculated by reversing the transform, in other 
words, setting

	 Yi
Zi10 .

The second assumption in basic regression, that the X values are known 
with perfect accuracy, can be a problem with scientific studies in particular. 
In studies like these, researchers often want to make measurements for some 
variable X, and use them to estimate measurements for another variable Y. In 
cases like this, it’s impossible to know the X values perfectly. In other words, 
there is uncertainty in both the X and Y values. There’s usually nothing that 
can be done about this, so many data analysts just steam ahead with a 
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regression model anyway, but this uncertainty in the X values does have an 
impact on the accuracy of the model. And because this uncertainty is not 
accounted for in the diagnostic tests and summary statistics produced by a 
typical regression procedure, the standard methods for estimating the model 
error don’t apply. In this case, data analysts typically calculate the error in 
the regression model empirically, strictly from the data and without the use 
of standard regression diagnostics. And they typically do this using a tech-
nique known as validation.

Validation is the process of using some subset of observations to build a 
regression model and using others to calculate the error. There are a number 
of validation strategies. The simplest, and arguably best, validation tech-
nique is external validation. With external validation, you divide a dataset 
into two subsets: a training set and a test set. You build the model using the 
training set. You evaluate the model accuracy using the test set. Because 
you’re assessing the model using observations that weren’t used to build the 
model, the risk of overfitting is minimized.

In external validation, the model accuracy is typically measured using the 
root‐mean‐squared error (RMSE). Similar to a standard deviation, the 
RMSE is the average deviation between the observed Y values and those 
estimated from the model. Mathematically, the RMSE can be written as 
follows:

	
RMSE

y y y y y y

N
N N1 1

2

2 2

2 2ˆ ˆ ˆ
.



Unfortunately, there aren’t any hard and fast rules regarding the number 
of training and test samples needed for external validation. Personally, I like 
to keep the number of training samples at about three times the anticipated 
number of regression terms, and use the rest for the test set. However, with 
very small datasets, it may be necessary to reduce the size of the training set. 
Dividing the dataset into training and test samples is best done with random 
sampling to avoid bias creeping into the model construction process. Simple 
random sampling works well for many applications, though certain situa-
tions might call for some of the more sophisticated techniques discussed in 
Chapter 2. To see external validation in action, go to the case study at the end 
of this chapter.

Though simple and effective, external validation requires plenty of data. 
When you have a limited sample size, cross validation might be a better 
option. Cross validation is a more economical alternative to external valida-
tion. Rather than leaving a significant number of observations out of the 
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training set, cross‐validation fits the model over and over again, only leaving 
out a small number each time. An error is calculated for those hold‐outs (the 
test set), and this is repeated until all observations have been held out once. 
These error estimates are then combined into a single error estimate for the 
model. There are many different versions of cross validation, among them 
leave‐one‐out and twofold cross validation, and the calculations that go 
along with it can get complicated. I’ll leave the details of this strategy to the 
growing number of books that cover this topic, including Regression mod-
eling strategies: With applications to linear models, logistic regression, and 
survival analysis by Harrell (2010). If you’d like some practical experience, 
many data analysis packages have cross‐validation techniques built into 
them and if yours is one of them, I urge you to grab a dataset and experiment 
with some of the different options.

WHAT COULD GO WRONG, DID GO WRONG

“Tell me if the level of toxin Y in the blood can be accurately predicted using 
measured variables X

1
, X

2
, and X

3
”.

MajorMedicCorp was considering investing millions of dollars to develop 
a new medical device that could measure toxin Y, and this is what my boss, 
the Director of Research, asked me to do. It was my first major task with the 
company, and I was eager to prove myself. I had a dataset and a computer 
with my favorite data analysis software on it. All I needed to do was take the 
data and construct a regression model for Y as a function of X

1
, X

2
, and X

3
. 

I didn’t have any mathematical relationships to work with, I only knew we 
didn’t expect the relationship between the X variables and Y to be a nice, 
straight line. Figure 9.8 illustrates how the data looked.

WHAT I DID

Figure 9.8 shows a relationship between the X and Y variables, but the scatter 
in these scatterplots is so large, there’s no obvious choice when it comes to a 
regression equation. As a result, I decided to try polynomial regression with 
squared terms (X X X1

2
2
2

3
2, , ) being the highest order.

On paper, the regression was a simple exercise. Load the data into the data 
analysis software, run a polynomial regression on Y versus X

1
, X

2
, and X

3
, 

and look at the regression diagnostics. I’d done this many times in school, 
and the whole process took less than two hours. The resulting model took on 
a formidable form. It looked something like this:
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Y X X X X X X

X

3 34 6 74 3 42 3 54 3 17 2 58 0 47

4 57
1 2 3 1

2
2
2

3
2

1

. . . . . . .

. XX X X X X2 1 3 2 35 59 2 59. .

Figure 9.9 shows a scatterplot of predicted versus observed Y value, a residuals 
plot, and three common summary statistics.

The adjusted R2 was high, and the observed versus predicted Y values 
followed a reasonably straight line. The residuals showed a few extreme 
values, but nothing to give me concern. And the RMSE was 0.02, in other 
words, a mere 2% at the nominal concentration of one. The target RMSE for 
this measurement was 0.03 (3%) or better. A few short weeks into the job, 
and already I was a success.

I could’ve paused here, taking time to review my results and reflect on 
what I’d done. I could’ve, but I didn’t. Instead, I rushed into my boss’ office, 
anxious to show him what I found. He listened patiently, a smile growing on 
his face as I explained how we’d not only hit, but exceeded the target accu-
racy. Before he could give me more than an approving, “Looks good,” we 
were interrupted by a visitor. It was the Vice President of the company.
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Figure 9.8  (a) Relative concentration of toxin (Y) versus measurement X
1
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3
.
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Figure 9.9  (a) Predicted versus observed Y values and (b) residual Y values
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Apparently, he spotted the two of us talking and stopped by for a status 
update on this high profile project. He first addressed my boss, who reported 
that things were going well and I was fitting in nicely. Then, he addressed me. 
At this point, I could’ve taken my boss’ lead and said something completely 
noncommittal, something like, “Yeah, things are going great.” But I had these 
phenomenal results in my hand and I just had to share them. So I did.

The vice president was even more excited than my boss. He said he 
wanted me to brief the executive committee, so they could begin making 
plans to launch development of this new device. We set up a time for an 
initial briefing, and he rushed out the door.

Once he was gone, my boss turned to me. The smile on his face was gone. 
He said, “Before we brief the executive committee, I want you to run another 
dataset through your model and see how well it works.” He handed me a disc 
with the new data and off I went.

The process took less than twenty minutes. I plugged the new X values 
into my regression model, and calculated the RMSE. Figure 9.10 shows 
the results.

About the best thing I could say about these results were that the predicted 
versus observed Y values still followed a roughly straight line. The scatter 
around that line was larger than I’d expected, the residuals showed a strange, 
indescribable pattern, and the RMSE was twice the value predicted from the 
regression model. In other words, my model might’ve worked well for the 
training data, but it was a failure when it came to prediction.

I rushed back into my boss’ office, this time in a panic. I had to tell the 
vice president what I’d found and stop this runaway train from wrecking my 
career. Fortunately, my boss was a patient man and a good mentor for 
someone with more book knowledge than real‐world experience. He offered 
to deal with the higher ups, postponing the executive briefing while I worked 
on figuring out what went wrong. Over the next few days, I gave myself a 
crash course in validation techniques and came up with a much better 
strategy for constructing this model.

What I Should’ve Done

After stewing over my dilemma and spending some time reading, I realized 
how the whole script should’ve played. First, I never should’ve said a word 
to the vice president about such preliminary results. He was a good manager, 
proactive and supportive, but cautious optimism wasn’t in his repertoire. He 
wanted to take my results and act on them. Immediately. Second, I never 
should’ve rushed into my boss’ office so soon after constructing the model. 
I should’ve taken a day to look closely at the residuals and review my data 
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Figure  9.10  (a) Predicted versus observed Y values using a new dataset and 
(b) residuals for new dataset.
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analysis. If I’d done this, I would’ve noticed a subtle bowed pattern in the 
residuals, and at the very least, this would’ve alerted me to some sort of 
model inadequacy. It might’ve even spared me the humiliation of having to 
admit I’d fit a bad model.

As far as the data analysis goes, I should’ve heeded all the warnings about 
the underlying assumptions made by linear regression. Not only did my Y 
values have measurement error, so did my X values. This uncertainty in the 
X values increased the scatter around the regression line, impacting the fit 
and causing diagnostic statistics like the adjusted R2 value to be less informa-
tive than they otherwise would’ve been. I also should’ve been more concerned 
about including too many terms in the model. My model had ten terms. My 
sample had thirty-six observations. I assumed this was more than enough 
observations to eliminate the risk of overfitting. Sadly, it wasn’t.

After a couple days, I constructed a completely new model. This is how 
the analysis went. The sample size was N = 36, and I split the dataset in half, 
choosing a test set of eighteen observations at random and setting them 
aside. Then, I performed stepwise regression on the remaining data, the 
training set. Doing this for the data in Figure 9.8 produces the following, 
much simpler model:

	 Y X X X0 82 1 03 1 68 0 271
2

2
2

3
2. . . . .

After constructing the model on the training set with acceptable results, 
I applied it to the test data. Figure 9.11 shows the results of the stepwise 
regression with external validation for the data in Figure 9.8.

The RMSE for this model is higher than the full model, but that’s not a 
bad thing. The goal of regression is to model the underlying dependencies 
between the X‐ and Y‐variables. There’s a natural, inherent measurement 
error on top of this relationship and no amount of statistics can predict it. As 
a data analyst, your goal is to quantify that error, no matter what it is, so you 
aren’t surprised when you apply the model to a new sample. This model does 
just that. The RMSE for the training data (0.05) is roughly the same as the 
RMSE of the test data (0.05). What’s more, it’s also close the RMSE of 
0.055 for the new data set handed to me after the fact.

Like this model, my regression equation turned out to be very reliable. 
Unfortunately, the RMSE was higher than the target value of 3%.

Had I taken this approach in the first place, I never would’ve run into my 
boss’ office declaring success. I never would’ve made the mistake of show-
ing preliminary results to a vice president of the company. And I never 
would’ve had to stand in front of a room full of important people and explain 
why they shouldn’t believe my results. Over the next few months, I redeemed  
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my credibility by coming up with a completely new model that did hit the 
target accuracy. I eventually left the company on good terms, with these rookie 
mistakes long forgotten by the fine people I worked with at Major MedicCorp. 
But these errors in judgement stayed with me, and even today, they serve as a 
constant reminder of what Murphy’s law can do.
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an eighteen sample training set.
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Appendix A

Critical Values for 
the Standard Normal 
Distribution
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One-sided test α zcrit

0.01 2.3

0.05 1.6

0.10 1.3

0.15 1.0

0.20 0.8

(a) 

α = P{Z>zcrit}
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Two-sided test
(b) 

α zcrit

0.01 2.6

0.05 2.0

0.10 1.6

0.15 1.4

0.20 1.3

α/2 = p{Z>zcrit}α/2=P{Z<–zcrit}
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Appendix B

Critical Values for the 
T‐Distribution
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Value

One-sided test

(a)

d.f

α

0.01 0.05 0.1

4 3.7 2.1 1.5

6 3.1 1.9 1.4

8 2.9 1.9 1.4

10 2.8 1.8 1.4

20 2.5 1.7 1.3

40 2.4 1.7 1.3

100 2.4 1.7 1.3

α = P{T>tcrit}
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(b)
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0

Value

Two-sided test d.f.

α

0.01 0.05 0.1

4 4.6 2.8 2.1
6 3.7 2.4 1.9
8 3.4 2.3 1.9

10 3.2 2.2 1.8
20 2.8 2.1 1.7
40 2.7 2.0 1.7
60 2.7 2.0 1.7

100 2.6 2.0 1.7

α/2=P{T>tcrit}α/2 = P{T< – tcrit}
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Appendix C

Critical Values for the 
Chi‐Squared Distribution
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x)

x-value

Two-sided test

d.f.
α

0.01 0.05 0.1

4 13.3 9.5 7.8

6 16.8 12.6 10.6

8 20.1 15.5 13.4

10 23.2 18.3 16.0

12 26.2 21.0 18.5

14 29.1 23.7 21.1

16 32.0 26.3 23.5

18 34.8 28.9 26.0

20 37.6 31.4 28.4

25 44.3 37.7 34.4

30 50.9 43.8 40.3

40 63.7 55.8 51.8

50 76.2 67.5 63.2

α = P{X2 > kcrit}
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Appendix D

Critical Values for 
Grubbs’ Test
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Two-sided test

α/2 = P{G > Gcrit}α/2 = P{–G < –Gcrit}

N
α

0.01 0.05 0.1

4 1.50 1.49 1.48
6 1.99 1.93 1.89
8 2.32 2.20 2.13

10 2.54 2.38 2.29
12 2.70 2.52 2.41
14 2.84 2.62 2.51
16 2.94 2.71 2.59
18 3.03 2.78 2.65
20 3.11 2.84 2.71
25 3.25 2.97 2.82
30 3.36 3.06 2.91
40 3.51 3.19 3.04

50 3.62 3.29 3.13
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Appendix E

Critical Values for 
Wilcoxson signed rank test: 
small sample sizes
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Value

One-sided test
(a)

α = P{R>Rcrit}

N

α

0.01 0.05

5 ** 15

6 ** 17

7 28 22

8 34 26

9 39 29
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(b)
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0
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Two-sided test

α/2=P{R>Rcrit}α/2={–R<–Wcrit}

N

α

0.01 0.05

6 ** 21

7 ** 24

8 36 30

9 43 35
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Glossary

2 × 2 contingency table  a contingency table having one variable with two 
possible values and one outcome with two possible values.

2 × 5 contingency table  a contingency table having one variable with two 
possible values and one outcome with five possible values.

Alternative hypothesis  in a hypothesis test, the claim you accept as true 
only if you have enough evidence in the data to reject the null hypothesis.

Anderson–Darling test  a hypothesis test to determine if a sample con­
forms to a specific probability distribution, the normal distribution in 
particular.

Anomaly detection  the process of identifying outliers or other unusual 
observations.

Average  a measure of the central value in a set of observations. Also called 
a sample mean. Calculated by adding all the values and dividing by the 
sample size.

Bimodal distribution  a split frequency distribution, where observations 
are clustered around each of two central values.

Binomial distribution  a probability distribution describing the number of 
successes in a fixed set of independent trials.
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Blocking  in a study, the process of collecting data in groups, where each 
group is as homogeneous as possible; a sampling technique to minimize 
the impact of potentially confounding factors.

Bootstrapping  a data‐based method for assessing the accuracy of an 
estimate, whether it’s the variance, bias, or a confidence interval. Based 
on resampling.

Boxplot  A graphical representation of a five‐number summary, illustrating 
the minimum, maximum, and quartiles.

Breakdown point  the proportion of outliers a statistic can handle before it 
becomes impacted by these extreme values.

Censored observations  observations known only to be less in some range 
of values. Observations whose exact value is unknown.

Chi‐squared test  a hypothesis test for determining if a sample conforms 
to a specific probability distribution. Applied to a contingency table, and 
can be used to test for independence between variables and outcomes.

Confidence interval  a measure of confidence in a descriptive statistic. 
Also called the margin of error.

Confounding factor  any variable that can impact the outcome of an 
experiment, making results ambiguous.

Consistent  an estimate whose variance grows increasingly closer to the 
true value as the sample size grows.

Contingency table  a tool for breaking down a frequency distribution, 
where frequencies are listed by variable and outcome with the variable 
values in rows, and the outcome values in columns.

Continuous observations  observations that take on continuous values 
such as real numbers.

Continuous probability distribution  a probability distribution for contin­
uous observations.

Continuous random variable  a variable, usually denoted by X or Y, that 
represents some as‐yet‐undetermined continuous outcome of a random 
experiment.

Control group  in a study, a group of test subjects who are not subjected 
to a treatment. A group of subjects against which a treatment group is 
compared.

Controllable variable  an independent variable that can be systematically 
manipulated in order to observe its impact on the outcome of a study.

Controlled experiment  a data collection effort where variables or factors 
are tightly controlled.
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Controlled trial  a controlled experiment in which a treatment group is 
compared to a control group.

Convenience data  a dataset that’s easy to get. Data gathered out of seven 
convenience rather than from a designed study.

Correlation  a relationship between two random variables or observations 
where the value of one affects the probability of the outcome of the other.

Critical value  in a hypothesis test or confidence interval, the value of 
an observation or test statistic needed to achieve some small error 
probability.

Cross‐validation  a technique for estimating the accuracy of a model. 
Based on a process of successively removing observations from the 
sample, building a model, and calculating the accuracy of the left‐out 
observations.

Cumulative distribution function (cdf)  the probability a random variable 
is less than some value, P{X < =x}.

D’Agostino Pearson test  a hypothesis test for determining if a sample 
conforms to a normal distribution.

Data transformation  a function applied to a set of data values, usually to 
make the values conform to normal or other common probability 
distribution.

Decision criteria  used in hypothesis testing, a rule for accepting or reject­
ing a hypothesis; usually, a threshold above which the null hypothesis is 
rejected.

Degrees of freedom  the effective number of independent observations for 
a statistic, typically the number of observations minus one less the number 
of estimates.

Dependent variable  a variable whose value depends on some other variable. 
In a study, the dependent variable is the outcome you’d like to measure. 
In regression, the dependent variable, Y, is the value you’d like to predict.

Descriptive research  research based mostly on observational studies. 
Designed to characterize rather than establish cause and effect.

Descriptive statistics  summary values calculated from a sample, designed 
to describe the center location, shape, texture, and other properties of a 
population.

Design of experiments (DOEs)  established strategies for setting up dif­
ferent types of controlled experiments.

Discrete observations  observations that can be counted, for example, 
whole numbers, counts, or categories.
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Discrete probability distribution  a probability distribution that describes 
discrete random variables.

Discrete uniform distribution  a discrete probability distribution where 
the probability of an observation taking each possible value is the same.

Distribution‐free methods  Also called nonparametric methods. Statistical 
methods that do not depend on a specific probability distribution.

Double‐blind study  a study, typically involving a treatment and a placebo, 
in which neither the test subjects nor the experimenters know which 
subjects were given treatments and which were given placebos.

Effect  in a study, it’s the outcome or phenomenon you’d like to measure.

Effect size  a method for measuring the practically meaningful difference 
between the H

0
 mean and the actual mean.

Efficiency  a comparison between the variance of a robust estimate and the 
sample mean.

Empirical probability  a probability value calculated from data and not 
just a theoretical model.

Estimate  a value calculated from a sample that estimates the corresponding 
value for an entire population.

Event  a specific set of outcomes in a random experiment.

Expected frequency  in a contingency table, the null hypothesis probability 
of each cell multiplied by the total number of samples.

Experimental design  the science of planning experiments to produce data 
that will lead to clear, valid conclusions.

Experimental study  a highly manipulated study. The independent variables 
are carefully controlled. The dependent variables are carefully measured.

Explanatory research  research targeted to a specific goal. Typically 
involves controlled experiments.

Exploratory research  the process of learning as much as possible about 
your subject matter. Typically includes background reading, convenience 
data collection and ad‐hoc statistical analysis.

External validation  a method for estimating the accuracy of a model. 
Performed dividing a dataset into a training set and a test set, building a 
model for the training set, and estimating accuracy for the test set.

Extreme value distribution  a probability distribution that describes the 
largest (or smallest) value in a set of data.

Factor  any variable that can impact the outcome of an experiment.

Factorial designs  often used for experiments with a single dependent 
variable and many independent variables, each with a small number of 
possible values
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False discovery  the process of finding statistically significant differences 
purely by chance.

Five‐number summary  for a sample, the quartiles together with two 
more descriptive statistics: the minimum and maximum.

Five‐point Likert scale  a system for gathering feedback on a survey. 
Based on a scale from one to five.

Fractional factorial design  an experimental design that takes a carefully 
chosen subset from the full factorial design and limits testing to those 
combinations.

Frequency distribution  a tally of the number of times each different 
category or value appears in a sample of discrete observations.

Full factorial design  a designed experiment where every possible 
combination of independent variables is tested.

Generalized extreme residual test  an outlier detection method where 
Grubbs’ test is successively applied to a sample.

Goodness‐of‐fit test  a hypothesis test that compares a frequency distri­
bution to some model probability distribution, with the goal of judging 
whether or not the data fit the model.

Grubbs’ test  a formal hypothesis test for detecting outliers. Based on 
extreme values.

Heteroscedasticity  nonconstant variance in the observations of a sample.

High‐order interactions  the impact created by combining many—usually 
more than two—independent variables.

Histogram  a method for graphing the frequency distribution of quantitative 
data. The data are binned, the number of observations in each bin are 
counted, and a bar graph of the counts is constructed.

Hypothesis test  compares an alternative hypothesis to a null hypothesis 
and determines if there’s enough evidence to reject the null hypothesis.

Independent trials  successive random experiments where the outcomes 
are independent.

Independent variable  a variable or factor that does not depend on any 
other variable or factor.

Interactions  in a study, the impact of combinations of independent 
variables.

Interquartile range (IQR)  for a sample, the 75% percentile minus the 25% 
percentile.

Kolmogorov–Smirnov test  a hypothesis test for determining if a sample 
conforms to the normal distribution.

Kruskal–Wallis test  a hypothesis test for equality of medians between groups.



178� Glossary

Kth‐order statistic  the kth smallest observation in a sample.

Kurtosis  the fourth central moment. Measures the amount of bulge a 
probability distribution has.

Least squares regression  a method for estimating regression coefficients 
by minimizing the deviation between the measured Y‐values and model 
predictions.

Levels  the possible values of a variable.

Linear regression  a method for relating two variables, x and y, through a 
linear function, for example y = mx + b.

Log transformation  a data transformation where the logarithm of each 
observation is calculated. Tends to make right‐skewed data look more 
normal.

Median  a measure of the central value in a group of observations. The 
middle value.

Median absolute deviation  the median of the absolute differences 
between every data value and the median of the data values.

Mode  The most frequently observed observation.

Model  a mathematical function that uses a set of independent variables (X) 
to predict, describe, or classify a dependent variable (Y).

Model selection technique  in regression, a method for selecting a subset of 
independent variables (X) that adequately predict the dependent variable (Y).

Moments  parameters that specify the properties of a probability distribution.

Multiple linear regression  the process of constructing a line to predict 
the value of a dependent variable (Y) from more than one independent 
variables (Xs).

Multiple regression  the process of constructing a linear or nonlinear 
function to predict the value of a dependent variable (Y) from more than 
one independent variables (Xs).

Multivariate regression  the process of constructing a function to predict 
the value of multiple dependent variables (Ys) from more than one 
independent variables (Xs).

Noncentral t‐distribution  a t‐distribution whose mean is not zero.

Nonlinear regression  the process of constructing a function to predict the 
value of a dependent variable (Y) from independent variables (Xs), where 
the regression coefficients are raised to a power or imbedded in nonlinear 
functions.

Nonparametric method  a statistical technique that makes no assumptions 
about the underlying probability distribution of a sample.
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Normal distribution  a continuous probability distribution with a symmetric, 
bell‐shaped curve.

Null hypothesis  in hypothesis testing, the hypothesis assumed to be true 
until proven false with a statistically significant result.

Observations  measurements, opinions, categories, or numerical values, 
anything that can make up a dataset.

Observational study  a data collection effort where none of the variables 
or factors are controlled.

One‐sided hypothesis test  a hypothesis test where the alternative hypo­
thesis looks for deviations from the null hypothesis in one direction only 
(either > or <). Critical values of one‐sided hypothesis tests are α and 1−α, 
where α is the desired significance level.

Order statistics  observations that have been sorted, or ordered, from 
smallest to largest.

Outlier  an extreme observation, a value that sits far away from the majority 
of the observations.

Overfitting  fitting too many terms to a statistical model, resulting in a 
model that incorporates not only the X–Y dependencies, but also random 
variation from the training sample.

Paired data  observations collected in pairs that are not independent of one 
another.

Parameter  a value, such as the mean or variance, that specifies key prop­
erties of a random variable or probability distribution.

Parametric test  a test that assumes a sample conforms to a specific under­
lying probability distribution such as the normal distribution.

Parsimony  the philosophy that all other things being equal, a smaller 
model is better.

Percentile  the observation or measurement value below which a specified 
percent of the data fall.

Polynomial regression  the process of constructing a polynomial 
function to predict the value of a dependent variable (Y) from inde­
pendent variables (Xs), where one or more of the X values are raised to 
a power.

Population  the collection of all people, places, or things under study.

Power  of a hypothesis test, the probability of correctly rejecting the null 
hypothesis.

Practical significance  in a hypothesis test, the smallest deviation from the 
null hypothesis that matters for a particular problem.
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Prediction  in linear regression, the process of predicting y‐values from 
corresponding x‐values.

Probability  a number between zero and one that expresses how likely 
some future event is to occur.

Probability distribution  a mathematical formula for assigning probabilities 
to outcomes in a random experiment.

Q–Q plot  a plot of the data quantiles against the corresponding quantiles 
for a normal distribution. A graphical method for assessing the normality 
of a sample.

Qualitative data  observations that describe a category or type. Any 
measurement that cannot be sorted into a meaningful numerical order.

Quantiles  the x‐values corresponding to incrementally increasing cumulative 
probabilities.

Quantitative data  numerical observations that can be sorted into a mean­
ingful order.

Quartiles  the 25th, 50th, and 75th percentiles of a dataset.

Quota sampling  a sampling scheme where data are gathered until a pre­
specified number of samples in every subgroup of a population have been 
obtained.

Random experiment  a situation or trial where the outcome is not known 
beforehand.

Random sampling  choosing members of a dataset at random.

Random variable  a variable that represents the outcome of a random 
experiment.

Randomization  in a study, the process of randomly ordering the collec­
tion of data. A method for minimizing the impact of confounding factors 
in a study.

Range  the largest minus the smallest observation in a dataset.

Rankings  the rank, or order associated with every observation in a sorted 
dataset.

Regression  a method for predicting the value of a variable, Y, from another 
variable, X, using a mathematical function.

Regression coefficients  the values that relate independent variables (Xs) 
to the dependent variable (Y). The values that are estimated in the regression 
process.

Regression sum of squares  the amount of total variation in Y values 
captured by a regression equation.
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Repeated measures study  a before‐and‐after study where test subjects 
are measured both before and after some treatment is given to them.

Replication  the process of collecting more than one observation in a study. 
A method for reducing the uncertainty in the results of a study.

Resampling  the process of sampling from a dataset, usually with 
replacement. The basis for using bootstrapping to estimate uncertainty.

Residual sum of squares  the amount of total variation in Y values not 
captured by a regression equation.

Residuals  the variation unaccounted for by a statistical model. In a regres­
sion, the actual y values minus the corresponding y values predicted by 
the regression line.

Residuals analysis  an assessment of the residual error in a regression 
model. Inspection of residuals to identify outliers and determine how well 
a regression line fits the individual y values.

Residuals plot  a plot of the regression error, or predicted minus actual Y 
values; tool for assessing the quality of a model.

Resistant statistics  estimates that aren’t adversely impacted by extreme 
data, no matter how extreme that data may be.

Right‐skewed data  a sample whose frequency distribution looks as if it’s 
been stretched toward positive values, or to the right.

Robust statistics  estimates that are insensitive to outliers, skewed 
distributions and other nonlinear behavior.

Root‐mean‐squared error (RMSE)  the average deviation between the 
observed Y values and those estimated from the model. The square root of 
the sum of squared residual error, scaled by the sample size.

Sample  a carefully selected subset of the population. The data collected in 
a study.

Sample distribution  the probability distribution for an estimate, a statistic, 
or any other value calculated from data.

Sampling  the science of choosing a subset, or sample, for a study.

Sampling without replacement  the process of successively selecting 
members from a population without replacing them after they’ve 
been selected.

Scatterplot  an X–Y plot. A plot of two variables against one another. A 
way to visualize dependencies and relationships between two variables.

Shapiro–Wilk test  a test for normality. A hypothesis test for determining 
if a sample conforms to the normal distribution.
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Significance level  the error probability specified by the data analyst when 
calculating confidence intervals or performing hypothesis tests. Usually 
denoted by α.

Signs (+ or −)  values assigned to each observation in a sample based on 
whether or not the observation is greater than (+) or less than (−) some 
reference value

Simple linear regression  a linear regression model with one independent 
variable (X) and one dependent variable (Y).

Simple random sampling  a sampling scheme in which every member of 
the population has an equal probability of being selected.

Simulated data  the process of generating data from a mathematical or 
statistical model or from some known probability distribution.

Skewed data  Data whose frequency distribution is shifted to the right or 
left of a bell‐shaped distribution.

Standard deviation  the average deviation, or variation, of the observa­
tions in a sample around the center location.

Standard error  the standard deviation of an estimate, most commonly the 
sample mean.

Standard normal distribution  a special case of the normal distribution, 
where the mean is zero and the variance is one.

Standard normal random variable  a random variable that conforms to 
the normal distribution, has mean μ = 0 and variance σ2 = 1.

Statistically significant  a trend, pattern, or difference that’s larger than 
expected based on random variation alone.

Stepwise regression  a technique for selecting terms in a multiple or poly­
nomial regression model in such a way that only the most significant 
terms are included.

Study  a data collection exercise designed to answer some question about a 
group of people, places, or items.

Symmetric  a probability distribution or frequency distribution whose left 
and right halves are mirror images of one another.

Systematic sampling  in a study, the process of collecting data in some 
logical order.

Test statistic  a value calculated from the data. In hypothesis testing, a 
sample statistic used to accept or reject the null hypothesis.

Total squared error  in regression, the sum of squared residual error. 
A measure of the total variation unaccounted for by a regression 
model.
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Treatment  a primary independent variable in a study. Meant to change in 
the outcome of an experiment.

Treatment group  the group of test subject who are subjected to the effect 
of an independent variable, or treatment.

Trimmed mean  a robust version of the sample mean. Calculated by 
trimming, removing a percentage of the highest and lowest values, and 
calculating the average from the remaining values.

Two‐sided hypothesis test  a hypothesis test where the alternative hypo­
thesis looks for deviations from the null hypothesis in any direction 
(usually ≠). Critical values of two‐sided hypothesis tests are α/2 or 1−α/2, 
where α is the desired significance level.

Two‐way contingency tables  a contingency table that breaks down a 
frequency distribution by one variable and one outcome only.

Type I error  in a hypothesis test, rejecting H
0
 when, in reality, H

0
 is true.

Type I error probability  in a hypothesis test, the probability of rejecting 
H

0
 when, in reality, H

0
 is true. The error α specified by the data analyst.

Type II error  in a hypothesis test, accepting H
0
 when, in reality, H

0
 is 

false.

Type II error probability  in a hypothesis test, the probability of accept­
ing H

0
 when, in reality, H

0
 is false. Usually denoted by β and not con­

trolled by the data analyst when performing a hypothesis test.

Unbiased estimate  any statistic or estimate whose expected value is the 
same as the population parameter it’s meant to estimate.

Uncontrollable variable  an independent variable that cannot be systemat­
ically manipulated.

Validation technique  a data‐based method for constructing an accurate 
model. Involves dividing a sample into subsets, constructing a model with 
some of the observations, and estimating the accuracy of the model with 
the others.

Variance stabilizing transformation  a function that transforms the obser­
vations of a sample into new observations with constant variance.

Wilcoxon signed rank test  a hypothesis test for the median of a population. 
A powerful nonparametric alternative to the t‐test.

Z‐score  an observation that has been scaled by subtracting the sample 
mean and dividing by the sample standard deviation.
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alternative hypothesis, 6, 40, 61, 127, 
133 

analysis of variance (ANOVA), 51, 93, 
124, 144, 151

Anderson–Darling test, 102–3
anomaly detection, 109–22 see also 

outlier detection
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