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Preface to the Paperback Edition

Nearly 15 years have passed since the publication of the second edition of this
book by John Wiley. Indian edition (of the first edition this book from 1982),
published by Prentice-Hall India, is still in print and doing quite well. Asian
edition (of the second edition from 2001) is published by John Wiley Asia.
In 2015, a Chinese translation of the second edition has been published. I
did not see the need for adding or subtracting significant amount of mate-
rial to produce a new, third edition of the “bluebook” as it is popularly
known. However, I took the opportunity to correct nearly 100 minor errors
from the book before supplying the camera ready copy to the publisher. I
have added some more terms in the subject index leading to an extra page
at the end. Thus, though this is not a new edition, it is a significant new
reprint. I like to remind the readers that a complete solution manual is avail-
able to instructors as well the power point slides of all chapters. Instructors
may also wish to use the SHARPE software package as a pedagogic aid. (See
http://sharpe.pratt.duke.edu/ for further details.)

I wish to thank many friends for pointing out and/or help fix the
errors—Javier Alonso López, Yonghuan Cao, Xiaolin Chang, Olivia Das, Jie
Feng, Marcos A. M. Ferreira, Lance Fiondella, Ravi Iyer, Michael Kwok,
Bharat Madan, José M. Mart́inez, Rivalino Matias, Jr., Kesari Mishra,
Yan Qu, Dharmaraja Selvamuthu, Vibhu Sharma, Harish Sukhwani, Alex
Thomasian and (late) Ranjith Vasireddy.

Kishor S. Trivedi
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Preface to the Second Edition

Nearly 20 years have passed since the publication of the first edition of this
book. Its Indian edition is still in print and doing quite well. In this second edi-
tion, I have thoroughly revised all the chapters. Many examples and problems
are updated, and many new examples and problems have been added. There is
a considerable addition of examples on system availability modeling, wireless
system performance and availability modeling, software reliability modeling,
and system performability modeling. New material on fault trees and stochas-
tic Petri nets, and numerical solution techniques for Markov chains has been
added. A section on the computation of response time distribution for Marko-
vian queuing networks has also been added. Chapter 8, on continuous-time
Markov chains, has undergone the most change. My research experience and
the application of these methods in practice for the past 25 years (at the
time of writing) have been distilled in these chapters as much as possible. I
hope that the book will be of use as a classroom textbook as well as of use
for practicing engineers. Researchers will also find valuable material here. I
have tried to avoid adding excessive and very advanced material. Thus, for
instance, I have omitted discussion of Markov regenerative processes, fluid
stochastic Petri nets, and binary decision diagrams. Other topics that are
omitted include material on self-similarity, large deviation theory, and diffu-
sion approximation. The topic of hierarchical and fixed-point iterative models
is covered very briefly. Modeling software fault tolerance with various kinds
of correlation is also excluded.

I wish to thank many of my current students—Yonghuan Cao, Dong
Chen, Dongyan Chen, Christophe Hirel, Lei Li, Yun Liu, Rajiv Poonamalli,
Srinivasan Ramani, Kalyan Vaidyanathan, Wei Xie, and Liang Yin;
current postdoctoral associates—Dr. Katerina Goseva-Popstojanova,
Dr. Yiguang Hong, Dr. Xiaomin Ma, and Dr. Dharmaraja Selvamuthu;
former students—Dr. Hoon Choi, Dr. Gianfranco Ciardo, Dr. Ricardo Fricks,
Dr. Sachin Garg, Dr. Swapna Gokhale, Wei Li, Xuemei (Judith) Lou,
Dr. Tong Luo, Dr. Yue Ma, Dr. Varsha Mainkar, Dr. Manish Malhotra, Anu
Mohan, Dr. Jogesh Muppala, Hu Pan, Dr. Anapathur Ramesh, Dr. Robin
Sahner, Kartik Sudeep, Dr. Steve Woolet, and Dr. Xinyu (Henry) Zang;

xi



Trim Size: 6.125in x 9.25in 60Trivedi f03.tex V3 - 05/19/2016 11:36am Page xii�

� �

�

xii PREFACE TO THE SECOND EDITION

former postdoctoral associates—Dr. Hairong Sun and Dr. Bruno Tuffin; and
other friends—Prof. Tadashi Dohi, Dr. Zahava Koren, Prof. Igor Kovalenko,
Prof. Kang Lee, Dr. Bharat Madan and Prof. Alex Thomasian.
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Preface to the First Edition

The aim of this book is to provide an introduction to probability, stochastic
processes, and statistics for students of computer science, electrical/computer
engineering, reliability engineering, and applied mathematics. The prerequi-
sites are two semesters of calculus, a course on introduction to computer
programming, and preferably, a course on computer organization.

I have found that the material in the book can be covered in a two-semester
or three-quarter course. However, through a choice of topics, shorter courses
can also be organized. I have taught the material in this book to seniors and
first-year graduate students but with the text in printed form, it could be
given to juniors as well.

With a specific audience in mind, I have attempted to provide examples
and problems, with which the student can identify, as motivation for the
probability concepts. The majority of applications are drawn from reliability
analysis and performance analysis of computer systems and from probabilistic
analysis of algorithms. Although there are many good texts on each of these
application areas, I felt the need for a text that treats them in a balanced
fashion.

Chapters 1–5 provide an introduction to probability theory. These five
chapters provide the core for one semester course on introduction to applied
probability. Chapters 6–9 deal with stochastic processes and their applica-
tions. These four chapters form the core of the second course with a title such
as systems modeling. I have included an entire chapter on networks of queues.
The last two chapters are on statistical inference and regression, respectively.
I have placed the material on sampling distributions in Chapter 3 dealing
with continuous random variables. Portions of the chapters on statistics can
be taught with the first course and other portions in the second course.

Besides more than 200 worked examples, most sections conclude with a
number of exercises. Difficult exercises are indicated by a star. A solution
manual for instructors is available from the publisher.

I am indebted to the Department of Computer Science, Duke Univer-
sity and to Merrell Patrick for their encouragement and support during this
project. The efficient typing skills of Patricia Land helped make the job of
writing the book much easier than it could have been.

Many of my friends, colleagues, and students carefully read several drafts
and suggested many changes that improved the readability and the accuracy of

xiii
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xiv PREFACE TO THE FIRST EDITION

this text. Many thanks to Robert Geist, Narayan Bhat, Satish Tripathi, John
Meyer, Frank Harrell, Veena Adlakha, and Jack Stiffler for their suggestions.
Joey de la Cruz and Nelson Strothers helped in the editing and the typing
process very early in the project. The help by the staff of Prentice-Hall in
preparation of the book is also appreciated.

I would like to thank my wife Kalpana, and my daughters Kavita and
Smita for enduring my preoccupation with this work for so long. The book is
dedicated to my parents.

Kishor S. Trivedi
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Chapter 1

Introduction

1.1 MOTIVATION

Computer scientists and engineers need powerful techniques to analyze
algorithms and computer systems. Similarly, networking engineers need
methods to analyze the behavior of protocols, routing algorithms, and
congestion in networks. Computer systems and networks are subject to
failure, and hence methods for their reliability and availability are needed.
Many of the tools necessary for these analyses have their foundations in
probability theory. For example, in the analysis of algorithm execution
times, it is common to draw a distinction between the worst-case and the
average-case behavior of an algorithm. The distinction is based on the fact
that for certain problems, while an algorithm may require an inordinately
long time to solve the least favorable instance of the problem, the average
solution time is considerably shorter. When many instances of a problem
have to be solved, the probabilistic (or average-case) analysis of the algorithm
is likely to be more useful. Such an analysis accounts for the fact that the
performance of an algorithm is dependent on the distributions of input data
items. Of course, we have to specify the relevant probability distributions
before the analysis can be carried out. Thus, for instance, while analyzing a
sorting algorithm, a common assumption is that every permutation of the
input sequence is equally likely to occur.

Similarly, if the storage is dynamically allocated, a probabilistic analysis
of the storage requirement is more appropriate than a worst-case analysis. In
a like fashion, a worst-case analysis of the accumulation of roundoff errors in
a numerical algorithm tends to be rather pessimistic; a probabilistic analysis,
although harder, is more useful.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e

1
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2 INTRODUCTION

When we consider the analysis of a Web server serving a large number of
users, several types of random phenomena need to be accounted for. First,
the arrival pattern of requests is subject to randomness due to a large popula-
tion of diverse users. Second, the resource requirements of requests will likely
fluctuate from request to request as well as during the execution of a single
request. Finally, the resources of the Web server are subject to random failures
due to environmental conditions and aging phenomena. The theory of stochas-
tic (random) processes is very useful in evaluating various measures of system
effectiveness such as throughput, response time, reliability, and availability.

Before an algorithm (or protocol) or a system can be analyzed, various
probability distributions have to be specified. Where do the distributions
come from? We may collect data during the actual operation of the system
(or the algorithm). These measurements can be performed by hardware moni-
tors, software monitors, or both. Such data must be analyzed and compressed
to obtain the necessary distributions that drive the analytical models dis-
cussed above. Mathematical statistics provides us with techniques for this
purpose, such as the design of experiments, hypothesis testing, esti-
mation, analysis of variance, and linear and nonlinear regression.

1.2 PROBABILITY MODELS

Probability theory is concerned with the study of random (or chance) phenom-
ena. Such phenomena are characterized by the fact that their future behavior
is not predictable in a deterministic fashion. Nevertheless, such phenomena
are usually capable of mathematical descriptions due to certain statistical reg-
ularities. This can be accomplished by constructing an idealized probabilistic
model of the real-world situation. Such a model consists of a list of all possible
outcomes and an assignment of their respective probabilities. The theory of
probability then allows us to predict or deduce patterns of future outcomes.

Since a model is an abstraction of the real-world problem, predictions
based on the model must be validated against actual measurements collected
from the real phenomena. A poor validation may suggest modifications to the
original model. The theory of statistics facilitates the process of validation.
Statistics is concerned with the inductive process of drawing inferences about
the model and its parameters based on the limited information contained in
real data.

The role of probability theory is to analyze the behavior of a system or
an algorithm assuming the given probability assignments and distributions.
The results of this analysis are as good as the underlying assumptions. Statis-
tics helps us in choosing these probability assignments and in the process of
validating model assumptions. The behavior of the system (or the algorithm)
is observed, and an attempt is made to draw inferences about the underly-
ing unknown distributions of random variables that describe system activity.
Methods of statistics, in turn, make heavy use of probability theory.
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Consider the problem of predicting the number of request arrivals to a Web
server in a fixed time interval (0,t]. A common model of this situation is to
assume that the number of arrivals in this period has a particular distribution,
such as the Poisson distribution (see Chapter 2). Thus we have replaced a com-
plex physical situation by a simple model with a single unknown parameter,
namely, the average arrival rate λ. With the help of probability theory we
can then deduce the pattern of future arrivals. On the other hand, statistical
techniques help us estimate the unknown parameter λ based on actual obser-
vations of past arrival patterns. Statistical techniques also allow us to test the
validity of the Poisson model.

As another example, consider a fault-tolerant computer system with auto-
matic error recovery capability. Model this situation as follows. The proba-
bility of successful recovery is c and probability of an abortive error is 1 − c.
The uncertainty of the physical situation is once again reduced to a simple
probability model with a single unknown parameter c. In order to estimate
parameter c in this model, we observe N errors out of which n are successfully
recovered. A reasonable estimate of c is the relative frequency n/N, since we
expect this ratio to converge to c in the limit N → ∞. Note that this limit is
a limit in a probabilistic sense:

lim
N→∞

P
(∣∣∣ n

N
− c

∣∣∣ > ε
)

= 0.

Axiomatic approaches to probability allow us to define such limits in a math-
ematically consistent fashion (e.g., see the law of large numbers in Chapter 4)
and hence allow us to use relative frequencies as estimates of probabilities.

1.3 SAMPLE SPACE

Probability theory is rooted in the real-life situation where a person performs
an experiment the outcome of which may not be certain. Such an experiment
is called a random experiment. Thus, an experiment may consist of the
simple process of noting whether a component is functioning properly or has
failed; it may consist of determining the execution time of a program; or it
may consist of determining the response time of a server request. The result of
any such observations, whether they are simple “yes” or “no” answers, meter
readings, or whatever, are called outcomes of the experiment.

Definition (Sample Space). The totality of the possible outcomes of
a random experiment is called the sample space of the experiment and it
will be denoted by the letter S.

We point out that the sample space is not determined completely by the
experiment. It is partially determined by the purpose for which the exper-
iment is carried out. If the status of two components is observed, for some
purposes it is sufficient to consider only three possible outcomes: two func-
tioning, two malfunctioning, one functioning and one malfunctioning. These
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0 1

Figure 1.1. A one-dimensional sample space

three outcomes constitute the sample space S. On the other hand, we might
be interested in exactly which of the components has failed, if any has failed.
In this case the sample space S must be considered as four possible outcomes
where the earlier single outcome of one failed, one functioning is split into two
outcomes: first failed, second functioning and first functioning, second failed.
Many other sample spaces can be defined if we take into account such things
as type of failure and so on.

Frequently, we use a larger sample space than is strictly necessary because
it is easier to use; specifically, it is always easier to discard excess information
than to recover lost information. For instance, in the preceding illustration,
the first sample space might be denoted S1 = {0, 1, 2} (where each number
indicates how many components are functioning) and the second sample space
might be denoted S2 = {(0, 0), (0, 1), (1, 0), (1, 1)} (where 0 = failed, 1 = func-
tioning). Given a selection from S2, we can always add the two components to
determine the corresponding choice from S1; but, given a choice from S1 (in
particular 1), we cannot necessarily recover the corresponding choice from S2.

It is useful to think of the outcomes of an experiment, the elements of the
sample space, as points in a space of one or more dimensions. For example, if
an experiment consists of examining the state of a single component, it may
be functioning properly (denoted by the number 1), or it may have failed
(denoted by the number 0). The sample space is one-dimensional, as shown
in Figure 1.1. If a system consists of two components there are four possible
outcomes, as shown in the two-dimensional sample space of Figure 1.2. Here
each coordinate is 0 or 1 depending on whether the corresponding component
is functioning properly or has failed. In general, if a system has n components,
there are 2n possible outcomes each of which can be regarded as a point in an

(0,0) (1,0)

(0,1) (1,1)

Component 2

Component 1

Figure 1.2. A two-dimensional sample space
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0 21

Figure 1.3. A one-dimensional sample space

n-dimensional sample space. It should be noted that the sample space used
here in connection with the observation of the status of components could also
serve to describe the results of other experiments; for example, the experiment
of observing n successive executions of an if statement, with 1 denoting the
execution of the then clause and 0 denoting the execution of the else clause.

The geometric configuration that is used to represent the outcomes of an
experiment (e.g., Figure 1.2) is not necessarily unique. For example, we could
have regarded the outcomes of the experiment of observing the two-component
system to be the total number functioning, and the outcomes would be 0,1,2,
as depicted in the one-dimensional sample space of Figure 1.3. Note that point
1 in Figure 1.3 corresponds to points (0,1) and (1,0) in Figure 1.2. It is often
easier to use sample spaces whose elements cannot be further “subdivided”;
that is, the individual elements of a sample space should not represent two or
more outcomes that are distinguishable in some fashion. Thus, sample spaces
like those of Figures 1.1 and 1.2 should be used in preference to sample spaces
like the one in Figure 1.3.

It is convenient to classify sample spaces according to the number of ele-
ments they contain. If the set of all possible outcomes of the experiment is
finite, then the associated sample space is a finite sample space. Thus, the
sample spaces of Figures 1.1–1.3 are finite sample spaces.

To consider an example where a finite sample space does not suffice, sup-
pose we inspect components coming out of an assembly line and that we are
interested in the number inspected before we observe the first defective com-
ponent. It could be the first, the second, . . ., the hundredth, . . ., and, for all
we know, we might have to inspect a billion or more before we find a defec-
tive component. Since the number of components to be inspected before the
first defective one is found is not known in advance, it is appropriate to take
the sample space to be the set of natural numbers. The same sample space
results for the experiment of tossing a coin until a head is observed. A sample
space such as this, where the set of all outcomes can be put into a one-to-one
correspondence with the natural numbers, is said to be countably infinite.
Usually it is not necessary to distinguish between finite and countably infi-
nite sample spaces. Therefore, if a sample space is either finite or countably
infinite, we say that it is a countable or a discrete sample space.

Measurement of the time until failure of a component would have an entire
interval of real numbers as possible values. Since the interval of real numbers
cannot be enumerated—that is, they cannot be put into one-to-one correspon-
dence with natural numbers—such a sample space is said to be uncountable
or nondenumerable. If the elements (points) of a sample space constitute a
continuum, such as all the points on a line, all the points on a line segment or
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all the points in a plane, the sample space is said to be continuous. Certainly,
no real experiment conducted using real measuring devices can ever yield such
a continuum of outcomes, since there is a limit to the fineness to which any
instrument can measure. However, such a sample space can often be taken as
an idealization of, an approximation to, or a model of a real world situation,
which may be easier to analyze than a more exact model.

Problems

1. Problems Describe a possible sample space for each of the following experiments:

(a) A large lot of RAM (random access memory) chips is known to contain a
small number of ROM (read-only memory) chips. Three chips are chosen
at random from this lot and each is checked to see whether it is a ROM or
a RAM.

(b) A box of 10 chips is known to contain one defective and nine good chips.
Three chips are chosen at random from the box and tested.

(c) An if . . . then . . . else . . . statement is executed 4 times.

1.4 EVENTS

An event is simply a collection of certain sample points, that is, a subset of
the sample space. Equivalently, any statement of conditions that defines this
subset is called an event. Intuitively, an event is defined as a statement whose
truth or falsity is determined after the experiment. The set of all experimental
outcomes (sample points) for which the statement is true defines the subset
of the sample space corresponding to the event. A single performance of the
experiment is known as a trial. Let E be an event defined on a sample space
S; that is, E is a subset of S. Let the outcome of a specific trial be denoted
by s, an element of S. If s is an element of E, then we say that the event E
has occurred. Only one outcome s in S can occur on any trial. However, every
event that includes s will occur.

Consider the experiment of observing a two-component system and the cor-
responding sample space of Figure 1.2. Let event A1 be described by the state-
ment “Exactly one component has failed.” Then it corresponds to the subset
{(0,1), (1,0)} of the sample space. We will use the term event interchangeably
to describe the subset or the statement. There are sixteen different subsets
of this sample space with four elements, and each of these subsets defines an
event. In particular, the entire sample space S = {(0, 0), (0, 1), (1, 0), (1, 1)} is
an event (called the universal event), and so is the null set ∅ (called the
null or impossible event). The event {s} consisting of a single sample point
will be called an elementary event.

Consider the experiment of observing the time to failure of a component.
The sample space, in this case, may be thought of as the set of all nonnegative
real numbers, or the interval [0,∞) = {t | 0 ≤ t < ∞}. Note that this is an
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TABLE 1.1. Sample Points

s0 = (0, 0, 0, 0, 0) s16 = (1, 0, 0, 0, 0)

s1 = (0, 0, 0, 0, 1) s17 = (1, 0, 0, 0, 1)

s2 = (0, 0, 0, 1, 0) s18 = (1, 0, 0, 1, 0)

s3 = (0, 0, 0, 1, 1) s19 = (1, 0, 0, 1, 1)

s4 = (0, 0, 1, 0, 0) s20 = (1, 0, 1, 0, 0)

s5 = (0, 0, 1, 0, 1) s21 = (1, 0, 1, 0, 1)

s6 = (0, 0, 1, 1, 0) s22 = (1, 0, 1, 1, 0)

s7 = (0, 0, 1, 1, 1) s23 = (1, 0, 1, 1, 1)

s8 = (0, 1, 0, 0, 0) s24 = (1, 1, 0, 0, 0)

s9 = (0, 1, 0, 0, 1) s25 = (1, 1, 0, 0, 1)

s10 = (0, 1, 0, 1, 0) s26 = (1, 1, 0, 1, 0)

s11 = (0, 1, 0, 1, 1) s27 = (1, 1, 0, 1, 1)

s12 = (0, 1, 1, 0, 0) s28 = (1, 1, 1, 0, 0)

s13 = (0, 1, 1, 0, 1) s29 = (1, 1, 1, 0, 1)

s14 = (0, 1, 1, 1, 0) s30 = (1, 1, 1, 1, 0)

s15 = (0, 1, 1, 1, 1) s31 = (1, 1, 1, 1, 1)

example of a continuous sample space. Now if this component is part of a
system that is required to carry out a mission of certain duration t, then an
event of interest is “The component does not fail before time t.” This event
may also be denoted by the set {x | x ≥ t}, or by the interval [t,∞).

1.5 ALGEBRA OF EVENTS

Consider an example of a wireless cell with five identical channels. One possible
random experiment consists of checking the system to see how many channels
are currently available. Each channel is in one of two states: busy (labeled 0)
and available (labeled 1). An outcome of the experiment (a point in the sample
space) can be denoted by a 5-tuple of 0s and 1s. A 0 in position i of the
5-tuple indicates that channel i is busy and a 1 indicates that it is available.
The sample space S has 25 = 32 sample points, as shown in Table 1.1. The
event E1 described by the statement “At least four channels are available” is
given by

E1 = {(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1),

(1, 1, 1, 1, 0), (1, 1, 1, 1, 1)}
= {s15, s23, s27, s29, s30, s31}.

The complement of this event, denoted by E1, is defined to be
S − E1, and contains all of the sample points not contained in E1;
that is, E1 = {s ∈ S | s /∈ E1}. In our example, E1 = {s0 through s14,
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s16 through s22, s24 through s26, s28}. E1 may also be described by the state-
ment “at most three channels are available.” Let E2 be the event “at most
four channels are available.” Then E2 = {s0 through s30}. The intersection
E3 of the two events E1 and E2 is denoted by E1 ∩ E2 and is given by:

E3 = E1 ∩ E2

= {s ∈ S | s is an element of both E1 and E2}
= {s ∈ S | s ∈ E1 and s ∈ E2}
= {s15, s23, s27, s29, s30}.

Let E4 be the event “channel 1 is available.” Then E4 = {s16 through s31}.
The union E5 of the two events E1 and E4 is denoted by E1 ∪ E4 and is
given by:

E5 = E1 ∪ E4
= {s ∈ S | either s ∈ E1 or s ∈ E4 or both}
= {s15 through s31}.

Note that E1 has 6 points, E4 has 16 points, and E5 has 17 points. In general:

|E5| = |E1 ∪ E4|
≤ |E1| + |E4|.

Here, the notation |A| is used to denote the number of elements in the set A
(also known as the cardinality of A).

Two events A and B are said to be mutually exclusive events or dis-
joint events provided A ∩ B is the null set. If A and B are mutually exclusive,
then it is not possible for both events to occur on the same trial. For example,
let E6 be the event “channel 1 is busy.” Then E4 and E6 are mutually exclusive
events since E4 ∩ E6 = ∅.

Although the definitions of union and intersection are given for two events,
we observe that they extend to any finite number of sets. However, it is cus-
tomary to use a more compact notation. Thus we define

n⋃
i=1

Ei = E1 ∪ E2 ∪ E3 · · · ∪ En

= {s element of S|s element of E1 or s element of E2

or · · · s element of En}
n⋂

i=1

Ei = E1 ∩ E2 ∩ E3 ∩ · · · ∩ En

= {s element of S|s element of E1 and s element of E2

and · · · s element of En}
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These definitions can also be extended to the union and intersection of a
countably infinite number of sets.

The algebra of events may be fully defined by the following five laws or
axioms, where A, B, and C are arbitrary sets (or events), and S is the universal
set (or event):

(E1) Commutative laws:

A ∪ B = B ∪ A, A ∩ B = B ∩ A.

(E2) Associative laws:

A ∪ (B ∪ C) = (A ∪ B) ∪ C,

A ∩ (B ∩ C) = (A ∩ B) ∩ C.

(E3) Distributive laws:

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(E4) Identity laws:

A ∪ ∅ = A, A ∩ S = A.

(E5) Complementation laws:

A ∪ A = S, A ∩ A = ∅.

Any relation that is valid in the algebra of events can be proved by using
these axioms [(E1–E5)]. Some other useful relations are as follows:

(R1) Idempotent laws:

A ∪ A = A, A ∩ A = A.

(R2) Domination laws:

A ∪ S = S, A ∩ ∅ = ∅.

(R3) Absorption laws:

A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A.

(R4) de Morgan’s laws:

(A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B.
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(R5) (A) = A.

(R6) A ∪ (A ∩ B) = A ∪ B.

From the complementation laws, we note that A and A are mutually exclu-
sive since A ∩ A = ∅. In addition, A and A are collectively exhaustive since
any point s (an element of S) is either in A or in A. These two notions can
be generalized to a list of events.

A list of events A1, A2, . . . , An is said to be composed of mutually exclu-
sive events if and only if

Ai ∩ Aj =
{

Ai if i = j,
∅ otherwise.

Intuitively, a list of events is composed of mutually exclusive events if there
is no point in the sample space that is included in more than one event in
the list.

A list of events A1, A2, . . . , An is said to be collectively exhaustive if
and only if

A1 ∪ A2 · · · ∪ An = S.

Given a list of events that is collectively exhaustive, each point in the sample
space is included in at least one event in the list. An arbitrary list of events
may be mutually exclusive, collectively exhaustive, both, or neither. For each
point s in the sample space S, we may define an event As = {s}. The resulting
list of events is mutually exclusive and collectively exhaustive (such a list of
events is also called a partition of the sample space S). Thus, a sample space
may be defined as the mutually exclusive and collectively exhaustive listing
of all possible outcomes of an experiment.

Problems

1. Four components are inspected and three events are defined as follows:

A = “all four components are found defective.”

B = “exactly two components are found to be in proper working order.”

C = “at most three components are found to be defective.”

Interpret the following events:

(a) B ∪ C.

(b) B ∩ C.

(c) A ∪ C.

(d) A ∩ C.

2. Use axioms of the algebra of events to prove the relations:

(a) A ∪ A = A.
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(b) A ∪ S = S.

(c) A ∩ ∅ = ∅.
(d) A ∩ (A ∪ B) = A.

(e) A ∪ (A ∩ B) = A ∪ B.

1.6 GRAPHICAL METHODS OF REPRESENTING EVENTS

Venn diagrams often provide a convenient means of ascertaining relations
between events of interest. Thus, for a given sample space S and the two events
A and B, we have the Venn diagram shown in Figure 1.4. In this figure, the
set of all points in the sample space is symbolically denoted by the ones within
the rectangle. The events A and B are represented by certain regions in S.

The union of two events A and B is represented by the set of points lying
in either A or B. The union of two mutually exclusive events A and B is
represented by the shaded region in Figure 1.5. On the other hand, if A and
B are not mutually exclusive, they might be represented by a Venn diagram
like Figure 1.6. A ∪ B is represented by the shaded region; a portion of this
shaded region is A ∩ B and is so labeled.

For an event A, the complement A consists of all points in S that do not
belong to A, thus A is represented by the unshaded region in Figure 1.7. The
usefulness of Venn diagrams becomes apparent when we see that the following
laws of event algebra, discussed in the last section, are easily seen to hold true
by reference to Figures 1.6 and 1.7:

A ∩ S = A,

A ∪ S = S,

(A) = A,

(A ∪ B) = A ∩ B,

(A ∩ B) = A ∪ B.

Another useful graphical device is the tree diagram. As an example, con-
sider the experiment of observing two successive executions of an if statement
in a certain program. The outcome of the first execution of the if statement

A B

Figure 1.4. Venn diagram for sample space S and events A and B
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A B

S

Figure 1.5. Venn diagram of disjoint events A and B

A B

S

A
B

Figure 1.6. Venn diagram for two intersecting events A and B

A A

Figure 1.7. Venn diagram of A and its complement

may be the execution of the then clause (denoted by T1) or the execution
of the else clause (denoted by E1). Similarly the outcome of the second exe-
cution is T2 or E2. This is an example of a sequential sample space and
leads to the tree diagram of Figure 1.8. We picture the experiment proceed-
ing sequentially downward from the root. The set of all leaves of the tree is
the sample space of interest. Each sample point represents the event corre-
sponding to the intersection of all events encountered in tracing a path from
the root to the leaf corresponding to the sample point. Note that the four
sample points (the leaves of the tree) and their labels constitute the sample
space of the experiment. However, when we deal with a sequential sample
space, we normally picture the entire generating tree as well as the resulting
sample space.

When the outcomes of the experiment may be expressed numerically, yet
another graphical device is a coordinate system. As an example, consider a
system consisting of two subsystems. The first subsystem consists of four com-
ponents and the second subsystem contains three components. Assuming that
we are concerned only with the total number of defective components in each
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The union of these two sample points
corresponds to the event "then clause
is executed exactly once"

x

Figure 1.8. Tree diagram of a sequential sample space
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Figure 1.9. A two-dimensional sample space

subsystem (not with what particular components have failed), the cardinality
of the sample space is 5 · 4 = 20, and the corresponding two-dimensional sam-
ple space is illustrated in Figure 1.9. The three events identified in Figure 1.9
are easily seen to be

A = “the system has exactly one non-defective component.”

B = “the system has exactly three non-defective components.”

C = “the first subsystem has more non-defective components than the
second subsystem.”

1.7 PROBABILITY AXIOMS

We have seen that the physical behavior of random experiments can be mod-
eled naturally using the concepts of events in a suitably defined sample space.
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To complete our specification of the model, we shall assign probabilities to
the events in the sample space. The probability of an event is meant to repre-
sent the “relative likelihood” that a performance of the experiment will result
in the occurrence of that event. P (A) will denote the probability of the event
A in the sample space S.

In many engineering applications and in games of chance, the so-called rel-
ative frequency interpretation of the probability is utilized. However, such an
approach is inadequate for many applications. We would like the mathemati-
cal construction of the probability measure to be independent of the intended
application. This leads to an axiomatic treatment of the theory of probability.
The theory of probability starts with the assumption that probabilities can
be assigned so as to satisfy the following three basic axioms of probability.
The assignment of probabilities is perhaps the most difficult aspect of con-
structing probabilistic models. Assignments are commonly based on intuition,
experience, or experimentation. The theory of probability is neutral; it will
make predictions regardless of these assignments. However, the results will
be strongly affected by the choice of a particular assignment. Therefore if
the assignments are inaccurate, the predictions of the model will be mis-
leading and will not reflect the behavior of the “real world” problem being
modeled.

Let S be a sample space of a random experiment. We use the notation
P (A) for the probability measure associated with event A. If the event A
consists of a single sample point s then P (A) = P ({s}) will be written as
P (s). The probability function P (·) must satisfy the following Kolmogorov’s
axioms:

(A1) For any event A, P (A) ≥ 0.

(A2) P (S) = 1.

(A3) P (A ∪ B) = P (A) + P (B) provided A and B are mutually exclusive
events (i.e., when A ∩ B = ∅).

The first axiom states that all probabilities are nonnegative real numbers.
The second axiom attributes a probability of unity to the universal event S,
thus providing a normalization of the probability measure (the probability of
a certain event, an event that must happen, is equal to 1). The third axiom
states that the probability function must be additive. These three axioms
are easily seen to be consistent with our intuitive ideas of how probabilities
behave.

The principle of mathematical induction can be used to show [using
axiom (A3) as the basis of induction] that for any positive integer n the
probability of the union of n mutually exclusive events A1, A2, . . . , An is equal
to the sum of their probabilities:

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P (Ai).
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The three axioms, (A1)–(A3), are adequate if the sample space is finite
but to deal with problems with infinite sample spaces, we need to modify
axiom A3:

(A3′) For any countable sequence of events A1, A2, . . . , An, . . ., that are
mutually exclusive (that is, Aj ∩ Ak = ∅ whenever j 
= k):

P (
∞⋃

n=1

An) =
∞∑

n=1

P (An).

All of conventional probability theory follows from the three axioms (A1)
through (A3′) of probability measure and the 5 axioms (E1)–(E5) of the alge-
bra of events discussed earlier. These eight axioms can be used to show several
useful relations:

(Ra) For any event A, P (A) = 1 − P (A).

Proof: A and A are mutually exclusive, and S = A ∪ A. Then by axioms (A2)
and (A3), 1 = P (S) = P (A) + P (A), from which the assertion follows.

(Rb) If ∅ is the impossible event, then P (∅) = 0.

Proof: Observe that ∅ = S so that the result follows from relation (Ra) and
axiom (A2).

(Rc) If A and B are any events, not necessarily mutually exclusive, then
P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

Proof: From the Venn diagram of Figure 1.6, we note that A ∪ B = A ∪ (A ∩
B) and B = (A ∩ B) ∪ (A ∩ B), where the events on the right-hand side are
mutually exclusive in each equation. By axiom (A3), we obtain

P (A ∪ B) = P (A) + P (A ∩ B)

P (B) = P (A ∩ B) + P (A ∩ B).

The second equation implies P (A ∩ B) = P (B) − P (A ∩ B), which, after
substitution in the first equation, yields the desired assertion.

The relation (Rc) can be generalized to a formula similar to the principle
of inclusion and exclusion of combinatorial mathematics [LIU 1968]:

(Rd) If A1, A2, . . . An are any events, then

P (
n⋃

i=1

Ai) = P (A1 ∪ A2 ∪ · · · ∪ An)

=
∑

i

P (Ai) −
∑

1≤i<j≤n

P (Ai ∩ Aj)
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+
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak) + · · ·

+(−1)n−1P (A1 ∩ A2 ∩ · · · ∩ An),

where the successive sums are over all possible events, pairs of events,
triples of events, and so on.
Proof: We prove this result by induction on the number of events n. The result
(Rc) above can serve as the basis of induction. Assume inductively that (Rd)
holds for a union of n − 1 events. Define the event B = A1 ∪ A2 ∪ · · · ∪ An−1.
Then

n⋃
i=1

Ai = B ∪ An.

Using the result (Rc) above, we get

P (

n⋃
i=1

Ai) = P (B ∪ An)

= P (B) + P (An) − P (B ∩ An). (1.1)

Now
B ∩ An = (A1 ∩ An) ∪ (A2 ∩ An) ∪ · · · ∪ (An−1 ∩ An)

is a union of n − 1 events and hence, using the inductive hypothesis, we get

P (B ∩ An) = P (A1 ∩ An) + P (A2 ∩ An) + · · · + P (An−1 ∩ An)

−P [(A1 ∩ An) ∩ (A2 ∩ An)]

−P [(A1 ∩ An) ∩ (A3 ∩ An)]

− · · ·

+P [(A1 ∩ An) ∩ (A2 ∩ An) ∩ (A3 ∩ An)]

+ · · · − · · ·

+(−1)n−2P [(A1 ∩ An) ∩ (A2 ∩ An) ∩ · · · ∩ (An−1 ∩ An)]

= P (A1 ∩ An) + P (A2 ∩ An) + · · · + P (An−1 ∩ An)

−P (A1 ∩ A2 ∩ An) − P (A1 ∩ A3 ∩ An) − · · ·

+P (A1 ∩ A2 ∩ A3 ∩ An) + · · ·

− · · ·

+(−1)n−2P (A1 ∩ A2 ∩ A3 ∩ · · · ∩ An−1 ∩ An). (1.2)

Also, since B = A1 ∪ A2 ∪ · · · ∪ An−1 is a union of n − 1 events, the inductive
hypothesis gives

P (B) = P (A1) + P (A2) + · · · + P (An−1)
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−P (A1 ∩ A2) − P (A1 ∩ A3) − · · ·

+ · · ·

+(−1)n−2P (A1 ∩ A2 ∩ · · · ∩ An−1). (1.3)

Substituting (1.2) and (1.3) into (1.1), we obtain the required result.

The relation (Rd) is computationally expensive to use. A computationally
simpler formula is the sum of disjoint products (SDP) formula below.

(Re)

P (
n⋃

i=1

Ai) = P (A1) + P (A1 ∩ A2) + P (A1 ∩ A2 ∩ A3) + · · ·

+P (A1 ∩ A2 ∩ · · · ∩ An−1 ∩ An). (1.4)

The SDP formula is frequently used in reliability computations [LUO 1998].
We leave the proof as an exercise.

To avoid certain mathematical difficulties, we must place restrictions on
which subsets of the sample space may be termed events to which probabilities
can be assigned. In a given problem there will be a particular class of subsets
of S that is “measurable” and will be called the “class of events” F . Since we
would like to perform the standard set operations on events, it is reasonable
to demand that F be closed under countable unions of events in F as well as
under complementation. A collection of subsets of a given set S that is closed
under countable unions and complementation is called a σ field of subsets of
S. Now a probability space or probability system may be defined as a
triple (S,F , P ), where S is a set, F is a σ-field of subsets of S, and P is a
probability measure on F assumed to satisfy axioms (A1)–(A3′).

If the sample space is discrete (finite or countable), then every subset of S
can be an event belonging to F . However, in the case that S is uncountable,
this is no longer true. For example, let S be the interval [0,1] and assume the
probability assignment P (a ≤ x ≤ b) = b − a for 0 ≤ a ≤ b ≤ 1. Then it can
be shown that not all possible subsets of S can be assigned a probability in
a manner consistent with the three axioms of P . In such cases, the small-
est σ field of subsets of S containing all open and closed intervals is usually
adopted as the class of events F .

In summary, P is a function with domain F and range [0, 1], which satisfies
the three axioms (A1), (A2), and (A3′). P assigns a number between 0 and
1 to any event in F . In general, F does not include all possible subsets of S,
and the subsets (events) included in F are called measurable. However, for our
purposes, every subset of a sample space constructed here can be considered
an event having a probability.

We now outline the steps of a basic procedure to be followed in solving
problems [GOOD 1977]:
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1. Identify the sample space S. The sample space S must be chosen so that
all of its elements are mutually exclusive and collectively exhaustive,
that is, no two elements can occur simultaneously and one element must
occur on any trial. Many of the “trick” probability problems are based
on some ambiguity in the problem statement or an inexact formulation
of the model of a physical situation. The choice of an appropriate sample
space resulting from a detailed description of the model, will do much
to resolve common difficulties. Since many choices for the sample space
are possible, it is advisable to use a sample space whose elements cannot
be further “subdivided”—that is, all possible distinguishable outcomes
of the experiment should be listed separately.

2. Assign probabilities. Assign probabilities to the elements in S. This
assignment must be consistent with the axioms (A1), (A2), and (A3).
In practice, probabilities are assigned either on the basis of estimates
obtained from past experience, or on the basis of a careful analysis of
conditions underlying the random experiment, or on the basis of assump-
tions, such as the common assumption that various outcomes in a finite
sample space are equiprobable (equally likely).

3. Identify the events of interest. The events of interest, in a practical situa-
tion, will be described by statements. These need to be recast as subsets
of the sample space. The laws of event algebra (E1)–(E5) and (R1)–(R6)
may be used for any simplification. Pictorial devices such as Venn dia-
grams, tree diagrams, or coordinate system plots may also be used to
advantage.

4. Compute desired probabilities. Calculate the probabilities of the events
of interest using the axioms (A1), (A2), and (A3′) and any derived laws
such as (Ra), (Rb), (Rc), (Rd), and (Re). It is usually helpful to express
the event of interest as a union of mutually exclusive points in the sample
space and summing the probabilities of all points included in the union.

Example 1.1

As a simple illustration of this procedure, consider the example of the wireless cell
with 5 channels.

Step 1: An appropriate sample space consists of 32 points (see Table 1.1), each
represented by a 5-tuple of 0s and 1s. A 0 in position i indicates that channel i is
busy and a 1 indicates that it is available.

Step 2: In the absence of detailed knowledge about the system, we assume that
each sample point is equally likely. Since there are 32 sample points, we assign a
probability of 1

32
to each, that is, P (s0) = P (s1) = · · · = P (s31) = 1

32
. It is easily

seen that this assignment is consistent with the three probability axioms.
Step 3: Assume that we are required to determine the probability that a call

is not blocked, given that the conference call needs at least three channels for its
execution. The event E of interest, then, is “three or more channels are available.”
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From the definition of the sample points, we see that

E = {s7, s11, s13, s14, s15, s19, s21, s22, s23, s25– –s31}

= {s7} ∪ {s11} ∪ {s13} ∪ {s14} ∪ {s15} ∪ {s19} ∪ {s21} ∪ {s22}

∪{s23} ∪ {s25} ∪ {s26} ∪ {s27} ∪ {s28} ∪ {s29} ∪ {s30}

∪{s31}.

Step 4: We have already simplified E so that it is expressed as a union of mutually
exclusive events. The probability of each of these elementary events is 1

32
. Thus, a

repeated application of axiom (A3′) gives us

P (E) =
∑

si∈E

P (si)

=
1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32

+
1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32

=
1

2
.

Alternatively, we could have noted that E consists of 16 sample points and since
each 32 sample point is equally likely, P (E) = 16

32
.

�

Problems

1. Give the proof of the relation (Re) in this section.

2. Consider a pool of six I/O (input/output) buffers. Assume that any buffer is just
as likely to be available (or occupied) as any other. Compute the probabilities
associated with the following events:

A = “at least 2 but no more than 5 buffers occupied.”

B = “at least 3 but no more than 5 occupied.”

C = “all buffers available or an even number of buffers occupied.”

Also determine the probability that at least one of the events A, B, and C occurs.

3. Show that if event B is contained in event A, then P (B) ≤ P (A).

1.8 COMBINATORIAL PROBLEMS

If the sample space of an experiment consists of only a finite number n of
sample points, or elementary events, then the computation of probabilities
is often simple. Assume that assignment of probabilities is made such that for
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si (an element of S), P (si) = p
i

and

n∑
i=1

p
i
= 1.

Since any event E consists of a certain collection of these sample points,
P (E) can be found, using axiom (A3′), by adding up the probabilities of the
separate sample points that make up E (recall the wireless cell example of
the last section).

Example 1.2

Consider the following if statement in a program:

if B then s1 else s2.

The random experiment consists of “observing” two successive executions of the if
statement. The sample space consists of the four possible outcomes:

S = {(s1, s1), (s1, s2), (s2, s1), (s2, s2)}

= {t1, t2, t3, t4}.

Assume that on the basis of strong experimental evidence, the following probability
assignment is justified:

P (t1) = 0.34, P (t2) = 0.26, P (t3) = 0.26, P (t4) = 0.14.

The events of interest are given E1 = “at least one execution of the statement s1”
and E2 = “statement s2 is executed the first time.” It is easy to see that

E1 = {(s1, s1), (s1, s2), (s2, s1)}

= {t1, t2, t3},

E2 = {(s2, s1), (s2, s2)}

= {t3, t4},

P (E1) = P (t1) + P (t2) + P (t3) = 0.86,

P (E2) = P (t3) + P (t4) = 0.4.

�

In the special case when S = {s1, . . . sn} and P (si) = p
i
= (1/n) (equally

likely sample points), the situation is even simpler. Calculation of probabilities
is then reduced to simply counting the number of sample points in the event
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of interest. If the event E consists of k sample points, then

P (E) =
number of points in E

number of points in S

=
favorable outcomes

total outcomes

=
k

n
. (1.5)

Example 1.3

A group of four VLSI chips consists of two good chips, labeled g1 and g2, and two
defective chips, labeled d1 and d2. If three chips are selected at random from this
group, what is the probability of the event E = “two of the three selected chips are
defective”?

A natural sample space for this problem consists of all possible three chip
selections from the group of four chips: S = {g1g2d1, g1g2d2, g1d1d2, g2d1d2}. It is
customary to interpret the phrase “selected at random” as implying equiprobable
sample points. Since the two sample points g1d1d2 and g2d1d2 are favorable to the
event E, and since the sample space has four points, we conclude that P (E) = 2

4
= 1

2
.

�

We have seen that under the equiprobability assumption, finding P (E)
simply involves counting the number of outcomes favorable to E. However,
counting by hand may not be feasible when the sample space is large. Standard
counting methods of combinatorial analysis can often be used to avoid writing
down the list of favorable outcomes explicitly.

1.8.1 Ordered Samples of Size k, with Replacement

Here we are interested in counting the number of ways we can select k objects
from among n objects where order is important and when the same object is
allowed to be repeated any number of times (permutations with replace-
ment). Alternatively, we are interested in the number of ordered sequences
(si1

, si2
, . . . , sik

), where each sir
belongs to {s1, . . . , sn}. It is not difficult to

see that the required number is (n · n · · · · · n(ktimes)), or nk.

Example 1.4

Assume that we are interested in finding the probability that some randomly chosen
k-digit decimal number is a valid k-digit octal number. The sample space, in this
case, is

S = {(x1, x2, . . . , xk) | xi ∈ {0, 1, 2, . . . , 9}}

and the event of interest is

E = {(x1, x2 . . . xk) | xi ∈ {0, 1, 2, . . . , 7}}.
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By the above counting principle, |S| = 10k and |E| = 8k. Now, if we assume that all
the sample points are equally likely, then the required answer is

P (E) =
|E|
|S| =

8k

10k
=

4k

5k
.

�

1.8.2 Ordered Samples of Size k, without Replacement

The number of ordered sequences (si1
, si2

, . . . , sik
), where each sir

belongs to
{s1, . . . , sn}, but repetition is not allowed (i.e., no si can appear more than
once in the sequence), is given by

n(n − 1) · · · (n − k + 1) =
n!

(n − k)!
for k = 1, 2, . . . , n.

This number is also known as the number of permutations of n distinct objects
taken k at a time, and denoted by P (n, k).

Example 1.5

Suppose we wish to find the probability that a randomly chosen three-letter sequence
will not have any repeated letters.

Let I = {a, b, . . . , z} be the alphabet of 26 letters. Then the sample space is given
by

S = {(α, β, γ) | α ∈ I, β ∈ I, γ ∈ I}

and the event of interest is

E = {(α, β, γ) | α ∈ I, β ∈ I, γ ∈ I, α �= β, β �= γ, α �= γ}.

By the abovementioned counting principle, |E| is simply P (26, 3) = 15, 600. Further-
more, |S| = 263 = 17, 576. Therefore, the required answer is

P (E) =
15, 600

17, 576
= 0.8875739.

�

1.8.3 Unordered Samples of Size k, without Replacement

The number of unordered sets {si1 , si2 , . . . , sik
}, where sir

(r = 1, 2, . . . , k)
are distinct elements of {s1, . . . , sn} is

n!
k!(n − k)!

for k = 0, 1, . . . , n.
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This is also known as the number of combinations of n distinct objects taken
k at a time, and is denoted by

(
n
k

)
.

Example 1.6

If a box contains 75 good VLSI chips and 25 defective chips, and 12 chips are selected
at random, find the probability that at least one chip is defective.

By the counting principle described above, the number of unordered samples
without replacement is

(
100
12

)
and hence the size of the sample space is |S| =

(
100
12

)
.

The event of interest is E = “at least one chip is defective.” Here we find it easier
to work with the complementary event E = “no chip is defective.” Since there are
75 good chips, the preceding counting principle yields |E| =

(
75
12

)
. Then

P (E) =
|E|
|S|

=

(
75
12

)
(

100
12

)
=

75! · 12! · 88!

12! · 63! · 100!

=
75! · 88!

63! · 100!
.

Now since P (E) = 1 − P (E), the required probability is easily obtained.

�

Example 1.7

Consider a TDMA (time division multiple access) wireless system [SUN 1999], where
the base transceiver system of each cell has n base repeaters [also called base radio
(BR)]. Each base repeater provides m time-division-multiplexed channels. Thus,
there are mn channels in the system. We note that normally a cell reserves one
or more channels for signaling transfer, which resides in one of n base repeaters.
However, for simplicity, we do not consider signaling channels (also called control
channels) in this example.

A base repeater is subject to failure. In order to evaluate the impact of such a
failure on the performability of the system, we should know the number of ongoing
talking channels on the failed base repeater. Suppose the channels are allocated
randomly to the users. Denote the total number of talking channels in the whole
system as k, and the number of idle channels in the whole system as j (j + k =
mn always holds), when the failure occurs. Then the probability, p

i
, that i talking

channels reside in the failed base repeater is given by

p
i

=

(
m(n−1)

k−i

) (
m
i

)
(

mn
k

) , for 0 ≤ i ≤ min(m, k). (1.6)

Clearly, the total number of possible combinations to have k talking chan-
nels out of mn channels is

(
mn
k

)
, namely, the size of the sample space, |S|. The
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event of interest is E = “i talking channels on the failed base repeater.” Now if i
(0 ≤ i ≤ min(m, k)) out of the k talking channels are on the failed base repeater,
corresponding to a total of

(
m
i

)
combinations, then (k − i) talking channels are on

the rest of the (n − 1) base repeaters, which has
(

m(n−1)
k−i

)
combinations. Thus,

|E| =
(

m(n−1)
k−i

) (
m
i

)
. Probability p

i
can now be easily obtained as |E|/|S|.

�

Problems

1. How many even two-digit numbers can be constructed out of the digits 3, 4, 5,
6, and 7? Assume first that you may use the same digit again. Next, answer this
question assuming that you cannot use a digit more than once.

2. Three couples (husbands and their wives) must sit at a round table in such a
way that no husband is placed next to his wife. How many configurations exist?.
If seats are occupied at random, what is the probability of such a configuration?

3. If a three-digit decimal number is chosen at random, find the probability that
exactly k digits are ≥ 5, for 0 ≤ k ≤ 3.

4. A box with 15 VLSI chips contains five defective ones. If a random sample of
three chips is drawn, what is the probability that all three are defective?

5. In a party of five persons, compute the probability that at least two of the persons
have the same birthday (month/day), assuming a 365-day year.

6. � A series of n jobs arrive at a multiprocessor computer with n processors. Assume
that each of the nn possible assignment vectors (processor for job 1, . . ., processor
for job n) is equally likely. Find the probability that exactly one processor will
not be assigned a job.

1.9 CONDITIONAL PROBABILITY

So far, we have assumed that the only information about the outcome of a
trial of a given experiment, available before the trial, is that the outcome
will correspond to some point in the sample space S. With this assumption,
we can compute the probability of some event A. Suppose that we are given
the added information that the outcome s of a trial is contained in a subset
B of the sample space, with P (B) 
= 0. Knowledge of the occurrence of the
event B may change the probability of the occurrence of the event A. We wish
to define the conditional probability of the event A given that the event
B occurs, or the conditional probability of A given B, symbolically as
P (A|B). Given that event B has occurred, the sample point corresponding
to the outcome of the trial must be in B and cannot be in B. To reflect this
partial information, we define the conditional probability of a sample point s
(an element of S) by

P (s|B) =

{
P (s)
P (B) if s ∈ B,

0 if s ∈ B.
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Thus the original probability assigned to a sample point in B is scaled up
by 1/P (B), so that the probabilities of the sample points in B will add up
to 1. Now the conditional probability of any other event, such as A, can be
obtained by summing over the conditional probabilities of the sample points
included in A (noting that A = (A ∩ B) ∪ (A ∩ B)):

P (A|B) =
∑
s∈A

P (s|B)

=
∑

s∈A∩B

P (s|B) +
∑

s∈A∩B

P (s|B)

=
∑

s∈A∩B

P (s|B)

=
∑

s∈A∩B

P (s)
P (B)

=
P (A ∩ B)

P (B)
, P (B) 
= 0.

This leads us to the following definition.

Definition (Conditional Probability). The conditional probability of
A given B is

P (A|B) =
P (A ∩ B)

P (B)

if P (B) 
= 0 and it is undefined otherwise.

A rearrangement of this definition yields the following multiplication
rule (MR):

P (A ∩ B) =

⎧⎨
⎩

P (B)P (A|B) if P (B) 
= 0,
P (A)P (B|A) if P (A) 
= 0,
0 otherwise.

Example 1.8

We are given a box containing 5000 VLSI chips, 1000 of which are manufactured
by company X and the rest by company Y. Ten percent of the chips made by
company X are defective and 5% of the chips made by company Y are defective. If
a randomly chosen chip is found to be defective, find the probability that it came
from company X.

Define the events A = “chip made by company X” and B = “chip is defective.”
Since out of 5000 chips, 1000 are made by company X, we conclude that P (A) =
1000/5000 = 0.2. Also, out of a total of 5000 chips, 300 are defective. Therefore,
P (B) = 300/5000 = 0.06. Now the event A ∩ B = “the chip is made by company
X and is defective.” Out of 5000 chips, 100 chips qualify for this statement. Thus
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P (A ∩ B) = 100/5000 = 0.02. Now the quantity of interest is

P (A|B) =
P (A ∩ B)

P (B)
=

0.02

0.06
=

1

3
.

Thus the knowledge of the occurrence of B has increased the probability of the
occurrence of event A. Similarly we find that the knowledge of the occurrence of A
has increased the chances for the occurrence of the event B, since P (B|A) = 0.1. In
fact, note that

P (A|B)

P (B|A)
=

1/3

0.1
=

0.2

0.06
=

P (A)

P (B)
.

This interesting property of conditional properties is easily shown to hold in general

P (A|B)

P (B|A)
=

P (A ∩ B)/P (B)

P (A ∩ B)/P (A)
=

P (A)

P (B)
.

�

Problems

1. Consider four computer firms, A, B, C, D, bidding for a certain contract. A survey
of past bidding success of these firms on similar contracts shows the following
probabilities of winning:

P (A) = 0.35, P (B) = 0.15, P (C) = 0.3, P (D) = 0.2.

Before the decision is made to award the contract, firm B withdraws its bid. Find
the new probabilities of A, C, D winning the bid.

1.10 INDEPENDENCE OF EVENTS

We have seen that it is possible for the probability of an event A to decrease or
increase given that event B has occurred. If the probability of the occurrence
of an event A does not change regardless of whether event B has occurred,
we are likely to conclude that the two events are independent. Thus we define
two events A and B to be independent if and only if

P (A|B) = P (A).

From the definition of conditional probability, we have [provided P (A) 
= 0
and P (B) 
= 0]:

P (A ∩ B) = P (A)P (B|A) = P (B)P (A|B).

From this we conclude that the condition for the independence of A and
B can also be given either as P (A|B) = P (A) or as P (A ∩ B) = P (A)P (B).
Note that P (A ∩ B) = P (A)P (B|A) (if P (A) 
= 0) holds regardless of whether
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A and B are independent, but P (A ∩ B) = P (A)P (B) holds only when A
and B are independent. In fact this latter condition is the usual definition of
independence.

Definition (Independent Events). Events A and B are said to be
independent if

P (A ∩ B) = P (A)P (B).

This equation is symmetric in A and B and shows that whenever A is
independent of B, so is B of A. Some authors use the phrases “stochasti-
cally independent events” or “statistically independent events” in place of
just “independent events.” Note that if A and B are not independent, then
P (A ∩ B) is computed using the multiplication rule of the last section. The
abovementioned condition for independence can be derived in another way by
first noting that the event A is a disjoint union of events A ∩ B and A ∩ B.
Now the conditional probability of all the sample points in the latter event is
zero while the conditional probability of all the sample points in the former
event is increased by the factor 1/P (B). Therefore, for P (A|B) = P (A) to
hold, the decrease in probability due to points in A ∩ B must be balanced by
the increase in probability due to points in A ∩ B. In other words

P (A ∩ B)
P (B)

− P (A ∩ B) = P (A ∩ B) − 0

or

P (A ∩ B)
P (B)

=P (A ∩ B) + P (A ∩ B)

=P (A).

Example 1.9

A microcomputer system consists of a microprocessor CPU chip and a random access
main memory chip. The CPU is selected from a lot of 100, 10 of which are defective,
and the memory chip is selected from a lot of 300, 15 of which are defective. Define A
to be the event “the selected CPU is defective,” and let B be the event “the selected
memory chip is defective.” Then P (A) = 10/100 = 0.1, and P (B) = 15/300 = 0.05.
Since the two chips are selected from different lots, we may expect the events A and
B to be independent. This can be checked since there are 10 · 15 ways of choosing
both defective chips and there are 100 · 300 ways of choosing two chips. Thus

P (A ∩ B) =
10 · 15

100 · 300

= 0.005

= 0.10 · 0.05

= P (A)P (B).

�
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Several important points are worth noting about the concept of indepen-
dence:

1. If A and B are two mutually exclusive events, then A ∩ B = ∅, which
implies P (A ∩ B) = 0. Now if they are independent as well, then either
P (A) = 0 or P (B) = 0.

2. If an event A is independent of itself, that is, if A and A are independent,
then P (A) = 0 or P (A) = 1, since the assumption of independence yields
P (A ∩ A) = P (A)P (A) or P (A) = [P (A)]2.

3. If the events A and B are independent and the events B and C are
independent, then events A and C need not be independent. In other
words, the relation of independence is not a transitive relation.

4. If the events A and B are independent, then so are events A and B,
events A and B, and events A and B. To show the independence of
events A and B, note that A ∩ B and A ∩ B are mutually exclusive
events whose union is B. Therefore

P (B) = P (A ∩ B) + P (A ∩ B)

= P (A)P (B) + P (A ∩ B)

since A and B are independent. This implies that P (A ∩ B) = P (B) −
P (A)P (B) = P (B)[1 − P (A)] = P (B)P (A), which establishes the inde-
pendence of A and B. Independence of A and B, and A and B can be
shown similarly.

The concept of independence of two events can be naturally extended to
a list of n events.

Definition (Independence of a Set of Events). A list of n events
A1, A2, . . . , An is defined to be mutually independent if and only if for each
set of k (2 ≤ k ≤ n) distinct indices i1, i2, . . . , ik, which are elements of
{1, 2, . . . , n}, we have

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1)P (Ai2) · · ·P (Aik

).

Given that a list of events A1, A2, . . . , An is mutually independent, it is
straightforward to show that for each set of distinct indices i1, i2, . . . , ik, which
are elements of {1, 2, . . . , n}:

P (Bi1
∩ Bi2

∩ · · · ∩ Bik
) = P (Bi1

)P (Bi2
) · · ·P (Bik

) (1.7)

where each Bik
may be either Aik

or Aik
. In other words, if the Ais are

independent and we replace any event by its complement, we still have inde-
pendence.
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By the probability axiom (A3), if a list of events is mutually exclusive, the
probability of their union is the sum of their probabilities. On the other hand,
if a list of events is mutually independent, the probability of their intersection
is the product of their probabilities. The additive and multiplicative nature,
respectively, of two event lists should be noted.

Note that it is possible to have P (A ∩ B ∩ C) = P (A)P (B)P (C)
with P (A ∩ B) 
= P (A)P (B), P (A ∩ C) 
= P (A)P (C), and P (B ∩ C) 
=
P (B)P (C). Under these conditions, events A, B, and C are not
mutually independent. Similarly, the condition P (A1 ∩ A2 · · · ∩ An) =
P (A1)P (A2) · · ·P (An) does not imply a similar condition for any smaller
family of events, and therefore this condition does not imply that events
A1, A2, . . . , An are mutually independent.

Example 1.10 [ASH 1970]

Consider the experiment of rolling two dice. Let the sample space S = {(i, j) | 1 ≤
i, j ≤ 6}. Also assume that each sample point is assigned a probability of 1

36
. Define

the events A, B, and C so that

A = “first die results in a 1, 2, or 3.”

B = “first die results in a 3, 4, or 5.”

C = “the sum of the two faces is 9.”

Then A ∩ B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}, A ∩ C = {(3, 6)}, B ∩ C =
{(3, 6), (4, 5), (5, 4)}, and A ∩ B ∩ C = {(3, 6)}. Therefore

P (A ∩ B) =
1

6
�= P (A)P (B) =

1

4
,

P (A ∩ C) =
1

36
�= P (A)P (C) =

1

18
,

P (B ∩ C) =
1

12
�= P (B)P (C) =

1

18
,

but

P (A ∩ B ∩ C) =
1

36
= P (A)P (B)P (C).

�

If the events A1, A2, . . . , An are such that every pair is independent, then
such events are called pairwise independent. It does not follow that the
list of events is mutually independent.

Example 1.11 [ASH 1970]

Consider the above experiment of tossing two dice. Let

A = “first die results in a 1, 2, or 3.”

B = “second die results in a 4, 5, or 6.”

C = “the sum of the two faces is 7.”
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Then
A ∩ B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}

and

A ∩ C = B ∩ C

= A ∩ B ∩ C

= {(1, 6), (2, 5), (3, 4)}.

Therefore

P (A ∩ B) =
1

4
= P (A)P (B),

P (A ∩ C) =
1

12
= P (A)P (C),

P (B ∩ C) =
1

12
= P (B)P (C),

but

P (A ∩ B ∩ C) =
1

12
�= P (A)P (B)P (C) =

1

24
.

In this example, events A, B, and C are pairwise independent but not mutually
independent.

�

We illustrate the idea of independence by considering the problem of com-
puting reliability of so-called series–parallel systems. A series system is one
in which all components are so interrelated that the entire system will fail
if any one of its components fails. On the other hand, a parallel system is
one that will fail only if all of its components fail. We will assume that failure
events of components in a system are mutually independent.

First consider a series system of n components. For i = 1, 2, · · · , n, define
events Ai = “component i is functioning properly.” Let the reliability, Ri,
of component i be defined as the probability that the component is function-
ing properly; then Ri = P (Ai). By the assumption of series connections, the
system reliability:

Rs = P (“the system is functioning properly”)

= P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (An)

=
n∏

i=1

Ri. (1.8)
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This simple product law of reliabilities, applicable to series systems
of independent components, demonstrates how quickly system reliability
degrades with an increase in complexity. For example, if a system consists
of five components each in series, each having a reliability of 0.970, then
the system reliability is 0.9705 = 0.859. Now if the system complexity is
increased so that it contained 10 similar components, its reliability would
be reduced to 0.97010 = 0.738. Consider what happens to system reliability
when a large system like a computer system consists of tens to hundreds of
thousands of components!

One way to increase the reliability of a system is to use redundancy.
The first scheme that comes to mind is to replicate components with small
reliabilities (parallel redundancy). First consider a system consisting of n
independent components in parallel, so that it will fail to function only if all
n components have failed. Define event Ai = “the component i is functioning
properly” and Ap = “the parallel system of n components is functioning prop-
erly.” Also let Ri = P (Ai) and Rp = P (Ap). To establish a relation between
Ap and the Ai values, it is easier to consider the complementary events. Thus

Ap = “the parallel system has failed”

= “all n components have failed”

= A1 ∩ A2 ∩ · · · ∩ An.

Therefore
P (Ap) = P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (An)

by independence. Now let Fp = 1 − Rp be the unreliability of the parallel
system and similarly let Fi = 1 − Ri be the unreliability of component i. Then,
since Ai and Ai are mutually exclusive and collectively exhaustive events,
we have

1 =P (S)

=P (Ai) + P (Ai)

and

Fi =P (Ai)

=1 − P (Ai).

Then
Fp =P (Ap)

=
n∏

i=1

Fi
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and
Rp =1 − Fp

=1 −
n∏

i=1

(1 − Ri). (1.9)

Thus, for parallel systems of n independent components, we have a prod-
uct law of unreliabilities analogous to the product law of reliabilities of
series systems. If we have a parallel system of five components, each with a
reliability of 0.970, then the system reliability is increased to

1 − (1 − 0.970)5 = 1 − (0.03)5

= 1 − 0.0000000243

= 0.9999999757.

However, one should be aware of a law of diminishing returns, according
to which the rate of increase in reliability with each additional component
decreases rapidly as n increases. This is illustrated in Figure 1.10, where we
have plotted Rp as a function of n. [This remark is easily formalized by noting
that Rp is a concave function of n since R′

p(n) = −(1 − R)n ln (1 − R) > 0,
and R′′

p(n) = −(1 − R)n(ln (1 − R))2 < 0.]
The basic formulas (1.8) and (1.9) for the reliability computation of series

and parallel systems can be used in combination to compute the reliability of
a system having both series and parallel parts (series–parallel systems).
Consider a series–parallel system of n serial stages where stage i consists of ni

identical components in parallel. Let the reliability of each component at stage
i be Ri. Assuming that all components are independent, system reliability Rsp

can be computed from the formula

Rsp =
n∏

i=1

[1 − (1 − Ri)
ni ]. (1.10)
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Figure 1.10. Reliability curve of a parallel redundant system
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A series–parallel system can be graphically represented by a series–parallel
reliability block diagram (RBD), in which components are combined into
blocks in series, in parallel or in the k-out-of-n configuration (which will
be introduced in the following sections). We use the following example to
illustrate the use of RBD.

Example 1.12

Consider the system shown in Figure 1.11, consisting of five stages, with n1 = n2 =
n5 = 1, and n3 = 3 and n4 = 2. Also

R1 = 0.95, R2 = 0.99, R3 = 0.70, R4 = 0.75, and R5 = 0.9.

Then

Rsp = 0.95 · 0.99 · (1 − (1 − 0.7)3) · (1 − (1 − 0.75)2) · 0.9

= 0.772.

�

Fault trees provide another way to model system reliability [HENL 1981,
MISR 1992, SAHN 1996]. A fault tree is a graphical representation of the com-
bination of events that can cause the occurrence of system failure. An event is
either a basic (primary) event or a logical combination of lower-level events.
We assume that basic events are mutually independent and that probabilities
for their occurrences are known. The occurrence of each event is denoted by
a logic 1 at that node; otherwise the logic value of the node is 0. Logic value
1 for a basic event denotes failure of the corresponding component. Each gate
has several inputs and one output. The inputs to a gate are either basic events
or the outputs of other gates. The output of an and gate is a logic 1, if and
only if, all of its inputs are logic 1. The output of an or gate is a logic 1 if one
or more of its inputs are logic 1. There is a single output of the fault tree as
a whole, called the top event, representing system failure.

Example 1.13

Consider a reliability model of alternate routing in a telephone network [BALA
1996]. The network is represented by a graph whose nodes denote the office locations

R1 R2 R3 R5

R3

R3

R4

R4

Figure 1.11. A series–parallel reliability block diagram
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Alternate routes

For A-B: A-C-B, A-D-B, A-E-B

For C-D: C-E-D

A

 B

 C

 D

 E

Figure 1.12. A communication network with five nodes

of a corporation and edges of the graph represent communication links between office
locations as shown in Figure 1.12. The measure of interest is reliability, R, a mea-
sure of the network’s ability to maintain a given set of connections. In Figure 1.12,
the network is up whenever node-pairs A–B and C–D are both connected, either
directly, or by the two-link alternate routes listed. We impose the condition that
the alternate routes of the node pair A–B should be disjoint from those of node
pair C–D. We assume that link failures are mutually independent. The fault tree is
shown in Figure 1.13.

In a fault tree such as that in Figure 1.13, reliabilities of inputs to an or gate
multiply while unreliabilities of inputs to an and gate multiply. Hence the network
reliability is given by

Rnetwork =[1 − (1 − Rab)(1 − RacRcb)(1 − RadRdb)(1 − RaeReb)]

· [1 − (1 − Rcd)(1 − RceRed)].

�

Reliability of systems with more general interconnections cannot be com-
puted with the preceding formula. In such a case, we may obtain structure
function [MISR 1992] of the system first, then compute the reliability of the
system. The structure function of a system is defined as follows.

Definition (Structure Function). Let X be a state vector of a system
with n components so that X = (x1, x2, . . . , xn) where

xi =
{

1 if component i is functioning,
0 if component i has failed.
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or

or

and and

or or or

ab

Failure

cb db ae eb cd ce edac ad

Network

Figure 1.13. Fault tree for the communication network

The structure function Φ(X) is defined by

Φ(X) =
{

1 if system is functioning,
0 if system has failed.

Using the definition of system structure function, the reliability of a system
canbe written as

R = P (Φ(X) = 1).

Example 1.14

Consider the fault tree shown in Figure 1.14. Notice that event B3 is input to two
gates; thus, the fault tree is said to have repeated (or shared) events. Such fault
trees can no longer be solved by the simple method used for the fault tree without
repeated events that we encountered in Example 1.13. For the current example,
we have

{Φ = 0} = (A1 ∪ (B1 ∩ B3)) ∩ (A2 ∪ (B2 ∩ B3))

= (A1 ∩ A2) ∪ (A1 ∩ B2 ∩ B3) ∪ (A2 ∩ B1 ∩ B3) ∪ (B1 ∩ B2 ∩ B3).

Note that these four events are not mutually exclusive. Therefore, we cannot directly
use axiom (A3), however, we could use SDP formula, i.e., relation (Re), to make them
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and

or or

and

1 AA1 B 3 B 2 2B

and

System

Failure

Figure 1.14. A fault tree

disjoint. Then, the reliability of the system is

R = 1 − P (Φ = 0)

= 1 − P ((A1 ∩ A2) ∪ (A1 ∩ B2 ∩ B3) ∪ (A2 ∩ B1 ∩ B3) ∪ (B1 ∩ B2 ∩ B3))

= 1 − P ((A1 ∩ A2) ∪ (A1 ∩ A2 ∩ B2 ∩ B3) ∪ (A1 ∩ A2 ∩ B1 ∩ B3)

∪(A1 ∩ A2 ∩ B1 ∩ B2 ∩ B3))

= 1 − FA1
FA2

− FA1
RA2

FB2
FB3

− RA1
FA2

FB1
FB3

− RA1
RA2

FB1
FB2

FB3

where Fx = 1 − Rx.

�

Starting with system structure function, there are two methods to obtain
system reliability: (1) the use of inclusion–exclusion formula (Rd) and (2) the
use of the SDP formula illustrated above. For an efficient implementation of
the SDP method, see Luo and Trivedi [LUO 1998]. A third, even more efficient
approach is based on the binary decision diagrams (BDDs) [ZANG 1999]. A
fourth method is based on the use of conditioning (also called factoring) to
be discussed in the next section. The BDD approach and factoring approach
do not need the structure function to begin with. Further note that reliability
of systems with standby redundancy cannot be computed using methods dis-
cussed in this chapter, but techniques to be discussed later in this book will
enable us to do so.
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Problems

1. Two towns are connected by a network of communication channels. The probabil-
ity of a channel’s failure-free operation is R, and channel failures are independent.
Minimal level of communication between towns can be guaranteed provided at
least one path containing properly functioning channels exists. Given the net-
work of Figure 1.P.1, determine the probability that the two towns will be able
to communicate. Here 	 
 denotes a communication channel.

Town
    A

Town
    B

Figure 1.P.1. A network of communication channels

2. Given three components with respective reliabilities R1 = 0.8, R2 = 0.75, and
R3 = 0.98, compute the reliabilities of the three systems shown in Figure 1.P.2.

C2

C1

C3

C1 C3

C1 C3C2

(a)

(b)

(c)

Figure 1.P.2. Reliability block diagrams

3. Determine the conditions under which an event A is independent of its subset B.

4. General multiplication rule (GMR). Given a list of events A1, A2, · · · , An (not
necessarily independent), show that

P (A1 ∩ A2 ∩ · · · ∩ An) = P [A1|(A2 ∩ A3 ∩ · · · ∩ An)]

·P [A2|(A3 ∩ · · · ∩ An)]

·P [A3|(A4 ∩ · · · ∩ An)]

· · ·

·P (An−1|An)P (An),

provided all the conditional probabilities on the right-hand side are defined.
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1

2

3

4

5

6

7

Figure 1.P.3. Lamp problem

5. Seven lamps are located as shown in Figure 1.P.3. Each lamp can fail with prob-
ability q, independently of all the others. The system is operational if no two
adjacent lamps fail. Obtain an expression for system reliability.

6. Consider a base repeater in a cellular communication system with two control
channels and three voice channels. Assume that the system is up so long as at
least one control channel and at least one voice channel is functioning. Draw
a reliability block diagram for this problem and write down an expression for
system reliability. Next, draw a fault tree model for this system. Note that this
fault tree has no repeated events and hence can be solved in a way similar to
that for a series–parallel reliability block diagram.

7. Modify the base repeater problem above so that a control can also function as a
voice channel. Draw a fault tree model for the modified problem. Notice that the
fault tree has repeated events. Derive the reliability expression using the SDP
method.

8. Return to Example 1.13 but now permitting a shared link B–C as shown in
Figure 1.P.4. Draw the fault tree for modeling the reliability for the communica-
tion network. Note that due to the shared link, the fault tree will have a shared
or repeated event. Derive an expression for system reliability using SDP method
as in Example 1.14.

1.11 BAYES’ RULE

A given event B of probability P (B) partitions the sample space S into two
disjoint subsets B and B. If we consider S′ = {B,B} and associate the prob-
abilities P (B) and P (B) to the respective points in S′, then S′ is very similar
to a sample space, except that there is a many-to-one correspondence between
the outcomes of the experiment and the elements of S′. A space such as S′

is often called an event space. In general, a list of n events B1, B2, . . . , Bn

that are collectively exhaustive and mutually exclusive form an event space,
S′ = {B1, B2, . . . , Bn}.
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For A-B: A-C-B

For C-D: C-B-D

B-C is shared.

Alternate routes

A

B

E C

D

Figure 1.P.4. A modified communication network

Returning to the event space S′ = {B,B}, note that an event A is parti-
tioned into two disjoint subsets:

A = (A ∩ B) ∪ (A ∩ B).

Then by axiom (A3):

P (A) = P (A ∩ B) + P (A ∩ B)

= P (A|B)P (B) + P (A|B)P (B)

by definition of conditional probability.
This relation is analogous to Shannon’s theorem in switching theory and

can be generalized with respect to the event space S′ = {B1, B2, . . . , Bn}:

P (A) =
n∑

i=1

P (A|Bi)P (Bi). (1.11)

This relation is also known as the theorem of total probability, and is
sometimes called the rule of elimination. This situation can be visual-
ized by constructing a tree diagram (or a probability tree) as shown in
Figure 1.15, where each branch is so labeled that the product of all branch
probabilities from the root of the tree to any node equals the probability of
the event represented by that node. Now P (A) can be computed by summing
probabilities associated with all the leaf nodes of the tree. In practice, after
the experiment, a situation often arises in which the event A is known to have



Trim Size: 6.125in x 9.25in 60Trivedi c01.tex V3 - 05/23/2016 11:51am Page 40�

� �

�

40 INTRODUCTION

P
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1
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2
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P(B
n )

A

B1 B2 Bn

P(B1
)

A B1 A 2 A BnB

Figure 1.15. The theorem of total probability

occurred, but it is not known directly which of the mutually exclusive and
collectively exhaustive events B1, B2, . . . , Bn has occurred. In this situation,
we may be interested in evaluating P (Bj |A), the conditional probability that
one of these events Bj occurs, given that A occurs. By applying the definition
of conditional probability followed by the use of theorem of total probability,
we find that

P (Bj |A) =
P (Bj ∩ A)

P (A)

=
P (A|Bj)P (Bj)∑
iP (A|Bi)P (Bi)

. (1.12)

This relation is known as Bayes’ rule and is useful in many applications. This
rule also forms the basis of a statistical method called Bayesian procedure.
P (Bj |A) is sometimes called an a posteriori probability.

Example 1.15

Measurements at the North Carolina Super Computing Center (NCSC) on a certain
day, indicated that the source of incoming jobs is 15% from Duke, 35% from Uni-
versity of North Carolina (UNC), and 50% from North Carolina State (NC State).
Suppose that the probabilities that a job initiated from these universities is a mul-
titasking job are 0.01, 0.05, and 0.02, respectively. Find the probability that a job
chosen at random at NCSC is a multitasking job. Also find the probability that a
randomly chosen job comes from the University of North Carolina, given that it is
a multitasking job.

Define the events Bi = “job is from university i” (i = 1, 2, 3 for Duke, UNC, and
NC State, respectively), and A = “job uses multitasking.” Then, by the theorem of
total probability, we obtain

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

= (0.01) · (0.15) + (0.05) · (0.35) + (0.02) · (0.5)

= 0.029.
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Now the second event of interest is [B2|A], and from Bayes’ rule:

P (B2|A) =
P (A|B2)P (B2)

P (A)

=
0.05 · 0.35

0.029

= 0.603.

Note that the knowledge that the job uses multitasking increases the chance that it
came from UNC from 35% to about 60%.

�

Example 1.16

A binary communication channel carries data as one of two types of signals denoted
by 0 and 1. As a result of noise, a transmitted 0 is sometimes received as a 1 and a
transmitted 1 is sometimes received as a 0. For a given channel, assume a probability
of 0.94 that a transmitted zero is correctly received as a zero and a probability of
0.91 that a transmitted one is received as a one. Further assume a probability of
0.45 of transmitting a 0. If a signal is sent, determine the

1. Probability that a 1 is received.

2. Probability that a 0 is received.

3. Probability that a 1 was transmitted given that a 1 was received.

4. Probability that a 0 was transmitted given that a 0 was received.

5. Probability of an error.

Define events T0 = “a 0 is transmitted” and event R0 = “a 0 is received.” Then let
T1 = T 0 = “a 1 is transmitted” and R1 = R0 = “a 1 is received.” Then the events
of interest under items 1, 2, 3, and 4 are respectively given by R1, R0, [T1|R1],
and [T0|R0]. An error in the transmitted signal is the union of the two disjoint
events [T1 ∩ R0] and [T0 ∩ R1]. The operation of a binary communication chan-
nel may be visualized by a channel diagram shown in Figure 1.16. In the given
problem, we have P (R0|T0) = 0.94, P (R1|T1) = 0.91, and P (T0) = 0.45. From these
we get

P (R1|T0) = P (R0|T0) = 1 − P (R0|T0) = 0.06,

P (R0|T1) = P (R1|T1) = 1 − P (R1|T1) = 0.09,

P (T1) = P (T 0) = 1 − P (T0) = 0.55.

Now from the theorem of total probability:

P (R0) =P (R0|T0)P (T0) + P (R0|T1)P (T1)

=(0.94) · (0.45) + (0.09) · (0.55)

=0.423 + 0.0495

=0.4725,
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P (R1) =P (R0)

=1 − P (R0)

=1 − 0.4725

=0.5275.

Using Bayes’ rule, we have

P (T1|R1) =
P (R1|T1)P (T1)

P (R1)

=
0.91 · 0.55

0.5275

=0.9488,

P (T0|R0) =
P (R0|T0)P (T0)

P (R0)

=
0.94 · 0.45

0.4725

=0.8952.

Now:
P (T1|R0) =P (T 0|R0)

=1 − P (T0|R0)

=0.1048,

P (T0|R1) =1 − P (T1|R1)

=0.0512

T0P(T0) P(R0|T0)

T1

R0

R1

P(R0)

P(R1)P(T1) P(R1|T1)

P(R 0|
T 1)

P(R
1 |T

0 )

Figure 1.16. A channel diagram
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and
P (“error”) =P (T1 ∩ R0) + P (T0 ∩ R1)

=P (T1|R0)P (R0) + P (T0|R1)P (R1)

=0.1048 · 0.4725 + 0.0512 · 0.5275

=0.0765.

Alternately, the error probability can be evaluated by

P (“error”) =P (T1 ∩ R0) + P (T0 ∩ R1)

=P (R0|T1)P (T1) + P (R1|T0)P (T0)

=0.09 · 0.55 + 0.06 · 0.45 = 0.0765.

[Quiz: Construct an appropriate sample space for this problem.]

�

Example 1.17

A given lot of VLSI chips contains 2% defective chips. Each chip is tested before
delivery. The tester itself is not totally reliable so that

P (“tester says chip is good”|“chip is actually good”) = 0.95,

P (“tester says chip is defective”|“chip is actually defective”) = 0.94.

If a tested device is indicated to be defective, what is the probability that it is
actually defective?

By Bayes’ rule, we have

P (“chip is defective”|“tester says it is defective”)

=
P (“tester says defective”|“chip defective”)P (“chip defective”)

P (“tester says defective”|“chip defective”)P (“chip defective”)
+P (“tester says defective”|“chip is good”)P (“chip is good”)

=
0.94 · 0.02

0.94 · 0.02 + 0.05 · 0.98

=
0.0188

0.0188 + 0.049

=
0.0188

0.0678

= 0.2772861.

�

Example 1.18

We have seen earlier how to compute the reliability of series–parallel systems. How-
ever, many systems in practice do not conform to a series–parallel structure. As an
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C4C1

C3 C5

C2A B

Figure 1.17. A non-series–parallel system

example, consider evaluating the reliability R of the five-component system shown in
Figure 1.17. The system is said to be functioning properly only if all the components
on at least one path from point A to point B are functioning properly.

Define for i = 1, 2, . . . , 5 event Xi = “component i is functioning properly,” and
let Ri = reliability of component i = P (Xi). Let X = “system functioning properly”
and let R = “system reliability” = P (X). It is clear that X is union of four events:

X = (X1 ∩ X4) ∪ (X2 ∩ X4) ∪ (X2 ∩ X5) ∪ (X3 ∩ X5). (1.13)

These four events are not mutually exclusive. Therefore, we cannot directly use
axiom (A3). Note, however, that we could use relation (Rd), which does apply to
a union of intersecting events. But this method is computationally tedious for a
relatively long list of events. We could use the sum of disjoint products (SDP)
method (Relation Re) in this case. We illustrate the use of yet another method
known as factoring or conditioning in this case. Observe that using the theorem of
total probability, we have

P (X) = P (X|X2)P (X2) + P (X|X2)P (X2)

= P (X|X2)R2 + P (X|X2)(1 − R2). (1.14)

Now to compute P (X|X2), we observe that since component C2 is functioning,
the status of components C1 and C3 are irrelevant. Thus, under this condition,
the system is equivalent to two components C4 and C5 in parallel. Therefore using
formula (1.9) we get

P (X|X2) = 1 − (1 − R4)(1 − R5). (1.15)

To compute P (X|X2), we observe that since component C2 is known to have mal-
functioned, the resulting equivalent system is a series–parallel one whose reliability
is easily computed:

P (X|X2) = 1 − (1 − R1R4)(1 − R3R5). (1.16)
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Combining equations (1.14)–(1.16), we have

R = [1 − (1 − R4)(1 − R5)]R2 + [1 − (1 − R1R4)(1 − R3R5)](1 − R2)

= 1 − R2(1 − R4)(1 − R5) − (1 − R2)(1 − R1R4)(1 − R3R5).

�

Problems

1. A technique for fault-tolerant software, suggested by Randell [RAND 1978], con-
sists of a primary and an alternate module for each critical task, together with
a test for determining whether a module performed its function correctly. Such
a construct is called a recovery block. Define the following events:

A = “primary module functions correctly.”

B = “alternate module functions correctly.”

D = “detection test following the execution of the primary performs its
task correctly.”

Assume that event pairs A and D as well as B and D are independent but events
A and B are dependent. Derive an expression for the failure probability of a
recovery block [HECH 1976]. (Hint: Use a tree diagram.)

2. Consider the non-series–parallel system of four independent components shown
in Figure 1.P.5. The system is considered to be functioning properly if all com-
ponents along at least one path from input to output are functioning properly.
Determine an expression for system reliability as a function of component relia-
bilities. Also draw an equivalent fault tree model for the reliability block diagram
described above.

C2C1

C3 C4

Input Output

Figure 1.P.5. Another non-series–parallel system

3. A lot of components contains 0.6% defectives. Each component is subjected to
a test that correctly identifies a defective, but about 2 in every 100 good com-
ponents is also indicated defective. Given that a randomly chosen component
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is declared defective by the tester, compute the probability that it is actually
defective.

4. A certain firm has plants A, B, and C producing respectively 35%, 15%, and
50%, of the total output. The probabilities of a nondefective product are, respec-
tively, 0.75, 0.95, and 0.85. A customer receives a defective product. What is the
probability that it came from plant C?

5. Consider a trinary communication channel [STAR 1979] whose channel diagram
is shown in Figure 1.P.6. For i = 1, 2, 3 let Ti denote the event “digit i is trans-
mitted” and let Ri denote the event “digit i is received.” Assume that a 3 is
transmitted 3 times more frequently than a 1, and a 2 is sent twice as often as 1.
If a 1 has been received, what is the expression for the probability that a 1 was
sent? Derive an expression for the probability of a transmission error.

T3 R3

T1

T2

R1

R2

P(R1|T1)

1−β

1−γ

α / 2

β / 2

γ / 2

α / 2

β / 2

γ / 2

=1−α

Figure 1.P.6. A trinary communication channel: channel diagram

6. Of all the graduate students in a university, 70% are women and 30% are men.
Suppose that 20% and 25% of the female and male population, respectively,
smoke cigarettes. What is the probability that a randomly selected graduate
student is

(a) A woman who smokes?

(b) A man who smokes?

(c) A smoker?

7. Compute the reliability of the system discussed in Example 1.18 (Figure 1.17),
starting from equation (1.13), first using the inclusion-exclusion formula (Rd)
and then using the SDP formula (Re). Also draw the fault tree model of this
system.

8. Yet another method of evaluating the reliability of the system such as that dis-
cussed in Example 1.16 is to use the methods of switching theory. Noting that
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X1, X2, X3, X4, X5 are Boolean variables and X is a switching function of these
variables, we can draw a truth table with 25 = 32 rows. Rows of the truth table
represent a collection of mutually independent and collectively exhaustive events.
Each row represents an elementary event that is an intersection of independent
events and hence its probability can be computed. For example, the elemen-
tary event X1 ∩ X2 ∩ X3 ∩ X4 ∩ X5 is assigned the probability (1 − R1)R2(1 −
R3)R4R5. Computing P (X) now reduces to adding up probabilities of rows of
the truth table with 1s in the function column. Use this method to compute
the reliability of the system in Figure 1.17. This method is called the state
enumeration method or the Boolean truth table method.

1.12 BERNOULLI TRIALS

Consider a random experiment that has two possible outcomes, “success” and
“failure” (or “hit” and “miss,” or “good” and “defective,” or “digit received
correctly” and “digit received incorrectly”) or the like. Let the probabilities of
the two outcomes be p and q, respectively, with p + q = 1. Now consider the
compound experiment consisting of a sequence of n independent repetitions
of this experiment. Such a sequence is known as a sequence of Bernoulli
trials. This abstract sequence models many physical situations of interest
to us:

1. Observe n consecutive executions of an if statement, with success =
“then clause is executed” and failure = “else clause is executed.”

2. Examine components produced on an assembly line, with success =
“acceptable” and failure = “defective.”

3. Transmit binary digits through a communication channel, with success
= “digit received correctly” and failure = “digit received incorrectly.”

4. Consider a computer system that allocates a finite quantum (or time
slice) to a job scheduled for processor service, in an attempt to give
fast service to requests for trivial processing. Observe n time slice ter-
minations, with success = “job has completed processing” and failure =
“job still requires processing and joins the tail end of the ready queue
of processes.” This situation may be depicted as in Figure 1.18.

Job arrival

Ready queue

Job completion
CPU

Figure 1.18. A CPU queue with time slicing
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Let 0 denote failure and 1 denote success. Let Sn be the sample space of an
experiment involving n Bernoulli trials, defined by

S1 = {0, 1},
S2 = {(0, 0), (0, 1), (1, 0), (1, 1)},
Sn = {2n n-tuples of 0s and 1s}.

The probability assignment over the sample space S1 is already specified:
P (0) = q ≥ 0, P (1) = p ≥ 0, and p + q = 1. We wish to assign probabilities to
the points in Sn.

Let Ai = “success on trial i” and Ai = “failure on trial i,” then P (Ai) = p
and P (Ai) = q. Now consider s an element of Sn such that s = (1,1,. . .,1,0,0,
. . .,0) (k 1s and (n − k) 0s). Then the elementary event {s} can be written as

{s} = A1 ∩ A2 · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An

and

P (s) = P (A1 ∩ A2 · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An)

= P (A1)P (A2) · · ·P (Ak)P (Ak+1) · · ·P (An)

by independence. Therefore

P (s) = pkqn−k. (1.17)

Similarly, any sample point with k 1s and (n − k) 0s is assigned probability
pkqn−k. Noting that there are

(
n
k

)
such sample points, the probability of

obtaining exactly k successes in n trials is

P (k) =
(n

k

)
pkqn−k, k = 0, 1, . . . , n. (1.18)

We may verify that (1.18) is a legitimate probability assignment over the
sample space Sn since

n∑
k=0

(n

k

)
pkqn−k = (p + q)n

= 1

by the binomial theorem.
Consider the set of events {B0, B1, . . . , Bn} where Bk = {s ∈ Sn such that

s has exactly k 1s and (n − k) 0s}. It is clear that this is a mutually exclusive
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and collectively exhaustive family of events. Furthermore

P (Bk) =
(n

k

)
pkqn−k ≥ 0 and

n∑
k=0

P (Bk) = 1.

Therefore, this collection of events is an event space with (n + 1) events.
Compare this with 2n sample points in Sn. Thus, when in a physical situation,
if we are concerned not with the actual sequence of successes and failures but
merely with the number of successes and the number of failures, it is profitable
to use the event space rather than the original sample space.

Example 1.19

Consider a binary communication channel transmitting coded words of n bits each.
Assume that the probability of successful transmission of a single bit is p (and the
probability of an error is q = 1 − p), and that the code is capable of correcting up
to e (where e ≥ 0) errors. For example, if no coding or parity checking is used, then
e = 0. If a single error correcting Hamming code is used then e = 1. For more details
on this topic, see Hamming [HAMM 1980]. If we assume that the transmission of
successive bits is independent, then the probability of successful word transmission is

Pw = P (“e or fewer errors in n trials”)

=
e∑

i=0

(n

i

)
(1 − p)ipn−i.

�

Example 1.20

In connection with reliability computation, we have considered series and parallel
systems. Now we consider a system with n components that requires k (≤ n) or
more components to function for the correct operation of the system. Such systems
are often called k-out-of-n systems. If we let k = n, then we have a series system;
if we let k = 1, then we have a system with parallel redundancy. Assume that all n
components are statistically identical and function independently of each other. If
we let R denote the reliability of a component (and q = 1 − R gives its unreliability),
then the experiment of observing the statuses of n components can be thought of
as a sequence of n Bernoulli trials with the probability of success equal to R. Now
the reliability of the system is

Rk|n = P (“k or more components functioning properly”)

= P (
n⋃

i=k

{“exactly i components functioning properly”})

=
n∑

i=k

P (“exactly i components functioning properly”)
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=
n∑

i=k

P (i),

Rk|n =

n∑
i=k

(n

i

)
Ri(1 − R)n−i. (1.19)

Verify that R1|n = Rp:

R1|n =
n∑

i=1

(n

i

)
Ri(1 − R)n−i

=

n∑
i=0

(n

i

)
Ri(1 − R)n−i −

(n

0

)
R0(1 − R)n

= [R + (1 − R)]n − (1 − R)n

= 1 − (1 − R)n.

Verify that Rn|n = Rs:

Rn|n =
n∑

i=n

(n

i

)
Ri(1 − R)n−i

=
(n

n

)
Rn(1 − R)0

= Rn.

�

As another special case of formula (1.19), consider a system with
triple modular redundancy, often known as TMR or a triplex system (see
Figure 1.19). In such a system there are three components, two of which
are required to be in working order for the system to function properly
(i.e., n = 3 and k = 2). This is achieved by feeding the outputs of the three
components into a majority voter. Then

RTMR =
3∑

i=2

(
3
i

)
Ri(1 − R)(3−i)

=
(

3
2

)
R2(1 − R) +

(
3
3

)
R3(1 − R)0

= 3R2(1 − R) + R3

and thus
RTMR = 3R2 − 2R3. (1.20)
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R

R
Input Output

Voter

R

2|3

Figure 1.19. A triple modular redundant system

Note that

RTMR =

⎧⎪⎨
⎪⎩

> R if R > 1
2 ,

= R if R = 1
2 ,

< R if R < 1
2 .

Thus TMR increases reliability over the simplex system only if the simplex
reliability is greater than 0.5; otherwise this type of redundancy actually
decreases reliability.

It should be noted that the voter output simply corresponds to the major-
ity, and therefore it is possible for two or more malfunctioning units to agree,
producing an erroneous voter output. Additional detection logic is required
to avoid this situation. Also, the unreliability of the voter will further degrade
the TMR reliability.

In the above example, we assumed that the n successive trials have the
same probability of success. Now consider nonhomogeneous Bernoulli tri-
als, where probability of success changes with each trial. In the reliability
context, let Ri denote the reliability of the ith component for i = 1,...,n. Then
the calculation is a bit more complicated [SAHN 1996]:

Rk|n = 1 −
∑
|I|≥k

(∏
i∈I

(1 − Ri)

) (∏
i/∈I

Ri

)
, (1.21)

where I ranges over all choices i1 < i2 < ... < im such that k ≤ m ≤ n.
Let us still consider the TMR system with n = 3 and k = 2. However, the

individual reliabilities are not identical any longer. Then, by formula (1.21),
we have

R2|3 = 1 − (1 − R1)(1 − R2)R3 − R1(1 − R2)(1 − R3)

−(1 − R1)R2(1 − R3) − (1 − R1)(1 − R2)(1 − R3)

= R1R2 + R1R3 + R2R3 − 2R1R2R3 (1.22)

Example 1.21 [DOSS 2000]

Consider a BTS (base transceiver system) sector/transmitter system shown in
Figure 1.20. It consists of three RF (radio frequency) carriers (transceiver and



Trim Size: 6.125in x 9.25in 60Trivedi c01.tex V3 - 05/23/2016 11:51am Page 52�

� �

�

52 INTRODUCTION

Transceiver 1

Transceiver 2

Transceiver 3

Power Amp 1

Power Amp 2

Power Amp 3

2:1 Combiner Duplexer 1

Pass-Thru Duplexer 2

Path 1

Path 2

Path 3

(XCVR 1)

(XCVR 2)

(XCVR 3)

Figure 1.20. BTS sector/transmitter

XCVR1

XCVR2

XCVR3 Pass-Thru Duplexer 2

2|3

Figure 1.21. Reliability block diagram when 2:1 combiner and duplexer 1 are up

power amplifier) on two antennas. In order for the system to be operational, at
least two functional transmitter paths are needed.

We use the factoring method to arrive at the reliability block diagram for the
system. Observe that the failure of the 2:1 combiner or duplexer 1 would disable both
path 1 and path 2, which would lead to system failure. So, we condition on these
components. When both these components are functional, the system reliability is
given by the RBD shown in Figure 1.21. As noted before, failure of any one of
these two components results in system failure. Hence, the overall system reliability
is captured by the RBD shown in Figure 1.22. If we let Rx, Rp, Rd, and Rc be
the reliabilities of an XCVR, a pass-thru, a duplexer, and a combiner, then the
reliabilities of XCVR1, XCVR2, XCVR3 with the “pass-thru” and duplexer 2, and
the 2:1 combiner with duplexer 1 are R1 = Rx, R2 = Rx, R3 = RxRpRd, and R4 =
RcRd, respectively. Therefore, by formula (1.22), the overall system reliability is
given by

R = (R1R2 + R1R3 + R2R3 − 2R1R2R3)R4

= (1 + 2RpRd − 2RxRpRd)R2
xRcRd

For a detailed discussion of various SDP methods and the factoring method of
reliability computation see Rai et al. [RAI 1995].

�
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XCVR1

XCVR2

XCVR3 Pass-Thru Duplexer 2

2:1 Combiner2|3 Duplexer 1A B

Figure 1.22. System reliability block diagram

Next, we consider generalized Bernoulli trials. Here we have a sequence
of n independent trials, and on each trial the result is exactly one of the
k possibilities b1, b2, . . . , bk. On a given trial, let bi occur with probability
p

i
, i = 1, 2, . . . , k such that

pi ≥ 0 and
k∑

i=1

p
i
= 1.

The sample space S consists of all kn n-tuples with components b1, b2, . . . , bk.
To a point s ∈ S

s = (b1, b1, . . . , b1,︸ ︷︷ ︸
n1

b2, b2, . . . , b2,︸ ︷︷ ︸
n2

. . . , bk, . . . , bk︸ ︷︷ ︸
nk

)

we assign the probability of pn1
1

pn2
2

· · · pnk
k

, where
∑k

i=1 ni = n. This is the
probability assigned to any n-tuple having ni occurrences of bi, where i =
1, 2, · · · , k. The number of such n-tuples are given by the multinomial coeffi-
cient [LIU 1968]: (

n
n1 n2 · · · nk

)
=

n!
n1!n2! · · ·nk!

.

As before, the probability that b1 will occur n1 times, b2 will occur n2 times,
. . ., and bk will occur nk times is given by

P (n1, n2, . . . , nk) =
n!

n1!n2! · · ·nk!
pn1
1 pn2

2
· · · pnk

k
(1.23)

and ∑
ni≥0

P (n1, n2, . . . , nk) = (p
1
+ p

2
+ · · · + p

k
)n

= 1

(where
∑

ni = n) by the multinomial theorem.
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CPU

k

p1

p2

pk
I/O

I/O 1

I/O 2

Figure 1.23. A CPU to I/O device queuing scheme

If we let k = 2, then generalized Bernoulli trials reduce to ordinary
Bernoulli trials where b1 = “success,” b2 = “failure,” p

1
= p, p

2
= q = 1 − p,

n1 = k, and n2 = n − k.
Two situations of importance are examples of generalized Bernoulli trials:

1. We are given that at the end of a CPU (central processing unit) burst,
a program will request service from an I/O device i with probability p

i
,

where i = 1, 2, . . . , k and
∑

ipi
= 1. If we assume that successive CPU

bursts are independent of each other, then the observation of n CPU
burst terminations corresponds to a sequence of generalized Bernoulli
trials. This situation may be pictorially visualized by the queuing net-
work shown in Figure 1.23.

2. If we observe n consecutive independent executions of a switch statement
(see below), then we have a sequence of generalized Bernoulli trials where
p

i
is the probability of executing the statement group Si on an individual

trial.

switch( I ) {

case 1: S1;

case 2: S2;

...

case k: Sk;

}
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Example 1.22

Out of every 100 jobs received at a server, 50 are of class 1, 30 of class 2, and 20 of
class 3. A sample of 30 jobs is taken with replacement.

1. Find the probability that the sample will contain 10 jobs of each class.

2. Find the probability that there will be exactly 12 jobs of class 2.

This is an example of generalized Bernoulli trials with k = 3, n = 30, p
1

= 0.5, p
2

=
0.3, and p

3
= 0.2. The answer to part (1) is

P (10, 10, 10) =
30!

10! · 10! · 10!
· 0.510 · 0.310 · 0.210

= 0.003278.

The answer to part (2) is obtained more easily if we collapse class 1 and class 3
together and consider this as an example of an ordinary Bernoulli trial with p = 0.3
(success corresponds to a class 2 job), q = 1 − p = 0.7 (failure corresponds to a class
1 or class 3 job). Then the required answer is as follows:

P (12) =

(
30

12

)
· 0.312 · 0.718

=
30!

12! · 18!
· 0.312 · 0.718

= 0.07485.

�

Example 1.23

So far, we have assumed that a component is either functioning properly or it has
malfunctioned. Sometimes it is useful to consider more than two states. For example,
a diode functions properly with probability p

1
, develops a short circuit with probabil-

ity p
2
, and develops an open circuit with probability p

3
such that p

1
+ p

2
+ p

3
= 1.

Thus there are two types of malfunctions, an open circuit and a closed circuit. In
order to protect against such malfunctions, we investigate three types of redundancy
schemes (refer to Figure 1.24): (a) a series connection, (b) a parallel connection, and
(c) a series–parallel configuration.

First we analyze the series configuration. Let s1, s2, and s3 respectively denote
the probabilities of correct functioning, a short circuit, and an open circuit for
the series configuration as a whole. The experiment of observing n diodes corre-
sponds to a sequence of n generalized Bernoulli trials. Let n1 diodes be functioning
properly, n2 diodes be short-circuited, and n3 diodes be open-circuited. Then the
event “the series configuration is functioning properly” is described by “none of
the diodes is open-circuited and at least one of the diodes is functioning prop-
erly.” This event consists of the sample points {(n1, n2, n3)|n1 ≥ 1, n2 ≥ 0, n3 = 0,
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1 D D D2 3 nD

1 D D D2 3 nD

. . .

D

D

D

1

2

n

. . .

 . . . . . . . . 

. .

. .

D D Dn21

(c) Series-parallel configuration

(a) Series cofiguration

(b) Parallel configuration

Figure 1.24. (a) Series configuration; (b) parallel configuration; (c) series–parallel
configuration

n1 + n2 = n}. Therefore

s1 =
∑

n1≥1
n2≥0

n1+n2=n

p(n1, n2, 0)

=
∑(

n

n1, n2, 0

)
p
1

n1p
2

n2p
3

0

=
∑

n1≥1

n!

n1!(n − n1)!
p
1

n1p
2

n−n1

=
n∑

n1=0

(
n

n1

)
p
1

n1p
2

n−n1 − n!

0!n!
p
1

0p
2

n

= (p
1

+ p
2
)n − p

2

n

= (1 − p
3
)n − p

2

n.

Note that (1 − p
3
)n is the probability that none of the diodes is open and p

2
n is the

probability that all diodes are short-circuited. Similarly

s2 = P (“Series combination is short-circuited”)

= P (“All diodes are short-circuited”)
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= P ({(n1, n2, n3)|n2 = n})

= p
2

n.

Also

s3 = P (“Series combination is open-circuited”)

= P (“At least one diode is open-circuited”)

= p({(n1, n2, n3)|n3 ≥ 1, n1 + n2 + n3 = n})

= 1 − P ({(n1, n2, n3)|n3 = 0, n1 + n2 = n})

= 1 −
∑

n1+n2=n

(
n

n1, n2

)
p
1

n1p
2

n2

= 1 − (p
1

+ p
2
)n

= 1 − (1 − p
3
)n

= 1 − P (“no diodes are open-circuited”).

Check that s1 + s2 + s3 = 1.
Next, consider the parallel configuration, with Pi (i = 1, 2, 3) respectively denot-

ing the probabilities of properly functioning, short-circuit, and open-circuit situa-
tions. Then,

P1 = P (“parallel combination working properly”)

= P (“at least one diode functioning and none of them short-circuited”)

= P ({(n1, n2, n3)|n1 ≥ 1, n2 = 0, n1 + n3 = n})

= (1 − p
2
)n − p

3

n

= P (“no diodes short-circuited”) − P (“all diodes are open-circuited”),

P2 = P ({(n1, n2, n3)|n2 ≥ 1, n1 + n2 + n3 = n})

= 1 − (1 − p
2
)n,

P3 = P ({(n1, n2, n3)|n3 = n})

= p
3

n.

To analyze the series–parallel configuration, we first reduce each one of the series
configurations to an “equivalent” diode with respective probabilities s1, s2, and s3.
The total configuration is then a parallel combination of two “equivalent” diodes.
Thus the probability that series–parallel diode configuration functions properly is
given by

R1 = (1 − s2)
2 − s3

2

= s1
2 + 2s1s3

= s1(s1 + 2s3)
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= [(1 − p
3
)n − p

2

n][(1 − p
3
)n − p

2

n + 2 − 2(1 − p
3
)n]

= [(1 − p
3
)n − p

2

n][2 − (1 − p
3
)n − p

2

n].

�

For an example of use of this technique in the context of availability analysis
of VAXcluster systems, see Ibe et al. [IBE 1989]. For further study of multi-
state components (as opposed to two-state or binary components) and their
reliability analysis, see Zang et al. [ZANG 1999].

Problems

1. Consider the following program segment:

if B then
repeat S1 until B1

else
repeat S2 until B2

Assume that P (B = true) = p, P (B1 = true) = 3
5
, and P (B2 = true) = 2

5
.

Exactly one statement is common to statement groups S1 and S2: write (“good
day”). After many repeated executions of the preceding program segment, it
has been estimated that the probability of printing exactly three “good day”
messages is 3

25
. Derive the value of p.

2. Given that the probability of error in transmitting a bit over a communication
channel is 8 × 10−4, compute the probability of error in transmitting a block
of 1024 bits. Note that this model assumes that bit errors occur at random,
but in practice errors tend to occur in bursts. Actual block error rate will be
considerably lower than that estimated here.

3. In order to increase the probability of correct transmission of a message over
a noisy channel, a repetition code is often used. Assume that the “message”
consists of a single bit, and that the probability of a correct transmission on a
single trial is p. With a repetition code of rate 1/n, the message is transmitted a
fixed number (n) of times and a majority voter at the receiving end is used for
decoding. Assuming n = 2k + 1, k = 0, 1, 2 . . ., determine the error probability
Pe of a repetition code as a function of k.

4. An application requires that at least two processors in a multiprocessor sys-
tem be available with more than 95% probability. The cost of a processor with
60% reliability is $1000, and each 10% increase in reliability will cost $800.
Determine the number of processors (n) and the reliability (p) of each processor
(assume that all processors have the same reliability) that minimizes the total
system cost.

5. � Show that the number of terms in the multinomial expansion:

[
k∑

i=1

(p
i
)

]n

is

(
n + k − 1

n

)
.
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Note that the required answer is the number of unordered sets of size n chosen
from a set of k distinct objects with repetition allowed [LIU 1968].

6. A communication channel receives independent pulses at the rate of 12 pulses
per microsecond (12 μs−1). The probability of a transmission error is 0.001 for
each pulse. Compute the probabilities of

(a) No errors per microsecond

(b) One error per microsecond

(c) At least one error per microsecond

(d) Exactly two errors per microsecond

7. Plot the reliabilities of a k out of n system as a function of the simplex reliability
R (0 ≤ R ≤ 1) using n = 3 and k = 1, 2, 3 [parallel redundancy, TMR (triple
modular redundancy), and a series system, respectively].

8. Determine the conditions under which diode configurations in Figures 1.24(a)–(c)
will improve reliability over that of a single diode. Use n = 2 to simplify the
problem.

9. Consider a system with n capacitors in parallel. For the system to function prop-
erly, at least k-out-of-n capacitors should be functioning properly. A capacitor
can fail in two modes: open and short (circuit). If a capacitor develops an open
circuit, and the number of remaining working capacitors is greater than or equal
to k, then the system still functions properly. If any one capacitor develops a
short circuit then the system fails immediately. Given the probability of a capaci-
tor functioning properly p1=0.3, the probability of a capacitor developing a short
circuit p2=0.4, the probability of a capacitor developing an open circuit p3=0.3,
n=10 and k=7, calculate the probability of the system functioning properly.

10. Consider an example of n nonhomogeneous Bernoulli trials where a failure can
occur on each trial independently, with a probability 1 − e−αi for the ith trial
[KOVA 2000]. Prove that over n trials,

(a) P (“no failure occurs”) = e−[n(n+1)/2]α.

(b) P (“no more than one failure occurs”) = e−[n(n+1)/2]α
[

eα−e(n+1)α

1−eα − n + 1
]
.

Review Problems

1. In the computation of TMR reliability, we assumed that when two units have
failed they will both produce incorrect results and, hence after voting, the wrong
answer will be produced by the TMR configuration. In the case that the two
faulty units produce the opposite answers (one correct and the other incorrect)
the overall result will be correct. Assuming that the probability of such a com-
pensating error is c, derive the reliability expression for the TMR configuration.

2. See Ramamoorthy and Han [RAMA 1975]. In order to use parallel redundancy
in digital logic, we have to associate an online detector with each unit giving us
detector–redundant systems. However, a detector may itself fail. Compare the
reliability of a three-unit detector–redundant system with a TMR system (with-
out online detectors). Assume the reliability of a simplex unit is r, the reliability
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of a detector is d and the reliability of a voter is v. A detector redundant system
is said to have failed when all unit–detector pairs have failed and a unit–detector
pair is a series combination of the unit and its associated detector.

3. In manufacturing a certain component, two types of defects are likely to occur
with respective probabilities 0.05 and 0.1. What is the probability that a ran-
domly chosen component

(a) does not have both kinds of defects?

(b) is defective?

(c) has only one kind of defect given that it is found to be defective?

4. Assume that the probability of successful transmission of a single bit over a
binary communication channel is p. We desire to transmit a 4-bit word over the
channel. To increase the probability of successful word transmission, we may
use 7-bit Hamming code (4 data bits + 3 check bits). Such a code is known
to be able to correct single-bit errors [HAMM 1980]. Derive the probabilities of
successful word transmission under the two schemes and derive the condition
under which the use of Hamming code will improve reliability.

5. We want to compare two different schemes of increasing reliability of a system
using redundancy. Suppose that the system needs s identical components in
series for proper operation. Further suppose that we are given m · s components.
Out of the two schemes shown in Figure 1.P.7, which one will provide a higher
reliability? Given that the reliability of an individual component is r, derive
the expressions for the reliabilities of two configurations. For m = 3 and s = 2,
compare the two expressions.

1

1

2

2

s

s

1 2

2

s

s1

Scheme I: Redundancy at the system level

Scheme II: Redundancy at the subsystem level

Parallel
m chains

...

m components

....

 . . . . . . 

. .

 . . . . . . 

Figure 1.P.7. Comparison of two redundancy schemes
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6. In three boxes there are capacitors as shown in the following table:

Capacitance Number in box

(in μF ) 1 2 3

1.0 10 90 25

0.1 50 30 80

0.01 70 90 120

An experiment consists of first randomly selecting a box (assume that each box
has the same probability of selection) and then randomly selecting a capacitor
from the chosen box.

(a) What is the probability of selecting a 0.1 μF capacitor, given that box 3 is
chosen?

(b) If a 0.1 μF capacitor is chosen, what is the probability that it came from
box 1?

(c) List all nine conditional probabilities of capacitor selections, given certain
box selections.

7. For the fault tree shown in Figure 1.P.8

E1

Failure
System

or

and

or or

E E5

E2 E3 E4

2

Figure 1.P.8. A fault tree
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(1) Write down the structure function.

(2) Derive reliability expressions by

(a) State enumeration method
(b) Method of inclusion–exclusion
(c) Sum of disjoint products method
(d) Conditioning on the shared event E2

8. For the BTS sector/transmitter of Example 1.21, draw the equivalent fault
tree, and derive reliability expressions by means of state enumeration,
inclusion–exclusion, and SDP methods.
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Chapter 2

Discrete Random Variables

2.1 INTRODUCTION

Thus far we have treated the sample space as the set of all possible outcomes
of a random experiment. Some examples of sample spaces we have considered
are

S1 = {0, 1},
S2 = {(0, 0), (0, 1), (1, 0), (1, 1)},
S3 = {success, failure}.

Some experiments yield sample spaces whose elements are numbers, but some
other experiments do not yield numerically valued elements. For mathematical
convenience, it is often desirable to associate one or more numbers (in addition
to probabilities) with each possible outcome of an experiment. Such numbers
might naturally correspond, for instance, to the cost of each experimental
outcome, the total number of defective items in a batch, or the time to failure
of a component.

Through the notion of random variables, this and the following chapter
extend our earlier work to develop methods for the study of experiments whose
outcomes may be described numerically. Besides this convenience, random
variables also provide a more compact description of an experiment than the
finest grain description of the sample space. For example, in the inspection
of manufactured products, we may be interested only in the total number of
defective items and not in the nature of the defects; in a sequence of Bernoulli
trials, we may be interested only in the number of successes and not in the

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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actual sequence of successes and failures. The notion of random variables
provides us the power of abstraction and thus allows us to discard unimportant
details in the outcome of an experiment. Virtually all serious probabilistic
computations are performed in terms of random variables.

2.2 RANDOM VARIABLES AND THEIR EVENT SPACES

A random variable is a rule that assigns a numerical value to each possible
outcome of an experiment. The term “random variable” is actually a mis-
nomer, since a random variable X is really a function whose domain is the
sample space S, and whose range is the set of all real numbers, �. The set of
all values taken by X, called the image of X, will then be a subset of the set
of all real numbers.

Definition (Random Variable). A random variable X on a sample
space S is a function X : S → � that assigns a real number X(s) to each
sample point s ∈ S.

Example 2.1

As an example, consider a random experiment defined by a sequence of three
Bernoulli trials. The sample space S consists of eight triples of 0s and 1s. We may
define any number of random variables on this sample space. For our example, define
a random variable X to be the total number of successes from the three trials.

The tree diagram of this sequential sample space is shown in Figure 2.1, where
Sn and Fn respectively denote a success and a failure on the nth trial, and the
probability of success, p, is equal to 0.5. The value of random variable X assigned
to each sample point is also included.

If the outcome of one performance of the experiment were s = (0, 1, 0), then the
resulting experimental value of the random variable X is 1, that is X(0, 1, 0) = 1.
Note that two or more sample points might give the same value for X (i.e., X may

S1

S2 S3

F1

F2

F3

S3

F3

S3

F3

S3

F3

S2

F2

Sample points P (s)  X (s)
111             0.125      3

110             0.125      2

101             0.125      2

100             0.125      1

011             0.125      2

010             0.125      1

001             0.125      1

000             0.125      0

Figure 2.1. Tree diagram of a sequential sample space
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not be a one-to-one function), but that two different numbers in the range cannot be
assigned to the same sample point (i.e., X is a well-defined function). For example

X(1, 0, 0) = X(0, 1, 0) = X(0, 0, 1) = 1.

�

A random variable partitions its sample space into a mutually exclusive
and collectively exhaustive set of events. Thus for a random variable X and a
real number x, we define the event Ax [commonly called the inverse image
of the set {x}] to be the subset of S consisting of all sample points s to which
the random variable X assigns the value x:

Ax = {s ∈ S|X(s) = x}.

It is clear that Ax ∩ Ay = ∅ if x �= y, and that

⋃
x∈�

Ax = S

(see problem 1 at the end of this section). Thus the collection of events Ax for
all x defines an event space. We may find it more convenient to work in this
event space (rather than the original sample space), provided our only interest
in performing the experiment has to do with the resulting experimental value
of random variable X. The notation [X = x] will be used as an abbreviation
for the event Ax. Thus

[X = x] = {s ∈ S|X(s) = x}.

In Example 2.1 the random variable X defines four events:

A0 = {s ∈ S|X(s) = 0} = {(0, 0, 0)},
A1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)},
A2 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)},
A3 = {(1, 1, 1)}.

For all values of x outside the image of X (i.e., values of x other than 0,1,2,3),
Ax is the null set. The resulting event space contains four event points (see
Figure 2.2). For a sequence of n Bernoulli trials, the event space defined by
X will have (n + 1) points, compared with 2n sample points in the original
sample space!

X = 1 X = 2 X = 3X = 0
X

Figure 2.2. Event space for three Bernoulli trials



Trim Size: 6.125in x 9.25in 60Trivedi c02.tex V3 - 05/23/2016 11:53am Page 68�

� �

�

68 DISCRETE RANDOM VARIABLES

The random variable discussed in our example could take on values from
a set of discrete numbers and hence, the image of the random variable is
either finite or countable. Such random variables, known as discrete random
variables, are the subject of this chapter, while continuous random variables
are discussed in the next chapter. A random variable defined on a discrete
sample space will be discrete, while it is possible to define a discrete random
variable on a continuous sample space. For instance, for a continuous sample
space S, the random variable defined by, say, X(s) = 4 for all s ∈ S is discrete.

Problems

1. Given a discrete random variable X, define the event Ax by

Ax = {s ∈ S | X(s) = x}.

Show that the family of events {Ax} defines an event space.

2.3 THE PROBABILITY MASS FUNCTION

We have defined the event Ax as the set of all sample points {s | X(s) = x}.
Consequently

P (Ax) = P ([X = x])

= P ({s | X(s) = x})

=
∑

X(s)=x

P (s).

This formula provides us with a method of computing P (X = x) for all x ∈ �.
Thus we have defined a function with its domain consisting of the event space
of the random variable X, and with its range in the closed interval [0,1]. This
function is known as the probability mass function (pmf) or the discrete
density function of the random variable X, and will be denoted by p

X
(x).

Thus

p
X

(x) = P (X = x)

=
∑

X(s)=x

P (s)

= probability that the value of the random variable
X obtained on a performance of the experiment is
equal to x.

It should be noted that the argument x of the pmf p
X

(x) is a dummy variable,
hence it can be changed to any other dummy variable y with no effect on the
definition.
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The following properties hold for the pmf:

(p1) 0 ≤ p
X

(x) ≤ 1 for all x ∈ �. This must be true, since p
X

(x) is a
probability.

(p2) Since the random variable assigns some value x ∈ � to each sample
point s ∈ S, we must have

∑
x∈�

p
X

(x) = 1.

(p3) For a discrete random variable X, the set {x | p
X

(x) �= 0} is a
finite or countably infinite subset of real numbers (this set is defined
to be the image of X). Let this set be denoted by {x1, x2, . . .}. Then
property (p2) may be restated as

∑
i

p
X

(xi) = 1.

A real-valued function p
X

(x) defined on � is the pmf of some random
variable X provided that it satisfies properties (p1) to (p3). Continuing with
Example 2.1, we can easily obtain p

X
(x) for x = 0, 1, 2, 3 from the preceding

definitions:
p

X
(0) = 1

8 ,

p
X

(1) = 3
8 ,

p
X

(2) = 3
8 ,

p
X

(3) = 1
8 .

Check that all the properties listed above hold. This pmf may be visualized
as a bar histogram drawn over the event space for the random variable (see
Figure 2.3).

Figure 2.3. Histogram of pmf for Example 2.1
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Example 2.2

Returning to the example of a wireless cell with five channels from Chapter 1, and
defining the random variable X = the number of available channels, we have

p
X

(0) = 1
32

, p
X

(1) = 5
32

, p
X

(2) = 10
32

,

p
X

(3) = 10
32

, p
X

(4) = 5
32

, p
X

(5) = 1
32

.
�

2.4 DISTRIBUTION FUNCTIONS

So far we have restricted our attention to computing P (X = x), but often we
may be interested in computing the probability of the set {s | X(s) ∈ A} for
some subset A of � other than a one-point set. It is clear that

{s | X(s) ∈ A} =
⋃

xi∈A

{s | X(s) = xi}. (2.1)

Usually this event is denoted as [X ∈ A] and its probability by P (X ∈ A).
If −∞ < a < b < ∞ and A is an interval with endpoints a and b, say, A =
(a, b), then we usually write P (a < X < b) instead of P [X ∈ (a, b)]. Similarly,
if A = (a, b], then P (X ∈ A) will be written as P (a < X ≤ b). The semiinfinite
interval A = (−∞, x] will be of special interest and in this case we denote the
event [X ∈ A] by [X ≤ x].

If p
X

(x) denotes the pmf of random variable X, then, from equation (2.1),
we have

P (X ∈ A) =
∑
xi∈A

p
X

(xi).

Thus in Example 2.2, the probability that two or fewer channels will be avail-
able may now be evaluated quite simply as

P (X ≤ 2) = P (X = 0) + P (X = 1) + P (X = 2)

= p
X

(0) + p
X

(1) + p
X

(2)

= 1
32 + 5

32 + 10
32

= 16
32

= 1
2 .

The function FX(t),−∞ < t < ∞, defined by

FX(t) = P (−∞ < X ≤ t)

= P (X ≤ t)

=
∑
x≤t

p
X

(x) (2.2)
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is called the cumulative distribution function (CDF) or the probability
distribution function or simply the distribution function of the random
variable X. We will omit the subscript X whenever no confusion arises. It
follows from this definition that

P (a < X ≤ b) = P (X ≤ b) − P (X ≤ a)

= F (b) − F (a).

If X is an integer-valued random variable, then

F (t) =
∑

−∞<x≤�t�
pX(x)

where 
t� denotes the greatest integer less than or equal to t (also known as
the floor of t).

Several properties of FX(x) follow directly from its definition.

(F1) 0 ≤ F (x) ≤ 1 for −∞ < x < ∞. This follows because F (x) is a
probability.

(F2) F (x) is a monotone increasing function of x; that is, if x1 ≤ x2,
then F (x1) ≤ F (x2). This follows by first observing that the interval
(−∞, x1] is contained in the interval (−∞, x2] whenever x1 ≤ x2 and
hence

P (−∞ < X ≤ x1) ≤ P (−∞ < X ≤ x2).

That is, F (x1) ≤ F (x2).

(F3) limx→−∞F (x) = 0, and limx→∞F (x) = 1. If the random variable
X has a finite image, then F (x) = 0 for all x sufficiently small and
F (x) = 1 for all x sufficiently large.

(F4) F (x) has a positive jump equal to p
X

(xi) at i = 1, 2, . . . , and in
the interval [xi, xi+1) F (x) has a constant value. Thus

F (x) = F (xi) for xi ≤ x < xi+1

and
F (xi+1) = F (xi) + p

X
(xi+1).

It can be shown that any function F (x) satisfying properties (F1)–(F4) is the
distribution function of some discrete random variable.

We note that distribution functions of discrete random variables grow only
by jumps, whereas the distribution functions of continuous random variables
are continuous functions and hence have no jumps. A random variable X is
said to be of mixed type if its distribution function has both jumps as well
as continuous growth. In most practical situations, the random variable is
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S

P

pX (x) FX (x)

[0,1]

X

(family of events)

Figure 2.4. Domain and range of P , X, pmf, and CDF

either discrete or continuous. Therefore, we will study only these two cases in
detail. The domains and ranges of the four functions (the probability measure,
the random variable X, the pmf, and the CDF) we have studied so far are
summarized in Figure 2.4.

The cumulative distribution function contains most of the interesting infor-
mation about the underlying probability system and will be used extensively.
Often the concepts of sample space, event space, and probability measure,
which are fundamental in building the theory of probability, will fade into the
background, and functions such as the distribution function or the probability
mass function become the most important entities. It is important, neverthe-
less, to keep this background in mind. You will often see the statement “Let
X be a discrete random variable with pmf p

X
,” with no reference made to the

underlying probability space. We can always construct an appropriate space,
as follows. Take S = �; X(s) = s, for s ∈ S; F = union of the inverse images
of Ax of all the subsets x pertaining to the set of real numbers � and

P (A) =
∑
x∈A

p
X

(x)

for a subset, A, of �. In this case, the event space of the random variable X
is identical to the sample space defined above. Similarly, the statement, “Let
X be a discrete random variable with the CDF F ,” always makes sense.

Example 2.3

The CDF of the running example of the sequence of three Bernoulli trials is shown
in Figure 2.5. The properties (F1)—(F4) above are easily seen to hold.

�

2.5 SPECIAL DISCRETE DISTRIBUTIONS

In many theoretical and practical problems, several probability mass functions
appear frequently enough that they are worth exploring here.
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FX (x)

0.0
0.0 1.0 2.0 3.0 4.0 5.0–1.0

0.25

0.50

0.75

1.0

x

Figure 2.5. CDF of three Bernoulli trials

2.5.1 The Bernoulli pmf

The Bernoulli pmf is the density function of a discrete random variable X
having 0 and 1 as its only possible values; it originates from the experiment
consisting of a single Bernoulli trial. It is given by

p
X

(0) = p
0

= P (X = 0) = q,
p

X
(1) = p

1
= P (X = 1) = p,

where p + q = 1. The corresponding CDF is given by (see Figure 2.6)

F (x) =

⎧⎨
⎩

0 for x < 0,
q for 0 ≤ x < 1,
1 for x ≥ 1.

FX (x)

0.0–1.0 1.0

0.0

q

p+q=1

x

Figure 2.6. CDF of Bernoulli random variable
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2.5.2 The Binomial pmf

To generate the Bernoulli pmf, we considered a single Bernoulli trial. Now
we consider a sequence of n independent Bernoulli trials with the probability
of success equal to p on each trial. Let Yn denote the number of successes in
n trials. The domain of the random variable Yn is all the n-tuples of 0s and
1s, and the image is {0, 1, . . . , n}. The value assigned to a sample point (an
n-tuple) by Yn simply corresponds to the number of 1s in the n-tuple. As was
shown in Section 1.12, the pmf of Yn is

pk = P (Yn = k)

= p
Yn

(k)

=

{(
n
k

)
pk(1 − p)n−k for 0 ≤ k ≤ n,

0 otherwise.
(2.3)

This equation gives the probability of k successes in nindependent trials of an
experiment that has probability p of success on each trial. One of the more
important discrete densities in probability theory, this is called the binomial
density with parameters n and p, often denoted by b(k;n, p). An example of
b(k; 3, 0.5) was presented earlier in this chapter (see Figure 2.3).

It is easily verified using the binomial theorem that

n∑
i=0

p
i
=

n∑
i=0

(n

i

)
pi(1 − p)n−i

= [p + (1 − p)]n

= 1.

This is the reason for the term binomial pmf. We often refer to a random
variable Yn having a binomial pmf by saying that Yn has a binomial dis-
tribution (with parameters n and p if we want to be more precise). Similar
phraseology will be used for other random variables having a named density.
The distribution function of a binomial random variable will be denoted by
B(t;n, p) and is given by

B(t;n, p) = FYn
(t)

=
�t�∑
i=0

(n

i

)
pi(1 − p)n−i. (2.4)

The binomial distribution is applicable whenever a series of trials is made
satisfying the following conditions:
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1. Each trial has exactly two mutually exclusive outcomes, usually labeled
“success” and “failure.”

2. The probability of “success” on each trial is a constant, denoted by p.
The probability of “failure” is q = 1 − p.

3. The outcomes of successive trials are mutually independent.

A typical situation in which these conditions will apply (at least approxi-
mately) occurs when several components are selected at random (with replace-
ment) from a large batch of components and examined to see if there are any
defective components (i.e., failures). The number of defectives in a sample of
size n is a random variable, denoted by Yn, which is binomially distributed.

These assumptions constitute what is called a binomial model, which is
a typical example of a mathematical model in that it attempts to describe
a physical situation in mathematical terms. Models such as these depend on
one or more parameters that govern their behavior. The binomial model has
two parameters, n and p. If the values of model parameters are known, then
it is relatively easy to evaluate the probabilities of the events of interest.

We emphasize that the three properties listed above are assumptions
and need not always hold. We may wish to analyze empirically observed data,
and may hypothesize that the assumptions of the binomial model (or any
other such model) hold. This hypothesis needs to be tested and can be either
rejected or accepted on the basis of the test. Hypothesis testing is discussed
in Chapter 10.

Example 2.4

As an example of binomial distribution, consider a plant manufacturing VLSI (very

large-scale integrated circuit) chips, 10% of which are expected to be defective. The

quality control procedure consists of counting the number of defective chips in a

sample of size 35. Suppose after 800 applications of this procedure we find that our

experience is reflected in the following table. Although we do not expect exactly

10% defectives every time, are the observations consistent with our hypothesis that

10% are defective?

Number of samples Fraction (of 800 samples)

Number of showing this showing this number

defects number of defects of defects

0 11 0.01375

1 95 0.11875

2 139 0.17375

3 213 0.26625

4 143 0.17875

(continued overleaf )
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Number of samples Fraction (of 800 samples)

Number of showing this showing this number

defects number of defects of defects

5 113 0.14125

6 49 0.06125

7 27 0.03375

8 6 0.00750

9 4 0.00500

10 0 0.00000

800 1.00000

This situation is typical of those fitting a binomial model. “Success” is finding
a defective chip, and we are counting the number of successes in 35 trials. Since the
probability of success is p = 0.1, the observed fraction defective should be close to
the binomial pmf:

b(k; 35, 0.1) =

(
35

k

)
· 0.1k · 0.9(35−k).

The observed data and the binomial pmf are compared in the following table as well

as in Figure 2.7. In Chapter 10 we will study statistical tests that will allow us to

quantify the goodness of fit of the data presented above to the binomial model.

k = defects/sample Data b(k; 35, 0.1)

0 0.01375 0.0250

1 0.11875 0.0974

2 0.17375 0.1839

3 0.26625 0.2248

4 0.17875 0.1998

5 0.14125 0.1376

6 0.06125 0.0765

7 0.03375 0.0352

8 0.00750 0.0137

9 0.00500 0.0046

10 0.00000 0.0013

11 0.00000 0.0003

12 0.00000 0.0000

�

Example 2.5

The number of surviving components, Yn, out of a given number of n identical
and independent components has a binomial distribution B(k; n, R), where R is
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b (k; 35,0.1)
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Figure 2.7. Comparing the model pmf with data of Example 2.4

the reliability of a single component. Thus the reliability of an k-out-of-n system is
given by

Rk|n = P (“k or more components have not failed”)

= 1 −
k−1∑
i=0

p
Yn

(i)

= 1 − FYn
(k − 1)

=
n∑

i=k

(n

i

)
Ri(1 − R)(n−i). (2.5)

�

Example 2.6

While transmitting binary digits through a communication channel, the number of
digits received correctly, Cn, out of n transmitted digits has a binomial distribution
B(k; n, p), where p is the probability of successfully transmitting one digit. The
probability of exactly i errors is given by

Pe(i) = pCn
(n − i) =

(n

i

)
p(n−i)(1 − p)i,

and thus the probability of an error-free transmission is given by:

Pe(0) = pn.

�

Example 2.7

Now consider the logical link control (LLC) and medium access control (MAC)
protocol of a wireless communication system [DEME 1999]. When an LLC frame
is passed to the MAC layer, it is segmented into n MAC blocks of fixed size and
these n blocks are transmitted through the radio channel separately. Assume that
the automatic repeat request (ARQ) scheme is applied in case an error occurred
during the transmission. Let Pc(k) denote the probability that after the (k − 1)st
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MAC retransmission there are MAC blocks in error that are corrected by the kth
MAC retransmission. We are interested in the pmf of K, which is the number of
LLC transmissions required for the error free transmission of n MAC blocks.

Assume that the probability of successful transmission of a single block is p(> 0).
Then the probability Pc(1) that all n MAC blocks of an LLC frame are received
error-free at the first transmission is equal to

Pc(1) = pn,

where we assume that the transmission of MAC blocks are statistically indepen-
dent events. To calculate Pc(2), we note that 1 − (1 − p)2 is the probability that
a given MAC block is successfully received after two MAC retransmissions. Then,
(1 − (1 − p)2)n is the probability that the LLC frame is correctly received within
one or two transmissions. This yields

Pc(2) = [1 − (1 − p)2]n − pn.

Following the above approach, the general form of Pc(k) is

Pc(k) =
[
1 − (1 − p)k

]n
−
[
1 − (1 − p)k−1

]n
.

From above equation we have

lim
k→∞

Pc(k) = lim
k→∞

{[
1 − (1 − p)k

]n
−
[
1 − (1 − p)k−1

]n}
= 0 (2.6)

and ∞∑
k=1

{[
1 − (1 − p)k

]n
−
[
1 − (1 − p)k−1

]n}
= 1.

�

Example 2.8

Consider taking a random sample of 10 VLSI chips from a very large batch. If
no chips in the sample are found to be defective, then we accept the entire batch;
otherwise we reject the batch. The number of defective chips in a sample has the pmf
b(k; 10, p), where p denotes the probability that a randomly chosen chip is defective.
Thus

P (“No defectives”) = (1 − p)10

= probability that a batch is accepted.

If p = 0, the batch is certain to be accepted and if p = 1, the batch will certainly be
rejected. The expression for the probability of acceptance is plotted in Figure 2.8.

�

The student should not be misled by these examples into thinking that
quality control problems can always be solved by simply plugging numbers
into the binomial pmf.
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Figure 2.8. Probability of acceptance versus fraction defective

Example 2.9 (Simpson’s Reversal Paradox)

Consider two shipments (labeled I and II) of VLSI chips from each of the two
manufacturers A and B. Suppose that the proportion of defectives among the four
shipments are as follows:

On inspecting shipment I, the quality control engineer will find

P (selecting a defective chip from A) = 5
11

> P (selecting a defective chip from B) = 3
7
.

Inspection of shipment II yields

P (selecting a defective chip from A) = 6
9

> P (selecting a defective chip from B) = 9
14

.

The engineer will presumably conclude that the manufacturer B is sending better
chips than the manufacturer A. Suppose, however, that the engineer mixes the two
shipments from A together and similarly for B. A subsequent test leads him to a
reverse conclusion since

P (selecting a defective chip from A) = 11
20

< P (selecting a defective chip from B) = 12
21

.
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The problem here is that we are tempted to add the fractions 5
11

+ 6
9

and compare
the sum with 3

7
+ 9

14
; unfortunately, what is called for is adding numerators and

adding denominators, which is not the way we add fractions.

�

When n becomes very large, computation using the binomial formula
becomes unmanageable. In the limit as n approaches infinity, it can be shown
that

b(k;n, p)  1√
2π npq

· e−(k−np)2/(2npq). (2.7)

This is known as the Laplace (or normal) approximation to the binomial pmf
and the agreement between the two formulas depends on the values of n and
p. Take n = 5 and p = 0.5, then

Laplace approximation

k b(k; 5, 0.5) to b(k; 5, 0.5)

0 0.03125 0.02929

1 0.15625 0.14507

2 0.31250 0.32287

3 0.31250 0.32287

4 0.15625 0.14507

5 0.03125 0.02929

As p moves away from 0.5, larger values of n are needed. Larson [LARS 1974]
suggests that for n ≥ 10, if

9
n + 9

≤ p ≤ n

n + 9
,

then the Laplace formula provides a good approximation to the binomial pmf.
Other authors give different advice concerning when to use the normal

approximation. For example, Schader and Schmid [SCHA 1989] compared
the maximum absolute error in computing the cumulative binomial distribu-
tion function using the normal approximation with a continuity correction
(see Example 3.7). They consider the two rules for determining whether this
approximation should be used: np and n(1 − p) are both greater than 5, and
np(1 − p) > 9. Their conclusion is that the relationship between the maximum
absolute error and p is approximately linear when considering the smallest pos-
sible sample sizes to satisfy the rules. For more information, refer to Leemis
and Trivedi [LEEM 1996], Chapter 10 of this book and the Poisson pmf section
in this chapter. Yet another approximation to the binomial pmf is the Poisson
pmf, which we will study later.
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Owing to the importance of the binomial distribution, the binomial CDF

B(k;n, p) =
k∑

i=0

b(i;n, p)

has been tabulated for n = 2 to n = 49 by the National Bureau of Standards
[NBS 1950] and for n = 50 to n = 100 by Romig [ROMI 1953]. [In Appendix C,
we have tabulated B(k;n, p) for n = 2 to 20]. For larger values of n, we
recommend the use of the Mathematica [WOLF 1999] built-in function Bino-
mial[n,k]. Three different possible shapes of binomial pmf’s are illustrated in
Figures 2.9–2.11. If p = 0.5, the bar chart of the binomial pmf is symmet-
ric, as in Figure 2.9. If p < 0.5, then a positively skewed binomial pmf is
obtained (see Figure 2.10), and if p > 0.5 a negatively skewed binomial pmf
is obtained (see Figure 2.11). Here, a bar chart is said to be positively skewed
if the long “tail” is on the right, and it is said to be negatively skewed if the
long “tail” is on the left.

0

0.1

k

b(k)

1 2 3 4 5

0.2

0.3

n = 5, p = 0.5

0

Figure 2.9. Symmetric binomial pmf

0

0.1

k

b(k)

1

0.2

0.3
n = 10, p = 0.25

0
2 3 4 5 6 7 8 9 10

Figure 2.10. Positively skewed binomial pmf
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n = 10, p = 0.75

0
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b(k)

1

0.2

0.3

2 3 4 5 6 7 8 9 10
0

Figure 2.11. Negatively skewed binomial pmf

2.5.3 The Geometric pmf

Once again we consider a sequence of Bernoulli trials, but instead of counting
the number of successes in a fixed number n of trials, we count the number
of trials until the first “success” occurs. If we let 0 denote a failure and let 1
denote a success then the sample space of this experiment consists of the set
of all binary strings with an arbitrary number of 0s followed by a single 1:

S = {0i−11|i = 1, 2, 3, . . .}.

Note that this sample space has a countably infinite number of sample points.
Define a random variable Z on this sample space so that the value assigned
to the sample point 0i−11 is i. Thus Z is the number of trials up to and
including the first success. Therefore, Z is a random variable with image
{1, 2, . . .}, which is a countably infinite set. To find the pmf of Z, we note
that the event [Z = i] occurs if and only if we have a sequence of i − 1 failures
followed by one success. This is a sequence of independent Bernoulli trials
with the probability of success equal to p. Hence, we have

p
Z
(i) = qi−1p

= p(1 − p)i−1 for i = 1, 2, . . . , (2.8)

where q = 1 − p. By the formula for the sum of a geometric series, we have

∞∑
i=1

p
Z
(i) =

∞∑
i=1

pqi−1

=
p

1 − q

=
p

p

= 1.
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Any random variable Z with the image {1, 2, . . .} and pmf given by a for-
mula of the form of equation (2.8) is said to have a geometric distribution,
and the function given by (2.8) is termed a geometric pmf with parameter p.
The distribution function of Z is given by

FZ(t) =
�t�∑
i=1

p(1 − p)i−1

= 1 − (1 − p)�t� for t ≥ 0. (2.9)

Graphs of the geometric pmf for two different values of parameter p are
sketched in Figure 2.12.

The random variable Z counts the total number of trials up to and includ-
ing the first success. We are often interested in counting the number of failures
before the first success. Let this number be called the random variable X with
the image {0, 1, 2, . . .}. Clearly, Z = X + 1. The random variable X is said to
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Figure 2.12. Geometric pmf
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have a modified geometric pmf, specified by

p
X

(i) = p(1 − p)i for i = 0, 1, 2, . . . . (2.10)

The distribution function of X is given by

FX(t) =
�t�∑
i=0

p(1 − p)i

= 1 − (1 − p)�t+1� for t ≥ 0. (2.11)

The geometric (and modified geometric) distribution is encountered in
some problems in queuing theory. Following are several examples where this
distribution occurs:

1. A series of components is made by a certain manufacturer. The proba-
bility that any given component is defective is a constant p, which does
not depend on the quality of the previous components. The probability
that the ith item is the first defective one is given by formula (2.8).

2. Consider the scheduling of a computer system with a fixed time slice (see
Figure 18). At the end of a time slice, the program would have completed
execution with a probability p; thus there is a probability q = 1 − p > 0
that it needs to perform more computation. The pmf of the random vari-
able denoting the number of time slices needed to complete the execution
of a program is given by formula (2.8), if we assume that the operation
of the computer satisfies the usual independence assumptions.

3. Consider the following program segment consisting of a while loop:

while ¬ B do S

Assume that the Boolean expression B takes the value true with prob-
ability p and the value false with probability q. If the successive tests
on B are independent, then the number of times the body (or the state-
ment group S) of the loop is executed will be a random variable having
a modified geometric distribution with parameter p.

4. With the assumptions as in Example 3 above, consider a repeat loop:

repeat S until B

The number of times the body of the repeat loop is executed will be a
geometrically distributed random variable with parameter p.

The geometric distribution has an important property, known as the mem-
oryless property. Furthermore, it is the only discrete distribution with this
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property. To illustrate this property, consider a sequence of Bernoulli trials
and let Z represent the number of trials until the first success. Now assume
that we have observed a fixed number n of these trials and found them all to be
failures. Let Y denote the number of additional trials that must be performed
until the first success. Then Y = Z − n, and the conditional probability is

qi = P (Y = i|Z > n)

= P (Z − n = i|Z > n)

= P (Z = n + i|Z > n)

=
P (Z = n + i and Z > n)

P (Z > n)

by using the definition of conditional probability. But for i = 1, 2, 3, . . ., Z =
n + i implies that Z > n. Thus the event [Z = n + i and Z > n] is the same
as the event [Z = n + i]. Therefore

qi = P (Y = i|Z > n)

=
P (Z = n + i)

P (Z > n)

=
p

Z
(n + i)

1 − FZ(n)

=
pqn+i−1

1 − (1 − qn)

=
pqn+i−1

qn

= pqi−1

= p
Z
(i).

Thus we see that, conditioned on Z > n, the number of trials remaining until
the first success, Y = Z − n, has the same pmf as Z had originally. If a run of
failures is observed in a sequence of Bernoulli trials, we need not “remember”
how long the run was to determine the probabilities for the number of addi-
tional trials needed until the first success. The proof that any discrete random
variable Z with image {1, 2, 3, . . .} and having the memoryless property must
have the geometric distribution is left as an exercise.

2.5.4 The Negative Binomial pmf

To obtain the geometric pmf, we observed the number of trials until the first
success in a sequence of Bernoulli trials. Now let us observe the number of
trials until the rth success, and let Tr be the random variable denoting this
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number. It is clear that the image of Tr is {r, r + 1, r + 2, . . .}. To compute
pTr

(n), define the events:

A = “Tr = n.”
B = “Exactly r − 1 successes occur in n − 1 trials.”
C = “The nth trial results in a success.”

Then clearly
A = B ∩ C

and the events B and C are independent. Therefore

P (A) = P (B)P (C).

To compute P (B), consider a particular sequence of n − 1 trials with r − 1
successes and n − 1 − (r − 1) = n − r failures. The probability associated with

such a sequence is pr−1qn−r and there are
(

n − 1
r − 1

)
such sequences. Therefore

P (B) =
(

n − 1
r − 1

)
pr−1qn−r.

Now since P (C) = p,

pTr
(n) = P (Tr = n)

= P (A)

=
(

n − 1
r − 1

)
prqn−r

=
(

n − 1
r − 1

)
pr(1 − p)n−r, n = r, r + 1, r + 2, . . . .

Using some combinatorial identities [KNUT 1997; p. 57], an alternative form
of this pmf can be established:

pTr
(n) = pr

(
−r

n − r

)
(−1)n−r(1 − p)n−r, n = r, r + 1, r + 2, . . . . (2.12)

This pmf is known as the negative binomial pmf, and although we derived it
assuming an integral value of r, any positive real value of r is allowed (of course
the interpretation of r as a number of successes is no longer applicable). Quite
clearly, if we let r = 1 in the formula (2.12), then we get the geometric pmf.

To verify that
∑∞

n=r pTr
(n) = 1, we recall that the Taylor series expansion

of (1 − t)−r for −1 < t < 1 is

(1 − t)−r =
∞∑

n=r

(
−r

n − r

)
(−t)n−r.
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Substituting t = 1 − p, we have

p−r =
∞∑

n=r

(
−r

n − r

)
(−1)n−r(1 − p)n−r,

which gives us the required result.
As in the case of the geometric distribution, there is a modified version

of the negative binomial distribution. Let the random variable Z denote the
number of failures before the occurrence of the rth success. Then Z is said to
have the modified negative binomial distribution with the pmf:

p
Z
(n) =

(
n + r − 1

r − 1

)
pr(1 − p)n, n ≥ 0. (2.13)

The pmf in equation (2.13) reduces the modified geometric pmf when r = 1.

2.5.5 The Poisson pmf

Let us consider another problem related to the binomial distribution. Suppose
that we are observing the arrival of jobs to a large database server for the time
interval (0, t]. It is reasonable to assume that for a small interval of duration
Δt the probability of a new job arrival is λ · Δt, where λ is a constant that
depends upon the user population of the database server. If Δt is sufficiently
small, then the probability of two or more jobs arriving in the interval of
duration Δt may be neglected. We are interested in calculating the probability
of k jobs arriving in the interval of duration t.

Suppose that the interval (0, t] is divided into n subintervals of length
t/n, and suppose further that the arrival of a job in any given interval is
independent of the arrival of a job in any other interval. Then for a sufficiently
large n, we can think of the n intervals as constituting a sequence of Bernoulli
trials with the probability of success p = λt/n. It follows that the probability
of k arrivals in a total of n intervals each with a duration t/n is approximately
given by

b

(
k;n,

λt

n

)
=

(n

k

) (
λt

n

)k(
1 − λt

n

)n−k

, k = 0, 1, . . . , n.

Since the assumption that the probability of more than one arrival per interval
can be neglected is reasonable if and only if t/n is very small, we will take the
limit of the above pmf as n approaches ∞. Now

b

(
k;n,

λt

n

)
=

n(n − 1)(n − 2) . . . (n − k + 1)
k!nk

(λt)k ·
(

1 − λt

n

)(n−k)

=
n

n
· n − 1

n
· · · · · n − k + 1

n
· (λt)k

k!
·
(

1 − λt

n

)−k

·
(

1 − λt

n

)n

.
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We are interested in what happens to this expression as n increases, because
then the subinterval width approaches zero, and the approximation involved
gets better and better. In the limit as n approaches infinity, the first k factors
approach unity, the next factor is fixed, the next approaches unity, and the
last factor becomes

lim
n→∞

{[
1 − λt

n

]−n/(λt)
}−λt

.

Setting −λt/n = h, this factor is[
lim
h→0

(1 + h)1/h

]−λt

= e−λt,

since the limit in the brackets is the common definition of e. Thus, the binomial
pmf approaches

e−λt(λt)k

k!
, k = 0, 1, 2, . . . .

Now replacing λt by a single parameter α, we get the well-known Poisson pmf:

f(k;α) = e−α αk

k!
, k = 0, 1, 2, . . . . (2.14)

Thus the Poisson pmf can be used as a convenient approximation to the
binomial pmf when n is large and p is small:

(n

k

)
pkqn−k  e−α αk

k!
, where α = np.

An acceptable rule of thumb is to use the Poisson approximation for bino-
mial probabilities if n ≥ 20 and p ≤ 0.05. The table that follows compares
b(k; 5, 0.2) and b(k; 20, 0.05) with f(k; 1). Observe that the approximation is
better in the case of larger n and smaller p.

k b(k; 5, 0.2) b(k; 20, 0.05) f(k; 1)

0 0.328 0.359 0.368

1 0.410 0.377 0.368

2 0.205 0.189 0.184

3 0.051 0.060 0.061

There are other recommendations from different authors concerning which
values of n and p are appropriate. Normal approximation was introduced
earlier in this chapter as one way to approximate the binomial pmf. It is
useful when n is large and p ≈ 1/2. The Poisson approximation, although less
popular, is good for large values of n and small values of p.



Trim Size: 6.125in x 9.25in 60Trivedi c02.tex V3 - 05/23/2016 11:53am Page 89�

� �

�

2.5 SPECIAL DISCRETE DISTRIBUTIONS 89

Besides errors in computing binomial probabilities, if the approximation
is used in parameter estimation as in Chapter 10, the effect of approxima-
tion on the confidence interval should also be considered when using these
approximations [LEEM 1996].

Example 2.10

A manufacturer produces VLSI chips, 1% of which are defective. Find the probability
that in a box containing 100 chips, no defectives are found.

Since n = 100 and p = 0.01, the required answer is

b(0; 100, 0.01) =

(
100

0

)
· 0.010 · 0.99100

= 0.99100

= 0.366.

Using the Poisson approximation, α = 100 · 0.01 = 1, and the required answer is

f(0; 1) = e−1

= 0.3679.

�

It is easily verified that the probabilities from equation (2.14) are nonneg-
ative and sum to 1:

∞∑
k=0

f(k;α) =
∞∑

k=0

αk

k!
e−α

= e−α
∞∑

k=0

αk

k!

= e−α · eα

= 1.

The probabilities f(k;α) are easy to calculate, starting with

f(0;α) = e−α

and using the recurrence relation

f(k + 1;α) =
αf(k;α)

k + 1
. (2.15)

For very large values of α, special care is necessary to avoid numerical problems
in computing Poisson pmf. Fox and Glynn have published an algorithm that
is recommended for this purpose [FOX 1988].
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Figure 2.13. Poisson pmf

The Poisson probabilities have been tabulated [PEAR 1966]for α = 0.1 to
15, in the increments of 0.1 (in Appendix C, we have tabulated the Poisson
CDF). In Figure 2.13, we have plotted the Poisson pmf with parameters α = 1
and α = 4. Note that this pmf is positively skewed; in fact, it can be shown
that the Poisson pmf is positively skewed for any α > 0.

Apart from its ability to approximate a binomial pmf, the Poisson pmf
is found to be useful in many other situations. In reliability theory, it is
quite reasonable to assume that the probability of k components malfunc-
tioning within an interval of time t in a system with a large number of
components is given by the Poisson pmf (here λ is known as the component
failure rate):

f(k;λt) = e−λt (λt)k

k!
, k = 0, 1, 2, . . . . (2.16)
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In studying systems with congestion (or queuing), we find that the number
of jobs arriving, the number of jobs completing service, or the number of
messages transmitted through a communication channel in a fixed interval of
time is approximately Poisson distributed.

2.5.6 The Hypergeometric pmf

We have noted earlier that the binomial pmf is obtained while “sampling with
replacement.” The hypergeometric pmf is obtained while “sampling without
replacement.” Let us select a random sample of m components from a box
containing n components, d of which are known to be defective. For the first
component selected, the probability that it is defective is given by d/n, but
for the second selection it remains d/n only if the first component selected is
replaced. Otherwise, this probability is (d − 1)/(n − 1) or d/(n − 1) depending
on whether or not a defective component was selected in the first drawing.
Thus the assumption of a constant probability of success, as in a sequence of
Bernoulli trials, is not satisfied.

We are interested in computing the hypergeometric pmf, h(k;m, d, n),
defined as the probability of choosing k defective components in a random
sample of m components, chosen without replacement, from a total of n com-
ponents, d of which are defective. The sample space of this experiment consists
of (n

m) sample points. The k defectives can be selected from d defectives in (d
k)

ways, and the m − k non-defective components may be selected from n − d
non-defectives in (n−d

m−k) ways. Therefore, the whole sample of m components
with k defectives can be selected in (d

k) · (n−d
m−k) ways. Assuming an equiprob-

able sample space, the required probability is

h(k;m, d, n) =

(
d

k

)
·
(

n − d

m − k

)
( n

m

) , k = 0, 1, 2, . . . , min{d,m}. (2.17)

Example 2.11

Compute the probability of obtaining three defectives in a sample of size 10 taken
without replacement from a box of twenty components containing four defectives.

We are required to compute

h(3; 10, 4, 20) =

(
4

3

)
·
(

16

7

)
(

20

10

)

=
4 · 11, 440

184, 756

= 0.247678.
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If we were to approximate this probability using a binomial distribution with n = 10
and p = 4/20 = 0.20, we will get b(3; 10, 0.20) = 0.2013, a considerable underesti-
mate of the actual probability.

�

Example 2.12

Return to the TDMA (time division multiple access) wireless system example
from Chapter 1 [SUN 1999], where the base transceiver system of each cell has
n base repeaters [also called base radio (BR)]. Each base repeater provides m
time-division-multiplexed channels.

A base repeater is subject to failure. Suppose the channels are allocated ran-
domly to the users. Denote the total number of talking channels in the whole system
as k when the failure occurs. Then the probability that i talking channels reside in
the failed base repeater, is given by p

i
= h(i; k, m,mn).

�

Example 2.13

A software reliability growth model for estimating the number of residual faults
in the software after testing phase based on hypergeometric distribution has been
proposed [TOHM 1989].

During the testing phase a software is subjected to a sequence of test instances
ti, i = 1, 2, . . . n. Faults detected by each test instance are assumed to have been
removed without introducing new faults before the next test instance is exercised.
Assume that the total number of faults initially introduced into the software is m.
The test instance ti senses wi initial faults out of m initial faults. The sensitization
of the faults is distinguished from the detection of the faults in the following way.
The number of faults detected by the first test instance t1 is obviously w1. However,
the number of faults detected by t2 is not necessarily w2, because some faults may
be removed already in t1. Similarly, faults detected by t3 are those that are not yet
sensed by t1 and t2.

If the number of faults detected by ti is denoted by Ni then the cumulative
number of faults detected by test instances from t1 to ti is given by the random
variable:

Ci =
i∑

j=1

Nj ;

that is, the number of faults still remaining undetected in the software after the test
instance ti is m − Ci. It follows that the probability that k faults are detected by
the test instance ti+1 given that ci faults are detected by test instances t1 through
ti is

P (Ni+1 = k) = h(k; wi+1, m − ci, m) =

(m − ci

k

)( ci

wi+1 − k

)
(

m

wi+1

) .

�

In situations where the sample size m is small compared to the lot size n,
the binomial distribution provides a good approximation to the hypergeomet-
ric distribution; that is, h(k;m, d, n)  b(k;m, d/n) for large n.
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2.5.7 The Discrete Uniform pmf

Let X be a discrete random variable with a finite image {x1, x2, . . . , xn}. One
of the simplest pmf’s to consider in this case is one in which each value in the
image has equal probability. If we require that p

X
(xi) = p for all i, then, since

1 =
n∑

i=1

p
X

(xi) =
n∑

i=1

p = np,

it follows that

p
X

(xi) =

{
1
n xi in the image of X,

0 otherwise.

Such a random variable is said to have a discrete uniform distribution.
This distribution plays an important role in the theory of random numbers
and its applications to discrete event simulation. In the average-case analysis
of programs, it is often assumed that the input data are uniformly distributed
over the input space.

Note that the concept of uniform distribution cannot be extended to a
discrete random variable with a countably infinite image, {x1, x2, . . .}. The
requirements that

∑
ipX

(xi) = 1 and p
X

(xi) = constant (for i = 1, 2, . . .) are
incompatible.

If we let X take on the values {1, 2, . . . , n} with p
X

(i) = 1/n, 1 ≤ i ≤ n,
then its distribution function is given by

FX(x) =
�x�∑
i=1

p
X

(i)

=

x�
n

, 1 ≤ x ≤ n.

A graph of this distribution with n = 10 is given in Figure 2.14.
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Figure 2.14. Discrete uniform distribution
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2.5.8 Constant Random Variable

For a real number c, the function X defined by X(s) = c for all s in S is a
discrete random variable. Clearly, P (X = c) = 1. Therefore the pmf of this
random variable is given by

p
X

(x) =
{

1 if x = c,
0 otherwise.

Such a random variable is called a constant random variable.
The distribution function of X is given by

FX(x) =
{

0 for x < c,
1 for x ≥ c,

and is shown in Figure 2.15.

2.5.9 Indicator Random Variable

Assume that event A partitions the sample space S into two mutually exclusive
and collectively exhaustive subsets, A and A. The indicator of event A is a
random variable IA defined by

IA(s) =
{

1, if s ∈ A,
0, if s ∈ A.

Then event A occurs if and only if IA = 1. This may be visualized as in
Figure 2.16. The pmf of IA is given by

p
IA

(0) = P (A)

= 1 − P (A)

and
p

IA
(1) = P (A).

0

1

x

FX (x)

c

Figure 2.15. CDF of constant random variable
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{ 0 , 1 }

S

AA

Figure 2.16. Indicator random variable

The concept of the indicator function in certain cases allows us to make
efficient computations, without a detailed knowledge of distribution functions.
This is quite useful, particularly in cases where the distribution is difficult to
calculate. Now if X is a Bernoulli random variable with parameter p and
image {0, 1}, then X is the indicator of the event

A = {s|X(s) = 1}
and

p
X

(0) = P (A)

= 1 − P (A)

= 1 − p
and

p
X

(1) = P (A)

= p.

Problems

1. Show that the limit as k → ∞ of Pc(k) is zero in equation (2.6).

2. Out of a job population of ten jobs with six jobs of class 1 and four of class 2, a
random sample of size n is selected. Let X be the number of class 1 jobs in the
sample. Calculate the pmf of X if the sampling is (a) without replacement, (b)
with replacement.

3. A mischievous student wants to break into a computer file, which is
password-protected. Assume that there are n equally likely passwords, and
that the student chooses passwords independently and at random and tries
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them. Let Nn be the number of trials required to break into the file. Determine
the pmf of Nn (a) if unsuccessful passwords are not eliminated from further
selections, and (b) if they are.

4. A telephone call may pass through a series of trunks before reaching its destina-
tion. If the destination is within the caller’s own local exchange, then no trunks
will be used. Assume that the number of trunks used, X, is a modified geometric
random variable with parameter p. Define Z to be the number of trunks used
for a call directed to a destination outside the caller’s local exchange. What
is the pmf of Z? Given that a call requires at least three trunks, what is the
conditional pmf of the number of trunks required?

5. Assume that the probability of error-free transmission of a message over a
communication channel is p. If a message is not transmitted correctly, a retrans-
mission is initiated. This procedure is repeated until a correct transmission
occurs. Such a channel is often called a feedback channel. Assuming that
successive transmissions are independent, what is the probability that no retrans-
missions are required? What is the probability that exactly two retransmissions
are required?

6. One percent of faults occurring in a highly available system need the actual
repair or replacement of component(s) while the remaining 99% are cleared by
a reboot. Find the probability that among a sample of 200 faults there are no
faults that require calling the repair person. (Hint: You may use the Poisson
approximation to the binomial distribution.)

7. Five percent of the disk controllers produced by a plant are known to be defec-
tive. A sample of 15 controllers is drawn randomly from each month’s production
and the number of defectives noted. What proportion of these monthly samples
would have at least two defective controllers?

8. The probability of error in the transmission of a bit over a communication chan-
nel is p = 10−4. What is the probability of more than three errors in transmitting
a block of 1000 bits?

9. Assume that the number of messages input to a communication channel in an
interval of duration t seconds is Poisson distributed with parameter 0.3t. Com-
pute the probabilities of the following events:

(a) Exactly three messages will arrive during a 10 s interval

(b) At most 20 messages arrive in a period of 20 s

(c) The number of message arrivals in an interval of 5 s duration is between
three and seven.

10. VLSI chips, essential to the running of a computer system, fail in accordance
with a Poisson distribution with the rate of one chip in about 5 weeks. If there
are two spare chips on hand, and if a new supply will arrive in 8 weeks, what is
the probability that during the next 8 weeks the system will be down for a week
or more, owing to a lack of chips?
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2.6 ANALYSIS OF PROGRAM MAX

We will now apply some of the techniques of the preceding sections to the
analysis of a typical algorithm. Given an array of n elements, B[0], B[1], . . . ,
B[n − 1], we will find m and j such that m = B[j] = max{B[k] | 0 ≤ k ≤ n −
1}, and for which j is as large as possible. In other words, the C program
MAX, shown below, finds the largest element in the given array B. Our
discussion here closely parallels that in [KNUT 1997].

#define n 100

MAX()
{

int j, k, m;
int B[n];

j = n-1; k = n - 2; m = B[n-1];
while (k >= 0) {
if (B[k] > m) {

j = k;
m = B[k];

}
k = k - 1;

}
printf(‘‘%d, %d \n’’, j, m);

}

There are at least two aspects of the analysis of an algorithm: the storage
space required and the execution time. Since the storage space required by the
program MAX is fixed, we will analyze only the time required for its execution.
The execution time depends, in general, on the machine on which it is exe-
cuted, the compiler used to translate the program, and the input data supplied
to it. We are interested in studying the effect of the input data on the execution
time. It is convenient to abstract and study the frequency counts for each of the
steps. In this way, we need not consider the details of the machine and the com-
piler used. Counting the number of times each step is executed is facilitated by
drawing a flowchart as in Figure 2.17. Noting that the amount of flow into each
node must equal the amount of flow out of the node, we obtain the following
table:
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1 1

1 Yes

NoM2:
All tested

M1:
Initialization

M3:
Compare

M4:
Change m

M5:
Decrease k

M6:
Output  result

X

 > B[k] -1-

n -1

n X

n-1

m

Figure 2.17. Flowchart of MAX

Step number Frequency count Number of statements

M1 1 3

M2 n 1

M3 n − 1 1

M4 X 2

M5 n − 1 1

M6 1 1

This table gives us the information necessary to determine the execution time
of program MAX on a given computer. In this table, everything except the
quantity X is known. Here X is the number of times we must change the
value of the current maximum. The value of X will depend on the pattern of
numbers constituting the elements of the array B. As these sets of numbers
vary over some specified set, the value of X will also change. Each such pattern
of numbers may be considered a sample point with a fixed assigned probability.
Then X may be thought of as a random variable over the sample space. We
are interested in studying the distribution of the random variable X for a
given assignment of probabilities over the sample space.

Clearly, the image of the random variable X is {0, 1, . . . , n − 1}. The mini-
mum value of X occurs when B[n − 1] = max{B[k] | 0 ≤ k ≤ n − 1}, and the
maximum value of X occurs when B[0] > B[1] > · · · > B[n − 1].

To simplify our analysis, we will assume that the B[k] are distinct val-
ues. Furthermore, without a loss of generality, assume that the vector of
elements (B[0], B[1], . . . , B[n − 1]) is any one of n! permutations of the inte-
gers {1, 2, . . . , n}. Thus the sample space Sn is the set of all permutations of
the n integers {1, 2, . . . , n}. Finally, we assume that all n! permutations are
equally likely. Therefore, for all s in Sn, P (s) = 1/n!. We may define the ran-
dom variable Xn as a function with domain Sn and the image {0, 1, . . . , n − 1}.
As n changes, we have a sequence of random variables X1,X2, . . . , where Xi

is defined on the sample space Si.
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The probability mass function of Xn, pXn
(k), will be denoted by pnk . Then

pnk = P (Xn = k)

=
number of permutations of n objects for which Xn = k

n!
.

We will establish a recurrence relation for pnk .
Consider a sample point s = (b1, b2, . . . , bn), a permutation on

{1, 2, . . . , n}, and consider two mutually exclusive and collectively exhaustive
events:

A = “b1 = n ”

and
A = “b1 �= n ”.

If event A occurs, then a comparison with b1 (in program MAX) will force
a change in the value of m. Therefore the value obtained for Xn will be
one higher than a similar value obtained while examining the previous n − 1
elements (b2, . . . , bn). Note that (b2, . . . , bn) is a permutation on {1, 2, . . . ,
n − 1}. Therefore the number of times the value of m gets changed while
examining (b2, . . . , bn) is Xn−1. From these observations, we conclude that

P (Xn = k|A) = P (Xn−1 = k − 1)

= pn−1,k−1.

On the other hand, the occurrence of event A implies that the count of
exchanges does not change when we examine b1:

P (Xn = k|A) = P (Xn−1 = k)

= pn−1,k.

Now, by the assumption of equiprobable sample space, we have P (A) = 1/n
and P (A) = (n − 1)/n. Then by the theorem of total probability, we conclude
that

pnk = P (Xn = k)

= P (Xn = k|A)P (A) + P (Xn = k|A)P (A)

=
1
n

pn−1,k−1 +
n − 1

n
pn−1,k. (2.18)

This equation will allow us to recursively compute pnk if we provide the initial
conditions. Since the image of Xn is {0, 1, . . . , n − 1}, we know that pnk = 0
if k < 0. Next consider the random variable X1. With n = 1, we observe that
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the while loop in program MAX will never be executed. Therefore X1 = 0;
that is, X1 is a constant random variable, with P (X1 = 0) = p1,0 = 1 and
P (X1 = 1) = p1,1 = 0. Thus the complete specification to evaluate pnk is

p1,0 = 1,

p1,1 = 0,

pnk =

⎧⎨
⎩

1
npn−1,k−1 + n−1

n pn−1,k, 0 ≤ k ≤ n − 1, n ≥ 2,

0, otherwise.
(2.19)

Generating functions are a convenient tool for evaluation of quantities
defined by such recurrence relations. In the context of discrete random vari-
ables, these functions will be referred to as probability generating func-
tions (PGFs). They will be discussed in the next section. For the moment,
let us study the pmf of the random variable X2. The image of X2 is {0, 1},
and from the preceding recurrence relation,

p2,0 = 1/2 and p2,1 = 1/2.

Thus X2 is a Bernoulli random variable with the parameter p = 1/2.
Another quantity of interest is the probability pn0 = P (Xn = 0). From the

preceding recurrence relation

pn0 =
1
n

pn−1,−1 +
n − 1

n
pn−1,0

=
n − 1

n
pn−1,0

=
n − 1

n
· n − 2
n − 1

· · · 1
2
p1,0

=
(n − 1)!

n!

=
1
n

.

Alternatively, this result could be obtained by observing that no changes to the
value of m will be required if bn = B[n] = n, since m will be set equal to the
largest value n before entering the while loop. Now out of n! permutations,
(n − 1)! of them have bn = n, therefore we get the required result.

Problems

1. Explicitly determine the pmf of random variable X3, the number of exchanges
in program MAX with array size n = 3.
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2.7 THE PROBABILITY GENERATING FUNCTION

The notion of probability generating functions (PGFs) is a convenient tool
that simplifies computations involving integer-valued, discrete random vari-
ables. Given a nonnegative integer-valued discrete random variable X with
P (X = k) = p

k
, define the PGF of X by

GX(z) =
∞∑

i=0

p
i
zi

= p
0
+ p

1
z + p

2
z2 + · · · + p

k
zk + · · · .

GX(z), also known as the z-transform of X, converges for any complex number
z such that |z| < 1. It may be easily verified that

GX(1) = 1 =
∞∑

i=0

p
i
.

In many problems we will know the PGF GX(z), but we will not have explicit
knowledge for the pmf of X. Later we will see that we can determine inter-
esting quantities such as the mean and variance of X from the PGF itself.
One reason for this is found in the following theorem, which we quote without
proof.

THEOREM 2.1. If two discrete random variables X and Y
have the same PGFs, then they must have the same distributions
and pmf’s.

If we can show that a random variable that is under investigation has the same
PGF as that of another random variable with a known pmf, then this theorem
assures us that the pmf of the original random variable must be the same.

Continuing with our analysis of program MAX, define the PGF of Xn as

GXn
(z) =

∑
k≥0

pnk · zk.

GXn
(z) is actually a polynomial, even though an infinite sum is specified for

convenience. From equation (2.19), we have

GX1
(z) = p1,0 + p1,1 · z

= 1.

Multiplying the recurrence relation (2.18) by zk and summing for k = 1 to
infinity, we obtain∑

k≥1

pnk · zk =
z

n

∑
k≥1

pn−1,k−1 · zk−1 +
n − 1

n

∑
k≥1

pn−1,k · zk.
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Thus
GXn

(z) − pn0 =
z

n
GXn−1

(z) +
n − 1

n
[GXn−1

(z) − pn−1,0].

Noting that pn0 = 1/n and simplifying, we get

GXn
(z) =

(z + n − 1)
n

GXn−1
(z)

=
(z + n − 1)

n
· (z + n − 2)

n − 1
· · · · · (z + 1)

2
GX1

(z)

=
(z + n − 1)(z + n − 2) · · · (z + 1)

n!
. (2.20)

To obtain an explicit expression for pnk , we must expand GXn
(z) into a

power series of z. Stirling numbers of the first kind, denoted by
[

n
k

]
, can be

used for this purpose. Stirling numbers are defined by [KNUT 1997, p. 65]:

x(x − 1) · · · (x − n + 1) =
[ n

n

]
xn −

[
n

n − 1

]
xn−1

+ · · · + (−1)n
[ n

0

]
=

n∑
k=0

(−1)n−k
[ n

k

]
xk.

Substituting x = −z in this formula, we get

z(z + 1) · · · (z + n − 1) =
n∑

k=0

[ n

k

]
zk.

Then, using (2.20), we have

GXn
(z) =

(z + 1)(z + 2) · · · (z + n − 1)
n!

=
1
n!

n∑
k=0

[ n

k

]
zk−1.

Therefore

pnk =

[
n

k + 1

]
n!

. (2.21)

Thus the pmf of the random variable Xn is described by the Stirling numbers
of the first kind.

At this point it is useful to derive the PGFs of some of the distributions
studied in Section 2.5. When the random variable X is understood, we will
use the abbreviated notation G(z) for its PGF.
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1. The Bernoulli random variable

G(z) = qz0 + pz1

= q + pz

= 1 − p + pz . (2.22)

2. The binomial random variable

G(z) =
n∑

k=0

(n

k

)
pk(1 − p)n−kzk

= (pz + 1 − p)n. (2.23)

3. The modified geometric random variable

G(z) =
∞∑

k=0

p(1 − p)kzk

=
p

1 − z(1 − p)
. (2.24)

4. The Poisson random variable

G(z) =
∞∑

k=0

αk

k!
e−αzk

= e−αeαz

= eα(z−1)

= e−α(1−z). (2.25)

5. The uniform random variable

G(z) =
n∑

k=1

1
n

zk

=
1
n

n∑
k=1

zk. (2.26)

6. The constant random variable. Let X = i for some 0 ≤ i < ∞; then

G(z) = zi. (2.27)
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7. The indicator random variable. Let P (IA = 0) = P (A) = 1 − p and
P (IA = 1) = P (A) = p; then

G(z) = (1 − p)z0 + pz

= 1 − p + pz

= P (A) + P (A)z. (2.28)

Problems

1. Let X denote the execution time of a job rounded to the nearest second. The
charges are based on a linear function Y = mX + n of the execution time for
suitably chosen nonnegative integers m and n. Given the PGF of X, find the
PGF and pmf of Y .

2. Show that the PGF of a geometric random variable with parameter p is given by
pz/(1 − qz ), where q = 1 − p.

3. Let X be a negative binomial random variable with parameters n, p, and r. Show
that its PGF is given by [

p z

1 − z(1 − p)

]r

.

2.8 DISCRETE RANDOM VECTORS

Often we may be interested in studying relationships between two or more
random variables defined on a given sample space. For example, consider a
program consisting of two modules with execution times X and Y , respec-
tively. Since the execution times will depend on input data values and since the
execution times will be discrete, we may assume that X and Y are discrete ran-
dom variables. If the program is organized such that two modules are executed
serially, one after the other, then the random variable Z1 = X + Y gives the
total execution time of the program. Alternatively, if the program’s two mod-
ules were to execute independently and concurrently, then the total program
execution time will be given by the random variable Z2 = max{X,Y }, and the
time until the completion of the faster module is given by Z3 = min{X,Y }.

Let X1,X2, . . . , Xr be r discrete random variables defined on a sample
space S. Then, for each sample point s in S, each of the random variables
X1,X2, . . . , Xr takes on one of its possible values, as

X1(s) = x1,X2(s) = x2, . . . , Xr(s) = xr.

The random vector X = (X1,X2, . . . , Xr) is an r-dimensional vector-valued
function X : S → �r with X (s) = x = (x1, x2, . . . , xr). Thus, a discrete
r-dimensional random vector X is a function from S to �r taking on a finite
or countably infinite set of vector values x 1,x 2, . . ..
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Definition (Joint pmf). The compound (or joint) pmf for a ran-
dom vector X is defined to be

p
X
(x ) = P (X = x )

= P (X1 = x1,X2 = x2, . . . , Xr = xr).

As in the one-dimensional case, the compound pmf has the following four
properties:

(j1) p
X
(x ) ≥ 0, x ∈ �r.

(j2) {x | p
X
(x ) �= 0} is a finite or countably infinite subset of �r, which

will be denoted by {x 1,x 2, . . .}.
(j3) P (X ∈ A) =

∑
x∈A

p
X
(x ).

(j4)
∑
i

p
X
(x i) = 1.

It can be shown that any real-valued function defined on �r having these
four properties is the compound pmf of some discrete r-dimensional random
vector.

Let us now consider a program with two modules, having module execution
times X and Y , respectively. The images of the discrete random variables X
and Y are given by {1, 2} and {1, 2, 3, 4}. The compound pmf is described by
the following table:

y=1 y=2 y=3 y=4

x=1 1
4

1
16

1
16

1
8

x=2 1
16

1
8

1
4

1
16

Each possible event [X = x, Y = y] can be pictured as an event point on an
(x, y) coordinate system with the value p

X,Y
(x, y) indicated as a bar perpen-

dicular to the (x, y) plane above the event point (x, y). This can be visualized
as in Figure 2.18, where we indicate the value p

X,Y
(x, y) associated with each

event by writing it beside the event point (x, y).
In situations where we are concerned with more than one random variable,

the pmf of a single variable, such as p
X

(x), is referred to as a marginal pmf.
Since the eight events shown in Figure 2.18 are collectively exhaustive and
mutually exclusive, the marginal pmf is

p
X

(x) = P (X = x)

= P (
⋃
j

{X = x, Y = yj})



Trim Size: 6.125in x 9.25in 60Trivedi c02.tex V3 - 05/23/2016 11:53am Page 106�

� �

�

106 DISCRETE RANDOM VARIABLES

1 2

1

2

3

4

Y

X

Joint pmf values:

1
4

1
8

 1
16

Figure 2.18. Joint pmf for two-module execution problem

=
∑

j

P (X = x, Y = yj)

=
∑

j

p
X,Y

(x, yj).

In other words, to obtain the marginal pmf pX(x), we erect a vertical column
at X = x and sum the probabilities of all event points touched by the column.
Similarly

p
Y
(y) =

∑
i

p
X,Y

(xi, y).

In the preceding example, we get

p
X

(1) = 1
2 , p

X
(2) = 1

2 , p
Y
(1) = 5

16 ,

p
Y
(2) = 3

16 , p
Y
(3) = 5

16 , p
Y
(4) = 3

16 .

Check that
2∑

i=1

p
X

(i) = 1 and
4∑

i=1

p
Y
(i) = 1.

The preceding formulas for computing the marginal pmf’s from the compound
pmf can be easily generalized to the r-dimensional case.

We have seen that the task of obtaining the marginal pmf’s from the
compound pmf is relatively straightforward. Note that given the marginal
pmf’s, there is no way to go back, in general, to determine the compound pmf.
However, an exception occurs when the random variables are independent.
The notion of independence of random variables will be developed in the
next section.
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Example 2.14

Let X and Y be two random variables, each with image {1, 2} and with the com-
pound pmf:

p
X,Y

(1, 1) = p
X,Y

(2, 2) = a,

p
X,Y

(1, 2) = p
X,Y

(2, 1) = 1
2
− a, for 0 ≤ a ≤ 1

2
.

It is easy to see that p
X

(1) = p
X

(2) = p
Y

(1) = p
Y

(2) = 1
2
, whatever be the value of

a. Thus, we have uncountably many distinct compound pmf’s associated with the
same marginal pmf’s.

�

An interesting example of a compound pmf is the multinomial pmf,
which is a generalization of the binomial pmf. Consider a sequence of n gener-
alized Bernoulli trials where there are a finite number r of distinct outcomes
having probabilities p1, p2, . . . , pr where

∑r
i=1 pi = 1. Define the random vec-

tor X = (X1,X2, . . . , Xr) such that Xi is the number of trials that resulted
in the ith outcome. Then the compound pmf of X is given by

p
X
(n) = P (X1 = n1,X2 = n2, . . . , Xr = nr)

=
(

n

n1n2 · · ·nr

)
pn1
1 pn2

2 · · · pnr
r , (2.29)

where n = (n1, n2, . . . , nr)and
∑r

i=1 ni = n. The marginal pmf of Xi may be
computed by

p
Xi

(ni) =
∑

n:
∑

j �=inj=n−ni

(
n

n1n2 · · ·nr

)
pn1
1 pn2

2 · · · pnr
r

=
n!pni

i

(n − ni)!(ni)!

∑
∑

j �=inj=n−ni

(n − ni)!p
n1
1 · · · pni−1

i−1 p
ni+1
i+1 · · · pnr

r

n1!n2! · · ·ni−1!ni+1! · · ·nr!

=
(

n

ni

)
pni

i (p1 + · · · + pi−1 + pi+1 + · · · + pr)
n−ni

=
(

n

ni

)
pni

i (1 − pi)
n−ni .

Thus the marginal pmf of each Xi is binomial with parameters n and pi.
Many practical situations give rise to a multinomial distribution. For

example, a program requires I/O service from device i with probability pi

at the end of a CPU burst, with
∑r

i=1 pi = 1. This situation is depicted in
Figure 2.19. If we observe n CPU burst terminations, then the probability
that ni of these will be directed to I/O device i (for i = 1, 2, . . . , r) is given
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CPU

k

p1

p2

pk
I/O

I/O 1

I/O 2

Figure 2.19. I/O queuing at the end of a CPU burst

by the multinomial pmf. Now, if we are just interested in the number of I/O
requests (out of n) directed to a specific device j, then it has a binomial dis-
tribution with parameters n and pj . We may also replace the phrase “I/O
device” by “file” in this example. Another example of a multinomial distri-
bution occurs when we consider a paging system (or cache memory) and we
model a program using the independent reference model (see Chapter 7).
In this model, we assume that successive page references (or memory refer-
ences) are independent and the probability of referencing page (or memory
block) i is fixed at pi.

Example 2.15

An inspection plan calls for inspecting five chips and for either accepting each chip,
rejecting each chip, or submitting it for reinspection, with probabilities of p1 = 0.70,
p2 = 0.20, p3 = 0.10, respectively. What is the probability that all five chips must
be reinspected? What is the probability that none of the chips must be reinspected?
What is the probability that at least one of the chips must be reinspected?

Let X = number of chips accepted, Y = number of chips rejected; then the
remaining Z = 5 − X − Y are sent for reinspection. The compound pmf is

p
X,Y,Z

(i, j, k) =
5!

i! j! k!
· 0.7i · 0.2j · 0.1k.

The answer to the first question is pX,Y,Z(0, 0, 5) = 10−5. The second question per-
tains to the event

[X + Y = 5] = {s|X(s) + Y (s) = 5}

=
⋃

i+j=5

{s|X(s) = i and Y (s) = j and Z(s) = 0}
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and therefore

P (X + Y = 5) =
∑

i+j=5

p
X,Y,Z

(i, j, k)

=
∑

i+j=5

5!

i! j!
pi
1p

j
2p

0
3

=

5∑
i=0

(
5

i

)
pi
1p

5−i
2

= (p1 + p2)
5

= (0.7 + 0.2)5

= 0.59.

To answer the third question, note that the event {“at least one chip reinspected”}
= S− {“none reinspected”}, but P (“none reinspected”) = P (X + Y = 5) = 0.59.
Therefore, the required answer is

1 − 0.59 = 0.41.

�

Problems

1. Two discrete random variables X and Y have joint pmf given by the following
table:

Compute the probability of each of the following events:

(a) X ≤ 1 1
2
.

(b) X is odd.

(c) XY is even.

(d) Y is odd given that X is odd.

2. Each telephone call passes through a number of switching offices before reaching
its destination. The number and types of switching offices in the United States
in 1971 were estimated to be as follows:
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Note that the type of switching office in the local exchange of the originating call
is fixed. Let n be the number of switching offices encountered (other than the local
exchange) by a telephone call. Assuming that each switching office is randomly
and independently chosen from the population, determine the probability that
the call passes through exactly ni (i = 1, 2, 3, 4) switching offices of type i, where
n1 + n2 + n3 + n4 = n. Determine the marginal pmf for each type of office.

2.9 INDEPENDENT RANDOM VARIABLES

We have noted that the problem of determining the compound pmf given the
marginal pmf’s does not have a unique solution, unless the random variables
are independent.

Definition (Independent Random Variables). Two discrete ran-
dom variables X and Y are defined to be independent provided their joint
pmf is the product of their marginal pmf’s:

p
X,Y

(x, y) = p
X

(x)p
Y
(y) for all x and y. (2.30)

If X and Y are two independent random variables, then for any two subsets
A and B of �, the events “X is an element of A” and “Y is an element of B”
are independent:

P (X ∈ A ∩ Y ∈ B) = P (X ∈ A)P (Y ∈ B).

To see this, note that

P (X ∈ A ∩ Y ∈ B) =
∑
x∈A

∑
y∈B

p
X,Y

(x, y)

=
∑
x∈A

∑
y∈B

p
X

(x)p
Y
(y)

=
∑
x∈A

p
X

(x)
∑
y∈B

p
Y
(y)

= P (X ∈ A)P (Y ∈ B).

To further clarify the notion of independent random variables, assume that
on a particular performance of the experiment, the event [Y = y] has been
observed, and we want to know the probability that a specific value of X will
occur. We write

P (X = x|Y = y) =
P (X = x ∩ Y = y)

p
Y
(y)

=
p

X,Y
(x, y)

pY (y)
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=
p

X
(x)p

Y
(y)

p
Y
(y)

by independence

= p
X

(x).

Thus, if X,Y are independent, then the knowledge that a particular value of
Y has been observed does not affect the probability of observing a particular
value of X. The notion of independence of two random variables can be easily
generalized to r random variables.

Definition. Let X1,X2, . . . , Xr be r discrete random variables with
pmf’s p

X1
, p

X2
, . . . , p

Xr
, respectively. These random variables are said to be

mutually independent if their compound pmf p is given by

p
X1,X2,...,Xr

(x1, x2, . . . , xr) = p
X1

(x1)pX2
(x2) · · · pXr

(xr).

In situations involving many random variables, the assumption of mutual
independence usually leads to considerable simplification. We note that it is
possible for every pair of random variables in the set {X1,X2, . . . , Xr} to be
independent (pairwise independent) without the entire set being mutually
independent.

Example 2.16

Consider a sequence of two Bernoulli trials and define X1 and X2 as the number
of successes on the first and second trials respectively. Let X3 define the number of
matches on the two trials. Then it can be shown that the pairs (X1, X2), (X1, X3),
and (X2, X3) are each independent, but that the set {X1, X2, X3} is not mutually
independent.

�

Returning to our earlier example of a program with two modules, let
us determine the pmf’s of the random variables Z1, Z2, and Z3, given that
X and Y are independent. Consider the event [Z1 = X + Y = t]. On a
two-dimensional (x, y) event space, this event is represented by all the event
points on the line X + Y = t (see Figure 2.20). The probability of this event
may be computed by adding the probabilities of all the event points on this
line. Therefore

P (Z1 = t) =
t∑

x=0
P (X = x,X + Y = t)

=
t∑

x=0
P (X = x, Y = t − x)

=
t∑

x=0
P (X = x)P (Y = t − x)
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X
+

Y
=

t
X

Y

(t,0)

(0,t)

x

t - x

Figure 2.20. Computing the pmf of the random variable Z1 = X + Y

by independence. Thus

p
Z1

(t) = p
X+Y

(t)

=
t∑

x=0

p
X

(x)p
Y
(t − x).

This summation is said to represent the discrete convolution, and it gives
the formula for the pmf of the sum of two nonnegative independent discrete
random variables. In the case that X and Y are allowed to take negative
values as well, the lower index of summation is changed from 0 to −∞.

Restricting attention to nonnegative integer-valued random variables and
recalling the definition of the probability generating function, the PGF of the
sum of two independent random variables is the product of their PGFs:

GZ1
(z) = GX+Y (z)

= GX(z)GY (z).

To see this, note that

GZ1
(z) =

∞∑
t=0

p
Z1

(t)zt

=
∞∑

t=0

zt
t∑

x=0

p
X

(x)p
Y
(t − x)
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=
∞∑

x=0

p
X

(x)zx
∞∑

t=x

p
Y
(t − x)zt−x

=
∞∑

x=0

p
X

(x)zx
∞∑

y=0

p
Y
(y)zy

= GX(z)GY (z),

which is the desired result.
It follows by induction that if X1,X2, . . . , Xr are mutually independent

nonnegative integer-valued random variables, then

GX1+X2+···+Xr
(z) = GX1

(z)GX2
(z) · · ·GXr

(z). (2.31)

This result is useful in proving the following theorem.

THEOREM 2.2. Let X1,X2, . . . , Xr be mutually independent.

(a)If Xi has the binomial distribution with parameters ni

and p, then
∑r

i=1 Xi has the binomial distribution with
parameters n1 + n2 + · · · + nr and p.
(b)If Xi has the (modified) negative binomial distribution
with parameters αi and p, then

∑r
i=1 Xi has the (modified)

negative binomial distribution with parameters α1 + α2 +
· · · + αr and p.
(c)If Xi has the Poisson distribution with parameter αi,
then

∑r
i=1 Xi has the Poisson distribution with parameter∑r

i=1 αi.

Proof: First note that

G∑r
i=1 Xi

(z) = GX1
(z)GX2

(z) · · ·GXr
(z).

(a) If Xi obeys b(k; ni, p), then

GXi
(z) = (pz + 1 − p)ni .

Therefore
G∑Xi

(z) = (pz + 1 − p)
∑r

i=1 ni .

But this implies that
∑r

i=1 Xi obeys b(k;
∑r

i=1 ni, p), as was to be
shown. The proofs of parts (b) and (c) are left as an exercise.

This theorem can be visualized with Figure 2.21.
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Sum
Negative
binomial

Geometric

Poisson

Binomial Sum

Sum

Sum

Figure 2.21. Theorem 2.2

Returning now to our example of a program with two modules, if we
assume that X and Y are both geometrically distributed with parameter
p, then we know that the total serial execution time Z1 = X + Y is nega-
tive binomially distributed with parameters 2 and p (note that the geometric
distribution is a negative binomial distribution with parameters 1 and p).

Let us proceed to compute the distribution of Z2 = max{X,Y } for the
above example. Note that the event

[Z2 ≤ t] = {s|max{X(s), Y (s)} ≤ t}
= {s|X(s) ≤ t and Y (s) ≤ t} = [X ≤ t and Y ≤ t].

Therefore

FZ2
(t) = P (Z2 = max{X,Y } ≤ t)

= P (X ≤ t and Y ≤ t)

= P (X ≤ t)P (Y ≤ t) by independence

= FX(t)FY (t). (2.32)

Thus the CDF of max{X,Y } of two independent random variables X,Y is
the product of their CDFs.

Next consider the random variable Z3 = min{X,Y }. First compute

P (Z3 = min{X,Y } > t) = P (X > t and Y > t)

= P (X > t)P (Y > t) by independence.
(2.33)

But P (X > t) = 1 − FX(t). Therefore

1 − FZ3
(t) = [1 − FX(t)][1 − FY (t)]

or
FZ3

(t) = FX(t) + FY (t) − FX(t)FY (t). (2.34)
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This last expression can be alternatively derived by first defining the events
A = [X ≤ t], B = [Y ≤ t], and C = [Z3 ≤ t] and noting that

P (C) = P (A ∪ B) = P (A) + P (B) − P (A ∩ B).

If we assume that X and Y are (modified) geometrically distributed with
parameter p, then

p
X

(i) = p(1 − p)i

and
p

Y
(j) = p(1 − p)j .

Also

FX(k) =
k∑

i=0

p(1 − p)i

=
p[1 − (1 − p)k+1]

[1 − (1 − p)]

= 1 − (1 − p)k+1

and
FY (k) = 1 − (1 − p)k+1. (2.35)

Then by (2.34) we have

FZ3
(k) = 2[1 − (1 − p)k+1] − [1 − 2(1 − p)k+1 + (1 − p)2(k+1)]

= 1 − (1 − p)2(k+1)

= 1 − [(1 − p)2]k+1. (2.36)

From this, we conclude that Z3 is also (modified) geometrically distributed
with parameter 1 − (1 − p)2 = 2p − p2. In general, min{X1,X2, . . . , Xr} is
geometrically distributed if each Xi (1 ≤ i ≤ r) is geometrically distributed,
given that X1,X2, . . . , Xr are mutually independent.

Let us consider the event that the module 2 takes longer to finish than
module 1; that is, [Y ≥ X]. Then, from Figure 2.22, we obtain

P (Y ≥ X) =
∞∑

x=0

P (X = x, Y ≥ x)

=
∞∑

x=0

P (X = x)P (Y ≥ x) by independence.
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X

Y

x

Y =
 X

>
Y   

  X

Figure 2.22. Graph for two-module execution problem

Now, since Y has a modified geometric distribution, we have

P (Y ≥ x) = 1 − FY (x − 1) = (1 − p)x.

Therefore

P (Y ≥ X) =
∞∑

x=0

p(1 − p)x(1 − p)x

= p

∞∑
x=0

[(1 − p)2]x

=
p

1 − (1 − p)2

=
p

2p − p2

=
1

2 − p
. (2.37)

We may also compute

P (Y = X) =
∞∑

x=0

P (X = x, Y = x)

=
∞∑

x=0

P (X = x)P (Y = x),
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since X and Y are independent, it follows that

P (Y = X) =
∞∑

x=0

p(1 − p)xp(1 − p)x

=
p2

2p − p2

=
p

2 − p
.

Thus if p = 1/2, then there is a 33% chance that both modules will take
exactly the same time to finish. Similar events will be seen to occur with
probability zero when X and Y are continuous random variables.

Finally, consider the conditional probability of the event [Y = y] given that
[X + Y = t]:

P (Y = y|X + Y = t) =
P (Y = y and X + Y = t)

P (X + Y = t)

=
P (X = t − y, Y = y)

P (X + Y = t)

=
P (X = t − y)P (Y = y)

P (X + Y = t)
by independence.

Recall that X + Y has a modified negative binomial pmf with parameters
2 and p [see formula (2.13)] while X and Y have the pmf given by (2.10).
Therefore

P (Y = y|X + Y = t) =
p(1 − p)t−yp(1 − p)y

p2(1 + t)(1 − p)t

=
1

t + 1
.

Thus given that the total serial execution time was t units, the execution time
of the second module is distributed uniformly over {0, 1, . . . , t}.

Problems

1. Consider two program segments:

S1: while (B1) {
printf(‘‘hey you!\n’’);
printf(‘‘finished\n’’);
}

and
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S2: if (B2)

printf(‘‘hey you!\n’’);
else

printf(‘‘finished\n’’);

Assuming that B1 is true with probability p
1

and B2 is true with probability p
2
,

compute the pmf of the number of times “hey you!” is printed and compute the
pmf of the number of times “finished” is printed by the following program:

{S1; S2;}

2. Complete the proofs of parts (b) and (c) of Theorem 2.2.

3. Prove Theorem 2.2 for r = 2 without using generating functions—that is, directly
using the convolution formula for the pmf of the sum of two independent random
variables.

4. Reconsider the example of a program with two modules and assume that respec-
tive module execution times X and Y are independent random variables uni-
formly distributed over {1, 2, . . . , n}. Find

(a) P (X ≥ Y ).

(b) P (X = Y ).

(c) The pmf and the PGF of Z1 = X + Y .

(d) The pmf of Z2 = max{X, Y }.
(e) The pmf of Z3 = min{X, Y }.

5. Compute the pmf and the CDF of max{X, Y } where X and Y are indepen-
dent random variables such that X and Y are both Poisson distributed with
parameter α.

6. � Consider a program that needs two stacks. We want to compare two different
ways to allocate storage for the two stacks. The first method is to separately
allocate n locations to each stack. The second is to let the two stacks grow
toward each other in a common area of memory consisting of N locations. If the
required value of N is smaller than 2n, then the latter solution is preferable to the
former. Determine the required values of n and N so as to keep the probability
of overflow below 5%, assuming:

(a) The size of each stack is geometrically distributed with parameter p (use
p = 1

4
, 1

2
, and 3

4
).

(b) The size of each stack is Poisson distributed with parameter α = 0.5.

(c) The size of each stack is uniformly distributed over {1, 2, . . . , 20}.

Review Problems

1. Consider the combinational switching circuit shown in Figure 2.P.1, with four
inputs and one output. The switching function realized by the circuit is easily
shown to be

y = (x1 and x2) or (x3 and x4).
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AND

OR

NAND

Y

B

A

X1
X2

X3
X4

Figure 2.P.1. A combinational circuit

Associate the random variable Xi with the switching variable xi. Assuming that
Xi (i = 1, 2, 3, 4) is a Bernoulli random variable with parameter pi, compute the
pmf of the output random variable Y . If a fault develops, then the pmf of Y will
change. Assume that only single faults of stuck-at-1 or stuck-at-0 type occur at
any one of the input points, at the output point, or at internal points A and B.
Compute the pmf of Y for each one of these 14 faulty conditions, assuming that
pi = b for each i = 1, 2, 3, 4.

2. See Wetherell [WETH 1980]. Consider a context-free language L = {anbn|n ≥ 0}
as the sample space of an experiment and define the random variable X that
maps the string (sample point) anbn into the integer n. Determine the value of
the constant k such that the pmf of X is pX(n) = k/n!.

3. � See Burks et al. [BURK 1963]. In designing a parallel binary adder, we are
interested in analyzing the length of the longest carry sequence. Assume that
the two n-bit integer operands Xn and Yn are independent random variables,
uniformly distributed over {0, 1, . . . , 2n − 1}. Let the random variable Vn denote
the length of the longest carry sequence while adding Xn and Yn. Let the pmf of
Vn be denoted by pn(v) and let Rn(v) =

∑n
j=v pn(j). Define Rn(v) = 0 if v > n.

Show that

Rn(v) = Rn−1(v) +
1 − Rn−v(v)

2v+1
, v ≤ n.

Further show that Rn(v) ≤ min{1, (n − v + 1)/2v+1}.
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Chapter 3

Continuous Random Variables

3.1 INTRODUCTION

So far, we have considered discrete random variables and their distributions.
In applications, such random variables denote the number of objects of a
certain type, such as the number of job arrivals to a file server in one minute
or the number of calls into a telephone exchange in one minute.

Many situations, both applied and theoretical, require the use of random
variables that are “continuous” rather than discrete. As described in the last
chapter, a random variable is a real-valued function on the sample space S.
When the sample space S is nondenumerable (as mentioned in Section 1.7),
not every subset of the sample space is an event that can be assigned a prob-
ability. As before, let F denote the class of measurable subsets of S. Now if
X is to be a random variable, it is natural to require that P (X ≤ x) be well
defined for every real number x. In other words, if X is to be a random variable
defined on a probability space (S,F , P ), we require that {s|X(s) ≤ x} be an
event (i.e., a member of F). We are, therefore, led to the following extension
of our earlier definition.

Definition (Random Variable). A random variable X on a probabil-
ity space (S,F , P ) is a function X : S → � that assigns a real number X(s) to
each sample point s ∈ S, such that for every real number x, the set of sample
points {s|X(s) ≤ x} is an event, that is, a member of F .

Definition (Distribution Function). The (cumulative) distribution
function or CDF FX of a random variable X is defined to be the function

FX(x) = P (X ≤ x), −∞ < x < ∞.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The subscript X is used here to indicate the random variable under con-
sideration. When there is no ambiguity, the subscript will be dropped and
FX(x) will be denoted by F (x).

As we saw in Chapter 2, the distribution function of a discrete random
variable grows only by jumps. By contrast, the distribution function of a
continuous random variable has no jumps but grows continuously. Thus, a
continuous random variable X is characterized by a distribution function
FX(x) that is a continuous function of x for all −∞ < x < ∞. Most contin-
uous random variables that we encounter will have an absolutely continuous
distribution function, F (x), that is, one for which the derivative, dF (x)/dx ,
exists everywhere (except perhaps at a finite number of points). Such a random
variable is called absolutely continuous. Thus, for instance, the continuous
uniform distribution, given by

F (x) =

⎧⎨
⎩

0, x < 0,
x, 0 ≤ x < 1,
1, x ≥ 1,

possesses a derivative at all points except at x = 0 and x = 1. Therefore,
it is an absolutely continuous distribution. All continuous random variables
that we will study are absolutely continuous and hence the adjective will be
dropped.

Definition (Probability Density Function). For a continuous ran-
dom variable, X, f(x) = dF (x)/dx is called the probability density func-
tion (pdf or density function) of X.

The pdf enables us to obtain the CDF by integrating the pdf:

FX(x) = P (X ≤ x) =
∫ x

−∞
fX(t) dt , −∞ < x < ∞.

The analogy with (2.2) is clear, with the sum being replaced by an integral.
We can also obtain other probabilities of interest such as

P (X ∈ (a, b]) = P (a < X ≤ b)

= P (X ≤ b) − P (X ≤ a)

=
∫ b

−∞
fX(t) dt −

∫ a

−∞
fX(t) dt

=
∫ b

a

fX(t) dt .

The pdf, f(x), satisfies the following properties:

(f1) f(x) ≥ 0 for all x.

(f2)
∫ ∞

−∞
f(x) dx = 1.
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Figure 3.1. Relation between CDF and pdf

It should be noted that, unlike the pmf, the values of the pdf are not proba-
bilities, and thus it is perfectly acceptable if f(x) > 1 at a point x.

As is the case for the CDF of a discrete random variable, the CDF of a
continuous random variable, F (x), satisfies the following properties:

(F1) 0 ≤ F (x) ≤ 1, −∞ < x < ∞.
(F2) F (x) is a monotone increasing function of x.
(F3) lim

x→−∞
F (x) = 0 and lim

x→+∞
F (x) = 1.

Unlike the CDF of a discrete random variable, the CDF of a continuous ran-
dom variable does not have any jumps. Therefore, the probability associated
with the event [X = c] = {s|X(s) = c} is zero:

(F4′) P (X = c) = P (c ≤ X ≤ c) =
∫ c

c

fX(y)dy = 0.

This does not imply that the set {s|X(s) = c} is empty, but that the probabil-
ity assigned to this set is zero. As a consequence of the fact that P (X = c) = 0,
we have

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a ≤ X < b)

= P (a < X < b)

=
∫ b

a

fX(x) dx

= FX(b) − FX(a). (3.1)

The relation between the functions f and F is illustrated in Figure 3.1.
Probabilities are represented by areas under the pdf curve. The total area
under the curve is unity.

Example 3.1

The time (measured in years), X, required to complete a software project has a pdf
of the form:

fX(x) =

{
kx (1 − x), 0 ≤ x ≤ 1,
0, otherwise.
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Since fX satisfies property (f1), we know k ≥ 0. In order for fX to be a pdf, it must
also satisfy property (f2); hence

∫ 1

0

kx (1 − x) dx = k

(
x2

2
− x3

3

)∣∣∣∣
1

0

= 1.

Therefore
k = 6.

Now the probability that the project will be completed in less than four months is
given by

P (X < 4
12

) = FX( 1
3
) =

∫ 1/3

0

fX(x) dx = 7
27

or about 26 percent chance.

�

Most random variables we consider will either be discrete (as in Chapter 2)
or continuous, but mixed random variables do occur sometimes. For example,
there may be a nonzero probability, p0, of initial failure of a component at
time 0 due to manufacturing defects. In this case, the time to failure, X, of the
component is neither discrete nor a continuous random variable. The CDF of
such a modified exponential random variable X with a mass at origin (shown
in Figure 3.2) is then

FX(x) =

⎧⎨
⎩

0, x < 0,
p

0
, x = 0,

p
0
+ (1 − p

0
)(1 − e−λx), x > 0.

(3.2)

The CDF of a mixed random variable satisfies properties (F1)–(F3) but it
does not satisfy property (F4) of Chapter 2 or the property (F4′) above.

The distribution function of a mixed random variable can be written as
a linear combination of two distribution functions, denoted by F (d)(.) and
F (c)(.), which are discrete and continuous, respectively, so that for every real
number x

FX(x) = αd F (d)(x) + αc F (c)(x)

0 1.50 3.00 4.50 6.00

0.5

1.0

F(x ) = 0.25 + 0.75 (1 – e–x )

x

F
(x

)

Figure 3.2. CDF of a mixed random variable
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where 0 ≤ αd, αc ≤ 1 and αd + αc = 1. Thus the mixed distribution (3.2)
can be represented in this way if we let F (d)(x) as the unit step function,
F (c)(x) = 1 − e−λx, αd = p

0
, and αc = 1 − p

0
. (A unified treatment of dis-

crete, continuous, and mixed random variables can also be given through the
use of Riemann–Stieltjes integrals [BREI 1968, RUDI 1964].)

Problems

1. Find the value of the constant k so that

f(x) =

{
kx2(1 − x3), 0 < x < 1
0, otherwise

is a proper density function of a continuous random variable.

2. Let X be a continuous random variable denoting the time to failure of a com-
ponent. Suppose the distribution function of X is F (x). Use this distribution
function to express the probability of the following events:

(a) 9 < X < 90.

(b) X < 90.

(c) X > 90, given that X > 9.

3. Consider a random variable X defined by the CDF:

FX(x) =

⎧⎪⎨
⎪⎩

0, x < 0,
1
2

√
x + 1

2
(1 − e−

√
x), 0 ≤ x ≤ 1,

1
2

+ 1
2
(1 − e−

√
x), x > 1.

Show that this function satisfies properties (F1)–(F3) and (F4′). Note that FX(x)
is a continuous function but it does not have a derivative at x = 1. (That is, the
pdf of X has a discontinuity at x = 1.) Plot the CDF and the pdf of X.

4. See Hamming [HAMM 1973]. Consider a normalized floating-point number in
base (or radix) β so that the mantissa, X, satisfies the condition 1/β ≤ X < 1.
Experience shows that X has the following reciprocal density:

fX(x) =
k

x
, k > 0.

Determine

(a) The value of k.

(b) The distribution function of X.

(c) The probability that the leading digit of X is i for 1 ≤ i < β.

3.2 THE EXPONENTIAL DISTRIBUTION

This distribution, sometimes called the negative exponential distribu-
tion, occurs in applications such as reliability theory and queuing theory.
Reasons for its use include its memoryless property (and resulting analytical
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tractability) and its relation to the (discrete) Poisson distribution. Thus the
following random variables will often be modeled as exponential:

1. Time between two successive job arrivals to a file server (often called
interarrival time).

2. Service time at a server in a queuing network; the server could be a
resource such as a CPU, an I/O device, or a communication channel.

3. Time to failure (lifetime) of a component.

4. Time required to repair a component that has malfunctioned.

Note that the assertion “Above distributions are exponential” is not a given
fact but an assumption. Experimental verification of this assumption must be
sought before relying on the results of the analysis (see Chapter 10 for further
elaboration on this topic).

The exponential distribution function, shown in Figure 3.3, is given by

F (x) =
{

1 − e−λx, if 0 ≤ x < ∞,
0, otherwise. (3.3)

If a random variable X possesses CDF given by equation (3.3), we use the
notation X ∼ EXP (λ), for brevity. The pdf of X has the shape shown in
Figure 3.4 and is given by

f(x) =
{

λ e−λx, if x > 0,
0, otherwise. (3.4)

While specifying a pdf, usually we state only the nonzero part, and it is under-
stood that the pdf is zero over any unspecified region. Since limx→∞F (x) = 1,
it follows that the total area under the exponential pdf is unity. Also

P (X ≥ t) =
∫ ∞

t

f(x) dx (3.5)

= e−λt

x

F
(x

)

0 1.25 2.50 3.75 5.00

0.5

1.0

Figure 3.3. The CDF of an exponentially distributed random variable (λ = 1)
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x

λ = 5

2

1

f (
x)

Figure 3.4. Exponential pdf

and
P (a ≤ X ≤ b) = F (b) − F (a)

= e−λa − e−λb.

Now let us investigate the memoryless property of the exponential
distribution. Suppose we know that X exceeds some given value t; that is,
X > t. For example, let X be the lifetime of a component, and suppose we
have observed that this component has already been operating for t hours.
We may then be interested in the distribution of Y = X − t, the remaining
(residual) lifetime. Let the conditional probability of Y ≤ y, given that X > t,
be denoted by GY (y|t). Thus, for y ≥ 0, we have

GY (y|t) = P (Y ≤ y|X > t)

= P (X − t ≤ y|X > t)

= P (X ≤ y + t|X > t)

=
P (X ≤ y + t and X > t)

P (X > t)

(by the definition of conditional probability)

=
P (t < X ≤ y + t)

P (X > t)
.

Thus (see Figure 3.5)

GY (y|t) =

∫ y+t

t
f(x) dx∫ ∞

t
f(x) dx

=

∫ y+t

t
λe−λx dx∫ ∞

t
λe−λx dx

=
e−λt (1 − e−λy)

e−λt

= 1 − e−λy.
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0 1.25 2.50 3.75 5.00

0.5

1.0

λ e -λ x g
Y
( y | t ) = λ e−λ(x - t )

Conditional probability density function of
Y  = X - t given X  > tf

(x
)

t y

x

Figure 3.5. Memoryless property of the exponential distribution (λ = 1)

Thus, GY (y|t) is independent of t and is identical to the original exponen-
tial distribution of X. The distribution of the remaining life does not depend
on how long the component has been operating. The component does not
“age” (it is as good as new or it “forgets” how long it has been operating),
and its eventual breakdown is the result of some suddenly appearing failure,
not of gradual deterioration.

If the interarrival times are exponentially distributed, then the memoryless
property implies that the time we must wait for a new arrival is statistically
independent of how long we have already spent waiting for it.

If X is a nonnegative continuous random variable with the memoryless
property, then we can show that the distribution of X must be exponential:

P (t < X ≤ y + t)
P (X > t)

= P (X ≤ y) = P (0 < X ≤ y),

or
FX(y + t) − FX(t) = [1 − FX(t)][FX(y) − FX(0)].

Since FX(0) = 0, we rearrange this equation to get

FX(y + t) − FX(y)
t

=
FX(t)[1 − FX(y)]

t
.

Taking the limit as t approaches zero, we get

F ′
X(y) = F ′

X(0)[1 − FX(y)],

where F ′
X denotes the derivative of FX . Let RX(y) = 1 − FX(y); then the

preceding equation reduces to

R′
X(y) = R′

X(0)RX(y).

The solution to this differential equation is given by

RX(y) = KeR′
X(0)y,
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where K is a constant of integration and −R′
X(0) = F ′

X(0) = fX(0), the pdf
evaluated at 0. Noting that RX(0) = 1, and denoting fX(0) by the constant
λ, we get

RX(y) = e−λy

and hence
FX(y) = 1 − e−λy, y > 0.

Therefore X must have the exponential distribution.
The exponential distribution can be obtained from the Poisson distribution

by considering the interarrival times rather than the number of arrivals.

Example 3.2

Let the discrete random variable Nt denote the number of jobs arriving to a file
server in the interval (0, t]. Let X be the time of the next arrival. Further assume
that Nt is Poisson distributed with parameter λt, so that λ is the arrival rate. Then

P (X > t) = P (Nt = 0)

=
e−λt(λt)0

0!

= e−λt

and
FX(t) = 1 − e−λt.

Therefore, the time to the next arrival is exponentially distributed. More gener-
ally, it can be shown that the interarrival times of Poisson events are exponentially
distributed [BHAT 1984, p. 197].

�

Example 3.3

Consider a Web server with an average rate of requests λ = 0.1 jobs per second.
Assuming that the number of arrivals per unit time is Poisson distributed, the
interarrival time, X, is exponentially distributed with parameter λ. The probability
that an interval of 10 seconds elapses without requests is then given by

P (X ≥ 10) =

∫ ∞

10

0.1e−0.1t dt = lim
t→∞

[−e−0.1t] − (−e−1)

= e−1 = 0.368.

�

Problems

1. Jobs arriving to a compute server have been found to require CPU time that can
be modeled by an exponential distribution with parameter 1/140 ms−1. The CPU
scheduling discipline is quantum-oriented so that a job not completing within a
quantum of 100 ms will be routed back to the tail of the queue of waiting jobs.
Find the probability that an arriving job is forced to wait for a second quantum.
Of the 800 jobs coming in during a day, how many are expected to finish within
the first quantum?
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3.3 THE RELIABILITY AND FAILURE RATE

Let the random variable X be the lifetime or the time to failure of a compo-
nent. The probability that the component survives until some time t is called
the reliability R(t) of the component. Thus, R(t) = P (X > t) = 1 − F (t),
where F is the distribution function of the component lifetime X. The com-
ponent is normally (but not always) assumed to be working properly at time
t = 0 [i.e., R(0) = 1], and no component can work forever without failure [i.e.,
limt→+∞R(t) = 0]. Also, R(t) is a monotone decreasing function of t. For t
less than zero, reliability has no meaning, but we let R(t) = 1 for t < 0. F (t)
will often be called the unreliability.

Consider a fixed number of identical components, N0, under test. After
time t, Nf (t) components have failed and Ns(t) components have survived
with Nf (t) + Ns(t) = N0. The estimated probability of survival may be
written (using the frequency interpretation of probability) as

P̂ (survival) =
Ns(t)
N0

.

In the limit as N0 → ∞, we expect P̂ (survival) to approach R(t). As the test
progresses, Ns(t) gets smaller and R(t) decreases:

R(t) 	 Ns(t)
N0

=
N0 − Nf (t)

N0

= 1 −
Nf (t)
N0

.

The total number of components N0 is constant, while the number of failed
components Nf increases with time. Taking derivatives on both sides of the
preceding equation, we get

R′(t) 	 − 1
N0

N ′
f (t). (3.6)

In this equation, N ′
f (t) is the rate at which components fail. Therefore, as

N0 → ∞, the right-hand side may be interpreted as the negative of the failure
density function, fX(t):

R′(t) = −fX(t). (3.7)

Note that f(t)Δt is the (unconditional) probability that a component will
fail in the interval (t, t + Δt]. However, if we have observed the component
functioning up to some time t, we expect the (conditional) probability of its
failure to be different from f(t)Δt. This leads us to the notion of instantaneous
failure rate as follows.
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Notice that the conditional probability that the component does not sur-
vive for an (additional) interval of duration x given that it has survived until
time t can be written as

GY (x|t) =
P (t < X ≤ t + x)

P (X > t)
=

F (t + x) − F (t)
R(t)

. (3.8)

Definition (Instantaneous Failure Rate). The instantaneous failure
rate h(t) at time t is defined to be

h(t) = lim
x→0

1
x

F (t + x) − F (t)
R(t)

= lim
x→0

R(t) − R(t + x)
xR(t)

,

so that
h(t) =

f(t)
R(t)

. (3.9)

Thus, h(t)Δt represents the conditional probability that a component having
survived to age t will fail in the interval (t, t + Δt]. Alternate terms for h(t)
are hazard rate, force of mortality, intensity rate, conditional failure rate, or
simply failure rate. Failure rates in practice are so small that expressing them
as failures per hour is not appropriate. Often, h(t) is expressed in failures per
10,000 hours. Another commonly used unit is FIT (failures in time), which
expresses failures per 109 or a billion hours.

It should be noted that the exponential distribution is characterized by a
constant failure rate, since

h(t) =
f(t)
R(t)

=
λe−λt

e−λt
= λ.

By integrating both sides of equation (3.9), we get∫ t

0

h(x)dx =
∫ t

0

f(x)
R(x)

dx

=
∫ t

0

−R′(x)
R(x)

dx using equation (3.7)

= −
∫ R(t)

R(0)

dR
R

,

or ∫ t

0

h(x)dx = − ln R(t)

using the boundary condition, R(0) = 1. Therefore

R(t) = exp
[
−

∫ t

0

h(x)dx
]

. (3.10)
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This formula holds even when the distribution of the time to failure is not
exponential.

The cumulative failure rate, H(t) =
∫ t

0
h(x)dx , is referred to as the cumu-

lative hazard. Equation (3.10) gives a useful theoretical representation of
reliability as a function of the failure rate. An alternate representation gives
the reliability in terms of cumulative hazard:

R(t) = e−H(t). (3.11)

Note that if the lifetime is exponentially distributed, then H(t) = λt, and we
obtain the exponential reliability function.

We should note the difference between f(t) and h(t). The quantity f(t)Δt
is the unconditional probability that the component will fail in the interval
(t, t + Δt], whereas h(t)Δt is the conditional probability that the component
will fail in the same time interval, given that it has survived until time
t. Also, h(t) = f(t)/R(t) is always greater than or equal to f(t), because
R(t) ≤ 1. Function f(t) represents probability density whereas h(t) does not.
By analogy, the probability that a newborn child will die at an age between
99 and 100 years [corresponding to f(t)Δt] is quite small because few of them
will survive that long. But the probability of dying in that same period, pro-
vided that the child has survived until age 99 (corresponding to h(t)Δt) is
much greater.

To further see the difference between the failure rate h(t) and failure den-
sity f(t), we need the notion of conditional probability density. Let VX(x|t)
denote the conditional distribution of the lifetime X given that the component
has survived past fixed time t. Then

VX(x|t) =

∫ x

t
f(y)dy

P (X > t)

=

⎧⎨
⎩

F (x) − F (t)
1 − F (t)

, x ≥ t,

0, x < t.

[Note that VX(x|t) = GY (x − t|t).]
Then the conditional failure density is

v
X

(x|t) =

{
f(x)

1−F (t) , x ≥ t,

0, x < t.

The conditional density vX(x|t) satisfies properties (f1) and (f2) and hence is
a probability density while the failure rate h(t) does not satisfy property (f2)
since

0 = lim
t→∞

R(t) = exp
[
−

∫ ∞

0

h(t)dt
]

.

[Note that h(t) = vX(t|t).]
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Define the conditional reliability Rt(y) to be the probability that the
component survives an (additional) interval of duration y given that it has
survived until time t. Thus

Rt(y) =
R(t + y)

R(t)
. (3.12)

[Note that Rt(y) = 1 − GY (y|t).]
Now consider a component that does not age stochastically. In other words,

its survival probability over an additional period of length y is the same
regardless of its present age:

Rt(y) = R(y) for all y, t ≥ 0.

Then, using formula (3.12), we get

R(y + t) = R(t) R(y), (3.13)

and rearranging, we get

R(y + t) − R(y)
t

=
[R(t) − 1]R(y)

t
.

Taking the limit as t approaches zero and noting that R(0) = 1, we obtain

R′(y) = R′(0)R(y).

So R(y) = eyR′(0). Letting R′(0) = −λ, we get

R(y) = e−λy, y > 0,

which implies that the lifetime X ∼ EXP (λ). In this case, the failure rate h(t)
is equal to λ, which is a constant, independent of component age t. Conversely,
the exponential lifetime distribution is the only distribution with a constant
failure rate [BARL 1981]. If a component has exponential lifetime distribution,
then it follows that

1. Since a used component is (stochastically) as good as new, a policy of a
scheduled replacement of used components (known to be still function-
ing) does not accrue any benefit.

2. In estimating mean life, reliability, and other such quantities, data may
be collected consisting only of the number of hours of observed life and
of the number of observed failures; the ages of components under obser-
vation are of no concern.

Now consider a component that ages adversely in the sense that the condi-
tional survival probability decreases with the age t; that is, Rt(y) is decreasing
in 0 < t < ∞ for all y ≥ 0. As a result

h(t) = lim
y→0

R(t) − R(t + y)
yR(t)
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Figure 3.6. Failure rate as a function of time

is an increasing function of t for t ≥ 0. The corresponding distribution function
F (t) is known as an increasing failure rate (IFR) distribution.

Alternately, if aging is beneficial in the sense that the conditional survival
probability increases with age, then the failure rate will be a decreasing func-
tion of age, and the corresponding distribution is known as a decreasing
failure rate (DFR) distribution.

The behavior of the failure rate as a function of age is known as the
mortality curve, hazard function, life characteristic, or lambda characteristic.
The mortality curve is empirically observed to have the so-called bathtub
shape shown in Figure 3.6. During the early life period (infant mortality
phase, burnin period, debugging period, or breakin period), failures are of the
endogenous type and arise from inherent defects in the system attributed
to faulty design, manufacturing, or assembly. During this period, the failure
rate is expected to drop with age.

When the system has been debugged, it is prone to chance or random fail-
ure (also called exogenous failure). Such failures are usually associated with
environmental conditions under which the component is operating. They are
the results of severe, unpredictable stresses arising from sudden environmen-
tal shocks; the failure rate is determined by the severity of the environment.
During this useful-life phase, failure rate is approximately constant and the
exponential model is usually acceptable.

The rationale for the choice of exponential failure law is provided by assum-
ing that the component is operating in an environment that subjects it to a
stress varying in time. A failure occurs when the applied stress exceeds the
maximum allowable stress, Smax (see Figure 3.7). Such “peak” stresses may
be assumed to follow a Poisson distribution with parameter λt, where λ is
a constant rate of occurrence of peak loads. Denoting the number of peak
stresses in the interval (0, t] by Nt, we get

P (Nt = r) =
e−λt(λt)r

r!
, λ > 0, r = 0, 1, 2, . . . .
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t

Stress

Smax

Figure 3.7. Stress as a function of time

Now the event [X > t], where X is the component lifetime, corresponds to
the event [Nt = 0], and thus

R(t) = P (X > t)

= P (Nt = 0)

= e−λt,

the exponential reliability function.
When components begin to reach their “rated life,” the system failure

rate begins to increase and it is said to have entered the wearout phase. The
wearout failure is the outcome of accumulated wear and tear, a result of a
depletion process due to abrasion, fatigue, creep, and the like.

Problems

1. The failure rate of a certain component is h(t) = λ0t, where λ0 > 0 is a given
constant. Determine the reliability, R(t), of the component. Repeat for h(t) =
λ0t

1/2.

2. The failure rate of a computer system for onboard control of a space vehicle is
estimated to be the following function of time:

h(t) = αμtα−1 + βγtβ−1.

Derive an expression for the reliability R(t) of the system. Plot h(t) and R(t)
as functions of time with parameter values α = 1

4
, β = 1

7
, μ = 0.0004, and γ =

0.0007.

3.4 SOME IMPORTANT DISTRIBUTIONS

3.4.1 Hypoexponential Distribution

Many processes in nature can be divided into sequential phases. If the time
the process spends in each phase is independent and exponentially distributed,
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Figure 3.8. The pdf of the hypoexponential distribution
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Figure 3.9. The CDF of the hypoexponential distribution

then it can be shown that the overall time is hypoexponentially distributed.
It has been empirically observed that the service times for input–output oper-
ations in a computer system often possess this distribution. The distribution
has r parameters, one for each of its distinct phases. A two-stage hypoex-
ponential random variable, X, with parameters λ1 and λ2 (λ1 
= λ2), will be
denoted by X ∼ HYPO(λ1, λ2), and its pdf is given by (see Figure 3.8)

f(t) =
λ1 λ2

λ2 − λ1

(e−λ1t − e−λ2t), t > 0. (3.14)

The corresponding distribution function is (see Figure 3.9)

F (t) = 1 − λ2

λ2 − λ1

e−λ1t +
λ1

λ2 − λ1

e−λ2t, t ≥ 0. (3.15)

The hazard rate of this distribution is given by

h(t) =
λ1λ2(e

−λ1t − e−λ2t)
λ2e

−λ1t − λ1e
−λ2t

. (3.16)
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Figure 3.10. The failure rate of the hypoexponential distribution

It is not difficult to see that this is an IFR distribution with the failure rate
increasing from 0 up to min{λ1, λ2} (see Figure 3.10).

3.4.2 Erlang and Gamma Distribution

When r sequential phases have identical exponential distributions, then the
resulting density is known as r-stage (or r-phase) Erlang and is given by

f(t) =
λr tr−1 e−λt

(r − 1)!
, t > 0, λ > 0, r = 1, 2, . . . . (3.17)

The distribution function is

F (t) = 1 −
r−1∑
k=0

(λt)k

k!
e−λt, t ≥ 0, λ > 0, r = 1, 2, . . . . (3.18)

Also

h(t) =
λrtr−1

(r − 1)!
r−1∑
k=0

(λt)k

k!

, t > 0, λ > 0, r = 1, 2, . . . . (3.19)

The exponential distribution is a special case of the Erlang distribution
with r = 1. The physical interpretation of this distribution is a natural exten-
sion of that for the exponential. Consider a component subjected to an envi-
ronment so that Nt, the number of peak stresses in the interval (0, t], is Poisson
distributed with parameter λt. Suppose further that the component can with-
stand (r − 1) peak stresses and the rth occurrence of a peak stress causes a
failure. Then the component lifetime X is related to Nt so that the following
two events are equivalent:

[X > t] = [Nt < r]
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thus

R(t) = P (X > t)

= P (Nt < r)

=
r−1∑
k=0

P (Nt = k)

= e−λt
r−1∑
k=0

(λt)k

k!
.

Then F (t) = 1 − R(t) yields formula (3.18). We conclude that the component
lifetime has an r-stage Erlang distribution.

If we let r (call it α) take nonintegral values, then we get the gamma
density

f(t) =
λα tα−1 e−λt

Γ(α)
, α > 0, t > 0. (3.20)

where the gamma function is defined by the following integral

Γ(α) =
∫ ∞

0

xα−1e−x dx , α > 0. (3.21)

The following properties of the gamma function will be useful in the sequel.
Integration by parts shows that for α > 1

Γ(α) = (α − 1)Γ(α − 1). (3.22)

In particular, if α is a positive integer, denoted by n, then

Γ(n) = (n − 1)! (3.23)

Other useful formulas related to the gamma function are

Γ( 1
2 ) =

√
π (3.24)

and ∫ ∞

0

xα−1e−λxdx =
Γ(α)
λα

. (3.25)

A random variable X with pdf (3.20) will be denoted by X ∼ GAM(λ, α). This
distribution has two parameters. The parameter α is called a shape param-
eter since, as α increases, the density becomes more peaked. The parameter λ
is a scale parameter; that is, the distribution depends on λ only through the
product λt. The gamma distribution is DFR for 0 < α < 1 and IFR for α > 1
(see Figure 3.11). For α = 1, the distribution degenerates to the exponential
distribution; that is, EXP (λ) = GAM(λ, 1).
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Figure 3.11. The failure rate of the gamma distribution
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Figure 3.12. The gamma pdf

The gamma distribution is the continuous counterpart of the (discrete)
negative binomial distribution. The chi-square distribution, useful in mathe-
matical statistics, is a special case of the gamma distribution with α = n/2
(n is a positive integer) and λ = 1

2 . Thus, if X ∼ GAM(1
2 , n/2), then it is

said to have a chi-square distribution with n degrees of freedom. Figure 3.12
illustrates possible shapes of gamma density with α = 0.5, 1, and 5.

In Chapter 4 we will show that if a sequence of k random variables X1,
X2, . . . , Xk are mutually independent and identically distributed as
GAM(λ, α), then their sum

∑k
i=1 Xi is distributed as GAM(λ, kα).

3.4.3 Hyperexponential Distribution

A process with sequential phases gives rise to a hypoexponential or an Erlang
distribution, depending on whether the phases have identical distributions.
Instead, if a process consists of alternate phases—that is, during any single
experiment, the process experiences one and only one of the many alternate
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phases—and these phases have exponential distributions, then the overall
distribution is hyperexponential. The density function of a k-phase hyper-
exponential random variable is

f(t) =
k∑

i=1

αiλie
−λit, t > 0, λi > 0, αi > 0,

k∑
i=1

αi = 1, (3.26)

and the distribution function is

F (t) =
∑

i

αi(1 − e−λit), t ≥ 0. (3.27)

The failure rate is

h(t) =
∑

αiλie
−λit∑

αie
−λit

, t ≥ 0, (3.28)

which is a decreasing failure rate from
∑

αiλi down to min{λ1, λ2, . . .}.
The hyperexponential distribution exhibits more variability than the expo-

nential. Lee et al. have found that the time to failure distributions of VAXclus-
ter and Tandem software are captured well by the two-phase hyperexponential
[LEE 1993]. CPU service time in a computer system has often been observed
to possess such a distribution (see Figure 3.13). Similarly, if a product is man-
ufactured in several parallel assembly lines and the outputs are merged, the
failure density of the overall product is likely to be hyperexponential. The
hyperexponential is a special case of mixture distributions that often arise in
practice—that is, of the form:

F (x) =
∑

i

αiFi(x),
∑

i

αi = 1, αi ≥ 0. (3.29)

F
 (

t)

λ t

2 3 6 70 1 4 5 8 9 10

1.0

0.8

0.6

0.2

0.4

Observations from University of Michigan

Exponential

Hyperexponential

Figure 3.13. The CPU service time distribution compared with the hyperexponential
distribution. (Reproduced from R. F. Rosin, “Determining a computing center envi-
ronment,” CACM, 1965; reprinted with permission of the Association of Computing
Machinery.)
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3.4.4 Weibull Distribution

The Weibull distribution has been used to describe fatigue failure, electronic
component failure, and ballbearing failure. At present, it is perhaps the most
widely used parametric family of failure distributions. The reason is that by a
proper choice of its shape parameter α, an IFR, a DFR, or a constant failure
rate distribution can be obtained. Therefore, it can be used for all three phases
of the mortality curve. The density is given by

f(t) = λ α tα−1 e−λtα

, (3.30)

the distribution function by

F (t) = 1 − e−λtα

, (3.31)

and the failure rate by
h(t) = λ α tα−1, (3.32)

and the cumulative hazard is a power function, H(t) = λtα. For all these
formulas, t ≥ 0, λ > 0, α > 0. Figure 3.14 shows h(t) plotted as a function
of t, for various values of α.

Often a third parameter is added to obtain a three-parameter Weibull
distribution:

F (t) = 1 − e−λ(t−θ)α

, t ≥ θ (3.33)

where θ is the location parameter.
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α = 2

Figure 3.14. Failure rate of the Weibull distribution with various values of α and
λ = 1
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Example 3.4

The lifetime X in hours of a component is modeled by a Weibull distribution with
shape parameter α = 2. Starting with a large number of components, it is observed
that 15% of the components that have lasted 90 h fail before 100 h. Determine the
scale parameter λ.

Note that
FX(x) = 1 − e−λx2

and we are given that
P (X < 100|X > 90) = 0.15.

Also

P (X < 100|X > 90) =
P (90 < X < 100)

P (X > 90)

=
FX(100) − FX(90)

1 − FX(90)

=
e−λ(90)2 − e−λ(100)2

e−λ(90)2
.

Equating the two expressions and solving for λ, we get

λ = − ln (0.85)

1900
=

0.1625

1900
= 0.00008554.

�

3.4.5 Log-Logistic Distribution

Although Weibull and gamma distributions are widely used, they are lim-
ited in their modeling capability. As outlined earlier, they are appropriate for
modeling constant, strictly increasing, and strictly decreasing failure rate.

The log-logistic distribution has scale parameter λ > 0 and shape param-
eter κ > 0. Depending on the choice of its shape parameter, a decreasing or
increasing/decreasing behavior of failure rate can be obtained. The density
function of a log-logistic random variable is

f(t) =
λκ(λt)κ−1

[1 + (λt)κ]2
, t ≥ 0, (3.34)

the distribution function is

F (t) = 1 − 1
1 + (λt)κ

, (3.35)

the hazard rate is
h(t) =

λκ(λt)κ−1

1 + (λt)κ
, (3.36)
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Figure 3.15. Failure rate of log-logistic distribution with λ = 1

and the cumulative hazard is H(t) = ln[1 + (λt)κ]. When κ ≤ 1 the log-logistic
distribution is a DFR distribution. For κ > 1 the hazard rate initially increases
and then decreases. The corresponding distribution function in this case is
known as a UBT (upside-down bathtub) distribution (see Figure 3.15).

3.4.6 Normal or Gaussian Distribution

This distribution is extremely important in statistical applications because of
the central-limit theorem, which states that, under very general assumptions,
the mean of a sample of n mutually independent random variables (having
distributions with finite mean and variance) is normally distributed in the
limit n → ∞. It has been observed that errors of measurement often pos-
sess this distribution. Experience also shows that during the wearout phase,
component lifetime follows a normal distribution.

The normal density has the well-known bell-shaped curve (see Figure 3.16)
and is given by

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x − μ

σ

)2
]

, −∞ < x < ∞, (3.37)

where −∞ < μ < ∞ and σ > 0 are two parameters of the distribution. (We
will see in Chapter 4 that these parameters are, respectively, the mean and
the standard deviation of the distribution.) If a random variable X has the
pdf (3.37), then we write X ∼ N(μ, σ2).
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Figure 3.16. Normal density with parameters μ = 2 and σ = 1

Since the distribution function F (x) has no closed form, between every
pair real numbers of limits a and b, probabilities relating to normal distri-
butions are usually obtained numerically and recorded in special tables (see
Appendix C). Such tables pertain to the standard normal distribution
[Z ∼ N(0, 1)]—a normal distribution with parameters μ = 0 and σ = 1—and
their entries are the values of

FZ(z) =
1√
2π

∫ z

−∞
e−t2/2dt . (3.38)

Since the standard normal density is clearly symmetric, it follows that for
z > 0 we have

FZ(−z) =
∫ −z

−∞
fZ(t)dt

=
∫ ∞

z

fZ(−t)dt

=
∫ ∞

z

fZ(t)dt

=
∫ ∞

−∞
fZ(t)dt −

∫ z

−∞
fZ(t)dt

= 1 − FZ(z). (3.39)
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Therefore, the tabulations of the normal distribution are made only for z ≥ 0.
To find P (a ≤ Z ≤ b), we use F (b) − F (a).

For a particular value, x, of a normal random variable X, the corresponding
value of the standardized variable Z is given by z = (x − μ)/σ. The distribu-
tion function of X can now be found by using the following relation

FZ(z) = P (Z ≤ z)

= P

(
X − μ

σ
≤ z

)
= P (X ≤ μ + zσ)

= FX(μ + zσ).

Alternatively

FX(x) = FZ

(
x − μ

σ

)
. (3.40)

Example 3.5

An analog signal received at a detector (measured in microvolts) may be modeled
as a Gaussian random variable N(200, 256) at a fixed point in time. What is the
probability that the signal will exceed 240 μV? What is the probability that the
signal is larger than 240 μV, given that it is greater than 210 μV?

P (X > 240) = 1 − P (X ≤ 240)

= 1 − FZ

(
240 − 200

16

)
, using equation (3.40)

= 1 − FZ(2.5)

� 0.00621.

Next

P (X > 240|X > 210) =
P (X > 240)

P (X > 210)

=

1 − FZ

(
240 − 200

16

)

1 − FZ

(
210 − 200

16

)

=
0.00621

0.26599

� 0.02335.

�
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If X denotes the measured quantity in a certain experiment, then the
probability of an event such as μ − kσ ≤ X ≤ μ + kσ is an indicator of the
measurement error

P (μ − kσ ≤ X ≤ μ + kσ) = FX(μ + kσ) − FX(μ − kσ)

= FZ(k) − FZ(−k)

= 2FZ(k) − 1

=
2√
2π

∫ k

−∞
e−t2/2dt − 1√

2π

∫ ∞

−∞
e−t2/2dt

=
2√
2π

∫ k

−∞
e−t2/2dt − 2√

2π

∫ 0

−∞
e−t2/2dt

=
2√
2π

∫ k

0

e−t2/2dt .

By the variable transformation, t =
√

2y, we get

P (μ − kσ ≤ X ≤ μ + kσ) =
2√
π

∫ k/
√

2

0

e−y2
dy .

The error function (or error integral) is defined by

erf(u) =
2√
π

∫ u

0

e−y2
dy . (3.41)

Thus
P (μ − kσ ≤ X ≤ μ + kσ) = erf

(
k√
2

)
. (3.42)

For example, for k = 3, we obtain

P (μ − 3σ ≤ X ≤ μ + 3σ) = 0.997.

Thus, a Gaussian random variable deviates from its mean by more than ±3
standard deviations in only 0.3% of the trials, on the average. We often find
tables of the error function rather than that of the CDF of the standard
normal random variable.

Many physical experiments result in a nonnegative random variable,
whereas the normal random variable takes negative values, as well. Therefore,
it may be of interest to define a truncated normal density:

f(x) =

⎧⎨
⎩

0, x < 0,

1
ασ

√
2π

exp
[
−(x − μ)2

2σ2

]
, x ≥ 0,

(3.43)
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Figure 3.17. Failure rate of the normal distribution

where
α =

∫ ∞

0

1
σ
√

2π
exp

[
−(t − μ)2

2σ2

]
dt .

The introduction of α insures that
∫ ∞
−∞ f(t)dt = 1, so that f is the density of

a nonnegative random variable. For μ > 3σ, the value of α is close to 1, and
for most practical purposes it may be omitted, so that the truncated normal
density reduces to the usual normal density.

The normal distribution is IFR (see Figure 3.17), which implies that it can
be used to model the behavior of components during the wearout phase.

Example 3.6

Assuming that the life of a given subsystem, in the wearout phase, is normally
distributed with μ = 10, 000 h and σ = 1000 h, determine the reliability for an oper-
ating time of 500 h given that (a) the age of the component is 9000 h, (b) the age of
the component is 11,000 h.

The required quantity under (a) is R9000(500) and under (b) is R11,000(500). Note
that with the usual exponential assumption, these two quantities will be identical.
But in the present case

R9000(500) =
R(9500)

R(9000)

=

∫ ∞

9500

f(t)dt∫ ∞

9000

f(t)dt

.
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Noting that μ − 0.5σ = 9500 and μ − σ = 9000, we have

R9000(500) =

∫ ∞

μ−0.5σ

f(t)dt∫ ∞

μ−σ

f(t)dt

=
1 − FX(μ − 0.5σ)

1 − FX(μ − σ)

=
1 − FZ(−0.5)

1 − FZ(−1)

=
FZ(0.5)

FZ(1)

=
0.6915

0.8413
[Table C.3 (from Appendix C)]

= 0.8219.

Similarly, since μ + 1.5σ = 11, 500 and μ + σ = 11, 000, we have

R11,000(500) =
1 − FX(μ + 1.5σ)

1 − FX(μ + σ)

=
0.0668

0.1587
[Table C.3]

= 0.4209.

Thus, unlike the exponential assumption, R11,000(500) < R9000(500); that is, the
subsystem has aged.

�

It can be shown that the normal distribution is a good approximation to
the (discrete) binomial distribution for large n, provided p is not close to 0 or
1. The corresponding parameters are μ = np and σ2 = np(1 − p).

Example 3.7

Twenty percent of VLSI chips made in a certain plant are defective. Assuming that
a binomial model is acceptable, the probability of at most 13 rejects in a lot of 100
chosen for inspection may be computed by

13∑
x=0

b(x; 100, 0.20) = B(13; 100, 0.20).

Let us approximate this probability by using the normal distribution with μ = np =
20 and σ2 = np(1 − p) = 16. From Figure 3.18, observe that we are actually approxi-
mating the sum of the areas of the first 14 rectangles of the histogram of the binomial
pmf by means of the shaded area under the continuous curve. Thus, it is preferable
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Figure 3.18. Normal approximation to the binomial pmf

to compute the area under the curve between −0.5 and 13.5 rather than between 0
and 13. Making this continuity correction, we get

B(13; 100, 0.2) � FX(13.5) − FX(−0.5)

= FZ

(
13.5 − 20

4

)
− FZ

(
−20.5

4

)

= FZ(−1.625) − FZ(−5.125)

= 0.0521 − 0,

which compares favorably to the exact value of 0.046912.

�

3.4.7 The Uniform or Rectangular Distribution

A continuous random variable X is said to have a uniform distribution over
the interval (a, b) if its density is given by (see Figure 3.19):

f(x) =

⎧⎨
⎩

1
b − a

, a < x < b,

0, otherwise
(3.44)

and the distribution function is given by (see Figure 3.20)

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < a,

x − a

b − a
, a ≤ x < b,

1, x ≥ b.

(3.45)
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Figure 3.19. The pdf of a uniform distribution
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Figure 3.20. The CDF of a uniform distribution

3.4.8 Pareto Distribution

The Pareto distribution, also referred to as the double-exponential distri-
bution, the hyperbolic distribution, and the power-law distribution,
has been used to model the amount of CPU time consumed by an arbi-
trary process [LELA 1986], the Web file size on the Internet servers [CROV
1997, DENG 1996] the thinking time of the Web browser [CROV 1997, DENG
1996], the number of data bytes in FTP (File Transfer Protocol) bursts [PAXS
1995], and the access frequency of Web traffic [NABE 1998].

The density is given by (see Figure 3.21)

f(x) = α kα x−α−1, x ≥ k, α, k > 0, (3.46)

the distribution function by (see Figure 3.22)

F (x) =

{
1 − (k

x )α, x ≥ k

0, x < k
(3.47)

and the failure rate by (see Figure 3.23)

h(x) =

{
α
x , x ≥ k,

0, x < k.
(3.48)
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Figure 3.21. The pdf of a Pareto distribution
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Figure 3.22. The CDF of a Pareto distribution

The location parameter k represents the smallest possible value of the
random variable. From the abovementioned papers, the shape parameter α is
found to be in the interval [1.05, 1.25] for the amount of CPU time consumed
by an arbitrary process, [0.58, 0.9] for the thinking time of the Web browser,
[1.1, 1.3] for the Web file size, and [0.9, 1.1] for the number of data bytes in
FTP bursts, respectively.
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Figure 3.23. The failure rate of a Pareto distribution

3.4.9 Defective Distribution

In many programs there exists a case when the algorithm fails to converge after
running for a very long time (e.g., a while loop in a C program without any
exit condition). Sometimes the hardware underlying the software fails before
the program finishes. The running times for such processes follow the defective
(or improper) distribution which can be defined using the distribution function
FX(t) such that

lim
t→∞

FX(t) < 1.

The defect in the random variable X is given by p∞ = 1 − limt→∞FX(t) and
can be thought of as the mass of X at infinity. Note that the pdf f(x) does
not satisfy the property (f2).

An extreme case of the defective distribution is FX(t) = 0, t < ∞. This
implies an event that can never occur.

As an example of the defective distribution, consider the distribution func-
tion given by (see Figure 3.24)

FX(x) = p
c
(1 − e−λx). (3.49)

Thus, limx→∞FX(x) = p
c

< 1. Hence, X is a defective random variable with
defect p∞ = 1 − p

c
.

For further reading on this topic, the reader is encouraged to study
exponential polynomial distributions used in the SHARPE software package
[SAHN 1996].



Trim Size: 6.125in x 9.25in 60Trivedi c03.tex V3 - 05/23/2016 11:55am Page 153�

� �

�

3.4 SOME IMPORTANT DISTRIBUTIONS 153

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

x

F
(x

)

p
c
=0.9, λ=1

Figure 3.24. Defective distribution function

Problems

1. Lifetimes of VLSI chips manufactured by a semiconductor manufacturer are
approximately normally distributed with μ = 5 × 106 h and σ = 5 × 105 h. A
computer manufacturer requires that at least 95% of a batch should have a
lifetime greater than 4 × 106 h. Will the deal be made?

2. Errors occur in data transmission over a binary communication channel due to
Gaussian white noise. The probability of an error Pe, can be shown to be

Pe =
1

2
− 1√

π

∫ u

0

e−y2
dy =

1

2
[1 − erf(u)],

where z = u2 is a measure of the ratio of the signal power to noise power. The
variable u is usually specified in terms of 10 log10z in decibel units (dB). Plot Pe

as a function of 10log10z.

3. Show that the failure rate h(t) of the hypoexponential distribution has the
property

lim
t→+∞

h(t) = min{λ1, λ2}.

4. Show that a two-stage Erlang pdf is the limiting case of two-stage hypoexponen-
tial pdf. In other words, show that

lim
λ1→λ2

λ1λ2

λ2 − λ1

(e−λ1t − e−λ2t) = λ2
2 t e−λ2t.

(Hint: Use l’Hôpital’s rule.)
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5. The CPU time requirement of a typical program measured in minutes is found
to follow a three-stage Erlang distribution with λ = 1

2
. What is the probability

that the CPU demand of a program will exceed 1 min?

6. Plot the three-parameter Weibull distribution function [equation (3.33)] for λ =
0.0001, θ = 10, and α = 0.5, 1, 2. Repeat for the density function and the failure
rate function.

3.5 FUNCTIONS OF A RANDOM VARIABLE

Situations often arise in systems analysis where knowledge of some charac-
teristic of the system, together with the knowledge of the input, will allow
some estimate of the behavior at the output. For example, the input random
variable X and its density f(x) are known and the input–output behavior is
characterized by

Y = Φ(X).

We are interested in computing the density of the random variable Y . Note
that for a given random variable X and a function Φ, Y may not satisfy the
definition of a random variable. But if we assume that Φ is continuous or
piecewise-continuous, then Y = Φ(X) will be a random variable [ASH 1970].

Example 3.8

Let Y = Φ(X) = X2. As an example, X could denote the measurement error in a
certain physical experiment and Y would then be the square of the error (recall the
method of least squares).

Note that FY (y) = 0 for y ≤ 0. For y > 0,

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√
y ≤ X ≤ √

y)

= FX(
√

y) − FX(−√
y),

and by differentiation the density of Y is

fY (y) =

⎧⎨
⎩

1

2
√

y
[fX(

√
y) + fX(−√

y)], y > 0,

0, otherwise.

(3.50)

�

Example 3.9

As a special case of Example 3.8, let X have the standard normal distribution
[N(0, 1)] so that

fX(x) =
1√
2π

e−x2/2, −∞ < x < ∞.



Trim Size: 6.125in x 9.25in 60Trivedi c03.tex V3 - 05/23/2016 11:55am Page 155�

� �

�

3.5 FUNCTIONS OF A RANDOM VARIABLE 155

Then

fY (y) =

⎧⎪⎨
⎪⎩

1

2
√

y

(
1√
2π

e−y/2 +
1√
2π

e−y/2

)
, y > 0,

0, y ≤ 0,

or

fY (y) =

⎧⎨
⎩

1√
2πy

e−y/2, y > 0,

0, y ≤ 0.

By comparing this formula with formula (3.20) and remembering (3.24), we
conclude that Y has a gamma distribution with α = 1

2
and λ = 1

2
. Now, since

GAM( 1
2
, n/2) = χ2

n, it follows that if X is standard normal then Y = X2 is
chi-square distributed with one degree of freedom.

�

Example 3.10

Let X be uniformly distributed on (0, 1). We show that Y = −λ−1 ln(1 − X) has an
exponential distribution with parameter λ > 0.

Observe that Y is a nonnegative random variable implying FY (y) = 0 for y ≤ 0.
For y > 0, we have

FY (y) = P (Y ≤ y) = P [−λ−1 ln(1 − X) ≤ y]

= P [ln(1 − X) ≥ −λy]

= P [(1 − X) ≥ e−λy] (since ex is an increasing function of x, )

= P (X ≤ 1 − e−λy)

= FX(1 − e−λy).

But since X is uniform over (0,1), FX(x) = x, 0 ≤ x ≤ 1. Thus

FY (y) = 1 − e−λy.

Therefore Y is exponentially distributed with parameter λ.

�

This fact can be used in a distribution-driven simulation. In such simulation
programs it is important to be able to generate values of variables with known
distribution functions. Such values are known as random deviates or ran-
dom variates. Most computer systems provide built-in functions to generate
random deviates from the uniform distribution over (0,1), say, u. Such random
deviates are called random numbers. For a discussion of random number
generation, the reader is referred to Knuth [KNUT 1997].

Examples 3.9 and 3.10 are special cases of problems that can be solved
using the following theorem.
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THEOREM 3.1. Let X be a continuous random variable with
density fX that is nonzero on a subset I of real numbers [i.e.,
fX(x) > 0, x ∈ I and fX(x) = 0, x /∈ I]. Let Φ be a differentiable
monotone function whose domain is I and whose range is the set
of reals. Then Y = Φ(X) is a continuous random variable with the
density, fY , given by

fY (y) =
{

fX [Φ−1(y)][|(Φ−1)′(y)|], y ∈ Φ(I),
0, otherwise, (3.51)

where Φ−1 is the uniquely defined inverse of Φ and (Φ−1)′ is the
derivative of the inverse function.
Proof: We prove the theorem assuming that Φ(x) is an increasing func-
tion of x. The proof for the other case follows in a similar way.

FY (y) = P (Y ≤ y) = P [Φ(X) ≤ y]

= P [X ≤ Φ−1(y)], (since Φ is monotone increasing)

= FX [Φ−1(y)].

Taking derivatives and using the chain rule, we get the required result.

Example 3.11

Now let Φ be the distribution function, F , of a random variable X, with density f .
Applying Theorem 3.1, Y = F (X) and FY (y) = FX(F−1

X (y)) = y. Therefore the ran-
dom variable Y = F (X) has the density given by

fY (y) =

{
1, 0 < y < 1,
0, otherwise.

In other words, if X is a continuous random variable with CDF F , then the new
random variable Y = F (X) is uniformly distributed over the interval (0, 1).

This idea can be used to generate a random deviate x of X by first gener-
ating a random number u from a uniform distribution over (0, 1) and then using
the relation x = F−1(u) as illustrated in Figure 3.25. For example, if we want to
generate an exponentially distributed random deviate, we should first generate a
uniformly distributed random number u over (0, 1), and then by the relation given
in Example 3.10, which is

x = −λ−1 ln(1 − u), (3.52)

we can obtain a random deviate x of an EXP(λ) random variable from the random
number u.

�
Example 3.12

As another example, we consider the problem of generating a Weibull distributed
random deviate x with shape parameter α. The distribution function of X is given by

FX(x) = 1 − e−λxα

. (3.53)
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Figure 3.25. Generating a random deviate

We first generate a random number u, then by the relation x = F−1
X (u), we get

x =

(
− ln(1 − u)

λ

)1/α

. (3.54)

This method of generating random deviates is called the inverse transform
method. For this method, the generation of the (0, 1) random number can be accom-
plished rather easily. The real question, however, is whether F−1(u) can be expressed
in a closed mathematical form. This inversion is possible for distributions such as the
exponential and the Weibull, as shown above and for distributions such as Pareto
and log-logistic. While for distributions such as the normal, other techniques must be
used. For a detailed discussion of random deviate generation, the reader is referred
to Fishman [FISH 1995].

�

Another interesting special case of Theorem 3.1 occurs when Φ is linear,
that is, when Y = aX + b. In other words, Y differs from X only in origin and
scale of measurement. In fact, we have already made use of such a transfor-
mation when relating N(μ, σ2) to the standard normal distribution, N(0, 1).
The use of Theorem 3.1 yields

fY (y) =

⎧⎨
⎩

1
|a|fX

(
y−b

a

)
, y ∈ aI + b,

0, otherwise,
(3.55)

where I is the interval over which f(x) 
= 0.

Example 3.13

Let X be exponentially distributed, that is, X ∼ EXP(λ). Consider a random vari-
able Y = rX where r is a positive real number. Note that the interval I over which
fX �= 0 is (0,∞). Also

fX(x) = λe−λx.

Using formula (3.55), we have

fY (y) =
1

r
λe−λy/r, y > 0.
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It follows that Y is exponentially distributed with parameter λ/r. This result will
be used later in this book.

�

Example 3.14

Let X be normally distributed and consider Y = eX . Since

fX(x) =
1

σ
√

2π
exp

[
−1

2

(x − μ

σ

)2
]

,

and

Φ−1(y) = ln(y) implies that [Φ−1]′(y) =
1

y
;

then, using Theorem 3.1, the density of Y is

fY (y) =
f(ln y)

y

=
1

σy
√

2π
exp

[
− (ln y − μ)2

2σ2

]
, y > 0.

The random variable Y is said to have log-normal distribution. The importance of
this distribution stems from another form of the central-limit theorem, which states
that the product of n mutually independent random variables has a log-normal
distribution in the limit n → ∞.

�

Problems

1. Show that if X has the k-stage Erlang distribution with parameter λ, then

Y = 2λX

has the chi-square distribution with 2k degrees of freedom.

2. Consider a nonlinear amplifier whose input X and the output Y are related by
its transfer characteristic:

Y =

{
X1/2, X ≥ 0,

−|X|1/2, X < 0.

Assuming that X ∼ N(0, 1) compute the pdf of Y and plot your result.

3. The phase X of a sine wave is uniformly distributed over (−π/2, π/2):

fX(x) =

⎧⎨
⎩

1

π
, −π

2
< x <

π

2
,

0, otherwise.

Let Y = sin X and show that

fY (y) =
1

π

1√
1 − y2

, −1 < y < 1.
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4. Let X be a chi-square random variable with n (≥ 1) degrees of freedom with the
pdf:

f(x) =

⎧⎪⎨
⎪⎩

xn/2−1

2n/2Γ(n/2)
e−x/2, x > 0,

0, elsewhere.

Find the pdf of the random variable Y =
√

X/n.

5. Consider an IBM DTCA-23240 type disk [IBM 1997]. Assume that the number of
cylinders N to be traversed between two disk requests is a normally distributed
random variable with μ = n/3 and σ2 = n2/18, where n is the total number of
cylinders. The seek time T is a random variable related to the seek distance N by

T = a + bN .

In the particular case of the IBM DTCA-23240, experimental data show a = 8
ms, b = 0.00215 ms per cylinder, and n = 6, 976. Determine the pdf of T . Recall-
ing that T is a nonnegative random variable whereas the normal model allows
negative values, make appropriate corrections.

6. Consider a normalized floating-point number in base (or radix) β so that the
mantissa X satisfies the condition 1/β ≤ X < 1. Assume that the density of the
continuous random variable X is 1/(x ln β).

(a) Show that a random deviate of X is given by the formula, βu−1 where u is
a random number.

(b) Determine the pdf of the normalized reciprocal Y = 1/(βX).

7. Write down formulas to generate random deviates of the log-logistic, the Pareto
and the defective exponential [equation (3.49)] distributions.

3.6 JOINTLY DISTRIBUTED RANDOM VARIABLES

So far, we were concerned with the properties of a single random variable. In
many practical problems, however, it is important to consider two or more
random variables defined on the same probability space.

Let X and Y be two random variables defined on the same probability
space (S,F , P ). The event [X ≤ x, Y ≤ y] = [X ≤ x] ∩ [Y ≤ y] consists of all
sample points s ∈ S such that X(s) ≤ x and Y (s) ≤ y.

Definition (Joint Distribution Function). The joint (or compound)
distribution function of random variables X and Y is defined by

FX,Y (x, y) = P (X ≤ x, Y ≤ y), −∞ < x < ∞,−∞ < y < ∞.

The subscripts will be dropped whenever the two random variables under
consideration are clear from the context; that is, FX,Y (x, y) will be written as
F (x, y). Such a function satisfies the following properties:

(J1) 0 ≤ F (x, y) ≤ 1,−∞ < x < ∞,−∞ < y < ∞. This is evident
since F (x, y) is a probability.
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x

c

F (b,d) = P ( {s|X(s) < b  and Y(s) < d } )

F (a,d) = P ( {s|X(s) < a  and Y(s) < d } )

y

d

a b

Figure 3.26. Properties of joint CDF

(J2) F (x, y) is monotone increasing in both the variables; that is, if
x1 ≤ x2 and y1 ≤ y2, then F (x1, y1) ≤ F (x2, y2). This follows since
the event [X ≤ x1 and Y ≤ y1] is contained in the event [X ≤ x2 and
Y ≤ y2].

(J3) If either x or y approaches −∞, then F (x, y) approaches 0, and if
both x and y approach +∞, then F (x, y) approaches 1.

(J4) F (x, y) is right continuous in general, and if X and Y are contin-
uous random variables, then F (x, y) is continuous.

(J5) P (a < X ≤ b and c < Y ≤ d) = F (b, d) − F (a, d) − F (b, c) +
F (a, c). This relation follows from Figure 3.26.

Note that in the limit y → ∞, the event [X ≤ x, Y ≤ y] approaches the
event [X ≤ x, Y < ∞] = [X ≤ x]. Therefore, limy→∞FX,Y (x, y) = FX(x).
Also limx→∞FX,Y (x, y) = FY (y). These two formulas show how to compute
the individual or marginal distribution functions of X and Y given
their joint distribution function.

If both X and Y are continuous random variables, then we can often find
a function f(x, y) such that

F (x, y) =
∫ y

−∞

∫ x

−∞
f(u, v) du dv . (3.56)
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Such a function is known as the joint or the compound probability density
function of X and Y . It follows that∫ ∞

−∞

∫ ∞

−∞
f(u, v) du dv = 1 (3.57)

and

P (a < X ≤ b, c < Y ≤ d) =
∫ b

a

∫ d

c

f(x, y) dy dx . (3.58)

Also
f(x, y) =

∂2F (x, y)
∂x ∂y

, (3.59)

assuming that the partial derivative exists. Now, since

FX(x) =
∫ x

−∞

∫ ∞

−∞
f(u, y) dy du,

we obtain the marginal density fX as

fX(x) =
∫ ∞

−∞
f(x, y) dy . (3.60)

Similarly

fY (y) =
∫ ∞

−∞
f(x, y) dx . (3.61)

Thus the marginal densities, fX(x) and fY (y), can easily be determined
from the knowledge of the joint density, f(x, y). However, the knowledge of the
marginal densities does not, in general, uniquely determine the joint density.
The exception occurs when the two random variables are independent.

Intuitively, if X and Y are independent random variables, then we expect
that events such as [X ≤ x] and [Y ≤ y] will be independent events.

Definition (Independent Random Variables). We define two ran-
dom variables X and Y to be independent if

F (x, y) = FX(x)FY (y), −∞ < x < ∞, −∞ < y < ∞.

Thus the independence of random variables X and Y implies that their
joint CDF factors into the product of the marginal CDFs. This definition
applies to all types of random variables. In case X and Y are discrete, the pre-
ceding definition of independence is equivalent to definition given in Chapter 2:

p(x, y) = pX(x) pY (y).

In the case that X and Y are continuous, the preceding definition of indepen-
dence is equivalent to the condition

f(x, y) = fX(x) fY (y), −∞ < x < ∞, −∞ < y < ∞,
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assuming that f(x, y) exists. We will also have occasion to consider the joint
distribution of X and Y when one of them is a discrete random variable while
the other is a continuous random variable. In case X is discrete and Y is
continuous, the condition for their independence becomes

P (X = x, Y ≤ y) = pX(x) FY (y), all x and y.

The definition of joint distribution, joint density, and independence of two
random variables can be easily generalized to a set of n random variables
X1,X2, . . . , Xn.

Example 3.15

Assume that the lifetime X and the brightness Y of a lightbulb are being modeled
as continuous random variables. Let the joint pdf be given by

f(x, y) = λ1λ2e
−(λ1x+λ2y), 0 < x < ∞, 0 < y < ∞,

(this is known as the bivariate exponential density). The marginal density of
X is

fX(x) =

∫ ∞

−∞
f(x, y)dy

=

∫ ∞

0

λ1λ2e
−(λ1x+λ2y)dy

= λ1e
−λ1x, 0 < x < ∞.

Similarly
fY (y) = λ2e

−λ2y, 0 < y < ∞.

It follows that X and Y are independent random variables. The joint distribution
function can be computed to be

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du

=

∫ x

0

∫ y

0

λ1λ2e
−(λ1u+λ2v) dv du

= (1 − e−λ1x)(1 − e−λ2y), 0 < x < ∞, 0 < y < ∞.

�

Problems

1. A batch of 1M RAM chips are purchased from two different semiconductor
houses. Let X and Y denote the times to failure of the chips purchased from
the two suppliers. The joint probability density of X and Y is estimated by

f(x, y) =

{
λμe−(λx+μy), x > 0, y > 0,

0, otherwise.

Assume λ = 10−5 per hour and μ = 10−6 per hour.
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Determine the probability that the time to failure is greater for chips character-
ized by X than it is for chips characterized by Y .

2. Let X and Y have joint pdf

f(x, y) =

⎧⎨
⎩

1

π
, x2 + y2 ≤ 1,

0, otherwise.

Determine the marginal pdf’s of X and Y . Are X and Y independent?

3. Consider a series connection of two components, with respective lifetimes X and
Y . The joint pdf of the lifetimes is given by

f(x, y) =

{
1

200
, (x, y) ∈ A,

0, elsewhere,

where A is the triangular region in the (x, y) plane with the vertices (100, 100),
(100, 120), and (120, 120). Find the reliability expression for the entire system.

4. If the random variables B and C are independent and uniformly distributed over
(0,1), compute the probability that the roots of the equation

x2 + 2Bx + C = 0

are real.

5. Let the joint pdf of X and Y be given by

f(x, y) =
1

2π
√

1 − ρ2
exp

[
−x2 − 2ρxy + y2

2(1 − ρ2)

]
,

where |ρ| < 1. Show that the marginal pdf’s are

fX(x) =
1√
2π

e−x2/2,

fY (y) =
1√
2π

e−y2/2.

The random variables X and Y are said to have a two-dimensional (or bivariate)
normal pdf. Also note that X and Y are not independent unless ρ = 0.

3.7 ORDER STATISTICS

Let X1,X2, . . . , Xn be mutually independent, identically distributed continu-
ous random variables, each having the distribution function F and density
f . Let Y1, Y2, . . ., Yn be random variables obtained by permuting the set
X1,X2, . . . , Xn so as to be in increasing order. To be specific

Y1 = min{X1,X2, . . . , Xn},
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and
Yn = max{X1,X2, . . . , Xn}.

The random variable Yk is called the kth-order statistic. Since X1, X2, . . .,
Xn are continuous random variables, it follows that Y1 < Y2 < . . . < Yn (as
opposed to Y1 ≤ Y2 ≤ . . . ≤ Yn) with a probability of one.

As examples of the use of order statistics, let Xi be the lifetime of the ith
component in a system of n components. If the system is a series system, then
Y1 will denote the overall system lifetime. Similarly, Yn will denote the lifetime
of a parallel system and Yn−k+1 will denote the lifetime of an k-out-of-n
system.

To derive the distribution function of Yk, we note that the probability that
exactly j of the Xi values lie in (−∞, y] and (n − j) lie in (y,∞) is(

n

j

)
F j(y)[1 − F (y)]n−j ,

since the binomial pmf with parameters n and p = F (y) is applicable. Then

FYk
(y) = P (Yk ≤ y)

= P (“at least k of the Xi’s lie in the interval (−∞, y]”)

=
n∑

j=k

(
n

j

)
F j(y)[1 − F (y)]n−j , −∞ < y < ∞. (3.62)

(For a generalization of this formula to the case of when {Xi} are not identi-
cally distributed, see Sahner et al. [SAHN 1996].) In particular, the distribu-
tion functions of Yn and Y1 can be obtained from (3.62) as

FYn
(y) = [F (y)]n, −∞ < y < ∞,

and
FY1

(y) = 1 − [1 − F (y)]n, −∞ < y < ∞.

From this we obtain

Rseries(t) = RY1
(t)

= 1 − FY1
(t)

= [1 − F (t)]n

= [R(t)]n,
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and
Rparallel(t) = RYn

(t)

= 1 − FYn
(t)

= 1 − [F (t)]n

= 1 − [1 − R(t)]n.

Both these formulas can be easily generalized to the case when the lifetime
distributions of individual components are distinct:

Rseries(t) =
n∏

i=1

Ri(t), (3.63)

and

Rparallel(t) = 1 −
n∏

i=1

(1 − Ri(t)). (3.64)

Example 3.16

Let the lifetime distribution of the ith component be exponential with parameter
λi. Then equation (3.63) reduces to

Rseries(t) = exp

[
−
(

n∑
i=1

λi

)
t

]
,

so that the lifetime distribution of a series system whose components have inde-
pendent exponentially distributed lifetimes is itself exponentially distributed with
parameter

∑n
i=1 λi.

This fact is responsible for the “parts count method” of system reliability analysis
often used in practice. Using this method, the analyst counts the number ni of parts
of type i each with a failure rate λi. Now if there are k such part types, then the
system failure rate λ is computed by

λ =
k∑

i=1

λini. (3.65)

�

Clary and others [CLAR 1978] present the following example of the parts
count method of reliability analysis.
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Example 3.17

One implementation of the CPU–cache–main memory subsystem of computer con-

sists of the following chip types

Chip

type

Number

of chips,

ni

Failure rate per chip

(number of failures/106 h),

λi

SSI 1,202 0.1218

MSI 668 0.242

ROM 58 0.156

RAM 414 0.691

MOS 256 1.0602

BIP 2,086 0.1588

It is assumed that times to failure of all chip types are exponentially distributed
with the failure rate shown above. All the chips are required to be fault-free in order
for the system as a whole to be fault-free (i.e., a series system). The system time to
failure is then exponentially distributed with parameter:

λ =
∑

all chip types

niλi

= 146.40 + 161.66 + 9.05 + 286.07 + 261.41 + 331.27

= 1205.85 failures per 106 hours.

�

Example 3.18

We have seen that the lifetime of a series system is exponentially distributed, pro-
vided the component lifetimes are exponentially distributed. Thus a series system
whose components have constant failure rate itself has a constant failure rate. This
does not apply to a parallel system. The failure rate of a parallel system is a function
of its age, even though the failure rates of individual components are constant. It
can be shown that the corresponding distribution is IFR. In particular, the relia-
bility of a parallel system of n components, each with an exponential failure law
(parameter λ), is given by

Rp(t) = 1 − (1 − e−λt)n

=
(n

1

)
e−λt −

(n

2

)
e−2λt + . . . + (−1)n−1e−nλt. (3.66)

Figure 3.27 shows the reliability improvement obtained by parallel redundancy.

�

Example 3.19

Another interesting case of order statistics occurs when we consider the triple mod-
ular redundant (TMR) system (n = 3 and k = 2). Y2 then denotes the time until
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Figure 3.27. Reliability of a parallel-redundant system
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Figure 3.28. Comparison of TMR and simplex reliabilities

the second failure. From equation (3.62), we get

RTMR(t) = 3R2(t) − 2R3(t). (3.67)

Assuming that the reliability of a single component is given by R(t) = e−λt, we get

RTMR(t) = 3e−2λt − 2e−3λt. (3.68)

In Figure 3.28, we have plotted RTMR(t) against t as well as R(t) against t. Note
that

RTMR(t) ≥ R(t), 0 ≤ t ≤ t0,

and
RTMR(t) ≤ R(t), t0 ≤ t < ∞,

where t0 is the solution to the equation

3e−2λt0 − 2e−3λt0 = e−λt0 ,

which is

t0 =
ln 2

λ
� 0.7

λ
.
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Figure 3.29. Comparison of k-out-of-n and simplex reliabilities

Thus, if we define a “short” mission by the mission time t ≤ t0, then it is clear
that TMR type of redundancy improves reliability only for short missions. For long
missions, this type of redundancy actually degrades reliability. The same type of
behavior is exhibited by any k-out-of-n system, with n = 2k − 1 (see Figure 3.29).

�

Example 3.20

Consider a computer system with jobs arriving from several independent sources.
Let Ni(t) (1 ≤ i ≤ n) denote the number of jobs arriving in the interval (0, t] from
source i. Assume that Ni(t) is Poisson distributed with parameter λit. Then the
time between two arrivals from source i, denoted by Xi, is exponentially distributed
with parameter λi (refer to Example 3.2). Also from Theorem 2.2(c), the total
number of jobs arriving from all sources in the interval (0, t], N(t) =

∑n
i=1 Ni(t), is

Poisson distributed with parameter
∑n

i=1 λit. Then, again recalling Example 3.2, the
interarrival time, Y1, for jobs from all sources will be exponentially distributed with
parameter

∑n
i=1 λi. But this could also be derived using order statistics. Note that

Y1 = min{X1, X2, . . . , Xn},

since Y1 is the time until the next arrival from any one of the sources. Now, since

FXi
(t) = 1 − e−λit,

it follows that

FY1
(t) = 1 −

n∏
i=1

[1 − FXi
(t)]

= 1 −
n∏

i=1

e−λit

= 1 − exp[−
n∑

i=1

λit].

Thus Y1 is exponentially distributed with parameter
∑n

i=1 λi.

�
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mn
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k n

Figure 3.30. Reliability block diagram for the workstation–file server (WFS)
example

Example 3.21

We consider a system consisting of n workstations and m file servers. The network
connecting these devices is assumed to be fault-free. The system is considered to
be operational so long as at least k workstations and l file servers are operational.
Reliability block diagram for the system is shown in Figure 3.30. Let Rw(t) denote
the reliability of a single workstation and Rf (t) the reliability of a single file server.
Assuming that all devices fail independently of each other, system reliability is
given by

R(t) =
n∑

j=k

(
n

j

)
[Rw(t)]j [1 − Rw(t)]n−j

m∑
j=l

(
m

j

)
[Rf (t)]j [1 − Rf (t)]m−j .

�

Example 3.22

An N × N shuffle exchange network (SEN) with N = 2n inputs consists of (N/2)
log2N switching elements, that is, there are N/2 switching elements in each of the
log2N stages. Each switching element either transmits the inputs directly through
itself or exchanges the inputs as shown in Figure 3.31. Unique path exists between
each source–destination pair of the SEN. An 8 × 8 SEN is shown in Figure 3.32.

The SEN is a self-routing network. A message from any source to a given desti-
nation is routed through the network according to the binary representation of the
destination’s address. For example, if S = 000 wants to send a message to D = 101,

 Transmit  Exchange

0 0 0 0

1 1 1 1

Figure 3.31. Transmit and exchange operations of a switching element
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Figure 3.32. An 8 × 8 SEN

the message is routed as follows. The first bit of the destination address (1) is used
and the output link 1 of SE01 passes the message to SE12, now the second bit of
D is used and the output link 0 of SE12 passes the message to SE23, finally, the
message appears at the output link 1 of SE23.

Given that r
SE

(t) is the time-dependant reliability of each switching element,
we calculate the reliability of the N × N SEN. The SEN is operational as long as
every source is able to communicate with every destination. Since a unique path
exists between each source–destination pair of the SEN, a failure in any switching
element will lead to the SEN failure. Thus, from a reliability point of view, we have
(N/2)log2N switching elements in series [BLAK 1989].

Reliability of the SEN = RSEN(t)

= Reliability of a series system of (N/2)log2N elements

= [r
SE

(t)](N/2)log2N

�

Example 3.23

As an extension to the SEN, called SEN+, consists of an extra stage consisting of
N/2 switching elements. This introduces an additional path between each source and
destination of the network. The paths in the first and last stages are not disjoint,
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Figure 3.33. A 4 × 4 SEN and a SEN+

but those in the intermediate stages are disjoint. As an example, S = 000 can reach
D = 101 by two different paths.

Let r
SE

(t) be the time-dependant reliability of the switching element. We com-
pare the reliability of the 4 × 4 SEN+ with that of the 4 × 4 SEN. First, since the
SEN corresponds to a series system consisting of (N/2)log2N = 4 elements:

RSEN(t) = [r
SE

(t)]4.

In the 4 × 4 SEN+ network shown in Figure 3.33, there are six SEs, two in each
of the three stages. The SEs in the first and last stages are required to work for full
connectivity. The intermediate stages can tolerate 1 failure, which from a reliability
point of view is 2 SEs in parallel. Thus, the 4 × 4 SEN+ can be considered to be
a series–parallel system with 4 elements in series and two elements in parallel as
shown in Figure 3.34.

Calculating the reliability of this series–parallel system, we get

RSEN+(t) = [r
SE

(t)]4[1 − (1 − [r
SE

(t)]2)].

Although an additional stage has been introduced in the 4 × 4 SEN+, the SEN
has a better reliability than the SEN+. This is because the SEN+ is fault tolerant
with respect to switches in the intermediate stages only. It can be shown that for
N ≥ 8, the SEN+ is strictly more reliable than the SEN [BLAK 1989]. For example,
the reliability of the 8 × 8 SEN+ (see Figure 3.35) is determined (using Markov
chain methods of Chapter 8) to be

RSEN+(t) = 2[r
SE

(t)]12 +4[r
SE

(t)]14−8[r
SE

(t)]15 +3[r
SE

(t)]16 ≥ [r
SE

(t)]12 = RSEN(t).

�
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Figure 3.34. Series–parallel reliability block diagram of 4 × 4 SEN+
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Figure 3.35. An 8 × 8 SEN+

Problems

1. A system with three independent components works correctly if at least one
component is functioning properly. Failure rates of the individual components
are λ1 = 0.0001, λ2 = 0.0002, and λ3 = 0.0004 (assume exponential lifetime dis-
tributions).

(a) Determine the probability that the system will work for 1000 h.

(b) Determine the density function of the lifetime X of the system.

2. A multiprocessor system has n processors. Service time of a process executing on
the ith processor is exponentially distributed with parameter μi(i = 1, 2, . . . , n).
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Given that all n processors are active and that they are executing mutually
independent processes, what is the distribution of time until a processor becomes
idle?

3. Consider a series system consisting of n independent components. Assuming that
the lifetime of the ith component is Weibull distributed with parameter λi and
α, show that the system lifetime also has a Weibull distribution.

As a concrete example, consider a liquid cooling cartridge system that is used

in enterprise-class servers made by Sun Microsystems [KOSL 2001]. The series

system consists of a blower, a water pump and a compressor. The following table

gives the Weibull data for the three components.

Component L10 (h) Shape parameter (α)

Blower 70,000 3.0

Water pump 100,000 3.0

Compressor 100,000 3.0

L10 is the rating life of the component, which is the time at which 10 % of
the components are expected to have failed or R(L10) = 0.9. Derive the system
reliability expression.

4. Consider a random access memory card consisting of d VLSI chips, each contain-
ing w bits. Each chip supplies one bit position in a d-bit word for a total of w,
d-bit words. Assuming a failure rate of λ per chip (and an exponential lifetime
distribution), derive the reliability expression R0(t) for the memory card. Sup-
pose that we now introduce single error correction, so that up to one chip may
fail without a system failure. Note that this will require c extra chips where c
must satisfy the relation c ≥ log2(c + d + 1). (See Rao and Fujiwara [RAO 1989].)
Derive the reliability expression R1(t). Plot R0(t) and R1(t) as functions of t on
the same plot. Derive expressions for the hazard functions h0(t) and h1(t), and
plot these as functions of time t. For these plots assume d = 16 (hence c = 5)
and λ = 10 per million hours.

5. The memory requirement distribution for jobs in a computer system is expo-
nential with parameter λ. The memory scheduler scans all eligible jobs on a job
queue and loads the job with the smallest memory requirement first, then the job
with the next smallest memory requirement, etc. Given that there are n jobs on
the job queue, write down the distribution function for the memory requirement
of the job with the smallest memory requirement, and that of the job with the
largest memory requirement.

6. Redo the above example assuming that the memory requirement distribution for
jobs is three-parameter Weibull [equation (3.33)].

7. A series system has n independent components. For i = 1, 2, . . . , n, the lifetime
Xi of the ith component is exponentially distributed with parameter λi. Compute
the probability that a given component j = (1, 2, . . . , n) is the cause of the system
failure.
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8. Consider a system with n independent components each having the modified
exponential lifetime distribution with initial mass p

0
at origin and rate λ [see

equation (3.2)]. Derive reliability expression for a k-out-of-n system and specialize
to the cases of k = 1 (parallel) and k = n (series).

9. Repeat problem 8 above with the defective exponential distribution (3.49).

3.8 DISTRIBUTION OF SUMS

Let X and Y be continuous random variables with joint density f . In many
situations we are interested in the density of a random variable Z that is a
function of X and Y—that is, Z = Φ(X,Y ). The distribution function of Z
may be computed by

FZ(z) = P (Z ≤ z)

=
∫ ∫

Az

f(x, y) dx dy (3.69)

where Az is a subset of �2 given by

Az = {(x, y) |Φ(x, y) ≤ z}
= Φ−1((−∞, z]).

One function of special interest is Z = X + Y with

Az = {(x, y) | x + y ≤ z},

which is the half-plane to the lower left of the line x + y = z (see Figure 3.36).
Then

FZ(z) =
∫ ∫

Az

f(x, y) dx dy

=
∫ ∞

−∞

∫ z−x

−∞
f(x, y) dy dx .

Making a change of variable y = t − x, we get

FZ(z) =
∫ ∞

−∞

∫ z

−∞
f(x, t − x) dt dx

=
∫ z

−∞

∫ ∞

−∞
f(x, t − x) dx dt

=
∫ z

−∞
fZ(t)dt

by the definition of density. Thus the density of Z = X + Y is given by

fZ(z) =
∫ ∞

−∞
f(x, z − x)dx , −∞ < z < ∞. (3.70)
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Figure 3.36. Area of integration for the convolution of X and Y

Now if X and Y are assumed to be independent, then f(x, y) =
fX(x)fY (y), and formula (3.70) reduces to

fZ(z) =
∫ ∞

−∞
fX(x)fY (z − x)dx , −∞ < z < ∞. (3.71)

Furthermore, if X and Y are nonnegative random variables, then

fZ(z) =
∫ z

0

fX(x)fY (z − x)dx , 0 < z < ∞. (3.72)

This integral is often called the convolution of fX and fY . Thus the density of
the sum of two nonnegative independent random variables is the convolution
of the individual densities.

Example 3.24

Consider a job consisting of three tasks. Tasks 1 and 2 are noninterfering and hence
can be executed in parallel. Task 3 cannot be started until both task 1 and task
2 have completed. If T1, T2, and T3, respectively, denote the times of execution of
three tasks, then the time of execution of the entire job is given by

T = max{T1, T2} + T3

= M + T3.

Assume that T1 and T2 are continuous random variables with uniform distribution
over (t1 − t0, t1 + t0) and T3 is a continuous random variable uniformly distributed
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over (t3 − t0, t3 + t0). Also assume that T1, T2, and T3 are mutually independent.
We are asked to compute the probability that T > t1 + t3.

Note that

fT1
(t) = fT2

(t)

=

⎧⎨
⎩

1

2t0
, t1 − t0 < t < t1 + t0,

0, otherwise,

and

fT3
(t) =

⎧⎨
⎩

1

2t0
, t3 − t0 < t < t3 + t0,

0, otherwise.

First compute the distribution of the random variable M :

FM (m) = P (M ≤ m)

= P (max{T1, T2} ≤ m)

= P (T1 ≤ m and T2 ≤ m)

= P (T1 ≤ m)P (T2 ≤ m) by independence

= FT1
(m)FT2

(m).

Now observe that

FT1
(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < t1 − t0,

t − t1 + t0
2t0

, t1 − t0 ≤ t < t1 + t0

1, otherwise.

Thus

FM (m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, m < t1 − t0,

(m − t1 + t0)
2

4t20
, t1 − t0 ≤ m < t1 + t0,

1, otherwise.

Also

fM (m) =

⎧⎨
⎩

m − t1 + t0
2t20

, t1 − t0 < m < t1 + t0,

0, otherwise.

Now consider the (M, T3) plane as shown in Figure 3.37 and let A denote the shaded
region. Then

P (T > t1 + t3) =

∫ ∫
A

fM,T3
(m, t) dm dt

=

∫ ∫
A

fM (m)fT3
(t) dm dt
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Figure 3.37. The area of integration for Example 3.24

since M and T3 are independent, it follows that

P (T > t1 + t3) =

∫ t1+t0

t1−t0

(∫ t3+t0

t1+t3−m

m − t1 + t0
4t30

dt

)
dm =

2

3
.

�

For further examples of performance analysis of jobs consisting of multiple
tasks, see Sahner et al. [SAHN 1996].

In the rest of this section we will concentrate on sums of independent
exponentially distributed random variables.

Example 3.25

Consider a system with two statistically identical components, each with an expo-
nential failure law with parameter λ. Only one component is required to be operative
for the system to function properly. One method of utilizing the second component is
to use parallel redundancy, in which both components are initially operative simul-
taneously. Alternately, we could initially keep the spare component in a powered-off
state (deenergized) and later, on the failure of the operative component, replace it by
the spare. Assuming that a deenergized component does not fail (this is sometimes
known as a “cold spare”) and that the failure detection and switching equipment is
perfect, we can characterize the lifetime Z of such a system in terms of the lifetimes
X and Y of individual components by Z = X + Y . Such a system is known to pos-
sess standby redundancy in contrast to a system with parallel redundancy. Now
if the random variables X and Y are assumed to be independent, then the density
of Z is the convolution of the densities of X and Y .
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Figure 3.38. Reliabilities of simplex and two-component standby systems

Let X and Y have exponential distributions with parameter λ; that is, fX(x) =
λe−λx, x > 0, and fY (y) = λe−λy, y > 0. Then using the convolution formula (3.72)
we have

fZ(z) =

∫ z

0

λ e− λx λ e−λ(z−x) dx

= λ2e−λz

∫ z

0

dx

= λ2 z e−λz, z > 0.

Thus Z has a gamma density with parameters λ and α = 2 (or equivalently, Z has a
two-stage Erlang distribution). An expression for the reliability of a two-component
standby redundant system is obtained by using equation (3.18):

R(t) = 1 − F (t) =
1∑

k=0

(λt)k

k!
e−λt

= (1 + λ t)e−λt, t ≥ 0. (3.73)

Figure 3.38 compares the simplex reliability with a two-component standby system
reliability.

�

This example is a special case of the following theorem, which will be
proved in Chapter 4.

THEOREM 3.2. If X1,X2, . . . , Xr are mutually independent,
identically distributed random variables so that Xi ∼ EXP (λ)
for each i, then the random variable X1 + X2 + . . . + Xr has an
r-stage Erlang distribution with parameter λ.
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As a consequence of this theorem, the reliability expression for a standby
redundant system with a total of n components, each of which has an expo-
nentially distributed lifetime with parameter λ, is given by

Rstandby(t) =
n−1∑
k=0

(λt)k

k!
e−λt, t ≥ 0. (3.74)

Example 3.26

Consider a system consisting of n processors. One way to operate the system is to use
the concept of standby sparing, and the system reliability will be given by the expres-
sion (3.74) above. Note that in such a case only one processor is active at a time,
while the others are idle. Now let us consider another way of utilizing the system.
In the beginning we let all n processors be active. This is then a parallel redundant
system so that its reliability is given by equation (3.66). Given our assumptions, it
is easy to show that Rstandby(t) ≥ Rparallel(t). But the above comparison ignores the
fact that the parallel redundant system delivers more computation capacity. Initially
when all n processors are active, performing different computations so that the total
computing capacity is n (where a unit of computing capacity corresponds to that of
one active processor).

Let X1, X2, . . . , Xn be the times to failure of the n processors. Then, after a
period of time Y1 = min{X1, X2, . . . , Xn}, only n − 1 processors will be active and
the computing capacity of the system will have dropped to n − 1. The cumulative
computing capacity that the system supplies until all processors have failed is then
given by the random variable

Cn = nY1 + (n − 1)(Y2 − Y1) + . . . + (n − j)(Yj+1 − Yj) + . . . + (Yn − Yn−1).

From Figure 3.39, we note that Cn is the area under the curve. Beaudry [BEAU 1978]
has coined the phrase “computation before failure” for Cn, while Meyer [MEYE
1980] prefers the term “performability.”

t

Computing capacity

Y3

Y1

Y6

1

2

3

4

5

6

Figure 3.39. Computing capacity as a function of time
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In order to obtain the distribution of Cn, we first obtain the distribution of
Yj+1 − Yj . If we assume processor lifetimes are mutually independent EXP (λ) ran-
dom variables, then we claim that the distribution of Yj+1 − Yj is EXP [(n − j)λ].
Define Y0 = 0. Then since we know that

Y1 = min{X1, X2, . . . , Xn} ∼ EXP (nλ),

our claim holds for j = 0. After j processors have failed, the residual lifetimes of the
remaining (n − j) processors, denoted by W1, W2, . . . , Wn−j , are each exponentially
distributed with parameter λ because of the memoryless property of the exponential
distribution. Note that Yj+1 − Yj is simply the time between the (j + 1)st and the
jth failure:

Yj+1 − Yj = min{W1, W2, . . . , Wn−j}.

It follows that Yj+1 − Yj ∼ EXP ((n − j)λ). Hence, using Example 3.13 we get

(n − j)(Yj+1 − Yj) ∼ EXP (λ).

Therefore, Cn is the sum of n independent identically distributed exponential ran-
dom variables. It follows from Theorem 3.2 that Cn is n-stage Erlang distributed
with parameter λ. Now, since the standby redundant system of expression (3.74) has
a unit processing capacity while functioning and the total duration of its lifetime is
n-stage Erlang with parameter λ, we conclude that the distribution of computation
before failure is the same in both modes of operation. (Remember the assumptions
behind our model, however.)

�

Example 3.27

Consider a computer system with job interarrival times that are exponentially dis-
tributed with parameter λ. Let Xi be the random variable denoting the time between
the (i − 1)st and ith arrivals. Then Zr = X1 + X2 + . . . + Xr is the time until the
rth arrival and has an r-stage Erlang distribution. Another way to obtain this result
is to consider Nt, the number of arrivals in the interval (0, t]. As pointed out ear-
lier, Nt has a Poisson distribution with parameter λt. Now the events [Zr > t] and
[Nt < r] are equivalent. Therefore

P (Zr > t) = P (Nt < r)

=

r−1∑
j=0

P (Nt = j)

=

r−1∑
j=0

e−λt

[
(λt)j

j!

]
,
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which implies that

FZr
(t) = P (Zr ≤ t)

= 1 −
r−1∑
j=0

(λt)j

j!
e−λt,

which is the r-stage Erlang distribution function.

�

In Example 3.25 of standby redundancy, we assumed that the failure rates
of the two components were the same. Now let the failure rates be distinct;
that is, let X and Y be exponentially distributed with parameters λ1 and λ2,
respectively.

THEOREM 3.3. If X ∼ EXP (λ1), Y ∼ EXP (λ2), X and Y
are independent, and λ1 
= λ2, then Z = X + Y has a two-stage
hypoexponential distribution with parameters λ1 and λ2; that is,
Z ∼ HYPO(λ1, λ2).
Proof:

fZ(z) =

∫ z

0

fX(x)fY (z − x)dx , z > 0 [by equation (3.72)]

=

∫ z

0

λ1e
−λ1xλ2e

−λ2(z−x)dx

= λ1λ2e
−λ2z

∫ z

0

e(λ2−λ1)xdx

= λ1λ2e
−λ2z

[
e−(λ1−λ2)x

−(λ1 − λ2)

]x=z

x=0

=
λ1λ2

λ1 − λ2

e−λ2z +
λ1λ2

λ2 − λ1

e−λ1z.

Comparing this density with equation (3.14), we conclude X + Y has a
two-stage hypoexponential distribution with parameters λ1 and λ2.

A more general version of Theorem 3.3 is stated without proof.

THEOREM 3.4. Let Z =
∑r

i=1 Xi, where X1,X2, . . . , Xr are
mutually independent and Xi is exponentially distributed with
parameter λi (λi 
= λj for i 
= j). Then the density of Z, which
is an r-stage hypoexponentially distributed random variable, is
given by

fZ(z) =
r∑

i=1

ai λi e−λiz, z > 0, (3.75)
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......EXP(λ1) EXP(λ2) EXP(λr)

Figure 3.40. Hypoexponential as a series of exponential stages

where

ai =
r∏

j=1
j �=i

λj

λj − λi

, 1 ≤ i ≤ r. (3.76)

Such a stage type distribution is often visualized as in Figure 3.40.

Another related result is stated by the following corollary.

COROLLARY 3.4. If X1 ∼ HYPO(λ1, λ2, . . . , λk), X2 ∼
HYPO(λk+1, . . . , λr) and X1 and X2 are independent, then
(X1 + X2) ∼ HYPO(λ1, λ2, . . . , λk, λk+1, . . . , λr).

Example 3.28

We have noted that a TMR system has higher reliability than simplex for short
missions only. To improve on the reliability of TMR, we observe that after one of
the three units has failed, both of the two remaining units have to function properly
for the classical TMR configuration to function properly. Thus after one failure, the
system reduces to a series system of two components, from the reliability point of
view. An improvement over this simple scheme, known as TMR/simplex, detects
a single component failure, discards the failed component, and reverts to one of the
nonfailing simplex components. In other words, not only the failed component but
also one of the good components is discarded.

Let X, Y, Z denote the times to failure of the three components. Also let W
denote the residual time to failure of the selected surviving component. Let X, Y, Z
be mutually independent and exponentially distributed with parameter λ. If L
denotes the time to failure of TMR/simplex, then it is clear that

L = min{X, Y, Z} + W.

Now, since the exponential distribution is memoryless, it follows that the lifetime
W of the surviving component is exponentially distributed with parameter λ. Also,
from our discussion of order statistics, it follows that min{X, Y, Z} is exponentially
distributed with parameter 3λ. Then L has a two-stage hypoexponential distribution
with parameters 3λ and λ (using Theorem 3.3). Therefore, using equation (3.15),
we have

FL(t) = 1 − 3λ

2λ
e−λt +

λ

2λ
e−3λt, t ≥ 0

= 1 − 3 e−λt

2
+

e−3λt

2
.
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Figure 3.41. Comparison of simplex, TMR, and TMR/simplex reliabilities

Thus the reliability expression of TMR/simplex is given by

R(t) =
3 e−λt

2
− e−3λt

2
. (3.77)

It is not difficult to see that TMR/simplex has a higher reliability than either a
simplex or an ordinary TMR system for all t ≥ 0. Figure 3.41 compares the simplex
reliability with that of TMR and that of TMR/simplex.

�

Example 3.29

Consider a module shown in Figure 3.42, consisting of a functional unit (e.g., an
adder) together with an online fault detector (e.g., a modulo-3 checker). Let T
and C, respectively, denote the times to failure of the unit and the detector. After
the unit fails, it takes a finite time D (called the detection latency) to detect the
failure. Failure of the detector, however, is detected instantaneously. Let X denote
the time to failure indication and Y denote the time to failure occurrence (of either
the detector or the unit). Clearly, X = min{T + D, C} and Y = min{T, C}. If the

Functional
unit

Detector

OutputInput

Error signal

Figure 3.42. A module with an online fault detector
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detector fails before the unit, then a false alarm is said to have occurred. If the unit
fails before the detector, then the unit keeps producing erroneous output during the
detection phase, and thus propagates the effect of the failure. The purpose of the
detector is to reduce the detection time D.

We define the real reliability Rr(t) = P (Y ≥ t) and the apparent reliability
Ra(t) = P (X ≥ t). A powerful detector will tend to narrow the gap between Rr(t)
and Ra(t).

Assume that T , D, and C are mutually independent and exponentially dis-
tributed with parameters λ, δ, and α, respectively. Then, clearly, Y is exponentially
distributed with parameter λ + α and

Rr(t) = e−(λ+α)t.

Also, T + D is hypoexponentially distributed, so that

FT+D(t) = 1 − δ

δ − λ
e−λt +

λ

δ − λ
e−δt.

Next is the apparent reliability:

Ra(t) = P (X ≥ t)

= P (min{T + D, C} ≥ t)

= P (T + D ≥ t and C ≥ t)

= P (T + D ≥ t)P (C ≥ t), by independence

= [1 − FT+D(t)]e−αt

=
δ

δ − λ
e−(λ+α)t − λ

δ − λ
e−(δ+α)t.

�

Many of the examples in the previous sections can be interpreted as hypo-
exponential random variables.

Example 3.30

Consider the TMR system and let X, Y, Z denote the lifetimes of the three compo-
nents. Assume that these random variables are mutually independent and exponen-
tially distributed with parameter λ. Let L denote the lifetime of the TMR system.
Then

L = min{X, Y, Z} + min{U, V }

Here U and V denote the residual lifetimes of the two surviving components after
the first failure. By the memoryless property of the exponential distribution, we
conclude that U and V are exponentially distributed with parameter λ. There-
fore min{X, Y, Z} has exponential distribution with parameter 3λ and min{U, V }
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has exponential distribution with parameter 2λ. Therefore, L has hypoexponential
distribution with parameters 3λ and 2λ. Then the density of L is

fL(t) =
6λ2

3λ − 2λ
e−2λt +

6λ2

2λ − 3λ
e−3λt

= 6λe−2λt − 6λe−3λt.

The distribution function of L is

FL(t) =
6

2
(1 − e−2λt) − 6

3
(1 − e−3λt)

= 1 − 3e−2λt + 2e−3λt.

Finally, the reliability of TMR is

RTMR(t) = 1 − FL(t)

= 3e−2λt − 2e−3λt.

This agrees with expression (3.68) derived earlier.

�

THEOREM 3.5. The order statistic Yn−k+1 (of X1,X2, . . . ,
Xn) is hypoexponentially distributed with (n − k + 1) phases,
that is

Yn−k+1 ∼ HYPO[nλ, (n − 1)λ, . . . , kλ]

if Xi ∼ EXP (λ) for each i, and if X1,X2, . . . , Xn are mutually
independent random variables.

Proof: We prove this theorem by induction. Let n − k + 1 = 1; then

Y1 = min{X1, X2, . . . , Xn}

and clearly Y1 ∼ EXP (nλ), which can be interpreted as a one-stage
hypoexponential, HYPO(nλ). Next assume that Yn−j+1 is hypoexpo-
nentially distributed with parameters nλ, (n − 1)λ, . . . , jλ. It is clear
that

Yn−j+2 = Yn−j+1 + min{Wn−j+2, . . . , Wn},

where the Wi (n − j + 2 ≤ i ≤ n) denote the residual lifetimes of the
surviving components. By the memoryless property of the exponen-
tial distribution, Wi has exponential distribution with parameter λ.
Therefore

min{Wn−j+2, . . . , Wn}
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... ... EXP(λ)

Y1 Yn - k+2

EXP
(n – 1λ)

EXP(kλ)EXP(nλ)

YnY2

EXP
(k–1λ)

Yn - k+1

Figure 3.43. The order statistics of the exponential distribution

has an exponential distribution with the following parameter

[n − (n − j + 2) + 1]λ = (j − 1)λ.

The proof of the theorem then follows using Corollary 3.4. The result
of the theorem may be visualized as in Figure 3.43.

Example 3.31

Consider a k-out-of-n system, each of whose components follows an exponential
failure law with parameter λ. Then the lifetime of the system is given by L(k|n) =
Yn−k+1 and is hypoexponentially distributed with parameters nλ, (n − 1)λ, . . . , kλ.
The density of L(k|n) is given by

f(t) =
n∑

i=k

aiλie
−λit,

where λi = iλ, and

ai =
n∏

j=k
j �=i

λj

λj − λi

=
n∏

j=k
j �=i

j

j − i

=
k(k + 1) . . . (i − 1)(i + 1) . . . (n − 1)n

(k − i) . . . (−1)(1) . . . (n − i)

= (−1)i−k (i − 1)!n!

(k − 1)!(i − k)!i!(n − i)!

= (−1)i−k
(n

i

)( i − 1

k − 1

)
.
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Then

R(t) =
n∑

i=k

ai e−λit

=
n∑

i=k

(n

i

)( i − 1

k − 1

)
(−1)i−ke−iλt. (3.78)

[Note that by substituting k = 1 in (3.78), we get (3.66).] It can be verified [see
problem 4 at the end of this section], using a set of combinatorial identities, that
expression (3.78) is equivalent to

n∑
i=k

(n

i

)
e−iλt(1 − e−λt)n−i

as derived earlier.

�

Example 3.32

Consider a hybrid k-out-of-n system with n + m components, n of which are initially
put into operation with the remaining m components in a deenergized standby
status. An active component has an exponential failure law with parameter λ. Unlike
our earlier examples, we assume that a component can fail in a deenergized state
with a constant failure rate μ (presumably 0 ≤ μ ≤ λ). This is sometimes known as
a “warm spare”. Let Xi (1 ≤ i ≤ n) denote the lifetime of an energized component
and let Yj (1 ≤ j ≤ m) denote the lifetime of a deenergized component. Then the
system lifetime L(k|n, m) is given by

L(k|n, m) = min(X1, X2, . . . , Xn; Y1, Y2, . . . , Ym) + L(k|n, m − 1)

= W (n, m) + L(k|n, m − 1).

This follows since W (n, m) is the time to first failure among the n + m components
and after the removal of the failed component, the system has n energized and m − 1
deenergized components. Note that these n + m − 1 components have not aged by
the exponential assumption. Therefore

L(k|n, m) = L(k|n, 0) +

m∑
i=1

W (n, i). (3.79)

Here L(k|n, 0) = L(k|n) is simply the lifetime of an k-out-of-n system and
is therefore the (n − k + 1)th-order statistic as shown in Example 3.31. The
distribution of L(k|n, 0) is therefore an (n − k + 1)-phase hypoexponential with
parameters nλ, (n − 1)λ, . . . , kλ. Also, W (n, i) has an exponential distribution
with parameter nλ + iμ. Then, using Corollary 3.4, we conclude that L(k|n, m)
has an (n + m − k + 1)-stage hypoexponential distribution with parameters
nλ + mμ, nλ + (m − 1)μ, . . . , nλ + μ, nλ, (n − 1)λ, . . . , kλ. This can be visualized
as in Figure 3.44.
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EXP
( n λ +
 mμ)

(n  λ +
(m -1) μ)

(n  λ + μ) ( n λ ) ( k  λ)

EXP EXP EXP EXP... ...

Figure 3.44. Lifetime distribution of a hybrid k-out-of-n system

Let R[k|n,m](t) denote the reliability of such a system; then

R[k|n,m](t) =
m∑

i=1

aie
−(nλ+iμ)t +

n∑
i=k

bie
−iλt, (3.80)

where

ai =
m∏

j=1
j �=i

nλ + jμ

jμ − iμ

n∏
j=k

jλ

jλ − nλ − iμ
, (3.81)

and

bi =
m∏

j=1

nλ + jμ

(n − i)λ + jμ

n∏
j=k
j �=i

jλ

jλ − iλ
. (3.82)

Letting ρ = λ/μ, we obtain

ai =
(nρ + m) . . . (nρ + 1)

(nρ + i)(m − i) . . . (1)(−1) . . . (1 − i)

(−1)n−k+1n(n − 1) . . . k(
i

ρ
+ n − k

)
. . .

(
i

ρ
+ 1

)(
i

ρ

)

= (−1)i−1 (nρ + m)!m!i

(nρ + i)(nρ)!s!(s − i)!i!

(−1)n−k+1

n(n − 1)!

(
i

ρ

)
!(n − k)!

i

ρ
(k − 1)!

[(
i

ρ

)
n − k

]
!(n − k)!

= (−1)n−k+i

(nρ + m

m

)(m

i

)(n − 1

k − 1

)
[
1 +

i

nρ

]⎛⎝ i

ρ
+ n − k

n − k

⎞
⎠

. (3.83)

[Note that if ρ is not an integer, we use the generalized definition of factorial above.
Thus, for a real number α, α! = Γ(α + 1).]
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Similarly

bi =
(nρ + m) . . . (nρ + 1)

[(n − i)ρ + m] . . . [(n − i)ρ + 1]

n . . . k

i[(n − i) . . . (1)(−1) . . . (k − i)]

=
(nρ + m)![(n − i)ρ]!n!(−1)i−k

(nρ)![(n − i)ρ + m]!i(k − 1)!(n − i)!(i − k)!

= (−1)i−k (nρ + m)!m!((n − i)ρ)!n!i!k

m!(nρ)![(n − i)ρ + m]!(n − i)!i!(i − k)!k!i

= (−1)i−k

(nρ + m

m

)(n

i

)( i

k

)
i

k

(
(n − i)ρ + m

m

) . (3.84)

Once again, using combinatoriall identities, we can verify that our expression for
hybrid k-out-of-n reliability matches with that given by Mathur and Avizienis
[MATH 1970].

�

Problems

1. Given n random numbers u1, u2, . . . , un, derive an expression for a random devi-
ate of an n-stage hypoexponential distribution with parameters λ1, λ2, . . . , λn.

2. Compare the TMR/simplex reliability with two-component and three-component
redundant systems having standby redundancy. Graph the expressions on the
same plot.

3. Repeat problem 2 for two and three component parallel redundant systems.

4. Show that the reliability expression (3.78) for k-out-of-n system reliability
reduces to the expression

n∑
i=k

(n

i

)
e−iλt(1 − e−λt)n−i.

5. Using equation (3.80) obtain an explicit expression for the reliability of a hybrid
TMR system with one spare. Compare the reliability of this system with those
of a TMR system and a simplex system by plotting. Use λ = 1/10, 000 h−1 and
μ = 1/100, 000 h−1.

6. Compare (by plotting) reliability expressions for the simplex system, the
two-component parallel redundant system, and the two-component standby
redundant system. Assume that the failure rate of an active component is
constant at 1/10, 000 h−1, the failure rate of a spare is zero, and that the
switching mechanism is fault-free.
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3.9 FUNCTIONS OF NORMAL RANDOM VARIABLES

The normal distribution has great importance in mathematical statistics
because of the central-limit theorem alluded to earlier. This distribution also
plays an important role in communication and information theory. We will
now study distributions derivable from the normal distribution. The use of
most of these distributions will be deferred until Chapters 10 and 11.

THEOREM 3.6. Let X1,X2, . . . , Xn be mutually independent
random variables such that Xi ∼ N(μi, σ

2
i ), i = 1, 2, . . . , n. Then

Sn =
∑n

i=1 Xi is normally distributed, that is, Sn ∼ N(μ, σ2),
where

μ =
n∑

i=1

μi and σ2 =
n∑

i=1

σ2
i .

Owing to this theorem, we say that the normal distribution has the repro-
ductive property. A proof of this theorem will be given in Chapter 4. The
theorem can be further generalized as in problem 1 at the end of Section
4.4, so that if X1,X2, . . . , Xn are mutually independent random variables
with Xi ∼ N(μi, σ

2
i ), i = 1, 2, . . . , n and a1, a2, . . . an are real constants, then

Yn =
∑n

i=1 aiXi is normally distributed; that is, Yn ∼ N(μ, σ2), where

μ =
n∑

i=1

ai μi and σ2 =
n∑

i=1

a2
i σ2

i .

In particular, if we let n = 2, a1 = +1, and a2 = −1, then we conclude that the
difference Y = X1 − X2 of two independent normal random variables X1 ∼
N(μ1, σ

2
1) and X2 ∼ N(μ2, σ

2
2) is normally distributed, that is, Y ∼ N(μ1 −

μ2, σ
2
1 + σ2

2).

Example 3.33

It has been empirically determined that the memory requirement of a program
(called the working-set size of the program) is approximately normal. In a mul-
tiprogramming system, the number of programs sharing the main memory simulta-
neously (called the degree of multiprogramming) is found to be n. Now if Xi

denotes the working-set size of the ith program with Xi ∼ N(μi, σ
2
i ), then it follows

that the sum total memory demand, Sn, of the n programs is normally distributed
with parameters μ =

∑n
i=1 μi and σ2 =

∑n
i=1 σ2

i .

�

Example 3.34

A sequence of independent, identically distributed random variables, X1,
X2, . . . , Xn, is known in mathematical statistics as a random sample of
size n. In many problems of statistical sampling theory, it is reasonable to
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assume that the underlying distribution is the normal distribution. Thus let
Xi ∼ N(μ, σ2), i = 1, 2, . . . , n. Then from Theorem 3.6, we obtain

Sn =

n∑
i=1

Xi ∼ N(nμ, nσ2)

One important function known as the sample mean is quite useful in problems
of statistical inference. Sample mean X is given by

X =
Sn

n
=

n∑
i=1

Xi

n
. (3.85)

To obtain the pdf of the sample mean X, we use equation (3.55) to obtain

fX = nfSn
(nx ).

But since Sn ∼ N(nμ, nσ2), we have

fX(x) = n
1√

2π(
√

nσ)
e
− (nx−nμ)2

2nσ2

=
1√

2π[σ(n)−1/2]
e
− (x−μ)2

2(σ2/n) , −∞ < x < ∞.

It follows that X ∼ N(μ, σ2/n). Similarly, it can be shown that the random variable
(X − μ)

√
n/σ has the standard normal distribution, N(0, 1).

�

If X is N(0, 1), we know from Example 3.9 that Y = X2 is gamma-
distributed with Y ∼ GAM(1

2 , 1
2 ), which is the chi-square distribution with

one degree of freedom. Now consider X1,X2 that are independent standard
normal random variables and Y = X2

1 + X2
2 .

Example 3.35

If X1 ∼ N(0, 1), X2 ∼ N(0, 1) and X1 and X2 are independent, then Y = X2
1 + X2

2

is exponentially distributed so that Y ∼ EXP ( 1
2
).

To see this, we obtain the distribution function of Y :

FY (y) = P (X2
1 + X2

2 ≤ y)

=

∫ ∫
x2
1+x2

2≤y

fX1X2
(x1, x2)dx1dx2.

Note that the surface of integration is a circular area about the origin with the
radius

√
y (see Figure 3.45). Using the fact that X1 and X2 are independent, and

standard normal, we have

FY (y) =

∫ ∫
x2
1+x2

2≤y

1

2π
e−

x2
1+x2

2
2 dx1dx2.
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X1

X2

y

Figure 3.45. The area of integration for Example 3.35

Making a change of variables (to polar coordinates), x1 = r cos θ, x2 = r sin θ, so
that r2 = x2

1 + x2
2 and θ = tan−1(x2/x1), we have

FY (y) =

∫ 2π

θ=0

∫ √
y

r=0

r

2π
e−r2/2dr dθ

=

{
1 − e−y/2, y > 0,
0, otherwise.

Therefore, Y is exponentially distributed with parameter 1
2
.

�

This example is a special case of the following theorem.

THEOREM 3.7. If X1,X2, . . . , Xn is a sequence of mutually
independent, standard normal random variables, then

Y =
n∑

i=1

X2
i

has the gamma distribution, GAM(1
2 , n/2), or the chi-square dis-

tribution with n degrees of freedom, X2
n.

This theorem follows from the reproductive property of the gamma distri-
bution (see Theorem 3.8).

THEOREM 3.8. Let X1,X2, . . . , Xn be a sequence of
mutually independent gamma random variables such that
Xi ∼ GAM(λ, αi) for i = 1, 2, . . . , n. Then Sn =

∑n
i=1 Xi has the

gamma distribution GAM(λ, α), where α = α1 + α2 + . . . + αn.

This theorem will be proved in Chapter 4.
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Since X2
n ∼ GAM(1

2 , n/2), we have the following corollary.

COROLLARY 3.8. Let Y1, Y2, . . . , Yn be mutually indepen-
dent chi-square random variables such that Yi ∼ X2

ki
. Then Y1 +

Y2 + . . . + Yn has the X2
k distribution, where

k =
n∑

i=1

ki.

Example 3.36

Assume that X1, X2, . . . , Xn are mutually independent, identically distributed nor-
mal random variables such that Xi ∼ N(μ, σ2), i = 1, 2, . . . , n. It follows that Zi =
(Xi − μ)/σ is standard normal. Thus Z1, Z2, . . . , Zn are independent standard nor-
mal random variables. Hence, using Theorem 3.7, we have

Y =
n∑

i=1

Z2
i =

n∑
i=1

(Xi − μ)2

σ2
, (3.86)

which has the chi-square distribution with n degrees of freedom. Note that the
random variable

∑n
i=1 (Xi − μ)2/n may be used as an estimator of the parameter σ2.

�

Example 3.37

In the last example, we suggested that
∑n

i=1 (Xi − μ)2/n may be used as an estima-
tor of the parameter σ2 assuming that X1, X2, . . . , Xn are independent observations
from a normal distribution N(μ, σ2). However, this expression assumes that the
parameter μ of the distribution is already known. This is rarely the case in practice,
and the sample mean X =

∑n
i=1 Xi/n is usually substituted in its place. Thus, the

random variable

U =

n∑
i=1

(Xi − X)2

n − 1
(3.87)

is usually used as an estimator of the parameter σ2 and is often denoted by S2.
(The reason for the value n − 1 rather than n in the denominator will be seen in
Chapter 10).

Rewriting, we have

S2 = U =
σ2

n − 1

n∑
i=1

(
Xi − X

σ

)2

, (3.88)

where we note that n random variables {(Xi − X)/σ|1 ≤ i ≤ n} satisfy the relation

n∑
i=1

Xi − X

σ
= 0 (3.89)
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(from the definition of the sample mean, X). Thus they are linearly dependent. It
can be shown that the random variable

W =
n∑

i=1

(
Xi − X

σ

)2

(3.90)

can be transformed to a sum of squares of (n − 1) independent standard normal
random variables, and hence W = (n − 1)U/σ2 = (n − 1)S2/σ2 has a chi-square
distribution with n − 1 degrees of freedom (rather than n degrees of freedom).

�

Just as the sums of chi-square random variables are of interest, so is the
ratio of two chi-square random variables. First assume that X and Y are
independent, positive-valued random variables and let Z be their quotient:

Z =
Y

X
. (3.91)

Then the distribution function of Z is obtained using the formula

FZ(z) =
∫ ∫

Az

f(x, y) dx dy ,

where the set
Az = {(x, y)|y/x ≤ z}

is shown in Figure 3.46. Therefore

FZ(z) =
∫ ∞

0

[∫ xz

0

f(x, y) dy
]

dx

=
∫ ∞

0

[∫ z

0

x f(x, xv) dv
]

dx , (3.92)

after a change of variables to y = xv .
It follows that the pdf of Z is given by

fZ(z) =
∫ ∞

0

x f(x, xz ) dx

=
∫ ∞

0

xfX(x)fY (xz ) dx , 0 < z < ∞ (3.93)

(by independence of X and Y ).
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Y/X=z

X

Y

zA

Figure 3.46. The area of integration for computing the CDF of Y/X = Z

THEOREM 3.9. Let Y1 and Y2 be independent random vari-
ables with X2

n1
and X2

n2
distributions, respectively. Then

Z =
Y1/n1

Y2/n2

has the F distribution, which is characterized by two parameters,
(n1, n2), that is, Z ∼ Fn1,n2

. The pdf of Z is given by

fZ(z) =

⎧⎪⎨
⎪⎩

(n1/n2)Γ[(n1 + n2)/2](n1z/n2)
(n1/2)−1

Γ(n1/2)Γ(n2/2)[1 + (n1z/n2)](n1+n2)/2
, z > 0,

0, otherwise.
(3.94)

Proof: Recall that

fY1
(y1) =

y
(n1/2)−1
1 e−y1/2

2n1/2Γ(n1/2)

and

fY2
(y2) =

y
(n2/2)−1
2 e−y2/2

2n2/2Γ(n2/2)
.
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Let Y = Y1/n1 and X = Y2/n2. Using formula (3.55), it follows that

fY (y) =
n1(yn1)

n1/2−1e−(n1y)/2

2n1/2Γ(n1/2)

and

fX(x) =
n2(xn2)

n2/2−1e−(n2x)/2

2n2/2Γ(n2/2)
.

Now, applying equation (3.93), we get

fZ(z) =

∫ ∞

0

x
n1n2

2(n1+n2)/2Γ(n1/2)Γ(n2/2)

·(xzn1)
n1/2−1(xn2)

n2/2−1e−(n1xz+n2x)/2dx

=
n1n2(n1)

n1/2−1(n2)
n2/2−1zn1/2−1

2(n1+n2)/2Γ(n1/2)Γ(n2/2)

·
∫ ∞

0

xn1/2+n2/2−1e−x(n1z+n2)/2dx . (3.95)

Using equation (3.25), the last integral is evaluated as

Γ[(n1 + n2)/2]

[(n1z + n2)/2](n1+n2)/2
.

Substituting this in (3.95), we get the required result as in (3.94).

Example 3.38

Suppose that X1, X2, . . . , Xm, Xm+1, . . . , Xn are mutually independent normal ran-
dom variables with the common distribution, N(0, σ2). Then by Theorem 3.7

Y =
m∑

i=1

X2
i

σ2
and X =

n∑
i=m+1

X2
i

σ2

are chi-square distributed with m and (n − m) degrees of freedom, respectively.
Furthermore, X and Y are independent. It follows by Theorem 3.9 that

Z =

m∑
i=1

X2
i /m

n∑
i=m+1

X2
i /(n − m)

(3.96)

has the Fm,n−m distribution.

�

The last distribution we introduce here is Student’s t distribution.
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-6.0 6.0

0.4

T1

T5

Standard
normal

T5
T1

pd
f

Standard
normal

Figure 3.47. Student’s t pdf and its comparison with standard normal pdf

THEOREM 3.10. If V and W are independent random
variables such that V ∼ N(0, 1) and W ∼ X2

n, then the random
variable

T =
V√
W/n

(3.97)

has the t distribution with n degrees of freedom. The pdf of this
random variable is given by

fT (t) =
Γ[(n + 1)/2]√

nπΓ[n/2]

[
1 +

t2

n

]−(n+1)/2

, −∞ < t < ∞. (3.98)

For n = 1, this pdf reduces to

fT (t) =
1

π(1 + t2)
, (3.99)

which is known as the Cauchy pdf.

The pdf in (3.98) is plotted for various degrees of freedom in Figure 3.47.
It may be noted that as n approaches infinity, the t distribution approaches
the normal distribution.

Example 3.39

Assume that X1, X2, . . . , Xn are mutually independent identically distributed
normal random variables such that Xi ∼ N(μ, σ2). Then from Example 3.34, it
follows that

V =
(X − μ)

√
n

σ
(3.100)
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has the standard normal distribution. Also, from Example 3.37

(n − 1)S2

σ2
= W =

n∑
i=1

[
Xi − X

σ

]2
(3.101)

has the X2
n−1 distribution. It follows that

T =
V√

W
(n−1)

=
(X − μ)

√
n/σ[

S
√

n−1
σ

] ·
√

n − 1

=
X − μ

S/
√

n
(3.102)

has the t distribution with (n − 1) degrees of freedom.

�

Problems

1. In communication theory, waveforms of the form

A(t) = x(t) cos(ωt) − y(t) sin(ωt)

appear quite frequently. At a fixed time instant, t = t1, X = X(t1), and Y =
Y (t1) are known to be independent Gaussian random variables, specifically,
N(0, σ2). Show that the distribution function of the envelope Z =

√
X2 + Y 2

is given by

FZ(z) =

{
1 − e−z2/2σ2

, z > 0,
0, otherwise.

This distribution is called the Rayleigh distribution. Compute and plot its pdf.

2. The test effort during the software testing phase, such as human resources,
the number of test cases, and CPU time, can be measured by the cumulative
amount of testing effort during the time interval (0, t]. Yamada et al. [YAMA
1986] proposed a formula for W (t): dW (t)/dt = g(t)(1 − W (t)) where g(t) is the
instantaneous consumption rate of the testing effort expenditures. W (t) is defined
as W (t) =

∫ t

0
w(t)dt where w(t) is the testing-effort consumption rate at time t.

Find an explicit expression for W (t) in terms of g(t) and show that W (t) is the
Rayleigh distribution.

3. A calculator operates on two 1.5-V batteries (for a total of 3V). The actual
voltage of a battery is normally distributed with μ = 1.5 and σ2 = 0.45. The
tolerances in the design of the calculator are such that it will not operate sat-
isfactorily if the total voltage falls outside the range 2.70–3.30 V. What is the
probability that the calculator will function correctly?

Review Problems

1. Show that the pdf of the product Z = XY of two independent random variables
with respective densities fX and fY is given by

fZ(z) =

∫ ∞

−∞

1

|x| fX(x) fY (
z

x
) dx .
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2. 	 Consider the problem of multiplying the mantissas X and Y of two
floating-point numbers in base β [HAMM 1973]. Assume that X and Y
are independent random variables with densities fX and fY , respectively,
and 1/β ≤ X, Y < 1. Note that the product XY satisfies 1/β2 ≤ XY < 1.
If 1/β2 ≤ XY < 1/β, then a left shift is required in order to normalize the
result. Let ZN denote the normalized product (i.e., ZN = XY if XY ≥ 1/β and
ZN = β XY otherwise). Show that the pdf of ZN is given by

fZN
(z) =

1

β

∫ z

1/β

fX(x)

x
fY (

z

βx
) dx +

∫ 1

z

fX(x)

x
fY (

z

x
) dx ,

1

β
≤ z < 1.

Assuming that fY (y) = 1/(y ln β), show that ZN also has the same recipro-
cal density. Thus, in a long sequence of multiplications, if at least one factor
has the reciprocal density, then the normalized product has the reciprocal den-
sity. Assuming that both X and Y have the reciprocal density, compute the
probability that a left shift is required for normalization.

3. 	 Consider the quotient Y/X of two independent normalized floating-point man-
tissas in base β [HAMM 1973]. Since 1/β ≤ Y/X < β, a one-digit right shift may
be required to obtain the normalized quotient QN . Show that the pdf of QN is
given by

fQN
(z) =

1

z2

∫ z

1/β

x fX(x) fY (
x

z
) dx +

1

βz2

∫ 1

z

x fX(x) fY (
x

βz
) dx ,

1

β
≤ z < 1.

Show that if the dividend Y has the reciprocal density, then the normalized
quotient also has the same density. Also compute the probability that a shift is
required assuming that both X and Y have the reciprocal density.
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Chapter 4

Expectation

4.1 INTRODUCTION

The distribution function F (x) or the density f(x) [pmf p(xi) for a discrete
random variable] completely characterizes the behavior of a random variable
X. Frequently, however, we need a more concise description such as a single
number or a few numbers, rather than an entire function. One such number
is the expectation or the mean, denoted by E[X]. Similarly, the median,
which is defined as any number x such that P (X < x) ≤ 1

2 and P (X > x) ≤ 1
2 ,

and the mode, defined as the number x, for which f(x) or p(xi) attains its
maximum, are two other quantities sometimes used to describe a random vari-
able X. The mean, median, and mode are often called measures of central
tendency of a random variable X.

Definition (Expectation). The expectation, E[X], of a random vari-
able X is defined by

E[X] =

⎧⎪⎪⎨
⎪⎪⎩

∑
ixip(xi), if X is discrete,∫ ∞

−∞
xf (x)dx , if X is continuous,

(4.1)

provided the relevant sum or integral is absolutely convergent; that is,∑
i|xi|p(xi) < ∞ and

∫ ∞

−∞
|x|f(x)dx < ∞. If the right-hand side in (4.1) is

not absolutely convergent, then E[X] does not exist. Most common random
variables have finite expectation; however, problem 1 at the end of this
section provides an example of a random variable whose expectation does not
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exist. Definition (4.1) can be extended to the case of mixed random variables
through the use of Riemann–Stieltjes integral. Alternatively, the formula
given in problem 2 at the end of this section can be used in the general case.

Example 4.1

Consider the problem of searching for a specific name in a table of names. A simple
method is to scan the table sequentially, starting from one end, until we either find
the name or reach the other end, indicating that the required name is missing from
the table. The following is a C program fragment for sequential search:

#define n 100

Example() {
NAME Table[n+1];

NAME myName;

int I;

/* myName has been initialized elsewhere */

Table[0] = myName; //Table[0] is used as a sentinel or marker.

I = n;

while (myName != Table[I])

I = I - 1;

if (I > 0) {
printf(‘‘found!’’);

myName = Table[I];}
else

printf(‘‘not found!’’);

}

In order to analyze the time required for sequential search, let X be the discrete
random variable denoting the number of comparisons “myName �= Table[I]” made.
Clearly, the set of all possible values of X is {1, 2, . . . , n + 1}, and X = n + 1 for
unsuccessful searches. Since the value of X is fixed for unsuccessful searches, it
is more interesting to consider a random variable Y that denotes the number of
comparisons on a successful search. The set of all possible values of Y is {1, 2, . . . , n}.
To compute the average search time for a successful search, we must specify the pmf
of Y . In the absence of any specific information, it is natural to assume that Y is
uniform over its range:

p
Y

(i) =
1

n
, 1 ≤ i ≤ n.

Then

E[Y ] =
n∑

i=1

i p
Y

(i) =
1

n

n(n + 1)

2
=

(n + 1)

2
.

Thus, on the average, approximately half the table needs to be searched.

�



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 203�

� �

�

4.1 INTRODUCTION 203

Example 4.2

The assumption of discrete uniform distribution, used in Example 4.1, rarely holds
in practice. It is possible to collect statistics on access patterns and use empirical
distributions to reorganize the table so as to reduce the average search time. Unlike
Example 4.1, we now assume for convenience that table search starts from the front.
If αi denotes the access probability for name Table[i], then the average successful
search time is E[Y ] =

∑
iαi. Then E[Y ] is minimized when names in the table are

in the order of nonincreasing access probabilities; that is, α1 ≥ α2 ≥ · · · ≥ αn. As
an example, many tables in practice follow Zipf’s law [ZIPF 1949]:

αi =
c

i
, 1 ≤ i ≤ n,

where the constant c is determined from the normalization requirement,
∑n

i=1 αi =
1. Thus:

c =
1

n∑
i=1

1
i

=
1

Hn

� 1

ln(n) + C
, (4.2)

where Hn is the partial sum of a harmonic series; that is: Hn =
∑n

i=1(1/i) and
C(= 0.577) is the Euler constant.

Now, if the names in the table are ordered as above, then the average search
time is

E[Y ] =
n∑

i=1

iαi =
1

Hn

n∑
i=1

1 =
n

Hn

� n

ln(n) + C
,

which is considerably less than the previous value (n + 1)/2, for large n.
�

Example 4.3

Zipf’s law has been used to model the distribution of Web page requests [BRES
1999]. It has been found that p

Y
(i), the probability of a request for the ith most

popular page is inversely proportional to i [ALME 1996, WILL 1996],

p
Y

(i) =
c

i
, 1 ≤ i ≤ n, (4.3)

where n is the total number of Web pages in the universe.
We assume the Web page requests are independent and the cache can hold only

m Web pages regardless of the size of each Web page. If we adopt a removal policy
called “least frequently used”, which always keeps the m most popular pages, then
the hit ratio h(m)—the probability that a request can find its page in cache—is
given by

h(m) =
m∑

i=1

p
Y

(i) � c Hm =
Hm

Hn

� ln(m) + C

ln(n) + C
, (4.4)

which means the hit ratio increases logarithmically as a function of cache size. This
result is consistent with previously observed behavior of Web cache [ALME 1996,
WILL 1996].

�
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Example 4.4

Recall the example of a wireless cell with five channels (Examples 1.1, and 2.2), and
let X be the number of available channels. Then

E[X] =

5∑
i=0

ip
X

(i)

= 0 · 1

32
+ 1 · 5

32
+ 2 · 10

32
+ 3 · 10

32
+ 4 · 5

32
+ 5 · 1

32

= 2.5.

The example above illustrates that E[X] need not correspond to a possible value
of the random variable X. The expected value denotes the “center” of a probability
mass (or density) function in the sense of a weighted average, or better, in the sense
of a center of gravity.

�

Example 4.5

Let X be a continuous random variable with an exponential density given by

f(x) = λe−λx, x > 0.

Then

E[X] =

∫ ∞

−∞
xf (x)dx =

∫ ∞

0

λxe−λxdx .

Let u = λx, then du = λdx , and

E[X] =
1

λ

∫ ∞

0

ue−udu =
1

λ
Γ2 =

1

λ
, using formula (3.25).

Thus, if a component obeys an exponential failure law with parameter λ (known
as the failure rate), then its expected life, or its mean time to failure (MTTF), is
1/λ. Similarly, if the interarrival times of jobs to a computer center are exponen-
tially distributed with parameter λ (known as the arrival rate), then the mean
(average) interarrival time is 1/λ. Finally, if the service time requirement of a job
is an exponentially distributed random variable with parameter μ (known as the
service rate), then the mean (average) service time is 1/μ.

�

Problems

1. Consider a discrete random variable X with the following pmf:

pX(x) =

⎧⎨
⎩

1

x(x + 1)
, x = 1, 2, . . . ,

0, otherwise.



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 205�

� �

�

4.2 MOMENTS 205

Figure 4.P.1. An alternative method of computing E[X]

Show that the function defined satisfies the properties of a pmf. Show that the
formula (4.1) of expectation does not converge in this case and hence E[X] is
undefined. [Hint: Rewrite 1/x(x + 1) as 1/x − 1/(x + 1).]

2. � Using integration by parts, show (assuming that E[X],
∫∞
0

[1 − F (x)]dx , and∫ 0

−∞ F (x)dx are all finite) that for a continuous random variable X:

E[X] =

∫ ∞

0

[1 − F (x)]dx −
∫ 0

−∞
F (x)dx .

This result states that the expectation of a random variable X equals the differ-
ence of the areas of the right-hand and left-hand shaded regions in Figure 4.P.1.
(This formula applies to the case of discrete and mixed random variables as well.)

3. For a given event A show that the expectation of its indicator random variable
IA (refer to Section 2.5.9) is given by

E[IA] = P (A).

4. For the modified exponential distribution with a mass at origin [formula (3.2)],
compute its expected value.

4.2 MOMENTS

LetX be a random variable, and define another random variable Y as a func-
tion of X so that Y = φ(X). Suppose that we wish to compute E[Y ]. In order
to apply Definition (4.1), we must first compute the pmf (or pdf in the con-
tinuous case) of Y by methods of Chapter 2 (or Chapter 3 for the continuous
case). An easier method of computing E[Y ] is to use the following result:

E[Y ] = E[φ(X)] =

⎧⎪⎪⎨
⎪⎪⎩

∑
i

φ(xi)pX
(xi), if X is discrete,

∫ ∞

−∞
φ(x)fX(x)dx , if X is continuous,

(4.5)

(provided the sum or the integral on the right-hand side is absolutely
convergent).
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A special case of interest is the power function φ(X) = Xk. For
k = 1, 2, 3, . . . , E[Xk] is known as the kth moment of the random variable X.
Note that the first moment, E[X], is the ordinary expectation or the mean
of X.

It is possible to show that if X and Y are random variables that have
matching corresponding moments of all orders; that is, E[Xk] = E[Y k] for
k = 1, 2, . . ., then X and Y have the same distribution.

To center the origin of measurement, it is convenient to work with powers
of X − E[X]. We define the kth central moment, μk, of the random variable
X by μk = E[(X − E[X])k]. Of special interest is the quantity

μ2 = E[(X − E[X])2], (4.6)

known as the variance of X,Var[X], often denoted by σ2.

Definition (Variance). The variance of a random variable X is

Var[X] = μ2 = σ2
X =

⎧⎨
⎩

∑
i(xi − E[X])2p(xi) if X is discrete,∫ ∞

−∞ (x − E[X])2f(x)dx if X is continuous.
(4.7)

It is clear that Var[X] is always a nonnegative number. The square root,
σX , of the variance is known as the standard deviation. Note that we
will often omit subscript X. The variance and the standard deviation are
measures of the “spread” or “dispersion” of a distribution. If X has a “con-
centrated” distribution so that X takes values near to E[X] with a large
probability, then the variance is small (see Figure 4.1). Figure 4.2 shows a
diffuse distribution—one with a large value of σ2. Note that variance need
not always exist (see problem 3 at the end of Section 4.7).

f(x)

x

Small variance

Figure 4.1. The pdf of a “concentrated” distribution
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Large variance

f(x)

x

Figure 4.2. The pdf of a diffuse distribution

The third and the fourth central moments are called the skewness and
kurtosis, respectively.

Example 4.6

Let X be an exponentially distributed random variable with parameter λ. Then,
since E[X] = 1/λ, and f(x) = λe−λx:

σ2 =

∫ ∞

0

(x − 1

λ
)2λe−λxdx

=

∫ ∞

0

λx2e−λxdx − 2

∫ ∞

0

xe−λxdx +
1

λ

∫ ∞

0

e−λxdx

=
1

λ2
Γ3 − 2

λ2
Γ2 +

1

λ2
Γ1 =

1

λ2
, using formula (3.25).

�

The standard deviation is expressed in the same units as the individual
value of the random variable. If we divide it by the mean, then we obtain
a relative measure of the spread of the distribution of X. The coefficient of
variation of a random variable X is denoted by CX and defined by

CX =
σ

X

E[X]
. (4.8)

Note that the coefficient of variation of an exponential random variable is
1, so CX is a measure of deviation from the exponential distribution.

Yet another function of X that is often of interest is Y = aX + b, where
a and b are constants. It is not difficult to show that

E[Y ] = E[aX + b] = aE [X] + b. (4.9)

In particular, if a is zero, then E[b] = b; that is, the expectation of a
constant random variable is that constant. If we take a = 1 and b = −E[X],
then we conclude that the first central moment, μ1 = E[X − E[X]] = E[X] −
E[X] = 0.
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Problems

1. � The problem of dynamic storage allocation in the main memory of a computer
system [WOLM 1965] can be simplified by choosing a fixed node size, k, for
allocation. Out of the k units (bytes, say) of storage allocated to a node, only k − b
bytes are available to the user, since b bytes are required for control information.
Let the random variable L denote the length in bytes of a user request. Thus
�L/(k − b)� nodes must be allocated to satisfy the user request. Thus the total
number of bytes allocated is X = k�L/(k − b)�. Find E[X] as a function of k and
E[L]. Then, by differentiating E[X] with respect to k, show that the optimal value
of k is approximately b +

√
2bE [L].

2. Recall the problem of the mischievous student trying to open a password-
protected file, and determine the expected number of trials E[Nn] and the
variance Var[Nn] for both techniques described in problem 3, Section 2.5.

3. The number of failures of a computer system in a week of operation has the

following pmf:

No. of Failures 0 1 2 3 4 5 6

Probability .18 .28 .25 .18 .06 .04 .01

(a) Find the expected number of failures in a week.

(b) Find the variance of the number of failures in a week.

4. In a Bell System study made in 1961 regarding the dialing of calls between White

Plains, New York, and Sacramento, California, the pmf of the number of trunks,

X, required for a connection was found to be

i 1 2 3 4 5

p
X

(i) .50 .30 .12 .07 .01

Determine the distribution function of X. Compute E[X], Var[X] and the mode
of X. Let Y denote the number of telephone switching exchanges that this call has
to pass through. Then Y = X + 1. Determine the pmf, the distribution function,
the mean, and the variance of Y .

5. Let X, Y , and Z, respectively, denote EXP(1), two-stage hyperexponential with
α1 = .5 = α2, λ1 = 2, and λ2 = 2

3
, and two-stage Erlang with parameter 2 ran-

dom variables. Note that E[X] = E[Y ] = E[Z]. Find the mode, the median, the
variance, and the coefficient of variation of each random variable. Compare
the densities of X, Y , and Z by plotting on the same graph. Similarly compare
the three distribution functions.

6. Given a random variable X and two functions h(x) and g(x) satisfying the con-
dition h(x) ≤ g(x) for all x, show that

E[h(X)] ≤ E[g(X)],

whenever both expectations exist.
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4.3 EXPECTATION BASED ON MULTIPLE RANDOM
VARIABLES

Let X1,X2, . . . , Xn be n random variables defined on the same probability
space, and let Y = φ(X1,X2, . . . , Xn). Then

E[Y ] = E[φ(X1,X2, . . . , Xn)]

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
x1

∑
x2

· · ·
∑
xn

φ(x1, x2, . . . , xn)p(x1, x2, . . . , xn)

(discrete case),∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
φ(x1, x2, . . . , xn)f(x1, x2, . . . , xn)dx1dx2 · · · dxn

(continuous case).

(4.10)

Example 4.7

Consider a moving head disk with the innermost cylinder of radius a and the outer-
most cylinder of radius b. We assume that the number of cylinders is very large and
the cylinders are very close to each other, so that we may assume a continuum of
cylinders. Let the random variables X and Y , respectively, denote the current and
the desired position of the head. Further assume that X and Y are independent and
uniformly distributed over the interval (a, b). Therefore

fX(x) = fY (y) =
1

b − a
, a < x, y < b,

and

f(x, y) =
1

(b − a)2
, a < x, y < b.

Head movement for a seek operation traverses a distance that is a random variable
given by |X − Y |. The expected seek distance is then given by (see Figure 4.3):

E[|X − Y |] =

∫ b

a

∫ b

a

|x − y|f(x, y)dx dy

=

∫ b

a

∫ b

a

|x − y| 1

(b − a)2
dx dy

=

∫ ∫
a≤y<x≤b

(x − y)

(b − a)2
dy dx +

∫ ∫
a≤x<y≤b

(y − x)

(b − a)2
dy dx

=
2

(b − a)2

∫ b

a

∫ x

a

(x − y)dy dx , by symmetry

=
2

(b − a)2

∫ b

a

(
xy − y2

2

) ∣∣∣∣
x

a

dx

=
2

(b − a)2

∫ b

a

(
x2 − ax − x2

2
+

a2

2

)
dx
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a b
X

b
a < X < Y < b

a

Y

a < Y < X < b

Figure 4.3. Two areas of integration for Example 4.7

=
2

(b − a)2

[
b3 − a3

6
− a

2
(b2 − a2) +

a2(b − a)

2

]

=
b − a

3
.

Thus the expected seek distance is one third the maximum seek distance. Intuition
may have led us to the incorrect conclusion that the expected seek distance is half
of the maximum. (In practice, the expected seek distance is even smaller because of
correlations between successive requests [HUNT 1980, IBM 1997].)

�

Certain functions of random variables (e.g., sums), are of special interest
and are of considerable use.

THEOREM 4.1 (The Linearity Property of Expectation).
Let X and Y be two random variables. Then the expectation of
their sum is the sum of their expectations; that is, if Z = X + Y ,
then E[Z] = E[X + Y ] = E[X] + E[Y ].

Proof: We will prove the theorem assuming that X, Y , and hence Z are
continuous random variables. Proof for the discrete case is very similar.

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x + y)f(x, y)dx dy

=

∫ ∞

−∞
x

∫ ∞

−∞
f(x, y)dy dx +

∫ ∞

−∞
y

∫ ∞

−∞
f(x, y)dx dy
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=

∫ ∞

−∞
xfX(x)dx +

∫ ∞

−∞
yfY (y)dy

(by definition of the marginal densities)

= E[X] + E[Y ].

Note that Theorem 4.1 does not require that X and Y be independent. It
can be generalized to the case of n variables:

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

and to

E

[
a0 +

n∑
i=1

aiXi

]
= a0 +

n∑
i=1

aiE[Xi], (4.11)

where a0, a1, . . . , an are constants. For instance, let X1,X2, . . . , Xn, be
random variables (not necessarily independent) with a common mean
μ = E[Xi] (i = 1, 2, . . . , n). Then the expected value of their sample mean
(defined in Section 3.9) is equal to μ:

E[X] = E

[
1
n

n∑
i=1

Xi

]
=

1
n

n∑
i=1

E[Xi] = μ. (4.12)

Example 4.8

We have noted that the variance:

σ2 = E[(X − E[X])2]

= E[X2 − 2XE [X] + (E[X])2]

= E[X2] − E[2XE [X]] + (E[X])2, by (4.11)

= E[X2] − 2E[X]E[X] + (E[X])2

(noting that E[X] is a constant). Thus

σ2 = E[X2] − (E[X])2. (4.13)

This formula for Var[X] is usually preferred over the original definition (4.7).

�

Unlike the case of expectation of a sum, the expectation of a product of
two random variables does not have a simple form, unless the two random
variables are independent.
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THEOREM 4.2. E[XY ] = E[X]E[Y ], if X and Y are inde-
pendent random variables.

Proof: We give a proof of the theorem under the assumption that X
and Y are discrete random variables. The proof for the continuous case
is similar:

E[XY ] =
∑

i

∑
j

xiyjp(xi, yj)

=
∑

i

∑
j

xiyjpX
(xi)pY

(yj) by independence

=
∑

i

xipX
(xi)
∑

j

yjpY
(yj) = E[X]E[Y ].

Note that converse of Theorem 4.2 does not hold; that is, random vari-
ables X and Y may satisfy the relation E[XY ] = E[X]E[Y ] without being
independent.

Theorem 4.2 can be easily generalized to a mutually independent set of n
random variables X1,X2, . . . , Xn:

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi] (4.14)

and further to

E

[
n∏

i=1

φi(Xi)

]
=

n∏
i=1

E[φi(Xi)].

Again with the assumption of independence, the variance of a sum takes a
simpler form also, as follows.

THEOREM 4.3. Var[X + Y ] = Var[X] + Var[Y ], if X and Y
are independent random variables.

Proof: From the definition of variance, we obtain

Var[X + Y ] = E[((X + Y ) − E[X + Y ])2]

= E[((X + Y ) − E[X] − E[Y ])2]

= E[(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])]

= E[(X − E[X])2] + E[(Y − E[Y ])2] + 2E[(X − E[X])(Y − E[Y ])]

= Var[X] + Var[Y ] + 2E[(X − E[X])(Y − E[Y ])],

by the linearity property of expectation.

The quantity E[(X − E[X])(Y − E[Y ])] is defined to be the covari-
ance of X and Y and is denoted by Cov(X, Y ). It is easy to see that
Cov(X, Y ) is zero when X and Y are independent:
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Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY − YE [X] − XE [Y ] + E[X]E[Y ]]

= E[XY ] − E[Y ]E[X] − E[X]E[Y ] + E[X]E[Y ]

by the linearity of expectation,

= E[XY ] − E[X]E[Y ]

= 0,

by Theorem 4.2, since X and Y are independent.

Therefore, Var[X + Y ] = Var[X] + Var[Y ] if X and Y are independent
random variables.

In case X and Y are not independent, we obtain the following formula:

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X,Y ). (4.15)

Theorem 4.3 can be generalized for a set of n mutually independent random
variables X1,X2, . . . , Xn; and constants a1, a2, . . . , an:

Var

[
n∑

i=1

aiXi

]
=

n∑
i=1

a2
i Var[Xi]. (4.16)

Thus, if X1,X2, . . . , Xn are mutually independent random variables with
a common variance σ2 = Var[Xi] (i = 1, 2, . . . , n), then the variance of their
sum is given by

Var

[
n∑

i=1

Xi

]
= nVar[Xi] = nσ2, (4.17)

and the variance of their sample mean is

Var[X] = Var

[
1
n

n∑
i=1

Xi

]
=

1
n2

Var

[
n∑

i=1

Xi

]
(4.18)

=
σ2

n
.

We have noted that Cov(X,Y ) = 0, if X and Y are independent ran-
dom variables. However, it is possible for two random variables to satisfy the
condition Cov(X,Y ) = 0 without being independent.

Definition (Uncorrelated Random Variables). Random variables
X and Y are said to be uncorrelated provided Cov(X,Y ) = 0.
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Since Cov(X,Y ) = E[XY ] − E[X]E[Y ], an equivalent definition of uncor-
related random variables is the condition E[XY ] = E[X]E[Y ]. It follows that
independent random variables are uncorrelated, but the converse need not
hold.1

Example 4.9

Let X be uniformly distributed over the interval (−1, 1) and let Y = X2, so that
Y is completely dependent on X. Noting that for all odd values of k > 0, the kth
moment E[Xk] = 0, we have

E[XY ] = E[X3] = 0 and E[X]E[Y ] = 0 · E[Y ] = 0.

Therefore X and Y are uncorrelated!

�

We have declared that Cov(X,Y ) = 0 means X and Y are uncorrelated.
On the other hand, if X and Y are linearly related—that is, X = aY for some
constant a �= 0—then, since E[X] = aE [Y ], we have

Cov(X,Y ) = aVar[Y ] =
1
a

Var[X]

or
Cov2(X,Y ) = Var[X]Var[Y ].

In the general case, it can be shown that

0 ≤ Cov2(X,Y ) ≤ Var[X]Var[Y ] (4.19)

using the following Cauchy–Schwarz inequality:

(E[XY ])2 ≤ E[X2]E[Y 2]. (4.20)

Cov(X,Y ) measures the degree of linear dependence (or the degree of cor-
relation) between the two random variables. Recalling Example 4.9, we note
that the notion of covariance completely misses the quadratic dependence. It
is often useful to define a measure of this dependence in a scale-independent
fashion. The correlation coefficient ρ(X,Y ) is defined by

ρ(X,Y ) =
Cov(X,Y )√
Var[X]Var[Y ]

(4.21)

=
Cov(X,Y )

σXσY

whenever σX and σY are defined.

1If X and Y are both Gaussian distributed, then the converse is also true [PEEB 1980].
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Using the relation (4.19), we conclude that

− 1 ≤ ρ(X,Y ) ≤ 1. (4.22)

Also

ρ(X,Y ) =

⎧⎨
⎩
−1, if X = −aY (a > 0),
0, if X and Y are uncorrelated,
+1, if X = aY (a > 0).

(4.23)

Problems

1. Consider discrete random variables X and Y [BLAK 1979] with the joint pmf as
shown below:

Y

X –1 0 1

–2

–1

1
16

1
16

1
16

1
8

1
16

1
8

1 1
8

1
16

1
8

2 1
16

1
16

1
16

Are X and Y independent? Are they uncorrelated?

2. Consider the discrete version of Example 4.7 and assume that the records of a file
are evenly scattered over n tracks of a moving-head disk. Compute the expected
number of gaps X between tracks that the head will pass over between two reads.
Also compute the variance of X. [Hint:

∑N
i=1 i3 = (

∑N
i=1 i)2 is a useful identity.]

Next assume that the seek time T is a function θ(X) of the number of gaps
passed over. Compute E[T ] and Var[T ], assuming T = 30.0 + 0.5X.

3. Consider a directed graph G with n nodes. Let Xij be a variable defined so that

Xij =

{
0 if there is no edge between node i and node j,
1 otherwise.

Assume that the {Xij} are mutually independent Bernoulli random variables
with parameter p. The corresponding graph is called a p-random-graph. Find
the pmf, the expected value, and the variance of the total number of edges X in
the graph.

4. Let X1, X2, . . . , Xn be mutually independent and identically distributed random
variables with means μ and variance σ2. Let X = (

∑n
i=1 Xi)/n. Show that

n∑
k=1

(Xk − X)2 =
n∑

k=1

(Xk − μ)2 − n(X − μ)2
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and hence

E

[
n∑

k=1

(Xk − X)2
]

= (n − 1)σ2.

5. A certain telephone company charges for calls in the following way: $0.20 for
the first 3 min or less; $0.08 per min for any additional time. Thus, if X is the
duration of a call, the cost Y is given by

Y =

{
0.20, 0 ≤ X ≤ 3,
0.20 + 0.08(X − 3), X ≥ 3.

Find the expected value of the cost of a call (E[Y ]), assuming that the duration
of a call is exponentially distributed with a mean of 1/λ minutes. Use 1/λ =
1, 2, 3, 4, 5 min.

6. Show that Cov2(X, Y ) ≤ Var[X]Var[Y ].

7. Random variables X and Y are said to be orthogonal if and only if E[XY ] = 0.

(a) Assuming that X and Y are orthogonal, determine the conditions under
which they are uncorrelated.

(b) Assuming that X and Y are uncorrelated, determine the conditions under
which they are orthogonal.

8. Consider random variables X and Y with the joint pdf (bivariate Gaussian):

f(x, y) =
1

2πσXσY

√
1 − ρ2

· exp

{
− 1

2(1 − ρ2)

[(
x − μX

σX

)2

− 2ρ(x − μX)(y − μY )

σXσY

+

(
y − μY

σY

)2
]}

where ρ �= ±1. Show that Cov(X, Y ) = ρσXσY . Hence show that if X, Y are
jointly Gaussian and uncorrelated (i.e., ρ = 0), then they are also independent.
Note that this is not true in general.

4.4 TRANSFORM METHODS

In many probability problems, the form of the density function (or the pmf
in the discrete case) may be so complex so as to render computations dif-
ficult, if not impossible. As an example, recall the analysis of the program
MAX. A transform can provide a compact description of a distribution, and
it is relatively easy to compute the mean, the variance, and other moments
directly from a transform rather than resorting to a tedious sum (discrete
case) or an equally tedious integral (continuous case). The transform meth-
ods are particularly useful in problems involving sums of independent random
variables and in solving difference equations (discrete case) and differential
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equations (continuous case) related to a stochastic process. We will revisit the
z transform (also called the probability generating function) and introduce the
Laplace–Stieltjes transform and the characteristic function (also called the
Fourier transform). We will first define the moment generating function and
derive the above three transforms as special cases.

For a random variable X, eXθ is another random variable. The expectation
E[eXθ] will be a function of θ. Define the moment generating function (MGF)
MX(θ), abbreviated M(θ), of the random variable X by

M(θ) = E[eXθ] (4.24)

so that

M(θ) =

⎧⎪⎨
⎪⎩

∑
j

exjθp(xj), if X is discrete,

∫ ∞
−∞ exθf(x)dx , if X is continuous.

(4.25)

The expectation defining M(θ) may not exist for all real numbers θ, but
for most problems that we encounter, there will be an interval of θ values
within which M(θ) does exist. Note that definition (4.24) allows us to define
the moment generating function for a mixed random variable as well.

The closely related characteristic function of a random variable X is
given by

NX(τ) = N(τ) = MX(iτ). (4.26)

Here i denotes
√
−1. N(τ) is known among electrical engineers as the Fourier

transform. The advantage here is that for any X, its characteristic function,
NX(τ), is always defined for all τ . If X is a nonnegative continuous random
variable, then we define the (one-sided) Laplace–Stieltjes transform (LST)
of X:

LX(s) = L(s) = MX(−s) =
∫ ∞

0

e−sxdF (x) =
∫ ∞

0

e−sxf(x)dx . (4.27)

Finally, if X is a nonnegative integer-valued discrete random variable, then,
as we defined in Chapter 2, its z transform is

GX(z) = G(z) = E[zX ] = MX(ln z) =
∞∑

i=0

p
X

(i)zi. (4.28)

The reasons for the usefulness of transform methods will be summarized
by the following properties of the transforms. We will give the properties of
the moment generating function, but by an appropriate substitution for θ, a
similar property can be stated for all the other transforms as well.
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THEOREM 4.4 (Linear Translation). Let Y = aX + b;
then:

MY (θ) = ebθMX(aθ).

Proof:

E
[
eY θ
]

= E
[
e(aX+b)θ

]
= E

[
ebθeaXθ

]
= ebθE

[
eaXθ

]
by the linearity property of expectation.

THEOREM 4.5 (The Convolution Theorem). Let X1,
X2, . . . , Xn be mutually independent random variables on a given
probability space, and let Y =

∑n
i=1 Xi. If MX(θ) exists for all i,

then MY (θ) exists, and

MY (θ) = MX1
(θ)MX2

(θ) · · ·MXn
(θ).

Thus the moment generating function of a sum of independent
random variables is the product of the moment generating func-
tions.

Proof:

MY (θ) = E
[
eY θ
]

= E
[
e(X1+X2+···+Xn)θ

]

= E

[
n∏

i=1

eXiθ

]

=

n∏
i=1

E[eXiθ], by independence

=
n∏

i=1

MXi
(θ).

Thus we may find the transform of a sum of independent random variables
without any n-dimensional integration. But the technique will be of little
value unless we can recover the distribution function from the transform. The
following theorem, which we state without proof, is useful in this regard.

THEOREM 4.6 (Correspondence Theorem or Unique-
ness Theorem). If MX1

(θ) = MX2
(θ) for all θ, then FX1

(x) =
FX2

(x) for all x.
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In other words, if two random variables have the same transform, then
they have the same distribution function.

Next we study the moment generating property of the MGF. eXθ can
be expanded into a power series:

eXθ = 1 + Xθ +
X2θ2

2!
+ · · · + Xkθk

k!
+ · · · .

Taking expectations on both sides (assuming all the expectations exist) yields

M(θ) = E[eXθ]

= 1 + E[X]θ + · · · + E[Xk]θk

k!
+ · · ·

=
∞∑

k=0

E[Xk]θk

k!
.

Therefore the coefficient of θk/k! in the power-series expansion of its MGF
yields the kth moment E[Xk] of the random variable X. Alternatively

E[Xk] =
dkM

dθk

∣∣∣∣
θ=0

, k = 1, 2, . . . . (4.29)

Note that E[X0] = M(0) = 1.
The corresponding property for the Laplace–Stieltjes transform is

E[Xk] = (−1)k dkL(s)
dsk

∣∣∣∣
s=0

, k = 1, 2, . . . , (4.30)

for the z transform:
E[X] =

dG
dz

∣∣∣∣
z=1

, (4.31)

E[X2] =
d2G

dz2

∣∣∣∣
z=1

+
∣∣∣∣dGdz z=1

, (4.32)

and for the characteristic function:

E[Xk] = (i)−k dkN

dτk

∣∣∣∣
τ=0

, k = 1, 2, . . . . (4.33)

Example 4.10

Let X be exponentially distributed with parameter λ. Then

fX(x) = λe−λx, x > 0
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and

LX(s) =

∫ ∞

0

e−sxλe−λxdx

=
λ

s + λ

∫ ∞

0

(λ + s)e−(λ+s)xdx

=
λ

s + λ
. (4.34)

Now, using (4.30), we have

E[X] = (−1)
dLX

ds

∣∣∣∣
s=0

= (−1)
−λ

(λ + s)2

∣∣∣∣
s=0

=
1

λ
,

as derived earlier in Example 4.5. Also

E[X2] =
d2LX

ds2

∣∣∣∣
s=0

=
2λ

(λ + s)3

∣∣∣∣
s=0

=
2

λ2

and

Var[X] =
2

λ2
−
(

1

λ

)2

=
1

λ2
.

�

Example 4.11

We are now in a position to complete the analysis of program MAX (Section 2.6).
Recall that the PGF (probability generating function) of the random variable Xn,
was shown to have the recurrence

GXn
(z) =

(z + n − 1)

n
GXn−1

(z), n ≥ 2

with
GX1

(z) = 1.

Here Xn denotes the number of executions of the if statement in program MAX.
Then the expected number of executions of the if statement is derived using the
property (4.31):

E[Xn] =
dGXn

dz

∣∣∣∣
z=1

=
1

n
GXn−1

(1) +
z + n − 1

n

∣∣∣∣
z=1

·
dGXn−1

(z)

dz

∣∣∣∣∣
z=1

=
1

n
+ E[Xn−1]
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(since GX(1) = 1 for any PGF). With E[X1] = 0, we have

E[Xn] =

n∑
i=2

1

i
= Hn − 1 � ln n − 0.423.

To compute the variance of Xn, first observe that if Yk is a Bernoulli random
variable with parameter p = 1/k, then

GYk
(z) = (1 − 1

k
) +

z

k
=

z + k − 1

k
.

If Y2, Y3, . . . , Yn are mutually independent, then, using the convolution theorem,
W =

∑n
k=2 Yk has the PGF:

GW (z) =

n∏
k=2

GYk
(z)

=

n∏
k=2

z + k − 1

k

= GXn
(z).

So we conclude, by the correspondence theorem, that Xn has the same distribution
as W :

Xn =
n∑

k=2

Yk.

(Note that although Xn is the sum of n − 1 mutually independent Bernoulli random
variables, it is not a binomial random variable; why?) Now, since {Yk} are mutually
independent, we use formula (4.16) to obtain

Var[Xn] =

n∑
k=2

Var[Yk]

=

n∑
k=2

1

k

(
1 − 1

k

)

= Hn − H(2)
n ,

where H(2)
n is defined to be

∑n
k=1

1
k2 .

The power of the notion of transforms should now be clear, since we could
compute the mean and the variance without the explicit knowledge of pmf, which
in this case is quite complex (it involves Stirling numbers!).

�

Example 4.12 (Analysis of Straight Selection Sort)

We are given an array a of type item as declared below:

#define n 100

struct itemstr



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 222�

� �

�

222 EXPECTATION

{
int key;

τ info;

};

typedef itemstr item;

item a[n];

We are required to sort the array so that keys are in nondecreasing order. We can
use the following procedure [WIRT 1976]:

for (i = n; n > 1; n--) {
1: ‘‘Assign the index of the item with the largest

key among the items a[1], a[2], ..., a[i] to k’’

2: ‘‘Exchange a[i] and a[k]’’;

}

Assume that each element of the array is a large record and, therefore, exchanging (or
moving) items is expensive. The total number of moves due to the second statement
is easily computed and seen to be a fixed number. But the number of moves in the
first statement is variable. Assume that the program MAX is used to perform this
operation. Then the number of moves for a fixed value of i will be given by Xi, which
was studied in Chapter 2 and in Example 4.11. Now the total number of moves, Wn,
contributed by the first statement is given by

Wn =
n∑

i=2

Xi.

Then

E[Wn] =

n∑
i=2

E[Xi] =

n∑
i=2

(Hi − 1) � O(n(ln n)).

Where, O(n(ln n)) notation is used to denote computational complexity [KNUT
1997].

�

Example 4.13

Let Xi (i = 1, 2) be independent exponentially distributed random variables with
parameters λi. If λ1 = λ2 = λ, then X = X1 + X2 will be a two-stage Erlang ran-
dom variable. Assume λ1 �= λ2, implying that X is a hypoexponentially distributed
random variable. Using formula (4.34), we have

LX1
(s) =

λ1

λ1 + s
and LX2

(s) =
λ2

λ2 + s
.

By the convolution theorem

LX(s) =
λ1λ2

(λ1 + s)(λ2 + s)
. (4.35)
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We expand this expression into a partial fraction:

LX(s) =
a1λ1

λ1 + s
+

a2λ2

λ2 + s
,

where

a1 =
λ2

λ2 − λ1

and a2 =
λ1

λ1 − λ2

.

Recalling that if Y is EXP (λ), then LY (s) = λ/(λ + s), we conclude (using the
uniqueness theorem of Laplace–Stieltjes transforms) that

fX(x) = a1λ1e
−λ1x + a2λ2e

−λ2x

=
λ1λ2

λ2 − λ1

e−λ1x +
λ1λ2

λ1 − λ2

e−λ2x,

which is the hypoexponential density.

�

More generally, if {Xi|i = 1, 2, . . . , n} are mutually independent and exponentially
distributed with parameters λi (λi �= λj , i �= j), then X =

∑n
i=1 Xi is an n-stage

hypoexponential random variable and

LX(s) =

n∏
i=1

λi

λi + s
.

Using the technique of partial fraction expansion [KOBA 1978], the Laplace–
Stieltjes transform of X can be rewritten as

LX(s) =

n∑
i=1

aiλi

λi + s
, (4.36)

where

ai =
n∏

j=1
j �=i

λj

λj − λi

. (4.37)

Again, from the uniqueness theorem of Laplace–Stieltjes transforms, it follows that

fX(x) =
n∑

i=1

aiλie
−λix. (4.38)

(Although this form of fX resembles a hyperexponential density function, it is quite
a different hypoexponential density; why?)

�

Example 4.14

Let X be normally distributed with parameters μ and σ2. Then

fX(x) =
1

σ
√

2π
exp

[
−1

2

(x − μ

σ

)2
]

, −∞ < x < ∞.
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The characteristic function of X is given by

NX(τ) =

∫ ∞

−∞
eiτxfX(x)dx .

Making the change of variables y = (x − μ)/σ, we obtain

NX(τ) =

∫ ∞

−∞
ei(σy+μ)τ e−(1/2)y2

dy√
2π

= eiτμ

∫ ∞

−∞

e−
y2
2

√
2π

eiτσydy

= eiτμ+(iτσ)2/2

∫ ∞

−∞
e−1/2(y−iτσ)2 dy√

2π

(noting that i2 = −1). Thus, the characteristic function of a normal random variable
is given by

NX(τ) = eiτμ−τ2σ2/2, (4.39)

since it can be shown that ∫ ∞

−∞
e−1/2(y−iτσ)2 dy√

2π
= 1.

[it is the area under the normal density N(iτσ, 1)]. Check that

NX(0) = e0 = 1.

To compute the expected value, we use equation (4.33):

E[X] =
1

i

dNX

dτ

∣∣∣∣
τ=0

=
1

i

[
(iμ − τσ2eiτμ− τ2σ2

2

]∣∣∣∣
τ=0

=
1

i
[ iμe0 ] = μ.

Similarly, it can be shown that

E[X2] =
1

i2
d2NX

dτ2

∣∣∣∣
τ=0

= σ2 + μ2

(after the computations are worked out).

�

Thus the normal distribution N(μ, σ2) has mean μ and variance σ2. This
distribution is completely specified by the two parameters.
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Example 4.15 (Proof of Theorem 3.6)

Let X1, X2, . . . , Xn be mutually independent Gaussian random variables so that Xj

is N(μj , σ
2
j ), j = 1, 2, . . . , n. Then from formula (4.39) we have

NXj
(τ) = eiτμj−τ2σ2

j /2, j = 1, 2, . . . , n.

Let Y =
∑n

i=1 Xi; then, using the convolution theorem, we have

NY (τ) =
n∏

j=1

NXj
(τ)

= eiτμ−τ2σ2/2.

where

μ =
n∑

j=1

μj and σ2 =
n∑

j=1

σ2
j .

Comparing the characteristic function given above with that in (4.39), we conclude
that Y is N(μ, σ2).

Characteristic functions are somewhat more complex than the MGF, but they
have two advantages: (1) NX(τ) is finite for all random variables X and for all real
numbers τ ; and (2) the characteristic function possesses the inversion property, so
that the density fX(x) may be derived from NX(τ) by the inversion formula:

fX(x) =
1

2π

∫ ∞

−∞
e−ixτNX(τ)dτ . (4.40)

Inversion of a Laplace–Stieltjes transform is usually performed using a table
lookup. It is helpful first to perform a partial fraction expansion of the transform.
See Appendix D for further details.

�

Problems

1. Show that if X1 ∼ N(μ1, σ
2
1) and X2 ∼ N(μ2, σ

2
2) are independent random vari-

ables, then the random variable Y = X1 − X2 is also normally distributed with

E[Y ] = μ1 − μ2 and Var[Y ] = σ2
1 + σ2

2 .

Generalize to the case of n mutually independent random variables with

Xi ∼ N(μi, σ
2
i ) and Y =

n∑
i=1

aiXi.

2. Take the program to find the maximal element of a given (one-dimensional) array
B of size n (discussed in Chapter 2). Call this subroutine MAX. Write a driver
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for this subroutine that generates all n! permutations of the set {1, 2, . . . , n} and,
for each such permutation, loads it into the array B and calls subroutine MAX.
Count the number of exchanges made in subroutine MAX. Add the number
of exchanges over all permutations and divide the sum by (n!). Check whether
the result equals Hn − 1. Similarly compute the variance and check it against
the expression Hn − H(2)

n . Use n = 1, 3, 5, and 10. To generate n! permutations
systematically, you may refer to Sedgewick [SEDG 1977].

4.5 MOMENTS AND TRANSFORMS OF SOME
DISTRIBUTIONS

4.5.1 Discrete Uniform Distribution

The pmf is given by
p

X
(i) =

1
n

, 1 ≤ i ≤ n.

Therefore

E[Xk] =
n∑

i=1

ik

n
.

Then, the mean is
E[X] =

n + 1
2

,

and the variance is

Var[X] = E[X2] − (E[X])2

=
(n + 1)(2n + 1)

6
− (n + 1)2

4

=
n + 1
12

[2(2n + 1) − 3(n + 1)]

=
(n + 1)(n − 1)

12
=

n2 − 1
12

.

The coefficient of variation is

CX =

√
n2 − 1

3(n + 1)2
=

√
1
3

(
1 − 2

n + 1

)
,

so
0 ≤ CX <

1√
3
.

The generating function in this case is

GX(z) =
n∑

i=1

1
n

zi =
1
n

n∑
i=1

zi.
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4.5.2 Bernoulli pmf

p
X

(0) = q, p
X

(1) = p, p + q = 1.

E[Xk] = 0k · q + 1k · p = p, k = 1, 2, . . . .

Therefore, the mean is
E[X] = p,

and the variance is

Var[X] = E[X2] − (E[X])2 = p − p2 = p(1 − p) = pq .

The coefficient of variation is

CX =
√

q

p
,

and the generating function is

GX(z) = (1 − p) + pz = q + pz .

4.5.3 Binomial Distribution

Note that a binomial random variable X is the sum of n mutually independent
Bernoulli random variables X1,X2, . . . , Xn. Thus

X =
n∑

i=1

Xi,

and the linearity property of the expectation yields the following result:

E[X] =
n∑

i=1

E[Xi] = np.

Similarly, using formula (4.17), we get the variance:

Var[X] =
n∑

i=1

Var[Xi] = npq ,

The coefficient of variation is as follows:

CX =
√

npq
n2p2

=
√

q

np
.

Thus, the expected number of successes in a sequence of n Bernoulli trials
is np. Also note that the coefficient of variation reduces as n increases, and
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it approaches zero in the limit as n → ∞. This observation is related to the
weak law of large numbers, as will be seen later. We can easily obtain the
generating function, using the convolution theorem:

GX(z) =
n∏

i=1

GXi
(z) = (q + pz )n.

4.5.4 Geometric Distribution

The pmf is given by
p

X
(i) = pqi−1, i = 1, 2, . . . .

The mean is computed by

E[X] =
∞∑

i=1

ipqi−1

= p

∞∑
i=1

iqi−1

= p

∞∑
i=0

d

dq
(qi)

= p
d

dq

( ∞∑
i=0

qi

)

= p
d

dq

(
1

1 − q

)
=

p

(1 − q)2

=
1
p
.

Therefore, if we assume that, at the end of a CPU burst, a program requests
an I/O operation with probability q and it finishes execution with probability
p, then the average number of CPU bursts per program is given by 1/p.
Similarly, if a communication channel transmits a message correctly, on each
trial, with probability p, then the average number of trials required for a
successful transmission is 1/p.

The generating function of X is given by

GX(z) =
∞∑

i=1

pqi−1zi
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= pz
∞∑

i=1

(qz )i−1

= pz
∞∑

j=0

(qz )j

=
pz

1 − qz
.

From this, E[X] can be derived in an easier fashion:

E[X] =
dG
dz

∣∣∣∣
z=1

=
p(1 − qz ) − pz (−q)

(1 − qz )2

∣∣∣∣
z=1

=
p(1 − q) + pq

(1 − q)2

=
p

p2

=
1
p
.

The variance is computed in a fashion similar to that used for the mean;
we get

Var[X] =
q

p2
and CX =

√
qp2

p2
=

√
q =

√
1 − p.

For the modified geometric distribution, with the pmf p
Y
(i) = pqi, i =

0, 1, 2, . . ., we obtain

E[Y ] =
q

p
, Var[Y ] =

q

p2
, CY =

√
qp2

p2q2
=

1
√

q
,

and the generating function is

GY (z) =
p

1 − qz
.

4.5.5 Poisson pmf

p
X

(i) =
αie−α

i!
, 0 ≤ i < ∞, α > 0.
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Then

E[X] =
∞∑

i=0

iαi

i!
e−α

= αe−α
∞∑

i=1

αi−1

(i − 1)!

= αe−αeα = α.

If the number of job arrivals to a file server in interval (0, t] is Poisson dis-
tributed with parameter α = λt, then the average number of arrivals in that
interval is λt. Thus, the average arrival rate of jobs is λ.

The Var[X] is easily computed to be α. Therefore

CX =
1√
α

.

The generating function is given by

GX(z) =
∞∑

k=0

e−α αk

k!
zk = e−α

n∑
k=0

(αz)k

k!
= e−αeαz = e−α(1−z).

4.5.6 Continuous Uniform Distribution

The density function is given by

fX(x) =
1

b − a
, a < x < b.

Then

E[X] =
∫ b

a

x

b − a
dx =

b2 − a2

2(b − a)
=

b + a

2
,

the midpoint of the interval (a, b). The kth moment is computed as follows:

E[Xk] =
1

b − a

∫ b

a

xkdx =
bk+1 − ak+1

(k + 1)(b − a)
.

Therefore

Var[X] = E[X2] − (E[X])2

=
b3 − a3

3(b − a)
− (b + a)2

4

=
(b − a)2

12



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 231�

� �

�

4.5 MOMENTS AND TRANSFORMS OF SOME DISTRIBUTIONS 231

and

CX =
b − a

b + a

√
1
3
.

Assuming 0 ≤ a < b, the Laplace–Stieltjes transform of X is

LX(s) =
∫ b

a

e−sx 1
b − a

dx

=
e−as − e−bs

s(b − a)
.

4.5.7 Exponential Distribution

We have already determined that if the density is given by

fX(x) = λe−λx, x > 0, λ > 0,

then the mean is
E[X] =

1
λ

,

the variance is
Var[X] =

1
λ2

,

the coefficient of variation is
CX = 1,

and the Laplace–Stieltjes transform is

LX(s) =
λ

λ + s
.

4.5.8 Gamma Distribution

The density function of the random variable X is given by

fX(x) =
λαxα−1e−λx

Γ(α)
, x > 0.

Then, making the substitution u = λx, we compute the mean

E[X] =
∫ ∞

0

xαλαe−λx

Γ(α)
dx =

1
λΓ(α)

∫ ∞

0

uαe−udu,

and hence, using formula (3.25), we obtain

E[X] =
Γ(α + 1)
λΓ(α)

=
α

λ
.
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Similarly, the variance is computed to be

Var[X] =
α

λ2
,

and thus:
CX =

1√
α

.

Note that if α is an integer, then these results could be shown by the
properties of sums, since X will be the sum of α exponential random variables.
Note also that the coefficient of variation of a gamma random variable is less
than 1 if α > 1; it is equal to 1 if α = 1; and otherwise the coefficient of
variation is greater than 1. Thus the gamma family is capable of modeling a
very powerful class of random variables exhibiting from almost none to a very
high degree of variability.

The Laplace–Stieltjes transform is given by

LX(s) =
∫ ∞

0

e−sx λαxα−1e−λx

Γ(α)
dx

=
λα

(λ + s)α

∫ ∞

0

(λ + s)αxα−1e−(λ+s)x

Γ(α)
dx

=
λα

(λ + s)α

since the last integral is the area under a gamma density with parameter λ + s
and α—that is, 1. If α were an integer, this result could be derived using the
convolution property of the Laplace–Stieltjes transforms.

4.5.9 Hypoexponential Distribution

We have seen that if X1,X2, . . . , Xn are mutually independent exponentially
distributed random variables with parameters λ1, λ2, . . . , λn (λi �= λj , i �= j),
respectively, then

X =
n∑

i=1

Xi

is hypoexponentially distributed with parameters λ1, λ2, . . . , λn; that is, X
is HYPO (λ1, λ2, . . . , λn). The mean of X can then be obtained using the
linearity property of expectation, so that

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

1
λi

.
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Also, because of independence of {Xi}, we get the variance of X as

Var[X] =
n∑

i=1

Var[Xi] =
n∑

i=1

1
λ2

i

,

CX =

√ ∑n
i=1 1/λ2

i

(
∑n

i=1 1/λi)
2 and LX(s) =

n∏
i=1

λi

λi + s
.

Note that CX ≤ 1, and thus this distribution can model random variables
with variability less than or equal to that of the exponential distribution.

It has been observed that service times at I/O devices are generally hypo-
exponentially distributed. Also, programs are often organized into a set of
sequential phases (or job steps). If the execution time of the ith step is expo-
nentially distributed with parameter λi, then the total program execution
time is hypoexponentially distributed and its parameters are specified by the
formulas above.

4.5.10 Hyperexponential Distribution

The density in this case is given by

f(x) =
n∑

i=1

αiλie
−λix,

n∑
i=1

αi = 1, αi ≥ 0, x > 0.

Then the mean is

E[X] =
∫ ∞

0

(
n∑

i=1

xαiλie
−λix)dx

=
n∑

i=1

αi

∫ ∞

0

xλie
−λixdx

=
n∑

i=1

αi

λi

.

(since the last integral represents the expected value of an exponentially dis-
tributed random variable with parameter λi). Similarly

E[X2] =
n∑

i=1

2αi

λ2
i
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and
Var[X] = E[X2] − (E[X])2

= 2
n∑

i=1

αi

λ2
i

−
[

n∑
i=1

αi

λi

]2

.

Finally:

C2
X =

Var[X]
(E[X])2

=
2
∑n

i=1(αi/λ2
i ) − (

∑n
i=1 αi/λi)

2

(
∑n

i=1 αi/λi)
2

= 2
∑n

i=1(αi/λ2
i )

(
∑n

i=1 αi/λi)
2 − 1.

Using the well-known Cauchy–Schwartz inequality [an alternative form of
(4.20)], we can show that CX > 1 for n > 1. The inequality states that(

n∑
i=1

aibi

)2

≤
(

n∑
i=1

a2
i

) (
n∑

i=1

b2
i

)
. (4.41)

Substitute ai = √
αi and bi = (√αi)/λi; then:(

n∑
i=1

αi

λi

)2

≤
(

n∑
i=1

αi

) (
n∑

i=1

αi

λ2
i

)

=
n∑

i=1

αi

λ2
i

,

which implies that:

C2
X = 2

∑n
i=1(αi/λ2

i )

(
∑n

i=1 αi/λi)
2 − 1 ≥ 1.

Thus the hyperexponential distribution models random variables with
more variability than does the exponential distribution. As has been pointed
out, CPU service times usually follow this distribution.

The Laplace–Stieltjes transform is

LX(s) =
∫ ∞

0

e−sx
n∑

i=1

αiλie
−λixdx

=
n∑

i=1

αi

∫ ∞

0

λie
−λixe−sxdx

=
n∑

i=1

αiλi

λi + s
.
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4.5.11 Weibull Distribution

Recall that this is the random variable with the pdf f(x) = H ′(x)e−H(x) where
H(x) = λxα:

f(x) = λαxα−1e−λxα

, λ > 0, α > 0, x > 0.

The mean is
E[X] =

∫ ∞

0

λxαxα−1e−λxα

dx .

Now, making the substitution u = λxα, we obtain

E[X] =
∫ ∞

0

(u

λ

)1/α

e−udu

=
(

1
λ

)1/α ∫ ∞

0

u1/αe−udu =
(

1
λ

)1/α

Γ
(

1 +
1
α

)
.

This reduces to the value 1/λ when α = 1, since then the Weibull distribution
becomes the exponential distribution. Similarly

E[X2] =
∫ ∞

0

λx2αxα−1e−λxα

dx

=
(

1
λ

)2/α ∫ ∞

0

u2/αe−udu

=
(

1
λ

)2/α

Γ
(

1 +
2
α

)
,

so

Var[X] =
(

1
λ

)2/α

Γ
(

1 +
2
α

)
−

(
1
λ

)2/α[
Γ

(
1 +

1
α

)]2

=
(

1
λ

)2/α
[
Γ

(
1 +

2
α

)
−

[
Γ

(
1 +

1
α

)]2
]

and

CX =

√
Γ(1 + 2/α) − [Γ(1 + 1/α)]2

[Γ(1 + 1/α)]2
=

√
Γ(1 + 2/α)

[Γ(1 + 1/α)]2
− 1.

4.5.12 Log-logistic Distribution

The density is given by

f(t) =
λκ(λt)κ−1

[1 + (λt)κ]2
, t ≥ 0;
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the mean, by
E[X] =

π

λκ sin(π
κ )

, κ > 1, tan−1(λκ) �= π;

the second moment,

E[X2] =
2π

λ2κ sin(2π
κ )

, κ > 2, tan−1(λκ) �= π;

and the ith moment, by

E[Xi] =
πi

λiκ sin(πi
κ )

, κ > i, tan−1(λκ) �= π.

4.5.13 Pareto Distribution

The density is given by

f(x) = α kα x−α−1, x ≥ k ;α, k > 0; (4.42)

the mean, by

E[X] =
∫ ∞

k

α kα x−αdx

=

⎧⎨
⎩

k α

α − 1
, α > 1,

∞, α ≤ 1;

and the second moment, by

E[X2] =
∫ ∞

k

α kα x−α+1dx

=

⎧⎨
⎩

k2 α

α − 2
, α > 2,

∞, α ≤ 2.

Therefore the Pareto distribution has infinite mean if the shape parameter
α ≤ 1, and has infinite variance if the shape parameter α ≤ 2. Thus, as α
decreases, an arbitrarily large portion of the probability mass may be present
in the tail of its pdf. In practical cases, a random variable that follows a Pareto
distribution with α ≤ 2 can give rise to extremely large values with a nonzero
probability. This is the phenomenon commonly observed on the Internet, for
example, the Web file size and the think time of Web browser.



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 237�

� �

�

4.5 MOMENTS AND TRANSFORMS OF SOME DISTRIBUTIONS 237

4.5.14 The Normal Distribution

The density

f(x) =
1

σ
√

2π
e−(x−μ)2/(2σ2), −∞ < x < ∞.

The mean, the variance, and the characteristic function have been derived
earlier:

E[X] = μ, Var[X] = σ2, NX(τ) = eiτμ−τ2σ2/2.

Problems

1. Consider an database server designed to handle a maximum of 15 transactions
per second. During the peak hour of its activity, transactions arrive at the average
rate of 10 per second (10 s−1). Assuming that the number of transactions arriving
per second follows a Poisson distribution, compute the probability that the server
will be overloaded during a peak hour.

2. The CPU time requirement X of a typical job can be modeled by the following
hyperexponential distribution:

P (X ≤ t) = α(1 − e−λ1t) + (1 − α)(1 − e−λ2t),

where α = 0.6, λ1 = 10, and λ2 = 1. Compute (a) the probability density function
of X, (b) the mean service time E[X], (c) the variance of service time Var[X],
and (d) the coefficient of variation. Plot the distribution and the density function
of X.

3. The CPU time requirement, T , for jobs has a gamma distribution with mean of
40 s and variance of 400 s2.

(a) Find the shape parameter α and the scale parameter λ.

(b) A short job (T < 20 s) gets priority. Compute the probability that a ran-
domly chosen job is a short job.

4. A telephone exchange can handle at most 20 simultaneous conversations. It has
been observed that an incoming call finds an “all busy” signal 1% of the time.
Assuming that the number of incoming calls, X, per unit time has a Poisson
distribution, find the parameter α (or the average call arrival rate) of the distri-
bution.

5. For the three parameter Weibull distribution [formula (3.33)], find the E[X].

6. The time to failure distribution of Tandem software was found to be captured
well by a two-phase hyperexponential distribution with the following pdf:

f(t) = α1λ1e
−λ1t + α2λ2e

−λ2t,



Trim Size: 6.125in x 9.25in 60Trivedi c04.tex V3 - 05/23/2016 11:57am Page 238�

� �

�

238 EXPECTATION

with α1 = 0.87, α2 = 0.13, λ1 = 0.10, λ2 = 2.78 [LEE 1993]. Find the mean and
variance of the time to failure.

4.6 COMPUTATION OF MEAN TIME TO FAILURE

Let X denote the lifetime of a component so that its reliability R(t) = P (X >
t) and R′(t) = −f(t). Then the expected life or the mean time to failure
(MTTF) of the component is given by

E[X] =
∫ ∞

0

tf (t)dt = −
∫ ∞

0

tR′(t)dt .

Integrating by parts we obtain

E[X] = −tR(t)
∣∣∣∞
0

+
∫ ∞

0

R(t)dt .

Now, since R(t) approaches zero faster than t approaches ∞, we have

E[X] =
∫ ∞

0

R(t)dt . (4.43)

(This formula is a special case of problem 2 at the end of Section 4.1.) This
latter expression for MTTF is in more common use in reliability theory. More
generally:

E[Xk] =
∫ ∞

0

tkf(t)dt

= −
∫ ∞

0

tkR′(t)dt

= −tkR(t)
∣∣∣∞
0

+
∫ ∞

0

ktk−1R(t)dt .

Thus
E[Xk] =

∫ ∞

0

ktk−1R(t)dt . (4.44)

In particular

Var[X] =
∫ ∞

0

2tR(t)dt −
[∫ ∞

0

R(t)dt
]2

. (4.45)

If the component lifetime is exponentially distributed, then R(t) = e−λt

and

E[X] =
∫ ∞

0

e−λtdt =
1
λ

,
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Var[X] =
∫ ∞

0

2te−λtdt − 1
λ2

=
2
λ2

− 1
λ2

=
1
λ2

as derived earlier. Next we consider a system consisting of n components con-
nected in several different ways (we continue to make the usual assumptions
of independence).

4.6.1 Series System

Assume that the lifetime of the ith component for a series system is exponen-
tially distributed with parameter λi. Then system reliability [using equation
(3.63)] is given by

R(t) =
n∏

i=1

Ri(t) =
n∏

i=1

e−λit = exp

[
−

(
n∑

i=1

λi

)
t

]
.

Thus, the lifetime of the system is also exponentially distributed with param-
eter λ =

∑n
i=1 λi. Therefore the series system MTTF is

1
n∑

i=1

λi

. (4.46)

The MTTF of a series system is much smaller than the MTTF of its compo-
nents.

If Xi denotes the lifetime of component i (not necessarily exponentially
distributed), and X denotes the series system lifetime, then we can show that

0 ≤ E[X] ≤ min{E[Xi]} (4.47)

which gives rise to the common remark that a system is weaker than its
weakest link. To prove inequality (4.47), note that

RX(t) =
n∏

i=1

RXi
(t) ≤ min

i
{RXi

(t)},

since 0 ≤ RXi
(t) ≤ 1. Then

E[X] =
∫ ∞

0

RX(t)dt ≤ min
i

{∫ ∞

0

RXi
(t)dt

}
= min

i
{E[Xi]}.
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4.6.2 Parallel System

Consider a parallel system of n independent components, where Xi denotes
the lifetime of component i and X denoting the lifetime of the system. Then

X = max{X1,X2, . . . , Xn}

and, using formula (3.64), we get

RX(t) = 1 −
n∏

i=1

[1 − RXi
(t)] ≥ 1 − [1 − RXi

(t)], for all i, (4.48)

which implies that the reliability of a parallel redundant system is larger than
that of any of its components. Therefore

E[X] =
∫ ∞

0

RX(t)dt ≥ max
i

{∫ ∞

0

RXi
(t)dt

}
= max

i
{E[Xi]}. (4.49)

Now assume that Xi is exponentially distributed with parameter λ (all com-
ponents have the same parameter). Then

RX(t) = 1 − (1 − e−λt)n

and

E[X] =
∫ ∞

0

[1 − (1 − e−λt)n]dt .

Let u = 1 − e−λt; then dt = 1/λ(1 − u)du. Thus:

E[X] =
1
λ

∫ 1

0

1 − un

1 − u
du.

Now since the integrand above is the sum of a finite geometric series:

E[X] =
1
λ

∫ 1

0

(
n∑

i=1

ui−1

)
du

=
1
λ

n∑
i=1

∫ 1

0

ui−1du.

Note that ∫ 1

0

ui−1du =
ui

i

∣∣∣1
0

=
1
i
.
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Figure 4.4. The variation in the expected life with the degree of (parallel) redun-
dancy (simplex failure rate λ = 10−6)

Thus, with the usual exponential assumptions, the MTTF of a parallel redun-
dant system is given by

E[X] =
1
λ

n∑
i=1

1
i

=
Hn

λ
� ln(n) + C

λ
. (4.50)

Figure 4.4 shows the expected life of a parallel system as a function of n. It
should be noted that beyond n = 2 or 3, the gain in expected life (due to
adding one additional component), is not very significant. Note that the rate
of increase in the MTTF is 1/(nλ).

Alternatively, formula (4.50) for E[X], can be derived by noting that X
is hypoexponentially distributed with parameters nλ, (n − 1)λ, . . . , λ. (See
Theorem 3.5.) In other words, X =

∑n
i=1 Yi, where Yi is exponentially dis-

tributed with parameter iλ. Then, using the linearity property of expectation,
we have

E[X] =
n∑

i=1

E[Yi] =
n∑

i=1

1
iλ

=
Hn

λ
.

Also, since the {Yi} are mutually independent:

Var[X] =
n∑

i=1

Var[Yi] =
n∑

i=1

1
i2λ2

=
1
λ2

H(2)
n . (4.51)

Note that CX < 1; hence, not only does the parallel configuration increase the
MTTF but it also reduces the variability of the system lifetime.

4.6.3 Standby Redundancy

Assume that the system has one component operating and (n − 1) cold
(unpowered) spares. The failure rate of an operating component is λ, and a
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cold spare does not fail. Furthermore, the switching equipment is failure free.
Let Xi be the lifetime of the ith component from the point it is put into
operation until its failure. Then the system lifetime X is given by

X =
n∑

i=1

Xi.

Thus X has an n-stage Erlang distribution, and therefore

E[X] =
n

λ
and Var[X] =

n

λ2
. (4.52)

Note that the gain in expected life is linear as a function of the number of
components, unlike the case of parallel redundancy. Of course, the price paid is
the added complexity of the detection and switching mechanism. Furthermore,
if we allow the detection and switching equipment to fail, the gain will be much
less. Note that the computation of E[X] does not require the independence
assumption (but the computation of variance does).

4.6.4 TMR and TMR/Simplex Systems

We have noted that the reliability, R(t), of a TMR system consisting of com-
ponents with independent exponentially distributed lifetimes (with parameter
λ) is given by [formula (3.68)]

R(t) = 3e−2λt − 2e−3λt.

Then the expected life is given by

E[X] =
∫ ∞

0

3e−2λtdt −
∫ ∞

0

2e−3λtdt .

Thus, the TMR MTTF is

E[X] =
3
2λ

− 2
3λ

=
5
6λ

. (4.53)

Compare this with the expected life of a single component (1/λ). Thus, TMR
actually reduces (by about 16%) the MTTF over the simplex system. This
fact points out that in certain cases MTTF can be a misleading measure.
Although TMR has a lower MTTF than does simplex, we know that TMR
has higher reliability than simplex for “short” missions, defined by mission
time t < (ln 2)/λ.

Next consider the case when the voter used in TMR is not perfect and it
has reliability r ≤ 1. Then

R(t) = r(3e−2λt − 2e−3λt)
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and the MTTF of a TMR system with imperfect voter is

E[X] =
5r

6λ
. (4.54)

Thus TMR MTTF is degraded even further.
Next consider the improvement of TMR known as TMR/simplex. In

Example 3.28 the lifetime X of this system was shown to be the sum of two
exponential random variables, one with parameter 3λ and the other with
parameter λ. Then the MTTF of TMR/simplex is given by

E[X] =
1
3λ

+
1
λ

=
4
3λ

. (4.55)

Thus the TMR/simplex has 33% longer expected life than the simplex.

4.6.5 The k-out-of-n System

We showed in Example 3.31 that the lifetime L(k|n) of an k-out-of-n sys-
tem with components having independent exponentially distributed lifetimes
(with parameter λ) is the sum of (n − k + 1) exponentially distributed ran-
dom variables with parameters kλ, (k + 1)λ, . . . , nλ. Therefore, the MTTF of
a k-out-of-n system is given by

E[L(k|n)] =
n∑

i=k

1
iλ

=
Hn − Hk−1

λ
. (4.56)

Also, the variance of the lifetime of a k-out-of-n system is

Var[L(k|n)] =
n∑

i=k

1
i2λ2

=
H

(2)
n − H

(2)
k−1

λ2
. (4.57)

It may be verified that TMR is a special case of a k-out-of-n system with
n = 3 and k = 2.

4.6.6 The Hybrid k-out-of-n System

Consider a system of n operating components and m warm spares. Of the n
active components k are required for the system to function correctly. An
active component has an exponential lifetime distribution with parameter λ,
and now we will let the spare also fail with failure rate μ < λ. It is for this rea-
son that the spare is called a “warm spare”. The lifetime L(k|n,m) was shown
in Example 3.32 to be the sum of n − k + 1 + m exponentially distributed
random variables with parameters nλ + mμ,nλ + (m − 1)μ, . . . , nλ + μ,
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nλ, . . . , kλ. Then the MTTF of a hybrid k-out-of-n system is given by

E[L(k|n,m)] =
m∑

i=1

1
nλ + iμ

+
n∑

i=k

1
iλ

. (4.58)

Also, the variance of the lifetime of such a system is given by

Var[L(k|n,m)] =
m∑

i=1

1
(nλ + iμ)2

+
n∑

i=k

1
i2λ2

. (4.59)

All the previous cases we have considered are special cases of hybrid
k-out-of-n. For example, the series system corresponds to m = 0, k = n. The
parallel system corresponds to m = 0, k = 1. The standby system corresponds
to m = n − 1, n = 1, k = 1, μ = 0. The k-out-of-n system corresponds to
m = 0.

Example 4.16

Consider the workstation–file server (WFS) example in Chapter 3 (Example 3.21).
Given that the times to failure for the workstations and the file servers are expo-
nentially distributed, calculate the MTTF for the system when n = 2 for the work-
station, m = 1 for the file server, and k = l = 1, that is, the system is up so long as
a workstation and the file server are up.

Let λw and λf represent the failure rates of each workstation and the file server,
respectively. The system reliability is

R(t) = [1 − (1 − Rw(t))2]Rf (t)

= [1 − (1 − e−λwt)2]e−λf t

= (2e−λwt − e−2λwt)e−λf t

= 2e−(λw+λf )t − e−(2λw+λf )t.

Hence the mean time to failure for the system is given by

MTTF =

∫ ∞

0

R(t)dt

=

∫ ∞

0

[2e−(λw+λf )t − e−(2λw+λf )t] dt

=
2

λw + λf

− 1

2λw + λf

.

�

Example 4.17

Recall the SEN (shuffle exchange network) discussed in Example 3.22. Given that
the switching element of SEN follows the exponential failure law with parameter λ,
we calculate the MTTF for the N×N SEN.
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The reliability of each switching element is r
SE

(t) = e−λt.
We have

MTTFSEN =

∫ ∞

0

RSEN(t)dt

=

∫ ∞

0

[r
SE

(t)](N/2)log2Ndt

=

∫ ∞

0

[e−λt](N/2)log2Ndt .

Thus

MTTFSEN =
2

Nλlog2N
.

We can generalize these computations to the case of Weibull time-to-failure
distribution for each element.

�

Problems

1. The time to failure T of a device is known to follow a normal distribution with
mean μ and σ = 10000 h. Determine the value of μ if the device is to have a
reliability equal to 0.90 for a mission time of 50000 h.

2. � Consider a series system of two independent components. The lifetime of the
first component is exponentially distributed with parameter λ, and the lifetime
of the second component is normally distributed with parameters μ and σ2.
Determine the reliability R(t) of the system and show that the expected life of
the system is

1

λ

[
1 − exp

(
−λμ +

λ2σ2

2

)]
.

3. The failure rate for a certain type of component is λ(t) = at (t ≥ 0), where
a > 0 and is constant. Find the component’s reliability, and its expected life (or
MTTF).

4. Two alternative workstations are being considered for acquisition. Workstation
A consists of 10 chips, each with a constant failure rate of 10−5 h−1 and all 10
chips must function properly for the system to function. Workstation B consists
of five chips, each having a time-dependent failure rate given by at per hour, for
some constant a and all five chips must function properly for the workstation
to function. If both workstations have the same mean time to failure, which one
should be recommended? Assume that the reliability for a mission time of 1000 h
is the criterion for selection.

5. The data obtained from testing a device indicate that the expected life is 5 h and
the variance is approximately 1 h2. Compare the reliability functions obtained
by assuming (a) a Weibull failure law with α = 5, (b) a normal failure pdf with
μ = 5 and σ2 = 1, and (c) a gamma pdf with appropriate values of α and λ.
Plot the results.
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OutputInput

Figure 4.P.2. A system with dependent failures

6. The failure rate of a device is given by

h(t) =

{
at , 0 < t < 1000 h,
b, t ≥ 1000 h.

Choose b so that h(t) is continuous, and find an expression for device reliability.

7. Consider the system shown in Figure 4.P.2. Each component has an exponential
failure law with parameter λ. All components behave independently, except that
whenever C4 fails it triggers an immediate failure of C5 and vice versa. Find the
reliability and the expected life of the system.

8. Carnegie-Mellon multiprocessor C.mmp consists of processors, switches, and
memory units. Consider a configuration with 16 processors, 16 64K (64-kilobyte)
memories, and one switch. At least four processors and four memories are
required for a given task. Assume that we have a (constant) failure rate for
each processor of 68.9 failures/106 h, 224 failures/106 h for each memory, and a
failure rate for the switch of 202 failures/106 h. Compute the reliability function
for the system. Also compute the MTTF of the system.

9. Consider a parallel redundant system of two independent components with the
lifetime of ith component Xi ∼ EXP (λi). Show that system MTTF is given by

MTTF =
1

λ1

+
1

λ2

− 1

λ1 + λ2

.

Generalize to the case of n components. Next consider a standby redundant
system consisting these two components. Assuming that the component in the
spare status does not fail, obtain the reliability and the MTTF of the system.

10. Compare the reliability of the workstation and file server example (see Example
3.21 and 4.16) under the exponential and Weibull failure distribution assump-
tions. To make a fair comparison, choose Weibull scale parameters in such
way that the MTTFs of individual workstation and file server under the two
assumptions are the same. Assume l = m = k = 2, n = 3, MTTFf = 200 h,
MTTFw = 1000 h. Choose shape parameter α = 0.5.

11. Assuming constant failure rates λc and λv for a control channel and a voice chan-
nel, respectively, write down system reliability and system MTTF expressions
for problem 6 of Section 1.10. Repeat for problem 7 in the same section.
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12. Recall Example 1.21. Assuming constant failure rates λi, (i ∈ {x, p, d, c}) for an
XCVR, a pass-thru, a duplexer, and a combiner, respectively, write down the
system reliability and system MTTF expressions.

13. An airplane has four propellers, two on each side [LEEM 1995]. The airplane will
fly (or function correctly) if at least one propeller on each wing functions. Assum-
ing that each propeller has a constant failure rate λ, find explicit expressions for
system reliability and system MTTF.

4.7 INEQUALITIES AND LIMIT THEOREMS

We have mentioned that the distribution function (equivalently the density
function or the pmf) provides a complete characterization of a random vari-
able, and that the probability of any event concerning the random variable can
be determined from it. Numbers such as the mean or the variance provide a
limited amount of information about the random variable. We have discussed
methods to compute various moments (including mean and variance), given
the distribution function. Conversely, if all the moments, E[Xk], k = 1, 2, . . .,
are given, then we can reconstruct the distribution function via the transform.
In case all moments are not available, we are not able to recover the distribu-
tion function in general. However, it may still be possible to obtain bounds
on the probabilities of various events based on the limited information.

First assume that we are given the mean E[X] = μ of a nonnegative ran-
dom variable X, where μ is assumed to be finite. Then the Markov inequality
states that for t > 0

P (X ≥ t) ≤ μ

t
. (4.60)

To prove this inequality, fix t > 0 and define the random variable Y by

Y =
{

0, if X < t,
t, X ≥ t.

Then Y is a discrete random variable with the pmf:

p
Y
(0) = P (X < t),

p
Y
(t) = P (X ≥ t).

Thus
E[Y ] = 0 · p

Y
(0) + t · p

Y
(t) = tP(X ≥ t).

Now, since X ≥ Y , we have E[X] ≥ E[Y ] and hence

E[X] ≥ E[Y ] = tP(X ≥ t)

which gives the desired inequality.
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Example 4.18

Consider a system with MTTF = 100 h. We can get a bound on the reliability of
the system for a mission time t using the Markov inequality:

R(t) = P (X ≥ t) ≤ 100

t
.

Thus, if the mission time exceeds 100/0.9 � 111 h, we know that the reliability will
be less than or equal to 0.9. This suggests that if the required level of reliability is
0.9, then mission time can be no more than 111 hours (it may have to be restricted
further).

�

It is not difficult to see that the inequality (4.60) is quite crude, since only
the mean is assumed to be known. For example, let the lifetime, X, of a system
be exponentially distributed with mean 1/λ. Then the reliability R(t) = e−λt,
and the Markov inequality asserts that

R(t) ≤ 1
λt

or
1

R(t)
≥ λt

that is
eλt ≥ λt,

which is quite poor in this case. On the other hand, using our knowledge of
the distribution of X, let us reconsider Example 4.18. Now the mission time
at which the required level of reliability is certainly lost is computed from
e−t/100 ≤ 0.9, or t ≥ 10.5 h, which allows for missions much shorter than that
suggested by the Markov inequality.

Next assume that both the mean μ and the variance σ2 are given. We can
now get a better estimate of the probability of events of interest by using the
Chebyshev inequality:

P (|X − μ| ≥ t) ≤ σ2

t2
, t > 0. (4.61)

This inequality formalizes the intuitive meaning of the variance given earlier;
if σ is small, there is a high probability for getting a value close to the mean,
and if σ is large, there is a high probability for getting values farther away
from the mean.

To prove the Chebyshev inequality (4.61), we apply the Markov inequality
(4.60) to the nonnegative random variable (X − μ)2 and number t2 to obtain

P [(X − μ)2 ≥ t2] ≤ E[(X − μ)2]
t2

=
σ2

t2
, (4.62)
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noting that the event [(X − μ)2 ≥ t2] = [|X − μ| ≥ t] yields the Chebyshev
inequality (4.61).

The importance of Chebyshev’s inequality lies in its generality. No assump-
tion on the nature of random variable X is made other than that it has a finite
variance. For most distributions, there are bounds for P (|X − μ| ≥ t) sharper
than that given by Chebyshev’s inequality; however, examples show that in
general the bound given by this inequality cannot be improved (see problem 4
at the end of this section).

Example 4.19

Let X be the execution time of a job on a server, and assume that X is exponentially
distributed with mean 1/λ and variance 1/λ2. Then, using the Chebyshev inequality,
we have

P

(∣∣∣∣X − 1

λ

∣∣∣∣ ≥ t

)
≤ 1

λ2t2
.

In particular, if we let t = 1/λ, this inequality does not give us any information,
since it yields

P

(∣∣∣∣X − 1

λ

∣∣∣∣ ≥ 1

λ

)
≤ 1.

But if we compute this probability from the distribution function FX(x) = 1 − e−λx,
we get

P

(∣∣∣∣X − 1

λ

∣∣∣∣ ≥ t

)
= P

(
0 ≤ X ≤ 1

λ
− t or

1

λ
+ t ≤ X < ∞

)

= F

(
1

λ
− t

)
+ 1 − F

(
1

λ
+ t

)

= 1 − eλt−1 + e−λt−1

and thus

P

(∣∣∣∣X − 1

λ

∣∣∣∣ ≥ 1

λ

)
= e−2 < 1.

�

Two alternate forms of Chebyshev’s inequality are easily derived from
(4.61):

P (|X − μ| ≥ kσ) ≤ 1
k2

, (4.63)

P (|X − μ| ≤ kσ) ≥ 1 − 1
k2

. (4.64)

Another important result can be obtained by applying Chebyshev’s
inequality to the binomial distribution. Substituting μ = np and
σ =

√
np(1 − p) into (4.64), we get

P
(
|X − np | < k

√
np(1 − p)

)
≥ 1 − 1

k2
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and

P

(∣∣∣∣Xn − p

∣∣∣∣ < k

√
p(1 − p)

n

)
≥ 1 − 1

k2
.

Substitute ε for k
√

p(1 − p)/n to obtain

P

(∣∣∣∣Xn − p

∣∣∣∣ < ε

)
≥ 1 − p(1 − p)

nε2
(4.65)

which implies that

lim
n→∞

P

(∣∣∣∣Xn − p

∣∣∣∣ < ε

)
= 1 (4.66)

for any given value of ε > 0. Recalling that X denotes the observed number of
successes in a sequence of Bernoulli trials, we conclude that as the number of
trials, n, increases, the probability that the observed proportion of successes
differs from p by less than any positive number ε (however small) approaches
unity. Formula (4.66), known as Bernoulli’s theorem, is a special case of the
weak law of large numbers, which is discussed next.

Let X1,X2, . . . , Xn be n mutually independent identically distributed ran-
dom variables. An n-tuple of values (x1, x2, . . . , xn), where xi is a specific value
of Xi, may be thought of as n independent measurements of some quantity
that is distributed according to their common distribution. In this sense, we
sometimes speak of the n-tuple (x1, x2, . . . , xn) as a random sample of size n
from this distribution.

Assume that the common distribution of these random variables has a
finite mean μ. Then, for a sufficiently large value of n, we would expect that
their arithmetic mean (or sample mean)

x =
x1 + x2 + · · · + xn

n

will be close to μ. Let Sn =
∑n

i=1 Xi and the sample mean X = Sn/n. If Xi

has a finite variance σ2, then

Var[X] = Var
[
Sn

n

]
=

nσ2

n2
=

σ2

n
. (4.67)

Thus Var[X] approaches 0 as n approaches infinity, implying that the distri-
bution of X becomes more concentrated about its mean μ. In fact, by applying
Chebyshev’s inequality to X we obtain

P (|X − μ| ≥ δ) ≤ Var[X]
δ2

=
σ2

nδ2
(4.68)
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from which we get
lim

n→∞
P (|X − μ| ≥ δ) = 0. (4.69)

Here number δ can be thought of as the desired accuracy in the approximation
of μ by X. Equation (4.69) assures us that no matter how small δ is, the
probability that X approximates μ to within δ converges to 1.

Equation (4.69) is known as the weak law of large numbers. Although
our derivation required that the {Xi} have finite variance, the law holds just
under the assumption that the {Xi} have finite mean.

For the final limit theorem, recall from Chapter 3 that sums of independent
normal random variables are themselves normally distributed. The following
central-limit theorem tells us that sums of independent random variables
tend to be normally distributed even though the summands are not.

THEOREM 4.7 (The Central-Limit Theorem). Let X1,
X2, . . . , Xn be independent random variables with a finite mean
E[Xi] = μi and a finite variance Var[Xi] = σ2

i (i = 1, 2, . . . , n). We
form the normalized random variable:

Zn =

n∑
i=1

Xi −
n∑

i=1

μi√√√√ n∑
i=1

σ2
i

(4.70)

so that E[Zn] = 0 and Var[Zn] = 1. Then, under certain regular-
ity conditions, the limiting distribution of Zn is standard normal,
denoted Zn → N(0, 1):

lim
n→∞

FZn
(t) = lim

n→∞
P (Zn ≤ t) =

∫ t

−∞

1√
2π

e−y2/2 dy . (4.71)

Example 4.20

As a special case of the central-limit theorem, assume that X1, X2, . . . , Xn are mutu-
ally independent and identically distributed with the common mean μ = E[Xi] and
common variance σ2 = Var[Xi]. Then equation (4.70) reduces to

Zn =
(X − μ)

√
n

σ
, (4.72)

where X is the sample mean. Therefore, the sample mean from random samples
(after standardization) tends toward normality as the sample size n increases.

�
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The central-limit theorem should not be used indiscriminately, since there
are distributions that do not obey it. For example, the Cauchy random variable
X with pdf:

f(x) =
1

π(1 + x2)
(4.73)

does not have a finite variance; hence the standard form of Zn [of equation
(4.70)] cannot be written.

It is difficult to give the value of n (the sample size) beyond which the
normal approximation is accurate, since it depends on the form of the under-
lying distributions (FXi

). Moderate sample sizes, such as 10, commonly are
considered adequate.

Problems

1. The average CPU time per request is known to be 4.39 s for a compute server. We
classify a request as a trivial request if it takes less than 1 s of CPU time, a mod-
erate request if it takes between 1 and 5 s of CPU time, and a number-crunching
request otherwise.

(a) Obtain a bound on the probability that a given request is a number-
crunching request.

(b) Obtain a bound on the probability that a given request is not a trivial
request.

Now, assume that the CPU time per request is exponentially distributed with
mean 4.39 s. Recompute the two bounds.

2. Using the normal tables, plot P (|X| ≥ δ) for 0 < δ < 3, where X ∼ N(0, 1). On
the same graph, plot the upper bound on the abovementioned probability given
by Chebyshev’s inequality, and compare the two plots.

3. Consider a random variable X with the Cauchy pdf:

f(x) =
1

π(1 + x2)
, −∞ < x < ∞.

(a) Show that neither E[X] nor Var[X] exists in this case.

(b) Show that the characteristic function is given by NX(τ) = e−|τ |.

(c) Now consider Z =
∑n

i=1 Xi where the {Xi} are Cauchy and mutually
independent. Thus, NZ(τ) = e−n|τ |, hence show that Z/n has the Cauchy
distribution.

(Comment: Z/n is not Gaussian in the limit, since Var[Xi] is not finite, and hence
the central-limit theorem does not apply.)

4. Construct an example of a discrete random variable X that takes on each of
the values −b, 0, b with nonzero probability, so that the Chebyshev inequality
becomes an equality when applied to the following expression:

P (|X − E[X]| ≥ b).
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In particular, determine p
X

(−b), p
X

(0), and p
X

(b).

5. � In order to represent a nonnegative real number X in a computer with finite
precision, the number is either rounded to obtain Xr, or chopped (or trun-
cated) to obtain Xc [STER 1974]. The representation errors in the two cases
are bounded by

−1

2
≤ Yr = X − Xr ≤ 1

2
and

0 ≤ Yc = X − Xc < 1

(measured in the units of the last digit). It is common to assume that Yr and Yc

are uniformly distributed over their respective ranges. Now assume two indepen-
dent numbers X1 and X2 are being added. Compute the pdf, the mean, and the
variance of the cumulative error in the sum X1 + X2 in cases of both rounding
and chopping. Next assume that n mutually independent real numbers are to
be added, each subject to rounding or chopping. What are the mean and the
variance of the cumulative error in the two cases? Compare the mean with the
worst-case errors. For n = 4, 9, 16, 25, 36, 49, 100, estimate the probability that
the computed sum will differ from the sum of the original numbers by more than
0.5. [Hint: Use the central-limit theorem.]

Review Problems

1. A program has potentially N distinct input data sets indexed from 1 to N .
Suppose the program is run on n randomly chosen data sets with repetition
allowed. Let X be the largest index out of the n data sets used. Derive the pmf
and the expected value of X. Assume that each of the N data sets is equally
likely.

2. Given a for statement:

for (i = 1; i <= n; i++) { \( S \); }

Derive expressions for the distribution, the expected value, and the variance
of the execution time T of the for loop, assuming that the distribution of the
execution time of a single execution of the statement group S is known and that
successive executions of S are independent.

3. Let the execution time X of a fixed instance of a problem using some randomized
algorithm [WEID 1978] have the distribution function:

F (x) = xδ, 0 ≤ x ≤ 1 for some δ > 0.

If we ran the algorithm on that problem instance on a multiprocessor with two
processors and ran the same algorithm on each one, the expected solution time
would be equal to the expected value of the minimum of two independent random
variables (denoted by Y ), each having the distribution function F . Determine the
conditions under which the speedup (defined by the ratio E[X]/E[Y ]) exceeds the
number of required processors; that is, under what conditions is 2E[Y ] < E[X]?
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4. � Returning to the problem of adder design (Chapter 2, review problem 3), show
that the expected length of the longest carry sequence is given by

E[Vn] =
n∑

v=0

v[Rn(v) − Rn(v + 1)]

≤ log2n.

Thus, although in the worst case the length of a carry sequence can be as large
as n, it is much smaller on the average. This fact can be used in speeding up the
average addition time.

5. � Consider the representation error in storing a real number in a machine with
m-digit base β normalized floating-point arithmetic [TSAO 1974]. Let the original
mantissa X have the reciprocal pdf: fX(x) = 1/(x ln β), 1/β ≤ x < 1. Let Xc and
Xr denote the machine representations of X assuming chopping and rounding,
respectively. Then the respective (relative) representation errors Δc and Δr are
given by

Δc =
X − Xc

X
and Δr =

X − Xr

X
.

Assuming that the absolute error Yc = X − Xc is a continuous random variable,
uniformly distributed over the interval (0, β−m), and that Yc is independent of
X (a questionable assumption), show that the pdf of the relative representation
error Δc is given by

fΔc
(δ) =

⎧⎪⎪⎨
⎪⎪⎩

βm−1(β − 1)

ln β
, β−m > δ ≥ 0,

1/δ − βm−1

ln β
, β1−m > δ ≥ β−m.

Similarly, assuming that the random variable Yr = X − Xr is uniformly dis-
tributed over (−β−m/2, β−m/2) and that Yr and X are independent, show that

fΔr
(δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βm−1(β − 1)

ln β
, |δ| ≤ β−m

2
,

1
2|δ| − βm−1

ln β
,

β−m

2
< |δ| <

β1−m

2
.

Plot the two densities and compute the average representation errors E[Δc] and
E[Δr]. Compare these with the respective maximum representation errors β−m+1

and 1
2
β−m+1. Also compute the variances of Δc and Δr.
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Chapter 5

Conditional Distribution and

Expectation

5.1 INTRODUCTION

We have seen that if two random variables are independent, then their joint
distribution can be determined from their marginal distribution functions.
In the case of dependent random variables, however, the joint distribution
can not be determined in this simple fashion. This leads us to the notions of
conditional pmf, conditional pdf, and conditional distribution.

Recalling the definition of conditional probability, P (A|B), for two events
A and B, we can define the conditional probability P (A|X = x) of event
A, given that the event [X = x] has occurred, as

P (A|X = x) =
P (A occurs and X = x)

P (X = x)
(5.1)

whenever P (X = x) �= 0. In Chapter 3 we noted that if X is a continuous
random variable, then P (X = x) = 0 for all x. In this case, definition (5.1) is
not satisfactory. On the other hand, if X is a discrete random variable, then
definition (5.1) is adequate, as shown in the following definition.

Definition (Conditional pmf). Let X and Y be discrete random vari-
ables having a joint pmf p(x, y). The conditional pmf of Y given X is

p
Y |X

(y|x) = P (Y = y | X = x)

=
P (Y = y,X = x)

P (X = x)
(5.2)

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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=
p(x, y)
p

X
(x)

,

if p
X

(x) �= 0.

Note that the conditional pmf, as defined above, satisfies properties (pl)–
(p3) of a pmf, discussed in Chapter 2. Rewriting the above definition another
way, we have

p(x, y) = p
X

(x)p
Y |X

(y|x) = p
Y
(y)p

X|Y
(x|y). (5.3)

This is simply another form of the multiplication rule (of Chapter 1), and it
gives us a way to compute the joint pmf regardless of whether X and Y are
independent. If X and Y are independent, then from (5.3) and the definition
of independence (in Chapter 2) we conclude that

p
Y |X

(y|x) = p
Y
(y). (5.4)

From (5.3) we also have the following marginal probability:

p
Y
(y) =

∑
all x

p(x, y) =
∑
all x

p
Y |X

(y|x)p
X

(x). (5.5)

This is another form of the theorem of total probability of Chapter 1.
We can also define the conditional distribution function FY |X(y|x) of a

random variable Y , given a discrete random variable X by

FY |X(y|x) = P (Y ≤ y | X = x) =
P (Y ≤ y and X = x)

P (X = x)
(5.6)

for all values of y and for all values of x such that P (X = x) > 0. Defini-
tion (5.6) applies even for the case when Y is not discrete.

Note that the conditional distribution function can be obtained from the
conditional pmf (assuming that both X and Y are discrete):

FY |X(y|x) =

∑
t≤y

p(x, t)

p
X

(x)
=

∑
t≤y

p
Y |X

(t|x). (5.7)

Example 5.1

A server cluster has two servers labeled A and B. Incoming jobs are independently
routed by the front end equipment (called server switch) to server A with probability
p and to server B with probability (1 − p). The number of jobs, X, arriving per unit
time is Poisson distributed with parameter λ. Determine the distribution function
of the number of jobs, Y , received by server A, per unit time.

Let us determine the conditional probability of the event [Y = k] given that
event [X = n] has occurred. Note that routing of the n jobs can be thought of as a
sequence of n independent Bernoulli trials. Hence, the conditional probability that



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 259�

� �

�

5.1 INTRODUCTION 259

[Y = k] given [X = n] is binomial with parameters n and p:

p
Y |X

(k|n) =

{
P (Y = k|X = n) =

(n

k

)
pk(1 − p)n−k, 0 ≤ k ≤ n

0, otherwise.

Recalling that P (X = n) = e−λλn/n! and using formula (5.5), we get

p
Y

(k) =

∞∑
n=k

(n

k

)
pk(1 − p)n−k λne−λ

n!

=
(λp)ke−λ

k!

∞∑
n=k

(λ(1 − p))n−k

(n − k)!

=
(λp)ke−λ

k!
eλ(1−p)

(since the last sum is the Taylor series expansion of eλ(1−p)) and

p
Y

(k) =
(λp)ke−λp

k!
.

Thus, Y is Poisson distributed with parameter λp. For this reason we often say that
the Poisson distribution is preserved under random selection.

�

Example 5.2

As a related application of Example 5.1, we consider the testing process for a software
product. Let N(t) be the number of faults detected up to time t and let the initial
number of faults M be Poisson distributed with parameter λ. Let us label these
M faults 1, 2, . . . , M . Further let Xi be the time to detection of the fault labeled
i. Assume that X1, X2, . . . are mutually independent and identically distributed
random variables with the common distribution function F (t). Since P (Xi ≤ t) =
F (t) for all i, it follows that the probability for a specific fault i to have been detected
by time t is p = F (t). Hence

P [N(t) = j | M = m] =

(
m

j

)
[F (t)]j [1 − F (t)]m−j .

By our assumption, M is Poisson distributed with the probability mass function:

P [M = m] =
(λ)me−λ

m!
,

hence, we have

P [N(t) = j] =
[λF (t)]je−λF (t)

j!
.

�

If X and Y are jointly continuous, then we define the conditional pdf of
Y given X in a way analogous to the definition of the conditional pmf.
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Definition (Conditional pdf). Let X and Y be continuous random
variables with joint pdf f(x, y). The conditional density fY |X is defined by

fY |X(y|x) =
f(x, y)
fX(x)

, if 0 < fX(x) < ∞. (5.8)

It can be easily verified that the function defined in (5.8) satisfies properties
(f1) and (f2) of a pdf.

It follows from the definition of conditional density that

f(x, y) = fX(x)fY |X(y|x) = fY (y)fX|Y (x|y). (5.9)

This is the continuous analog of the multiplication rule (MR) of Chapter 1.
If X and Y are independent, then

f(x, y) = fX(x)fY (y),
which implies that

fY |X(y|x) = fY (y). (5.10)

Conversely, if equation (5.10) holds, then it follows that X and Y are indepen-
dent random variables. Thus (5.10) is a necessary and sufficient condition for
two random variables X and Y , which have a joint density, to be independent.

From the expression of joint density (5.9), we can obtain an expression for
the marginal density of Y in terms of conditional density by integration:

fY (y) =
∫ ∞

−∞
f(x, y)dx

=
∫ ∞

−∞
fX(x)fY |X(y|x)dx . (5.11)

This is the continuous analog of the theorem of total probability.
Further, in the definition of conditional density, we can reverse the role of

X and Y to define (whenever fY (y) > 0):

fX|Y (x|y) =
f(x, y)
fY (y)

.

Using the expression (5.11) for fY (y) and noting that f(x, y) = fX(x)
fY |X(y|x), we obtain

fX|Y (x|y) =
fX(x)fY |X(y|x)∫ ∞

−∞ fX(x)fY |X(y|x)dx
. (5.12)

This is the continuous analog of Bayes’ rule discussed in Chapter 1.
The conditional pdf can be used to obtain the conditional probability:

P (a ≤ Y ≤ b | X = x) =
∫ b

a

fY |X(y|x)dy , a ≤ b. (5.13)
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In particular, the conditional distribution function FY |X(y|x) is defined, anal-
ogous to (5.6), as

FY |X(y|x) = P (Y ≤ y | X = x) =

∫ y

−∞ f(x, t)dt
fX(x)

=
∫ y

−∞
fY |X(t|x)dt . (5.14)

As motivation for definition (5.14) we observe that

FY |X(y|x) = lim
h→0

P (Y ≤ y | x ≤ X ≤ x + h)

= lim
h→0

P (x ≤ X ≤ x + h and Y ≤ y)
P (x ≤ X ≤ x + h)

= lim
h→0

∫ x+h

x

∫ y

−∞ f(s, t)dtds∫ x+h

x
fX(s)ds

.

For some x∗
1, x

∗
2 with x ≤ x∗

1, x
∗
2 ≤ x + h, we obtain

FY |X(y|x) = lim
h→0

h
∫ y

−∞ f(x∗
1, t)dt

hfX(x∗
2)

(by the mean value theorem of integrals)

= lim
h→0

∫ y

−∞ f(x∗
1, t)dt

fX(x∗
2)

(since both x∗
1 and x∗

2 approach x as h approaches 0)

=
∫ y

−∞

f(x, t)
fX(x)

dt

=
∫ y

−∞
fY |X(t|x)dt .

Example 5.3

In modeling software reliability during the testing phase we are interested in deriving
the conditional reliability defined as a conditional survivor function associated with
ith failure, given that the software has experienced (i − 1) failures

Ri(t) = P (Ti > t),

where Ti, known as interfailure time, defines the time between the occurrence of
(i − 1)st and ith failure.



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 262�

� �

�

262 CONDITIONAL DISTRIBUTION AND EXPECTATION

A number of software reliability growth models are based on the assumption that
interfailure times T1, T2, . . . , Ti are independent exponentially distributed random
variables with failure rate λi which changes at each failure occurrence due to the
fault removal attempts.

The Littlewood–Verrall model [LITT 1973] assumes that interfailure times are
independent random variables with conditional density

fTi|Λi
(t|λi) = λie

−λit,

that is
Ri(t|λi) = P (Ti > t | Λi = λi) = e−λit.

The failure rate Λi has gamma pdf with shape parameter α and scale parameter
ψ(i):

fΛi
(λi) =

(ψ(i))α

Γ(α)
λα−1

i e−ψ(i)λi .

By the continuous version of the theorem of total probability [equation (5.11)], it
follows that

Ri(t) =

∫ ∞

0

P (Ti > t | Λi = λi)fΛi
(λi) dλi

=

∫ ∞

0

e−λit (ψ(i))α

Γ(α)
λα−1

i e−ψ(i)λi dλi

=
(ψ(i))α

Γ(α)

∫ ∞

0

λα−1
i e−[ψ(i)+t]λi dλi,

and hence, using formula (3.25), we obtain

Ri(t) =
(ψ(i))α

Γ(α)
· Γ(α)

[ψ(i) + t]α
=

(
ψ(i)

ψ(i) + t

)α

which is the survivor function of the Pareto distribution.
The function ψ(i) is supposed to reflect the quality of the testing efforts. For

example, ψ(i) = β0 + β1i ensures that the expected value of failure rate (see Section
4.5.8) E[Λi] = α/ψ(i) decreases with i. Consequently, for i ≥ 2 the sequence of
failure rates Λi form a stochastically decreasing sequence, that is, for any λ ≥ 0,
P (Λi ≤ λ) ≥ P (Λi−1 ≤ λ). This reflects the likelihood, but not a guarantee, that a
fault removal will improve reliability and if an improvement does take place it would
be of uncertain magnitude.

�

Example 5.4

Consider a series system of two independent components with respective lifetime
distributions X ∼ EXP (λ1) and Y ∼ EXP (λ2). We wish to determine the proba-
bility that component 2 is the cause of system failure. Let A denote the event that
component 2 is the cause of system failure; then

P (A) = P (X ≥ Y ).
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To compute this probability, first consider the conditional distribution function:

FX|Y (t|t) = P (X ≤ t | Y = t) = FX(t)

(by the independence of X and Y ). Now by the continuous version of the theorem
of total probability, we obtain

P (A) =

∫ ∞

0

P (X ≥ t | Y = t)fY (t)dt

=

∫ ∞

0

[1 − FX(t)]fY (t)dt

=

∫ ∞

0

e−λ1tλ2e
−λ2tdt

=
λ2

λ1 + λ2

.

This result generalizes to a series system of n independent components, each with
a respective constant failure rate λj (j = 1, 2, . . . , n). The probability that the jth
component is the cause of system failure is given by

λj
n∑

i=1

λi

. (5.15)

�

Example 5.5 [BARL 1975]

Thus far in our reliability computations, we have considered failure mechanisms of
components to be independent. We have derived the exponential lifetime distribution
from a Poisson shock model. We now model the behavior of a system of two non-
independent components using a bivariate exponential distribution. Assume three
independent Poisson shock sources. A shock from source 1 destroys component 1,
and the time to the occurrence U1 of such a shock is exponentially distributed with
parameter λ1, so that P (U1 > t) = e−λ1t. A shock from source 2 destroys component
2, and P (U2 > t) = e−λ2t. Finally, a shock from source 3 destroys both components
and it occurs at random time U12, so that P (U12 > t) = e−λ12t. Thus the lifetime
X of component 1 satisfies

X = min{U1, U12}

and is exponentially distributed with parameter λ1 + λ12. The lifetime Y of compo-
nent 2 is given by

Y = min{U2, U12}

and is exponentially distributed with parameter λ2 + λ12. Therefore

fX(x) = (λ1 + λ12)e
−(λ1+λ12)x, x > 0,



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 264�

� �

�

264 CONDITIONAL DISTRIBUTION AND EXPECTATION

and

fY (y) = (λ2 + λ12)e
−(λ2+λ12)y, y > 0.

To compute the joint distribution function F (x, y) = P (X ≤ x, Y ≤ y), we first
compute the following:

R(x, y) = P (X > x, Y > y)

= P (min{U1, U12} > x, min{U2, U12} > y)

= P (U1 > x, U12 > max{x, y}, U2 > y)

= P (U1 > x)P (U12 > max{x, y})P (U2 > y)

= e−λ1x−λ2y−λ12max{x,y}, x ≥ 0, y ≥ 0.

This is true since U1, U2, and U12 are mutually independent. It is interesting to
note that R(x, y) ≥ RX(x)RY (y). Now F (x, y) can be obtained using the following
relation (see Figure 5.1):

F (x, y) = R(x, y) + FX(x) + FY (y) − 1

= 1 + e−λ1x−λ2y−λ12max{x,y} − e−(λ1+λ12)x − e−(λ2+λ12)y.

In particular
F (x, y) �= FX(x)FY (y)

since

FX(x)FY (y) = 1 − e−(λ1+λ12)x − e−(λ2+λ12)y + e−(λ1+λ12)x−(λ2+λ12)y.

Thus X and Y are indeed dependent random variables.

Y

X

(x,y)

F(x,y) F  (y)Y

F  (x)X R(x,y)

Figure 5.1. Illustration for R(x, y) + FX(x) + FY (y) = 1 + F (x, y)
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The joint density f(x, y) may be obtained by taking partial derivatives:

f(x, y) =
∂2F (x, y)

∂x∂y

=

{
λ1(λ2 + λ12)e

−λ1x−λ2y−λ12y, x ≤ y,

λ2(λ1 + λ12)e
−λ1x−λ2y−λ12x, x > y,

and the conditional density by

fY |X(y|x) =

⎧⎨
⎩

λ1(λ2 + λ12)

λ1 + λ12

e−(λ2+λ12)y+λ12x, x ≤ y,

λ2e
−λ2y, x > y.

Once again, this confirms that X and Y are not independent.

�

For further discussion of such dependencies see the paper by Muppala et al.
[MUPP 1996].

Problems

1. Consider a fault-tolerant multiprocessor computer system with two processors,
each with its own private memory module and a third memory module that is
shared between the processors. Supposing that the processors and the memory
modules have constant failure rates λp and λm, respectively, and the computer
system is operational as long as there is at least one operational processor with
access to either a private or shared memory module, determine the failure-time
distribution for the computer system. Recompute the failure-time distribution
of the computer system, this time, assuming a Weibull distribution for time to
failure of the processors and memory modules with the different λ parameters
and but the same shape parameter α. [Hint: Use conditioning (or factoring) on
the event that the shared memory is operational or not.]

2. Consider again the problem of 1M (1-megabyte) RAM chips supplied by two semi-
conductor houses (problem 1, Section 3.6). Determine the conditional probability
density of the lifetime X, given that the lifetime Y does not exceed 106 h.

3. Consider the operation of an online file updating system [MEND 1979]. Let p
i

be
the probability that a transaction inserts a record into file i (i = 1, 2, . . . , n), so
that

∑n
i=1 p

i
= 1. The record size (in bytes) of file i is a random variable denoted

by Yi. Determine

(a) The average number of bytes added to file i per transaction.

(b) The variance of the number of bytes added to file i per transaction.

[Hint: You may define the Bernoulli random variable:

Ai =

{
1, transaction updates file i,
0, otherwise,



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 266�

� �

�

266 CONDITIONAL DISTRIBUTION AND EXPECTATION

and let the random variable Vi = AiYi be the number of bytes added to file i in
a transaction.]

4. X1 and X2 are independent random variables with Poisson distributions,
having respective parameters α1 and α2. Show that the conditional pmf of X1,
given X1 + X2, pX1|X1+X2

(X1 = x1|X1 + X2 = y), is binomial. Determine its
parameters.

5. Let the execution times X and Y of two independent parallel processes be uni-
formly distributed over (0, tX) and (0, tY ), respectively, with tX ≤ tY . Find the
probability that the former process finishes execution before the latter.

5.2 MIXTURE DISTRIBUTIONS

The definition of conditional density (and conditional pmf) can be naturally
extended to the case where X is a discrete random variable and Y is a con-
tinuous random variable (or vice versa).

Example 5.6

Consider a file server whose workload may be divided into r distinct classes. For job
class i(1 ≤ i ≤ r), the CPU service time is exponentially distributed with parameter
λi. Let Y denote the service time of a job and let X be the job class. Then

fY |X(y|i) = λie
−λiy, y > 0.

Now let αi (≥ 0) be the probability that a randomly chosen job belongs to class i:

p
X

(i) = αi,

r∑
i=1

αi = 1.

Then the joint density is

f(i, y) = fY |X(y|i)p
X

(i)

= αiλie
−λiy, y > 0,

and the marginal density is

fY (y) =
r∑

i=1

f(i, y)

=
r∑

i=1

αifY |X(y|i)

=
r∑

i=1

αiλie
−λiy, y > 0.

Thus Y has an r-stage hyperexponential distribution, denoted by a set of parallel
exponential stages (or phases) as in Figure 5.2.

�
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Exp(λ1)

1
α

2
α

αr

Exp(λr)

Exp(λ2)

. . . .
Figure 5.2. The hyperexponential distribution as a set of parallel exponential stages

Of course, the conditional distribution of Y does not have to be exponen-
tial. In general, if we let

fY |X(y|i) = fi(y) = fYi
(y)

and
FY |X(y|i) = Fi(y),

then we have the unconditional pdf of Y

fY (y) =
r∑

i=1

αifi(y), (5.16)

and the unconditional CDF of Y

FY (y) =
r∑

i=1

αiFi(y). (5.17)

Taking Laplace–Stieltjes transforms on both sides of (5.16), we also have

LY (s) =
r∑

i=1

αiLYi
(s). (5.18)

Finally, applying the definitions of the mean and higher moments to (5.16),
we have

E[Y ] =
r∑

i=1

αiE[Yi], (5.19)
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E[Y k] =
r∑

i=1

αiE[Y k
i ]. (5.20)

Such mixture distributions often arise in a number of reliability situations.
For example, suppose that a manufacturer produces αi fraction of a certain
product in assembly line i, and the lifetime of a unit produced in assembly line
i has a distribution Fi. Now if the outputs of the assembly lines are merged,
then a randomly chosen unit from the merged stream will possess the lifetime
distribution given by equation (5.17).

Example 5.7

Assume that in a mixture of two groups, one group consists of components in the
chance-failure period (with constant hazard rate λ1) and the other of aging items
(modeled by an r-stage Erlang lifetime distribution with parameter λ2). If α is
the fraction of group 1 components, then the distribution of the lifetime Y of a
component from the merged stream is given by

FY (y) = α(1 − e−λ1y) + (1 − α)

(
1 −

r−1∑
k=0

(λ2y)k

k!
e−λ2y

)

and

fY (y) = αλ1e
−λ1y + (1 − α)

λr
2y

r−1

(r − 1)!
e−λ2y.

This density and the corresponding hazard rate are shown in Figures 5.3 and 5.4.
Note that this distribution has a nonmonotonic hazard function.

�

More generally, the distributions being mixed may be uncountably infinite
in number; that is, X may be a continuous random variable. For instance, the
lifetime of a product may depend on the amount X of impurity present in the
raw material. Let the conditional distribution of the lifetime Y be given by

FY |X(y|x) = GX(y) =
∫ y

−∞

f(x, t)
fX(x)

dt

where the impurity X has a density function fX(x). Then the resultant life-
time distribution FY is given by

FY (y) =
∫ ∞

−∞
fX(x)GX(y) dx =

∫ ∞

−∞

∫ y

−∞
f(x, t)dt dx .

In the next example we let Y be discrete and X continuous.
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y)  f(y)   = 0.5 e−y + 4.5 y e−3y

Figure 5.3. The pdf of a mixture of exponential and Erlang
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1− 0.5 (1 − e− t) − 0.5 (1− (e−3 t + 3 t e−3 t))

          0.5 e− t + 4.5 t e−3 t

 h(t) =

Figure 5.4. Hazard rate of a mixture of exponential and Erlang
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Example 5.8 [CLAR 1970]

Let X be the service time of a request to a Web server and let it be exponentially
distributed with parameter μ, so that

fX(x) = μe−μx, x > 0.

Let the number of requests arriving in the interval (0, t] be Poisson distributed with
parameter λt. Finally, let Y be the number of requests arriving while one is being
served.

If we fix the value of X to be x, the Poisson arrival assumption can be used to
obtain the conditional pmf of Y given [X = x]:

p
Y |X

(y|x) = P (Y = y | X = x)

= e−λx (λx)y

y!
, y = 0, 1, 2, . . . .

The joint probability density function of X and Y is then given by

f(x, y) = fX(x)p
Y |X

(y|x)

=
μe−(λ+μ)x(λx)y

y!
, y = 0, 1, 2, . . . ; x > 0.

The unconditional (or marginal) pmf of Y can now be obtained by integration:

p
Y

(y) = P (Y = y)

=

∫ ∞

0

f(x, y)dx

=
μλy

y!

∫ ∞

0

e−(λ+μ)x(x)ydx .

Substituting (λ + μ)x = w, we get

p
Y

(y) =
μλy

y!(λ + μ)y+1

∫ ∞

0

e−wwydw

=
μλyy!

y!(λ + μ)y+1

[since the last integral is equal to Γ(y + 1) = y! by formulas (3.21) and (3.23)]. Thus

p
Y

(y) =
ρy

(1 + ρ)y+1
, where ρ =

λ

μ

=

(
ρ

1 + ρ

)y
1

1 + ρ
, y = 0, 1, 2, . . . .



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 271�

� �

�

5.2 MIXTURE DISTRIBUTIONS 271

Thus Y has a modified geometric pmf with parameter 1/(1 + ρ); hence the expected
value is

E[Y ] =
ρ/(1 + ρ)

1/(1 + ρ)
= ρ =

λ

μ
.

This is an example of the so-called M/M/1 queuing system to be discussed in a
later chapter. We may argue that an undesirable backlog of customers will not occur
provided the average number of customers arriving in the interval representing the
service time of a typical customer is less than 1. In other words, the queuing system
will remain stable provided

E[Y ] = ρ < 1 or λ < μ.

This last condition says that the rate at which requests arrive is less than the rate
at which work can be completed.

�

Example 5.9 [GAVE 1973]

Consider a series system with n independent components, each with a lifetime distri-
bution function G(t) and density g(t). Because of the options offered, the number of
components, Y , in a specific system is a random variable. Let X denote the lifetime
of the series system. Then, clearly

FX|Y (t|n) = 1 − [1 − G(t)]n, n = 0, 1, 2, . . . , t > 0,

fX|Y (t|n) = n[1 − G(t)]n−1g(t), n = 0, 1, 2, . . . , t > 0.

Assume that the number of components, Y , has a Poisson pmf with parameter α.
Then

p
Y

(n) = e−α αn

n!
, α > 0, n = 0, 1, 2, . . . ,

and the joint density is

f(t, n) = fX|Y (t|n)p
Y

(n)

=

{
e−α αn

(n−1)!
[1 − G(t)]n−1g(t), t > 0, n = 0, 1, 2, . . . ,

0, otherwise.

We can now determine the marginal density:

fX(t) =

∞∑
n=1

[1 − G(t)]n−1g(t)e−α αn

(n − 1)!
.

The system reliability is then given by

RX(t) = P (X > t)

=
∞∑

n=0

[1 − FX|Y (t|n)]p
Y

(n)
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(by the theorem of total probability)

=
∞∑

n=0

[1 − G(t)]ne−α αn

n!

= e−α
∞∑

n=0

{α[1 − G(t)]}n

n!

= e−αeα[1−G(t)]

= e−αG(t).

Now suppose that the system has survived until time t. We are interested in com-
puting the conditional pmf of the number of components Y that it has

P (Y = n | X > t) =
P (X > t, Y = n)

P (X > t)

=
[1 − FX|Y (t|n)]p

Y
(n)

RX(t)

= e−α[1−G(t)] [α(1 − G(t))]n

n!
.

Thus the conditional pmf of Y , given that no failure has occurred until time t, is
Poisson with parameter α[1 − G(t)]. Since G(t) is a monotonically increasing func-
tion of t, the parameter of the Poisson pmf decreases with t. In other words, the
longer the system survives, the greater is the evidence that it has a small number
of components.

�

Example 5.10

In the previous example, we note that

lim
t→∞

RX(t) = e−α �= 0.

In other words X is a defective random variable and hence, E[X] does not exist.
The primary reason is that p

Y
(0) = e−α �= 0. In other words, there is a nonzero

probability that the number of components n in the series system can be equal to
zero. We can remove this possibility by considering a modified Poisson pmf for the
number of components Y so that

p
Y

(n) =
e−α

1 − e−α

αn

n!
, α > 0, n = 1, 2, . . . .

�

Yet another case of a mixture distribution occurs when we mix two distri-
butions, one discrete and the other continuous. The mixture distribution then
represents a mixed random variable [see the distribution (3.2) in Chapter 3].
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Problems

1. Consider the if statement:
if B {S1;} else {S2;}

Let the random variables X1 and X2 respectively, denote the execution times
of the statement groups S1 and S2. Assuming the probability that the Boolean
expression B = true is p, derive an expression for the distribution of the total
execution time X of the if statement. Compute E[X] and Var[X] as functions
of the means and variances of X1 and X2. Generalize your results to a case
statement with k clauses.

2. Describe a method of generating a random deviate of a two-stage hyperexponen-
tial distribution.

3. One of the inputs to a certain program is a random variable whose value is a
nonnegative real number; call it Λ. The probability density function of Λ is given
by

fΛ(λ) = λe−λ, λ > 0.

Conditioned on Λ = λ, the execution time of the program is an exponentially
distributed random variable with parameter λ. Compute the distribution function
of the program execution time X.

5.3 CONDITIONAL EXPECTATION

If X and Y are continuous random variables, then the conditional density fY |X
is given by formula (5.8). Since fY |X is a density of a continuous random
variable, we can talk about its various moments. Its mean (if it exists) is
called the conditional expectation of Y given [X = x] and will be denoted
by E[Y |X = x] or E[Y |x]. Thus

E[Y |x] =
∫ ∞

−∞
yf (y|x)dy

=

∫ ∞
−∞ yf (x, y)dy

fX(x)
, 0 < fX(x) < ∞. (5.21)

We will define E[Y |x] = 0 elsewhere. The quantity m(x) = E[Y |x], considered
as a function of x, is known as the regression function of Y on X.

In case the random variables X and Y are discrete, the conditional expec-
tation E[Y |x] is defined as

E[Y |X = x] =
∑

y

yP(Y = y | X = x)

=
∑

y

yp
Y |X

(y|x). (5.22)
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Similar definitions can be given in mixed situations. These definitions can be
easily generalized to define the conditional expectation of a function φ(Y ):

E[φ(Y )|X = x] =

⎧⎨
⎩

∫ ∞
−∞ φ(y)fY |X(y|x)dy , if Y is continuous,∑
i

φ(yi)pY |X
(yi|x), if Y is discrete.

(5.23)

As a special case of definition (5.23), we have the conditional kth moment
of Y , E[Y k|X = x], and the conditional moment generating function of Y ,
MY |X(θ|x) = E[eθY |X = x]. From the conditional moment generating func-
tion we also obtain the definition of the conditional Laplace–Stieltjes trans-
form, LY |X(s|x) = E[e−sY |X = x], and the conditional PGF, GY |X(z|x) =
E[zY |X = x].

We may take the expectation of the regression function m(X) to obtain
the unconditional expectation of Y

E[m(X)] = E[E[Y |X]] = E[Y ];

that is to say

E[Y ] =

{∑
xE[Y |X = x]p

X
(x), if X is discrete,∫ ∞

−∞ E[Y |X = x]fX(x)dx , if X is continuous.
(5.24)

This last formula, known as the theorem of total expectation, is found
to be quite useful in practice. A similar result called the theorem of total
moments is given by

E[Y k] =

{∑
xE[Y k|X = x]p

X
(x), if X is discrete,∫ ∞

−∞ E[Y k|X = x]fX(x)dx , if X is continuous.
(5.25)

Similarly, we have theorems of total transforms. For example, the theorem of
total Laplace–Stieltjes transform is (assuming that Y is a nonnegative con-
tinuous random variable)

LY (s) =

⎧⎨
⎩

∑
xLY |X(s|x)p

X
(x), if X is discrete,∫ ∞

−∞ LY |X(s|x)fX(x)dx , if X is continuous.
(5.26)

Example 5.11

Consider the Example 5.6 of r job classes in a file server. Since

fY |X(y|i) = λie
−λiy,
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then
E[Y |X = i] =

1

λi

and
E[Y 2|X = i] =

2

λ2
i

.

Then, by the theorem of total expectation, we obtain

E[Y ] =
r∑

i=1

αi

λi

and
E[Y 2] =

r∑
i=1

2αi

λ2
i

.

Then

Var[Y ] =
r∑

i=1

2αi

λ2
i

−
(

r∑
i=1

αi

λi

)2

.

�

Example 5.12

Refer to Example 5.10 of a series system with a random number of components,
where

fX|Y (t|n) = n[1 − G(t)]n−1g(t), t > 0.

Let
G(t) = 1 − e−λt, x > 0, t ≥ 0.

Then

fX|Y (t|n) = ne−λ(n−1)tλe−λt

= nλe−nλt,

which is the exponential pdf with parameter nλ. It follows that

E[X|Y = n] =
1

nλ

and since Y has a modified Poisson pmf, we have

E[X] =
∞∑

n=1

1

nλ

e−α

1 − e−α

αn

n!
.

�

Example 5.13 [HESS 2000]

Let Y denote the time to failure of a system. System MTTF varies with the temper-
ature of its environment. The conditional MTTF given temperature T is assumed
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to have the form: MTTF(t) = E[Y |T = t] = ea+bt+ct2 . The parameters in this for-
mula have been evaluated from measured data as follows: a = 0.973, b = 0.00442, c =
−0.00036. It is reasonable to assume that T has a normal distribution with mean
T̄ = 40◦C and σ = 20◦C. So the density of T is

fT (t) =
1√

2πσ2
e
−( t−T√

2σ
)2

Then the unconditional MTTF can be evaluated by the theorem of total expec-
tation [equation (5.24)]

MTTF = E[Y ] =

∫ ∞

−∞
MTTF(t)fT (t)dt

=

∫ ∞

−∞
ea+bt+ct2 1√

2πσ2
e
−( t−T√

2σ
)2

dt

=
1√

1 − 2cσ2
exp

[(
a +

(bσ)2

2

)
+ bT + cT

2
]

= 1.58

Hence the ratio of the unconditional MTTF and the conditional MTTF at the
mean temperature is

MTTF

MTTF(T )
=

1√
1 − 2cσ2

e(bσ)2/2 = 0.89

Hence, if we use the conditional MTTF at the ambient temperature of 40◦C in
our calculation, we will have made an error on the optimistic side by about 11%.

�

Example 5.14 (Analysis of Uniform Hashing) [KNUT 1998]

A popular method of storing tables for fast searching is known as hashing. The table
has M entries indexed from 0 to M − 1. Given a search key k, an application of the
hash function h produces an index, h(k), into the table, where we generally expect
to find the required entry. Since there are distinct keys ki �= kj that hash to the
same value h(ki) = h(kj), a situation known as “collision”, we have to derive some
method for producing secondary indices for search.

Assume that k entries out of M in the table are currently occupied. As a con-
sequence of the assumption that h distributes values uniformly over the table, all(

M

k

)
possible configurations are equally likely. Let the random variable X denote

the number of probes necessary to insert the next item in the table, and let Y
denote the number of occupied entries in the table. For a given number of occupied
entries Y = k, if the number of probes is equal to r, then (r − 1) given cells are
known to be occupied and the last inspected cell is known to be unoccupied. Out

of the remaining M − r cells, (k − r + 1) can be occupied in

(
M − r

k − r + 1

)
ways.
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Therefore

P (X = r | Y = k) = p
X|Y

(r|k)

=

(
M − r

k − r + 1

)
(

M

k

) , 1 ≤ r ≤ M. (5.27)

This implies that

E[X|Y = k] =
M∑

r=1

rp
X|Y

(r|k)

=

M∑
r=1

(M + 1)p
X|Y

(r|k) −
M∑

r=1

(M + 1 − r)p
X|Y

(r|k).

Now, since p
X|Y

is a pmf, the first sum on the right-hand side equals M + 1. We

substitute expression (5.27) in the second sum to obtain

E[X|Y = k] = (M + 1) −
M∑

r=1

(M + 1 − r)

(
M − r

k − r + 1

)
(

M

k

)

= (M + 1) −
M∑

r=1

(M + 1 − r)(M − r)!

(k − r + 1)!(M − k − 1)!

(
M

k

)

= (M + 1) −
M∑

r=1

(M − r + 1)!(M − k)

(k − r + 1)!(M − k)!

(
M

k

)

= (M + 1) −
M∑

r=1

(M − k)

(
M − r + 1

M − k

)
(

M

k

) .

Now the sum becomes
M∑

r=1

(
M − r + 1

M − k

)
=

M∑
i=1

(
i

M − k

)
=

M∑
i=0

(
i

M − k

)
=

(
M + 1

M − k + 1

)
,

using a formula from Knuth [KNUT 1997]. After substitution and simplification,
we have

E[X|Y = k] =
M + 1

M − k + 1
, 0 ≤ k ≤ M − 1.

Now, assuming that Y is uniformly distributed over 0 ≤ k < N ≤ M , we get

p
Y

(k) =
1

N
,
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E[X] =

N−1∑
k=0

1

N
E[X|Y = k]

=
M + 1

N

(
1

M + 1
+

1

M
+ · · · + 1

M − N + 2

)

=
M + 1

N
(HM+1 − HM−N+1)

� 1

α
ln

1

1 − α
,

where α = N/(M + 1), the table occupancy factor. This is the expected number of
probes necessary to locate an entry in the table, provided the search is successful.
Note that if the table occupancy factor is low (below 80 %), the average number
of probes is nearly equal to 1. In other words, where applicable, this is an efficient
method of search.

�

Example 5.15

Define conditional mean exceedance (CMEx) of a random variable X as

CMEx = E[X − x|X ≥ x]. (5.28)

This is also called the mean residual life. For Pareto distribution with α > 1, we
have

CMEx =

∫∞
x

(t − x)α kα t−α−1dt

( k
x
)α

=
x

α − 1
.

The CMEx of a random variable following Pareto distribution with α > 1 is an
increasing function of x. This kind of distribution is called “heavy-tailed”. Assume
the random variable X represents a waiting time. The heavy-tailed distribution
means the longer a customer has waited, the longer is this customer’s expected
future waiting time. Similarly, a “light-tailed distribution”, whose CMEx is a
decreasing function of x, means that a customer who has waited for a long time
will have a shorter expected future waiting time. The (memoryless) exponential
distribution whose CMEx is a constant is called a “medium-tailed” distribution.

�

Problems

1. Consider again problem 1 in Section 5.2. Compute the MTTF of the multipro-
cessor system first for the constant failure rate case and then for the Weibull
failure time distribution case.

2. 
 The notion of a recovery block was introduced by Randell [RAND 1975] to
facilitate software fault tolerance in presence of software design errors. This con-
struct provides a “normal” algorithm to perform the required function together
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with an acceptance test of its results. If the test results are unsatisfactory then
an alternative algorithm is executed. Assume that X is the execution time of
the normal algorithm and Y is the execution time of the alternative algorithm.
Assume p is the probability that the results of the normal execution satisfy
the acceptance test. Determine the distribution function of the total execution
time T of the recovery block, assuming that X and Y are uniformly distributed
over (a, b). Repeat, assuming that X and Y are exponentially distributed with
parameters λ1 and λ2, respectively. In each case determine E[T ], Var[T ], and in
the latter case LT (s).

3. Consider the flowchart model of fault recovery in a computer system (such as Bell
System’s Electronic Switching system) as shown in Figure 5.P.1. Assuming that
the random variables D, L, R, MD, and ML are exponentially distributed with
parameters δ, λ, ρ, μ1 and μ2, determine the distribution function of the random
variable X, denoting the total recovery time. Also compute E[X] and Var[X].

Fault
indication

Manual
location

Repair

Repair R

d

Repair

M
L

R

MD

ML

R

location
Manual
diagnosis
Manual

a

diagnosis

Automatic
fault

location
L

Automatic D

Success

Success

Failure

Failure1-d

1-a

Figure 5.P.1. Flowchart of automatic fault recovery

4. Linear searching problem. We are given an unordered list with n distinct keys.
We are searching linearly for a specific key that has a probability p of being
present in the list (and probability q of being absent). Given that the key is in
the list, the probability of its being in position i is 1/n, i = 1, 2, . . . , n. Compute
the expected number of comparisons for

(a) A successful search.

(b) An unsuccessful search.

(c) A search (unconditionally).

5. Let V1 be the random variable denoting the length (in bytes) of a source program
[MEND 1979]. Let p be the probability of successful compilation of the program.
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Let V2 be the length of the compiled code (load module). Clearly, V2 and V1 will
not be independent. Assume V2 = BV1 where B is a random variable, and B and
V1 are independent. After the compilation, the load module will be entered into
a library. Let X be the length of a request for space allocation to the library due
to the abovementioned source program. Determine E[X] and Var[X] in terms of
E[B], E[V1], Var[B], and Var[V1].

5.4 IMPERFECT FAULT COVERAGE AND RELIABILITY

Reliability models of systems with dynamic redundancy (e.g., standby redun-
dancy, hybrid k-out-of-n) developed earlier are not very realistic. It has been
demonstrated that the reliability of such systems depends strongly on the
effectiveness of recovery mechanisms. In particular, it may be impossible to
switch in an existing spare module and thus recover from a failure. Faults
such as these are said to be not covered, and the probability that a given
fault belongs to this class is denoted by 1 − c, where c denotes the probabil-
ity of occurrence of covered faults, and is known as the coverage factor (or
coverage parameter) [BOUR 1969].

In a fault tolerant system (see Figure 5.5), there are three common phases
of recovery subsequent the occurrence of a fault: fault detection, fault location,
and recovery for continued service. Each phase has a certain duration and
success probability associated with it. The overall probability of successful
system recovery is the product of the individual success probabilities of each
phase. Thus, if the probabilities of successful detection, successful location and
successful recovery are cd, cl, and cr, respectively, then the overall coverage is
given by

c = P (“system recovers” |“fault occurs”)

= P (“fault is detected AND fault is located

AND fault is corrected” |“fault occurs”)

Detect Locate Recover
Coverage
 Success

Coverage
  Failure

cl cr

1 - c 1 - c

cd

1 - cd l r

Figure 5.5. Three phases of fault handling
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= (detection coverage) × ( location coverage) × ( recovery coverage)

= cd · cl · cr.

Sometimes, however, a second fault may occur while the system is processing
the previous fault. This would normally result in a system failure. Such faults
are termed near-coincident or nearly concurrent faults.

Let Y be the random time to handle (or process) a fault. Let X be
the random variable that represents the time to occurrence of an interfer-
ing near-coincident fault. Assume that X is exponentially distributed with
parameter γ. Thus, FX(t) = 1 − e−γt. Since coverage is the probability that
the permanent recovery is completed before the fault occurs, if follows that

cγ = P (Y < X)

=
∫ ∞

0

P (X > Y | Y = t)fY (t)dt (5.29)

=
∫ ∞

0

P (X > t)fY (t)dt (5.30)

=
∫ ∞

0

e−γtfY (t)dt = LY (γ).

Thus the coverage from near-coincident faults is computed as the LST of the
recovery time evaluated at the rate of occurrence of near-coincident faults.

Applying this idea to the three phases of fault handling, we have the overall
coverage

c = cdLD(γ)cl LL(γ)crLR(γ)

Thus, successful recovery requires that each of the steps of fault handling is
successful in the absence of a near-coincident fault and that a near-coincident
fault does not occur during any of the phases of fault handling [DUGA 1989].

Example 5.16

Let X denote the lifetime of a system with two units, one active and the other a
cold standby spare. The failure rate of an active unit is λ, and a cold spare does not
fail. Let Y be the indicator random variable of the fault class:

Y = 0 if the fault is not covered,
Y = 1 if the fault is covered.

Then
p

Y
(0) = 1 − c and p

Y
(1) = c.

To compute the MTTF of this system, we first obtain the conditional expectation of
X given Y by noting that if a not-covered fault occurs, the mean life of the system
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equals the mean life of the initially active unit:

E[X | Y = 0] =
1

λ
.

On the other hand, if a covered fault occurs, then the mean life of the system is the
sum of the mean lives of the two units:

E[X | Y = 1] =
2

λ
.

Now, using the theorem of total expectation, we obtain the system MTTF as

E[X] =
1 − c

λ
+

2c

λ
=

1 + c

λ
. (5.31)

Thus, when c = 0, the standby module does not contribute anything to system reli-
ability, and when c = 1, the full potential of this module is realized. For c < 0.5,
MTTF of a parallel redundant configuration with two units (static redun-
dancy) is higher than that of a two-unit standby redundant system (dynamic
redundancy).

Given that the fault was covered (Y = 1), the system lifetime, X, is the sum of
two independent exponentially distributed random variables, each with parameter
λ. Thus the conditional pdf of X given Y = 1 is the two-stage Erlang density:

fX|Y (t|1) = λ2te−λt.

On the other hand, given that a not-covered fault occurred, the system lifetime X
is simply the lifetime of the initially active component. Hence

fX|Y (t|0) = λe−λt.

Then the joint density is computed by f(t, y) = fX|Y (t|y)p
Y

(y) as

f(t, y) =

{
λ(1 − c)e−λt, t > 0, y = 0,

λ2cte−λt, t > 0, y = 1,

and the marginal density of X is computed by summing over the joint density:

fX(t) = f(t, 0) + f(t, 1) = λ2cte−λt + λ(1 − c)e−λt.

Therefore, the system reliability is given by

RX(t) = (1 − c)e−λt + ce−λt(1 + λt)

= e−λt + cλte−λt

= (1 + cλt)e−λt. (5.32)

Figure 5.6 shows RX(t) as a function of t for various values of the coverage parameter.
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Figure 5.6. Reliability of two-component standby system with imperfect coverage

The conditional Laplace–Stieltjes transform of the lifetime X is given by

LX|Y ( s | 0 ) =
λ

s + λ
and LX|Y ( s | 1 ) =

(
λ

s + λ

)2

.

Then the unconditional transform is computed using the theorem of total transform:

LX(s) = c
λ2

(s + λ)2
+ (1 − c)

λ

s + λ

=
λ

s + λ

[
c

λ

s + λ
+ (1 − c)

]
. (5.33)

Let us rewrite this as follows:

LX(s) = LY1
(s)LY2

(s), (5.34)

where

LY1
(s) =

λ

s + λ
(5.35)

and

LY2
(s) =

cλ

s + λ
+ (1 − c). (5.36)

Using the convolution theorem, we conclude that we can regard system life-
time X as the sum of two independent random variables Y1 and Y2. From the
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1

0

ZF   (z)

z

Figure 5.7. The unit-step function: CDF of a constant random variable, Z = 0

Laplace–Stieltjes transform of Y1, we see that Y1 ∼ EXP(λ). Noting that

lim
μ→∞

μ

s + μ
= 1 , (5.37)

we can rewrite

LY2
(s) = lim

μ→∞

[
c

λ

s + λ
+ (1 − c)

μ

s + μ

]
. (5.38)

Thus, Y2 may be regarded as the limit of a two-stage hyperexponentially distributed
random variable with parameters λ and μ. Further thought reveals that in the limit
μ → ∞, the distribution function of Z ∼ EXP(μ) becomes

lim
μ→∞

FZ(z) = lim
μ→∞

[1 − e−μz]

=

{
1, z > 0,
0, otherwise.

(5.39)

This function is the unit-step function shown in Figure 5.7, and the corresponding
random variable is the constant random variable Z = 0.

On the basis of the discussion above, we can visualize the system lifetime X as
composed of exponential stages as shown in Figure 5.8.

�

Example 5.17

In the last example we assumed that a unit in a standby status does not fail.
Now assume that such a unit can fail with a constant failure rate μ (presumably,
0 ≤ μ ≤ λ), thus making it a warm spare. If μ = λ), we have the parallel
redundancy—hence hot spare. Let c1 be the probability of successful recovery on
the failure of an active unit, and let c2 be the probability of successful recovery
following the failure of a spare unit. Note that Bouricius and others [BOUR 1969]
assumed that c1 = c2 = c. Keeping the same notations and assumptions as before,
we can compute the Laplace–Stieltjes transform of the system lifetime X as follows.

Let X1 and X2 denote the time to failure of the powered and unpowered units,
respectively. Also let W be the residual lifetime of the unit in operation after a
covered fault has occurred. We observe that X1 ∼ EXP (λ), X2 ∼ EXP (μ), and,
because of the memoryless property of the exponential distribution, W ∼ EXP (λ).
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EXP(λ ) EXP(λ )

1-c

Y Y

c

1 2

Figure 5.8. The stage-type distribution of system lifetime for the system in
Example 5.16

Define the random variable Y so that

Y =

⎧⎪⎪⎨
⎪⎪⎩

0, not-covered failure in the active unit,
1, covered failure in the active unit,
2, not-covered failure in the standby unit,
3, covered failure in the standby unit.

First, we compute the pmf of Y by noting that the probability of the active unit
failing first is λ/(λ + μ) while the probability of the spare unit failing first is μ/
(λ + μ) (refer to Example 5.4). Then (see the tree diagram of Figure 5.9):

p
Y

(1) =
λc1

λ + μ
, p

Y
(0) =

λ(1 − c1)

λ + μ
,

p
Y

(3) =
μ c2

λ + μ
, and p

Y
(2) =

μ(1 − c2)

λ + μ
.

Now, if a not-covered fault has occurred (i.e., Y = 0 or Y = 2) the lifetime of the
system is simply min{X1, X2}, while a covered fault (i.e., Y = 1 or Y = 3) implies

1-
2

c
1

c
1 2

cc

0 2 3

λ

1-

Y = Y = Y = Y = 1

Some
unit fails

Not-covered Not-covered

λ+μ

Covered Covered

failure

λ+μ

Spare unit
failure

Active unit

μ

Figure 5.9. Tree diagram for Example 5.17
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a system lifetime of
min{X1, X2} + W.

Note that since X1 and X2 are exponentially distributed, min{X1, X2} is exponen-
tially distributed with parameter λ + μ. The conditional Laplace–Stieltjes transform
of X for each type of not-covered fault is therefore

LX|Y (s|Y = 0) =
λ + μ

s + (λ + μ)
= LX|Y (s|Y = 2),

and for a covered fault, X is the sum of two independent exponentially distributed
random variables and hence

LX|Y (s|Y = 1) =
λ + μ

s + (λ + μ)
· λ

s + λ
= LX|Y (s|Y = 3).

The unconditional Laplace–Stieltjes transform of X is then computed using the
theorem of total transform:

LX(s) =
λ + μ

s + λ + μ
· λ(1 − c1) + μ(1 − c2)

λ + μ
+

(λ + μ)λ

(s + λ + μ)(s + λ)
· λc1 + μc2

λ + μ
(5.40)

Thus

LX(s) =
λ + μ

s + λ + μ

[
λc1 + μc2

λ + μ
· λ

s + λ
+

λ(1 − c1) + μ(1 − c2)

λ + μ

]

= LY1
(s)LY2

(s), (5.41)

where

LY1
(s) =

λ + μ

s + λ + μ

and

LY2
(s) =

λc1 + μc2

λ + μ
· λ

s + λ
+

λ(1 − c1) + μ(1 − c2)

λ + μ

= c
λ

s + λ
+ (1 − c),

where the “equivalent” coverage c is given by

c =
λc1 + μc2

λ + μ
. (5.42)

We conclude that the system lifetime X = Y1 + Y2, and it can be regarded as
stage-type random variable as shown in Figure 5.9. Now, since

E[Y1] =
1

λ + μ



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 287�

� �

�

5.4 IMPERFECT FAULT COVERAGE AND RELIABILITY 287

and

E[Y2] = −dLY2

ds
|s=0 =

c

λ
,

we conclude that the MTTF of the system is given by

E[X] =
1

λ + μ
+

c

λ
. (5.43)

Comparing the form (5.40) of the Laplace–Stieltjes transform of X with the LST
of a mixture distribution (5.18), we conclude that X is a mixture of 100(1 − c)%
of an exponential, EXP(λ + μ) (see Figure 5.10), with 100c% of a hypoexponential,
HYPO(λ + μ, λ). Therefore

fX(t) = (1 − c)(λ + μ)e−(λ+μ)t + c
λ(λ + μ)

μ
(e−λt − e−(λ+μ)t), t > 0 , (5.44)

and the system reliability is given by

RX(t) = (1 − c)e−(λ+μ)t + c
λ(λ + μ)

μ

[
1

λ
e−λt − 1

λ + μ
e−(λ+μ)t

]

= (1 − c)e−(λ+μ)t +
c

μ
[(λ + μ)e−λt − λe−(λ+μ)t], t ≥ 0, (5.45)

where c is given by (5.42). �

Cox [COX 1955] has analyzed the more general stage-type distribution
shown in Figure 5.11. The Laplace–Stieltjes transform of such a stage-type
random variable X is given by

LX(s) = γ1 +
r∑

i=1

β1β2 · · ·βiγi+1

i∏
j=1

μj

s + μj

, (5.46)

where γi + βi = 1 for 1 ≤ i ≤ r and γr+1 = 1.

EXP(λ+μ) EXP(λ)

1−c

2cμ+c1
λ + μc =

λ

c

Figure 5.10. Lifetime distribution of a two-component warm standby system with
imperfect coverage
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21

1r+1i+

EXP(    ) EXP(    )
β

EXP(    )
β

γ γ γ γ

i i+1

r

r
μ μi r....

β1 β

γ

3

EXP(    )μ ....
β

1 2 3 i γ

μ
1β

= 1γ

2

Figure 5.11. Coxian stage-type distribution

Example 5.18

Consider a warm standby redundant system with n units where one unit is initially
active and (n − 1) units are in a standby status. Assume that the failure rate of an
active unit is λ while that of a standby unit is μ. For simplicity, we assume that
the coverage factor is the same for active and spare failures and is denoted by c. By
analogy with Example 5.17, we can say that the lifetime distribution of this system
will be stage-type, as shown in Figure 5.12. Using the notation of Figure 5.11, the
distribution of Figure 5.12 corresponds to the following parameters:

β1 = 1, γ1 = 0, γn+1 = 1,

βi = c, γi = 1 − c, 2 ≤ i ≤ n,

μi = λ + (n − i)μ, 1 ≤ i ≤ n.

Using equation (5.46), we obtain the Laplace–Stieltjes transform of the system
lifetime as

LX(s) =

n−1∑
i=1

ci−1(1 − c)
i∏

j=1

λ + (n − j)μ

s + λ + (n − j)μ
(5.47)

1- c 1- c 1- c

cc c 1EXP
(λ) μn

EXP
(  +(  -2)   )λ μ

EXP
(  +(  -1)   )λ n

Figure 5.12. Lifetime distribution of an n-component standby redundant system
with imperfect coverage
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+cn−1
n∏

j=1

λ + (n − j)μ

s + λ + (n − j)μ
.

The system MTTF can be easily computed from expression (5.47) as

E[X] =

n−1∑
i=1

ci−1(1 − c)
i∑

j=1

1

λ + (n − j)μ
+ cn−1

n∑
j=1

1

λ + (n − j)μ
. (5.48)

�

Example 5.19

Now we consider a hybrid k-out-of-n system with imperfect coverage. Assume that
the failure rate of an active unit is λ and the failure rate of a standby spare is μ. We
continue with the assumption that the coverage factor is the same for an active-unit
failure as that for a standby-unit failure. Initially, there are n active units and
m spares. The lifetime of such a system has the stage-type distribution shown in
Figure 5.13. Therefore, in the notation of the Coxian distribution of Figure 5.11, we
have

β1 = 1, γ1 = 0,
βi = c, γi = 1 − c, 2 ≤ i ≤ m + 1,
βi = 1, γi = 0, m + 2 ≤ i ≤ (n − k) + m + 1,

γn−k+m+2 = 1,
μj = nλ + (m − j + 1)μ, 1 ≤ j ≤ m,

μj = nλ + (m − j + 1)μ, m + 1 ≤ j ≤ n − k + m + 1.

Then, using formula (5.46), we have

LX(s) =
m∑

i=1

ci−1(1 − c)
∏
j=1

nλ + (m − j + 1)μ

s + nλ + (m − j + 1)μ

+cm
m∏

j=1

nλ + jμ

s + (nλ + jμ)

n−k+1∏
j=1

(n − j + 1)λ

s + (n − j + 1)λ
. (5.49)

- c- c1 1 1- c

1 ....
c cEXP c

μ)λ
EXPEXP EXP....

1
λEXP μ)(n    + (m- )

(k(n   + λ λ)λ)(nμ)(n  +m

Figure 5.13. Lifetime distribution of hybrid k-out-of-n system with imperfect
coverage
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After a partial fraction expansion and inversion of the transform above, we can
get the required expression for reliability of a hybrid k-out-of-n system with imper-
fect coverage. We omit the details here; the interested reader is referred to Ng’s
thesis [NG 1976]. We can easily compute the mean life from the expression of the
Laplace–Stieltjes transform:

E[X] =

m∑
i=1

ci−1(1 − c)

i∑
j=1

1

nλ + (m − j + 1)μ

+cm

[
m∑

j=1

1

nλ + jμ
+

n−k+1∑
j=1

1

(n − j + 1)λ

]

=
m∑

i=1

ci−1(1 − c)
m∑

j=m−i+1

1

nλ + jμ

+cm

⎡
⎣ m∑

j=1

1

nλ + jμ
+

n∑
j=k

1

jλ

⎤
⎦ . (5.50)

�

The method of stages works quite well for the reliability analysis of nonre-
pairable systems. When we deal with repairable systems, the number of stages
will become infinite, and this method becomes cumbersome to use. We will
analyze such systems in Chapter 8 using the theory of Markov chains.

Problems

1. We are given a system with three components. Whenever a component is ener-
gized, it has an exponential failure law with parameter λ. When a component is
deenergized, it has an exponential failure law with parameter μ(< λ). The system
will function correctly if two components are in proper working order. Consider
two ways of using the spare unit: one way is to keep all three units energized,
another way is to keep the third unit as a deenergized spare, and, when one of
the operating units fails, switch the spare in. But the switching equipment need
not be perfect; suppose that it has reliability 0.9. Find the reliability expressions
for the two schemes and find conditions under which one scheme will be better
than the other.

2. Starting from formula (5.47), use the moment generating property of the
Laplace–Stieltjes transform to show (5.48). Also obtain a formula for the
variance of system lifetime for the system of Example 5.18.

5.5 RANDOM SUMS

We have considered sums of N mutually independent random variables when
N is a fixed constant. Here we are interested in the case where N itself is
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random variable that is independent of Xk. Given a list X1,X2, . . ., of mutu-
ally independent identically distributed random variables with distribution
function F (x), mean E[X], and variance Var[X], consider the random sum:

T = X1 + X2 + · · · + XN . (5.51)

Here the pmf of the discrete random variable p
N

(n) is assumed to be given.
For a fixed value N = n, the conditional expectation of T is easily obtained:

E[T |N = n] =
n∑

i=1

E[Xi]

= nE [X]. (5.52)

Then, using the theorem of total expectation, we get

E[T ] =
∑

n

nE [X]p
N

(n)

= E[X]
∑

n

np
N

(n)

= E[X]E[N ]. (5.53)

Equation (5.53) is called the Wald’s equation (see Cox [COX 1962]). In order
to obtain the Var[T ], we first compute E[T 2]. Note that

E[T 2|N = n] = Var[T |N = n] + (E[T |N = n])2 (5.54)

but

Var[T |N = n] =
n∑

i=1

Var[Xi]

= nVar[X] (by independence of the Xi’s). (5.55)

Substituting (5.52) and (5.55) in (5.54) yields

E[T 2|N = n] = nVar[X] + n2(E[X])2.

Now, using the theorem of total moments, we have

E[T 2] =
∑

n

[nVar[X] + n2(E[X])2]p
N

(n)

= Var[X]E[N ] + E[N2](E[X])2.
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Finally, we obtain

Var[T ] = E[T 2] − (E[T ])2

= Var[X]E[N ] + E[N2](E[X])2 − (E[X])2(E[N ])2

= Var[X]E[N ] + (E[X])2Var[N ]. (5.56)

Assuming that the {Xi} are continuous random variables with
Laplace–Stieltjes transform LX(s), we obtain the conditional LST of T as

LT |N (s|n) = [LX(s)]n.

Then, using the theorem of total LST, we have

LT (s) =
∑

n

LT |N (s|n)p
N

(n)

=
∑

n

[LX(s)]np
N

(n)

= GN (LX(s)). (5.57)

As a special case, assume that N has a geometric distribution with parameter
p, so that

p
N

(n) = (1 − p)n−1p

and

LT (s) =
∞∑

n=1

[LX(s)]n(1 − p)n−1p =
pLX(s)

1 − (1 − p)LX(s)
. (5.58)

Next assume that the {Xi} terms are discrete with the common generating
function GX(z). Then, the conditional PGF of T is

GT |N (z|n) = [GX(z)]n,

and using the theorem of total generating functions, we have the unconditional
PGF of T :

GT (z) =
∑

n

[GX(z)]np
N

(n) = GN [GX(z)]. (5.59)

Now, if N is geometrically distributed with parameter p, then this formula
reduces to

GT (z) =
p GX(z)

1 − (1 − p)GX(z)
. (5.60)
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Example 5.20

Consider a memory module with a time to failure X. Since the reliability R(t)
of the memory was found to be inadequate, addition of hardware to incorporate
error-correcting capability was desired. Assume that the probability of an undetected
and/or uncorrected error (not-covered error, for short) is p (and hence the condi-
tional probability that a given error is covered by the coding scheme is 1 − p). Now let
N be the number of errors that are corrected before a not-covered error occurs, then
N has a modified geometric distribution with parameter p and E[N ] = (1 − p)/p.
Let T denote the time to occurrence of a not-covered error. Denoting Xi to be the
time between the occurrence of the (i − 1)st and ith error, T = X0 + X1 + · · · + XN

where X0 defined to be 0. Then, using formula (5.53), we get

MTTFwith code =
MTTFwithout code × (1 − p)

p

=
MTTFwithout code × (1 − Probability of a not-covered error)

Probability of a not-covered error
.

If we assume that X is exponentially distributed with parameter λ, then

LX(s) =
λ

s + λ

and, assuming that X0, X1, . . ., are mutually independent, and using formula (5.57),
we have

LT (s) =
p

1 − (1 − p) λ
s+λ

= p +
pλ(1 − p)

s + pλ
. (5.61)

This implies that T has mixed distribution as in equation (3.2).

�

Example 5.21

To employ wireless media for data transmission, we have to deal with limited band-
width and time-varying high values of bit error rate (BER) [NANN 1998]. Consider
a polling access method capable of efficient bandwidth utilization and error control
scheme by using the Go Back N (GBN) ARQ (Automatic Repeat Request) technique
for data transmission in wireless communication networks [BERT 1992]. Messages
are composed of fixed-length data units called “packets”. The number of packets,
N , contained in a message arriving at each mobile terminal is a general distributed
random variable with mean E[N ] and variance Var[N ]. In addition, we call the time
interval between two consecutive packet transmission initiation instants a “slot”. In
the GBN ARQ case, a slot comprises only the transmission time of a packet. An
incorrectly received packet can be retransmitted several times until it is correctly
received or the transmission time is greater than m slots. The time Ti, the number
of slots necessary to accomplish ith error-free packet transmission, is also a random
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variable with pmf as follows:

P (Ti = n) =

{
p(1 − p)

n−1
k , n = 1 , . . . , (m − 1)k + 1

0, otherwise.

where k is the number of slots the terminal has to wait for the ACK (acknowledg-
ment) of the transmitted packet, including its transmission time. Then

E[Ti] =
∑

n

n · P (Ti = n) =

(m−1)k+1∑
n=1

n · p(1 − p)
n−1

k

E[T 2
i ] =

(m−1)k+1∑
n=1

n2 · p(1 − p)
n−1

k

Var[Ti] = E[T 2
i ] − E[Ti]

2

So, the time elapsed between the instants at which a terminal finishes its trans-
mission and the channel become available to the next terminal is the random
T = T1 + T2 + · · · + TN . Assuming that T1, T2, · · ·, TN are mutually independent,
then using formula (5.53), we obtain

E[T ] = E[Ti]E[N ]

Var[T ] = Var[Ti]E[N ] + (E[Ti])
2Var[N ]

The common generating function of Ti is

GX(z) =
∞∑

n=0

P (Ti = n)zn =

(m−1)k+1∑
n=1

p(1 − p)
n−1

k zn

=
p[1 − (1 − p)[(m−1)k+2]/kz(m−1)k+2]

(1 − p)
1
k − (1 − p)

2
k z

and using formula (5.60) above, we get

GT (z) =
p2[1 − (1 − p)[(m−1)k+2]/kz(m−1)k+2]

(1 − p)
1
k

[
1 − (1 − p)

1
k z
]
− p(1 − p)[1 − (1 − p)[(m−1)k+2]/kz(m−1)k+2]

�

Example 5.22

Consider the following program segment consisting of a do while loop:

do S; while ( B );

Let Xi denote the execution time for the ith iteration of statement group S. Assume
that the sequence of tests of the Boolean expression B defines a sequence of Bernoulli
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trials with parameter p. Clearly, the number N of iterations of the loop is a geometric
random variable with parameter p so that E[N ] = 1/p. Letting T denote the total
execution time of the loop, and using equation (5.53), the average of execution time
T is easily determined to be:

E[T ] =
E[X]

p
. (5.62)

The variance of the execution time T is determined using (5.56), noting that
Var[N ] = q/p2:

Var[T ] =
Var[X]

p
+ (E[X])2

q

p2
. (5.63)

Next assume that the Xi’s are exponentially distributed with parameter λ so that

LX(s) =
λ

s + λ
,

and, using formula (5.61), we get

LT (s) =
pλ

s + pλ
. (5.64)

Thus the total execution time of the do while loop is also exponentially distributed
with parameter pλ. In this case, E[T ] = 1/(pλ) which agrees with (5.62) and from
(5.63)

Var[T ] =
1

λ2p
+

1

λ2

q

p2
=

1

p2λ2

as expected.

�

Example 5.23

In measuring the execution time of the do while loop above, we use a real time
clock with a resolution of 1 μs. In this case, the execution times will be discrete
random variables. Assume that the {Xi} terms are geometrically distributed with
parameter p

1
. Then

GX(z) =
zp1

1 − z(1 − p
1
)
,

and using formula (5.60) above, we get

GT (z) =
pzp1

1 − z(1 − p
1
) − (1 − p)zp1

=
zpp1

1 − z(1 − pp1)
.

Thus T is a geometrically distributed random variable with parameter pp1.

�
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We are now in a position to obtain the distribution of the execution time of
a do while loop and in a similar fashion, that of a while loop (see problem 1
at the end of this section). Our earlier methods allow us to compute the distri-
bution of the execution time of a compound statement, that of a for loop (see
the discussion of sums of independent random variables in Chapter 3), and
that of an if and a switch statement (see the discussion of mixture distribu-
tions in this chapter). Thus we are now in a position to analyze a structured
program—a program that uses only combinations of the above-listed control
structures. We have summarized these results in Appendix E. We can also
deal with the Pascal concurrent control statement cobegin. Programs that
use unrestricted gotos can be analyzed by the methods of Chapter 7.

Example 5.24

Consider the following program:

{
COMP;

while ( B ) {
switch (j) {
case 1 : I/O1; break;

case 2 : I/O2; break;

.

.

.

case m : I/Om; break;

}
COMP;

}
}

Let the random variable C denote the time to execute the statement group
COMP and let Ij (1 ≤ j ≤ m) denote the time to execute the statement group
I/Oj . Assume that the condition test on B is a sequence of independent Bernoulli
trials with the probability of failure p

0
, and let p′

j
be the probability of executing

the jth case, given that the switch statement is executed. Note that
∑m

j=1 p′
j

= 1.
Let the random variable I denote the execution time of the switch statement. Note
that I is a mixture of random variables Ij (1 ≤ j ≤ m). Given the Laplace–Stieltjes
transforms of C and Ij , we proceed to compute the LST of the overall execution
time T of the program shown above.

Using the table in Appendix E, we have

LI(s) =

m∑
j=1

p′
j
LIj

(s),

Lwhilebody(s) = LI(s) · LC(s),



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 297�

� �

�

5.5 RANDOM SUMS 297

Lwhileloop(s) =
∞∑

n=0

(1 − p
0
)np

0
[Lwhilebody(s)]

n

=
p
0

1 − (1 − p
0
)Lwhilebody(s)

,

LT (s) =
p
0
LC(s)

1 − (1 − p
0
)Lwhilebody(s)

=
p
0
LC(s)

1 − (1 − p
0
)LC(s)LI(s)

=
U(s)

V (s)
. (5.65)

For a continuous random variable X it is known that LX(0) = 1, L′
X(0) = −E[X],

and L
′′
X(0) = E[X2]; hence

V (0) = 1 − (1 − p
0
)LC(0)LI(0) = p

0
,

U(0) = p
0
LC(0) = p

0
,

V ′(0) = −(1 − p
0
)[LC(0)L′

I(0) + L′
C(0)LI(0)] = (1 − p

0
)[E[C] + E[I]]

U ′(0) = p
0
L′

C(0) = −p
0
E[C],

V ′′(0) = −(1 − p
0
)[L′′

C(0)LI(0) + 2L′
C(0)L′

I(0) + LC(0)L′′
I (0)]

= −(1 − p
0
)(E[C2] + 2E[C]E[I] + E[I2]),

U ′′(0) = p
0
L′′

C(0) = p
0
E[C2].

Now we can compute the first two moments of T :

E[T ] = −L′
T (0)

=
−V (0)U ′(0) + U(0)V ′(0)

V 2(0)

=
p
0
(p

0
E[C]) + (1 − p

0
)p

0
(E[C] + E[I])

p2
0

=
E[C]

p
0

+
(1 − p

0
)E[I]

p
0

. (5.66)

The terms on the right-hand side of (5.66) are easily interpreted; the first term
is the expected value of the total time to execute the statement COMP, since 1/p

0
is the average number of times COMP is executed, while E[C] is the average time
per execution. The second term is the expected total time of all I/O statements,
since this term can be written as

m∑
j=1

p
j

p
0

E[Ij ],

where p
j

is defined to be (1 − p
0
)p′

j . Note that p
j
/p

0
is the average number of

executions of statement I/Oj , and E[Ij ] is the average time per execution.
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Next we proceed to compute E[T 2]:

E[T 2] = L′′
T (0)

=
V 2(0)U ′′(0) − U(0)V (0)V ′′(0) − 2V (0)V ′(0)U ′(0) + 2U(0)[V ′(0)]2

V 3(0)

=
E[C2]

p
0

+
2(1 − p

0
)

p
0

(E[C])2 +
4(1 − p

0
)

p2
0

E[C]E[I] (5.67)

+
1 − p

0

p
0

E[I2] +
2(1 − p0)

p2
0

(E[I])2.

Now, from (5.66) and (5.67), we compute the variance:

Var[T ] =
Var[C]

p
0

+
1 − p

0

p
0

Var[I] +
1 − p

0

p2
0

(E[C] + E[I])2. (5.68)

We will use these formulas in Chapter 9 in analyzing a queuing network in which
individual programs will behave as discussed in this example.

�

We should caution the reader that several unrealistic assumptions
have been made here. The assumption of independence, for example, is
questionable. More importantly, we have associated a fixed probability with
each conditional branch, independent of the current state of the program.
For more involved analyses that attempt to remove such assumptions,
see Hofri’s treatise [HOFR 1987]. Our treatment of program analysis in
this section was control-structure-based. Alternatively, we could perform
a data-structure-oriented analysis as in the analysis of program MAX
(Chapter 2). Further examples of this technique will be presented in
Chapter 7. In practice, these two techniques need to be used in conjunction
with each other.

Problems

1. Carry out an analysis of the execution time of the while loop:

while ( B ) S;

following the analysis of the do while loop given in Example 5.22.

2. A CPU burst of a task is exponentially distributed with mean 1/μ. At the end
of a burst, the task requires another burst with probability p and finishes exe-
cution with probability 1 − p. Thus the number of CPU bursts required for task
completion is a random variable with the image {1, 2, . . .}. Find the distribution
function of the total service time of a task. Also compute its mean and variance.
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3. The number of messages, N , arriving to a communications channel per unit
time is Poisson distributed with parameter λ. The number of characters, Xi,
in the ith message is geometrically distributed with parameter θ. Determine the
distribution of the total number of characters, Y , that arrive per unit time. (Hint:
Y is a random sum.) Determine GY (z), E[Y ], and Var[Y ].

4. Consider the following concurrent program:

CPU 1
if B then

cobegin
CPU 2; I/O2

coend
else

I/O1
end.

Derive expressions for the completion time distribution and the mean completion
time for the whole graph. Assume that the execution time of the statement group
CPUi (i = 1, 2) is EXP(μi), the execution time of the statement group I/Oj
(j = 1, 2) is EXP(λj), and P (B = true) = p. Assume all task executing times are
mutually independent. For enhancing such models to allow for task failures, see
Sahner et al. [SAHN 1996].

REFERENCES

[BARL 1975] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and
Life Testing: Probability Models, Holt, Rinehart & Winston, New York, 1975.

[BERT 1992] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Vol. 1,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[BOUR 1969] W. G. Bouricius, W. C. Carter, and P. R. Schneider, “Reliability
modeling techniques for self-repairing computer systems,” Proc. 24th Natl. Conf.
of the ACM, Aug. 1969, pp. 295–309.

[CLAR 1970] A. B. Clarke and R. L. Disney, Probability and Random Processes for
Engineers and Scientists, Wiley, New York, 1970.

[COX 1955] D. R. Cox, “A use of complex probabilities in theory of stochastic
processes,” Proc. Cambridge Phil. Soc., Vol. 51, 1955, pp. 313–319.

[COX 1962] D. R. Cox, Renewal Theory , Spottiswoode Ballantyne, London, 1962.

[DUGA 1989] J. B. Dugan and K. S. Trivedi, “Coverage modeling for dependability
analysis of fault-tolerant systems,” IEEE Trans. Comput., 38(6), pp. 775–787,
1989.

[GAVE 1973] D. P. Gaver and G. L. Thompson, Programming and Probability Models
in Operations Research, Brooks/Cole, Monterey, CA, 1973.

[HESS 2000] G. Hess, personal communication.



Trim Size: 6.125in x 9.25in 60Trivedi c05.tex V3 - 05/23/2016 11:59am Page 300�

� �

�

300 CONDITIONAL DISTRIBUTION AND EXPECTATION

[HOFR 1987] M. Hofri, Probabilistic Analysis of Algorithms: On Computing Method-
ologies for Computer Algorithms Performance Evaluation, Springer-Verlag, New
York, 1987.

[KNUT 1997] D. E. Knuth, The Art of Computer Programming , 3rd ed., Vol. I:
Fundamental Algorithms, Addison-Wesley, Reading, MA, 1997.

[KNUT 1998] D. E. Knuth, The Art of Computer Programming , 2nd ed., Vol. III:
Sorting and Searching, Addison-Wesley, Reading, MA, 1998.

[LITT 1973] B. Littlewood and J. L. Verrall, “A Bayesian reliability growth model
for computer software”, J. Royal Statist. Soc., Appl. Statist., 22(3), 1973, pp.
332–346.

[MEND 1979] H. Mendelson, J. S. Pliskin, and U. Yechiali, “Optimal storage allo-
cation for serial files,” Commun. ACM , 22(2), 1979, pp. 124–130.

[MUPP 1996] J. Muppala, M. Malhotra, and K. S. Trivedi, “Markov dependability
models of complex systems: Analysis techniques”, in S. Ozekici (ed.), Reliabil-
ity and Maintenance of Complex Systems, Springer-Verlag, Berlin, 1996, pp.
442–486.

[NANN 1998] S. Nannicini and T. Pecorella, “Performance evaluation of polling
protocols for data transmission on wireless communication networks” IEEE Intl.
Conf. on Universal Personal Communications, Vol. 2, 1998, pp. 1241–1245.

[NG 1976] Y.-W. Ng, Reliability Modeling and Analysis for Fault-Tolerant Comput-
ers, Ph.D. dissertation, Computer Science Department, Univ. California at Los
Angeles.

[RAND 1975] B. Randell, “System structure for software fault tolerance,” IEEE
Trans. Software Eng., SE-1, pp. 202–232, 1975.

[SAHN 1996] R. A. Sahner, K. S. Trivedi, and A. Puliafito, Performance and Reli-
ability Analysis of Computer System: An Example-Based Approach Using the
SHARPE Software Package, Kluwer Academic Publishers, Boston, 1996.



Trim Size: 6.125in x 9.25in 60Trivedi c06.tex V3 - 05/23/2016 12:01pm Page 301�

� �

�

Chapter 6

Stochastic Processes

6.1 INTRODUCTION

In the previous chapters we have seen the need to consider a collection or a
family of random variables instead of a single random variable. A family of
random variables that is indexed by a parameter such as time is known as a
stochastic process (or chance or random process).

Definition (Stochastic Process). A stochastic process is a family of
random variables {X(t) | t ∈ T}, defined on a given probability space, indexed
by the parameter t, where t varies over an index set T .

The values assumed by the random variable X(t) are called states, and
the set of all possible values forms the state space of the process. The state
space will be denoted by I.

Recall that a random variable is a function defined on the sample space S
of the underlying experiment. Thus the above family of random variables is a
family of functions {X(t, s)|s ∈ S, t ∈ T}. For a fixed t = t1,Xt1

(s) = X(t1, s)
is a random variable [denoted by X(t1)] as s varies over the sample space S. At
some other fixed instant of time t2, we have another random variable Xt2(s) =
X(t2, s). For a fixed sample point s1 ∈ S, the expression Xs1

(t) = X(t, s1) is
a single function of time t, called a sample function or a realization of the
process. When both s and t are varied, we have the family of random variables
constituting a stochastic process.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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t

t

X(t, 2)

X(t, 1)

Figure 6.1. Noise voltages across two resistors

Example 6.1 (STAR 1979)

Consider the experiment of randomly choosing a resistor s from a set S of thermally
agitated resistors and measuring the noise voltage X(t, s) across the resistor at time
t. Sample functions for two different resistors are shown in Figure 6.1.

At a fixed time t = t1, suppose we measure the voltages across all the resis-
tors in the set S, count the number of resistors with a voltage level less than or
equal to x1 and divide this count by the total number of resistors in S. Using
the frequency interpretation of probability, this will give the distribution function,
FX(t1)(x1) = P (X(t1) ≤ x1), of the random variable X(t1). This calculation can be
repeated at other instants of time t2, t3, . . ., to obtain the distribution functions
of X(t2), X(t3), . . .. The joint distribution function of X(t1) and X(t2) can sim-
ilarly be obtained by computing the relative frequency of the event [X(t1) ≤ x1

and X(t2) ≤ x2]. Continuing in this fashion, we can compute the joint distribution
function of X(t1), X(t2), . . . , X(tn).

�

If the state space of a stochastic process is discrete, then it is called a
discrete-state process, often referred to as a “chain”. In this case, the
state space is often assumed to be {0, 1, 2, . . .}. Alternatively, if the state
space is continuous, then we have a continuous-state process. Similarly,
if the index set T is discrete, then we have a discrete-time (parameter)
process; otherwise we have a continuous-time (parameter) process. A
discrete-time process is also called a stochastic sequence and is denoted
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TABLE 6.1. A classification of stochastic processes

Index set T

Discrete Continuous

Discrete Discrete-time Continuous-time

State Space stochastic chain stochastic chain

I Continuous Discrete-time Continuous-time

continuous-state continuous-state

process process

by {Xn | n ∈ T}. This gives us four different types of stochastic processes, as
shown in Table 6.1.

The theory of queues (or waiting lines) provides many examples of stochas-
tic processes. Before introducing these processes, we present a notation to
describe the queues. A queue may be generated when customers (jobs) arrive
at a station (file server) to receive service (see Figure 6.2). Assume that suc-
cessive interarrival times Y1, Y2, . . ., between jobs are independent identically
distributed random variables having a distribution FY . Similarly, the service
times S1, S2, . . ., are assumed to be independent identically distributed ran-
dom variables having a distribution FS . Let m denote the number of servers
in the station. We use the notation FY /FS/m to describe the queuing system.
To denote the specific types of interarrival time and service time distributions,
we use the following symbols:

M (for memoryless) for the exponential distribution
D for a deterministic or constant interarrival or service time
Ek for a k-stage Erlang distribution
Hk for a k-stage hyperexponential distribution
G for a general distribution
GI for general independent interarrival times

interarrival time
Arrivals:

Queue (waiting line) Station

Service time
distribution

or more
with 1

serversFdistribution Y

FS

Figure 6.2. A queuing system
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Thus M/G/1 denotes a single-server queue with exponential interarrival times
and an arbitrary service time distribution. The most frequent example of a
queue that we will use is M/M/1. Besides the nature of the interarrival time
and service time distributions, we also need to specify a scheduling disci-
pline that decides how the server is to be allocated to the jobs waiting for
service. Unless otherwise specified, we will assume that jobs are selected for
service in the order of their arrivals; that is, we will assume FCFS (first-come,
first-served) scheduling discipline. Now we will describe various stochastic
processes associated with a queue.

Example 6.2

Consider a compute server with jobs arriving at random points in time, queuing for
service, and departing from the system after service completion.

Let Nk be the number of jobs in the system at the time of the departure of the
kth customer (after service completion). The stochastic process {Nk | k = 1, 2, . . .}
is a discrete-time, discrete-state process with the state space I = {0, 1, 2, . . .}
and the index set T = {1, 2, 3, . . .}. A realization of this process is shown in
Figure 6.3.

Next let X(t) be the number of jobs in the system at time t. Then {X(t) | t ∈ T}
is a continuous-time, discrete-state process with I = {0, 1, 2, . . .} and T = {t | 0 ≤
t < ∞}. A realization of this process is shown in Figure 6.4.

0 5 10 15 20 25
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0.5

1

1.5

2

2.5

3
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4.5

5

k

N
k

Figure 6.3. Typical sample function of a discrete-time, discrete-state process



Trim Size: 6.125in x 9.25in 60Trivedi c06.tex V3 - 05/23/2016 12:01pm Page 305�

� �

�

6.1 INTRODUCTION 305
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)

Figure 6.4. Typical sample function of a continuous-time, discrete-state process

Let Wk be the time that the kth customer has to wait in the system before receiv-
ing service. Then {Wk | k ∈ T}, with I = {x | 0 ≤ x < ∞} and T = {1, 2, 3, . . .}, is
a discrete-time, continuous-state process. A realization of this process is shown in
Figure 6.5. Finally, let Y (t) denote the cumulative service requirement of all jobs in
the system at time t. Then {Y (t) | 0 ≤ t < ∞} is a continuous-time, continuous-state
process with I = [0,∞). A realization of this process is shown in Figure 6.6.

�

Problems

1. Write and run a program to simulate an M/E2/1 queue and obtain realizations of
the four stochastic processes defined in Example 6.2. Plot these realizations. You
may use a simulation language such as SIMULA or GPSS or you may use one
of the standard high-level languages. You will have to generate random deviates
of the interarrival time distribution (assume arrival rate λ = 1 per second) and
the service time distribution (assume mean service time 0.8 s) using methods of
Chapter 3.

2. Study the process {Nk|k = 1, 2, . . .} in detail as follows. By varying the seeds
for generating random numbers, you get different realizations. For a fixed k,
different observed values of Nk for these distinct realizations can be used to
estimate the mean and variance of Nk. Using a sample size of 30, estimate
E[Nk], Var[Nk] for k = 1, 5, 10, 100, 200, 1000. What can you conclude from this
experiment?
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Figure 6.5. Typical sample function of a discrete-time, continuous-state process
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Figure 6.6. Typical sample function of a continuous-time, continuous-state process
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6.2 CLASSIFICATION OF STOCHASTIC PROCESSES

For a fixed time t = t1, the term X(t1) is a simple random variable that
describes the state of the process at time t1. For a fixed number x1, the
probability of the event [X(t1) ≤ x1] gives the CDF of the random variable
X(t1), denoted by

F (x1; t1) = FX(t1)
(x1) = P [X(t1) ≤ x1].

F (x1; t1) is known as the first-order distribution of the process {X(t) | t ≥ 0}.
Given two time instants t1 and t2,X(t1) and X(t2) are two random vari-
ables on the same probability space. Their joint distribution is known as the
second-order distribution of the process and is given by

F (x1, x2; t1, t2) = P [X(t1) ≤ x1,X(t2) ≤ x2].

In general, we define the nth-order joint distribution of the stochastic process
X(t), t ∈ T by

F (x; t) = P [X(t1) ≤ x1, . . . , X(tn) ≤ xn] (6.1)

for all x = (x1, . . . , xn) ∈ �n and t = (t1, t2, . . . , tn) ∈ Tn such that t1 < t2 <
· · · < tn. Such a complete description of a process is no small task. Many
processes of practical interest, however, permit a much simpler description.

For instance, the nth-order joint distribution function is often found to
be invariant under shifts of the time origin. Such a process is said to be a
strict-sense stationary stochastic process.

Definition (Strictly Stationary Process). A stochastic process
{X(t) | t ∈ T} is said to be stationary in the strict sense if for n ≥ 1, its
nth-order joint CDF satisfies the condition:

F (x; t) = F (x; t + τ)

for all vectors x ∈ �n and t ∈ Tn, and all scalars τ such that ti + τ ∈ T .
The notation t + τ implies that the scalar τ is added to all components of
vector t.

We let μ(t) = E[X(t)] denote the time-dependent mean of the stochastic
process. μ(t) is often called the ensemble average of the stochastic process.
Applying the definition of strictly stationary process to the first-order CDF,
we get F (x; t) = F (x; t + τ) or FX(t) = FX(t+τ) for all τ . It follows that a
strict-sense stationary stochastic process has a time-independent mean; that
is, μ(t) = μ for all t ∈ T .

By restricting the nature of dependence among the random variables
{X(t)}, a simpler form of the nth-order joint CDF can be obtained.
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The simplest form of the joint distribution corresponds to a family of
independent random variables. Then the joint distribution is given by the
product of individual distributions.

Definition (Independent Process). A stochastic process {X(t) | t ∈
T} is said to be an independent process provided its nth-order joint dis-
tribution satisfies the condition:

F (x; t) =
n∏

i=1

F (xi; ti)

=
n∏

i=1

P [X(ti) ≤ xi]. (6.2)

As a special case we have the following definition.

Definition (Renewal Process). A renewal process is defined as a
discrete-time independent process {Xn | n = 1, 2, . . .} where X1,X2, . . ., are
independent, identically distributed, nonnegative random variables.

As an example of such a process, consider a system in which the repair
(or replacement) after a failure is performed, requiring negligible time. Now
the times between successive failures might well be independent, identically
distributed random variables {Xn | n = 1, 2, . . .} of a renewal process.

Though the assumption of an independent process considerably simplifies
analysis, such an assumption is often unwarranted, and we are forced to con-
sider some sort of dependence among these random variables. The simplest
and the most important type of dependence is the first-order dependence or
Markov dependence.

Definition (Markov Process). A stochastic process {X(t) | t ∈ T} is
called a Markov process if for any t0 < t1 < t2 < · · · < tn < t, the conditional
distribution of X(t) for given values of X(t0),X(t1), . . . , X(tn) depends only
on X(tn):

P [X(t) ≤ x | X(tn) = xn,X(tn−1) = xn−1, . . . , X(t0) = x0]

= P [X(t) ≤ x | X(tn) = xn]. (6.3)

Although this definition applies to Markov processes with continuous
state space, we will be mostly concerned with discrete-state Markov
processes—specifically, Markov chains. We will study both discrete-time and
continuous-time Markov chains.

In many problems of interest, the conditional distribution function (6.3)
has the property of invariance with respect to the time origin tn:

P [X(t) ≤ x | X(tn) = xn] = P [X(t − tn) ≤ x | X(0) = xn].
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In this case the Markov chain is said to be (time-) homogeneous. Note that
the stationarity of the conditional distribution function (6.3) does not imply
the stationarity of the joint distribution function (6.1). Thus, a homogeneous
Markov process need not be a stationary stochastic process.

For a homogeneous Markov chain, the past history of the process is com-
pletely summarized in the current state; therefore, the distribution for the
time Y the process spends in a given state must be memoryless:

P [Y ≤ r + t | Y ≥ t] = P [Y ≤ r]. (6.4)

But this implies that the time that a homogeneous, continuous-time Markov
chain spends in a given state has an exponential distribution. From (6.4) we
have

P [Y ≤ r] =
P [t ≤ Y ≤ t + r]

P [Y ≥ t]
;

that is
FY (r) =

FY (t + r) − FY (t)
1 − FY (t)

.

If we divide by r and take the limit as r approaches zero, we get

F ′
Y (0) =

F ′
Y (t)

1 − FY (t)
,

a differential equation with a unique solution:

FY (t) = 1 − e−F ′
Y (0)t

Similarly, the time that a homogeneous, discrete-time Markov chain spends
in a given state has a geometric distribution.

In modeling practical situations, the restriction on times between state
transitions may not hold. A semi-Markov process is a generalization of a
Markov process where the distribution of time the process spends in a given
state is allowed to be general. Further generalization is provided by a Markov
regenerative process [KULK 1995].

As a generalization in another direction, consider the number of renewals
(repairs or replacements) N(t) required in the interval (0, t], always a
quantity of prime interest in renewal processes. The continuous-time process
{N(t) | t ≥ 0} is called a renewal counting process. Note that, if we
restrict the times between renewals to have an exponential distribution,
then the corresponding renewal counting process is a special case of a
continuous-time Markov chain, known as the Poisson process.

A measure of dependence among the random variables of a stochastic
process is provided by its autocorrelation function R, defined by

R(t1, t2) = E[X(t1) · X(t2)]
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Note that:
R(t1, t1) = E[X2(t1)]

and
Cov[X(t1),X(t2)] = R(t1, t2) − μ(t1)μ(t2).

The autocorrelation function R(t1, t2) of a stationary process depends only on
the time difference. (See problem 4 at the end of this section.) Thus, R(t1, t2)
is a one-dimensional function in this case and is written as R(τ).

Definition (Wide-Sense Stationary Process). A stochastic process
is considered wide-sense stationary if

1. μ(t) = E[X(t)] is independent of t,

2. R(t1, t2) = R(0, t2 − t1) = R(τ), t2 ≥ t1 ≥ 0,

3. R(0) = E[X2(t)] < ∞ (finite second moment).

Note that a strict-sense stationary process with finite second moments is also
wide-sense stationary, but the converse does not hold.

Example 6.3 [STAR 1979]

Consider the so-called random-telegraph process. This is a discrete-state,
continuous-time process {X(t) | −∞ < t < ∞} with the state space {−1, 1}.
Assume that these two values are equally likely:

P [X(t) = −1] = 1
2

= P [X(t) = 1], −∞ < t < ∞. (6.5)

[This equation implies that the first-order distribution function is stationary in time,
but since higher-order distributions may be nonstationary, the stochastic process
X(t) need not be stationary in the strict sense.] A typical sample function of the
process is shown in Figure 6.7.

Assume that the number of flips, N(τ), from one value to another occurring in
an interval of duration τ is Poisson distributed with parameter λτ . Thus

P [N(τ) = k] =
(λτ)ke−λτ

k!
, k = 0, 1, 2, . . . ,

where λ is the average number of flips per unit time. Finally assume that the number
of flips in a given time interval is statistically independent of the value assumed by
the stochastic process X(t) at the beginning of the interval.

For the telegraph process, we obtain

μ(t) = E[X(t)] = −1 · 1
2

+ 1 · 1
2

= 0, for all t.

R(t1, t2) = E[X(t1)X(t2)]

= P [X(t1) = 1, X(t2) = 1] − P [X(t1) = 1, X(t2) = −1]

−P [X(t1) = −1, X(t2) = 1] + P [X(t1) = −1, X(t2) = −1].
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0

1

–1

X(t)

t

Figure 6.7. Typical sample function of the telegraph process

Since the marginal distribution functions of X(t1) and X(t2) are specified by
equation (6.5), it can be shown that the events

[X(t1) = 1, X(t2) = 1] and [X(t1) = −1, X(t2) = −1]

are equally likely. Similarly, the events

[X(t1) = 1, X(t2) = −1] and [X(t1) = −1, X(t2) = 1]

are equally likely. It follows that the autocorrelation function:

R(t1, t2) = 2{P [X(t1) = 1, X(t2) = 1] − P [X(t1) = 1, X(t2) = −1]}

= 2{P [X(t2) = 1 | X(t1) = 1]P [X(t1) = 1]

−P [X(t2) = −1 | X(t1) = 1]P [X(t1) = 1]}

= P [X(t2) = 1 | X(t1) = 1] − P [X(t2) = −1 | X(t1) = 1].

To evaluate the conditional probability P [X(t2) = 1 | X(t1) = 1], we observe that
the corresponding event is equivalent to the event “An even number of flips in the
interval (t1, t2].” Let τ = t2 − t1. Then

P [X(t2) = 1 | X(t1) = 1] = P [N(τ) = even]

=
∑

k even

e−λτ (λτ)k

k!

=
1 + e−2λτ

2
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(by problem 2 at the end of this section). Similarly

P [X(t2) = −1 | X(t1) = 1] = P [N(τ) = odd]

=
∑

k odd

e−λτ (λτ)k

k!

=
1 − e−2λτ

2
.

Substituting, we get
R(t1, t2) = e−2λτ , τ > 0.

Furthermore, since R(0) = E[X2(t)] = 1 · 1
2

+ 1 · 1
2

= 1 is finite, we conclude that
the random-telegraph process is stationary in the wide sense. In Figure 6.8 we have
plotted R(τ) as a function of τ .

�

Problems

1. Show that the time that a discrete-time homogeneous Markov chain spends in a
given state has a geometric distribution.

2. Assuming that the number of arrivals in the interval (0, t] is Poisson distributed
with parameter λt, compute the probability of an even number of arrivals. Also
compute the probability of an odd number of arrivals.

3. Consider a stochastic process defined on a finite sample space with three sam-
ple points. Its description is provided by the specifications of the three sample
functions:

X(t, s1) = 3, X(t, s2) = 3 cos(t), X(t, s3) = 4 sin(t).

( )

τ

1

R τ

Figure 6.8. Autocorrelation function of the telegraph process
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Also given is the probability assignment:

P (s1) = P (s2) = P (s3) =
1

3
.

Compute μ(t) = E[X(t)] and the autocorrelation function R(t1, t2). Now answer
the following questions: Is the process strict-sense stationary? Is it wide-sense
stationary?

4. � Show that the autocorrelation function R(t1, t2) of a strict-sense stationary
stochastic process depends only on the time difference (t2 − t1) , if it exists.

6.3 THE BERNOULLI PROCESS

Consider a sequence of independent Bernoulli trials and let the discrete ran-
dom variable Yi denote the result of the ith trial, so that the event [Yi = 1]
denotes a success on the ith trial and the event [Yi = 0] denotes a failure on
the ith trial. Further assume that the probability of success on the ith trial,
P [Yi = 1], is p, which is independent of the index i. Then {Yi | i = 1, 2, . . .}
is a discrete-state, discrete-time, stochastic process, which is stationary in
the strict sense. Since the {Yi} are mutually independent, the above process
is an independent process known as the Bernoulli process. We saw many
examples of the Bernoulli process in Chapter 1. Since Yi is a Bernoulli random
variable, we recall that

E[Yi] = p,

E[Y 2
i ] = p,

Var[Yi] = p(1 − p),

and
GYi

(z) = (1 − p) + pz .

On the basis of the Bernoulli process, we may form another stochastic pro-
cess by considering the sequence of partial sums {Sn | n = 1, 2, . . .}, where
Sn = Y1 + Y2 + · · · + Yn. By rewriting Sn = Sn−1 + Yn, it is not difficult to
see that {Sn} is a discrete-state, discrete-time Markov process, since

P [Sn = k | Sn−1 = k] = P [Yn = 0]

= 1 − p,

and
P [Sn = k | Sn−1 = k − 1] = P [Yn = 1]

= p.
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We showed in Chapter 2 that Sn is a binomial random variable, so {Sn | n =
1, 2, . . .} is often called a binomial process. Clearly

P [Sn = k] =
(n

k

)
pk(1 − p)n−k,

E[Sn] = np,

Var[Sn] = np(1 − p),

and
GSn

(z) = (1 − p + pz )n.

If we refer to successes in a Bernoulli process as arrivals, then we are led
to the study of the number of trials between successes or interarrival times.
Define the discrete random variable T1, called the first-order interarrival
time, to be the number of trials up to and including the first success. Clearly,
T1 is geometrically distributed, so that

P [T1 = i] = p(1 − p)i−1, i = 1, 2, . . . ,

E[T1] =
1
p
,

Var[T1] =
1 − p

p2
,

and
GT1

(z) =
zp

1 − z(1 − p)
.

Now the total number of trials from the beginning of the process until
and including the first success is a geometric random variable, and, owing to
the mutual independence of successive trials, the number of trials after the
(i − 1)st success up to and including the ith success has the same distribution
as T1.

Recall that the geometric distribution possesses the memoryless property,
so that the conditional pmf for the remaining number of trials up to and
including the next success, given that there were no successes in the first m
trials, is still geometric with parameter p. Since an arrival, as defined here,
signals a change in state of the sum process {Sn}, we have that the occupancy
time in state Sn, is memoryless.

The notion of the first-order interarrival time can be generalized to
higher-order interarrival times. Define the rth-order interarrival time,
Tr, as the number of trials up to and including the rth success. Clearly, Tr

is the r-fold convolution of T1, with itself, and therefore Tr has the negative
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binomial distribution [using Theorem 2.2(b)]. Then

P [Tr = i] =
(

i − 1
r − 1

)
pr(1 − p)i−r, i = r, r + 1, . . . , r = 1, 2, . . . ,

E[Tr] =
r

p
,

Var[Tr] =
r(1 − p)

p2
,

and
GTr

(z) =
[

zp
1 − z(1 − p)

]r

.

Example 6.4

Consider a WWW (World Wide Web) cache proxy in a campus computer network
[WILL 1996]. With WWW cache proxy, all the WWW page requests generated by
the browsers are sent to the cache proxy first. If the cache proxy does not have a
copy of the requested file, which is called a “miss”, the cache proxy will retrieve the
file from the remote server for the browser. If the proxy has a copy, two cases are
now possible; the copy is fresh, which means that it is consistent with the original
one at the remote server or the copy is obsolete which means it is inconsistent with
the original one at the remote server because the original one has been updated. The
former is called a “hit”, so we do not need to retrieve a copy from the remote server
and hence we reduce the retrieval latency significantly. The latter is also called a
“miss”. We are interested in studying the hit ratio, the probability that the requested
file can be served by local copy in the cache proxy. Assume that the probability that
a requested file can be found in the cache proxy is 2

3
. Further assume that the two

events “requested file is fresh” and “requested file can be found in the cache proxy”
are independent, and that successive WWW requests are independent.

Using the tree diagram of Figure 6.9, we may consider the sequence of WWW
request as a Bernoulli process with the hit ratio equal to 3

4
· 2

3
= 0.5. The number

of hit requests will then be geometrically distributed with parameter p = 0.5.

�

Several generalizations of the Bernoulli process are possible. One possibil-
ity is to allow each Bernoulli variable Yi, a distinct parameter p

i
. We retain

the assumption that Y1, Y2, . . ., are independent random variables. Then the
process {Yi | i = 1, 2, . . .} is an independent process called the nonhomoge-
neous Bernoulli process.

As an example, let us return to the analysis of program MAX (Chapter 2).
Recall that the number of executions, Xn, of the then clause for a given array
size n is a discrete random variable with the generating function:

GXn
(z) =

n∏
i=2

(
z + i − 1

i

)
.



Trim Size: 6.125in x 9.25in 60Trivedi c06.tex V3 - 05/23/2016 12:01pm Page 316�

� �

�

316 STOCHASTIC PROCESSES

1
3

2
3

0.25 0.75

WWW  page request

No copy in the cache

         Miss

The cache has a copy

         Miss

The copy is obsolete The copy is fresh

         Hit

Figure 6.9. The tree diagram for WWW request

By the convolution property of transforms, we can write

Xn =
n∑

i=2

Yi,

where Y2, Y3, . . ., are independent random variables such that

GYi
(z) =

z + i − 1
i

.

But this implies that Yi is a Bernoulli random variable with parameter
1/i. Thus, {Yi | i = 2, 3, . . . , n} is a nonhomogeneous Bernoulli process, and
{Xi | i = 2, 3, . . . , n} is the corresponding sum process.

Another generalization of the Bernoulli process is to assume that each
trial has more than two possible outcomes. Let {Yi | i = 1, 2, 3, . . . , n} be a
sequence of independent discrete random variables, and define the partial sum
Sn =

∑n
i=1 Yi. Then the sum process {Sn | n = 1, 2, . . .} is a Markov chain

known as a random walk.
Yet another generalization of the Bernoulli process is to study the limiting

behavior of the discrete-time process into a continuous-time process. Recall,
from Chapter 2, that the Poisson distribution can be derived as a limiting case
of the binomial distribution. Now, since the sum process corresponding to the
Bernoulli process is the binomial process, the pmf of Sn is b(k;n, p). If n is
large and p is small, b(k;n, p) approaches the Poisson pmf f(k;np). Thus, the
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number of successes N(t) is approximately Poisson distributed with parameter
λt = np.

The last generalizations of the Bernoulli process we mention here are the
Markov modulated Bernoulli process (MMBP) and the interrupted Bernoulli
process (IBP); these will be discussed in Chapter 7.

Problems

1. Show that the first-order interarrival time of the nonhomogeneous Bernoulli pro-
cess is not memoryless.

6.4 THE POISSON PROCESS

The Poisson process is a continuous-time, discrete-state process that is a good
model for many practical situations. Here, the interest is in counting the num-
ber of events N(t) occurring in the time interval (0, t]. The event of interest
may, for example, correspond to:

1. The number of incoming telephone calls to a trunk.

2. The number of job arrivals to a file server.

3. The number of failed components in a large group of initially fault-free
components.

We now define the Poisson process. Suppose that the events occur suc-
cessively in time, so that the intervals between successive events are inde-
pendent and identically distributed according to an exponential distribution
F (x) = 1 − e−λx. Let the number of events in the interval (0, t] be denoted by
N(t). Then the stochastic process {N(t) | t ≥ 0} is a Poisson process with
mean rate λ. In the first two situations listed above, λ is called the average
arrival rate, while in the third situation λ is called the failure rate. From this
definition, it is clear that a Poisson process is a renewal counting process for
which the underlying distribution is exponential.

An alternative (and equivalent) definition of the Poisson process is as
follows: As before, let N(t) be the number of events that have occurred
in the interval (0, t]. Let the event A denote the occurrence of exactly one
event in the interval (t, t + h]. Similarly, let B and C, respectively, denote
the occurrences of none and more than one events in the same interval. Let
P [A] = p(h), P [B] = q(h), and P [C] = ε(h). N(t) forms a Poisson process,
provided the following four conditions are met:

1. N(0) = 0.

2. Events occurring in nonoverlapping intervals of time are mutually inde-
pendent.

3. Probabilities p(h), q(h), and ε(h) depend only on the length h of the
interval and not on the time origin t.
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4. For sufficiently small values of h, we can write (for some positive con-
stant λ):

p(h) = P
[
one event in the interval (t, t + h]

]
= λh + o(h),

q(h) = P
[
no events in the interval (t, t + h]

]
= 1 − λh + o(h), and

ε(h) = P
[
more than one event in the interval (t, t + h]

]
= o(h)

where o(h) denotes any quantity having an order of magnitude smaller
than h,

lim
h→0

o(h)
h

= 0.

Let p
n
(t) = P [N(t) = n] be the pmf of N(t). Because of condition 1 above,

we have
p0(0) = 1 and p

n
(0) = 0 for n > 0. (6.6)

Now consider two successive nonoverlapping intervals (0, t] and (t, t + τ ]. To
compute p

n
(t + τ), the probability that n events occur in the interval (0, t + τ ],

we note that

P
[
n events in (0, t + τ ]

]
=

n∑
k=0

P
[
k events in (0, t] and n − k events in (t, t + τ ]

]

=
n∑

k=0

P
[
k events in (0, t]

]
P

[
n − k events in (t, t + τ ]

]
,

by condition 2 above. Then by condition 3 we have

pn(t + τ) =
n∑

k=0

p
k
(t)pn−k(τ). (6.7)

State transitions of the Poisson random process may be visualized as in
Figure 6.10. Using equation (6.7) for n > 0 and τ = h, we obtain

pn(t + h) = P
[
N(t + h) = n

]
= P

[
N(t) = n

]
P

[
no events in (t, t + h]

]
+P

[
N(t) = n − 1

]
P

[
one event in (t, t + h]

]

+
n−2∑
i=0

P
[
N(t) = i

]
P

[
n − i events in (t, t + h]

]
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1

h + o(h)

} o(h)
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Time
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n – 1

1 – λh + o(h)

λ

Figure 6.10. State transitions of the Poisson process

= p
n
(t)

[
1 − λh + o(h)

]
+ pn−1(t)

[
λh + o(h)

]

+
n−2∑
i=0

p
i
(t)o(h)

= (1 − λh)p
n
(t) + λhpn−1(t) + o(h), n > 0.

Similarly
p0(t + h) = (1 − λh)p

0
(t) + o(h).

After some algebra, we get

lim
h→0

p
0
(t + h) − p

0
(t)

h
= −λp

0
(t)

and
lim
h→0

p
n
(t + h) − p

n
(t)

h
= −λp

n
(t) + λpn−1(t).

This gives rise to the following differential equations:

dp0(t)
dt

= −λp
0
(t)

and
dpn(t)

dt
= −λp

n
(t) + λpn−1(t), n > 0. (6.8)

It is not difficult to show by induction on n that the solution to equation (6.8)
with initial condition (6.6) is

pn(t) = e−λt (λt)n

n!
, n > 0.
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Figure 6.11. Pooling two Poisson streams

Therefore, the number of events N(t) in the interval (0, t] has a Poisson pmf
with parameter λt. (Note that this implies that the Poisson process is not a
stationary stochastic process.) From Chapter 4 we know that the mean and
variance of this distribution are both equal to λt. Therefore, as t approaches
infinity, E[N(t)/t] approaches λ and Var[N(t)/t] approaches zero. In other
words, N(t)/t converges to λ as t approaches infinity. Because of this, the
parameter λ is called the arrival rate of the Poisson process.

The Poisson process plays an important role in queuing theory and relia-
bility theory. One reason for its importance is its analytical tractability, and
another reason is a result due to Palm [PALM 1943] and Khinchin [KHIN
1960], which states that under very general assumptions the sum of a large
number of independent renewal processes behaves like a Poisson process.

An important generalization of the Poisson process occurs when the rate
of arrivals λ is allowed to be a function of t. Such a Poisson process is called
the nonhomogeneous Poisson process (NHPP). The number of arrivals
N(t) is Poisson distributed with parameter m(t) =

∫ t

0
λ(x)dx . The parameter

m(t) is called the mean-value function of the NHPP.
Often we are interested in the superposition of independent Pois-

son processes. For example, suppose that there are two independent Poisson
message-arrival streams into a communication channel, with respective arrival
rates λ1 and λ2. We are interested in the pooled message-arrival stream.
Figure 6.11 shows the arrival times of message stream 1, of message stream
2, and of the pooled stream.

Recall from Chapter 2 that the sum of n independent Poisson random
variables is itself Poisson. From this result, it can be shown that the super-
position of n independent Poisson processes with respective average rates
λ1, λ2, . . . , λn, is also a Poisson process with the average rate λ = λ1 + λ2 +
· · · + λn, [BARL 1981]. The notion of superposition of Poisson processes is
illustrated in Figure 6.12.

Example 6.5

There are n independent sources of environmental shocks to a component. The
number of shocks from the ith source in the interval (0, t], denoted Ni(t), is governed
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1
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+
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Pooled stream with rateλ
λ

n
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λ iλ =

i=1
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n

Figure 6.12. Superposition of independent Poisson processes

by a Poisson process with rate λi. Then the total number of shocks of all kinds in
the interval (0, t] forms a Poisson process with the rate λ = λ1 + λ2 + · · · + λn.

�

Example 6.6

Consider a series system of n independent components. The lifetime Xi of the ith
component is exponentially distributed with parameter λi (i = 1, 2, . . . , n). Assume
that on failure of the ith component, it is instantaneously replaced by a spare. Now,
recalling the relation between the Poisson process and the exponential interevent
times, we can conclude that for i = 1, 2, . . . , n, the number of failures, Ni(t), of the
ith component in the interval (0, t] form a Poisson process with the rate λi. Then
the total number of system failures N(t) in the interval (0, t] is a superposition of n
independent Poisson processes, and hence it is a Poisson process with the rate

λ =
n∑

i=1

λi.

This implies that the times between system failures are exponentially distributed
with parameter λ. But this result can be independently verified from our discussion
in Chapter 3, where we demonstrated that the lifetime X = min{X1, X2, . . . , Xn} of
a series system of n independent components with exponential lifetime distribution
is itself exponentially distributed with parameter λ =

∑n
i=1 λi.

�

A similar result holds with respect to the decomposition of a Poisson
process. Assume that a Poisson process with mean arrival rate λ branches
out into n output paths as shown in Figure 6.13. We assume that the
successive selections of an output stream form a sequence of generalized
Bernoulli trials with p

k
(1 ≤ k ≤ n) denoting the probability of the selection

of output stream k. Let {N(t) | t ≥ 0} be the input Poisson process, and let
{Nk(t) | t ≥ 0} for 1 ≤ k ≤ n denote the output processes. The conditional
pmf of Nk(t), 1 ≤ k ≤ n, given that N(t) = m, is the multinomial pmf (see
Chapter 2):

P [N1(t) = m1, N2(t) = m2, . . . , Nn(t) = mn | N(t) = m]

=
m!

m1!m2! · · ·mn!
pm1

1
pm2

2
· · · pmn

n
,
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Figure 6.13. Decomposition of a Poisson process

where
n∑

i=1

p
i
= 1 and

n∑
i=1

mi = m.

Now, since

P [N(t) = m] = e−λt (λt)m

m!
,

we get the unconditional pmf:

P [N1(t) = m1, N2(t) = m2, . . . , Nn(t) = mn]

=
m!

m1!m2! · · ·mn!
pm1

1
pm2

2
· · · pmn

n
e−λt (λt)m

m!

=
n∏

i=1

e−p
i
λt (pi

λt)mi

mi!
.

But this implies that the random variables N1(t), N2(t), . . . , Nn(t) are
mutually independent (for all t ≥ 0) and have Poisson distributions with
respective parameters p

1
λ, p

2
λ, . . . , p

n
λ. This, in turn, verifies that the n

output processes are all Poisson with the parameters listed above.

Example 6.7

The number of environmental shocks N(t) experienced by a component in the inter-
val (0, t ] is governed by a Poisson process with a rate λ. With probability p

1
the

component will continue to function in spite of the shock, and with probability
p
2
(= 1 − p

1
) the shock is fatal. Then the random process corresponding to the arrival

sequence of fatal shocks is a Poisson process with rate p
2
λ.

�

Example 6.8

The number of transactions arriving into a database system forms a Poisson process
with rate λ. The database consists of n distinct files. An arriving transaction requests
the ith file with probability p

i
. With the usual independence assumption, the number

of requests directed to the ith file (1 ≤ i ≤ n) forms a Poisson process of rate p
i
λ.

�
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We have noted in Chapter 3 that the times between successive events of a
Poisson process with rate λ are mutually independent and exponentially dis-
tributed with parameter λ. In other words, the first-order interarrival time T1,
of a Poisson process is exponentially distributed. It follows that the rth-order
interarrival time, Tr, for this process is an r-stage Erlang random variable
with parameter λ.

Thus, if Tk denotes the time of the kth event (from the beginning), then Tk

is a k-stage Erlang random variable. Now suppose we know that n arrivals have
occurred in the interval (0, t]. We wish to compute the conditional distribution
of Tk (1 ≤ k ≤ n).

Suppose that exactly one arrival has occurred in the interval (0, t]. Then,
because of the properties of the Poisson process, we can show that the condi-
tional distribution of arrival time T1, is uniform over (0, t):

P [T1 ≤ x | N(t) = 1] =
P [N(x) = 1 and N(t) − N(x) = 0]

P [N(t) = 1]

=
λxe−λx · e−λ(t−x)

λt · e−λt
=

x

t
.

This result is generalized in the following theorem

THEOREM 6.1. Given that n ≥ 1 arrivals have occurred in
the interval (0, t], the conditional joint pdf of the arrival times
T1, T2, . . . , Tn is given by

f [t1, t2, . . . , tn | N(t) = n] =
n!
tn

, 0 ≤ t1 ≤ . . . ≤ tn ≤ t.

Proof: Let Tn+1 be the time of the (n + 1)st arrival (which occurs after
time t). Define the random variables:

Yi = Ti − Ti−1, i = 1, . . . , n + 1,

where T0 is defined to be equal to zero. It is clear that Y1, Y2, . . . , Yn+1,
are independent identically distributed random variables such that Yi ∼
EXP (λ) for i = 1, 2, . . . , n + 1.

Define events A and B such that

A = [ti < Ti ≤ ti + hi] for i = 1, 2, . . . , n,

and
B = [N(t) = n] = [Tn ≤ t < Tn+1].

Now, using the definition of Yi, the event A can be rewritten as

A = [ti − ti−1 − hi−1 ≤ Yi ≤ ti − ti−1 + hi], for i = 1, 2, . . . , n,
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where t0 and h0 are defined to be equal to zero. Now

A ∩ B = [ti − ti−1 − hi−1 ≤ Yi ≤ ti − ti−1 + hi], for i = 1, 2, . . . , n

and [Tn ≤ t < Tn+1]

= [ti − ti−1 − hi−1 ≤ Yi ≤ ti − ti−1 + hi], for i = 1, 2, . . . , n

and [Yn+1 ≥ t − tn − hn].

Since the Y1, Y2, . . . , Yn+1 are independent, we have

P (A | B) =
P (A ∩ B)

P (B)

=

[
n∏

i=1

P (ti − ti−1 − hi−1 ≤ Yi ≤ ti − ti−1 + hi)

]
P (Yn+1 ≥ t − tn − hn)

P [N(t) = n]
.

Dividing both sides by h1h2 · · ·hn, taking the limit as hi → 0 (i =
1, 2, . . . n), and recalling that the Y1, Y2, . . . , Yn+1 are exponentially dis-
tributed with parameter λ, we have

f [t1, t2, . . . , tn | N(t) = n] =

[
n∏

i=1

λe−λ(ti−ti−1)

]
e−λ(t−tn)

(λt)ne−λt/n!

=
n!

tn
.

A more general version of the above theorem also holds [BARL 1981]:

THEOREM 6.2. Given that n events have occurred in
the interval (0, t], the times of occurrence S1, S2, . . . , Sn, when
unordered, are independent, uniformly distributed over the inter-
val (0, t]. In fact, the random variables T1, T2, . . . , Tn of Theorem
6.1 are the order statistics of the random variables S1, S2, . . . , Sn.

Example 6.9 (The M/G/∞ Queue)

Suppose that jobs arrive at a file server in accordance with a Poisson process of rate
λ. The system has an abundance of file servers, so that a job is serviced immediately
on its arrival (i.e., no queuing takes place). For analysis, we may assume that the
number of servers is infinitely large. Job service times are assumed to be independent
general random variables with a common distribution function G.

Let X(t) denote the number of jobs in the system at time t, and let N(t)
denote the total number of job arrivals in the interval (0, t]. The number of depar-
tures D(t) = N(t) − X(t). First we determine the conditional pmf of X(t) given
N(t) = n.
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Consider a job that arrived at time 0 ≤ y ≤ t. By Theorem 6.2, the time of arrival
Y of the job is uniformly distributed over (0, t); that is, fY (y) = 1/t, 0 < y < t. The
probability that this job is still undergoing service at time t given that it arrived at
time y is 1 − G(t − y). Then the unconditional probability that the job is undergoing
service at time t is (by the continuous version of the theorem of total probability)

p =

∫ t

0

[1 − G(t − y)] fY (y)dy

=

∫ t

0

1 − G(t − y)

t
dy .

Changing variables x = t − y, we have

p =

∫ t

0

1 − G(x)

t
dx .

Since n jobs have arrived and each has independent probability p of not completing
by time t, we have a sequence of n Bernoulli trials. Thus

P [X(t) = j | N(t) = n] =

{(
n
j

)
pj (1 − p)n−j , j = 0, 1, . . . , n,

0, otherwise.

Then by the theorem of total probability we have

P [X(t) = j] =
∞∑

n=j

(
n

j

)
pj(1 − p)n−je−λt (λt)n

n!

= e−λt (λtp)j

j!

∞∑
n=j

[λt(1 − p)]n−j

(n − j)!

= e−λtp (λtp)j

j!
.

Thus, the number of jobs in the system at time t has the Poisson distribution with
parameter:

λ′ = λtp = λ

∫ t

0

[1 − G(x)] dx .

Noting that
∫∞
0

[1 − G(x)] dx = 1/μ is the average service time, we see that in
the limit as t approaches infinity, λ′ = λ/μ. This implies that after a sufficiently
long time, the number of jobs in an M/G/∞ queue is Poisson distributed with
parameter λ/μ.

�

Several generalizations of the Poisson process are known: the compound
Poisson process (see problem 5 below), the nonhomogeneous Poisson
process (see Section 8.3.1), and the Markov modulated Poisson process (see
Section 8.4.2.1).
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Problems

1. Consider a server with Poisson job-arrival stream at an average rate of 60 per
hour. Determine the probability that the time interval between successive job
arrivals is

(a) Longer than 4 min

(b) Shorter than 8 min

(c) Between 2 and 6 min

2. Spare-parts problem [BARL 1981]. A system requires k components of a certain
type to function properly. All components are assumed to have a constant fail-
ure rate λ, and their lifetimes are statistically independent. During a mission,
component j is put into operation for tj time units, and a component can fail
only while in operation. Determine the number of spares needed (in a common
supply of spares) in order to achieve a probability greater than α for the mission
to succeed. As an example, let k = 3, t1 = 1300, t2 = 1500, t3 = 1200, λ = 0.002,
and α = 0.90, and determine the number of needed spares n. Now consider the
alternative strategy of keeping a separate supply of spares for each of the three
component types. Find the number of spares n1, n2, and n3 required to provide
an assurance of more than 90% that no shortage for any component type will
occur. Show that the former strategy is the better one.

3. When we considered the decomposition of a Poisson process in the text, we
assumed that a generalized Bernoulli trial was performed to select the output
stream an arriving job should be directed to. Let us now consider a cyclic method
of decomposition in which each output stream receives the nth arrival so that
the first, (n + 1)st, (2n + 1)st, . . ., arrivals are directed to output stream 1, the
second, (n + 2)st, (2n + 2)st, . . ., arrivals are directed to stream 2, and so on.
Show that the interarrival times of any output substream comprise an n-stage
Erlang random variable. Note that none of the output streams is Poisson!

4. We are given two independent Poisson arrival streams {Xt | 0 ≤ t < ∞} and
{Yt | 0 ≤ t < ∞} with respective arrival rates λx, and λy. Show that the number
of arrivals of the Yt process occurring between two successive arrivals of Xt

process has a modified geometric distribution with parameter λx/(λx + λy).

5. Consider the generalization of the ordinary Poisson process, called the com-
pound Poisson process. In an ordinary Poisson process, we assumed that the
probability of occurrence of multiple events in a small interval is negligible with
respect to the length of the interval. If the arrival of a message in a LAN (local
area network) is being modeled, the counting process may represent the num-
ber of bytes (or packets) in a message. In this case suppose that the pmf of the
number of bytes in a message is specified:

P [number of bytes in a message = k] = ak, k ≥ 1.

Further assume that the message-arrivals form an ordinary Poisson process with
rate λ. Then the process {X(t) | t ≥ 0}, where X(t) = number of bytes arriving in
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the interval (0, t], is a compound Poisson process. Show that generating function
of X(t) is given by

GX(t)(z) = eλt[GA(z)−1],

where
GA(z) =

∑
k≥1

akzk.

6. � Prove Theorem 6.1 starting with Theorem 6.2. (Hint: Refer to the section on
order statistics in Chapter 3.)

6.5 RENEWAL PROCESSES

We have noted that successive interevent times of a Poisson process are
independent exponentially distributed random variables. A natural gener-
alization of the Poisson process is obtained by removing the restriction of
exponential interevent times. Let Xi be the time between the (i − 1)st and the
ith events. Let {Xi | i = 1, 2, . . .} be a sequence of independent nonnegative
identically distributed random variables. This general independent process,
{Xi | i = 1, 2, . . .}, is a renewal process or a recurrent process as defined
in Section 6.2. The random variable Xi is interpreted as the time between the
occurrence of the ith event and the (i − 1)st event. Note that the restriction
of exponential distribution is removed.

The recurrent events (also called renewals) may correspond to a job arrival
in a server or a telephone call arrival to a trunk. The event may also corre-
spond to the failure of a component in an environment with inexhaustible
spares and an instant replacement of a faulty component with a spare one.
Similarly, an event may correspond to a reference to a specific page in a paging
system, where {Xi} will then represent successive intervals between references
to this specific page [COFF 1973]. In this case, there will be a distinct renewal
process corresponding to each page in the address space of the program being
modeled. Here it may be more appropriate to think of Xi as a discrete random
variable counting the number of page references between two references to the
specific page. In such a case, we have a discrete-state, discrete-time renewal
process.

Our development here will assume that Xi is a continuous random variable
with the distribution function F (x), called the underlying distribution of
the renewal process.

Let Sk denote the time from the beginning until the occurrence of the kth
event

Sk = X1 + X2 + · · · + Xk,

and let F (k)(t) denote the distribution function of Sk. Clearly, F (k) is the
k-fold convolution of F with itself. For notational convenience, we define

F (0)(t) =
{

1, t ≥ 0,
0, t < 0.
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Our primary interest here is in the number of renewals N(t) in the interval
(0, t]. The discrete-state, continuous-time process {N(t) | t ≥ 0} is called a
renewal counting process. This is the generalization of the Poisson process
that we alluded to at the beginning of the section. N(t) is called the renewal
random variable and is easily related to the random variables Sk and Sk+1

by observing that N(t) = n if and only if Sn ≤ t < Sn+1. But then

P [N(t) = n] = P [Sn ≤ t < Sn+1]

= P [Sn ≤ t] − P [Sn+1 ≤ t]

= F (n)(t) − F (n+1)(t). (6.9)

Define the renewal function m(t) as the average number of renewals in
the interval (0, t]:

m(t) = E[N(t)].

Thus, for example, if N(t) is a Poisson process with rate λ, then its renewal
function m(t) = λt. Using relation (6.9), we have

m(t) =
∞∑

n=0

nP [N(t) = n]

=
∞∑

n=0

nF (n)(t) −
∞∑

n=0

nF (n+1)(t)

=
∞∑

n=0

nF (n)(t) −
∞∑

n=1

(n − 1)F (n)(t)

=
∞∑

n=1

F (n)(t)

= F (t) +
∞∑

n=1

F (n+1)(t). (6.10)

Noting that F (n+1) is the convolution of F (n) and F , and letting f be the
density function of F , we can write

F (n+1)(t) =
∫ t

0

F (n)(t − x)f(x)dx ,

and therefore

m(t) = F (t) +
∞∑

n=1

∫ t

0

F (n)(t − x)f(x)dx
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= F (t) +
∫ t

0

[
∞∑

n=1

F (n)(t − x)]f(x)dx

= F (t) +
∫ t

0

m(t − x)f(x)dx . (6.11)

This last equation is known as the fundamental renewal equation. [In
this and subsequent derivations we assume that

∑
F (n) satisfies appropriate

convergence conditions.]
We shall state without proof the following three theorems [ROSS 1992].

THEOREM 6.3 (The Elementary Renewal Theorem).

lim
t→∞

m(t)
t

=
1

E[X]
.

THEOREM 6.4 (Blackwell’s Theorem).

1. If F is not lattice1, then

lim
t→∞

[m(t + a) − m(t)] =
a

E[X]
, for all a ≥ 0.

2. If F is lattice with period d, then

lim
n→∞

P [renewal at time nd ] =
d

E[X]
.

THEOREM 6.5 (Key Renewal Theorem). If F is not lat-
tice, and if V (t) is directly Riemann integrable, then

lim
t→∞

∫ t

0

V (t − x)dm(x) =
1

E[X]

∫ ∞

0

V (t)dt .

Define the renewal density d(t) to be the derivative of the renewal func-
tion m(t):

d(t) =
dm(t)

dt
.

1A nonnegative random variable X is said to be lattice if there exists d ≥ 0 such that
∑∞

n=0 P [X = nd ] = 1. The largest d having this property is said to be the period of X. If

X is lattice and F is the distribution function of X, then we say that F is lattice.
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For small h, d(t)h is interpreted as the probability of occurrence of a renewal
in the interval (t, t + h]. Thus in the case of a Poisson process, renewal density
d(t) equals the Poisson rate λ. From equation (6.10) we have

d(t) =
∞∑

n=1

f (n)(t),

and, using equation (6.11), we have

d(t) = f(t) +
∫ t

0

d(t − x)f(x)dx . (6.12)

The asymptotic renewal rate can be shown to be equal to 1/E[X]:

lim
t→∞

d(t) = lim
t→∞

lim
a→0

m(t + a) − m(t)
a

(Theorem 6.4)

=
1

E[X]
.

To solve the renewal equation (6.12), we will use Laplace transforms. Our
notation here will be somewhat different from that in Chapter 4, since we now
associate a Laplace transform with a function (distribution, density, renewal)
rather than a random variable. Thus

Lf (s) =
∫ ∞

0

e−sxf(x)dx

and

Ld(s) =
∫ ∞

0

e−sxd(x)dx .

Now, using the convolution property of transforms, we get from equation
(6.12):

Ld(s) = Lf (s) + Ld(s)Lf (s),

so that

Ld(s) =
Lf (s)

1 − Lf (s)
(6.13)

and

Lf (s) =
Ld(s)

1 + Ld(s)
(6.14)
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Thus d(t) may be determined from f(t), and conversely, f(t) can be deter-
mined from d(t).

Example 6.10

The solution to equation (6.13) may be obtained in closed form for special cases.
Assume that the interevent times are exponentially distributed so that

f(x) = λe−λx

Then

Lf (s) =
λ

s + λ
,

and, using (6.13)

Ld(s) =
λ

s + λ − λ

=
λ

s
.

Since the Laplace transform of a constant k is k/s, we conclude that

d(t) = λ, t ≥ 0,

m(t) = λt, t ≥ 0.

These results should be expected, since the renewal counting process in this case is
a Poisson process where the average number of events in the interval (0, t] is λt.

In this case, F (n)(t) is a convolution of n identical exponential distributions and
hence is an n-stage Erlang distribution:

F (n)(t) = 1 −
[

n−1∑
k=0

(λt)k

k!

]
e−λt.

Then
P [N(t) = n] = F (n)(t) − F (n+1)(t)

=
(λt)n

n!
e−λt.

Thus N(t) has a Poisson pmf with parameter λt, as expected.

�

Problems

1. � Refer to Sevcik et al. [SEVC 1977]. In Section 6.4 we showed that the decompo-
sition of a Poisson process using Bernoulli selection produces Poisson processes
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(see Figure 6.13). Now consider a general renewal counting process N(t) with
an underlying distribution F (x). Let us send an arrival into one of two streams
using a Bernoulli filter, with respective probabilities p and 1 − p. Show that
the Laplace–Stieltjes transform of the interarrival times for the first stream is
given by

LX1
(s) =

pLX(s)

1 − (1 − p)LX(s)
.

(Hint: The section on random sums in Chapter 5 will be useful.) Now show that
the coefficient of variation of the interarrival time X1 of the first output stream
is given by

C2
X1

= 1 + p(C2
X − 1)

and the mean by

E[X1] =
1

p
E[X].

2. �[BHAT 1984]. Consider a file server during peak load where the CPU is sat-
urated. Assume that the processing requirement of a job is exponentially dis-
tributed with parameter μ. Further assume that a fixed time tsys per job is spent
performing overhead functions in the operating system. Let N(t) be the number
of jobs completed in the interval (0, t]. Show that

P [N(t) < n] =

n−1∑
k=0

e−μ(t−ntsys )
[μ(t − ntsys)]

k

k!
, if t ≥ ntsys .

6.6 AVAILABILITY ANALYSIS

Assume that on the failure of a component, it is repaired and restored to
be “as good as new.” Let Ti be the duration of the ith functioning period,
and let Di be the system downtime for the ith repair or replacement. This
can be visualized as in Figure 6.14, where × symbols denote failure times
and small circles denote the component repair is completed. We assume that
the sequence of random variables {Xi = Ti + Di | i = 1, 2, . . .} is mutually
independent. Further assume that the T1, T2, . . . are identically distributed
with the common CDF W (t) and common pdf w(t). Similarly assume that
the D1,D2, . . . are identically distributed with the common CDF G(t) and
pdf g(t). Then X1,X2, . . . are also independent and identically distributed,

D1 1  2 2 3 3

21 3

 3  5  6 1

XXX

T TD DT

t t t t
t

 4t
 2
t

Figure 6.14. A realization of a sequence of failures and repairs
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hence {Xi | i = 1, 2, . . .} is a renewal process. This process is also known as
the alternating renewal process as it models two states of a system.

Figure 6.14 provides an opportunity to point out the difference between
MTTF (mean time to failure) and MTBF (mean time between failures):

MTBF = E[Xi] = E[Ti + Di] = E[Ti] + E[Di] = MTTF + MTTR.

A renewal point of this process corresponds to the event of the comple-
tion of a repair. The underlying density f(t) of the renewal process is the
convolution of w and g (assuming Ti and Di are independent). Thus

Lf (s) = Lw(s)Lg(s) (6.15)

and, using equation (6.13), we have

Ld(s) =
Lw(s)Lg(s)

1 − Lw(s)Lg(s)
. (6.16)

The average number of repairs or replacements m(t) in the interval (0, t] has
the Laplace transform:

Lm(s) =
Lw(s)Lg(s)

s[1 − Lw(s)Lg(s)]
. (6.17)

Define the indicator random variable I(t) of the component so that I(t) = 1
when the component is up and I(t) = 0 when the component is down. A
realization of the stochastic process {I(t) | t ≥ 0} is shown in Figure 6.15. Now
we define the instantaneous availability (or point availability) A(t) of a
component (or a system) as the probability that the component is properly
functioning at time t, that is, A(t) = P (I(t) = 1). Note that in the absence of
a repair or a replacement, availability A(t) is simply equal to the reliability
R(t) = 1 − W (t) of the component. The component may be functioning at
time t by reason of two mutually exclusive cases: either the component has not

1

0 t t t t t 1t
 2  3  4  5  6

t

t( )I

Figure 6.15. A realization of the I(t) process corresponding to Figure 6.14



Trim Size: 6.125in x 9.25in 60Trivedi c06.tex V3 - 05/23/2016 12:01pm Page 334�

� �

�

334 STOCHASTIC PROCESSES

failed from the beginning (no renewals in the period (0, t]) with the associated
probability R(t), or the last renewal (repair) occurred at time x, 0 < x < t,
and the component has continued to function since that time. The probability
associated with the second case is∫ t

0

R(t − x)d(x)dx .

Thus:

A(t) = R(t) +
∫ t

0

R(t − x)d(x)dx . (6.18)

By conditioning on the first renewal at time x, an alternative form for A(t)
can be derived:

A(t) = R(t) +
∫ t

0

A(t − x)dH (x). (6.19)

Here H(t) is a convolution of W and G:

H(t) =
∫ t

0

W (t − x)g(x)dx .

Note that the instantaneous availability is always greater than or equal to the
reliability. Taking Laplace transforms on both sides of equation (6.18), we get

LA(s) = LR(s) + LR(s)Ld(s)

= LR(s)[1 + Ld(s)]

= LR(s)
[
1 +

Lw(s)Lg(s)
1 − Lw(s)Lg(s)

]

=
LR(s)

1 − Lw(s)Lg(s)
,

using equation (6.16). Now, since R(t) = 1 − W (t):

LR(s) =
1
s
− LW (s)

=
1
s
− Lw(s)

s

=
1 − Lw(s)

s
.

Substituting, we get

LA(s) =
1 − Lw(s)

s[1 − Lw(s)Lg(s)]
. (6.20)
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If we are given the failure time and repair time distributions, this equation
enables us to compute the instantaneous availability A(t) as a function of time.

Often we are interested in the state of the system after a sufficiently long
time has elapsed. For this purpose, we define the limiting or steady-state avail-
ability (or simply availability) A as the limiting value of A(t) as t approaches
infinity. Here we point out another distinction between the notions of reliabil-
ity and availability. The “limiting reliability” is given by

lim
t→∞

R(t) = lim
t→∞

[1 − W (t)] = 0,

whereas the limiting availability limt→∞A(t) is usually nonzero.
In order to derive an expression for the limiting availability, we make use of

the following result, known as the final-value theorem of Laplace transforms.
Let H(t) =

∫ t

0
h(x)dx + H(0−). Then, using a table of Laplace transforms (see

Appendix D), we get

sLH(s) − H(0−) = Lh(s) =
∫ ∞

0

e−sth(t)dt

and hence

lim
s→0

sLH(s) =
∫ ∞

0

h(t)dt + H(0−)

= lim
t→∞

[∫ t

0

h(x)dx
]

+ H(0−) = lim
t→∞

H(t).

It follows that the limiting availability A is given by

A = lim
t→∞

A(t)

= lim
s→0

sLA(s).

Now for small values of s, the following approximations can be used [APOS
1974]:

e−st � 1 − st ,

so:

Lw(s) =
∫ ∞

0

e−stw(t)dt

�
∫ ∞

0

w(t)dt − s

∫ ∞

0

tw(t)dt

� 1 − s

λ
,
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where 1/λ is the mean time to failure (MTTF). Also

Lg(s) � 1 − s

μ

where 1/μ is the mean time to repair (MTTR).
Then the limiting availability is

A = lim
s→0

⎡
⎢⎢⎣ 1 −

(
1 − s

λ

)
1 −

(
1 − s

λ

)(
1 − s

μ

)
⎤
⎥⎥⎦

=

1
λ

1
λ

+
1
μ

=
MTTF

MTTF + MTTR
. (6.21)

The limiting unavailability is 1 − A = MTTR/(MTTF + MTTR). This shows
that the limiting unavailability depends only on the mean time to failure and
mean time to repair, and not on the nature of the distributions of failure times
and repair times.

Equation (6.21), for steady-state availability, can be derived without mak-
ing any distribution assumptions by applying the key renewal theorem with
V (t) = 1 − W (t).

Example 6.11

Assume exponential failure and repair time distributions. Then

w(t) = λe−λt,

g(t) = μe−μt,

Lw(s) =
λ

s + λ
,

Lg(s) =
μ

s + μ
,

and from equation (6.16) we have

Ld(s) =
Lw(s)Lg(s)

1 − Lw(s)Lg(s)

=
λμ

s[s + (λ + μ)]
.
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This can be rewritten as

Ld(s) =
λμ

(λ + μ)s
− λμ

(λ + μ)2
λ + μ

s + λ + μ
.

Inverting yields

d(t) =
λμ

λ + μ
− λμ

λ + μ
e−(λ+μ)t, t ≥ 0.

Thus the limiting rate of repairs is given by

lim
t→∞

d(t) =
λμ

λ + μ

=
1

MTTF + MTTR
.

Now, from equation (6.20), we get

LA(s) =

1 − λ

(s + λ)

s

[
1 − λμ

(s + λ)(s + μ)

]

=
s + μ

s[s + (λ + μ)]
.

The last expression can be rewritten as

LA(s) =

μ

(λ + μ)

s
+

λ

(λ + μ)

s + (λ + μ)
.

Inverting, we get

A(t) =
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t.

Sometimes we are interested in the expected fraction of time the component is up in
a given interval (0, t]. The interval (or average)availability AI(t) = 1

t

∫ t

0
A(x)dx

can be used for this purpose. With the given assumptions, we have the interval
availability:

AI(t) =
μ

λ + μ
+

λ

(μ + λ)2t
(1 − e−(λ+μ)t).

The limiting availability

A = lim
t→∞

AI(t) = lim
t→∞

A(t) =
μ

λ + μ

is exactly the value obtained by the earlier analysis based on a small value of s.
Values A(t), AI(t) and R(t) = e−λt are plotted as functions of time in Figure 6.16.
Note that the availability A(t) approaches the reliability R(t) as μ approaches zero;
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Figure 6.16. Reliability, instantaneous availability, interval availability, and limiting
availability as functions of time (λ = 0.1 and μ = 1.0)

thus in a nonmaintained system the notions of reliability, interval availability and
instantaneous availability are synonymous.

�

Example 6.12

For the workstation–file server (WFS) example, we studied its reliability in Chapter
3 (Example 3.21) and its mean time to failure in Chapter 4 (Example 4.16). Now
we study the availability for the WFS example. We consider the simple case of
two workstations and a single file server here. Assume that MTTF of an individual
workstation is MTTFw and that of a file server is MTTFf . Let MTTRw and MTTRf

denote their respective mean times to repair. Then using the reliability block diagram
(Figure 3.30) the limiting availability of the WFS system is given by

ASS = [1 − (1 − Aw)2]Af

where Aw = MTTFw/(MTTFw + MTTRw) is the limiting availability of the work-
station and Af = MTTFf/(MTTFf + MTTRf ) is the limiting availability of the
file server. Note that no distributional assumption was made above. The main
assumption is that of independent failures and independent repairs. If we make
the assumption that times to failure and times to repair are all exponentially dis-
tributed, then the instantaneous availabilities for the workstation and the file server
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are given by

Aw(t) =
μw

λw + μw

+
λw

λw + μw

e−(λw+μw)t

and

Af (t) =
μf

λf + μf

+
λf

λf + μf

e−(λf +μf )t,

where λw = 1/MTTFw, λf = 1/MTTFf , μw = 1/MTTRw and μf = 1/MTTRf .
Retaining the independence assumption, system instantaneous availability is
given by

A(t) = [1 − (1 − Aw(t))2]Af (t)

=

[
1 − (1 − μw

λw + μw

− λw

λw + μw

e−(λw+μw)t)2
]

×
(

μf

λf + μf

+
λf

λf + μf

e−(λf +μf )t

)

and the interval availability can then be obtained by

AI(t) =
1

t

∫ t

0

A(x)dx .

�

Example 6.13 (Random-Request Availability) [LEE 2000]

As an extension of Example 6.11, we consider a repairable system that processes a
stream of jobs or tasks arriving randomly during a fixed mission of length T . For
such a system Lee [LEE 2000] proposed a new availability measure, random-request
availability, which is built on three basic elements: random task arrivals, system
state, and operational requirements of the system.

A nonhomogeneous Poisson process with mean value function, m(T )
(=
∫ T

0
λ(t)dt), was assumed to model the random task arrivals. If no tasks arrive

during the entire mission, the mission is considered to be a success (case a).
Alternatively, one or more tasks arrive during the mission (case b). The system was
assumed to have up and down states as shown in Figure 6.15. Therefore, at each
task arrival time the system can be in one of two states: up or down. For the three
types of operational requirements of the system, namely, perfect, r(n)-out-of-n, and
scoring systems, the random-request availabilities A(t1, t2, . . . , tn) are first defined
for fixed task arrival times t1, t2, . . . , tn.

• Perfect system: A(t1, t2, . . . , tn) is defined by the probability that the system
is up at every task arrival time t1, t2, . . . , tn.

• r(n)-out-of-n system: A(t1, t2, . . . , tn) is defined by the probability that the
system is up at the time of at least r(n) task arrival times out of n task
arrivals.
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• Scoring system: A(t1, t2, . . . , tn) is defined by the sum of the products from
the probability of the system being up at j out of n task arrival times and the
score sj,n. A score sj,n denotes the probability of successful completion of the
mission.

Now the random-request availabilities for mission of length T , for cases a and b
can be expressed as:

Aa(T ) = exp [−m(T )] +
∞∑

n=1

[
exp [−m(T )]

[m(T )]n

n!

×
∫ ∫

· · ·
∫

0≤t1<t2<. . .<tn≤T

A(t1, t2, . . . , tn)f(t1, t2, . . . , tn | N(T ) = n)dt1dt2 . . . dtn

]

and

Ab(T ) =
Aa(T ) − exp [−m(T )]

1 − exp [−m(T )]
,

where f(t1, t2, . . . , tn | N(T ) = n) is the conditional joint pdf of the task arrival
times, given N(T ) = n (n = 1, 2, . . .). It can be expressed as (n!/[m(T )]n)

∏n
i=1

λ(ti), 0 ≤ t1 < t2 < · · · < tn ≤ T , based on an extension of Theorem 6.1 to the
nonhomogeneous Poisson process with mean-value function m(T ).

Using the Markov and time-homogeneous properties and following the procedure
to derive A(t) of Example 6.11, A(t1, t2, . . . , tn) can be easily obtained for each of
the three systems. For instance, given n = 2, r(2) = 1, and sj,2 = j/2, A(t1, t2) is
shown in Table 6.2.

�

Problems

1. Return to the base repeater problem of problem 7 in section 1.10. From the fault
tree model, derive the expression of steady-state system availability by assuming
independent repair.

2. You are given a system with n components. The mean time between failures for
each component is 100 h and the mean time to repair is 5 h, and each component
has its own repair facility. Derive expressions for the limiting availability of the
system when

(a) All n components are required for the system to function.

(b) At least one of the n components should function for the system to function
correctly.

Now, assuming that the times to failure and the times to repair for each compo-
nent are exponentially distributed, write down expressions for the instantaneous
availability and the interval availability for both the cases above.

3. � Following the development of Section 6.6, derive an expression for A(t), AI(t)
and A, assuming

(a) Ti ∼ EXP(λ) but the repair times D1, D2, . . . are constant at 1/μ.

(b) T1, T2, . . . are two-stage Erlang and Di ∼ EXP(μ).
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TABLE 6.2. Random-request Availability, A(t1, t2)

System types A(t1, t2)

Perfect

(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t1

)(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)(t2−t1)

)

r(n)-

(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t1

)(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)(t2−t1)

)

out-of-n +

(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t1

)(
λ

λ + μ
− λ

λ + μ
e−(λ+μ)(t2−t1)

)

+

(
λ

λ + μ
− λ

λ + μ
e−(λ+μ)t1

)(
μ

λ + μ
− μ

λ + μ
e−(λ+μ)(t2−t1)

)

Scoring
1

2

{(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t1

)(
λ

λ + μ
− λ

λ + μ
e−(λ+μ)(t2−t1)

)

+

(
λ

λ + μ
− λ

λ + μ
e−(λ+μ)t1

)(
μ

λ + μ
− μ

λ + μ
e−(λ+μ)(t2−t1)

)}

+1.0

(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t1

)(
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)(t2−t1)

)

4. Define Uc(t) =
∫ c+t

c
I(τ)dτ as the cumulative uptime in the interval (c, c + t], and

let Dc(t) be the cumulative downtime in the interval (c, c + t]. Under the assump-
tion of Ti ∼ EXP(λ) and Di ∼ EXP(μ), write down expressions for E[Uc(t)]
and E[Dc(t)]. Show that limiting values (as c → ∞) of E[Uc(t)] and E[Dc(t)],
respectively, are At and (1 − A)t.

5. Assuming respective steady-state availabilities of .99, .999, .9999, .99999, and
.999999, compute the limiting expected downtime (in minutes) for an interval of
duration one year.

6. Let Ai denote the steady-state unavailability of a component. Then, for a series
system of n independent components, show that:

A = 1 −
n∏

i=1

Ai

= A1 +

n∑
i=2

A1A2...Ai−1Ai

≤ A1 +

n∑
i=2

Ai =

n∑
i=1

Ai

[Hint: Use the principle of mathematical induction.]
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7. Recall Problem 6 at the end of Section 1.10. Assuming that λc and λv are respec-
tive failure rates of a control channel and a voice channel, and that μc and μv

are corresponding repair rates, write down expressions for the steady-state and
the instantaneous availabilities for the system.

8. Assuming that λi, (i ∈ {x, p, d, c}) are respective failure rates of an XCVR, a
pass-thru, a duplexer, and a combiner, and μi, (i ∈ {x, p, d, c}) are corresponding
repair rates, write down expressions for the steady-state and the instantaneous
availabilities for the system discussed in Example 1.21.

9. Consider a repairable system that processes jobs arriving randomly during a fixed
mission duration, as discussed in Example 6.13. Use the following parameters:

• Two types of job arrivals with arrival rate

λ1(t) = 0.014t and

λ2(t) = 0.14 − 0.014t

• T = 10

• λ = 1
2

and μ = 3

• r(n) =

{
[n/2], for an even n,
[n/2] + 1, for an odd n,

,

sj,n = j/n.

(a) Assuming the system is up at time 0, calculate the random-request avail-
abilities Aa(T ) and Ab(T ) for the two different job arrival patterns for three
types of systems: perfect, r(n)-out-of-n, and scoring system. Show that job
arrival with rate λ2(t) gives the higher random-request availabilities than
that with the rate λ1(t).

(b) Assuming the system is down at time 0, repeat the calculations of Aa(T )
and Ab(T ) as in part (a). Show that job arrivals with rate λ1(t) produce
higher random-request availabilities than that with rate λ2(t).

(c) Interpret the results of part (a) and (b).

6.7 RANDOM INCIDENCE

We have noted that the first-order interevent times of a renewal counting pro-
cess are independent identically distributed random variables with the density
fX(x). Now consider the experiment of random incidence where we pick
a random time instant and wait until the occurrence of the next event. Let
the random variable Y denote the waiting time until the next event following
random entry (see Figure 6.17). Y is often called the residual lifetime or
the forward recurrence time. Let T be the time of the random entry mea-
sured from the last event. The random variable T is known as the backward
recurrence time. For the special case of a Poisson process, X is exponentially
distributed and the memoryless property implies that Y is also exponentially
distributed. We are interested in deriving the density function fY (y) of the
residual lifetime for the general renewal counting process.



Trim Size: 6.125in x 9.25in 60Trivedi c06.tex V3 - 05/23/2016 12:01pm Page 343�

� �

�

6.7 RANDOM INCIDENCE 343

Ai

A A
A A

τ τ τ τ

t

YT

W

1 2

n-1 n

1 2 n-1 n

at time t
Random incidence
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Figure 6.17. Random incidence

We proceed to obtain the density fY (y) in two steps. First we compute the
density of the random variable W , denoting the length of the interevent time
into which we enter by random incidence. Having obtained fW (w), we next
compute the conditional density fY |W . From these two densities we can obtain
the joint density fW,Y and subsequently the marginal (or the unconditional)
density fY (y).

Since both W and X are first-order interevent times, we may be tempted
to conclude that they have the same distributions. In fact, W and X do not
have identical distributions, since the experiments on which they are defined
are different. The interevent interval W in which our random entry occurs is
not a typical interval. A long interval is more likely to be “intercepted” than
a short one. We assume that the probability that our random entry falls in
an interevent gap of length w is proportional to the gap length w, and to the
relative occurrence of such intervals [which is given by fX(w)dw ]. Then

fW (w)dw =
wfX(w)dw

E[X]
,

where the denominator provides the normalization factor. Thus the density
of W is given by

fW (w) =
wfX(w)
E[X]

=
wfX(w)∫ ∞

0
xfX(x)dx

. (6.22)

Example 6.14

Assume that X is exponentially distributed so that

fX(x) = λe−λx, x > 0.
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Then, using equation (6.22), we obtain

fW (w) =
wλe−λw

1

λ

= λ2we−λw, w > 0.

Thus W has the two-stage Erlang distribution. The expected value of W is E[W ] =
2/λ, which is twice as large as E[X]. This confirms the assumption that the larger
values of w are more likely to be “intercepted” by the random entry. We could have
obtained this result from the memoryless property of the exponential distribution by
observing that both the forward and the backward recurrence times have exponential
distributions with parameter λ and W is the sum of these two independent random
variables.

�

Next we proceed to determine the conditional density of the residual life-
time. Assume that an interevent gap of duration w is intercepted by the
random entry. Since a randomly chosen point is selected in this interval, it
must be uniformly distributed. Thus

fY |W (y|w) =
{

1/w, 0 < y ≤ w,
0, otherwise.

Now using formula (6.22), we get the joint density:

fW,Y (w, y) = fW (w)fY |W (y|w)

=
wfX(w)
wE [X]

=
fX(w)
E[X]

, 0 < y ≤ w < ∞.

Remembering that y ≤ w, and integrating with respect to w, we get

fY (y) =
∫ ∞

w=y

fX(w)dw
E[X]

=
1 − FX(y)

E[X]

=
RX(y)
E[X]

. (6.23)

For the special case of the Poisson process

fX(y) = λe−λy
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and from equation (6.23)

fY (y) =
e−λy

1/λ

= λe−λy

= fX(y),

confirming our earlier derivation of the memoryless property! Using a
very similar procedure, we can show that the distribution of the backward
recurrence time T is identical to the distribution of the forward recurrence
time Y .

Our discussion has been directed to continuous-time renewal processes.
Corresponding results for discrete-time renewal processes can be easily
derived. For example, the discrete analog of equation (6.22) is the pmf:

p
W

(w) =
wp

X
(w)

E[X]
. (6.24)

The discrete analog of equation (6.23) is

pY (y) =
1 − FX(y)

E[X]
. (6.25)

Problems

1. � We have shown that if two independent Poisson streams are merged, we still
get a Poisson stream. Now consider two independent renewal counting processes
N1(t) and N2(t) being merged into the process N(t) [SEVC 1977]. Let the under-
lying distribution functions be FX1

, FX2
, and FX . First show that, conditioned

on the fact that the last event in the output stream was contributed by the first
stream, the time to next event in the output stream is the minimum of X1 and
Y2 = Y (X2), where Y (X2) is the residual time to next event in input stream 2.
Next show that x

FX(t) =
E[X2]FZ1

(t) + E[X1]FZ2
(t)

E[X1] + E[X2]

where

FZ1
(t) = FX1

(t) +
1 − FX1

(t)

E[X2]

∫ t

0

[1 − FX2
(x)]dx

and

FZ2
(t) = FX2

(t) +
1 − FX2

(t)

E[X1]

∫ t

0

[1 − FX1
(x)]dx .
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2. Using the results of problem 1, verify that the result of merging two independent
Poisson processes produces a Poisson process.

3. Derive equations (6.24) and (6.25).

6.8 RENEWAL MODEL OF PROGRAM BEHAVIOR

We are interested in modeling the memory-referencing behavior of a program
executing in a paged virtual memory system. Let N = {1, 2, . . . , n} denote
the logical address space of an n-page program. For the present model, the
dynamic behavior of the program is captured by the reference string w, which
has the following sequence:

w = r1 r2 · · · rt · · · ,

where each rt is in N . If rt = i then a reference is made to the page indexed
by i at the tth reference. Clearly, the reference string w is a discrete-time,
discrete-state stochastic process.

It is convenient to decompose the stochastic process w into n distinct
stochastic processes. For the ith stochastic process (i = 1, 2, . . . , n) , the
event of interest is a reference to the ith page. Assume that the time
intervals between references to page i are independent identically distributed
random variables with distribution function Fi. Let Xij denote the time
between the jth and the (j − 1)st reference to page i. Then for each
i = 1, 2, . . . , n, {Xij | j = 1, 2, . . .} is a discrete-time renewal process with
underlying distribution Fi. We assume that the n renewal processes are
independent.

The first-order interevent times of the ith renewal process are interpreted
as the interreference intervals for the ith page. Fi(t) and p

i
(t) are the corre-

sponding interreference distribution and interreference pmf. The mean inter-
reference interval for page i is given by

E[Xi] =
∑

x

xp
i
(x).

Let di(t) denote the renewal pmf of the ith process, that is, di(t) is the prob-
ability of a reference to page i at time t. By using the discrete analog of the
key renewal theorem, we obtain the asymptotic value of the renewal rate:

di =
1

E[Xi]
. (6.26)

Here di may be interpreted as the long-term average number of references to
page i per unit time. We impose the normalizing condition

n∑
i=1

di(t) = 1, t ≥ 0 (6.27)

which assures that one reference (to some page) occurs at every time instant t.
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Virtual memory systems usually retain only a portion of a program’s log-
ical address space in main memory. For each instant of time, the subset of
the address space to retain in main memory is determined by the paging
algorithm. A popular paging algorithm is the working-set (WS) algorithm,
which we shall analyze [COFF 1973].

A program’s working set W (t, τ) at time t is defined to be the set of distinct
pages referenced in the time interval (t − τ, t]. For t < τ,W (t, τ) contains the
distinct pages among r1, r2, . . . , rt. The parameter τ is known as the window
size. The working-set (WS) paging algorithm assures us that a program’s
working set at time t is in main memory at time t. Now if the next page
to be referenced is not in the working set [i.e., rt+1 /∈ W (t, τ)], then a page
fault is said to have occurred. Following a page fault, the required page will
be loaded by the operating system. Let w(t, τ) be the size of the working set
W (t, τ). Important measures of the WS algorithm are the asymptotic average
working-set size s(τ):

s(τ) = lim
t→∞

E[w(t, τ)]

and the asymptotic average page-fault rate q(τ).
To compute the average working-set size s(τ), consider a random incidence

in an interreference interval of page i. Let Ti be the backward recurrence time.
Then, using (the backward analogue of) equation (6.25), we obtain the pmf
of Ti as

p
Ti

(j) =
1 − Fi(j)

E[Xi]
. (6.28)

Given a window size τ , the probability that page i is in memory (i.e., in the
working set) at the time of random entry is given by

P [Ti < τ ] =
τ−1∑
j=0

p
Ti

(j)

=
τ−1∑
j=0

1 − Fi(j)
E[Xi]

. (6.29)

Define the indicator random variable Yit= “page i is in memory at time t.”
Then the expected value of Yit is given by E[Yit ] = P [Yit = 1] which, in the
limit, equals P [Ti < τ ]. Now the average working-set size is

s(τ) =
n∑

i=1

P [Ti < τ ]

=
n∑

i=1

τ−1∑
j=0

1 − Fi(j)
E[Xi]

. (6.30)
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To compute the average page-fault rate q(τ), we first compute the condi-
tional probability of a page fault given that the ith page is referenced at time
t. The required probability is 1 − Fi(τ), since this is the probability that the
interreference interval of the page exceeds the window size, that is, the page
has not been referenced during the last τ references. Thus

P [“page fault at time t” | rt = i] = 1 − Fi(τ).

Using the theorem of total probability, we obtain

P [“page fault at time t”] =
n∑

i=1

[1 − Fi(τ)]P (rt = i)

=
n∑

i=1

[1 − Fi(τ)]di(t).

Taking the limit as t approaches infinity, the left-hand side is the asymptotic
average page-fault rate q(τ), and, using equation (6.26), we get

q(τ) =
n∑

i=1

di[1 − Fi(τ)] =
n∑

i=1

1 − Fi(τ)
E[Xi]

. (6.31)
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Chapter 7

Discrete-Time Markov Chains

7.1 INTRODUCTION

A Markov process is a stochastic process whose dynamic behavior is such
that probability distributions for its future development depend only on
the present state and not on how the process arrived in that state. If we
assume that the state space, I, is discrete (finite or countably infinite), then
the Markov process is known as a Markov chain. If we further assume
that the parameter space, T , is also discrete, then we have a discrete-time
Markov chain (DTMC). Such processes are the subject of this chapter.
Since the parameter space is discrete, we will let T = {0, 1, 2, . . .} without
loss of generality.

We choose to observe the state of a system at a discrete set of time points.
The successive observations define the random variables X0, X1, X2, . . ., Xn,
. . ., at time steps 0, 1, 2, . . . , n, . . ., respectively. If Xn = j, then the state of the
system at time step n is j. X0 is the initial state of the system. The Markov
property can then be succinctly stated as

P (Xn = in |X0 = i0,X1 = i1, . . . , Xn−1 = in−1)

= P (Xn = in |Xn−1 = in−1). (7.1)

Intuitively, equation (7.1) implies that given the “present” state of the system,
the “future” is independent of its “past.”

We let p
j
(n) denote the pmf of the random variable Xn

p
j
(n) = P (Xn = j). (7.2)

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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and let the conditional pmf:

pjk (m,n) = P (Xn = k |Xm = j), 0 ≤ m ≤ n (7.3)

denote the probability that the process makes a transition from state j at
step m to state k at step n. Thus, pjk (m,n) is known as the transition
probability function of the Markov chain. We will only be concerned with
homogeneous Markov chains—those in which pjk (m,n) depends only on
the difference n − m (in this case, the Markov chain is said to have stationary
transition probabilities). For such chains, we use the simpler notation

pjk (n) = P (Xm+n = k |Xm = j) (7.4)

to denote the n-step transition probabilities. In words, pjk (n) is the prob-
ability that a homogeneous Markov chain will move from state j to state k in
exactly n steps. The one-step transition probabilities pjk (1) are simply written
as pjk , thus:

pjk = pjk (1) = P (Xn = k |Xn−1 = j), n ≥ 1. (7.5)

It is convenient to define 0-step transition probabilities by

pjk (0) =
{

1, if j = k,
0, otherwise.

Since equation (7.1) holds for all values of n, we can use the generalized
multiplication rule (GMR of Chapter 1) to obtain the joint probability:

P (X0 = i0,X1 = i1, . . . , Xn = in)

= P (X0 = i0,X1 = i1, . . . , Xn−1 = in−1)

· P (Xn = in |X0 = i0, . . . , Xn−1 = in−1)

= P (X0 = i0,X1 = i1, . . . , Xn−1 = in−1)

· P (Xn = in |Xn−1 = in−1)

= P (X0 = i0,X1 = i1, . . . , Xn−1 = in−1)pin−1,in

...

= pi0
(0)pi0,i1

· · · pin−1,in
. (7.6)

This implies that all joint probabilities of interest are determined from the
initial pmf pi0

(0) = P (X0 = i0), and the one-step transition probabilities p
ij
.

The pmf of the random variable X0, often called the initial probability
vector, is specified as

p(0) = [p
0
(0), p

1
(0), . . .].
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The one-step transition probabilities are compactly specified in the form of a
transition probability matrix:

P = [p
ij
] =

⎡
⎢⎣p00 p01 p02 · ·

p10 p11 p12 · ·
...

...
...

...
...

⎤
⎥⎦ .

The entries of the matrix P satisfy the following two properties:

0 ≤ p
ij
≤ 1, i, j ∈ I; and

∑
j∈I

p
ij

= 1, i ∈ I.

Any such square matrix that has nonnegative entries with row sums all equal
to unity is called a stochastic matrix.

An equivalent description of the one-step transition probabilities can be
given by a directed graph called the state-transition diagram (state diagram,
for short) of the Markov chain. A node labeled i of the state diagram represents
state i of the Markov chain and a branch labeled p

ij
from node i to j implies

that the conditional probability (or the one-step transition probability) is

P (Xn = j |Xn−1 = i) = p
ij
.

In order to derive useful performance measures from a DTMC, we assign a
reward ri to each state i of the DTMC. Then Zn = rXn

is the instantaneous
reward at step n and Yn =

∑n−1
k=0 Zk is the accumulated reward in the interval

[0, n).

Example 7.1

We observe the state of a system (or a component) at discrete points in time. We
say that the system is in state 0 if it is operational. If the system is undergoing
repair (following a breakdown), then the system state is denoted by state 1. If we
assume that the system possesses the Markov property, then we have a two-state
discrete-time Markov chain (see Figure 7.1). Further assuming that the Markov
chain is homogeneous, we could specify its transition probability matrix by

P =

[
1 − a a

b 1 − b

]
, 0 ≤ a, b ≤ 1.

The actual values of the entries will have to be estimated from the measurements
made on the system using statistical techniques (see Chapter 10).

�

Example 7.2

Another example of a two-state Markov chain is provided by a communication net
consisting of a sequence (or a cascade) of stages of binary communication channels.
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0 1

1–b1–a

a

b

Figure 7.1. The state diagram of a two-state Markov chain

1–b

1–a

a b

Xn–1 = 0

Xn–1 = 1

Xn = 0

Xn = 1

Figure 7.2. A channel diagram

Here Xn denotes the digit leaving the nth stage of the system and X0 denotes
the digit entering the first stage. Assume that the binary communication channels
are stochastically identical. The transition probability matrix of the corresponding
Markov chain of the communication net can be read off from the channel diagram
(see Figure 7.2).

�

Example 7.3

Consider a sequence of successive software runs at discrete points in time. Each
software run has two possible outcomes: success and failure. Associate with the nth
software run a binary valued random variable Xn that distinguishes whether the
outcome of that particular run resulted in success or failure:

Xn =

{
0 denotes a success on the nth run
1 denotes a failure on the nth run.

The standard way of looking at the sequence of software runs {Xn, n ≥ 0} is to con-
sider it as a sequence of independent Bernoulli trials, where each trial has probability
of success P (Xn = 0) = p and probability of failure P (Xn = 1) = 1 − p = q.

The software reliability modeling framework proposed by Goševa-Popstojanova
and Trivedi [GOSE 2000] extends the classical software reliability theory in order to
consider a sequence of possibly dependent software runs, that is, failure correlation.
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Suppose that the outcome of each run depends on the outcome of the previous run.
Then a sequence of software runs is defined as a sequence of dependent Bernoulli
trials where the occurrence of a failure at any particular run depends on the outcome
of the previous run:

P (Xn+1 = 1 |Xn = 0) = 1 − p,
P (Xn+1 = 1 |Xn = 1) = q.

The sequence of dependent Bernoulli trials {Xn} defines a discrete-time Markov
chain with two states. One of the states denoted by 0 is regarded as success, and the
other denoted by 1 as failure. Assuming that the software is not changing, that is,
the Markov chain is homogeneous, the transition probability matrix is specified by

P =

[
p 1 − p

1 − q q

]
, 0 ≤ p, q ≤ 1. (7.7)

The unconditional probability of failure on the (n + 1)st run is

P (Xn+1 = 1) = P (Xn+1 = 1, Xn = 1) + P (Xn+1 = 1, Xn = 0) (7.8)

= P (Xn+1 = 1 |Xn = 1) P (Xn = 1)

+P (Xn+1 = 1 |Xn = 0) P (Xn = 0)

= q P (Xn = 1) + (1 − p) P (Xn = 0)

= q P (Xn = 1) + (1 − p) [1 − P (Xn = 1)]

= (1 − p) + (p + q − 1) P (Xn = 1). (7.9)

In the special case when q = 1 − p, the Markov chain describes a sequence of
independent Bernoulli trials. In that case the equation (7.9) reduces to P (Xn+1 = 1)
= 1 − p = q, which means that the occurrence of failure at any run does not depend
on the outcome of the previous run. Thus, subsequent runs are independent with
probabilities p and q = 1 − p of being a success and failure.

If q �= 1 − p then the discrete-time Markov chain describes the sequence of depen-
dent Bernoulli trials that accommodates dependence among successive runs. In this
case the outcome of the software run (success or failure) depends on the outcome of
the previous run as in equation (7.9). When q > 1 − p runs are positively correlated,
that is, if software failure occurs in the nth run, there would be an increased chance
that another failure will occur in the next run. It is obvious that in this case failures
occur in clusters. When q < 1 − p successive software runs are negatively correlated.
In other words, if software failure occurs in the nth run, there would be an increased
chance that a success will occur in (n + 1)st run, that is, there is a lack of clustering.

If we focus attention on failures and score 1 each time a failure occurs and 0
otherwise, then the accumulated reward Ym = X0 + X1 + . . . + Xm−1 is the number
of runs that have resulted in a failure among m successive software runs. Here we
define X0 = 0. If q = 1 − p, the number of failures in m runs Ym is a sum of m
mutually independent Bernoulli random variables and has binomial pmf as shown
in Chapter 6. When q �= 1 − p, the pmf of Ym can be derived using the observation
that each visit to a given state of the discrete-time Markov chain is a possibly delayed
recurrent event [FELL 1968].

�
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7.2 COMPUTATION OF n-STEP TRANSITION
PROBABILITIES

We are interested in obtaining an expression for evaluating the n-step transi-
tion probability p

ij
(n) from the one-step transition probabilities p

ij
(1) = p

ij
.

Recall that
p

ij
(n) = P (Xm+n = j |Xm = i).

Now the probability that the process goes to state k at the mth step, given
that X0 = i, is pik (m); and the probability that the process reaches state j
at step (m + n), given that Xm = k, is given by pkj (n). The Markov property
implies that these two events are independent. Now, using the theorem of
total probability (or the fact that the chain must be in some state at step m),
we get

p
ij
(m + n) =

∑
k

pik (m)pkj (n). (7.10)

This equation is one form of the well-known Chapman–Kolmogorov
equation, which provides an efficient means of calculating the n-step
transition probabilities. This equation need not apply to the more general
stochastic processes discussed in Chapter 6.

If we let P (n) be the matrix whose (i, j) entry is p
ij
(n), that is, let P (n)

be the matrix of n-step transition probabilities, then we can write equation
(7.10) in matrix form (with m = 1 and n replaced by n − 1):

P (n) = P · P (n − 1) = P n. (7.11)

Thus the matrix of n-step transition probabilities is obtained by multiplying
the matrix of one-step transition probabilities by itself n − 1 times. In other
words, the problem of finding the n-step transition probabilities is reduced to
one of forming powers of a given matrix. It should be clear that the matrix
P (n) consists of probabilities and its row sums are equal to unity, so it is a
stochastic matrix (see problem 4 at the end of this section).

We can obtain the (marginal) pmf of the random variable Xn from the
n-step transition probabilities and the initial probability vector as follows:

p
j
(n) = P (Xn = j) =

∑
i

P (X0 = i)P (Xn = j |X0 = i) (7.12)

=
∑

i

p
i
(0)p

ij
(n).

If the pmf of Xn (the state of the system at time n) is expressed as the row
vector

p(n) = [p
0
(n), p

1
(n), . . . , p

j
(n), . . .],
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then, from (7.12), we get

p(n) = p(0)P (n),

and from (7.11) we have
p(n) = p(0)P n. (7.13)

This implies that step-dependent probability vectors of a homogeneous
Markov chain are completely determined from the one-step transition
probability matrix P and the initial probability vector p(0).

If the state space I of a Markov chain {Xn} is finite, then computing P n

is relatively straightforward, and an expression for the pmf of Xn (for n ≥ 0)
can be obtained using equation (7.13). For Markov chains with a countably
infinite state space, computation of P n poses problems. Therefore, alterna-
tive methods for determining the asymptotic behavior (i.e., as n approaches
infinity) of P n and p(n) have been developed (see Sections 7.3, 7.7, and 7.8).

To illustrate, we will compute P n for the two-state Markov chain of
Examples 7.1 and 7.2, with the transition probability matrix P given by

P =
[
1 − a a

b 1 − b

]
, 0 ≤ a, b ≤ 1.

A graphical description of the Markov chain is provided by its state diagram
shown in Figure 7.1.

The following theorem gives an explicit expression for P n and hence for
p(n). We will impose the condition | 1 − a − b | < 1 on the one-step transition
probabilities. Since a and b are probabilities, this last condition can be violated
only if a = b = 0 or a = b = 1. These two cases will be treated separately.

THEOREM 7.1. Given a two state Markov chain with the
transition probability matrix

P =
[
1 − a a

b 1 − b

]
, 0 ≤ a, b ≤ 1, | 1 − a − b | < 1, (7.14)

the n-step transition probability matrix P (n) = P n is given by

P (n) =

⎡
⎢⎢⎣

b + a(1 − a − b)n

a + b

a − a(1 − a − b)n

a + b
b − b(1 − a − b)n

a + b

a + b(1 − a − b)n

a + b

⎤
⎥⎥⎦ .

Proof: It is common to give a proof by induction, but we prefer a con-
structive proof here [BHAT 1984]. Note that

p00(1) = p00 = 1 − a, p01(1) = p01 = a,
p10(1) = p10 = b, p11(1) = p11 = 1 − b.
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Using equation (7.10), we get

p00(1) = 1 − a,

p00(n) = (1 − a)p00(n − 1) + bp01(n − 1), n > 1. (7.15)

Now since the row sums of P n−1 are unity, we have

p01(n − 1) = 1 − p00(n − 1),

hence (7.15) reduces to

p00(1) = 1 − a,

p00(n) = b + (1 − a − b)p00(n − 1), n > 1. (7.16)

This implies that

p00(n) = b + b(1 − a − b) + b(1 − a − b)2 + · · ·

+ b(1 − a − b)n−2 + (1 − a)(1 − a − b)n−1

= b

[
n−2∑
k=0

(1 − a − b)k

]
+ (1 − a)(1 − a − b)n−1.

By the formula for the sum of a finite geometric series, we obtain

n−2∑
k=0

(1 − a − b)k =
1 − (1 − a − b)n−1

1 − (1 − a − b)
=

1 − (1 − a − b)n−1

a + b
.

Thus we get

p00(n) =
b

a + b
+

a(1 − a − b)n

a + b
.

Now p01(n) can be obtained by subtracting p00(n) from unity. Expres-
sions for the two remaining entries can be derived in a similar way.
Students familiar with determinants, however, can use the following
simpler derivation.

Since det (P ) = 1 − a − b, det (P n) = (1 − a − b)n, but since P n is a
stochastic matrix, we have

det(P n) = p00(n) − p10(n),

so
p10(n) = p00(n) − (1 − a − b)n.

Finally
p11(n) = 1 − p10(n).
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Example 7.4

Consider a cascade of binary communication channels as in Example 7.2. Assume
that a = 1

4
and b = 1

2
. Then, since | 1 − a − b | = 1

4
< 1, Theorem 7.1 applies, and

P (n) = P n =

⎡
⎣ 2

3
+ 1

3
( 1
4
)n 1

3
− 1

3
( 1
4
)n

2
3
− 2

3
( 1
4
)n 1

3
+ 2

3
( 1
4
)n

⎤
⎦ , n ≥ 0.

Since:
P (X2 = 1 |X0 = 1) = p11(2) = 3

8

and
P (X3 = 1 |X0 = 1) = p11(3) = 11

32
,

a digit entering the system as a 1(X0 = 1) has probability 3
8

of being correctly
transmitted over two stages and probability 11

32
of being correctly transmitted over

three stages.
Assuming the initial probabilities, P (X0 = 0) = 1

3
and P (X0 = 1) = 2

3
(i.e.,

p(0) = [ 1
3
, 2

3
]) we get

p(n) = p(0)P n =
[

2
3
− 1

3

(
1
4

)n
, 1

3
+ 2

3

(
1
4

)n]
.

It is interesting to observe that the two rows of P n match in their corresponding
elements in the limit n → ∞, and that p(n) approaches ( 2

3
, 1

3
) as n approaches

infinity. In other words, the pmf of Xn becomes independent of n for large values
of n. Furthermore, we can verify that with any other initial probability vector, the
same limiting pmf of p(n) is obtained. This important property of some Markov
chains will be studied in the next section.

�

Example 7.5

Now we consider a cascade of error-free binary communication channels, that is,
a = b = 0. Clearly, | 1 − a − b | =1, and therefore Theorem 7.1 does not apply. The
transition probability matrix P is the identity matrix:

P =

[
1 0
0 1

]
.

The state diagram is shown in Figure 7.3. The two states do not communicate with
each other. P n is easily seen to be the identity matrix. In other words, the chain
never changes state, and a transmitted digit is correctly received after an arbitrary
number (n) of stages.

�
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0 1

11

Figure 7.3. The state diagram of the two-state Markov chain of Example 7.5

0 1

1

1

Figure 7.4. The state diagram of a two-state periodic Markov chain

Example 7.6

Consider a cascade of binary channels that are so noisy that the digit transmitted
is always complemented. In other words, a = b = 1. Once again, Theorem 7.1 does
not apply. The matrix P is given by

P =

[
0 1
1 0

]

and the state diagram is given in Figure 7.4. It can be verified by induction that

P n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 0
0 1

]
, if n is even,

[
0 1
1 0

]
, if n is odd.

This Markov chain has an interesting behavior. Starting in state 0 (or 1), we return
to state 0 (state 1) after an even number of steps. Therefore, the time between visits
to a given state exhibits a periodic behavior. Such a chain is called a periodic
Markov chain (with period 2). (Formal definitions are given in the next section.)

�

Example 7.7

Returning to Example 7.3, we now consider the boundary cases when equality in
equation (7.7) holds. First, consider the case when p = q = 1. This means that if
the sequence of software runs starts with failure, all successive runs will fail; or if
it starts with success, all successive runs will succeed—that is, the Markov chain
remains forever in its initial state as shown in Figure 7.3. Next, when p = q = 0, the
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outcomes of software runs alternate deterministically between success and failure
(as in Figure 7.4); that is, the Markov chain is periodic.

Since the boundary cases are somewhat trivial with no practical interest, the
condition 0 < p, q < 1 is imposed on transition probabilities, which means that the
Markov chain considered here is irreducible and aperiodic. (Formal definitions are
given in the next section.)

�

Problems

1. For a cascade of binary communication channels, let P (X0 = 1) = α and
P (X0 = 0) = 1 − α, α ≥ 0, and assume that a = b. Compute the probability
that a 1 was transmitted, given that a 1 was received after the nth stage; that
is, compute:

P (X0 = 1 |Xn = 1).

2. Refer to the Clarke–Disney text [CLAR 1970]. Modify the system of Example
7.1 so that the operating state 0 is split into two states: (a) running and (b) idle.
We observe the system only when it changes state. Define Xn as the state of the
system after the nth state change, so that

Xn =

⎧⎨
⎩

0, if system is running,
1, if system is under repair,
2, if system is idle.

Assume that the matrix P is

P =

⎡
⎣0 1

2
1
2

1 0 0
1 0 0

⎤
⎦ .

Draw the state diagram and compute the matrix P n.

3. Define the vector z transform (generating function):

Gp(z) =

∞∑
n=0

p(n)zn.

Show that

(a) Gp(z) = p(0)[I − zP ]−1, where I is the identity matrix. Thus P n is the

coefficient of zn in the matrix power-series expansion of (I − zP)−1.

(b) Using the result obtained above, give an alternative proof of Theorem 7.1.

4. Using equation (7.10) and the principle of mathematical induction, show that∑
j

p
ij
(n) = 1 for all i.

5. Rewrite equation (7.13) so that only vector-matrix multiplications are involved.
Do complexity analysis and write a program to compute p(n). (First assume that
the matrix P is a full matrix, then assume that the matrix P is sparse.)
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7.3 STATE CLASSIFICATION AND LIMITING
PROBABILITIES

We observed an interesting property of the two-state Markov chain of Example
7.4, in the last section. As n → ∞, the n-step transition probabilities p

ij
(n)

become independent of both n and i. In other words, all rows of matrix P n

converge toward a common limit (as vectors; i.e., matching in correspond-
ing elements). Now, using the definition of p

ij
(n) and the theorem of total

probability, we have

p
j
(n) = P (Xn = j) =

∑
i

p
i
(0)p

ij
(n),

and since p
ij
(n) depends on neither n nor i in the limit, we conclude that

p
j
(n) approaches a constant as n → ∞. This constant is independent of the

initial probability vector. We denote the limiting state probabilities by

vj = lim
n→∞

p
j
(n), j = 0, 1, . . . .

Many (but not all) Markov chains exhibit such a behavior. In order to pursue
this topic, we need to classify the states of a Markov chain into those that
the system visits infinitely often and those that it visits only a finite number
of times. To study the long-run behavior, we need only concentrate on the
former type.

Definition (Transient State). A state i is said to be transient (or
nonrecurrent) if and only if there is a positive probability that the process
will not return to this state.

For example, if we model a program as a Markov chain, then all except the
final state will be transient states. Otherwise, the program has an infinite loop.
In general, for a finite Markov chain, we expect that after a sufficient number
of steps the probability that the chain is in any transient state approaches
zero independent of the initial state.

Let Xji be the number of visits to the state i, starting at j. Then it can
be shown [ASH 1970] that

E[Xji ] =
∞∑

n=0

pji(n).

It follows that if the state i is a transient state, then
∑∞

n=0 pji(n) is finite for
all j; hence pji(n) approaches 0 as n approaches infinity.

Definition (Recurrent State). A state i is said to be recurrent if
and only if, starting from state i, the process eventually returns to state i
with probability one.
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An alternative characterization of a recurrent state is that E[Xii ] =∑∞
n=0 pii(n) is infinite. It can be verified from the form of P n that both

states of the chains in Examples 7.4–7.6 are recurrent.
For recurrent states, the time to reentry is important. Let fij (n) be the

conditional probability that the first visit to state j from state i occurs in
exactly n steps. If i = j, then we refer to fii(n) as the probability that the
first return to state i occurs in exactly n steps. These probabilities are related
to the transition probabilities by [PARZ 1962]

p
ij
(n) =

n∑
k=1

fij (k)pjj (n − k), n ≥ 1.

Let fij denote the probability of ever visiting state j, starting from state i.
Then

fij =
∞∑

n=1

fij (n).

It follows that state i is recurrent if fii = 1 and transient if fii < 1. If fii = 1,
define the mean recurrence time of state i by

μi =
∞∑

n=1

nfii(n).

A recurrent state i is said to be recurrent nonnull (or positive recurrent)
if its mean recurrence time μi is finite and is said to be recurrent null if its
mean recurrence time is infinite.

Definition. For a recurrent state i, pii(n) > 0 for some n ≥ 1. Define
the period of state i, denoted by di, as the greatest common divisor of the
set of positive integers n such that pii(n) > 0.

Definition. A recurrent state i is said to be aperiodic if its period
di = 1, and periodic if di > 1.

In Example 7.6, both states 0 and 1 are periodic with period 2. States of
Examples 7.4 and 7.5 are all aperiodic.

Definition. A state i is said to be an absorbing state if and only if
pii = 1.

Both states of the chain in Example 7.5 are absorbing. Once a Markov
chain enters such a state, it is destined to remain there forever.

Both transient and recurrent states may coexist in the same Markov chain.
State classification of discrete-time Markov chains is summarized in Figure 7.5
[MOLL 1989]. Having defined the properties of individual states, we now define
relationship between states.
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State

Transient Recurrent

Periodic Aperiodic Periodic Aperiodic

Null Nonnull

Figure 7.5. The state classification of discrete-time Markov chains

Definition (Communicating States). Two states i and j commu-
nicate if directed paths from i to j and vice-versa exist.

Definition (Closed Set of States). A set C of communicating states
is a closed set if no state outside C can be reached from any state in C.

The states of a finite Markov chain can be partitioned in a unique manner
into subsets C1, C2, ...,Ck so that Ck consists of all transient states and for
i = 1, 2,...,k − 1, Ci is a closed set of recurrent nonnull states. It is possible for
Ci to contain only one state in which case it will be an absorbing state. It is
also possible for Ck to be the empty set and for k = 2 in which case all states
belong to a single communicating class; such chains are known as irreducible
Markov chains.

Definition (Irreducible Markov Chain). A Markov chain is said to
be irreducible if every state can be reached from every other state in a finite
number of steps. In other words, for all i, j ∈ I, there is an integer n ≥ 1 such
that p

ij
(n) > 0.

Markov chains of Examples 7.4 and 7.6 are both irreducible. Feller [FELL
1968] has shown that all states of an irreducible Markov chain are of the same
type. Thus, if one state of an irreducible chain is aperiodic, then so are all
the states, and such a Markov chain is called aperiodic. The Markov chain
of Example 7.4 is both irreducible and aperiodic. Similarly, if one state of an
irreducible chain is periodic, then all states are periodic and have the same
period; if one state is transient, then so are all states; and if one state is
recurrent, then so are all states.

The n-step transition probabilities p
ij
(n) of finite, irreducible, aperiodic

Markov chains become independent of i and n as n → ∞. The limiting state
probability is
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vj = lim
n→∞

p
j
(n) = lim

n→∞

∑
i

p
i
(0)p

ij
(n)

=
∑

i

p
i
(0)[ lim

n→∞
p

ij
(n)]

= lim
n→∞

p
ij
(n)

∑
i

p
i
(0)

= lim
n→∞

p
ij
(n).

But this implies that P n converges to a matrix V (with identical rows v =
[v0, v1, . . .]) as n → ∞.

Assume that for a given Markov chain the limiting probabilities vj exist
for all states j ∈ I (where vj do not depend on the initial state i). Then it can
be shown [ASH 1970] that

∑
j∈Ivj ≤ 1. Furthermore, either all vj = 0 (this

can happen only for a chain with an infinite number of states) or
∑

j∈Ivj = 1.
In the latter case, the numbers vj , j ∈ I, are said to form a steady-state
probability vector. Thus we require that the limiting probabilities exist,
that they are independent of the initial state, and that they form a probability
vector. Over a long period the influence of the initial state (or the effect
of “startup” transients) has died down and the Markov chain has reached
a steady state. The probability vj is sometimes interpreted as the long-run
proportion of time the Markov chain spends in state j.

Now from the theorem of total probability, we have

p
j
(n) =

∑
i

p
i
(n − 1)p

ij
.

Then, if we have
lim

n→∞
p

j
(n) = v

j
= lim

n→∞
p

j
(n − 1),

we get
v

j
=

∑
i

v
i
p

ij
, j = 0, 1, 2, . . . , (7.17)

or in matrix notation
v = vP . (7.18)

(In other words, v is a left eigenvector of P associated with the eigenvalue
λ = 1.) This gives us a system of linear equations in the unknowns [v0, v1, . . .].
Since v is a probability vector, we also expect that

vj ≥ 0,
∑

j

vj = 1. (7.19)
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Any vector x that satisfies the properties (7.18) and (7.19) is also known as a
stationary probability vector of the Markov chain.

We state the following important theorems without proof [PARZ 1962]

THEOREM 7.2. For an aperiodic Markov chain, the limits
v

j
= limn→∞p

j
(n) exist.

THEOREM 7.3. For any irreducible, aperiodic Markov chain,
the limiting state probabilities vj = limn→∞p

j
(n) = limn→∞p

ij
(n)

exist and are independent of the initial probability vector p(0).

THEOREM 7.4. For an irreducible, aperiodic Markov chain,
with all states recurrent non-null, the limiting probability vector
v = [v0, v1, . . .] is the unique stationary probability vector [satis-
fying equations (7.18) and (7.19)], hence v is also known as the
steady-state probability vector.

It can be shown that all states of a finite, irreducible Markov chain are
recurrent nonnull. Then, for a finite, aperiodic, irreducible Markov chain, we
can obtain the steady-state probabilities rather easily by solving a system of
linear equations, since Theorem 7.4 applies. Starting with an initial (guess)
probability vector v(0) = p(0), we use successive substitution to solve the
fixed-point equation (7.18):

v(k+1) = v(k)P, k = 0, 1, 2, . . . (7.20)

until convergence is reached. This method of solution for the steady-state
probability vector of a homogeneous DTMC is known as the power method.
For further details, see works by Bolch et al. and Stewart [BOLC 1998, STEW
1994].

For chains with an infinite number of states, we can often solve the
equations by using the method of generating functions [recall problem 3(b)
at the end of the previous section] or by exploiting the special structure of
the matrix P (see, for example, the section 7.8 on birth–death processes).

From the steady-state probability vector, the steady-state expected reward
can be calculated:

E [Z] = lim
n→∞

E [Zn] =
∑

j

vjrj . (7.21)

Example 7.8

Returning to the periodic Markov chain of Example 7.6, we see that Theorem 7.2
does not apply. In fact, if we let the initial probability vector p(0) = [p, 1 − p], then

p(n) =

{
[ p, 1 − p], if n is even,
[1 − p, p], if n is odd.
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Thus p(n) does not have a limit. It is interesting to note that, although limiting prob-
abilities do not exist, stationary probabilities are unique and are easily computed to
be v0 = v1 = 1

2
with the use of (7.18) and (7.19).

�

Example 7.9

Returning to the Markov chain of Example 7.5, we see that it is not irreducible
(since we cannot go from one state to another) and that Theorem 7.3 does not
apply. Although p(n) has a limit [in fact, p(n) = p(0)], the limit is dependent on
the initial probability vector p(0).

�

Example 7.10

We consider the two-state Markov chain of the last section (Examples 7.1 and 7.2
and Theorem 7.1) with the condition 0 < a, b < 1. This implies that | 1 − a − b | < 1
and Theorem 7.1 applies. From this we conclude that

lim
n→∞

P n =

⎡
⎢⎢⎢⎣

b

a + b

a

a + b

b

a + b

a

a + b

⎤
⎥⎥⎥⎦ =

[
v0 v1

v0 v1

]
.

Thus the steady-state probability vector is

v = [v0, v1] =

[
b

a + b
,

a

a + b

]
.

This result can also be derived using Theorem 7.4, since the chain is irreducible,
finite, and aperiodic. Then, using equation (7.18), we have

[v0, v1] = [v0, v1]

[
1 − a a

b 1 − b

]

or

v0 = (1 − a)v0 + bv1

and

v1 = av0 + (1 − b)v1.

After rearranging the above equations, we have

av0 − bv1 = 0,

−av0 + bv1 = 0.
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0 1

1

1

Figure 7.6. The state diagram of a Markov chain with one absorbing state and one
transient state

Note that these two equations are linearly dependent, and thus we need one more
equation [supplied by condition (7.19)]:

v0 + v1 = 1.

Solving the system of equations, we get the stationary probability vector as derived
earlier:

[v0, v1] =

[
b

a + b
,

a

a + b

]
�

Example 7.11

Consider a two-state Markov chain with a = 0 and b = 1, so that

P =

[
1 0
1 0

]

with the state diagram shown in Figure 7.6.
In the case shown in Figure 7.6, state 1 is transient and state 0 is absorbing. The

chain is not irreducible, but the limiting state probabilities exist (since Theorem 7.2
applies) and are given by v0 = 1 and v1 = 0. This says that eventually the chain will
remain in state 0 (after at most one transition).

�

Example 7.12

Consider a model of a program executing on a computer system with m I/O devices
and a CPU. The program will be in one of the m + 1 states denoted by 0, 1, . . . , m,
so that in state 0 the program is executing on the CPU, and in state i(1 ≤ i ≤ m)
the program is performing an I/O operation on device i. Assume that the request
for device i occurs at the end of a CPU burst with probability qi, independent of
the past history of the program. The program will finish execution at the end of
a CPU burst with probability q0 so that

∑m
i=0 qi = 1. We assume that the system

is saturated so that on completion of one program, another statistically identical
program will enter the system instantaneously. With these assumptions, the system
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2

11

m

0
2

0

qm

q

.  
.  

.

q

q

Figure 7.7. A discrete-time Markov model of a program

can be modeled as a discrete-time Markov chain with the state diagram shown in
Figure 7.7.

The transition probability matrix P of the Markov chain is given by

P =

⎡
⎢⎢⎢⎣

q0 q1 · · · qm

1 0 · · · 0
...

...
...

1 0 · · · 0

⎤
⎥⎥⎥⎦ .

If we assume that 0 < qi < 1(i = 0, 1, . . . , m), then it is easy to verify that this finite
Markov chain is both irreducible and aperiodic. Therefore, Theorem 7.4 applies. The
unique steady-state probability vector, v, is obtained by solving the system of linear
equations:

v = vP

or

v0 = v0q0 +
m∑

j=1

vj ,

vj = v0qj , j = 1, 2, . . . , m.

Using the normalization condition

m∑
j=0

vj = 1,

we have

v0 + v0

m∑
j=1

qj = 1.

Noting that
∑m

j=1 qj = 1 − q0, we get

v0(1 + 1 − q0) = 1
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or

v0 =
1

2 − q0

,

and
vj =

qj

2 − q0

, j = 1, 2, . . . , m.

The interpretation is that in a real-time interval T , the average number of visits to
device j will be vjT in the long run.

�

Problems

1. Consider a system with two components [ASH 1970]. We observe the state of the
system every hour. A given component operating at time n has probability p of
failing before the next observation at time n + 1. A component that was in a failed
condition at time n has a probability r of being repaired by time n + 1, indepen-
dent of how long the component has been in a failed state. The component failures
and repairs are mutually independent events. Let Xn be the number of compo-
nents in operation at time n. {Xn | n = 0, 1, . . .} is a discrete-time homogeneous
Markov chain with the state space I = {0, 1, 2}. Determine its transition proba-
bility matrix P , and draw the state diagram. Obtain the steady-state probability
vector, if it exists.

2. Assume that a computer system is in one of three states: busy, idle, or undergoing
repair, respectively denoted by states 0, 1, and 2. Observing its state at 2 P.M.
each day, we believe that the system approximately behaves like a homogeneous
Markov chain with the transition probability matrix:

P =

⎡
⎣0.6 0.2 0.2

0.1 0.8 0.1
0.6 0.0 0.4

⎤
⎦ .

Prove that the chain is irreducible, and determine the steady-state probabilities.

3. Any transition probability matrix P is a stochastic matrix; that is, p
ij
≥ 0 for

all i and all j, and
∑

jpij
= 1, for all i. If, in addition, the column sums are also

unity—that is: ∑
i

p
ij

= 1, for all j,

then matrix P is called doubly stochastic. If a Markov chain with doubly stochas-
tic P is irreducible, aperiodic, and finite with n states, show that the steady-state
probability is given by

vj =
1

n
, for all j.

4. Show that the Markov chain of Example 7.12 is irreducible and aperiodic if
0 < qi < 1 for all i. Also show that if for some j, 1 ≤ j ≤ m, qj = 0, then the
chain is not irreducible. Finally show that if qj = 1 for some j, 1 ≤ j ≤ m, then
the chain is periodic.
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7.4 DISTRIBUTION OF TIMES BETWEEN STATE
CHANGES

We have noted that the entire past history of the homogeneous Markov chain
is summarized in its current state. Assume that the state at the nth step is
Xn = i. But then the probability that the next state is j; that is, Xn+1 = j,
should depend only on the current state i and not on the time the chain has
spent in the current state. Let the random variable Ti denote the time the
Markov chain spends in state i during a single visit to state i. (In other words,
Ti is one plus the number of transitions i → i made before leaving state i.)
It follows that the distribution of Ti should be memoryless for {Xn | n =
0, 1, . . .} to form a (homogeneous) Markov chain.

Given that the chain has just entered state i at the nth step, it will remain
in this state at the next step with probability pii and it will leave the state at
the next step with probability

∑
j �=i p

ij
= 1 − pii . Now if the next state is also

i (i.e., Xn+1 = i), then the same two choices will be available at the next step.
Furthermore, the probabilities of events at the (n + 1)st step are independent
of the events at the nth step, because {Xn} is a homogeneous Markov chain.

Thus, we have a sequence of Bernoulli trials with the probability of success
1 − pii , where success is defined to be the event that the chain leaves state i.
The event Ti = n corresponds to n trials up to and including the first success.
Hence, Ti has the geometric pmf, so that

P (Ti = n) = (1 − pii)p
n−1
ii , i ∈ I. (7.22)

Using the properties of the geometric distribution, the expected number of
steps the chain spends in state i, per visit to state i, is given by

E [Ti] =
1

1 − pii

, i ∈ I, (7.23)

and the corresponding variance is

Var[Ti] =
pii

(1 − pii)2
, i ∈ I. (7.24)

If we define an “event” to be a change of state, then the successive
interevent times of a discrete-time Markov chain are independent, geometri-
cally distributed random variables. Unlike the special case of the Bernoulli
process, however, the successive interevent times do not, in general, have
identical distributions.

Example 7.13

We return to our example of a communication net consisting of a cascade of binary
communication channels with the matrix P given by

P =

[
1 − a a

b 1 − b

]
.
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Assuming that a 0 was transmitted, that is, X0 = 0, and the number of stages before
the first error is S0 = T0 − 1. The average number of stages over which a 0 can be
transmitted without an error is given by

E[S0] = E[T0] − 1 =
1 − a

a
,

and the average number of stages over which a 1 can be transmitted without an
error is given by

1 − b

b
.

Note that T0 has a geometric distribution with parameter a, while T1 has a geometric
distribution with parameter b. These two interevent times, although possessing the
memoryless distribution, have different parameters associated with them.

�

Example 7.14

Consider the software reliability model from Example 7.3 [GOSE 2000]. During the
testing phase, software is subjected to a sequence of runs, making no changes if there
is no failure. When a failure occurs on any run, an attempt will be made to fix the
underlying fault that will cause the probabilities of success and failure on the next
run to change. In other words, the transition probability matrix Pi given by

Pi =

[
pi 1 − pi

1 − qi qi

]

defines the values of conditional probabilities pi and qi for the testing runs that follow
the occurrence of the ith failure up to the occurrence of the next (i + 1)st failure.
Thus, the software reliability growth model in discrete time can be described with
a sequence of dependent Bernoulli trials with state-dependent probabilities. The
underlying stochastic process is a nonhomogeneous discrete-time Markov chain.

The sequence {Ym}, defined in Example 7.3, provides an alternative description
of the reliability growth model, as presented in Figure 7.8. Both states i and is
represent that failure state has been occupied i times. The state i represents the
first trial for which the accumulated number of failures Ym+1 equals i, while is
represents all subsequent trials for which Ym+1 = i, that is, all subsequent successful
runs before the occurrence of next (i + 1)st failure. Without loss of generality, it is
assumed that the first run is successful, that is, 0 is the initial state.

Focusing on the occurrence of failures, it is of particular interest to derive the
pmf of the discrete random variable Ni+1 defined as the number of runs between
two successive visits to the failure state of the discrete-time Markov chain, that is,
the number of runs between the ith and (i + 1)st failures. Clearly (see Figure 7.8),
the random variable N1 has the pmf

P (N1 = k) = f01(k) = pk−1
0 (1 − p0), k ≥ 1,



Trim Size: 6.125in x 9.25in 60Trivedi c07.tex V3 - 05/23/2016 12:05pm Page 373�

� �

�

7.5 MARKOV MODULATED BERNOULLI PROCESS 373

p
0

p1-
0

p
1

q
1

1- p
1

1-1s

q
1 q

i–1

p
i-

1-
1

q
i

1- i s

p
i

i
q

p
i

1- q
1i+

1-

i+1
1i+

q0 1 2 i

Figure 7.8. Non-homogeneous DTMC model for software reliability growth

and the remaining Ni+1 (i ≥ 1) have the pmfs

P (Ni+1 = k) = f11(k) =

{
qi if k = 1

(1 − qi)p
k−2
i (1 − pi) if k ≥ 2.

Note that fij (k) is the conditional probability that the first visit to state j from
state i in exactly k steps.

�

7.5 MARKOV MODULATED BERNOULLI PROCESS

The Markov modulated Bernoulli process (MMBP) is a generalization of the
Bernoulli process where the parameter of the Bernoulli process varies accord-
ing to a homogeneous DTMC. The Bernoulli process and the DTMC, which
controls (we call modulates here) the parameter of the Bernoulli process, are
assumed to be independent [ONVU 1993].

The MMBP is used extensively to model traffic in ATM networks where
the time is discretized into fixed-length slots, the packets are segmented into
fixed-length cells, and each cell is transmitted within a slot. For the MMBP
traffic model, the probability that a slot contains a cell is a Bernoulli process
with a parameter modulated by an r-state DTMC. At the end of each slot,
the DTMC moves from state i to state j with probability p

ij
, or stays at state

i with probability pii . While in state i, a cell arrives with probability ci and
no cell arrives with probability 1 − ci. Then the MMBP is characterized by
the transition probability matrix P of the DTMC and the diagonal matrix C
of cell arrival probabilities:

C =

⎡
⎢⎢⎢⎣

c1 0 0 · · · 0
0 c2 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · cr

⎤
⎥⎥⎥⎦ .
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Consider the interrupted Bernoulli process (IBP), the simplest case of MMBP,
with the transition probability matrix P and the diagonal matrix C of arrival
probabilities given by

P =
[
1 − a a

b 1 − b

]
,

C =
[
c 0
0 0

]
.

If the DTMC is in state 1, it will remain in that state in the next slot
with probability 1 − a or change state with probability a. The cell arrival
probability in state 1 is c. When the DTMC is in state 2, it will remain in
that state with probability 1 − b or change state with probability b. No cell
arrivals will occur while the DTMC is in state 2. The steady-state probability
that the IBP is in state i, vi was obtained in Example 7.10:

v1 =
b

a + b
v2 =

a

a + b
.

By assigning reward r1 = c and r2 = 0, the average cell arrival probability
is the expected steady-state reward

E[Z ] = v1c =
bc

a + b
.

Next we study the cell interarrival time distribution of IBP. Let T1 be the
time interval to the next arrival, given that the DTMC is in state 1, and T2

be the time interval to the next arrival, given that the DTMC is in state 2.
Consider the time an arrival occurs when the DTMC is in state 1. In the

next slot

• IBP remains in state 1 and an arrival occurs, which happens with prob-
ability (1 − a)c.

• IBP remains in state 1 and no arrival occurs, which happens with prob-
ability (1 − a)(1 − c).

• IBP moves to state 2 and no arrival occurs, which happens with proba-
bility a.

Hence we have

T1 =

⎧⎨
⎩

1 with probability (1 − a)c
1 + T1 with probability (1 − a)(1 − c)
1 + T2 with probability a.

(7.25)

Consider the time when the DTMC is in state 2; then, in the next slot

• IBP remains in state 2, which happens with probability (1 − b).
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• IBP moves to state 1 and no arrival occurs, which happens with proba-
bility b(1 − c).

• IBP moves to state 1 and an arrival occurs, which happens with proba-
bility bc.

Hence we have

T2 =

⎧⎨
⎩

1 + T2 with probability (1 − b)
1 + T1 with probability b(1 − c)
1 with probability bc.

(7.26)

From the preceding coupled recurrence equations we now obtain the prob-
ability generating functions (PGF) for T1 and T2. First note that the PGF of
constant 1 is z. Now, noting the convolution property of PGF, the recurrence
equations give us

GT1
(z) = (1 − a)cz + (1 − a)(1 − c)zGT1

(z) + az GT2
(z) (7.27)

and
GT2

(z) = bcz + (1 − b)zGT2
(z) + b(1 − c)zGT1

(z). (7.28)

After some manipulation, the probability generating functions of T1 and T2

can be shown to be

GT1
(z) =

(a + b − 1)cz2 + (1 − a)cz
(1 − a − b)(1 − c)z2 − (2 − a − b − c + ac)z + 1

(7.29)

GT2
(z) =

bcz
(1 − a − b)(1 − c)z2 − (2 − a − b − c + ac)z + 1

. (7.30)

Since when an arrival occurs the IBP must be in state 1, it follows that
the interarrival interval, T , is equal to T1. Then the probability generating
function of the interarrival time of the IBP is

GT (z) =
(a + b − 1)cz2 + (1 − a)cz

(1 − a − b)(1 − c)z2 − (2 − a − b − c + ac)z + 1
. (7.31)

Using the moment generating property of the PGF, we obtain

E[T ] =
a + b

bc
. (7.32)

If we assume a = 0 and b = 1, then

GT (z) =
cz

1 − (1 − c)z
,

in this case the IBP becomes a Bernoulli process.
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If we assume c = 1 and a + b = 1, then

GT (z) =
(1 − a)z
1 − az

,

the IBP once again becomes a Bernoulli process.

Problems

1. Starting with equations (7.27) and (7.28), show that equation (7.29) holds.

2. Staring with equation (7.31), derive equation (7.32).

7.6 IRREDUCIBLE FINITE CHAINS WITH APERIODIC
STATES

In this section we consider some examples of finite Markov chains that satisfy
the conditions of Theorem 7.4 so that the unique steady-state probabilities
can be obtained by solving the system of linear equations (7.18) and (7.19).

7.6.1 Memory Interference in Multiprocessor Systems

Consider the shared memory multiprocessor system shown in Figure 7.9. The
processors’ ability to share the entire memory space provides a convenient
means of sharing information and provides flexibility in memory allocation.
The price of sharing is the contention for the shared resource. To reduce
contention, the memory is usually split up into modules, which can be accessed

1

Interconnection network

. . . . . . . .. . . . nP

Processors

P

1M m

Memory modules

. . . . . . . . . . . . M

Figure 7.9. A multiprocessor system with multimodule memory
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independently and concurrently with other modules. When more than one
processor attempts to access the same module, only one processor can be
granted access, while other processors must await their turn in a queue. The
effect of such contention, or interference, is to increase the average memory
access time.

Assume that the time to complete a memory access is a constant and
that all modules are synchronized. Processors are assumed to be fast enough
to generate a new request as soon as their current request is satisfied. A
processor cannot generate a new request when it is waiting for the current
request to be completed. The operation of the system can be visualized as a
discrete-time queuing network as shown in Figure 7.10.

The memory modules are the servers, and the fixed number, n, of proces-
sors constitute the “jobs” or “customers” circulating in this closed queuing
network. The symbol qi denotes the probability that a processor generated
request is directed at memory module i, i = 1, 2, . . . ,m. Thus

∑m
i=1 qi = 1.

As an example, consider a system with two memory modules and two
processors. Let the number of processors waiting or being served at module
i(i = 1, 2) be denoted by Ni. Clearly, Ni ≥ 0 and N1 + N2 = 2. The
pair (N1, N2) denotes the state of the system, and the state space
I = {(1, 1), (0, 2), (2, 0)}. The operation of the system is described by a
discrete-time Markov chain whose state diagram is shown in Figure 7.11.

The transition probability matrix of this chain is given by

P =

(1, 1) (0, 2) (2, 0)
(1, 1)
(0, 2)
(2, 0)

⎡
⎣2q1q2 q2

2 q2
1

q1 q2 0
q2 0 q1

⎤
⎦ .

..

1

1

22

.

q

q

q

M

M

M

nNumber of "customers" = number of processors,

m

m

Figure 7.10. A discrete-time queuing network representation of multiprocessor mem-
ory interference



Trim Size: 6.125in x 9.25in 60Trivedi c07.tex V3 - 05/23/2016 12:05pm Page 378�

� �

�

378 DISCRETE-TIME MARKOV CHAINS

2

1

1

1
2

2

2

2
0, 2

2
1 2

1, 1

2, 0

q

q q

q

q

q  q

q

Figure 7.11. The state diagram for an example of the memory interference problem

We will explain the elements in the top row of this matrix; the remaining
entries can be explained in a similar way. Assume that the system is in state
(1,1) at time k, hence both memory modules and both processors are busy. At
the end of this period both processors will be independently generating their
new requests. Generation of a new request by a processor may be thought of
as a Bernoulli trial with probability qi of accessing module i. Thus we have
a sequence of two Bernoulli trials. The probability that both processors will
simultaneously request memory module i is q2

i . If i = 1, the state of the system
at time k + 1 will be (2,0) while if i = 2, the new state will be (0,2). If the
two processors request access to distinct memory modules, the next state will
be (1,1). The probability of this last event is easily seen to be 2q1q2.

To obtain the steady-state probability vector v = [v(1,1), v(0,2), v(2,0)]
we use

v = vP and
∑

(i,j)∈I

v(i,j) = 1

or
v(1,1) = 2q1q2v(1,1) + q1v(0,2) + q2v(2,0),

v(0,2) = q2
2v(1,1) + q2v(0,2),

v(2,0) = q2
1v(1,1) + q1v(2,0),

v(1,1) + v(0,2) + v(2,0) = 1.

Thus
v(2,0) =

q2
1

1 − q1

v(1,1), v(0,2) =
q2
2

1 − q2

v(1,1),

which implies that

v(1,1) =
1

1 + q2
1

1−q1
+ q2

2
1−q2

=
q1q2

1 − 2q1q2

.
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Let the random variable B denote the number of memory requests completed
per memory cycle in the steady state. We are interested in computing the
average number, E[B], of memory requests completed per memory cycle. Note
that in state (1,1) two requests are completed, while in states (2,0) or (0,2)
only one request each is completed. Therefore, the conditional expectations
of B are given by

E[B | system in state(1, 1)] = 2,

E[B | system in state(2, 0)] = 1,

E[B | system in state(0, 2)] = 1.

We assign rewards to the three states of the DTMC as follows: r(1,1) = 2,
r(2,0) = 1, and r(0,2) = 1. Then the expected steady-state reward is

E[Z ] = E[B] = 2v(1,1) + v(0,2) + v(2,0)

=
(

2 +
q2
1

1 − q1

+
q2
2

1 − q2

)
v(1,1)

=
1 − q1q2

1 − 2q1q2

.

The quantity E[B] achieves its maximum value, 3
2 , when q1 = q2 = 1

2 . This is
considerably smaller than the capacity of the memory system, which is two
requests per cycle. For a deeper study of this problem, see Ajimone-Marsan
et al. [AJMO 1986].

Problems

1. For the example of multiprocessor memory interference with two processors and
two memory modules, explicitly solve the following optimization problem:

max : E[B]
s.t. : q1 + q2 = 1,
q1, q2 ≥ 0.

2. Modify the multiprocessor memory interference example so that processor 1 has
associated probabilities r1 and r2 respectively, for accessing module 1 and 2, and
processor 2 has distinct probabilities q1 and q2 associated with it. Construct the
Markov chain state diagram, solve for the steady-state probabilities, and compute
E[B]. For those with extra energy, solve an optimization problem analogous to
problem 1 above.

3. Consider another modification to the memory interference example where the
processor requires nonzero amount of time to generate a memory request. Sim-
plify the problem by assuming that the processor cycle time is identical to the
memory cycle time. Once again go through all the steps as in problem 2 above
and compute E[B].
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7.6.2 Models of Program Memory Referencing Behavior

In Chapter 6 we considered the renewal model of page referencing behavior of
programs. In the renewal model, the successive intervals between references to
a given page were assumed to be independent identically distributed random
variables. The first model we consider in this section is a special case of the
renewal model, where the above intervals are geometrically distributed. This
is known as the independent reference model (IRM) of program behavior.
Although simple to analyze, such a model is not very realistic. The LRU (least
recently used) stack model, which is a better approximation to the behavior
of real programs, is considered next. In-depth treatment of such models are
available in [SPIR 1977].

7.6.2.1 The Independent Reference Model. A program’s address
space typically consists of continuous pages represented by the indices
1, 2, . . . , n. For the purpose of studying a program’s reference behavior, it
can be represented by the reference string w = x1, x2, . . . , xt, . . .. Successive
references are assumed to form a sequence of independent, identically
distributed random variables with the pmf

P (Xt = i) = βi, 1 ≤ i ≤ n;
n∑

i=1

βi = 1,

It is clear then that the interval between two successive references to page
i is geometrically distributed with parameter βi. Using the theory of finite,
irreducible, and aperiodic Markov chains developed earlier, we can analyze the
performance of several paging algorithms, assuming the independent reference
model of program behavior.

We assume that a fixed number, m(1 ≤ m ≤ n), of page frames have
been allocated to the program. The internal state of the paging algorithm
at time t, denoted by q(t), is an ordered list of the m pages currently in
main memory. If the next page referenced (xt+1) is not in main memory,
then a page fault is said to have occurred, and the required page will be
brought from secondary storage into main memory. This will, in general,
require the replacement of an existing page from main memory. We will
assume that the rightmost page in the ordered list q(t) will be replaced. On
the other hand, if the next page referenced (xt+1) is in main memory, no
page fault (and replacement) occurs, but the list q(t) is updated to q(t + 1),
reflecting the new replacement priorities. It is clear that the sequence of
states q(0),q(n), . . . ,q(t), . . . forms a discrete-time homogeneous Markov
chain with the state space consisting of n!/(n − m)! permutations over
{1, 2, . . . , n}. It is assumed that the main memory is preloaded initially with
m pages. Since we will be studying the steady-state behavior of the Markov
chain, the initial state has no effect on our results.
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As an example, consider the LRU paging algorithm with n = 3 and m = 2.
It is logical to let q(t) be ordered by the recency of usage, so that q(t) = (i, j)
implies that the page indexed i was more recently used than page j, and,
therefore, page j will be the candidate for replacement. The state space I is
given by

I = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Let the current state q(t) = (i, j). Then the next state q(t + 1) takes one of
the following values:

q(t + 1) =

⎧⎨
⎩

(i, j), if xt+1 = i, with associated probability βi,
(j, i), if xt+1 = j, with associated probability βj ,
(k, i), if xt+1 = k, k �= i, k �= j, with associated probability βk.

Then the transition probability matrix P is given by

P =

(1, 2) (2, 1) (1, 3) (3, 1) (2, 3) (3, 2)
(1, 2)
(2, 1)
(1, 3)
(3, 1)
(2, 3)
(3, 2)

⎡
⎢⎢⎢⎢⎢⎢⎣

β1 β2 0 β3 0 0
β1 β2 0 0 0 β3

0 β2 β1 β3 0 0
0 0 β1 β3 β2 0
β1 0 0 0 β2 β3

0 0 β1 0 β2 β3

⎤
⎥⎥⎥⎥⎥⎥⎦ .

It can be verified that the above Markov chain is irreducible and aperiodic;
hence a unique steady-state probability vector v exists. This vector is obtained
by solving the system of equations:

v = vP

and ∑
(i,j)

v(i,j) = 1.

Solving this system of equations, we get (the student is urged to verify this):

v(i,j) =
βiβj

1 − βi

.

Note that a page fault occurs in state (i, j), provided that a page other
than i or j is referenced. The associated conditional probability of this event
is 1 − βi − βj ; we hence assign reward r(i,j) = 1 − βi − βj to state (i, j). The
steady-state page fault probability is then given by

E[Z ] = F (LRU) =
∑

(i,j)∈I

(1 − βi − βj)
βiβj

1 − βi

.
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More generally, for arbitrary values of n ≥ 1 and 1 ≤ m ≤ n, it can be shown
(see problem 3 at the end of this section) that

F (LRU) =
∑

over the
state space

D2
1(q)

m∏
i=1

βji

Di(q)
,

where q = (j1, j2, . . . , jm) and

Di(q) = 1 −
m−i+1∑

k=1

βjk
.

Similar results can be derived for several other paging algorithms (see prob-
lems 15 and 16 at the end of this section).

7.6.2.2 Performance Analysis of Cache Memories. Using the inde-
pendent reference model, we can analyze the performance of different cache
organizations: fully associative, direct mapped and set associative, as shown
in Figure 7.12 [RAO 1978].

We assume that both the cache and the main memory are divided into
equal-sized units called blocks. In fully associative cache, any block in the
main memory can be mapped to any block of cache. In direct mapped cache,
block i can be mapped to the cache block (i mod m) only if we have m
blocks in the cache. In set associate cache, the cache is divided into L sets
with s = m/L blocks per set. A block i in main memory can be in any block
belonging to the set (i mod L).

To calculate the cache miss ratio, let the blocks in the main memory
be labeled 1, 2, . . . , n. Let the memory block reference string be denoted by
x1, x2, . . . , xt, . . .. Let [β1, β2, . . . , βn] be the pmf of the block reference prob-
abilities:

P (Xt = i) = βi, 1 ≤ i ≤ n, for all t > 0.

The contents of the cache characterize the state of the cache at any
time. Letting q(t) denote the tth state, the state sequence of q(t) forms a
discrete-time homogeneous Markov chain. For fully associative caches, the
IRM model discussed above can be also applied to the cache analysis.

We now consider the case of direct mapped caches. Let Gi denote the set
of blocks in the main memory that can be in block frame i of the cache. Let
k = n/m be the cardinality of each of these sets. We refer to the pages in Gi

by 1(i),...,k(i) with probabilities of reference β1(i),...,βk(i).
Let Di =

∑k
j=1 βj(i), i = 1, 2,...,m. Consider the two-state DTMC in

Figure 7.13 for a particular cache block, where the state 1 is the state with
block j(i) in the cache, while 0 is the state with that block missing. When
in state 1, a reference to any other block produces a miss, causing removal
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} }
}

Cache

Main Memory

Cache

Main Memory

Cache

Main Memory

(a)

(b)

(c)

Figure 7.12. Different cache organizations: (a) fully associative; (b) direct-mapped;
(c) set-associative

β

β

j

j
(

(

i )

)i

1- 1- (Di - βj (i)) 

Di - βj (i)

0 1

Figure 7.13. Markov chain for the directly mapped cache
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of that block. Thus the transition probability from 1 to 0 is Di − βj(i).
Similarly, the transition probability from 0 to 1 is βj(i).

Using the conclusion from Example 7.10, we derive the solution of the
steady-state probability of state 0 of this chain, which is the probability that
block j(i) is absent from the cache in steady state:

mj(i) =
Di − βj(i)

Di − βj(i) + βj(i)

= 1 −
βj(i)
Di

. (7.33)

Since direct-mapped cache does not have replacement rule, we have

F (DM ) =
m∑

i=1

k∑
j=1

βj(i)mj(i) (7.34)

where mj(i) = P (j (i) is not in the cache in steady state). Substituting for
mj(i), we finally obtain

F (DM ) =
m∑

i=1

(D2
i −

∑k
j=1 β2

j (i))
Di

(7.35)

as the expression for the limiting cache miss ratio for the direct-mapped cache.
Similarly, we can also calculate the miss ratio of set-associative caches.

7.6.2.3 The LRU Stack Model [SPIR 1977]. Intuitively, we expect
the probability of referencing a given page i at time t to depend on the pages
referenced in the immediate past. Thus the independent reference model may
be expected to be a poor model of practical reference strings. It has been
observed that references to pages tend to cluster together, so that the prob-
ability of referencing a page is high for a more recently used page. The LRU
stack model is able to reflect such a behavior of reference strings. Validation
experiments have confirmed that this model fits real reference string behavior
much better than does the IRM.

In the LRU stack model, we associate a sequence of LRU stacks s0s1 · · · st

with a reference string w = x1x2 · · ·xt · · ·. The stack st is the n-tuple
(j1, . . . , jn) in which ji is the ith most recently referenced page at time t. Let
Dt be the position of the page xt, in the stack st−1. Then, associated with
the reference string, we have the distance string D1D2 · · ·Dt · · ·.

The LRU stack model assumes that the distance string is a sequence of
independent identically distributed random variables with the following pmf:

P (Dt = i) = ai, i = 1, 2, . . . , n, t ≥ 1, and
n∑

j=1

aj = 1.
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The distribution function is then

P (Dt ≤ i) = Ai =
i∑

j=1

aj , i = 1, 2, . . . , n, t ≥ 1.

Without loss of generality, we assume the initial stack

s0 = (1, 2, . . . , n).

Note that IRM assumes that the reference string is a discrete indepen-
dent process whereas the LRU stack model assumes that the distance string
is a discrete independent process, and the corresponding reference string, a
nonindependent stochastic process.

With this model, evaluation of the page-fault rate of the LRU paging
algorithm is quite simple. Assume that the program has been allocated m
page frames of main memory. Then a page fault will occur at time t provided
Dt > m. Thus, the page fault probability is given by

F (LRU) = P (Dt > m) = 1 − P (Dt ≤ m) = 1 − Am.

Let us study the movement of a tagged page (say, y) through the LRU
stack as time progresses. Define the random sequence E0E1E2 · · ·En · · · such
that Et = i if page y occupies the ith position in stack st. Clearly, 1 ≤ Et ≤ n
for all t ≥ 1. Thus the sequence described is a discrete-time, discrete-state
stochastic process. By the stack updating procedure shown in Figure 7.14,
the position of the page y in stack st+1 is determined by the next reference
xt+1 and the position of page y in stack st, but not its position in previous

ss

x

an

a
a

t t+

t+

2
1

1

1

Figure 7.14. LRU stack updating procedure
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stacks. Thus the sequence above is a discrete-time Markov chain. Furthermore,
the chain is homogeneous.

We obtain the transition probabilities of the chain by observing the stack
updating procedure shown in Figure 7.14.

Then

pi1 = P (Et+1 = 1 |Et = i)

= P (xt+1 = y) = P (Dt+1 = i) = ai, 1 ≤ i ≤ n,

pii = P (Et+1 = i |Et = i)

= P (Dt+1 < i) = Ai−1, 2 ≤ i ≤ n,

pi,i+1 = P (Et+1 = i + 1 |Et = i)

= P (Dt+1 > i) = 1 − Ai, 1 ≤ i ≤ n − 1,

and
pi,j = 0, otherwise.

The state diagram is given in Figure 7.15. The transition probability matrix
is given by

P =

1 2 · · · i i + 1 · · · n
1
2
·
·
·

i − 1
i
...

n − 1
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 1 − A1 0 0 · · · · 0
a2 A1 1 − A2 · · ·
· 0 · · · ·
· 0 · ·
· 0 · ·
· 0 · 1 − Ai−1

ai · · Ai−1 1 − Ai · · ·
...

...
...

...
...

an−1 0 · 0 · 1 − An−1

an 0 · 0 · An−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, the chain is aperiodic and irreducible if we assume that ai > 0 for
all i. Then the steady-state probability vector v = [v1, v2, . . . , vn] is obtained
from the following system of equations:

v1 =
n∑

i=1

viai, (7.36)

vi = vi−1(1 − Ai−1) + viAi−1, 2 ≤ i ≤ n, (7.37)
n∑

i=1

vi = 1. (7.38)
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Figure 7.15. The state diagram for the LRU-stack example

From equation (7.37), we have vi = vi−1 = v2, 2 ≤ i ≤ n; from equation (7.36),
we have

v1 = v1a1 + v2

n∑
i=2

ai = v1a1 + v2(1 − a1)

and v1 = v2. Then from equation (7.38) we conclude

vi =
1
n

, i = 1, 2, . . . , n.

Thus, the position of the tagged page, in the steady state, is independent of its
initial position and it is equally likely to be in any stack position. This implies
that each page is equally likely to be referenced in the long run. Therefore,
the LRU stack model is not able to cater to the nonuniform page referencing
behavior of real programs, although it does reflect the clustering effect. This
may be due to the assumption that the distance string is a sequence of inde-
pendent identically distributed random variables. A logical generalization is
to let the distance string be a Markov-dependent sequence, as discussed by
Shedler and Tung [SHED 1972].

Problems

1. � Using the independent reference model of program behavior, show that the
steady-state page-fault rate of the FIFO (first in, first out) paging algorithm is
given by

F (FIFO) = G−1
∑
q

D1(q)
m∏

i=1

βji
,

where q = (j1, j2, . . . , jm) and

G =
∑
q

m∏
i=1

βji
.
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2. Consider a Markov dependent reference string so that

P (xt = i | xt−1 = j) = qij , 1 ≤ i, j ≤ n, t > 1,

P (x1 = i) = βi, 1 ≤ i ≤ n.

Study the steady-state behavior of the page replacement algorithm that selects
the page in memory with the smallest probability of being referenced at time
t + 1 conditioned on xt. As a special case, consider:

n = 3, m = 2, q11 = 0, q12 = ε, q13 = 1 − ε,

q21 = 1
2
− δ, q22 = 0, q23 = 1

2
+ δ,

q31 = 0, q32 = 1, q33 = 0.

Describe the states and state transitions of the paging algorithm, compute
steady-state probabilities and steady-state average page-fault rate.

3. � Generalize the result derived for the steady-state page-fault probability of the
LRU paging algorithm to the case n ≥ 1 and 1 ≤ m ≤ n.

7.6.3 Slotted Aloha Model

The Aloha network was developed to provide radio-based data communication
on the University of Hawaii campus [ABRA 1970]. The behavior of slotted
Aloha can be captured by a DTMC. Consider m users, n of which are currently
backlogged. Each of the m − n unbacklogged users is assumed to transmit
independently in each slot with probability a, while each backlogged user
transmits independently in each slot with probability b. Let the number of
backlogged users, n, denote the state of the DTMC. Let A(i, n) denote the
probability that i unbacklogged users attempt to transmit in a slot when
the DTMC is in state n and let B(i, n) be the corresponding probability for
backlogged users. Then

A(i, n) =
(

m − n

i

)
(1 − a)m−n−iai, 0 ≤ i ≤ m − n,

B(i, n) =
(n

i

)
(1 − b)n−ibi, 0 ≤ i ≤ n.

A packet is successfully transmitted in a slot provided either (1) exactly one
unbacklogged user and no backlogged user transmits or (2) no unbacklogged
user and exactly one backlogged user transmits. In all other cases, all trans-
mitting unbacklogged users are added to the set of backlogged users. Thus,
transition probabilities of the DTMC are given by Bertsekas and Gallager
[BERT 1992]:

pn,n+i =

⎧⎪⎪⎨
⎪⎪⎩

A(i, n), 2 ≤ i ≤ m − n,
A(1, n)[1 − B(0, n)], i = 1,
A(1, n)B(0, n) + A(0, n)[1 − B(1, n)], i = 0,
A(0, n)B(1, n), i = −1.

(7.39)
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Figure 7.16. The state diagram of the DTMC for slotted Aloha

The state diagram of the DTMC is shown in Figure 7.16.
In state n, a successful transmission occurs with probability A(1, n)

B(0, n) + A(0, n)B(1, n). By attaching reward rn = A(1, n)B(0, n) +
A(0, n)B(1, n) to state n, we can compute the expected steady-state reward
E[T ] (the probabilities of successful transmission in a slot) to be

E[T ] =
m∑

n=0

rnvn,

where vn is the steady-state probability of state n.

Problems

1. Derive explicit expressions for E[T ] for the slotted Aloha system with m = 1, 2
and 3.

7.6.4 Performance Analysis of an ATM Multiplexer

In an ATM (asynchronous transfer mode) network, information is transferred
in fixed-size packets called cells. The time used to transmit a cell is called a
slot. Consider an ATM multiplexer, an equipment to aggregate traffic from
multiple input links to an output link. There are n input links and 1 output
link. There is a buffer at the output port that can accommodate an infinite
number of cells (see Figure 7.17). Assume that the cell arrival process at each
input is a Bernoulli process with success probability c. The cells arrive at the
beginning of each slot. At the end of each slot, one cell is sent out from the
buffer.

We define the random variable A as the number of cell arrivals at the
buffer during a given slot. It follows that A has the binomial pmf

ai = P [A = i] =
(n

i

)
ci(1 − c)(n−i)



Trim Size: 6.125in x 9.25in 60Trivedi c07.tex V3 - 05/23/2016 12:05pm Page 390�

� �

�

390 DISCRETE-TIME MARKOV CHAINS

output link

input links

buffer

Figure 7.17. an ATM multiplexer

with probability generating function

GA(z) =
n∑

i=0

aiz
i = (1 − c + cz )n. (7.40)

Letting Nm denote the number of cells in the buffer at the end of the mth
slot, and Am denote the number of cells arriving during the mth time slot,
we have

Nm = max (0, Nm−1 + Am − 1). (7.41)

The underlying stochastic process {Nm |m = 0, 1, 2, . . .} is a DTMC, of which
the state diagram is shown in Figure 7.18. If nc < 1, the steady-state of the
number of cells in the buffer N exists; thus, we have

N = max (0, N + A − 1)

with qi = P (N = i). Its probability generating function is given by

GN (z) =
∞∑

k=0

P (N = k)zk

=
∞∑

k=0

qkzk

= a0q0 +
∞∑

k=0

P (N + A − 1 = k)zk

= a0q0 +
∑∞

k=1 P (N + A = k)zk

z

= a0q0 +
GN (z)GA(z) − a0q0

z
.
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Figure 7.18. DTMC for the queue length of an ATM multiplexer

Then
GN (z) =

a0q0(1 − z)
GA(z) − z

. (7.42)

In (7.42), GN (1) = 1 should hold. Applying l’Hôpital’s rule, we have

1 =
−a0q0

G′
A(1) − 1

=
−a0q0

nc − 1

which means
a0q0 = 1 − nc.

Then (7.42) becomes

GN (z) =
(1 − nc)(1 − z)

GA(z) − z
. (7.43)

Finally, using (7.40) in (7.43), we obtain

GN (z) =
(1 − nc)(1 − z)

(1 − c + cz )n − z
. (7.44)

Now, differentiating (7.44) with respect to z and taking the limit as z → 1,
we obtain the mean steady-state queue size

E[N ] =
n(n − 1)c2

2(1 − nc)
=

(n − 1)
n

(nc)2

2(1 − nc)
.

7.7 * THE M/G/ 1 QUEUING SYSTEM

We consider a single-server queuing system whose arrival process is Poisson
with the average arrival rate λ. The job service times are independent and
identically distributed with the distribution function FB and pdf fB . Jobs are
scheduled for service in their order of arrival; that is, the scheduling discipline
is FCFS. As a special case of the M/G/1 system, if we let FB be the expo-
nential distribution with parameter μ, then we obtain the M/M/1 queuing
system. If the service times are assumed to be a constant, then we get the
M/D/1 queuing system.
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Let N(t) denote the number of jobs in the system (those in the queue
plus any in service) at time t. If N(t) ≥ 1, then a job is in service, and since
the general service time distribution need not be memoryless, besides N(t),
we also require knowledge of time spent by the job in service in order to
predict the future behavior of the system. It follows that the stochastic process
{N(t) | t ≥ 0} is not a Markov chain.

To simplify the state description, we take a snapshot of the system at
times of departure of jobs. These epochs of departure, called regeneration
points, are used to specify the index set of a new stochastic process. Let
tn (n = 1, 2, . . .) be the time of departure (immediately following service) of
the nth job, and let Xn be the number of jobs in the system at time tn so
that

Xn = N(tn), n = 1, 2, . . . . (7.45)

The stochastic process {Xn, n = 1, 2, . . .} will be shown to be a homogeneous,
discrete-time Markov chain, known as the embedded Markov chain of the
continuous-parameter stochastic process {N(t) | t ≥ 0}.

The method of the embedded Markov chain allows us to simplify analysis,
since it converts a non-Markovian problem into a Markovian one. We can then
use the limiting distribution of the embedded Markov chain as a measure of
the original process N(t), for it can be shown that the limiting distribution
of the number of jobs N(t) observed at an arbitrary point in time is identical
to the distribution of the number of jobs observed at the departure epochs:

lim
t→∞

P (N(t) = k) = lim
n→∞

P (Xn = k). (7.46)

This property of queuing systems with Poisson arrivals is known as the PASTA
(Poisson arrivals see time averages) theorem [WOLF 1982]. For n = 1, 2, . . ., let
Yn be the number of jobs arriving during the service time of the nth job. Now
the number of jobs immediately following the departure instant of (n + 1)st
job can be written as:

Xn+1 =
{

Xn − 1 + Yn+1, if Xn > 0,
Yn+1, if Xn = 0.

(7.47)

In other words, the number of jobs immediately following the departure of
the (n + 1)st job depends on whether the (n + 1)st job was in the queue
when the nth job departed. If Xn = 0, the next job to arrive is the (n + 1)st;
during its service time Yn+1 jobs arrive, then the (n + 1)st job departs at
time tn+1, leaving Yn+1 jobs behind. If Xn > 0, then the number of jobs left
behind by the (n + 1)st job equals Xn − 1 + Yn+1. Since Yn+1 is independent
of X1,X2, . . . , Xn, it follows that, given the value of Xn, we need not know the
values of X1,X2, . . . , Xn−1, in order to determine the probabilistic behavior
of Xn+1. Thus, {Xn, n = 1, 2, . . .} is a Markov chain.
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The transition probabilities of the Markov chain are obtained using
equation (7.47):

pij = P (Xn+1 = j |Xn = i)

=

⎧⎨
⎩

P (Yn+1 = j − i + 1), if i �= 0, j ≥ i − 1,
P (Yn+1 = j), if i = 0, j ≥ 0,
0, otherwise.

(7.48)

Since all jobs are statistically identical, we expect that the {Yn} terms are
identically distributed with the pmf P (Yn+1 = j) = aj so that

∞∑
j=1

aj = 1.

Then the (infinite-dimensional) transition probability matrix of {Xn} is given
by

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
0 0 0 a0 · · ·
· · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦ . (7.49)

This Matrix structure is known as upper Hessenberg. Let the limiting proba-
bility of being in state j be denoted by vj , so that

vj = lim
n→∞

P (Xn = j). (7.50)

Using equation (7.18), we get

vj = v0aj +
j+1∑
i=1

viaj−i+1. (7.51)

If we define the generating function G(z) =
∑∞

j=0 vjz
j , then, since

∞∑
j=0

vjz
j =

∞∑
j=0

v0ajz
j +

∞∑
j=0

j+1∑
i=1

viaj−i+1z
j ,

we obtain

G(z) = v0

∞∑
j=0

ajz
j +

∞∑
i=1

∞∑
j=i−1

viaj−i+1z
j

(interchanging the order of summation)
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= v0

∞∑
j=0

ajz
j +

∞∑
i=1

∞∑
k=0

viakzk+i−1

= v0

∞∑
j=0

ajz
j +

1
z

[ ∞∑
i=1

viz
i

∞∑
k=0

akzk

]
.

Defining GA(z) =
∑∞

j=0 ajz
j , we have

G(z) = v0GA(z) +
1
z
[G(z) − v0]GA(z)

or
G(z) =

(z − 1)v0GA(z)
z − GA(z)

.

Since G(1) = 1 = GA(1), we can use l’Hôpital’s rule to obtain

G(1) = 1 = lim
z→1

v0

(z − 1)G′
A(z) + GA(z)

1 − G′
A(z)

=
v0

1 − G′
A(1)

,

provided G′
A(1) is finite and less than unity. [Note that G′

A(1) = E[Y ].] If we
let ρ = G′

A(1), it follows that

v0 = 1 − ρ, (7.52)

and, since v0 is the probability that the server is idle, ρ is the server utilization
in the limit (we assume throughout that ρ < 1). Also, we then have

G(z) =
(1 − ρ)(z − 1)GA(z)

z − GA(z)
. (7.53)

Thus, if we knew the generating function GA(z), we could compute G(z),
from which we could compute the steady-state average number of jobs in the
system by using

E[N ] = lim
n→∞

E[Xn] = G′(1). (7.54)

In order to evaluate GA(z), we first compute aj = P (Yn+1 = j). This is the
probability that exactly j jobs arrive during the service time of the (n + 1)st
job. Let the random variable B denote job service times. Now we obtain the
conditional pmf of Yn+1

P (Yn+1 = j |B = t) = e−λt (λt)j

j!
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by the Poisson assumption. Using the (continuous version) theorem of total
probability, we get

aj =
∫ ∞

0

P (Yn+1 = j |B = t)fB(t) dt

=
∫ ∞

0

e−λt (λt)j

j!
fB(t) dt .

Therefore

GA(z) =
∞∑

j=0

aj zj

=
∞∑

j=0

∫ ∞

0

e−λt (λtz )j

j!
fB(t) dt

=
∫ ∞

0

e−λt

⎡
⎣ ∞∑

j=0

(λtz )j

j!

⎤
⎦ fB(t) dt

=
∫ ∞

0

e−λt eλtzfB(t) dt

=
∫ ∞

0

e−λt(1−z) fB(t) dt

= LB [λ(1 − z)], (7.55)

where LB [λ(1 − z)] is the Laplace–Stieltjes transform of the service time dis-
tribution evaluated at s = λ(1 − z). Note that

ρ = G′
A(1) =

dLB [λ(1 − z)]
dz

∣∣∣∣
z=1

=
dLB

ds

∣∣∣∣
s=0

(−λ)

by the chain rule, so

ρ = λE[B] =
λ

μ
(7.56)

by the moment generating property of the Laplace transform. Here the recip-
rocal of the average service rate μ of the server equals the average service time
E[B].

Substituting (7.55) in (7.53), we get the well-known Pollaczek–Khinchin
(P–K) transform equation:

G(z) =
(1 − ρ)(z − 1)LB [λ(1 − z)]

z − LB [λ(1 − z)]
. (7.57)
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The average number of jobs in the system, in the steady state, is determined
by taking the derivative with respect to z and then taking the limit z → 1:

E[N ] = lim
n→∞

E[Xn] =
∞∑

j=1

jvj = lim
z→1

G′(z). (7.58)

As an example, consider the M/M/1 queue with fB(x) = μe−μx, x > 0,
and hence LB(s) = μ/(s + μ). It follows that

G(z) =
μ − λ

μ − zλ

=
1 − ρ

1 − ρz

= (1 − ρ)
∞∑

j=0

(ρz)j .

The coefficient of zj in G(z) gives the value of vj :

vj = (1 − ρ)ρ j , j = 0, 1, 2, . . . .

It follows that the number of jobs in the system has a modified geometric
distribution with parameter (1 − ρ). Therefore, the expected number of jobs
in the system is given by

E[N ] =
ρ

1 − ρ
. (7.59)

This expression for E[N ] can also be obtained by taking the derivative of the
generating function:

E[N ] = G′(1) =
λ

μ − λ
=

ρ

1 − ρ
.

More generally, it can be shown [KLEI 1975] that

E[N ] = ρ +
λ2E[B2]
2(1 − ρ)

= ρ +
ρ2(1 + C 2

B)
2(1 − ρ)

. (7.60)

This is known as the P–K mean-value formula. Note that the average num-
ber of jobs in the system depends only on the first two moments of the service
time distribution. In fact, E[N ] grows linearly with the squared coefficient
of variation of the service time distribution. In particular, if we consider the
M/D/1 system then C 2

B = 0 and

E[N ]M/D/1 = ρ +
ρ2

2(1 − ρ)
. (7.61)



Trim Size: 6.125in x 9.25in 60Trivedi c07.tex V3 - 05/23/2016 12:05pm Page 397�

� �

�

7.7 * The M/G/ 1 Queuing System 397

Although we have assumed that the scheduling discipline is FCFS, all the
results in this section hold under rather general scheduling disciplines provided
we assume that

1. The server is not idle whenever a job is waiting for service.
2. The scheduling discipline does not base job sequencing on any a priori

information on job execution times.
3. The scheduling is nonpreemptive; that is, once a job is scheduled for

service, it is allowed to complete without interruption.

The method of embedded DTMC has been applied to other non-Markovian
queuing systems such as GI /M/1 [KULK 1995] and M/G/c queue with vaca-
tion [BOLC 1998], among others. For many other results on related queuing
systems, see [GROS 1998].

Despite the enormous queuing theory literature, little work can be
found regarding time-dependent (or transient) behavior, especially for non-
Markovian queuing systems. A non-Markovian model can be Markovized
using phase-type approximation. However, phase-type expansion increases
the already large state space of a real system model. The problem becomes
really severe when mixing non-exponential times with exponential ones. In the
alternative approach, the process can be shown to be a Markov regenerative
one (also known as a semiregenerative process), and therefore Markov renewal
theory can be applied for its long-run as well as time-dependent behavior.
Recently, several researchers have begun work on transient analysis of Markov
regenerative process [CHOI 1994, GERM 2000] as well as on the automated
generation of such processes starting from non-Markovian stochastic Petri
nets [CHOI 1994, GERM 1994], and several applications have been solved
in performance/reliability analysis of computer/communication systems
[GERM 2000, LOGO 1994, LOGO 1995].

Problems

1. Jobs submitted to a university departmental file server can be divided into three

classes:

Relative Mean execution

Type frequency time (in seconds)

Student jobs 0.8 1

Faculty jobs 0.1 20

Administrative jobs 0.1 5

Assuming that, within a class, execution times are one-stage, two-stage, and
three-stage Erlang, respectively, compute the average number of jobs in the server
assuming a Poisson overall arrival stream of jobs with average rate of 0.1 jobs
per second. Assume that all classes are treated equally by the scheduler.
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2. For the M/G/1 queue, plot the average number in the system E[N ] as a function
of server utilization ρ for several different service time distributions:

(a) Deterministic

(b) Exponential

(c) k-stage Erlang, k = 2, 5

(d) k-stage hyperexponential, k = 2; α1 = 0.5, α2 = 0.5; μ1 = 1, μ2 = 10

3. Consider a computer system with a CPU and one disk drive. After a burst at the
CPU the job completes execution with probability 0.1 and requests a disk I/O
with probability 0.9. The time of a single CPU burst is exponentially distributed
with mean 0.01 s. The disk service time is broken up into three phases: expo-
nentially distributed seek time with mean 0.03 s, uniformly distributed latency
time with mean 0.01 s, and a constant transfer time equal to 0.01 s. After a
service completion at the disk, the job always requires a CPU burst. The average
arrival rate of jobs is 0.8 job/s and the system does not have enough main mem-
ory to support multiprogramming. Solve for the average response time using the
M/G/1 model. In order to compute the mean and the variance of the service
time distribution, you may need the results of the section on random sums in
Chapter 5.

4. Starting with the Pollaczek–Khinchin transform equation (7.57), derive expres-
sions for the average number in the system E[N ] for an M/G/1 queue, assuming

(a) Deterministic service times (M/D/1)

(b) Two-stage Erlang service time distribution (M/E2/1)

(c) Two-stage hyperexponential service time distribution (M/H2/1)

5. � Consider a modification of the M/G/1 queue with FCFS scheduling so that
after the completion of a service burst, the job returns to the queue with proba-
bility q and completes execution with probability p (see Figure 7.P.1). We wish
to obtain the queue-length pmf in the steady-state as seen by a completer and as
seen by a departer. First consider the departer’s distribution. Using the notion

p

q

Arrival

process:
Poisson

with rate
General
service
time

Completerλ

Feedback

Departer

with mean
distribution

1
μ

Figure 7.P.1. The M/G/1 queue with Bernoulli feedback
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of random sums, first derive the Laplace–Stieltjes transform for the total service
time T of a job as

LT (s) =
pLB(s)

1 − qLB(s)
,

where B is the random variable denoting the length of a single service burst.
Now show that the generating function of Nd, the number of jobs in the system
(in the steady state) as seen by a departer, defined by

GNd
(z) =

∞∑
k=0

pNd
(k)zk,

is given by

GNd
(z) =

(
1 − λ

μp

)
p(1 − z)LB [λ(1 − z)]

(p + qz )LB [λ(1 − z)] − z
.

Find the average number of jobs E[Nd] as seen by the departer. Specializing to
the case in which the service time distribution is exponential, obtain the pmf of
Nd.

Next consider the embedded Markov chain, where the completion of a service
burst is defined to be an epoch. Show that the transition probability matrix of
this Markov chain is as follows:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pa0 pa1 + qa0 pa2 + qa1 · · ·
pa0 pa1 + qa0 pa2 + qa1 · · ·
0 pa0 pa1 + qa0 · · ·
0 0 pa0 · · ·
0 0 0 · · ·
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

ai = P (Yn+1 = i)

= P [“jobs arrive during the (n + 1)st service burst”].

Now show that the generating function of the steady-state number of jobs in the
system as seen by a completer, defined by

GNc
(z) =

∞∑
k=0

pNc
(k)zk,

is given by

GNc
(z) = p

(
1 − λ

μp

)
(p + qz )(1 − z)LB [λ(1 − z)]

(p + qz )LB [λ(1 − z)] − z
.

Find the average number in the system E[Nc] as seen by a completer.
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7.8 DISCRETE-TIME BIRTH–DEATH PROCESSES

We consider a special type of discrete-time Markov chain with all one-step
transitions to nearest neighbors only. The transition probability matrix P is
a tridiagonal matrix. To simplify notation, we let

bi = pi,i+1, i ≥ 0 {the probability of a birth in state i},
di = pi,i−1, i ≥ 1 {the probability of a death in state i},
ai = pi,i, i ≥ 0. {the probability being in state i}.

Note that (ai + bi + di) = 1 for all i. Thus the (infinite-dimensional) matrix
P is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0 0 · · ·
d1 a1 b1 0 · · · · ·
0 d2 a2 b2 0 · · · ·
0 0 · · · · · · ·
...

...
...

...
...

0 0 0 0 · · · ai−1 bi−1 0 · · · · ·
0 0 0 0 · · · di ai bi 0 · · · ·
0 0 0 0 · · · 0 di+1 ai+1 bi+1 0 · · ·
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the state diagram is shown in Figure 7.19. If we assume that bi > 0 and
di = 0 for all i, then all the states of the Markov chain are transient. Similarly,
if we let bi = 0 and di > 0 for all i, then all the states are transient except
the state labeled 0, which will be an absorbing state. We will assume that
0 < bi, di < 1 for all i ≥ 1 and b0 > 0; hence the Markov chain is irreducible
and aperiodic, which implies by Theorem 7.3 that the limiting probabilities
exist and are independent of the initial probability vector. To compute the
steady-state probability vector v (if it exists), we use

v = vP
and get

v0 = a0v0 + d1v1, (7.62)

vi = bi−1vi−1 + aivi + di+1vi+1, i ≥ 1. (7.63)

Since
1 − ai = bi + di,

from (7.63) we get

bivi − di+1vi+1 = bi−1vi−1 − divi,
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1

0

2
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Figure 7.19. The state diagram of the discrete-time birth-death process

so, bivi − di+1vi+1 is independent of i, but b0v0 − d1v1 = (1 − a0)v0 − d1v1 =
0 from (7.62). Therefore the solution to the above system of equations is
given by

vi =
bi−1

di

vi−1 =
i∏

j=1

bj−1

dj

v0. (7.64)

Now, using the condition
∑

i≥0vi = 1, we get

v0 =
1∑

i≥0

i∏
j=1

bj−1

dj

, (7.65)

provided the series converges. If the series in the denominator diverges, then
we can conclude that all states of the Markov chain are recurrent null. We
will assume that the series is convergent, that is, that all states are recurrent
nonnull; hence (7.64) and (7.65) give the unique steady-state probabilities.

Example 7.15 (Analysis of a Data Structure)

Consider a data structure (such as a linear list) being manipulated in a program.
Suppose that we are interested only in the amount of memory consumed by the data
structure. If the current amount of memory in use is i nodes, then we say that the
state of the structure is si. Let probabilities associated with the next operation on
the data structure be given by

bi = P (“next operation is an insert ” | “current state is si”),

di = P (“next operation is a delete ” | “current state is si”),

ai = P (“next operation is an access ” | “current state is si”).

Then the steady-state pmf of the number of nodes in use is given by equations (7.64)
and (7.65) above.

As a special case, we let bi = b(i ≥ 0) and di = d(i ≥ 1) for all i. Then, assuming
b < d (for the chain to have recurrent nonnull states), we have

vi =
b

d
vi−1 and v0 =

1∑
i≥0

(
b
d

)i = 1 − b

d
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or

vi =

(
1 − b

d

)(
b

d

)i

.

Thus the steady-state pmf is modified geometric with parameter (1 − b/d). The
expected number of nodes in use in the steady state is given by (b/d)/[1 − (b/d)] =
b/(d − b). These formulas are valid under the assumption that

∑
i≥0

(
b

d

)i

is finite. (7.66)

This assumption is satisfied provided b/d < 1, or the probability of insertion is
strictly less than the probability of deletion. If this condition is not satisfied, then
the data structure will tend to grow continually, resulting in a memory overflow.

�

Example 7.16

In Example 7.15, we assumed that a potentially infinite number of nodes are available
for allocation. Next assume that a limited number m ≥ 1 of nodes are available for
allocation. Then, if m nodes are in use, an insertion operation will give rise to an
overflow. We assume that such an operation is simply ignored, leaving the system
in state sm. The state diagram is given in Figure 7.20. The steady-state solution to
this system is given by

vi =

(
b

d

)i

v0, i = 0, 1, . . . , m

and

v0 =
1

m∑
i=0

(
b

d

)i
=

1 −
(

b

d

)

1 −
(

b

d

)m+1 .

Now the probability of an overflow is computed by

Pov = bvm = b

(
b

d

)m 1 −
(

b

d

)

1 −
(

b

d

)m+1

=
bm+1(d − b)

dm+1 − bm+1
. (7.67)

b b b b

b

dddd

mmd 1 20 -1

Figure 7.20. The state diagram for Example 7.16
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Similarly, the probability of underflow is given by

Puf = dv0 = d ·
1 − b

d

1 −
(

b

d

)m+1

=
d m+1(d − b)

d m+1 − bm+1
. (7.68)

�

The notion of the birth–death process can be generalized to multidi-
mensional birth–death processes. We will introduce such processes through
examples.

Example 7.17

Consider a program that uses two stacks, sharing an area of memory containing
m locations. The stacks grow toward each other from the two opposite ends (see
Figure 7.21). Clearly, an overflow will occur on an insertion into either stack when i +
j = m. Let the state of the system be denoted by the pair (i, j). Then the state space
is I = {(i, j) | i, j ≥ 0, i + j ≤ m}. We assume that an overflow is simply
ignored, leaving the state of the system unchanged. Underflow also does not change
the system state as before.

At each instant of time, an operation on one of the stacks takes place with respec-
tive probabilities as shown in the probability tree of Figure 7.22. Thus, for i = 1,2,

i j

Stack 1 Stack 2
m

Figure 7.21. Two stacks sharing an area of memory

Given stack operation

Stack 1 Stack 2

Insertion Deletion Access Insertion Deletion AccessType of
operation:

Directed to:

p p

db a b d a
1 1 1

1 2

2 2 2

Figure 7.22. Tree diagram for Example 7.17
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p
i

is the probability that a given operation is directed to stack i, and bi, di, and ai,
respectively denote the probabilities that this operation is an insertion, deletion, or
access. The system behavior corresponds to a two-dimensional birth–death process
with the state diagram shown in Figure 7.23. The steady-state probability vector

v = [v(0,0), v(0,1), . . . , v(0,m), . . . , v(i,j), . . . , v(m,0)]

may be obtained by solving

v = vP

2

. . .

. . .

. .
 .

. .
 .

m, 0

i, j

11

i, 0

2
1, 0

0, 10, 0

a

a + p d
p b

p d
p d

p d

. . . .

1  11  1

1  1

2  2

2  22  2

a + p d  + p b  + p b
2  2

p d  + p d  + p a  + p a a + p d

a + p d

d2p2 d2p2

p2b2

p1b1

b2p2b2p2

d1p1
b1p1

p b

a = p a  + p a

a + p d  + p b  + p b
1  1

1  1

1  12  22  2

p d

2  21  1

2  2

2  2

1  1 2  21  1

0, m

Figure 7.23. The state diagram for the two-stacks example
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(and using the identities a1 + b1 + d1 = 1, a2 + b2 + d2 = 1, and p
1

+ p
2

= 1). Thus

v(i,j) = b2p2v(i,j−1) + d2p2v(i,j+1) + (a1p1 + a2p2)v(i,j)

+b1p1v(i−1,j) + d1p1p(i+1,j), 1 ≤ i, j; i + j < m,

v(i,0) = (a1p1 + a2p2 + d2p2)v(i,0) + d2p2v(i,1)

+b1p1v(i−1,0) + d1p1v(i+1,0), 1 ≤ i ≤ m − 1,

v(0,j) = (a1p1 + a2p2 + d1p1)v(0,j) + d1p1v(1,j)

+b2p2v(0,j−1) + d2p2p(0,j+1), 1 ≤ j ≤ m − 1,

v(0,0) = (d1p1 + d2p2 + a1p1 + a2p2)v(0,0) + d1p1v(1,0)

+d2p2v(0,1),

v(0,m) = (a1p1 + a2p2 + d1p1 + b1p1 + b2p2)v(0,m) + b2p2v(0,m−1),

v(m,0) = (a1p1 + a2p2 + d2p2 + b1p1 + b2p2)v(m,0) + b1p1v(m−1,0).

It may be verified by direct substitution that

v(i,j) = v(0,0)

(
b1

d1

)i( b2

d2

)j

, i, j ≥ 0, i + j ≤ m.

We will use the abbreviation r1 = b1/d1 and r2 = b2/d2. Then

v(i,j) = v(0,0)r
i
1r

j
2.

The normalization requirement yields

1 =

m∑
i=0

m−i∑
j=0

v(i,j)

= v(0,0)

m∑
i=0

[
m−i∑
j=0

(rj
2)

]
ri
1

= v(0,0)

m∑
i=0

1 − rm−i+1
2

1 − r2

ri
1

=
v(0,0)

1 − r2

m∑
i=0

[
ri
1 − rm+1

2

(
r1

r2

)i
]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(0,0)

1 − r2

[
1 − rm+1

1

1 − r1

− rm+1
2

1 − (r1/r2)
m+1

1 − (r1/r2)

]
, if r1 �= r2; r1 �= 1, r2 �= 1

v(0,0)

1 − r1

[
1 − rm+1

1

1 − r1

− (m + 1)rm+1
1

]
, if r1 = r2 �= 1.
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Simplifying, we obtain

v(0,0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 − r1)(1 − r2)

1 − 1
r2−r1

{rm+2
2 (1 − r1) − rm+2

1 (1 − r2)}
, r1 �= r2,

(1 − r1)
2

1 − (m + 2)rm+1
1 + (m + 1)rm+2

1

, r1 = r2 �= 1

2

(m + 1)(m + 2)
, r1 = r2 = 1.

The probability of overflow is given by

Pov =
∑

i+j=m

v(i,j)(b1p1 + b2p2)

= v(0,0)

m∑
i=0

ri
1r

m−i
2 (b1p1 + b2p2)

=

⎧⎪⎨
⎪⎩

(b1p1 + b2p2)v(0,0)r
m
2

1 − (r1/r2)
m+1

1 − (r1/r2)
, r1 �= r2,

(m + 1)(b1p1 + b2p2)v(0,0)r
m
1 , r1 = r2.

(7.69)

�

Example 7.18

We want to implement two stacks within 2k memory locations. The first solution is
to divide the given area into two equal areas and preallocate the two areas to the two
stacks. Assume p

1
= p

2
= 1

2
, b1 = b2 = b, d1 = d2 = d, and hence r1 = r2 = r = b/d.

Under the first scheme, the overflow in each stack occurs with probability [using
equation (7.67)]

brk(1 − r)

1 − rk+1

where the total overflow probability is twice as much.
Under the second scheme, where the two stacks grow toward each other, we have

v(0,0) =
(1 − r)2

1 − (2k + 2)r2k+1 + (2k + 1)r2k+2

and the overflow probability is given by [using equation (7.69)]

Pov = (2k + 1)(b)
(1 − r)2r2k

1 − (2k + 2)r2k+1 + (2k + 1)r2k+2
.

Then the condition under which the second scheme is better than the first one is
given by

b(2k + 1)
(1 − r)2r2k

1 − (2k + 2)r2k+1 + (2k + 1)r2k+2
≤ 2brk 1 − r

1 − rk+1
.
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Assuming for simplicity that r < 1, this condition is rewritten as

(2k + 1)rk

1 − r2k+1

1 − r
− (2k + 1)r2k+1

≤ 2

1 − rk+1

and hence as

(2k + 1)rk + (2k + 1)r2k+1 ≤ 2
1 − r2k+1

1 − r

=

[
2(

k−1∑
i=0

ri) + rk

]
+

{
rk + 2

(
2k∑

i=k+1

ri

)}
. (7.70)

In order to show that inequality (7.70) holds, observe that there are (2k + 1) terms
in the expression within the square brackets and each term is greater than or equal
to rk (since r < 1). Similarly, each of (2k + 1) term of the expression within braces
is greater than or equal to r2k+1.

Thus we conclude that the second scheme of sharing the 2k locations between
the two stacks is superior to the first scheme of preallocating half the available area
to each stack.

�

7.9 FINITE MARKOV CHAINS WITH ABSORBING STATES

In Chapter 5 we discussed the analysis of properly nested programs. Many
programs, however, are not properly nested in that they contain goto state-
ments. Program graphs associated with such a program can be treated as the
state diagram of a discrete-time Markov chain, with appropriate assumptions.
Since the program is eventually expected to terminate, it will contain certain
“final” or “stopping” states. In the terminology of Markov chains, such states
are called absorbing states. Also, since the number of statements in the pro-
gram will be finite, the corresponding chain will have a finite number of states.

Consider a program with its associated directed graph as shown in
Figure 7.24. Such a control flow graph of the program is sometimes known
as its architecture [GOKH 1998]. Each vertex sj in the figure represents a
group of statements with a single entry point and a single exit point. The
last statement in the group is a multiway branch. Vertex s1 is the start
vertex. Vertex s5 has no outgoing edges and thus is a stop vertex. The
weight pij of edge (si, sj) is interpreted as the conditional probability that
the program will next execute statement group sj , given that it has just
completed the execution of statement group si. We have assumed that this
probability depends only on the current statement group and not on the
previous history of the program. Therefore, the corresponding Markov chain
will be homogeneous. Herein lies a serious deficiency of the model. In actual
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Figure 7.24. A program flow graph

programs such probabilities are not likely to be independent of previous
history, and a more accurate model involving the use of nonhomogeneous
Markov chains is desirable. We will, however, continue with the simplified,
albeit inaccurate, model using homogeneous Markov chains. It is possible to
automatically derive the control flow graphs of programs using information
collected from the testing of the programs [GOKH 1998].

While interpreting the program flow graph of Figure 7.24 as the state dia-
gram of a finite, discrete-time, homogeneous Markov chain, we encounter one
difficulty. From the absorbing state s5 there are no outgoing edges. Then
p5j = 0 for all j. But the assumption of the Markov chain requires that∑

jpij = 1 for each i. To avoid this difficulty, we imagine a “dummy” edge
forming a self-loop on the absorbing state s5. With this modification, the
transition probability matrix of the Markov chain is given by

P =

s1 s2 s3 s4 s5

s1

s2

s3

s4

s5

⎡
⎢⎢⎢⎢⎣

0 0.6 0.4 0 0
0 0 0 0.6 0.4
0 0.2 0 0.4 0.4
0 0 0.6 0 0.4
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Note that states s1 through s4 are transient states while state s5 is an absorb-
ing state.

In general, we consider a Markov chain with n states, s1, s2, . . . , sn,
where sn is the absorbing state, and the remaining states are transient. The
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transition probability matrix of such a chain may be partitioned so that

P =

⎡
⎣ Q C

– – – – – – – – – –
0 1

⎤
⎦ . (7.71)

where Q is an (n − 1) by (n − 1) substochastic matrix (with at least one row
sum less than 1) describing the probabilities of transition only among the
transient states. C is a column vector and 0 is a row vector of (n − 1) zeros.

Now the k-step transition probability matrix P k has the form

P k =

⎡
⎣ Qk C’

– – – – – – – – – –
0 1

⎤
⎦ , (7.72)

where C’ is a column vector whose elements will be of no further use and
hence need not be computed. The (i, j) entry of matrix Qk denotes the prob-
ability of arriving in (transient) state sj after exactly k steps starting from
(transient) state si. It can be shown that

∑t
k=0 Qk converges as t approaches

infinity [PARZ 1962]. This implies that the inverse matrix (I − Q)−1, called
the fundamental matrix, M , exists and is given by

M = (I − Q)−1 = I + Q + Q2 + · · · =
∞∑

k=0

Qk.

The fundamental matrix M is a rich source of information on the Markov
chain, as seen below. Let Xij (1 ≤ i, j < n) be the random variable denoting
the number of times the program visits state sj before entering the absorbing
state, given that it started in state si. Let μij = E[Xij ].

THEOREM 7.5. For 1 ≤ i, j < n,E[Xij ] = mij , the (i, j)th
element of the fundamental matrix M .
Proof [BHAT 1984]: Initially the process is in the transient state si.
In one step it may enter the absorbing state sn with probability pin .
The corresponding number of visits to state sj is equal to zero unless
j = i. Thus, Xij = δij with probability pin , where δij is the Kronecker
δ function (δij = 1 if i = j and 0 otherwise). Alternately, the process
may go to transient state sk at the first step (with probability pik ). The
subsequent number of visits to state sj is given by Xkj . If i = j, the
total number of visits, Xij , to state sj will be Xkj + 1, otherwise it will
be Xkj . Therefore

Xij =

{
δij with probability pin ,

Xkj + δij with probability pik , 1 ≤ k < n.
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If the random variable Y denotes the state of the process at the second
step (given that the initial state is i), we can summarize as follows:

E[Xij | Y = n] = δij ,

E[Xij | Y = k] = E[Xkj + δij ] = E[Xkj ] + E[δij ] = E[Xkj ] + δij .

Now since the pmf of Y is easily derived as P (Y = k) = pik , 1 ≤ k ≤ n,
we can use the theorem of total expectation to obtain

μij = E[Xij ] =
∑

k

E[Xij | Y = k] P (Y = k)

= pinδij +

n−1∑
k=1

pik (E[Xkj ] + δij )

=
n∑

k=1

pikδij +

n−1∑
k=1

pikE[Xkj ]

= δij +

n−1∑
k=1

pikμkj . (7.73)

Forming the (n − 1) × (n − 1) matrix consisting of elements μij , we have

[μij ] = I + Q[μij ]

or
[μij ] = (I − Q)−1 = M . (7.74)

For DTMC with absorbing states we will be interested in the expected
accumulated reward till absorption, that is lim

k→∞
E[Yk]. Let Vj denote the

average number of times the statement group sj is executed in a typical run
of the program. Then, since s1 is the starting state of the program, Vj = m1j ,
the element in the first row and the jth column of the fundamental matrix, M .
Now if rj denotes the reward attached to statement group sj (per visit), then
the expected accumulated reward till absorption due to the execution of the
program is given by

lim
k→∞

E[Yk] =

⎛
⎝n−1∑

j=1

Vjrj

⎞
⎠ + rn =

⎛
⎝n−1∑

j=1

m1jrj

⎞
⎠ + rn,

since the number of visits, Vn, to the stop vertex sn is one. In case we are
interested in the mean execution (completion) time of the program, the reward
attached to statement group sj will be the average execution time tj of the
statement group. If we are interested in the cache misses for the whole pro-
gram, then we will assign the reward rate rj to group sj to be the average
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number of cache misses for that group of statements sj . An alternative form
of (7.73) can be used to simplify computations of the visit counts as follows.
From (7.74) we have

M(I − Q) = I or M = I + MQ .

Therefore, the (i, j) element of matrix M can be computed using the formula

mij = δij +
n−1∑
k=1

mikpkj . (7.75)

Recalling that m1j = Vj , we have

Vj = δ1j +
n−1∑
k=1

Vkpkj , j = 1, 2, . . . , n − 1. (7.76)

Thus, the visit counts are obtained by solving a system of (n − 1) linear
equations (7.76).

Example 7.19

Returning to the program discussed earlier in this section, the matrix Q is given by

Q =

⎡
⎢⎢⎣

0 0.6 0.4 0
0 0 0 0.6
0 0.2 0 0.4
0 0 0.6 0

⎤
⎥⎥⎦ .

The fundamental matrix M is computed to be

M = (I − Q)−1 =

⎡
⎢⎢⎣

1 0.7791 0.8953 0.8256
0 1.1047 0.5233 0.8721
0 0.2907 1.4535 0.7558
0 0.1744 0.8721 1.4535

⎤
⎥⎥⎦ .

Thus the vertices s1, s2, s3, and s4 are respectively executed 1, 0.7791, 0.8953, and
0.8254 times on the average. If tj is the average execution time of statement group
sj , then the average execution time of the program is equal to

t1 + 0.7791 · t2 + 0.8953 · t3 + 0.8256 · t4 + t5time units.

Note that with the addition of execution time for each statement group, we are
actually dealing with a semi-Markov process. More material on semi-Markov process
is covered in Chapter 8. If nj is the average number of cache misses for the statement
groups sj , then the overall number of cache misses for the whole program is

n1 + 0.7791 · n2 + 0.8953 · n3 + 0.8256 · n4 + n5.
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Finally, if let Rj be the reliability of statement group sj , then the overall reliability
of the program can be approximated by

R =
∏

j

R
Vj

j

or
ln R =

∑
j

Vj ln Rj .

Hence, by assigning reward rj = ln Rj to state sj we can obtain ln R = ln R1 +
0.7791 · ln R2 + 0.8953 · ln R3 + 0.8256 · ln R4 + ln R5.

�

Example 7.20

Often we are not interested in the details of computation states of a program but
only wish to distinguish between the computation state and one of the m I/O states.
Thus the program may appear as shown in Figure 7.25. Vertex (labeled 0) COMP
is the start vertex. The transition probability matrix P is given by

COMP I/O1 · · · I/Oi · · · I/Om STOP

COMP
I/O1
I/O2

I/Oi

I/Om
STOP

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p
1

· · · p
i

· · · p
m

p
0

1 0 0 0 0
1 0 0 0 0
...

...
...

...
...

1 0 0 0 0
...

...
...

...
...

1 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

m
m

p

p
m

p

COMP
0

1

STOP
m+1

1

1
1

. . . . .

. . . . . I/OI/O1

1

1

0

Figure 7.25. A program flow graph
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The portion of the transition probability matrix for the transitions among the tran-
sient states is given by

Q =

⎡
⎢⎢⎢⎢⎣

0 p
1

· · · p
m

1 0 · · · 0
· · · · · ·
1 0 · · · 0
1 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Then

(I − Q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −p
1

· · · −p
m

−1 1 0 0
· 0 · ·
· · · ·
· · · ·

−1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and the fundamental matrix

M = (I − Q)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
p0

p1
p0

p2
p0

· · · pm
p0

1
p0

1 +
p1
p0

p2
p0

· · · pm
p0

...

1
p0

p1
p0

p2
p0

· · · 1 +
pm
p0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus V0 = m00 = 1/p
0

is the average number of times the COMP state is visited,
and Vj = m0j = p

j
/p

0
is the average number of times the state I/Oj is visited.

This result can be derived directly using equation (7.76):

V0 = δ00 +
m∑

k=0

pk0Vk, j = 0,

= 1 +
m∑

k=1

Vk

and

Vj = δ0j +
m∑

k=0

pkjVk, j = 1, 2, . . . , m,

= p
j
V0.

Solving, we get

Vj =

⎧⎪⎨
⎪⎩

1
p0

, j = 0,

p
j

p0
, j = 1, 2, . . . , m.

(7.77)

�
So far, we have assumed that there is a unique entry point (START

state) to the program. The results above are easily generalized to the case
with multiple entry points. Suppose that the program starts from vertex sj

with probability qj (1 ≤ j ≤ n) so that
∑n

j=1 qj = 1. Since mij denotes the
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average number of times node j is visited given that the process started in
node i, the average number, Vj , of times node j is visited without conditioning
on the START state, is given by the theorem of total expectation as

Vj =
n∑

i=1

mij qi. (7.78)

Substituting expression (7.75) for mij , we have

Vj =
n∑

i=1

qi

[
δij +

n−1∑
k=1

mikpkj

]

=
n∑

i=1

qiδij +
n∑

i=1

qi

n−1∑
k=1

mikpkj

= qj +
n−1∑
k=1

pkj

n∑
i=1

mikqi,

interchanging the order of summation. Now, using (7.78), we have

Vj = qj +
n−1∑
k=1

pkjVk, j = 1, 2, . . . , n − 1. (7.79)

Clearly, for the STOP state sn, the VISIT count still remains at 1. Equation
(7.79) will be used again in Chapter 9.

So far we have assumed a single absorbing state. We next consider multiple
absorbing states on a homogeneous DTMC. Assume that there are n − m
transient states and m absorbing states. We organize the transition probability
matrix P as in equation (7.71):

P =

⎡
⎣ Q C

– – – – – – – – – –
0 I

⎤
⎦ ,

where Q is an (n − m) by (n − m) substochastic matrix, I is an m by m
identity matrix and C is a rectangular matrix that is (n − m) by m. Define the
matrix A = [aik ] so that aik denotes the probability that the DTMC starting
with a transient state i eventually gets absorbed in an absorbing state k. Then
it can be shown that A = (I − Q)−1C [MEDH 1994].

Example 7.21

We extend the program graph in the beginning of this section to include the pos-
sibility of failure for each statement group. Two absorbing states, S and F , are
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0.36

0.54

0.36

0.54

0.360.54

0.18

0.36

0.36

F

S

0.9

1

  1

0.1

0.1

0.1

0.1

0.1

s

s

s

s

s

2

4

5

1

3

Figure 7.26. A program flow graph with failure state

added (see Figure 7.26), representing correct output and failure, respectively. The
failure of a statement group sj is considered by creating a directed edge to failure
state F with transition probability 1 − Rj where Rj is the reliability of statement
group sj . We also need to modify transition probability from state sj to state sk

to Rjpjk , which represents the probability that statement group sj produces the
correct result and the control is transferred to statement group sk. From the exit
state s5, a directed edge to state S is created with transition probability R5 to rep-
resent correct execution. In our numerical example, we assume that Rj = 0.9 for all
j. With this modification, the transition probability matrix of the Markov chain is
given by

P =

s1 s2 s3 s4 s5 S F
s1

s2

s3

s4

s5

S
F

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.54 0.36 0 0 0 0.1
0 0 0 0.54 0.36 0 0.1
0 0.18 0 0.36 0.36 0 0.1
0 0 0.54 0 0.36 0 0.1
0 0 0 0 0 0.9 0.1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Now the matrix Q is

Q =

⎡
⎢⎢⎢⎢⎣

0 0.54 0.36 0 0
0 0 0 0.54 0.36
0 0.18 0 0.36 0.36
0 0 0.54 0 0.36
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

The fundamental matrix M is computed to be

M = (I − Q)−1 =

⎡
⎢⎢⎢⎢⎣

1 0.6637 0.6871 0.6057 0.7043
0 1.0697 0.3872 0.7170 0.7826
0 0.2390 1.3278 0.6071 0.7826
0 0.1291 0.7170 1.3278 0.7826
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

and matrix A is computed as

A = MC =

⎡
⎢⎢⎢⎢⎣

0.6339 0.3661
0.7043 0.2957
0.7043 0.2957
0.7043 0.2957

0.9 0.1

⎤
⎥⎥⎥⎥⎦ .

Thus, if the program started in state s1, it will complete successfully with probability
0.6339 and it will fail with probability 0.3661.

Interestingly, the same result can also be obtained by applying the power method
[equation (7.20)]. Suppose that we are interested in finding out the probability that
the program completes successfully or fails starting from state s1. The initial prob-
ability vector v(0) = [1, 0, 0, 0, 0, 0, 0]. We iterate using the following:

v(k) = v(k−1)P, k = 1, 2, . . . ,

until convergence is reached, that is, | v(k) − v(k−1) | ≤ ε, where ε is a very small
positive real number. A simple Matlab or Mathematica script can give us the result
after k = 25 iterations for ε = 10−6:

v(k) = [0, 0, 0, 0, 0, 0.6339, 0.3661].

Same procedure can be used for different starting states. To get the result in one
single run, we may start the iteration with an initial probability matrix instead of
a vector:

V(0) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ .
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Applying the same iteration, after k = 26 iterations for the same ε, we have

V(k) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0.6339 0.3661
0 0 0 0 0 0.7043 0.2957
0 0 0 0 0 0.7043 0.2957
0 0 0 0 0 0.7043 0.2957
0 0 0 0 0 0.9000 0.1000

⎤
⎥⎥⎥⎥⎦ .

The last two columns are the probabilities of interest, which are the same as those
obtained using the fundamental matrix method.

�

Problems

1. Refer to Knuth [KNUT 1997]. Given the stochastic program flow graph shown
in Figure 7.P.2, compute the average number of times each vertex si is visited,
and assuming that the execution time of si is given by ti = 2i + 1 time units,
find the average total execution time τ of the program.

s

s1

s

s

s

s

4

1
4

1
4

2

1

1

3
4

1

1

1

STOP state

START state

6

4

2

2

3

1
2

5

Figure 7.P.2. Another program flow graph

Review Problems

1. � Refer to McCabe [MCCA 1965]. In Example 4.2 we stated that the average time
to sequentially search a linear list is minimized if the keys are arranged in decreas-
ing order of request probabilities. If the request probabilities are not known in
advance, near-optimal behavior can still be achieved by using a self-organized list.
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One such technique, known as a “move to front” heuristic, moves the requested
key, if located, to the front of the list. Show that the average number of key
comparisons needed for a successful search is given by

E[X] = 1 +

n∑
i=1

n∑
j=1
i�=j

αiαj

αi + αj

,

where n is the number of distinct keys in the list and 0 < αi < 1 is the probability
of accessing the key labeled i (which may be located in any one of the n positions).
You may proceed to show this result first in case n = 3 and then attempt to
generalize it.

2. � Reconsider Example 7.16 and assume that an overflow forces the program
to abort, but an underflow is simply ignored. Compute the average number of
operations until an abort occurs. Simplify the problem by first considering a data
structure with three nodes and then attempt to generalize your result.
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Chapter 8

Continuous-Time Markov Chains

8.1 INTRODUCTION

The analysis of continuous-time Markov chains (CTMCs) is similar to that
of the discrete-time case, except that the transitions from a given state to
another state can take place at any instant of time. As in the last chapter, we
confine our attention to discrete-state processes. This implies that, although
the parameter t has a continuous range of values, the set of values of X(t)
is discrete. Let I = {0, 1, 2, . . .} denote the state space of the process, and
T = [0,∞) be its parameter space. Recalling from Chapter 6, a discrete-state
continuous-time stochastic process {X(t) | t ≥ 0} is called a Markov chain if for
t0 < t1 < t2 < · · · < tn < t, with t and tr ≥ 0 (r = 0, 1, . . . , n), its conditional
pmf satisfies the relation

P (X(t) = x |X(tn) = xn,X(tn−1) = xn−1, . . . , X(t0) = x0)

= P (X(t) = x |X(tn) = xn). (8.1)

The behavior of the process is characterized by (1) the initial state probabil-
ity vector of the CTMC given by the pmf of X(t0), i.e., P (X(t0) = k), k =
0, 1, 2, . . ., and (2) the transition probabilities:

pij (v, t) = P (X(t) = j |X(v) = i) (8.2)

for 0 ≤ v ≤ t and i, j = 0, 1, 2, . . ., where∑
j∈I

pij (v, t) = 1 for all i; 0 ≤ v ≤ t. (8.3)

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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and where we define
pij (t, t) =

{
1, if i = j,
0, otherwise.

The Markov chain {X(t)|t ≥ 0} is said to be (time-)homogeneous (or
is said to have stationary transition probabilities) if pij (v, t) depends
only on the time difference (t − v). In this case, we abbreviate the notation
for the transition probabilities as pij (t − v). This conditional probability is
written as:

pij (t) = P (X(t + v) = j |X(v) = i) for any v ≥ 0. (8.4)

Let us denote the pmf of X(t) (or the state probabilities at time t) by

πj(t) = P (X(t) = j), j = 0, 1, 2, . . . ; t ≥ 0. (8.5)

It is clear that ∑
j∈I

πj(t) = 1

for any t ≥ 0, since at any given time the process must be in some state.
By using the theorem of total probability, for given t > v, we can express

the pmf of X(t) in terms of the transition probabilities pij (v, t) and the pmf
of X(v):

πj(t) = P (X(t) = j)

=
∑
i∈I

P (X(t) = j |X(v) = i) P (X(v) = i)

=
∑
i∈I

pij (v, t)πi(v). (8.6)

If we let v = 0 in (8.6), then

πj(t) =
∑
i∈I

pij (0, t)πi(0). (8.7)

Hence, the probabilistic behavior of a CTMC is completely determined once
the transition probabilities pij (v, t) and the initial probability vector π(0) =
[π0(0), π1(0), . . .] are specified.

The transition probabilities of a CTMC {X(t) | t ≥ 0} satisfy the
Chapman–Kolmogorov equation which states that for all i, j ∈ I,

pij (v, t) =
∑
k∈I

pik (v, u)pkj (u, t), 0 ≤ v < u < t. (8.8)
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To prove (8.8), we use the theorem of total probability:

P (X(t) = j |X(v) = i) =
∑
k∈I

P (X(t) = j |X(u) = k,X(v) = i)

· P (X(u) = k |X(v) = i).

The subsequent application of the Markov property (8.1) yields (8.8).
The direct use of (8.8) is difficult. Usually we obtain the transition prob-

abilities by solving a system of differential equations that we derive next. For
this purpose, under certain regularity conditions, we can show that for each
j there is a nonnegative continuous function qj(t) defined by

qj(t) = − ∂

∂t
pjj (v, t)|v=t

= lim
h→0

pjj (t, t) − pjj (t, t + h)
h

= lim
h→0

1 − pjj (t, t + h)
h

. (8.9)

Similarly, for each i and j (�= i) there is a nonnegative continuous func-
tion qij (t) (known as the transition rate from state i to state j at time t)
defined by

qij (t) =
∂

∂t
pij (v, t)|v=t

= lim
h→0

pij (t, t) − pij (t, t + h)
−h

= lim
h→0

pij (t, t + h)
h

. (8.10)

Then the transition probabilities and the transition rates are related by1

pij (t, t + h) = qij (t) · h + o(h), i �= j,

and
pjj (t, t + h) = 1 − qj(t) · h + o(h), i = j.

Substituting t + h for t in equation (8.8), we get

pij (v, t + h) =
∑

k

pik (v, u)pkj (u, t + h)

which implies

pij (v, t + h) − pij (v, t) =
∑

k

pik (v, u)[pkj (u, t + h) − pkj (u, t)].

1o(h) is any function of h that approaches zero faster than h:

lim
h→0

o(h)

h
= 0
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Dividing both sides by h and taking the limit h → 0 and u → t, we get the
differential equation known as Kolmogorov’s forward equation. For 0 ≤
v < t and i, j ∈ I

∂pij (v, t)
∂t

=
[∑

k �=j

pik (v, t)qkj (t)
]
− pij (v, t)qj(t). (8.11)

In a similar fashion we can also derive Kolmogorov’s backward
equation:

∂pij (v, t)
∂v

=
[∑

k �=i

pkj (v, t)qik (v)
]
− pij (v, t)qi(v). (8.12)

Define the infinitesimal generator matrix Q(t) = [qij (t)] with the diagonal
entries qii(t) = −qi(t). It is easy to see that

∑
jqij (t) = 0 for all i. Now if we

define the matrix P (v, t) = [pij (v, t)], we can write these equations in matrix
form:

∂P (v, t)
∂t

= P (v, t)Q(t),

∂P (v, t)
∂v

= Q(v)P (v, t).

Using (8.6) and (8.11) we can also derive a differential equation for the uncon-
ditional probability πj(t) as

dπj(t)
dt

=
[∑

i�=j

πi(t)qij (t)
]
− πj(t)qj(t). (8.13)

We use (8.11) when we want specifically to show the initial state, while we
use (8.13) when the initial state (or initial probability vector) is implied. If
we let the π(t) = [π0(t), π1(t), . . .], then in matrix form we have

dπ(t)
dt

= π(t)Q(t). (8.14)

In many important applications the transition probabilities pii(t, t + h)
do not depend on the initial time t but only on the elapsed time h (i.e., the
resulting Markov chain is time-homogeneous or simply homogeneous). This
implies that the transition rates qij (t) and qj(t) are independent of t. However,
when qj(t) are time dependent, then the resulting Markov chain is said to be
nonhomogeneous. Unless otherwise stated, we will be concerned only with



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 425�

� �

�

8.1 INTRODUCTION 425

time-homogeneous situations. In this case the transition rates2 are denoted
by qij and the transition probabilities pij (t, t + h) by pij (h). Equations (8.11)
and (8.13) are rewritten as

dpij (t)
dt

= [
∑
k �=j

pik (t)qkj ] − pij (t)qj , (8.15)

dπj(t)
dt

=
∑
i�=j

πi(t)qij − πj(t)qj . (8.16)

In matrix form the equations are

dP(t)
dt

= P (t)Q, (8.17)

dπ(t)
dt

= π(t)Q. (8.18)

The infinitesimal generator matrix Q of a homogeneous CTMC has
time-independent entries. Matrix Q will sometimes be called the generator
matrix of a CTMC for short.

Define Lj(t) =
∫ t

0
πj(x)dx . It can be shown that Lj(t) is the time spent by

the CTMC in state j during the interval (0, t]. Let the vector L(t) = [Lj(t)].
Then by integration of (8.18), we get

dL(t)
dt

= L(t)Q + π(0). (8.19)

Even in this simpler case of a time-homogeneous Markov chain, solution of
equation (8.18) to obtain the time-dependent probabilities πj(t) in closed
form is quite difficult. We will consider several special cases where closed-form
solution is possible and we will also consider methods of numerical solution for
the more general case. Nevertheless, in many interesting situations a further
reduction is possible in that the probabilities πj(t) approach a limit πj as t
approaches infinity. We wish to explore the conditions under which such a
limiting probability vector exists.

A classification of states for a CTMC is similar to the discrete-time case
except that there is no notion of periodic/aperiodic state in CTMC. A state i
is said to be an absorbing state provided that qij = 0 for all j �= i, so that,
once entered, the process is destined to remain in that state. For a CTMC

2It is to be noted that qij , i �= j is always finite. While qj(≥ 0) always exists and is finite

when I is finite, qj may be infinite when I is denumerably infinite.
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with two or more absorbing states, the limiting probabilities limt→∞pij (t)
may well depend on the initial state.

A state j is said to be reachable from state i if for some t > 0, pij (t) > 0.
A CTMC is said to be irreducible if every state is reachable from every other
state.

THEOREM 8.1. For an irreducible continuous-time Markov
chain, the limits

πj = lim
t→∞

pij (t) = lim
t→∞

πj(t) i, j ∈ I (8.20)

always exist and are independent of the initial state i.

If the limiting probabilities πj exist, then

lim
t→∞

dπj(t)
dt

= 0, (8.21)

and, substituting into equation (8.18), we get the following system of linear
homogeneous equations (one for each state j):

0 =
∑
i�=j

πiqij − πjqj . (8.22)

If we define the steady-state probability vector π = [π0, π1, . . .], then in
vector-matrix form equation (8.22) becomes

πQ = 0. (8.23)

This is the continuous analog of equation (7.18).
For the homogeneous system of equations, one possible solution is that

πj = 0 for all j. If another solution exists, then an infinite number of solutions
can be obtained by multiplying by scalars. To determine a nonzero unique
solution, we use the following condition:∑

j

πj = 1. (8.24)

Irreducible Markov chains that yield positive limiting probabilities {πj} in
this way are called recurrent nonnull or positive recurrent, and the prob-
abilities {πj}, satisfying (8.22) and (8.24) are also known as steady-state
probabilities. It is clear that a finite irreducible Markov chain must be
positive recurrent; hence we can obtain its unique limiting probabilities by
solving the finite system of equations (8.22) under the condition (8.24). More
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generally, the states of finite Markov chain can be partitioned into subsets
C1, C2,..., Ck such that Ck consists of all transient states and for i = 1, 2,...,
k− 1, Ci is a closed set of recurrent nonnull states. If Ci contains only one
state then that state is an absorbing state.

Once state probabilities, πj and πj(t) (or integrals Lj(t)) have been com-
puted, measures of interest are usually obtained as weighted averages of these
quantities. Assume a weight or a reward rate rj is attached to state j. Let
Z(t) = rX(t) be the reward rate of the CTMC at time t. Then the expected
instantaneous reward rate at time t is

E[Z(t)] =
∑

j

rjπj(t). (8.25)

For an irreducible CTMC, the expected steady-state reward rate is

E[Z] = lim
t→∞

E[Z(t)] =
∑

j

rjπj . (8.26)

Define Y (t) =
∫ t

0
Z(τ)dτ as the accumulated reward in the interval (0, t]. Then

the expected accumulated reward in the interval (0, t] is given by

E[Y (t)] =
∑

j

rj

∫ t

0

πj(τ)dτ =
∑

j

rjLj(t). (8.27)

We have seen in Chapter 6 that the distribution of times that a homoge-
neous CTMC spends in a given state must be memoryless. This implies that
holding times in a state of a CTMC of the homogeneous type are exponen-
tially distributed. In the next section we study the limiting probability vector
of a special type of Markov chain, called the birth–death process. In Section
8.4, we study limiting probability vector of several non-birth–death processes.

The study of transient behavior [πj(t), t ≥ 0] is quite complex for a general
Markov chain. In Sections 8.3 and 8.5 we consider special cases where it is
possible to obtain an explicit solution for πj(t), while in Section 8.6, we will
briefly review solution techniques for homogeneous CTMCs. The automated
generation of CTMCs is discussed in Section 8.7.

Problems

1. � Show that the solution to the matrix equation (8.17) with the initial condition
P (0) = I can be written as the matrix exponential:

P (t) = eQt = I +
∞∑

n=1

Qn tn

n!
,

assuming that matrix series converges. Generalize this result to the case of a
nonhomogeneous CTMC.
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2. Show that the solution to the matrix–vector equation (8.18) can be written as

π(t) = π(0)eQt .

3. Show that the solution to the matrix–vector equation (8.19) can be written as

L(t)Q = π(0)[eQt − I].

4. Show that the solution to equation (8.14) for a nonhomogeneous CTMC,

π(t) = π(0)e
∫ t
0 Q(x)dx .

5. � For a homogeneous CTMC show that the Laplace transform of the transition
probability matrix P (t), denoted by P (s), is given by

P (s) = (sI − Q)−1.

6. � Show that the integral (convolution) form of the Kolmogorov forward equation
is given by

pij (v, t) = δij e
−
∫ t
v qii (τ)dτ +

∫ t

v

∑
k

pik (v, x)qkj (x)e−
∫ t

x qjj (τ)dτdx ,

where δij is the Kronecker delta function defined by δij = 1 if i = j and 0 other-
wise. Specialize this result to the case of a homogeneous CTMC.

7. � Show that γ0 = 0 is an eigenvalue of the generator matrix Q.

8.2 THE BIRTH–DEATH PROCESS

A continuous-time homogeneous Markov chain {X(t) | t ≥ 0} with the state
space {0, 1, 2, . . .} is known as a birth–death process if there exist constants
λi (i = 0, 1, . . .) and μi (i = 1, 2, . . .) such that the transition rates are given by

qi,i+1 = λi,

qi,i−1 = μi,

qi = λi + μi,

qij = 0 for |i − j| > 1.

The birth rate λi (≥ 0) is the rate at which births occur in state i, and the
death rate μi (≥ 0) is the rate at which deaths occur in state i. These rates
are assumed to depend only on state i and are independent of time. Note that
only “nearest-neighbor transitions” are allowed. In a given state, births and
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deaths occur independently of each other. Such a process is a useful model of
many situations in queuing theory and reliability theory.

The CTMC will be in state k at time t + h if one of the following mutually
exclusive and collectively exhaustive events occurs:

1. The CTMC is in state k at time t, and no changes of state occur in the
interval (t, t + h]; the associated conditional probability is

pk,k(t, t + h) = 1 − qk · h + o(h) = 1 − (λk + μk) · h + o(h).

2. The CTMC is in state k − 1 at time t, and one birth occurs in the
interval (t, t + h]; the associated conditional probability is

pk−1,k(t, t + h) = qk−1,k · h + o(h) = λk−1 · h + o(h).

3. The CTMC is in state k + 1 at time t, and one death occurs in the
interval (t, t + h]; the associated conditional probability is

pk+1,k(t, t + h) = qk+1,k · h + o(h) = μk+1 · h + o(h).

4. Two or more transitions occur in the interval (t, t + h], resulting in
X(t + h) = k, with associated conditional probability o(h).

Then, by the theorem of total probability, we have

P (X(t + h) = k) = πk(t + h)

= πk(t)pk,k(t, t + h) + πk−1(t)pk−1,k(t, t + h)

+πk+1(t)pk+1,k(t, t + h) + o(h).

After rearranging, dividing by h, and taking the limit as h → 0, we get

dπk(t)
dt

= −(λk + μk)πk(t) + λk−1πk−1(t) + μk+1πk+1(t), k ≥ 1,

(8.28)
dπ0(t)

dt
= −λ0π0(t) + μ1π1(t), k = 0,

where the special equation for k = 0 is required because the state space of
the process is assumed to be {0, 1, 2, . . .}. Equation (8.28) is a special case of
equation (8.13), with qk−1,k = λk−1, qk+1,k = μk+1, and qk = (λk + μk). The
corresponding generator matrix Q is tridiagonal.

The solution of this system of differential–difference equations is a
formidable task. However, if we are not interested in the transient behavior,
then we can set the derivative dπk(t)/dt equal to zero, and the resulting
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Figure 8.1. The state diagram of the birth–death process

set of difference equations provide the steady-state solution of the CTMC.
Let πk denote the steady-state probability that the chain is in state
k, that is, πk = limt→∞πk(t) (assuming that it exists). Then the above
differential–difference equations reduce to [a special case of equation (8.22)]

0 = −(λk + μk)πk + λk−1πk−1 + μk+1πk+1, k ≥ 1, (8.29)

0 = −λ0π0 + μ1π1. (8.30)

These are known as the balance equations, and we can obtain them directly
from the state diagram, shown in Figure 8.1, by equating the rates of flow into
and out of each state. From the state diagram we have the rate of transition
into state k as λk−1πk−1 + μk+1πk+1 and the rate of transition out of state k
as (λk + μk)πk. In the steady state no buildup occurs in state k; hence these
two rates must be equal.

We should note the difference between this state diagram (of a
continuous-time Markov chain) and the state diagram of a discrete-time
Markov chain (Chapter 7). In the latter, the arcs are labeled with conditional
probabilities; in the former they are labeled with state transition rates (hence
the term transition-rate diagram is sometimes used).

By rearranging equation (8.29), we get

λkπk − μk+1πk+1 = λk−1πk−1 − μkπk = · · · = λ0π0 − μ1π1.

But from equation (8.30) we have λ0π0 − μ1π1 = 0. It follows that

λk−1πk−1 − μkπk = 0

and hence
πk =

λk−1

μk

πk−1, k ≥ 1.

Therefore

πk =
λ0λ1 · · ·λk−1

μ1μ2 · · ·μk

π0 = π0

k−1∏
i=0

(
λi

μi+1

)
, k ≥ 1. (8.31)
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Since
∑

k≥0πk = 1, we have

π0 =
1

1 +
∑
k≥1

k−1∏
i=0

(
λi

μi+1

) . (8.32)

Thus, the limiting state probability vector [π0, π1, . . ..] is now completely
determined. Note that the limiting probabilities are nonzero, provided that
the series ∑

k≥1

k−1∏
i=0

(
λi

μi+1

)

converges (in which case, all the states of the Markov chain are recurrent
nonnull).

When the state space of CTMC is finite (i.e., I = {0, 1, . . . , n}), the cor-
responding difference equations become

0 = −λ0π0 + μ1π1

0 = −(λk + μk)πk + λk−1πk−1 + μk+1πk+1, 1 ≤ k ≤ n − 1

0 = −μnπn + λn−1πn−1.

By a method similar to the one we used in the case of infinite state space, we
have the limiting probabilities

πk = π0

k−1∏
i=0

(
λi

μi+1

)
, k = 1, 2, . . . , n (8.33)

where
π0 =

1

1 +
n∑

k=1

k−1∏
i=0

(
λi

μi+1

) .

We note that there is no additional condition for convergence in the case of a
finite CTMC as a finite state irreducible CTMC is always positive recurrent.

Next we consider several special cases of the birth–death process.

8.2.1 The M/M/1 Queue

We consider a single-server Markovian queue shown in Figure 8.2. Customer
arrivals form a Poisson process with rate λ. Equivalently the customer interar-
rival times are exponentially distributed with mean 1/λ. Service times of cus-
tomers are independent identically distributed random variables, the common
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Figure 8.2. The M/M/1 queuing system

distribution being exponential with mean 1/μ. Assume that customers are
served in their order of arrival (FCFS scheduling). If the “customer” denotes
a job arriving into a computer system, then the server represents the computer
system. [Since most computer systems consist of a set of interacting resources
(and hence a network of queues), such a simple representation may be accept-
able for “small” systems with little concurrency.] In another interpretation of
the M/M/1 queue, the customer may represent a message and the server a
communication channel.

Let N(t) denote the number of customers in the system (those queued
plus the one in service) at time t. [We change the notation from X(t) to N(t)
to conform to standard practice.] Then {N(t) | t ≥ 0} is a birth–death process
with

λk = λ, k ≥ 0; μk = μ, k ≥ 1.

The ratio ρ = λ/μ = mean service time/mean interarrival time, is an impor-
tant parameter, called the traffic intensity of the system. The traffic inten-
sity is a dimensionless quantity but in teletraffic theory, it is often quoted in
units known as Erlangs. Equations (8.31) and (8.32) in this case reduce to

πk =
(

λ

μ

)k

π0 = ρkπ0

and
π0 =

1∑
k≥0ρ

k
= 1 − ρ,

provided ρ < 1, that is, when the traffic intensity is less than unity. In the case
that the arrival rate λ exceeds the service rate μ (i.e., ρ ≥ 1), the geometric
series in the denominator of the expression for π0 diverges. In the case that
ρ > 1, all the states of the CTMC are transient and if ρ = 1, all the states
of the CTMC are null recurrent [KLEI 1975]. Hence in both these cases, the
number of customers in the system tends to increase without bound. Such
a system is called unstable. For a stable system (ρ < 1), the steady-state
probabilities form a modified geometric pmf with parameter 1 − ρ:

πk = (1 − ρ)ρk, k ≥ 0. (8.34)

The server utilization, U0 = 1 − π0 = ρ, is interpreted as the proportion of
time the server is busy.
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The mean and variance of the number of customers in the system are
obtained using the properties of the modified geometric distribution as

E[N ] =
∞∑

k=0

kπk =
ρ

1 − ρ
(8.35)

and

Var[N ] =
∞∑

k=0

k2πk − (E[N ])2 =
∞∑

k=0

(k2 − (E[N ])2)πk =
ρ

(1 − ρ)2
. (8.36)

Note that both these measures are expressed as weighted averages of
steady-state probabilities. By attaching a suitably chosen set of weights
{rk} to the states of the CTMC we can get most measures of interest
expressed as the weighted average

∑∞
k=0 rkπk [see equation (8.26)]. The

resulting CTMC will be known as a Markov reward model (MRM). The above
measure of interest will then be known as the expected reward rate in the
steady state.

Let the random variable R denote the response time (defined as the time
elapsed from the instant of job arrival until its completion) in the steady state.
In order to compute the average response time E[R] we use the well-known
Little’s formula, which states that the mean number of jobs in a queuing
system in the steady state is equal to the product of the arrival rate and
the mean response time. When applied to the present case, Little’s formula
gives us

E[N ] = λE[R];

hence

E[R] =
E[N ]

λ
=

∞∑
k=0

k

λ
πk. (8.37)

Little’s formula holds for a broad variety of queuing systems. For a proof see
[STID 1974], and for its limitations see [BEUT 1980].

Using (8.35) and applying Little’s formula to the present case, we have

E[R] = λ−1 ρ

1 − ρ
=

1/μ

1 − ρ
=

average service time
probability that the server is idle

. (8.38)

Note that the congestion in the system, and hence the delay, build rapidly as
the traffic intensity increases (see Figures 8.3 and 8.4).

We may often employ a scheduling discipline other than FCFS. We dis-
tinguish between preemptive and nonpreemptive scheduling disciplines. A
nonpreemptive discipline such as FCFS allows a job to complete exe-
cution once scheduled, whereas a preemptive discipline may interrupt the
currently executing job in order to give preferential service to another job.
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Figure 8.3. Expected number of jobs in system versus traffic intensity
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Figure 8.4. Average response time versus traffic intensity
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A common example of a preemptive discipline is RR (round robin), which
permits a job to remain in service for an interval of time referred to as its
quantum. If the job does not finish execution within the quantum, it has to
return to the end of the queue, awaiting further service. This gives preferential
treatment to short jobs at the expense of long jobs. When the time quantum
approaches zero, the RR discipline is known as the PS (processor sharing)
discipline.

Although we assumed FCFS scheduling discipline in deriving formula
(8.34) for the queue-length pmf and formula (8.38) for the average response
time, they hold for any scheduling discipline that satisfies the following con-
ditions [KOBA 1978]:

1. The server is not idle when there are jobs waiting for service.

2. The scheduler is not allowed to use any deterministic a priori information
about job service times. Thus, for instance, if all job service times are
known in advance, the use of a discipline known as SRPT (shortest
remaining processing time first) is known to reduce E[R] below that
given by (8.38).

3. The service time distribution is not affected by the scheduling discipline.

Formulas (8.34) and (8.38) also apply for preemptive scheduling disciplines
such as RR and PS, provided the overhead of preemption can be neglected
(otherwise condition 3 above will be violated). We have also assumed in the
above that a job is not allowed to leave the system before completion (see
problems 3 and 4 below for exceptions).

Although the expression for the average response time (8.38) holds under a
large class of scheduling disciplines, the distribution of the response time does
depend on the scheduling discipline. We shall derive the distribution function
of the response time R in the steady-state assuming the FCFS scheduling
discipline. If an arriving job finds n jobs in the system, then the response
time is the sum of n + 1 random variables, S + S′

1 + S2 + · · · + Sn. Here S
is the service time of the tagged job, S′

1 is the remaining service time of the
job undergoing service, and S2, . . . , Sn denote the service times of (n − 1)
jobs waiting in the queue. By our assumptions and the memoryless property
of the exponential distribution, these (n + 1) random variables are indepen-
dent and exponentially distributed with parameter μ. Thus, the conditional
Laplace–Stieltjes transform of R given N = n is the convolution:

LR |N (s |n) =
(

μ

s + μ

)n+1

. (8.39)

Wolff [WOLF 1982] shows that the pmf of the number of jobs in the system
as seen by an arriving job is the same as that given by (8.34). Then, applying
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the theorem of total Laplace transform, we obtain

LR(s) =
∞∑

n=0

(
μ

s + μ
)n+1(1 − ρ)ρn

=
μ(1 − ρ)
s + μ

1

1 − μρ

s + μ

=
μ(1 − ρ)

s + μ(1 − ρ)
. (8.40)

It follows that the steady-state response time R is exponentially distributed
with parameter μ(1 − ρ). Note that LR(s) is also expressed as the expected
steady-state reward rate with rn = [μ/(s + μ)]n+1.

Other measures of system performance are easily obtained. Let the random
variable W denote the waiting time in the queue; that is, let

W = R − S. (8.41)

Then
E[W ] = E[R] − E[S] = E[R] − 1

μ
.

It follows that the average waiting time is given by

E[W ] =
1

μ(1 − ρ)
− 1

μ
=

ρ

μ(1 − ρ)
. (8.42)

If we now let the random variable Q denote the number of jobs waiting in
the queue (excluding those, if any, in service), then, to determine the average
number of jobs E[Q] in the queue, we apply Little’s formula to the queue
excluding the server to obtain

E[Q] = λE[W ] =
ρ2

1 − ρ
. (8.43)

Note that the average number of jobs found in the server is

E[N ] − E[Q] = ρ. (8.44)

Example 8.1

The capacity of a wireless communication channel is 20,000 bits per second (bps).
This channel is used to transmit 8-bit characters, so the maximum rate is 2500
characters per second (cps). The application calls for traffic from many devices to
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be sent on the channel with a total volume of 120,000 characters per minute. In
this case

λ =
120, 000

60
= 2, 000 cps, μ = 2, 500 cps,

and channel utilization ρ = λ/μ = 4/5 = 0.8.
The average number of characters waiting to be transmitted is E[Q] = (0.8 ×

0.8)/(1 − 0.8) = 3.2, and the average transmission (including queuing delay) time
per character is E[N ]/λ = 4/2000s = 2 ms.

�

Example 8.2

We wish to determine the maximum call rate that can be supported by one telephone
booth. Assume that the mean duration of a telephone conversation is 3min, and that
no more than a 3-min (average) wait for the phone may be tolerated; what is the
largest amount of incoming traffic that can be supported?

1. μ = 1
3

calls per minute; therefore, λ must be less than 1
3

calls per minute, for
the system to be stable.

2. The average waiting time E[W ] should be no more than 3min; that is:

E[W ] =
ρ

μ(1 − ρ)
≤ 3,

and since μ = 1
3
, we get

1 − ρ ≥ ρ

or

ρ ≤ 1

2
.

Therefore, the call arrival rate is given by

λ ≤ 1

6
calls per minute.

�

Problems

1. Consider an M/M/1 queue with an arrival rate λ and the service rate μ. We have
derived the distribution function of the response time R. Now we are interested
in deriving the distribution function of the waiting time W . The waiting time
W is the response time minus the service time. To get started, first compute
the conditional distribution of W conditioned on the number of jobs in the sys-
tem, and later compute the unconditional distribution function. Note that W
is a mixed random variable since its distribution function has a jump equal to
P (W = 0) at the origin.
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2. A group of telephone subscribers is observed continuously during a 80-min
busy-hour period. During this time they make 30 calls, and the total conversation
time is 4200 s. Estimate the call arrival rate and the traffic intensity.

3. Consider an M/M/1 queuing system in which the total number of jobs is limited
to n owing to a limitation on queue size.

(a) Find the steady state probability that an arriving request is rejected because
the queue is full.

(b) Find the steady-state probability that the processor is idle.

(c) Find the throughput of the system in the steady state.

(d) Given that a request has been accepted, find its average response time.

4. The arrival of large jobs at a server forms a Poisson process with rate two per
hour. The service times of such jobs are exponentially distributed with mean
20 min. Only four large jobs can be accommodated in the system at a time.
Assuming that the fraction of computing power utilized by smaller jobs is negli-
gible, determine the probability that a large job will be turned away because of
lack of storage space.

5. Let the random variable Tk denote the holding time in state k of the M/M/1
queue. Starting from the given assumptions on the interarrival time and the
service time distributions, show that the distribution of Tk is exponential (for
each k).

6. Derive an expression for the frequency of entering state 0 (server idle) in an
M/M/1 queue. This quantity is useful in estimating the overhead of scheduling.
Plot this frequency as a function of ρ for a fixed μ.

7. Define the perceived mean queue length [GEIS 1983] N∗ = E[N2]/E[N ] and the
perceived mean response time by R∗ = E[R2]/E[R]. Derive formulae for N∗ and
R∗ in the M/M/1 queue.

8.2.2 The M/M/m Queue

Consider a queuing system with arrival rate λ as before, but where m ≥ 1
servers, each with a service rate μ, share a common queue (see Figure 8.5).

m

μ

μ

. . .
. . .

servers

Poisson
arrival
stream

with rate λ

Figure 8.5. The M/M/m queuing system
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mμmμ mμ
mm−1m−2 m+10 1

λ λ

μ2

λ

μ (m−1)μ

λ λ λ λλ

3μ (m−2)μ
2

Figure 8.6. The state diagram of the M/M/m queue

This gives rise to a birth–death model with the following rates:

λk = λ, k = 0, 1, 2, . . . ,

μk =
{

kμ, 0 < k < m,

mμ, k ≥ m.

The state diagram of this system is shown in Figure 8.6. The steady-state
probabilities are given by [using equation (8.31)]

πk = π0

k−1∏
i=0

λ

(i + 1)μ

= π0(
λ

μ
)k 1

k!
, k < m,

πk = π0

m−1∏
i=0

λ

(i + 1)μ

k−1∏
j=m

λ

mμ

= π0(
λ

μ
)k 1

m!mk−m
, k ≥ m. (8.45)

Defining ρ = λ/(mμ), the condition for stability is given by ρ < 1. The expres-
sion for π0 is obtained using (8.45) and the fact that

∑∞
k=0 πk = 1:

π0 =

[
m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!
1

1 − ρ

]−1

. (8.46)

The expression for the average number of jobs in the system is (see problem 5
at the end of this section) obtained as the expected reward rate in the steady
state after assigning reward rate rk = k to state k:

E[N ] =
∑
k≥0

kπk = mρ + ρ
(mρ)m

m!
π0

(1 − ρ)2
. (8.47)
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Let the random variable M denote the number of busy servers; then

P (M = k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (N = k) = πk, 0 ≤ k ≤ m − 1,

P (N ≥ m) =
∞∑

k=m

πk =
πm

1 − ρ
, k = m.

The average number of busy servers is then

E[M ] =
m−1∑
k=0

kπk +
mπm

1 − ρ
,

which can be seen as the expected reward rate in the steady state with the
reward rate assignment, rk = k for k < m and rk = m for k ≥ m. This formula
can be simplified (see problem 5 at the end of this section):

E[M ] = mρ =
λ

μ
. (8.48)

Thus, the utilization of any individual server is ρ = λ/(mμ), while the average
number of busy servers is equal to the traffic intensity λ/μ.

The probability that an arriving customer is required to join the queue is
derived as

P (queuing) =
∞∑

k=m

πk =
πm

1 − ρ

=
(mρ)m

m!
· π0

1 − ρ
, (8.49)

where π0 is given in (8.46). Formula (8.49) finds application in telephone traffic
theory and gives the probability that no trunk is available for an arriving call
in an exchange with m trunks, assuming that blocked called are queued. This
formula is referred to as Erlang’s C formula (or Erlang’s delayed-call formula).

Example 8.3

While designing a multiprocessor operating system, we wish to compare two dif-
ferent queuing schemes shown in Figure 8.7. The criterion for comparison will be
the average response times E[Rs] and E[Rc]. It is clear that the first organization
corresponds to two independent M/M/1 queues, with ρ = λ/(2μ). Therefore, using
equation (8.38), we have

E[Rs] =

1

μ

1 − λ

2μ

=
2

2μ − λ
.
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of rate 

μ

μ

μ

Two separate
Poisson streams

μ

λ/2

λ/2

Two separate

λ/2

λ/2

Pooled

Poisson streams

(b)

(a)

Poisson
stream

λ

Figure 8.7. Queuing schemes: (a) separate queues; (b) common queue

On the other hand, the common queue organization corresponds to an M/M/2
system. To obtain E[Rc], we first obtain E[Nc] [using equation (8.47)] as

E[Nc] = 2ρ +
ρ(2ρ)2

2!

π0

(1 − ρ)2
where ρ =

λ

2μ
,

and using equation (8.46), we have

π0 = [1 + 2ρ +
(2ρ)2

2!

1

1 − ρ
]−1

=
1 − ρ

(1 − ρ)(1 + 2ρ) + 2ρ2
=

1 − ρ

1 + ρ
.

Thus

E[Nc] = 2ρ + 2ρ3 1 − ρ

(1 + ρ)(1 − ρ)2
=

2ρ(1 − ρ2 + ρ2)

1 − ρ2
=

2ρ

1 − ρ2
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and, using Little’s formula, we have

E[Rc] =
E[Nc]

λ
=

2
1

2μ

1 − (
λ

2μ
)2

=
1

μ(1 − ρ2)
=

4μ

4μ2 − λ2
. (8.50)

Now

E[Rs] =
2

2μ − λ
=

4μ + 2λ

4μ2 − λ2
> E[Rc].

This implies that a common-queue organization is better than a separate-queue
organization. This result generalizes to the case of m servers [KLEI 1976].

�

Example 8.4

Once again consider the problem of designing a system with two identical processors.
We have two independent job streams with respective arrival rates λ1 = 20 and
λ2 = 15 per hour. The average service time for both job types is 1/μ = 2 min = 1

30

35

30

30

30

30

15

20

20

15

(a)

(b)

Figure 8.8. Queuing schemes for Example 8.4: (a) separate queues; (b) common
queue
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hours. Should we dedicate a processor per job stream, or should we pool the job
streams and processors together (see Figure 8.8)? Let E[Rs1] and E[Rs2] be the
average response times of the two job streams in the separate-queue organization
and let E[Rc] be the response time in the common-queue situation. Let ρ1 = λ1/μ =
20
30

, ρ2 = λ2/μ = 15
30

, ρ = (λ1 + λ2)/(2μ) = 35
60

. Then

E[Rs1] =

1

μ

1 − ρ1

=

1

30

1 − 20

30

, using formula (8.38)

=
1

30 − 20
=

1

10
h = 6 min.

E[Rs2] =

1

μ

1 − ρ2

=

1

30

1 − 15

30

, using formula (8.38)

=
1

15
h = 4 min.

E[Rc] =

1

μ

1 − ρ2
, using formula (8.50)

=

1

30

1 − (
35

60
)2

= 3.03 min.

Clearly, it is much better to form a common pool of jobs.

�

Problems

1. Consider a telephone switching system consisting of n trunks with an infinite
caller population. The arrival stream is Poisson with rate λ and call holding
times are exponentially distributed with average 1/μ. The traffic offered, A (in
Erlangs), is defined to be the average number of call arrivals per holding time.
Thus, A = λ/μ = ρ, the traffic intensity. We assume that an arriving call is lost if
all trunks are busy. This is known as BCC (blocked calls cleared) scheduling dis-
cipline. Draw the state diagram and derive an expression for πi, the steady-state
probability that i trunks are busy. Show that this pmf approaches the Poisson
pmf in the limit n → ∞ (i.e., ample-trunks case). Therefore, for finite n, the above
pmf is known as the “truncated Poisson pmf”. Define the call congestion, B(n),
as the proportion of lost calls in the long run. Then show that

B(n) =

ρn

n!
n∑

i=0

ρi

i!

. (8.51)
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This is known as Erlang’s B formula. Define traffic carried, C (in Erlangs), to be
the average number of calls completed in a time interval 1/μ. Then

C(n) =
n∑

i=0

iπi.

Verify that:

B(n) = 1 − C(n)

A
.

Show that the efficient formula to compute the loss probability holds [AKIM
1993]:

B(k) =
ρ
k
B(k − 1)

1 + ρ
k
B(k − 1)

, k = 1, 2, . . . , n,

where B(0) = 1.

2. Derive the steady-state distribution of the waiting time W for an M/M/2 queuing
system as follows:

(a) First show that
P (W = 0) = π0 + π1.

(b) Now, assuming that n ≥ 2 jobs being present in the system at the time of
arrival of the tagged job, argue that the distribution of W is (n − 1)-stage
Erlang with parameter 2μ.

Compute the distribution function and hence compute the expected value of W .

3. � Show that the response time distribution in an M/M/m-FCFS queue is given
by [GROS 1998]:

F (t) = Wm(1 − e−μt) + (1 − Wm)

[
mμ − λ

(m − 1)μ − λ
(1 − e−μt)

− μ

(m − 1)μ − λ
(1 − e−(mμ−λ)t)

]
,

where Wm =
∑m−1

j=0 πj is the probability that waiting time W = 0.

4. [M/M/∞ Queuing System] Suppose πn(t) is the probability that n telephone
lines are busy at time t. Assume that infinitely many lines are available and that
the call arrival rate is λ while average call duration is 1/μ. Derive the differential
equation for πn(t). Solve the equation for πn(t) as t → ∞. Let E[N(t)] denote
the average number of busy lines. Derive the differential equation for E[N(t)].
Obtain an expression for average length of queue E[N ] in the steady state. Also
find the mean as well as the distribution of response time for this queuing system.

5. Show that the average number of busy servers for an M/M/m queue in the
steady-state is given by

E[M ] =
λ

μ
.

Also verify formula (8.47) for the average number in the system.
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8.2.3 Finite State Space

We consider a special case of the birth-death process having a finite state
space {0, 1, . . . , n}, with constant birth rates λi = λ, 0 ≤ i ≤ n − 1, and con-
stant death rates μi = μ, 1 ≤ i ≤ n. Also let ρ = λ/μ, as before. The generator
matrix of the CTMC is given by

Q =

0 1 2 3 · · · n

0
1
2
...
n

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ λ

μ −(λ + μ) λ

μ −(λ + μ) λ

. . . . . . . . .
μ −μ

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The state diagram is given by Figure 8.9, and the steady-state probabilities
are

πi = ρiπ0, 0 ≤ i ≤ n,

π0 =
1∑n

i=0 ρi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ρ

1 − ρn+1
, ρ �= 1

1
n + 1

, ρ = 1.

(8.52)

The same result can also be obtained from equation (8.33) by substituting the
values of λi and μi. Note that such a system with a finite customer population
will always be stable, irrespective of the value of ρ. Thus, (8.52) gives the
steady-state probabilities for all finite values of ρ. The transient solution of
the above CTMC is also known [MORS 1958]:

pmk (t) = πk +
2ρ(k−m)/2

n + 1

n∑
i=1

1
xi

[
sin
(

imπ

n + 1

)
−√

ρ sin
(

i(m + 1)π
n + 1

)]

×
[
sin
(

ikπ

n + 1

)
−√

ρ sin
(

i(k + 1)π
n + 1

)]
e−γit. (8.53)

n. . . .

μ μ

λ λλ

μ

0 1

Figure 8.9. State diagram of a birth–death process with a finite state space
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n

λhtiw etar

Poisson
arrival
stream

arrival
Rejected

system full

μ

when

Limit

Figure 8.10. M/M/1/n queuing system

n. . . .

μ μ

λ λ λ λ

μ

0 1

Figure 8.11. M/M/1/n state diagram

Here k denotes the number of jobs in the system at time t and m denotes
the initial number of jobs in the system. The {−γi} are the eigenvalues of the
generator matrix; they are given by

γi = λ + μ − 2
√

λμ cos
(

iπ

n + 1

)
= μxi, i = 1, 2, . . . , n. (8.54)

Example 8.5 (M /M / 1/n Queue)

Consider an M/M/1 queuing system with a limited buffer space so that at most n
jobs can be in the system at a time. In the Kendall notation, such a system will
be denoted as M/M/1/n. Figure 8.10 shows the queuing system, and Figure 8.11
shows the homogeneous CTMC state diagram of the system.

The state diagram of the M/M/1/n system is very similar to the one in Figure 8.9
except for the self-loop on state n. If a job arrives while the system is in state n, the
job is rejected and the system remains in state n. It can be shown that the transient
and the steady-state equations for a CTMC with such a self-loop are the same as
those without a self-loop. Hence, the steady-state solution [equation (8.52)] and the
transient solution [equation (8.53)] given above apply to the M/M/1/n queue.

By assigning different reward rates, we can get different measures for this system
as shown in Table 8.1.



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 447�

� �

�

8.2 THE BIRTH–DEATH PROCESS 447

TABLE 8.1. Measures for the M/M/1/n system

Measure Reward rate assignment Expected steady-state

reward rate

Mean number in system rj = j
ρ

1 − ρ
− n + 1

1 − ρn+1
ρn+1

Loss probability rn = 1, rj = 0 (j �= n) πn =
1 − ρ

1 − ρn+1
ρn

Throughput rj = μ (j �= 0), r0 = 0 μ(1 − π0) = λ(1 − πn)

or rj = λ (j �= n), rn = 0

URTDa rj = 1 −
∑j

i=0

(μt)ie−μt

i!
; rn = 0 Equation (8.55)

CRTDb rj =
1 −

∑j
i=0

(μt)ie−μt

i!
1 − πn

; rn = 0 Equation (8.56)

a Unconditional response time distribution.
b Conditional response time distribution.

The mean response time (conditioned on the job being accepted) is obtained by
dividing the mean number in system (row 1 of Table 8.1) by the throughput (row 3
of Table 8.1). The response time distribution can be obtained by an argument very
similar to the one used for the M/M/1 queue:

F (t) =

n−1∑
j=0

πj

[
1 −

j∑
i=0

(μt)ie−μt

i!

]
. (8.55)

Note that this distribution is defective (for the definition of defective distribution
see Section 3.4.9) with a mass at infinity equal to 1 −

∑n−1
j=0 πj = πn; this is the

probability that the job is not accepted and hence takes infinite amount of time to
complete. In order to get the response time distribution conditional on the job being
accepted, we divide expression (8.55) by 1 − πn:

Fc(t) =

n−1∑
j=0

πj

1 − πn

[
1 −

j∑
i=0

(μt)ie−μt

i!

]
. (8.56)

�

Example 8.6 (Machine Breakdown)

Consider a component with a constant failure rate λ. On a failure, it is repaired with
an exponential repair time distribution of parameter μ. Thus, the MTTF is 1/λ and
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the MTTR is 1/μ. This is an example of the Markov chain of Figure 8.9 with n = 1
(a two-state system with state 0 as the up state and state 1 as the down state) with
the generator matrix:

Q =

[
−λ λ
μ −μ

]
.

Hence

π0 =
1 − ρ

1 − ρ2
=

1

1 + ρ

and

π1 =
ρ

1 + ρ
.

The steady-state availability is the steady-state probability that the system is in
state 0, the state with the system functioning properly. Thus, from equation (8.52),

Steady-state availability, A = π0 =
1

1 + ρ
=

1

1 +
λ

μ

=
μ

λ + μ

=

1

λ
1

λ
+

1

μ

=
MTTF

MTTF + MTTR
. (8.57)

Note that a system with a low reliability will have a small MTTF, but if the
repairs can be made fast enough (implying a low MTTR), the system may possess a
high availability. In order to obtain the transient solution of the two-state availability
model, we can use equation (8.53). There is only one eigenvalue (other than zero)
of the Q matrix, say, −γ1. From equation (8.54), we have

γ1 = λ + μ and x1 =
λ + μ

μ
.

Then using equation (8.53), we have,

p00(t) = π0 +
2

2

[
1

x1

(sin 0 −√
ρ sin

π

2
)(sin 0 −√

ρ sin
π

2
)e−(λ+μ)t

]

= π0 +
ρμ

λ + μ
e−(λ+μ)t = π0 +

λ

λ + μ
e−(λ+μ)t

=
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t.

If we assume that the system is in state 0 to begin with, then the instantaneous
availability A(t) is given by

A(t) = p00(t) =
μ

λ + μ
+

λ

λ + μ
e−(λ+μ)t. (8.58)
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By integration and subsequent division by t, we obtain the expected interval
availability AI(t) as:

AI(t) =

∫ t

0
A(x) dx

t
=

μ

λ + μ
+

λ

(λ + μ)2t
(1 − e−(λ+μ)t). (8.59)

Note that the limiting values of AI(t) and A(t) are equal to the steady-state
availability A.

�

Example 8.7 (Example 8.6 Continued)

We now consider task-oriented measures for the two-state availability model. Con-
sider a task that needs x amount of time to execute in absence of failures. Let T (x)
be the completion time of the task. First consider λ = 0 so that there are no failures.
In this case T1(x) = x, and hence the distribution function of T1(x) is given by (see
Figure 8.12)

FT1(x)(t) = u(t − x),

where u(t − x) is the unit-step function at t = x. Next consider a nonzero value of λ
but set μ = 0. In this case, if we assume that the server is up when the task arrives,
the task will complete at time x provided the server does not fail in the interval
(0, x). Otherwise, the task will never complete. Then

FT2(x)(t) = e−λxu(t − x).

In Figure 8.12, note that T2(x) is a defective random variable (for the definition
of defective distribution see Section 3.4.9) with a defect at infinity equal to 1 − e−λx,
the probability that a task will never finish.

The third case where the server can fail and get repaired is quite complex. If a
server failure occurs before the task is completed, we need to consider two separate
cases. If the work done so far is not lost so that when the server repair is completed,
the task resumes from where it was interrupted, we have the preemptive resume

F     (t)
T  (x)

1

F     (t)
T  (x)

2

1

0

e
−λ

F(t)

t

x

x

Figure 8.12. Task completion time distribution
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(prs) case. Otherwise we have the preemptive repeat (prt) case. We simply quote the
result here, the interested reader may consult Chimento and Trivedi [CHIM 1993].

The LST of the completion time distributions for the two cases are

Lprs(s) = exp{−s2 + (λ + μ)s

s + μ
x} (8.60)

and

Lprt(s) =
e−(s+λ)x

1 − λ
s+λ

μ
s+μ

(1 − e−(s+λ)x)
. (8.61)

The transforms need to be numerically inverted in order to get the distribution
functions. Expectations can also be obtained by differentiating with respect to s,
setting s = 0 and multiplying by −1.

�

Availability models such as in Example 8.6 assume that all failures are
recoverable. Consequently, the Markov chains of such systems are irreducible.
If we assume that some failures are irrecoverable, then the system will have one
or more absorbing states. In such cases, we study the distribution of time to
reach an absorbing state (or failure state), and system reliability (see Section
8.5 for some examples).

Example 8.8 (Cyclic Queuing Model of a Multiprogramming
System)

Consider the cyclic queuing model shown in Figure 8.13. Assume that the lengths of
successive CPU execution bursts are independent exponentially distributed random
variables with mean 1/μ and that successive I/O burst times are also independent
exponentially distributed variables with mean 1/λ. At the end of a CPU burst, a pro-
gram requests an I/O operation with probability q

1
(0 ≤ q

1
≤ 1), and it completes

execution with probability q
0

(q
1

+ q
0

= 1). At the end of a program completion,
another statistically identical program enters the system, leaving the number of
programs in the system at a constant level n (known as the degree of multipro-
gramming).

q0

q1

New program path

Degree of multiprogramming = n

λ μ

CPUI/O

Figure 8.13. The cyclic queuing model of a multiprogramming system
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n
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0
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. . . .

1

λ

1 1

Figure 8.14. The state diagram for the cyclic queuing model

Let the number of programs in the CPU queue including any being served at
the CPU denote the state of the system, i, where 0 ≤ i ≤ n. Then the state dia-
gram is given by Figure 8.14. Denoting λ/(μq

1
) by ρ, we see that the steady-state

probabilities are given by

πi = (
λ

μq
1

)iπ0 = ρiπ0, and π0 =
1

n∑
i=0

ρi

,

so that

π0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ρ

1 − ρn+1
, ρ �= 1,

1

n + 1
, ρ = 1.

The CPU utilization is given by

U0 = 1 − π0 =

⎧⎪⎪⎨
⎪⎪⎩

ρ − ρn+1

1 − ρn+1
, ρ �= 1,

n

n + 1
, ρ = 1.

(8.62)

Let C(t) denote the number of jobs completed by time t. Then the (time) average
C(t)/t converges, under appropriate conditions, to a limit as t approaches ∞ [ROSS
1970]. This limit is the average system throughput in the steady state, and (with
a slight abuse of notation) it is denoted here by E[T ]. Whenever the CPU is busy,
the rate at which CPU bursts are completed is μ, and a fraction q

0
of these will

contribute to the throughput. Then

E[T ] = μ q
0
U0. (8.63)

For fixed values of μ and q
0
, E[T ] is proportional to the CPU utilization, U0.

Let the random variable B0 denote the total CPU time requirement of a tagged
program. Then B0 ∼ EXP (μq

0
). This is true because B0 is the random sum of

K CPU service bursts, which are independent EXP(μ) random variables. Here the
random variable K is the number of visits to the CPU per program and hence is
geometrically distributed with parameter q

0
. The required result is then obtained

from our discussion on random sums in Chapter 5. Alternatively, the average number
of visits V0 to the CPU is V0 = 1/q

0
(see Example 7.20), and thus E[B0] = V0E[S0] =

1/(μq
0
), where E[S0] = 1/μ is the average CPU time per burst.
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The average throughput can now be rewritten as

E[T ] =
U0

E[B0]
. (8.64)

If B1 represents the total I/O service time per program, then as in the case of CPU:

E[B1] =
q
1

q
0

1

λ
= V1E[S1],

where the average number of visits V1 to the I/O device is given by V1 = q
1
/q

0
(by Example 7.20), and E[S1] = 1/λ is the average time per I/O operation. (Note
that if U1 denotes the utilization of the I/O device then, similar to (8.64), we have
E[T ] = U1/E[B1].) Now the parameter ρ can be rewritten as follows:

ρ =
λ

μq
1

=
q
0
λ

q
1

· 1

μq
0

=
E[B0]

E[B1]
. (8.65)

Thus ρ indicates the relative measure of the CPU versus I/O requirements of a
program. If the CPU requirement E[B0] is less than the I/O requirement E[B1]
(i.e., ρ < 1), the program is said to be I/O-bound; if ρ > 1, then program is said
to be CPU-bound; and otherwise it is called balanced.

In Figure 8.15 we have plotted U0 as a function of the balance factor ρ and of
the degree of multiprogramming n. When ρ << 1 or ρ >> 1, U0 is insensitive to n.
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Figure 8.15. The CPU utilization as a function of the degree of multiprogramming
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Thus, multiprogramming is capable of appreciably improving throughput only when
the workload is nearly balanced (i.e., ρ is close to 1).

�

Example 8.9

Let us return to the availability model of Example 8.6 and augment the system
with (n − 1) identical copies of the component, which are to be used in a standby
spare mode. Assume that an unpowered spare does not fail and that switching a
spare is a fault-free process. Then the system is in state k provided that n − k units
are in working order and k units are under repair. We picture this situation as
the cyclic queuing model of Figure 8.13, with q

0
= 0 and q

1
= 1. The total number

of components, n, is the analog of the degree of multiprogramming. The queue
of available components is the analog of the I/O queue; the queue of components
under repair is represented by the CPU queue; MTTR= 1/μ, and MTTF = 1/λ.
The steady-state availability is given by

A = P (“at least one copy is functioning properly”)

= π0 + π1 + · · · + πn−1 = 1 − πn

=

⎧⎪⎪⎨
⎪⎪⎩

1 − ρn · 1 − ρ

1 − ρn+1
, ρ �= 1,

n

n + 1
, ρ = 1,

or

A =

⎧⎪⎪⎨
⎪⎪⎩

1 − ρn

1 − ρn+1
, ρ �= 1,

n

n + 1
, ρ = 1,

(8.66)

where ρ = MTTR/MTTF. For n = 1, we obtain

A =
1

1 + ρ
=

MTTF

MTTF + MTTR

as in Example 8.6, and as n → ∞, we have

A → min

{
1,

1

ρ

}
= min

{
1,

MTTF

MTTR

}
.

In the usual case, MTTR 	 MTTF and steady-state availability will approach unity
as the number of spares increases. In Table 8.2 we have shown how the system
availability A increases with the number of spares for ρ = 0.01. Thus, even though
the single-component availability has only two 9s, the number of 9s increases by two
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TABLE 8.2. Availability of a standby redundant system

n Availability Number of spares

1 0.99009900 0

2 0.99990099 1

3 0.99999900 2

4 0.99999999 3

with each additional spare in this case. We caution the reader that the increase in
availability will not be as significant if the spare failure rate is nonzero or if detection
and switching are imperfect. Also note that we can capture imperfect repair in the
above model by setting q

0
> 0.

�

Problems

1. Plot the response time distribution (both conditional and unconditional) of the
M/M/1/n queue assuming λ = 0.9 and μ = 1. Vary n = 10, 50, 100. Also plot the
rejection probability πn as a function of n. Obtain the expression for the mean
response time from the (conditional) response time distribution (equation (8.56))
and show that it is the same as that obtained using Little’s result.

2. Derive the steady-state probabilities for M/M/m/n queue. Then derive the
expression for the loss probability. Finally, derive the response time distribu-
tion (both the conditional and unconditional) using the approach for M/M/1/n
queue.

3. Plot task completion time distributions for the two-state availability model for
the two cases of λ = 0 and λ = 0.1. Assume μ = 0 and x = 10. For extra credit,
numerically invert the LSTs for the prs and prt cases and plot these two distri-
bution functions as well on the same plot. Assume μ = 1 and λ = 0.1.

4. From the LSTs of the completion time (equations (8.60) and (8.61)), derive
expressions for the average completion time for the prs and prt cases in the
two-state availability model.

5. Specify reward assignments to the CTMC of Figure 8.14 for computing E[T ],
U1, and U0.

6. [FULL 1975] Consider a variation of the cyclic queuing network model of
Example 8.8, in which the I/O device uses the SLTF (shortest latency time
first) scheduling discipline. The I/O service rate, λk, is a function of the number
of requests in its queue and is given by

1

λk

=
τ

k + 1
+

1

r
=

rτ + k + 1

r(k + 1)
,



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 455�

� �

�

8.2 THE BIRTH–DEATH PROCESS 455

where 1/r is the mean record transmission time and τ is the rotation time
of the device. Obtain an expression for the CPU utilization and the average
system throughput, assuming q

0
= 0.05, rτ = 1

3
, and τ = 10 ms. Plot the average

system throughput as a function of the CPU service rate μ (ranging from 0.1r
to 10r) for various values of the degree of multiprogramming n = 1, 2, 5, 10. For
μ = r, compare the throughputs obtained by the SLTF scheduling and the FCFS
scheduling algorithm (for the latter case, the average I/O service time is constant
at 1/λ1).

7. Consider an application of the cyclic queuing model (CPU, paging device) to
demonstrate a phenomenon called “thrashing” that could occur in paged virtual
memory systems. Assume a fixed number, M , of main-memory page frames,
equally divided among n active programs. Increasing n implies a smaller page
allotment per program, which in turn implies increased paging activity—that is,
an increased value of μ. Often it is assumed that

μ(n) =
1

a

(
M

n

)−b

.

Assuming λ = 0.0001, a = 0.2, b = 2.00, and M = 100, plot the average system
throughput as a function of the degree of multiprogramming. [Note that q

0
and q

1
are functions of n and that when n = 1, a job is assumed to have all

the memory it needs, requiring only initial paging, so that, q
0
(1) = 0.9.] Unlike

the model of nonpaged systems, the average throughput here will not increase
monotonically, but after a critical value of n, it will drop sharply. This is the
phenomenon of thrashing [NUTT 1997].

8. For the availability model with n − 1 spares, obtain expressions for instanta-
neous and expected interval availabilities by specializing equation (8.53). For
n = 1, 2, 3, numerically compute A(t), AI(t) and compare your results with
those obtained using a software package such as SHARPE [SAHN 1996] with
λ = 0.0001 and μ = 1.

9. Show that the number of nines in the steady-state availability A is given by
−log10(1 − A).

10. In this problem we wish to investigate the effect of a self-loop on a state of a
CTMC (see Figure 8.11). For instance, consider the two CTMCs in Figure 8.P.1.

(a) First, write down the matrix of transition rates R = [rij ], where rij is the
transition rate from state i to state j, and the infinitesimal generator matrix
Q = [qij ], where

qij = rij , i �= j;

qii = −
∑
j �=i

rij .

Also show that Q matrices are identical despite different R matrices.

(b) Define T as the total sojourn time (the time measured from the instance
of entering a state until the instance of leaving the state), and Xi as the
ith mini–sojourn time (the time between the occurrence of an incoming
transition and an outgoing transition, including the self-loop). T is the
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(i) (ii)

λ

0

μ

λ

0

μ

1

λ

1

Figure 8.P.1. Two CTMCs

random sum (Section 5.5) of the {Xi}, that is, T =
∑N

i=1 Xi, where N is
random. Show that the distribution of T is the same in the two CTMCs
even though the distribution of Xi for state 1 in the two CTMCs are
different. [Hint: In case (ii) in Figure 8.P.1, Xi ∼ EXP (λ + μ) and T ∼
EXP (μ).]

8.2.3.1 Machine Repairman Model. An interesting special case of the
birth–death process occurs when the birth rate λj is of the form (M − j)λ, j =
0, 1, . . . , M , and the death rate μj = μ. Such a situation occurs in the modeling
of a server where an individual client issues a request at the rate λ whenever it
is in the “thinking state.” If j out of the total of M clients are currently waiting
for a response to a pending request, the effective request rate is (M − j)λ.
Here μ denotes the request completion rate. A similar situation arises when
M machines share a repair facility. The failure rate of each machine is λ and
the repair rate is μ.

The state diagram of such a finite-population system is given in
Figure 8.16. The expressions for steady-state probabilities are obtained using
equation (8.33) as

πk = π0

k−1∏
i=0

λ(M − i)
μ

, 0 ≤ k ≤ M,

or
πk = π0(

λ

μ
)k M !

(M − k)!
= π0ρ

k M !
(M − k)!

.

2

λ2

0 1

μ

 . . . .

μ

λ

μμμ

M−1 M

λM λ λ(M-2)(M-  )1

Figure 8.16. The state diagram of a finite-population queuing system
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Hence
π0 =

1
M∑

k=0

ρk M !
(M − k)!

. (8.67)

Example 8.10

Consider a parallel redundant system with M components, each with a constant
failure rate λ. The system is unavailable for use whenever all M components have
failed and are waiting for repairs. We wish to compare the following designs of the
repair facility.

1. Each component has its own repair facility with repair rate μ. Then the
availability of an individual component is given by formula (8.57) as

1

1 +
λ

μ

=
1

1 + ρ
. (8.68)

Now the system availability is computed by means of a reliability block diagram
with M components in parallel each having the availability given by the expression
(8.68). Hence system availability in this case is

A1 = 1 −
(

ρ

1 + ρ

)M

.

Note that in this scheme, no machine has to wait for a repair facility to be available.
2. We want to economize on the repair facilities and share a single repair facility

of rate μ among all M machines. Then equation (8.67) applies, and noting that the
system is down only when all the components are undergoing repair, we compute
the steady-state availability by

A2 = 1 − πM = 1 − ρMM !
M∑

k=0

ρk
M !

(M − k)!

.

Note that by assigning reward rate 1 to all the up states of the CTMC in Figure 8.16,
steady-state availability can be obtained as the steady-state expected reward rate.

3. If we find that the availability A2 is low, we may speed up the rate of the
repair facility to Mμ, while retaining a single repair facility. Then, using equation
(8.67), we have

A3 = 1 −
(

λ

Mμ
)MM !

M∑
k=0

(
λ

Mμ
)k M !

(M − k)!

.
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TABLE 8.3. Availabilities for parallel redundant system

ρ

number of

components

M

Individual

repair facility

A1

Single repair

facility of

rate μ

A2

Single repair

facility of

rate Mμ

A3

0.1 1 0.909091 0.909091 0.909091

2 0.991736 0.983607 0.995475

3 0.999249 0.995608 0.999799

0.0001 1 0.999900 0.999900 0.999900

2 0.999999 0.999999 0.999999

3 0.999999 0.999999 0.999999

Table 8.3 shows the values of A1, A2 and A3 for various values of M , assuming
that ρ = 0.1 and ρ = 0.0001. It is clear that

A3 ≥ A1 ≥ A2.

�

Example 8.11 (Equivalent Failure and Repair Rates)

As was seen in Example 8.10, steady-state availability formulas for multistate
systems can be quite complex. Yet in practice, engineers often wish to present
steady-state system availability in the simple form that is known for a two-state
system:

A =
MTTFeq

MTTFeq + MTTReq

=
μeq

λeq + μeq

.

We can then view the system behavior as an alternating renewal process discussed
in Chapter 6.

For this purpose, we need to properly define the equivalent failure rate and repair
rate for the system. We first partition the states into two classes of states, up states
and down states. Transitions from up states to down states are called red transi-
tions. Transitions from down states to up states are called green transitions. The
equivalent failure rate λeq is equal to the summation over all the red transitions of
the transition’s failure rate times the conditional probability of being in the transi-
tion’s source state, given that the source state is in the set of up states. A similar
technique is applied to the green transitions to generate μeq.

Let I designate the set of all states, U the set of up states, D the set of down
states, R the set of red transitions, G the set of green transitions and tij the transition
from state i to state j. The following equation shows how to compute λeq:

λeq =
∑

tij∈R

P (system in state i | system is up) × q
ij

=

∑
tij∈Rπi × q

ij

A
,
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where
A =

∑
k∈U

πk.

The computation of μeq is similar.

μeq =
∑

tij∈G

P (system in state i | system is down) × q
ij

=

∑
tij∈Gπi × q

ij

1 − A
.

For the availability model of Figure 8.16,

λeq =
λπM−1∑M−1

j=0 πj

=
λπM−1

1 − πM

and
μeq = μ.

Now

A =
μeq

λeq + μeq

=
μ

λπM−1
1−πM

+ μ
=

μ(1 − πm)

λπM−1 + μ(1 − πM )

(noting that λπM−1 = μπM from the balance equation for state M)

=
μ(1 − πM )

μπM + μ(1 − πM )
= 1 − πM .

�

Example 8.12 (Slot Availability of a k-out-of-n System)

Consider a k-out-of-n system with k service slots and n components (or slot units).
Initially k of these components occupy the respective service slots, and the remaining
(n − k) components form a shared pool of spares. The failure rate of each component
is λ, and the repair rate is μ. We will assume that a single repair facility is shared
by all components. A service slot fails if the component in that slot has failed and
no working spare is available. We wish to obtain an expression for the expected
number of failed service slots in the steady state. Assuming that the number of
failed components denotes the system state, the CTMC for this model is shown in
Figure 8.17.

The reward rate assigned to state j is such that it denotes the number of failed
service slots in that state. Thus rj = 0, j = 0, . . . , n − k and rj = j − (n − k) for

λ λ λ λ λ λknλ

nn−k+1

(   −1) (   +1)

n−k

k k(   −1)n(   −2)n

. . . .0 . . . .1 2

μ μ μ μ μμ μ

Figure 8.17. Service slot availability model
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j = n − k + 1, . . . , n. The expected reward rate in the steady state then gives the
expected number of failed service slots:

E[Sf ] =

n∑
j=n−k+1

[j − (n − k)]πj , (8.69)

where

πj =
(λ

μ
)j n!

(n−j)!∑n
j=0 (λ

μ
)j n!

(n−j)!

.

�

Example 8.13 (Response Time in a Client–Server System)

Consider a client–server system with M clients in which individual think times are
exponentially distributed with mean 1/λ seconds (see Figure 8.18). Assume that the
service time per request, B0, is exponentially distributed with mean E[B0] = 1/μ
seconds. Then the steady-state probability that there are n requests executing or
waiting on the CPU is given by [equation (8.67)]

πn = π0ρ
n M !

(M − n)!
, n = 0, 1, 2, . . . , M,

and the probability that the CPU is idle is

π0 =
1

M∑
n=0

ρn M !

(M − n)!

,

where ρ = λ/μ.
The CPU utilization U0 is 1 − π0, and the average rate of request completion is

E[T ] = μ(1 − π0) = U0/E[B0]. If E[R] denotes the average response time, then on

.

.

.

λ

λ

μ

Server

M clients

Figure 8.18. A client–server system
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Figure 8.19. Average response time as a function of the number of clients

the average a request is generated by a given client in E[R] + (1/λ) seconds. Thus
the average request generation rate of the client subsystem is M/[E[R] + (1/λ)].
In the steady state, the request generation and completion rates must be equal.
Therefore we have

M

E[R] +
1

λ

= μ(1 − π0)

or

E[R] =
M

μ(1 − π0)
− 1

λ
=

M · E[B0]

U0

− 1

λ
=

M

E[T ]
− 1

λ

=
number of clients

average throughput
− average think time. (8.70)

The last expression for average response time can also be derived using Little’s
formula, and as such it is known to hold under rather general conditions [DENN
1978]. In Figure 8.19, E[R] is plotted as a function of the number of clients, M ,
assuming 1/λ = 15 s and 1/μ = 1 s.

When the number of clients M = 1, there is no queuing and the response time
E[R] equals the average service time E[B0]. As the number of clients increases,
there is increased congestion as the server utilization U0 approaches unity. In the
limit M → ∞, E[R] is a linear function [ME [B0] − (1/λ)] of M . In this limit, the
installation of an additional client increases every other client’s response time by
the new client’s service time E[B0]. This complete state of interference is to be
generally avoided. The number of clients, M∗, for which the heavy-load asymptote
E[R] = ME [B0] − (1/λ) intersects with the light-load asymptote E[R] = E[B0] is
therefore called the saturation number [KLEI 1976] and is given by

M∗ =
E[B0] + 1/λ

E[B0]
= 1 +

μ

λ
. (8.71)

For our example, the number of clients beyond which we call the system saturated
is given by M∗ = 16.

�
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Problems

1. For the availability model of parallel redundant system with shared repair per-
son (part 2 of Example 8.10), write down the generator matrix Q and derive
expressions for λeq and μeq for M = 1, 2, 3.

2. Assuming an average think time of 10 s, design a client–server system to support
101 clients without saturation (M ≤ M∗). We assume that on the average each
request from any client requires the execution of 1,000,000 machine instructions.
The result of the design process should be the minimum number of instructions
that the server should be able to execute per unit time.

3. Consider a model of a telephone switching system consisting of n trunks with
a finite caller population of M callers. This is a variation of problem 1 in
Section 8.2.2 where we had an infinite caller population. The average call rate
of an idle caller (free source) is λ calls per unit time, and the average hold-
ing time of a call is 1/μ. If an arriving call finds all trunks busy, then it is
lost (i.e., BCC scheduling discipline is used). Assuming that the call holding
times and the intercall times of each caller are exponentially distributed, draw
the state diagram and derive an expression for the steady-state probability πi =
P (i trunks are busy), i = 0, 1, . . . , n. The resulting pmf is known as the Engset
pmf. Show that the expected total traffic offered (in Erlangs) by the M sources
per holding time is given by

A =
n∑

i=0

πi(M − i)

(
λ

μ

)

=

M
n∑

i=0

(
M − 1

i

)(
λ

μ

)i+1

n∑
i=0

(
M

i

)(
λ

μ

)i
.

Let ρ = λ/μ.

Next obtain an expression for the traffic carried (in Erlangs) by the switching
system per holding time:

C =
n∑

j=0

iπi.

Now the probability, B, that a given call is lost is computed as

B = 1 − C

A
=

(
M − 1

n

)
ρn

n∑
i=0

(
M − 1

i

)
ρi

.

The quantity B is also known as call congestion.
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8.2.3.2 Wireless Handoff Performance Model. As a variation of the
M/M/n loss system that was discussed in the telephone trunk problem (prob-
lem 1 at the end of Section 8.2.2), consider the performance model of a single
cell in a cellular wireless communication network [HONG 1986]. New calls
arrive in a Poisson stream at the rate λ1 and handoff calls arrive in a Poisson
stream at the rate λ2. An ongoing call (new or handoff) completes service at
the rate μ1, and the mobile engaged in the call departs the cell at the rate
μ2. There are a limited number of channels, n, in the channel pool. When a
handoff call arrives and an idle channel is available in the channel pool, the
call is accepted and a channel is assigned to it. Otherwise, the handoff call
is dropped. When a new call arrives, it is accepted provided g + 1 or more
channels are available in the channel pool; otherwise the new call is blocked.
Here g is the number of guard channels used so as to give priority to handoff
calls. We assume that g < n in order not to block new calls altogether.

Figure 8.20 shows the finite state birth–death model where the num-
ber of busy channels is the state index. Let λ = λ1 + λ2, μ = μ1 + μ2, A =
ρ = λ/μ and A1 = λ2/μ. Steady-state probabilities are then given by [using
equation (8.33)]

πk =

{
π0

Ak

k! , k ≤ n − g

π0
An−g

k! A
k−(n−g)
1 , k ≥ n − g

where
π0 =

1∑n−g−1
k=0

Ak

k! +
∑n

k=n−g
An−g

k! A
k−(n−g)
1

.

The probability of dropping a handoff call is given by

Pd(n, g) = πn =
An−g

n! Ag
1∑n−g−1

k=0
Ak

k! +
∑n

k=n−g
An−g

k! A
k−(n−g)
1

. (8.72)

The probability of blocking a new call is obtained by assigning reward rate 1
to states n − g to n and reward rate zero to the remaining states:

Pb(n, g) =
n∑

k=n−g

πk =

∑n
k=n−g

An−g

k! A
k−(n−g)
1∑n−g−1

k=0
Ak

k! +
∑n

k=n−g
An−g

k! A
k−(n−g)
1

. (8.73)

2 21 + 21 2+ 1 +21 +
2

0 1 nn−g−1 n−g

(n–g–1)(μ1 + μ2) (n–g+1)(μ1 + μ2) n(μ1 + μ2)(n–g)(μ1 + μ2)2(μ1 + μ2)(μ1 + μ2)

λ λλ λλ λ λ λλλ

Figure 8.20. CTMC for the wireless handoff model
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By setting g = 0, formulas (8.72) and (8.73) reduce to the Erlang B loss
formula (8.51).

So far, we assumed that besides λ1, μ1, and μ2, λ2, the handoff arrival
rate is an input parameter to the model above. However, λ2 is determined by
handoff out from neighboring cells and as such depends on the parameters λ1,
μ1, μ2, n, and g. Assuming that all cells are statistically identical, handoff out
throughput from a cell must equal handoff arrival rate in steady state.

Let T (λ2) denote the handoff out rate from the cell; then

T (λ2) = μ2

n∑
k=1

kπk.

We set up a fixed-point equation

λ2 = T (λ2) (8.74)

to determine the value of λ2. Starting with some initial value of λ2, we iterate
using the equation (8.74) until convergence is reached. Haring et al. [HARI
2001], have shown that equation (8.74) has a unique solution.

Problems

1. Show that the dropping probability and the blocking probability satisfy the fol-
lowing computationally efficient recursive relationships [HARI 2001]:

for k = 1, 2, . . . , g,

Pd(n1 + k, k) =
Pd(n1 + k − 1, k − 1)

n
αA

+ Pd(n1 + k − 1, k − 1)
,

and

Pb(n1 + k, k) =
n

αA
Pb(n1 + k − 1, k − 1) + Pd(n1 + k − 1, k − 1)

n
αA

+ Pd(n1 + k − 1, k − 1)
,

where αA = A1 and n = n1 + k.

2. Compute and plot the loss probabilities Pb(n, g) and Pd(n, g) for n = 1 to 100
and g = 0, 1, 2, and 3. Assume A = 70 and α = 0.3.

3. Determine the optimal number of guard channels, g, for A = 80 Erlangs, μ1 +
μ2 = 1, α = 0.5 so as to minimize the blocking probability of new calls subject
to the constraint that the dropping probability of handoff calls is not to exceed
10−6. Consider two cases of n = 120 and n = 125. For further details on this
optimization problem see [HARI 2001].
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Additional Problems

1. You are given a hybrid k-out-of-n system in which n units are active and m units
are in a standby status so that the failure rate of an active unit is λ and a unit
in standby mode does not fail. There is a single repairperson with repair rate μ.
Give a queuing network that will model the behavior of this system. Draw the
state diagram.

2. Components arrive at a repair facility with a constant rate λ, and the service time
is exponentially distributed with mean 1/μ. The last step in the repair process
is a quality-control inspection, and with probability p, the repair is considered
inadequate, in which case the component will go back into the queue for repeated
service. Determine the steady-state pmf of the number of components at the
repair facility.

3. In the availability model of a standby redundant system of Example 8.9, we made
an assumption that the failure rate of an unpowered spare is zero. Extend the
model so that the failure rates of powered and unpowered units are λ1 and
λ2, respectively with λ1 ≥ λ2 ≥ 0. Obtain an expression for the steady-state
availability. Verify that the expression derived yields the availability expression
derived in Example 8.9 when λ2 = 0. Similarly, verify that it gives the availability
expression for a parallel redundant system when λ2 = λ1 = λ as in Example 8.10
of Section 8.2.3.1.

8.3 OTHER SPECIAL CASES OF THE BIRTH–DEATH
MODEL

We noted that the solution of the differential–difference equations (8.28) to
obtain the probabilities πk(t) is a formidable task, in general. However, the
calculation of the limiting probabilities πk = limt→∞πk(t) is relatively simple.
In this section we consider several special cases of the birth–death model when
the time-dependent probabilities πk(t) can be computed by simple techniques.

8.3.1 The Pure Birth Process

If the death rates μk = 0 for all k = 1, 2, . . ., we have a pure birth process. If,
in addition, we impose the condition of constant birth rates [i.e., λk = λ (k =
0, 1, 2, . . .)], then we have the familiar Poisson process. The state diagram is
shown in Figure 8.21. The equations (8.28) now reduce to

dπ0(t)
dt

= −λπ0(t) k = 0, (8.75)

dπk(t)
dt

= λπk−1(t) − λπk(t) k ≥ 1,
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λλ

k +1k0

λ λ λ λ

1 2

Figure 8.21. State diagram of the Poisson process

where we have assumed that the initial state N(0) = 0, so that

π0(0) = 1, πk(0) = 0 for k ≥ 1. (8.76)

One method of solving such differential equations is to use the Laplace
transform, which simplifies the system of differential equations to a system
of algebraic equations. The Laplace transform of πk(t), denoted by πk(s), is
defined in the usual way, namely:

πk(s) =
∫ ∞

0

e−stπk(t)dt ,

and the Laplace transform of the derivative dπk/dt is given by (see
Appendix D):

sπk(s) − πk(0).

Now, taking Laplace transforms on both sides of equations (8.75), we get

sπ0(s) − π0(0) = −λπ0(s),

sπk(s) − πk(0) = λπk−1(s) − λπk(s), k ≥ 1.

Using (8.76) and rearranging, we get

π0(s) =
1

s + λ

and
πk(s) =

λ

s + λ
πk−1(s),

from which we have

πk(s) =
λk

(s + λ)k+1
, k ≥ 0.

(This expression can also be obtained using the result of problem 5 at the end
of Section 8.1)

In order to invert this transform, we note that if Y is a (k + 1)-stage Erlang
random variable with parameter λ, then the LST of Y is (which is the same
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as the Laplace transform of its density fY )

LY (s) = fY (s) =
λk+1

(s + λ)k+1
.

It follows that
πk(t) =

1
λ

fY (t).

Therefore

πk(t) = P (N(t) = k) =
(λt)k

k!
e−λt, k ≥ 0; t ≥ 0. (8.77)

Thus, N(t) is Poisson distributed with parameter λt.
An alternative way to derive the expression for the state probability πk(t)

for such an acyclic CTMC is to use the convolution integration approach
(refer to problem 6 at the end of Section 8.1). For the special case here,
we have

πk(t) = πk(0)e−λt +
∫ t

0

πk−1(x)λe−λ(t−x)dx , k = 1, 2, . . .

and
π0(t) = π0(0)e−λt.

Since π0(0) = 1, we have π0(t) = e−λt and since πk(0) = 0, we have

πk(t) =
∫ t

0

πk−1(x)λe−λ(t−x)dx .

It is easy to show that (8.77) is a solution to this equation.
It follows that the mean value function m(t) = E[N(t)] is given by

m(t) =
∞∑

k=0

kπk(t) = λt.

This can be seen as the expected reward rate at time t after assigning reward
rate rk = k to state k.

The Poisson process can be generalized to the case where the birth rate λ
is varying with time. Such a process is called a nonhomogeneous Poisson
process (see Figure 8.22). The generalized version of equation (8.77) in this
case is given by

πk(t) = e−m(t) [m(t)]k

k!
, k ≥ 0, (8.78)
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λ(t)λ(t) λ(t) λ(t)

k +1k0 1 2  . . . .  . . . .

Figure 8.22. Nonhomogeneous Poisson process

where the mean-value function is

m(t) =
∫ t

0

λ(x)dx .

The nonhomogeneous Poisson process finds its use in reliability computations
when the constant-failure-rate assumptions cannot be tolerated. Thus, for
instance, if λ(t) = cαtα−1(α > 0), then the time to failure of the component
is Weibull distributed with parameters c and α, and if we assume that a
component is instantaneously replaced by a new component, then the pmf of
the number of failures N(t) in the interval (0, t] is

πk(t) = P (N(t) = k) = e−ctα (ctα)k

k!
, k ≥ 0.

Example 8.14 (Software Reliability Growth Models)

Consider a nonhomogeneous Poisson process (NHPP) proposed by Goel and Oku-
moto [GOEL 1979] as a model of software reliability growth during the testing phase.
It is assumed that the number of failures N(t) occurring in time interval (0, t] has a
pmf given by (8.78) with failure intensity

λ(t) = abe−bt . (8.79)

This implies that the expected number of software failures by time t is

m(t) = E[N(t)] = a(1 − e−bt). (8.80)

m(t), the mean-value function, is a nondecreasing function of t. Since

lim
t→∞

m(t) = a,

it follows that the parameter a represents the expected number of software faults
to be eventually detected if testing is carried out indefinitely. Using (8.80), the
instantaneous failure intensity (8.79) can be rewritten as

λ(t) = b[a − m(t)],

which means that the failure intensity is proportional to a − m(t), the expected
number of undetected faults at t. It is clear that the parameter b can be interpreted
as the failure occurrence rate per fault at an arbitrary testing time t.
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Many commonly used NHPP software reliability growth models are obtained
by choosing different failure intensities λ(t). Thus, for instance, allowing
time-dependent failure occurrence rate per fault h(t), the failure intensity can be
defined as

λ(t) = h(t)[a − m(t)]. (8.81)

The generalized Goel–Okumoto model [GOEL 1985] uses the hazard rate of the
Weibull distribution h(t) = bctc−1 as a failure occurrence rate per fault at time t.
It can capture constant (c = 1), monotonically increasing (c > 1), and monotoni-
cally decreasing (c < 1) failure occurrence rates per fault. The hazard rate of the
log-logistic distribution h(t) = [λκ(λt)κ−1]/[1 + (λt)κ] has been used by Gokhale
and Trivedi [GOKH 1998] to describe the failure occurrence rate per fault, which
initially increases and then decreases (κ > 1). These models are examples of the
so-called finite-failure NHPP models since they assume that the expected number
of faults detected given infinite amount of testing time will be finite.

The Musa–Okumoto logarithmic Poisson execution time model [MUSA 1983]
uses the failure intensity function

λ(t) =
γ

γθt + 1
,

which implies that the mean-value function of the NHPP

m(t) =
ln (γθt + 1)

θ

is an unbounded function as
lim

t→∞
m(t) = ∞.

Thus, this is an example of infinite-failure NHPP software reliability growth model
that assumes that an infinite number of faults would be detected in infinite test-
ing time. Notice that the time to failure distribution of a finite-failure NHPP is
defective (for the definition of defective distribution see Section 3.4.9) while that of
an infinite-failure NHPP model is nondefective. Hence the MTTF is infinite in the
former case while it is finite in the latter case.

�

Problems

1. Set up the differential equation for πk(t) for the case of the nonhomogeneous
Poisson process. Show that (8.78) is a solution to this equation.

2. � Consider the nonhomogeneous Poisson process with λ(t) = cαtα−1 [PARZ
1962]. Let Tk denote the occupancy time in state k. Note that Tk is the
interevent time of the process. Show that T0 has the Weibull distribution with
parameters c and α. Next show that T1 does not, in general, have the Weibull
distribution by first showing that the conditional pdf of T1 given T0 is

fT1|T0
(t |u) = e−m(t+u)+m(u)λ(t + u),
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and hence show that

fT1
(t) =

∫ ∞

0

λ(t + u)λ(u)e−m(t+u)du.

3. Write the mean-value function of a finite failure NHPP software reliability growth
model as

m(t) = aF (t)

so that F (t) has properties of a distribution function. Now derive equation
(8.81) so that h(t) is the hazard rate of F (t). Plot h(t) and λ(t) vs. t for the
Goel–Okumoto, generalized Goel–Okumoto, and log-logistic models. Use a = 2,
b = 0.001, c = 3, κ = 3 and λ = 0.01.

8.3.2 Pure Death Processes

Another special case of a birth–death process occurs when the birth rates are
all assumed to be zero; that is, λk = 0 for all k. The system starts in some
state n > 0 at time t = 0 and eventually decays to state 0. Thus, state 0 is an
absorbing state. We consider two special cases of interest.

8.3.2.1 Death Process with a Constant Rate. Besides λi = 0 for
all i, we have μi = μ for all i. This implies that the differential-difference
equations (8.28) reduce to

dπn(t)
dt

= −μπn(t), k = n,

dπk(t)
dt

= −μπk(t) + μπk+1(t), 1 ≤ k ≤ n − 1,

dπ0(t)
dt

= μπ1(t), k = 0,

where we have assumed that the initial state N(0) = n, so that

πn(0) = 1, πk(0) = 0, 0 ≤ k ≤ n − 1.

Taking Laplace transforms and rearranging, we reduce this system of
equations to

πk(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
s + μ

, k = n,

μ

s + μ
πk+1(s), 1 ≤ k ≤ n − 1,

μ

s
π1(s), k = 0,
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so:

πk(s) =
1
μ

(
μ

s + μ

)n−k+1

, 1 ≤ k ≤ n.

If Y is an (n − k + 1)-stage Erlang random variable with parameter μ, then
its LST is known to be LY (s) = fY (s) = [μ/(s + μ)]n−k+1. It follows that

πk(t) =
1
μ

fY (t)

= e−μt (μt)n−k

(n − k)!
, 1 ≤ k ≤ n.

Now, recalling that
∑n

k=0 πk(t) = 1, we have

π0(t) = 1 −
n∑

k=1

πk(t)

= 1 −
n∑

k=1

e−μt (μt)n−k

(n − k)!

= 1 −
n−1∑
k=0

e−μt (μt)k

k!
. (8.82)

π0(t) is easily recognized to be the CDF of an n-stage Erlang random variable
with mean n/μ.

Example 8.15

Consider a cold standby redundant system with n components, each with a constant
failure rate μ. Then π0(t) above gives the distribution of the time to failure of such
a system. This verifies our earlier result [see equation (3.74)].

�

Example 8.16

Consider the conditional response time distribution in an M/M/1 FCFS queue (see
Section 8.2.1). If we assume that there are n − 1 jobs in the system when a new
(tagged) job arrives, verify that its conditional response time distribution is given
by π0(t) in equation (8.82).

�

8.3.2.2 Death Process with a Linear Rate. In this case we assume
that λi = 0 for all i and μi = iμ, i = 1, 2, . . . , n. The state diagram is
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μ

n−2n−1

n(  -1)

n

μn

 . . . . 0

μ
state

Absorbing

1

Figure 8.23. The state diagram of a death process with a linear death rate

given in Figure 8.23. The differential–difference equations in this case are
given by

dπn(t)
dt

= −nμπn(t), k = n,

dπk(t)
dt

= −kμπk(t) + (k + 1)μπk+1(t), 1 ≤ k ≤ n − 1,

dπ0(t)
dt

= μπ1(t), k = 0,

where we have assumed that the initial state N(0) = n, so that

πn(0) = 1, πk(0) = 0, 0 ≤ k ≤ n − 1.

Using the method of Laplace transforms, we can obtain the solution to this
system of equations as

πk(t) =
(n

k

)
(e−μt)k(1 − e−μt)n−k, 0 ≤ k ≤ n, t ≥ 0,

which can be verified by differentiation. For a fixed t, this is recognized as a
binomial pmf with parameters n and p = e−μt.

Example 8.17

Consider a parallel redundant system with n components, each having a constant
failure rate μ. If we let k denote the number of components operating properly,
then the death process with linear rate describes the behavior of this system. The
distribution of time to failure is then given by π0(t), and system reliability R(t) =
1 − π0(t) = 1 − (1 − e−μt)n. This agrees with the expression derived in Chapter 3
[equation (3.66)]. The distinction between the CTMC state diagram (Figure 8.23)
and a distribution represented as a network of exponential stages (e.g., Figure 3.40)
should be noted.

�
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Example 8.18

The software reliability growth model proposed by Jelinski and Moranda [JELI 1972]
is based on the following assumptions:

• The number of faults introduced initially into the software is fixed, say, n.

• At each failure occurrence, the underlying fault is removed immediately and
no new faults are introduced.

• Failure rate is proportional to the number of remaining faults, that is, μi = iμ,
i = 1, 2, . . . n.

Clearly, this model can be described by the pure death process of Figure 8.23,
where if k denotes the number of failures, state i = n − k of the process at time t
denotes the number of faults remaining at that time. The constant of proportionality
μ denotes the failure intensity contributed by each fault, which means that all the
remaining faults contribute the same amount to the failure intensity, that is, have
the same size. The mean-value function is given by

m(t) =
n∑

k=0

kπn−k(t) = n(1 − e−μt). (8.83)

This measure can be seen as the expected reward rate at time t after assigning
reward rate ri = i to state i.

�

If we consider a more general death process with variable death rates and
the initial state N(0) = n, then we can show π0(t) to be the distribution
function of a HYPO (μ1, μ2, . . . , μn) random variable. Reliability of a hybrid
k-out-of-n system with perfect coverage can then be modeled by such a death
process.

Problems

1. For the death process with linear death rate (see Figure 8.23), derive the for-
mula for πk(t) given in the text starting from its differential equations and using
the method of Laplace transforms. Also derive the formula for πk(t) using the
convolution-integral approach developed in problem 6 at the end of Section 8.1.

2. Show that the mean value function of the Jelinski–Moranda model is as given on
the right-hand side of equation (8.83).

3. Model the conditional response time distribution of an M/M/n FCFS queue by
a pure death process. Draw the state diagram and specify all the transition rates.
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8.4 NON-BIRTH–DEATH PROCESSES

So far, we have discussed special cases of the birth–death process. Not all
Markov chains of interest satisfy the restriction of nearest-neighbor-only tran-
sitions. In this section we study several examples of non-birth–death processes.
These examples are divided into three subsections; in Section 8.4.1, we dis-
cuss availability models; in Section 8.4.2, performance models; and in Section
8.4.3, composite performance and availability models.

8.4.1 Availability Models

Availability models capture failure and repair behavior of systems and their
components. States of the underlying Markov chain will be classified as up
states or down states. We will discuss models that deal with hardware failures
only as well as those that consider both hardware and software failures.

Example 8.19

The two-state model of component failure–repair (Example 8.6) assumed that the
failure and the repair time distributions are both exponential. Assume now that the
exponential failure law is reasonable, but the repair process can be broken down
into two phases: (1) fault detection and location and, (2) actual repair. These two
phases have exponential distributions with means 1/μ1 and 1/μ2, respectively. The
overall repair time distribution is then hypoexponential (see Section 3.8). Since the
sojourn time in the down state is two-stage hypoexponentially distributed (rather
than exponentially distributed), the system being modeled is a semi-Markov process
(not a homogeneous CTMC). However, by noting that the repair time distribution is
an instance of a Coxian stage-type distribution (see Figure 5.11), we can transform
the given system into a homogeneous CTMC. Define the following three states of
the system:

0: the component is functioning properly

1: the component is in the detection–location phase

2: the component is in the final phase of repair.

The state diagram is given in Figure 8.24. Because of the transition from state 2 to
state 0, this is not a birth–death process.

2

μ1

μ

λ

210

Figure 8.24. The state diagram for Example 8.19
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We may compute the steady-state probabilities by first writing down the balance
equations:

λπ0 = μ2π2, μ1π1 = λπ0, μ2π2 = μ1π1,

which yield the following relations:

π1 =
λ

μ1

π0, π2 =
μ1

μ2

π1 =
μ1

μ2

λ

μ1

π0 =
λ

μ2

π0.

Now, since
π0 + π1 + π2 = 1,

we have

π0 =
1

1 +
λ

μ1

+
λ

μ2

.

Thus, the steady-state availability A is given by

A = π0 =
1

1 + λ(
1

μ1

+
1

μ2

)
.

This result can be extended to the case of a k-stage hypoexponential repair time
distribution with parameters μ1, μ2, . . . , μk with the following result:

A =
1

1 + λ

(
1

μ1

+
1

μ2

+ · · · + 1

μk

) .

If we denote the average total repair time by 1/μ, then from the formula of E[X]
for a hypoexponentially distributed random variable X, we have

1

μ
=

k∑
i=1

1

μi

.

With this value of μ, we can use formula (8.57) for steady-state availability derived
from the two-state model (Example 8.6), even when the repair times are hypoexpo-
nentially distributed.

�

Example 8.20 (A Preventive Maintenance Model)

It is known that preventive maintenance (PM) does not help in case the failure rate of
a device is constant. The device time to failure distribution must have an increasing
failure rate for PM to increase availability (or reliability). Since the hypoexponential
distribution is IFR (refer to Chapter 3), we can use such a distribution of time to
failure to demonstrate the efficacy of PM. Assume that device time to failure is
two-stage hypoexponential with rates λ1 and λ2. Assume also that the time to
repair is exponentially distributed with rate μ. Further assume that an inspection is
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Figure 8.25. CTMC for preventive maintenance model

triggered after a mean duration 1/λin, and takes an average time of 1/μin. After an
inspection is completed, no action is taken if the device is found to be in the first
stage of its lifetime. On the other hand, if the device is found to be in the second
stage of its lifetime, a preventive maintenance is carried out. We assume that the
time to carry out repair is y times the time to carry out preventive maintenance.
The resulting CTMC is shown in Figure 8.25. This type of PM is called condition
based maintenance [HOSS 2000].

Writing down and solving the steady-state balance equations, we find

(λ1 + λin)π00 = yμπ12 + μπ2 + μinπ01

μinπ01 = λinπ00 ⇒ π01 =
λin

μin

π00

(λ2 + λin)π10 = λ1π00 ⇒ π10 =
λ1

λ2 + λin

π00

yμπ12 = μinπ11 ⇒ π12 =
μin

yμ
π11

μinπ11 = λinπ10 ⇒ π11 =
λin

μin

π10

μπ2 = λ2π10 ⇒ π2 =
λ2

μ
π10.

Hence,

π2 =
λ2

μ

λ1

λ2 + λin

π00

π11 =
λin

μin

λ1

λ2 + λin

π00

π12 =
μin

yμ

λin

μin

λ1

λ2 + λin

π00.
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Figure 8.26. Steady-state availability of the preventive maintenance model with dif-
ferent μin

Thus,

π00 =
1

1 + (1 +
λ2

μ
+

λin

μin

+
λin

yμ

)
λ1

λ2 + λin

+
λin

μin

. (8.84)

Since only up states are (0, 0) and (1, 0), we obtain an expression for the
steady-state availability:

A =
1 + λ1

λ2+λin

1 + λ1
λ2+λin

+ λ1λ2
μ(λ2+λin)

+ λin
μin

+ λin
μin

λ1
λ2+λin

+ λin
yμ

λ1
λ2+λin

(8.85)

In Figure 8.26, we plot the steady-state availability as a function of the mean
time between inspections MTBI = 1/λin. We use λ1 = 0.0001, λ2 = 0.0005, μ = 0.1
and y = 5. We use several different values of the time to carry out the inspection.
Note that the steady-state availability reaches a maximum at MTBI = 714.29 for
μin= 10. In Problem 7 at the end of this section, you are asked to obtain an expression
for the optimal value of λ∗

in so as to maximize the steady-state availability.

�

Example 8.21

We return to the parallel redundant system with a single shared repair facility
(Section 8.2.3.1). Figure 8.27 shows the model of a two-component system. State i
denotes that i components are working [note that the indices have been changed; e.g.,
state 0 was labeled state M (M = 2 in this example) in Figure 8.16]. We consider
several variations wherein we introduce non-zero detection delay for a fault and then
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Figure 8.27. Two-component system availability model

1D
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μ

λ

μ

λδ

02 1

Figure 8.28. Two-component system with fault detection delay

imperfect coverage for faults. The solution of the simple model of Figure 8.27 was
presented in Section 8.2.3.1 so that downtime in minutes per year is given by

D = 8760 × 60 × π0 =
8760 × 60

1 + 2λ
μ

+ 2λ2

μ2

· 2λ2

μ2
=

8760 × 60

1 + μ
λ

+ μ2

2λ2

.

Now we introduce detection delay that is exponentially distributed with mean
1/δ. The state diagram is shown in Figure 8.28.

We have introduced a new state labeled 1D that represents the detection stage.
The transition from state 1D to state 1 (at rate δ) indicates the detection of the fault.
During the time the fault is being detected, should the second component fail (at
rate λ), the system is assumed to fail. Such a fault has been called a near-coincident
fault.

After writing the steady-state balance equations and solving these equations, we
obtain the following expressions for the steady-state probabilities:

π0 =
1

E
,

π1 =
μ(λ + δ)

λ(λ + μ + δ)E
,

π
1D

=
μ2

λ(λ + μ + δ)E
,

π2 =
μ2(λ + δ)

2λ2(λ + μ + δ)E
,

where

E = 1 +
μ(λ + δ)

λ(λ + μ + δ)
+

μ2

λ(λ + μ + δ)
+

μ2(λ + δ)

2λ2(λ + μ + δ)
.
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First assume that the delay state 1D is a system down state; then the steady-state
unavailability is

U(δ) = π0 + π
1D

=
λ(λ + μ + δ) + μ2

λ(λ + μ + δ)E
,

and the downtime in minutes per year is

D(δ) = U(δ) × 8760 × 60.

The equivalent failure and repair rates in this case are given by

λeq =
2λπ2 + λπ1

π2 + π1

= λ

(
1 +

π2

π2 + π1

)

and

μeq =
δπ

1D
+ μπ0

π
1D

+ π0

.

Verify that

U(δ) =
λeq

λeq + μeq

.

Quite often in practice if the actual delay in state 1D is less than some threshold,
say, tth seconds, the state is not considered to be down. To capture this behavior,
we observe that the probability that the sojourn time in state 1D is less than tth
seconds is 1 − e−δtth . Thus, if we assign a reward rate e−δtth to state 1D, reward
rate 1 to the state 0, and reward rate 0 to the remaining states, we will get the
modified unavailability expression as

U(δ, tth) = π0 + e−δtthπ
1D

.

Thus state 1D is considered down if its sojourn time exceeds tth. From this we can
get the downtime expression

D(δ, tth) = U(δ, tth) × 8760 × 60.

In Figure 8.29 we have plotted D(δ), D(δ, tth), and D as functions of 1/δ (in seconds)
for 1/λ = 10, 000 h and 1/μ = 2 h.

�

Example 8.22

We consider another variation of the parallel redundant system of Figure 8.27. As
the state diagram (Figure 8.30) shows, when one of the components (say, a pro-
cessor) fails, the system enters state 1 with probability c and enter state 1C with
probability 1 − c. Quantity c is known as the coverage factor or coverage probability.
State 1C incurs a reboot delay with mean 1/β. Note that although this is a hardware
availability model, aspects of software unreliability are included in the sense that
the unreliability of recovery software is likely to be the cause of imperfect coverage.
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Figure 8.29. Downtime of two-component system with fault detection delay
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Figure 8.30. Two-component availability model with imperfect coverage

Solving steady-state balance equations, we can obtain steady-state probabilities:

π0 =
λ

μE

π1 =
1

E

π1C =
μ(1 − c)

βE

π2 =
μ

2λE
,
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Figure 8.31. Downtime due to imperfect coverage

where

E =
λ

μ
+ 1 +

μ(1 − c)

β
+

μ

2λ
.

Assume that the reboot state 1C is a system down state; then the steady-state
unavailability is

U(β, c) = π0 + π1C =
λβ + μ2(1 − c)

μβE

and the downtime in minutes per year is

D(β, c) = U(β, c) × 8760 × 60.

In Figure 8.31 we have plotted D(β, c) as a function of 1/β (in minutes) for 1/λ =
10, 000 h and 1/μ = 2 h.

�

Example 8.23

We now combine the deleterious effects of the detection delay and imperfect coverage
as shown in the CTMC model of Figure 8.32. States 1D and 1C are both delay states.
The delay in state 1D will be of the order of seconds, while that in state 1C will be
of the order of minutes.
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Figure 8.32. Two-component availability model with imperfect coverage and detec-
tion delay

Solving steady-state balance equations, we can obtain steady-state probabilities:

π2 =
μ

2λ
· 1

F

π
1D

=
μ

δ + λ
· 1

F

π0 =

(
λ

μ
+

λ

δ + λ

)
· 1

F

π1C =
δ(1 − c)μ

β(δ + λ)
· 1

F

π1 =
1

F
,

where

F =
μ

2λ
+

λ + μ

δ + λ
+ 1 +

λ

μ
+

δ(1 − c)μ

β(δ + λ)
.

Assume both states 1D and 1C are system down states; then the steady-state
unavailability is

U(δ, β, c) = π0 + π1C + π
1D

=
λβ(δ + λ + μ) + μ2(δ(1 − c) + β)

μβ(δ + λ)F

and the downtime in minutes per year is

D(δ, β, c) = U(δ, β, c) × 8760 × 60.

In Figure 8.33 we have plotted D(δ, β, c) as a function of 1/δ (in seconds) for 1/λ =
10, 000 h, 1/μ = 2 h and 1/β = 5 min.

�

Example 8.24

We return to the workstation and file server (WFS) example that we considered in
Chapters 3, 4, and 6 with two workstations and one file server. As we did in Example
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Figure 8.33. Downtime due to imperfect coverage and detection delay

6.12, we study the availability of the system but now we introduce repair dependency,
in which a single repair facility is shared by all components. Assume that the file
server has a preemptive repair priority over a workstation and once the system is
down, no more failures can take place. The homogeneous CTMC for this system is
shown in Figure 8.34. In this figure the label (i, j) of each state is interpreted as
follows: i represents the number of workstations that are still functioning and j = 1
if the file server is functioning. Solving this Markov chain involves computing either
πi,j(t), the probability of being in state (i, j) at time t, or πi,j , the steady-state
probability of being in state (i, j).

The generator matrix Q is given by

Q =

⎡
⎢⎢⎢⎢⎣
−(λf + 2λw) λf 2λw 0 0

μf −μf 0 0 0

μw 0 −(μw + λf + λw) λf λw

0 0 μf −μf 0

0 0 μw 0 −μw

⎤
⎥⎥⎥⎥⎦ .

The balance equations for computing the steady-state probabilities are

(λf + 2λw)π2,1 = μwπ1,1 + μfπ2,0 (8.86)

(λw + λf + μw)π1,1 = μwπ0,1 + μfπ1,0 + 2λwπ2,1 (8.87)

μwπ0,1 = λwπ1,1 (8.88)

μfπ2,0 = λfπ2,1 (8.89)

μfπ1,0 = λfπ1,1. (8.90)
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Figure 8.34. CTMC availability model for the WFS example

Solving the above equations for π2,1 and π1,1 in terms of π0,1 we get

π2,1 =
μ2

w

2λ2
w

π0,1

π1,1 =
μw

λw

π0,1,

where

π0,1 =
1

1 +

(
λf

μf

+ 1

)(
μ2

w

2λ2
w

+
μw

λw

) .

Hence the steady-state availability is given by

A = π2,1 + π1,1.

If transient probabilities were computed, perhaps using a software package like
SHARPE [SAHN 1996], we could then compute the instantaneous availability as

A(t) = π2,1(t) + π1,1(t).

The interval availability is given by

AI(t) =
L2,1(t) + L1,1(t)

t
,

where Li,j(t) =
∫ t

0
πi,j(u)du is the expected total time spent by the CTMC in state

(i, j) during the interval (0, t].

�
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Example 8.25

Consider a 2-node cluster where both hardware and Operating System software(OS)
failures may occur [HUNT 1999]. The node hardware fails at the constant rate λ and
the OS fails at the constant rate λOS. We assume here that hardware failures are
permanent and hence require a repair or replacement action while OS failures are
cleared by a reboot. Repair or reboot takes place at rates μ and β for the hardware
and OS respectively. A node is considered down when either the OS or the hardware
has failed. The cluster is down when both nodes have failed. In case of a
hardware failure in one node and an OS failure in the other, the OS is always
recovered first.

The CTMC corresponding to this cluster system is shown in Figure 8.35. In
state 1, both nodes and their OSs are functioning properly. In state 2, one of the
nodes has a hardware failure and in state 3, both the nodes have hardware failure.
In state 4, one of the OSs has failed while in state 5, both OSs have failed. In state
6, one node has a hardware failure while the other has an OS failure. For the steady
state balance equations we have

π1(2λOS + 2λ) = π2μ + π4β,

π2(λ + μ + λOS) = π6β + π3μ + π1 · 2λ,

π3μ = π2λ,

π4(λOS + β + λ) = π1 · 2λOS + π5 · 2β,

π5 · 2β = π4λOS, and

π6β = π4λ + π2λOS.

λos

2λos
λos

2λ λ

μμ

λ

β

2β

β

1 2 3

4 6

5

Figure 8.35. CTMC for the 2-node cluster system
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These equations can be solved, in conjunction with
∑6

i=1 πi = 1, to obtain the steady
state probabilities as shown below:

π1 =
λ + β

E
, π2 =

2

(
λ

μ

)
(λOS + λ + β)

E
, π3 =

2

(
λ

μ

)2

(λOS + λ + β)

E
,

π4 =
2λOS

E
, π5 =

(λ2
OS/β)

E
,

and

π6 =
2
(

λOS
β

) [
λ +

(
λ
μ

)
(λOS + λ + β)

]
E

,

where

E = λ + β + 2λOS

(
1 +

λOS

2β
+

λ

β

)
+ 2

λ

μ
(λOS + λ + β)

(
1 +

λ

μ
+

λOS

β

)
.

The steady state availability can be written as

A = π1 + π2 + π4

=
λ + β + 2

(
λ
μ

)
(λOS + λ + β) + 2λOS

E
.

�

Example 8.26 [GARG 1999]

In this example, we consider both hardware and (application) software failures. We
consider a Web server software, that fails at the rate γp, running on a machine (node)
that fails independently at the rate γm. An automatic failure detection mechanism
based on polling is installed. Assume that the mean time to detect server process
failure is δ−1

p and the mean time to detect machine failure is δ−1
m . Furthermore,

when the machine is detected to have failed, the server process is started on another
machine, if available. The mean restart time of a machine is τ−1

m . When only the
server process is detected to have failed, it is automatically restarted on the same
machine. For details on process and machine failure detection and recovery, see
papers by Garg et al. and Huang and Kintala [GARG 1999, HUAN 1993]. The
mean restart time of the server software is τ−1

p . Typically, τp > τm. There is a
small probability 1 − c that the process restart on the same machine is unsuccessful,
in which case it is restarted on another machine, if available. Such a scheme of
automatic restart after failures is also called “cold replication” [HUAN 1993]. The
Web server is considered available when the server process as well as the machine
it is running on are up. We calculate the steady-state availability of the server,
assuming that no further failures can occur after a failure of either the process or
the machine until it has been dealt with.

Figure 8.36 shows the homogeneous CTMC for a Web server with cold replication

using one spare machine. The states are labeled using the notation

(
Pp, Pm

Sp, Sm

)
, where
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Figure 8.36. CTMC model for Web server with cold replication

Pp and Pm denote the status of the primary server process and machine, and Sp and
Sm denote the status of the spare server process and machine, respectively. A status
of “1” indicates that the process or machine is up, a status of “0” indicates that
the process or machine is down, and “0D” indicates that the process or machine has
failed but the failure is yet to be detected. A status of “x” indicates that the status
is of no consequence (don’t care) and is used to indicate the status of the server
process on the spare machine. To simplify our discussion we relabel the states as
shown in Table 8.4. The state space is denoted by I = {1, 2, . . . , 10}. The Web server
processes requests only in states 1, 6 and 7. State 6 represents failure of the spare
machine. States 8 and 9 denote primary process failures when the spare machine is
down. State 10 denotes the state when both the primary and spare machines are
down. Whenever a machine has crashed (states 7 and 10), a more elaborate recovery
with rate μ is required. The transition from state 5 to state 7 with rate τm denotes
the starting of the process on a machine. This happens as a result of a failover (after
reaching state 5 from state 4), or after recovery of a machine after complete crash
(after reaching state 5 from state 10). Note that although the server is unavailable
in states 2, 3 and 8, the failure is not observable until it is detected.

The steady-state probabilities πi, i = 1, 2, . . . , 10 can be derived as

π1 =
1

E
, π2 =

1

E
·
γp

δp

, π3 =
1

E
· γm

δm

, π4 =
1

E
·
γp

τp

π5 =
1

E
·
[γm + (1 − c)γp][μ + 2γm + (1 − c)γp]

μτm

π6 =
1

E
· γm

δm

, π7 =
1

E
·
2γm + (1 − c)γp

μ

π8 =
1

E
·
[2γm + (1 − c)γp]γp

μδp

, π9 =
1

E
·
[2γm + (1 − c)γp]γp

μτp

π10 =
1

E
·
[2γm + (1 − c)γp][γm + (1 − c)γp]

μ2
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TABLE 8.4. State indices

State name State index

1, 1

x, 1
1

0D, 1

x, 1
2

x, 0D

x, 1
3

0, 1

x, 1
4

x, 0

x, 1
5

1, 1

x, 0D
6

1, 1

x, 0
7

0D, 1

x, 0
8

0, 1

x, 0
9

F 10

where

E = 1 +
γp

δp

+
2γm

δm

+
γp

τp

+
[γm + (1 − c)γp][μ + 2γm + (1 − c)γp]

μτm

+
2γm + (1 − c)γp

μ
· [1 +

γp

δp

+
γp

τp

]

+
[2γm + (1 − c)γp][γm + (1 − c)γp]

μ2
.

The steady-state availability is given by

A = π1 + π6 + π7 =
1

E
·
[
1 +

γp

δp

+
2γm + (1 − c)γp

μ

]
.

�
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Example 8.27

We now return to the two-component system (Example 8.22) but consider one com-
ponent as active and the other as a standby (spare) unit. The failure rates of the
active unit and the standby unit are different, and also the effect of failure of the
standby unit is different from that of the active unit. The state diagram is shown
in Figure 8.37. Initially both units are working and the system is in state (1,1). Let
the time to failure of an active unit, the time to failure of a standby unit, and the
time to restoration of a failed unit be exponentially distributed with parameters λ,
λs, and μ, respectively. When the active unit fails, with probability c a protection
switch successfully restores service by switching in the standby unit, and the system
enters state (1,0). With probability 1 − c the protection switch fails to cover the
failure of the active unit and the system enters state 1C. The failure of the standby
unit while the active unit is still working is detected immediately with probability
cs, and when this happens, the system enters state (1,0). If the failure of the standby
unit is not detected (with probability 1 − cs), the systems enters state 1D. There
is a latent fault in the spare unit when the system is in state 1D. If a unit failure
occurs when the system is in one of the states: 1C, (1,0), or 1D, the system fails
and enters state (0,0).

Solving the steady-state balance equations, we obtain

π
1,0

= π
1,1

λ + λs

μ

π
1C

= π
1,1

λ(1 − c)

β + λs

π
1D

= π
1,1

λs(1 − cs)

λ

1,1

1C 1,0 1D

0,0

s

s

)s
cs+

c
cs(1−

μ

λ
μ

λ

λ

λ
λ

β

(1−

λ

)
λc

Figure 8.37. Differentiating between failures of the active and spare units



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 490�

� �

�

490 CONTINUOUS-TIME MARKOV CHAINS

π
0,0

= π
1,1

(
λ(1 − c)λs

μ(β + λs)
+

(λ + λs)λ

μ2
+

λs(1 − cs)

μ

)
,

where

π
1,1

=
1

1 + λ+λs
μ

(
1 + λ

μ

)
+ λ(1−c)

β+λs

(
1 + λs

μ

)
+ λs(1 − cs)

(
1
λ

+ 1
μ

) .

Now let us consider a routine diagnostic that is run every T time units, intended
to detect the latent fault of the standby unit. While unit (active and standby)
failure and restoration times are exponentially distributed, the routine diagnostic
time interval is not. Thus the underlying stochastic process is not a continuous time
Markov chain. The transition from state 1D to state (1,0) has a rate that depends
on how long the system has been in state 1D, but not on which states the system
had been in before it got there. Such a process is called a semi-Markov process
(SMP). The model for the system with the diagnostic routine, shown in Figure 8.38,
is called a semi-Markov chain.

To solve this model, we could crudely approximate the time to the next diagnos-
tic to be exponentially distributed with mean T/2. Solving the steady-state balance
equations with this approximation, we obtain

π
1,0

= π
1,1

λ + λs

μ

π
1C

= π
1,1

λ(1 − c)

β + λs

1,1

1C 1,0 1D

0,0

(1−

s

c
s

scs+

)cs
μ

λ

λ

μ
λ

λ
(1−

λc

U(0,T)β

)

λ

λ

Figure 8.38. A semi-Markov model
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π
1D

= π
1,1

λs(1 − cs)

λ + 2
T

π
0,0

= π
1,1

(
λ(1 − c)λs

μ(β + λs)
+

(λ + λs)λ

μ2
+

λs(1 − cs)λ

μ
(
λ + 2

T

)
)

,

where

π
1,1

=
1

1 + λ+λs
μ

(
1 + λ

μ

)
+ λ(1−c)

β+λs

(
1 + λs

μ

)
+ λs(1−cs)T

λT+2

(
1 + λ

μ

) .

A better approach would be to take the time to the next diagnostic to be uni-
formly distributed over [0,T ], resulting in a semi-Markov chain. This is indicated in
Figure 8.38 by the transition labeled U(0, T ). One way to describe an SMP is to
think of transitions as occurring in two stages. In the first stage, the SMP stays in
state i for an amount of time described by Hi(t), the sojourn time distribution in
state i. In the second stage, the SMP moves from state i to state j with probability
pij . Thus in the two-stage method, the SMP is described by a transition probability
matrix P and the vector of sojourn time distributions, H(t).

Note that for all states other than state 1D, the sojourn time distribution is
exponential with rate equal to the net rate out of that state. For state 1D, the
sojourn time is the minimum of EXP(λ) and U(0, T ) random variables. From these
observations, we have

H1,1(t) = 1 − e−(λ+λs)t

H1C(t) = 1 − e−(β+λs)t

H1,0(t) = 1 − e−(λ+μ)t

H1D(t) =

{
1 − (1 − t

T
)e−λt, t < T,

1, t ≥ T,

H0,0(t) = 1 − e−μt.

In order to compute the transition probability from state 1D to state (1,0), we
proceed as follows. Let X ∼ EXP (λ) and Y ∼ U(0, T ) random variables. We are
interested in P (X > Y ). Recalling the technique in Example 5.4, we have

P (X > Y ) =

∫ T

0

P (X > t)fY (t)dt

=

∫ T

0

e−λt 1

T
dt =

1

λT
(1 − e−λT ).

This expression can also be obtained from equation (5.30). The one-step tran-
sition probability matrix P of the DTMC embedded at the time of transitions
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(see Section 7.7) is given by

P =

1, 1 1C 1, 0 1D 0, 0

1, 1

1C

1, 0

1D

0, 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 λ(1−c)
λ+λs

λc+λscs
λ+λs

λs(1−cs)
λ+λs

0

0 0 β
β+λs

0 λs
β+λs

μ
λ+μ

0 0 0 λ
λ+μ

0 0 1
λT

(1 − e−λT ) 0 1 − 1
λT

(1 − e−λT )

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We denote by the vector v, the state probabilities of the embedded DTMC. In our
example, since we have five states, we have v = [v

1,1
, v

1C
, v

1,0
, v

1D
, v

0,0
]. To obtain

the steady-state probabilities, solve the equation [the same as equation (7.18)],

v = vP.
This yields

v =

[
v
1,1

,
λ(1 − c)

λ + λs

v
1,1

,
λ + μ

μ
v
1,1

,
λs(1 − cs)

λ + λs

v
1,1

,

(
λ(1 − c)λs

(λ + λs)(β + λs)
+

λ

μ
+

λs(1 − cs)

λ + λs

(
1 − 1

λT

(
1 − e−λT ))) v

1,1

]
,

where

v
1,1

=

[
1 +

λ(1 − c)

λ + λs

+
λ + μ

μ
+

λs(1 − cs)

λ + λs

+
λ(1 − c)λs

(λ + λs)(β + λs)
+

λ

μ
+

λs(1 − cs)

λ + λs

(
1 − 1

λT

(
1 − e−λT ))]−1

.

The mean sojourn time hi in state i is given by

hi =

∫ ∞

0

[1 − Hi(t)]dt .

Hence we have

h1,1 =
1

λ + λs

h1C =
1

β + λs

h1,0 =
1

λ + μ

h1D =
1

λ
− 1

Tλ2
(1 − e−λT )

h0,0 =
1

μ
.
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Figure 8.39. Difference in downtime of the SMP model and the approximate CTMC
model

The state probabilities of the semi-Markov chain are then given by

π
i

=
vihi∑
jvjhj

,

where i, j ∈ {(1, 1), 1C, (1, 0), 1D, (0, 0)} [CINL 1975]. In all the methods above, the
steady-state unavailability for the system is obtained as π

1C
+ π

0,0
.

Figure 8.39 plots the difference between downtime estimates obtained using the
SMP model above and that obtained by approximating the U(0, T ) distribution by
an exponential distribution with mean T/2. For the illustration in Figure 8.39, we
take c = 0.9, cs = 0.9, μ = 1 per hour, β = 12 per hour, and λs = λ/4. We see that
the higher the μ/λ ratio, the lower the difference in the downtime computed by the
two models.

�

More detailed studies of availability models are available in the literature
[FRIC 1999, HEIM 1990, IBE 1989b, MUPP 1992a, MUPP 1996].

Example 8.28 (Hierarchical Modeling)

Consider the availability model of a workstation consisting of three subsystems: a
cooling subsystem with two fans, a dual power supply subsystem, and a two-CPU
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Power supply Processors

Af Aps pA

Fans

Figure 8.40. Top-level model for Example 8.28

processing subsystem. The workstation is considered to be unavailable when one or
more of the subsystems have failed. It is possible to construct a composite CTMC
model for the entire workstation, but if the failures and repairs occurring in the
three subsystems are independent of each other, then a hierarchical model can be
constructed. A hierarchical model consists of multiple levels of models, where the
lower-level models capture the detailed behavior of subsystems and the topmost
level is the system-level model. Hierarchical models scale better with the number
of subsystems and subsystem components than does a composite model. For our
example, the top-level model consists of the series reliability block diagram shown
in Figure 8.40.

The availability of the workstation is then given by

A = Af · Aps · Ap.

The availabilities of the cooling, power supply, and processor subsystems, that is,
Af , Aps , and Ap, respectively, can be obtained by solving detailed lower-level models.
For instance, if the two fans form a parallel redundant system, the availability of
the cooling subsystem, Af can be computed using the model in Figure 8.27. Adding
the subscript f to the rates, we obtain

Af = π2 + π1

= 1 − π0

= 1 − 1

1 +
μf

λf

+
μ2

f

2λ2
f

.

Let us consider that when one of the power supplies fails, the other working supply
can be automatically switched in. With probability cps this switching is successful,
and with probability 1 − cps the switching fails, incurring a longer reconfiguration
delay. The availability of the power supply subsystem is obtained by solving the
model in Figure 8.30. Adding the subscript ps to the rates and the coverage factor,
we obtain

Aps = π2 + π1

=

μps

2λps

+ 1

λps

μps

+ 1 +
μps(1 − cps)

βps

+
μps

2λps

.
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Consider that the processors have a detection delay and imperfect coverage when
one of them fails, as in the two-component system in Example 8.23. The availability
of the processing subsystem is then given by the solution to the model in Figure 8.32.
Adding the subscript p to the rates and the coverage factor yields

Ap = π2 + π1

=

μp

2λp

+ 1

μp

2λp

+
λp + μp

δp + λp

+ 1 +
λp

μp

+
δp(1 − cp)μp

βp(δp + λp)

.

For further examples of hierarchical availability models with independent subsystems
see the paper by Ibe et al. [IBE 1989b], and for nearly independent subsystems, see
the paper by Tomek and Trivedi [TOME 1991].

�

Problems

1. Consider a variation of the two-state availability model (Example 8.6) so that the
time to failure is a k-stage hypoexponentially distributed random variable with
parameters λ1, λ2, . . . , λk and the repair times are exponentially distributed with
parameter μ. Compute the steady-state availability. Recall that the time to failure
of a hybrid k-out-of-n system (which includes the class of parallel redundant,
standby redundant, and TMR systems) is hypoexponentially distributed. The
model of this example thus gives the steady-state availability for this class of
systems, provided that the repair process cannot begin until the system breaks
down. Show that the availability of such a system is obtained from the two-state
model by substituting for λ, from the equation

1

λ
=

k∑
i=1

1

λi

.

2. Consider another variation of the two-state availability model where the time
to failure of the unit is exponentially distributed with parameter λ, while the
repair times are hyperexponentially distributed with phase selection probabil-
ities α1, α2, . . . , αk, and individual phase durations have exponential distribu-
tions with parameters μ1, μ2, . . . , μk, respectively. Obtain an expression for the
steady-state availability.

3. Show that the equivalent repair rate μeq for the availability model in Example
8.19 is given by 1/μeq = 1/μ1 + 1/μ2. Recall the method of computing μeq from
Example 8.11.

4. In the two-component availability model of Figure 8.27, we assumed that a unit is
available for repair as soon as it breaks down. However, in many systems it is not
possible to service a failed unit until the complete system fails. This can happen
if only the system’s output is monitored rather than the status of individual
units. Consider a two-unit parallel redundant configuration in which repairs may
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not begin until both units break down. Assume a constant failure rate λ for each
unit and an exponentially distributed repair time with mean 1/μ. Show that the
steady-state availability is given by

3μ2 + 2λμ

3μ2 + 3λμ + λ2
.

Compare the downtime of this maintenance policy with that of the maintenance
policy that allows repairs as soon as the failure occurs. Use λ = 0.0001 per hour,
μ = 1.0 per hour, and compute the expected downtime over a period of 8760 h
for the two cases. In both cases, assume that each unit has its own repair facility.

5. For the parallel redundant system with non-zero detection delay (Example 8.21),
compute and plot the percentage of downtime contributed by state 1D as function
of 1/δ for several different values of tth ≥ 0. Also separate out two components
of the equivalent failure rate λeq in the same way.

6. For the WFS example, plot the steady-state, instantaneous, and interval avail-
abilities as functions of time.

7. For the preventive maintenance problem (Example 8.20), derive an expression for
the optimal inspection rate λ∗

in so as to maximize the steady-state availability.

8. Consider an approximation for the CTMC model of Example 8.21 where the
delay state is replaced by an instantaneous branch point. Using the technique
of Example 5.4 or using equation (5.30). Show that the coverage probability is
δ/(δ + λ). Solve the reduced model and obtain an expression for the error of
approximation in steady-state availability.

9. Modify and solve the CTMC of Example 8.23 so as to introduce transient faults
that are treated by a retry. Resulting CTMC will have an arc leading from state
1D to state 2 at the rate δr where r is the probability of transient restoration.
Clearly, the arc from state 1D to 1C will now be relabeled as δ(1 − r − c).

8.4.2 Performance Models

In this subsection we will discuss several non-birth–death performance mod-
els. Performance measures that we consider include the mean number in the
system, the mean response time, and loss probability, among others. Examples
that we consider include a heterogeneous M/M/2 queue and a single-server
queue with a non-Poisson arrival stream, specifically, a Markov modulated
Poisson process.

Example 8.29 (M/M/2 Queue with Heterogeneous Servers) [BHAT
1984]

We consider a variant of the M/M/2 queue where the service rates of the two pro-
cessors are not identical. This would be the case, for example, in a heterogeneous
multiprocessor system. The queuing structure is shown in Figure 8.41. Assume with-
out loss of generality that μ1 > μ2.
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Figure 8.41. M/M/2 heterogeneous system
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Figure 8.42. The state diagram for the M/M/2 heterogeneous queue

The state of the system is defined to be the tuple (n1, n2) where n1 ≥ 0 denotes
the number of jobs in the queue including any at the faster server, and n2 ∈ {0, 1}
denotes the number of jobs at the slower server. Jobs wait in line in the order of their
arrival. When both servers are idle, the faster server is scheduled for service before
the slower one. The state diagram of the system is given in Figure 8.42. Balance
equations, in the steady state, can be written by equating the rate of flow into a
state to the rate of flow out of that state:

λπ(0, 0) = μ1π(1, 0) + μ2π(0, 1), (8.91)

(λ + μ1)π(1, 0) = μ2π(1, 1) + λπ(0, 0), (8.92)

(λ + μ2)π(0, 1) = μ1π(1, 1), (8.93)

(λ + μ1 + μ2)π(1, 1) = (μ1 + μ2)π(2, 1) + λπ(0, 1) + λπ(1, 0), (8.94)

(λ + μ1 + μ2)π(n, 1) = (μ1 + μ2)π(n + 1, 1) + λπ(n − 1, 1), n > 1. (8.95)
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The traffic intensity for this system is

ρ =
λ

μ1 + μ2

.

The form of equation (8.95) is similar to the balance equation of a birth–death
process (equation (8.29)). Therefore

π(n, 1) =
λ

μ1 + μ2

π(n − 1, 1), n > 1 (8.96)

can easily be seen to satisfy equation (8.95). By repeated use of equation (8.96), we
have

π(n, 1) = ρπ(n − 1, 1) = ρn−1π(1, 1), n > 1. (8.97)

From equations (8.92)–(8.93) we can obtain the following by elimination:

π(0, 1) =
ρ

1 + 2ρ

λ

μ2

π(0, 0),

π(1, 0) =
1 + ρ

1 + 2ρ

λ

μ1

π(0, 0),

π(1, 1) =
ρ

1 + 2ρ

λ(λ + μ2)

μ1μ2

π(0, 0).

Now, observing that

⎡
⎣∑

n≥1

π(n, 1)

⎤
⎦+ π(0, 1) + π(1, 0) + π(0, 0) = 1,

we have

(
∑
n≥1

ρn−1)π(1, 1) + π(0, 0)[
ρ

1 + 2ρ

λ

μ2

+
1 + ρ

1 + 2ρ

λ

μ1

+ 1] = 1,

or

1

1 − ρ

ρ

1 + 2ρ

λ(λ + μ2)

μ1μ2

π(0, 0) + π(0, 0)[
ρ

1 + 2ρ

λ

μ2

+
1 + ρ

1 + 2ρ

λ

μ1

+ 1] = 1,

from which we get

π(0, 0) = [1 +
λ(λ + μ2)

μ1μ2(1 + 2ρ)(1 − ρ)
]−1. (8.98)
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The average number of jobs in the system may now be computed by assigning the
reward rate rn1,n2

= n1 + n2 equal to the number of customers in the system in
state (n1, n2). Therefore, the average number of jobs is given by

E[N ] =
∑
k≥0

kπ(k, 0) +
∑
k≥0

(k + 1)π(k, 1)

= π(1, 0) + π(0, 1) +
∑
k≥1

(k + 1)π(k, 1)

= π(1, 0) + π(0, 1) +
∑
k≥1

π(k, 1) +
∑
k≥1

kπ(k, 1)

= 1 − π(0, 0) + π(1, 1)
∞∑

k=1

kρk−1

= 1 − π(0, 0) +
π(1, 1)

(1 − ρ)2
,

so

E[N ] =
1

F (1 − ρ)2
, (8.99)

where

F = [
μ1μ2(1 + 2ρ)

λ(λ + μ2)
+

1

1 − ρ
].

�

Example 8.30 [FULL 1975]

A computing center initially had an IBM 360/50 computer system. The job stream
could be modeled as a Poisson process with rate λ jobs/minute, and the service times
were exponentially distributed with an average service rate μ2 jobs/minute. Thus,
ρ2 = λ/μ2, and the average response time is given by equation (8.38) as E[R2] =
(1/μ2)/(1 − ρ2).

Suppose this response time is considered intolerable by the users and an IBM
370/155 is purchased and added to the system. Let the service rate μ1 of the 370/155
be equal to αμ2 for some α > 1. Assuming that a common-queue heterogeneous
M/M/2 structure is used, we can compute the average response time E[R] as follows:
Let

ρ =
λ

μ1 + μ2

=
ρ2

1 + α
,

F =
αμ2

2(1 + 2ρ)

λ(λ + μ2)
+

1

1 − ρ

=
α(1 + 2ρ)

ρ2(1 + ρ2)
+

1

1 − ρ
.
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TABLE 8.5. Average response times

α = 1 α = 2 α = 3 α = 4 α = 5

E[R1] 20 3.33 1.818 1.25 0.95

E[R2] 20 20 20 20 20

E[R] 4.7619 2.6616 1.875 1.459 1.20

Using equation (8.99), the average number of customers in the system is

E[N ] =
1

F (1 − ρ)2

=
ρ(1 + α)(1 + ρ + ρα)

(1 − ρ)(α + ρ + ρ2 + 2αρ + ρ2α2)
.

The average response time is then computed using Little’s formula as

E[R] =
E[N ]

λ
=

1 + ρ + ρα

(1 − ρ)μ2(α + ρ + ρ2 + 2αρ + ρ2α2)
. (8.100)

For any α ≥ 1, E[R] < E[R2].
Suppose that we want to consider the possibility of disconnecting the 360/50 and

using the 370/155 by itself, thus reducing the response time. In this case we have
ρ1 = λ/(αμ2) = ρ2/α, and the average response time is given by equation (8.38) as

E[R1] =
1/μ1

1 − ρ1

=
1/μ2

α − ρ2

.

The condition under which E[R1] ≤ E[R] can be simplified to

ρ2(1 + α2) − ρ(1 + 2α2) + (α2 − α − 2) ≥ 0,

or, in terms of ρ2 and α:

ρ2
2(1 + α2)

(1 + α)2
− ρ2

1 + 2α2

1 + α
+ α2 − α − 2 ≥ 0.

Thus, for example, if λ = 0.2 and μ2 = 0.25 so that ρ2 = 0.8, then if the 370/155
is more than 3 times faster than the 360/50, the inequality shown above is satisfied,
and, surprisingly, it is better to disconnect the slower machine altogether. Of course,
this conclusion holds only if we want to minimize response time. If we are interested
in processing a larger throughput (λ), particularly if λ ≥ αμ2, then we are forced to
use both machines.

Table 8.5 gives the average response times (in minutes) of the three configura-
tions for different values of α with λ = 0.2 and μ2 = 0.25.

�
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8.4.2.1 Markov Modulated Poisson Process (MMPP). Markov
modulated Poisson process (MMPP) has been extensively used for telecom-
munication traffic modeling [FISC 1993, WANG 1995, YOUS 1996, KANG
1997, CHOI 1998]. The main reason for its popularity in traffic modeling
is that MMPP has the capability of capturing some of the most important
correlations between interarrival times and still remains analytically
tractable. MMPP is a special case of the Markovian arrival process (MAP)
introduced by D. Lucantoni et al. [LUCA 1990].

An MMPP is a doubly stochastic Poisson process whose arrival rate
is “modulated” by an irreducible continuous time Markov chain. Let
Q = [qij ]m×m be the generator matrix of the CTMC with m states. Each
state i is assigned a Poisson arrival rate, λi, i = 1, 2, . . . ,m. The Poisson
arrival rate is determined by the state of the CTMC; thus, when the Markov
chain is in state i, arrivals occur according to a Poisson process of rate
λi. To facilitate our discussion, we use λ to denote the arrival rate vector
λ = [λ1, λ2, . . . , λm]T . We may also use the diagonal matrix of arrival rates,
Λ = diag(λ1, λ2, . . . , λm). Clearly, Λe = λ, where e = [1, 1, . . . , 1]T .

8.4.2.2 The Counting Process. We are interested in the associated
counting process of MMPP. Let N(t) be the number of arrivals in (0, t] and
J(t) the state of the modulating CTMC. The bivariate process {J(t), N(t),
t ≥ 0} is the counting process whose state space is {1, 2, . . . ,m} × {0, 1, . . .}.
Transitions between states with the same number of arrivals—say, (i, n) and
(j, n)—are the same as transitions between state i and j of the CTMC with
rate qij and qji , respectively. An arrival may occur in any of the modulating
CTMC states, resulting in the counter increasing by one. Thus, we also have
transition from state (i, n) to state (i, n + 1) with rate λi. The state diagram
of the bivariate process for a three-state MMPP is illustrated in Figure 8.43.
Clearly, the counting process is also a homogeneous CTMC. Let π be the
steady-state vector of the MMPP, which is the solution to

πQ = 0, πe = 1. (8.101)

It can be shown that [NEUT 1978]

lim
t→∞

E[N(t)]/t = πλ. (8.102)

This result is indeed expected; the steady-state expected number of arrivals
in an interval of length t is the product of time duration t and the average
arrival rate, πλ. πλ is the sum of rates weighted by steady-state probabilities
of the modulating CTMC.

8.4.2.3 The MMPP/M/1 Queue. We now consider an MMPP/M/1
queue in which the arrival process is an MMPP characterized by the generator
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Figure 8.43. The counting process of MMPP with three states

matrix Q of the modulating CTMC and the arrival rate vector λ. The service
time is exponentially distributed with mean 1/μ. The buffer size of the queue
is assumed to be infinite. The state of the system can be described by the
number of arrivals (customers) in the queuing system at time t, N(t), and
the state of the modulating CTMC at time t, J(t). The underlying process
{J(t), N(t), t ≥ 0} has the same state space as the MMPP counting process:
{1, 2, . . . ,m} × {0, 1, . . .}. The state diagram for an MMPP/M/1 queue is
illustrated in Figure 8.44, in which the MMPP arrival process has three states.
As we can see, the diagram is similar to that of the MMPP counting process.
The only difference is that the MMPP/M/1 has transitions from (i, n + 1) to
(i, n) for i = 1, 2, . . . ,m, due to the departure of a customer after service. The
process {J(t), N(t)} is again a homogeneous CTMC.

The structure of the Markov chain suggests that its steady-state solu-
tion may have the same form as that of an M/M/1 queue. Let πi,n be the
steady-state probability that the MMPP modulating process is in state i and
the system has n jobs. Solution to this and related queues based on matrix
geometric methods can be found in [FISC 1993, WANG 1995, YOUS 1996,
KANG 1997, CHOI 1998] and related papers.
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Figure 8.44. State diagram for the MMPP/M/1 queue

Problems

1. � Consider the following concurrent program [TOWS 1978] with a cyclic struc-
ture:

repeat
TCPU1;
if B then TIO1,
else
cobegin
TCPU2; TIO2
coend

forever.

Assume that successive tests on condition B form a sequence of Bernoulli tri-
als with probability of failure q. The execution times of the statement groups
(or tasks) TCPU1 and TCPU2 are EXP (μ1) and EXP (μ2) random variables,
respectively, while the execution times of TIO1 and TIO2 are both EXP (λ)
random variables. Draw the CTMC state diagram of this system and solve for
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the steady-state probabilities. Assuming that TCPU1 and TCPU2 are executed
on a single CPU and that TIO1 and TIO2 are executed on a single I/O proces-
sor, compute steady-state utilizations of the two processors. Use 1/μ1 = 8 ms,
1/μ2 = 26.6 ms, 1/λ = 46.1 ms, and vary q from 0 to 1.

2. Suppose we want to purchase a two-processor system, to be operated as an
M/M/2 queue. Keeping the total amount of computing power constant, we want
to investigate the tradeoffs between a system with homogeneous processors (total
power 2μ) and a heterogeneous system (total power μ1 + μ2 = 2μ). Using the
average response time as the criterion function, which system will be superior?
To take a concrete case, let ρ = λ/2μ vary from 0.1 to 0.9 and compute the aver-
age response times of the two systems, choosing different sets of values of μ1 and
μ2 and assuming λ = 1. [It can be shown that the optimum values of μ1 and μ2

are given by

λ

(
1

ρ
+ 1 −

√
1 +

1

ρ

)
and λ

(√
1 +

1

ρ
− 1

)
where ρ =

λ

2μ
.

3. Write a discrete-event simulation program to simulate the M/M/2 heterogeneous
queuing system with μ2 = 0.25, λ = 0.2, and α varied as in Table 8.5. In order
to estimate the steady-state response times E[R1], E[R2], and E[R] as defined in
Table 8.5, you have to execute three different simulations (two for an M/M/1
queue and one for the M/M/2 case), discard the statistics corresponding to initial
transients, and then collect the steady-state values. The attainment of the steady
state is determined by experimentation. For statistical analysis of outputs, see
Chapter 10 of this book.

4. First obtain an expression for E[N2] and then for the perceived mean queue
length E[N2]/E[N ]. Now solve the optimization in problem 2 above with the
objective of minimizing the perceived mean queue length [GEIS 1983].

5. For the example of the M/M/2 heterogeneous queue, let α0 denote that value
of α for which E[R] = E[R1]. Study the variation of α0 as a function of the
job arrival rate λ. Graph this relationship, using the equation relating α and ρ2

developed in Example 8.30.

6. For the special case of μ1 = μ2 in Example 8.29, show that equation (8.98) reduces
to M/M/2 equation, (8.46), and that equation (8.99) reduces to the correspond-
ing M/M/2 equation, (8.47).

7. � Write down the steady-state balance equations for the MMPP/M/1 queue of
Figure 8.44, and solve them using the matrix geometric method. Also compute
the average number in the system and the average response time in the steady
state.

8.4.3 Performance and Availability Combined

In Sections 8.4.1 and 8.4.2, respectively, we have separately discussed availabil-
ity models and performance models that commonly occur in computer com-
munication systems. The analysis of a communication network from the pure
performance viewpoint tends to be optimistic since it ignores the failure–repair



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 505�

� �

�

8.4 NON-BIRTH–DEATH PROCESSES 505

behavior in the system. On the other hand, pure availability analysis tends
to be too conservative since performance considerations are not taken into
account. Also, in a well-designed communication network, the failure of a
communication link or node will cause partial outage of the system, specifi-
cally, the decrease of network capacity available to the users, which further
affects the performance and quality of service (QoS) to the users. Therefore,
in real systems, availability, capacity, and performance are important QoS
indices which should be studied in a composite manner. The combined eval-
uation of the indices described above is useful when the system under study
can operate in a gracefully degradable manner in the presence of compo-
nent failures. In this section we discuss several examples of such combined
performance–availability analysis.

Example 8.31 (Erlang Loss Model)

Consider a telephone switching system consisting of n trunks (or channels) with an
infinite caller population as discussed in problem 1 at the end of Section 8.2.2. If an
arriving call finds all n trunks busy, it does not enter the system and is lost instead.
The call arrival process is assumed to be Poissonian with rate λ. We assume that
call holding times are independent, exponentially distributed random variables with
parameter μ and independent of the call arrival process.

We first present an availability model that accounts for failure–repair behavior
of trunks; then, we use a performance model to compute performance indices such
as blocking probability given the number of nonfailed trunks; finally, we combine
the two models together and give performability measures of interest. Assume that
the times to trunk failure and repair are exponentially distributed with mean 1/γ
and 1/τ , respectively. Also assume that a single repair facility is shared by all the
trunks. The availability model is then a homogeneous CTMC with the state diagram
shown in Figure 8.45. Here, the state index denotes the number of nonfailed trunks
in the system. The steady-state probability for the number of nonfailed channels in
the system is given by

πi =
1

i!
(τ/γ)iπ0, i = 1, 2, . . . , n,

where the steady-state system unavailability

U = π0 =

[
n∑

i=0

1

i!
(τ/γ)i

]−1

.

Consider the performance model with the given number i of nonfailed channels.
The principal quantity of interest is the blocking probability, that is, the steady-state

n-n-

γ)γ (n-γ)(n-

τττ

γ
n

n γ
1 0

τ τ
 . . . .

1 2 2

1 2

Figure 8.45. State diagram for the Erlang loss availability model
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Figure 8.46. State diagram for the Erlang loss performance model

probability that all trunks are busy, in which case the arriving call is refused service.
Note that in this performance model, the assumption is that blocked calls are lost
(not reattempted). The performance model of this telephony system is an M/M/i
loss system, and the state diagram is shown in Figure 8.46. The blocking probability
with i channels in the system is given by

Pb(i) =
(λ/μ)i/i!∑i

j=0 (λ/μ)j/j!
.

This equation is known as the Erlang’s B loss formula. It can be shown to hold even
if the call holding time follows arbitrary distribution with mean 1/μ [ROSS 1983].

Now, we construct the composite model for the combined performance and avail-
ability analysis and the state diagram is shown in Figure 8.47. Here, the state (i, j)
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λ λ λ

λ

μ

μ

μ

γ γ

γ

γ

τ

τ

ττ

0,0

1,11,0

,0n ,1n ,2n n n,n

n
(n- ) μ

2 3

n
γ

2

(n- ) γ
n

(n- )

(n- )n- n- ,1 n- ,n-

2
(n- )

(n- )

γ

γγ
2γ

 1,0

μ μ

n-,   1

 1
 2

 1 1 1 

 1

 1

γ
μ

 1

γ τ
2

μ

γ

τ τ γ

γ

μ

γ2 τ

τ

Figure 8.47. State diagram for the Erlang loss composite model
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Figure 8.48. Total blocking probability in the Erlang loss model

denotes i nonfailed trunks and j ≤ i ongoing calls in the system. Note that trunks
that are in use as well as those that are free can fail with the corresponding failure
rate. This composite model is a homogeneous irreducible CTMC with (n + 1)(n +
2)/2 states, and the steady-state probability can be obtained (see Theorem 8.1)
by solving the linear system of homogeneous equations. Such a solution may be
obtained using a software package such as SHARPE [SAHN 1996]. The total call
blocking probability is then given by

Tb =

n∑
i=0

πi,i.

In a composite model, finding the required measure will be cumbersome and
numerically error-prone when the number of trunks is large. To avoid these problems,
we can compute the required measure approximately using a hierarchical model. In
this approach, a top-level availability model (Figure 8.45) is turned into a Markov
reward model (MRM), where the reward rates come from a sequence of performance
models (Figure 8.46) and are supplied to the top-level availability model. Attach a
reward rate ri to the state i of the availability model as the blocking probability with
i trunks in the system, that is, ri = Pb(i), i ≥ 1 and r0 = 1. Then the required total
blocking probability can be computed as the expected reward rate in the steady-state
and is given by

T̂b =

[
n∑

i=0

riπi

]
=

[
n∑

i=1

Pb(i)πi

]
+ π0,

where πi is the steady-state probability that i nonfailed trunks are there in the
system. In Figure 8.48, we compare the exact total blocking probability Tb with
approximate result T̂b as functions of the number of trunks.

�
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Example 8.32 (Multiprocessor Model) [TRIV 1990]

Consider a multiprocessor system with n processors. Assume that the failure rate of
each processor is γ. There is a single repair facility to be shared by all processors,
and the repair times are exponentially distributed with mean 1/τ . A processor fault
is covered with probability c and is not covered with probability 1 − c. Subsequent
to a covered fault, the system comes up in a degraded mode after a brief recon-
figuration delay, while after an uncovered fault, a longer reboot action is required.
The reconfiguration times and the reboot times are exponentially distributed with
parameters δ and β, respectively. We assume that no other event can take place dur-
ing a reconfiguration or a reboot and a homogeneous CTMC model for this system
is shown in Figure 8.49. In state i ∈ {0, 1, . . . , n}, i processors are functioning and
n − i processors are waiting for repair whereas in state xi ∈ {xn, xn−1, . . . , x2} the
system is undergoing a reconfiguration from a state with i operational processors to
a state with i − 1 operational processors. Similarly, in state yi ∈ {yn, yn−1, . . . , y2}
the system is being rebooted from a state with i operational processors to a state
with i − 1 operational processors. Solving for the steady-state probabilities, we get

πn−i =
n!

(n − i)!

(γ

τ

)i

πn, i = 1, 2, . . . , n

πxn−i
=

n!

(n − i)!

γ(n − i)c

δ

(γ

τ

)i

πn, i = 0, 1, . . . , n − 2

πyn−i
=

n!

(n − i)!

γ(n − i)(1 − c)

β

(γ

τ

)i

πn, i = 0, 1, . . . , n − 2,

where

πn =

[
n∑

i=0

(γ

τ

)i n!

(n − i)!
+

n−2∑
i=0

(γ

τ

)i γ(n − i)cn!

δ(n − i)!
+

n−2∑
i=0

(γ

τ

)i γ(n − i)(1 − c)n!

β(n − i)!

]−1

.

Let the steady-state availability, A(n), be defined as a function of n. Then

A(n) =

n−1∑
i=0

πn−i =

∑n−1
i=0 θi/(n − i)!

Q1

,

y

n 1τ τ

γ

β
β

δδ
nn

n

( γ-1) c

(n-1) γ(1-c)

yn–1

n-1 n-2 0

γ c

nγ(1-c)

xn xn-1

τ

Figure 8.49. State diagram for the multiprocessor availability model
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Figure 8.50. Downtime Vs. the number of processors

where θ = γ/τ and

Q1 =

n∑
i=0

θi

(n − i)!
+

n−2∑
i=0

γ(n − i)θi

(n − i)!

{
c

δ
+

(1 − c)

β

}
.

From these equations, system unavailability U(n) is given by U(n) = 1 − A(n); and
downtime during an observation interval of duration T is given by D(n) = U(n) × T .

In Figure 8.50, we have plotted the downtime in minutes per year as a function
of the number of processors for different values of the coverage factor (c). Here the
downtime D(n) = U(n) × 8760 × 60 min per year. We use γ = 1

6000
per hour, β = 12

per hour, and τ = 1 per hour. We use the mean reconfiguration delay, 1/δ = 10 s,
unless otherwise specified. We see that the downtime is not monotonically decreasing
with the number of processors. The reason for this behavior is that as the number
of processors increases beyond 2, the primary cause of downtime is reconfigurations
and the number of reconfigurations is nearly linearly increasing with the number of
processors.

As in the previous example, we present another Markov reward model where
the top-level model is the availability model of Figure 8.49. The lower-level model,
which captures the performance of the system within a given availability model, will
again be a CTMC model. The resulting Markov reward model can then be analyzed
for various combined measures of performance and availability.

Turning to the lower-level performance model (from which we will get reward
rates), we assume that jobs arriving to the system form a Poisson process with rate
λ and that the service requirements of jobs are independent, identically distributed
according to an exponential distribution with mean 1/μ. Assume also that there are a
limited number b of buffers available for the jobs. Arriving tasks are rejected when all
the buffers are full. We will also assume that no faults occur during the execution of
a task. When i processors are functioning properly, we can use an M/M/i/b queuing
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Figure 8.51. Queuing system for the multiprocessor performance model
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Figure 8.52. State diagram for the multiprocessor performance model

model to describe the performance of the multiprocessor system and the queuing
system is shown in Figure 8.51. The state diagram for this performance model is
shown in Figure 8.52. The state indices indicate the number of jobs in the system
and ρ = λ/μ.

The simplest reward assignment for the availability model of Figure 8.49 is to
let the reward rate for a system up state i be ri = i/n and let the reward rate of any
down state be 0. Then the expected reward rate in the steady state is specialized to
the capacity-oriented availability COA(n) and is given by

COA(n) =

n−1∑
i=0

(
n − i

n

)
πn−i.

Next, we set ri to be the scaled throughput when i processors are functioning for
system up state i and assign reward rate zero to all the remaining states. This gives
throughput-oriented availability TOA(n).

Now, we study the total loss probability of a task by suitably assigning reward
rates in the top-level availability model. Note that, a task will be rejected whenever
b tasks are already in the system. Then the probability of rejection of a task in
a configuration with i processors functioning is given by the probability that the
CTMC of Figure 8.52 is in state b. We denote this probability as qb(i):

qb(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρb

ib−ii!
∑i−1

j=0
ρj

j!
+
∑b

j=i
ρj

i! ij−i

, b ≥ i,

ρb

b!
∑b

j=0
ρj

j!

, b < i.

(8.103)
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We now set the reward rate ri = qb(i) for up states and we set the reward rate to
1 for all the down states. With this reward assignment, the expected steady-state
reward rate specializes to the probability of task rejection due to limited buffers or
because the system is down:

πLP (n, b) =

n−1∑
i=0

qb(n − i)πn−i +
n∑

i=2

(πxi
+ πyi

) + π0.

We now impose a deadline on the task response time. Thus if a task response takes
longer than d time units then we consider that task as late. Using the formula for
the response time distribution in an M/M/i/b queue (see problem 2 before the start
of Section 8.2.3.1),

P (Rb(i) > d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
i−1∑
j=0

q′j +

b−1∑
j=i

q′j

(
i

i − 1

)j−i+1
]

e−μd

−
b−1∑
j=i

q′j

j−i∑
k=0

(μid)k

k!
e−μid

[(
i

i − 1

)j−i−k+1

− 1

]
, i > 1,

b−1∑
j=0

q′j

j∑
k=0

(μd)k

k!
e−μd, i = 1,

where Rb(i) is the response time random variable with i functioning processors.
In this equation we have defined q′j = qj/(1 − qb(i)), where qj is the steady-state
probability that there are j jobs in the system of Figure 8.52. We now make the
following reward rate assignment:

ri =

{
1, for down states,
qb(i) + [1 − qb(i)][P (Rb(i) > d)], for an up state i.

The expected reward rate in the steady state is now the overall probability of a
“lost” task (due to system down or system full or too slow) and is given by

π
TLP

(n, b, d) =

n−1∑
i=0

qb(n − i)πn−i +

n−1∑
i=0

{
(1 − qb(n − i)) P (Rb(i) > d)

}
πn−i

+

n−2∑
i=0

(πxn−i
+ πyn−i

) + π0.

π
TLP

(n, b, d) will be called “total loss probability.”
In Figure 8.53, we have plotted the total loss probability of a task π

TLP
(n, b, d)

as a function of the number of processors for different values of λ. We have used
b = 10, d = 8 × 10−5, and μ = 100 per second. We see that as the value of λ increases,
the optimal number of processors, n∗, increases as well. For instance, n∗ = 4 for
λ = 20, n∗ = 5 for λ = 40, n∗ = 6 for λ = 60. (Note that n∗ = 2 for λ = 0 from
Figure 8.50.)

�
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Figure 8.53. Total loss probability for a multiprocessor model

Example 8.33 (Wireless Handoff Model) [CAO 2000]

Consider a wireless cellular system consisting of Nb base repeaters where each base
repeater has M channels as discussed in Section 8.2.3.2. Such a system consists of
several operational areas, called cells. Assume that cells are statistically identical. A
cell has multiple base repeaters. Each base repeater provides a number of channels
for mobile terminals to communicate with the system. Normally, one of the channels
is dedicated to transmitting control messages. Such a channel is called the control
channel. Failure of the control channel will cause the whole system to fail. To avoid
this undesirable situation, an automatic protection switching (APS) scheme has
been suggested [SUN 1999] to enable the system to automatically select a channel
from the rest of the available channels to substitute for the failed control channel.
If all channels are in use (talking), then one of them is forcefully terminated and
is used as the control channel. Therefore, a total number of NbM channels are
available when the whole system is working properly. Since one of the channels has
to be used as the control channel, the total number of available talking channels
is NbM − 1. We also assume that the control channel is selected randomly out of
NbM channels. We use the traditional two-level performability model [HAVE 2001,
TRIV 1992]: we first present an availability model that accounts for the failure and
repair of base repeaters; then, we use a performance model to compute performance
indices (new-call blocking probability and handoff-call dropping probability) given the
number of nonfailed base repeaters; finally, we combine them together and give
performability measures of interest.

All failure events are assumed to be mutually independent. Times to platform
failures and repair are assumed to be exponentially distributed with mean 1/λs and
1/μs, respectively. Also assumed is that times to base repeater failure and repair are
exponentially distributed with mean 1/λb and 1/μb, respectively, and that a single
repair facility is shared by all the base repeaters.
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Figure 8.54. Markov chain of availability model

Let s ∈ S = {0, 1} denote a binary value indicating whether the system is down
as a result of a platform failure (0—system down due to a platform failure; 1—no
platform failure has occurred). Also let k ∈ B = {0, 1, · · · , Nb} denote the number
of nonfailed base repeaters. The tuple {(s, k), a ∈ S, k ∈ B} defines a state in which
the system is undergoing a (no) platform failure if s = 0 (if s = 1) and k base
repeaters are up. The underlying stochastic process is a homogeneous CTMC with
state space S × B. Let πs,k(Nb) be the corresponding steady-state probability. The
state diagram of this irreducible CTMC is depicted in Figure 8.54.

Solving the above mentioned Markov chain, we have

πs,k(Nb) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λs

λs + μs

1

k!

(
μb

λb

)k
[
1 +

Nb∑
j=1

1

j!

(
μb

λb

)j
]−1

, if s = 0,

μs

λs + μs

1

k!

(
μb

λb

)k
[
1 +

Nb∑
j=1

1

j!

(
μb

λb

)j
]−1

, if s = 1.

(8.104)

The system is unavailable in all the states in which either the system has a platform
failure, or in a system without APS, if a base repeater hosting the control channel
fails, or the system even without platform failure has no working base repeater left.
For a system without APS, the probability that one of the (Nb − k) failed base
repeaters happens to host the control channel is (Nb − k)/Nb. Let U(Nb) denote
the steady-state system unavailability. For both systems with and without APS, we
thus express unavailability as

U(Nb) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Nb∑
k=0

π0,k(Nb) +

Nb∑
k=0

π1,k(Nb)
Nb − k

Nb

, without APS,

Nb∑
k=0

π0,k(Nb) + π1,0(Nb), with APS.

(8.105)

For each of the states of the availability model of Figure 8.54, we now seek to
obtain key performance indices. Performance indices of interest are the steady-state
new-call blocking probability and handoff-call dropping probability. Given the num-
ber of available channels, the previous work in [HARI 2001, SUN 1999] provided
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TABLE 8.6. Reward rates for systems without APS

Reward rate

State (s, k) New-call blocking Handoff-call dropping

(0, k), for

k = 0, 1, . . . , Nb 1 1

(1, 0) 1 1

(1, k), for 1, if kM − 1 ≤ g

k = 1, 2, . . . , Nb
Nb−k

Nb
+ Pb(kM − 1, g) k

Nb
, o.w. a Nb−k

Nb
+ Pd(kM − 1, g) k

Nb

a otherwise

formulas for these indices. We recall the results here [refer to equations (8.72) and
(8.73)]. For a system having k nonfailed channels and g guard channels, let λ1 be
the rate of new-call arrivals, λ2 be the handoff-call arrival rate, μ1 be the rate for an
ongoing call (new call or handoff call) to terminate, and μ2 be the handoff-call depar-
ture rate. On the basis of a birth–death process, the new-call blocking probability
is given as

Pb(k, g) =

k∑
n=k−g

Ak−g

n !
A

n−(k−g)
1

k−g−1∑
n=0

An

n !
+

k∑
n=k−g

Ak−g

n !
A

n−(k−g)
1

(8.106)

and the handoff-call dropping probability is given as

Pd(k, g) =

Ak−g

k !
Ag

1

k−g−1∑
n=0

An

n !
+

k∑
n=k−g

Ak−g

n !
A

n−(k−g)
1

, (8.107)

where A = (λ1 + λ2)/(μ1 + μ2) and A1 = λ2/(μ1 + μ2).
We notice that calls can be blocked (or dropped) when the system is either down

or full. The former type of loss is captured by the pure availability model; the latter
type of loss is captured by the pure performance model. We now wish to combine
the two types of losses. The primary vehicle for doing this is to determine pure
performance losses for each of the availability model states and attach these loss
probabilities as reward rates (or weights) to these states.

We list reward rates for the states of the availability model in Table 8.6 for
systems without APS and Table 8.7 for system with APS. Let us first consider
states of system being down.

Clearly, for both systems with and without APS, a cell is not able to accept any
new call or handoff call if it has platform failure that corresponds to the states (0, k)
for k = 0, 1, . . . , Nb, or all base repeaters are down, which corresponds to the state
(1, 0). Therefore, reward rates of both overall new-call blocking and handoff-call
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TABLE 8.7. Reward rates for systems with APS

Reward rate

State (s, k) New-call blocking Handoff-call dropping

(0, k),

for k = 0, 1, . . . , Nb 1 1

(1, 0) 1 1

(1, k) 1, if kM − 1 ≤ g

for k = 1, 2, . . . , Nb Pb(kM − 1, g), o.w.a Pd(kM − 1, g)
a otherwise

dropping are 1s. In addition, for a system without APS, control channel down may
occur in states (1, k) for k = 1, 2, . . . , Nb with probability (Nb − k)/Nb and cause
new-call blocking and handoff-call dropping. This corresponds to the rates with
(Nb − k)/Nb in the last row of Table 8.6.

All the states mentioned above contribute to system unavailability, U(Nb).
Hence, system unavailability, U(Nb), also consists of one of the parts of the
overall new-call blocking probability and handoff-call dropping probability. We
now consider states in which the system is not undergoing a full outage caused by
failures of platform, control channel (if system without APS), or all base repeaters
being down. The corresponding states are (1, k) for k = 1, 2, . . . , Nb. The total
number of available channels for state (1, k) is kM − 1. It is observed that new-call
blocking probability and handoff-call dropping probability in these states are
Pb(kM − 1, g) and Pd(kM − 1, g), respectively. Thus, these probabilities are used as
reward rates to these states for overall new-call blocking and handoff-call dropping.

For a system without APS, we note that the probability of not having the con-
trol channel down in state (1, k) for k > 0 is k/Nb. Therefore, the reward rates,
Pb(kM − 1, g) and Pd(kM − 1, g), are also weighted by k/Nb (shown in the last row
of Table 8.6). Also, if the number of idle channels is less than the number of guard
channels, that is, kM − 1 < g for states (1, k), k = 1, . . . , Nb, a cell is not able to set
up any new calls because all available channels are reserved for handoff calls. Hence,
the new-call blocking reward rates assigned to the corresponding state are 1s. Now
let G = �(g + 1)/M. Summarizing Tables 8.6 and 8.7, the overall call blocking prob-
ability can be written as the expected steady-state reward rate (where w/= with
and w/o = without)

P o
b (Nb, M, g) =

U(Nb) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(G>0)

∑G
k=1 π1,k(Nb)

(
k

Nb

)

+
∑Nb

k=G+1 π1,k(Nb)Pb(kM − 1, g)

(
k

Nb

)
, w/o APS,

I(G>0)

∑G
k=1 π1,k(Nb)

+
∑Nb

k=G+1 π1,k(Nb)Pb(kM − 1, g), w/ APS,



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 516�

� �

�

516 CONTINUOUS-TIME MARKOV CHAINS

TABLE 8.8. Parameters used in numerical study

Parameter Meaning Value

Nb Number of base repeaters 10

M Number of channels/base repeater 8

λ1 New-call arrival rate 20 calls/min

1/μ1 Mean call holding time 2.5 min

1/μ2 Mean time to handout 1.25 min

λs Platform failure rate 1/year

1/μs Mean repair time of platform 8 h

λb Base repeater failure rate 2/year

1/μb Mean repair time of base repeater 2 h

and similarly the overall handoff-call dropping probability can be given as

P o
d (Nb, M, g) =

U(Nb) +

⎧⎪⎪⎨
⎪⎪⎩
∑Nb

k=1 π1,k(Nb)Pd(kM − 1, g)

(
k

Nb

)
, w/o APS,

∑Nb
k=1 π1,k(Nb)Pd(kM − 1, g), w/ APS.

We should note that the hierarchical approach we have followed to obtain per-
formability expressions is indeed an approximate solution to the model. Since we
are interested in the steady-state performability measures rather than those in the
transient regime, we neglect the fact that a failing base repeater may also bluntly
discard all ongoing calls on it and therefore cause call dropping. We consider these
simplifications to have a negligible effect on the steady-state measures. In fact, many
authors have shown that the hierarchical decomposition method leads to very accu-
rate results illustrated by numerical examples with realistic parameters in [TRIV
1992, SUN 1999].

We now present numerical results and Table 8.8 summarizes the parameters used.
In Figures 8.55 and 8.56, for both systems without APS and with APS, we

plot new-call blocking probability, P o
b , and handoff-call dropping probability, P o

d ,
respectively, against new-call arrival rate, λ1. The plots show that both probabilities
increase but stay nearly flat when new call traffic is low (< 20 calls/min). The
probabilities then increase sharply after λ1 exceeds 20 calls/min. The improvement
by APS can be seen as reductions of P o

b and P o
d . Improvement remains steady

(a greater than 30% relative reduction of both Pb and Pd) given low traffic but
diminishes rapidly as traffic becomes heavier.

In the same figure, we also plot the percentage of unavailability U in the overall
new-call blocking probability and handoff-call dropping probability to see to what
extent failures of platform, base repeaters, and control channel (i.e., system being
down) contribute to overall performability measures. It can be seen from the plots
that system unavailability dominates under light traffic and becomes a less important
factor under intense traffic when heavy traffic under limited system capacity becomes
the major factor causing blocking and dropping.
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Figure 8.55. P o
b (Nb, M, g) versus g for systems without APS and with APS (top);

percentage of unavailability U(Nb) in P o
b (Nb, M, g) (bottom)
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Figure 8.56. P o
d (Nb, M, g) versus g for systems without APS and with APS (top);

percentage of unavailability U(Nb) in P o
d (Nb, M, g) (bottom)
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d (Nb, M, g) versus Nb and g for system without
APS (top) and with APS (bottom)
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We plot curves of both overall new-call blocking probability, P o
b , and overall

handoff-call dropping probability against the number of guard channels g for Nb =
8, 9, 10 in Figure 8.57. It can be seen that, for each Nb, (1) P o

b = P o
d when g = 0 and

(2) increasing g results in a decrease in P o
d and an increase in P o

b . From Figure 8.57,
it is also clear that when the number of base repeaters, Nb, increases, both curves
of P o

b and P o
d move down, indicating the performability improvement.

The plot in Figure 8.57 also provides a graphic way to determine the optimum
number of base repeaters and an optimum number of guard channels g. For example,
for a system with APS, if we wish to ensure that P 0

b ≤ 0.003 and P 0
d ≤ 0.002, it now

becomes easy with the plots in Figure 8.57 (bottom). We may draw two lines, P o
b =

0.003 and P o
d = 0.002. Pairs of triangle marks (Δ) for new-call blocking probability

under line P o
b = 0.003 and diamond marks (♦) for handoff-call dropping probability

under line P o
d = 0.002 consist of the set of possible solutions. We then choose the

minimum Nb. In this case, N∗
b = 9 and g∗ = 0 or 1.

�

8.5 MARKOV CHAINS WITH ABSORBING STATES

With the exception of Section 8.3, our analysis has been concerned with irre-
ducible Markov chains. We will introduce Markov chains with absorbing states
through examples.

Example 8.34

Assume that we have a two-component parallel redundant system with a single
repair facility of rate μ. Assume that the failure rate of both components is λ. When
both components have failed, the system is considered to have failed and no recovery
is possible. Let the number of properly functioning components be the state of the
system. The state space is {0, 1, 2}, where 0 is the absorbing state. The state diagram
is given in Figure 8.58.

Assume that the initial state of the Markov chain is 2; that is, π2(0) = 1,
πk(0) = 0 for k = 0, 1. Then πj(t) = p

2j
(t), and the system of differential

equations (8.18) becomes

dπ2(t)

dt
= −2λπ2(t) + μπ1(t),

dπ1(t)

dt
= 2λπ2(t) − (λ + μ)π1(t),

dπ0(t)

dt
= λπ1(t). (8.108)

λ2 λ

2 1 0

μ

Figure 8.58. The state diagram for Example 8.34
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Using the technique of Laplace transform, we can reduce this system to

sπ2(s) − 1 = −2λπ2(s) + μπ1(s),

sπ1(s) = 2λπ2(s) − (λ + μ)π1(s),

sπ0(s) = λπ1(s). (8.109)

Solving (8.109) for π0(s), we get

π0(s) =
2λ2

s[s2 + (3λ + μ)s + 2λ2]
.

After an inversion, we can obtain π0(t), the probability that no components are
operating at time t ≥ 0. Let Y be the time to failure of the system; then π0(t) is the
probability that the system has failed at or before time t. Thus the reliability of the
system is

R(t) = 1 − π0(t).

The Laplace transform of the failure density

fY (t) = −dR

dt
=

dπ0(t)

dt
,

is then given by

LY (s) = fY (s) = sπ0(s) − π0(0) =
2λ2

s2 + (3λ + μ)s + 2λ2
.

The denominator can be factored so that

s2 + (3λ + μ)s + 2λ2 = (s + α1)(s + α2),

and the preceding expression can be rearranged so that

LY (s) =
2λ2

α1 − α2

(
1

s + α2

− 1

s + α1

)
, (8.110)

where

α1, α2 =
(3λ + μ) ±

√
λ2 + 6λμ + μ2

2
.

Inverting the transform in (8.110), we get

fY (t) =
2λ2

α1 − α2

(e−α2t − e−α1t)

and hence the reliability

R(t) =

∫ ∞

t

fY (x)dx =
2λ2

α1 − α2

(
e−α2t

α2

− e−α1t

α1

)
. (8.111)
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Then the MTTF of the system is given by

E[Y ] =

∫ ∞

0

R(t)dt =
2λ2

α1 − α2

[
1

α2
2

− 1

α2
1

]
=

2λ2(α1 + α2)

α2
1α

2
2

=
2λ2(3λ + μ)

(2λ2)2
=

3

2λ
+

μ

2λ2
. (8.112)

Note that the MTTF of the two-component parallel redundant system, in the
absence of a repair facility (i.e., μ = 0), would have been equal to the first term,
3/(2λ), in expression (8.112). Therefore, the effect of a repair facility is to increase
the mean life by μ/(2λ2), or by a factor

μ/2λ2

3/2λ
=

μ

3λ
.

�
Example 8.35

Next consider a modification of Example 8.34 proposed by Arnold [ARNO 1973] as
a model of duplex processors of an electronic switching system. We assume that not
all faults are recoverable and that c is the coverage factor denoting the conditional
probability that the system recovers, given that a fault has occurred. The state
diagram is now given by Figure 8.59. Note that this chain is not an example of a
birth–death process.

Assume that the initial state is 2, so that

π2(0) = 1, π0(0) = π1(0) = 0.

Then p
2j

(t) = πj(t) and the system of equation (8.18) yields

dπ2(t)

dt
= −2λcπ2(t) − 2λ(1 − c)π2(t) + μπ1(t),

dπ1(t)

dt
= −(λ + μ)π1(t) + 2λcπ2(t),

dπ0(t)

dt
= λπ1(t) + 2λ(1 − c)π2(t). (8.113)

c

1

μ

2

2λ(1-c)

2λ

λ

0

Figure 8.59. The state diagram of a duplex system with imperfect coverage
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Using Laplace transforms as before, this system reduces to:

sπ2(s) − 1 = −2λπ2(s) + μπ1(s),

sπ1(s) = −(λ + μ)π1(s) + 2λcπ2(s),

sπ0(s) = λπ1(s) + 2λ(1 − c)π2(s). (8.114)

This system of linear equations can be solved to yield

π0(s) =
2λ

s

s + λ + μ − c(s + μ)

(s + 2λ)(s + λ + μ) − 2λμc
,

π1(s) =
2λc

(s + 2λ)(s + λ + μ) − 2λcμ
,

π2(s) =
s + λ + μ

(s + 2λ)(s + λ + μ) − 2λcμ
.

As before, if X is the time to system failure, then

FX(t) = π0(t);

therefore

fX(s) = LX(s) = sπ0(s)

=
2λ[(s + λ + μ) − c(s + μ)]

(s + 2λ)(s + λ + μ) − 2λμc
.

Let this be rewritten as

LX(s) =
2λU

V
,

where U = s + λ + μ − c(s + μ) and V = (s + 2λ)(s + λ + μ) − 2λμc. Instead of
inverting this expression to obtain the distribution of X, we will be content with
obtaining E[X] using the moment generating property of Laplace transforms:

E[X] = −dLX

ds
|s=0

=
2λ[U(2s + 3λ + μ) − V (1 − c)]

V 2
|s=0

=
2λ[(λ + μ − μc)(3λ + μ) − (2λ(λ + μ) − 2λμc)(1 − c)]

[2λ(λ + μ) − 2λμc]2
,

which, when reduced, finally gives us the required expression for mean time to system
failure:

E[X] =
λ(1 + 2c) + μ

2λ[λ + μ(1 − c)]
. (8.115)

Note that as c approaches 1, this expression reduces to the MTTF given in equation
(8.112) for Example 8.34. As the coverage factor c approaches 0, expression (8.115)
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Figure 8.60. The effect of coverage on MTTF

yields the value 1/(2λ), which corresponds to the MTTF of a series system consist-
ing of the two components. It should be clear that the system MTTF is critically
dependent on the coverage factor, as can be seen from Figure 8.60, in which the
ratio E[X]/E[Y ] is plotted as a function of the coverage factor c (we have taken
λ/μ = 10−2). Recall that E[Y ] is the MTTF of a system with perfect coverage; it is
obtained from equation (8.112).

�

Example 8.36 (NHCTMC Model of the Duplex System)

Consider a duplex system with two processors, each of which has a time-dependent
failure rate λ(t) = λ0αtα−1. Initially, both processors are operational (in state 2).
The first fault may be detected with probability c2 or not detected with probability
1 − c2. In the former case, the duplex system is still functioning in a degraded mode
(state 1), while in the latter case, an unsafe failure has occurred (state UF ). From
state 1, the system can experience a safe shutdown with probability c1 to enter
state SF or an unsafe system failure with probability 1 − c1 to state UF when
another processor failure occurs. The Markov model of the duplex system is shown
in Figure 8.61.

The system shown in Figure 8.61 is a nonhomogeneous CTMC, because, as
its name suggests, it contains one or more time-dependent transition rates. The
transient behavior of a NHCTMC satisfies the linear system of first order differential
equations:

dπ(t)

dt
= π(t)Q(t), with π2(0) = 1. (8.116)
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λ (t) c22

λ (t) c
1

2λ(t)(1-c2)

λ(t)(1-c1)

2

1

SF

UF

Safe Failure

Unsafe Failure

Figure 8.61. The NHCTMC model of the duplex system

At first, it may be thought that the solution to this equation may be written as
π(t) = π(0)e

∫ t
0 Q(τ)dτ . But as has been shown [RIND 1995], this is not true in gen-

eral. The time-dependent infinitesimal generator matrix for this problem can be
factored as follows:

Q(t) =

⎡
⎢⎢⎣
−λ(t) 0 λ(t)c1 λ(t)(1 − c1)
2λ(t)c2 −2λ(t) 0 2λ(t)(1 − c2)

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

= λ(t)

⎡
⎢⎢⎣
−1 0 c1 1 − c1

2c2 −2 0 2(1 − c2)
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ = λ(t)W,

where

W =

⎡
⎢⎢⎣
−1 0 c1 1 − c1

2c2 −2 0 2(1 − c2)
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

In such cases when the time-dependent Q(t) matrix can be factored into a
time-independent matrix and a scalar function of time, the solution to the equation
(8.116) is given by

π(t) = π(0)e[
∫ t
0 λ(τ)dτ]W .

Hence we can define an average failure rate:

λ =
1

t

∫ t

0

λ(τ)dτ,
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λ

2λ

3

F

3, 1 3, 0 2, 0

3λc + μ

3λ(1 − c)

Figure 8.62. The state diagram of a TMR system with spare and imperfect coverage

and get the solution to the NHCTMC by solving a homogeneous CTMC with the
generator matrix:

Q = Wλ.

We use such a method for this simple example. To get numerical results, we choose
the parameters as in Rindos et al. [RIND 1995]: λ0 = 0.0001, α = 2.0, c1 = 0.9, and
c2 = 0.9999. At time t = 100 h, the system unreliability π

SF
(t) + π

UF
(t) is calculated

to be 0.39962291 and system unsafety π
UF

(t), to be 0.04004111.

�

Example 8.37

Consider a system with three active units and one spare. The active configuration
is operated in TMR mode. An active unit has a failure rate λ, while a standby
spare unit has a failure rate μ. If i active units and j standby units are functioning
properly, then the state of the system will be denoted by (i, j). The state F denotes
the system failure state. We assume that in state (3,1), failure of an active unit
can be recovered with probability c (≤ 1). The state diagram of the homogeneous
CTMC is given in Figure 8.62.

Differential equations for this CTMC are written as follows:

dπ3,1

dt
= −(3λ + μ)π3,1(t),

dπ3,0

dt
= −3λπ3,0(t) + (3λc + μ)π3,1(t),

dπ2,0

dt
= −2λπ2,0(t) + 3λπ3,0(t),

dπF

dt
= 3λ(1 − c)π3,1(t) + 2λπ2,0(t),
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where we have assumed that the initial state is (3,1) so that π3,1(0) = 1, and
πi,j(0) = 0 = πF (0) otherwise. Using Laplace transforms, we get

sπ3,1(s) − 1 = −(3λ + μ)π3,1(s),

sπ3,0(s) = −3λπ3,0(s) + (3λc + μ)π3,1(s),

sπ2,0(s) = −2λπ2,0(s) + 3λπ3,0(s),

sπF (s) = 3λ(1 − c)π3,1(s) + 2λπ2,0(s).

Solving this system of equations, we get

π3,1(s) =
1

s + 3λ + μ
,

π3,0(s) =
3λc + μ

(s + 3λ + μ)(s + 3λ)
,

π2,0(s) =
3λ(3λc + μ)

(s + 3λ + μ)(s + 3λ)(s + 2λ)
,

and

sπF (s) =
3λ(1 − c)

(s + 3λ + μ)
+

6λ2(3λc + μ)

(s + 2λ)(s + 3λ)(s + 3λ + μ)
.

If X is the time to failure of the system, then πF (t) is the distribution function of
X. It follows that

LX(s) = fX(s) = sπF (s) − πF (0) = sπF (s),

which can be rewritten as:

fX(s) =
3λ + μ

(s + 3λ + μ)

[
3λ(1 − c)

(3λ + μ)
+

3λc + μ

3λ + μ

{
2λ

(s + 2λ)
· 3λ

(s + 3λ)

}]
. (8.117)

The expression outside the square brackets is the Laplace–Stieltjes transform of EXP
(3λ + μ), while the expression within the braces is the LST of HYPO (2λ, 3λ). There-
fore, the system lifetime X has the stage-type distribution shown in Figure 8.63. It
follows that system MTTF is

E[X] =
1

3λ + μ
+

3λc + μ

3λ + μ

[
1

2λ
+

1

3λ

]

=
1

3λ + μ
+

3λc + μ

3λ + μ
· 5

6λ
.

This can be verified by computing −dfX/ds|s=0, which is easy from (8.117).

�
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(3λ+μ)EXP

+cλ3

3EXP(    )λ EXP(    )2λ

λ + μ(3           )

(1-c)λ3

X

λ + μ(3           )

μ

Figure 8.63. The stage-type lifetime distribution for the system of Example 8.37

So far we used a transform-based approach for computing the MTTF.
Practical problems often give rise to very large CTMCs where the
transform-based analysis becomes difficult or even impossible. We now
describe a method of computing the MTTF via a linear system of equations.

We begin with equation (8.19). Denote the set of all system failure states
by set D (all the absorbing states belong to set D), and the set of all states
in which the system is operational by set U . Let Q̂ denote the submatrix of
Q pertaining to states in U only. Similarly, let π̂(0) be the subvector of π(0)
pertaining to states in U . Now, if τi = lim

t→∞
Li(t) exists for i ∈ U , equation

(8.19) becomes
τ̂ Q̂ = −π̂(0). (8.118)

Because τi is the expected time the CTMC spends in (nonfailure) state i until
system failure (entering D), the mean time to (system) failure (MTTF) is
given by

MTTF =
∑
i∈U

τi.

For small problems, this system can be solved symbolically as we shall see
in several examples. For larger CTMCs numerical solution is adopted. Itera-
tive numerical solution of equation (8.118) using methods such as successive
overrelaxation (SOR) have proved to be efficient for most MTTF problems.
But as Heidelberger et al. [HEID 1996] pointed out, solving equation (8.118)
requires an extremely large number of iterations for highly reliable systems,
where system failure is a rare event. They proposed a two-step procedure
for accelerating MTTF computation, in which one or more frequently visited
states are made absorbing artificially. The convergence rate is improved sig-
nificantly; this method is implemented in both SHARPE [SAHN 1996] and
SPNP [CIAR 1993].
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Example 8.38

Consider a variation of the workstations and file server (WFS) example in which
there is no repair action when the system fails. We are now interested in the sys-
tem reliability and system MTTF with and without repair for the components (see
Figures 8.64 and 8.65, respectively).

States (2,0), (1,0), and (0,1) in Figure 8.34 are absorbing states in both the
CTMCs for the system with and without repair for the components, and hence are
merged into a single state F . The corresponding generator matrices for Figures 8.64
and 8.65 are QR and QNR. New matrices Q̂R and Q̂NR are obtained from QR

and QNR, respectively, by restricting the generator matrices only to the transient
states

Q̂R =

[
−(λf + 2λw) 2λw

μw −(μw + λf + λw)

]
,

and

Q̂NR =

[
−(λf + 2λw) 2λw

0 −(λf + λw)

]
.

1,1

F

2,1

2λw

λf
λw + λf

μw

Figure 8.64. CTMC reliability model for the WFS example with repair

1,1

F

2,1

2λw

λf
λw + λf

Figure 8.65. CTMC reliability model for the WFS example without repair
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The system reliability is obtained by adding the transient probabilities of being in
the working states (2,1) and (1,1):

R(t) = π2,1(t) + π1,1(t),

where the state probabilities are obtained by solving Kolmogorov equations using
the two matrices shown above.

Also
τ̂RQ̂R = −π̂R(0)

τ̂NRQ̂NR = −π̂NR(0).

The system MTTF is obtained by

MTTF = τ2,1 + τ1,1.

For the system with repair, the following equations are solved

μwτ1,1 − (λf + 2λw)τ2,1 = −1

−(μw + λf + λw)τ1,1 + 2λwτ2,1 = 0

to get

τ1,1 =
2λw

λfμw + (λf + λw)(λf + 2λw)
, (8.119)

τ2,1 =
μw + λf + λw

λfμw + (λf + λw)(λf + 2λw)
. (8.120)

Hence MTTF for the system with repair is

MTTFR =
μw + λf + 3λw

λfμw + (λf + λw)(λf + 2λw)
.

For the system without repair the following equations are solved:

−(λf + 2λw)τ2,1 = −1

−(λf + λw)τ1,1 + 2λwτ2,1 = 0

to get

τ1,1 =
2λw

(λf + λw)(λf + 2λw)

τ2,1 =
1

(λf + 2λw)
.

Hence the MTTF for the system without repair is

MTTFNR =
λf + 3λw

(λf + λw)(λf + 2λw)
.
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Workstation File server

Figure 8.66. RBD of workstations and file server system

Observe that since file server repair is never considered, there is no repair dependency
and hence the workstation and file server subsystems are independent. This fact can
be exploited and a hierarchical reliability model can be developed. The top-level
model is an RBD (reliability block diagram) with two blocks in series as shown
in Figure 8.66. The first block can be expanded into a three-state CTMC (same
structure as in Figure 8.58, but with subscript w added to the transition rates)
at the lower level representing the reliability model with repair of the workstation
subsystem, while the other block represents file server failure. The reliability Rw(t)
and the mean time to failure MTTFw of the workstation subsystem can be obtained
from equations (8.111) and (8.112), respectively as

R(R)
w (t) =

2λ2
w

α1 − α2

(
e−α2t

α2

− e−α1t

α1

)

MTTF(R)
w =

3

2λw

+
μw

2λ2
w

,

where

α1, α2 =
(3λw + μw) ±

√
λ2

w + 6λwμw + μ2
w

2
.

The reliability and MTTF of the file server subsystem are

Rf (t) = e−λf t (8.121)

MTTFf =
1

λf

. (8.122)

The reliability and MTTF of the workstations and file server system with repair is
obtained from the RBD of Figure 8.66 as

RR(t) = R(R)
w (t) · Rf (t)

=
2λ2

w

α1 − α2

(
e−α2t

α2

− e−α1t

α1

)
· e−λf t,

MTTFR =

∫ ∞

0

RR(t)

=
2λ2

w

α2(α1 − α2)(α2 + λf )
− 2λ2

w

α1(α1 − α2)(α1 + λf )

=
μw + λf + 3λw

λfμw + (λf + λw)(λf + 2λw)
.
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For the case without repair, too, a hierarchical reliability model with the RBD
of Figure 8.66 as the top-level model can be used. In this case, the reliability of the
workstation subsystem is obtained as in Example 8.17 (with n = 2):

R(NR)
w (t) = 1 − (1 − e−λwt)2

= 2e−λwt − e−2λwt.

The MTTF of the workstation subsystem is obtained as

MTTF(NR)
w =

3

2λw

.

The reliability and MTTF of the file server subsystem are the same as in equations
(8.121) and (8.122), respectively.

The reliability and MTTF of the WFS system without repair are obtained as

RNR(t) = R(NR)
w (t) · Rf (t)

= [1 − (1 − e−λwt)2] · e−λf t

= 2e−(λf +λw)t − e−(λf +2λw)t

MTTFNR =

∫ ∞

0

RNR(t)

=
2

λf + λw

− 1

λf + 2λw

=
λf + 3λw

(λf + λw)(λf + 2λw)
.

For more examples of hierarchical reliability models, see Sahner et al. [SAHN
1996].

�

Example 8.39 [ORTA 1999]

The vulnerabilities exhibited by an operational computing system can be represented
in a privilege graph. In such a graph, a node A represents a set of privileges owned
by a user or a set of users (e.g., a UNIX group). An arc represents a vulnerability.
An arc exists from node A to node B if there is a method allowing a user owning
A privileges to obtain those of node B. If a path exists between an attacker node
and a target node, then security breach can potentially occur since an attacker can
exploit system vulnerabilities to obtain target privileges. Situations where attackers
may give up or interrupt their process are not considered; that is, the attack stops
when the target is reached.

Assuming that at each newly visited node of the privilege graph, the attacker
chooses one of the elementary attacks that can be issued from that node only (mem-
oryless property) and assigning to each arc a rate at which the attacker succeeds
with the corresponding elementary attack, the privilege graph is transformed into a
CTMC. Figure 8.67 gives an example of such a CTMC.
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A

B

C

D

λ
1

λ

λ λ

2

3 4

Figure 8.67. CTMC for operational security

Various probabilistic measures can be derived from the Markov model, including
the mean effort (or time) for a potential attacker to reach the specified target,
denoted as mean effort to (security) failure (METF), by analogy with mean time to
failure (MTTF). This measure allows easy physical interpretation of the results—the
higher the METF, the better the security.

The matrix Q̂ obtained from generator matrix Q by restricting only to the
transient states is

Q̂ =

⎡
⎣−(λ1 + λ3) λ1 λ3

0 −λ2 0
0 0 −λ4

⎤
⎦ .

Using equation (8.118) where τ̂ = [τA, τB , τC ] and π̂(0) = [1, 0, 0] we get

τA =
1

λ1 + λ3

τB =
λ1

λ2(λ1 + λ3)

τC =
λ3

λ4(λ1 + λ3)
.

It follows that the METF is

METF =
∑

i∈{A,B,C}

τi =
1

λ1 + λ3

(
1 +

λ1

λ2

+
λ3

λ4

)
.

�

Example 8.40 [LAPR 1995]

Consider a recovery block (RB) architecture implemented on a dual processor sys-
tem that is able to tolerate one hardware fault and one software fault. The hard-
ware faults can be tolerated due to the hot standby hardware component with a
duplication of the RB software and a concurrent comparator for acceptance tests.
The CTMC state diagram is shown in Figure 8.68. The transition rates and their
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Figure 8.68. The state diagram for Example 8.40

TABLE 8.9. Parameters for Example 8.40

Transition rate Value Meaning

λ21 2cλH covered hardware component failure

λ23 2cλH + λSD Not covered hardware component failure

or detected RB failure

λ24 λSU undetected RB failure

λ13 cλH + λSD detected RB failure or covered hardware

component failure

λ14 cλH + λSU Not covered hardware component failure

or undetected RB failure

meanings are given in Table 8.9. In the table, λH denotes the hardware component
failure rate; λSD and λSU denote respectively the detected and undetected failure
rates of the recovery block software, and c is the hardware coverage factor with
c = 1 − c. Note that states SF and UF represent the safe and unsafe failure states,
respectively.

The system is initially in state 2; that is π2(0) = 1, πk(0) = 0 for all other states.
Then the system of differential equations (8.18) yields:

dπ2(t)

dt
= −(λ21 + λ23 + λ24)π2(t),

dπ1(t)

dt
= −(λ13 + λ14)π1(t) + λ21π2(t),

dπ
SF

(t)

dt
= λ23π2(t) + λ13π1(t), (8.123)

dπ
UF

(t)

dt
= λ24π2(t) + λ14π1(t),
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Using Laplace transforms as before, the above system is reduced to:

sπ2(s) − 1 = −(λ21 + λ23 + λ24)π2(s),

sπ1(s) = −(λ13 + λ14)π1(s) + λ21π2(s);

sπ
SF

(s) = λ23π2(s) + λ13π1(s); (8.124)

sπ
UF

(s) = λ24π2(s) + λ14π1(s);

Solving the above system of equations for πi(s) and using inverse Laplace transforms,
we get πi(t). Thus the reliability of the system is:

R(t) = π2(t) + π1(t)

= 2ce−(λH+λS)t − (2c − 1)e−(2λH+λS)t (8.125)

where λS = λSD + λSU .
Similarly, the absorption probability to the safe failure state is:

P
SF

= π
SF

(∞)

=
2cλH + λSD

2λH + λS

+
2cλH(cλH + λSD)

(2λH + λS)(λH + λS)
(8.126)

And the absorption probability to the unsafe failure state is:

P
UF

= π
UF

(∞)

=
λSU

2λH + λS

+
2cλH(cλH + λSU )

(2λH + λS)(λH + λS)
(8.127)

�

Example 8.41 (Conditional MTTF of a Fault-Tolerant System)

Consider the homogeneous CTMC models of three commonly used fault-tolerant
system architectures. The simplex system S consists of a single processor. When
a fault occurs in the processor at the rate λ, the fault can be detected and the
system shuts down safely with probability cs. On the other hand, with probability
1 − cs, the system does not detect the fault and it experiences an unsafe (hazardous)
failure. The probability cs is the coverage factor for a simplex system meaning the
probability the system detects the fault once it has occurred. Figure 8.69a shows
the Markov model of this system. In the operational state i, i (i ≥ 1) proces-
sors are operating. The states SF and UF represent safe and unsafe failure states,
respectively.

The duplex system (D) consists of two identical processors executing the same
task in parallel. When a processor generates a fault at the rate λ, the fault is covered
with probability cd and the system is shutdown safely (Figure 8.69b). The coverage
factor cd in this case is the probability that the system detects the fault. After the
execution of a task, the outputs from two processors are compared with each other.
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2λ(1 − c

ds
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λc
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2λc
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d
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s
)λc

s
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Figure 8.69. Architectures of fault-tolerant systems: (a) system S; (b) system D;
(c) system DS

Because of the comparison, duplex system is more likely to detect a fault than the
simplex system. Thus the probability cd is naturally larger than cs (0 ≤ cs < cd ≤ 1).

The duplex system reconfigurable to the simplex system (DS) also consists of
two processors executing the same task in parallel. When a fault occurs, the system
suffers unsafe failure with probability 1 − cds . The coverage factor cds is the prob-
ability of not only detecting the fault but also reconfiguring the system in order to
keep operating with the nonfaulty processor. Since cds is the probability that both
the events are successful, cds is naturally smaller than cd (0 ≤ cds < cd ≤ 1).

We compare the three architectures with respect to the probability of unsafe
failure, the mean time to failure (MTTF) of the system and the conditional MTTF
to unsafe failure [CHWA 1998]. The conditional MTTF to A, MTTF

|A
, is defined

as the expected time until absorption to a state in set A given that the system
is eventually absorbed into A, where A is a subset of the absorbing states of the
Markov reliability model, which corresponds to a given failure condition.

First, we show a solution method for computing the conditional MTTF. Con-
sider a CTMC with m (m ≥ 1) absorbing states as in Figure 8.70. The set of all
absorbing states of this CTMC is SA = {a1, a2,..., am}. Let Y be a random vari-
able representing the time for the CTMC to be absorbed into A ∈ SA. Partition the
infinitesimal generator matrix Q so that the transient states, labeled as T appear
first, followed by states in A, and then followed by the remaining absorbing states,



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 536�

� �

�

536 CONTINUOUS-TIME MARKOV CHAINS

Transient class of states T

aa a
21 m.   .   .

Figure 8.70. A CTMC with m absorbing states

labeled collectively as B = SA − A. It is clear that for all j, qij = 0 for any state i
in A or B:

Q =

⎡
⎢⎣

QTT QTA QTB

01×|T | 0 01×|B|

0|B|×|T | 0|B|×1 0|B|×|B|

⎤
⎥⎦ .

Here QTT is the partition of the generator matrix consisting of the states in T , QTA

has the transition rates from states in T to states in A and similarly QTB has the
transition rates from states in T to states in B. We assume A to have a single state
so that QTA is a |T | × 1 matrix. In case A consists of multiple absorbing states, we
can easily aggregate these states into a single state. Note that the aggregation does
not imply an approximate solution in this case. Partition the state probability vec-
tor π(t) = [π

T
(t),π

A
(t),π

B
(t)], where π

T
(t),π

A
(t),π

B
(t) are the state probability

vectors for states in the sets T, A, and B respectively.
The absorption probability is the probability that the CTMC is absorbed into

A with a given initial state pmf, namely, P{X(∞) ∈ A} = πA(∞). The absorption
probability to A is obtained by [CHWA 1998]:

πA(∞) = τ
T

QTA, (8.128)

where τ
T

is the solution of the linear system:

τ
T

QTT = −π
T
(0). (8.129)

Let e
T

be a column vector of size |T | with all 1s, then recall that the unconditional
MTTF is given by

MTTF = τ
T
e

T
. (8.130)
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TABLE 8.10. Dependability measures for the three architectures

Measures Architecture S Architecture D Architecture DS

MTTF
1

λ

1

2λ

1

2λ
+

cds

λ

π
UF

(∞) 1 − cs 1 − cd 1 − cscds

MTTF
|UF

1

λ

1

2λ

1 + 2cds − 3cscds

2λ(1 − cscds)

The conditional MTTF to A is obtained by [CHWA 1998]:

MTTF
|A

=
E[Y and Y < ∞]

π
A

(∞)
=
θ

T
QTA

τ
T

QTA

, (8.131)

where θ
T

is the solution of the linear system:

θ
T

QTT = −τ
T

.

Using these methods, we compute the measures for the three architectures as shown
in Table 8.10.

�

Example 8.42

We return to the multiprocessor model of Example 8.32, but we now consider system
failure state 0 as absorbing. We also simplify the model by using n = 2 and c = 1,
and assuming instantaneous reconfiguration (δ = ∞). Hence the system reliability
model is as shown in Figure 8.71.

Since task arrivals occur at the rate λ and task service time is EXP(μ), when
the reliability model is in state 2, the performance can be modeled by an M/M/2/b
queue. From equation (8.103), we have the buffer full probability q

b
(2). Similarly,

in state 1 of the reliability model, we have the buffer full probability as q
b
(1). Fur-

thermore, the probability of violating a deadline in state 2 is given by P (Rb(2) > d),

γ2 γ

τ

2 1 0

Figure 8.71. Multiprocessor system reliability model
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P ( Rb( ) > d )1

P ( Rb( )2 > d )

γ2

τ

1 0

λ

γ + λ

2

Figure 8.72. Multiprocessor system reliability model with hard-deadline failures

and that in state 1 is given by P (Rb(1) > d). We make the following reward rate
assignment to the states:

r2 = λ[1 − q
b
(2)][P (Rb(2) ≤ d)],

r1 = λ[1 − q
b
(1)][P (Rb(1) ≤ d)]

and
r0 = 0.

With this reward assignment, if we compute the expected accumulated reward
until absorption, then we will obtain the approximate number of tasks successfully
completed (that is, within deadline) until system failure:

E[Y (∞)] = r2τ2 + r1τ1,

where τ2 and τ1 are from equation (8.118). This is a hierarchical performability
model.

�

Example 8.43

In the previous example, deadlines were soft but now we consider a hard deadline
so that if an accepted job fails to complete within the deadline, we will consider the
system to have failed. To reflect this, we modify the reliability model of Figure 8.71
to introduce deadline (or dynamic) failures [SHIN 1986] as shown in Figure 8.72.
Using the τ method, we can compute the values of τ2 and τ1 for the CTMC in the
figure and hence get the system MTTF that includes the effect of dynamic failures:
MTTF = τ2 + τ1.

�

Problems

1. Assuming λ = 10−4, and μ = 1, compare the reliability of a two-unit parallel
redundant system with repair (Example 8.34) with that of a two-unit parallel
redundant system without repair. Also plot the two expressions on the same
graph.
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2. Compute the MTTF for Example 8.34 assuming that state 1 is the initial state.
You may use the τ method. Next compute MTTFeq of the model in Figure 8.27
using the technique of Example 8.11. Show that they are identical. Explain the
reason for this equivalence.

3. Solve Example 8.37 using the τ method [equation (8.118)].

4. Modify the structure of Example 8.34 so that it is a two-unit standby redundant
system rather than a parallel redundant system. Assume that the failure rates of
online and standby units are respectively given by λ1 and λ2, where λ1 ≥ λ2 ≥ 0.
Repair times are exponentially distributed with mean 1/μ, and the system is
considered to have failed on the failure of the second unit before the first unit is
repaired. Obtain expressions for system reliability and system MTTF, assuming
that the detection and switching mechanisms are fault-free.

5. Solve the system of equations (8.124) in Example 8.40 to derive the expressions
for R(t), π

SF
(∞), and π

UF
(∞).

6. � Consider a two-unit standby redundant system where the spare failure
rate is identical to the failure rate of the active unit. The system is modeled
using the homogeneous CTMC as shown in Figure 8.P.2. Here δ is the
detection–reconfiguration rate and c is the coverage factor. Solve the system
for its reliability R(t), using the methods developed in this section. Next solve
for R(t) using the convolution-integral approach developed in problem 6 at
the end of Section 8.1. Finally, solve for R(t) using the matrix series approach
developed in problem 1, Section 8.1.

12

0

2U

cδ

(1 − c)δ λ

2λ

Figure 8.P.2. A two-unit system with nonzero detection latency

7. � Suppose that we wish to perform state aggregation on the state diagram of
problem 6 above and reduce it to the state diagram shown in Figure 8.P.3. (Thus
states 2 and 2U of Figure 8.P.2 are aggregated into state 2′.) Derive expressions
for the transition parameters λ1(t) and λ2(t). Note that the reduced chain is a
nonhomogeneous CTMC.

8. Consider the duplex system of Example 8.36. Now solve for system unreliability
π

SF
(t) + π

UF
(t) and system unsafety π

UF
(t) using the convolution integration

approach (see problem 6 of Section 8.1).
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1

0

2

λ

λ1(t)

λ2(t)

Figure 8.P.3. An aggregated version of Figure 8.P.2

9. Consider a two-component parallel redundant system with distinct failure rates
λ1 and λ2, respectively. On failure of a component, a repair process is invoked
with the respective repair rates μ1 and μ2. First assume that a failure of a
component while another is being repaired causes a system failure. In this case
set up the differential equations describing system behavior. Derive the reliability
and the MTTF of the system.

10. Continuing with problem 9 above, assume that the failure of a component while
another is being repaired is not catastrophic. Now compute the steady-state
availability of the system.

11. Modify the reliability model of Example 8.37 to allow for a repair to occur from
states (3,0) and (2,0) at a constant rate γ. State F is still assumed to be an
absorbing state. Recompute the system MTTF.

12. Our assumption that the coverage probability is a given number is often unjus-
tified in the modeling of fault-tolerant computers. In this problem we consider a
“coverage model” of intermittent faults. (This is a simplified version of the model
proposed by Stiffler [STIF 1980].) The model consists of five states as shown in
Figure 8.P.4. In the active state A, the intermittent fault is capable of producing
errors at the rate ρ and leading to the error state E. In the benign state B, the
affected circuitry temporarily functions correctly. In state D the fault has been
detected, and in the failure state F an undetected error has propagated so that
we declare the system to have failed. Set up the differential equations for the
five state probabilities. If we assume that all transition rates are greater than 0,
then states A, B, and E are transient while states D and F are absorbing states.
Given that the process starts in state A, it will eventually end up in either state
D or state F . In the former case the fault is covered; in the latter it is not.
We can, therefore, obtain an expression for coverage probability, c = lim

t→∞
πD(t).

Using the final value theorem of Laplace transforms (see Appendix D), show that

c = lim
s→0

sπD(s) =
δ + ρq

δ + ρ
.
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B

DE

F

A

α

β

ρ δ

(1 − q)

Figure 8.P.4. Stiffler’s coverage model

Having obtained the value of c, we can then use an overall reliability model
such as those in Examples 8.35 and 8.37. Such a decomposition is intuitively
appealing, since the transition rates in the coverage model will be orders of
magnitude larger than those in the overall reliability model. For a detailed study
of this decomposition approach to reliability modeling, see the paper by Dugan
and Trivedi [DUGA 1989].

13. Compute the absorption probabilities to state D and state F , starting from the
initial state A at time 0 in problem 12 above using equation (8.131).

14. Modify the reliability model of Example 8.35 (Figure 8.59) to allow for repair
from state 0 at a constant rate μ1. Now derive the expression for the steady-state
availability of the system.

15. � Return to the concurrent program analyzed in problem 1, Section 8.4.2.1.
First, derive the Laplace transform for the execution time for one iteration of
the repeat statement using the methods of Section 8.5. Now, assume that
the repeat clause in the program is changed so that it terminates when a
Boolean expression B′ is true. Assuming that the testing of this condition forms
a sequence of Bernoulli trials with probability of success p, compute the mean
and variance of the program execution time.

8.6 SOLUTION TECHNIQUES

In this section we describe different methods that can be used to obtain
the solution to continuous-time Markov chains. Two kinds of solutions are
of interest for a CTMC: transient and steady-state. The transient solution
is obtained by solving the Kolmogorov differential equation (8.18), and the
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steady-state solution is obtained by solving the linear system of equations
(8.23). Closed-form analytical results are possible for either highly structured
CTMCs (e.g., birth–death process) or very small CTMCs (e.g., Examples
8.19–8.27). In most other cases, we must resort to numerical solution
techniques.

We divide this section into two subsections as follows. In the first sub-
section, we give steady-state solution methods for CTMCs and in the next
subsection we discuss transient solution methods for CTMCs.

8.6.1 Methods for Steady-State Analysis

Direct methods such as Gaussian elimination are full–matrix methods and
are memory–intensive. In practice, the Q matrix for practical CTMC prob-
lems is highly sparse. Hence sparse storage methods and sparsity preserving
algorithms are needed. Iterative methods such as the power method, the
Gauss–Seidel, and SOR belong to this class. Iterative methods require less
storage and less computing resources. However, one major disadvantage of
iterative methods is that they often require a very long time to converge to
a desired solution. By contrast, for direct methods there is an upper bound
on the time required to obtain the solution [STEW 1994]. Below we describe
some commonly used iterative methods.

8.6.1.1 Power Method. The equation for steady-state probabilities
(8.23) may be rewritten as

π = π

(
I +

Q

q

)
, (8.132)

where q ≥ maxi|qii |. Note that

Q� = I +
Q

q
(8.133)

is a transition probability matrix of a DTMC (see problem 1 at the end of
this section) and the above equation is the steady-state equation (7.18) for
the DTMC. We can now set up an iteration by rewriting equation (8.132),
such that

π(i) = π(i−1)Q�, (8.134)

where π(i) is the value of π at the end of the ith step. We start off the iteration
by initializing

π(0) = π(0).

This method is referred to as the power method.
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Example 8.44

Consider the two-state availability model of Figure 8.73. Assuming that the
repair rate μ exceeds the failure rate λ, we choose q = max{μ, λ} = μ. Then the
matrix

Q� =

[
1 − ρ ρ

1 0

]
,

where ρ = λ/μ. If we let π(0) = [1, 0], then, using Theorem 7.1, the result of the
power method after n iterations will be

π(n) =

[
1 + ρ(−ρ)n

1 + ρ
,
ρ − ρ(−ρ)n

1 + ρ

]
.

Therefore, as n approaches infinity, we will have

π = lim
n→∞

π(n) =

[
1

1 + ρ
,

ρ

1 + ρ

]
=

[
μ

λ + μ
,

λ

λ + μ

]
.

�

One difficulty that can arise in the use of the power method is that the
Q� matrix and the corresponding DTMC may be periodic. For instance, in
Example 8.44, should λ = μ, ρ will be 1, and hence the DTMC will be periodic,
the power iteration (8.134) will not converge. In order to ensure convergence,
we require that

q > max
i

|qii | (8.135)

since this assures that the corresponding DTMC is aperiodic [GOYA 1987].
With this requirement, the power method is guaranteed to converge; however,
the rate of convergence is found to be unacceptably low in practical problems.
By contrast, the SOR method, to be discussed next, is found to be relatively
fast in practice. Besides the advantage of guaranteed convergence, the power
method can also be used on CTMCs with multiple absorbing states to obtain
absorption probabilities.

0 1

λ

μ

Figure 8.73. Two-state availability model of Example 8.44
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Example 8.45

We return to the two-unit system DS of Example 8.41. The Q matrix is

Q =

⎡
⎢⎢⎣
−2λ 2λcds 0 2λ(1 − cds)

0 −λ λcs λ(1 − cs)
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ .

Hence q = 2λ and

Q� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 cds 0 1 − cds

0 1
2

cs
2

1−cs
2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The absorption probabilities can be obtained by applying equation (8.134). Applying
the iteration to the current example, we have

π(0) = [1, 0, 0, 0]

π(1) = [0, cds , 0, 1 − cds ]

π(2) =
[
0,

cds

2
,
cds · cs

2
, 1 − cds

2
− cds · cs

2

]

π(3) =

[
0,

cds

4
,
3

4
cds · cs, 1 − cds

4
− 3

4
cds · cs

]

...
...

π(k) =

[
0,

cds

2k−1
, cds · cs

(
1 − 1

2k−1

)
, 1 − cds

2k−1
− cds · cs

(
1 − 1

2k−1

)]
.

At convergence, we have

π = lim
k→∞

π(k) = [0, 0, cds · cs, 1 − cds · cs].

�

8.6.1.2 Successive Overrelaxation (SOR). Iterative methods such
as Gauss–Seidel or Successive overrelaxation (SOR) are preferable to direct
methods (such as Gaussian elimination) to carry out steady-state analysis.
The SOR method starts with an initial guess π(0) and iterates using the
following formula until some criteria for convergence are satisfied:

π(k+1) = ω[π(k+1)U + π(k)L]D−1 + (1 − ω)π(k), (8.136)

where π(k) is the solution vector at the kth iteration, L is a lower triangular
matrix, U is an upper triangular matrix, and D is a diagonal matrix such
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that Q = D − L − U . Gauss–Seidel is a special case of SOR with ω = 1. The
choice of ω is discussed elsewhere [CIAR 1993]. Although in most problems
SOR converges much faster than the power method, one can come up with
fairly simple CTMCs on which SOR will diverge.

Example 8.46

Consider the four-state CTMC shown in Figure 8.74a with infinitesimal generator
matrix

Q =

⎡
⎢⎢⎣
−2.5 2.5 0 0

0 −1.2 0 1.2
3.0 0 −3.0 0
0 0 2.0 −2.0

⎤
⎥⎥⎦ .

This CTMC will not converge using the Gauss–Seidel or SOR iteration based on
equation (8.136). However, when we use underrelaxation rather than overrelaxation,
that is, 0 < ω < 1, the iteration will converge. Renumbering the states can also cause
the iteration to converge. In Figure 8.74b, the swapping of state 2 and state 3 changes
the infinitesimal generator matrix to

Q1 =

⎡
⎢⎢⎣
−2.5 2.5 0 0

0 −1.2 1.2 0
0 0 −2.0 2.0

3.0 0 0 −3.0

⎤
⎥⎥⎦ .

With this reordered CTMC, both SOR and Gauss–Seidel iterations will converge.

�

Renumbering the states of the CTMC, switching to Gauss–Seidel, using
underrelaxation (rather than overrelaxation), or switching to the power
method are used as alternative solution methods in cases of diverging SOR
as in the example above. Further discussion of numerical methods is available
in the literature [BOLC 1998, STEW 1994, GRAS 2000].

0

2

1.23.0

1

3

0

1.23.0

1

2.5

2.0 2.0

2.5

(a) (b)

3 2

Figure 8.74. (a) A noncovergent CTMC; (b) reordered convergent CTMC
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Problems

1. Show that the matrix Q� defined by equation (8.133) is a DTMC matrix.

2. Show that with condition (8.135), Q� is an aperiodic matrix.

3. Perform steady-state analysis of the CTMC model in Example 8.23 (Figure 8.32)
with the power method and then with the SOR method.

4. Apply the power method to the CTMC of Figure 8.P.4 to obtain an expression
for the probability of absorption to state D.

5. Suppose that we are interested in computing the derivative dπ/dλ with respect
to some parameter λ of the Q matrix. Derive an equation for computing this
sensitivity vector [BLAK 1988].

6. � Show that the Gauss–Seidel iteration matrix for the CTMC of Figure 8.74a
has eigenvalues {1,−1, 0, 0} and that the SOR iteration matrix for ω > 1 also
has one eigenvalue whose magnitude is larger than 1. Finally, show that the
iteration matrix with ω < 1 has only one eigenvalue equal to 1 and the remaining
eigenvalues are all less than 1 in magnitude.

8.6.2 Methods for Transient Analysis

8.6.2.1 Fully Symbolic Method. Taking the Laplace transform on both
sides of the Kolmogorov differential equation (8.18), we have

sπ(s) − π(0) = π(s)Q.

Rearranging the terms, we have

π(s) = π(0)(sI − Q)−1, (8.137)

where I is the identity matrix. The transient state probability is obtained by
computing the inverse Laplace transform of π(s). We have already used this
approach in Sections 8.3 and 8.5.

The main advantage of the symbolic method is that the solution obtained
will be closed–form and fully symbolic in both the system parameters and time
t. However, in general, computing the inverse Laplace transform is extremely
difficult, except for simple Markov chains. If we assume that entries in the Q
matrix are all numerical but require the final solution π(t) to be a symbolic
function in time parameter t, we will have a semisymbolic (or seminumerical)
solution. The semisymbolic method is simpler than the fully symbolic method
and has been implemented in the SHARPE software package [RAME 1995,
SAHN 1996]. In practice, the applicability of the semisymbolic method is
limited since it requires full matrix storage, is computationally expensive, and
is often numerically unstable. It is for these reasons that numerical solution
methods are commonly used and implemented in software packages such as
SHARPE and SPNP. We will next discuss numerical solution methods.
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8.6.2.2 Numerical Methods. The Kolmogorov differential equation
(8.18) is a set of ordinary differential equations (ODEs). Standard techniques
for solving ODEs are discretization. These methods discretize the time
interval into a finite number of subintervals and compute the solution step
by step. Discretization methods can be classified into two categories: explicit
and implicit. Implicit methods are superior to explicit methods because
of their more stable nature in determining the step size and achieving
high solution accuracy. For stiff Markov chains implicit methods, such as
TR-BDF2 and the implicit Runge–Kutta method, are commonly used in
seeking solutions [REIB 1988]. For nonstiff Markov chains, explicit methods
such as Runge–Kutta work well.

ODE solvers are efficient in obtaining the evolution profile of the state
probabilities. However, they may require a very small value of h to obtain
accurate results. The most common method for transient analysis is the ran-
domization method, which is also known as the uniformization method or
Jensen’s method [REIB 1988]. This method begins with the formal solution
of equation (8.18) given by (see problem 2 of Section 8.1)

π(t) = π(0)eQt , (8.138)

where the matrix exponential is defined by the infinite series:

eQt =
∞∑

k=0

(Qt)k

k!
. (8.139)

There are three practical problems in using this approach directly: (1) Q has
both negative and positive entries and hence the preceding computation has
both additions and subtractions (such computation will have poor numerical
behavior); (2) raising the matrix Q to its powers is both costly and fills in
zeros in the matrix—recall that in practice, Q will be very large yet sparse;
and (3) the infinite series shown above will need to be truncated.

We solve the first problem using the following transformation. We use
an integrating factor eqt with q ≥ maxi|qii | in equation (8.18), so that we
let y(t) = eqtπ(t). Then the Kolmogorov differential equation (8.18) can be
transformed into

dy

dt
= qeqtπ(t) + eqt dπ

dt
= y(t)Q�q

where Q� = Q/q + I. So we have

y(t) = eqtπ(t) = π(0)eQ�qt .

Hence

π(t) = π(0)
∞∑

k=0

e−qt (qt)k

k!
(Q�)k. (8.140)
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Matrix Q� is a DTMC matrix, and hence it has no negative entries. This
avoids the numerical problems as no subtractions are involved.

Example 8.47

Consider again the two-state homogeneous CTMC of Figure 8.73. The Kolmogorov
differential equations become

dπ0(t)

dt
= −λπ0(t) + μπ1(t),

dπ1(t)

dt
= λπ0(t) − μπ1(t). (8.141)

Applying the fact that π0(t) + π1(t) = 1, we can rewrite equation (8.141) as

dπ0(t)

dt
+ (μ + λ)π0(t) = μ. (8.142)

This is a linear differential equation of first order. Assume that μ > λ, and let q = μ.
Now define

y0(t) = eμtπ0(t).

By differentiating both sides we get

dy0(t)

dt
= μeμtπ0(t) + eμt dπ0(t)

dt
.

From (8.142), we have

dy0

dt
= μeμt − λeμtπ0(t)

= −λy0(t) + μeμt.

By solving the equation, we get

y0(t) = y0(0)e−λt +
μ

μ + λ
eμt.

So we have

π0(t) = e−μty0(t)

= y0(0)e−(λ+μ)t +
μ

μ + λ
.

To determine the constant y0(0), we use the initial condition π0(0) = 1. We have

1 = π0(0) =
μ

μ + λ
+ y0(0), y0(0) = 1 − μ

μ + λ
=

λ

μ + λ
.
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So we have

π0(t) =
μ

μ + λ
+

λ

μ + λ
e−(μ+λ)t.

In a similar way, we also have

π1(t) =
λ

μ + λ
− λ

μ + λ
e−(μ+λ)t.

�

To solve the second problem, we rewrite equation (8.140) as

π(t) =
∞∑

k=0

θ(k)e−qt (qt)k

k!
(8.143)

where θ(0) = π(0) and

θ(k) = θ(k − 1)Q�, k = 1, 2, . . . . (8.144)

The computation of θ(k), k = 1, 2, . . . avoids the problem of raising matrix Q
to its powers. The term θ(k) in (8.143) can be interpreted as the kth step
state probability vector of a DTMC with transition probability matrix Q� ,
while the term e−qt(qt)k/k! is the Poisson pmf with parameter qt . Thus, the
randomization method expresses the state probabilities of a CTMC in terms
of the sum of the DTMC state probabilities of a series of steps weighted by a
Poisson pmf.

Given a precision requirement (a truncation error tolerance ε), the infinite
series can be left-/right-truncated (to solve the third problem):

π(t) ≈
r∑

k=l

θ(k)e−qt (qt)k

k!
. (8.145)

The values of l and r can be determined from the specified truncation error
tolerance ε by

l−1∑
k=0

e−qt (qt)k

k!
≤ ε

2
, 1 −

r∑
k=0

e−qt (qt)k

k!
≤ ε

2
.

For stiff Markov chains, qt is typically very large and the term e−qt almost
always runs into underflow problems. To avoid underflow, we use the method of
Fox and Glynn [FOXG 1988] to compute l and r, the left and right truncation
points. This method also computes the Poisson probabilities e−qt(qt)k/k! for
all k = l, l + 1, . . . , r − 1, r.

Note that the computational complexity of the randomization method rises
linearly with q and t. A large value of qt also implies a large number of matrix



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 550�

� �

�

550 CONTINUOUS-TIME MARKOV CHAINS

vector multiplications, which results in large roundoff errors. CTMCs with a
large value of qt are hence said to be stiff. Observe that in equation (8.144),
that is used to compute the probability vectors for the underlying DTMC, the
DTMC matrix Q� is identical to that used in the power method for computing
the steady-state vector for the CTMC (see Section 8.6.1.1). If the convergence
of the power iteration occurs before step r, we can terminate the iteration in
equation (8.144) on attaining steady state. Recall that, in order to ensure
convergence of the power iteration, we require

q > max
k

|q
kk
|

since this assures that the DTMC described by Q� is aperiodic.
Assume that convergence has been achieved at the Sth iteration by observ-

ing the sequence θ(k). Three cases arise [MUPP 1994]:

1. (S > r): In this case the steady-state detection has no effect and the
probability vector is calculated using (8.145).

2. (l < S ≤ r): Change equation (8.145) to

π(t) ≈
S∑

k=l

θ(k)e−qt (qt)k

k!
+ θ(S)

(
1 −

S∑
k=0

e−qt (qt)k

k!

)
.

3. (S ≤ l): The DTMC reaches steady state before the left truncation
point. In this case, no additional computation is necessary and π(t)
is set to θ(S).

Steady-state detection is used in the implementation of uniformization in
SHARPE and SPNP software packages.

The computation of the cumulative probability vector L(t) =
∫ t

0
π(u)du is

similar to that of π(t) [CIAR 1993]. Integrating equation (8.143) with respect
to t yields

L(t) =
1
q

∞∑
k=0

θ(k)

⎛
⎝1 −

k∑
j=0

e−qt (qt)j

j!

⎞
⎠ . (8.146)

This is again a summation of an infinite series that can be evaluated up to
the first r significant terms resulting in

L(t) ≈ 1
q

r∑
k=0

θ(k)

⎛
⎝1 −

k∑
j=0

e−qt (qt)j

j!

⎞
⎠ . (8.147)

Given an error tolerance ε, the number of terms needed can be computed by

t
∞∑

i=r

e−qt (qt)i

i!
−
(

r + 1
q

) ∞∑
i=r+1

e−qt (qt)i

i!
< ε. (8.148)
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The detection of steady state for the underlying DTMC also applies to
equation (8.147). Two cases arise:

1. (S > r): Steady-state detection does not take place and L(t) is computed
using equation (8.147).

2. (S ≤ r): Equation (8.147) is modified as follows:

L(t) ≈ 1
q

S∑
k=0

θ(k)

⎛
⎝1 −

k∑
j=0

e−qt (qt)j

j!

⎞
⎠

+
1
q
θ(S)

⎛
⎝qt −

S∑
k=0

⎛
⎝1 −

k∑
j=0

e−qt (qt)j

j!

⎞
⎠
⎞
⎠ .

Nonhomogeneous CTMCs, are useful for reliability models and to model
performance of practical systems such as computer networks. Rindos et al.
[RIND 1995] discussed a class of NHCTMCs that can be transformed into a
homogeneous CTMC and then be solved by the techniques discussed above.
For general NHCTMCs, solution techniques include the ODE solver, ran-
domization [DIJK 1992], and time stepping. The ODE solver has been used
successfully in obtaining numerical solution of NHCTMCs by discretization.
Randomization of NHCTMC, as an extension of randomization of homo-
geneous CTMC, can provide numerical solutions, but the drawback is its
complexity. The time-stepping method is simple and efficient, so it is fre-
quently used in automated computation of NHCTMC. The basic idea is
dividing the time axis into small intervals, and approximating the generator
matrix to be time-independent within each interval [RAMA 2000]. Further
studies of numerical solution techniques are available in the literature [GRAS
2000, MUPP 1992b, MUPP 1994, REIB 1988, REIB 1989, STEW 1994].

Problems

1. Consider an M/M/∞ queuing system (refer to problem 4 in Section 8.2.2) and
obtain the transient solution using the Laplace transform method.

2. Consider an M/M/1/2 queuing system and find the transient state probabilities
using the Laplace transform method.

3. Find the transient state probabilities for Example 8.19 using the Laplace trans-
form technique. Also find the instantaneous availability for this system and
compare with that of Example 8.6. Show that they are not equal even though
the steady–state availabilities are the same.

4. Compute the transient solution for Example 8.35 numerically using randomi-
zation.
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8.7 AUTOMATED GENERATION

When we apply Markov chains to analyze the reliability, availability, and per-
formance of a system, the primary procedure consists of the following steps:
abstracting the physical system at first, constructing the Markov chain, and
then setting up ordinary differential equations (8.18) (for transient solution) or
linear equations (8.23) (for steady-state solution) manually, and finally writing
a program for the numerical solution to the equations. It is a rather tedious
and error-prone procedure, especially when the number of states becomes very
large. There have been some efforts to develop software packages to solve
Markov chains automatically using the numerical or seminumerical meth-
ods described in the previous section, while still requiring construction of
the Markov chain by hand. Also note that the Markov model of a system is
sometimes far removed from the shape and general feel of the system being
modeled. System designers may have difficulty in directly translating their
problems into a Markov chain. Since late 1980s, some researchers have been
developing new modeling formalisms and software packages for the auto-
mated generation and solution of Markovian stochastic systems. The effort
has led to the emergence of a popular formalism called stochastic Petri
nets (SPNs), which is more concise in its specification and whose form is
closer to a designer’s intuition about what a model should look like. Some
software packages such as SPNP [CIAR 1993], DSPNexpress [LIND 1998],
GreatSPN [CHIO 1995], and SHARPE [SAHN 1996] are available, which can
translate the SPN model into CTMC and then solve it automatically. These
automated tools free system analysts from the painstaking construction and
solution of Markov chains by hand and enable them to focus on the task of
translating the dynamic behavior of the system into an SPN model. We begin
by first describing ordinary Petri nets. Subsequently, we discuss various kinds
of stochastic Petri nets and their applications.

8.7.1 Petri Nets

Petri nets were originally introduced by C. A. Petri in 1962. Formally, a Petri
net (PN) is a 5-tuple PN = (P, T,A,M, μ0), where

• P = {p
1
, p

2
,..., p

m
} is a finite set of places (drawn as circles).

• T = {t1, t2,..., tn} is a finite set of transitions (drawn as bars).

• A ⊆ (P × T ) ∪ (T × P ) is a set of arcs connecting P and T .

• M : A → {1, 2, 3,...} is the multiplicity associated with the arcs in A.

• μ : P → {0, 1, 2,...} is the marking that denotes the number of tokens
(drawn as black dots or a positive integer) for each place in P . The
initial marking is denoted as μ0.
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Graphically, Petri net is a directed graph with two disjoint types of nodes:
places and transitions. A directed arc connecting a place (transition) to a
transition (place) is called an input (resp. output) arc of the transition. A
positive integer called multiplicity can be associated with each arc. Places
connected to a transition by input arcs are called the input places of this
transition, and those connected by means of output arcs are called its output
places.

Each place may contain zero or more tokens in a marking. Marking repre-
sents the state of the model at a particular instant. This concept is central to
PNs. The notation #(p, μ) is used to indicate the number of tokens in place
p in marking μ. If the marking is clear from the context, the notation #p
is used.

A transition is enabled when each of its input places has at least as many
tokens as the multiplicity of the corresponding input arc. A transition may
fire when it is enabled, and on firing, a number of tokens equal to the mul-
tiplicity of the input arc are removed from each of the input places, and a
number of tokens equal to the multiplicity of the output arc are deposited in
each of its output places. The sequencing of firing is an important issue in
PNs. If two transitions are enabled in a PN marking, they cannot be fired
“at the same time”: a choice must be made concerning which one to fire
first, the other can only fire after that, if it is still enabled. The firing of a
transition may transform a PN from one marking into another. With respect
to a given initial marking μ0, the reachability set is defined as the set of
all markings reachable through any possible firing sequences of transitions,
starting from the initial marking. The evolution of a PN can be completely
described by its reachability graph, in which each marking in the reacha-
bility set is a node in the graph, while the arcs describe the possible marking-
to-marking transitions [CIAR 1993, MURA 1989]. Arcs are labeled with the
name of the transition whose firing caused the associated changes in the
marking.

Example 8.48 [BOLC 1998]

Consider a simple example of PN, shown in Figure 8.75. Part (a) shows the initial
marking denoted by the vector (2, 0, 0, 0), where only transition t1 is enabled because
place P1 contains two tokens, and t2 is disabled because P2 is empty. When t1 fires,
one token is removed from its input place P1 and one token is deposited in both
its output places P2 and P3 [see the marking shown in part (b)]. In part (b), both
transitions t1 and t2 are enabled. If t1 fires first, the PN will reach a marking as
shown in (d), while the marking (c) will be reached if t2 fires first.

The reachability set in this example is given by {(2,0,0,0), (1,1,1,0), (0,0,1,1),
(0,2,2,0)}. Figure 8.76 depicts the reachability graph of this PN.

�
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(c) (d)

(a) (b)

P1P1

P1 P1

P2P2

P2 P2

P3P3

P3P3

P4P4

P4P4

t1 t1

t1t1

t2 t2

t2t2

Figure 8.75. An example of a Petri net

2,0,0,0

0,0,1,1

1,1,1,0

0,2,2,0

(a)

(c) (d)

(b)

t1

t1

t2

Figure 8.76. Reachability graph of the Petri net for Example 8.48
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PN can be used to capture the behavior of many real-world situations,
including sequencing, synchronization, concurrency, and conflict. In computer
networks, they have been used to describe and verify the communication pro-
tocols [LAIJ 1998]. However, the concept of time is not explicitly given in
the original definition of Petri nets, while for the performance and availability
analysis of dynamical systems, it is necessary and useful to introduce time
delays associated with transitions in the Petri net models. This intuition has
led to the emergence of stochastic Petri nets.

8.7.2 Stochastic Petri Nets

Stochastic Petri nets are obtained by associating stochastic and timing infor-
mation to Petri nets. We do this by attaching firing time to each transition,
representing the time that must elapse from the instant that the transition is
enabled until the instant it actually fires in isolation, that is, assuming that it
is not affected by the firing of other transitions. If two or more transitions are
enabled at the same time, the firing of transitions is determined by the race
policy; that is, the transition whose firing time elapses first is chosen to fire
next. If the firing times can have general distributions, SPN can be used to
represent a wide range of well-known stochastic processes. However, choices
about execution policy and memory policy, besides the firing time distribu-
tions, must be specified (see Ciardo et al. [CIAR 1993] and Choi et al. [CHOI
1994] for details). The firing times are often restricted to have an exponen-
tial distribution to avoid policy choices. A more important fact in this case,
though, is that an SPN can be automatically transformed into a CTMC. In
a graphical representation, transitions with exponentially distributed firing
times are drawn as rectangular boxes.

When SPN is applied to performance analysis of computer networks, places
can be used to denote the number of packets or cells in the buffer or the
number of active users, or flows in the system, while the arrival and departure
of packets, cells, users or flows can be represented by firing of transitions.

In the following, we present SPN models for simple queuing systems to
illustrate the transformation from SPN into CTMC.

Example 8.49 (Poisson Process)

Consider an SPN model of a Poisson process as shown is Figure 8.77. The number
of tokens in Pqueue represents the number of customers that have arrived. Here,
the customers arrive according to a Poisson stream with rate λ. This is captured
through the transition Tarrival. Note that since transition Tarrival has no input arcs,
it is always enabled. Furthermore, its firing time distribution is EXP (λ).

Following the firing sequences, we can get the reachability graph (RG) of the
SPN manually, then produce the underlying CTMC. Algorithms are available to
explore the reachability graph in a recursive manner, in which the set of all possible
markings is exhaustively sought by starting from the initial marking [CIAR 1993].
These algorithms have been implemented in automated SPN tools such as SHARPE
[SAHN 1996] and SPNP [CIAR 1993].
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Tarrival Pqueue

λ

Figure 8.77. SPN model of a Poisson process

k +1k0 1 2

λλλλλ λ

Figure 8.78. Reachability Graph of the Poisson process

We illustrate the reachability graph in Figure 8.78. A node in the RG is a marking
of the SPN, represented by a circle labeled by the marking #Pqueue inside. The arcs
in the RG correspond to the firing of the transitions. The corresponding transition
rates are labeled along with the arcs. This RG is the same as the state diagram of
the Poisson process shown in Figure 8.21.

�

Example 8.50 (M/M/1 Queue)

In this example, we consider an SPN model of an M/M/1 queue as shown in
Figure 8.79. This model can be seen as an extension of the previous model by includ-
ing the transition Tservice. The number of tokens in Pqueue represents the number of
customers in the system (including the one receiving service, if any). Whenever there
is a customer (one or more tokens) in the system (in place Pqueue), a customer may
complete service when the transition Tservice fires and the firing time is exponentially
distributed with rate μ.

From the RG in Figure 8.80, we can easily recognize this as a simple birth–death
process with an infinite state space (see Section 8.2.1). Measures such as system size,
response time, and throughput can be computed by solving this CTMC.

�

Tarrival Pqueue Tservice

λ μ

Figure 8.79. SPN model of M/M/1 queue
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 λ

1 2

μ μμ

0 . . . 

λλ

Figure 8.80. Reachability graph of the SPN model of M/M/1 queue

Example 8.51 (M/M/1/n Queue)

An SPN model of an M/M/1/n queue (Example 8.5) is shown in Figure 8.81.
Comparing with the earlier example, place Pqueue represents the number in the
system while Pvacancy represents the vacancies in the buffer. Since the firing time
of a timed transition is exponentially distributed, transition Tarrival is labeled λ.
The finiteness of the queue is specified with the initial number of tokens in Pvacancy ,
which is equal to n. If #Pvacancy > 0, that is, if the buffer is not full, the transition
Tarrival is enabled. The firing of transition Tarrival represents a customer entering
the queue. When the buffer is full, #Pvacancy = 0, the transition Tarrival is disabled
and any arriving customer is rejected. The firing of transition Tservice represents
the departure of a customer; the firing rate of the transition is μ. On its firing,
one token (customer) will be removed from place Pqueue through the input arc from
place Pqueue to Tservice, while one token is deposited (one vacancy created) into place
Pvacancy .

Now, we illustrate the reachability graph in Figure 8.82. A node in the
RG is a marking of the SPN, represented by an oval labeled by the marking
(#Pqueue, #Pvacancy) as in earlier examples.

n

Tarrival

Pqueue

Tservice

λ μPvacancy

Figure 8.81. SPN model of M/M/1/n queue

0,n 1,n-1 n,0. . .
λ λ λ

μ μ μ

Figure 8.82. Reachability graph of the SPN model of M/M/1/n queue
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The reachability graph shown in Figure 8.82 can be easily recognized as a finite
birth–death process. Except for the state labels, the reachability graph is the same
as the CTMC state diagram of Figure 8.9. Subsequently all measures of interest can
be obtained by solving this CTMC.

�

Problems

1. Extend the SPN of the M/M/1 queue to introduce server failures and repairs.
Assume that server failure rate is γ and the repair rate is τ . Draw the reachability
graph.

8.7.3 Generalized Stochastic Petri Nets

In generalized stochastic Petri nets (GSPNs) [AJMO 1995], transitions are
allowed to be either timed (exponentially distributed firing time, drawn as
rectangular boxes) or immediate (zero firing time, represented by thin black
bars). If both an immediate transition and a timed transition are enabled
at the same instant, the immediate transition fires first. If several immedi-
ate transitions compete for firing, firing probabilities, usually specified as
weights to be normalized, should be specified to resolve these conflicts.

Other extensions in GSPN include inhibitor arcs and transition priorities.
Inhibitor arcs have small hollow circles instead of arrows at their terminating
ends. A transition with an inhibitor arc cannot fire if the number of tokens that
the input place of the inhibitor arc contains is equal to or more tokens than
the multiplicity of the arc. Transition priorities are defined by assigning
an integer priority level to each transition, which adds the constraint that a
transition may be enabled in a marking only if no higher priority transition
is enabled.

A marking of a GSPN is called vanishing if at least one immediate tran-
sition is enabled in the marking and tangible otherwise. It has been proved
that exactly one CTMC corresponds to a given GSPN under the condition
that only a finite number of transitions can fire in finite time with nonzero
probability [AJMO 1995]. For finite reachability sets, the exception can only
occur if a vanishing loop exists. This case is of little practical interest and
is usually treated as a modeling error.

The GSPN analysis can be decomposed into four steps [CIAR 1993]:

• Generating the extended reachability graph, which contains the mark-
ings of the reachability set as nodes and some stochastic information
attached to the arcs; thus all the markings are related to each other
with stochastic information.

• Eliminating the vanishing markings with zero sojourn times and the
corresponding transitions from the extended reachability graph. This
procedure generates a homogeneous CTMC.
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• Analyzing the steady-state, transient, or cumulative behavior of the
CTMC.

• Determinining the measures, such as the average number of tokens in a
place and the throughput of a timed transition.

Now, we illustrate some examples of GSPN modeling of simple queuing
systems.

Example 8.52 (M/Em/1/n + 1 Queue)

Consider a GSPN model of an M/Em/1/n + 1 queuing system shown in Figure 8.83
where the customers arrive according to a Poisson process and the service times
are m-stage Erlang (Em). Transition Tarrival with firing rate λ represents the arrival
of a customer. An inhibitor arc with multiplicity n from place Pqueue to Tarrival

represents the capacity of the queue. The transition Tarrival is disabled when the
number of tokens in place Pqueue equals n. Note that one job will be in service in
such a marking and hence the number of jobs in the system will be equal to n + 1.
The immediate transition tquick fires when place Pqueue has one token and Pservice

is empty. m tokens will be deposited in place Pservice after the firing of tquick. The
firing of transition Tservice represents the completion of one stage of the m-stage
Erlang distributed service time. Since the mean service time is to be 1/μ, the firing
rate of transition Tservice is mμ.

Figure 8.84 shows the extended reachability graph of the GSPN model, where
(i, j) represents the number of tokens in place Pqueue and Pservice. After the extended
reachability graph is generated, the vanishing markings are eliminated, resulting in
a CTMC (Figure 8.85). Then the CTMC can be solved using numerical methods
discussed in Section 8.6. In this example, there are n vanishing markings, which are
represented by dashed circles [i.e., (1, 0), (2, 0), . . . , (n, 0)].

�

Example 8.53 (M/M/i/n Queue)

Consider a GSPN model of an M/M/i/n queuing system as shown in Figure 8.86. An
inhibitor arc with multiplicity n − i from place Pqueue to Tarrival represents the max-
imum capacity of waiting customers in the system. The immediate transition tquick

will fire only if #Pserver > 0 and #Pqueue > 0 and upon its firing one token will be
deposited in place Pservice. Note that the symbol “#” is added next to arc from place
Pservice to transition Tservice, which indicates that the firing rate of transition Tservice

m

nλ mμtquick

Tarrival TservicePservicePqueue

Figure 8.83. A GSPN model of M/Em/1/n + 1 queue
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Figure 8.84. Extended reachability graph of the GSPN model of M\Em\1\n+ 1
queue
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Figure 8.85. CTMC derived from the GSPN model of M/Em/1/n + 1 queue
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#

n-iTarrival

Pqueue

Tservice
tquick

Pservice

Pserver

λ μ

i

Figure 8.86. A GSPN model of M/M/i/n queue

#

nTarrival

Pqueue

Tservice

λ μ

Figure 8.87. A GSPN model of M/M/n/n queue

is marking–dependent, specifically, #Pservice · μ. On firing, one token will be put back
in place Pserver. Note that, in this GSPN model, the combined value of #Pqueue and
#Pservice will give the number of customers in the system. The corresponding RG of
this model can be easily drawn by the triple (#Pqueue, #Pservice, #Pserver). Measures
of interest can be obtained from the corresponding CTMC.

�

Example 8.54 (M/M/n/n Queue)

Now let us revisit the M/M/n/n queue, also known as the Erlang loss model (see
problem 1 in Section 8.2.2) but now use the GSPN paradigm. The Erlang loss model
is a special case of the M/M/i/n queue for which i = n. Let us still use λ and μ
as the arrival rate and the service rate, respectively. We depict the GSPN model in
Figure 8.87.

Because of the existence of multiple servers, the service rate of the M/M/n/n
queue is the product of the number of customers in queue and the service rate,
μ. Also notice that the multiplicity of the inhibitor arc from Pqueue to Tarrival is n
corresponding to the system capacity. The reachability graph is shown in Figure 8.88.

�

10 n

λλ λ

μ 2μ nμ

Figure 8.88. The reachability graph of Example 8.54 (M/M/n/n)
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8.7.4 Stochastic Reward Nets

Stochasticreward nets (SRNs) are based on GSPN but extend it further [CIAR
1993]. In SRN, every tangible marking can be associated with a reward rate.
It can be shown that an SRN can be mapped into a Markov reward model.
Thus a variety of reward-based measures can be specified and calculated using
a very convenient formalism. SRN also allows several other features that make
specification more convenient:

• Each transition may have a guard (also called an enabling function)
that is marking-dependent. A transition is enabled in a marking only
if its guard (a Boolean condition) is satisfied, in addition to the con-
straints imposed by priority, input arcs, and inhibitor arcs. This feature
provides a powerful means to simplify the graphical representation and
to make SRNs easier to be understood.

• Marking–dependent arc multiplicities are allowed. This feature can be
applied when the number of tokens to be transferred depends on the
current marking. A common use of it is to allow a transition to flush all
the tokens from a place with a single firing.

• Marking–dependent firing rates are allowed. This feature allows the
firing rates of the transitions to be specified as a function of the cur-
rent marking that can succinctly describe many complex behaviors. For
example, service discipline in a queuing network can be represented in
an SPN using appropriate marking–dependent firing rates. A common
case is a transition whose transition rate is proportional to the number
of tokens in its only input place. We denote this dependency by adding
a “#” sign next to the transition. More general dependencies are often
needed and hence allowed in the SRN formalism.

• Besides the traditional output measures obtained from a GSPN, such as
throughput of a transition and the mean number of tokens in a place,
more complex reward functions can be defined so that all the measures
related to Markov reward models can be obtained.

Another important capability captured by SRN formalism is that of spec-
ifying the initial marking not as a single marking, but as a probability vector
defined over a set of markings. This is often required in transient analy-
sis, if the initial state of the system is uncertain. Initial probabilities are
incorporated by adding a vanishing initial marking that transfers to all the
markings immediately with the given probabilities [CIAR 1993]. If the number
of possible initial markings is large, this method is not practical. However, soft-
ware packages for SRN (such as SPNP [CIAR 1993]) provide simple ad hoc
approaches for the specification of the initial probability vector.

SRN formalism has been widely used in performance, reliability, availabil-
ity, and performability analysis of computer and communication systems. The
following are several examples of modeling with SRN.
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Example 8.55 (WFS Example)

Let us recall the WFS example with two workstations and one file server (see
Examples 3.21, 4.16, 6.12, and 8.24). The SRN model is shown in Figure 8.89.
Places Pfsup and Pwsup represent the working file servers and workstations, while
the places Pfsdn and Pwsdn represent the failed file servers and workstations. Transi-
tions Tfsfl and Twsfl represent the failures of file servers and workstations. Note that
transition Twsfl has a marking–dependent firing rate. Transitions Tfsrp and Twsrp rep-
resent the repair of the components. The inhibitor arc from Pfsdn to Twsup guarantees
that no workstations can be repaired in the event of file server failure. This gives a
preemptive repair priority to file server over workstations.

Figure 8.90 is the reachability graph of the SRN, in which each node, a marking,
is specified by a 4-tuple (#Pwsup , #Pwsdn , #Pfsup , #Pfsdn). The arcs are labeled with
the corresponding transition rates.

We now set the reward rate value to 1 for any marking satisfying the condition
#Pwsup > 0 and #Pfsup > 0 and set the reward rate to 0 for all other markings.
With this reward rate assignment, the expected steady-state reward rate will give
the steady-state availability of the system. Note that this measure is computed and
specified at the SRN level and not at the level of the underlying CTMC. Thus
the reward rate vector for all the states of the CTMC as well as the CTMC are
automatically generated from the SRN. In other words, SRN is a formalism for
automatic generation and solution of Markov reward models.

The SRN model discussed above can be easily extended to study the effect
of imperfect coverage. Assume that, on a workstation failure, the probability of
successfully detecting the failure is c. The failure is not detected with probability
(1 − c), leading to the corruption and the failure of the file server. Figure 8.91 shows
the SRN model of the WFS example with imperfect coverage.

�

#

Pfsup

Pfsdn

Pwsup

Pwsdn

λwμw
λf

μf

TwsflTwsrp
Tfsfl Tfsrp

Figure 8.89. SRN for the WFS example
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Figure 8.90. Reachability graph of Example 8.55
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Figure 8.91. SRN for WFS example with imperfect coverage
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Example 8.56 (WFS Example with Complex Failure and Repair
Dependency)

As real systems generally have complex failure and repair dependencies, we consider
a system with 50 workstations and 5 file servers in the WFS example described above.
Assume that all the workstations will be automatically shut down if the number of
working file servers is less than 5% of the working workstations. Also assume that the
workstations cannot be restarted until four or more file servers are up. These con-
straints can be conveniently specified with guards and arcs with marking–dependent
multiplicities. The SRN model for this system is shown in Figure 8.92. The “Z”
symbol on the arc denotes the marking–dependent multiplicities, whose values are
specified next to the symbol. In this case, both multiplicities are #Pwsup , the num-
ber of tokens in Pwsup . Transition tsfl represents the event of automatic shutdown.
When tsfl fires, all the tokens in Pwsup are flushed out and are deposited into Pwsdn ,
which means that all working workstations are forced to shutdown. The enabling
of tsfl is controlled by its guard function [g1] = (#Pwsup ≥ 20#Pfsup), which is a
direct translation of the shutdown condition. Another guard [g2] = (#Pfsup ≥ 4) is
attached to transition Twsrp , which prevents the workstations from restarting until
enough file servers are working.

�

5

# #

50

Pfsup

Pfsdn

Pwsup

Pwsdn

[g1][g2]

TwsflTwsrp Tfsfl Tfsrptsfl

#Pwsup

#Pwsup

[g1] = (#Pwsup ≥ 20#Pfsup)
[g2] = (#Pfsup ≥ 4)

Figure 8.92. SRN for WFS with complex failure and repair dependency

Example 8.57 (Wireless Handoff Performance Model)

We now introduce an SRN model as shown in Figure 8.93, for the wireless handoff
performance discussed in Section 8.2.3.2.
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#

#

λ1

μ1

λ2

μ2

n − g

n

Tnew call

Thandoff in

Tcall completion

Thandoff out
Ptalk

Figure 8.93. The SRN of wireless loss model

The number of tokens in place Ptalk represents the number of channels that are
occupied by either a new–call or a handoff call. The firing of transition Tnew˙call

represents the arrival of new calls and the firing of transition Thandoff ˙in represents
the arrival of a handoff call from neighboring cells. A handoff call will be dropped
only when all channels are occupied (i.e., #Ptalk = n). This is realized by an inhibitor
arc from place Ptalk to Thandoff ˙in with multiplicity n. A new call, however, will be
blocked if there are no more than g idle channels. This is simply reflected in the SRN
by the inhibitor arc from place Ptalk to transition Tnew˙call with multiplicity n − g.
The firings of transition Tcall˙completion and Thandoff ˙out represent the completion of
a call and the departure of an outgoing handoff call, respectively. The rates of
transitions Tcall˙completion and Thandoff ˙out are marking–dependent, as indicated by
the two “#” symbols next to the transitions. The underlying reachability graph of
this SRN is the same as shown in Figure 8.20.

As discussed in Section 8.2.3.2, two steady-state measures are of great interest,
namely, the new–call blocking probability, Pb, and the handoff–call dropping prob-
ability, Pd. We obtain these two measures by computing the expected steady-state
reward rate for the SRN model with the proper assignment of reward rates to the
markings. The reward rates to the marking i for the new–call blocking probabili-
ties are

ri =

{
1, #Ptalk ≥ n − g
0, #Ptalk < n − g

and that for the handoff dropping probabilities are

ri =

{
1, #Ptalk = n
0, #Ptalk < n.

�

Example 8.58 [CIAR 1992]

Consider a parallel program where data items produced by Np producers are con-
sumed by Nc consumers. The exchange of items between the Np producer tasks and
the Nc consumer tasks is performed using one additional buffer task. The buffer task
stores the incoming items into an array having Ns positions. Producer tasks cannot
pass items to the buffer task when the number of non-empty slots is equal to Ns
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and consumer tasks cannot retrieve items from the buffer task when the number of
non-empty slots is equal to 0. The number of produced items cannot then exceed the
number of consumed items plus Ns. The mechanism by which two tasks synchronize
and exchange data is the rendezvous. Whenever a producer task has an item ready
to pass, it issues an entry call to the buffer task. If the buffer task accepts this
entry call, the rendezvous takes place, the item is copied into the array; similarly,
a rendezvous with a consumer retrieves an item from the array. Each entry has an
associated queue, where tasks making an entry call wait for a rendezvous. The pres-
ence of guards [gput ] and [gget ] inhibits the rendezvous at the guarded entry if the
boolean value of the guard is false (the guard is closed). There are five different poli-
cies discussed in [CIAR 1992] to make a choice between a rendezvous with the first
producer or the first consumer based on three factors (presence of tasks in each of
the two queues and the number of non-empty slots in the array). Here, we only take
Consumer First (CF) policy into account: when both guards are open and their asso-
ciated queues both contain at least one task. A rendezvous with the first consumer in
their respective queues takes place immediately. In addition, we assume that a classic
single processor architecture, where all tasks share the same CPU, is employed.

The system just described is concisely modeled by the SRN shown in Figure 8.94.
Tokens in places Pplocal , Pclocal , and Pblocal represent executing tasks (The number of
the producers(Sp), the consumers (Sc) and the buffers(Sb), respectively), while token
in places Ppwait , Pcwait , and Pcwait represent tasks waiting for a rendezvous at the
tput or tget entries. Tokens in place Pempty and Pfull count the number of empty and
full slots in the array, respectively. Transitions Tsp , Tsc , and Tsb are assumed to have
an exponentially distributed time duration, but they could be changed into a more

Np

Ns

Nc

waitP emptyP
cwaitP

spT
putt sbT

gett
scT

bwaitP

plocalP fullP clocalP

blocalP

Figure 8.94. The SRN for the producer-consumer system
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TABLE 8.11. Firing rates for transitions in the producer-consumer SRN

Transition Firing rate (sec−1)

Tsp λp(#Pplocal)/((#Pplocal) + (#Pclocal) + (#Pblocal))

Tsc λc(#Pclocal)/((#Pplocal) + (#Pclocal) + (#Pblocal))

Tsb λb/((#Pplocal) + (#Pclocal) + 1)

detailed stage-type expansion (using a subnet) if more information were available
about the actual nature of the distributions. Immediate transitions tput and tget
correspond to the actions in the rendezvous, which are modeled as instantaneous,
since the time spent for them is likely to be negligible compared with the other
blocks of tasks. The enabling functions (or guards) associated with transitions tput
and tget for CF policy, respectively: [gput ] = ((#Pcwait) == 0 or (#Pfull) == 0) and
[gget ] = 1. Assume perfect processor sharing with no context switch overhead, and
the mean times required to execute blocks Sp, Sc, and Sb for a task running on a

processor are λ−1
p , λ−1

c , and λ−1
b , respectively. The specification of the firing rates

for the three timed transitions are shown in Table 8.11.
With the SRN, the throughput of the producers, τp, can be easily computed.

We leave the actual execution of this SRN via SHARPE or SPNP as an exercise.

�

Example 8.59 (The Multiprocessor Model)

Consider the SRN model of the multiprocessor system, discussed in Example 8.32 (in
Section 8.4.3). Figure 8.95 shows the SRN availability model. The number of tokens
in place Pup represents the number of nonfailed processors. The initial number of
tokens in this place is n. The firing of transition Tfail represents the failure of one of
the processors. The inhibitor arcs from the places Pcov and place Puncov ensure that
when the system is undergoing a reconfiguration or a reboot, no further failures can
occur. The firing rate of transition Tfail is marking–dependant: Rate(Tfail) = γ#Pup.
When a token appears in place Pfail, the immediate transitions tcov, tuncov, and
tquick are enabled. If no token is in place Pup, then immediate transition tquick will
be enabled and will be assigned a higher priority than tcov and tuncov; this is done
to ensure that for the last processor to fail, there is no reconfiguration or reboot
delay. A token will be deposited in place Prep by firing immediate transition tquick.
Otherwise tcov or tuncov will fire with probabilities c and 1 − c, respectively. In the
case that tcov fires, the system is reconfigured by firing the transition Treconfig whose
firing time is EXP(δ). In the case that tuncov fires, the system is rebooted by firing
the transition Treboot whose firing time is EXP(β). The transition Trep, with firing
time EXP(τ), fires if at least one token is in place Prep and upon firing it will deposit
one token in place Pup.

Measures such as system availability, capacity-oriented availability, and total
loss probability can be obtained by computing expected steady-state reward rate
with proper choice of reward rates for the SRN model. To obtain the steady-state
availability, we assign the reward rate ri to marking i as

ri =

{
1, #Pup ≥ 1and (#Pcov + #Puncov) = 0

0, otherwise
.
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#Tfail
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TrebootTreconfig

τ

β
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Trep

n

1 − cc

tquick
Pfail

γ

δ

tcov tuncov

Pcov Puncov

Figure 8.95. SRN of a multiprocessor model

Similarly, to get the scaled capacity-oriented availability, we choose the formula
ri = (#Pup)/n, for an up marking i.

The total loss probability of the multiprocessor system can be computed by
combining the availability and the performance. Recall the performance model of the
multiprocessor system (see Figure 8.51) and the state diagram shown in Figure 8.52.
Using the values of qb(i) and P (Rb(i) > d) (refer to problem 2 before the start of
Section 8.2.3.1), we obtain the total loss probability by assigning the reward rates
for marking i:

ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if #Pup = 0 or #Pcov = 1

or #Puncov = 1,
q

b
(#Pup) if #Pup > 0 and #Pcov = 0

+
[
1 − q

b
(#Pup)

][
P
(
Rb(#Pup) > d

) ]
, and #Puncov = 0.

�

Further studies of availability models using Petri nets are available in the
literature [FRIC 1998, MALH 1995, MUPP 1992a, IBE 1989a], as are further
examples of performance analysis [IBE 1990, IBE 1993, AJMO 1995] and of
modeling software fault-tolerance [TOME 1994].
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In the examples presented in this chapter, we have concentrated on SPN
as well as SRN models with exponentially distributed firing time transitions.
When the assumption of exponential distribution is relaxed, the underlying
models can be solved using semi-Markov processes or Markov regenerative
processes under certain specific conditions. Further literature on performance
analysis of non-Markovian SPN models [GERM 2000, LOGO 1995, LIND
1998] and on reliability and performability analysis of non-Markovian SRN
models [FRIC 1998a] is available. Bobbio et al. have provided a comprehensive
account of the evolution of SPN [BOBB 1998].

Problems

1. Rewrite the SRN of the WFS example without using inhibitor arcs. Discuss the
benefits of SRN modeling with inhibitor arcs as opposed to guard functions.

2. Draw the extended reachability graph of the WFS example with imperfect cov-
erage, eliminating the vanishing markings to obtain the corresponding CTMC.

3. Draw the stochastic Petri net for the WFS example, considering nonpreemptive
repair priority as opposed to preemptive repair priority used in Figure 8.89. Draw
the corresponding reachability graph and CTMC.

4. Extend Example 8.54 to include failure and repair for the trunks. When a failure
occurs, all the contents in the system are cleared. Assume that the failure rate γ
is related with number in the system q

l
as a function

γ =

{
γ0, if ql < c

2
,

γ1

(
ql − c

2

)
, if ql ≥ c

2
,

and the repair rate τ is a constant. Construct the SRN model and derive the
corresponding CTMC. Vary c from 0 to 5.

5. For the multiprocessor model of Figure 8.95, assume that the processor failure
rate γ is a function of its utilization u, where u = λ/(μn). Following Iyer [IYER
1986], use the exponential function

γ(u) = geu. (8.149)

We assume that the nominal failure rate is measured at u = 0.7 so that 1/g =
6000 × e0.7. With these assumptions, calculate downtime, D(n), in minutes per
year as a function of n for the different values of λ in the SRN model using either
the SHARPE or the SPNP package.

6. Draw the SRNs for the BTS system availability model and the system reliability
model for Example 1.21. Define the reward functions for the measures. Now
do a GSPN model for the same problem. Note the difficulty of solving such
problems without having the capability to define reward rates at the net level
[MALH 1995].
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7. Return to the example of 2 control channels and 3 voice channels (problem 7 in
Section 6.6). Construct an SRN availability model assuming a single repair person
for the case that a control channel can also function as a voice channel. Define
the reward function for the system availability and plot instantaneous availability
as a function of time using SPNP. Modify the SRN model to compute system
reliability both with and without repair.
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titative evaluation tools for monitoring operational security,” IEEE Trans. Soft-
ware Eng. 25(5), 633–650 (1999).

[PARZ 1962] E. Parzen, Stochastic Processes, Holden-Day, San Francisco, CA, 1962.

[RAMA 2000] S. Ramani, S. Gokhale, and K. S. Trivedi, “SREPT: Software reliabil-
ity estimation and prediction tool,” Performance Evaluation 39, 37–60 (2000).

[RAME 1995] A. V. Ramesh and K. S. Trivedi, “Semi-numerical transient analysis
of Markov models,” Proc. 33rd ACM Southeast conf., Clemson, SC, March 1995.

[REIB 1988] A. Reibman and K. S. Trivedi, “Numerical transient analysis of Markov
models,” Comput. and Oper. Res. 15(1), 19–36 (1988).

[REIB 1989] A. Reibman, R. Smith, and K. Trivedi, “Markov and Markov reward
models: A survey of numerical approaches,” Eur. J. Oper. Res. 40, 257–267
(1989).

[RIND 1995] A. Rindos, S. Woolet, I. Viniotis, and K. S. Trivedi, “Exact methods
for the transient analysis of nonhomogeneous continuous time Markov chains,”
in W. J. Stewart (ed.), 2nd Int. Workshop on the Numerical Solution of Markov
Chains, Kluwer Academic Publishers, Boston, 1995.



Trim Size: 6.125in x 9.25in 60Trivedi c08.tex V3 - 05/23/2016 12:08pm Page 576�

� �

�

576 CONTINUOUS-TIME MARKOV CHAINS

[ROSS 1970] S. M. Ross, Applied Probability Models with Optimization Applications,
Holden-Day, San Francisco, CA, 1970.

[ROSS 1983] S. M. Ross, Stochastic Processes, Wiley, New York, 1983.

[SAHN 1996] R. A. Sahner, K. S. Trivedi, and A. Puliafito, Performance and Reli-
ability Analysis of Computer System: An Example-based approach Using the
SHARPE Software Package, Kluwer Academic Publishers, Boston, 1996.

[SHIN 1986] K. Shin and C. Krishna, “New performance measures for design and
evaluation of real-time multiprocessors,” Comput. Sys. Sci. Eng. 1(4), 179–192
(1986).

[STEW 1994] W. J. Stewart, Introduction to the Numerical Solution of Markov
Chains, Princeton Univ. Press, Princeton, NJ, 1994.

[STID 1974] S. Stidham, Jr., “A last word on L = λW ,” Oper. Res. 22, 417–421
(1974).

[STIF 1980] J. J. Stiffler, “Robust detection of intermittent faults,” Proc. 10th Int.
Symp. on Fault-Tolerant Comput., Kyoto, Japan, 1980, pp. 216–218.

[SUN 1999] H.-R. Sun, Y. Cao, J. J. Han, and K. S. Trivedi, “Availability and
performance evaluation for automatic protection switching in TDMA wireless
system,” Pacific Rim Dependability Conf. 1999, pp. 15–22.

[TOME 1991] L. A. Tomek and K. S. Trivedi, “Fixed point iteration in availabil-
ity modeling,” in M. Dal Cin (ed.), Proc. Fifth Int. GI/ITG/GMA Conf. on
Fault-Tolerant Comput. Syst., Springer-Verlag, Berlin, 1991, pp. 229–240.

[TOME 1994] L. A. Tomek and K. S. Trivedi, “Analyses using stochastic reward
nets,” in M. Lyu (ed.), Software Fault Tolerance, Wiley, New York, 1994.

[TOWS 1978] D. F. Towsley, J. C. Browne, and K. M. Chandy, “Models for parallel
processing within programs: application to CPU: I/O and I/O: I/O overlap,”
CACM 21(10), 821–831 (Oct. 1978).

[TRIV 1990] K. S. Trivedi, A. Sathaye and R. Howe, “Should I add a processor?”
23rd Annual Hawaii Conf. Sys. Sci.,, Jan. 1990, pp. 214–221.

[TRIV 1992] K. Trivedi, J. Muppala, S. Woolet, and B. Haverkort, “Composite
performance and dependability analysis,” Performance Eval. 14(3–4), 197–216
(1992).

[WANG 1995] S. S. Wang and J. A. Silverster, “An approximate model for per-
formance evaluation of real-time multimedia communication systems,” Perfor-
mance Eval. 22(3), 239–256 (1995).

[WOLF 1982] R. Wolff, “Poisson arrivals see time averages,” Oper. Res. 30, 223–231
(1982).

[YOUS 1996] S. Y. Yousef and J. A. Schormans, “Performance, interarrival, and
correlation analysis of four-phase MMPP model in ATM-based B-ISDN,” IEE
Proc. Commun. 143(6), 363–368 (1996).



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 577�

� �

�

Chapter 9

Networks of Queues

9.1 INTRODUCTION

We have studied continuous-time Markov chains of the birth–death type in
Chapter 8. Such CTMCs are characterized by a simple product-form solu-
tion [equation (8.34)] and a large number of applications. When we remove
the restriction of nearest-neighbor transitions only, we may not have the con-
venient product-form solution. It is logical to ask whether there is a class
of Markov chains that subsumes birth–death processes and that possesses
a product-form solution. One important generalization of the birth–death
process that we consider is a network of queues. Such networks can model
problems of contention that arise when a set of resources is shared. A node
or a service center represents each resource. Thus, in a model for computer
system performance analysis, we may have a service center for the CPU(s), a
service center for each I/O channel, and possibly others. A service center may
have one or more servers associated with it. If a job requesting service finds
all the servers at the service center busy, it will join the queue associated with
the center, and at a later point in time, when one of the servers becomes idle,
a job from the queue will be selected for service according to some scheduling
discipline. After completion of service at one service center, the job may move
to another service center for further service, reenter the same service center,
or leave the system.

We shall consider two types of networks: open and closed. An open queu-
ing network is characterized by one or more sources of job arrivals and
correspondingly one or more sinks that absorb jobs departing from the net-
work. In a closed queuing network, on the other hand, jobs neither enter
nor depart from the network.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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The probabilities of transitions between service centers and the distribu-
tion of job service times at each center characterize the behavior of jobs within
the network. For each center the number of servers, the scheduling discipline,
and the size of the queue must be specified. Unless stated otherwise, we assume
that the scheduling is FCFS and that each server has a queue of unlimited
capacity. For an open network, a characterization of job arrival processes is
needed, and for a closed network, the number of jobs in the network must be
specified.

Queuing networks have been successfully used in performance modeling
of computer and communication systems [BOLC 1998, HAVE 1998]. They
are especially suited for representing resource contention and queuing for
service. Most of the analysis techniques discussed in this chapter have con-
centrated on the evaluation of averages of various performance measures such
as throughput, utilization, and response time using efficient algorithms such
as convolution and mean-value analysis (MVA) [LAVE 1983]. For real-time
systems, however, the knowledge of response time distributions is required in
order to compute and/or minimize the probability of missing a deadline.

In open networks, the response time or sojourn time of a customer is
defined as the time from its entry into the network until its exit from the
network. In closed queuing networks, response time is defined as the time a
customer requires to complete one cycle in the queuing network, starting from
and returning to a particular node.

Closed-form solutions for response time distribution in queuing networks
are available in only very few cases such as the M/M/n FCFS queue. Methods
for computing the Laplace transform of the response time distribution are
available for queuing networks with special structure. Boxma and Daduna
have provided an excellent survey of these methods [BOXM 1990]. As men-
tioned in the survey, it is very difficult to obtain closed-form solutions for
queuing networks with a general structure. In the last section of this chapter,
the problem of response time distribution in Markovian queuing networks is
addressed.

Consider the two-stage tandem network shown in Figure 9.1. The system
consists of two nodes with respective service rates, μ0 and μ1. The external
arrival rate is λ. The output of the node labeled 0 is the input to the node
labeled 1. The service time distribution at both nodes is exponential, and the
arrival process to the node labeled 0 is Poisson.

This system can be modeled as a stochastic process whose states are spec-
ified by pairs (k0, k1), k0 ≥ 0, k1 ≥ 0, where ki (i = 0, 1) is the number of jobs
at server i in the steady state. The changes of state occur on a completion of

0λ 1

0μ μ1

Figure 9.1. A two-stage tandem network
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Figure 9.2. The state diagram for the two-stage tandem network

service at one of the two servers or on an external arrival. Since all interevent
times are exponentially distributed (by our assumptions), it follows that the
stochastic process is a homogeneous continuous-time Markov chain with the
state diagram shown in Figure 9.2.

For k0, k1 > 0, the transitions into and out of that state are shown in
Figure 9.3. Let p(k0, k1) be the joint probability of k0 jobs at node 0 and k1

jobs at node 1 in the steady state. Equating the rates of flow into and out of
the state, we obtain the following balance equations:

(μ0 + μ1 + λ)p(k0, k1) = μ0p(k0 + 1, k1 − 1) + μ1p(k0, k1 + 1)

+ λp(k0 − 1, k1), k0 > 0, k1 > 0. (9.1)

For the boundary states, we have

(μ0 + λ)p(k0, 0) = μ1p(k0, 1) + λp(k0 − 1, 0), k0 > 0,

(μ1 + λ)p(0, k1) = μ0p(1, k1 − 1) + μ1p(0, k1 + 1), k1 > 0,

λp(0, 0) = μ1p(0, 1).

The normalization is provided by∑
k0≥0

∑
k1≥0

p(k0, k1) = 1.

It is easily shown by direct substitution that the following equation is the
solution to the preceding balance equations:

p(k0, k1) = (1 − ρ0)ρ
k0
0 (1 − ρ1)ρ

k1
1 , (9.2)
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Figure 9.3. Portion of the state diagram for equation (9.1)

where ρ0 = λ/μ0 and ρ1 = λ/μ1. The condition for stability of the system is
that both ρ0 and ρ1 are less than unity.

Equation (9.2) is a product-form solution similar to that of an M/M/1
queue. Observe that the node 0 in Figure 9.1 has a Poisson arrival source of
rate λ and exponentially distributed service time. Therefore, the node labeled
0 is an M/M/1 queue. It follows that the pmf of the number of jobs N0 at
node 0 in the steady state is given by [see also equation (8.34)]

P (N0 = k0) = p
0
(k0) = (1 − ρ0)ρ

k0
0 .

Burke [BURK 1956] has shown that the output of an M/M/1 queue is also
Poisson with rate λ (you are asked to verify this result in problem 2 at the end
of this section). Thus, the second queue in Figure 9.1 is also an M/M/1 queue
with server utilization ρ1 = λ/μ1 (assumed to be < 1). Hence, the steady-state
pmf of the number of jobs N1 at node 1 is given by

P (N1 = k1) = p
1
(k1) = (1 − ρ1)ρ

k1
1 .

The joint probability of k0 jobs at node 0 and k1 jobs at node 1 is given by
equation (9.2):

p(k0, k1) = (1 − ρ0)ρ
k0
0 (1 − ρ1)ρ

k1
1 = p

0
(k0)p1

(k1).

Thus the joint probability p(k0, k1) is the product of the marginal probabili-
ties, p

0
(k0) and p

1
(k1); hence random variables N0 and N1 are independent in
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the steady state. Therefore, the two queues are independent M/M/1 queues.
As the arrival rate λ increases, the node with the larger value of ρ will intro-
duce instability. Hence the node with the largest value of ρ is called the
“bottleneck” of the system. The product form solution (9.2) can be generalized
to an m-stage tandem queue.

Example 9.1

A repair facility shared by a large number of machines has two sequential stations
with respective rates, 1 per hour and 2 per hour. The cumulative failure rate of all the
machines is 0.5 per hour. Assuming that the system behavior may be approximated
by the two-stage tandem queue of Figure 9.1, determine the average repair time.

Given λ = 0.5, μ0 = 1, μ1 = 2, we have ρ0 = 0.5 and ρ1 = 0.25. The average
length of the queue at station i (i = 0, 1) is then given by [using formula (8.35)]

E[Ni] =
ρi

1 − ρi

;

hence

E[N0] = 1 and E[N1] =
1

3
.

Using Little’s formula, the repair delays at the two stations are respectively given
by

E[R0] =
E[N0]

λ
= 2h and E[R1] =

E[N1]

λ
=

2

3
h.

Hence the average repair time is given by:

E[R] = E[R0] + E[R1] =
8

3
h.

This can be decomposed into waiting time at station 0 (= 1 h), the service time at
station 0 ( = 1/μ0 = 1 h), the waiting time at station 1 ( = 1

6
h), and the service

time at station 1 (1/μ1 = 1
2

h). The probability that both service stations are idle
is given by

p(0, 0) = (1 − ρ0)(1 − ρ1) =
3

8
.

Station 0 is the bottleneck of the repair facility.

�

Problems

1. In Chapter 8 we derived the distribution function of the response time of an
isolated M/M/1 FCFS queue [see equation (8.40)]. Using this result, derive the
distribution function of the response time for the tandem network of Figure 9.1.
From this, obtain the variance of the response time.

2. * Consider an M/G/1 queue with FCFS scheduling . Let the random variables
A, B, and D, respectively, denote the interarrival time, the service time, and the



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 582�

� �

�

582 NETWORKS OF QUEUES

interdeparture time. By conditioning on the number of jobs in the system and
then using the theorem of total Laplace transforms, show that in the steady state

LD(s) = ρLB(s) + (1 − ρ)LA(s)LB(s),

where ρ is the traffic intensity so that ρ = E[B]/E[A].

Point out why the assumption of Poisson arrival stream is needed to derive this
result. Then, specializing to the case of M/M/1 queue, show that

LD(s) = LA(s).

This verifies Burke’s result that the output process of an M/M/1 FCFS queue is
Poissonian. Note that the independence of successive interdeparture times needs
to be shown in order to complete the proof.

3. Using the result of problem 2, show that in the M/G/1 case, the squared coeffi-
cient of variation of the interdeparture time is given by

C2
D = 1 + ρ2(C2

B − 1),

where C2
B is the squared coefficient of variation of the service time distribution.

4. * Show that the interdeparture time distribution of an M/M/m FCFS queue is
exponential. To simplify the problem, first consider an M/M/2 queue. Let Di

denote the interdeparture time conditioned on the number of jobs in the system
N = i. Then show that Di ∼ EXP(2μ) for i ≥ 2. Next show that

LD1
(s) =

λ · 2 · μ
(s + λ + μ)(s + 2μ)

+
μ

s + λ + μ

and

LD0
(s) =

λ

s + λ
LD1

(s)

(a tree diagram may be helpful here). Then obtain the required result using the
theorem of total Laplace transforms. The generalization to the M/M/m case
proceeds in a similar fashion.

9.2 OPEN QUEUING NETWORKS

The argument given in the previous section for the product-form solution of
tandem queues can be generalized to any feedforward network of Markovian
queues (in which a job may not return to previously visited nodes) that is
fed from independent Poisson sources. Jackson [JACK 1957] showed that the
product-form solution also applies to open networks of Markovian queues with
feedback. Besides requiring that the distributions of job interarrival times and
service times at all nodes be exponential, assume that the scheduling discipline
at each node is FCFS.

First we consider several examples illustrating Jackson’s technique.
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Example 9.2

Consider the simple model of a computer system shown in Figure 9.4a. Jackson’s
result is that two queues will behave like independent M/M/1 queues, and hence

p(k0, k1) = (1 − ρ0)ρ
k0
0 (1 − ρ1)ρ

k1
1 , (9.3)

where λ0/μ0 = ρ0 and λ1/μ1 = ρ1. (where ρ0, ρ1 < 1 for stability.) To apply this
result, we have to compute the average arrival rates λ0 and λ1 into the two nodes.
Note that in the steady state the departure rates from the two nodes will also be λ0

and λ1, respectively. Arrivals to the CPU node occur either from the outside world
at the rate λ or from the I/O node at the rate λ1. The total arrival rate to the CPU
node is therefore λ0 = λ + λ1. Given that a job just completed a CPU burst, it will
next request I/O service with probability p

1
. Therefore, the average arrival rate to

the I/O node is given by λ1 = λ0p1
. Thus

λ0 =
λ

1 − p
1

=
λ

p
0

(9.4)

and

λ1 =
p
1
λ

p
0

. (9.5)

This implies that

ρ0 =
λ

p
0
μ0

and ρ1 =
p
1
λ

p
0
μ1

.

p

p

p

p

p

CPU I/Oλ
0 1

1

0

μ μ

λ "CPU" "I/O"

10 0
μ

μ
1 0

(b)

(a)

Figure 9.4. (a) An open network with feedback; (b) an “equivalent” network without
feedback
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If we let B0 denote the total CPU service requirement of a program, then E[B0] =
1/(p

0
μ0). Similarly, E[B1] = p

1
/(p

0
μ1) denotes the expected value of the total ser-

vice time required on the I/O device for a typical program. If ρ0 > ρ1 (i.e., E[B0] >
E[B1]), then the CPU is the bottleneck, in which case the system is said to be
CPU-bound. Similarly, if ρ0 < ρ1, then the system is I/O-bound.

The average response time may be computed by summing the average number
of jobs at the two nodes and then using Little’s formula:

E[R] =

(
ρ0

1 − ρ0

+
ρ1

1 − ρ1

)
1

λ

or

E[R] =
1

p
0
μ0 − λ

+
1

p0μ1
p1

− λ

=
E[B0]

1 − λE[B0]
+

E[B1]

1 − λE[B1]
. (9.6)

It is easily seen that this formula also gives the average response time of the
“unfolded” tandem network shown in Figure 9.4b. The service rate of the “equiv-
alent” CPU in this system is μ0p0

. Thus, a job requests an uninterrupted average
CPU time equal to E[B0] = 1/(μ0p0

) in the equivalent system, while in the original
system a job requires, on the average, 1/p

0
CPU bursts of average time 1/μ0 each.

Therefore, to determine E[R] and E[N ], it is sufficient to know only the aggregate
resource requirements of a job; in particular, details of the pattern of resource usage
are not important for computing these average values. We caution the reader that
the equivalence between the networks of Figures 9.4a and 9.4b does not hold with
respect to the distribution function FR(x) of the response time. Computation of
response time distribution is difficult even for Jacksonian networks without feed-
back [SIMO 1979]. At the end of this chapter, we shall illustrate the computation
of response time distribution for these two networks.

It is instructive to solve the network in Figure 9.4a by directly analyzing the
stochastic process whose states are given by pairs (k0, k1), k0 ≥ 0, k1 ≥ 0. By the
assumption of exponentially distributed interevent times, the process is a homoge-
neous CTMC with the state diagram shown in Figure 9.5. For a state (k0, k1) with
k0 > 0, k1 > 0, the steady state balance equation is obtained by equating the rates
of flow into and out of the state:

(λ + μ0 + μ1)p(k0, k1) = λp(k0 − 1, k1) + μ0p1p(k0 + 1, k1 − 1)

+μ0p0p(k0 + 1, k1) + μ1p(k0 − 1, k1 + 1).

Similarly

(λ + μ0)p(k0, 0) = λp(k0 − 1, 0) + μ0p0
p(k0 + 1, 0) + μ1p(k0 − 1, 1), k0 > 0,

(λ + μ1)p(0, k1) = μ0p0
p(1, k1) + μ0p1

p(1, k1 − 1), k1 > 0,

λp(0, 0) = μ0p0
p(1, 0).



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 585�

� �

�

9.2 OPEN QUEUING NETWORKS 585

k

p

,k

k

p

p

p

k

p

k
k

k

p k

k

p

k

p

k

p

p

p

p

μ0 1

μ

μ

1

00

0μ

00

0

1

0

0 μ

1

μ0 0

0

μ0

0

1

μ0 0

μ

1

μ μ

0+1,

1

0 1

1

0

0

1

0

+1,
-1

μ

0

1

μ

1

μ

1

0

0

0, 0 1, 0 2, 0

0, 1 1, 1

λ λ λ λ

λ
μμ1 1

λλ

μ

0
.  .  .

.  .  .

.  
.  

.

+1
-1,

,0

-1,

Figure 9.5. State diagram for the network in Figure 9.4a

Also ∑
k0,k1

p(k0, k1) = 1.

It may be verified by direct substitution that the solution (9.3) indeed satisfies
these equations.

�

Example 9.3

Consider the (open) central server queuing model of a computer system shown in
Figure 9.6. Let us trace the path of a tagged program that just arrived. Temporarily
ignoring queuing delays, the program will occupy one of m + 1 nodes at a time.
Assume that the request for I/Oi occurs at the end of a CPU burst with probability
p

i
, independent of the past history of the tagged program. We can model the behav-

ior of a tagged program as a homogeneous discrete-time Markov chain as in Example
7.20; the corresponding state diagram is given in Figure 7.25. [Note that we have
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Figure 9.6. The open central server network

added an absorbing state, labeled m + 1 (or STOP).] The transition probability
matrix of this DTMC is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p
1

· · · p
m

p
0

1 0 0 0
1 0 0 0
1 · · ·
1 · · ·
1 · · ·
1 0 0 0

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As discussed in Chapter 7 (Section 7.9), the boxed portion of this matrix, denoted
here by X, is of interest:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p
1

p
2

· · · p
m

1 0 0 0
1 · · 0
1 · · 0
1 · · 0
1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

X is known as the routing matrix of the queuing network of Figure 9.6. Analyzing
the behavior of the tagged program, we are able to obtain the average number of
visits (or visit counts) Vj as in Example 7.20 (we assume that p

0
�= 0):

Vj =

⎧⎪⎨
⎪⎩

1
p0

, j = 0,

p
j

p0
, j = 1, 2, . . . , m.

In other words, the average number of visits made to node j by a typical program is
p

j
/p

0
(j �= 0) and 1/p

0
(j = 0). Since λ programs per unit time enter the network

on the average, the overall rate of arrivals, λj , to node j is then given by
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λj =

⎧⎪⎨
⎪⎩

1
p0

λ, j = 0,

p
j

p0
λ, j = 1, 2, . . . , m.

The utilization, ρj , of node j is given by ρj = λj/μj = λVj/μj and we assume that
ρj < 1 for all j. Jackson has shown that the steady-state joint probability of kj

customers at node j (j = 0, 1, . . . , m) is given by

p(k0, k1, k2, . . . , km) =

m∏
j=0

p
j
(kj). (9.7)

This formula implies that the queue lengths are mutually independent in the steady
state, and the steady-state probability of kj customers at node j is given by the
M/M/1 formula:

p
j
(kj) = (1 − ρj)ρ

kj

j .

The validity of this product-form solution can be established using the direct
approach as in Examples 9.1 and 9.2. We leave this as an exercise.

The form of the joint probability (9.7) can mislead a reader to believe that the
traffic along the arcs consists of Poisson processes. The reader is urged to solve
problem 3 at the end of this section to realize that the input process to a service
center in a network with feedback is not Poissonian in general [BEUT 1978, BURK
1976]. This is why Jackson’s result is remarkable.

The average queue length, E[Nj ], and the average response time, E[Rj ], of node
j (accumulated over all visits) are given by

E[Nj ] =
ρj

1 − ρj

and E[Rj ] =
1

λ

ρj

1 − ρj

.

From these, the average number of jobs in the system and the average response time
are computed to be

E[N ] =
m∑

j=0

ρj

1 − ρj

and

E[R] =
1

λ

m∑
j=0

ρj

1 − ρj

=
1/(p

0
μ0)

1 − λ/(p
0
μ0)

+

m∑
j=1

p
j
/(p

0
μj)

1 − λp
j
/(μjp0

)

=
1

μ0p0
− λ

+

m∑
j=1

1

(
p0μj

p
j

− λ)

=
1

μ0
V0

− λ
+

m∑
j=1

1
μj

Vj
− λ

=
m∑

j=0

E[Bj ]

1 − λE[Bj ]
, (9.8)
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where the total service requirement on device j, on the average, is given by E[Bj ] =
Vj/μj . This last formula for the average response time is a generalized version of
formula (9.6). It also affords an “unfolded” interpretation of the queuing network of
Figure 9.6, in the same way as Figure 9.4b is the “unfolded” version of the network
in Figure 9.4a. At the end of this chapter, we shall illustrate the computation of
response time distribution for this example.

�

Jackson’s result applies in even greater generality. Consider an open queu-
ing network with (m + 1) nodes, where the ith node consists of ci exponential
servers each with mean service time of 1/μi seconds. External Poisson sources
contribute γi jobs/second to the arrival rate of the ith node so that the total
external arrival rate λ =

∑m
i=0 γi. If we let qi = γi/λ, i = 0, 1, . . . ,m so that∑m

i=0 qi = 1, then a job will first enter the network at node i, with probability
qi. On service completion at node i, a job next requires service at node j with
probability xij or completes execution with probability 1 −

∑m
j=0 xij .

First, we analyze the behavior of a tagged job through the network. This
behavior can be modeled as a homogeneous discrete-time Markov chain as in
Example 7.20. Equation (7.79) is applicable here in computing Vi, the average
number of visits made by the tagged program to node i. Therefore

Vi = qi +
m∑

k=0

xkiVk, i = 0, 1, . . . ,m.

Now the average job arrival rate to node i is obtained by multiplying Vi by
λ, the average job arrival rate to the network. Thus

λi = λVi = λqi +
m∑

k=0

xkiλVk.

Noting that λqi = γi and λVk = λk, this expression simplifies to

λi = γi +
m∑

k=0

λkxki , i = 0, 1, . . . ,m. (9.9)

This system of equations (known as “traffic equations”) has a unique solution
if we assume that there is at least one node j such that γj > 0 and that the
matrix power series:

n∑
k=0

Xk

converges as n approaches infinity (see Section 7.9). This implies that after a
certain number of visits to various service centers there is a positive proba-
bility that a job will depart from the system. Jackson’s theorem states that
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each node behaves like an independent M/M/ci queue and, therefore, the
steady-state probability of ki customers at node i, i = 0, 1, . . . ,m is given by
the product form

p(k0, k1, . . . , km) = p
0
(k0) · · · pm

(km), (9.10)

where p
i
(ki) is the steady-state probability of finding ki jobs in an M/M/ci

queue with arrival rate λi and average service time 1/μi for each of the ci

servers. Thus, using equations (8.45) and (8.46), we have

p
i
(ki) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(λi/μi)
ki

ki!
p

i
(0), 1 ≤ ki < ci

(λi/μi)
kip

i
(0)

ci!c
ki−ci
i

, ki ≥ ci,

where
pi(0) =

1
ci−1∑
ki=0

(λi/μi)
ki

ki!
+

(λi/μi)
ci

ci!
1

1 − λi

ciμi

.

Problems

1. Consider the open central server queuing model with two I/O channels with a
common service rate of 1.2 s−1. The CPU service rate is 2 s−1, and the arrival
rate is 1/7 job per second. The branching probabilities are given by p

0
= 0.1,

p
1

= 0.3, and p
2

= 0.6. Determine steady-state probabilities, assuming that all
service times are independent exponentially distributed random variables. Deter-
mine the queue length pmf at each node as well as the average response time
from the source to the sink.

2. Consider a variation of the queuing model of Figure 9.4a, where the CPU node
consists of two parallel processors with a service rate of μ0 each. Draw a state
diagram for this system and proceed to solve the balance equations. Obtain an
expression for the average response time E[R] as a function of μ0, μ1, p0

, and λ.
Now compare your answer with that obtained using Jackson’s result.

3. �Refer to Burke [BURK 1976]. Consider the M/M/1 FCFS queue with feed-
back as shown in Figure 9.P.1. By Jackson’s theorem, it is easy to derive the
steady-state pmf of the number of jobs N in the system:

P (N = i) =

(
1 − λ

μp

)(
λ

μp

)i

, i = 0, 1, . . . .

We wish to show that the actual input process (which is a merger of the external
arrival process and the feedback process) is not Poissonian, even though the
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Figure 9.P.1. M/M/1 queue with Bernoulli feedback

exogenous arrival process and the departure process are both Poissonian with
rate λ. Proceed by first observing that the complementary distribution function
of the interinput times is given by

RI(t) = e−λtRY (t),

where Y is the time to the next feedback as measured from the time of the last
input to the queue–server pair. Next obtain the density of Y as

fY (t) = μqe−(μ−λ)t;

hence, show that

RY (t) =
μq

μ − λ
e−(μ−λ)t +

μp − λ

μ − λ
.

From this, conclude that I is hyperexponentially distributed. In order to derive
the Laplace–Stieltjes transform of the interdeparture time D, proceed by com-
puting the conditional LST LD|Nd=i(s), where Nd is the number of jobs left in
the system by a departing job. Using the result of problem 5 in Section 7.7, show
that

P (Nd = i) = P (N = i),

and hence the unconditional LST of D is obtained as:

LD(s) =
λ

s + λ
.

This verifies that the departure process is Poissonian.

9.3 CLOSED QUEUING NETWORKS

One of the implicit assumptions behind the model of Example 9.3 is that
immediately on its arrival, a job is scheduled into main memory and is able
to compete for active resources such as the CPU and the I/O channels. In
practice, the number of main-memory partitions will be limited, which implies
the existence of an additional queue, called the job-scheduler queue (see
Figure 9.7). However, such a network is said to involve multiple resource
holding. This is because a job can simultaneously hold main memory and
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Figure 9.7. An open central server network with a blocking

an active device. Such a network cannot be solved by product-form methods
[CHAN 1978]. Nevertheless, an approximate solution to such a network is
provided by the methods of the last section. If the external arrival rate λ is
low, then the probability that a job has to wait in the scheduler queue will be
low, and we expect the solution of Example 9.3 to be quite good. Thus, the
model of Example 9.3 is a light-load approximation to the model of Figure 9.7.
Let us now take the other extreme and assume a large value of λ, so that the
probability that there is at least one customer in the job-scheduler queue is
very high.

We may then assume that the departure of a job from the active set imme-
diately triggers the scheduling of an already waiting job into main memory.
Thus, the closed network of Figure 9.8 will be a “good” approximation to the
system of Figure 9.7, under heavy-load conditions. Each job circulating in this
closed network is said to be an active job and must be allocated a partition

.  
.  

.

1μ

CPU

0μ

0
μp

pm

m

p
1

New program path

I/O1

I/Om

Figure 9.8. The (closed) central server model
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of main memory. The total number of active jobs is called the degree (or
level) of multiprogramming.

Many efficient algorithms for calculating performance measures of
product-form closed queuing networks have been developed. Two most
important algorithms, namely, the convolution algorithm and mean-value
analysis (MVA) algorithm, are described in this section. The former algorithm
is an efficient iterative technique for calculating the normalization constant.
Once the normalization constant is computed, the system performance mea-
sures of interest can be easily derived. In the following examples, we introduce
the normalization constant and then give an efficient algorithm to compute it.

Example 9.4

Let us return to the cyclic queuing model studied in the last chapter (Example 8.8),
which is shown in Figure 9.9. Here, we choose to represent the state of the system by
a pair (k0, k1), where ki denotes the number of jobs at node i (i = 0, 1). Recall that
k0 + k1 = n, the degree of multiprogramming. Unlike the two-node open queuing
network (Figure 9.4a), the state space in this case is finite. The dot pattern on the
(k0, k1) plane of Figure 9.10 represents the infinite state space of the open network
(Figure 9.4a), while the dot pattern on the line k0 + k1 = n is the finite state space
of the cyclic (closed) queuing network studied here.

The state diagram for the cyclic queuing model is shown in Figure 9.11. The
steady state balance equations are given by

(μ1 + μ0p1)p(k0, k1) = μ0p1p(k0 + 1, k1 − 1) + μ1p(k0 − 1, k1 + 1), k0, k1 > 0,

μ1p(0, n) = μ0p1p(1, n − 1),

μ0p1p(n, 0) = μ1p(n − 1, 1).

If we let ρ0 = a/μ0 and ρ1 = ap1/μ1, where a is an arbitrary constant, then we
can verify by direct substitution that the steady-state probability p(k0, k1) has the
following product form:

p(k0, k1) =
1

C(n)
ρk0
0 ρk1

1 .

p

p

CPU

0 1

1

0

μ μ

New program path

I/O

Figure 9.9. The closed cyclic queuing model
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Figure 9.10. State spaces for two-node networks
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Figure 9.11. The state diagram for the closed cyclic queuing model

The normalizing constant C(n) is chosen so that

∑
k0+k1=n
k0,k1≥0

p(k0, k1) = 1.

The choice of the constant a is quite arbitrary in that the value of p(k0, k1) will not
change with a, although the intermediate values ρ0, ρ1, and C(n) will depend on a.
If we define λ0 = a and λ1 = ap1, we may interpret the vector (λ0, λ1) as the relative
throughputs of the corresponding nodes. Then ρ0 = (λ0/μ0) and ρ1 = (λ1/μ1) are
interpreted as relative utilizations. Two popular choices of the constant a are a = 1
and a = μ0. Choosing a = μ0, we have ρ0 = 1 and ρ1 = μ0p1

/μ1. Also

p(k0, k1) =
1

C(n)
ρk1
1 .
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Using the normalization condition, we get

1 =
1

C(n)

n∑
k1=0

ρk1
1 =

1

C(n)

1 − ρn+1
1

1 − ρ1

or

C(n) =

⎧⎪⎨
⎪⎩

1−ρn+1
1

1−ρ1
, ρ1 �= 1

n + 1, ρ1 = 1.

Now the CPU utilization U0 may be expressed as

U0 = 1 − p(0, n) = 1 − ρn
1

C(n)
,

U0 =

⎧⎪⎨
⎪⎩

1−ρn
1

1−ρn+1
1

, ρ1 �= 1

n
n+1

, ρ1 = 1.

This agrees with the solution obtained in the last chapter [equation (8.62)]. The
average throughput is given by

E[T ] = μ0U0p0
.

�

Example 9.5

Consider the (closed) central server network shown in Figure 9.8. The state of the
network is given by an (m + 1)-tuple, (k0, k1, . . . , km) where ki ≥ 0 is the number
of jobs at server i (including any in service). Since the number of jobs in a closed
network is fixed, we must further impose the constraint

∑m
i=0 ki = n on every state.

Thus the state space of the network is finite, as the number of states is equal to the
number of partitions of n objects among m + 1 cells. You were asked to compute
this number in problem 5 in section 1.12:

(n + m

m

)
=

(n + m)!

n! m!
. (9.11)

If we assume that service times at all servers are exponentially distributed, the
stochastic process modeling the behavior of the network is a finite-state homogeneous
continuous-time Markov chain, which can be shown to be irreducible and recurrent
nonnull (assuming that 0 < p

i
< 1, i = 0, 1, . . . , m). In principle, therefore, we can

write down the steady-state balance equations and obtain the unique steady-state
probabilities. However, the number of equations in this system will be equal to the
number of states given by expression (9.11). This is a formidable number of states,
even for relatively small values of n and m. Fortunately, Gordon and Newell [GORD
1967] have shown that such Markovian closed networks possess relatively simple
product-form solutions.
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In order to use their technique, we first analyze the behavior of a tagged program,
ignoring all queues in the network. The movement of a tagged program through the
network can be modeled by a homogeneous discrete-time Markov chain with m + 1
states. The transition probability matrix X of this Markov chain is given by

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

p0 p
1

· · · p
m

1 0 · · · 0
· · ·
· · ·
· · ·
1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The DTMC is finite, and if we assume that 0 < p
i

< 1 for all i, then it can be shown
to be irreducible and aperiodic. Then the unique steady-state probability vector
v = (v0, v1, . . . , vm) can be obtained by solving the system of equations

v = vX (9.12)

and
m∑

i=0

vi = 1. (9.13)

If we observe the system for a real-time interval of duration τ , then viτ can be inter-
preted to be the average number of visits to node i in the interval. If we remove the
normalization condition (9.13), then the vi terms cannot be interpreted as probabil-
ities, but aviτ will still yield the average number of visits to node i (i = 0, 1, . . . , m)
for some fixed constant a. In this sense, vi can be thought of as the relative visit
count for node i, and thus vi is sometimes called the relative arrival rate or the
relative throughput of node i.

For the central server network, equation (9.12) becomes

v0 = v0p0
+

m∑
i=1

vi,

vi = v0pi
, i = 1, 2, . . . , m. (9.14)

Only m out of these (m + 1) equations are independent; therefore [in absence of the
normalization condition (9.13)], v0 can be chosen as any real value that will aid us
in our computations. The usual choices of v0 are 1/p

0
, μ0, and 1.

If we choose v0 = 1/p
0
, then from (9.14), we have vi = p

i
/p

0
(i = 1, 2, . . . , m).

Bear in mind that the closed central server model is intended to be an approximation
to the open model of Figure 9.7. It follows from our analysis of a tagged program
for the open network of Figure 9.6 that with this choice of v0, vi = Vi, where Vi (i =
0, 1, . . . , m) is the average number of visits a typical program makes to node i in
order to complete its execution. Let the relative utilization of device i be given by
ρi = vi/μi. If we let Bi be the total service requirement of a program on device i,
then in this case ρi equals the expected value of the total service requirement E[Bi]
on device i. If we choose v0 = μ0, then ρ0 = 1; hence all device utilizations are scaled
by the CPU utilization. This choice is often more convenient computationally.
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Gordon and Newell [GORD 1967] have shown that the steady-state probability
p(k0, k1, . . . , km) of finding ki jobs at nodes i, i = 0, 1, . . . , m, is given by

p(k0, k1, . . . , km) =
1

C(n)

m∏
i=0

ρki
i

=
1

C(n)

m∏
i=0

(
vi

μi

)ki

. (9.15)

Here, the normalization constant C(n) is evaluated using the condition:

∑
k∈I

p(k0, k1, . . . , km) = 1,

where the state space

I = {(k0, k1, . . . , km) | ki ≥ 0 for all i and
m∑

i=0

ki = n}

contains
(

n+m
m

)
states.

�

More generally, consider an arbitrary closed queuing network having expo-
nentially distributed service time with respective rates μi (i = 0, 1, . . . ,m) and
the routing matrix X = [xij ]. As in Example 9.5, we first remove all queues
and model the behavior of a tagged program through the network. Since our
only concern at this point is to count the average number of visits to device
i, the behavior of the tagged program is then captured by a homogeneous,
finite-state DTMC with transition probability matrix X. We will assume that
this chain is irreducible and aperiodic. Therefore, unlike the case of an open
network, the routing matrix of a closed network is a stochastic matrix. As in
Example 9.5, we can obtain the relative throughputs, vi terms, by solving the
system of linear equations [analogous to equation (9.12)]:

vi =
m∑

j=0

vjxji , i = 0, 1, . . . ,m. (9.16)

Again, since X is a stochastic matrix, only m out of the above m + 1 equations
are independent, and the system of equations has a unique solution, up to a
multiplying constant. Therefore, one of the components of v can be chosen
arbitrarily. As before, common choices for v0 are V0, μ0, and 1.

If v0 is chosen to be equal to the average number of visits V0 to node
0 per program, then the relative utilization ρi is equal to Vi/μi = E[Bi],
the expected value of the total service requirement imposed by a typical
program on the ith node. As we shall see below, Ui, the real utilization
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of node i, is a function only of the relative utilizations ρ0, ρ1, . . . , ρm, and
from the real utilization of device i, the average system throughput is com-
puted as Ui/E[Bi]. Alternatively, we will see that in this case average system
throughput equals the ratio C(n − 1)/C(n), which again depends only on
ρi, i = 0, 1, . . . , m. Thus, measures of system performance such as device uti-
lizations and average system throughput can be obtained from a specification
of the (m + 1) service requirements, E[B0], E[B1], . . . , E[Bm]. In particular,
the topology of the network, the routing probabilities xij , and the individual
service rates μi need not be specified. Also, equation (9.16) need not be solved
for the relative throughputs vi. Such an interpretation is convenient since the
quantities E[Bi] are readily estimated from measured data [DENN 1978].

The reader is urged to verify in problems 1–3 at the end of this section that
the choice of v0 will not affect the performance measures of interest, although
it will affect the values of intermediate quantities such as ρi and C(n).

Continuing with our analysis of the general closed network, we see that
since there are n > 1 programs circulating through the network, the state of
the network at any time will be denoted by (k0, k1, . . . , km), where ki is the
number of jobs at node i. If ki = 0, then device i is idle. If ki = 1, a job is
being processed by device i. If ki > 1, a job is being processed by device i
and ki − 1 jobs are waiting to be served on device i. Since there are exactly n
jobs in the system, we must further impose the restriction that

∑m
i=0 ki = n.

This implies, as before, that the state space, I, of the network contains
(

n+m
m

)
states, specifically:

I = {(k0, k1, . . . , km) | ki ≥ 0,

m∑
i=0

ki = n}.

By assumption of exponentially distributed service times, all interevent
times are exponentially distributed, and thus the network can be modeled
by a homogeneous CTMC. Since the chain is finite, if we assume that it is
irreducible, then a unique steady-state probability vector exists that can be
obtained as a solution of steady-state balance equations:

For any state s = (k0, k1, . . . , km), the probability, p(s), of being in that
state times the rate of transition from that state has to be equal to the sum
over all states t of p(t) times the rate of transition from t to s. Therefore we
have ∑

j|kj>0

μjp(k0, k1, . . . , km)

=
∑

j|kj>0

∑
i

xijμip(k0, . . . , ki + 1, . . . , kj − 1, . . . , km). (9.17)

In other words, in steady state, the rate of flow out of a state must equal the
rate of flow into that state.
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As in Example 9.5, equation (9.17) has the following product-form solution
[GORD 1967]:

p(k0, k1, . . . , km) =
1

C(n)

m∏
i=0

ρki
i . (9.18)

The normalization constant C(n) can be computed using the fact that the
probabilities sum to unity,

C(n) =
∑
s∈I

m∏
i=0

ρki
i , (9.19)

where s = (k0, k1, . . . , km).
Since the number of states of the network grows exponentially with the

number of customers and the number of service centers, it is not feasible to
evaluate C(n) by direct summation as in equation (9.19), because the compu-
tation would be too expensive and perhaps numerically unstable. Nevertheless,
it is possible to derive stable and efficient computational algorithms to obtain
the value of the normalization constant C(n) [BUZE 1973]. These algorithms
also yield simple expressions for performance measures such as the average
queue length, E[Ni] and the utilization Ui of the ith server.

Consider the following polynomial in z [WILL 1976]:

G(z) =
m∏

i=0

1
1 − ρiz

= (1 + ρ0z + ρ2
0z

2 + · · · )(1 + ρ1z + ρ2
1z

2 + · · · ) · · ·
(1 + ρmz + ρ2

mz2 + · · · ). (9.20)

It is clear that the coefficient of zn in G(z) is equal to the normalization
constant C(n), since the coefficient is just the sum of all the terms of the
form ρk0

0 ρk1
1 · · · ρkm

m with
∑m

i=0 ki = n. In other words, G(z) is the generating
function of the sequence C(1), C(2), . . ..

G(z) =
∞∑

n=0

C(n)zn, (9.21)

where C(0) is defined to be equal to unity. It should be noted that since C(n)
is not a probability, G(z) is not a probability generating function and hence
G(1) is not necessarily equal to unity. In order to derive a recursive relation
for computing C(n), define

Gi(z) =
i∏

k=0

1
1 − ρkz

, i = 0, 1, . . . , m, (9.22)
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so that Gm(z) = G(z). Also define Ci(j) by

Gi(z) =
∞∑

j=0

Ci(j)z
j , i = 0, 1, . . . , m,

so that Cm(j) = C(j). Observe that

G0(z) =
1

1 − ρ0z
(9.23)

and

Gi(z) = Gi−1(z)
1

1 − ρiz
, i = 1, 2, . . . ,m.

This last equation can be rewritten as

Gi(z)[1 − ρiz] = Gi−1(z)

or
Gi(z) = ρizGi(z) + Gi−1(z)

or ∞∑
j=0

Ci(j)z
j =

∞∑
j=0

ρizCi(j)z
j +

∞∑
j=0

Ci−1(j)z
j .

Equating the coefficients of zj on both sides, we have a recursive formula for
the computation of the normalization constant:

Ci(j) = Ci−1(j) + ρiCi(j − 1), i = 1, 2, . . . ,m,

j = 1, 2, . . . , n. (9.24)

The initialization is obtained using (9.23) as

C0(j) = ρj
0, j = 0, 1, 2, . . . , n.

Also from (9.22), we have that the coefficient of z0 in Gi(z) is unity; hence

Ci(0) = 1, i = 0, 1, . . . ,m.

The convolution method for computing the normalization constant C(n) is
fully defined by equation (9.24). The computation of C(n) = Cm(n) is illus-
trated in Table 9.1.
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TABLE 9.1. Computation of the Normalization Constant Ci(j)

j
i 2 · · · i − 1 i · · · m

0

0 1

1 1 1 · · · 1 1 1 1

· ρ0 ρ0 + ρ1 ρ0 + ρ1 + ρ2 · · · · · · Cm(1)

· · · ·

· · · ·

· · · ·

j − 1 ρj−1
0 · · · Ci(j − 1)

↓ ρi

j ρj
0 · · · Ci−1(j) → Ci(j)

· ·

· ·

· ·

n ρn
0 · · · Cm(n)

As we will see shortly [formula (9.25)], only the last column of the Ci(j)
matrix of Table 9.1 is needed for the computation of the device utilizations.
It is possible to avoid the storage of the (n + 1) × (m + 1) matrix suggested
in the table. Because the matrix can be computed one column at a time,
we need only store the column currently under computation. Assume a
one-dimensional array C[0 .. n] initialized to contain all zeros, except for
C[0], which is initialized to 1, and representing the current column of the
Ci(j) matrix. Also let ρ[0 .. m] denote the vector of relative utilizations.
Then the set of all C(j) values may be computed using the following
program segment.

Program 9.1 (Convolution Algorithm)

{initialize}C[0] := 1; for j := 1 to n do C[j] := 0;
for i := 0 to m do
for j := 1 to n do

C[j] := C[j] + ρ[i] ∗ C[j − 1].
Next, let us derive an expression for Ui(n), the utilization of the ith device.

Consider a slight modification to the generating function G(z), denoted by
Hi(z):
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Hi(z) =

⎛
⎜⎜⎝ m∏

j=0
j �=i

1
1 − ρjz

⎞
⎟⎟⎠
(

1
1 − ρiz

− 1
)

= (1 + ρ0z + ρ2
0z

2 + · · · ) · · · (1 + ρi−1z + ρ2
i−1z

2 + · · · )

·(ρiz + ρ2
i z

2 + · · · )(1 + ρi+1z + ρ2
i+1z

2 + · · · )

· · · (1 + ρmz + ρ2
mz2 + · · · ).

The difference between H(z) and G(z) is that we have omitted the first term
in the factor corresponding to the ith device. As a result, the coefficient of zn

in H(z) will be the sum of all terms

ρk0
0 · · · ρki

i · · · ρkm
m

such that ki ≥ 1. From (9.18) we then see that the coefficient of zn in H(z)
divided by the coefficient of zn in G(z) must yield the marginal probability
P (Ni ≥ 1), which is exactly the utilization Ui(n). Now

H(z) = G(z)

1
1 − ρiz

− 1

1
1 − ρiz

= G(z)ρiz.

Thus, the coefficient of zn in H(z) is simply ρi times the coefficient of zn−1

in G(z). Therefore, we get

Ui(n) =
ρiC(n − 1)

C(n)
. (9.25)

From this formula we see that Ui(n)/Uj(n) = ρi/ρj , which explains the reason
for calling ρi “relative utilizations.”

By a similar argument, we can obtain an expression for the probability
that there are k or more jobs at node i:

P (Ni ≥ k) =
ρk

i C(n − k)
C(n)

. (9.26)

To get an expression for the average queue length at node i, as a function
of the degree of multiprogramming n, observe that



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 602�

� �

�

602 NETWORKS OF QUEUES

E[Ni(n)] =
n∑

k=1

kP(Ni = k)

=
n∑

k=1

k[P (Ni ≥ k) − P (Ni ≥ k + 1)]

=
n∑

k=1

kP(Ni ≥ k) −
n∑

k=1

kP(Ni ≥ k + 1)

=
n∑

k=1

kP(Ni ≥ k) −
n+1∑
j=2

(j − 1)P (Ni ≥ j)

=
n∑

k=1

kP(Ni ≥ k) −
n+1∑
j=2

jP(Ni ≥ j) +
n+1∑
j=2

P (Ni ≥ j)

= P (Ni ≥ 1) − (n + 1)P (Ni ≥ n + 1) +
n+1∑
j=2

P (Ni ≥ j)

=
n∑

j=1

P (Ni ≥ j)

since P (Ni ≥ n + 1) = 0. Now, using the expression (9.26), we have

E[Ni(n)] =
1

C(n)

n∑
j=1

ρj
iC(n − j). (9.27)

Once again, in order to compute the average queue lengths, only the last
column of the Cj(i) matrix is needed.

Formula (9.27) leads us to an alternative recursive formula for the compu-
tation of C(n). Observe that

m∑
i=0

E[Ni(n)] = n,

so from (9.27) we get

n =
1

C(n)

m∑
i=0

n∑
j=1

ρj
iC(n − j)

and

C(n) =
1
n

n∑
j=1

C(n − j)

[
m∑

i=0

ρj
i

]
(9.28)

with the initial condition C(0) = 1.
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Formula (9.28) requires somewhat more arithmetic operations for its eval-
uation than does formula (9.24), but when many devices have equal ρi values
and m > n, it will be more efficient to precompute the factors

(∑m
i=0 ρj

i

)
above for each j and use formula (9.28).

Example 9.6

Consider a numerical instance of the central server model (Example 9.5) with the
parameters as shown in Table 9.2.

We choose the relative throughput v0 = μ0 = 1
20

(per millisecond). Then
from (9.14) we have, v1 =μ0pi

, and hence v1 = 0.667
20

and v2 = 0.233
20

. The relative
utilizations are then computed to be ρ0 = 1, ρ1 = 1, and ρ2 = 0.5. The values
of C(1), C(2), . . . , C(10) are shown in Table 9.3. We compute the utilizations of
the three nodes, using equation (9.25). Finally the average system throughput is
computed by (in jobs per second):

E[T (n)] = μ0p0
U0(n) =

μ0p0
ρ0C(n − 1)

C(n)
= 5 · C(n − 1)

C(n)
.

The average system throughput as a function of the degree of multiprogramming
(degmul) is shown in Table 9.4 and is plotted in Figure 9.12.

�

Figure 9.12 shows that as the degree of multiprogramming increases, the
average throughput also increases. An increase in the degree of multiprogram-
ming generally implies that additional main memory must be purchased. In
the case of systems employing paged virtual memory, the degree of multipro-
gramming is not inherently limited by the size of the main memory, since a
program is allowed to execute with only part of its address space in the main
memory. For a fixed size of main memory, an increase in the degree of mul-
tiprogramming then implies a reduction in the page allotment per program;

TABLE 9.2. Parameters of Example 9.6

Parameter Symbol Value

Number of I/O channels m 2

Degree of multiprogramming n 1–10

Mean CPU time per burst 1/μ0 20ms

Mean drum time per visit 1/μ1 30ms

Mean disk time per visit 1/μ2 42.918ms

Drum branching probability p
1

0.667

Disk branching probability p
2

0.233

Probability of job completion p
0

0.1
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TABLE 9.3. Computation of the Normalization Constant Ci(j)

j i 0 1 2

1 1 2 2.5

2 1 3 4.25

3 1 4 6.125

4 1 5 8.062

5 1 6 10.031

6 1 7 12.016

7 1 8 14.008

8 1 9 16.004

9 1 10 18.002

10 1 11 20.001

TABLE 9.4. Average System Throughput (Jobs Completed per Second)

Degree of

Multiprogramming

Average system

throughput

n (Jobs/s)

1 2.0

2 2.9412

3 3.4694

4 3.7985

5 4.0187

6 4.1743

7 4.2889

8 4.3764

9 4.4450

10 4.5003
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Figure 9.12. Average system throughput versus degree of multiprogramming

hence an increased frequency of page faults, which will tend to reduce average
system throughput. On the other hand, an increased degree of multiprogram-
ming implies that there is a greater chance of finding a job ready to run (on
the CPU) whenever the currently executing job incurs a page fault. This will
tend to increase the average throughput. The combined effect of these two
conflicting factors on average system throughput is investigated in the next
example.

Example 9.7

Consider a central server network with m = 2 I/O channels. The channel labeled 1 is
a paging disk and the channel labeled 2 is a disk used for file I/O. Other parameters
are specified in Table 9.5.

In this problem we set v0, the relative throughput of the CPU, to be equal to
the average number of visits V0 to the CPU per job. Then ρ0, the relative utilization

TABLE 9.5. Parameters for Example 9.7

Parameter Symbol Value

Number of I/O channels m 2

Degree of multiprogramming n 1–10

Mean total CPU time per job E[B0] 0.06667 s

Mean paging disk service time 1/μ1 10–100 ms

Mean disk service time 1/μ2 50 ms

Average number of paging

disk requests (page faults) per job V1(n) 0.1e(0.415n)

Average number of file I/O

disk requests per job V2 5
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Figure 9.13. Demonstration of the thrashing phenomenon

of the CPU, equals E[B0], the average CPU service requirement per job. Note that
V0 is not even specified here. Also

ρ1(n) = E[B1] =
V1(n)

μ1

is an increasing function of n and

ρ2 = E[B2] =
V2

μ2

= 0.25 s/job.

Figure 9.13 is a three-dimensional plot showing the variation in average system
throughput E[T ] with the degree of multiprogramming n and with the paging disk
service rate μ1. For a fixed value of μ1, E[T ] first increases with n and, after reach-
ing a maximum, starts to drop rather sharply. When n becomes rather large, the
dramatic reduction in average system throughput, known as “thrashing”, occurs.
The reduction in average system throughput can be compensated by an increase
in the paging disk speed, which causes an increase in μ1, as shown in Figure 9.13.
Alternative methods to control thrashing are to purchase more main memory or to
improve program locality so that programs will page fault less frequently at a given
allotment of main memory.

�
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Example 9.8

The central server network discussed in the Example 9.5 may be interpreted from
another viewpoint. Consider a system with n components, each with a powered
failure rate μ0. Standby redundancy is used so that at most one component is in
powered status while the remaining n − 1 components are either in a powered-off
standby status or waiting to be repaired. The failure rate of a powered-off spare
is assumed to be zero. The failures are classified into m + 1 distinct classes with a
conditional probability p

i
for class i. For failures of classes 1, 2, . . . , m, the average

repair time is 1/μi, and failures of each class possess a dedicated repair facility. Fail-
ures of class 0 are transient, so the corresponding machine is returned immediately
to the queue of good standby machines. The probability that at least one machine
is available equals the steady-state availability and is given by formula (9.25):

A0 = ρ0

C(n − 1)

C(n)
.

�

This treatment can be generalized to the case of a closed queuing network
with ci servers of rate μi at node i (i = 0, 1, . . . ,m). If we compute vi and ρi

as before, then the joint probability of ki jobs at node i (i = 0, 1, . . . ,m) is
given by [KLEI 1975]

p(k0, k1, . . . , km) =
1

C(n)

m∏
i=0

ρki
i

βi(ki)
, (9.29)

where
βi(ki) =

{
ki!, ki < ci,

ci!c
ki−ci
i , ki ≥ ci,

and

C(n) =
∑
s∈I

m∏
i=0

ρki
i

βi(ki)
,

where I = {(k0, k1, . . . , km) | ki ≥ 0 and
∑m

i=0 ki = n}. The computation of
C(n) = Cm(n) may be performed using the following recursive scheme [WILL
1976]. For i = 0, 1, . . . ,m, let

ri(k) =

{
ρk

i

βi(k) , k �= 0,

1, k = 0.

Then, for j = 1, 2, . . . , n, let

Ci(j) =

⎧⎨
⎩

r0(j), i = 0,
j∑

k=0

Ci−1(j − k)ri(k), i �= 0,
(9.30)
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TABLE 9.6. Normalization Constant for Load-dependent Servers Ci(j)

j
i · · · i − 1 i · · · , m

0

0 1 2

1 1 1 · · · Ci−1(0) ∗ ri(n) → + . . .

1 r0(1) · · · Ci−1(1) ∗ ri(n − 1) → +

2 r0(2)

3 → +

· · → + ·
· · → + ·
· · → + ·

Ci−1(n − 1) ∗ ri(1) → +

n r0(n) · · · Ci−1(n) → Ci(n) · · · Cm(n)

with the initialization, Ci(0) = 1 for all i. The computation of Ci(n) is
depicted in Table 9.6. A comparison of this table with Table 9.1 illustrates
the greater complexity of the load-dependent case. Also note that, unlike the
previous case, in this case it is necessary to save all the values in column
i − 1 while computing elements of column i. Thus two columns of the matrix,
rather than just one, need to be stored.

A program to compute Ci(j) = C(j), j = 1, 2, . . . , n can be easily written.
Assume that a two-dimensional array C[0..n, 0..1] is declared and two binary
variables PREV and CUR are also declared. The ri(k) values as specified
above are assumed to be precomputed and stored in the two-dimensional
array r[0..m, 0..n]. Program 9.2 (below) computes the desired value C(n) =
C[n,PREV].

Program 9.2 (Normalization Constant Computation for a Closed
Queuing Network with a Single Job Type and Load-Dependent
Servers)

begin
{initialize}

C[0,0] := 1; C[0, 1] := 1;
for j := 1 to n do

C[j, 0] := 0;
PREV := 0; CUR := 1;

{recursion}
for i := 0 to m do
begin
for j := 1 to n do
begin

C[j,CUR] := 0;
for k := 0 to j do

C[j,CUR] := C[j,CUR] + C[j − k,PREV] ∗ r[i, k]
end;



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 609�

� �

�

9.3 CLOSED QUEUING NETWORKS 609

PREV :=1-PREV;
CUR :=1-CUR

end
end.

The expression for the utilization of node i is a bit more complex in this
general case, but for the node with a single server (load-independent service),
the formula

Ui(n) =
ρiC(n − 1)

C(n)

holds even though the nodes other than the ith node may give load-dependent
service [BUZE 1973, WILL 1976].

Example 9.9

Consider a closed queuing network with two nodes. The CPU node is a multiple
server node with the number of processors, c, varying from one to five. The total
service requirement of a typical program on the CPU node is E[B0] = 10 s. The
I/O node is a single server node with the total service requirement E[B1] = 1 s. The
degree of multiprogramming n = 5.

Defining ρ0 = E[B0] and ρ1 = E[B1] we solve for average system throughput,
C(4)/C(5), as a function of the number of processors as shown in Table 9.7. Since
programs are CPU-bound, increasing the number of processors improves average
throughput substantially.

�

Example 9.10 ([TRIV 1978])

Consider the terminal-oriented distributed computing system shown in Figure 9.14.
We use the following abbreviations:

T: the set of terminals

F: front-end interface processor

TABLE 9.7. Results for Example 9.9

Average

throughput

E[T (c)]

Number of

processors

c

0.0999991 1

0.1998464 2

0.2972297 3

0.3821669 4

0.4360478 5
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Figure 9.14. Queuing model of Example 9.10

C: communication processor

D: database management processor

P: principal element processor

The average think time of a terminal user is assumed to be 1/λ. The routing matrix
X is given by

X =

T F C D P

T
F
C
D
P

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
p0 0 p

1
0 0

0 p
2

0 p
3

p
4

0 0 1 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ ,

where

p
0

+ p
1

= 1, p
2

+ p
3

+ p
4

= 1.

Solving for relative throughputs, we get

v
T

= v
F

p
0

v
F

= v
T

+ v
C

p
2

v
C

= v
F

p
1

+ v
D

+ v
P

v
D

= v
C

p
3

v
P

= v
C

p
4
.

Choose v
T

= 1 and then v
F

= 1/p
0
, v

C
= (1 − p

0
)/(p

0
p2), vD

= [(1 − p
0
)p

3
]/(p

0
p2),

and v
P

= [(1 − p
0
)p

4
]/(p

0
p2). Noting that the “service rate” of a terminal, μ

T
, is

given by λ, the device relative utilizations are given by

ρ
T

=
1

λ
, ρ

F
=

1

p
0
μ

F

, ρ
C

=
1 − p

0

p
0
p2μC

,

ρ
D

=
(1 − p

0
)p

3

p
0
p2μD

, ρ
P

=
(1 − p

0
)p

4

p
0
p2μP

.
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24M* = 

E[R]

M

Figure 9.15. Average response time versus number of terminals

(Note that with this choice of v
T

, ρi equals the average service time E[Bi] per
terminal request on device i.) Then, using formula (9.29), we have

p(k
T

, k
F

, k
C

, k
D

, k
P

) =
1

C(M)

(ρ
T
)k

T

k
T
!

(ρ
F

)k
F (ρ

C
)k

C (ρ
D

)k
C (ρ

P
)k

P .

Note that the only node with load-dependent service is the terminal for which
βT (k) = k!, since necessarily k ≤ M , the number of terminals. We can compute
the C(i) values using formula (9.30). Now, since the F node has only one server, we
have

UF = ρ
F

C(M − 1)

C(M)
=

1

p
0
μ

F

C(M − 1)

C(M)
,

and the average throughput E[T ] or the rate of request completion is

E[T ] = μ
F

p
0
UF =

C(M − 1)

C(M)
.

The average response time E[R] can then be found from Little’s formula, applied to
the subsystem enclosed by dashed lines as (E[R] + 1/λ)E[T ] = M , to be

E[R] =
M

E[T ]
− 1

λ
=

M · C(M)

C(M − 1)
− 1

λ
. (9.31)

As a numerical example, let p
0

= 0.8, p
1

= 0.2, p
2

= 0.45833, p
3

= 0.33334, and
p
4

= 0.20833. Let μ
F

= 1.5, μ
C

= 1.0, μ
D

= 0.2, and μ
P

= 0.2. Let the average think
time 1/λ = 15 s (or λ = 0.06667). For this case, the average response time is plotted
as a function of the number of terminals, M , in Figure 9.15.

�

Example 9.11 [MENA 1998]

Consider the HTTP Web browsing model shown in Figure 9.16, which models the
traffic behavior of HTTP requests generated by M clients browsing the Internet. The
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Figure 9.16. Queuing model of Example 9.11

thought process of the clients is represented by node C. When a request is generated,
it first goes through the local area network (LAN) represented by node L, then to
the router represented by node R. The outgoing link modeled by node O connects
the router and the Internet service provider (ISP). Since the link connecting the
router and the ISP is full duplex, a separate incoming link node I is used for the
incoming traffic. The delay at ISP, the Internet, and the remote server is represented
by node IL. The performance measure of interest is the mean response time for a
user to receive the data he/she has asked for.

Suppose that the service requirement at each station could be estimated from
real Internet measurement data as follows:

E[BC ] = 3.33333 s, E[BL] = 0.01884 s, E[BR] = 0.00115 s,

E[BO] = 0.04185 s, E[BIL] = 1.2615 s, E[BI ] = 3.18129 s.

If v
C

is chosen to be equal to the average number of visits VC to node C, then the
relative utilization ρi is equal to Vi/μi = E[Bi], the expected service requirement
imposed by a typical client request on the ith node.

Then, the joint probability is given by

p(k
C

, k
L
, k

R
, k

O
, k

IL
, k

I
) =

1

C(M)

(ρ
C

)k
C

k
C

!
(ρ

L
)k

L (ρ
R

)k
R (ρ

O
)k

O (ρ
IL

)k
IL (ρ

I
)k

I

The utilization at the LAN is

UL = ρ
L

C(M − 1)

C(M)
,

and the average throughput E[T ] or the rate of request completion is

E[T ] =
C(M − 1)

C(M)
.
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Figure 9.17. Average response time versus number of clients

The average response time E[R] can then be found from equation (9.31), which is

E[R] =
M

E[T ]
− 1

λ
=

MC (M)

C(M − 1)
− 1

λ
. (9.32)

The average response time E[R], as a function of the number of clients M , is plotted
in Figure 9.17.

�

More details about the convolution algorithm are given in Bruell and
Balbo [BRUE 1980]. Because the computation of the normalization constant
can cause numerical problems, other techniques were developed that allow
the calculation of the performance measures without using the normalization
constant. One of the most efficient algorithms for calculating performance
measures of closed product-form queuing networks is mean-value analysis
(MVA), developed by Reiser and Lavenberg [REIS 1980]. It is an iterative
technique where the mean values of the performance measures such as the
mean waiting time, throughput, and the mean number of jobs at each node
can be computed directly without computing the normalization constant. It
is the algorithm of choice for networks with only IS (infinite server) and
(load-independent) single server nodes.

The solution involves two simple laws: Little’s formula applied to the over-
all system and the theorem of the distribution at arrival time. The arrival
theorem says that in a closed product-form queuing network, the pmf of the
number of jobs seen at the time of arrival to node i when there are n jobs in
the network is equal to the pmf of the number of jobs at this node with one
less job in the network [SEVC 1981, LAVE 1980].
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We discuss the MVA for product-form single-class closed queuing network
consisting of (m + 1) nodes with n number of total jobs.

The key to MVA is the ability to give a recursive expression for the mean
response time of a node in terms of measures for the network with one less
job. For single server nodes with an FCFS strategy, the average response time
per visit to node i, assuming there are j jobs in the network, is given by

E[Ri(j)] =
1
μi

[1 + E[Ni(j − 1)]], i = 0, 1, . . . ,m. (9.33)

where Ni(j − 1) is the number of jobs at node i, assuming that there are j − 1
jobs in the network. It is clear for node i that the mean response time of a
job in a network with j jobs is given by the mean service time of that job
plus the sum of the mean service times of all jobs that are ahead of this job
in the queue. Equation (9.33) clearly follows from the use of arrival theorem
but it can also be derived without using the arrival theorem. For this purpose,
we use equation (9.25) for computing the utilization, and equation (9.27) for
computing the mean number of jobs. Then

E[Ri(j)] =
E[Ni(j)]
E[Ti(j)]

=
E[Ni(j)]
Ui(j)μi

=
1
μi

(
1 +

∑j
k=2 ρk−1

i C(j − k)
C(j − 1)

)

Now let k = l + 1,

E[Ri(j)] =
1
μi

(
1 +

∑j−1
l=1 ρl

iC(j − l − 1)
C(j − 1)

)

=
1
μi

(1 + E[Ni(j − 1)]).

In the MVA technique, we actually use iteration instead of recursion over
number of jobs starting at 1 and stopping at n. The following two equations
would allow the iteration to proceed. First we would obtain the throughputs
by applying Little’s formula to the mean cycle time, namely, the mean time
between a customer’s arrivals at a queue.

E[T (j)] =
j∑

i

viE[Ri(j)]
. (9.34)
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We would then determine the mean number of jobs at the ith node by using
Little’s formula again:

E[Ni(j)] = E[Ri(j)]viE[T (j)], i = 0, 1, . . . ,m. (9.35)

The three equations, (9.33), (9.34), and (9.35), can be applied iteratively
to compute E[Ri(j)], E[T (j)], and E[Ni(j)], respectively, for any value of
j starting at j = 1 and using the initial condition E[Ni(0)] = 0. Equation
(9.33) is valid for FCFS single-server nodes, PS(processor sharing) nodes, and
LCFS-PR (last come, first served, preemptive resume) nodes. Note that in
the case of IS nodes, equation (9.33) can be easily modified and is given by

E[Ri(j)] =
1
μi

, i = 0, 1, . . . ,m. (9.36)

For the case of multiserver nodes (ci > 1), it is necessary, however, to compute
the marginal probabilities. Let us use πi(k − 1|j − 1) for the probability that
Ni = k − 1 in a network with j − 1 jobs. Then we have

E[Ri(j)] =
j∑

k=1

k

μi(k)
πi(k − 1|j − 1), i = 0, 1, . . . ,m, (9.37)

where μi(k) denotes the service rate of node i given k jobs. To obtain the
queue length pmf, we can use

πi(k|j) =
E[Ti(j)]
μi(k)

πi(k − 1|j − 1),

πi(0|0) = 1,

πi(0|j) = 1 −
j∑

k=1

πi(k|j). (9.38)

Therefore, the mean response time at the ith node can be obtained by induc-
tion and rearrangement of the equations and is given by

E[Ri(j)] =
1

ciμi

[
1 + E[Ni(j − 1)] +

ci−2∑
k=0

(ci − k − 1)πi(k|j − 1)

]
, (9.39)

where

πi(0|j) = 1 − 1
ci

[
E[Ti(j)]

μi

+
ci−1∑
k=1

(ci − k)πi(k|j)
]

,

πi(k|j) =
E[Ti(j)]
μi(k)

πi(k − 1|j − 1).
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The throughput of each node can be computed using the following equation:

E[Ti(j)] = viE[T (j)]. (9.40)

We can derive the other performance measures, such as utilization, mean
waiting time, and mean queue length, from the calculated measures using the
well-known equations.

Now, we shall describe the procedure of computing the state probabil-
ities using the MVA. Akyildiz and Bolch [AKYI 1983] have extended the
MVA for computing the normalization constant and for computing the state
probabilities.

It is known that the expression for the throughput of node i in the
load-dependent or load-independent case is given by

E[Ti(j)] = vi

C(j − 1)
C(j)

, (9.41)

and the expression for the throughput of the network in the load-dependent
or load-independent case is given by

E[T (j)] =
C(j − 1)

C(j)
(9.42)

Substituting the value of E[T (j)], which is computed from equation (9.34),
in this equation, we can find the normalization constant

C(j) =
C(j − 1)
E[T (j)]

, (9.43)

with the initial condition C(0) = 1. Once the iteration stops, we have the nor-
malization constant C(n) that can be used to compute the state probabilities
using equation (9.15).

Example 9.12

Consider the closed queuing network model shown in Fig 9.18 with N = 2 jobs. The
average think time of a terminal (T) is assumed to be 1/μ0 = 1 s. At the second node
(F) we have c1 = 2 identical processors with service rate μ1 = 2. Nodes C and D have
exponentially distributed service times with means 1/μ2 = 0.6 s and 1/μ3 = 0.8 s,
respectively.

The routing matrix X is given by

X =

T F C D
T
F
C
D

⎡
⎢⎢⎣

0 1 0 0
p0 0 p

1
p
2

0 1 0 0
0 1 0 0

⎤
⎥⎥⎦ .
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Figure 9.18. Closed queuing network model of Example 9.12

The routing probabilities are as follows:

p
0

= 0.1, p
1

= 0.4, p
2

= 0.5.

We get the relative throughputs by solving the equation (9.12):

v0 = 1, v1 = 10, v2 = 4, v3 = 5.

We compute the performance measures and normalization constant with the help of
MVA in two steps as follows:

Step 1: Initialization. For i = 0, 1, 2, 3, we obtain

E[Ni(0)] = 0, π1(0|0) = 1, π1(1|0) = 0.

Step 2: Iteration over the number of jobs n = 1 and 2. For n = 1, we compute

E[R0(1)] = 1, E[R1(1)] =
1

c1μ1

[1 + E[N1(0)] + π1(0|0)] = 0.5,

E[R2(1)] =
1

μ2

[1 + E[N2(0)]] = 0.6, E[R3(1)] =
1

μ3

[1 + E[N3(0)]] = 0.8.

From (9.34), we find

E[T (1)] =
1

3∑
i=0

viE[Ri(1)]

= 0.0806.

Substituting the results E[T (1)] and E[Ri(1)] in equation (9.35), we get
E[Ni(1)]:

E[N0(1)] = E[R0(1)]v0E[T (1)] = 0.0806,

E[N1(1)] = E[R1(1)]v1E[T (1)] = 0.43,

E[N2(1)] = E[R2(1)]v2E[T (1)] = 0.1934,

E[N3(1)] = E[R3(1)]v3E[T (1)] = 0.3224.
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Similarly, we can find E[T (n)], E[Ri(n)] and E[Ni(n)] for n = 2 iteratively.
Note that we compute E[R1(n)], n = 1, 2 by using the equation (9.39).
Mean response times are given by

E[R0(2)] = 1, E[R1(2)] = 0.5068,
E[R2(2)] = 0.7160, E[R3(2)] = 1.0579,

and throughput is E[T (2)] = 0.0703. Finally, the mean number of jobs in
each node is given by

E[N0(2)] = 0.0703, E[N1(2)] = 0.3563,
E[N2(2)] = 0.2013, E[N3(2)] = 0.3719.

Substituting the value of E[T (n)], n = 1 and 2 in equation (9.43), we get
the normalization constant of the network and is given by C(2) = 176.4857.
With equation (9.15), we can compute the steady-state probabilities.

�

The MVA algorithm for computing the performance measures of
single-class closed queuing networks can easily be extended to the mul-
ticlass case [REIS 1980]. MVA has been extended to the analysis of
mixed product-form queuing networks [ZAHO 1981]. However, even for
product-form queuing networks, the computational cost of an exact solution
becomes prohibitively expensive as the number of classes, jobs, and nodes
grows. Bard [BARD 1979] first introduced an approximate MVA algorithm,
which is a variant of the exact MVA algorithm for product-form queuing
networks that yields approximate answers with reduced computational
expense. Starting from Bard’s work, numerous approximate MVA algorithms
have been derived for product-form queuing networks [BOLC 1998, WANG
2000].

Problems

1. Solve Example 9.6, choosing the relative throughput v0 = 1/p
0

= 10. Compare
the values of C(n), U0, and E[T ] with those obtained in the text. Next use MVA
to calculate performance measures and compare with the answers obtained using
the convolution algorithm.

2. Let us write the normalization “constant” C(n) as a function of the relative
utilization vector ρ = (ρ0, ρ1, . . . , ρm)–that is, as Cn(ρ). Show that

Cn(aρ) = anCn(ρ).

3. Recall that while dealing with closed queuing networks, the relative throughputs
(and hence, relative utilizations) can be computed within a multiplying constant.
The relative throughput v0 can be chosen arbitrarily. Of course, different choices
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of v0 will result in different values of Cn, Cn−1, . . .. Assume that the first choice
is v0 = μ0, with the corresponding normalization constants Cn, Cn−1, . . .. Now
let v0 = 1 and denote the corresponding sequence of normalization constants by
Mn, Mn−1, . . .. Show that although Ck may not be equal to Mk, the utilization
Ui for each node i has the same final value regardless of what choice of v0 was
made. Do the same for the expressions of average system throughput.

4. Derive a closed-form expression for average system throughput for a closed queu-
ing network under monoprogramming (i.e., n = 1).

5. Given a closed queuing network with a single server at each node and relative
utilizations that are independent of n, show that in the limit as n approaches
infinity, average system throughput is given by

lim
n→∞

E[T (n)] =
vj

Vj

min
i

{ 1

ρi

} = min
i

{ 1

E[Bi]
},

and it is for this reason that the network node with the largest value of E[Bi]
(or the largest relative utilization ρi) is called the “bottleneck” node. Show that
in the limit as n approaches infinity, the real utilization for node i is given by

lim
n→∞

Ui(n) =
ρi

ρb

,

where b is the index of the bottleneck node.

6. Show that for a closed queuing network model of a terminal-oriented system with
all other nodes in the subsystem having single servers, the heavy-load asymptote
to the response time E[R] is given by

E[R](heavy load) = ME [Bb] −
1

λ
,

where b is the index of the bottleneck node. Now show that the saturation number
M∗ is given by

M∗ =

∑
E[Bi] + 1

λ

E[Bb]
.

7. Consider a central server network with two I/O channels and three CPUs. The
average CPU time per program E[B0] is 500 ms, and the average time per pro-
gram on the I/O devices is 175ms and 100ms, respectively. Compute the average
system throughput for the degree of multiprogramming n varying from 1 to 5.
First perform your computations manually, using the structure as in Table 9.6
and next using Program 9.2. Now vary the number of CPU’s from one to three
and study the effect on the average throughput.

8. For a closed network of Example 9.10 with a single server at each node and a total
of three jobs, recalculate the performance measures using mean value analysis.
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9. An interactive system workload measurement showed that the average CPU time
E[B0] per terminal request was 4.6 s and the average disk time per request
was 4.0 s [SEVC 1980]. Since the response time was found to be very large,
two alternative systems were considered for purchase. Compared to the existing
system (denoted ex), one of the proposed systems (denoted tr1) had a CPU 0.9
times as fast and the disk was twice as fast. The alternative system (denoted
tr2) had a CPU 1.5 times as fast as that in ex and a disk twice as fast. Decide
whether a change from ex to tr1 can be recommended (assuming first that tr2
is intolerably expensive), first on the basis of asymptotic bounds analysis as in
problem 6 and then by exactly computing the response times for the two cases as
functions of the number of terminals. Next, assuming that tr2 is affordable, show
how much reduction in response time is possible as a function of the number of
terminals.

9.4 GENERAL SERVICE DISTRIBUTION AND MULTIPLE
JOB TYPES

More general queuing network models that overcome many of the restrictions
of the models mentioned earlier have been formulated and have been found to
have a product-form solution [AKYI 1987, BOLC 1998, CHAN 1977, CHAN
1980, CHAN 1983]. For example, any differentiable service time distribution
can be allowed at a node, provided that the scheduling discipline at the node
is PS (processor sharing) or LCFS-PR (last come, first served, preemptive
resume). Any differentiable service time distribution can also be allowed at
a node with ample servers (so that no queuing is needed). Networks with
multiple job types can also be analyzed. We will consider several examples of
these more general models. For additional details, consult the references cited
in this section.

Example 9.13

Consider an example of the cyclic queuing model of Figure 9.9 in which p
0

= 0. We
assume that the I/O service times are exponentially distributed with parameter λ,
but the CPU service times are hyperexponentially distributed with two phases so
that its pdf is

f(t) = α1μ1e
−μ1t + α2μ2e

−μ2t. (9.44)

Let k, the number of jobs in the CPU node, denote the state of the system so that the
state space is {0, 1, . . . , n}. The corresponding stochastic process is not Markovian,
since the future behavior of the process depends not only on the current state but
also on the time spent on the CPU by the job undergoing service (assuming that
k > 0). If this time is denoted by τ , then we need to consider (k, τ) as the state of
the system, and the corresponding state space is nondenumerable.

We can avoid the difficulty, however, by observing that the job at the CPU will
be in one of two alternative phases, as shown in Figure 9.19, where a job scheduled
for the CPU chooses phase i with probability αi. We further simplify this discussion
by considering only two jobs in the network, and we assume that the CPU schedul-
ing discipline is processor sharing (PS). This discipline is a limiting case of the
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Figure 9.19. Two-phase hyperexponential CPU service time distribution
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Figure 9.20. State diagram for the system of Example 9.13

quantum-oriented RR (round robin) discipline, where the quantum size is allowed
to approach zero. As a result, the CPU is equally shared among all the jobs in the
CPU queue. Thus, if there are k jobs in the queue, each job perceives the CPU to
be slower by a factor k.

If the state of the system is (i, j) then i jobs are in the first phase of the CPU
execution and j jobs in the second. Clearly, i ≥ 0, j ≥ 0 and i + j ≤ 2. The state
space is thus {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)}. The state diagram is shown in
Figure 9.20. Since all interevent times are now exponentially distributed, we have a
homogeneous CTMC. When the job finishes execution on the I/O device, it selects
one of the two CPU phases with respective probabilities α1 and α2. When the system
is in state (1, 1), two jobs are in the CPU queue, each of which perceives a CPU of
half the speed. Thus the job in phase 1 completes its CPU burst requirement with
rate μ1/2, and similarly for the other job.

Balance equations in the steady state are written as

λp(0, 0) = μ1p(1, 0) + μ2p(0, 1),

(μ1 + λ)p(1, 0) = μ1p(2, 0) + α1p(0, 0) +
μ2

2
p(1, 1),
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(μ2 + λ)p(0, 1) = μ2p(0, 2) + α2p(0, 0) +
μ1

2
p(1, 1),

μ1p(2, 0) = λα1p(1, 0),

μ2p(0, 2) = λα2p(0, 1),

μ1 + μ2

2
p(1, 1) = λα1p(0, 1) + λα2p(1, 0).

The reader should verify by substitution that a parametric solution of these
equations is

p(1, 0) =
λα1

μ1

p(0, 0),

p(0, 1) =
λα2

μ2

p(0, 0),

p(0, 2) = (
λα2

μ2

)2p(0, 0), (9.45)

p(2, 0) = (
λα1

μ1

)2p(0, 0),

p(1, 1) =
2(λα1)(λα2)

μ1μ2

p(0, 0).

Now, using the normalization condition

p(0, 0) + p(1, 0) + p(0, 1) + p(2, 0) + p(0, 2) + p(1, 1) = 1,

we can compute p(0, 0).
Suppose that we want to pursue a reduced description of the system in which

state 1 of the reduced version corresponds to the union of original states (1, 0) and
(0, 1), and state 2 is the union of original states (2, 0), (0, 2) and (1, 1). Therefore:

p(0) = p(0, 0),

p(1) = p(1, 0) + p(0, 1),

and

p(2) = p(2, 0) + p(0, 2) + p(1, 1).

From equations (9.45) we get

p(1) = λ

(
α1

μ1

+
α2

μ2

)
p(0), (9.46)

p(2) = λ2

(
α1

μ1

+
α2

μ2

)2

p(0).
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TABLE 9.8. Networks with Product-form Solutions

Scheduling discipline

at node i

Service time distribution

at node i

FCFS Exponential

PS Coxian phase type

LCFS-PR Coxian phase type

IS Coxian phase type

Let 1/μ = α1/μ1 + α2/μ2 be the average CPU service time per visit to the CPU.
Then the preceding equations are the special case of birth–death recursions, and the
system has the well-known product-form solution.

�

The argument presented in Example 9.13 above can be generalized to show
that the product-form solution of Sections 9.2 and 9.3 is valid for a queuing
network under the conditions shown in Table 9.8. Chandy and others [CHAN
1977] have further generalized these cases.

Now that we have considered an example of a network with nonexponential
service time distribution, we turn our attention to queuing network models
that support multiple job classes.

Example 9.14

Consider a central server network with three nodes (one CPU node labeled 0 and
two I/O nodes labeled 1 and 2). Let the number of jobs in the network be n = 2.
These jobs are labeled 1 and 2. Job 1 does not access I/O node 2, and job 2 does not
access I/O node 1. The mean service time of job 1 on CPU is 1/μ1, and that of job
2 is 1/μ2. The mean I/O service time of job 1 on device 1 is 1/λ1, and that of job 2
on device 2 is 1/λ2. For simplicity we assume that there is no new program path, so
that a job completing a CPU burst enters its respective I/O node with probability
1. Assume that the CPU scheduling discipline is PS.

Define the state of the system as a triple (k0, k1, k2) where for i = 0, 1, 2, ki is
the number of jobs at node i. The state diagram is shown in Figure 9.21. From the
state diagram we obtain the following balance equations:

μ1 + μ2

2
p(2, 0, 0) = λ1p(1, 1, 0) + λ2p(1, 0, 1),

(λ1 + μ2)p(1, 1, 0) = λ2p(0, 1, 1) +
μ1

2
p(2, 0, 0),

(λ2 + μ1)p(1, 0, 1) = λ1p(0, 1, 1) +
μ2

2
p(2, 0, 0),

(λ1 + λ2)p(0, 1, 1) = μ1p(1, 0, 1) + μ2p(1, 1, 0). (9.47)



Trim Size: 6.125in x 9.25in 60Trivedi c09.tex V3 - 05/23/2016 12:12pm Page 624�

� �

�

624 NETWORKS OF QUEUES

μ1

μ2

λ1

λ2

λ1

λ2

μ1/2

μ2 /2

2, 0, 0

1, 0, 1 0, 1, 1

1, 1, 0

Figure 9.21. The state diagram for the central server network with two job types

The solution to this system of linear equations is easily seen to be

p(2, 0, 0) =
1

C

2

μ1μ2

,

p(1, 1, 0) =
1

C

1

λ1μ2

,

p(1, 0, 1) =
1

C

1

λ2μ1

,

p(0, 1, 1) =
1

C

1

λ1λ2

, (9.48)

where the normalization constant C is evaluated by using the condition:

p(2, 0, 0) + p(1, 1, 0) + p(1, 0, 1) + p(0, 1, 1) = 1

as

C =
2

μ1μ2

+
1

λ1μ2

+
1

μ1λ2

+
1

λ1λ2

. (9.49)

The utilization of I/O device 1 is

U1 = p(1, 1, 0) + p(0, 1, 1) =
1

C

1

λ1

[
1

μ2

+
1

λ2

]

and that of I/O device 2 is

U2 = p(1, 0, 1) + p(0, 1, 1) =
1

C

1

λ2

[
1

μ1

+
1

λ1

]
.

The average throughput of type 1 jobs is therefore

E[T1] = U1λ1 =
1

C

[
1

μ2

+
1

λ2

]
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and that of type 2 jobs is

E[T2] = U2λ2 =
1

C

[
1

μ1

+
1

λ1

]
.

�
We can generalize this simple example by considering a closed network

with r classes of customers [BASK 1975, CHAN 1977]. A class t customer has
a routing matrix Xt, and its service rate at node i is denoted by μit . First we
solve for the visit counts vit by solving the traffic equations (9.16) for each
t = 1, 2, . . . , r.

We admit four different types of service at a node. Node i is said to be
a type 1 node if it has a single server with exponentially distributed service
times, FCFS scheduling, and identical service rates for all job types (i.e.,
μit = μi for all t). A node is said to be of type 2 if it has a single server,
PS scheduling, and a service time distribution that is differentiable. Each job
type may have a distinct service time distribution. Node i is said to be a type
3 node if it has an ample number of servers so that no queue ever forms at
the node. Any differentiable service time distribution is allowed, and each job
type may have a distinct service time distribution. Finally, a node is said to be
of type 4 if it has a single server with LCFS-PR scheduling. Any differentiable
service time distribution is allowed, and each job type may have a distinct
service time distribution.

Let kit be the number of jobs of type t at node i. Assume that there are
nt jobs of type t in the network so that we have

m∑
i=0

kit = nt for each t.

Define vector Yi by

Yi = (ki1, ki2, . . . , kit),

so that (Y0,Y1, . . . ,Ym) is a state of the system. Let ki =
∑r

t=1 kit be the
total number of jobs at node i. The steady-state joint probability of such a
state is given by [BASK 1975, CHAN 1977]

p(Y0,Y1, . . . ,Ym) =
1

C(n1, n2, . . . , nr)

m∏
i=0

gi(Yi), (9.50)

where

gi(Yi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ki!
r∏

t=1

1
(kit )!

(vit)
kit ( 1

μi
)ki , node i is type 1,

ki!
r∏

t=1

1
(kit )!

[ vit

μit
]kit , node i is type 2 or 4,

r∏
t=1

1
(kit )!

[ vit

μit
]kit , node i is type 3.
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Define the relative utilization of node i due to jobs of type t by

ρit =
vit

μit

. (9.51)

Then the real utilization of node i (of type 1, 2, or 4) due to jobs of type t is
given by [WILL 1976]

Uit =
ρitC(n1, n2, . . . , nt−1, nt − 1, nt+1, . . . , nr)

C(n1, n2, . . . , nt−1, nt, nt+1, . . . , nr)
, (9.52)

and the utilization of node i is given by

Ui =
r∑

t=1

Uit . (9.53)

Assuming that all nodes are of type 1, 2, or 4, a recursive formula for the
computation of the normalization constant C is derived in a way analogous
to the single-job type case:

C(n1, n2, . . . , nr) = Cm(n1, n2, . . . , nr),

where for i = 1, 2, . . . ,m, and for jt = 1, 2, . . . , nt:

Ci(j1, j2, . . . , jr) = Ci−1(j1, j2, . . . , jr) (9.54)

+
r∑

t=1
jt �=0

ρitCi(j1, j2, . . . , jt−1, jt − 1, jt+1, . . . , jr)

with the initial conditions

C0(j1, j2, . . . , jr) =
(j1 + j2 + . . . + jr)!

j1!j2! . . . jr!

r∏
t=1

ρjt

0t

and
Ci(0, 0, . . . , 0) = 1.

Computational techniques for product-form networks have been discussed
in the literature [BOLC 1998, CONW 1989], and reports on further theoretical
development are also available [LAM 1977, KELL 1979, VAND 1993].

As with a single-job type, we can define the relative utilizations ρit =
E[Bit ], the total service requirement of type t job on server i. In this case,
the routing matrices Xt need not be specified and visit counts need not be
computed.
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Example 9.15

A database server processes three types of jobs. Jobs of type 1 are I/O-bound; in
order to complete execution, they need 1 s of CPU time (i.e., E[B01] = 1), 10 s of I/O
time, and one unit of main memory. Jobs of type 2 are balanced; they need 10 s each
of CPU and I/O, and two units of main memory. Jobs of type 3 are CPU-bound;
they consume 100 s of CPU time, 10 s of I/O time, and five units of main memory.

The total main memory available for user allocation is 10 units. Therefore, we
can admit either (one job of type 1, two jobs of type 2, and one job of type 3) or
(three jobs of type 1, one job of type 2, and one job of type 3) in the active set.
Evaluate the effects of the two choices.

We can let
ρ01 = E[B01] = 1, ρ11 = E[B11] = 10,
ρ02 = E[B02] = 10, ρ12 = E[B12] = 10,
ρ03 = E[B03] = 100, ρ13 = E[B13] = 10.

For the first case with n1 = 1, n2 = 2, and n3 = 1, we compute the following using
formula (9.54):

C1(1, 2, 1) = 1, 410, 000,
C1(0, 2, 1) = 66, 000,
C1(1, 1, 1) = 56, 400,
C1(1, 2, 0) = 6, 600.

Now the average throughputs by class in jobs per second are computed to be

E[T1] =
C1(0, 2, 1)

C1(1, 2, 1)
= 0.04681,

E[T2] =
C1(1, 1, 1)

C1(1, 2, 1)
= 0.04,

E[T3] =
C1(1, 2, 0)

C1(1, 2, 1)
= 0.004681.

For the second alternative, where n1 = 3, n2 = 1, and n3 = 1, we have

E[T1] =
C1(2, 1, 1)

C1(3, 1, 1)
= 0.07758,

E[T2] =
C1(3, 0, 1)

C1(3, 1, 1)
= 0.01667,

E[T3] =
C1(3, 1, 0)

C1(3, 1, 1)
= 0.0055569.

We notice that with the second choice, the average throughput of class 1 jobs has
gone up considerably at the expense of class 2 jobs.

�

Problems

1. Consider a special case of an M/G/1 queue with PS scheduling discipline and an
arrival rate λ. The Laplace-Stieltjes transform of the service time B is given by

LB(s) = b

(
μ1

s + μ1

)
+ (1 − b)

(
μ1

s + μ1

)(
μ2

s + μ2

)
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with 0 ≤ b ≤ 1. For instance, if b = 0, we have a two-stage hypoexponential dis-
tribution (Erlang, if μ1 = μ2); if b = 1, we have an exponential distribution; and
if b = p

1
+ p

2
μ2/μ1 (where p

1
+ p

2
= 1), we have a two-stage hyperexponential

service time distribution. Draw the state diagram of the system, write down the
steady-state balance equations, and proceed to show that the steady-state prob-
ability of n jobs in the system has the product-form solution, identical to the
M/M/1 FCFS solution.

2. Consider a mixed interactive–batch system with 30 terminals, each with an
average think time of 15 s. The mean disk service time is 20ms, and the disk
scheduling algorithm is FCFS. An interactive job makes an average of 30 disk
requests and a batch job an average of 10 disk requests. The average CPU require-
ment (E[B0, batch]) of a batch job is 5 s while that of a terminal user is 0.4 s. A
round robin (RR) CPU scheduling algorithm with a small enough time quantum
is employed so that the use of PS approximation is considered adequate. Deter-
mine the effect of the degree of multiprogramming of batch jobs on the average
response time and batch throughput varying batch multiprogramming level from
0 to 10 (assuming that such a variation is permissible). The actual size of main
memory will support a batch multiprogramming level of 1. In order to improve
batch throughput, three alternatives are being considered:

(a) Adding main memory so that batch multiprogramming level can be
increased up to 5.

(b) Purchasing a new CPU with a speed improvement factor of 1.4.

(c) Adding another disk of the same type.

For each alternative, calculate the resulting improvement in batch throughput
and the positive or adverse effect on the terminal response time.

9.5 NON-PRODUCT-FORM NETWORKS

Few useful queuing network models possess the properties required for a
product-form solution. One such example is the network of Figure 9.7, where a
job may hold one of the active resources (CPU or I/O device) simultaneously
with a partition of main memory. One possible method of solution is to draw
the state transition diagram of the CTMC, write down the balance equations,
and proceed to solve them [BOLC 1998, SAHN 1996]. As an illustration, sup-
pose that in Example 9.13 we require that CPU scheduling is FCFS rather
than PS. Then it can be shown that the resulting network does not have a
product-form solution, but the network can be represented by a CTMC and
its steady-state solution obtained either directly or via the use of SPNs as
discussed in Chapter 8. Nevertheless, this procedure is usually a formidable
task, owing to the size of the state space.

Approximate solution techniques are applicable in many cases. Detailed
expositions on approximation techniques may be found in the literature [7, 22,
48, 50]. We now illustrate approximation techniques based on a hierarchical
(or multi-level) model by several examples.
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Job queue

Equivalent server

λ

Figure 9.22. Equivalent server queuing system

Example 9.16

Returning to the queuing system shown in Figure 9.7, suppose that we represent
the CPU-I/O subsystem by one equivalent server as seen by the job scheduler
(see Figure 9.22). The service rate of this equivalent server is obtained from a closed
version of the central server model (Figure 9.8); specifically, the average throughput
of the central server model determines the service rate of the equivalent server. Since
the average throughput depends on the degree of multiprogramming, the equivalent
server has load-dependent service rates given by

γi = E[T (i)], 1 ≤ i < n,

γi = E[T (n)], i ≥ n, (9.55)

where n is the upper bound on the degree of multiprogramming. Once the average
throughput vector (E[T (1)], E[T (2)], . . . , E[T (n)]) of the inner model is obtained,
the outer model is recognized as a birth–death process with a constant birth rate λ
and the death rates specified by equation (9.55).

Recall from our discussion of birth–death processes in Chapter 8 that if πi is the
steady-state probability that i jobs reside in the queuing system (of Figure 9.22),
we have (assume that λE[T (n)] < 1 for stability)

πi =
λ

γi

πi−1, i ≥ 1,

=
λi∏i

j=1 γj

π0

or

πi =

⎧⎨
⎩

λi
∏i

j=1 E[T (j)]
π0, 1 ≤ i < n,

λi

(E[T (n)])i−n
∏n

j=1 E[T (j)]
π0, i ≥ n.

From this, π0 and E[N ] =
∑∞

i=0 iπi are determined as

1

π0

= 1 +
n∑

i=1

λi

i∏
j=1

E[T (j)]

+
∞∑

i=n+1

λi

(E[T (n)])i−n
n∏

j=1

E[T (j)]

= 1 +
n∑

i=1

λi

i∏
j=1

E[T (j)]

+
1

n∏
j=1

E[T (j)]

λn+1

E[T (n)] − λ
,
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λ (arriv
al rate)

E [R](average response time)

n (number of partitions)

Figure 9.23. The behavior of the average response time as a function of the number
of partitions and the arrival rate

E[N ] = π0

⎡
⎢⎢⎢⎣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

iλi

i∏
j=1

E[T (j)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+
1

n∏
i=1

E[T (i)]

λn+1

E[T (n)] − λ

·
{

n + 1 +
λ

E[T (n)] − λ

}]
.

Once we have computed E[N ], the average number of jobs in the system, we can
determine the average response time E[R] by using Little’s formula:

E[R] =
E[N ]

λ
.

In Figure 9.23 we have plotted the average response time, E[R], as a function of
the number of allowable partitions, n, and of the arrival rate λ. Various parameters
of the system are specified in Table 9.9.

�
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TABLE 9.9. Parameters for Example 9.16

Parameter Symbol Value

Number of I/O channels m 2

Degree of multiprogramming n 1–10

Branching probabilities p
0

0.1

p
1

0.7

p
2

0.2

CPU service rate μ0 1

Drum service rate μ1 0.5

Disk service rate μ2 0.3

Arrival rate λ 0.01–0.03

The approximation technique illustrated in Example 9.16 was developed
by Chandy et al. [CHAN 1975] and is generally referred to in the literature as
the flow-equivalent server method. The primary justification for this method
is that it can be shown to yield exact results when applied to product-form
networks [SAUE 1981]. Errors incurred in applying this technique to
non-product-form networks are discussed by Tripathi [TRIP 1979], who also
proposed methods of adjusting flow-equivalent server to account for the
errors. The following example illustrates the nature of some of these errors.

Example 9.17

Consider the queuing network of Example 9.16 with the restriction that the number
of partitions n = 1. The approximation technique of Example 9.16 will then imply
that the equivalent server has load-independent service time, hence the reduced
network is an M/M/1 queue. However, the actual “overall” service time of a job
is composed of many exponential stages and will have a general distribution. To
perform an exact analysis of this network, we can consider the system as an M/G/1
queue. In order to apply the P-K (Pollaczek–Khinchin) mean-value formula (7.60),
we must compute the second moment of the service time distribution.

Each individual job can be seen to execute the following program.

Program 9.3 (Convolution Algorithm)

begin
COMP ;
while B do
begin
case i of
1: I/O1;
2: I/O2;
...
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m: I/Om
end;
COMP

end
end.

However, this is precisely the program we analyzed in Chapter 5 (Example 5.24),
where we derived an expression for the second moment E[S2] [equation (5.67)]. Then,
using the M/G/1 formula (7.60), we obtain the average queue length E[N ], whence,
using Little’s result, we get the average response time E[R]. Note that with this
analysis, service time distribution at each individual server is allowed to be general.
We consider the system whose parameters are specified in Table 9.9 and compute
the average response time with n = 1 using the M/G/1 formula. The M/G/1 results
and the M/M/1 results (as in Example 9.16) are compared in Table 9.10. Both sets
of results correspond fairly well because σ

S
= (E[S2] − (E[S])2)1/2 = 32.26 while

E[S] = 30.667, implying that the coefficient of variation CS � 1, and thus the overall
service time distribution is close to exponential in this case.

�

Example 9.18

Next, consider a model of a terminal-oriented system shown in Figure 9.24. In this
model, the number of active jobs concurrently sharing main memory is limited by n,
the number of partitions. Whenever more than n terminal requests are pending, the
remaining jobs will have to queue up for memory. The resulting queuing network
model does not belong to the product-form class.

One method to solve the problem is to construct the underlying homogeneous
CTMC. To simplify the task of constructing the state space, we use the SRN,
which was introduced in Section 8.7. Figure 9.25 shows the SRN model for this
problem. The enabling of tenter is controlled by its guard function [g] = (#PCPU +∑m

i=1 #PI/Oi < n). To obtain system throughput, we define the reward rate:

rsysthrou = p
0
· rate(TCPU)

The expected steady-state reward rate will then yield the system throughput. Using
Little’s formula, we can obtain the mean response time:

E[R] =
M − E[#Preq]

systhrou

TABLE 9.10. E[R]

λ

0.01 0.02 0.025 0.03

M/G/1 44.9556 81.9097 136.8145 402.2165

M/M/1 44.2315 79.3126 131.4347 383.3854
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Figure 9.24. A terminal-oriented system with a limited number of memory partitions

#

M

.  
.  

.

Treq

tenter tfinish

TCPU

tI/O1

tI/Om

TI/O1

TI/O1

Pwait Preq

PCPU
Pbranch

PI/O1

PI/Om

λ

μ0

μ1

μm

p0

p1

p
m

[g]

Figure 9.25. SRN model of terminal-oriented system with limited memory
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TABLE 9.11. Parameters of Figure 9.24

CPU I/O1 I/O2 I/O3

μi 89.3 44.6 26.8 13.4

p
i

0.05 0.5 0.3 0.15

TABLE 9.12. The numbers of states and the numbers of nonzero entries

in the Q matrix when n = 4 and m = 3

M

10 20 30 40 50 60

# states 616 1526 2436 3346 4256 5166

# entries 3440 8800 14160 19520 24880 30240

Then, with the help of SPNP, we can obtain numerical results with the parameters
given in Table 9.11. In Table 9.12, we provide the number of states and number of
non-zero entries in the Q matrix of the underlying CTMC.

Next, we resort to an approximation technique to solve this problem (as in
Example 9.16). First we replace the terminal subsystem with a short circuit and
compute the average throughput of the resulting central server network as a function
of the number of jobs in the network. We denote this average throughput vector by
(E[T (1)], E[T (2)], . . . , E[T (n)]). Now we replace the central server subnetwork by
an equivalent server, as shown in Figure 9.26.

The stochastic process corresponding to the model of Figure 9.26 is a birth–death
process with the following birth rates

λi = (M − i)λ, i = 0, 1, . . . , M

and death rates:

γi =

{
E[T (i)], i = 1, 2, . . . , n,
E[T (n)], i > n.

Here 1/λ is the average think time of the terminal users. It follows that the proba-
bility that the equivalent server is idle (denoted by π0) can be obtained by equation
(8.32) as

π0 =
1

1 +
M∑

k=1

λkM !
k∏

j=1

γj(M − k)!

,
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1

M

Equivalent server

...
Figure 9.26. Upper level model

TABLE 9.13. Comparing the Exact and Approximate Values of Mean

Response Time

M

10 20 30 40 50 60

E[R] 1.023 1.22 1.54 2.23 3.84 6.78

E[R̃] 1.023 1.23 1.64 2.62 5.10 7.03

E[R̂] 1.023 1.21 1.46 1.82 2.35 3.11

also

πi =
λi

(M − i)!

M !
i∏

j=1

γj

π0, i = 1, 2, . . . , M.

The expected throughput, E[T ], of the equivalent server is obtained from

E[T ] =
M∑

i=1

πiγi =
n∑

i=1

πiE[T (i)] + E[T (n)]
M∑

i=n+1

πi.

Finally, the average response time E[R̃] is computed from

E[R̃] =
M

E[T ]
− 1

λ
.

As a numerical example, let the average think time 1/λ = 15 s, and let other system
parameters be as shown in Table 9.11, where m = 3. Assuming that n, the maximum
number of programs allowed in the active set, is 4, we obtain the response time E[R̃]
as a function of the number of terminals M (see Table 9.13). E[R̂] denotes the value
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E [R] (average reponse time)

n (number of partitions)
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Figure 9.27. Plot of average response time for Example 9.18

of average response time, assuming that the main memory is large enough that no
waiting in the job queue is required; that is, n ≥ M . Sometimes, E[R̂] is used as
an approximation to E[R], but this example indicates that this approximation can
be quite poor. In the table we also provide the exact result using the SRN method
discussed earlier.

Figure 9.27 is a three-dimensional plot of the average response time as a function
of the number of terminals M and the number of partitions n. We see that increasing
n beyond 6 or 7 does not significantly reduce the response time. For instance, with
M = 40 and n = 8, we have E[R̃] = 1.86 while E[R̂] = 1.82.

�

Example 9.19

Let us return to the two-node system with multiple processors discussed in
Example 9.9. Assume that the failure rate of the I/O device is practically zero while
the failure rate of each CPU is λ = 10−4 failures per hour. Initially the system
begins operation with five processors, and it continues to operate in a degraded
mode in the face of processor failures until all processors have failed. The random
time to failure X of the system is composed of five phases:

X = X1 + X2 + · · · + X5,
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where the end of each phase marks the failure of a processor. From our discussion
of reliability models we know that

Xk ∼ EXP [(6 − k)λ].

Let Wk denote the number of jobs completed in phase k. Then the total number of
jobs completed before system failure is

W =
5∑

i=1

Wk.

Noting that the frequency of processor–I/O interactions is several orders of magni-
tude higher than the frequency of failure events, we may assume that the system
reaches steady state long before the next failure. In this case

Wk � E[T (6 − k)] · Xk.

From this we compute the mean number of jobs completed before system failure as

E[W ] =

5∑
k=1

E[Wk] � E[T (6 − k)] · E[Xk]

=

5∑
k=1

E[T (6 − k)]

(6 − k)λ

=
0.4817419

λ

= 17, 342, 708 jobs,

using the results of Example 9.9 (Table 9.7).
Since the method discussed so far is approximate, we now carry out an exact

analysis to assess the approximation error. The exact method to solve the problem
is to construct the underlying homogeneous CTMC. Again, SRN can be used to
construct the state space. Figure 9.28 shows the SRN model for this problem.

After generating the reachability graph of the SRN model and elimilating van-
ishing markings, we can get the CTMC model shown in Figure 9.29. In the CTMC
model, state index is defined as (jobs in cpu, available processors) and state 0 is the
absorbing state.

Using SHARPE, we can obtain expected accumulated reward until absorption:

E[Y (∞)] = 17, 343, 008 jobs.

It is interesting to investigate an alternative mode of system operation where only
one CPU is active at one time while the remaining nonfaulty CPUs are in standby
status. Now the average throughput is 0.099991 = E[T (1)] until the time to system
failure. Since system MTTF is 5 · 104 h, the expected number of jobs completed
before system crash is actually somewhat larger, equal to 17,999,838 jobs! However,
the first system organization will provide better response time until it is degraded
to one CPU. The technique illustrated here has been formalized under the topic of
perfomability modeling [HAVE 2001].

�
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Figure 9.28. SRN model of the two-node system with multiple processors
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Figure 9.29. CTMC model for the two-node system with multiple processors
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Problems

1. * Reconsider Example 9.16. We wish to study the behavior of the average
response time E[R] as a function of the degree of multiprogramming n.
Decompose E[R] into three parts:

E[R] = E[Req ] + E[Riq ] + E[Rp],

where E[Req ] is the average time in the job queue (external queuing time),
E[Riq ] is the average queuing time in the queues internal to the CPU-I/O subsys-
tem, and E[Rp] is the average processing time on the servers in the subsystem.
Derive expressions for E[Req ], E[Riq ], and E[Rp]. Note that E[Riq ] + E[Rp] is
the average time spent by a job in the subsystem. For the parameters specified
in Table 9.9, plot E[Req ], E[Riq ], E[Rp], and E[R] as functions of n on the same
graph paper. Give intuitive explanations for the shapes of these curves.

2. Consider the interactive system shown in Figure 9.P.2 (note that the topology is
slightly different from that in Figure 9.24).

CPU MIPS rate = 1000

Number of instructions between two successive I/O requests = 2,000,000

Total number of instructions per program = 40,000,000

1/μ2 = 5 ms, 1/μ1 = 0.8 ms.

Average think time = 5 s

Maximal degree of multiprogramming = 4.

Compute the average response time of the system first using the flow-equivalent
server approximation and then exactly by first constructing a GSPN (or SRN)
model of the system and then solving exactly using the SPNP software package.

1

CPU

...

0.2

20 terminals

0.05

0.05

0.8

JobQ

I/O

I/O

0.95

0.95

2

Figure 9.P.2. Another terminal-oriented system
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3. Refer to Dowdy et al. [DOWD 1979]. Consider a closed central server model
with two I/O channels with respective rates 5 s−1 and 3 s−1. The CPU service
rate is 7 s−1, and the branching probabilities are p

0
= 0.05, p

1
= 0.65, and p

2
=

0.3. If the degree of multiprogramming is fixed, then the given network has a
product-form solution as specified in Section 9.3. In practice, however, the degree
of multiprogramming varies. Let the degree of multiprogramming N be a random
variable. Compute and plot the average system throughput as a function of the
average degree of multiprogramming E[N ] (varying from 1 to 10), assuming:

(a) N is a constant random variable with value E[N ].

(b) N takes two different values: N = E[N ] − 1 with probability 0.5 and
N = E[N ] + 1 with probability 0.5.

(c) N is Poisson distributed with parameter E[N ].

(d) N is binomially distributed with parameters 2E[N ] and 1
2
.

(e) N has a discrete uniform distribution over {0, 1, 2, . . . , 2E[N ]}.
(f) N takes two values: N = 0 with probability 0.5 and N = 2E[N ] with prob-

ability 0.5.

4. It can be shown that the procedure using the flow-equivalent server method
gives exact results when applied to a queuing network belonging to the
product-form class. Note that the interactive system model of Example 9.18
will be a product-form network if the number of partitions n ≥ M . In this case,
apply the technique [formula (9.29)] developed in Section 9.3 and compute the
average response time E[R] as a function of M . Now compute E[R] using the
procedure applied in Example 9.18 and compare the results.

5. Modify the problem of Example 9.18 so that the I/O device labeled 1 is a paging

device. It is convenient to reparameterize the problem assuming vterminal-node

= 1. Then ρ0 = E[B0] = 0.223964 s, and V2 = 6, V3 = 3, and V1(n) are computed

assuming the following page-fault characteristics of programs:

Number of page faults, V1 13 13 162 235 240 300 900

Page allotment 25 12 6 5 4 3 2

Compute the average response time E[R] as a function of the number of terminals
M and the number of partitions n, assuming the total pageable memory is 50
page frames. Suppose now that we purchase a paging device with an average
service time of 10 ms. Recompute E[R] and compare with earlier results.

6. Compare three methods of solving the network in Example 9.18: (a) the approx-
imation technique discussed in the example, (b) an exact solution obtained using
stochastic reward nets (and SPNP software), and (c) using discrete-event simula-
tion. Compare the three methods for their accuracy, execution time, and storage
space needed.

7. Repeat the comparison of three methods for the network of Example 9.16.

8. Consider another approximate solution technique for the system of Example
9.18. Specifically, the equivalent server in Figure 9.26 is assumed to have a
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load-independent service rate given by E[T (n)], the average throughput of the
subsystem at the maximal degree of multiprogramming. The resulting system
was studied in Example 8.13. Let the average response time thus obtained be
denoted by E[R̂]. Compare the results obtained with those in Table 9.13. (Notice
that the approximation E[R̂] will be good under heavy-load conditions, i.e., that
is, M >> n.)

9. Resolve Example 9.6 using flow-equivalent server method by first short-circuiting
the CPU and determining the characteristics of the composite I/O server. Next
solve a cyclic queuing network with a CPU and the composite I/O server (whose
service rate is queue-size-dependent). Compare your answers with those obtained
in the text.

9.6 COMPUTING RESPONSE TIME DISTRIBUTION

Closed-form solutions have been derived for the (Laplace–Stieltjes transform
of) response time distributions through a particular path in open product-form
queuing networks [SCHA 1987]. However, numerical inversion of the LST
is a difficult numerical problem. Many results exist for response time dis-
tributions for networks with specific topological structures such as tandem,
central server, and single queue with feedback. The communications litera-
ture also shows a focus on end-to-end packet delay in tandem-type queuing
networks, with characteristics specific to communication systems. However,
it is very difficult to derive exact closed-form solutions for networks with
even slightly nonrestrictive topology and service and arrival characteristics.
For closed Markovian networks, we advocate using a numerical solution tech-
nique via the use of SPNs [MUPP 1994]. For open networks we discuss an
approximate numerical solution technique.

There are methods of approximating the distribution that can give good
results with much less effort. One such method uses the original network and
the knowledge of the response time distribution of its components to derive
a homogeneous CTMC for which the distribution of the time to reach the
absorbing state can be solved to find the approximate response time distribu-
tion of the queuing network model [WOOL 1993].

9.6.1 Response Time Distribution in Open Networks

In Section 8.2 it was shown that the response time for an M/M/1 FCFS queue
is exponentially distributed with parameter μ − λ. The model in Figure 9.4
is composed of two such queues. We will use this information to build the
homogeneous CTMC shown in Figure 9.30. In Figure 9.30, state 0 is the
starting state, and from there state 1 will be entered at a rate of (μ0 − λ0)p1

[λ0 is given in equation (9.4)] and state C will be entered at a rate of (μ0 −
λ0)p0

. Observe that this rate is based on the response time distribution of
the CPU node (i.e., μ0 − λ0), and the probability of either entering the I/O
queue or exiting the system, respectively. The rate at which state 0 is entered
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Figure 9.30. CTMC for response time distribution approximation of model in
Figure 9.4a
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− λ1
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0

p−
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00 λ

Figure 9.31. CTMC for response time distribution approximation of model in
Figure 9.4b

from state 1 is μ1 − λ1 [λ1 is given in equation (9.5)], which is representative
of the response time distribution of the I/O queue.

Figure 9.31 is the CTMC that can be used to find the response time
distribution of the queuing model shown in Figure 9.4b. Recall that even
though the two networks have identical mean response times, the distributions
of the response time will be different.

To solve this model, we assume that λ = 1 job per second and that
p

0
= 0.2. We assume that the CPU can process jobs at a rate of μ0 = 10

jobs per second and the I/O can process jobs at a rate of μ1 = 5 jobs per
second. This CTMC was solved using the SHARPE [SAHN 1996] program
to obtain the distribution of time to reach state C. For comparison, the
original queuing network model was also simulated and the response time
distribution found using the simulation tool SES/workbench 1.

Both the CTMC model and the simulation model found the mean response
time to be 5 s for both network models. This is in agreement with the results
expected as found in Example 9.2. The distributions of the response time for
both network models as determined by both the CTMC approximation and
the simulation model are shown in Figure 9.32. Note that for the model of

1Registered trademark of Scientific and Engineering Software, Inc.
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Figure 9.32. Response time distribution for networks of Figure 9.4, versions a and b

Figure 9.4a the CTMC approximation shows the distribution to be slightly
lower than the resultant distribution of the simulation for values of t < 12, and
slightly higher for the remaining values of t. For the model of Figure 9.4b, the
results from CTMC approximation and the simulation model are in agreement
for all t. This can be explained by the fact that the CTMC approach gives
exact results when the queuing network is an open Jacksonian feedforward
network with overtake-free conditions [MAIN 1994b]. However, comparing
the results from the “equivalent” network to the original, we see quite a bit
of difference in the response time distribution.

The same approach that was used to approximate the response time dis-
tribution for Example 9.2 can be used for Example 9.3. The first thing that
must be done to use the approximation is to limit the number of I/O servers,
so that a solvable model can be created. We will assume 4 I/O servers, with
p

1
through p

4
all having a value of 0.2. The service rates of the I/O proces-

sors are assumed to be μ1 = 5, μ2 = 4, μ3 = 3, and μ4 = 2.5. The CPU is
again assumed to have a rate of μ0 = 10. Using the knowledge of the response
time distribution for an M/M/1 FCFS queue and the structure of the net-
work queuing model, we develop CTMC for the response time distribution
approximation as shown in Figure 9.33 (see also Figure 9.34).

As in the preceding example, we start in state 0. We will then proceed
to state C, 1, 2, 3, or 4 at a rate of μ0 − λ0 factored by the appropriate
probability. We return from states 1, 2, 3, or 4 (time spent at the respective
I/O server) at a rate signified by the response time at that server, μi − λi for
i (i = 1, 2, 3, 4). State C is indicative of service being complete.
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Figure 9.33. CTMC for response time distribution approximation of model in
Example 9.3

9.6.1.1 Response Time Blocks. To derive blocks to approximate the
response time distribution of queuing model nodes, we will assume that all
nodes use first come, first served (FCFS) scheduling. The arrival rate to the
nodes will be assumed to be λ and the service rate of each server of the nodes
will be μ. To maintain a stable model, we will also assume that λ < cμ where
c is the number of servers in the node.

M/M/1 In the previous examples, we have made use of the M/M/1
response time block. This block is based on the knowledge of an M/M/1 FCFS
server with arrival rate λ and service rate μ having the following response time
distribution, assuming that λ < μ:

F (t) = 1 − e−(μ−λ)t.

The corresponding response time block is shown in Figure 9.35. State “In”
indicates the starting state of the piece of the Markov chain model representing
the M/M/1 queue in the corresponding network model. The “Out” state will
be either an “In” state for another network model node or the absorbing state
representing the job leaving the network model. Note that the “Out” state
may actually be multiple states if the job exiting the corresponding node in
the network model can proceed on multiple paths. Under these conditions, the
rate entering the “Out” state would be weighted by appropriate probabilities
and branched into multiple states.

M/M/∞ The M/M/∞ server is the simplest node for which we can
find the response time distribution. Since there are always enough servers
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Figure 9.34. Response time distribution for Example 9.3.

OutIn

μ − λ

Figure 9.35. The M/M/1 response time block

for any customer, the response time distribution is the same as the service
time distribution,

F (t) = 1 − e−μt.

Figure 9.36 shows the response time block for this distribution. It is very
similar to Figure 9.35, except that for the M/M/∞ case the rate of leaving
the “In” node is simply μ.

M/M/c For the M/M/c FCFS queue, we assume that λ < cμ. The
M/M/c FCFS response time distribution is given by

F (t) =
λ − cμ + μWc

λ − (c − 1)μ
[1 − e−μt] +

(1 − Wc)μ
λ − (c − 1)μ

[1 − e−(cμ−λ)t], (9.56)

where

Wc = 1 − c (λ/μ)c

c!(c − λ/μ)
π0

and

π0 =

⎡
⎣c−1∑

j=0

1
j!

(
λ

μ

)j

+
1
c!

(
λ

μ

)c (
cμ

cμ − λ

)⎤⎦−1

.
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OutIn

μ

Figure 9.36. The M/M/∞ response time block

Equation (9.56) represents a two-phase hyperexponential distribution
in which one phase has parameter μ and the other phase has parameter
cμ − λ. An alternate form of this distribution can be shown to be the
following phase-type distribution

F (t) = Wc(1 − e−μt) + (1 − Wc)
[

cμ − λ

(c − 1)μ − λ
[1 − e−μt]

− μ

(c − 1)μ − λ
[1 − e−(cμ−λ)t]

]
. (9.57)

This is a mixture of Wc fraction having exponential distribution with parame-
ter μ and (1 − Wc) fraction having hypoexponential distribution with param-
eters μ and cμ − λ. Equation (9.57) can be described as a building block as
shown in Figure 9.37. The upper path represents the exponentially distributed
portion and the lower path is the hypoexponentially distributed portion. State
T is a transient state that is required to obtain the hypoexponential distribu-
tion. If the output of the queuing node had multiple path possibilities, then
the “Out” state shown would in fact be multiple states and the incoming arcs
must be weighted with the appropriate probabilities.

With the building blocks for three types of nodes described, Woolet
presents the procedure of mapping the response time distribution of an open
queuing network to the time to absorption distribution of a CTMC [WOOL
1993]. We will illustrate the procedure via an example.

Wμ c

In Out

c μ-λμ(1-Wc)

T

Figure 9.37. The M/M/c response time block
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Example 9.20

Consider a distributed system (Figure 9.38) in which users send requests at the rate λ
from terminal with a delay time of 1/μ

T
. A job first obtains service from a front-end

processor (F), and may exit the system with probability x
FO

after completion of
service. With probability x

FA
, it proceeds to the communications processor (A). After

completion of service it may go back to the front-end processor with probability x
AF

or to a database processor (D) with probability x
AD

or to a general-purpose processor
(P) with probability x

AP
.

The terminals (T) are assumed to be M/M/∞ servers having a service rate μ
T
.

F is an M/M/c
F

server with each of the c
F

servers having service rate μ
F

. A and
D are assumed to be single-server M/M/1 queues having service rates μ

A
and μ

D
,

respectively. P is assumed to be a M/M/c
P

queue. The service rate of each server
is assumed to be μ

P
.

On solving equation (9.9), we obtain the following values for effective arrival rates
λ

F
, λ

A
, λ

D
, and λ

P
to each of the queues F, A, D, and P, respectively [WOOL 1993]:

λ
F

=
λ

x
FO

,

λ
A

= (1 − x
FO

)
λ

x
FO

x
AF

,

λ
D

= (1 − x
FO

)
x

AD
λ

x
FO

x
CF

,

λ
P

= (1 − x
FO

)
x

AP
λ

x
FO

x
AF

.

Figure 9.39 shows the CTMC corresponding to the approximate response time dis-
tribution of this queuing network. States F1, F2 and P1, P2 are the two states of
the building block corresponding to M/M/c

F
and M/M/c

P
respectively. The other

states can be similarly identified.
For μ

F
= 1.5

4
, μ

A
= 1, μ

D
= 0.2, μ

T
= 1

5
, μ

P
= 0.2

4
, c

F
= 4, c

P
= 2, x

FO
= 0.5,

x
FA

= 0.5, x
AF

= 0.46, x
AD

= 0.33, and x
AP

= 0.21, the distribution of response

time in this network is shown in Figure 9.41. For the values of λ = 1
15

, 1
30

, and 1
100

,
the response time distribution is shown.

The CTMC of Figure 9.39 can be automatically generated from a GSPN model
shown in Figure 9.40.

�
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Figure 9.38. Distributed system queuing network
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Figure 9.39. CTMC corresponding to response time distribution
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Figure 9.40. GSPN model for calculating the response time distribution

Now, we shall consider the numerical computation of response time distri-
bution for closed queuing networks.

9.6.2 Response Time Distribution in Closed Networks

As we mentioned earlier, it is very difficult to obtain the closed-form expres-
sion for the response time distribution for queuing networks with a general
structure. Numerical computation of the response time distribution is then
the only alternative short of very expensive discrete-event simulation. One
such method is based on the tagged customer approach. In this method, an
arbitrary customer is picked as the tagged customer and its passage through
the network is traced. By this method, the problem of computing the condi-
tional response time distribution of the tagged customer is transformed into
the time to absorption distribution of a finite state CTMC.

The tagged customer approach allows us to compute the response time
distribution conditioned on the state of the queuing network at the time of
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Figure 9.41. Response time distribution of distributed system

arrival of the tagged customer. To compute the unconditional response time
distribution, we need to determine all the states in which the tagged customer
may find the queuing network on arrival, that is, how the remaining customers
are distributed among the queues in the network. For closed product-form
queuing networks with n customers, the Sevcik–Mitrani [SEVC 1981] (see also
Lavenberg and Reiser [LAVE 1980]) arrival theorem states that an arriving
customer would see the network in equilibrium with one less customer. Thus,
computing the response time distribution using the tagged customer approach
is a two-step process, giving rise to a hierarchical model. The first step involves
computing the steady-state probability vector for the queuing network with
one less customer, π(n − 1). The second step uses the probability vector to
compute the unconditional response time distribution, P [R ≤ t].

Melamed and Yadin [MELA 1984] present a numerical method based
on the tagged customer approach for evaluating the response time distribu-
tion in a discrete-state Markovian queuing network. The problem in using
the tagged customer approach is the difficulty of constructing and solving
rather large Markov chains. Muppala et al. [MUPP 1994] use the variation of
stochastic Petri nets called stochastic reward nets (SRN) for the compact
specification, and automated generation and solution of these large Markov
chains [CIAR 1989]. This allows them to solve large and complex models.
The following simple example will illustrate the computation of response time
distribution using CTMC.
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Disk2
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p1new program path
Disk1

Figure 9.42. Central server model of a computer system

Example 9.21

Consider a central server model (CSM) of a computing system as shown in
Figure 9.42. We assume that the service discipline at all the queues is FCFS and
the service time distributions are exponential. The service rates of the CPU, Disk1
and Disk2 are μ

C
, μ

D1
, and μ

D2
, respectively. When a customer finishes receiving

a burst of service at the CPU, it will request access to Disk1 or Disk2 with
probability p

1
and p

2
, respectively. After completing the disk access, the customer

rejoins the CPU queue for another burst of service. The customer will complete
execution and exit the system with probability p

0
= 1 − (p

1
+ p

2
). At the same

time a statistically identical customer enters the system as indicated by the new
program path in the figure. We assume that there are n customers in the system.
For this model we define the response time as the amount of time elapsed from the
instant at which the customer enters the CPU queue for its first service until the
instant at which it emerges on the new program path.

As mentioned earlier, the response time distribution can be formulated in terms
of the absorption time distribution of a CTMC. Suppose that we need to solve for
the response time distribution of the CSM model with two customers. The corre-
sponding CTMC whose absorption time distribution needs to be computed is shown
in Figure 9.43. It is interesting to note that even a system with two customers results
in a complex CTMC. In this figure, the first three components of the state label cor-
respond to the number of customers in the CPU, Disk1, and Disk2, respectively. The
next two components give the position of the tagged customer; the first one is the
index of the queue in which the tagged customer is residing and the second corre-
sponds to the position of the tagged customer in the queue. The queue is numbered
as follows: 1 (CPU), 2 (Disk1), and 3 (Disk2). Here, 00 indicates that the tagged
customer has departed from the system. There are three such absorbing states in
the Markov chain, namely, (10000), (01000), and (00100). These states are explicitly
identified in the figure by the squares enclosed within the circles.

The tagged customer may arrive into the queuing system in states
(20012), (11011), and (10111), which correspond to the other job being at the
CPU, Disk1, and Disk2, respectively. These three states are explicitly identified in
the figure by double circles. Starting with any of these states as the initial state,
we can compute the absorption time distribution of the CTMC. This gives the
conditional response time distribution of the tagged customer conditioned on the
position of the other customer at the instant of arrival of the tagged customer into
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Figure 9.43. CTMC model of the CSM for computing the response time distribution

the queuing system. To compute the unconditional response time distribution, we
need the probabilities of the queuing network being in these states at the instant
of arrival of the tagged customer. This is obtained by solving the CTMC shown
in Figure 9.44, which has three states corresponding to the nontagged customer
being present at the CPU, Disk1, and Disk2, respectively. The three components in
the labels of the state correspond to the number of customers at the CPU, Disk1,
and Disk2, respectively. In general, suppose that I represents the set of all states
in the CTMC whose solution yields the response time distribution. Let A (⊆ I) be
the set of absorbing states in the CTMC. Let S (⊆ I) be the set of states in which
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Figure 9.44. CTMC model for computing the steady-state probabilities of the
non-tagged customer

the tagged customer will find the network at the instant of arrival. Let Ri be the
random variable representing the response time for an arbitrary customer arriving
when the queuing network is in state i, where i ∈ S. Then

P [Ri ≤ t] =
∑
j∈A

pij (t),

where pij (t) is the transient probability of state j at time t given that i is the initial
state of the CTMC. The unconditional response time distribution can be obtained
once we compute πi(n − 1), the probability that the tagged customer will see the
network in state i, (i ∈ S) at the instant of arrival. For a closed queuing network, S
is the set of all possible states of the network with one less customer. Let R be the
random variable representing the unconditional response time distribution. Then

P [R ≤ t] =
∑
i∈S

πi(n − 1)P [Ri ≤ t] =
∑
i∈S

πi(n − 1)
∑
j∈A

pij (t)

=
∑
j∈A

∑
i∈S

πi(n − 1)pij (t) =
∑
j∈A

πj(t).

Here πj(τ) represents the unconditional transient probability of state j, which is
obtained by setting the initial probability of the state i (∀i ∈ S) of the CTMC to
πi(n − 1) and the initial probabilities of all the other states (i ∈ I − S) to zero and
solving the CTMC for its transient probability vector at time t. It must be noted
that the unconditional response time distribution is directly computed by assigning
the initial probabilities for the Markov chain and carrying out the transient analysis
only once.

The response time distributions of the central server model for different numbers
of customers (5, 10 and 15) are shown in Figure 9.45. In this example, we assume that
μ

C
= 50.0, μ

D1
= 30.0, μ

D2
= 20.0, p1 = 0.45, and p

2
= 0.3. As expected, a customer

has a higher probability of completing by a given time t when the number of customer
is smaller since there are fewer customers competing for resources. �

In this section, we have shown how to compute the response time distri-
bution for Markovian queuing networks. The practical question of generation
and solution of large CTMCs has been addressed via the use of SPNs [MUPP
1994]. From the Baskett–Chandy–Muntz–Palacios (BCMP) theorem [BASK
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Figure 9.45. Response time distribution for different number of customers

1975], we know that the mean response time for a customer in a queuing net-
work is independent of the service disciplines at queuing centers as long as the
service rates remain the same and the service discipline is either FCFS, PS,
or LCFS preemptive resume. However, the response time distribution is sensi-
tive to the service discipline. Coffman et al. [COFF 1986] dealt with an open
tandem queuing network with two nodes, and Muppala et al. [MUPP 1994]
dealt with closed queuing networks, with different service disciplines. For the
non-Markovian open networks, we can apply the basic paradigm of decomposi-
tion in computing approximations to the response time distribution. For doing
so we have made use of existing results on response time distribution at a single
queue. Using these, a queuing network is translated into a semi-Markov chain,
whose absorption time distribution approximates the response time distribu-
tion of the queuing network. We can compute approximations for response
time distributions for queuing networks with Poisson or phase-type arrival
processes and general service time distributions [MAIN 1994a].

Problems

1. Consider the open central server queuing model of problem 1 in Section 9.2 and
compute the response time distribution.

2. Compute the response time distribution for the terminal-oriented distributed
computing system of Example 9.10. First construct the Markov chains by hand
and solve using SHARPE. Then use stochastic reward nets to solve the problem
via SPNP or SHARPE.
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9.7 SUMMARY

In this chapter we have introduced networks of queues, which provide an
important paradigm for computer communication system performance anal-
ysis and prediction.

Open queuing networks are useful in studying the behavior of computer
communication networks [KLEI 1976, TAKA 1993]. Closed networks are more
useful in computer system performance evaluation [BASK 1975, CHAN 1977,
BOLC 1998]. Readers interested in case studies may consult a number of
works in the literature [BALB 1988, BRUE 1980, BUZE 1978, GREI 1998,
KEIN 1979, KULK 1996, LAVE 1983, MENA 1998, PERR 1994, SAUE 1981,
TRIV 1978, WHIT 1983–WOOL 1993].

When queuing networks (open, closed, or mixed) satisfy certain properties
(a sufficient condition is known as local balance [CHAN 1977]), we can often
obtain a convenient product-form solution for the network. However, certain
interesting queuing networks do not possess these properties and hence do
not have convenient product-form solutions. In these cases we must make use
of a number of approximation techniques to obtain a convenient solution.
One such technique, the flow-equivalent server method, was illustrated in this
chapter by means of two examples. For a deeper study of the approximation
techniques, the reader may consult the literature [BOLC 1998, COUR 1977,
SAHN 1996, SAUE 1981, TRIP 1979]. Sevcik [SEVC 1977] discusses several
approximation techniques for incorporating priority scheduling in multiclass
closed queuing networks.

This chapter has only touched on the wide range of results and applica-
tions for networks of queues. Extensive treatments of queuing theory have
been published [GROS 1998, KELL 1979, KLEI 1975, VAND 1993], as have
applications [BOLC 1998, COUR 1977, HAVE 1998, JAIN 1991, KLEI 1976,
LAZO 1984, PERR 1994, TAKA 1993, WANG 1996]. A deeper treatment
of response time distribution is also available in the literature [BOXM 1990,
MAIN 1994a, MUPP 1994, SCHA 1987].

Review Problems

1. Two-queue blocking system [HOGA 1975]. Consider the closed cyclic queuing
network of Figure 9.9 with the service rates of two servers equal to μ0 and μ1,
respectively. Let the branching probabilities p

0
= 0.1 and p

1
= 0.9. Assume that

there is a finite waiting room at node 1 so that the total number of jobs at the
node (at its queue plus any at the server) is limited to three jobs. There is no such
restriction at node 0. For the degree of multiprogramming n = 4, draw the state
diagram for the system and proceed to derive an expression for the steady-state
probabilities. Repeat for n = 3, 5, 6, 10. Compute the average system throughput
as a function of the degree of multiprogramming n using μ0 = 1 and μ1 = 0.5.
Now remove the restriction on the queue size at node 1 and compute the average
system throughput as a function of n (this then becomes a case of Example 9.4)
and compare the results.
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2. � Draw the state diagram and write down the steady-state balance equations for
the queuing system M/E2/1 with FCFS scheduling. Solve for the steady-state
probabilities. Recall that E2 implies that the service time distribution is two-stage
Erlang.

3. � Recall that in problem 18 at the end of Section 9.4 we assumed a PS discipline
for CPU scheduling. Now assume that a preemptive priority is given to interac-
tive jobs over batch jobs. Then the resulting queuing network does not belong to
the product-form class. Sevcik [SEVC 1977] has suggested the following approx-
imation technique to solve such problems. We provide separate CPUs to both
classes of jobs. The CPU for the batch jobs is known as the “shadow CPU” and it
is slowed down by a factor equal to (1 − U0a), where U0a is the utilization of the
CPU for interactive jobs. Since U0a is not known initially, it may be estimated
by solving a single-class queuing network with batch jobs deleted; then an itera-
tion is performed using the abovementioned approximation until convergence is
reached. Resolve problem 18 of Section 9.4 using this technique.

4. � Returning to the concurrent program of problem 1 in Section 8.4.2, assume that
two independent processes executing the same program are concurrently sharing
the resources of a system with a single CPU and a single I/O processor. TCPUj

tasks can be executed only on the CPU and TIOj tasks can be executed only on
the I/O processor. Describe the state space of the continuous-parameter Markov
chain for this system and draw its state diagram. Solve for the steady-state
probabilities and hence obtain expressions for the utilizations of the two devices.
Next, assuming that all tasks in a process are to be executed sequentially, solve for
the utilizations of the two processors (the problem then becomes a special case of
the cyclic queuing model). Using the parameters specified earlier, determine the
percentage improvement in resource utilizations due to CPU/IO overlap. Resolve
the problem using stochastic reward nets via SPNP or SHARPE.
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Chapter 10

Statistical Inference

10.1 INTRODUCTION

The probability distributions discussed in the preceding chapters will yield
probabilities of the events of interest, provided that the family (or the type)
of the distribution and the values of its parameters are known in advance. In
practice, the family of the distribution and its associated parameters have to
be estimated from data collected during the actual operation of the system
under investigation.

In this chapter we investigate problems in which, from the knowledge of
some characteristics of a suitably selected subset of a collection of elements,
we draw inferences about the characteristics of the entire set. The collection
of elements under investigation is known as the population, and its selected
subset is called a sample. Methods of statistical inference help us in esti-
mating the characteristics of the entire population based on the data collected
from (or the evidence produced by) a sample. Statistical techniques are use-
ful in both planning of the measurement activities and interpretation of the
collected data.

Two aspects of the sampling process seem quite intuitive. First, as the
sample size increases, the estimate generally gets closer to the “true” value,
with complete correspondence being reached when the sample embraces the
entire population. Second, whatever the sample size, the sample should be
representative of the population. These two desirable aspects (not always sat-
isfied) of the sampling process will lead us to definitions of the consistency
and unbiasedness of an estimate.

When we say that the population has the distribution F (x), we mean
that we are interested in studying a characteristic X of the elements of this

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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population and that this characteristic X is a random variable whose distri-
bution function is F (x).

The following issues will occupy us in this chapter:

1. Different samples from the same population will result, in general, in
distinct estimates, and these estimates themselves will follow some form
of statistical distribution, called a sampling distribution.

2. Assuming that the distributional form (e.g., normal or exponential),
of the parent population is known, unknown parameters of the pop-
ulation may be estimated. One also needs to define the confidence in
such estimates. This will lead us to interval estimates, or confidence
intervals.

3. In cases where the distributional form of the parent population is not
known, we can perform a goodness-of-fit test against some specified
family of distributions and thus determine whether the parent popula-
tion can reasonably be declared to belong to this family.

4. Instead of estimating properties of the population distribution, we may
be interested in testing a hypothesis regarding a relationship involv-
ing properties of the distribution function. Based on the collected data,
we will perform statistical tests and either reject or fail to reject the
hypothesis. We will also study the errors involved in such judgments.

Statistical techniques are extremely useful in algorithm evaluation, system
performance evaluation, and reliability estimation. Suppose that we want to
experimentally evaluate the performance of some algorithm A with the input
space S. Since the input space S is rather large, we execute the algorithm and
observe its behavior for some randomly chosen subset of the input space. On
the basis of this experiment we wish to estimate the properties of the random
variable, T , denoting the execution time of algorithm A. It usually suffices to
estimate some parameter of T such as its mean E[T ] or its variance Var[T ].

Assume that the interarrival times of jobs coming to a server are known to
be exponentially distributed with parameter λ but the value of λ is unknown.
After observing the arrival process for some finite time, we could obtain an
estimate λ̂ of λ. Sometimes we may not be interested in estimating the value
of λ but wish to test the hypothesis λ < λ0 against an alternative hypothe-
sis λ > λ0. Thus, if λ0 represents some threshold of job arrival rate beyond
which the server becomes overloaded or unstable, then the acceptance of the
preceding hypothesis will imply that no new server needs to be purchased. At
other times we may wish to test the hypothesis that job interarrival times are
exponentially distributed.

As another example of a statistical problem arising in system performance
evaluation, assume we are interested in making a purchase decision between
two servers on the basis of their response times (respectively denoted by R1

and R2) to trivial requests (such as a simple editing command). Let the corre-
sponding mean response times to trivial requests be denoted by θ1 and θ2. On
the basis of measurement results, we would like to test the hypothesis θ1 = θ2
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versus the alternative θ1 < θ2 (or the alternative θ1 > θ2). We may also wish
to test a hypothesis on variances: Var[R1] = Var[R2] versus the alternative
Var[R1] < Var[R2] (or the alternative Var[R1] > Var[R2]).

Now suppose that we are interested in tuning a cluster by varying the
parameters associated with resource schedulers. In this case we may want to
investigate the functional dependence of the average response time on these
parameters. We may want to further investigate the functional dependence of
the average response time on various characteristics of the transaction such
as its CPU time requirement, number of disk I/O requests, number of users
logged on, and so on. In this case we will collect a set of measurements and
perform a regression analysis to estimate and characterize the functional
relationships.

As a last example, consider a common method of reliability estimation
known as life testing. A random sample of n components is taken and the times
to failure of these components are observed. On the basis of these observed val-
ues, the mean life of a component can be estimated or a hypothesis concerning
the mean life may be tested.

First we discuss problems of estimating parameters of the distribution of
a single random variable X. Next we discuss hypothesis testing. In the next
chapter we discuss problems involving more than one random variable and
the associated topic of regression analysis.

10.2 PARAMETER ESTIMATION

Suppose that the parent population is distributed in a form that is completely
determinate except for the value of some parameter θ. The parameter θ being
estimated could be the population (or true) mean μ = E[X] or the population
(or true) variance σ2 = Var[X]. The estimation will be based on a collection
of n experimental outcomes x1, x2, . . . , xn. Each experimental outcome xi is
a value of a random variable Xi. The set of random variables X1,X2, . . . , Xn

is called a sample of size n from the population.

Definition (Random Sample). The set of random variables X1,X2,
. . ., Xn is said to constitute a random sample of size n from the population
with the distribution function F (x), provided that they are mutually inde-
pendent and identically distributed with distribution function FXi

(x) = F (x)
for all i and for all x.

Note that this definition does not hold for sampling without replacement
from a finite population (of size N), since the act of drawing an object changes
the characteristics of the population. In this case the requirement of indepen-
dence in this definition is replaced by the following requirement:

P (X1 = x1,X2 = x2, . . . , Xn = xn)

= 1
N · 1

N−1 · · · · · 1
N−n+1 = (N−n)!

N ! .
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Unless otherwise specified, we will assume that the population is very large or
conceptually infinite, so that this definition of random sampling is applicable.

In general, we will want to obtain some desired piece of information about
the population from a random sample. If we are lucky, the information may be
obtained by direct examination or by pictorial methods. However, it is usually
necessary to reduce the set of observations to a few meaningful quantities.

Definition (Statistic). Any function W (X1,X2, . . . , Xn) of the obser-
vations X1,X2, . . . , Xn, is called a statistic.

Thus, a statistic is a function of n random variables, and assuming that
it is also a random variable, its distribution function, called the sampling
distribution of W , can be derived from the population distribution. The
types of functions we will be interested in include the sample mean

X =
n∑

i=1

Xi

n
,

and the sample variance S2 (to be defined later).

Definition (Estimator). Any statistic Θ̂ = Θ̂(X1,X2, . . . , Xn) used to
estimate the value of a parameter θ of the population is called an estimator
of θ. An observed value of the statistic θ̂ = θ̂(x1, x2, . . . , xn) is known as an
estimate of θ.

A statistic Θ̂ cannot be guaranteed to give a close estimate of θ for every
sample. We must design statistics that will give good results “on the average”
or “in the long run.”

Definition (Unbiasedness). A statistic Θ̂ = Θ̂(X1,X2, . . . , Xn) is said
to constitute an unbiased estimator of parameter θ provided

E[Θ̂(X1,X2, . . . , Xn)] = θ.

In other words, on the average, the estimator is on target.

Example 10.1

The sample mean X is an unbiased estimator of the population mean μ whenever
the latter exists:

E[X] = E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E[Xi]
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=
1

n

n∑
i=1

E[X]

=
1

n
nE [X]

= E[X]

= μ.

We can also compute the variance of the sample mean (assuming that the population
variance is finite) by noting the independence of X1, X2, . . . , Xn as

Var[X] =
n∑

i=1

Var[
Xi

n
]

=
nVar[Xi]

n2

=
Var[X]

n

=
σ2

n
.

This implies that the accuracy of the sample mean as an estimator of the population
mean increases with the sample size n when the population variance is finite.

�

If the population distribution is Cauchy, so that

fX(x) =
1

π[1 + (x − θ)2]
, −∞ < x < ∞,

then, by problem 1 at the end of this section, it follows that the sample mean
X is also Cauchy distributed. If X is used to estimate the parameter θ, then
it does not increase in accuracy as n increases. Note that in this case neither
the population mean nor the population variance exists.

If we take a sample of size n without replacement from a finite population
of size N , then the sample mean X is still an unbiased estimator of the
population mean but the Var[X] is no longer given by σ2/n. In this case, it
can be shown [KEND 1961] that

Var[X] =
σ2

n

(
1 − n

N

)(
N

N − 1

)
.

Note that as the population size N approaches infinity, we get the formula
σ2/n for the variance of the sample mean.
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Next consider the function

Θ̂(X1,X2, . . . , Xn) =

n∑
i=1

(Xi − X)2

n

as an estimator of the population variance. It can be seen that this function
provides a biased estimator of the population variance. On the other hand,
the function

1
n − 1

n∑
i=1

(Xi − X)2

is an unbiased estimator of the population variance. These two functions differ
little when the sample size is relatively large.

Example 10.2

The sample variance S2, defined by

S2 =
1

n − 1

n∑
i=1

(Xi − X)2,

is an unbiased estimator of the population variance σ2 whenever the latter exists.
This can be shown as follows:

S2 =
1

n − 1

n∑
i=1

(X2
i − 2XiX + X

2
)

=
1

n − 1
(

n∑
i=1

X2
i ) − 2n

n − 1

(
1

n

n∑
i=1

Xi

)
X +

nX
2

n − 1

=
1

n − 1

n∑
i=1

X2
i − n

n − 1
X

2
.

Therefore

E[S2] =
1

n − 1

n∑
i=1

E[X2
i ] − n

n − 1
E[X

2
].

But
E[X2

i ] = Var[Xi] + (E[Xi])
2 = σ2 + μ2

and

E[X
2
] = Var[X] + (E[X])2 =

σ2

n
+ μ2.
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Thus

E[S2] =
1

n − 1
n(σ2 + μ2) − n

n − 1

(
σ2

n
+ μ2

)

= σ2.

Thus the sample variance S2 is an unbiased estimator of the population variance σ2.

�

The preceding formula applies to the case of an infinite population. The
unbiased estimator of the variance of a finite population of size N (assuming
sampling without replacement) is given by

S2 =
1 − 1

N
n − 1

n∑
i=1

(Xi − X)2.

Unbiasedness is one of the most desirable properties of an estimator,
although not essential. This criterion by itself does not provide a unique esti-
mator for a given estimation problem as shown by the following example.

Example 10.3

The formula

Θ̂ =
n∑

i=1

aiXi

is an unbiased estimator of the population mean μ (if it exists) for any set of real
weights ai such that

∑
ai = 1.

�

Thus we need another criterion to enable us to choose the best among
all unbiased estimators. For an estimator Θ̂ of parameter θ to be a good
estimator, we would like the probability of the dispersion P (|Θ̂ − θ| ≥ ε) to
be small. We note that for an unbiased estimator, E[Θ̂] = θ, Chebyshev’s
inequality gives us

P (|Θ̂ − θ| ≥ ε) ≤ Var[Θ̂]
ε2

, for ε > 0.

Thus, one way of comparing two unbiased estimators is to compare their
variances.

Definition (Efficiency). An estimator Θ̂1 is said to be a more effi-
cient estimator of the parameter θ than the estimator Θ̂2, provided that
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1. Θ̂1 and Θ̂2 are both unbiased estimators of θ, and

2. Var[Θ̂1] ≤ Var [Θ̂2], for all θ.

3. Var[Θ̂1] < Var [Θ̂2], for some θ.

Example 10.4

The sample mean

X =
1

n

n∑
i=1

Xi

is the most efficient (minimum-variance) linear estimator of the population mean,
whenever the latter exists. To show this, we first note that

Var [Θ̂] = Var
[∑

aiXi

]
=

n∑
i=1

a2
i Var[Xi]

=
∑

a2
i Var[X]

=
∑

a2
i σ

2,

since X1, X2, . . . , Xn are mutually independent and identically distributed. Thus we
solve the following optimization problem:

min : Var[Θ̂] = σ2
n∑

i=1

a2
i s.t.:

n∑
i=1

ai = 1, i = 1, 2, . . . , n.

We can solve this problem using the method of Lagrange multipliers to obtain the
following result:

ai =
1

n
, i = 1, 2, . . . , n.

In other words, the estimator minimizing the variance is

∑
aiXi = X, the sample mean.

�

It can also be shown that under some mild conditions the sample variance,
S2, is a minimum-variance (quadratic) unbiased estimator of the population
variance σ2, whenever the latter exists. Thus, in most practical situations, the
sample mean and the sample variance are acceptable estimators of μ and σ2,
respectively.

As in the case of the sample mean, the variance of the sampling distribution
of an estimator generally decreases with increasing n. This leads us to another
desirable property of an estimator.
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Definition (Consistency). An estimator Θ̂ of parameter θ is said to
be consistent if Θ̂ converges in probability to θ:

lim
n→∞

P (|Θ̂ − θ| ≥ ε) = 0.

As the sample size increases, a consistent estimator gets close to the
true value. If we consider a population with finite mean and variance, then
Var[X] = σ2/n, and using the Chebyshev inequality, we conclude that the
sample mean is a consistent estimator of the population mean. In fact, any
unbiased estimator Θ̂ of θ, with the property

lim
n→∞

Var[Θ̂] = 0

is a consistent estimator of θ owing to the Chebyshev inequality.
The data collected in a sample may be summarized by the arithmetic

methods (sample mean, sample variance, etc.) discussed so far. Alternative
methods are pictorial in nature. For example, a bar chart or a histogram is
often used. Yet another useful way of summarizing data is to construct an
empirical distribution function, F̂ (x); let kx be the number of observed
values xi (out of a total of n values) that are less than or equal to x; then
F̂ (x) = kx/n.

The empirical distribution function is a consistent estimator of the true
distribution function F (x). To show this, let us perform n independent trials of
the event, “Sample value observed is less than or equal to x.” Each observation
yi is then a value of a Bernoulli random variable Yi with the probability of
success p = F (x), so that

Y =
1
n

n∑
i=1

Yi = F̂ (x)

and E[Y ] = p. Now the law of large numbers tells us that

lim
n→∞

P (|Y − E[ Y ]| ≥ ε) = 0.

But here Y = F̂ (x) and E[Y ] = E[Y ] = p = F (x), so

lim
n→∞

P [|F̂ (x) − F (x)| ≥ ε] = 0,

as desired.
Next we discuss two general methods of parameter estimation.

Problems

1. Given that the population X has the Cauchy distribution, show that the sample
mean X has the same distribution.
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2. Solve the optimization problem posed in Example 10.4 using the method of
Lagrange multipliers. To obtain an algebraic proof, show that

n∑
i=1

a2
i ≥

n∑
i=1

(
1

n

)2

10.2.1 The Method of Moments

Suppose that one or more parameters of the distribution of X are to be
estimated on the basis of a random sample of size n. Define the kth sample
moment of the random variable X as

M ′
k =

n∑
i=1

Xk
i

n
, k = 1, 2, . . . .

Of course, the kth population moment is

μ′
k = E[Xk], k = 1, 2, . . . ,

and this moment will be a function of the unknown parameters.
The method of moments consists of equating the first few population

moments with the corresponding sample moments to obtain as many equations
as there are unknown parameters and then solving these equations simulta-
neously to obtain the required estimates. This method usually yields fairly
simple estimators that are consistent. However, it can give estimators that
are biased (see problem 1 at the end of this section) and inefficient.

Example 10.5

Let X denote the main-memory requirement of a job as a fraction of the total
user-allocatable main memory of a compute server. We suspect that the density
function of X has the form

f(x) =

{
(k + 1)xk, 0 < x < 1, k > 0
0, otherwise.

A large value of k implies a preponderance of large jobs. If k = 0, the distribution
of memory requirement is uniform. We have a sample of size n from which we wish
to estimate the value of k. Since one parameter is to be estimated, only the first
moments need to be considered:

μ′
1 =

∫ 1

0

(k + 1)xkxdx =
k + 1

k + 2

M ′
1 =

n∑
i=1

Xi

n
= sample mean, X.
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Then the required estimate k is obtained by letting

M ′
1 = μ′

1

and hence

k̂ =
2M ′

1 − 1

1 − M ′
1

=
2X − 1

1 − X
.

As a numerical example, we are given the following sample of size 8:

0.25 0.45 0.55 0.75 0.85 0.85 0.95 0.90

The sample mean M ′
1 = 5.55/8 = 0.69375. Thus k = 1.265306.

�

Example 10.6

Assume that the repair time of a server has a gamma distribution with parameters λ
and α. This could be suggested, for instance, by the sequential (stage-type) nature of
the repair process. After taking a random sample of n actual repair times, we com-
pute the first two sample moments M ′

1 and M ′
2. Now the corresponding population

moments for a gamma distribution are given by

μ′
1 =

α

λ
and μ′

2 =
α

λ2
+ μ

′2
1 .

Then the estimates λ̂ and α̂ can be obtained by solving

α̂

λ̂
= M ′

1 and
α̂

λ̂2
+

α̂2

λ̂2
= M ′

2.

Hence

α̂ =
M

′2
1

M ′
2 − M

′2
1

and λ̂ =
M ′

1

M ′
2 − M

′2
1

.

�

Problems

1. Show that the method-of-moments estimators of the population mean and of the
population variance are given by the sample mean, X and (n − 1)S2/n, respec-
tively. Show that the method-of-moments estimator of the population variance
is biased.

2. Consider the problem of deriving method-of-moments estimates for the three
parameters α, λ1, and λ2 of a two-stage hyperexponential distribution. Clearly,
three sample moments will be needed for this purpose. But if we have only the
sample mean x and the sample variance s2 available, we can solve the problem
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by imposing a restriction on the parameters. Assume that

1

λ1 + λ2

=

α

λ1

+
1 − α

λ2

2

is the chosen restriction. Show that the method-of-moments estimates of the
parameters are given by (assuming that s2 ≥ x2)

λ̂1, λ̂2 =
1

x
± 1

x

√
s2 − x2

s2 + x2 (10.1)

and

α̂ =
λ̂1(λ̂2x − 1)

λ̂2 − λ̂1

. (10.2)

3. The memory residence times of 13,171 jobs were measured, and the sample
mean was found to be 0.05 s and the sample variance, 0.006724. Estimate the
parameters α and λ using the method of moments, assuming that the memory
residence time is gamma-distributed. Using the result of problem 2, obtain the
method-of-moments estimates for parameters α, λ1, and λ2, assuming that the
memory residence time possesses a two-stage hyperexponential distribution.

4. Show that method-of-moments estimates for the parameters λ1 and λ2 of a
two-stage hypoexponential distribution are given by

λ1, λ2 =
2
x

1 ±
√

1 + 2{( s
x
)2 − 1}

(10.3)

10.2.2 Maximum-Likelihood Estimation

The method of maximum-likelihood produces estimators that are usually con-
sistent and under certain regularity conditions can be shown to be most
efficient in an asymptotic sense (i.e., as the sample size n approaches infinity).
However, the estimators may be biased for small sample sizes. The principle
of this method is to select as an estimate of θ the value for which the observed
sample is most “likely” to occur.

We introduce this method through an example. Suppose that we want
to estimate the probability, p, of a successful transmission of a message over
a communication channel. We observe the transmission of n messages and
observe that k have been transmitted without errors. From these data, we
wish to obtain a maximum-likelihood estimate of the parameter p.

The transmission of a single message is modeled by a Bernoulli random
variable X with the pmf.

p
X

(x) = px(1 − p)1−x, x = 0, 1; 0 ≤ p ≤ 1.
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A random sample X1,X2, . . . , Xn is taken, and the problem is to find an
estimator W (X1,X2, . . . , Xn) such that w(x1, x2, . . . , xn) is a good estimate of
p, where x1, x2, . . . , xn are the observed values of the random sample. The joint
probability that X1,X2, . . . , Xn take these values is given by the compound
pmf:

P (X1 = x1,X2 = x2, . . . , Xn = xn) =
n∏

i=1

pxi(1 − p)1−xi

= p
∑

xi(1 − p)n−
∑

xi .

If we fix n and the observed values x1, x2, . . . , xn in this pmf, then it can be
considered a function of p, called a likelihood function:

L(p) = p
∑

xi(1 − p)n−
∑

xi , 0 ≤ p ≤ 1.

The value of p, say, p̂, maximizing L(p), is the maximum-likelihood estimate of
p. Thus this method selects the value of the unknown parameter for which the
probability of obtaining the measured data is maximum, and p̂ is the “most
likely” value of p.

Maximizing L(p) is equivalent to maximizing the natural logarithm of
L(p):

ln L(p) =

(
n∑

i=1

xi

)
ln p +

(
n −

n∑
i=1

xi

)
ln(1 − p).

To find the maximum of this function, when 0 < p < 1, we take the first
derivative and set it equal to zero:

d ln L(p)
dp

=

(
n∑

i=1

xi

) (
1
p

)
+

(
n −

n∑
i=1

xi

)(
−1

1 − p

)
= 0

and get

p =
1
n

n∑
i=1

xi = x.

Verifying that the second derivative of lnL(p) is negative, we conclude that
p = x actually maximizes ln L(p). Therefore, the statistic

∑
Xi/n = X is

known as the maximum-likelihood estimator of p:

P̂ =
1
n

n∑
i=1

Xi = X.

Since Xi is 0 for a garbled message and 1 for a successful transmission, the
sum

∑
Xi is the number of successfully transmitted messages. Therefore, this
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estimator of p is simply the one we would get by using a relative-frequency
argument.

More generally for a discrete population, we define the likelihood function
as the joint probability of the event, [X1 = x1,X2 = x2, . . . , Xn = xn]:

L(θ) = P (X1 = x1,X2 = x2, . . . , Xn = xn|θ) =
n∏

i=1

pXi
(xi|θ)

where θ = (θ1, θ2, . . . , θk) is the vector of parameters to be estimated. Anal-
ogously, in the case of a continuous population, the likelihood function is
defined as the product of the marginal densities:

L(θ) =
n∏

i=1

fXi
(xi|θ)

Thus the likelihood function is the joint pmf or pdf of the random variables
X1, X2, . . ., Xn. Under certain regularity conditions, the maximum-likelihood
estimate of θ is the solution of the simultaneous equations

∂L(θ)
∂θi

= 0, i = 1, 2, . . . , k.

This method usually works quite well, but sometimes difficulties arise.
There may be no closed-form solution to the preceding system of equations.
For example, if we wish to estimate the parameters α and λ of a gamma dis-
tribution, the method of maximum likelihood will produce two simultaneous
equations that are impossible to solve in closed form. Alternatively, there may
be no unique solution to the system of equations presented above. In this case
it is necessary to verify which solution, if any, maximizes the likelihood func-
tion. Another possibility is that the solution to the preceding system may not
be in the parameter space, in which case a constrained maximization of the
likelihood function becomes necessary.

Example 10.7

It is desired to estimate the arrival rate of new calls to a cell in a mobile communi-
cation system, based on a random sample X1 = x1, . . . , Xn = xn, where Xi denotes
the number of calls per hour in the ith observation period. Let the number of calls
per hour, X, be Poisson distributed with parameter λ:

p
X

(x|λ) = e−λ λx

x!
.

The likelihood function is then

L(λ) =

n∏
i=1

e−λ λxi

xi!
=

1

x1!x2! · · ·xn!
e−nλλ

∑n
i=1 xi
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Taking logs, we have

ln L(λ) = − ln(x1!x2! · · ·xn!) − nλ + (
n∑

i=1

xi) ln(λ).

Taking the derivative with respect to λ and setting it equal to zero, we get

−n +
1

λ

n∑
i=1

xi = 0.

Thus the maximum-likelihood estimator of the arrival rate is the sample mean:

Λ̂ =
1

n

n∑
i=1

Xi = X. (10.4)

�

A common method of estimating parameters related to component (sys-
tem) reliability is that of life testing. This consists of selecting a random
sample of n components, testing them under specified environmental condi-
tions, and observing the time to failure of each component.

Example 10.8

Assume that the time to failure, X, of a telephone switching system is exponentially
distributed with a failure rate λ. We wish to estimate the failure rate λ from a
random sample of n times to failure. Then

L(λ) =
n∏

i=1

λe−λxi = λne−λ
∑n

i=1 xi

dL

dλ
= nλn−1e−λ

∑n
i=1 xi −

(
n∑

i=1

xi

)
λne−λ

∑n
i=1 xi = 0,

from which we get the maximum-likelihood estimator of the failure rate to be the
reciprocal of the sample mean:

Λ̂ =
n

n∑
i=1

Xi

=
1

X
. (10.5)

The corresponding maximum-likelihood estimator of the mean life (MTTF) is equal
to the sample mean X.

�

Usually, the MTTF (mean time to failure) is so large as to forbid
such exhaustive life tests; hence truncated (censored) life tests are
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common. Such a life test is terminated after the first r failures have
occurred (sample-truncated, or type II) or after a specified time has elapsed
(time-truncated, or type I). If a failed component is repaired or is replaced
by a new one, then the life test is called a replacement test; otherwise it is
a nonreplacement test.

Example 10.9

Consider a sample truncated test of n components without replacement. Let T1, T2,
. . ., Tr be the observed times to failure so that T1 ≤ T2 ≤ · · · ≤ Tr. Specific values
of these random variables are denoted by t1, t2, . . . , tr. Let θ be the MTTF to be
estimated and assume that components follow an exponential failure law.

Since (n − r) components have not failed when the test is completed, the likeli-
hood function is defined in the following way. Assume Tr+1, . . . , Tn are the times to
failure of the remaining components, whose failures will not actually be observed.
Then

L(θ)
r∏

i=1

hi = P (ti ≤ Ti < ti + hi, i = 1, 2, . . . , r; Ti > tr, i = r + 1, . . . , n)

and, dividing by the product of hi’s and taking the limit as hi → 0, we get

L(θ) =
r∏

i=1

f(ti|θ)
n∏

j=r+1

[1 − F (tr|θ)]

=
r∏

i=1

1

θ
e−ti/θ

n∏
j=r+1

e−tr/θ

=
1

θr
exp

[
− (
∑r

i=1 ti) + (n − r)tr

θ

]
.

Let

sn;r = (
r∑

i=1

ti) + (n − r)tr

be the accumulated life on test. Differentiating the likelihood function with respect
to θ and setting it equal to zero, we get

− r

θr+1
e−sn;r/θ +

1

θr
(−sn;r)(−

1

θ2
)e−sn;r/θ = 0.

Then the maximum-likelihood estimator (MLE) of the mean life is given by

Θ̂ =
Sn;r

r
=

(
∑r

i=1 Ti) + (n − r)Tr

r
.

Thus the estimator of the mean life is given by the accumulated life on test, Sn;r,
divided by the number of observed failures.

�



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 677�

� �

�

10.2 PARAMETER ESTIMATION 677

However, when performing this estimation in practice, a common mistake
is to ignore that for i = r + 1, . . . , n, one obtains Ti > Tr, which is the trun-
cating time. They only use the data that record the lifetimes of the failed
components. One type of mistake occurs when we ignore the observations
{Ti > Tr, i = r + 1, . . . , n} altogether. Then an incorrect MLE is obtained
which is the arithmetic mean of {Ti, i = 1, . . . , r}:

Θ̂m1 =
∑r

i=1 Ti

r

Others use tr as the observation for {Ti, i = r + 1, . . . , n}, which will lead to
another incorrect result:

Θ̂m2 =
(
∑r

i=1 Ti) + (n − r)Tr

n

It is easy to see that Θ̂ > Θ̂m2 > Θ̂m1, which shows that the incorrect esti-
mates will be smaller than the correct estimate of MTTF.

Example 10.10 (Sampling from the Weibull Distribution)

Now we consider another sample truncated test of n components without replace-
ment. The settings are the same as in the previous example, except that the lifetimes
of these components follow a Weibull distribution.

As before, let {ti, i = 1, . . . , n} denote the observations. Actually, there are r
observed failures. To simplify the expression, let xi = min{ti, tr} for i = 1, . . . , n.
Recall that Weibull density and distribution functions, respectively, are

f(t) = λαtα−1e−λtα

and

F (t) = 1 − e−λtα

The parameters λ and α are to be estimated. The likelihood function is then

L(λ, α) =
r∏

i=1

f(ti|λ, α)
n∏

i=r+1

R(tr|λ, α)

=
r∏

i=1

λαtα−1
i e−λtα

i

n∏
i=r+1

e−λtα
r

= λrαr(
r∏

i=1

xi)
α−1e−λ

∑n
i=1 xα

i .

Taking logarithms, we have

ln L(λ, α) = r ln λ + r ln α + (α − 1)

r∑
i=1

ln xi − λ

n∑
i=1

xα
i .
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To maximize the log-likelihood, we take derivatives with respect to λ and α, respec-
tively, and setting them equal to zero. We get

r

λ
−

n∑
i=1

xα
i = 0

and
r

α
+

r∑
i=1

ln xi − λ
n∑

i=1

xα
i ln xi = 0.

There are no closed-form solutions for λ̂ and α̂. However, the first equation can be
solved for λ in terms of α as follows:

λ =
r

n∑
i=1

xα
i

. (10.6)

Plugging this into the second equation and applying some algebra, this equation
reduces to

r

α
+

r∑
i=1

ln xi −
r

n∑
i=1

xα
i ln xi

n∑
i=1

xα
i

= 0, (10.7)

which must be solved iteratively. When the MLE α̂ is obtained, it is used to calculate
λ̂ = r/

∑n
i=1 xα̂

i . For more details, refer to Leemis [LEEM 1995].

�

Example 10.11 (Parameter Estimation from Interval Data)

When the values of lifetimes or survival times of components in a test or in service
are available, such data are called point data. Test data and data from in-service
experience of a component sometimes is available only in a coarse form because of
the limitations on data collection such as cost. One such form of coarse data is called
interval data, where the component lifetimes and survival times are known only to
be within an interval or range. This type of data might arise naturally if the test
items are inspected periodically and the failures recorded when found.

Strictly speaking, even point data are available in only interval form since the
data points are recorded only to a few decimal places or recorded in digital format
with a limited precision. For practical purposes the interval is generally small enough
to consider such data to be point data.

Now consider developing an MLE estimate for a parameter from interval data.
Assume a CDF with one parameter, F (x|λ), for the lifetime of the component.
Suppose that xi (i = 1, . . . , n) are n independent samples for lifetimes from this
distribution. We do not know the actual values for the xi. Each xi could fall in any of
Ji intervals, whose endpoints Xi,0 = 0, Xi,1, . . . , Xi,Ji−1, Xi,Ji

= ∞, are independent
of xi and assumed to be known. The component is failed in interval j if Xi,j−1 <
xi ≤ Xi,j and the component is considered to have never failed if xi > Xi,Ji−1.
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Suppose that xi falls in the interval ji. Then the likelihood function for these
data is written as

L(λ) =
n∏

i=1

[F (Xi,ji
|λ) − F (Xi,ji−1|λ)].

The log-likelihood function will be

ln L(λ) =
n∑

i=1

ln[F (Xi,ji
|λ) − F (Xi,ji−1|λ)].

Taking the derivative with respect to λ and setting it to zero will yield a set of
nonlinear equations for λ which can be solved for the MLE.

As an example suppose F (x|λ) = 1 − e−λx. Let Ji = N + 1 and Xi,j = jh for
all i = 1, . . . , n and j = 1, . . . , N , where h is a constant inspection interval. Suppose
that out of the n components tested, k of them fail in the first period (0, h) and
m never fail, that is, their lifetimes fall in (Nh,∞). Then the likelihood function is
given by

L(λ) = (1 − e−λh)k
n−k−m∏

i=1

{e−(ηi−1)λh − e−ηiλh}(e−λNh)m

where ηi’s are the intervals during which the other (n − k − m) components fail.
Taking the logarithms, we get

ln L(λ) = k ln(1 − e−λh) +

n−k−m∑
i=1

ln{e−(ηi−1)λh − e−ηiλh} − λmNh.

Then, taking the derivative with respect to λ and setting it to zero will yield the
following nonlinear equation for λ:

ke−λh + (n − k − m) = (1 − e−λh)(mN +

n−k−m∑
i=1

ηi).

This equation can be solved so long as some components fail after the first inspection
point. If all components fail before the first inspection (k = n) or if all survive past
the last inspection (m = n), then the MLE does not exist. For the special case of
k = 0 and m = 0, that is, where all components fail after the first inspection, then
we have the following MLE for λ:

λ = − 1

h
ln

(
1 − n∑n

i=1 ηi

)
.

�

Example 10.12 (Parameter Estimation in Goel–Okumoto Model)

The finite-failure NHPP model is a class of software reliability models [OHBA 1984]
that assume that software failures display the behavior of a nonhomogeneous Poisson
process (NHPP). The parameter, λ(t), of the stochastic process, is time-dependent.
The function λ(t) denotes the instantaneous failure intensity of the software at
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time t. Let N(t) denote the cumulative number of faults detected by time t, and let
m(t) denote its expectation E[N(t)]. Then m(t) and the failure intensity λ(t) are
related as follows:

m(t) =

∫ t

0

λ(x)dx (10.8)

dm(t)

dt
= λ(t). (10.9)

N(t) is known to have a Poisson pmf with parameter m(t):

P{N(t) = n} =
[m(t)]ne−m(t)

n!
, n = 0, 1, 2, . . .∞.

Various NHPP models differ in their approach to determining λ(t), and thus
m(t). Here we suppose λ(t) and m(t) are known. Let Si denote the time of the
occurrence of the ith failure, si denotes the observation of Si. The probability density
function of Si at si, given the previous observations, is of the form

f(si|s1, s2, . . . , sn, m(t), λ(t)) = λ(si)e
−(m(si)−m(si−1)).

Then the joint density or the likelihood function of S1, S2, . . . , Sn can be
written as

f(s1, s2, . . . , sn|m(t), λ(t)) = e−m(sn)
n∏

i=1

λ(si). (10.10)

The NHPP models can be classified into finite-failure and infinite-failure cat-
egories. Finite-failure NHPP models assume that the expected number of faults
detected given infinite amount of testing time will be finite, whereas the infinite fail-
ures models assume that an infinite number of faults would be detected in infinite
testing time.

The Goel–Okumoto model [GOEL 1979] (see Example 8.14) is one of the
most influential finite-failure NHPP models. It has a mean-value function m(t)
described by

m(t) = a(1 − e−bt),

and a failure intensity function λ(t), which is the derivative of m(t), given as

λ(t) = abe−bt ,

where a is the expected number of faults that would be detected given infinite testing
time, and b is the failure occurrence rate per fault.

Now we have the observations {s1, s2, . . . , sn}. In order to obtain the MLE of
the parameters a and b in the Goel–Okumoto model, we consider the log-likelihood
function, which is the natural logarithm of (10.10):

L(a, b) = ln f(s1, s2, . . . , sn|a, b) = n ln a + n ln b − a(1 − e−bsn) − b

n∑
i=1

si. (10.11)
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Maximizing equation (10.11) with respect to a and b, we have

n

a
= 1 − e−bsn (10.12)

and

n

b
= asne−bsn +

n∑
i=1

si, (10.13)

which are solved numerically to give the MLE for a and b.

�

Problems

1. Show that the maximum-likelihood estimator of the mean life θ with a replace-
ment test until r failures is

Θ̂ =
nTr

r
,

where the random variable Tr denotes the time for the rth failure from the
beginning of the experiment.

2. Suppose that the CPU service time X of a job is gamma-distributed with param-
eters λ and α. On the basis of a random sample of n observed service times,
x1, x2, . . . , xn, we wish to estimate parameters λ and α. Show that MLEs of
λ and α do not yield a closed-form solution. Recall that method-of-moments
estimators of λ and α are simple closed-form expressions.

3. Derive the MLE estimates of the parameters a, λ, and κ of the log-logistic soft-
ware reliability growth model considered in Example 8.14 (in Chapter 8).

4. Show that the MLE estimates of the parameters of the Pareto distribution
described in Chapter 3 (Section 3.4.8) satisfy the relation

α =

[
1

n

n∑
i=1

ln(xi) − ln(k)

]−1

.

10.2.3 Confidence Intervals

The methods of parameter estimation discussed so far produce a point esti-
mate of the desired parameter. Of course, the point estimate θ̂ rarely coincides
with the actual value of the parameter θ being estimated. It is, therefore,
desirable to find an interval estimate. We construct an interval, called a
confidence interval, in such a way that we are reasonably confident that it
contains the true value of the unknown parameter. If we can ascertain that
the estimator Θ̂ satisfies the condition

P (Θ̂ − ε1 < θ < Θ̂ + ε2) = γ,

then we say that the random interval A(θ) = (Θ̂ − ε1, Θ̂ + ε2) is a 100γ%
confidence interval for parameter θ. γ is called the confidence coefficient.
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Often we choose a symmetric confidence interval so that ε1 = ε2 = ε, as it
gives the smallest interval width.

The meaning of this probability statement needs some clarification. For
any specific set of observations, x1, x2, . . . , xn, the estimate θ̂ is a fixed value.
The confidence interval A(θ) either will or will not contain the true value
of θ, in which case the probabilities are one and zero, respectively. However,
when Θ̂ is considered as a function of random variables X1,X2, . . . , Xn, the
endpoints of the interval A(θ) are then random variables, and it is possible to
say that the probability is γ that the (random) interval A(θ) will contain the
(fixed) true value of θ. The relative-frequency interpretation of the preceding
probability implies that if this process of sampling is repeated many times, the
fraction of the time in which the true value of θ is contained in the confidence
interval A(θ) will be γ.

One simple way to obtain a confidence interval (involving an unbiased
estimator) is to apply Chebyshev’s inequality:

P (Θ̂ − ε < θ < Θ̂ + ε) ≥ 1 − Var[Θ̂]
ε2

,

provided Var[Θ̂] is known (or can be estimated).

Example 10.13

Let θ = μ and Θ̂ = X, the sample mean. Assume that the population variance σ2 is
known. Then Var[X] = σ2/n and the Chebyshev inequality yields

P (X − ε < μ < X + ε) ≥ 1 − σ2

nε2
.

Thus, for a given ε > 0, we may make the confidence coefficient arbitrarily close to
1 by choosing a sufficiently large value of n.

�

Confidence intervals obtained by Chebyshev’s inequality can usually be
improved on if the distribution of X is known. In general, the steps involved
in obtaining a confidence interval for the parameter θ from a random sample,
X1, X2, . . ., Xn, are as follows:

1. Find a random variable that is a function of X1,X2, . . . , Xn:

W = W (X1,X2, . . . , Xn; θ),

such that the distribution of W is known.

2. Find numbers a and b such that:

P (a < W < b) = γ.
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3. After sampling the values xi of Xi, determine the range of values that θ
can take on while maintaining the condition a < w(θ) < b, where w(θ) =
W (x1, x2, . . . , xn; θ). This range of values is a 100γ% confidence interval
of θ.

It should be clear at the outset that step 1 depends on the distribution of X.
Therefore, our subsequent discussion is divided according to some common
distributions of X.

10.2.3.1 Sampling from the Normal Distribution. Suppose that a
random sample of size n is taken from a normal population with unknown
mean μ and a known variance σ2; that is, X ∼ N(μ, σ2). Then it is easy to
show that the sample mean is N(μ, σ2/n), so that Z = (X − μ)/(σ/

√
n)) is

standard normal; that is, Z is N(0, 1). Now, if we want a 100γ% confidence
interval for the population mean μ, we find numbers a and b [from N(0, 1)
tables] such that

P (a < Z < b) = γ.

Once the numbers a and b are determined, we obtain the required confidence
interval as follows:

a <
x − μ

σ/
√

n
< b

or
x − bσ√

n
< μ < x − aσ√

n
.

Therefore, (x − bσ/
√

n, x − aσ/
√

n) is a 100γ% confidence interval for μ.

Example 10.14

It is common to choose a symmetric confidence interval for μ so that we have a = −b.
(If the estimator has a symmetric pdf, as it does in this case, then the choice a = −b
is known to produce the confidence interval of minimum width.) Then

P (−b < Z < b) = γ.

We let γ = 1 − α for convenience. Now, from the symmetry of the pdf of Z, we
obtain

P (Z < −b) =
α

2
and P (Z > b) =

α

2
.

This value of b is usually denoted by zα/2 (see Figure 10.1), and these values can be
read from a table. Now

(
x − zα/2

σ√
n

, x + zα/2

σ√
n

)



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 684�

� �

�

684 STATISTICAL INFERENCE

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
d

f

Each shaded 
area =     /2 

α/2-z zα/2

α

-z z

x

α/2

α/2α/2

Figure 10.1. P (Z > zα/2) = α/2 = P (Z < −zα/2)

TABLE 10.1. Critical Values of N(0,1)

1 − α 0.90 0.95 0.99

zα/2 1.645 1.96 2.576

is a 100(1 − α)% confidence interval for the population mean μ. The usual values of
(1 − α) and corresponding zα/2 are shown in Table 10.1.

We have 100(1 − α)% confidence that the sample mean X deviates from the
population mean μ by less than E = zα/2σ/

√
n. Then, the sample size required in

order to produce a symmetric 100(1 − α)% confidence interval of width 2E for the
population mean is given by

n =

⌈(
zα/2σ

E

)2
⌉

.

�

Example 10.15

The average working-set size X of a program is normally distributed with unknown
mean μ and a known variance σ2 = 81. The program was executed 36 times and the
average working-set size for each run recorded. The sample mean was computed to
be 100 page frames. Assuming that successive runs of the program are independent,
the 95% confidence interval for the mean average working-set size is given by

(100 − 1.96 · 9/6, 100 + 1.96 · 9/6) = (97.06, 102.94).
�



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 685�

� �

�

10.2 PARAMETER ESTIMATION 685

Example 10.16

Suppose that we wish to estimate the average CPU service time of a job and we
wish to assert with a 99% confidence that the estimated value is within less than 0.5
s of the true value. Suppose that past experience suggests that CPU service time
is normally distributed with σ2 = 2.25 s2. Then the required number of random
samples is given by

n =

⌈(
2.576 · 1.5

0.5

)2
⌉

= �59.722� = 60.

�

Two difficulties with the interval estimation procedure discussed so far
should be noted. First, the assumption that the population is normally dis-
tributed does not always hold. In the next few sections we will discuss interval
estimation when the population is not normally distributed. Also note that,
in practice, the assumption of normality does not pose a problem when the
sample size is large, owing to the central-limit theorem, which states that
the statistic (X − μ)/(σ/

√
n) is asymptotically normal (under appropriate

conditions).
The second difficulty with the formula for confidence interval given above

is that it requires the knowledge of population variance σ2. If σ2 is unknown,
we may replace it by its estimate s2 to get an approximate confidence interval
for μ:

x −
zα/2s√

n
< μ < x +

zα/2s√
n

,

which will be a good approximation for large values of n (n > 30). When the
sample size is relatively small, this approximation is poor. But in this case we
can make use of Student t distribution.

If X is the sample mean of a random sample of size n from a normal
population having the mean μ and variance σ2, then by Example 3.39 we
have that the random variable

T =
X − μ

S/
√

n

has Student t distribution with n − 1 degrees of freedom.
In Figure 10.2, the pdf of t distribution with 3 degrees of freedom is plotted,

together with the standard normal density for comparison.
Thus we obtain the 100(1 − α)% confidence interval of μ as

x − tn−1;α/2

s√
n

< μ < x + tn−1;α/2

s√
n

, (10.14)

where tn−1;α/2 is defined such that the area under the t pdf to its right is
equal to α/2 or P (T > tn−1;α/2) = α/2 (Figure 10.3). This value can be read
from a table (see Appendix C).
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Figure 10.2. Comparing the standard normal pdf with the pdf of the t distribution
with 3 degrees of freedom

Example 10.17

We wish to estimate the average execution time of a program. The program was run
six times with randomly chosen data sets, and the sample mean of the execution
times was evaluated as x = 230 ms and the sample standard deviation as s = 14
ms. To obtain a 98% confidence interval of the true mean execution time μ, we read
t5;0.01 from the table of t distribution with n − 1 = 5 degrees of freedom to be 3.365.
Then the required confidence interval is

230 − 3.365 · 14√
6

< μ < 230 +
3.365 · 14√

6

or
210.767 < μ < 249.233 (with 98% confidence).

�

So far, we have considered confidence intervals for the population mean.
Next we discuss confidence intervals for the population variance. If X is nor-
mally distributed, then we have shown in Example 3.37 that the random
variable

X2
n−1 =

(n − 1)S2

σ2

possesses a chi-square distribution with n − 1 degrees of freedom.
To determine a 100(1 − α)% confidence interval of σ2, we find two numbers

a and b such that
P

[
a <

(n − 1)S2

σ2
< b

]
= 1 − α.
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Figure 10.3. P (Tn−1 > tn−1;α/2) = P (Tn−1 < −tn−1;α/2)

Since chi-square is a nonnegative random variable, its density is obviously
not symmetric about zero. Therefore, in choosing a and b, the requirement of
“equal tails” is usually imposed (see Figure 10.4), so that

P (X2
n−1 > b) =

α

2
and P (X2

n−1 < a) =
α

2
.

In this case, b and a are denoted by χ2
n−1;α/2 and χ2

n−1;1−α/2, respec-
tively. The 100(1 − α)% confidence interval of the population variance is then
given by

(n − 1)s2

χ2
n−1;α/2

< σ2 <
(n − 1)s2

χ2
n−1;1−α/2

.

Note that, like the confidence interval for the population mean μ found using
the t distribution, this interval does not require knowledge of any parameters
of the population distribution function.

Example 10.18

A usual complaint of file server users is the large variance of the response time. While
contemplating the purchase of a new file server, we measure 30 random samples
of response times, and compute the sample variance to be 25 ms2. Assuming the
response times are approximately normally distributed, a 95% confidence interval
for the population variance σ2 is given by

(n − 1)s2

χ2
n−1;α/2

< σ2 <
(n − 1)s2

χ2
n−1;1−α/2

, where α = 0.05.
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Figure 10.4. P (X2
n−1 > χ2

n−1;α/2) = P (X2
n−1 < χ2

n−1;1−α/2)

From a table of chi-square distribution (see Appendix C) with n − 1 = 29 degrees of
freedom, χ2

29;0.025 = 45.722 and χ2
29;0.975 = 16.047, so that the required confidence

interval is obtained from the relation

29.25

45.722
< σ2 <

29.25

16.047

as (15.86, 45.18).

�

The construction of confidence intervals discussed so far was based on the
assumption that X is normally distributed. Empirical evidence suggests that
the confidence interval for μ based on the normality of the statistic (X −
μ)
√

n/σ is highly reliable (in the sense of providing adequate coverage) even
when the distribution of X is considerably different from normal. However,
the confidence interval of σ2 derived above can be quite poor when X has a
distribution significantly different from normal.

Problems

1. In an exhaustive, nonreplacement life test of 10 components, the observed times
to failure (in hours) are: 1200, 1500, 1625, 1725, 1750, 1785, 1800, 1865, 1900, and
1950. Assuming that component lifetimes are normally distributed, compute an
estimate of the mean life μ and the variance σ2. Also compute a 90% confidence
interval for the mean life.

2. Given the following 20 measurements of the mean length of a CPU queue,
compute the best estimates of the mean queue length, variance of the queue
length, and a 95% confidence interval of the mean queue length; assume that
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queue-length distribution is approximately normal.

3.00 2.87 3.58 3.28 3.87
4.14 5.23 3.86 2.88 4.37
4.75 4.33 3.17 2.85 4.16
4.03 3.57 3.68 3.95 3.58

3. A program was tested using a random collection of 30 input data sets, and
execution time was measured for each run. The sample mean and the sample
variance of the execution time were found to be x = 65 ms and s2 = 36 ms2,
respectively. Derive a 95% confidence interval for the average execution time of
the program assuming that the population is normal.

4. Execution times (in seconds) of 40 jobs processed by a server were measured and
found to be

10 19 90 40 15 11 32 17 4 152
23 13 36 101 2 14 2 23 34 15
27 1 57 17 3 30 50 4 62 48
9 11 20 13 38 54 46 12 5 26

Calculate the sample mean and the sample variance. Find the 90% confidence
intervals for the mean and the variance of execution time of a job. Assume that
the execution time is approximately normally distributed.

10.2.3.2 Sampling from the Exponential Distribution. Now we
consider the special case when X is exponentially distributed. This case is of
importance in queuing theory as well as in reliability theory (life testing).

We have noted that under exhaustive testing of n components, the
maximum-likelihood estimator of mean life is given by the sample mean:

Θ̂ = X.

Now if X is exponentially distributed with parameter λ, then
∑n

i=1 Xi is an
n-stage Erlang random variable with parameter λ, and X = (

∑n
i=1 Xi)/n is

n-stage Erlang with parameter nλ. This implies that

2nλX =
2nX

θ
=

2nΘ̂
θ

has an n-stage Erlang distribution with parameter 1
2 , which is the chi-square

distribution with 2n degrees of freedom. Then a 100(1 − α)% confidence inter-
val of mean life θ is obtained from

χ2
2n;1−α/2 <

2nθ̂

θ
< χ2

2n;α/2

as
θ̂

2n

χ2
2n;α/2

< θ < θ̂
2n

χ2
2n;1−α/2

.
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Next we consider a test (without replacement) terminated after r ≤ n fail-
ures have occurred. Consider the accumulated life on test, Sn;r:

Sn;r = (
r∑

i=1

Ti) + (n − r)Tr.

Let Yi denote the time from the (i − 1)st failure to the ith failure so that

Ti =
i∑

j=1

Yj , i = 1, 2, . . . , r.

Then

Sn;r =
r∑

i=1

Ti + (n − r)Tr

=
r∑

i=1

i∑
j=1

Yj + (n − r)
r∑

j=1

Yj

= (Y1) + (Y1 + Y2) + (Y1 + Y2 + Y3) + · · · + (Y1 + Y2 + · · ·Yr)

+(n − r)(Y1 + Y2 + · · · + Yr)

=
r∑

i=1

(r − i + 1)Yi +
r∑

i=1

(n − r)Yi

=
r∑

i=1

(n − i + 1)Yi.

Now, from our discussion in Example 3.26, Yi is exponentially distributed
with parameter (n − i + 1)λ, and therefore (n − i + 1)Yi is exponentially dis-
tributed with parameter λ. Therefore Sn;r is r-stage Erlang with parameter
λ, and hence 2λSn;r = 2Sn;r/θ is r-stage Erlang with parameter 1

2 ,—that is,
the X2

2r distribution. Thus a 100(1 − α)% confidence interval for θ is given by

2sn;r

χ2
2r;α/2

< θ <
2sn;r

χ2
2r;1−α/2

.

Example 10.19

Assume that n = 50 chips are placed on a life test without replacement and the test is
to be truncated after r = 10 failures have been observed. Observed failure times are
t1 = 80, t2 = 95, t3 = 370, t4 = 415, t5 = 505, t6 = 590, t7 = 635, t8 = 835, t9 = 895,
and t10 = 960 h. Then

sn;r = (80 + 95 + 370 + 415 + 505 + 590 + 635 + 835 + 895 + 960)

+(50 − 10)960 = 43, 780 h.
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The estimated mean life is θ̂ = 43780/10 = 4378 h, and the estimated failure rate is
λ̂ = 0.0002284 failures per hour. Finally, a 90% confidence interval for mean life is

2(43, 780)

31.410
< θ <

2(43, 780)

10.851

or
2787 < θ < 8069 h,

where χ2
20;0.05 = 31.410 and χ2

20;0.95 = 10.851 values are obtained from a table of
chi-square distribution (see Appendix C) with 20 degrees of freedom.

�

Recalling that the interevent times of a Poisson process are exponentially
distributed, we can obtain a confidence interval for the average arrival rate.
Assume that a Poisson process of rate λ is observed until a fixed number n
of events have been counted. Let Xi denote the time between the (i-1)st and
ith event. Then Xi is exponentially distributed with parameter λ, and the
statistic

Sn =
n∑

i=1

Xi

is n-stage Erlang with parameter λ. It follows that 2λSn is chi-square dis-
tributed with 2n degrees of freedom. Consequently(

χ2
2n;1−α/2

2sn

,
χ2

2n;α/2

2sn

)

is a confidence interval for λ, with confidence coefficient (1 − α).

Example 10.20

Arrival of jobs to a file server was monitored, and it was found that 50 jobs arrived
within 100 min. Assuming a Poisson model, the maximum-likelihood estimate for the
average job arrival rate is λ̂ = 50/100 = 0.5 jobs per minute. Noting that χ2

100;0.05 =

124.34 and χ2
100;0.95 = 77.93, we find the 90% confidence interval for λ to be (0.39,

0.62).

�

Sometimes a one-sided confidence interval is sought in place of the
two-sided interval given above. For example, an upper one-sided confidence
interval of the mean life θ is denoted by (ΘL,∞) where ΘL is known as the
lower confidence limit. Since 2Sn;r/θ is chi-square distributed with 2r
degrees of freedom, we have

P

(
2Sn;r

θ
< χ2

2r;α

)
= 1 − α.
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It follows that
2sn;r

θL

= χ2
2r;α or θL =

2sn;r

χ2
2r;α

.

Similarly, a lower one-sided confidence interval of the mean life is denoted
by (0,ΘU ), where a value of the upper confidence limit ΘU is given by

θU =
2sn;r

χ2
2r;1−α

.

Example 10.21 (Continued from Example 10.19)

Returning to Example 10.19, we note that for a chi-square distribution with 2r = 20
degrees of freedom, χ2

2r;α = χ2
20;0.1 = 28.41 and χ2

2r;1−α = χ2
20;0.9 = 12.443. It follows

that the 90% lower confidence limit of the mean life is given by

θL =
2sn;r

χ2
20;0.1

=
87560

28.41
= 3082 h.

Therefore, with 90% confidence we can assert that the true mean life is greater than
3082 h. The 90% upper confidence limit is

θU =
2sn;r

χ2
20;0.9

=
87560

12.443
= 7036 h.

Therefore, with 90% confidence we can assert that the true mean life is less than
7036 h.

�

For ultra-high-reliability systems, the mean life may be much larger than
the duration of a normal “mission.” In this case we are more interested in
obtaining a confidence interval for system reliability given a mission time t.
We proceed to derive such a confidence interval starting from the 100(1 − α)%
upper one-sided confidence interval of the mean life θ. Thus

1 − α = P (θ ≥ ΘL)

= P (e−t/θ ≥ e−t/ΘL)

(since the exponential is a monotonic function)

= P
[
R(t) ≥ e−t/ΘL

]
.

In other words

RL = e−t/θL = e
−(tχ2

2r;α)

2sn;r

is the lower 100(1 − α)% confidence limit for the reliability, given a mission
time t. Note that the chi-square distribution here has 2r degrees of freedom,
since we are discussing a test, without replacement, truncated after r failures.
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In the running example of this section, we have 90% confidence that the
chip reliability exceeds the threshold RL = e−t/3082. Thus, if we observe a
large number of chips for 30.82 h, we are 90% confident that at least 100 ·
e−0.01 = 99% of the chips will still be functioning properly. Similarly, if we
observe a large number of chips for 3082 h, we are 90% confident that at least
100 · e−1.0 = 36.79% of chips to be functioning properly.

Problems

1. Assume that 15 RAM chips are put into operation, and a truncated nonre-
placement life test is conducted until three chips have failed. Corresponding
failure times are noted as t1 = 850 h, t2 = 900 h, and t3 = 1000 h. Assume that
the devices follow an exponential failure law.

(a) Obtain a point estimate of the mean life.

(b) Obtain a 90% confidence interval for the mean life of a chip.

2. Show that the 100(1 − α)% confidence interval for the mission time tγ such that
the reliability for this mission time satisfies

R(tγ) = P (X > tγ) = γ,

is given by [
2sn;r

χ2
2r;α/2

ln

(
1

γ

)
,

2sn;r

χ2
2r;1−α/2

ln

(
1

γ

)]
.

It is assumed that the lifetime X is exponentially distributed with the parameter
λ (which is to be estimated from the data), and the remaining assumptions are
the same as those made throughout the section.

3. Assume that 20 items are placed on a life test. The first and the second failures
occur at 3001 and 7030 h, respectively, after which time the test is terminated.
Assuming that the lifetimes of items are exponentially distributed, compute

(a) The maximum-likelihood estimate of the MTTF

(b) The 95% confidence interval for the MTTF

(c) The 95% confidence interval for the length of the mission with reliability
0.9

10.2.3.3 Sampling from the Weibull Distribution. In the case that
the exponential distribution is not good enough to fit the data, the Weibull
distribution can yield better results. Typically, the Weibull distribution is
more appropriate for modeling the lifetimes with increasing and decreasing
failure rates. In fact, the exponential distribution which models the lifetimes
having a constant failure rate is only a special case of the Weibull distribution
with the shape parameter α = 1.
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We have already derived the likelihood function and the maximum like-
lihood estimator in Example 10.10. Now we are trying to find an interval
estimator. Since there are two parameters in the model, the estimator should
be a confidence region rather than a confidence interval. In Example 10.10,
we do not have a closed-form solution for the maximum-likelihood estimator.
Estimating the confidence region is even harder. Leemis [LEEM 1995] found
the likelihood ratio statistic, 2[lnL(λ̂, α̂) − ln L(λ, α)], to be asymptotically
chi-square distributed with 2 degrees of freedom. Therefore, an asymptotical
95% confidence region for the parameters is all λ and α satisfying

2[ln L(λ̂, α̂) − ln L(λ, α)] < χ2
2;0.05.

Example 10.22

Consider the following data that could represent failure times of identical copies of
a component:

134.21 304.27 416.82 450.61 525.96
553.94 627.11 817.53 870.2 1034.26

1057.86 1065.73 1070.47 1170.9 1254.87
1283.32 1697.44 1891.23 1939.45 2077.96

We would like to analyze these data to see if the component’s failure rate
increases with the age of the component. If we assume that a Weibull CDF will
fit these data, we can obtain the MLE for the two parameters α and λ, using the
equations (10.6) derived earlier in Example 10.10. Solving the MLE equations we
obtain λ̂ = 0.00000131 and α̂ = 1.924. The confidence region for a particular value
of confidence, say, 90%, is quite complex, and we can obtain the bounding box of
this region from the approximate chi-square distribution of the log-likelihood ratio.
For these data we obtain the bounding box of the 90% confidence region as the
cross-product of the interval (1.394,2.544) for α and (0.00000088,0.00000198) for
λ. Since the 90% confidence region does not include α ≤ 1.0, it is seen that the
component has an increasing failure rate at the 90% confidence interval.

The data given above are actually synthetic and were generated from a Weibull
CDF with λ = 0.000001 and α = 2.00 using a random-number generator. The MLE
values of λ̂ = 0.00000131 and α̂ = 1.924 are close to the true values. The 90% con-
fidence region bounding box encloses the true values in this case, although this
need not be the case in general. The Figure 10.5 shows the comparison between
the empirical CDF, the MLE estimate, and the CDF from which the data were
generated.

�

10.2.3.4 Sampling from the Bernoulli Distribution. In many sit-
uations we are interested in the percentage of certain components that will
perform satisfactorily for a given period. At other times we may be interested
in the proportion of client requests whose response times do not exceed a
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Figure 10.5. Weibull estimation

threshold. Each individual experimental observation, Xi, can then be treated
as a Bernoulli random variable with an unknown parameter p. The statistic

Sn =
n∑

i=1

Xi

is then binomially distributed:

FSn
(k) = B(k;n, p).

As we have seen earlier, the maximum-likelihood estimator of the propor-
tion of successes is given by

P̂ =
Sn

n
= X.

Since E[Sn] = np, we have E[P̂ ] = p, and Var[Sn] = np(1 − p) implies that
Var[P̂ ] = p(1 − p)/n. Thus, the sample proportion, P̂ , is a consistent and
unbiased estimator of the “true” proportion, p.

For a statistic such as Sn that has a discrete distribution, it is possible to
use a software package such as Mathematica, as we shall soon see. In absence
of an access to such a tool, we derive a confidence interval for p with an
approximate degree of confidence (1 − α).
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Let k0 be the largest integer such that

k0∑
k=0

b(k;n, p) = B(k0;n, p) ≤ α

2
,

and let k1 be the smallest integer such that

n∑
k=k1

b(k;n, p) = 1 − B(k1 − 1;n, p) ≤ α

2
.

Note that k0 and k1 are functions of p. Then, since P [k0(p) < Sn < k1(p)] �
1 − α, an approximate 100(1 − α)% confidence interval for p can be obtained
by inverting

k0(p) < sn < k1(p).

Unfortunately, there are no closed-form expressions for k0 and k1 as functions
of p. Therefore, a tabular technique is usually employed to obtain the desired
confidence interval.

Example 10.23

From a large population of RAM chips, a sample of 20 is taken and a test carried
out on each to see whether they perform correctly. In the test 7 chips are found to
perform correctly and the remaining 13 do not perform to specifications. Therefore
a point estimate of the yield of these chips is p̂ = 7

20
= 0.35.

In order to determine a 95% confidence interval for p, we have to determine
integers k0 and k1 such that k0 is the largest integer satisfying

B(k0; 20, p) ≤ 0.025,

while k1 is the smallest integer satisfying

1 − B(k1 − 1; 20, p) ≤ 0.025.

Using the binomial formula, and varying p from 0.1 to 0.9, we obtain the following

table of values:

p 0.1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k0 — 0 1 3 5 7 9 11 14

k1 6 9 11 13 15 17 19 20 —

Now, since sn = k = 7, the interval of p satisfying

k0(p) < 7 < k1(p)

is (0.133, 0.600) from the table above (together with a little interpolation). This is
the 95% confidence interval that was sought for p.

�
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Another approach is to use a software package such as Mathematica
[WOLF 1999] to calculate the lower and upper bounds of p. The result will be
the exact solution (subject to numerical computation errors). The following
Mathematica code will solve the problem in Example 10.23:

n = 20
y = 7
alpha = 0.05
proot = FindRoot[ Sum[Binomial[n,k] * p^k * (1-p)^(n-k),

{k,y,n}] == alpha/2, {p, y/n}]
pl = p /. proot[[1]];
proot = FindRoot[ Sum[Binomial[n,k] * p^k * (1-p)^(n-k),

{k,0,y}] == alpha/2 ,{p, y/n}]
pu = p /. proot[[1]];
Print[pl, " ", pu]
(* �Statistics‘ContinuousDistributions‘ *)

The execution of this code yields the interval (0.154, 0.592).
If the sample size n is large or p is not suspected to be very close to either

0 or 1, we can use the normal approximation to the binomial distribution. As
a rule of thumb, np ≥ 5 and nq ≥ 5 usually suffice. Thus Sn is approximately
normal with μ = np and σ2 = np(1 − p). Note that σ2 contains the unknown
parameter p, but we may approximate it by σ̂2 = np̂(1 − p̂). Then

Sn − np
σ̂

is approximately standard normal. It follows that an approximate 100(1 −
α)% confidence interval for p is obtained from

−zα/2 <
sn − np

σ̂
< zα/2

or from

sn

n
− zα/2

√
sn

(
1 − sn

n

)
n2

< p <
sn

n
+ zα/2

√
sn

(
1 − sn

n

)
n2

.

For instance, using this approximation for the data of Example 10.23, and
noting that z0.025 = 1.96, we get a 95% confidence interval of p to be

0.35 − 1.96

√
7(1 − 0.35)

400
< p < 0.35 + 1.96

√
7(1 − 0.35)

400
.

Thus the required interval is (0.141,0.559), which, considering the assump-
tions, is in fair agreement with the results obtained in Example 10.23.
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In many practical situations of interest, the Bernoulli parameter p is very
close to either 0 or 1. For example, while estimating the fault coverage of a
fault-tolerant computer system, we would expect the probability of successful
recovery to be close to 1—say, > 0.9. On the other hand, in a quality-control
inspection plan p̂ will represent a fraction of the total inspected items found
to be defective. In this case we will expect the population parameter to be
close to 0—say, < 0.1. In such cases the normal approximation to the binomial
distribution will be poor. However, for p < 0.1 we may use the Poisson approx-
imation to the binomial, provided that the sample size is large enough. In the
complementary case of p > 0.9, we obtain a confidence interval for q = 1 − p
using the same approach.

In the case p < 0.1, we will be interested in a one-sided confidence inter-
val with an approximate confidence coefficient γ so that if k is the observed
number of successes, we write

γ ≤ P (Sn ≤ k)

=
k∑

i=0

(n

i

)
pi(1 − p)n−i

�
k∑

i=0

e−np (np)i

i!
.

Now, by comparison with the distribution function of the (k + 1)-stage Erlang
random variable with parameter np, denoted by Y , we see that the right-hand
side is equal to 1 − FY (1). But then 2npY is chi-square distributed with 2(k +
1) degrees of freedom; hence we have

P (X2
2(k+1) < 2np) < 1 − γ.

It follows that the required confidence interval for p is given by

p <
1
2n

χ2
2(k+1);γ . (10.15)

For example, if a sample of 50 RAM chips selected at random from a large
batch is found to contain nine defectives, an approximate 90% confidence
interval for the fraction defective in the entire batch is given by

p <
1

2 · 50
χ2

20;0.1 = 0.284.

The point estimate of p in this case is given by

p̂ =
9
50

= 0.18.
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The errors in the confidence intervals due to the approximation are stud-
ied in Leemis and Trivedi [LEEM 1996]. The rules of thumb for normal
approximation and Poisson approximation are compared when these errors
are considered. Charts are given there to indicate which approximation is
appropriate for certain sample sizes and point estimators. Some of the recom-
mendations are as follows:

• The Poisson approximation should be used when n ≥ 20 and p ≤ 0.05
at α = 0.05 if the analyst can tolerate an absolute error in either limit
that may be as large as 0.04.

• For sample sizes larger than 150, the maximum absolute error of the
upper and lower confidence limits is less than 0.01 if the appropriate
approximation technique is used.

Example 10.24 (Deriving Confidence Intervals of the Error
Detection Coverage Probability)

Physical and simulated fault injection experiments are performed on a prototype
server to derive error detection coverage probability [CONS 1999]. Because of the
randomness of the fault injection, statistical inference has to be employed for pro-
cessing the experimental results. Sampling in partitioned and nonpartitioned spaces
and stratified and two-stage sampling are the main techniques used by Powell et al.
[POWE 1995]. Multistage, stratified, and combined sampling techniques have also
been employed [CONS 1995] for estimating coverage probabilities.

In this analysis we are particularly interested in deriving independent coverage
probabilities and their confidence intervals for each duration of the injected transient
faults. Student t and chi-square probability distributions are used for this purpose.
We use the following notations: n as number of injected faults, k as number of
detected errors, and c as error-detection coverage probability. Let us represent the
outcome of the ith fault injection experiment by a Bernoulli random variable, Xi.
Its observed value is

xi =

{
1 detected error,
0 undetected error.

The statistic Sn =
∑n

i=1 Xi is binomially distributed, with the distribution func-
tion FSn

(k) = B(k; n, c). An unbiased estimate of the coverage probability is ĉ =∑n
i=1 xi/n = x.
Confidence intervals of the error-detection coverage probability can be obtained

by using the binomial formula or tables of the binomial distribution. The normal
distribution provides a good approximation to the binomial distribution as long as
the sample size is large enough and c is not close to either 0 or 1. For smaller sample
sizes, Student t distribution gives a more accurate estimation of the confidence
intervals. From equation (10.14), the 100γ% confidence interval of the error detection
coverage, obtained with the aid of Student t distribution with n − 1 degrees of
freedom, is

x − tn−1;α/2

s√
n

< c < x + tn−1;α/2

s√
n

, (10.16)
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where

s =

√∑n
i−1 (xi − x)2

n − 1
.

When c is expected to take low (c < 0.1) or high (c > 0.9) values, it is desirable
to derive one-sided confidence intervals, with the aid of Poisson approximation and
the χ2 distribution with 2(k + 1) degrees of freedom. From equation (10.15), we
have the following for c < 0.1:

c <
1

2n
χ2

2(k+1);γ . (10.17)

In the case of c > 0.9 the one-sided confidence interval is derived for q = 1 − c, using
a similar approach.

Because of schedule requirements the sample size used in our experiments is
limited to 30. Confidence intervals are derived with the aid of equation (10.16),
when 0.1 ≤ c ≤ 0.9 (Student t distribution). Equation (10.17) is used for c < 0.1
and c > 0.9 (χ2 distribution).

Confidence intervals of the error detection coverage are given in Figure 10.6. A
90% confidence level is considered. Physical fault injection shows that error-detection
coverage is close to zero for transient faults in the 25 ns–8 μs range (curves labeled
I,LCL, and I,UCL plots). Higher coverage is observed as fault duration increases
from 8 to 120 μs.
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Figure 10.6. 90% confidence intervals of error-detection coverage [I—initial (physical
fault injection); CPV—checking for protocol violations (simulated fault injection);
LCL—lower confidence limit; UCL—upper confidence limit.]
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Simulated fault injection is used to evaluate the effectiveness of a new detection
mechanism, based on checking for protocol violations. Experiments prove that the
protocol checker provides better error detection, especially for transients greater
than 200 ns. CPV, LCL and CPV, UCL plots represent the confidence interval of
the improved error-detection coverage.

�

Problems

1. Assume that CPU activity is being probed and let the ith observation Xi = 0
if the CPU is idle and 1 otherwise. Assume that the successive observations
are sufficiently separated in time so as to be independent. Assume that X is a
Bernoulli random variable with parameter p. Thus the expected utilization is p.
We use the sample mean X as an estimator P̂ of p. Determine an approximate
100(1 − α)% confidence interval for p. Next assume that we wish to determine
the sample size that is required to attain a measurement error at most equal to
E with confidence coefficient 1 − α. Then show that

n =

⌈
p(1 − p)

(
zα/2

E

)2
⌉

Since this formula requires a prior knowledge of p (or its estimate), we would like

an approximation here. Since for values of p for which 0.3 < p < 0.7, p(1 − p) is
close to 0.25, an approximate sample size for this range of p is obtained as:

n =

⌈(
zα/2

2E

)2
⌉
.

(This expression is known to give conservative results.)

2. Returning to the text example of inspection of a lot of RAM chips, obtain a 95%
confidence interval for p using the following two methods and compare with the
one obtained in the text using the Poisson approximation:

(a) Either by consulting an extensive table for the CDF of the binomial distri-
bution or by using a Mathematica program, obtain a one-sided confidence
interval for p using exact binomial probabilities.

(b) Compute the required one-sided confidence interval using the normal
approximation to the binomial.

3. Obtain a distribution-free confidence interval for population median π0.5 of a
continuous population by first ordering the random sample X1, X2, . . . , Xn, with
the resulting order statistics denoted by Y1, Y2, . . . , Yn. Now the observed values
yi and yj for i < j can be used to provide a confidence interval (yi, yj) of the
median π0.5. Show that the corresponding confidence coefficient is given by

γ =

j−1∑
k=i

(n

k

)(1

2

)k(
1

2

)n−k
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Generalize to obtain a confidence interval for population percentile πp, where πp

is defined by
P (X ≤ πp) = p.

4. In order to estimate the fault-detection coverage c of a fault-tolerant computer
system, 200 random faults were inserted [GAY 1978]. The recovery mechanism
successfully detected 178 of these faults. Determine 95% one-sided confidence
intervals for the coverage c using exact binomial probabilities and using the
normal and the Poisson approximations to the binomial.

10.2.4 Estimation related to Markov Chains

So far, we have restricted our attention to estimating parameters related to
the probability distribution of a single random variable X. In this section we
will study the estimation of parameters of a Markov chain.

10.2.4.1 Discrete-Time Markov Chains. First, consider a homoge-
neous discrete-time Markov chain with a finite number of states. Let the
state space be {1, 2, . . . ,m}. Assume that the chain is observed for a total of
n transitions so that Nij is the number of transitions from state i to state
j (i, j = 1, 2, . . . , m). Let Ni =

∑m
j=1 Nij be all transitions out of state i,

and note that n =
∑m

i=1 Ni is a fixed constant while Ni and Nij are ran-
dom variables. Particular values of these random variables are denoted by ni

and nij , respectively. From these observations, we wish to estimate the m2

elements of the transition probability matrix P = [pij ]. It can be shown that
the maximum-likelihood estimator, P̂ij , of pij , is given by [BHAT 1984]:

P̂ij =
Nij

Ni

. (10.18)

Example 10.25

Consider the CPU of a computer system modeled as a three-state homogeneous
discrete-time Markov chain. The states are indexed 1, 2, and 3 and respectively
denote the CPU in supervisor state, user state, and idle state. We record the states
of the CPU at 21 successive time instants, and the recorded sequence is

1 2 3 3 2 1 1 2 2 3 2

3 1 3 2 3 1 2 3 1 2

With 21 observations, the number of transitions, n, is 20. From the data, we derive

the values of nij and ni to be

nij 1 2 3

1 1 4 1 6

2 1 1 5 7

3 3 3 1 7

20
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Thus, the maximum-likelihood estimate of the transition probability matrix P for
the CPU (modeled as a DTMC) is given by

P̂ =

⎡
⎢⎢⎢⎢⎣

1
6

2
3

1
6

1
7

1
7

5
7

3
7

3
7

1
7

⎤
⎥⎥⎥⎥⎦

�

A confidence interval for pij may be obtained by assuming that a fixed
number ni of transitions out of state i have been observed, out of which a
random number Nij of transitions are to state j. Owing to the assumptions of
a DTMC, Nij is then binomially distributed so that Nij is B(k;ni, pij ). Now
the methods of Section 10.2.3.4 can be used to derive the confidence interval
for pij . Thus, if ni is sufficiently large and if pij is not close to 0 or 1, an
approximate 100(1 − α)% confidence interval for pij is given by

⎡
⎣Nij

ni

− zα/2

√
Nij (1 − Nij /ni)

ni

,
Nij

ni

+ zα/2

√
Nij (1 − Nij /ni)

ni

⎤
⎦ .

10.2.4.2 Estimating Parameters of an M/M/1 Queue. Next con-
sider estimating parameters of a homogeneous continuous-time Markov chain,
such as a simple birth–death process with constant birth rate λ and constant
death rate μ. This corresponds to an M/M/1 queue with an arrival rate λ and
a service rate μ. To estimate the arrival rate λ, we observe that the arrival pro-
cess is Poissonian and therefore the method of Section 10.2.3.3 is applicable.
If Sn is the time required to observe n arrivals, then the maximum-likelihood
estimator of λ is

Λ̂ =
n

Sn

.

Also, since 2λSn has a chi-square distribution with 2n degrees of freedom, a
100(1 − α)% confidence interval for λ is given by(

χ2
2n;1−α/2

2sn

,
χ2

2n;α/2

2sn

)
.

In order to estimate the service rate μ, we note that, owing to our assump-
tions, the service times are independent exponentially distributed random
variables; hence the method of Section 10.2.3.2 is applicable. Thus, if service
times X1,X2, . . . , Xm have been observed, and if we let

Ym =
m∑

i=1

Xi,
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the maximum-likelihood estimator of μ is given by

M̂ =
m

Ym

.

Ym may also be interpreted as the total busy time of the server during
the observation period. Noting that 2μYm has a X2

2m distribution, we get
a 100(1 − α)% confidence interval for μ as(

χ2
2m;1−α/2

2ym

,
χ2

2m;α/2

2ym

)
.

Server utilization ρ is now estimated by

R̂ =
Λ̂
M̂

=
n/Sn

m/Ym

=
Ym/m

Sn/n
.

To obtain confidence intervals for ρ, we use the ratio

R̂

ρ
=

(Ym/m)/(Sn/n)
λ/μ

=
2μYm/2m

2λSn/2n
.

Now, since Ym and Sn are independent, and 2μYm and 2λSn are both
chi-square distributed, it follows that R̂/ρ has an F distribution with 2m
and 2n degrees of freedom (see Theorem 3.9). To obtain a 100(1 − α)%
confidence interval for ρ, we write the following for some constants c and d:

1 − α = P (c < F < d) = P

(
c <

R̂

ρ
< d

)
.

Select c and d so that P (F ≤ c) = α/2 and P (F < d) = 1 − α/2. Then, by
our usual notation, c = f2m,2n;1−α/2 and d = f2m,2n;α/2 so that the required
confidence interval for ρ is given by (ρL, ρU ) where

ρL =
ρ̂

f2m,2n;α/2

and ρU =
ρ̂

f2m,2n;1−α/2

.

From the confidence interval of ρ, we can obtain a confidence interval for
any monotonically increasing function, H(ρ), of ρ. Thus

(H(ρL),H(ρU ))

is the 100(1 − α)% confidence interval for H(ρ).

Example 10.26

Assume that a communication channel can be modeled as an M/M/1 queue. Suppose
that we observe the time until 30 message arrivals to be 59.46 min and these 30
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messages keep the channel busy for a total of 29min. Thus, m = n = 30, sn = 59.46
min, and ym = 29 min. Point estimates of the arrival rate, the service rate, and the
channel utilization are given by

λ̂ =
n

sn

=
30

59.46
= 0.505 messages per minute,

μ̂ =
m

ym

=
30

29
= 1.03 messages per minute,

ρ̂ =
λ̂

μ̂
= 0.488.

To obtain 95 percent confidence intervals for λ and μ, we use a chi-square distribution
with 2m, 2n = 60 degrees of freedom. Noting that

χ2
60;0.025 = 83.3 and χ2

60;0.975 = 40.48,

the required confidence interval for λ is (0.34, 0.7) and that for μ is (0.698, 1.436).
To obtain a confidence interval for ρ, we use an F distribution with (60,60)

degrees of freedom. Noting that

f60,60;α/2 = f60,60;0.025 = 1.67

and

f60,60;1−α/2 = f60,60;0.975 = 0.5988,

we obtain

ρL =
ρ̂

f60,60;0.025

= 0.292 and ρU =
ρ̂

f60,60;0.975

= 0.815.

Thus, the 95% confidence interval for ρ is (0.292, 0.815).
From the confidence interval for ρ, we can obtain a confidence interval for the

average number of messages queued or in service, E[N ] = ρ/(1 − ρ). Thus, a 95%
confidence interval for E[N ] is given by

(
0.292

1 − 0.292
,

0.815

1 − 0.815

)
or (0.412, 4.405).

Much more data must be collected if we want to narrow down this interval.

�

10.2.4.3 Estimation of Availability. Similar to the estimation in
M/M/1 queue, we consider estimating the steady-state availability from a
two-state continuous-time Markov chain (Figure 10.7). In this model, the
parameters to be estimated are failure rate λ and repair rate μ, or MTTF
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1

λ

μ

0

Figure 10.7. Two-state CTMC

and MTTR. The steady-state availability is computed as

A =
MTTF

MTTF + MTTR
=

μ

λ + μ
=

1
1 + λ/μ

=
1

1 + ρ
, (10.19)

where ρ is the ratio λ/μ.
Since the failure time and the repair time are both exponentially dis-

tributed, this is very similar to the M/M/1 queue case where interarrival times
and service times are both exponentially distributed. Assume we observed n
failure events and repair events, the total failure time is Sn and the total
repair time is Yn. The maximum-likelihood estimator of λ is

Λ̂ =
n

Sn

,

and a 100(1 − α)% confidence interval for λ is given by(
χ2

2n;1−α/2

2sn

,
χ2

2n;α/2

2sn

)
.

The maximum-likelihood estimator of μ is

M̂ =
n

Yn

.

and a 100(1 − α)% confidence interval for μ is(
χ2

2n;1−α/2

2yn

,
χ2

2n;α/2

2yn

)
.

The ratio λ/μ is estimated by

ρ̂ =
Λ̂
M̂

=
n/Sn

n/Yn

=
Yn/n

Sn/n
=

Yn

Sn

,

and a 100(1 − α)% confidence interval for ρ is given by (ρL, ρU ), where

ρL =
ρ̂

f2n,2n;α/2

and ρU =
ρ̂

f2n,2n;1−α/2

.
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The MLE estimate of A is Â = 1/(1 + ρ̂). Since the availability A is a
monotonically decreasing function of ρ, the 100(1 − α)% confidence interval
for A is (

1
1 + ρU

,
1

1 + ρL

)
.

Next, we consider the 100(1 − α)% upper one-sided confidence interval for
A, (AL,1). AL is given by

AL =
1

1 + ρ̂
f2n,2n;1−α

=
1

1 +
1
Â
−1

f2n,2n;1−α

. (10.20)

Example 10.27

Assume for a certain system that we observed only one failure event and one repair
event, so that n = 1, S1 = 999 h, and Y1 = 1 h. The point estimate of steady-state
availability is

Â =
1

1 + ρ̂
= 0.999.

To obtain 95% confidence intervals for A, we use an F distribution with (2, 2) degrees
of freedom. Noting that

f2,2;α/2 = f2,2;0.025 = 39

and

f2,2;1−α/2 = f2,2;0.975 = 0.02564,

we compute the 95% confidence interval for A as (0.9624,1).
If we observed 10 failure events and 10 repair events, so that n = 10, S10 = 9990

h, and Y10 = 10 h. The point estimate of availability is unchanged:

Â =
1

1 + ρ̂
= 0.999.

However, we use an F distribution with (20,20) degrees of freedom to calculate the
confidence interval for A:

f20,20;α/2 = f20,20;0.025 = 2.4645,

f20,20;1−α/2 = f20,20;0.975 = 0.4058;

thus the confidence interval for A is narrowed to (0.9975,0.9996).
Next we derive the upper one-sided confidence interval for A. In the first case

(n = 1), we calculate

f2,2;1−α = f2,2;0.95 = 0.05263.

So the 95% upper one-sided confidence interval for A is (0.9813,1).
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In the second case (n = 10), we calculate

f20,20;1−α = f20,20;0.95 = 0.4708;

thus the confidence interval for A is narrowed to (0.9979,1).

�

Example 10.28

In this example, we investigate how to achieve “5 nines” availability with 95% con-
fidence. First, it is obvious that the point estimate of A should be above “5 nines”:

Â > 0.99999.

Second, because we have seen the width of the confidence interval narrows as
the number of samples increases, we need a sufficient number of samples to make
AL > 0.99999. Consider the 95% upper one-sided confidence interval. From equation
(10.20), we have

AL =
1

1 +
1
Â

−1

f2n,2n;0.95

.

We plot the number of samples n against the lower boundary of the interval AL for
different point estimates Â in Figure 10.8. We observe that to achieve 95% upper
one-sided confidence interval as (0.99999,1), the least number of samples required is

n =

⎧⎨
⎩

445 when Â = 0.999991

105 when Â = 0.999992

12 when Â = 0.999995 .

In other words, the lower the point estimate of availability, larger must be the number
of samples from which this estimate is computed in order for the given availability
confidence interval to be ascertained.

�

10.2.4.4 Estimation for a Semi-Markov Process. One way to
describe a semi-Markov chain, which applies only to independent SMPs
(Semi-Markov Processes) [ROSS 1983], is to define a transition probability
matrix P and a vector H (t). This is called the two-stage method since the
transitions of the SMP can be assumed to take place in two stages. Consider
a transition from state i to state j. In the first stage, the chain stays in
state i for some amount of time described by the sojourn time distribution
Hi(t). In the second stage, the chain moves to state j determined by the
probability pij .

In a study of software aging [VAID 1999], a measurement-based system
workload model is constructed based on this two-stage SMP method. Using
a monitoring tool, time-ordered values for a number of variables pertaining
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Lower Boundary of One-sided Confidence Interval
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Figure 10.8. Number of samples n versus lower boundary, AL

to CPU activity and file system I/O—cpuContextSwitch, sysCall, pageIn, and
pageOut—are obtained at regular intervals over a period of time from a single
workstation. Therefore, during any time interval, a point in a four-dimensional
space, x = (cpuContextSwitch, sysCall, pageIn, pageOut), represents the mea-
sured workload.

Cluster analysis Next, the data points are partitioned into clusters that
contain similar points based on some predefined criteria. A statistical clus-
tering algorithm is used to achieve this. The goal of cluster analysis is to
determine a partition of a given set of points into groups or clusters such that
the points in a single cluster are more similar, according to a certain criterion,
to each other than to points in different clusters. In our case, we have used
an iterative nonhierarchical clustering algorithm called Hartigan’s k-means
clustering algorithm [HART 1975]. This is one of the most popular iterative
nonhierarchical clustering algorithms and has been used in workload charac-
terization and is known to work well [DEVA 1989, FERR 1983]. The objective
of this algorithm is to divide a given set of points into k clusters so that the
intracluster sum of squares is minimized. The algorithm starts with k initial
points (which may be random or prespecified) that are taken to be centroids
of k clusters. New points are assigned to these clusters according to the clos-
est centroid, and the centroids are recomputed when all the points have been
assigned. This procedure is repeated several times with the means from one
iteration taken to be the initial points for the next iteration. In other words,
the algorithm finds a partition Π = (C1, C2,...,Ck) with k nonempty clusters
such that the sum of the squares, S, from each point to its corresponding
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centroid (center of mass) is minimized:

minimize S =
k∑

i=1

∑
xj∈Ci

| xj − xi |2

where xi is the centroid of cluster Ci.
If the variables for clustering are not expressed in homogeneous units, a

scale change or normalization must be performed. In this case, the normaliza-
tion method based on the following transformation [FERR 1983] is used:

x′
ij =

xij − mini{xij }
maxi{xij } − mini{xij }

where xij is the value of the jth parameter for the ith component and x′
ij

is the normalized value. This transformation ensures that the values of all
the variables are in the range 0 to 1. We need to eliminate the outliers in
the data before applying the scaling technique since they tend to distort the
transformation. Outliers in the data were identified and eliminated by an
analysis of the cumulative distribution of each parameter, although they are
assigned to clusters in the final stage. The statistics for the workload variables
measured are shown in Table 10.2. The first and the third quantiles are the
25th percentiles and 75th percentiles, respectively.

The k-means clustering algorithm was applied to the workload data, and
this resulted in 11 clusters. The statistics for the workload clusters are shown
in Table 10.3. Also shown in the table are the percentage of the sample data
points in each cluster. It can be observed that more than 75% of the points
belong to clusters 7, 8, and 10, which are relatively light workload states.
Cluster 1, 2, 3, and 11 are high workload states that contain significantly
fewer data points.

The transition probability matrix The next step, after the clusters and
centroids are identified, is to estimate the transition probabilities from one
state to another. The transition probability pij from a state i to a state j can
be estimated from the sample data using formula (10.18) [DEVA 1989]. Before

TABLE 10.2. Statistics for the workload variables measured

1st 3rd

Variable Min quantile Median Mean quantile Max

cpuContextSwitch 5,598 10,300 10,990 20,650 18,990 386,100

sysCall 19,170 33,980 37,960 41,580 39,630 672,900

pageIn 0 9 9 26.17 12 2,522

pageOut 0 0 0 5.426 0 6,227
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TABLE 10.3. Statistics for the workload clusters

Cluster Cluster centroid % of data

no. cpuContextSwitch sysCall pageOut pageIn points

1 48405.16 94194.66 5.16 677.83 0.98

2 54184.56 122229.68 5.39 81.41 0.76

3 34059.61 193927.00 0.02 136.73 0.93

4 20479.21 45811.71 0.53 243.40 1.89

5 21361.38 37027.41 0.26 12.64 7.17

6 15734.65 54056.27 0.27 14.45 6.55

7 37825.76 40912.18 0.91 12.21 11.77

8 11013.22 38682.46 0.03 10.43 42.87

9 67290.83 37246.76 7.58 19.88 4.93

10 10003.94 32067.20 0.01 9.61 21.23

11 197934.42 67822.48 415.71 184.38 0.93

this, the number of workload states is reduced to eight by merging clusters
{1, 2, 3} and {4, 5}. Thus we get W1 = {1, 2, 3}, W2 = {4, 5}, W3 = {6}, W4 =
{7}, W5 = {8}, W6 = {9}, W7 = {10}, and W8 = {11}. Clusters considered
for merging were clusters whose centroids were relatively close to each other
and clusters with a small percentage of data points in them. This is done
mainly to reduce and simplify computations. State-transition probabilities
were estimated for the workload states, and the resulting transition probability
matrix, P , of the embedded discrete-time Markov chain of the SMP, is shown
below:

P̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.000 0.155 0.224 0.129 0.259 0.034 0.165 0.034
0.071 0.000 0.136 0.140 0.316 0.026 0.307 0.004
0.122 0.226 0.000 0.096 0.426 0.000 0.113 0.017
0.147 0.363 0.059 0.000 0.098 0.216 0.088 0.029
0.033 0.068 0.037 0.011 0.000 0.004 0.847 0.000
0.070 0.163 0.023 0.535 0.116 0.000 0.023 0.070
0.022 0.049 0.003 0.003 0.920 0.003 0.000 0.000
0.307 0.077 0.154 0.231 0.077 0.154 0.000 0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Sojourn time distributions To completely specify the semi-Markov pro-
cess, the distribution of sojourn time in each workload state needs to be
estimated (see Table 10.4). The empirical distributions for all the workload
states are fitted to either two-stage hyperexponential, two-stage hypoexpo-
nential, or simple exponential distribution functions.
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TABLE 10.4. Sojourn time distributions in the workload states

Workload Sojourn time distribution Distribution

state F (t) type

W1 1 − 1.602919e−0.9t + 0.6029185e−2.392739t Hypoexponential

W2 1 − 0.9995e−0.4459902t − 0.0005e−0.007110071t Hyperexponential

W3 1 − 0.9952e−0.3274977t − 0.0048e−0.0175027t Hyperexponential

W4 1 − 0.841362e−0.3275372t − 0.158638e−0.03825429t Hyperexponential

W5 1 − 1.425856e−0.56t + 0.4258555e−1.875t Hypoexponential

W6 1 − 0.80694e−0.5509307t − 0.19306e−0.03705756t Hyperexponential

W7 1 − 2.86533e−1.302t + 1.86533e−2t Hypoexponential

W8 1 − 0.9883e−0.2655196t − 0.0117e−0.02710147t Hyperexponential

To estimate the rate parameter of the exponential distribution, we use
formula (10.5). For the two parameters λ1 and λ2 of the hyperexponential
distribution, we use equations (10.1) and (10.2). For the two parameters λ1

and λ2 of the hypoexponential distribution, we use formula (10.3). The fitted
distributions are tested using the Kolmogorov–Smirnov test (Section 10.3.4)
at a significance level of 0.01.

Model validation The semi-Markov model for the system workload needs
to be validated. The steady-state probability of occupying a particular work-
load state computed from the model was compared to the estimated probabil-
ity from the observed data. The steady-state probabilities for the semi-Markov
chain are computed as follows. First, the steady-state probabilities [ν0, ν1, . . .]
for the embedded discrete-time Markov chain are computed using the linear
system of equations (7.18) and (7.19):

v = vP

v e = 1

where P is the transition probability matrix and e is a column vector with all
1s. Next, the steady-state probabilities for the semi-Markov chain are com-
puted as [CINL 1975]:

πi =
vihi

Σjvjhj

where πi is the steady state probability for the SMP for state i and hi is the
mean sojourn time in state i. The probabilities from the measured data are
estimated as the ratio of the length of time the system was in that workload
state to the total length of the period of observation. The results are shown
in Table 10.5.
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TABLE 10.5. Comparison of state occupancy probabilities (expressed as

percentage)

State Observed value Value from model % difference

W1 2.664146 2.8110 5.512235

W2 9.058096 8.3464 7.857015

W3 6.548642 6.0576 7.498379

W4 11.77381 10.8480 7.863300

W5 42.86696 44.4310 3.648591

W6 4.932967 4.5767 7.222165

W7 21.22723 22.1030 4.125691

W8 0.928154 0.82577 11.030928

It can be seen that the computed values from the model and the actual
observed values match quite closely. This validates the model building method-
ology, and so the semi-Markov process obtained can be taken to model the
real-system workload reasonably well.

Problems

1. For an M/M/1 queue, 955 arrivals were observed in a period of 1000 time units,
and the server was found to be busy for 660 time units. Compute 95% confidence
intervals for the following quantities:

(a) The arrival rate λ.

(b) The average service time 1/μ.

(c) The server utilization ρ.

(d) The average queue length E[N ].

(e) The average response time E[R].

2. Give an argument for determining a 100(1 − α)% confidence interval for the
server utilization ρ as

ρL ≤ ρ ≤ ρU

in the following cases:

(a) M/Ek/1 queuing system:

ρL =
ρ̂

f2mk,2n;α/2

and ρU =
ρ̂

f2mk,2n;1−α/2

.

(b) Ek/M/1 queuing system:

ρL =
ρ̂

f2m,2nk ;α/2

and ρU =
ρ̂

f2m,2nk ;1−α/2

.
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3. We have noted (in Chapter 8) that in an M/M/1 queue the response time is
exponentially distributed. Given a sample of observations of response times for
n successive jobs, can we use methods of Section 10.2.3.2 to obtain confidence
intervals for the parameter δ[= μ(1 − ρ)] of the response time distribution?

10.2.5 Estimation with Dependent Samples

So far, we have assumed that the sample random variables X1,X2, . . . , Xn are
mutually independent. Measurements obtained from real systems, however,
often exhibit dependencies. For example, there is a high correlation between
the response times of consecutive requests to a file server. Although obser-
vations taken from such a system do not satisfy the definition of a random
sample, the behavior of the system can be modeled as a stochastic process,
and the observations made are then a portion of one particular realization
of the process. If the stochastic process is a Markov chain, then, by noting
special properties of such a process, we can make use of the methods discussed
in Section 10.2.4. We consider the more general case here.

Consider a discrete-time stochastic process (or a stochastic sequence)
{Xi | i = 1, 2, . . .} (the treatment can also be generalized to the case of a
continuous-time stochastic process). We observe the sequence for n time
units to obtain the values x1, x2, . . . , xn. The observed quantities are values
of dependent random variables X1,X2, . . . , Xn. Assume that the process
has an index-invariant mean, μ = E[Xi], and an index-invariant variance,
σ2 = Var[Xi].

As before, the sample mean

X =
n∑

i=1

Xi

n

is a consistent unbiased point estimator of the population mean. However,
derivation of confidence intervals for μ poses a problem, since the variance
of X is not σ2/n any longer. Assume that the sequence {Xi} is wide-sense
stationary, so that the autocovariance function

Kj−i = E[(Xi − μ)(Xj − μ)] = Cov(Xi,Xj)

is finite and is a function only of |i − j|. Then the variance of the sample mean
is given by

Var[X] =
1
n2

{
n∑

i=1

Var[Xi] +
n∑

i,j=1
i�=j

Cov(Xi,Xj)}

=
σ2

n
+

2
n

n−1∑
j=1

(1 − j

n
)Kj .
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As n approaches infinity

lim
n→∞

nVar[X] = σ2 + 2
∞∑

j=1

Kj = σ2a, where a = 1 + 2
∞∑

j=1

Kj

σ2
.

It can be shown under rather general conditions that the statistic

X − μ

σ
√

a/n

of the correlated data approaches the standard normal distribution as n
approaches infinity. Therefore, an approximate 100(1 − α)% confidence inter-
val for μ is given by

X ± σzα/2

√
a

n
.

It is for this reason that the quantity n/a is called the effective size of the
independent samples when the correlated sample size is n. The quantity σ2a
is an unknown, however, and it must be estimated from the observed data.

The need to estimate σ2a can be avoided by using the method of indepen-
dent replications. (For other methods and additional details, see Fishman
[FISH 1978], and Kleijnen and van Groenendaal [KLEI 1992].) We replicate
the experiment m times, with each experiment containing n observations. If
the initial state of the stochastic sequence is chosen randomly in each of the m
experiments, then the results of the experiments will be independent although
n observations in a single experiment are dependent.

Let the ith observation in the jth experiment be the value xi(j) of a
random variable Xi(j). Let the sample mean and the sample variance of the
jth experiment be denoted by X(j) and S2(j), respectively, where

X(j) =
1
n

n∑
i=1

Xi(j)

and

S2(j) =
1

n − 1
(

n∑
i=1

[Xi(j) − X(j)]2).

From the individual sample means, we obtain a point estimator of the popu-
lation mean μ to be

X =
1
m

m∑
j=1

X(j) =
1

mn

m∑
j=1

n∑
i=1

Xi(j).
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Note that X(1),X(2), . . . ,X(m) are m independent and identically dis-
tributed random variables (hence they define a random sample of size m).
Let the common variance of X(j) be denoted by v2. The variance v2 can be
estimated as

V 2 =
1

m − 1

m∑
j=1

[X(j) − X]2 =
1

m − 1

m∑
j=1

X
2
(j) − m

m − 1
X

2
.

Since an estimate of the variance is used, the statistic (X − μ)
√

m/V is
approximately t-distributed with (m − 1) degrees of freedom. Therefore, a
100(1 − α)% confidence interval for μ is given by

x ±
tm−1;α/2v√

m
.

Example 10.29

We are interested in estimating the average response time of a Web server. For this

purpose 16 independent experiments are conducted, with each experiment measuring

20 successive response times. The following data are recorded:

j x(j)(seconds) x2(j)

1 0.52 0.2704

2 1.03 1.0609

3 0.41 0.1681

4 0.62 0.3844

5 0.55 0.3025

6 0.43 0.1849

7 0.92 0.8464

8 0.88 0.7744

9 0.67 0.4489

10 0.29 0.0841

11 0.87 0.7569

12 0.72 0.5184

13 0.61 0.3721

14 0.45 0.2025

15 0.98 0.9604

16 0.89 0.7921

8.1274

The point estimate of the average response time is

x =
1

16

16∑
j=1

x(j) =
10.84

16
= 0.6775 s.
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Also

v2 =
1

15

16∑
j=1

x2(j) − 16

15
(0.6775)2

= 0.5418 − 0.4896

= 0.052.

Now, for the t distribution with 15 degrees of freedom, we have

t15;0.025 = 2.131.

Therefore

x ± 2.131v√
m

= 0.6775 ± 2.131 ·
√

0.052

16
,

or (0.556, 0.799) is a 95% confidence interval for the average response time.

�

Problems

1. The sample mean and sample variance of response times for 10 sets of 1000 jobs

were measured. For the first set, the total CPU busy time and total time of

completion were also measured.

Mean Sample variance Total time CPU

Sample response time of response of busy time

no. for 1000 jobs (s) time (s2) completion (s) (s)

1 1.8 1.5 1010 640

2 1.6 1.4

3 1.83 2.18

4 1.37 0.65

5 1.67 1.52

6 1.62 1.59

7 1.84 2.10

8 1.52 0.92

9 1.59 1.01

10 1.73 1.30

Applying the method of Section 10.2.4.2, and assuming that the system is
M/M/1, derive a 90% confidence interval for the average response time using
the first sample. Next, using all 10 samples and the method described in this
section, obtain a 90% confidence interval for the average response time.
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10.3 HYPOTHESIS TESTING

Many practical problems require us to make decisions about populations on
the basis of limited information contained in a sample. For instance, a system
administrator may have to decide whether to upgrade the capacity of the
installation. The choice is binary in nature—an upgrade either takes place or
does not. In order to arrive at a decision, we often make an assumption or
guess about the nature of the underlying population. Such an assertion, which
may or may not be valid, is called a statistical hypothesis—a statement
about one or more probability distributions associated with the population.

Procedures that enable us to decide whether to reject or accept hypothe-
ses, based on the information contained in a sample, are called statistical
tests. We typically form a null hypothesis, H0, which is a claim (about a
probability distribution) that we are interested in rejecting or refuting. The
contradictory hypothesis is called the alternative hypothesis, H1.

For example, on the basis of experimental evidence, we may be interested
in testing the hypothesis (H0) that MTTF of a certain system exceeds a
threshold value θ0 hours. The alternate hypothesis may be MTTF < θ0. Sim-
ilarly, we may be interested in testing the hypothesis that the job arrival rate
λ for a certain server satisfies λ = λ0.

The experimental evidence, on which the test is based, will consist of
a random sample X1,X2, . . . , Xn, of size n as in the parameter estimation
problem. Since Xi is a random variable for each i, the totality of all n-tuples
will span the Euclidean n-space 	n. The hypothesis testing procedure consists
of dividing the n-space of observations into two regions, R(H0) and R(H1). If
the observed vector (x1, x2, . . . , xn) lies in R(H1), we reject the null hypothesis
H0. On the other hand, if the observed n-tuple lies in R(H0), we fail to reject
H0. The region R(H0) is known as the acceptance region and the region
R(H1), as the critical or the rejection region.

The possibility always exists that the null hypothesis is true but the sample
lies in the rejection region, leading us to reject H0. This is known as the type
I error. The corresponding probability is denoted by α and is known as the
level of significance of the test. Similarly, if the null hypothesis is false and
the sample lies in the acceptance region, leading us to a rejection of H1, a
type II error is committed. The probability of type II error is denoted by
β, and 1 − β is known as the power of the test. When we say that P (type I
error) = α and P (type II error) = β, we mean that if a test is performed a
large number of times, α proportion of the time we will reject H0 when it is
true, and β proportion of the time we will fail to reject H0, when in fact it is
false.

An error of type I or type II leads to a wrong decision, so we must attempt
to minimize these errors. If we fix the sample size n, a decrease in one type of
error leads to an increase in the other type. One can also associate a cost (or
a penalty) with a wrong decision and minimize the total cost of the decision.
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The only way to simultaneously reduce both types of error is to increase the
sample size n.

A hypothesis is said to be simple if all the parameters in the test are
specified exactly. Thus, for example, a test of the form H0 : λ = λ0 versus
H1 : λ = λ1 is a test concerning two simple hypotheses. A hypothesis such as
H0 : λ ∈ (λL, λU ) is a composite hypothesis.

10.3.1 Tests on the Population Mean

Hypothesis testing is closely related to the procedure of interval estimation.
Assume that we wish to test a simple hypothesis H0 : θ = θ0 regarding
a parameter θ of the population distribution based on a random sample
X1,X2, . . . , Xn. The following steps can be used for this purpose:

1. Find a random variable (called a test statistic) that is a function of
X1,X2, . . . , Xn:

W = W (X1,X2, . . . , Xn; θ),

such that the distribution of W is known.

2. Choose an interval (a, b) such that

P [W /∈ (a, b) | H0 is true] = α.

Note that then

P [a < W < b | H0 is true] = 1 − α,

that is
P [a < W (X1,X2, . . . , Xn; θ0) < b] = 1 − α. (10.21)

3. The actual test is then as follows. Take a sample x1, x2, . . . , xn and
compute w = W (x1, x2, . . . , xn; θ0); if w /∈ (a, b), reject H0 in favor of
H1; otherwise fail to reject H0.

The implication is that if H0 is true, we have 100(1 − α)% confidence that
the observed value of the test statistic will lie in the interval (a, b). If the
observed value lies outside this interval, we know that such an event could
occur with probability α (given H0 is true). In this case, we conclude that
the observations differ significantly (at the level of significance α) from what
would be expected if H0 were true, and we are inclined to reject H0.

If α is prespecified, then a and b can be determined so that the relation
in equation (10.21) is satisfied. Alternatively, if a and b are specified, then α
can be determined from equation (10.21).

The similarity between the four-step procedure presented above and the
procedure described earlier for obtaining confidence intervals should be noted.
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Specifically, let θ be an unknown parameter of the population distribution.
Let (a, b) be a confidence interval for parameter θ with confidence coefficient
γ. Now, while testing the hypothesis H0 : θ = θ0, if we accept H0 whenever
θ ∈ (a, b) and reject it otherwise, then the significance level α of this test is
related to confidence coefficient γ by α = 1 − γ.

Assume that we wish to test a hypothesis regarding the population mean
μ based on a random sample of size n taken from a normal population with
a known variance σ2:

H0 : μ = μ0.

A required statistic is easily obtained, for if X is the sample mean; then

Z =
X − μ

σ/
√

n

is known to be standard normal. Also let

Z0 =
X − μ0

σ/
√

n
.

Assume that the alternative hypothesis is

H1 : μ �= μ0.

Since the test statistic is symmetric about zero, we choose a = −b. The accep-
tance region in terms of the test statistic will then be (−b, b). As a result, the
type I error probability is specified by

α = 1 − P (−b < Z < b | μ = μ0)

or
P (−b < Z0 < b) = 1 − α.

But this implies that b = zα/2. Thus the acceptance region for a level of sig-
nificance α is given by

{(X1,X2, . . . , Xn) ∈ 	n| − zα/2 < Z0 < zα/2},

which will be abbreviated as (see Figure 10.9)

−zα/2 < Z0 < zα/2

or in terms of the sample mean as follows:

μ0 −
zα/2σ√

n
< X < μ0 +

zα/2σ√
n

.
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Figure 10.9. Acceptance and rejection regions for a two-sided test

The corresponding rejection (or critical) region is

{(X1,X2, . . . , Xn) ∈ 	n| |X − μ0| >
zα/2σ√

n
},

abbreviated as
|X − μ0| >

zα/2σ√
n

.

If the alternative hypothesis is of the form

H1 : μ < μ0,

then we adopt an asymmetric acceptance region (such tests are known as
one-tailed or one-sided tests) (see Figure 10.10):

Z0 > −zα or X > μ0 −
zασ√

n
,

and the rejection region is X < μ0 − zασ/
√

n. Similarly, if the alternative
hypothesis is

H1 : μ > μ0,

then the rejection region is

X > μ0 +
zασ√

n
.



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 722�

� �

�

722 STATISTICAL INFERENCE

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f  
 (

x)

Rejection
  region 

Acceptance
    region 

f Z
0

x(  
 )

x

-z α

Figure 10.10. Acceptance and rejection regions for a one-sided test

Example 10.30

A program’s average working-set size was found to be μ0 = 50 pages with a variance
of σ2 = 900 pages2. A reorganization of the program’s address space was suspected
to have improved its locality and hence decreased its average working-set size. In
order to judge the locality-improvement procedure, we test the hypothesis:

H0 : μ = μ0 versus H1 : μ < μ0.

Now, since zα = z0.05 = 1.645, we have that at 5% level of significance, the critical
region is

X < μ0 −
σ√
n

zα = 50 − 30√
n

1.645

or

X < 50 − 49.35√
n

.

Thus, if 100 samples of the “improved” version of the program’s working-set size
were taken and the sample average was found to be less than 45 pages, we would
have reason to believe that the reorganization indeed improved program locality.

�

Instead of fixing the significance level at a value α, we may be interested in
computing the probability of getting a result as extreme as, or more extreme
than, the observed result under the null hypothesis. Such a probability is
known as the descriptive level (also called the P value) of the test.
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Definition (Descriptive Level). The descriptive level of a test H0 is
the smallest level of significance α at which the observed test result would be
declared significant—that is, would be declared indicative of rejection of H0.

For instance, in Example 10.30, the descriptive level δ for an observed
sample mean x is given by

δ = P (X ≤ x | H0) = FX(x | H0) = FZ0

(
x − μ0

σ/
√

n

)
.

Hence for n = 100 and x = 45

δ = FZ0

(
45 − 50
30/10

)
= 1 − FZ0

(
5
3

)
= 0.0475.

If the observed value of x = 40, then

δ = FZ0

(
40 − 50

3

)
= 1 − FZ0

(3.33) = 0.00045.

Thus, if H0 holds, observation x = 40 is an extremely unlikely event, and we
will be inclined to reject H0. On the other hand, if the observed value of
x = 47, then

δ = FZ0

(
47 − 50

3

)
= FZ0

(−1) = 1 − FZ0
(1) = 0.1587.

The corresponding event can occur with about one chance in six under H0,
and in this case we are likely not to reject H0.

The assumption that the population variance (σ2) is known is very unre-
alistic. We can use the sample variance S2 in place of σ2 and derive a critical
region, using the fact that the statistic

X − μ

S/
√

n

possesses the t distribution with n − 1 degrees of freedom. Thus, in Example
10.30, if the observed sample variance is s2 = 900, then the critical region for
the test H0 : μ = μ0 versus H1 : μ < μ0 is obtained as

X < μ0 −
s√
n

tn−1;α = 50 − 30√
n

tn−1;α.

From the t tables, since t15;0.05 = 1.753, the critical region for n = 16 and
α = 0.05 is

X < 50 − 52.59√
16

= 36.8525,
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while for n = 30 and α = 0.05 the critical region is

X < 50 − 30 · 1.699√
30

= 50 − 50.97√
30

= 40.6942.

For n ≥ 30, the use of the t distribution will give nearly the same results as
those obtained by using the standard normal distribution.

If X does not have a normal distribution, but the sample size is sufficiently
large, the procedure described above can be used to obtain an approximate
critical region.

Example 10.31

Assume that we are interested in statistically testing the hypothesis that a given
combinational circuit is functioning properly. Prior testing with a properly function-
ing circuit has shown that if its inputs are uniformly distributed over their range of
values, then the probability of observing a 1 at the output is p

0
. Thus we drive the

given circuit with a sequence of n randomly chosen input sets and test the hypoth-
esis H0 : p = p

0
versus H1 : p 	= p

0
. The test statistic X is the number of observed

1s at the output in a sample of n clock ticks. Let the critical region for the test
be |X − np0| > nε. The quantity ε is known as the test stringency, and the interval
(np0 − nε, np0 + nε) is the acceptance region. Assuming that H0 is true, X has a
binomial distribution with parameters n and p

0
. If n is large, and if p

0
is not close

to either 0 or 1, we can use the normal approximation to the binomial distribution
with mean μ0 = np0 and variance σ2 = np0(1 − p

0
). Then

Z0 =
X − np0√
np0(1 − p

0
)

has a standard normal distribution. Thus an approximate acceptance region for a
level of significance α is given by

−zα/2 < Z0 < zα/2

or
np0 − zα/2

√
np0(1 − p

0
) < X < np0 + zα/2

√
np0(1 − p

0
).

Thus the test stringency is derived as

ε 
 1

n
zα/2

√
np0(1 − p

0
).

Since a type I error in this circuit-testing situation implies that a properly function-
ing circuit is declared defective, this type of error is known as a false alarm in this
connection. For a given test stringency ε, the type I error:

α = P (X ≤ np0 − nε or X ≥ np0 + nε | H0)


 P

⎛
⎝|Z0| ≥

nε√
np0(1 − p

0
)

⎞
⎠ ,
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using the normal approximation, is equal to

2P

⎛
⎝Z0 ≥ nε√

np0(1 − p
0
)

⎞
⎠

by symmetry of the standard normal density. Now, since p
0
(1 − p0) ≤ 1

4
for all 0 ≤

p
0
≤ 1, we have

α ≤ 2P (Z0 ≥ 2ε
√

n) = 2[1 − FZ0
(2ε

√
n)].

This bound will be close to the actual value of α for 0.3 ≤ p
0
≤ 0.7. Thus the

bound on the probability of declaring a fault-free circuit defective depends only on
the test stringency ε and the sample size n. It is clear that α decreases as the test
stringency ε is increased and as the sample size is increased (i.e., α is inversely
proportional to both ε and n) (Figure 10.11). However, as we will see later, an
increase in ε will imply an increase in the probability of type II error (also called
the probability of escape in this case).

�

n

= 100 000

α

n = 10

n = 100

= 10 000n n= 1000n

ε

log
10

Figure 10.11. Probability of false alarm as a function of test stringency ε and sample
size n
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The inverse relationship between type I and the type II errors can be
demonstrated by devising a simple test. Suppose that we always accept the
null hypothesis H0 : μ = μ0, no matter what the outcome of sampling may be.
Then clearly, the probability of rejecting the null hypothesis when it is true
is zero; hence α = 0. Simultaneously, the probability of accepting H0 when it
is false is one—that is, β = 1. Similarly, if we always reject H0, independent
of the outcome of sampling, then β = 0 but α = 1. In practice, we usually
want to fix the probability of the type I error at some small value α, typically
α = 0.01 or 0.05, and then devise a test that has P (type II error) as small as
possible.

To derive an expression for the type II error probability β, consider H0 :
μ = μ0 and H1 : μ = μ1 > μ0 for fixed values of μ0 and μ1. Referring to
Figure 10.12, suppose that the critical region for the test is X > C. Now,
if the population X ∼ N(μ, σ2), then X ∼ N(μ, σ2/n); hence

α = P (X > C | H0), β = P (X < C | H1),

where α is the area under the pdf of the normal distribution N(μ0, σ
2) from

C to ∞ and β is the area under the pdf of the normal distribution N(μ1, σ
2)

from −∞ to C. For a given level of significance α, the dividing line of the
criteria can be determined as

C = μ0 +
zασ√

n
.

If the allowable type II error probability β is also specified, then the minimum
acceptable sample size can also be determined. We want

P (X < C | H1) ≤ β;

x

Xf  
 (

x)

H0 H1

–4.00 –2.00 0 2.00 4.00

0.4

0.2

0

μ0 μ1

α
β

Figure 10.12. Computing types I and II errors
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that is
P

(
Z <

C − μ1

σ/
√

n

)
≤ β,

C − μ1

σ/
√

n
≤ −zβ ,

so we want n large enough so that (μ1 − C)/(σ/
√

n) ≥ zβ ; that is, for fixed
α; we have

μ1 − (μ0 + zασ/
√

n)
σ/

√
n

≥ zβ ;

hence

n ≥
σ2(zα + zβ)2

(μ1 − μ0)2
.

Example 10.32

We wish to test the hypothesis that the response time to a trivial request (i.e., for a
small file size) for a given file server is 2 s against an alternative hypothesis of 3 s. The
probabilities of the two error types are specified to be α = 0.05 and β = 0.10. Since
z0.05 = 1.645 and z0.10 = 1.28 from Table 10.1, we determine the required number
of response time samples to be (assuming population variance σ2 = 5.8 s2):

n ≥ 5.8 · (1.645 + 1.28)2

(3 − 2)2

= 50 rounded up to the nearest integer.

The dividing line of the criterion is

C = 2 + 1.645 ·
√

5.8

50
= 2.556 s.

Thus, if the sample mean of the observed response times exceeds 2.556 s, then the
hypothesis that the system provides a 2 s response should be rejected.

�

In this analysis, we assumed that the actual mean μ was suspected to be
larger than μ0, and therefore we used a one-tailed test. If we did not have
such knowledge, we would use a two-tailed test so that the acceptance region
would be C1 < X < C2. Hence we have

α = P (X < C1 or X > C2 | H0),

β = P (C1 < X < C2 | H1),

C1 = μ0 − zα/2

σ√
n

,

C2 = μ0 + zα/2

σ√
n

.
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1

}

}

Power = 1 − β

α

β

μ1 μ0

μ

Figure 10.13. A typical power curve for a two-tailed test

Let n(μ, σ2) denote the pdf of the normal random variable with mean μ and
variance σ2. Then

β =
∫ C2

C1

n(μ1, σ
2)dx

=
∫ (C2−μ1)/(σ/

√
n)

(C1−μ1)/(σ/
√

n)

n(0, 1)dx

=
∫ (μ0−μ1)/(σ/

√
n)+zα/2

(μ0−μ1)/(σ/
√

n)−zα/2

n(0, 1)dx

= FZ(
μ0 − μ1

σ/
√

n
+ zα/2) − FZ(

μ0 − μ1

σ/
√

n
− zα/2).

Often the alternative value μ1 of the actual mean will not be specified.
In this case we could compute β as a function of μ1. Plot of 1 − β as a
function of μ1 is known as a power curve. A typical power curve for a
two-tailed test is shown in Figure 10.13. Note that 1 − β(μ1) is the probability
of rejecting H0 : μ = μ0 when actually μ = μ1, so that for μ1 �= μ0, the power
is the probability of a correct decision. Now, if μ1 = μ0, then 1 − β(μ1) is the
probability of rejecting H0 when it should be accepted. Thus the value of the
power curve at μ1 = μ0, 1 − β(μ0) = α. A typical power curve for a one-tailed
test (H0 : μ = μ0,H1 : μ > μ0) is shown in Figure 10.14.

Example 10.33

Continuing with our example of statistically monitoring a circuit, we are testing the
hypothesis H0 : p = p

0
versus the alternative H1 : p 	= p

0
. The null hypothesis H0

corresponds to a fault-free circuit and the alternative corresponds to a faulty circuit.
Different faults may give rise to a different value of the test statistic X, the number
of observed 1s at the output.



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 729�

� �

�

10.3 HYPOTHESIS TESTING 729

{1

}

Power = 1 − β

α

β

μ0 μ1
μ

Figure 10.14. A typical power curve for a one-tailed test

If we assume that X is binomially distributed with mean np, then

β = P (np0 − nε < X ≤ np0 + nε | H1)

=
∑

np0−nε<k≤np0+nε

(n

k

)
pk(1 − p)n−k

= FX(np0 + nε) − FX(np0 − nε)

Now, since X is binomially distributed with mean np and variance np(1 − p), it is
approximately N [np,np(1 − p)]; then

β 

[
FZ

(
μ0 − np

σ/
√

n
+

σ0

σ
zα/2

)
− FZ

(
μ0 − np

σ/
√

n
− σ0

σ
zα/2

)]
,

where σ =
√

np(1 − p), σ0 =
√

np0(1 − p
0
), and μ0 = np0.

�

Now assume that we are sampling from an exponential distribution with
parameter λ and we wish to test the following hypothesis:

H0 : λ = λ0 versus H1 : λ = λ1 < λ0.

Recall that when population X ∼ EXP (λ), 2λnX has chi-square distribution
with 2n degrees of freedom. Suppose that we use the critical region

∑n
i=1 Xi =

nX ≥ C for some constant C. It follows that the probability of type I error is
given by

α = P (
n∑

i=1

Xi ≥ C | λ = λ0)

= P (2λnX ≥ 2λC | λ = λ0)

= P (X2
2n ≥ 2λ0C)
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and so

2λ0C = χ2
2n;α or C =

χ2
2n;α

2λ0

.

Fixing α thus fixes C, and we can compute the probability of type II error by
observing that

β = P (
n∑

i=1

Xi ≤ C | λ = λ1)

= P (2λnX ≤ 2λC | λ = λ1)

= P (X2
2n ≤ 2λ1C).

Example 10.34

Returning to Example 10.19, suppose that we wish to test the hypothesis:

H0 : λ = 0.00025 versus H1 : λ < 0.00025.

Assume further that we wish to attain α = 0.05. Then

C =
χ2

20;0.05

2 · 0.00025

=
31.41

0.0005
= 62, 820 h.

We therefore reject the null hypothesis if the accumulated life on test, Sn;r, is greater
than the critical value 62,820 and fail to reject H0 otherwise. The type II error
probability β can be computed for any given value of λ1. For example, if λ1 = 0.0002,
then 2λ1C = 25.128, and since χ2

20;.2 = 25.04, we have β(0.0002) 
 0.8. On the other

hand, for λ1 = 0.0001, we have 2λ1C = 12.564, and since χ2
20;.90 = 12.44, we have

β(0.0001) 
 0.1, which shows a dramatic reduction in the type II error!
Suppose now that we wish to reduce the value of β to 0.1 for λ = 0.0002. This

can be done either by increasing the sample size (in this case, the number of observed
failures) or by allowing a larger value of α:

C =
χ2

2r;α

2λ0

=
χ2

2r;1−β

2λ1

so

χ2
2r;α =

0.00025

0.0002
χ2

2r;0.9.

We can now specify either α or the sample size r; should we choose r = 40, we get

χ2
2r;α = 1.25 · 64.25 = 80.35.

Since χ2
80;0.5 = 79.33, the value of α is approximately 0.5. Of course, we could choose

smaller α at the expense of further increase in the sample size.

�
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Problems

1. To test whether a given circuit is fault-free, we drive it for a sequence of 100
inputs and observe 37 ones at the output (63 zeros). If the circuit is fault-free, 50
ones are expected. At a significance level of 0.05 (probability of a false alarm), can
we reject the hypothesis that the circuit is fault-free? Compute the descriptive
level of the test.

2. In statistical pattern recognition, one method used to distinguish the letter B
from the numeral 8 is to compute the straightness ratio, defined as a value of the
random variable X, which is the ratio of the symbol’s height to its arc length
(on the left-hand side), and perform a hypothesis test on it. Suppose that the
conditional distribution of X given that the symbol is 8 is normal with mean 0.8
and variance 0.01, while the conditional distribution of X given B is normal with
mean 0.96 and variance 0.01. The pattern recognition problem is now cast as a
hypothesis testing problem:

H0 : E[X] = 0.8 versus H1 : E[X] = 0.96.

Suppose after measurement of the given symbol we reject H0 if x > 0.90. Com-
pute the error probabilities α and β.

3. Consider the combinational circuit in problem 1 of the review problems for
Chapter 1. First compute the probability of a 1 at the output, assuming that
at each of the inputs the probability of a 1 is 1

2
. Then test the hypothesis that

the circuit is fault-free versus the hypothesis that there is a stuck-at-0 type fault
at input x1. For this case compute the probability of false alarm (α) and the
probability of escape (β), assuming the length of test n = 400 and test strin-
gency ε = 0.005. Repeat the calculation of β for each of the remaining 13 fault
types.

4. In selecting a computer server we are considering three alternative systems. The

first criterion to be met is that the response time to a simple editing command

should be less than 3 s at least 70% of the time. We would like the type I error

probability to be less than 0.05. On n = 64 randomly chosen requests the number

m of requests that met the criterion of < 3 s response were found to be as shown

in the following table:

Server number m

1 52

2 47

3 32

First determine critical value C so that if m < C for a server, that server will
be rejected, and then determine which of the three servers will be rejected from
further consideration.

5. Consider the problem of acceptance sampling from a large batch of items (VLSI
chips). From a sample of size n, the number of defectives found, X, is noted.
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If X ≤ k, the batch is accepted; otherwise the batch is rejected. Let p denote
the actual probability of defective items in the batch. Using the Poisson approx-
imation to the binomial, show that the probability of accepting the batch as a
function of p is obtained by solving 2np = χ2

2(k+1);β(p). The plot of β(p) against
p is known as the operating characteristic. Plot this curve for n = 20 and k = 8.
The producer of the items demands that if p = p

0
, where p

0
is the acceptable

quality level, then the probability α of the batch being rejected should be small.
In this connection α is called the producer’s risk. Note that β(p

0
) = 1 − α. The

consumer demands that if the lot is relatively bad (p ≥ p
1
), the probability of its

being acceptable should be small. The probability β(p
1
) is called the consumer’s

risk. Show that for fixed values of α, β, p
0
, and p

1
, the value of the critical point

k is determined by solving

χ2
2(k+1);β

χ2
2(k+1);1−α

≤
p
1

p
0

.

Given p
0

= 0.05, p
1

= 0.10, α = 0.05, and β(p
1
) = 0.10, determine the values of

k and n. Plot the operating-characteristic curve for this case and mark the above
mentioned values on the curve.

6. The sign test. For a continuous population distribution, develop the test for
median, π

0.5
(based on the random sample X1, X2, . . . , Xn):

H0 : π
0.5

= m0 versus H1 : π
0.5

= m1 > m0.

Let the random variable Zi = 0 if Xi − m0 ≤ 0, and otherwise Zi = 1. Let Z =∑
Zi and show that if H0 is true, Z is binomially distributed with parameters

n and 0.5. Derive an expression for the significance level α of the test based on
the critical region Z > k. This test is known as the sign test, since the statistic
Z is equal to the number of positive signs among

X1 − m0, X2 − m0, . . . , Xn − m0.

10.3.2 Hypotheses Concerning Two Means

While making a purchasing decision, two vendors offer computing systems
with nearly equal costs (and with all the other important attributes except
throughput differing insignificantly). After running benchmarks and measur-
ing throughputs on the two systems, we are interested in comparing the
performances and finally selecting the better system. In such cases we wish to
test the null hypothesis that the difference between the two population means,
μX − μY , equals some given value d0. We shall discuss three separate cases.

Case 1. Suppose that we wish to test the null hypothesis, H0 : μX − μY =
d0, for a specified constant d0 on the basis of independent random samples of
size n1 and n2, assuming that the population variances σ2

X and σ2
Y are known.

The test will be based on the difference of the sample means X − Y . If we
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assume that both populations are normal, then the statistic

Z =
X − Y − (μX − μY )

(Var[X − Y ])1/2

can be shown to have the standard normal distribution. Here

Var[X − Y ] =
σ2

X

n1

+
σ2

Y

n2

.

Now, for a significance level α, the critical regions for the test statistic Z can
be specified as

Z < −zα, if H1: μ
X
− μ

Y
< d0,

Z > +zα, if H1: μ
X
− μ

Y
> d0,

Z < −zα/2 or Z > +zα/2, if H1: μ
X
− μ

Y
	= d0.

Example 10.35

Two file servers are compared according to their response time for retrieving a small
file. The mean response time of 50 such requests submitted to server 1 was measured
to be 682 ms with a known standard deviation of 25ms. A similar measurement on
server 2 resulted in a sample mean of 675ms with a standard deviation of 28 ms.
To test the hypothesis that server 2 provides better response than server 1, we form
the hypotheses:

H0 :μ
X

= μ
Y

(i.e., no difference in response time)

H1 :μ
X

> μ
Y

(i.e., server 2 is better than server 1).

Then, the null hypothesis

μ
X
− μ

Y
= 0,

σX−Y =

√
σ2

X

n1

+
σ2

Y

n2

=

√
(25)2

50
+

(28)2

50
= 5.3,

and the test statistic

Z =
X − Y

σX−Y

=
X − Y

5.3

have the following value:

z =
682 − 675

5.3
= 1.32.

Using a one-tailed test at a 5% level of significance, we fail to reject this hypothesis,
since the observed value of z(= 1.32) is less than the critical value zα = z0.05 = 1.645.
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Thus, on the basis of the given data, we cannot support the claim that server 2 is
more responsive than server 1.

Note that the null hypothesis can be rejected in this case at a 10% (rather than
5%) level of significance. This would mean that we are willing to take a 10% chance
of being wrong in rejecting the null hypothesis.

�

Case 2. The assumption that the population variances σ2
X and σ2

Y are
known rarely holds in practice. If we use sample estimates in place of pop-
ulation variances, then we can use the t distribution in place of the normal
distribution, if we further assume that the two population variances are equal
(σ2

X = σ2
Y = σ2) and that the two populations are approximately normal.

Suppose that we select two independent random samples, one from each
population, of sizes n1 and n2, respectively. Using the two sample variances
S2

X and S2
Y , the common population variance σ2 is estimated by S2

p , where

S2
p =

(n1 − 1)S2
X + (n2 − 1)S2

Y

(n1 + n2 − 2)
.

Now, if the null hypothesis H0 : μX − μY = d0 holds, then it can be shown
that the statistic:

T =
X − Y − d0

Sp

√
1

n1
+ 1

n2

has a t distribution with n1 + n2 − 2 degrees of freedom.
Small departures from the assumption of equal variances may be ignored

if n1 � n2. If σ2
X is much different from σ2

Y , a modified t statistic can be used
as described by Walpole [WALP 1968].

Example 10.36

Elapsed times for a synthetic job were measured on two different computer systems.
The sample sizes for the two cases were 15 each, and the sample means and sample
variances were computed to be

x = 104 s, y = 114 s,
s2

X = 290 s2, s2
Y = 510 s2.

To test the hypothesis that the population means μX = μY against the alternative
μX < μY , we first calculate an estimate of the (assumed) common variance:

s2
p =

14 · 290 + 14 · 510

28

= 400.

Now, since
X − Y

Sp/
√

7.5
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is approximately t-distributed with 28 degrees of freedom, we get the descriptive
level of this test:

δ = P

(
T28 ≤ 104 − 114√

400/7.5

)

= P

(
T28 ≤ − 10

7.30

)
= P (T28 ≥ 1.3693)


 0.0972.

Thus the observed results have a chance of about 1 in 10 of occurring; hence we do
not reject H0.

�

Case 3. The test procedures discussed in the two cases above are valid
only if the populations are approximately normal. We now describe a test
due to Wilcoxon, Mann, and Whitney that allows for arbitrary continuous
distributions for X and Y and therefore is known as a distribution-free or
a nonparametric test. Specifically, we consider the problem of testing: for
all x, we have

H0 : f
X

(x) = f
Y
(x) versus H1 : f

X
(x) = f

Y
(x + c), (10.22)

where c is a positive constant (see Figure 10.15). This test is often posed as
a test for the equality of the two population medians; in case of symmetric
densities f

X
and f

Y
, it is equivalent to a test of equality of the two population

means (if both exist).
Assume that two independent random samples of respective sizes n1 and

n2 are collected from the two populations and denoted by x1, x2, x3, . . ., xn1

and y1, y2, . . ., yn2. We now combine the two samples, arrange these values
in order of increasing magnitude, and assign to the (n1 + n2)-ordered values

f  (x)
X

f  (x)
Y

x
c

Figure 10.15. A nonparametric test
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the ranks 1, 2, 3, . . . , n1 + n2. In the case of ties, assign the average of the
ranks associated with the tied values. Let r(Yi) denote the rank of Yi in the
combined ordered set and define the statistic

W =
n2∑
i=1

r(Yi).

The statistic W is a sum of ranks, hence the test we describe is commonly
known as the rank-sum test.

Under H1, the density of Y is shifted to the right of the density of X
and the values in the Y sample would tend to be larger than the values in
the X sample. Thus, under H1, the statistic W would tend to be larger than
expected under H0. Therefore, the critical region for the test (10.22) will be
of the form W > w0.

We can derive the distribution of W under H0 by noting that the combined
ordered set represents a random sample of size n1 + n2 from the population
of X. Further, since the ranks depend on the relative (and not the absolute)
magnitudes of the sample values, it is sufficient to consider the positions of
the Y values in the combined set in order to evaluate FW (w). Let #(W = w)
denote the set of all combinations of y ranks that will sum to w. The total
ways of picking all combinations of ranks given n1 and n2 is(

n1 + n2

n2

)
,

and since each of these combinations is equally likely under H0, we get (assum-
ing no ties)

P (W = w | H0) =
#(W = w)n1!n2!

(n1 + n2)!
.

Then the significance level α is determined by

P (W ≥ w | H0) ≤ α.

Since the distribution function F
W

(w) depends only on relative ranks, it
can be computed by combinatorial methods. For small values of n1 and n2,
the wα values have been precomputed and listed in Appendix C. For larger
values of n1 and n2, we use a normal approximation to the distribution of W .
It can be shown that if H0 is true, and n1 ≥ 10 and n2 ≥ 10, the statistic W
possesses an approximate normal distribution with

E[W ] =
n1(n1 + n2 + 1)

2

and
Var[W ] =

n1n2(n1 + n2 + 1)
12

.
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Example 10.37

The times between two successive crashes are recorded for two competing computer
systems as follows (time in weeks):

System X : 1.8 0.4 2.7 3.0
System Y : 2.0 5.4 1.3 4.5 0.8

In order to test the hypothesis that both systems have the same mean time between

crashes against the alternative that system X has a shorter mean time between

crashes, we first arrange the combined data in ascending order and assign ranks (y

ranks are underlined for easy identification):

Original data 0.4 0.8 1.3 1.8 2.0 2.7 3.0 4.5 5.4

Ranks 1 2 3 4 5 6 7 8 9

The rank sum W = 2 + 3 + 5 + 8 + 9 = 27. Looking up the table of rank-sum critical
values with n1 = 4 and n2 = 5, we find that

P (W ≥ 27 | H0) = 0.056.

Therefore, we reject the null hypothesis at 0.056 level of significance.

�

Noether [NOET 1967] points out several reasons why in general the
rank-sum test is preferable to the t test. Since the rank-sum test is
distribution free, whatever the true population distribution, as long as both
samples come from the same population (i.e., f

X
= f

Y
), the significance level

of the test is known. On the other hand, for nonnormal populations, the
significance level of the t test may differ considerably from the calculated
value. In contrast to the t test, the rank-sum test is not overly affected
by large deviations (so called outliers). On the other hand, when there
is sufficient justification for assuming that the population distribution is
normal, it would be a mistake not to use that information [HOEL 1971].

Problems

1. Returning to the server-selection problem considered in problem 4 of Section
10.3.1, the sample means of the response times for the first two servers are 2.28
and 2.52 s, respectively. The sample size in both cases is 64, and the variances
can be assumed to be 0.6 and 0.8 s2, respectively. Test the hypothesis that the
mean response times of the two servers are the same against the alternative that
server 1 has a smaller mean response time.

2. In this section we assumed that X and Y samples were chosen independently. In
practice, the observations often occur in pairs, (x1, y1), (x2, y2), . . . , (xn, yn). On
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the basis of pairwise differences di = xi − yi, construct a t test using the statistic

T =
D − d0

SD/
√

n

to test the hypothesis H0 : μX − μY = d0. Also show that in case of nonnormal

populations, the sign test of problem 6 in Section 10.3.1, can be adapted to

test the null hypothesis H0 : μX = μY . Apply these two tests to the claim that

two computer systems are about equal in their processing speeds, based on the

following data:

Benchmark Run time in seconds

program Server A Server B

Payroll 42 55

Linear programming 201 195

(simplex)

Least squares 192 204

Queuing network 52 40

solver

Puzzle 10 12

Simulation 305 290

Statistical test 10 13

Synthetic 1 1 1

Synthetic 2 350 320

Synthetic 3 59 65

10.3.3 Hypotheses Concerning Variances

First consider the problem of testing the null hypothesis that a popula-
tion variance σ2 equals some fixed value σ2

0 against a suitable one-sided or
two-sided alternative. For instance, many computer users may not mind a
relatively long average response time as long as the system is consistent. In
other words, they wish the variance of the response time to be small.

Assuming that we are sampling from a normal population N(μ, σ2
0), we

have shown in Chapter 3 that the statistic

X2
n−1 =

(n − 1)S2

σ2
0

is chi-square distributed with n − 1 degrees of freedom. From this, the critical
regions for testing H0 : σ2 = σ2

0 are
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Reject H0 if, for

X2
n−1 = (n − 1)S2/σ2

0 when H1 is

X2
n−1 < χ2

n−1;1−α σ2 < σ2
0

X2
n−1 > χ2

n−1;α σ2 > σ2
0

X2
n−1 < χ2

n−1;α/2

or σ2 	= σ2
0

X2
n−1 < χ2

n−1;1−α/2

Example 10.38

In the past, the standard deviation of the response time to simple commands to a
compute server was 25 ms and the mean response time was 400ms. A new version
of the operating system was installed, and it was claimed to be biased against
simple commands. With the new system, a random sample of 21 simple commands
experienced a standard deviation of response times of 32ms. Is this increase in
variability significant at a 5% level of significance? Is it significant at a 1% level?
Suppose that we wish to test

H0 : σ2 = (25)2 versus σ2 > (25)2.

The observed value of the chi-square statistic is

(n − 1)s2

σ2
0

=
20(32)2

(25)2
= 32.8.

Since χ2
20;0.05 = 31.41, we conclude at the 5% level of significance that the new

version of the system is unfair to simple commands. On the other hand, since
χ2

20;0.01 = 37.566, we cannot reject H0 at the 1% level of significance.

�

We should caution the reader that the test described above is known to
give poor results if the population distribution deviates appreciably from the
normal distribution. The reader is advised to use a suitable nonparametric
test in such cases [NOET 1967].

If we wish to compare the variances of two normal populations, with vari-
ances σ2

X and σ2
Y respectively, then we test the following hypothesis:

H0 : σ2
X = σ2

Y .

In this case we apply the fact that the ratio (S 2
Xσ2

Y )/(S 2
Y σ2

X) has an F dis-
tribution with (n1 − 1, n2 − 1) degrees of freedom. This statistic is simply
the ratio of sample variances if H0 is true. Here the sample size for the first
population is n1, while the sample size for the second population is n2. There-
fore, the critical region for testing H0 against the alternative H1 : σ2

X > σ2
Y is



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 740�

� �

�

740 STATISTICAL INFERENCE

that the observed value of the F statistic satisfies Fn1−1,n2−1 > fn1−1,n2−1;α,
where fn1−1,n2−1;α is determined by the F distribution to be that value such
that P (Fn1−1,n2−1 > fn1−1,n2−1;α) = α. Similarly, if H1 : σ2

X < σ2
Y , we use the

critical region Fn1−1,n2−1 < fn1−1,n2−1;1−α.

Example 10.39

In comparing two compute servers based on sample means, suppose that at the
desired level of significance the hypothesis μ

X
= μ

Y
cannot be rejected; in other

words, the difference in the average response times is not statistically significant.
The next level of comparison is then the difference in the variances of the response
times. Recalling Example 10.27, we have s2

X = (25)2 = 625 and s2
Y = (28)2 = 784.

The observed value of the F statistic under H0 is 625
784

= 0.797. If we wish to test
H0 against H1 : σ2

X < σ2
Y , we need to obtain the critical value of f49,49;1−α, so we

use a table of the F distribution with (49,49) degrees of freedom. Then f49,49;α =
f49,49;0.05 = 1.62, which we invert to obtain f49,49;1−α = 0.617. Since the observed
value is larger than the critical value, we fail to reject H0. In other words, server 1
does not provide a statistically lower variability in response time at the 5% level of
significance.

�

Problems

1. Returning to the data in Example 10.18, test the hypothesis at significance level
0.05 that the variance of response time is 20 ms2 against the alternative that the
variance is greater than 20 ms2.

10.3.4 Goodness-of-fit Tests

Most of the methods in the preceding sections require the type of the distri-
bution function of X to be known and either its parameters to be estimated
or a hypothesis concerning its parameters to be tested. It is important to have
some type of test that can establish the “goodness of fit” between the postu-
lated distribution type of X and the evidence contained in the experimental
observations. Such experimental data are likely to be in the same basic form as
the data used to estimate parameters of the distribution. Graphical methods
are also used to establish goodness of fit as well as analytical methods.

First assume that X is a discrete random variable with true (but unknown)
pmf given by p

X
(i) = p

i
. We wish to test the null hypothesis that X possesses

a certain specific pmf given by p
i
= pi0 , 0 ≤ i ≤ k − 1. Our problem then is to

test H0 versus H1, where

H0 : p
i
= pi0

, i = 0, 1, . . . , k − 1,
H1 : not H0.

Assume that we make n observations and let Ni be the observed number of
times (out of n) that the measured value of X takes the value i. Ni is clearly a
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binomial random variable with parameters n and p
i

so that E[Ni] = npi and
Var[Ni] = npi(1 − p

i
). Wilks [WILK 1962] shows that the statistic

Q =
k−1∑
i=0

(Ni − npi)
2

npi

(10.23)

is approximately chi-square distributed with (k − 1) degrees of freedom. One
degree of freedom is lost because only k − 1 of the Ni are independent owing
to the relation

n =
k−1∑
i=0

Ni =
k−1∑
i=0

npi.

Under the assumption H0 : p
i
= pi0

, the statistic (10.23) is just

X2
k−1 =

∑ (observed − expected)2

expected
.

Example 10.40

A large enterprise server has six I/O channels and the system personnel are reason-
ably certain that the load on the channels is balanced. If X is the random variable
denoting the index of the channel to which a given I/O operation is directed, then
its pmf is assumed to be

p
X

(i) = p
i

=
1

6
, i = 0, 1, . . . , 5.

Out of n = 150 I/O operations observed, the numbers of operations directed to
various channels were

n0 = 22, n1 = 23, n2 = 29, n3 = 31, n4 = 26, n5 = 19.

We wish to test the hypothesis that the load on the channels is balanced; that is,
H0 : p

i
= 1

6
, i = 0, 1, . . . , 5. Using the chi-square statistic, we obtain

χ2 =
(22 − 25)2

25
+

(23 − 25)2

25
+

(29 − 25)2

25

+
(31 − 25)2

25
+

(26 − 25)2

25
+

(19 − 25)2

25

= 4.08.

For the chi-square distribution with 5 degrees of freedom, the 55% critical value is

χ2
5;0.55 
 4.00.
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In other words, there is a high probability under H0 of observing such a small devia-
tion; hence we cannot reject the null hypothesis that the channels are load-balanced.

�

In deriving the distribution of test statistic (10.23), the multivariate nor-
mal approximation to the multinomial distribution is employed [WILK 1962].
For the approximation to be accurate, each npi value should be moderately
large (as a rule of thumb, npi ≥ 5). When the random variable X takes a
large (perhaps infinite) number of values, the condition npi ≥ 5 for all i will
be difficult to meet even with a large value of n. If the expected numbers in
several categories are small, then these categories should be combined to form
a single category. Note that this process of combination of categories implies
a concomitant loss in power of the test [WILK 1962].

While performing a goodness-of-fit test, often a null hypothesis specifies
only that the population distribution belongs to a family of distributions
FX(x;θ) where θ is a vector of unknown parameters. For example, we may
want to test whether X has a Poisson distribution. This amounts to a null
hypothesis:

H0 : p
i
=

λie−λ

i!
, i = 0, 1, . . . ,

which we cannot test without some specification of λ. In such situations, the
unknown parameters of the population (such as λ in the Poisson example)
must first be estimated from the collected sample of size n. We then use a
test statistic:

Q̂ =
k−1∑
i=0

(Ni − np̂i)
2

np̂i

,

where p̂i = p
X

(i; θ̂) is obtained using the maximum-likelihood estimates of the
parameters θ. It can be shown that the statistic Q̂ is approximately chi-square
distributed with k − m − 1 degrees of freedom. Thus, if m population param-
eters are to be estimated, the chi-square statistic loses m degrees of freedom.

Example 10.41

It is suspected that the number of errors discovered in a system program is Poisson
distributed. The number of errors discovered in each one-week period is given in
Table 10.6. The total number of errors observed in the 50 weeks was 95.

To compute the Poisson probabilities above, we must have an estimate of the
rate parameter λ, which is computed from the data

λ̂ =
total number of observed errors

total number of weeks observed
=

95

50
= 1.9 per week

χ2 =
∑ (Ni − np̂i)

2

np̂i
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=
(14 − 7.50)2

7.50
+

(11 − 14.20)2

14.20
+

(9 − 13.5)2

13.5
+

(6 − 8.55)2

8.55

+
(5 − 4.05)2

4.05
+

(5 − 2.20)2

2.20

= 5.633 + 0.7211 + 1.5 + 0.7605 + 0.2228 + 3.564

= 12.401

is the value of a chi-square random variable with k − 2 = 6 − 2 = 4 degrees of free-
dom. Since χ2

4;.05 = 9.488 is lower than the observed value of 12.401, we conclude
that the null hypothesis of Poisson distribution should be rejected at a 5% level of
significance. The descriptive level for this test is approximately 0.016, indicating that
the observations would be highly unlikely to occur under the Poisson assumption.

�

Now suppose that X is a continuous random variable and we wish to test
the hypothesis that the distribution function of X is a specified function:

H0 : for all x FX(x) = F0(x),

versus

H1 : there exist x such that FX(x) �= F0(x).

The chi-square test described above is applicable in this case, but we will be
required to divide the image of X into a finite number of categories. The sub-
sequent loss of information results in a loss of power of the test [WILK 1962].
The Kolmogorov–Smirnov test to be described is the preferred goodness-of-fit
test in case of a continuous population distribution. Conversely, when applied
to discrete population distributions, the Kolmogorov–Smirnov test is known
to produce conservative results. Thus, the actual probability of type I error

TABLE 10.6. Fitting a Poisson model

Number of Number of Poisson Expected

errors (i) in one-week periods probabilities frequencies

one-week period with i errors p̂i0
np̂i0

0 14 0.150 7.50

1 11 0.284 14.20

2 9 0.270 13.50

3 6 0.171 8.55

4 5 0.081 4.05

5+ 5 0.044 2.20
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will be at most equal to the chosen value α but this advantage is offset
by a corresponding loss of power (or increase in the probability of type II
error).

The given random sample is first arranged in order of magnitude so that
the values are assumed to satisfy x1 ≤ x2 ≤ · · · ≤ xn. Then the empirical dis-
tribution functions F̂n(x) is defined by

F̂n(x) =

⎧⎨
⎩

0, x < x1
i
n , xi ≤ x < xi+1,
1, xn ≤ x.

(10.24)

The alternative definition of F̂n(x) is

F̂n(x) =
number of values in the sample that are ≤ x

n
.

A logical measure of deviation of the empirical distribution function from
F0(x) is the absolute value of the following difference:

dn(x) = |F̂n(x) − F0(x)|.

Since F0(x) is known, the deviation dn(x) can be computed for each value of
x. The largest among these values as x varies over its full range is an indica-
tor of how well F̂n(x) approximates F0(x). Since F̂n(x) is a step function (see
Figure 10.16) with n steps and F0(n) is continuous and nondecreasing, it suf-
fices to evaluate dn(x) at the left and right endpoints of the intervals [xi, xi+1].
The maximum value of dn(x) is then the value of the Kolmogorov–Smirnov
statistic defined by

Dn = sup
x

|F̂n(x) − F0(x)|. (10.25)

[The reason for the use of supremum rather than maximum in the preceding
definition is that by definition (10.24), F̂n(x) is a discontinuous function.]
The definition (10.25) simply says that we evaluate |F̂n(x) − F0(x)| at the
endpoints of each interval [xi, xi+1], treating F̂n(x) as having a constant value
in that interval, and then choosing the largest of these values as the value of
Dn.

The usefulness of the statistic (10.25) is that it is distribution-free; hence
its exact distribution can be derived. In other words, for a continuous F0(x),
the sampling distribution of Dn depends only on n and not on F0(x). Thus
the Dn statistic possesses the advantage that its exact distribution is known
even for small n whereas the Q statistic is only approximately chi-square
distributed, and a fairly large sample size is needed in order to justify the
approximation. We shall not derive the distribution function of Dn, but we
give a table of critical values dn;α in Appendix C.
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Figure 10.16. The Kolmogorov–Smirnov test for a small sample size

We reject the null hypothesis at a level of significance α if the observed
value of the statistic Dn exceeds the critical value dn;α; otherwise we reject
the alternative hypothesis H1.

Example 10.42

In Example 3.12 we used the inverse transform method to generate a random deviate
with Weibull distribution. Suppose that we generate 10 Weibull distributed random
deviates with shape parameter 2 and λ = 0.4325:

1.8453 0.5616 1.6178 2.6884 1.7416 0.7111 1.5430
1.5831 0.5688 0.8961.

We wish to test the hypothesis that the population distribution function is

FX(x) = 1 − e−λx2
, (10.26)

with λ = 0.4325. F̂10(x) and F0(x) are plotted in Figure 10.16. The observed value of
the Dn statistic is 0.2429. Now, using the table of critical values in Appendix C, we
find that at α = 0.05, d10;α = 0.41, and hence the rejection region is {D10 > 0.41}.
We therefore accept the null hypothesis at the 5% level of significance.
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Figure 10.17. The Kolmogorov–Smirnov test for a large sample size

The empirical distribution function does not match very well with the theoretical
distribution function. This is because too few points are used to plot the empirical
distribution function. Figure 10.17 shows the result for 1000 sample points. We see
that the two distribution functions match each other much better. The observed
value for Dn statistic is 0.0273. Using the table of critical values in Appendix C, at
α = 0.5, d1000;α = 0.043. Therefore, the null hypothesis is accepted at the 5% level
of significance.

�

Now consider the problem of obtaining a confidence interval for the
unknown function F0(x). For a fixed value of x, nF̂n(x) is a binomial random
variable with parameters n and p = F0(x). Hence we can use the procedure
of Section 10.2.3.4. Here we are considering a confidence interval not just for
F0(x) at a number of isolated points but for F0(x) as a whole. A confidence
band with confidence coefficient γ for F0(x) is obtained using the Dn

statistic by using

γ = P (Dn ≤ dn;1−γ)

= P (sup
x

|F̂n(x) − F0(x)| ≤ dn;1−γ)

= P (|F̂n(x) − F0(x)| ≤ dn;1−γ for all x)

= P (F̂n(x) − dn;1−γ ≤ F0(x) ≤ F̂n(x) + dn;1−γ for all x).



Trim Size: 6.125in x 9.25in 60Trivedi c10.tex V3 - 05/23/2016 12:14pm Page 747�

� �

�

10.3 HYPOTHESIS TESTING 747

Noting that 0 ≤ F0(x) ≤ 1, we have a confidence band for F0(x) with confi-
dence coefficient γ as follows; for all x,

max{0, F̂n(x) − dn;1−γ} ≤ F0(x) ≤ min{1, F̂n(x) + dn;1−γ}. (10.27)

Suppose that the null hypothesis does not specify the function F0(x)
completely but specifies some parametric family of functions F0(x;θ) where
parameters θ are to be estimated from the given sample. Analogous to the
chi-square test, we will use the test statistic

D̂n = sup
x

|F̂n(x) − F0(x, θ̂)|,

where θ̂ is an appropriate estimate of unknown vector of parameters θ. Unfor-
tunately, there is no simple modification as in the case of the chi-square test.
The sampling distribution of D̂n must be separately studied for each family
of population distribution functions. Lilliefors has studied the distribution of
D̂n in case F0(x; θ) is the family of exponential distributions with unknown
mean θ [LILL 1969] and in case F0(x;μ, σ2) is the family of normal distri-
butions with unknown mean μ and unknown variance σ2 [LILL 1967]. In
Appendix C we give tables of critical values for the statistic D̂n in these
two cases.

Having studied two analytic methods of goodness of fit, now we consider a
graphical method. The probability plot is one of the methods used to graphi-
cally analyze reliability data. It is based simply on the concept of transforming
the data in such a way that approximately straight lines can be generated
when the data is plotted. Then, the graph can be quickly checked to deter-
mine whether a straight line can reasonably fit the data. If not, the assumed
distribution is rejected and another may be tried.

We will first do the probability plot for the exponential distribution. Then
the technique will be extended to the Weibull distribution, following a similar
procedure.

The CDF of the exponential distribution is

F (t) = 1 − e−λt.

Rewriting this equation and taking natural logarithms, we get

1 − F (t) = e−λt

ln[
1

1 − F (t)
] = λt.

This is a linear equation in time variable t. If the exponential distribution
applies, the data plotted should approximately fall on a straight line.
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Now we need to estimate the CDF F (t) from the data of failure time t. A
simple approach would be to use the empirical CDF:

F̂ (ti) =
i

n
i = 1, 2, 3, . . . , n

This is a good approximation of the true CDF when n is large. However, when
we have only one data point (n = 1), (e.g., we have only one unit and it fails
at time t1), we do not expect the observed time to failure to represent the
100th percentile [i.e., F (t1) = 1] of the population distribution. So we can use
the following alternative definition of the empirical CDF:

F̂ (ti) =
i − 0.3
n + 0.4

i = 1, 2, 3, . . . , n

Next we look at the CDF of the Weibull distribution,

F (t) = 1 − e−λtα

.

We rewrite it and take natural logarithms twice:

1 − F (t) = e−λtα

,

ln[
1

1 − F (t)
] = λtα,

ln{ln[
1

1 − F (t)
]} = α ln t + lnλ.

This equation is linear in ln t. If the Weibull distribution applies, the data
plotted should approximately fall on a straight line with slope α and intercept
lnλ.

Consider the data used in Example 10.22. The probability plot of exponen-
tial distribution is shown in Figure 10.18. Obviously it is far from a straight
line. So we want to try the probability plot of the Weibull distribution, which
results in Figure 10.19. It is shown that a straight line can be approximately
fitted into the data plot, which indicates that the Weibull distribution assump-
tion is appropriate for the data set. The line we plotted in the graph has a
slope 1.924 and intercept −13.5. We can easily compute the parameters α and
λ from the slope and the intercept. From this graph, we can also see the expo-
nential distribution (the straight line with slope equal to 1) is inappropriate
for this data set.
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Problems

1. The number of busy senders in a panel-type switching machine of a telephone

exchange was observed as follows:

Number busy Observed frequency Number busy Observed frequency

0 0 12 413

1 5 13 358

2 14 14 219

3 24 15 145

4 57 16 109

5 111 17 57

6 197 18 43

7 278 19 16

8 378 20 7

9 418 21 8

10 461 22 3

11 433

Test whether the corresponding theoretical distribution is Poissonian.

2. Perform a goodness of fit test at significance level 0.05 for the binomial model
on the data of Example 2.4, assuming that the population parameter p is known
to be 0.1.

3. Return to the question of memory residence times considered in problem 3 in

Section 10.2.1. The empirical distribution function for the memory residence

times was measured and is shown below:

Time in milliseconds Count Cumulative percent

0–31 7540 57.24

32–63 2938 79.55

64–95 1088 87.81

96–127 495 91.57

128–191 449 94.98

192–319 480 98.62

319–1727 181 100.00

Graphically compare the empirical distribution with three theoretical distribu-
tions, normal, gamma, and hyperexponential (for the last two distributions,
parameters were estimated in problem 3 in Section 10.2.1, whereas for the normal
distribution, parameters μ and σ2 are readily estimated). Now perform chi-square
goodness-of-fit tests against the three theoretical distributions at the 5% level of
significance.
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4. Since the Poisson model was found to be improper for the data in Example 10.41,
try the (modified) geometric model:

H0 : p
i

= p(1 − p)i, i = 0, 1, . . . .

Note that the unknown parameter p must be estimated before the chi-square test
can be performed.

5. Using formula (10.27), construct a 90% confidence band for the distribution func-
tion F0(x) based on the data in Example 10.42. Plot your results together with
the distribution of F0 under the null hypothesis.

6. Observed times between successive crashes of a computer system were noted for
a 6-month period as follows (time in hours):

1, 10, 20, 30, 40, 52, 63, 70, 80, 90, 100, 102, 130, 140, 190,

210, 266, 310, 530, 590, 640, 1340

Using the D̂n statistic, test a goodness of fit against an exponential model and
a normal model for the population distribution.

7. We wish to verify the analytical results of review problems 2 and 3 at the end of
Chapter 3 by means of a discrete-event simulation. Suppose that the mantissas
X and Y of two floating-point numbers are independent random variables with
uniform density [over [1/β, 1) ] and reciprocal pdf 1/(y ln β), respectively. Gener-
ate n random deviates of X and Y [for the random deviate of Y , use the formula
derived in problem 6(a), Section 3.5], and compute the mantissas of the normal-
ized product ZN and the normalized quotient QN . From these values, obtain
the empirical distributions of ZN and QN . Now perform goodness-of-fit tests
against the reciprocal distribution, using the Kolmogorov–Smirnov Dn statistic.
Use n = 10, 20, 30 and β = 2, 10, 16.
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Chapter 11

Regression and Analysis of Variance

11.1 INTRODUCTION

In this chapter, we study aspects of statistical relationships between two
or more random variables. For example, in a computer system the through-
put Y and the degree of multiprogramming X might well be related to each
other. One indicator of the association (interdependence) between two ran-
dom variables is their correlation coefficient ρ(X,Y ) and its estimator ρ̂(X,Y ).
Correlation analysis will be considered in Section 11.6.

A related problem is that of predicting a value of system throughput y
at a given degree of multiprogramming x. In other words, we are interested
here in studying the dependence of Y on X. The problem then is to find
a regression line or a regression curve that describes the dependence
of Y on X. Conversely, we may also study the inverse regression problem of
dependence of X on Y . In the remainder of this section we consider regression
when the needed parameters of the population distribution are known exactly.
Commonly, though, we are required to obtain a regression curve that best
approximates the dependence on the basis of sampled information. This topic
will be covered in Sections 11.3 and 11.4.

Another related problem is that of least-squares curve fitting. Sup-
pose that we have two variables (not necessarily random) and we hypothesize
a relationship (e.g., linear) between the two variables. From a collection of n
pairs of measurements of the two variables, we wish to determine the equation
of a line (curve, in general) of closest fit to the data. Out of the many pos-
sible criteria in choosing the “best” fit, the criterion leading to the simplest
calculations is the least-squares criterion, which will be discussed in the next
section.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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Y

X

Figure 11.1. A scatter diagram showing a linear dependence

Consider two random variables, X and Y , possessing a joint density,
f(x, y). We would like to design a function, d(x), so that the random variable,
d(X), will be as close as possible to Y in an appropriate sense. When d(x) is
used to predict a value of Y , a modeling error will usually result so that the
actual value y = d(x) + ε.

Such errors are introduced, of course, because we are attempting to sim-
plify the joint distribution of X and Y by postulating an elementary functional
dependence, d, of Y on X. The extent of our error is thus the extent to
which the random variable Y differs from the random variable d(X), the most
common measure of which is undoubtedly the expected value of the squared
difference, E[D2], where D = Y − d(X).

The function d(x) for which E[D2] is at a minimum is commonly called
the least-squares regression curve of Y on X. Now it is easy to show
that this regression curve is necessarily given by d(x) = E[Y |x]; nevertheless,
conditional distributions are, in practice, difficult to obtain, so most often
we simply restrict our choices for d(x) to a specific class of functions and
minimize E[D2] over that class. In a similar fashion g(y) = E[X|y] will give
us the dependence of X on Y .

A common choice, of course, is the linear predictor function, d(x) = a + bx .
In general, the appropriate functional class may be inferred from observed
data. The n pairs of measurements of the variables X and Y may be plotted
as points, (x1, y1), (x2, y2), . . . , (xn, yn), on the (x, y) plane. The resulting set
of points is called a scatter diagram. If the observations are clustered about
some curve in the (x, y) plane, then we may infer that the curve describes
the dependence of Y on X. Such a curve is called an approximating curve.
The inferred relationship could be linear as in Figure 11.1, or nonlinear as
in Figure 11.2. On the other hand, no particular functional dependence of Y
on X can be inferred from the scatter diagram in Figure 11.3.

Assume that a linear model of the dependence of Y on X is acceptable;
that is, we restrict d to the class of functions of the form d(x) = a + bx . The
problem of regression (or optimal prediction) then reduces to the problem of
choosing the parameters a and b to minimize the following:

G(a, b) = E[D2] = E[(Y − d(X))2] = E[(Y − a − bX )2].
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Y

X

Figure 11.2. A scatter diagram showing a nonlinear dependence

X

Y

Figure 11.3. A scatter diagram showing no specific dependence

Let μX and μ
Y

denote the respective expectations E[X] and E[Y ], and the
mean squared error may be rewritten as

G(a, b) = E[(Y − a − bX )2]

= E[((Y − μ
Y
) + (μ

Y
− a) − b(X − μ

X
) − bμ

X
)2]

= E[(Y − μ
Y
)2 + (μ

Y
− a)2 + b2(X − μ

X
)2 + b2μ2

X

+2(Y − μ
Y
)(μ

Y
− a) − 2b(Y − μ

Y
)(X − μ

X
)

−2b(Y − μ
Y
)μ

X
− 2b(μ

Y
− a)(X − μ

X
)

−2b(μ
Y
− a)μ

X
+ 2b2(X − μ

X
)μ

X
]. (11.1)

Note that E[Y − μ
Y
] = E[X − μ

X
] = 0, and let

σ2
X = Var[X], σ2

Y = Var[Y ], and ρ =
Cov(X,Y )

σXσY

.

Then

G(a, b) = σ2
Y + b2σ2

X + (μ
Y
− a)2 + b2μ2

X

−2bρσXσY − 2bμ
X

(μ
Y
− a)

= σ2
Y + b2σ2

X + (μ
Y
− a − bμ

X
)2 − 2bρσXσY .
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To minimize G(a, b), we take its partial derivatives with respect to a and b
and set them equal to zero:

∂G

∂a
= −2(μ

Y
− a − bμ

X
) = 0,

∂G

∂b
= 2bσ2

X − 2μ
X

(μ
Y
− a − bμ

X
) − 2ρσXσY = 0.

Thus the optimal values of a and b are given by

b = ρ
σY

σX

and a = μ
Y
− bμ

X
= μ

Y
− ρ

σY

σX

μ
X

or

b =
Cov(X,Y )

Var[X]
, (11.2)

and

a = E[Y ] − Cov(X,Y )
Var[X]

E[X]. (11.3)

The corresponding linear regression curve is

y = E[Y ] − Cov(X,Y )
Var[X]

(E[X] − x), (11.4)

which can be rewritten as

y − μ
Y

σY

= ρ
x − μ

X

σX

. (11.5)

The regression line of Y on X can be derived in a similar manner:

x − μ
X

σX

= ρ
y − μ

Y

σY

. (11.6)

The square of the minimum prediction error is

E[D2] = G(a, b) = G(ρ
σY

σX

, μ
Y
− ρ

σY

σX

μ
X

)

= σ2
Y + ρ2 σ2

Y

σ2
X

σ2
X − 2ρ

σY

σX

ρσXσY

= σ2
Y + ρ2σ2

Y − 2ρ2σ2
Y

= σ2
Y − ρ2σ2

Y = (1 − ρ2)σ2
Y . (11.7)
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Recall that −1 ≤ ρ ≤ 1. From (11.7), if ρ = ±1, E[D2] = 0. In this case
the regression line of Y on X (11.5) and the regression line of X on Y (11.6)
coincide with each other; hence X and Y are completely dependent and are
said to have a functional relationship with each other. (A note of caution:
a statistical relationship such as this, however strong, cannot logically imply
a causal relationship.) In this case when ρ2 = 1, the linear model is a perfect
fit, and in terms of the joint distribution function of X and Y , this means that
the entire probability mass is concentrated on the regression line. Also note
that the best linear model may well be the best model, even when the fit is not
perfect (viz., ρ2 �= 1). For example, it can be shown that when X and Y have a
joint normal distribution, the regression curve of Y on X is necessarily linear.

If ρ = 0, then X and Y are uncorrelated and the two regression lines
[equations (11.5) and (11.6)] are at right angles to each other. If X and Y
are independent, then ρ = 0, but the converse does not hold in general. In
the special case of bivariate normal distribution, it is true that ρ = 0 implies
the independence of X and Y . For this reason ρ can be used as a measure of
interdependence of X and Y only in cases of normal or near-normal variation.
Otherwise ρ should be used as an indicator rather than a measure of interde-
pendence. Furthermore, ρ is essentially a coefficient of linear interdependence,
and more complex forms of interdependence lie outside its scope. If we suspect
that E[Y |x] is far from being linear in x, a linear predictor is of little value,
and an appropriate nonlinear predictor should be sought.

In the case ρ2 �= 1, from (11.7) we conclude that there is a nonzero pre-
diction error even when the parameters a and b are known exactly. For the
minimizing values of a and b, from (11.7) we have

σ2
Y = ρ2σ2

Y + E[D2]. (11.8)

The term ρ2σ2
Y is interpreted as the variance of Y attributable to a linear

dependence of Y on X, and the term E[D2] = (1 − ρ2)σ2
Y is the residual

variance that cannot be “explained” by the linear relationship. Additional
errors will occur if the parameters are estimated from observed data.

The predictor discussed above is attractive, since it requires only the
knowledge of the first two moments and the correlation coefficient of the
random variables X and Y . If true (population) values of these quantities are
unknown, then they have to be estimated on the basis of a random sample of
n pairs of observations of the two random variables.

More generally, suppose we are interested in modeling the input–output
behavior of a stochastic system with m inputs (also called independent
variables) X = (X1,X2, . . . , Xm) and output (or dependent variable) Y . The
appropriate predictor of Y , d(x;a), is the conditional expectation:

E[Y |x1, x2, . . . , xm].

The predictor d(x;a) is a parameterized family of functions with a vector of
parameters a. For example, in a model of a moving-head disk, the response
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time to an I/O request may be the dependent variable; the record size and
the request arrival rate, the independent variables; and the device transfer
rate and average seek time, the parameters. If the internal system behavior
is well understood (i.e., if the conditional distribution of Y is known), then
the function d(x;a) can be derived analytically. Otherwise, the form of the
function must be inferred empirically from observed data.

Once we have determined an appropriate functional class for the predictor
d, the parameters a have to be determined just as a and b were determined in
our linear model d(x) = a + bx . Nonlinear models are, of course, more difficult
to handle than linear models, because the equations

∂

∂ai

(
E

[
(Y − d(X;a))2

])
= 0, for all i

are more difficult to solve. We note that even if the regression function is
nonlinear in the independent variable X, it could still be a linear function
of the parameters. The regression model will be linear in this case. Thus for
instance the regression functions d = a + b log x or d = a + b sin x give rise to
linear models.

11.2 LEAST-SQUARES CURVE FITTING

Suppose, after reviewing price lists of various manufacturers of high-speed
random access memories, we have gathered the data plotted in Figure 11.4.
Since price seems to be nearly a linear function of size, we might wish to
present our findings in a compact form: the best line through these points. Of
course, the term “best” is open to interpretation, and the “eyeball” method
has a great following. Nevertheless, when a more precise analysis is required,

^

.

Xi

Y

Price

Size in bytes

iY

i

Figure 11.4. Least-squares linear fit
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“best” is usually defined to be that line which minimizes the sum of the
squares of the y-coordinate deviations from it.

To be more specific, if our points are {(xi, yi)|i = 1, . . . , n}, then we choose
a and b so as to minimize

n∑
i=1

[yi − (a + bxi)]
2. (11.9)

Taking partial derivatives with respect to a and b and setting them equal to
0, we obtain

b =

n∑
i=1

xiyi − nx̄ȳ

n∑
i=1

x2
i − n(x̄)2

(11.10)

and
a = ȳ − bx̄,

where

x̄ =
1
n

n∑
i=1

xi and ȳ =
1
n

n∑
i=1

yi.

Such a technique does have a probabilistic counterpart. Consider two dis-
crete random variables, X and Y , having joint pmf given by our plot of
Figure 11.4, that is, P (X = xi, Y = yi) = 1/n, i = 1, 2, . . . , n. It is meaningful
to ask: What is the regression line of Y on X?

From the definition of regression line, we want to minimize:

E[(Y − (a + bX ))2] =
n∑

i=1

1
n

[yi − (a + bxi)]
2. (11.11)

Obviously the values of a and b that minimize (11.11) also minimize (11.9)
and thus are given by (11.10).

This empirical approach to regression is known as the method of least
squares and equations (11.10) are known as the normal equations of least
squares.

Example 11.1

The failure rate of a certain electronic device is suspected to increase linearly with
its temperature. Fit a least-squares linear line through the data in Table 11.1 (two
measurements were taken for each given temperature, and hence we have twelve
pairs of measurements).

The sample mean of the temperature is x̄ = 80◦F and the sample mean of failure
rates is ȳ = 1.98 · 10−6 failures per hour. From these values we get a = 1.80 · 10−6

failures per hour and b = 0.00226 failures per hour per degree Fahrenheit. Thus,
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TABLE 11.1. The failure rate versus temperature

T (◦F) 55 65 75 85 95 105

Failure 1.90 1.93 1.97 2.00 2.01 2.01

rate ·106 1.94 1.95 1.97 2.02 2.02 2.04

y = 1.80 + 0.00226x is the desired least-squares line. From this line we can obtain
a predicted value of the failure rate for a specified temperature. For example, the
predicted failure rate is 1.9582 · 10−6 at 70◦F.

�

Suppose now that we were faced with fitting a summary curve to the
data of Figure 11.5, rather than those of Figure 11.4. Although we could still
perform a least-squares linear fit, the result would be of at best questionable
value, and we would certainly prefer to fit a nonlinear curve.

In general, as mentioned earlier in our discussion of regression, nonlinear
fitting is much more difficult; nevertheless, in certain circumstances we can
consider using our linear results to fit nonlinear curves. For example, suppose
that we want to fit an exponential curve, y = aebx to the data of Figure 11.5.
We might reason as follows. If in each case y � aebx , then ln y � ln a + bx , so
if we transform our data into pairs (xi, zi), where zi = ln yi, and we perform
a least-squares linear fit to obtain the line z = a′ + b′x, then

y = ez = ea′+b′x = ea′
eb′x = aebx ,

where a = ea′
and b = b′.

Y

X

Figure 11.5. Nonlinear curve fitting
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Example 11.2

Suppose that we are interested in fitting the price of a CPU of an IBM 370 series
as a function of its speed x [measured in millions of additions per second (MAPS)].
Grosch’s law suggests that price, y, will be roughly proportional to the square root
of the speed, x. We use a general power function

y = a · xb

to model the relation between the price and the speed. Using the data from Hatfield
and Sliski [HATF 1977] and using a transformation to ln y = ln a + b ln x, Kinicki
[KINI 1978] obtained the least-squares fit:

Estimated price, ŷ = $1,147,835 · x0.55309.

�

We must point out that the easy transformations illustrated here, although
analytically precise, do not necessarily preserve the least-squares property;
more specifically, consider the y = aebx model: the values of a and b that
minimize

n∑
i=1

(yi − aebxi)2

are not necessarily the same as those we have chosen to use, which minimize
n∑

i=1

[ ln yi − (ln a + bxi)]
2.

(For an easy example, consider the data {(−1, 1), (0, e), (1, 1)}). Nevertheless,
the transformation fit may be preferable, owing to ease of application.

Problem

1. Consider an arithmetic unit of a computer system with a modulo-m online fault

detector. As the modulus m varies, the average detection latency y also varies.

Given the following data, with two observations of y for each value of m:

mi yi (μs)

3 1.45 1.5

5 1.30 1.26

7 1.20 1.23

11 1.10 1.08

13 1.05 1.03

Determine parameters a and b by performing a least-squares fit of the curve
y = amb to the given data.
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11.3 THE COEFFICIENTS OF DETERMINATION

Having obtained a least-squares linear fit to data, y = a + bx , we next consider
the goodness of fit between this line and the data. For a point xi, the value
predicted by the fitted line is

ŷi = a + bxi.

The difference |yi − ŷi| between the observed and the predicted values should
be low for a good fit. Observe that

|yi − ȳ| = |(yi − ŷi) + (ŷi − ȳ)|.

Squaring both sides and then summing, we get
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

(ŷi − ȳ)2

+2
n∑

i=1

(yi − ŷi)(ŷi − ȳ).

The last sum can be shown to equal zero if we substitute the linear predictor
for ŷi: n∑

i=1

(yi − ŷi)(ŷi − ȳ)

=
∑

[(yi − a − bxi)(a + bxi − ȳ)]
= a

∑
(yi − a − bxi) + b

∑
xi(yi − a − bxi)

−ȳ
∑

(yi − a − bxi)
= 0,

since a and b are defined to have those values for which

∂

∂a

n∑
i=1

(yi − a − bxi)
2 = 0

and

∂

∂b

n∑
i=1

(yi − a − bxi)
2 = 0.

It follows that
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

(ŷi − ȳ)2. (11.12)

Note the similarity between this equation and equation (11.8). Here yi − ȳ is
the deviation of the ith observed value of Y from its sample mean; therefore,
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the left-hand side is the sum of squares about the mean (also called the
total variation), and ŷi − ȳ is the difference between the predicted value
and the sample mean. This quantity is “explained” by the least-squares line,
since ŷi − ȳ = b(xi − x̄). Therefore,

∑n
i=1 (ŷi − ȳ)2 is called the explained

variation. The quantity
∑n

i=1 (yi − ŷi)
2 is the residual sum of squares

(also called the unexplained variation) and should be as small as possible.
In fact, this sum would be zero if all the actual observations were to lie on
the fitted line. This shows that the total variation can be partitioned into two
components:

Total variation = unexplained variation + explained variation.

The ratio of the explained variation to the total variation, called the coeffi-
cient of determination, is a good measure of how well the line y = ax + b
fits the given data:

Coefficient of determination = explained variation/total variation

=
∑

(ŷi − ȳ)2∑
(yi − ȳ)2

. (11.13)

The coefficient of determination must lie between 0 and 1, and the closer it is
to 1, the better the fit.

Returning to Example 11.3, we compute the variation explained by regres-
sion to be 0.01788428 and the total variation to be 0.0206; hence the coefficient
of determination is 0.8682, indicating a fairly good fit, since 86.82% of the
variation in Y values is explained by the fitted line.

Example 11.3

The failure rate (hazard rate) h(t) of a system is thought to be a power function of
its age. In other words a Weibull model seems appropriate, so that

h(t) = ctd, t ≥ 0.

A large number of systems are put on test, and we divide the number of failures in
each hourly interval by the number of surviving components to obtain an observed
value, hi, of the hazard rate in the interval. The data for this example are shown in
Table 11.2. ∑

yi = 13.1343,
∑

xi = 6.5598,∑
y2

i = 20.86416,
∑

x2
i = 5.2152,∑

xiyi = 10.42965.

Therefore
a = (log c) = 0.008930 or c � 1.0208
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TABLE 11.2. The failure rate data for a Weibull model

t, h hi · 103 Yi = log hi xi = log ti ŷi

0.5-1.5 1.05 0.02119 0.0000 0.008946

1.5-2.5 3.95 0.59600 0.3010 0.607515

2.5-3.5 8.20 0.91381 0.4771 0.957707

3.5-4.5 17.60 1.24551 0.6021 1.206282

4.5-5.5 25.00 1.39794 0.6990 1.398977

5.5-6.5 38.00 1.57978 0.7782 1.556474

6.5-7.5 49.00 1.69020 0.8451 1.689512

7.5-8.5 59.00 1.77085 0.9031 1.804850

8.5-9.5 85.00 1.92942 0.9542 1.906468

9.5-10.5 97.50 1.98900 1.0000 1.997546

13.1343 6.5598

and
b = d = 1.9886.

Also,
∑

(ŷi − ȳ)2 = 3.607 and
∑

(yi − ȳ)2 = 3.613, which imply that the coefficient
of determination is 3.607/3.613 = 0.9983. Hence the quality of fit as indicated by
the coefficient of determination is near perfect. The estimated hazard-rate function
is h(t) = 1.0208 · t1.9886.

�

Problems

1. Compute the coefficient of determination for the least-squares fit of the data in
problem 1 in Section 11.2.

2. Consider a network which uses the Transport Layer (layer 4 in the seven-layer

OSI Reference Model) Security Protocol for information exchange. The real time

needed for the information exchange increases linearly with increase in the data

set size. Perform a least squares fit for the following data:

Data set size Real time

(bytes) (s)

i yi xi

1 128 0.8145

2 256 0.7957

3 512 0.8002

4 1024 0.8016

5 2048 0.7698

6 4096 0.9112

7 8192 0.8306
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(a) Predict the real time for data transfer for data-set sizes of 524288 and
4194304 bytes.

(b) Determine the coefficient of determination for the given data.

11.4 CONFIDENCE INTERVALS IN LINEAR REGRESSION

We return to the problem of linear regression. Now we assume, not that
required parameters of the population distributions are known, but rather that
they are estimated from a random sample of n pairs of observations. Because
the conditional expectation of Y given X minimizes the mean-squared error,
we usually consider X to be a controlled or nonrandom variable; that is, in
sampling we can restrict ourselves to those points at which X takes on an
a priori specified value. If we let Yi denote the random variable Y restricted
to those points at which X = xi, then Yi will be assumed to be normal with
mean μi = a + bxi and a common variance σ2 = Var[Yi]. In order to derive
maximum-likelihood estimates of the two population parameters, a and b, we
form the likelihood function of a and b:

L(a, b) =
n∏

i=1

f(yi)

=

exp

[
− 1

2σ2

n∑
i=1

(yi − a − bxi)
2

]
(2π)n/2σn

. (11.14)

Taking logarithms and setting the derivatives with respect to a and b to zero,
we get

n∑
i=1

(yi − a − bxi) = 0,
n∑

i=1

(yi − a − bxi)xi = 0.

The resulting maximum-likelihood estimates of a and b, denoted by â and b̂
are then given by the normal equations (11.10). The corresponding estimators
are

Â = Y − B̂x, (11.15)

and

B̂ =

n∑
i=1

(xi − x)(Yi − Y )

n∑
i=1

(xi − x)2
. (11.16)

Now, if Yi is not normally distributed, we can still obtain the point
estimates of the parameters a and b by the method of least squares. Similarly,
the discussion about the coefficient of determination holds in the general
case. However, in order to derive confidence intervals for these estimates,



Trim Size: 6.125in x 9.25in 60Trivedi c11.tex V3 - 05/23/2016 12:16pm Page 766�

� �

�

766 REGRESSION AND ANALYSIS OF VARIANCE

we need to make assumptions similar to those we made while deriving
maximum-likelihood estimates of a and b. Thus we continue to assume
that X is a controlled variable. We further assume that Y1, Y2, . . . , Yn are
mutually independent, and that the conditional distribution of Yi is normal
with mean E[Yi] = a + bxi, and that variance of Yi is equal to σ2, that is,
Var[Yi] = σ2

i = σ2.
If we write

Yi = a + bxi + Δi, (11.17)

then Δ1,Δ2, . . . ,Δn are mutually independent normal random variables with
zero mean and a common variance σ2, that is, E[Δi] = 0 and Var[Δi] = σ2,
for all i.

THEOREM 11.1.

(a) Â is an unbiased estimator of a: E[Â] = a.
(b) B̂ is an unbiased estimator of b: E[B̂] = b.

(c) Var[Â] = σ2

n

⎡
⎢⎢⎢⎢⎣1 + nx2

n∑
i=1

(xi − x)2

⎤
⎥⎥⎥⎥⎦.

(d) Var[B̂] = σ2

n∑
i=1

(xi − x)2
.

Proof: First we show part (b):

E[B̂] = E

[∑
(xi − x)(Yi − Y )∑

(xi − x)2

]

=

∑
(xi − x)E[Yi − Y ]∑

(xi − x)2
.

Now since E[Yi] = a + bxi and

E[Y ] =
1

n

n∑
i=1

E[Yi] = a + bx,

we have

E[B̂] =

∑
(xi − x)(a + bxi − a − bx)∑

(xi − x)2

= b.

To show part (a), we write

E[Â] = E[Y − B̂x]

= E[Y ] − E[B̂]x
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= a + bx − bx

= a.

Next to show part (d), we rewrite

B̂ =

∑
(xi − x)Yi∑
(xi − x)2

.

Since the {Yi} are independent, we have

Var[B̂] =
1

[
∑

(xi − x)2]2

∑
Var[(xi − x)Yi]

=
∑ (xi − x)2σ2

[
∑

(xi − x)2]2

=
σ2∑

(xi − x)2
.

The result of part (c) follows in a similar fashion.

It is also clear that Â and B̂ are both normally distributed. If the variance
σ2 of the error term Δi is known, we can use the Var[Â] and Var[B̂] above
to obtain confidence intervals for a and b. Usually, however, σ2 will not be
known in advance and it must be estimated by s2:

s2 =

n∑
i=1

(yi − â − b̂xi)
2

n − 2

=
∑

(yi − ŷi)
2

n − 2

=
unexplained variation

n − 2
. (11.18)

The denominator (n − 2) reflects the fact that 2 degrees of freedom have been
lost since â and b̂ have been estimated from the given data.

If we use s2 in place of σ2 in estimating Var[Â] and Var[B̂], we must use
the Student t distribution with (n − 2) degrees of freedom in place of a normal
distribution. Now a 100(1 − α) percent confidence interval for b is given by

b̂ ± tn−2;α/2 · s ·
[

n∑
i=1

(xi − x)2
]− 1

2

(11.19)

and for a by

â ± tn−2;α/2 · s ·

⎡
⎢⎢⎣ 1

n
+

x2

n∑
i=1

(xi − x)2

⎤
⎥⎥⎦

1
2

. (11.20)
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Example 11.4

Returning to the Weibull model and the corresponding failure rate data of Example
11.3, we compute the unexplained variation to be 0.006 and hence

s2 = 0.006/8 or s = 0.02738.

Also ∑
i

(xi − x)2 = 0.91211 and

√∑
i

(xi − x)2 = 0.95504.

Thus, the required confidence intervals are obtained using the t distribution with
n − 2 = 8 degrees of freedom. Since

t8;0.05 = 1.860,

a 90% confidence interval for the exponent d is given by

1.98864 ± 0.05332.

Similarly, a 90% confidence interval for a(= log c) is given by 0.008930 ± 0.03851.

�

Problems

1. Complete the proof of Theorem 11.1 by showing part (c).

2. Compute 90% confidence intervals for the parameters a and b from the data in
problem 1 of Section 11.2.

11.5 TREND DETECTION AND SLOPE ESTIMATION

In many problems, the important objective may be to detect and estimate
trends in monitored parameters over time. For example, Garg et al. [GARG
1998] analyzed operating system resource usage data collected over time for
increasing or decreasing trends due to software aging. The slope of the trend
is then estimated to give a measure of the effect of aging on these resources.
This section describes the Mann–Kendall test for detecting trends and Sen’s
nonparametric slope (trend) estimator.

11.5.1 Mann–Kendall Test

Smoothing techniques provide good visual clues for finding trends in time
series data (data observed sequentially over time), but it is difficult to make
conclusive statements regarding presence or absence of trend since no statis-
tical significance levels are attached. The Mann–Kendall test [GILB 1987], a
nonparametric test for zero slope of the linear regression of time-ordered data
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versus time, is particularly useful in such cases. Since it uses only the relative
magnitudes of the data and not the actual measured values, it can be used for
data reported as trace or less than the detection limit. The main objective in
the Mann–Kendall test is to test the null hypothesis H0 that there is no trend,
against the alternative hypothesis H1 that there is an upward or a downward
trend. To that end, we compute the Mann–Kendall statistic, Si, where

S =
n−1∑
k=1

n∑
l=k+1

sgn(y
l
− y

k
) (11.21)

for l > k and sgn(x) is the signum function:

sgn(x) =

⎧⎨
⎩
−1, if x < 0
0, if x = 0
−1, if x > 0

n is the number of data points and y
l

is the datum for the lth timepoint. To
test the null hypothesis, H0 is rejected in favor of H1 upward (resp. down-
ward) trend if S is positive (negative) and if the critical value in Table C.11
(of Appendix C) corresponding to the absolute value of the computed S is less
than the specified significance level of the test, α. For a two-tailed test, the
tabled probability level corresponding to the absolute value of S is doubled
before comparison with the significance level, α. The above test is used if n,
the number of data points, is 40 or less. For n larger than 40, the normal
approximation test described later is used. The Mann–Kendall test is sim-
ple, efficient and robust against any missing values in the data. Furthermore,
the data do not have to conform to any particular distribution; thus, it is a
nonparametric test.

Example 11.5

Suppose that we wish to test the null hypothesis H0 of no trend versus the alternative
hypothesis H1, of an upward trend at the significance level, α = 0.10, and the
measurements collected over equal time intervals are: 25, 36, 33, and 51, in that
order. For simplicity, we have assumed only a single observation per time period
and that there are no ties in the data values. For the multiple observations and
tied data values, refer to Gilbert [GILB 1987]. Here n = 4, and hence there are six
differences to consider: 36–25, 33–25, 51–25, 33–36, 51–36 and 51–33. From equation
(11.21), S = + 1 + 1 + 1−1 + 1 + 1 = 4. The tabled probability for S = +4 and
n = 4 is 0.167. Since this value is greater than 0.10, we cannot reject H0.

If the data had been 45, 56, 57, and 89, then S = +6 and the tabled probability
would be 0.042 for n = 4 and α = 0.1. Hence, we reject H0 and accept the alternative
hypothesis H1 of an upward trend.

�

For n > 40, we use the normal approximation test. S is first computed
using equation (11.21) and then the variance of S is computed using the
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following equation, which takes into account ties that may be present in the
data:

Var[S] =
1
18

[
n(n − 1)(2n + 5) −

g∑
p=1

tp(tp − 1)(2tp + 5)

]
, (11.22)

where g is the number of tied groups and tp is the number of data points in
the pth group. For example, if the data are 12, 14, 15, 19, 14, 14, 15, and 12,
the number of tied groups g = 3, t1 = 2 for value 12, t2 = 3 for value 14 and
t3 = 2 for value 15.

Both, S and Var[S] are then used to compute the Z statistic as follows:

Z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S − 1
[Var[S]]1/2

if S > 0

0 if S = 0
S + 1

[Var[S]]1/2
if S < 0

(11.23)

If Z is positive (resp. negative), it indicates an upward (resp. downward)
trend. To decide whether to accept or reject hypothesis H0 of no trend for a
significance level α, we compare the absolute computed value of the Z statistic
to the critical value of Z obtained from the normal distribution table (Table
C.3), in a similar manner as described for n ≤ 40.

11.5.2 Sen’s Slope Estimator

Once the presence of a trend is confirmed by the procedure described above,
its true slope may be estimated by computing the least-squares estimate of
the slope by linear regression methods. These, however, deviate greatly from
the true value if there are gross errors or outliers in the data. To overcome
this limitation, a nonparametric procedure developed by Sen [SEN 1968] can
be used. This method is not greatly affected by outliers and is also robust
against missing values.

First, N
′

slopes are calculated for all pairs of points at l and k for which
l > k, as Q = (y

l
− y

k
)/(l − k). These N

′
slopes are then ranked and their

median is calculated. This median is the required slope estimate, N . A
100(1-α)% confidence interval about the true slope can also be computed
[GILB 1987].
Example 11.6

Suppose that we wish to estimate the slope of the following data: 34, 45, 51, 49,
observed at equally spaced time intervals. Here, n = 4 and there are N

′
= 6 slope

estimates: 9, 8.5, 6, 5, 2, and -2 (45–34, (51–34)/2, 51–45, (49–34)/3, (49–45)/2 and
49–51). Ranking these slopes from the smallest to the largest, we get -2, 2, 5, 6, 8.5,
and 9. The median of these slopes, N = (5+6)/2 = 5.5, is the Sen estimate of the
true slope.

�
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11.6 CORRELATION ANALYSIS

In the last section we assumed that X was a controlled or nonrandom
variable. Consider again the case when X and Y are both random
variables. A random sample will then consist of pairs of observations
{(x1, y1), (x2, y2), . . . , (xn, yn)} from a bivariate distribution.

Recall from Chapter 4 that the correlation coefficient ρ(X,Y ) gives an
indication of the linearity of the relationship between X and Y . If X and Y
are independent, then they are uncorrelated; that is, ρ(X,Y ) = 0. The con-
verse does not hold, in general. However, if X and Y are jointly normal, then
ρ(X,Y ) = 0 (X and Y are uncorrelated) implies that they are also indepen-
dent. We will assume that f(x, y) is a bivariate normal pdf, so that

f(x, y) =
1

2πσXσY

√
1 − ρ2

· exp

{
− 1

2(1 − ρ2)

[(
x − μ

X

σX

)2

−2ρ

(
x − μ

X

σX

) (
y − μ

Y

σY

)
+

(
y − μ

Y

σY

)2
]}

(11.24)

where
μ

X
= E[X], μ

Y
= E[Y ], σ2

X = Var[X], σ2
Y = Var[Y ]

and ρ = ρ(X,Y ).
We can form the likelihood function for a random sample of size n as

L(μ
X

, μ
Y
, σX , σY , ρ) =

n∏
i=1

f(xi, yi).

Taking natural log on both sides, we obtain

ln L =
n∑

i=1

ln f(xi, yi)

= −n ln (2πσXσY

√
1 − ρ2 − 1

2(1 − ρ2)

{
n∑

i=1

[(
xi − μ

X

σX

)2

−2ρ

(
xi − μX

σX

) (
yi − μY

σY

)
+

(
yi − μY

σY

)2
]}

.

Taking the partial derivatives with respect to the five parameters, and setting
them equal to zero, we get the maximum-likelihood estimates

μ̂X =
1
n

n∑
i=1

xi = x, μ̂Y =
1
n

n∑
i=1

yi = y,
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sX =

(
1
n

n∑
i=1

(xi − μ̂X)2
)1/2

, sY =

(
1
n

n∑
i=1

(yi − μ̂Y )2
)1/2

(11.25)

and

ρ̂(X,Y ) =

n∑
i=1

(xi − x)(yi − y)(
n∑

i=1

(xi − x)2
n∑

i=1

(yi − y)2
)1/2

. (11.26)

The estimate ρ̂(X,Y ) is also referred to as the sample correlation coefficient
(let the corresponding estimator be denoted by R̂). The distribution of R̂ is
difficult to obtain. When ρ = ρ(X,Y ) = 0 (X and Y are independent), it can
be shown [KEND 1961] that the statistic

T = R̂

(
n − 2
1 − R̂2

)1/2

(11.27)

has a Student t distribution with (n − 2) degrees of freedom. The test for the
hypothesis (of independence of normal random variables X and Y )

H0 : ρ(X,Y ) = 0 versus the alternative H1 : ρ(X,Y ) �= 0

with level of significance α is to reject the hypothesis H0 when |T | > tn−2;α/2,
where tn−2;α/2 denotes the critical value of the t distribution with (n − 2)
degrees of freedom in the usual way. To test the hypothesis

H0 : ρ(X,Y ) = 0 versus the alternative H1 : ρ(X,Y ) > 0,

with a level of significance α, we reject H0 if T > tn−2;α.

Example 11.7

It is believed that the number of breakdowns of a computing center is related to the
number of jobs processed. Data were collected for two centers, A and B, as follows:

1. For center A, data on the number of breakdowns per month (yi) and the
number of jobs completed per month (xi) were collected for 10 months.

2. For center B, data of xi and yi were collected for 20 months.

The maximum-likelihood estimates of the correlation coefficients for the two
cases were computed using formula (11.26) to be ρ̂A = 0.49 and ρ̂B = 0.55. The
corresponding values of the t statistic were computed using formula (11.27): tA =
1.5899 and tB = 2.794. Recalling that a t distribution with 8 degrees of freedom is
applicable for center A, and that t8;0.05 = 1.86, we see that we cannot reject the
hypothesis H0 : ρA = 0 in favor of H1 : ρA �= 0 at the significance level 0.1.
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On the other hand, for center B, we use a t distribution with 18 degrees of
freedom and t18;0.01 = 2.552 to reject H0 : ρB = 0 in favor of H1 : ρB �= 0 at the 0.02
level of significance; that is, there is a significant correlation between breakdowns
and workload.

�

Problems

1. Associated with a job are two random variables: CPU time required (Y ) and

the number of disk I/O operations (X). Given the following data, compute the

sample correlation coefficient:

Time (s) Number

i yi xi

1 40 398

2 38 390

3 42 410

4 50 502

5 60 590

6 30 305

7 20 210

8 25 252

9 40 398

10 39 392

Draw a scatter diagram from these data. Does a linear fit seem reasonable?
Assuming that we wish to predict the CPU time requirement given an I/O request
count, perform a linear regression:

y = a + bx .

Compute point estimates of a and b as well as 90% confidence intervals.

Next suppose that we want to predict a value of I/O request count, given a CPU
time requirement. Thus, perform a linear regression of X on Y . Calculate 90%
confidence intervals for c and d with the regression line:

x = c + dy .

In both cases compute the coefficients of determination.

2. Since the method described for testing the hypothesis of no correlation in this
section is based on a stringent assumption that the joint density of X and Y is
bivariate normal, it is desirable to design a nonparametric alternative to this test
in case the distributional assumption is not satisfied. First, we arrange both the
X and Y sample values separately in increasing order of magnitudes and assign
ranks to these values. Now let δi be the difference between the ranks of the paired
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observations (xi, yi). The Spearman rank correlation coefficient is defined to
be [NOET 1976]:

r
S

= 1 −
6

n∑
i=1

δ2
i

n(n2 − 1)
.

Compute r
S

for the data in problem 1 above. Note that r
S

is a value of a
random variable RS . Suppose that we want to perform a distribution-free test of
the null hypothesis of no correlation. Then we can use the fact that under the
null hypothesis, the distribution of RS is approximately normal with:

E[RS |H0] = 0,

Var[RS |H0] =
1

n − 1
.

Carry out this test for the data in problem 1 above, and compute the descriptive
level of the test.

11.7 SIMPLE NONLINEAR REGRESSION

Nonlinear regression presents special difficulties. The first and foremost of
these, of course, is that the basic system of equations, given by

∂

∂ai

E[(Y − d(X; a1, a2, . . . , ak))2] = 0, i = 1, 2, . . . , k,

is, in general, nonlinear in the unknown parameters. Nonlinear systems of
equations are considerably more difficult to solve than linear systems. The
difficulty is compounded when we realize that we are attempting to locate the
lowest point (global minimum) of a multidimensional surface. If the surface
has multiple valleys (i.e., it is not unimodal), most numerical techniques can
do no better than to find a local minimum (one of the valleys) rather than
the global minimum.

Example 11.8

The price y of a semiconductor memory module is suspected to be a nonlinear
function of its capacity x:

y = a + bxc.

Even the logarithmic transformation that we used earlier does not help here. The
empirical mean squared error is given by

G(a, b, c) =

n∑
i=1

(yi − a − bxc
i )

2.

Using either a nonlinear (unconstrained) minimization routine directly or the deriva-
tive method and solving the resulting system of nonlinear equations is quite complex.
We observe that if a is known, the problem can be transformed to a linear regression
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situation. Since a is not known, we can iterate on different values of a to find an
optimum point.

On the basis of data collected from manufacturers (117 data points), Maieli
[MAIE 1980] obtained the following least-squares fit for the above model of semicon-
ductor memory: b = 0.75608 (indicating a price per bit of about 3

4
cents), c = 0.72739

(indicating a significant economy of scale), and a = −7488 cents. The coefficient of
determination was found to be 0.982, indicating a very good fit.

�

Problems

1. Consider a computer system that is subject to periodic diagnosis and mainte-
nance every 1000 h. The diagnosis–maintenance service is assumed not to be
perfect, and the probability of its being able to correctly diagnose and correct
the fault (if it exists) is c. The expected life y of the system is to be fitted as a
power function of the coverage factor c:

y = a + bec.

(Here e denotes the base of the natural logarithm.) Using the following data

(adapted from Ingle and Siewiorek [INGL 1976]), estimate the parameters a, b,

and compute the coefficient of determination (if this is found to be unsatisfactory,

then plotting a scatter diagram may help you find a more appropriate function

class):

ci yi (h)

0.2 11,960

0.4 15,950

0.6 23,920

0.8 47,830

0.9 95,670

0.92 120,000

0.94 159,500

0.96 239,200

0.98 478,340

2. Refit the data of problem 1 of Section 11.2, to the curve

y = a1m
b1 + c1

Compare the quality of two fits by comparing the error sum of squares in the
two cases.

11.8 HIGHER-DIMENSIONAL LEAST-SQUARES FIT

The treatment of least-squares linear fit to data can be extended in a simple
way to cover problems involving several independent variables [DRAP 1966].
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For example, suppose we wish to fit a three-dimensional plane

y = a0 + a1x1 + a2x2 + a3x3,

to a set of n points:

(y1, x11, x21, x31), . . . , (yn, x1n, x2n, x3n)

in four dimensions. The empirical mean squared error is given by

G(a0, a1, a2, a3) =
n∑

i=1

(yi − a0 − a1x1i − a2x2i − a3x3i)
2. (11.28)

Setting partial derivatives with respect to the four parameters equal to zero,
we get the following solution for a = (a0, a1, a2, a3), given in matrix form:

a = (XT X)−1XT y (11.29)

where y = (y1, y2, y3, . . . , yn),

X =

⎡
⎢⎢⎢⎣

1 x11 x21 x31

1 x12 x22 x32
...

...
...

...
1 x1n x2n x3n

⎤
⎥⎥⎥⎦

and superscript T denotes matrix transpose.

Example 11.9 (Overhead Regression)

In a given interval of time, the CPU usage may be divided into idle time, user time,
and supervisory overhead time. To improve performance, we would like to investigate
how to reduce the supervisory overhead. This overhead is caused by various calls to
the supervisor. If xi denotes the number of calls of type i and y denotes the overhead
per unit of real time, then a linear model of overhead might be

y = a0 +
∑

aixi.

From the given measurement data, (y1, x11, x21, . . .), (y2, x12, x22, . . .), . . . , (yn, x1n,
x2n, . . .), we can use our techniques [equation (11.29)] to estimate the parameters
a0, a1, . . .. A large value of ai indicates that the ith type of supervisor call contributes
heavily to the overhead. We could try to reduce the number of calls of this type or
reduce the execution time of the corresponding service routine to reduce the value
of ai.

For example, this method was used in a study of CP-67 system [BARD 1978].
Letting x1 = number of virtual selector I/O, x2 = number of pages read, and x3 =
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number of spool I/O, corresponding coefficients were obtained to be a1 = 9.7, a2 =
6.1, and a3 = 6.0. A redesign of the supervisory routines led to a reduction in these
numbers, a1 = 7.9, a2 = 2.0, and a3 = 4.6.

�

As a special case of the discussion in this section, consider polynomials of
the form y =

∑k
j=0 ajx

j , which are often useful in practice. These polynomials
are linear in the unknown parameters and, hence, produce a linear system
of equations for the unknowns. In fact, these equations can be obtained by
substituting (xi)

j for xji , in equation (11.29) where xi is the ith observation
of the independent variable.

Problems

1. Refer to Putnam [PUTN 1978]. Let K denote the total man-years required for

a software project over its lifecycle. Let Td be the development time until it is

put into operation. The ratio Y = K/Td is to be fitted as a linear function of

the number of report types (x1) to be generated and the number of application

subprograms (x2) from the following data regarding 19 software systems, where

the yi values are in person-years per year. Obtain the parameters of the linear

fit and compute the coefficient of determination.

x1i x2i yi

45 52 32.28

44 31 56.76

74 39 19.76

34 23 35.00

41 35 19.10

5 5 5.00

14 12 3.97

10 27 36.40

95 109 48.09

109 229 57.95

179 256 191.78

101 144 115.43

192 223 216.48

215 365 240.75

200 398 342.82

59 75 98.85

228 241 224.55

151 120 55.66

101 130 50.35
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11.9 ANALYSIS OF VARIANCE

In many practical situations we wish to determine which of the many indepen-
dent variables affect the particular dependent variable. Regression analysis can
be used to answer such questions, if the independent variables take numeric
values. Situations often arise where qualitative variables are encountered. For
instance, we may wish to study the effect of disk scheduling algorithm on
disk request throughput. The independent variable representing the schedul-
ing algorithm may take FCFS, SCAN, SSTF, and so on as its values. (For
a discussion of disk scheduling algorithms, see Coffman and Denning [COFF
1973].) In such problems, regression is not directly applicable.

The technique known as analysis of variance is usually cast in the frame-
work of design and analysis of experiments. The first step in planning a
measurement experiment is to formulate a clear statement of the objectives.
The second step is the choice of dependent variable (also called the response
variable).

The third step is to identify the set of all independent variables (called
factors) that can potentially affect the value of the response variable. Some
of these factors may be quantitative (e.g., the number of I/O operations per-
formed by a job) while others may be qualitative (e.g., the disk scheduling
algorithm). A particular value of a factor is called a level.

A factor is said to be controllable if its levels can be set by the experi-
menter, while the levels of an uncontrollable (or observable) factor cannot
be set but only observed. For example, if we wish to test a logic circuit and if
it is being tested on line, then its input variables are observable factors. On
the other hand, if the circuit is being tested off line, then it can be driven by a
chosen set of inputs, and these factors are then controllable. Similarly, when a
performance measurement is conducted on a computer system under its pro-
duction workload, its workload factors are uncontrollable. In order to make
the workload factors controllable, the experiment can be conducted using syn-
thetic jobs. If there are m controllable factors, an m-tuple of assignments of
a level to each of those factors is called a treatment.

The purpose in applying analysis of variance to an experimental situation is
to compare the effect of several simultaneously applied factors on the response
variable. This technique allows us to separate the effects of interest (those
due to controllable factors) from the uncontrolled or residual variation.
It allows us not only to gauge the effects of individual factors but also to study
the interactions between the factors.

In order to study the effects of factors on the response variable, we must
start with an empirical model. It is usual to assume that the effects of various
factors and the interactions are additive.

First we deal with one-way analysis of variance, where we wish to study
the effect of one controllable factor on the response variable. Assume that the
factor can take c different levels. For the ith level we assume that the response
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variable Yi takes the form
Yi = μi + Δi, (11.30)

where Δi is a random variable that captures the effect of all uncontrollable fac-
tors. We will assume that Δ1,Δ2, . . . ,Δc are mutually independent, normally
distributed random variables with zero means and a common variance σ2;
that is, E[Δi] = 0 and Var[Δi] = σ2 for all i. Even though this last assump-
tion may not hold in practice, it has been shown that the technique of analysis
of variance is fairly robust, in that it is relatively insensitive to violations of
the assumption of normality as well as the assumption of equal variances.

Suppose that n observations are taken on each of the c levels for a total of
n

T
= nc observations. Let yij be the jth observed value of the response vari-

able at the ith level. The random variable Yij possesses the same distribution
as Yi:

Yij = μi + Δij , i = 1, 2, . . . , c, j = 1, 2, . . . , n. (11.31)

It is convenient to rewrite the above equation so that:

Yij = μ + αi + Δij , i = 1, 2, . . . , c, j = 1, 2, . . . , n, (11.32)

where μ is the overall average 1
c

∑c
i=1 μi, αi is the effect of the ith level, and

Δij is the random error term. Note that μi = μ + αi, and that
∑c

i=1 αi = 0.
Such data are usually organized in the form of a table, as shown in

Table 11.3. It is common to think of level i defining a separate population with
corresponding population mean μi. Let the ith sample mean Y i. = 1

n

∑n
j=1 Yij

where a dot in the subscript indicates the index being summed over. Then Y i.

is the minimum-variance unbiased estimator of the population mean μi.
Our aim is to compare the observed sample means. If the observed means

are close together, then the differences can be attributed to residual or chance
variation. On the other hand, if the observed sample means are dispersed,
then there is reason to believe that the effects of different treatments are
significantly different. The problem can be formulated as a hypothesis test:

H0 : μ1 = μ2 = · · · = μc versus H1 : μi �= μj for some i �= j. (11.33)

TABLE 11.3. Observations for one-way analysis of variance

Sample Population Sample

Level Observations mean mean variance

1 y11, y12, . . . , y1n y1. μ1 s2
1

2 y21, y22, . . . , y2n y2. μ2 s2
2

...
...

...
...

...

c yc1, yc2, . . . , ycn yc. μc s2
c
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If there are only two levels, then this is a special case of hypothesis test
on two means as discussed in Chapter 10. In that case a t test can be used
to compare y1. and y2.. In the general case of c levels, we may be tempted to
perform a series of t tests between each pair of sample means. As the number
of levels c increases, however, this procedure not only encounters the problem
of combinatorial growth but also suffers a loss of significance. For example,
suppose there are 6 levels and hence

(
6
2

)
= 15 t tests need to be performed.

Assume that each test is conducted at the 5% level of significance (i.e., the
probability of a type I error in each test is 0.05). Assuming that the composite
hypothesis H0 is true, the probability that each individual t test will lead
us to accept the hypothesis μi = μj is 1 − 0.05 = 0.95. All fifteen individual
hypotheses must be accepted in order for us to accept H0. Assuming that these
tests are mutually independent, the probability associated with this event is
(0.95)15; hence the probability of an overall type I error is 1 − (0.95)15 � 0.537.
Clearly, this approach is not feasible for problems of reasonable size.

The method we develop for testing hypothesis (11.33) is based on com-
paring different estimates of the population variance σ2. This variance can be
estimated by any one of the sample variances:

S2
i =

1
n − 1

n∑
j=1

(Yij − Y i.)
2 (11.34)

and, hence, also by their mean:

S2
W =

c∑
i=1

S2
i

c
=

c∑
i=1

n∑
j=1

(Yij − Y i.)
2

n
T
− c

. (11.35)

Note that E[S2
W ] = σ2. The subscript W reminds us that this is a

within-sample variance. By our assumptions, Yij ∼ N(μi, σ
2) hence Y i. ∼

N(μi, σ
2/n). It follows that

(n − 1)S2
i

σ2

has a chi-square distribution with (n − 1) degrees of freedom, and

(n
T
− c)S2

W

σ2

has a chi-square distribution with (n
T
− c) degrees of freedom.

An alternative method of estimating σ2 is to obtain the variance of the c
sample means:

S2
Y ..

=

c∑
i=1

(Y i. − Y ..)
2

c − 1
, (11.36)
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where the overall sample mean is defined by

Y .. =

c∑
i=1

Y i.

c
=

c∑
i=1

n∑
j=1

Yij

n
T

. (11.37)

Noting that
E[Y i.] = μi, E[Y ..] = μ,

Var[Y i.] =
σ2

n
, Var[Y ..] =

σ2

n
T

,

we have
E[Y

2

i.] = Var[Y i.] + μ2
i =

σ2

n
+ μ2

i

and
E[Y

2

..] = Var[Y ..] + μ2 =
σ2

n
T

+ μ2.

Now, taking expectations on both sides of equation (11.36), we have

E[S2
Y ..

] = E

[∑
Y

2

i.

c − 1
− c

c − 1
Y

2

..

]

=
1

c − 1

(
cσ2

n
+

c∑
i=1

μ2
i

)
− c

c − 1

(
σ2

nc
+ μ2

)

=
σ2

n
+

c∑
i=1

μ2
i − cμ2

c − 1
. (11.38)

Thus, if the null hypothesis H0 is true (i.e., μi = μ for all i), then the
right-hand side in equation (11.38) reduces to σ2/n. Therefore, if the null
hypothesis is true, then

S2
B = nS2

Y =
n

c − 1

c∑
i=1

(Y i. − Y ..)
2 (11.39)

is an unbiased estimator of σ2. The subscript B refers to the fact that S2
B is

a measure of the between-sample (intersample) variance. Furthermore,
under H0, the equation

(c − 1)
σ2/n

S2
Y =

(c − 1)S2
B

σ2

has a chi-square distribution with (c − 1) degrees of freedom.
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If H0 is true, S2
W and S2

B should have comparable values since they both
estimate σ2. It is reasonable, therefore, to base our test on their ratio. The
statistic (often called the variance ratio):

F =

(c − 1)S2
B

σ2(c − 1)
(n

T
− c)S2

W

σ2(n
T
− c)

=
S2

B

S2
W

(11.40)

has an F distribution with (c − 1, n
T
− c) degrees of freedom, by Theorem 3.9.

Since between-sample variance S2
B is expected to be larger than within-sample

variance S2
W when H0 is false, we reject H0 at α percent level of significance

if the observed variance ratio exceeds the critical value fc−1,n
T
−c;α of the F

distribution.
To gain further insight into the problem, we observe that we can partition

the total sum of squares (SST)

SST =
c∑

i=1

n∑
j=1

(Yij − Y ..)
2 (11.41)

as follows:

SST =
∑∑

(Yij − Y ..)
2

= n

c∑
i=1

(Y i. − Y ..)
2 +

c∑
i=1

n∑
j=1

(Yij − Y i.)
2. (11.42)

The first term on the right-hand side is S2
B times its degrees of freedom;

hence it is known as the sum of squares between treatments (or groups),
SS (Tr). The second term on the right-hand side is S2

W times its degrees of
freedom; hence it is a measure of the chance error. This sum is referred to as
the residual variation, or error sum of squares, SSE . Thus, an alternative
form of equation (11.42) is

SST = SS (Tr) + SSE (11.43)

and the variance ratio is expressed by

F =

(
SS (Tr)
c − 1

)
(

SSE
n

T
− c

) . (11.44)

Numerical calculation of this F statistic is usually expressed in terms of a
so-called analysis of variance (ANOVA) table as shown in Table 11.4.
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TABLE 11.4. One-way ANOVA table

Degrees of

Source of variation Sum of squares freedom Mean square

Between treatments SS(Tr) = n
c∑

i=1

(Y i. − Y ..)
2 c − 1 S2

B

Error (within groups) SSE =
c∑

i=1

n∑
j=1

(Yij − Y i.)
2 n

T
− c S2

W

Total variation SST =
c∑

i=1

n∑
j=1

(Yij − Y ..)
2 n

T
− 1

Example 11.10

Three different interactive systems are to be compared with respect to their response

times to an editing request. Owing to chance fluctuations among the other transac-

tions in process, it was decided to take 10 sets of samples at randomly chosen times

for each system and record the mean response time as follows:

System response time (s)

Session A B C

1 0.96 0.82 0.75

2 1.03 0.68 0.56

3 0.77 1.08 0.63

4 0.88 0.76 0.69

5 1.06 0.83 0.73

6 0.99 0.74 0.75

7 0.72 0.77 0.60

8 0.86 0.85 0.63

9 0.97 0.79 0.59

10 0.90 0.71 0.61

The ANOVA table for this problem can be formulated as follows:

Source of Sum of Degrees of

variation squares freedom Mean square F

Between treatments 0.34041 2 0.1702033 17.4276

Error 0.26369 27 0.0097663

Total 0.60410 29

Since f2,27;0.01 is 5.49, and the observed value is 17.4276, we reject the null
hypothesis at the 1% level of significance. In other words, there is a significant
difference in the responsiveness of the three systems.

�
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Next we consider a two-way analysis of variance so that we have two
controllable factors, and the response variable Yij is modeled as follows:

Yij = μ + αi + βj + (αβ)ij + Δij ,

i = 1, 2, . . . , c1, j = 1, 2, . . . , c2. (11.45)

There are c1 levels of the first factor, c2 levels of the second factor, and the
total number of cells or treatments is c

T
= c1c2. The term μ is the overall

mean. The term αi is the main effect of the first factor at level i, the term βj

accounts for the main effect of the second factor at level j, and (αβ)ij denotes
the interaction (or joint) effect of the first factor at level i and the second
factor at level j. As before, we will assume that Δij ’s (i = 1, 2, . . . , c1; j =
1, 2, . . . , c2) are mutually independent, normally distributed random variables
with zero means and the common variance σ2. We will further assume without
loss of generality that

c1∑
i=1

αi =
c2∑

j=1

βj =
c1∑

i=1

(αβ)ij =
c2∑

j=1

(αβ)ij = 0. (11.46)

These restrictions allow us to uniquely estimate the parameters μ, αi, βj , and
(αβ)ij .

As in the case of one-way analysis of variance, we assume that n indepen-
dent observations are taken for each i and j so that

Yijk = μ + αi + βj + (αβ)ij + Δijk (11.47)

(i = 1, 2, . . . , c1, j = 1, 2, . . . , c2, k = 1, 2, . . . , n) denote the random vari-
ables corresponding to n

T
= c1c2n total observations of the response variable.

These observations are usually organized as shown in Table 11.5.
The following quantities are calculated:

Y ij . =

n∑
k=1

Yijk

n
, the sample average in (i, j)th cell,

Y i.. =

c2∑
j=1

Y ij .

c2

=

c2∑
j=1

n∑
k=1

Yijk

nc2

, sample average of row i,

Y .j. =

c1∑
i=1

Y ij .

c1

=

c1∑
i=1

n∑
k=1

Yijk

nc1

, sample average of column j,

Y ... =

c1∑
i=1

Y i..

c1

=

c2∑
j=1

Y .j.

c2

,

=

c1∑
i=1

c2∑
j=1

n∑
k=1

Yijk

nc1c2

, overall sample average.
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TABLE 11.5. Observations for two-way analysis of variance

Factor B

Row

Factor A Level 1 Level 2 . . . Level c2 average

Level 1 y111, . . . , y11n y121, . . . , y12n · · · y1c21, . . . , y1c2n y1..

Level 2 y211, . . . , y21n y221, . . . , y22n · · · y2c21, . . . , y2c2n y2..

...
...

...
...

...
...

Level c1 yc111, . . . , yc11n yc121, . . . , yc12n · · · yc1c21, . . . , yc1c2n yc1..

Column

average y.1. y.2. . . . y.c2. y...

It should be clear that these averages allow us to compute the best unbiased
estimates of the model parameters

μ̂ = y..., α̂i = yi.. − y..., β̂j = y.j. − y...,

( ˆαβ)ij = (yij . − y...) − [(yi.. − y...) + (y.j. − y...)].

We are usually interested in testing one or more hypotheses regarding model
parameters. For example, one hypothesis could be that the main effect of
factor A is zero:

H01 : αi = 0 for all i.

Another hypothesis relates the main effect of factor B:

H02 : βj = 0 for all j.

Finally, we may be interested in testing the hypothesis that the effects of the
two factors are additive; that is, there is no interaction:

H03 : (αβ)ij = 0 for all i and j.

To proceed further, we break down the total sum of squares SST into four
components: row sum of squares SSA, the main effect of factor A; column sum
of squares SSB , the main effect of factor B; the interaction sum of squares
SSAR; and the residual or error sum of squares SSE . Thus we have

SST = SSA + SSB + SSAB + SSE , (11.48)

where

SST =
∑

i

∑
j

∑
k

(Yijk − Y ...)
2,
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SSA = nc2

∑
i

(Y i.. − Y ...)
2,

SSB = nc1

∑
j

(Y .j. − Y ...)
2,

SSAB = n
∑

i

∑
j

(Y ij . − Y i.. − Y .j. + Y ...)
2,

SSE =
∑

i

∑
j

∑
k

(Yijk − Y ij .)
2.

These quantities are usually tabulated as shown in Table 11.6.
In order to test the hypothesis H01, we compute the F statistic:

F1 =

SSA
c1 − 1
SSE

n
T
− c

T

.

We reject H01 at the α percent level of significance, provided that the com-
puted value of F1 exceeds the critical value fc1−1,n

T
−c

T
;α of the F distribution.

Similarly, we compute:

F2 =

SSB
c2 − 1
SSE

n
T
− c

T

and F3 =

SSAB
(c1 − 1)(c2 − 1)

SSE
n

T
− c

T

and respectively reject H02 and H03 at the α percent level of significance if
the computed values exceed the critical values of F distributions with (c2 −
1, n

T
− c

T
) and [(c1 − 1)(c2 − 1), n

T
− c

T
] degrees of freedom. Clearly, this

procedure can be extended to the case of multifactor analysis of variance
[NETE 1974].

The following example is a slightly modified version of an example in
another study [LIU 1978].

Example 11.11

Suppose that we wish to study the variation in the throughput of a paged multipro-
gramming system with the following five factors:

1. POL—the memory-partitioning policy at 1 of 14 possible levels

2. ML—multiprogramming level at levels 3, 4, and 5

3. MPP—memory allotment per program at levels 20, 26, and 40 pages per
program

4. DRM—drum rotation time at three levels: 10, 35, and 70 ms

5. WRK—four different workload types
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For each one of the 14 · 3 · 3 · 3 · 4 = 1512 cells, a simulation is conducted with a
sample size of n = 25. Selecting system throughput as the response variable, the
ANOVA is shown in Table 11.7.

From this table we conclude that all main effects and two-way interactions are
significant at the 1% level. An ordering of factors from the largest to the smallest
effect is as follows: drum rotation time, memory allotment, workload type, the degree
of multiprogramming, and the memory-partitioning policy. The largest two-way
interaction effect is the one due to the combination of workload levels and drum

TABLE 11.7. ANOVA Table for Example 11.11

Source of Sum of Degrees of Mean-squared Test

variation squares freedom deviation statistic f.,.,0.01

Main 21.238

effects

POL 0.401 13 0.03085 136.5 2.21

ML 0.253 2 0.12650 559.7 4.60

MPP 4.128 2 2.064 9132.7 4.60

DRM 15.053 2 7.5265 33303.1 4.60

WRK 1.403 3 0.4677 2069.5 3.78

Two-way 2.206

interaction

POL-ML insig. 26 — — —

POL-MPP 0.261 26 0.01004 44.425 1.76

POL-DRM 0.043 26 0.001654 7.319 1.76

POL-WRK 0.067 39 0.001718 7.602 1.60

ML-MPP insig. 4 — — —

ML-DRM 0.022 4 0.0055 24.337 3.32

ML-WRK 0.013 6 0.002167 9.588 2.80

MPP-DRM 0.204 4 0.051 225.66 3.32

MPP-WRK 0.179 6 0.029834 132.01 2.80

DRM-WRK 1.417 6 0.236167 1045.00 2.80

Three-way 0.411

interaction

MPP-DRM-WRK 0.230 12 0.019167 84.81 2.18

Other 0.181

Residual 00.82 36,288 0.000226

Total 24.775 37,799
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rotation times. The information gained from such an analysis can be used to improve
system performance.

�

Problems

1. Suppose that we wish to study the effect of computer-aided instruction (CAI) on

the performance of college students. We randomly divide the incoming class into

three sections. Section A is taught in a conventional way, Section B is (nearly)

completely automated, and in Section C a mixed approach is used. The following

test scores are observed:

Section A Section B Section C

77 70 79

68 69 74

72 73 77

75 74 80

60 59 73

59 63 60

82 80 79

Perform an analysis of variance and determine whether the differences among
the means obtained for the three sections are significant at α = 0.05.

2. The Kruskal–Wallis H test is a nonparametric analog of test (11.33) in one-way
analysis of variance [NOET 1976]. This test is a generalization of the Wilcoxon
rank sum test considered in Section 10.3.2. Suppose that ni independent observa-
tions for treatment level i have been taken. We combine k =

∑c
i=1 ni observations

and order them by increasing magnitude. Now we assign ranks to the combined
sample values and let Ri be the sum of the ranks assigned to the ni observations
of treatment level i. The test is based on statistic H, defined by

H =
12

k(k + 1)

c∑
i=1

R2
i

ni

− 3(k + 1).

If ni > 5 for all i and if the null hypothesis that the k samples come from iden-
tical populations holds, then the distribution of the H statistic is approximately
chi-square with (c − 1) degrees of freedom. Apply the H test to the data in
Example 11.10 and to the data in problem 1 above.
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Properties of Distributions

TABLE B.1. Discrete distributions

pmf, Mean Variance
Distribution Parameters pX̂(i) PGF E[X] Var [X]

Bernoulli p, pX̂(0) = p, (1 − p) + pz p p(1 − p)
0 ≤ p ≤ 1 pX̂(1) = q = 1 − p

Binomial n ≥ 1, p,
(n

i

)
pi(1 − p)n−i, (1 − p + pz )n np np(1 − p)

0 ≤ p ≤ 1 i = 0, 1, . . . , n

Geometric p, p(1 − p)i−1, pz
1−(1−p)z

1
p

1−p
p2

0 < p ≤ 1 i = 1, 2, . . .

Modified p, p(1 − p)i p
1−(1−p)z

1−p
p

1−p
p2

geometric 0 < p ≤ 1 i = 0, 1, . . ..

Negative 0 < p ≤ 1,
(

i−1
r−1

)
pr(1 − p)i−r, [ pz

1−(1−p)z
]r 1

p
r(1−p)

p2

binomial r = 1, 2, . . . i = r, r + 1, . . .

Poisson α, e−ααi

i!
, e−α(1−z) α α

α > 0 i = 0, 1, 2, . . .

Uniform n pX(i) = 1/n, 1
n

n∑

i=1
zi n+1

2
n2−1

12

i = 1, 2, . . . , n

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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TABLE C.1. Binomial distribution function

B(x;n, p) =
x

k=0

n

k
pk(1 − p)n−k

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500
1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8775 0.8400 0.7975 0.7500

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250
1 0.9927 0.9720 0.9393 0.8960 0.8438 0.7840 0.7183 0.6480 0.5748 0.5000
2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625
1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.5630 0.4752 0.3910 0.3125
2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.6875
3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9850 0.9744 0.9590 0.9375

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0313
1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875
2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931 0.5000
3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9460 0.9130 0.8688 0.8125
4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9947 0.9898 0.9815 0.9687

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156
1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1094
2 0.9978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438
3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8826 0.8208 0.7447 0.6563
4 1.0000 0.9999 0.9996 0.9984 0.9954 0.9891 0.9777 0.9590 0.9308 0.8906

5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.9959 0.9917 0.9844

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078
1 0.9556 0.8503 0.7166 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.5323 0.4199 0.3164 0.2266
3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.8002 0.7102 0.6083 0.5000
4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734

5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9910 0.9812 0.9643 0.9375
6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9994 0.9984 0.9963 0.9922

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1691 0.1064 0.0632 0.0352
2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.4278 0.3154 0.2201 0.1445
3 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7064 0.5941 0.4770 0.3633
4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367

5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648
7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9983 0.9961

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0207 0.0101 0.0046 0.0020
1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.1211 0.0705 0.0385 0.0195
2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.3373 0.2318 0.1495 0.0898
3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.6089 0.4826 0.3614 0.2539
4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.8283 0.7334 0.6214 0.5000

5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9888 0.9750 0.9502 0.9102
7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9986 0.9962 0.9909 0.9805
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9992 0.9980

Source: Irwin Miller and John E. Freund, Probability and Statistics for Engineers, 2nd

ed., c 1977, pp. 477–481. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs,

N.J.
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p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0233 0.0107
2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547
3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.5138 0.3823 0.2660 0.1719
4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770

5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9527 0.9051 0.8338 0.7384 0.6230
6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281
7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877 0.9726 0.9453
8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983 0.9955 0.9893
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 0.0059
2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0652 0.0327
3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.4256 0.2963 0.1911 0.1133
4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.6683 0.5328 0.3971 0.2744

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331 0.5000
6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9499 0.9006 0.8262 0.7256
7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867
8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.9941 0.9852 0.9673
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9995

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0424 0.0196 0.0083 0.0032
2 0.9804 0.8891 0.7358 0.5583 0.3907 0.2528 0.1513 0.0834 0.0421 0.0193
3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730
4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872
6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 0.9154 0.8418 0.7393 0.6128
7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9745 0.9427 0.8883 0.8062
8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9944 0.9847 0.9644 0.9270
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9968
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001
1 0.8646 0.6213 0.3983 0.2336 0.1267 0.0637 0.0296 0.0126 0.0049 0.0017
2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0112
3 0.9969 0.9658 0.8820 0.7473 0.5843 0.4206 0.2783 0.1686 0.0929 0.0461
4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334

5 1.0000 0.9991 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2905
6 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000
7 1.0000 1.0000 0.9998 0.9988 0.9944 0.9818 0.9538 0.9023 0.8212 0.7095
8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.9679 0.9302 0.8666
9 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9975 0.9922 0.9797 0.9539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9983
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001
1 0.8470 0.5846 0.3567 0.1979 0.1010 0.0475 0.0205 0.0081 0.0029 0.0009
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p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

14 2 0.9699 0.8416 0.6479 0.4481 0.2811 0.1608 0.0839 0.0398 0.0170 0.0065
3 0.9958 0.9559 0.8535 0.6982 0.5213 0.3552 0.2205 0.1243 0.0632 0.0287
4 0.9996 0.9908 0.9533 0.8702 0.7415 0.5842 0.4227 0.2793 0.1672 0.0898

5 1.0000 0.9985 0.9885 0.9561 0.8883 0.7805 0.6405 0.4859 0.3373 0.2120
6 1.0000 0.9998 0.9978 0.9884 0.9617 0.9067 0.8164 0.6925 0.5461 0.3953
7 1.0000 1.0000 0.9997 0.9976 0.9897 0.9685 0.9247 0.8499 0.7414 0.6047
8 1.0000 1.0000 1.0000 0.9996 0.9978 0.9917 0.9757 0.9417 0.8811 0.7880
9 1.0000 1.0000 1.0000 1.0000 0.9997 0.9983 0.9940 0.9825 0.9574 0.9102

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989 0.9961 0.9886 0.9713
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9978 0.9935
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9991
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.8290 0.5490 0.3186 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005
2 0.9638 0.8159 0.6042 0.3980 0.2361 0.1268 0.0617 0.0271 0.0107 0.0037
3 0.9945 0.9444 0.8227 0.6482 0.4613 0.2969 0.1727 0.0905 0.0424 0.0176
4 0.9994 0.9873 0.9383 0.8358 0.6865 0.5155 0.3519 0.2173 0.1204 0.0592

5 0.9999 0.9978 0.9832 0.9389 0.8516 0.7216 0.5643 0.4032 0.2608 0.1509
6 1.0000 0.9997 0.9964 0.9819 0.9434 0.8689 0.7548 0.6098 0.4522 0.3036
7 1.0000 1.0000 0.9994 0.9958 0.9827 0.9500 0.8868 0.7869 0.6535 0.5000
8 1.0000 1.0000 0.9999 0.9992 0.9958 0.9848 0.9578 0.9050 0.8182 0.6964
9 1.0000 1.0000 1.0000 0.9999 0.9992 0.9963 0.9876 0.9662 0.9231 0.8491

10 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9972 0.9907 0.9745 0.9408
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9937 0.9824
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9989 0.9963
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0098 0.0033 0.0010 0.0003
2 0.9571 0.7892 0.5614 0.3518 0.1971 0.0994 0.0451 0.0183 0.0066 0.0021
3 0.9930 0.9316 0.7899 0.5981 0.4050 0.2459 0.1339 0.0651 0.0281 0.0106
4 0.9991 0.9830 0.9209 0.7982 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384

5 0.9999 0.9967 0.9765 0.9183 0.8103 0.6598 0.4900 0.3288 0.1976 0.1051
6 1.0000 0.9995 0.9944 0.9733 0.9204 0.8247 0.6881 0.5272 0.3660 0.2272
7 1.0000 0.9999 0.9989 0.9930 0.9729 0.9256 0.8406 0.7161 0.5629 0.4018
8 1.0000 1.0000 0.9998 0.9985 0.9925 0.9743 0.9329 0.8577 0.7441 0.5982
9 1.0000 1.0000 1.0000 0.9998 0.9984 0.9929 0.9771 0.9417 0.8759 0.7728

10 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9938 0.9809 0.9514 0.8949
11 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9851 0.9616
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9991 0.9965 0.9894
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9979
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000
1 0.7922 0.4818 0.2525 0.1182 0.0501 0.0193 0.0067 0.0021 0.0006 0.0001
2 0.9497 0.7618 0.5198 0.3096 0.1637 0.0774 0.0327 0.0123 0.0041 0.0012
3 0.9912 0.9174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064
4 0.9988 0.9779 0.9013 0.7582 0.5739 0.3887 0.2348 0.1260 0.0596 0.0245



Trim Size: 6.125in x 9.25in 60Trivedi bapp03.tex V3 - 05/30/2016 1:40pm Page 811�

� �

�

STATISTICAL TABLES 811

p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

17 5 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4197 0.2639 0.1471 0.0717
6 1.0000 0.9992 0.9917 0.9623 0.8929 0.7752 0.6188 0.4478 0.2902 0.1662
7 1.0000 0.9999 0.9983 0.9891 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000
9 1.0000 1.0000 1.0000 0.9995 0.9969 0.9873 0.9617 0.9081 0.8166 0.6855

10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.9174 0.8338
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.9894 0.9699 0.9283
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9975 0.9914 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9981 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.3972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003 0.0001
2 0.9419 0.7338 0.4797 0.2713 0.1353 0.0600 0.0236 0.0082 0.0025 0.0007
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038
4 0.9985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154

5 0.9998 0.9936 0.9581 0.8671 0.7175 0.5344 0.3550 0.2088 0.1077 0.0481
6 1.0000 0.9988 0.9882 0.9487 0.8610 0.7217 0.5491 0.3743 0.2258 0.1189
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8593 0.7283 0.5634 0.3915 0.2403
8 1.0000 1.0000 0.9995 0.9957 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073
9 1.0000 1.0000 0.9999 0.9991 0.9946 0.9790 0.9403 0.8653 0.7473 0.5927

10 1.0000 1.0000 1.0000 0.9998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597
11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9986 0.9938 0.9797 0.9463 0.8811
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 0.9942 0.9817 0.9519
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9990 0.9962

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004
3 0.9868 0.8850 0.6841 0.4551 0.2631 0.1332 0.0591 0.0230 0.0077 0.0022
4 0.9980 0.9648 0.8556 0.6733 0.4654 0.2822 0.1500 0.0696 0.0280 0.0096

5 0.9998 0.9914 0.9463 0.8369 0.6678 0.4739 0.2968 0.1629 0.0777 0.0318
6 1.0000 0.9983 0.9837 0.9324 0.8251 0.6655 0.4812 0.3081 0.1727 0.0835
7 1.0000 0.9997 0.9959 0.9767 0.9225 0.8180 0.6656 0.4878 0.3169 0.1796
8 1.0000 1.0000 0.9992 0.9933 0.9713 0.9161 0.8145 0.6675 0.4940 0.3238
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000

10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9895 0.9653 0.9115 0.8159 0.6762
11 1.0000 1.0000 1.0000 1.0000 0.9995 0.9972 0.9886 0.9648 0.9129 0.8204
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9969 0.9884 0.9658 0.9165
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9969 0.9891 0.9682
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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p

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000
2 0.9245 0.6769 0.4049 0.2061 0.0913 0.0355 0.0121 0.0036 0.0009 0.0002
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 0.0049 0.0013
4 0.9974 0.9568 0.8298 0.6296 0.4148 0.2375 0.1182 0.0510 0.0189 0.0059

5 0.9997 0.9887 0.9327 0.8042 0.6172 0.4164 0.2454 0.1256 0.0553 0.0207
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577
7 1.0000 0.9996 0.9941 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1316
8 1.0000 0.9999 0.9987 0.9900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517
9 1.0000 1.0000 0.9998 0.9974 0.9861 0.9520 0.8782 0.7553 0.5914 0.4119

10 1.0000 1.0000 1.0000 0.9994 0.9961 0.9829 0.9468 0.8725 0.7507 0.5881
11 1.0000 1.0000 1.0000 0.9999 0.9991 0.9949 0.9804 0.9435 0.8692 0.7483
12 1.0000 1.0000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9790 0.9420 0.8684
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9935 0.9786 0.9423
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9984 0.9936 0.9793

15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9985 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987
17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE C.2. Poisson distribution function

F (x;α) =
x

k=0

e−α αk

k!

α
x 0 1 2 3 4 5 6 7 8 9

0.02 0.980 1.000
0.04 0.961 0.999 1.000
0.06 0.942 0.998 1.000
0.08 0.923 0.997 1.000
0.10 0.905 0.995 1.000

0.15 0.861 0.990 0.999 1.000
0.20 0.819 0.982 0.999 1.000
0.25 0.779 0.974 0.998 1.000
0.30 0.741 0.963 0.996 1.000

0.35 0.705 0.951 0.994 1.000
0.40 0.670 0.938 0.992 0.999 1.000
0.45 0.638 0.925 0.989 0.999 1.000
0.50 0.607 0.910 0.986 0.998 1.000

0.55 0.577 0.894 0.982 0.998 1.000
0.60 0.549 0.878 0.977 0.997 1.000
0.65 0.522 0.861 0.972 0.996 0.999 1.000
0.70 0.497 0.844 0.966 0.994 0.999 1.000
0.75 0.472 0.827 0.959 0.993 0.999 1.000

0.80 0.449 0.809 0.953 0.991 0.999 1.000
0.85 0.427 0.791 0.945 0.989 0.998 1.000
0.90 0.407 0.772 0.937 0.987 0.998 1.000
0.95 0.387 0.754 0.929 0.984 0.997 1.000
1.00 0.368 0.736 0.920 0.981 0.996 0.999 1.000

1.1 0.333 0.699 0.900 0.974 0.995 0.999 1.000
1.2 0.301 0.663 0.879 0.966 0.992 0.998 1.000
1.3 0.273 0.627 0.857 0.957 0.989 0.998 1.000
1.4 0.247 0.592 0.833 0.946 0.986 0.997 0.999 1.000
1.5 0.223 0.558 0.809 0.934 0.981 0.996 0.999 1.000

1.6 0.202 0.525 0.783 0.921 0.976 0.994 0.999 1.000
1.7 0.183 0.493 0.757 0.907 0.970 0.992 0.998 1.000
1.8 0.165 0.463 0.731 0.891 0.964 0.990 0.997 0.999 1.000
1.9 0.150 0.434 0.704 0.875 0.956 0.987 0.997 0.999 1.000
2.0 0.135 0.406 0.677 0.857 0.947 0.983 0.995 0.999 1.000

Source: Reprinted by kind permission from E. C. Molina,Poisson’s Exponential
Binomial Limit, D. Van Nostrand Company, Inc., Princeton, NJ, 1974.
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α
x 0 1 2 3 4 5 6 7 8 9

2.2 0.111 0.355 0.623 0.819 0.928 0.975 0.993 0.998 1.000
2.4 0.091 0.308 0.570 0.779 0.904 0.964 0.988 0.997 0.999 1.000
2.6 0.074 0.267 0.518 0.736 0.877 0.951 0.983 0.995 0.999 1.000
2.8 0.061 0.231 0.469 0.692 0.848 0.935 0.976 0.992 0.998 0.999
3.0 0.050 0.199 0.423 0.647 0.815 0.916 0.966 0.988 0.996 0.999

3.2 0.041 0.171 0.380 0.603 0.781 0.895 0.955 0.983 0.994 0.998
3.4 0.033 0.147 0.340 0.558 0.744 0.871 0.942 0.977 0.992 0.997
3.6 0.027 0.126 0.303 0.515 0.706 0.844 0.927 0.969 0.988 0.996
3.8 0.022 0.107 0.269 0.473 0.668 0.816 0.909 0.960 0.984 0.994
4.0 0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992

4.2 0.015 0.078 0.210 0.395 0.590 0.753 0.867 0.936 0.972 0.989
4.4 0.012 0.066 0.185 0.359 0.551 0.720 0.844 0.921 0.964 0.985
4.6 0.010 0.056 0.163 0.326 0.513 0.686 0.818 0.905 0.955 0.980
4.8 0.008 0.048 0.143 0.294 0.476 0.651 0.791 0.887 0.944 0.975
5.0 0.007 0.040 0.125 0.265 0.440 0.616 0.762 0.867 0.932 0.968

5.2 0.006 0.034 0.109 0.238 0.406 0.581 0.732 0.845 0.918 0.960
5.4 0.005 0.029 0.095 0.213 0.373 0.546 0.702 0.822 0.903 0.951
5.6 0.004 0.024 0.082 0.191 0.342 0.512 0.670 0.797 0.886 0.941
5.8 0.003 0.021 0.072 0.170 0.313 0.478 0.638 0.771 0.867 0.929
6.0 0.002 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 0.916

10 11 12 13 14 15 16

2.8 1.000
3.0 1.000
3.2 1.000
3.4 0.999 1.000
3.6 0.999 1.000
3.8 0.998 0.999 1.000
4.0 0.997 0.999 1.000

4.2 0.996 0.999 1.000
4.4 0.994 0.998 0.999 1.000
4.6 0.992 0.997 0.999 1.000
4.8 0.990 0.996 0.999 1.000
5.0 0.986 0.995 0.998 0.999 1.000

5.2 0.982 0.993 0.997 0.999 1.000
5.4 0.977 0.990 0.996 0.999 1.000
5.6 0.972 0.988 0.995 0.998 0.999 1.000
5.8 0.965 0.984 0.993 0.997 0.999 1.000
6.0 0.957 0.980 0.991 0.996 0.999 0.999 1.000
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α
x 0 1 2 3 4 5 6 7 8 9

6.2 0.002 0.015 0.054 0.134 0.259 0.414 0.574 0.716 0.826 0.902
6.4 0.002 0.012 0.046 0.119 0.235 0.384 0.542 0.687 0.803 0.886
6.6 0.001 0.010 0.040 0.105 0.213 0.355 0.511 0.658 0.780 0.869
6.8 0.001 0.009 0.034 0.093 0.192 0.327 0.480 0.628 0.755 0.850
7.0 0.001 0.007 0.030 0.082 0.173 0.301 0.450 0.599 0.729 0.830

7.2 0.001 0.006 0.025 0.072 0.156 0.276 0.420 0.569 0.703 0.810
7.4 0.001 0.005 0.022 0.063 0.140 0.253 0.392 0.539 0.676 0.788
7.6 0.001 0.004 0.019 0.055 0.125 0.231 0.365 0.510 0.648 0.765
7.8 0.000 0.004 0.016 0.048 0.112 0.210 0.338 0.481 0.620 0.741

8.0 0.000 0.003 0.014 0.042 0.100 0.191 0.313 0.453 0.593 0.717
8.5 0.000 0.002 0.009 0.030 0.074 0.150 0.256 0.386 0.523 0.653
9.0 0.000 0.001 0.006 0.021 0.055 0.116 0.207 0.324 0.456 0.587
9.5 0.000 0.001 0.004 0.015 0.040 0.089 0.165 0.269 0.392 0.522

10.0 0.000 0.000 0.003 0.010 0.029 0.067 0.130 0.220 0.333 0.458

10 11 12 13 14 15 16 17 18 19

6.2 0.949 0.975 0.989 0.995 0.998 0.999 1.000
6.4 0.939 0.969 0.986 0.994 0.997 0.999 1.000
6.6 0.927 0.963 0.982 0.992 0.997 0.999 0.999 1.000
6.8 0.915 0.955 0.978 0.990 0.996 0.998 0.999 1.000
7.0 0.901 0.947 0.973 0.987 0.994 0.998 0.999 1.000

7.2 0.887 0.937 0.967 0.984 0.993 0.997 0.999 1.000
7.4 0.871 0.926 0.961 0.980 0.991 0.996 0.998 0.999 1.000
7.6 0.854 0.915 0.954 0.976 0.989 0.995 0.998 0.999 1.000
7.8 0.835 0.902 0.945 0.971 0.986 0.993 0.997 0.999 1.000

8.0 0.816 0.888 0.936 0.966 0.983 0.992 0.996 0.998 0.999 1.000
8.5 0.763 0.849 0.909 0.949 0.973 0.986 0.993 0.997 0.999 0.999
9.0 0.706 0.803 0.876 0.926 0.959 0.978 0.989 0.995 0.998 0.999
9.5 0.645 0.752 0.836 0.898 0.940 0.967 0.982 0.991 0.996 0.998

10.0 0.583 0.697 0.792 0.864 0.917 0.951 0.973 0.986 0.993 0.997

20 21 22

8.5 1.000
9.0 1.000
9.5 0.999 1.000

10.0 0.998 0.999 1.000
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TABLE C.3. Distribution function of standard normal random variable

z 0 1 2 3 4 5 6 7 8 9

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.5 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.6 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9990 .9993 .9995 .9997 .9998 .9998 .9999 .9999 1.0000

Notes: (1) if a normal variable X is not “standard,” its value must be standardized: Z =

(X − μ)/σ; then FX(x) = FZ
x−μ

σ
; (2) for z ≥ 4, use FZ(z) = 1 to four decimal places;

for z ≤ −4, use FZ(z) = 0 to four decimal places; (3) the entries opposite z = 3 are for 3.0,
3.1, 3.2, and so on; (4) for z < 0, use Fz(z) = 1 − Fz(−z).
Source: Reprinted by permission from B. W. Lindgren and G. W. McElrath, Introduction
to Probability and Statistics, 2nd ed. (copyright c 1966 by B. W. Lindgren and G. W.
McEirath, published by Macmillan Publishing Co.).
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TABLE C.4. Critical values of the Student’s t-distribution

dfa

α
0.1 0.05 0.025 0.01 0.005 0.001

1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.423 2.704 3.307
60 1.296 1.671 2.000 2.390 2.660 3.232

120 1.289 1.658 1.980 2.358 2.617 3.160
∞ 1.282 1.645 1.960 2.326 2.576 3.090

aDegree of freedom.
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TABLE C.5. Critical values of χ2 distribution

v

P
0.995 0.975 0.050 0.025 0.010 0.005

1 0.043927 0.039821 3.84146 5.02389 6.63490 7.87944
2 0.010025 0.050636 5.99146 7.37776 9.21034 10.5966
3 0.071722 0.215795 7.81473 9.34840 11.3449 12.8382
4 0.206989 0.484419 9.48773 11.1433 13.2767 14.8603

5 0.411742 0.831212 11.0705 12.8325 15.0863 16.7496
6 0.675727 1.237344 12.5916 14.4494 16.8119 18.5476
7 0.989256 1.689869 14.0671 16.0128 18.4753 20.2777
8 1.344413 2.17973 15.5073 17.5345 20.0902 21.9550
9 1.734933 2.70039 16.9190 19.0228 21.6660 23.5894

10 2.15586 3.24697 18.3070 20.4832 23.2093 25.1882
11 2.60322 3.81575 19.6751 21.9200 24.7250 26.7568
12 3.07382 4.40379 21.0261 23.3367 26.2170 28.2995
13 3.56503 5.00875 22.3620 24.7356 27.6882 29.8195
14 4.07467 5.62873 23.6848 26.1189 29.1412 31.3193

15 4.60092 6.26214 24.9958 27.4884 30.5779 32.8013
16 5.14221 6.90766 26.2962 28.8454 31.9999 34.2672
17 5.69722 7.56419 27.5871 30.1910 33.4087 35.7185
18 6.26480 8.23075 28.8693 31.5264 34.8053 37.1565
19 6.84397 8.90652 30.1435 32.8523 36.1909 38.5823

20 7.43384 9.59078 31.4104 34.1696 37.5662 39.9968
21 8.03365 10.2829 32.6706 35.4789 38.9322 41.4011
22 8.64272 10.9823 33.9244 36.7807 40.2894 42.7957
23 9.26042 11.6886 35.1725 38.0756 41.6384 44.1813
24 9.88623 12.4012 36.4150 39.3641 42.9798 45.5585

25 10.5197 13.1197 37.6525 40.6465 44.3141 46.9279
26 11.1602 13.8439 38.8851 41.9232 45.6417 48.2899
27 11.8076 14.5734 40.1133 43.1945 46.9629 49.6449
28 12.4613 15.3079 41.3371 44.4608 48.2782 50.9934
29 13.1211 16.0471 42.5570 45.7223 49.5879 52.3356

30 13.7867 16.7908 43.7730 46.9792 50.8922 53.6720
40 20.7065 24.4330 55.7585 59.3417 63.6907 66.7660
50 27.9907 32.3574 67.5048 71.4202 76.1539 79.4900
60 35.5345 40.4817 79.0819 83.2977 88.3794 91.9517

70 43.2752 48.7576 90.5312 95.0232 100.425 104.215
80 51.1719 57.1532 101.879 106.629 112.329 116.321
90 59.1963 65.6466 113.145 118.136 124.116 128.299

100 67.3276 74.2219 124.342 129.561 135.807 140.169

Note: The first column lists the number of degrees of freedom (v). The headings of the
other columns give probabilities (P ) for χ2 to exceed the entry value. For v > 100, treat

2χ2 −
√√

2v − 1 as a standard normal variable.

Source: Reprinted by kind permission from D. A. Fraser, Statistics, An Introduction, Wiley,

New York, 1958.
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TABLE C.7. Rank-sum critical values

(2, 4) (4, 4) (6, 7)
3 11 .067 11 25 .029 28 56 .026

(2, 5) 12 24 .057 30 54 .051
3 13 .047 (4, 5) (6, 8)

(2, 6) 12 28 .032 29 61 .021
3 15 .036 13 27 .056 32 58 .054
4 14 .071 (4, 6) (6, 9)

(2, 7) 12 32 .019 31 65 .025
3 17 .028 14 30 .057 33 63 .044
4 16 .056 (4, 7) (6,10)

(2, 8) 13 35 .021 33 69 .028
3 19 .022 15 33 .055 35 67 .047
4 18 .044 (4, 8) (7, 7)

(2, 9) 14 38 .024 37 68 .027
3 21 .018 16 36 .055 39 66 .049
4 20 .036 (4, 9) (7, 8)

(2,10) 15 41 .025 39 73 .027
4 22 .030 17 39 .053 41 71 .047
5 21 .061 (4,10) (7, 9)

(3, 3) 16 44 .026 41 78 .027
6 15 .050 18 42 .053 43 76 .045

(3, 4) (5, 5) (7,10)
6 18 .028 18 37 .028 43 83 .028
7 17 .057 19 36 .048 46 80 .054

(3, 5) (5, 6) (8, 8)
6 21 .018 19 41 .026 49 87 .025
7 20 .036 20 40 .041 52 84 .052

(3, 6) (5, 7) (8, 9)
7 23 .024 20 45 .024 51 93 .023
8 22 .048 22 43 .053 54 90 .046

(3, 7) (5, 8) (8,10)
8 25 .033 21 49 .023 54 98 .027
9 24 .058 23 47 .047 57 95 .051

(3, 8) (5, 9) (9, 9)
8 28 .024 22 53 .021 63 108 .025
9 27 .042 25 50 .056 66 105 .047

(3, 9) (5,10) (9,10)
9 30 .032 24 56 .028 66 114 .027

10 29 .050 26 54 .050 69 111 .047
(3,10) (6, 6) (10,10)

9 33 .024 26 52 .021 79 131 .026
11 31 .056 28 50 .047 83 127 .053

Notes: The sample sizes are shown in parentheses (n1, n2). The probability associated
with a pair of critical values is the probability that R ≤ smaller value, or equally, it is
the probability that R ≥ larger value.These probabilities are the closest ones to. 025 and
.05 that exist for integer values of R. The approximate .025 values should be used for a
two-sided test with α = .05, and the approximate .05 values for a one-sided test.

Source: Reprinted by kind permission from W. J. Dixon and F. J. Massey, Introduction to

Statistical Analysis, 3rd ed., McGraw-Hill, New York, 1969.
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TABLE C.8. Critical values of Kolmogorov–Smirnov Dn statistic

Sample Level of significance for Dn = sup |F̂n(x) − F0(x)|
size

n α = 0.20 α = 0.10 α = 0.05 α = 0.01

1 0.9000 0.9500 0.9750 0.9950
2 0.6838 0.7764 0.8419 0.9293
3 0.5648 0.6360 0.7076 0.8290
4 0.4927 0.5652 0.6239 0.7342
5 0.4470 0.5095 0.5633 0.6685
6 0.4104 0.4680 0.5193 0.6166
7 0.3815 0.4361 0.4834 0.5758
8 0.3583 0.4096 0.4543 0.5418
9 0.3391 0.3875 0.4300 0.5133

10 0.3226 0.3687 0.4093 0.4889
11 0.3083 0.3524 0.3912 0.4677
12 0.2958 0.3382 0.3754 0.4491
13 0.2847 0.3255 0.3614 0.4325
14 0.2748 0.3142 0.3489 0.4176
15 0.2659 0.3040 0.3376 0.4042
16 0.2578 0.2947 0.3273 0.3920
17 0.2504 0.2863 0.3180 0.3809
18 0.2436 0.2785 0.3094 0.3706
19 0.2374 0.2714 0.3014 0.3612
20 0.2316 0.2647 0.2941 0.3524
25 0.2079 0.2377 0.2640 0.3166
30 0.1903 0.2176 0.2417 0.2899
35 0.1766 0.2019 0.2243 0.2690

> 35 1.07/
√

n 1.22/
√

n 1.36/
√

n 1.63/
√

n

Source: Adapted from Table 1 of L. H. Miller,“Table of percentage points of Kolmogorov
statistics,” J. Am. Stat. Assoc. 51, 113, (1956), and Table 1 of F. J. Massey, Jr., “The
Kohnogorov–Smirnov test for goodness-of-fit,”J. Am. Stat. Assoc. 46, 70, (1951), with
permission of the authors and publisher.
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TABLE C.9. Critical values of Kolmogorov–Smirnov D̂n statistic for the
exponential distribution with an unknown mean θ

Sample Level of significance for D̂n = sup |F̂n(x) − F0(x, θ)|
size

n α = 0.20 α = 0.15 α = 0.10 α = 0.05 α = 0.01

3 0.451 0.479 0.511 0.551 0.600
4 0.396 0.422 0.449 0.487 0.548
5 0.359 0.382 0.406 0.442 0.504
6 0.331 0.351 0.375 0.408 0.470
7 0.309 0.327 0.350 0.382 0.442
8 0.291 0.308 0.329 0.360 0.419
9 0.277 0.291 0.311 0.341 0.399

10 0.263 0.277 0.295 0.325 0.380
11 0.251 0.264 0.283 0.311 0.365
12 0.241 0.254 0.271 0.298 0.351
13 0.232 0.245 0.261 0.287 0.338
14 0.224 0.237 0.252 0.277 0.326
15 0.217 0.229 0.244 0.269 0.315
16 0.211 0.222 0.236 0.261 0.306
17 0.204 0.215 0.229 0.253 0.297
18 0.199 0.210 0.223 0.246 0.289
19 0.193 0.204 0.218 0.239 0.283
20 0.188 0.199 0.212 0.234 0.278
25 0.170 0.180 0.191 0.210 0.247
30 0.155 0.164 0.174 0.192 0.226

> 30 0.86/
√

n 0.91/
√

n 0.96/
√

n 1.06/
√

n 1.25/
√

n

Source: Adapted from Table 1 of H. W. Lilliefors, “On the Kolmogorov–Smirnov test
for the exponential with mean unknown,” J. Am. Stat. Assor. 64, 388, (1969), with
permission of the author and publisher.
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TABLE C.10. Critical values of Kolmogorov–Smirnov D̂n statistic for the
normal distribution with an unknown meanμ and an unknown variance σ2

Sample Level of significance for D̂n = sup |F̂n(x) − F0(x, μ, σ2)|
size

n α = 0.20 α = 0.15 α = 0.10 α = 0.05 α = 0.01

4 0.300 0.319 0.352 0.381 0.417
5 0.285 0.299 0.315 0.337 0.405
6 0.265 0.277 0.294 0.319 0.364
7 0.247 0.258 0.276 0.300 0.348
8 0.233 0.244 0.261 0.285 0.331
9 0.223 0.233 0.249 0.271 0.311

10 0.215 0.224 0.239 0.258 0.294
11 0.206 0.217 0.230 0.249 0.284
12 0.199 0.212 0.223 0.242 0.275
13 0.190 0.202 0.214 0.234 0.268
14 0.183 0.194 0.207 0.227 0.261
15 0.177 0.187 0.201 0.220 0.257
16 0.173 0.182 0.195 0.213 0.250
17 0.169 0.177 0.189 0.206 0.245
18 0.166 0.173 0.184 0.200 0.239
19 0.163 0.169 0.179 0.195 0.235
20 0.160 0.166 0.174 0.190 0.231
25 0.142 0.147 0.158 0.173 0.200
30 0.131 0.136 0.144 0.161 0.187

> 30 0.736/
√

n 0.768/
√

n 0.805/
√

n 0.886/
√

n 1.031/
√

n

Source: Adapted from Table 1 of H. W. Lilliefors, “On the Kolmogorov–Smirnov test for
normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 400, (1967), with
permission of the author and publisher.
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TABLE C.11. Probabilities for the Mann–Kendall nonparametric test
for trend

Values of n Values of n
S 4 5 8 9 S 6 7 10
0 0.625 0.592 0.548 0.540 1 0.500 0.500 0.500
2 0.375 0.408 0.452 0.460 3 0.360 0.386 0.431
4 0.167 0.242 0.360 0.381 5 0.235 0.281 0.364
6 0.042 0.117 0.274 0.306 7 0.136 0.191 0.300
8 0.042 0.199 0.238 9 0.068 0.119 0.242
10 0.0283 0.138 0.179 11 0.028 0.068 0.190
12 0.089 0.130 13 0.0283 0.035 0.146
14 0.054 0.090 15 0.0214 0.015 0.108
16 0.031 0.060 17 0.0254 0.078
18 0.016 0.038 19 0.0214 0.054
20 0.0271 0.022 21 0.0320 0.036
22 0.0228 0.012 23 0.023
24 0.0387 0.0263 25 0.014
26 0.0319 0.0229 27 0.0283
28 0.0425 0.0212 29 0.0246
30 0.0343 31 0.0223
32 0.0312 33 0.0211
34 0.0425 35 0.0347
36 0.0528 37 0.0318

39 0.0458
41 0.0415
43 0.0528
45 0.0628

Note : Repeated zeros are indicated by powers; for example, 0.0347 stands for 0.00047.

Source: Adapted from Table A18, Appendix A of R. O. Gilbert, Statistical Methods for

Environmental Pollution Monitoring, c 1987, Van Nostrand Reinhold Company, New York,

with permission of the publisher. For an extension of this table for n >10, refer to Table

A.21 of M. Hollander and D. A. Wolfe,Nonparametric Statistical Methods, Wiley, New

York, 1973.
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Appendix D

Laplace Transforms

We have had several occasions to use Laplace transforms in this text. This
appendix examines useful properties of the Laplace transform and gives a
table of Laplace transforms that are often used. For further details about
Laplace transform, see Schiff [SCHI 1999] or Bellman and Roth [BELL 1994].

Suppose that f(t) is a piecewise-continuous function, defined at least for
t > 0, and is of exponential order α, meaning that it does not grow any faster
than the exponential eαt:

|f(t)| ≤ Meαt, t > 0

for some constant M . Then the Laplace transform of f(t), denoted by f̄(s),
is defined by the integral

f̄(s) =
∫ ∞

0

e−stf(t)dt (D.1)

for any complex number s such that its real part Re(s) > α.
Important [f(t), f̄(s)] pairs are given in Table D.1.
The Laplace transform is generally used to simplify calculations. However,

the technique will not be of value unless it is possible to recover the function
f(t) from its transform f̄(s). In fact, we have the following theorem, which
unfortunately does not have an elementary proof and so it is stated without
proof.

THEOREM D.1 (Correspondence or Uniqueness Theo-
rem). If f̄(s) = ḡ(s) for all s, then f(t) = g(t) for all t.
In other words, two functions that have the same transform are
identical.

Probability and Statistics with Reliability, Queuing, and Computer Science Applications,
Second Edition. Kishor S. Trivedi.
c© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/trivedi/probabilityandstatistics2e
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TABLE D.1. Important transform pairs

f(t), t > 0 f̄(s)

1. c a constant
c

s

2. Unit step, u(t − x)
e−sx

s
x > 0

3. Delta function, δ(t − x) e−sx x > 0

4. t
1

s2

5. ta Γ(a + 1)

sa+1
, (a > −1)

6. ta a!

sa+1
, (a = 0, 1, 2, . . .)

7. t−1/2

√
π

s
,

8. e−at 1

s + a
, [Re(s) > a]

9. te−at 1

(s + a)2
, [Re(s) > a]

10. tbe−at b!

(s + a)b+1
, [b = 0, 1, 2, . . ., Re(s) > a]

11. tβe−at Γ(β + 1)

(s + a)β+1
, [β > 0, Re(s) > a]

As a special case of Definition D.1, assume that f(t) is the pdf of some
nonnegative, absolutely continuous random variable X [in this case f(t) is
the short form for fX(t)]; then f̄(s) is also called the Laplace–Stieltjes trans-
form [also denoted by acronym LST or symbolically as LX(s)] of the random
variable X. In this case f̄(s) always exists for any positive α, since

|f̄(s)| ≤
∫ ∞

0

|e−stf(t)|dt ≤
∫ ∞

0

f(t)dt = 1 for Re(s) > 0.

In this connection, the usefulness of the Laplace–Stieltjes transform stems
from the convolution property and the moment generating property (besides
the uniqueness property), as follows.
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THEOREM D.2 (The Convolution Theorem). If X1,
X2, . . . , Xn are independent random variables with respective
Laplace–Stieltjes transforms LX1

, . . . , LXn
(s), then the LST of

the random variable

Z =
n∑

i=1

Xi

is given by

LZ(s) =
n∏

i=1

LXi
(s).

THEOREM D.3 (Moment Generating Property). Let X
be a random variable possessing a Laplace–Stieltjes transform
LX(s). Then the kth (k = 1, 2, . . .) moment of X is given by

E[Xk] = (−1)k dkLX(s)
dsk

∣∣∣∣
s=0

. (D.2)

Thus, if X denotes the time to failure of a system, then, from a knowledge
of its LST LX(s), we can quickly obtain the system MTTF (mean time to
failure), E[X], while it may be considerably more difficult to obtain the density
fX(t) and the reliability RX(t).

The Laplace transform is also used in solving differential equations, since
it reduces an ordinary linear differential equation with constant coefficients
into an algebraic equation in s. The solution in terms of s is then converted
into a time function by an inversion that is unique by Theorem D.1.

The usefulness of the Laplace transform in solving differential equations is
based on the fact that it is a linear operator and that the Laplace transform
of any derivative of a function is easily computed from the transform of the
function itself.

THEOREM D.4 (Linearity Property). Define the function

g(t) =
n∑

i=1

Cifi(t) for some constants C1, C2, . . . , Cn. Then

ḡ(s) =
n∑

i=1

Cif̄i(s). (D.3)

THEOREM D.5 (Initial Value Theorem). Let f be a func-
tion such that f and its derivative f ′ are both of exponential order
α. Then the Laplace transform of f ′ is given by

f̄ ′(s) = sf̄(s) − f(0). (D.4)
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Proof: By Definition (D.1), we obtain

f̄ ′(s) =

∫ ∞

0

df

dt
e−stdt .

Integrating by parts, we have

f̄ ′(s) = e−stf(t)|∞0 + s

∫ ∞

0

f(t)e−stdt .

The second term on the right-hand side is simply sf̄(s). Consider the
first term on the right-hand side. Since, by assumption, f(t) grows more
slowly than the exponential e+st for sufficiently large s:

lim
t→∞

e−stf(t) = 0

At the lower limit we obtain

lim
t→0

e−stf(t) = f(0)

Hence the result follows. If a singularity occurs at t = 0, we must
be careful to replace f(0) by f(0−), which is the limit of f(t) as t
approaches 0 from the left-and side. Equation (D.4) holds if f(x) is
right continuous at x = 0.

Important properties of the Laplace transform are summarized in Table D.2.
The procedure of solving a differential equation by means of Laplace trans-

form is illustrated in Figure D.1.
We now discuss the inversion of a Laplace transform. Consider the solution

to the differential equation of Figure D.1 in the s domain:

ȳ(s) =
1

(a + s)(b + s)
.

Since this function does not occur on the right-hand side of Table D.1, we
cannot use table lookup and we must use alternate methods for its inversion.
A procedure quite often used is partial fraction expansion (or decompo-
sition). In this case we rewrite

ȳ(s) =
C1

a + s
+

C2

b + s

=
(C1b + C2a) + (C1 + C2)s

(a + s)(b + s)

=
1

(a + s)(b + s)
.
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TABLE D.2. Properties of Laplace tansforms

Function Laplace transform

1. f(t), t > 0 f̄(s) =
∫∞
0

e−stf(t)dt (definition)

2. af (t) + bg(t) af̄(s) + bḡ(s) [linearity (superposition)

property]

3. f(at), a > 0 1
a
f̄( s

a
)

4. f(t − a), a ≥ 0 e−as f̄(s)

5. e−atf(t), a ≥ 0 f̄(s + a)

6. f ′(t) sf̄(s) − f(0)

7. f (n)(t) snf̄(s) − sn−1f(0) − sn−2f ′(0)

− . . . − f (n−1)(0)

8.
∫ t

−∞ f(t′)dt′ 1
s
f̄(s)

9.
∫ t

−∞ f(τ)g(t − τ)dτ f̄(s)ḡ(s) (convolution theorem)

10.tf (t) − df̄(s)
ds

11.tnf(t), n a positive (−1)nf̄ (n)(s)

integer

12. f(t)
t

∫∞
s

f̄(x)dx

13.
∫∞
0

f(t)dt = f̄(0) (integral property)

14.lim
t→0

f(t) = lim
s→∞

sf̄(s) (initial value theorem a)

15. lim
t→∞

f(t) = lim
s→0

sf̄(s) (final value theorem a)

a Initial-value and final-value theorems apply only when all the poles of sf̄(s) lie on

the left half of the s plane; that is, if we write sf̄(s) as the ratio of two polynomials

N(s)/D(s), then all the roots of the equation D(s) = 0 are the poles of sf̄(s), and

these must satisfy the condition Re(s) < 0.
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expansion

+ ay = e
-bt

y(0) = 0

(a + s)(b + s)

dt

-y(s) = 
1

Solution

Transform

Inversion

Partial

Algebraic
manipulation

Differential equation Transform equation

Time domain s - domain

dy

using Table D.1

fraction

y(t) = e−at

b−a − e−bt

b−a
y(s) = 1/(b−a)

a+s − 1/(b−a)
b+s

sy(s) + ay(s) = 1
b+s

Figure D.1. Solution of a linear differential equation using Laplace transform
procedure

Hence
C1b + C2a = 1 and C1 + C2 = 0

or
C1 =

1
b − a

and C2 = − 1
b − a

.

Thus
ȳ(s) =

1/(b − a)
a + s

− 1/(b − a)
b + s

.

Now, using the linearity property of Laplace transform and Table D.1 (entry
6), we conclude that

y(t) =
1

b − a
e−at − 1

b − a
e−bt , t > 0.

More generally, suppose f̄(s) is a rational function of s:

f̄(s) =
N(s)
D(s)

=
N(s)

d∏
i=1

(s + ai)

, (D.5)
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where we assume that the degree of polynomial D(s) is at least one greater
than the degree of N(s) and that all the roots of D(s) = 0 are distinct. Then
the partial fraction expansion of f̄(s) is

f̄(s) =
d∑

i=1

Ci

s + ai

, (D.6)

where
Ci =

(
N(s)
D(s)

(s + ai)
)∣∣∣∣

s=−ai

.

The inversion of (D.6) is easily obtained

f(t) =
d∑

i=1

Cie
−ait.
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reliability model, 469
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Goel–Okumoto software reliability

model, 468, 679, 752
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Goodness-of-fit test, 740–751

chi-square, 741–743
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Interarrival time, 126, 129, 303,
314

Inverse transform method, 157

Jackson’s result, 583–589
Jensen’s method, 547
Job scheduling, 590
Joint distribution, 159
Joint probability density function,

161, 674, 754

Joint probability mass function, 105,
580, 587, 596, 625, 674, 759

Kolmogorov’s backward equation,
424

Kolmogorov’s forward equation, 424
integral form, 428

Kolmogorov–Smirnov test, 743–751,
824, 826

Kronecker’s delta function, 409, 428

Laplace transform, 334, 828
inverse, 225, 831
use in solving differential

equations, 466, 520, 831
Laplace–Stieltjes transform, 217,

231, 267, 274, 283, 292
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main, 208, 670, 758, 775
paged, 346, 455, 603, 787

Memory: cache, 383
Memoryless property:

of exponential distribution, 125,
128, 345

of geometric distribution, 84, 371
MMPP/M/1 queue, 501, 504
Mobile communication, 674
Mode, 201
Model:

binomial, 75, 76
Markov reward, 433, 562
parameters, 75, 194, 224, 753, 772,

786, 804, 805
performability, 568
Poisson, 3, 751
validation, 2

Moments, 205, 226
central, 206
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Mortality curve, 134
MTBF (mean time between

failures), 333
MTTF (mean time to failure), 204,

238, 242, 245, 293, 718
computation, 526
conditional, 534
equivalent, 458
estimation, 675, 689
of k-out-of-n system, 243
of BTS system, 247
of hybrid k-out-of-n system, 290
of interconnection network, 244
of parallel system, 241, 246, 521
of series system, 239, 246
of shuffle exchange network, 244
of standby redundant system, 282,

287, 289
of TMR and TMR/simplex

systems, 243
of WFS system, 244

MTTR (mean time to repair), 336
Multi-level model, 464, 493, 504–519,

530, 538, 628, 631, 634, 636,
637, 639, 640, 648, 650, 653

Multinomial:
coefficient, 53
distribution, 107
expansion, 58

Multiplication rule, 25, 260
continuous analogue, 260
generalized, 37, 352

Multiprocessor system, 172, 246,
376, 440, 508

memory interference, 377, 379
performability, 568

Multiprogramming, degree (level),
450, 592, 640, 753, 787

Musa–Okumoto software reliability
model, 469

Near-coincident fault, 281, 478
Network of queues seeQueuing

networks(s), 577
Non-birth–death processes, 474–495

Non-product-form queuing network
(NPFQN), 628–637

Nonhomogeneous continuous-time
Markov chain (NHCTMC), 424,
427, 428, 524, 551, 572, 575

Nonhomogeneous Markov model
(NHCTMC), 523, 524

Nonhomogeneous Poisson process
(NHPP), 320, 467

Normal equations of least squares,
759

Numerical solution:
steady-state, 542
transient, 546

Operating system, 440, 739
Operating system availability, 485
Order statistic, 164

of exponential distribution, 187
Outlier, 737
Overhead, 777

Paging, 347, 380, 640, 777
thrashing, 455, 606

Partial fraction expansion, 223, 831
Perceived mean:

queue length, 438, 504
response time, 438

Percentile, 702
Performability, 180, 504–519, 538,

568, 572, 573, 576, 636
Performability model, 180, 504–519,

538
Performance evaluation, 662, 796
Performance model, 382, 463–464,

496–503, 505, 509, 510, 565, 569
web browser, 611

Petri net, 552
arc, 552

inhibitor, 558
input, 553
multiplicity, 553
output, 553

enabling function, 562
guard function, 562



Trim Size: 6.125in x 9.25in 60Trivedi bindauth.tex V3 - 05/23/2016 5:56pm Page 853�

� �

�

SUBJECT INDEX 853

marking, 552
tangible, 558
vanishing, 558

marking dependent:
arc multiplicity, 562
firing rate, 562

place, 552, 553
input, 553
output, 553

reachability graph, 553, 556, 557
extended, 558, 559

reward rate, 562
stochastic, 555, 649

generalized, 558
reward net, 562

transition, 552, 553
firing time, 553, 555
immediate, 558
properties, 558
race policy, 555
timed, 558

vanishing loop, 558
Poisson arrivals see time averages

(PASTA), 392
Poisson process, 309, 317, 465, 555

compound, 326
decomposition of, 321, 326
Markov modulated, 501
nonhomogeneous, 320, 339, 467,

468
superposition, 320

Pollaczek–Khinchin:
mean-value formula, 396
transform equation, 395

Population, 661
distribution, 738, 742, 765
parameters, 765

Power method, 542
Preemptive repeat, 450
Preemptive resume, 450
Preventive maintenance, 475
Probability, 791

assignment, 14, 18
axioms, 14
conditional, 24

measure, 17
models, 2
tree, 39

Probability density function (pdf),
122, 805

Cauchy, 198, 252, 665
exponential, 126, 204
joint (or compound), 161, 674, 754
marginal, 161, 260, 674
reciprocal, 125, 200
truncated normal, 146

Probability generating function
(PGF), 100–102, 217, 226–230,
292, 804

convolution property, 112
uniqueness property, 101

Probability mass function (pmf),
68–93, 804

joint (or compound), 105, 673, 759
marginal, 105, 580

Probability plot:
exponential distribution, 749
Weibull distribution, 749

Producer–consumer system, 566
Product-form queuing

network(s)(PFQN), 582–620
Program performance, 97, 104, 117,

118, 202, 221, 253, 276, 294,
346, 368, 401, 407, 411

concurrent, 176, 296, 503, 541,
566, 655

Program:
control flow graph, 407
paging behavior, 346, 380

renewal model, 346

Qualitative variable, 779
Quality control, 732
Quality of service (QoS), 505
Queuing, 577, 793

network(s)seeQueuing network(s),
577

notation, 303
Tagged customer, 648
theory, 303, 577, 793
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Queuing network(s), 577
closed, 577, 590–611

multiple job types, 624
nonexponential service time
distributions, 620, 627
normalization constant, 596,
598–608, 626
utilization, 601, 609, 619, 626

joint probability, 580
marginal probability, 580
non-product-form, 628–637
normalization constant, 618
open, 577, 582–589
product-form solution, 580, 581,

594, 598, 623, 626
relative throughput, 593–595, 597,

618
relative utilization, 593–595, 601,

603, 618, 619

Random deviate (variate), 155, 156,
273

Random experiment, 3
Random incidence, 342–345
Random interval, 681
Random number, 155, 305
Random process, 301
Random sample, 191, 250, 663, 683,

718, 765, 772
Random sums, 290
Random variable(s), 121

absolutely continuous, 122
Cauchy, 252
continuous, 121, 122, 201
dependent, 758
discrete, 68, 71, 73, 83, 85, 201,

759
expectation, 201, 209, 274
functions, 154, 191, 209
independent, 94, 161, 205, 217,

225, 272, 757, 772, 779
mixed, 124
orthogonal, 216
uncorrelated, 213, 216, 757,

772

Random vectors:
continuous, 159
discrete, 104

Random walk, 316
Randomization method, 547
Rank correlation coefficient, 775
Reachability graph, 553, see Petri

net
Real-time system

hard, 538
soft, 537

Reconfiguration, 508
Recurrent process, 327
Redundancy, 31

k-out-of-n, 243
hybrid k-out-of-n, 243, 495
parallel, 31, 240, 246, 495
standby, 178, 241, 495
subsystem level, 60, 242, 495
system level, 60
triple modular, 50

Regression, 663, 753, 765
linear, 756
nonlinear, 775

Relative frequency, 3, 682
Reliability, 38, 130, 280, 675, 692,

794
Combined with performance, 180,

538, see Performability
conditional, 133
dependent components, 263
hierarchical model, 531
Markov models, 519–523
nonhomogeneous Markov model,

523
of k-out-of-n system, 49, 59, 77,

164, 168, 174, 187, 190, 525
of base repeater, 38
of base transceiver system, 51, 62
of detector–redundant systems, 59
of diode configurations, 55
of fault-tolerant software, 532
of hybrid k-out-of-n system, 189,

290, 473
of interconnection network, 170
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of memory, 293
of non-series–parallel systems, 44
of nonidentical k-outof-n system,

51
of parallel systems, 30, 60, 165,

166, 472, 519
of real-time system

hard deadline, 538
soft deadline, 537

of recovery block, 532
of series systems, 30, 59, 163, 245,

262, 271, 321
of series–parallel systems, 32
of shuffle exchange network, 170
of software, see Software reliability
of standby redundant system, 180,

281, 284, 288, 471, 532
of standby redundant systems,

179, 282, 539
of TMR system, 50, 59, 168, 185

with spare, 525
of TMR/simplex system, 183
of WFS system, 528
product law, 31
statistics, 692
temperature-dependence, 275
with imperfect coverage, 280, 521

Renewal counting process, 309, 328
decomposition, 331
superposition, 345

Renewal density, 329
Renewal process, 327–331
Response time, 578, 587

distribution, 436, 471, 473, 511,
581, 641, 648

mean, 398, 433, 438, 499, 504, 584,
628, 630, 639

Reward function, 353, 427, 562

Safety, 523, 525, 534, 539
Sample correlation coefficient, 774
Sample mean, 192, 211, 250, 664,

668, 689, 714, 759, 780
variance of, 251, 665

Sample space, 3, 5, 65

continuous, 6
countably infinite, 5
discrete, 5, 17
finite, 5, 19
partition, 10
sequential, 12, 66
uncountable, 5, 17

Sample variance, 666, 668, 685, 689,
723, 734

Sampling distribution, 662, 664, 747
Sampling:

from Bernoulli distribution, 694
from exponential distribution, 191,

689, 729, 747, 765
from finite population, 663, 665,

667
from normal distribution, 191,

683, 733, 747
from Weibull distribution, 693

Saturation number, 461, 619
Scatter diagram, 754, 774
Scheduling discipline, 397, 433, 623

BCC (blocked calls cleared), 443,
462

FCFS (first-come, first-served),
304, 391, 433, 455, 578, 581,
623

PS (processor sharing), 435, 623
RR (round robin), 435
SLTF (shortest latency time first),

454
SRPT (shortest remaining

processing time first), 435
Searching, analysis, 202, 203
Security modeling, 531
Semi-Markov process, 490

parameter estimation, 708
Sen’s slope estimator, 770–771
Service:

rate, 204
time distribution, 578

Shuffle exchange network (SEN), 169
Sigma field, 17, 121
Sign test, 732
Simulation, 751, 799
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Slope estimation, 768
Sen’s method, 770

Software aging, 768
Software availability, 485, 486
Software fault tolerance, 45, 278,

486, 532
Software performance, 97, 104, 117,

118, 202, 221, 253, 276, 294,
296, 346, 368, 401, 407, 411,
414

Software reliability, 45, 259, 261, 278,
372, 411, 414, 486, 532, 679,
802

growth model, 262, 468, 470, 473
generalized Goel–Okumoto, 469
Goel–Okumoto, 468, 679, 752
hypergeometric, 92
Jelinski–Moranda, 473
Littlewood–Verrall model, 262
log-logistic, 469, 681
logarithmic Poisson, 469

Software reliability growth model
(SRGM), 92, 120, 199, 201, 259,
261, 262, 300, 354, 372, 419,
468–470, 473, 679, 681, 752, 802

Software reliability model (SRM),
92, 120, 199, 201, 259, 261, 262,
300, 354, 372, 411, 414, 419,
468–470, 473, 532, 679, 681, 752

Software testing, 199, 259, 261
Sorting:

analysis, 221
Standard deviation, 206
Standby redundancy, 179, 180, 281,

284, 288, 453, 465, 471, 486,
489, 532

cold, 179, 180, 281, 453, 465, 471,
486

hot, 284, 532
warm, 284, 288, 489

Standby system, 284, 465, 471, 489,
532

Statistic, 664, 719, 773
F (variance ratio), 740
t, 734, 737

chi-square, 739–742
Kolmogorov–Smirnov, 744, 824,

826
rank-sum, 736–737, 823

Statistics, 191, 664, 795
availability, 705

Stochastic Petri net (SPN), 555
Stochastic process, 301, 714, 792

classification, 303, 307
continuous state, 302
continuous-time, 302
discrete state, 302
discrete-time, 302, 714
Markov, 308, 351
Markov regenerative, 570
sample function (realization), 301,

304, 312
semi-Markov (SMP), 309, 490,

570, 708
estimation, 708

state space, 301
stationary, strictly, 307
stationary, wide-sense, 310, 714

Stochastic reward net (SRN), 562,
see Petri net, 649

Storage allocation, dynamic, 208
Structure function, 34
Successive overrelaxation method

(SOR), 544
Convergence, 545

Sum of disjoint products (SDP), 17,
35, 36, 38, 44, 46, 52, 62

Sum of squares, 786
about the mean, 763
between treatments, 783
residual (error), 763, 783

Tandem network, 578
Task arrival, 339
Telephone:

call congestion, 443, 462
exchange, 208, 237, 440, 443, 462,

505, 521, 750
traffic, 440
trunks, 208
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Theorem:
of Blackwell, 329
of elementary renewal, 329
of PASTA, 392
of key renewal, 329
of total expectation, 274
of total moments, 274
of total probability, 39

continuous analog, 260
of total transforms, 274, 283, 286

Therorm
Central-limit, 251

Throughput, 451, 559, 594, 618, 635,
753, 787

Time slicing, 47
Time to failure, 126, 130
Traffic intensity, 432
Transform(s), 216, 226, 805

z (probability generating
function), 101

characteristic function, 224, 225
convolution property, 112, 113,

217, 830
correspondence (uniqueness)

theorem, 101, 218, 828
Fourier, 217
Laplace, 466, 472, 520–526,

828–834
Laplace–Stieltjes, 217, 231–234,

283, 290, 292
moment generating function, 217
moment generating property, 219,

522, 830
Tree diagram, 11, 39, 285, 315, 403
Trend detection, 768–768

Uniformization method, 547

Variance (population), 206, 211, 212,
250, 734, 738

sample, 666
Variation:

explained, 763
residual, 757, 779, 783
total, 763, 784
unexplained, 763

Venn diagram, 11

Warm standby, 489
Web performance model, 611
Web traffic, 150
WFS example, 169, 244, 338, 482,

496, 528, 563, 565, 570
Wireless:

analysis of ARQ, 78, 293
availability, 570

model, 340, 342, 512
cell:

analysis, 204
control channel, 512
guard channels, 463
handoff calls, 463, 512, 566

performability model, 512
performance model, 463, 565
protocol:

Aloha, 388
slotted Aloha, 388
time division multiple access
(TDMA), 23, 92

reliability model, 38, 51
Workload characterization, 708
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